Production Go

Build modern, production-
ready systems in Go

W

Herman Schaaf e Shawn Smith

Production Go
Build modern, production-ready systems in Go

Herman Schaaf and Shawn Smith
This book is for sale at http://leanpub.com/productiongo

This version was published on 2018-11-03

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

© 2013 - 2018 Herman Schaaf and Shawn Smith

http://leanpub.com/productiongo
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction e i

Getting Started 1

Installing Go 2
Installation 2
GOPATH 2
Editor Integrations 3
Linters and Correctness Tooling 5

Basics e 7
Program Structure 7
Variables and Constants 9
Basic Data Types 12
Structs . . o 17
Operators e 19
Conditional Statements 22
ATTAYS . o o o 23
SHees . . o o 24
Maps . . e 27
Lo0OPS . o e 29
Functions. 32
Exported Names 32
Pointers o o e 33
Goroutines 34
Channels 36
Interfaces 39
Error Handling 42
Reading Input 43
Writing Output 44

Styleand Error Handling 46
StYle . o 46

Error Handling 50

CONTENTS

Wrapping Up o e 51
Strings 52
Appending to Strings 52
Splitting strings 54
Counting and finding substrings 55
Advanced string functions 57
Ranging overastring 61
Supporting Unicode 62
A very brief history of string encodings L L 62
Strings are byte slices L 63
Printing strings 64
Runes and safely ranging over strings o L L. 66
Handling right-to-left languages. 67
CONCUITENCY e 68
syncWaitGroup L 69
Channels 71
Goroutinesinweb handlers 73
Pollers 74
Race conditions 76
Testing o 82
Why do we need tests? 82
Writing Tests 83
Testing HTTP Handlers e 87
Mocking e 89
Generating Coverage Reports 93
Writing Examples 97
Benchmarks 101
Asimple benchmark 101
Comparing benchmarks 105
Resetting benchmark timers 106
Benchmarking memory allocations 107
Modulo vs Bitwise-and 110
Tooling 113
GodoC . . o o 113
GoGuru e 114
Race Detector e 115
GoReport Card 127

Security 128

CONTENTS

CSRE . o 128
Content Security Policy (CSP) 128
HTTP Strict Transport Security (HSTS) 128
bluemonday (https://github.com/microcosm-cc/bluemonday) 128
Continuous Integration L 129
Thebuild 129
Deployment 131
Monitoring e 132
Prometheus 132
Optimization 133
Common Gotchas 134
Nilinterface 134
Further Reading e 135
Acknowledgements 136

Licenses 136

Introduction

Why Go in Production?

If you are reading this book, we assume you are interested in running Go in a production
environment. Maybe you dabble in Go on your side projects, but are wondering how you can use it
at work. Or perhaps you’ve read a company blog post about converting their codebase to Go, which
now has 3 times less code and response times one tenth of what they were before. Your mileage will
vary when it comes to gains in productivity and efficiency, but we think they will be positive gains.
Our goal in writing this book is to provide the knowledge to write a production-ready service in Go.
This means not only writing the initial implementation, but also reliably deploying it, monitoring
its performance, and iterating on improvements.

Go is a language that allows for fast iteration, which goes well with continuous deployment.
Although Go is a statically typed language, it compiles quickly and can often be used as a
replacement for scripting languages like Python. And many users report that when writing Go,
once a program works, it continues to “just work”. We suspect that this is due to the simple design
of the language, and the focus on readability rather than clever constructs.

In one project, we replaced existing APIs in PHP with equivalent functionality in Go. We saw
performance improvements, including an order of magnitude reduction in response times, which
led to both higher user retention and a reduction in server costs. We also saw developer happiness
increase, because the safety guarantees in Go reduced the number of production-breaking bugs.

This book is not meant for beginner programmers. We expect our audience to be knowledgeable of
basic computer science topics and software engineering practices. Over the years, we have helped
ramp up countless engineers who had no prior experience writing Go. Ideally this will be the book
that people recommend to engineers writing Go for the first time, and who want to better understand
the “right way” to write Go.

We hope this book will help guide you on your journey to running Go in production. It will cover
all important aspects of running a production system, including advanced topics like profiling the
memory usage of a Go program, deploying and monitoring apps written in Go, and writing idiomatic
tests.

Feel free to skip around to chapters that seem more relevant to your immediate concerns or interests.
We will do our best to keep the chapters fairly independent of one another in order to make that
possible.

Getting Started

“Clear is better than clever” - Rob Pike

Installing Go

Installation

The Go Downloads page' contains binary distributions of Go for Windows, Apple macOS, or Linux.

You can also find instructions for installing Go from source on their Installing Go from source?
page. We recommend installing a binary release first, as there are some extra steps necessary to
install from source, and you really only need to install from source if you’re planning to contribute
changes upstream to the Go language itself.

Also, if you use Homebrew on macOS, you should be able to install go with a simple brew install
go.

Once installed, test the command by running:
$ go version
and you should see something like:

go version gol.9 darwin/amd64

GOPATH

Once you’ve installed Go, you need to set up a workspace. Traditionally this is called the GOPATH,
but since Go 1.8 there is a default workspace at SHOME/go on Unix and %USERPROFILE%/go on Windows
(for the sake of brevity, we’re going to assume you’re using UNIX and only refer to SHOME/go from
now on). You’ll have to create this directory if it doesn’t already exist. This is where you’ll be writing
most if not all of your Go code.

Typically you’ll be working with Go packages that are hosted on GitHub. When you retrieve
a package using the go get command, the source will be automatically downloaded into your
workspace. For example, if you want to download the popular URL router library gorilla/mux’
you would run:

go get github.com/gorilla/mux

and the source of that library will be downloaded into SHOME/go/src/github.com/gorilla/mux. You
can now also import that library in your own code. Here’s an example based on some sample code
from the gorilla/mux README:

'https://golang.org/dl/
*https://golang.org/doc/install/source
*https://github.com/gorilla/mux

https://golang.org/dl/
https://golang.org/doc/install/source
https://github.com/gorilla/mux
https://golang.org/dl/
https://golang.org/doc/install/source
https://github.com/gorilla/mux

Installing Go 3
package main

import (
T
"net/http"

"github.com/gorilla/mux"

func HomeHandler (w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hello., world")

func main() {
r := mux.NewRouter ()
r.HandleFunc ("/", HomeHandler)
http.Handle("/", r)
http.ListenAndServe (":8080", r)

Note the import of "github.com/gorilla/mux" at the top.

Editor Integrations

Since there are so many editors and IDEs out there, we will only briefly cover three common editors:
Goland by JetBrains, vim and Sublime Text. We will link to relevant information for other popular
editors at the end of the section.

For all editors, we recommend running goimports on save. Similar to the gofmt command, goimports
formats your Go code, but it also automatically adds or removes imports according to what is
referenced in the code. If you reference mux.NewRouter in your code but have not yet imported
github.com/gorilla/mux, goimports will find the package and import it. It also works for the standard
library, which is especially useful for times when you want to call fmt.Printin but don’t feel like
importing fmt manually (or when you remove a fmt.Printin and don’t feel like deleting the import).
It is worthwhile exploring the plugins available for your editor to make sure this is working: it will
greatly speed up your Go development process.

Goimports can be installed with go get:

Installing Go 4
go get golang.org/x/tools/cmd/goimports

We now discuss some useful plugins for three common editors, in (arguably!) decreasing order of
complexity.

GolLand

GoLand is a powerful and mature IDE for Go. It features code completion, the ability to jump to
variable and type definitions, standard debugging tools like run-time inspection and setting break
points, and more. A free 30-day trial can be downloaded from https://www.jetbrains.com/go/

Once installed, we recommend installing goimports on save. To do this, go to File -> Settings -> Tools
-> File Watchers. Click the Plus (+) icon, and select “goimports”. Press OK. When you now save a
Go file in the project, it should get formatted according to Go standards automatically.

Sublime Text

For Sublime Text 3, we recommend installing a package called GoSublime®*. This is done via
Sublime Text package control. Package control can be installed with the commands provided at
https://packagecontrol.io/installation. Once installed, open package control by pressing Ctrl+Shift+P
on Windows and Linux, or Cmd+Shift+P on OS X. Then type “install package” and select “Package
control: install package”. Now type “GoSublime” and choose the matching option. Finally, open the
GoSublime settings by going to Preferences -> Package Settings -> GoSublime -> Settings-User. Make
sure that GOPATH matches the path you configured earlier. Here are some typical settings:

{
// vou may set specific environment variables here
// e.g "env": { "PATH": "$HOME/go/bin:SPATH" }
// in values, SPATH and ${PATH} are replaced with
// the corresponding environment (PATH) variable, if it exists.
"env": {"GOPATH": "SHOME/Code/go", "PATH": "S$GOPATH/bin:$PATH" },
"fmt_cmd": ["goimports"]

}

vim

For vim, you will want to install vim-go®. Instructions can be found on that page for the various vim
package managers.

“https://github.com/DisposaBoy/GoSublime
*https://github.com/fatih/vim-go

https://github.com/DisposaBoy/GoSublime
https://github.com/fatih/vim-go
https://github.com/DisposaBoy/GoSublime
https://github.com/fatih/vim-go

Installing Go 5

Once you have installed vim-go, you can add the following line to your .vimrc file in order to run
goimports on save:

let g:go fmt command="goimports"

Linters and Correctness Tooling

If you want to install a suite of linters and tools to run on your code, we recommend gometalinter®.
To install:

$ go get -u github.com/alecthomas/gometalinter

$ gometalinter —--install

Gometalinter allows you to run a variety of linters and tooling and conveniently combines all of
their output into a standard format. We’ve found the deadcode, ineffassign, and misspell (disabled
by default, enable with -—enable=misspel1) to be particularly useful. If you don’t want to install all
of the linters available, you can install them individually instead. For misspel1 for example, install
with:

$ go get -u github.com/client9/misspell/cmd/misspell
Gometalinter should automatically pick up that you have misspell installed and you’ll be able to do:
$ gometalinter —-deadline=180s -—exclude=vendor -—disable-all —-enable=misspell ./...

While you may not want to require some of these linters to pass in your build, one tool we
recommend requiring is go vet’. Go vet is a tool concerned with code correctness. It will find
problems in your code such as using the wrong string formatting verb in a call to Printf:

package main
import (

"t

func main() {
fmt.Printf ("%d", "test")

This code compiles and runs, but if you do actually run it you’ll see this:

“https://github.com/alecthomas/gometalinter
"https://golang.org/cmd/vet/

https://github.com/alecthomas/gometalinter
https://golang.org/cmd/vet/
https://github.com/alecthomas/gometalinter
https://golang.org/cmd/vet/

Installing Go 6

$ go run main.go

%1d(string=test)%

because %d is meant for printing integers, not strings. If you were to run go vet on the above code,
you would see this warning:

$ go vet main.go
main.go:8: arg "test" for printf verb %d of wrong type: string
exit status 1

Another common issue vet will catch for you is the use of printf verbs inside a call to Printin:

package main

func main() {
fmt.Printin("%d", "test")
Again this will compile and run fine, but the output would be this:

$ go run main.go

%d test
Calling go vet on this code will tell you:
$ go vet main.go

main.go:8: possible formatting directive in Println call

exit status 1

Basics

This chapter gives a quick run-through of Go’s basic syntax, and the features that differentiate it
from other languages. If you have never programmed in Go before, this chapter will give you the
knowledge to start reading and writing simple Go programs. Even if you have programmed in Go
before, we recommend that you still read this chapter. Through the examples, we will highlight
common pitfalls in Go programs, and answer some of the questions that even experienced Go
programmers might still have.

Program Structure

Go code is organized in packages containing one or more Go source files. When building an
executable, we put our code into a package main with a single func main.

As mentioned in the Installation chapter, our Go code lives in GOPATH, which we're saying is
SHOME/go. Let’s say we want to write our first Go command, which randomly selects an item from a
list and outputs it to stdout. We need to create a directory in our GOPATH, with a main.go file containing
a package main and single main function:

$ mkdir -p $GOPATH/src/github.com/prodgopher/dinner
$ cd $GOPATH/src/github.com/prodgopher/dinner

In this directory we’ll add our main.go with the following code:

Random dinner selection

package main

import (
"fmt"
"math/rand"
"time"
)
func main() {
dinners := []string{
"tacos",

We
pizza",

Basics 8

"ramen",
}
rand.Seed (time.Now () .Unix())
fmt.Printf ("We' 11 have %s for dinner tonight!\n", dinners|[rand.Intn(len(dinn\
ers))])
}

We can run our code with go run main.go. The other option is to build our code as an executable
and run that. To do that, we first run go build to make sure that the code compiles. Then we run go

install:

$ go build

$ go install

$ cd $GOPATH/bin
$./dinner

We'll have pizza for dinner tonight!
We can also run these commands from outside of our GOPATH, like so:

$ go build github.com/prodgopher/dinner
$ go install github.com/prodgopher/dinner

If we want to expose this functionality in a package so we can reuse it in other places, we need
to add this functionality to a package. Let’s say we just want to return the name of the dinner,
rather than the whole string, like “pizza”, “ramen”, etc. For convenience, let’s reuse the same
github.com/prodgopher/dinner directory. Remove the main.go file and create a new dinner.go file
that looks like this:

Random dinner selection package

package dinner

import (
"math/rand"

"time"

func Choose() string {
dinners := []string{
"tacos",

We
pizza",

9
10
11

Basics

" "
ramen",

}
rand.Seed (time.Now () .Unix())

return dinners|[rand.Intn(len(dinners))]

Now, somewhere outside of our dinner package directory (let’s just use our home folder), we’ll invoke

our new functionality in a file called main.go:

Using our random dinner selection package

package main

import (
"fmt"

"github.com/prodgopher/dinner"

func main() {
fmt.Println(dinner.Choose())

$ go run main.go

tacos

Now we have a convenient package for randomly selecting what to eat for dinner.

Variables and Constants

There are multiple ways to declare variables in Go. The first way, declaring a var with a given type,

can be done like so:

var x int

With this type of declaration, the variable will default to the type’s zero value, in this case 0.

Another way to declare a variable is like this:

ul

6

Basics 10
var x = 1

Similar to the above method, but in this case we can declare the specific contents. The type is also
implied.

Lastly, the short-hand variable declaration:

This is probably the most common way, and the type is also implied like the above. Sometimes the
var declaration method is used stylistically to indicate that the variable will be changed soon after
the declaration. For example:

var found bool
for , x := range entries {
if x.Name == "Gopher" {

found = true

One key difference between var and : = declarations is that the shorthand version (:=) cannot be used
outside of a function, only var can. This means that variables in the global scope must be declared
using var. This is valid:

Example using var to declare variable in global scope

package main

import "fmt"

var a = 1

func main() {

fmt.Println(a)

but this will not compile:

Basics 11

It is invalid to use shorthand variable declaration in the global scope

package main

import "fmt"

a := 1 // this is invalid, use var instead

func main() {

fmt.Println(a)

Running the above, we get the following error:
$ go run var_bad.go
command-line-arguments

./var_bad.go:5: syntax error: non-declaration statement outside function body

The other subtle difference between var-declarations and shorthand-declarations occur when
declaring multiple variables. The following code is valid,

var a, b = 0, 1 // declare some variables
b, c :=1, 2 // this is okay, because c is new
fmt.Printin(a, b, c¢) // Outputs: 0, 1, 2

but this is not valid:

0, 1 // declare some variables

var a, b

1, 2 // this is not okay, because b already exists

var b, c

fmt.Printin(a, b, c)
The second example, when placed into a program, fails to compile:

./var_shorthand diff2.go:7: b redeclared in this block

previous declaration at ./var_ shorthand diff2.g0:6

This is because the shorthand := may redeclare a variable if at least one of the variables to its left is
new. The var declaration may not redeclare an existing variable.

Basics

Basic Data Types

Basic Types

Go supports the following basic types:

bool

string

int8, int16, int32, int64, int

uint8, uint16, uint32, uint64, uint
float32, float64

complex64, complex128

byte (alias for uint8)

rune (alias for int32)

Booleans

The bool type represents a boolean and is either true or false.

Usage of booleans in Go

12

package main

import "fmt"

func main() {

a, b := true, false
c :=ad&kb
d:=allb

fmt.Printin("a:", a)
fmt.Println("b:", b)
fmt.Printin("c:", ¢)
fmt.Println("d:", d)

// Output: a: true

// b: false
// c: false
// d: true

Basics 13

In the above example we first create a and b, and assign them the values true and false, respectively.
c is assigned the value of the expression a & b. The & operator returns true when both a and b are
true, so in this case c is false. The || operator returns true when either a or b are true, or both. We
assign d the value of a || b, which evaluates to true.

Note that unlike some other languages, Go does not define true or false values for data types other
than bool.

Strings

The string type represents a collection of characters. When defined in code, a string is a piece of
text surrounded by double quotes ("). Let’s write a simple program using strings.

Usage of booleans in Go

package main

import "fmt"

func main() {
sound := "meow"
sentence := "The cat says " + sound + "

fmt.Println(sentence)

The example demonstrates that strings support the + operator for concatenation. The variable
sentence contains a concatenation of the strings "The cat says ", “meow”. and ””
it to the screen, we get The cat says meow.

. When we print

This just scratches the surface of strings in Go. We will discuss strings in more depth in the chapter
on Strings.

Integers

The integer types can be divided into two classes, signed and unsigned.

Signed integers

The signed integer types are int8, int16, int32, int64, and int. Being signed, these types store both
negative and positive values, but up to a maximum half the value of its uint counterpart. int8 uses
8 bits to store values between -128 and 127 (inclusive). int16 stores values in the range -32,768 to
32,767. int32 stores values in the range -2,147,483,648 to 2,147,483,647. int64 stores values in the range
-2% to 2%°-1, which is to say, between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.

ol

Basics 14

Unlike the other signed integer types, the int type does not explicitly state its width. This is because
it acts as an alias for either int32 or int64, depending on the architecture being compiled to. This
means that it will perform optimally on either architecture, and it is the most commonly used integer
type in Go code.

Go does not allow implicit type conversions. When converting between integer types, an explicit
type cast is required. For example, see the following code:

Type mixing that will result in a compile-time error

package main

import (
"fmt"

func main() {
var 132 int32 = 100
var 164 int64 = 100

// This will result in a compile-time error:
fmt.Println(i32 + i64)

This results in a compile-time error:

$ go run type mix.go
type mix.go:12:18: invalid operation: 132 + i64 (mismatched types int32 and i\
nt64)

To fix the error, we can either use the same types from the start, or do a type cast. We will discuss
type casts again later in this chapter, but here is how we might use a type cast to solve the problem:

Using an integer type cast

package main
import (

"Fmt"

func main() {
var 132 int32 = 100

ul

Basics 15

var 164 int64 = 100

fmt.Println(int64(i32) + i64)
// Output: 200

A nice feature of the Go compiler is that it warns us if a constant value overflows the integer type
it is being assigned to:

Putting an overflowing constant into an integer type

package main

import (
"t

func main() {
var i int8 = 128
fmt.Println(i)

$ go run int.go

int.go0:8:15: constant 128 overflows int8

Here we try to assign a number that is one bigger than the maximum value of int8, and the compiler
prevents us from doing so. This is neat, but as we will see in the next section on Unsigned integers,
the compiler will not save us from calculations which result in over- or underflow.

Unsigned integers

Under unsigned integers, we have uint8, uint16, uint32, uint64, and uint. uint8 uses 8 bits to store
a non-negative integer in the inclusive range 0 to 255. That is, between 0 and 2°-1. Similarly, uint16
uses 16 bits and stores values in the inclusive range 0 to 65,535, uint32 uses 32 bits to store values
from 0 to 4,294,967,295, and uint64 uses 64 bits to store values from 0 to 2°*-1. The uint type is an alias
for either uint32 or uint64, depending on whether the code is being compiled for a 32-bit architecture
or a 64-bit architecture.

uints are useful when the values to be stored are always positive. However, take special care before
deciding to use uint. Go strictly enforces types, so uint requires a cast to be used with int. Built-in
slice functions, like 1en, cap, and almost all library functions, return int. So using those functions with
uint will require explicit type casts, which can be both inefficient and hard to read. Furthermore,
underflow is a common enough problem with the uint type that it’s worth showing an example of
how it can happen:

Basics 16

An example of uint underflow

package main

import (
"fmt"

func main() {
var p, s uint32 = 0, 1
fmt.Printf("p - s = %d - %d = %d", p, s, p-s)
// Output: p — s = 0 - 1 = 4294967295

Running this, we get:

$ go run uint.go
p - s =0 -1 = 4294967295

As this example illustrates, if we are not careful when subtracting from the uint type, we can run into
underflow and get a large positive value instead of -1. Be aware of the limitations before choosing
unsigned integer types.

Floating point numbers

For floating point numbers we have two types, float32 and float64. A float32 represents a 32-
bit floating-point number as described in the IEEE-754 standard, and float64 represents a 64-bit
floating-point number.

An integer can be converted to a floating-point number with a type conversion:

X = 15
y := floatb4(x)

This will be especially useful when using the math package, as the functions of that package typically
work with floaté4 (for example, math.Mod and math.Abs both take float64).

Complex numbers

Complex numbers are expressed by the types complex64 and complex128. A complex64 number is a
float32 with real and imaginary parts, and a complex128 is a float64 with real and imaginary parts.
Creating a complex number is done like so:

w

Basics

x := complex(1.0, 2.0)
fmt.Println(x)

(1+21)

There are built-in functions to extract the real and imaginary parts of a complex number:

x := complex(1.0, 2.0)
fmt.Println(real (x))
fmt.Println(imag(x))

You can express an imaginary literal by appending i to a decimal of float literal:

fmt.Println(1.31)

(0+1.31)

Structs

A struct is a collection of fields, which can be declared with the type keyword:

Struct example

17

package main
import "fmt"
type Person struct {

Name string

Email string

func main() {

p := Person{"Robert", "robert@example.com"}

fmt.Println(p.Name)

Struct fields are accessed with a dot, so our above example should print:

Basics 18

Robert

Since structs are commonly used for reading and writing data formats such as JSON, there are struct
tags which define how you would like your fields to be decoded or encoded in that data format. Here

is an example of JSON struct tags:

Struct tags example

package main

import (
"encoding/json"
"fmt"
"log"
)
type Person struct {
Name string “json:"name"®
Email string “json:"email"®
}
func main() {
p := Person{"Robert", "robert@example.com"}

b, err := json.Marshal (p)

if err !'= nil {

log.Fatal (err)

fmt.Printin(string (b))

Running this code will output:

"name":"Robert", "email":"robert@example.com"}
If we didn’t have the struct tags, then we would have:
{"Name": "Robert","Email":"robert@example.com"}

since it isn’t very common to see the first letter of a field capitalized like that in JSON, we use the
struct tags to define how we want our struct fields to be encoded.

Basics 19

One important note about struct field names and JSON: field names must be exported (first letter
of field name must be capitalized) in order for encoding to JSON to work. If our struct field names
were name and email, we would get an empty JSON object when marshalling.

Golang also supports anonymous structs, which can be commonly found in table-driven tests for
example. You can see some examples in our Testing chapter, but here is a quick (not testing-related)
example just to show how it works:

Anonymous struct example

package main

import (
"encoding/json"
"fmt"
"log"

)

func main() {

p := struct {

Name string “json:'"name"®

Email string “Json:"email"®
H

Name: "Robert",

Email: "roberte@example.com",
}
b, err := json.Marshal (p)
if err !'= nil {

log.Fatal (err)

fmt.Printin(string (b))

This will print the same as our “Struct tags example” example above.

Operators

Operators in Go are very similar to other languages in the C-family. They can be divided into five
broad categories: arithmetic operators, comparison operators, logical operators, address operators
and the receive operator.

Basics 20

Arithmetic Operators

Arithmetic operators apply to numeric values. From the Go specification:
Arithmetic operators apply to numeric values and yield a result of the same type as the
first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, floating-
point, and complex types; + also applies to strings. The bitwise logical and shift operators

apply to integers only.

The following table summarizes the different arithmetic operators and when they may be applied:

+ sum ints, floats, complex values, strings
- difference ints, floats, complex values

* product ints, floats, complex values

/ quotient ints, floats, complex values

% remainder ints

& bitwise AND ints

| bitwise OR ints

- bitwise XOR ints

& bit clear (AND NOT) ints

<< left shift int << uint
>> right shift int >> uint
Comparison Operators

Comparison operators compare two operands and yield a boolean value. The comparison operators
are:

== equal

1= not equal

< less

<= less or equal

> greater

>= greater or equal

In any comparison, the first operand must be assignable to the type of the second operand, or vice
versa. Go is strict about types, and it is invalid to use a comparison operator on two types that are
not comparable. For example, this is valid:

ol

6

Basics 21

var x int = 1

var y int = 2

// eq will be false

var eq bool = x ==y
but this is not valid, and will result in a compile-time type error:

var x int =1

var y int32 = 2

// error: mismatched types int and int32
var eq bool = x == y

Logical Operators

Logical operators apply to boolean values and yield a boolean result.

&& conditional AND p & q dis "if p then q else false"
|| conditional OR p |l g is "if p then true else q"
! NOT 'p is "not p"

As in C, Java, and JavaScript, the right operand of & and || is evaluated conditionally.

Address Operators

Go has two address operators: the address operation, &, and the pointer indirection, *.

&x returns a pointer to x. The pointer will be a pointer of the same type as x. A run-time panic will
occur if the address operation is applied to an x that is not addressable.

var x int

var y fint = &x

// Print the memory address of x,
// e.g. 0x10410020
fmt.Println(y)

When x is a pointer, *x denotes the variable pointed to by x. If x is nil, an attempt to evaluate *x will
cause a run-time panic.

\V)

ol

Basics 22

var x Tint = nil

*

x // causes a run—-time panic

The Receive Operator

The receive operator, <- is a special operator used to receive data from a channel. For more details
on this, see channels.

Conditional Statements

We’ve seen some simple if statements in previous sections’ code snippets. Here we’ll cover some
other common uses of conditional statements in Go.

An if can contain a variable declaration before moving on to the condition. This can often be seen
in tests, like in this example from the Go source code (bytes/reader_test.go):

if got := string(buf); got !'= want {
t.Errorf ("ReadAll: got %q, want %q", got, want)

Variables declared in the condition are restricted to the scope of the if statement - meaning that in
the example above, we cannot access the got variable outside of the if statement’s scope.

An else statement is done as follows (this example is taken from Go’s time package, in time/for-
mat.go):

if hour >= 12 {

b = append(b, "PM"...)
} oelse {

b = append(b, "AM"...)

It is also quite common to see switch statements used in lieu of if/else statements. Here is an
example from Go’s source code (net/url/url.go), of a switch statement:

1

A}

w

ul

Basics

func ishex(c byte) bool {
switch {
case '0' <= ¢ && c <=
return true
case 'a' <= c && c <=

return true

case 'A' <= c && c <= "'

return true

}

return false

23

This switch statement has no condition, meaning it is functionally equivalent to switch true.

A switch with a condition looks like this (taken from Go’s fmt/print.go):

1 func (p *pp) fmtBool(v bool, verb rune) {

2 switch verb {

3 case 't', 'v':

4 p.fmt.fmt_boolean(v)
5 default:

6 p.badVerb (verb)

7 }

s}

and we can also declare a variable in the condition and switch on that:

1 switch err := err. (type) {

2 case NotFoundError:

Arrays

An array of a specific length can be declared like so:
1 var x [3]int

In Go, however, arrays are rarely used unless you have a specific need for them. Slices are more
common, which we’ll cover in the next section.

Basics 24

Slices

While arrays have a fixed size, slices are dynamic. To create a slice of integers for example, we can

do:
x := []int{1, 2, 3, 4, 5}

Slices are abstractions on top of arrays. A slice contains a pointer to an array, its length, and its
capacity. We can get the length and capacity of a slice with the built-in len and cap functions,
respectively. We’ll call “slicing” the act of creating a new slice which points to a range of contiguous
elements in the original array. We can “slice” arrays as well as slices - in which case the new slice
will point to the underlying array. For example:

x := []int{1, 2, 3, 4, 5}
y = x[0:3]
fmt.Println(y)

will give us:

[1 2 3]

We can also leave out the 0:

y = x[:3]

and the result will be the same. Likewise for the high bound, we can leave that out and it will default
to the length of the slice:

[lint{1, 2, 3, 4, 5}
y = x[3:]
fmt.Printlin(y)

X

and we get:
[4 5]

A slice’s zero value is nil:

o1

w

Basics 25

var x []int

fmt.Printin(x == nil)

true
To append to a slice, we use the builtin append function:

x = []int{}

x = append(x, 1)

x = append(x, 2, 3)
y := []int{4, 5}

x = append(x, y...)
fmt.Println(x)

Notice the y. .. on line 5: append is a variadic function. The first argument is a slice, and the second
is 0 or more arguments of the same type as the slice’s values. Running the above code will give us
the following output:

[1 234 5]

Use copy to copy the contents of a slice:
x := []int{1, 2, 3}

y := make([]int, 3)

copy (y, x)
fmt.Println(x, y)

[1 23] [12 3]

Note that we’re using make to create the slice v, with a size argument of 3. This is to ensure that v
has enough capacity to copy x into it. If we had used an empty v with 0 capacity, for example, our
vy would have remained empty:

Basics

x := []int{1, 2, 3}
y = [lint{}
fmt.Printin("y capacity:", cap(y))

copy (y, x)
fmt.Println(x, y)

y capacity: O

[1 23] []

26

We can sort a slice with the sort.Slice® function. All we have to do is provide the slice and a less

argument which serves as a comparator function in which we define how one element in the slice

is considered “less” than another when sorting:

Sorting slices

package main

import (
-

"sort"

type Country struct {
Name string

Population int

func main() {
c := []Country{

{"South Africa", 55910000},

{"United States", 323100000},

{"Japan", 127000000},
{"England", 53010000},

sort.Slice(c,

func(i, J int) bool { return c[i].Name < c[Jj].Name })

fmt.Println("Countries by name:'

*https://golang.org/pkg/sort/#Slice

1

. ©)

https://golang.org/pkg/sort/#Slice
https://golang.org/pkg/sort/#Slice

Basics 27

sort.Slice(c,
func (i, J int) bool { return c[i].Population < c[j].Population })
fmt.Println("Countries by population:", c)

Running this, our output should be:

Countries by name: [{England 53010000} {Japan 127000000} {South Africa 559100\
00} {United States 323100000} |

Countries by population: [{England 53010000} {South Africa 55910000} {Japan 1\
27000000} {United States 323100000}]

Maps

Maps are a necessary and versatile data type in any programming language, including Go. Here
we’ll go over some ways to use maps, and cover some idiosyncrasies in their usage.

First, as we know from earlier, there are a couple of ways to instantiate variables in Go, and this
goes for maps as well. Let’s look at some of them:

var m = map|[string]string{}

m := make(map[string]string)

m := map[string]string{}

The var declaration could be used in the top-level (or “package block”) scope:
package main

var m = map[string]string{}

func main() {

}

But otherwise these are all basically functionally equivalent.

If you’re familiar with maps in other programming languages, you can probably pick up on using
maps in Go pretty quickly. Here is an example that is self-explanatory:

Basics 28

Using maps in Go

package main
import "fmt"

func main() {
m := make (map[string]string)
m["en"] = "Hello"
m["ja"] = "ZAIZH L
// loop over keys and values of map
for k, v := range m {

fmt.Printf ("%q => %q\n", k, v)

// nonexistent key returns zero value
fmt.Printf ("zh: %g\n", m["zh"])

// check for existence with _, ok := m[Key]
if |, ok :=m["ja"]; ok {
fmt.Printf ("key %q exists in map\n",

n

Ja")

delete(m, "en"
fmt.Printf ("m length: %d\n", len(m))
fmt.Println(m)

Running this code, we should get this output:

"en" => "Hello"

"ja' = " ZAITHIL

She "t
key "ja" exists in map
m length: 1

maplja: Z A I H i3]

The first output is from the loop, then we check a nonexistent key “zh”, then check for the existence
of “ja”, print the length of the map, then print the map itself.

Basics 29

Another important note is that the map type is not safe for concurrent use. If you need to use a map
in a concurrent way, take a look at sync.Map’.

Also, the iteration order of maps is not guaranteed, so you can’t rely on any specific order when
looping over your map.

Lastly, the following will make a nil map, which will panic when writing to it:
var m map|[string|string
So avoid using this declaration style when making maps.

For further reading, although it is slightly outdated as it doesn’t mention sync.Map, check Go maps
in action'® on the Go blog.

Loops

Loops in Go are done with the for construct. There is no while in Go, but you can achieve the same
effect with for:

For loop

package main

import (
Pt

func main() {

x =1

for x < 4 {
fmt.Println(x)
X++

}

The above code outputs:

*https://golang.org/pkg/sync/#Map
%https://blog.golang.org/go-maps-in-action

https://golang.org/pkg/sync/#Map
https://blog.golang.org/go-maps-in-action
https://blog.golang.org/go-maps-in-action
https://golang.org/pkg/sync/#Map
https://blog.golang.org/go-maps-in-action

Basics 30

A more traditional version that you may be familiar with is also available:

For loop with three components

package main

import (
"fmt"

func main() {
for i := 0; i < 3; i++ {

fmt.Println(i)

}
}
This will output:
0
2

An infinite loop can be expressed with an empty for:

Infinite for loop

package main

func main() {
for {
}

To loop over a slice, we can do the following, where i is the index and x is the value at that index:

9

10

Basics

For loop over slice with index

31

package main

import "fmt"

func main() {
nums := []int{l, 2, 3}
for i, x := range nums {

fmt.Printf ("nums|[%d]| == %d\n", i, x)

The above code will output:

nums[0] => 1
nums[1] => 2
nums[2] => 3
If we don’t need the index, we can leave it out with _:

For loop over slice without index

package main
import "fmt"

func main() {
nums := []int{1l, 2, 3}
for , x := range nums {

fmt.Println(x)

and this will output:

We can also range over the keys and values of a map like so:

ol

Basics 32

Range over map

package main

import "fmt"

func main() {

m := map[int]string{
1: "—",
2: "V,
3: "=,

}

for k, v := range m {

fmt.Printf ("%d => %q\n", k, v)

This will output:

1 =>"—"
2 => "7
3= "=
Functions

Functions are declared with the func keyword. They can take zero or more arguments, and can return
multiple results.

Functions are first-class citizens, and can be stored in variables or used as values to other functions.

Exported Names

In a Go package, a name is exported if it starts with an uppercase letter. Take the following code for
example:

Basics 33

Exported names

package countries

import (
"math/rand"

"time"

type Country struct {
Name string

Population int

var data = []Country{
{"South Africa", 55910000},
{"United States", 323100000},
{"Japan", 127000000},
{"England", 53010000},

// Random returns a random country
func Random() Country {
rand.Seed (time.Now () .Unix())

return datalrand.Intn(len(data))]

When importing this package, you would be able to access the countries.Country type, as well as
countries.Random() function, but you cannot access the countries.data variable because it begins
with a lowercase letter.

Pointers
Declaring a variable with * before the type indicates a pointer:
var p Fint

The zero-value of this is ni1. To generate a pointer to an existing variable, use &:

Basics 34

x := 100
p = &x

Now we can dereference the pointer with *:
fmt.Printin(*p)

and this results in:

100

Lastly, there is no pointer arithmetic in Go. The authors decided to leave it out for reasons such as
safety, and simplifying the implementation of the garbage collector.'!

Goroutines

Goroutines are functions that run concurrently in a Go program. They are lightweight, and cheap
to use. Prefixing a function with the go keyword will run the function in a new goroutine:

Using a goroutine

package main

import (

func hello() {

fmt.Println("hello from a goroutine!")

func main() {
go hello()
time.Sleep(l * time.Second)

(Note that we have a call to time.Sleep in the main function. This is to prevent the main from returning
before our goroutine completes. We’re using a sleep just to show a small example of a goroutine; it
should not be considered a valid way of managing goroutines.)

It’s also common to see a goroutine used with an anonymous function:

"https://golang.org/doc/faq#no_pointer_arithmetic

0 N O ol

©

Basics

go func() {
fmt.Println("hello from a goroutine!")

1O

One way to synchronize goroutines is to use sync.WaitGroup'?

Using sync.WaitGroup

35

package main

import (
"fmt"

" sync "

func main() {
var wg sync.WaitGroup
weg.Add (3)
go func() {
defer wg.Done ()
fmt.Printin("goroutine 1")

O
go func() {
defer wg.Done()
fmt.Println("goroutine 2")
O
go func() {
defer wg.Done()
fmt.Println("goroutine 3")
O
wg. Wait()

“https://golang.org/pkg/sync/#WaitGroup

https://golang.org/pkg/sync/#WaitGroup
https://golang.org/pkg/sync/#WaitGroup

Basics 36

$ go run waitgroup_example.go
goroutine 3
goroutine 1

goroutine 2

In this example, we instantiate a sync.WaitGroup and add 1 to it for each goroutine. The goroutines
then call defer wg.Done() to signify that they’ve finished. We then wait for the goroutines with
wg. Wait().

When using sync.WaitGroup, we must know the exact number of goroutines ahead of time. If we
had called wg.Add (2) instead of wg.Add(3), then we would risk returning before all of the goroutines
were finished. On the other hand, if we had called wg.Add(4), the code would have panicked with
the following error:

fatal error: all goroutines are asleep — deadlock!

Another way to manage goroutines is with channels, which we’ll discuss in the next section.

Channels

Channels are used for sending and receiving values of a specific type. It is common to see them used
inside of goroutines. Channels must be created with their specific type before use:

ch := make(chan int)
We can create a buffered channel like so:
ch := make(chan int, 5)

This means that sending to the channel will block when the buffer is full. When the buffer is empty,
receives will block.

To send to a channel, we use the <- operator:
ch <- 5

And to receive a value from a channel, we do:
v := <-ch

Let’s see what happens when we send too many integers to a buffered channel of ints:

Basics 37

Sending too many ints to buffered channel

package main

func main() {

ch := make(chan int, 5)
ch <=1
ch <= 2
ch <= 3
ch <-4
ch <= 5
ch <= 6

$ go run channels sending_ too _many.go

fatal error: all goroutines are asleep — deadlock!

goroutine 1 [chan send]:

main.main()
/Users/gopher/mygo/src/github.com/gopher/basics/channels_sending too_many.go\

:11 +Oxdb

exit status 2

We get an error - all goroutines are asleep - deadlock!. What if we were to read one int off of the
channel before sending the final 6?

$ go run channels read one.go
1

We’re no longer overfilling the buffered channel, because we read one int off of it before sending a
sixth item.

What if we want to know whether a buffered channel is full before sending to it? There are a couple
of ways we can do this.

One way would be to check the 1en of the channel before sending to it again:

o N

©

Basics

Checking length of channel

38

package main

import "fmt"

func main() {

ch := make(chan

—

ch <-
ch <-

ch <-

ch <-

ul

ch <-

fmt.Println("channel length:", len(ch))

switch {
case len(ch) ==

<-ch

int, 5)

5:

case len(ch) < 5:

ch <- 6

$ go run channels check length.go

channel length: 5

We could also use a select statement with a default that does nothing when the channel is full:

Channel select statement

package main

import "fmt"

func main() {

ch := make (chan

ch <- 1
ch <- 2

int, 5)

9

10

Basics 39

ch <= 3
ch <-4
ch <= 5
select {

case ch <- 6:
default:

fmt.Println("channel is full, ignoring send")

$ go run channels select.go

channel is full, ignoring send

Interfaces

An interface in Go is a set of methods that another type can define in order to implement that
interface. We define an interface type with the interface keyword:

type Entry interface {
Title() string

Now any concrete type we define that implements a Title() string method will implement the
Entry interface:

Interfaces example

package main

import (
"fmt"

"time"

type Entry interface {
Title() string

18

Basics

type Book struct {
Name string
Author string
Published time.Time

func (b Book) Title() string {

40

return fmt.Sprintf ("%s by %s (%s)", b.Name, b.Author, b.Published.Format("Ja\

n 2006"))
}

type Movie struct {
Name string
Director string

Year int

func (m Movie) Title() string {

return fmt.Sprintf("%s (%d)", m.Name, m.Year)

func Display(e Entry) string {
return e.Title()

func main() {

b := Book{Name: "John Adams", Author: "David McCullough", Published: time.Da\

te (2001, time.May, 22, 0, 0, 0, 0, time.UTC)}

m := Movie{Name: "The Godfather", Director: "Francis Ford Coppola", Year: 19\

72}
fmt.Println(Display (b))
fmt.Println(Display(m))

Note that the Display function takes e Entry, not a concrete type like Book or Movie. Our concrete
types implement the Entry interface, so we’re now allowed to pass implementations of those types

into any function that takes an Entry.

Basics 41

The empty interface

We define an empty interface as interface{}, and it can hold a value of any type:

var i interface{}
i="ZAICHIL"
fmt.Println(i)

ZAIZHIZ
If we want to test whether an interface is a certain type, we use a type assertion:

var i interface{}
iz ZAICBE
s, ok := i.(string)
if lok {
fmt.Println("s is not type string")
}
fmt.Println(s)

ZAIZHI
In our example above, i is a type string, so the second return value from our type assertion is true,
and s contains the underlying value. If i had been another type, such as an int, then our ok would

have been false and our s would have been the zero value of the type we were trying to assert, or
in other words 0.

Nil interfaces

An interface in Go is essentially a tuple containing the underlying type and value. For an interface
to be considered ni1, both the type and value must be ni1. Here is an example:

Basics 42

Nil interfaces example

package main

import (
"fmt"

func main() {
var i interface{}
fmt.Println(i == nil)
fmt.Printf ("%T, %v\n", i, i)

var s “string

fmt.Println("s == nil:", s == nil)

i =35
fmt.Println("i == nil:", i == nil)
fmt.Printf ("%T, %v\n", i, i)

true

<nil>, <nil>

s == nil: true
i == nil: false

*string, <nil>

Note how our s variable is ni1, but when we set our interface i to s then check if i is nil, i is not
considered nil. This is because our interface has an underlying concrete type, and interfaces are
only nil when both the concrete type and the value are ni1.

Error Handling

Functions in Go often return an error value as the final return argument. When the function does
not encounter any error conditions, we return nil. The error type is a builtin interface type that we
can create with functions like errors.New and fmt.Errorf. As an example, let’s make a function that
parses a string and returns the boolean value that string represents. This function is inspired by the
ParseBool function in the Go standard library’s strconv package:

8
9

10

Basics 43

Error handling example

package strconv

import "fmt"

func ParseBool (str string) (bool, error) {
switch str {
case "1", "t", "T", "true", "TRUE", "True":
return true, nil
case "0", "f", "F", "false", "FALSE", "False":
return false, nil

}

return false, fmt.Errorf("invalid input %q", str)

Here we are returning a nil error when we’re able to parse the input properly, and using fmt.Errorf
to return an error in the case that we cannot parse the input.

We’ll cover more about error handling in the “Style and Error Handling” chapter that follows this
one.

Reading Input

You can use a bufio.Scanner to read input from stdin, which by default will split the input line by
line. Here is an example of a Go program that reads a file containing one word per line, and keeps
a count of every occurrence of each word:

Reading standard input

package main

import (
"bufio"
"log"
Tog"

)

func main() {
m := map[string]int{}

scanner := bufio.NewScanner (0s.Stdin)

Basics 44

for scanner.Scan() {

m[scanner.Text () |++

}
if err := scanner.Err(); err != nil {
log.Printf ("ERROR: could not read stdin: %s", err)
}
for k, v := range m {
log.Printf ("%s == %d", k, v)
}

If we had a file that looked like this:

g0
python
ruby
php

g0

g0

g0

and we piped it into our program like so:
$ go run main.go < langs.txt

we would see output like the following (order is not guaranteed when iterating over maps, so the
order of our output might change when running more than once):

2017/10/13 13:12:21 go => 4
2017/10/13 13:12:21 python => 1
2017/10/13 13:12:21 ruby => 1
2017/10/13 13:12:21 php => 1

Writing Output

One way of writing output to a file in Go is to use the *File returned from os.Create. os.Create will
create a file for reading and writing. If the file already exists, it will be truncated:

Basics

Writing output

45

package main

import (
"Tog"
Tog"

)

func main() {
langs := []string{"python", "php",
f, err := os.Create("langs.txt")
if err !'= nil {

log.Fatal(err)

}

defer f.Close()

for _, lang := range langs {
f.WriteString(lang + "\n")

}

Running this code will give us the following content in a file called 1angs. txt:

python
php
g0

Another utility function we could use is ioutil.WriteFile' which will open the file and write our

data in one function call.

https://golang.org/pkg/io/ioutil/#WriteFile

https://golang.org/pkg/io/ioutil/#WriteFile
https://golang.org/pkg/io/ioutil/#WriteFile

Style and Error Handling

There are two quite major points about Go that take some getting used to when ramping up on
learning the language: style and error handling. We’ll first talk about what is considered “idiomatic”
style in the Go community.

Style

Gofmt

Go comes with a tool that formats Go programs called “gofmt”. Gofmt formats your program
automatically, and the tool is so prominent in the Go community that it would not be a stretch
to say that every popular (let’s say > 500 stars on GitHub) open source library uses it. When using
gofmt, you are not allowed to add exceptions like you can with tools such as PEP8 for Python. Your
lines can be longer than 80 chars without warning. You can of course split your long lines up, and
gofmt will format them accordingly. You cannot tell gofmt to use spaces instead of tabs.

You might feel that such strict formatting (maybe you hate tabs) sounds backwards and annoying,
but we would argue that gofmt actually played a big role in Go’s success. Since everyone’s code
looks the same, it takes an element of surprise out of looking at someone else’s code when helping
them debug it, or simply trying to understand it. We believe this made it easier to contribute to the
standard library and open source libraries, in turn speeding up the growth of the Go community.

To show a very simple example of gofmt in action, here is some code that hasn’t been run through
gofmt:

package main
import "fmt"
func main() {
a := "foo"

someVar := "bar"

fmt.Printin(a, someVar)

}

This is a valid program and it will run, but it should be run through gofmt to look like this:

A}

w

ul

Style and Error Handling 47
package main
import "fmt"

func main() {
a := "foo"

someVar := "bar"

fmt.Println(a, someVar)

While you may not agree with all of the rules of gofmt, it is so widely used within the community
that it has become a requirement. You should always gofmt your Go code.

Many editors have integrations that will allow you to run gofmt on save. We recommend running
goimports on save. Goimports, according to its godoc, “updates your Go import lines, adding missing
ones and removing unreferenced ones. In addition to fixing imports, goimports also formats your
code in the same style as gofmt so it can be used as a replacement for your editor’s gofmt-on-save
hook**

Also, as a bonus, use gofmt -s to automatically simplify some of your code:
package main

type Animal struct {
Name string

Species string

func main() {
animals := []Animal{
Animal{"Henry", "cat"},
Animal{"Charles", "dog"},

After gofmt -s, this becomes:

“https://godoc.org/golang.org/x/tools/cmd/goimports

A}

w

ul

Style and Error Handling 48
package main

type Animal struct {
Name string

Species string

func main() {
animals := []Animal{
{"Henry " "cat"} ,

{"Charles", "dog"},

Note how the extra Animal struct names are unnecessary in the slice [JAnimal, and are therefore
removed. gofmt -s makes stylistic changes and does not affect the logic of the code at all, meaning
it is safe to run gofmt -s all the time.

Short Variable Names

Another contentious topic in the earlier days of Go was the use of short variable names. If you look
at the Go source code, you’ll see a lot of code that looks like this:

func Unmarshal(data []byte, v interface{}) error {
// Check for well-formedness.
// Avoids filling out half a data structure
// before discovering a JSON syntax error.
var d decodeState
err := checkValid(data, &d.scan)
if err '= nil {

return err

d.init(data)

return d.unmarshal (v)

You might be thinking, “why use such a short and useless variable name like d? It doesn’t tell me
anything about what the variable is holding.” It’s a fair point, especially considering that for years
we’ve been told that having descriptive variable names is very important. But the authors of Go had

Style and Error Handling 49

something else in mind, and many people have come to embrace short variable names. From a page
containing advice on reviewing Go code:

“Variable names in Go should be short rather than long. This is especially true for local variables
with limited scope. Prefer ¢ to 1ineCount. Prefer i to slicelndex”

Shorter variable names make control flow easier to follow, and allow the reader of the code to focus
on the important logic, such as the functions being called. A general rule of thumb is, if a variable
spans less than 10 lines, use a single character. If it spans more, use a descriptive name. At the
same time, try to minimize variable span, and functions shorter than 15 lines. Most of the time, this
produces readable, idiomatic Go code.

Golint

golint is a linter for Go, and it differs from sofmt in that it prints style mistakes, whereas gofmt
reformats your code. To install golint, run:

go get -u github.com/golang/lint/golint

As with gofmt, you can’t tell golint to ignore certain errors. However, golint is not meant to be used
as a standard, and will sometimes have false positives and false negatives. On Go Report Card we’ve
noticed a lot of repositories with golint errors like the following:

Line 29: warning: exported type Entry should have comment or be unexported (golint)

This is just suggesting that an exported type should have a comment, otherwise it should be
unexported. This is nice for godoc, which displays the type’s comment right below it. You might
also see a warning like this:

Line 5: warning: if block ends with a return statement, so drop this else and outdent its block

(golint)

Here’s a piece of code where that warning would show up when running golint:

func truncate(s, suf string, 1 int) string {
if len(s) <1 {
return s
} else {

return s[:1] + suf

What golint is saying here is that because we return on line 3, there’s no need for the else on the
following line. Thus our code can become:

“https://github.com/golang/go/wiki/CodeReviewComments#variable-names

https://github.com/golang/go/wiki/CodeReviewComments#variable-names
https://github.com/golang/go/wiki/CodeReviewComments#variable-names
https://github.com/golang/go/wiki/CodeReviewComments#variable-names

A}

w

ul

6

w

ol

Style and Error Handling 50

func truncate(s, suf string, 1 int) string {
if len(s) <1 {
return s

}

return s[:1] + suf

}

Which is a bit smaller and easier to read.

That’s all we're going to cover on golint - we do suggest using it because it can show you ways to
make your code simpler as well as more suitable for godoc. There’s no need to fix all of its warnings
though, if you think it’s too noisy.

Error Handling

Error handling may take some getting used to when learning Go. In Go, your functions will normally
return whatever values you want to return, as well as an optional error value. To give a simple
example:

// lineCount returns the number of lines in a given file

func lineCount(filepath string) (int, error) {
out, err := exec.Command("wc", "-1", filepath).Output()
if err !'= nil {

return O, err

}
// wc output is like: 999 filename.go
count, err := strconv.Atoi(strings.Fields(string(out))|[0])
if err != nil {
return 0, err
}

return count, nil

}

Note the multiple if err != nil checks. These are very common in idiomatic Go code, and
sometimes people who are new to Go have trouble adjusting to having to write them all the time.
You may see it as unnecessary code duplication. Why not have try/except like other languages?

We had similar thoughts when first starting out with Go, but eventually warmed up to the error
checking. When you’re that strict about returning and checking errors, it’s very hard to miss where
and why an error is happening.

We could even go ahead and make those errors more specific:

1

w

ul

Style and Error Handling 51

// lineCount returns the number of lines in a given file

func lineCount(filepath string) (int, error) {
out, err := exec.Command("wc", "-1", filepath).Output()
if err != nil {

return 0, fmt.Errorf("could not run wc -1: %s", err)

}

// wc output is like: 999 filename.go

count, err := strconv.Atoi(strings.Fields(string(out))|[0])
if err !'= nil {

return 0, fmt.Errorf("could not convert wc -1 output to integer: %s", err)

return count, nil

Just make sure not to capitalize the error string unless beginning with proper nouns or acronyms,
because the error will be logged in the caller with something like this:

filepath := "/home/gopher/somefile.txt"
lines, err := lineCount(filepath)
if err !'= nil {

log.Printf ("ERROR: lineCount(%q): %s", filepath, err)

and the error line will flow better without a capital letter appearing in the middle of the log line:

2017/09/21 03:57:55 ERROR: lineCount("/home/gopher/somefile.txt"): Could not run wc -1

VS.

2017/09/21 03:57:55 ERROR: lineCount("/home/gopher/somefile.txt"): could not run wc -1
Wrapping Up

Compared to most languages, Go is very opinionated about proper style. It can take getting used to,
but the advantage is that Go projects all follow the same style. This reduces mental overhead and
lets you focus on the logic of the program. For more examples of idiomatic Go code, we recommend
reading the Go source code'® itself. One way to do this is to browse Go standard library’s godoc
documentation’’. Clicking on a function name on godoc.org will take you to a page which displays
the source containing that function. Don’t be afraid to read the source - it is very approachable and,
partly due to it being run through sofmt, very readable.

*“https://github.com/golang/go
https://godoc.org/-/go

https://github.com/golang/go
https://godoc.org/-/go
https://godoc.org/-/go
https://github.com/golang/go
https://godoc.org/-/go

9
10
11

Strings

In Go, string literals are defined using double quotes, similar to other popular programming
languages in the C family:

An example of a string literal

package main

import "fmt"

func ExampleString() {
s := "I am a string - {RIF"
fmt.Println(s)
// Output: I am a string - YR

As the example shows, Go string literals and code may also contain non-English characters, like the

Chinese /R4 .
Appending to Strings

Strings can be appended to with the addition (+) operator:

Appending to a string

package main

import "fmt"

func ExampleAppend() {
greeting := "Hello, my name is "
greeting += "Inigo Montoya"
greeting += "."
fmt.Println(greeting)

// Output: Hello, my name is Inigo Montova.

1fR 1, pronounced ni hdo, is Hello in Chinese.

ol

I\

9
10

Strings 53

This method of string concatenation is easy to read, and great for simple cases. But while Go does
allow us to concatenate strings with the + (or +=) operator, it is not the most efficient method. It is
best used only when very few strings are being added, and not in a hot code path. For a discussion
on the most efficient way to do string concatenation, see the later chapter on optimization.

In most cases, the built-in fmt.Sprintf*® function available in the standard library is a better choice
for building a string. We can rewrite the previous example like this:

Using fmt.Sprintf to build a string

package main

import "fmt"

func ExampleFmtString() {
name := "Inigo Montoya"

)

sentence := fmt.Sprintf("Hello, my name is %s.", name)
fmt.Println(sentence)

// Output: Hello, my name is Inigo Montoya.

The %s sequence is a special placeholder that tells the Sprintf function to insert a string in that
position. There are also other sequences for things that are not strings, like %d for integers, %f for
floating point numbers, or %v to leave it to Go to figure out the type. These sequences allow us to
add numbers and other types to a string without casting, something the + operator would not allow
due to type conflicts. For example:

Using fmt.Printf to combine different types of variables in a string

package main

import "fmt"

func ExampleFmtComplexString () {

name := "Inigo Montoya"

age := 32

weight := 76.598

t := "Hello, my name is %s, age %d, weight %.2fkg"

fmt.Printf (t, name, age, weight)
// Output: Hello, my name is Inigo Montova, age 32, weight 76.60kg

“https://golang.org/pkg/fmt/#Sprintf

https://golang.org/pkg/fmt/#Sprintf
https://golang.org/pkg/fmt/#Sprintf

ol

Strings 54

Note that here we used fmt.Printf to print the new string directly. In previous examples, we used
fmt.Sprintf to first create a string variable, then fmt.Printin to print it to the screen (notice the S in
Sprintf, short for string). In the above example, %d is a placeholder for an integer, %.2f a for a floating
point number that should be rounded to the second decimal, and %s a placeholder for a string, as
before. These codes are analogous to ones in the printf and scanf functions in C, and old-style string
formatting in Python. If you are not familiar with this syntax, have a look at the documentation for
the fmt package®. It is both expressive and efficient, and used liberally in Go code.

What would happen if we tried to append an integer to a string using the plus operator?

Breaking code that tries to append an integer to a string

package main

func main() {

n

s := "I am" + 32 + "years old"

Running this with go run, Go returns an error message during the build phase:

$ go run bad_append.go

command-line—arguments

./bad_append.go:4: cannot convert "I am" to type int

./bad_append.go:4: invalid operation: "I am" + 32 (mismatched types string an\

d int)

As expected, Go’s type system catches our transgression, and complains that it cannot append an
integer to a string. We should rather use fmt.Sprintf for building strings that mix different types.

Next we will have a look at a very useful standard library package that allows us to perform many
common string manipulation tasks: the built-in strings package.

Splitting strings

The strings package is imported by simply adding import "strings”, and provides us with many
string manipulation functions. One of these is a function that split a string by separators, and obtain
a slice of strings:

**https://golang.org/pkg/fmt/

https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/

ol

o1

Strings 55

Splitting a string

package main

import "fmt"

import "strings"

func ExampleSplit() {
1 := strings.Split("a.b,c", ".")
fmt.Printf ("%q", 1)
// Output: ["a" "b" "c"]

The strings.Split function takes a string and a separator as arguments. In this case, we passed in
()

"a,b,c" and the separator “,” and received a string slice containing the separate letters a, b, and c as
strings.

Counting and finding substrings

Using the strings package, we can also count the number of non-overlapping instances of a substring
in a string with the aptly-named strings.Count. The following example uses strings.Count to count
occurrences of both the single letter a, and the substring ana. In both cases we pass in a string®'.
Notice that we get only one occurrence of ana, even though one may have expected it to count
ana both at positions 1 and 3. This is because strings.Count returns the count of non-overlapping
occurrences.

Count occurrences in a string

package main
import (

"fmt"

"strings"

func ExampleCount() {

s := "banana"
cl := strings.Count(s, "a"
c2 := strings.Count(s, "ana"

*'Remember, Go does not support function overloading, so a single character should be passed as a string if the function expects a string,
like most functions in the strings standard library.

Strings 56

fmt.Println(cl, c2)
// Output: 3 1

If we want to know whether a string contains, starts with, or ends with some substring, we can use
the strings.Contains, strings.HasPrefix, and strings.HasSuffix functions, respectively. All of these
functions return a boolean:

Count occurrences in a string

package main

import (
"fmt"

"strings"

func ExampleContains() {

str := "two gophers on honeymoon"

if strings.Contains(str, "moon") {
fmt.Println("Contains moon")

}

if strings.HasPrefix(str, "moon") {
fmt.Println("Starts with moon")

}

if strings.HasSuffix(str, "moon") {
fmt.Println("Ends with moon")

}

// Output: Contains moon

// Ends with moon

For finding the index of a substring in a string, we can use strings.Index. Index returns the index
of the first instance of substr in s, or -1 if substr is not present in s:

ol

Strings 57

Using strings.Index to find substrings in a string

package main

import "fmt"

import "strings"

func Examplelndex() {
an := strings.Index("banana", "an"
am := strings.Index("banana", "am"
fmt.Println(an, am)
// Output: 1 -1

The strings package also contains a corresponding LastIndex function, which returns the index of
the last (ie. right-most) instance of a matching substring, or -1 if it is not found.

The strings package contains many more useful functions. To name a few: ToLower, ToUpper, Trim,
Equals and Join, all performing actions that match their names. For more information on these and
other functions, refer to the strings package docs. As a final example, let’s see how we might
combine some of the functions in the strings package in a real program, and discover some of its
more surprising functions.

Advanced string functions

The program below repeatedly takes input from the user, and declares whether or not the typed
sentence is palindromic. For a sentence to be palindromic, we mean that the words should be the
same when read forwards and backwards. We wish to ignore punctuation, and assume the sentence
is in English, so there are spaces between words. Take a look and notice how we use two new
functions from the strings package, FieldsFunc and EqualFold, to keep the code clear and concise.

*https://golang.org/pkg/strings/

https://golang.org/pkg/strings/
https://golang.org/pkg/strings/

B W N

ul

© o0 N O

10

12
13
14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37
38

Strings 58

A program that declares whether a sentence reads the same backward and forward, word for word

package main

import (
"bufio”
"fmt"
"og
"strings"

"unicode

// getlnput prompts the user for some text, and then
// reads a line of input from standard input. This line
// of text is then returned.
func getlnput() string {
fmt.Print ("Enter a sentence: ")
scanner := bufio.NewScanner (os.Stdin)
scanner.Scan ()

return scanner.Text ()

func isNotLetter (¢ rune) bool {

return 'unicode.IsLetter(c)

// isPalindromicSentence returns whether or not the given sentence
// is palindromic. To calculate this, it splits the string into words,
// then creates a reversed copy of the word slice. It then checks
// whether the reverse is equal (ignoring case) to the original.
// 1t also ignores any non-alphabetic characters.
func isPalindromicSentence(s string) bool {
// split into words and remove non-alphabetic characters
// in one operation by using FieldsFunc and passing in
// isNotLetter as the function to split on.

w := strings.FieldsFunc(s, isNotLetter)

// iterate over the words from front and back
// simultaneously. If we find a word that is not the same

// as the word at its matching from the back, the sentence

Strings 59

// is not palindromic.

1 := len(w)
for i := 03 1 < 1/2; i++ {
fw := w[i] // front word

bw := w[1-i-1] // back word
if !strings.EqualFold(fw, bw) {

return false

// all the words matched, so the sentence must be
// palindromic.

return true

func main() {

// Go doesn't have while loops, but we can use for loop
// syntax to read into a new variable, check that it's not
// empty, and read new lines on subsequent iterations.
for 1 := getInput(); 1 !'= ""; 1 = getInput() {

if isPalindromicSentence (1) {

fmt.Printin("... is palindromic!")
} else {

fmt.Println("... is not palindromic.")

Save this code to palindromes.go, and we can then run it with go run palindromes.go.

An example run of the palindrome program

$ go run palindromes.go

Enter a sentence: This is magnificent!
is not palindromic.

Enter a sentence: This is magnificent, is this!
is palindromic!

Enter a sentence:

As expected, when we enter a sentence that reads the same backwards and forwards, ignoring

Strings 60

punctuation and case, we get the output ... is palindromic!. Now, let’s break down what this code
is doing.

The getInput function uses a bufio.Scanner from the bufio package® to read one line from standard
input. scanner.Scan() scans until the end of the line, and scanner.Text () returns a string containing
the input line.

The meat of this program is in the isPalindromicSentence function. This function takes a string
as input, and returns a boolean indicating whether or not the sentence is palindromic, word-for-
word. We also want to ignore punctuation and case in the comparison. First, on line 34, we use
strings.FieldsFunc to split the string at each Unicode code point for which the isNotLetter function
returns true. In Go, functions can be passed around just like any other value. A function’s type
signature describes the types of its arguments and return values. Our isNotLetter function satisfies
the function signature specified by FieldsFunc, which is to take a rune as input, and return a boolean.
Runes are a special character type in the Go language - for now, just think of them as more or less
equivalent to a single character, like char in Java.

In isNotLetter, we return false if the passed in rune is a letter as defined by the Unicode standard,
and true otherwise. We can achieve this in a single line by using unicode.IsLetter, another built-in
function provided by the standard unicode library.

Putting it all together, strings.FieldsFunc(s, isNotLetter) will return a slice of strings, split by
sequences of non-letters. In other words, it will return a slice of words.

Next, on line 40, we iterate over the slice of words. We keep an index i, which we use to create both
fw, the word at index i, and bw, the matching word at index 1 - i - 1. If we can walk all the way
through the slice without finding two words that are not equal, we have a palindromic sentence. And
we can stop halfway through, because then we have already done all the necessary comparisons.
The next table shows how this process works for an example sentence as i increases. As we walk
through the slice, words match, and so we continue walking until we reach the middle. If we were to
find a non-matching pair, we can immediately return false, because the sentence is not palindromic.

The palindromic sentence algorithm by example

“Fall” “leaves” “as” “soon” “as” “leaves” “fall” EqualFold
i=0 fw bw true
i=1 fw bw true
i=2 fw bw true

The equality check of strings is performed on line 44 using strings.EqualFold - this function
compares two strings for equality, ignoring case.

Finally, on line 58, we make use of the semantics of the Go for loop definition. The basic for loop
has three components separated by semicolons:

*https://golang.org/pkg/bufio/

https://golang.org/pkg/bufio/
https://golang.org/pkg/bufio/

Strings 61

« the init statement: executed before the first iteration
« the condition expression: evaluated before every iteration
« the post statement: executed at the end of every iteration

We use these definition to instantiate a variable 1 and read into it from standard input, conditionally
break from the loop if it is empty, and set up reading for each subsequent iteration in the post
statement.

Ranging over a string

When the functions in the strings package don’t suffice, it is also possible to range over each
character in a string:

Iterating over the characters in a string

package main

import "fmt"

func Examplelteration() {
s := "ABCHRIH"
for i, r := range s {
fmt.Printf ("%q(%d) ", r, i)
}
// Output: "A'(0) 'B' (1) 'C'(2) "R (3) "#' (6)

You might be wondering about something peculiar about the output above. The printed indexes
start from 0, 1, 2, 3 and then jump to 6. Why is that? This is the topic in the next chapter, Supporting
Unicode.

Supporting Unicode

Part of preparing production-ready code is making sure that it behaves as expected for supported
languages and inputs. In the previous chapter, we showed how easy Go makes many common string
manipulation tasks. Many of these examples were implicitly English-centric, with only some hints
that there may be more brewing below the surface when it comes to handling international character
sets. In this chapter we will examine strings in greater depth, and learn how to write bug-free,
production-ready code that handles strings in any language supported by the Unicode standard.

We will start by taking a detour through the history of string encodings. This will then inform the
rest of our discussion on handling different character sets in Go.

A very brief history of string encodings

What are string encodings, and why do we need them? You can skip this section if you already know
the difference between Unicode and UTF-8, and between a character and a Unicode code point.

Consider how a computer might represent a string of text. Because computers operate on binary,
human-readable text needs to be represented as binary numbers in some way. Early computer
pioneers came up with one such scheme, which they called ASCII (pronounced ASS-kee). ASCII is
one way of mapping characters to numbers. For example, A is 65 (binary 0100 0001, or hexadecimal
0x41), Bis 66, C is 67, and so on. We could represent the ASCII-encoded string “ABC” in hexadecimal
notation, like so:

0Ox41 0x42 0x43

ASCII defines a mapping for 127 different characters, using exactly 7 bits. For the old 8-bit systems,
this was perfect. The only problem is ASCII only covers unaccented English letters.

As computers became more widespread, other countries also needed to represent their text in binary
format, and unaccented English letters were not enough. So a plethora of new encodings were
invented. Now when code encountered a string, it also needed to know which encoding the string
is using in order to map the bytes to the correct human-readable characters.

Identifying this as a problem, a group called the Unicode consortium undertook the herculean task
of assigning a number to every letter used in any language. Such a magic number is called a Unicode
code point, and is represented by a U+ followed by a hexadecimal number. For example, the string
“ABC” corresponds to these three Unicode code points:

o1

Supporting Unicode 63
U+0041 U+0042 U+0043

Notice how for the string “ABC”, the hexadecimal numbers are the same as for ASCII.

So Unicode assigns each character with a number, but it does not specify how this number should
be represented in binary. This is left to the encoding. The most popular encoding of the Unicode
standard is called UTF-8. UTF-8 is popular because it has some nice properties.

One nice property of UTF-8 is that every code point between 0-127 is stored in a single byte. Only
code points 128 and above are stored using 2, 3, or up to 6 bytes. Because the first 128 Unicode code
points were chosen to match ASCII, this has the side effect that English text looks exactly the same
in UTF-8 as it did in ASCII. (Notice how the hexadecimally-encoded ASCII of “ABC” from earlier
is the same as the Unicode code points for the same letters.)

In this chapter we will keep things simple by focusing on only these two encodings: ASCII and
UTEF-8. UTF-8 has become the universal standard, and supports every language your application
might need, from Chinese to Klingon. But the same principles apply for any encoding, and should
your application need to handle the conversion from other encodings, most common encodings are
available in the golang.org/x/text/encoding package.

For a more complete history of string encoding, we recommend Joel Spolsky’s excellent blog post
from 2003, titled The Absolute Minimum Every Software Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!)**.

With an understanding of what string encodings are and why they exist, let’s now turn to how they
are handled in Go.

Strings are byte slices

In Go, strings are read-only (or immutable) byte slices. The byte slice representing the string is not
required to hold Unicode text, UTF-8 text, or any other specific encoding. In other words, strings
can hold arbitrary bytes. For example, we can take a slice of bytes, and convert it to a string:

package main
import (

"Emt"

func main() {
b := []byte{65, 66, 67}
s := string(b)

**https://www.joelonsoftware.com/2003/10/08/the-absolute- minimum-every- software-developer-absolutely-positively-must-know-
about-unicode-and- character-sets-no-excuses/

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Supporting Unicode 64

fmt.Println(s)
// Output: ABC

In this byte slice to string conversion, Go makes no assumptions about the encoding. To Go, this is
just another byte slice, now with the type of string. When the string gets printed by fmt.Printin,
again, Go is just sending some bytes to standard output. The terminal that outputs the bytes to the
screen needs to use the appropriate character encoding for the bytes to render correctly as human-
readable text. In this case, either ASCII or UTF-8 encodings would do.

Printing strings

For debugging strings it is often useful to see the raw bytes in different forms. Strings starting with
a % symbol, like %s or %q, are placeholders for parameters when passed into certain functions in the
fmt package, like fmt.Printf, fmt.Sprintf, which returns a formatted string, and fmt.Scanf, which
reads a variable from input. Package fmt implements formatted I/O with functions similar to C’s
printf and scanf. The format ‘verbs’ are derived from C’s but are simpler.

The next program showcases some different ways to print strings in Go using the fmt package.
package main

import (
et

func showVerb(v, s string) {
n := fmt.Sprintf(v, s)
fmt.Println(v, "\t", n)

func main() {
s := "ABC {RIF"
showVerb ("%s", s)
showVerb ("%q", s)
showVerb ("%+q", s)
showVerb ("%x", s)
showVerb ("% x", s)

showVerb ("%% x", s)

Supporting Unicode 65
Running this produces the following output:

%s ABC {RIF
% "ABC {RIF"

%+q "ABC \u4f60\u597d"

%x 41424320e4bdaleb5a5bd

% X 41 42 43 20 e4 bd a0 e5 a5 bd

%7 x 0x41 0x42 0x43 0x20 Oxed Oxbd 0Oxa0 Oxe5 Oxa5 Oxbd

The showVerb function is a single line that prints the given verb v, plus the string s formatted using
that verb. We use the fmt.Sprintf function to create a new string formatted with the passed in verb
v. On the next line we print v and the new string n, to see what it looks like.

The verb following the % character specifies how Go should format the given parameter. There are
many verbs to choose from, including some verbs for specific data types. The following verbs can
be used for any data type ["verb_fmt_source]:

Y the value in a default format

when printing structs, the plus flag (%+v) adds field names
\% a Go-syntax representation of the value
%T a Go-syntax representation of the type of the value

a literal percent sign; consumes no value
and these verbs are only for strings and slices of bytes (treated equivalently by the:

%S the uninterpreted bytes of the string or slice

[}

vq a double—quoted string safely escaped with Go syntax

bX base 16, lower—case, two characters per byte

%X base 16, upper—case, two characters per byte

Other common verbs include those for integers (e.g. %d for numbers in base 10) and booleans (%b).
You can refer to the fmt package documentation for the full list.

As our example demonstrated, some verbs allow special flags between the % symbol and the verb.
From the fmt package documentation:

Supporting Unicode 66

+ always print a sign for numeric values;
guarantee ASCII-only output for %q (%+q)
- pad with spaces on the right rather than the left (left-justify the field)

i

alternate format: add leading O for octal (%%0), Ox for hex (%#x);

0X for hex (%7X); suppress Ox for %p (%%p);

for %q, print a raw (backquoted) string if strconv.CanBackquote
returns true;

always print a decimal point for %e, %E, %f, %F, %g and %G;

do not remove trailing zeros for %g and %G;

write e.g. U+0078 'x' if the character is printable for %U (%=U).
(space) leave a space for elided sign in numbers (% d);

put spaces between bytes printing strings or slices in hex (% x, % X)
0 pad with leading zeros rather than spaces;

for numbers, this moves the padding after the sign

Flags are ignored by verbs that do not expect them.

There are plenty more options for formatting with the fmt package, and we highly recommend
reading the documentation for a full breakdown of all the available options. One aspect not covered
so far is that it is possible to specify a width by an optional decimal number immediately preceding
the verb. By default the width is whatever is necessary to represent the value, but when provided,
width will pad with spaces until there are least that number of runes. This is not the same as in C,
which uses bytes to count the width. So what exactly are runes?

Runes and safely ranging over strings

Previously we stated that Go makes no assumptions about the string encoding when it converts bytes
to the string type. This is true. The string type carries with it no information about its encoding. But
in certain instances, Go does need to make assumptions about the underlying encoding. One such
case is when we range over a string.

Let’s return to the last example from the previous chapter, and range over a string that contains
some non-ASCII characters:

ol

Supporting Unicode 67

Iterating over the characters in a string

package main
import "fmt"

func Examplelteration() {
s := "ABCHRIF"
for i, r := range s {
fmt.Printf ("%q(%d) ", r, i)
}
// Output: '"A'(0) 'B'(1) 'C'(2) "fR' (38) "' (6)

Running this, we get the following output:
'AT(0) BT(D) C (@) RN (3) EF(6)

The range keyword returns two values on each iteration: an integer indicating the current position
in the string, and the current rune. rune is a built-in type in Go, and it is meant to contain a single
Unicode character. As such, it is an alias of int32, and contains 4 bytes. So on every iteration, we
get the current position in the string, in this case called i, and a rune called r. We use the %q and %d
verbs to print out the current rune and position in the string.

By now it might be clear why the position variable i jumps from 3 to 6 between fX and #F. Below
the hood, instead of going byte by byte, the range keyword is fetching the next rune in the string.
We can achieve the same effect without range by using the NextRune

Handling right-to-left languages

["verb_fmt_source](https://golang.org/pkg/fmt/#pkg-overview)

Concurrency

Go’s concurrency model is based on what are called “goroutines” - essentially lightweight threads.
To invoke a goroutine, we use the go keyword:

go func() {
fmt.Println("hello, world")

1O

If we were to add the above to a main() function and run it, we would probably see no output. This
is because the main exited before the goroutine had time to finish. To see this in action, let’s add a
sleep to give the goroutine some time to run:

package main

import (
"fmt"
"time"
)

func main() {
go func() {
fmt.Println("hello, world")

0,

time.Sleep(l * time.Second)

$ go run main.go

hello, world

What would happen if we had multiple goroutines? Let’s try:

A}

w

ul

Concurrency 69

package main

import (
"fmt"
"time"
)

func main() {
go func() {
fmt.Println("hello, world 1")
+O

go func() |
fmt.Println("hello, world 2")

0,

go func() |
fmt.Println("hello, world 3")

0,

*

time.Sleep(l * time.Second)

$ go run main.go
hello, world 2
hello, world 1
hello, world 3

We notice the goroutines all ran, and not in the order in which they were written. This is the expected
behavior.

But we can’t use time.Sleep everywhere in our code to wait for our goroutines to finish, right? In
the next sections we’ll discuss how to organize our goroutines.

sync.WaitGroup

With sync.WaitGroup we can avoid using time.Sleep to wait for our goroutines to finish. Instead,
we create a sync.WaitGroup and add 1 to its counter for every goroutine we expect to launch. Then,
inside each goroutine we decrement the counter. Finally we call the Wait () method on the WaitGroup
to wait for all of our goroutines to finish. Let’s modify our previous example to use a sync.WaitGroup:

\)

w

o1

Concurrency

sync.WaitGroup

70

package main

import (
"fmt"

" sync "

func main() {
var wg sync.WaitGroup
wg.Add (1)
go func() {
defer wg.Done ()
fmt.Printin("hello, world 1")
0

wg.Add (1)

go func() {
defer wg.Done()
fmt.Printin("hello, world 2")

+O

wg . Add (1)
go func() {
defer wg.Done()
fmt.Println("hello, world 3")
1O

wg. Wait ()

When we run this code, we get the same or similar output to when we were using time.Sleep:

$ go run main.go
hello, world 3
hello, world 1
hello, world 2

All of our goroutines finished, and we didn’t need to use a time.Sleep to wait for them.

Concurrency

Channels

71

Channels can be used to send and receive values. They’re often used in goroutines; a goroutine will
do some work and then send the result to the channel that was passed in as an argument:

Channel usage

package main

import "fmt"

func main() {

ch := make(chan string)

go func(ch chan string) {
ch <= "hello, world 1"

} (ch)

go func(ch chan string) {
ch <= "hello, world 2"
}(ch)

go func(ch chan string) {
ch <= "hello, world 3"

}(ch)
a, b, ¢ := <-ch, <-ch, <-ch
fmt.Println(a)

fmt.Println(b)
fmt.Println(c)

This code is functionally equivalent to our sync.WaitGroup example in the previous section. Note

that the channel must be declared before it’s used, as we see with ch

:= make (chan string). We create

the channel, then each goroutine sends a string onto the channel. Finally we select 3 values from the

channel and print them out at the end of the program.

What would happen if we only sent 2 strings but tried to select 3?

18

Concurrency

Channel usage

72

package main

import "fmt"

func main() {

ch := make(chan string)

go func(ch chan string) {

ch <= "hello, world 1"

} (ch)

go func(ch chan string) {
ch <= "hello, world 2"

} (ch)

// go func(ch chan string) {

// ch <- "hello, world 3"
// } (ch)

a, b, ¢ := <-ch, <-ch, <-ch

fmt.Println(a)
fmt.Println(b)
fmt.Println(c)

S go run main.go

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan receive]:
main.main()
/Users/gopher/f00.g0:20 +0xf2

exit status 2

Concurrency 73

Goroutines in web handlers

We mentioned that goroutines run until the main function exits. This means that a web handler can
create goroutines to do background processing and can return before the goroutines finish. Let’s see
an example:

Goroutine in web handler

package main

import (
"log"
"net/http"
"time"

)

func main() {
http.HandleFunc ("/", func(w http.ResponseWriter, req *http.Request) {
go func() {
time.Sleep(3 * time.Second)
log.Println("hello, world")

10

return

19)

log.Println("Running on :8080...")
log.Fatal (http.ListenAndServe ("127.0.0.1:8080", nil))

If we run this code in one terminal, we should see:

S go run main.go
2018/11/02 13:21:23 Running on :8080. ..

Now in a second terminal, let’s do a cur1:

$ curl localhost:8080

The curl returns almost immediately. Now if we wait a couple of seconds, we should see our print
statement in the first terminal:

18

Concurrency 74

$ go run main.go
2018/11/02 13:21:23 Running on :8080. ..
2018/11/02 13:21:26 hello, world

Meaning the goroutine continued running in the background after our HTTP handler returned.

Pollers

Goroutines are useful when writing pollers as well. Let’s say we have a Go program that functions
as a web server, but we also want to poll for some data in the background. We’ll keep the web server
functionality small for the sake of simplicity in our example. Let’s poll for advisory information
from BART, the public transportation system serving the San Francisco Bay Area:

BART advisory poller

package main

import (
"encoding/json"
"io/ioutil"
"log"
"net/http"
"time"

)

const bsaEndpoint = "http://api.bart.gov/api/bsa.aspx?cmd=bsa&key=MW9S-E7SL-2\
6DU-VV&8V& json=y"

type bsaResponse struct {
Root struct {

Advisories []BSA ‘json:"bsa"®

// BSA is a BART service advisory
type BSA struct {
Station string
Description struct {

N

Text string “Jjson:"Hcdata-section"

46

Concurrency

func poll() {

ticker := time.N

defer ticker.Sto

for {
select {
case <-t
}

}

}

func main() {
http.HandleFunc(
go func(

X0

75

ewTicker (5 * time.Second)

pO

icker.C:
resp, err := http.Get(bsaEndpoint)
if err != nil {
log.Println("ERROR: could not GET bsaEndpoint:", err)
}

defer resp.Body.Close()

b, err := ioutil.ReadAll (resp.Body)
if err '= nil {

log.Println("ERROR: could not parse response body:", err)

var br bsaResponse
err = json.Unmarshal (b, &br)
if err !'= nil {

log.Println("ERROR: Jjson.Unmarshal:", err)

if len(br.Root.Advisories) > 0 {
for , adv := range br.Root.Advisories {

log.Println(adv.Station, adv.Description.Text)

"/", func(w http.ResponseWriter, req *http.Request) {

) A

log.Printin("hello, world 1")

Concurrency 76

return

9

go poll()
log.Println("Running on :8080...")
log.Fatal (http.ListenAndServe ("127.0.0.1:8080", nil))

Let’s go over what this code does. We have an HTTP handler similar to our previous example but
without the time.Sleep. If we do curl localhost:8080, we should not only see an immediate response,
but also a hello, world log statement in the console running our program. After we set up our
handler, we run our poll function in a goroutine.

The pol1 function is making a GET request every 5 seconds to a public BART API endpoint which
contains advisory information, such as delays at certain stations. After making the request and
unmarshalling it, we print the results.

Why does poll need to be run in a goroutine? Since it contains an infinite loop (for{ ... }), if we
were to run it on its own we would never get to the code following it.

Race conditions

When writing concurrent code, we must be careful not to create any race conditions. A race
condition occurs in Go when two goroutines access the same variable and at least one access is
a write.”

We discuss race conditions and the race detector in detail in the [Tooling]{#racedetector} section.
Here we’ll go over a simple example and fix it, but please see the Tooling section for advice on
preventing data races in your build.

Consider the following example of two goroutines updating a map concurrently:

*https://golang.org/doc/articles/race_detector.html

Concurrency 77

Goroutines updating same map

1 package main

3 dimport (

4 "log"

5 "time"

6)

7

8 func main() {

9 m := map[string]string{}

10

11 go func() {

12 m["test"] = "hello, world 1"
13 +O

14

15 go func() {

16 m["test"] = "hello, world 2"
17 0,

18

19 time.Sleep (time.Second)

20 log.Println(m["test"])

01 }

Running this code gives us the following output:

$ go run main.go
2018/11/02 17:29:27 map|test:hello, world 2]

Since these two goroutines are updating the same map concurrently, however, there is a data race.
We can prevent this by using sync.Map:

Concurrency 78

sync.Map

package main

import (
"Tog"
"sync"
"time"
)

func main() {

var m = &sync.Map{}

go func() {

m.Store("test", "hello, world 1")
1O
go func() {

m.Store("test", "hello, world 2")
1O

time.Sleep(time.Second)

val, _ := m.Load("test")
log.Println(val)

This works fine, but the documentation warns us that sync.Map should only be used in the following
situations:

The Map type is optimized for two common use cases: (1) when the entry for a given key
is only ever written once but read many times, as in caches that only grow, or (2) when
multiple goroutines read, write, and overwrite entries for disjoint sets of keys. In these
two cases, use of a Map may significantly reduce lock contention compared to a Go map
paired with a separate Mutex or RWMutex.*

So let’s take their advice and use map paired with a Mutex:

*https://golang.org/pkg/sync/#Map

\V)

o1 wW

0 N O

20

Concurrency

sync.Map

79

package main

import (
"log"
"sync"
"time"
)

type safeMap struct {
sync.Mutex

m map[string]string

func main() {
var sm = safeMap{

m: make (map[string]string),

}
go func() {

sm.Lock ()

defer sm.Unlock()

sm.m["test"] = "hello, world 1"
0
go func() {

sm.Lock ()

defer sm.Unlock()

sm.m["test"] = "hello, world 2"
0O

time.Sleep(time.Second)

sm.Lock ()
log.Println(sm.m["test"])
sm.Unlock()

We can add Store, Load, Delete etc. methods to our safeMap type as well:

AV

18

Concurrency

sync.Map

80

package main

import (
"log"
"sync"
"time"
)

type safeMap struct {
sync.Mutex

m map[string]string

func (sm *safeMap) Store(key, val string) {
sm.Lock ()
defer sm.Unlock()
sm.m|key]| = val

func (sm *safeMap) Load(key string) (val string, exists bool) {
sm.Lock ()
defer sm.Unlock()
val, ok := sm.m[key]

return val, ok

func (sm *safeMap) Delete(key, val string) {
sm.Lock ()
defer sm.Unlock()
delete(sm.m, key)

func main() {
var sm = safeMap{

m: make (map[string]string),

go func() {

40

Concurrency
sm.Store("test", "hello, world 1")
}O
go func() {
sm.Store ("test", "hello, world 2")
}O
time.Sleep(time.Second)
val, _ := sm.Load("test")
log.Println(val)
}

81

S go run main.go

2018/11/02 18:45:57 hello, world 2

It also runs with the race detector enabled, no data races found:

$ go run -race main.go
2018/11/02 18:46:22 hello, world 2

Testing

A critical part of any production-ready system is a complete test suite. If you have not written tests
before, and wonder why they are important, this introduction is for you. If you already understand
the importance of proper testing, you can skip to the particulars of writing tests in Go, in writing
tests.

Why do we need tests?

A line of reasoning we sometimes hear, is that “my code clearly works, why do I need to write tests
for it?” This is a natural enough question, but make no mistake, a modern production-ready system
absolutely must have automated tests. Let’s use an analogy from the business world to understand
why this is so: double entry bookkeeping.

Double entry is the idea that every financial transaction has equal and opposite effects in at least two
different accounts. For example, if you spend $10 on groceries, your bank account goes down by $10,
and your groceries account goes up by $10. This trick allows you to see, at a glance, simultaneously
how much money is in your bank account, and how much you spent on groceries. It also allows you
to spot mistakes. Suppose a smudge in your books made the $10 entry look like $18. The total balance
of your assets would no longer match your liabilities plus equity - there would be an $8 difference.
We can compare entries in the bank account with entries in the groceries account to discover which
amount is incorrect. Before double-entry bookkeeping, it was much harder to prove mistakes, and
impossible to see different account balances at a glance. The idea revolutionized bookkeeping, and
underpins accounting to this day.

Back to tests. For every piece of functionality we write, we also write a test. The test should prove
that the code works in all reasonable scenarios. Like double-entry bookkeeping, tests are our way to
ensure our system is correct, and remains correct. Your system might work now - you might even
prove it to yourself by trying out some cases manually. But systems, especially production systems,
require changes over time. Requirements change, environments change, bugs emerge, new features
become needed, inefficiencies are discovered. All these things will require changes to be made to
the code. After making these changes, will you still be sure that the system is correct? Will you run
through manual test cases after every change? What if someone else is maintaining the code? Will
they know how to test changes? How much time will it take you to manually perform these test
cases?

Automated tests cost up-front investment, but they uncover bugs early, improve maintainability,
and save time in the long run. Tests are the checks and balances to your production system.

Testing 83

Many books and blog posts have been written about good testing practice. There are even movements
that promote writing tests first”’, before writing the code. We don’t think it’s necessary to be quite
that extreme, but if it helps you write good tests, then more power to you. No production system is
complete without a test suite that makes sensible assertions on the code to prove it correct.

Now that we have discussed the importance of testing in general, let’s see how tests are written in
Go. As we'll see, testing was designed with simplicity in mind.

Writing Tests

Test files in Go are located in the same package as the code being tested, and end with the suffix
_test.go. Usually, this means having one _test.go to match each code file in the package. Below is
the layout of a simple package for testing prime numbers.

e prime
— prime.go
— prime_test.go
— sieve.go
— sieve_test.go

This is a very typical Go package layout. Go packages contain all files in the same directory, including
the tests. Now, let’s look at what the test code might look like in prime_test.sgo.

A simple test in prime_test.go that tests a function called IsPrime

package main

import "testing"

// TestlsPrime tests that the IsPrime function
// returns true when the input is prime, and false
// otherwise.
func TestlIsPrime(t *testing.T) {

// check a prime number

got := IsPrime(19)

if got != true {

t.Errorf ("IsPrime (%d) = %t, want %t", 19, got, true)

// check a non-prime number

*"https://en.wikipedia.org/wiki/Test-driven_development

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

Testing 84

got = IsPrime(21)
if got != false {
t.Errorf ("IsPrime (%d) = %t, want %t", 21, got, false)

We start by importing the testing package. Then, on line 8, we define a test as a normal Go function
taking a single argument: t *testing.T. All tests must start with the word Test and have a single
argument, a pointer to testing.T. In the function body, we call the function under test, IsPrime. First
we pass in the integer 19, which we expect should return true, because 19 is prime. We check this
assertion with a simple if statement on line 11, if got != true. If the statement evaluates to false,
t.Errorf is called. Errorf formats its arguments in a way analogous to Printf, and records the text
in the error log. We repeat a similar check for the number 21, this time asserting that the IsPrime
function returns true, because 21 is not prime.

We can run the tests in this package using go test. Let’s see what happens:

$ go test
PASS
ok _/Users/productiongo/code/prime 0.018s

It passed! But did it actually run our TestlIsPrime function? Let’s check by adding the -v (verbose)
flag to the command:

$ go test -v

=== RUN TestIsPrime

——— PASS: TestlIsPrime (0.00s)

PASS

ok _/Users/productiongo/code/prime 0.019s

Our test is indeed being executed. The -v flag is a useful trick to remember, and we recommend
running tests with it turned on most of the time.

All tests in Go follow essentially the same format as the TestIsPrime. The Go authors made a
conscious decision not to add specific assertion functions, advising instead to use the existing control
flow tools that come with the language. The result is that tests look very similar to normal Go code,
and the learning curve is minimal.

Table-driven tests

Our initial TestIsPrime test is a good start, but it only tests two numbers. The code is also repetitive.
We can do better by using what is called a table-driven test. The idea is to define all the inputs and
expected outputs first, and then loop through each case with a for loop.

Testing 85

A table-driven test in prime_test.go that tests a function called IsPrime

package main

import "testing"

// TestlsPrime tests that the IsPrime function
// returns true when the input is prime, and false
// otherwise.
func TestIsPrimeTD(t *testing.T) {
cases := []struct {
give int
want bool
H
{19, true},
{21, false},
{10007, true},
{1, false},
{0, false},
{-1, false},

for _, ¢ := range cases {
got := IsPrime(c.give)
if got !'= c.want {

t.Errorf ("IsPrime(%d) = %t, want %t", c.give, got, c.want)

In the refactored test, we use a slice of an anomymous struct to define all the inputs we want to test.
We then loop over each test case, and check that the output matches what we want. This is much
cleaner than before, and it only took a few keystrokes to add more test cases into the mix. We now
also check some edge cases: inputs of 0, 1, 10007, and negative inputs. Let’s run the test again and
check that it still passes:

Testing 86

$ go test -v

=== RUN TestIsPrimeTD

——— PASS: TestIsPrimeTD (0.00s)

PASS

ok _/Users/productiongo/code/prime 0.019s

It looks like the IsPrime function works as advertised! To be sure, let’s add a test case that we expect
to fail:

{-1, false},

// 17 is prime, so this test should fail:
{17, false},

We run go test -v again to see the results:

$ go test -v
=== RUN TestIsPrimeTD
——— FAIL: TestIsPrimeTD (0.00s)
prime test.go:25: IsPrime(17) = true, want false
FAIL
exit status 1

FAIL _/Users/productiongo/code/prime 0.628s

This time go test reports that the test failed, and we see the error message we provided to t.Errorf.
Writing error messages

In the tests above, we had the following code:

if got !'= c.want {

t.Errorf ("IsPrime (%d) = %t., want %t", c.give, got, c.want)

The ordering of the if statement is not accidental: by convention, it should be actual != expected, and
the error message uses that order too. This is the recommended way to format test failure messages

Testing 87

in Go *. In the error message, first state the function called and the parameters it was called with,
then the actual result, and finally, the result that was expected. We saw before that this results in a
message like

prime test.go:25: IsPrime(17) = true, want false

This makes it clear to the reader of the error message what function was called, what happened, and
what should have happened. The onus is on you, the test author, to leave a helpful message for the
person debugging the code in the future. It is a good idea to assume that the person debugging your
failing test is not you, and is not your team. Make both the name of the test and the error message
relevant.

Testing HTTP Handlers

Let’s look at an example of testing that comes up often when developing web applications: testing an
HTTP handler. First, let’s define a comically simple HTTP handler that writes a friendly response:

A very simple HTTP handler

package main

import (
"fmt"
"net/http"
)
// helloHandler writes a friendly "Hello, friend :)" response.

func helloHandler (w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello, friend :)")

func main() {
http.HandleFunc (" /hello", helloHandler)
http.ListenAndServe (":8080", nil)

The httptest package provides us with the tools we need to test this handler as if it were running
in a real web server. The TestHTTPHandler function in the following example illustrates how to use
httptest.NewRecorder () to send a real request to our friendly helloHandler, and read the resulting
response.

**https://github.com/golang/go/wiki/CodeReview Comments#useful-test-failures

B W N

ul

SO O 0 N O

Testing

Testing an HTTP handler

88

package main

import (
"net/http"
"net/http/httptest”
"testing"

)

func TestHTTPHandler (t *testing.T) {
// Create a request to pass to our handler.
req, err := http.NewRequest("GET", "/hello", nil)
if err !'= nil {
t.Fatal(err)

// We create a ResponseRecorder, which satisfies
// the http.ResponseWriter interface, to record
// the response.

r := httptest.NewRecorder ()

handler := http.HandlerFunc (helloHandler)

// Our handler satisfies http.Handler, so we can call
// the ServeHTTP method directly and pass in our

// Request and ResponseRecorder.

handler.ServeHTTP(r, req)

// Check that the status code is what we expect.
if r.Code != http.StatusOK {
t.Errorf ("helloHandler returned status code %v, want %v",
r.Code, http.StatusOK)

// Check that the response body is what we expect.
want := "Hello, friend :)\n"
got := r.Body.String()
if got !'= want {
t.Errorf ("helloHandler returned body %q want %q",
got, want)

Testing 89

In this example we see the t.Fatal method used for the first time. This method is similar to t.Error,
but unlike t.Error, if t.Fatal is called, the test will not execute any further. This is useful when a
condition happens that will cause the rest of the test to be unnecessary. In our case, if our call to
create a request on line 11 were to fail for some reason, the call to t.Fatal ensures that we log the
error and abandon execution immediately. Anagolous to t.Errorf, there is also a t.Fatalf method,
which takes arguments the same way as fmt.Printf.

On line 19 we create a new httptest.Recorder with which to record the response. We also
create handler, which is helloHandler, but now of type http.HandlerFunc. We can do this, because
helloHandler uses the appropriate signature defined by http.HandlerFunc®:

type HandlerFunc func (ResponseWriter, *Request)

http.HandlerFunc is an adapter to allow the use of ordinary functions as HTTP handlers. As the final
step of the setup, we pass the recorder and the request we created earlier in to handler.ServeHTTP (r,
req). Now we can use the fields provided by httptest.Recorder, like Code and Body, to make assertions
against our HTTP handler, as shown in the final lines of the test function.

Mocking

Imagine you need to test code that uses a third party library. Perhaps this library is a client library
to an external API, or perhaps it performs database operations. In your unit tests, it is best to assume
that the library does its job, and only test your functions and their interactions. This allows your test
case failures to accurately reflect where the problem is, rather than leave the question of whether
it’s your function, or the library, that’s at fault. There is a place for tests that include third party
libraries, and that place is in integration tests, not unit tests.

How do we go about testing our functions, but not the libraries they use? The answer: interfaces.
Interfaces are an incredibly powerful tool in Go.

In Java, interfaces need to be explicitly implemented. You rely on your third party vendor to provide
an interface that you can use to stub methods for tests. In Go, we don’t need to rely on the third party
author; we can define our own interface. As long as our interface defines a subset of the methods
implemented by the library, the library will automatically implement our interface.

The next example illustrates one particular case where mocking is very useful: testing code that
relies on random number generation.

*https://golang.org/pkg/net/http/#HandlerFunc

https://golang.org/pkg/net/http/#HandlerFunc
https://golang.org/pkg/net/http/#HandlerFunc

B W N

ul

© o0 N O

10

12
13
14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37
38

Testing

Using an interface to abstract away API calls

90

package eightball

import (
"math/rand"

"time"

// randIntGenerator is an interface that includes Intn, a
// method in the built-in math/rand package. This allows us
// to mock out the math/rand package in the tests.

type randIntGenerator interface {

Intn(int) int

// EightBall simulates a very simple magic 8-ball,
// a magical object that predicts the future by
// answering ves/no questions.

type EightBall struct {

rand randIntGenerator

// NewEightBall returns a new EightBall.
func New() *EightBall {
return &EightBall{

rand: rand.New(rand.NewSource (time.Now() .UnixNano())),

// Answer returns a magic eightball answer
// based on a random result provided by
// randomGenerator. It supports only four
// possible answers.
func (e EightBall) Answer (s string) string {
n := e.rand.Intn(3)
switch n {
case 0:
return "Definitely not"

case 1:

Testing 91

return "Maybe"

case 2:
return "Yes"
default:
return "Absolutely"
}
}

We define a simple eightball package that implements a simple Magic 8-Ball*’. We ask it a yes/no
question, and it will return its prediction of the future. As you might expect, it completely ignores
the question, and just makes use of a random number generator. But random numbers are hard to
test, because they change all the time. One option would be to set the random seed in our code, or in
our tests. This is indeed an option, but it doesn’t allow us to specifically test the different outcomes
without some trial and error. Instead, we create an randIntGenerator interface, which has only one
method, Intn(int) int. This method signature is the same as the Intn*' method implemented by Go’s
built-in math/rand package. Instead of using the math/rand package directly in Answer, we decouple
our code by referencing the Intn method on the EightBall’s rand interface. Since EightBall.rand is
not exported, users of this package will not be aware of this interface at all. To create the struct, they
will need to call the New method, which assigns the built-in struct from math/rand struct to satisfy
our interface. So to package users the code looks the same, but under the hood, we can now mock
out the call to Intn in our tests:

Testing using our interface

package eightball

import (
"testing"

type fixedRandIntGenerator struct {
// the number that should be "randomly" generated

randomNum int
// record the paramater that Intn gets called with

calledWithN int

func (g *fixedRandIntGenerator) Intn(n int) int {
g.calledWithN = n

*°https://en.wikipedia.org/wiki/Magic_8-Ball
*'https://golang.org/pkg/math/rand/#Rand.Intn

https://en.wikipedia.org/wiki/Magic_8-Ball
https://golang.org/pkg/math/rand/#Rand.Intn
https://en.wikipedia.org/wiki/Magic_8-Ball
https://golang.org/pkg/math/rand/#Rand.Intn

46

48

Testing 92

return g.randomNum

func TestEightBall(t *testing.T) {

cases := []struct {

randomNum int

want string
H
{0, "Definitely not"},
{1, "Maybe"},
{2, "Yes"},
{3, "Absolutely"},
{-1, "Absolutely"}, // default case
}
for _, tt := range cases {
g := &fixedRandIntGenerator {randomNum: tt.randomNum}
eb := EightBall{
rand: g,
}
got := eb.Answer ("Does this really work?")
if got != tt.want {
t.Errorf ("EightBall.Answer () is %q for num %d, want %q",
got, tt.randomNum, tt.want)
}
if g.calledWithN != 3 {
t.Errorf ("EightBall.Answer () did not call Intn(3) as expected")
}
}

Sometimes, when the existing code uses a specific library implementation, it takes refactoring to
use interfaces to mock out impementation details. However, the resulting code is more decoupled.
The tests run faster (e.g. when mocking out external network calls) and are more reliable. Don’t be
afraid to make liberal use of interfaces. This makes for more decoupled code and more focused tests.

Testing 93

Generating Coverage Reports

To generate test coverage percentages for your code, simply run the so test -cover command. Let’s

make a quick example and a test to go with it.

We’re going to write a simple username validation function. We want our usernames to only contain
€ €« »

letters, numbers, and the special characters “-, “_”, and “”. Usernames also cannot be empty, and
they must be less than 30 characters long. Here’s our username validation function:

Username validation function

package validate

import (
"fmt"

”regexp”

// Username validates a username. We only allow
// usernames to contain letters, numbers,
// and special chars " ", "-", and "."
func Username (u string) (bool, error) {
if len(u) == 0 {
return false, fmt.Errorf("username must be > 0 chars")
}
if len(u) > 30 {
return Talse, fmt.Errorf("username too long (must be < 30 chars)")
}
validChars := regexp.MustCompile(\A[a—zA—Zl—9—_.]+$\)
if !validChars.MatchString(u) {

return false, fmt.Errorf("username contains invalid character")

return true, nil

Now let’s write a test for it:

Testing 94

Test for username validation function

package validate
import "testing"
var usernamelests = []struct {

in string

wantValid bool

H
{"gopher", true},
}
func TestUsername(t *testing.T) {
for _, tt := range usernameTests {
valid, err := Username(tt.in)

if err !'= nil && tt.wantValid {
t.Fatal (err)

if valid !'= tt.wantValid {
t.Errorf ("Username (%q) = %t. want %t", tt.in, valid, tt.wantValid)

As you can see, we're not covering very many cases. Let’s see what exactly our test coverage is for
this function:

$ go test -cover

PASS
coverage: 62.5% of statements
ok github.com/gopher/validate 0.008s

62.5% is a bit too low. This function is simple enough that we can probably get 100% coverage. We’d
like to know, however, exactly what parts of the function are not being covered. This is where the
coverage profile and HTML report come in.

To generate a test coverage profile, we run go test -coverprofile=coverage.out:

Testing 95

$ go test -coverprofile=coverage.out

PASS
coverage: 62.5% of statements
ok github.com/gopher/validate 0.008s

We can now get a breakdown of coverage percentages per function, although we only have one
function so it’s not very interesting:

go tool cover -func=coverage.out
github.com/gopher/validate/validate.go:11: Username 62.5%
total: (statements) 62.5%

What we really want to see is a line-by-line breakdown. We can get this with the HTML report,
which we’ll cover in the next section.

HTML Coverage Reports

We can generate an HTML coverage report using the same coverage.out file from before, by running
the following command:

go tool cover —html=coverage.out

This should open up a browser and show us an HTML page like the following:

github.com/shawnps/validate/validate.go (62.5%) & covered

if len(u) == @

if len(u) > 30

validChars := regexp.MustCompile(’~[a-zA-Z1-9-_.]+$%")
if !validChars.MatchString(u)

return true, nil

Username test coverage

Now we can see exactly where we need to improve our coverage. We need to cover the cases where
the username length is either 0 or > 30, as well as the case where the username contains an invalid
character. Let’s update our test for those cases:

Testing 96

Test for username validation function, 100% coverage

package validate
import "testing"
var usernamelests = []struct {

in string

wantValid bool

H

{"", false},

{"gopher", true},

{"gopher$", false},

{"abcdefghijklmnopqrstuvwxyzabcde", false},
}
func TestUsername(t *testing.T) {

for , tt := range usernameTests {

valid, err := Username(tt.in)

if err !'= nil && tt.wantValid {
t.Fatal(err)

if valid != tt.wantValid {
t.Errorf ("Username (%q) = %t, want %t", tt.in, valid, tt.wantValid)

Now if we re-run go test -coverprofile=coverage.out to get a new coverage profile, and then go
tool cover -html=coverage.out to view the HTML report again, we should see all green:

Testing 97

github.com/shawnps/validate/validate.go (100.0%) % covered

{
if len(u) == 0 {
return false, fmt.Errorf("username must be > @ chars")

}
if len(u) > 30 {
return false, fmt.Errorf("username too long (must be < 30 chars)")

}
validChars := regexp.MustCompile(’~[a-2A-Z1-9-_.]+$")
if !validChars.MatchString(u) {

return false, fmt.Errorf("username must only contain letters, numbers, _ and
}

return true, nil

Username test coverage 100%

Writing Examples

We can also write example code and the go test tool will run our examples and verify the output.
Examples are rendered in godoc underneath the function’s documentation.

Let’s write an example for our username validation function:

Username validation function example test

package validate

import (
"fmt"

" "

log

func ExampleUsername() {
usernames := []struct {
in string
valid bool
H

"o

, false},

"

{
{"gopher", true},
{"gopher$", false},
{

n

abcdefghi jklmnopqrstuvwxyzabcede", false},

Testing

}
for _, tt := range usernames {
valid, err := Username(tt.in)
if err != nil && tt.valid {
log.Fatal (err)
}
fmt.Printf ("%q: %t\n", tt.in, valid)
}
// Output:
// "": false

// "sgopher": true
// "gopher$": false

// "abcdefghijklmnopqrstuvwxyzabede" :

98

Note the Output: at the bottom. That’s a special construct that tells so test what the standard output
of our example test should be. go test is actually going to validate that output when the tests are

run.

If we run a local godoc server with godoc -http:6060, and navigate to our validate package, we can

also see that godoc renders the example, as expected:

func Username

func Username(u string) (bool, error)

Username validates a username. We only allow usernames to contain letters, numbers, and special chars

"and"."

> Example

Godoc example

If we click “Example” we’ll see our example code:

Testing 99

func Username

func Username(u string) (bool, error)

Username validates a username. We only allow usernames to contain letters, numbers, and special chars " ", "-
" and "."

~ Example

Code:

usernames := []struct {
in string
valid bool
H
{"", false},
{"gopher", true},
{"gopher$", false},
{"abcdefghijklmnopgrstuvwxyzabcde", false},

for _, tt := range usernames {
valid, err := Username(tt.in)
if err != nil && tt.valid {
log.Fatal(err)
H

fmt.Printf("%q: %t\n", tt.in, valid)

Output:

" false

"gopher": true

"gopherg": false
"abcdefghijklmnopqrstuvwxyzabcde": false

Godoc example full

Another note about examples is that they have a specific naming convention. Our example above
is named ExampleUsername because we wrote an example for the Username function. But what if we

want to write an example for a method on a type? Let’s say we had a type User with a method
ValidateName:

A}

w

ul

6

i\

Testing 100

type User struct {

Name string

func (u *User) ValidateName() (bool, error) {

Then our example code would look like this:

func ExampleUser ValidateName() {

where the convention for writing examples for methods on types is ExampleT M().

If we need multiple examples for a single function, that can be done by appending an underscore
and a lowercase letter. For example with our Validate function, we could have ExampleValidate,
ExampleValidate second, ExampleValidate third, and so on.

In the next chapter, we will discuss one last important use of the Go testing package: benchmarking.

Benchmarks

The Go testing package contains a benchmarking tool for examining the performance of our Go
code. In this chapter, we will use the benchmark utility to progressively improve the performance
of a piece of code. We will then discuss advanced benchmarking techniques to ensure that we are
measuring the right thing.

A simple benchmark

Let’s suppose we have a simple function that computes the n™ Fibonacci number. The sequence F,
of Fibonacci numbers is defined by the recurrence relation, F,, = F,,_; + F,,_», with F; =0, F} = 1.
That is, every number after the first two is the sum of the two preceding ones:

0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Because the sequence is recursively defined, a function that calculates the n™ Fibonacci number is
often used to illustrate programming language recursion in computer science text books. Below is
such a function that uses the definition to recursively calculate the n™ Fibonacci number.

A function that recursively obtains the n™ Fibonacci number

package fibonacci

// F returns the nth Fibonnaci number.
func F(n int) int {
if n <=0 {
return O
} else if n == 1 {
return 1
}

return F(n-1) + F(n-2)

Let’s make sure it works by writing a quick test, as we saw in the chapter on Testing.

Benchmarks 102

A test for the function that recursively obtains the n™ Fibonacci number

// fibonacci test.go

package fibonacci

import "testing"

func TestF(t *testing.T) {

cases := []struct {
n int
want int

H
{-1, o},
{0, 0},
{1, 1}.
{2, 1},
{3, 2},
{8, 21},

}

for _, tt := range cases {

got := FastF(tt.n)
if got != tt.want {
t.Errorf ("F(%d) = %d, want %d", tt.n, got, tt.want)

Running the test, we see that indeed, our function works as promised:

$ go test -v

=== RUN TestF

——— PASS: TestF (0.00s)

PASS

ok _/home/productiongo/benchmarks/fibonacci 0.001s

Now, this recursive Fibonacci function works, but we can do better. How much better? Before
we rewrite this function, let’s establish a baseline to which we can compare our future efficiency
improvements. Go provides a benchmark tool as part of the testing package. Anagalous to TestX(t
*testing.T), benchmarks are created with BenchmarkX (b *testing.B):

Benchmarks 103

A benchmark for the Fibonacci function

// fibonacci bench test.go

package fibonacci

import "testing"

var numbers = []int{
0, 10, 20, 30,

func BenchmarkF (b *testing.B) {
// run F(n) b.N times
m := len(numbers)
for n := 0; n < b.N; n++ {

F (numbers[n%m])

The BenchmarkF function can be saved in any file ending with _test.go to be included by the testing
package. The only real surprise in the code is the for loop defined on line 13,

for n := 0; n < b.N; n++ {

The benchmark function must run the target code b.N times. During benchmark execution, b.N is
adjusted until the benchmark function lasts long enough to be timed reliably.

To run the benchmark, we need to explicitly instruct go test to run benchmarks using the -bench
flag. Similar to the -run command-line argument, -bench also accepts a regular expression to match
the benchmark functions we want to run. To run all the benchmark functions, we can simply provide
~bench=.. go test will first run all the tests (or those matched by -run, if provided), and then run the
benchmarks. The output for our benchmark above looks is as follows:

$ go test —-bench=.

goos: linux

goarch: amd64

BenchmarkF-4 1000 1255534 ns/op

PASS

ok _/home/productiongo/benchmarks/fibonacci 1.387s

9
10
11

Benchmarks 104

The output tells us that the benchmarks were run on a Linux x86-64 environment. Furthermore, the
testing package executed our one benchmark, BenchmarkF. It ran the b.N loop 1000 times, and each
iteration (i.e. each call to F) lasted 1,255,534ns (~1.2ms) on average.

1.2ms per call seems a bit slow! Especially considering that the numbers we provided to the Fibonacci
function were quite small. Let’s improve our original function by not using recursion.

An improved Fibonacci function

package fibonacci

// FastF returns the nth Fibonnaci number,
// but does not use recursion.
func FastF(n int) int {
var a, b int = 0, 1
for i := 0; 1 < n; i++ {
a, b =">b, atb
}

return a

This new function FastF, is equivalent to the original, but uses only two variables and no recursion
to calculate the final answer. Neat! Let’s check whether it’s actually any faster. We can do this by
adding a new benchmark function for FastF:

func BenchmarkFastF(b *testing.B) {
// run FastF(n) b.N times

m := len(numbers)

for n := 0; n < b.N; n++ {
FastF (numbers[n%m])

}

Again we run go test -bench=.. This time we will see the output of both benchmarks:

Benchmarks 105

$ go test -bench=.
goos: linux

goarch: amd64

BenchmarkF-4 1000 1245008 ns/op
BenchmarkFastF-4 50000000 20.3 ns/op

PASS

ok _/home/productiongo/benchmarks/fibonacci 2.444s

The output is telling us that F still took around 1245008ns per execution, but FastF took only 20.3ns!
The benchmark proves that our non-recursive FastF is indeed orders of magnitude faster than the
textbook recursive version, at least for the provided inputs.

Comparing benchmarks

The benchemp tool parses the output of two go test -bench runs and compares the results.

To install, run:

go get golang.org/x/tools/cmd/benchcmp

Let’s output the benchmark for the original F function from earlier to a file, using BenchmarkF:
$ go test -bench . > old.txt

The file will look as follows:

goos: darwin

goarch: amd64

BenchmarkF-4 1000 1965113 ns/op
PASS
ok _/Users/productiongo/benchmarks/benchcmp 2.173s

Now instead of implementing FastF, we copy the FastF logic into our original F function:

Benchmarks 106

Fast F implementation

package fibbonaci

// F returns the nth Fibonnaci number.
func F(n int) int {
var a, b int = 0, 1
for 1 := 0; i < n; i++ {
a, b =">b, atb
}

return a

and re-run the benchmark, outputting to a file called new. txt:
$ go test -bench . > new.txt
new. txt should look like this:

goos: darwin

goarch: amd64

BenchmarkF-4 50000000 25.0 ns/op
PASS
ok _/Users/productiongo/benchmarks/benchcmp 1.289s

Now let’s run benchcmp on the results:

benchcmp old.txt new.txt
benchmark old ns/op new ns/op delta
BenchmarkF-4 1965113 25.0 -100.00%

We can see the old performance, new performance, and a delta. In this case, the new version of
F performs so well that it reduced the runtime of the original by 99.9987%. Thus rounded to two
decimals, we get a delta of -100.00%.

Resetting benchmark timers

We can reset the benchmark timer if we don’t want the execution time of our setup code to be
included in the overall benchmark timing.

A benchmark from the crypto/aes package in the Go source code provides an example of this:

Benchmarks 107

crypto/aes BenchmarkEncrypt

package aes

import "testing"

func BenchmarkEncrypt(b *testing.B) {
tt := encryptTests[0]
c, err := NewCipher (tt.key)
if err = nil {
b.Fatal ("NewCipher:", err)
}
out := make([]byte, len(tt.in))
b.SetBytes (int64 (1en(out)))
b.ResetTimer ()
for 1 := 0; i < b.N; i++ {

c.Encrypt(out, tt.in)

As we can see, there is some setup done in the benchmark, then a call to b.ResetTimer () to reset the
benchmark time and memory allocation counters.

Benchmarking memory allocations

The Go benchmarking tools also allow us to output the number memory allocations by the
benchmark, alongside the time taken by each iteration. We do this by adding the -benchmem flag.
Let’s see what happens if we do this on our Fibonnaci benchmarks from before.

$ go test -bench=. —-benchmem
goos: linux

goarch: amd64

BenchmarkF-4 1000 1241017 ns/op 0 B/op 0\
allocs/op

BenchmarkFastF-4 100000000 20.6 ns/op 0 B/op 0\
allocs/op

PASS

ok _/Users/productiongo/benchmarks/fibonacci 3.453s

Benchmarks 108

We now have two new columns on the right: the number of bytes per operation, and the number
of heap allocations per operation. For our Fibonnaci functions, both of these are zero. Why is this?
Let’s add the -scf1ags=-m option to see the details. The output below is truncated to the first 10 lines:

$ go test -bench=. -benchmem -gcflags=-m

_/home/herman/Dropbox/mastergo/manuscript/code/benchmarks/fibonacci
./fibonacci_bench test.go:10:20: BenchmarkF b does not escape
./fibonacci_fast bench test.go:6:24: BenchmarkFastF b does not escape
./fibonacci_test.go:22:5: t.common escapes to heap

./fibonacci test.go:6:15: leaking param: t

./fibonacci_test.go:22:38: tt.n escapes to heap
./fibonacci_test.go:22:38: got escapes to heap

./fibonacci test.go:22:49: tt.want escapes to heap

./fibonacci test.go:10:3: TestF []struct { n int; want int } literal does not\
escape

./fibonacci_test.go:22:12: TestF ... argument does not escape

The Go compiler performs escape analysis®. If an allocation does not escape the function, it can be
stored on the stack. Variables placed on the stack avoid the costs involved with a heap allocation
and the garbage collector. The omission of the fibonacci.go file from the output above implies that
no variables from our F and FastF functions escaped to the heap. Let’s take another look at the FastF
function to see why this is:

func FastF(n int) int {
var a, b int = 0, 1
for i := 0; i <n; i++ {
a, b =b, atb
}

return a

In this function, the a, b, and i variables are declared locally and do not need to be put onto the heap,
because they are not used again when the function exits. Consider what would happen if, instead
of storing only the last two values, we naively stored all values calculated up to n:

**https://en.wikipedia.org/wiki/Escape_analysis

https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Escape_analysis

Benchmarks 109

A high-memory implementation of F

package fibonacci

// FastHighMemF returns the nth Fibonacci number, but
// stores the full slice of intermediate
// results, consuming more memory than necessary.

func FastHighMemF(n int) int {

if n <=0 {
return O
}
r := make([]int, n+1)
r[0] =0
r[1] =1
for i := 2; i <= n; i++ {

rli] = r[i-1] + r[i-2]
}

return rln]

Running the same test and benchmark from before on this high-memory version of F, we get:

$ go test -bench=. -benchmem

goos: linux

goarch: amd64

BenchmarkFastHighMemF-4 20000000 72.0 ns/op 132 B/op \
0 allocs/op

PASS

ok _/Users/productiongo/benchmarks/fibonacci mem 1.518s

This time our function used 132 bytes per operation, due to our use of a slice in the function. If
you are wondering why the number is 132 specifically: the exact number of bytes is sensitive to
the numbers we use in the benchmark. The higher the input n, the more memory the function will
allocate. The average of the values used in the benchmark (0, 10, 20, 30) is 15. Because this was
compiled for a 64-bit machine, each int will use 8 bytes (8x8=64 bits). The slice headers also use
some bytes. We still have zero heap allocations per operation, due to all variables being contained
within the function. We will discuss advanced memory profiling and optimization techniques in
Optimization.

14

Benchmarks

Modulo vs Bitwise-and

In our Fibonacci benchmarks so far, we have made use of a list of four integer test cases:

[Jint{
10, 20, 30

var nums =

Os

which we then loop over in the BenchmarkF function:

forn :=0; n

s

< b.N; n++ {

FastF (nums[n%m])

But when it comes down to the nanoseconds, modulo is a relatively slow computation to do on
every iteration. It can actually have an impact on the accuracy of our results! Let’s peek at the Go
assembler code. Go allows us to do this with the go tool compile -S command, which outputs a
pseudo-assembly language called ASM. In the command below, we filter the instructions for the
line we are interested in with srep:

$ go tool compile -S fibonacci.go fibonacci_bench test.go | srep ”fibonacci_b\

ench_test.go:14"

0x0036 00054 (fibonacci_bench test.go:14) MOVQ (BX) (DX*8), AX

0x003a 00058 (fibonacci bench test.go:14) MOVQ AX, (SP)

0x003e 00062 (fibonacci bench test.go:14) PCDATA $0, $0

0x003e 00062 (fibonacci bench test.go:14) CALL " . F(SB)

0x0043 00067 (fibonacci_bench test.go:14) MOVQ ""..autotmp 5+16(SP),\
AX

0x0061 00097 (fibonacci bench test.go:14) MOVQ "" . numbers (SB), BX

0x0068 00104 (fibonacci_ bench test.go:14) MOVQ " numbers+8(SB), SI

0x006f 00111 (fibonacci bench test.go:14) TESTQ CX, CX

0x0072 00114 (fibonacci_bench test.go:14) JEQ 161

0x0074 00116 (fibonacci bench test.go:14) MOVQ AX, DI

0x0077 00119 (fibonacci bench test.go:14) CMPQ CX, $-1

0x007b 00123 (fibonacci_bench_test.go:14) JEQ 132

0x007d 00125 (fibonacci bench test.go:14) CQO

0x007f 00127 (fibonacci_ bench test.go:14) IDIVQ CX

0x0082 00130 (fibonacci bench test.go:14) JMP 137

0x0084 00132 (fibonacci bench test.go:14) NEGQ AX

Benchmarks

0x0087
0x0089
0x008c
0x008e
0x009a
0x009a
0x009f
0x00al
0x00al
B)
0x00a6
0x00a8

00135
00137
00140
00142
00154
00154
00159
00161
00161

00166
00168

(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.

(fibonacci_bench test.

(fibonacci_bench_test.

(fibonacci_bench test.

go:
go:
go:
go:
go:
:14)
:14)
:14)
:14)

g0
g0
g0
go

g0:
g0:

14)
14)
14)
14)
14)

14)
14)

XORL
CMPQ
JCS 49
JMP 154
PCDATA
CALL
UNDEF
PCDATA
CALL

UNDEF
NOP

DX, DX
DX, SI

30, $1

runtime.panicindex (SB)

30, $1

runtime.panicdivide (S\

111

The details of this output are not as important as it is to notice how many instructions there are.
Now, let’s rewrite the code to use bitwise-and (&) instead of modulo %:

m := len(nums)-1

for n

:= 0; n < b.N; n++ {

FastF (nums[né&m])

Now, the ASM code becomes:

$ go tool compile -S fibonacci.go fibonacci bench test.go | grep "fibonacci b\

ench_test.go:14"

0x0032
0x0036
0x003a
0x003a
0x003f
0x005e
0x0065
0x006¢
0x0070
0x0073
0x0076
0x0078
0x0084
0x0084

00050
00054
00058
00058
00063
00094
00101
00108
00112
00115
00118
00120
00132
00132

(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.

(fibonacci_bench test.

g0
g0
g0

go:
go:
go:
go:
go:
:14)
:14)
:14)
:14)

g0
g0
g0
g0

g0:
g0

:14)
:14)
:14)

14)
14)
14)
14)
14)

14)
14)

MOVQ
MOVQ
PCDATA
CALL
MOVQ
MOVQ
MOVQ
LEAQ
ANDQ
CMPQ
JCS 45
JMP 132
PCDATA
CALL

(BX) (DI*8), AX
AX, (SP)

$0, $0

"".F(SB)
"".n+16(SP), AX

""" numbers (SB), BX
""" numbers+8(SB), SI
-1(AX), DI

CX, DI

DI, SI

30, 31

runtime.panicindex (SB)

Benchmarks 112

0x0089 00137 (fibonacci bench test.go:14) UNDEF
0x008b 00139 (fibonacci_bench test.go:14) NOP

This is considerably shorter than before. In other words, the Go runtime will need to perform fewer
operations, but the results will be the same. We can use modulo instead of ampersand because we
have exactly four items in our nums slice. In general, n%m == n&(m — 1) if m is a power of two. For
example,

0%4=0&3=0
1%4=1&3=1
2% 4=28&3=2
3%4=3&3=23
4% 4=4&3=0
S5%4=5&3=1
6 %4=66&3=2

If you are not yet convinced, expand the binary version of the bitwise-and operations to show that
this is true:

0& 3 =00b & 11b = 0O
1 &3 =01b & 11b
2 & 3 =10b & 11b
3 & 3 =11b & 11b

I I
—

To evaluate the impact of changing from modulo to ampersand on the benchmark results, let us
create two benchmarks for FastF, one with modulo and the other with bitwise-and:

S go test -bench=BenchmarkFastF
goos: linux

goarch: amd64

BenchmarkFastFModulo-4 100000000 16.7 ns/op
BenchmarkFastFBitwiseAnd-4 200000000 7.40 ns/op
PASS

ok _/Users/productiongo/benchmarks/bench bitwise and 4.058s

The version using bitwise-and runs twice as fast. Our original benchmark was spending half the
time recalculating modulo operations! This is unlikely to have a big impact on benchmarks of bigger
functions, but when benchmarking small pieces of code, using bitwise-and instead of modulo will
make the benchmark results more accurate.

Tooling

In this chapter we’ll discuss some tooling you may find useful for writing and running production
Go applications.

Godoc

Godoc uses the comments in your code to generate documentation. You can use it via the command
line, or as an HTTP server where it will generate HTML pages.

To install, run:
go get golang.org/x/tools/cmd/godoc

You can run godoc on the standard library, or packages in your own GOPATH. To see the
documentation for encoding/json for example, run:

$ godoc encoding/json

To see the documentation for a specific function, such as Marshal:
$ godoc encoding/json Marshal

To run the HTTP server locally:

$ godoc -http:6060

This will run a godoc HTTP server locally, where you can see the generated HTML documentation
for packages in your GOPATH as well as the standard library.

There is also a hosted version of godoc at https://godoc.org. If you host your code on GitHub for
example, godoc.org can generate the documentation for it. It’s a good idea to keep your comments
clean and up to date in case others are checking your package’s page on godoc.org. Golint is useful
for surfacing parts of your code that need comments.

More can be found at the official Go blog post “Godoc: documenting Go code”®, but to summarize
the main points:

“The convention is simple: to document a type, variable, constant, function, or even a package, write
a regular comment directly preceding its declaration, with no intervening blank line.”

Package-level comments normally take the form of a comment directly above the package declara-
tion, starting with “Package [name] .., like so:

>*https://blog.golang.org/godoc-documenting- go-code

https://blog.golang.org/godoc-documenting-go-code
https://blog.golang.org/godoc-documenting-go-code

w

Tooling 114

// Package sort provides primitives for sorting slices and user-defined
// collections.

package sort

but if your package comment is long and you don’t want it to clutter your code, you can split
it out into a separate doc.go file, which only contains the comment and a package clause. See
net/http/doc.go* for an example.

Go Guru

Go Guru is “a tool for answering questions about Go source code”* It ships with a command-line
tool, but really it’s meant to be integrated into an editor. You can install it with:

go get -u golang.org/x/tools/cmd/guru

A list of supported editor integrations can be found on the Using Go Guru®*® document linked in the
godoc for guru. In this section we’ll be showing screenshots of guru being used in vim.

Let’s take a look at one of the questions that guru answers for us, which is, “what concrete types
implement this interface?” We're going to assume you have vim-go installed, if not please see the
“Editor Integration” section of the “Installing Go” chapter in the beginning of this book.

Navigate to the line that contains an interface, and type :GoImplements:

ece® vim check/check.go — vim — vim check/check.go

1 package check

// Check describes what methods wvarious checks (gofmt, go lint, etc.)
/7 should implement
type Check interface {

Name() string

Description{) string

Weight() floato4

// Percentage returns the passing percentage of the check,

// as well as a map of filehame to output

Percentage() (floaté4, [JFileSummary, error)

W NV pWN

:GoImplements

Then hit Enter. Your vim window should split and your cursor should be in the quickfix list on the
bottom half, with a list of files containing concrete structs that implement the interface:

>*https://github.com/golang/go/blob/master/src/net/http/doc.go
**https://godoc.org/golang.org/x/tools/cmd/guru
*https://docs.google.com/document/d/1_Y9xCEM;j5S-7rv2ooHpZNH15]gRT5iM742g]kwS5LtmQ/edit#heading=h.ojv16z1d1gas

https://github.com/golang/go/blob/master/src/net/http/doc.go
https://docs.google.com/document/d/1_Y9xCEMj5S-7rv2ooHpZNH15JgRT5iM742gJkw5LtmQ/edit#heading=h.ojv16z1d1gas
https://github.com/golang/go/blob/master/src/net/http/doc.go
https://docs.google.com/document/d/1_Y9xCEMj5S-7rv2ooHpZNH15JgRT5iM742gJkw5LtmQ/edit#heading=h.ojv16z1d1gas

Tooling 115

e0e® vim check/check.go — vim — vim check/check.go
3 // Check describes what methods various checks (gofmt, go lint, etc.)
4 // should implement
5 type Check interface {
Name() string
Description{) string
Weight() floate4
// Percentage returns the passing percentage of the check,
// as well as a map of filename to output
11 Percentage() (floaté4, [JFileSummary, error)
check/check.go
check/check.gol5 col 6l interface type Check
check/errcheck.gol4 col 61 is implemented by struct type ErrCheck
check/gocyclo.gol4 col 61 is implemented by struct type GoCyclo
check/gofmt.gol4 col 6l is implemented by struct type GoFmt
check/golint.gol4 col 6| is implemented by struct type GolLint
check/go_vet.gol4 col &l is implemented by struct type GoVet
check/ineffassign.gol4 col 6l is implemented by struct type IneffAssign
check/1license.gol1@ col 6| is implemented by struct type License
check/misspell.gol4 col 6| is implemented by struct type Misspell
[Location List] implements
vim-go: analysing with scope github.com/gojp/goreportcard/check ...

Hit Enter on any one of those and you’ll jump to the struct definition in the listed file. To get back
to the list, do <Ctr1-W> 4. Then you can scroll through it as before, or quit out of it as usual with :q.

Go ahead and try some of the other guru commands like :GoReferrers, :GoCallees, and :GoCallers.
More help on guru for vim-go can be found at the vim-go-tutorial®’, and a list of guru queries as
well as other help output can be seen when running guru -help.

Race Detector

Go comes with a builtin mechanism for detecting race conditions®. There are multiple ways to
invoke it:

$ go test -race mypkg // to test the package
$ go run -race mysrc.go // to run the source file
$ go build -race mycmd // to build the command
$ go install -race mypkg // to install the package

In this section we’ll write some code that contains a data race, and catch it with a test that we’ll run
with the race detector enabled. A data race can occur in Go when two goroutines try to access the
same object in memory concurrently, one of which is trying to write to the object, and there is no
lock in place to control access to the object.

*"https://github.com/fatih/vim-go-tutorial#guru
**https://golang.org/doc/articles/race_detector.html

https://github.com/fatih/vim-go-tutorial#guru
https://golang.org/doc/articles/race_detector.html
https://github.com/fatih/vim-go-tutorial#guru
https://golang.org/doc/articles/race_detector.html

Tooling 116

A simple program with an asynchronous update method

package cat

import (
"log"

// Cat is a small, carnivorous mammal with excellent night vision
type Cat struct {

noise string

// SetNoise sets the noise that our cat makes
func (c *Cat) SetNoise(n string) {

c.noise = n

// Noise makes the cat make a noise
func (c *Cat) Noise() string {

return c.noise

func updateCat(c *Cat) {
go c.SetNoise("IZ®R A")

log.Printin(c.Noise())

In the above code, we execute a goroutine that sets the Noise attribute of the Cat argumentto "iZ ® A ".
That goroutine goes off and runs in the background and the flow of execution continues to where
we attempt to log c.Noise. This causes a race condition as we might end up writing the value in the
goroutine at the same time as reading it in the log.Printin call.

Without considering the race condition and reading the code from top to bottom, the expected
functionality of the updateCat function is that the Noise attribute for the passed-in"cat" will be set
to "iZ ® A ". So let’s write a test that makes that assertion for us:

Tooling

A test for the simple program with an update method

117

package cat

import (
"testing"

func TestUpdateCat(t *testing.T) {
¢ := Cat{noise: "meow"
¢ = updateCat(c)
if got := c.Noise(); got != "IZ® A" {
t.Fatalf("c.Noise() = %q. want %q", got, "l2®A")

When running this test normally with go test, we might get lucky and it will pass:

go test

2017/09/24 16:14:52 meow

PASS

ok github.com/gopher/cat 0.007

When we run the test with the race detector enabled, however, we’ll see something different:

$ go test -race

WARNING: DATA RACE
Write at 0x00c4200783e0 by goroutine 7:
github.com/gopher/cat. (*Cat) .SetNoise ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:14 +0x3b

Previous read at 0x00c4200783e0 by goroutine 6:
github.com/gopher/cat.updateCat ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:19 +0x76
github.com/gopher/cat.TestUpdateCat ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat test.go:9 +0x88
testing.tRunner ()
/Users/gopher/go/src/testing/testing.go:746 +0x16¢

Tooling

Goroutine 7 (running) created at:
github.com/gopher/cat.updateCat ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:23 +0x65
github.com/gopher/cat.TestUpdateCat ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat test.go:9 +0x88
testing.tRunner ()
/Users/gopher/go/src/testing/testing.go:746 +0x16¢

Goroutine 6 (running) created at:

testing. (*T) .Run()
/Users/gopher/go/src/testing/testing.go:789 +0x568

testing.runTests.funcl ()
/Users/gopher/go/src/testing/testing.go:1004 +0xa7

testing.tRunner ()
/Users/gopher/go/src/testing/testing.go:746 +0x16¢

testing.runTests ()
/Users/gopher/go/src/testing/testing.go:1002 +0x521

testing. (*M) .Run()
/Users/gopher/go/src/testing/testing.g0:921 +0x206

main.main()

github.com/gopher/cat/ test/ testmain.go:44 +0x1d3

2017/09/24 18:12:58 meow
——— FAIL: TestUpdateCat (0.00s)

testing.go:699: race detected during execution of test

FAIL
exit status 1
FAIL github.com/gopher/cat 0.013s

That’s a lot of output, but let’s take a look at the first two blocks of text:

118

Tooling 119

WARNING: DATA RACE
Write at 0x00c4200783e0 by goroutine 7:
github.com/gopher/cat. (*Cat) .SetNoise ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:14 +0x3b

Previous read at 0x00c4200783e0 by goroutine 6:
github.com/gopher/cat.updateCat ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:19 +0x76
github.com/gopher/cat.TestUpdateCat ()
/Users/gopher/mygo/src/github.com/gopher/cat/cat_test.go:9 +0x88
testing.tRunner ()
/Users/gopher/go/src/testing/testing.go:746 +0x16c

This tells us exactly where our data race is. Our package’s filename is cat.go, so if we narrow it
down to the lines containing our file, we can see the write occurred here:

/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:14
and the read here:
/Users/gopher/mygo/src/github.com/gopher/cat/cat.go:19

And indeed if we check our code, those are the lines where we attempt to set c.noise, as well as read

c.noise,

So how do we fix this? We’re going to need a lock around our data structure. We’ll use a sync.Mutex®”
to lock our Cat structure whenever we read or write to it:

Cat program with sync.Mutex

package cat

import (
"log"

" sync "

// Cat is a small, carnivorous mammal with excellent night vision
type Cat struct {

mu sync.Mutex

**https://golang.org/pkg/sync/#Mutex

https://golang.org/pkg/sync/#Mutex
https://golang.org/pkg/sync/#Mutex

Tooling 120

noise string

// SetNoise sets the noise that our cat makes
func (c *Cat) SetNoise(n string) {
c.mu.Lock ()
defer c.mu.Unlock()

c.noise = n

// Noise makes the cat make a noise
func (¢ *Cat) Noise() string {
c.mu.Lock ()
defer c.mu.Unlock()
return c.noise
func updateCat(c *Cat) *Cat {
go c.SetNoise("lZ® A ")

log.Printin(c.Noise())

return c

Now we run the test again:

go test -race

2017/09/24 18:09:38 meow

PASS

ok github.com/gopher/cat 1.018s

and the race condition is fixed.

You can also build your application with the race detector enabled, and see potential data races
while running the application, or during an integration test. To show a somewhat trivial example,
let’s make an API that accepts user-contributed entries about the countries the user has visited, and
a description of their trip:

Tooling

A simple API with an asynchronous update method

package main

import (

"encoding/json"

"flag"
T —

" n

log

"net/http"

"strings"

"unicode"

var (
addr

countries

flag.String("http", "127.0.0.1:8000", "HTTP listen address")

= map[string]string{
"england": "England",
"Japan": "Japan",
"southafrica": "South Africa",
"unitedstates": "United States"”,

// Entry is a user-submitted entry summarizing their trip

// to a given country

type Entry struct

{

Country string

Text string

// removeSpaces is a function for strings.Map that removes

// all spaces from a string

func removeSpaces(r rune) rune {

if unicode.lsSpace(r) {

return -1

}

return r

Tooling 122

39 // normalizeCountry takes an Entry and normalizes its country name

40 func normalizeCountry(e *Entry) error {

41 co := strings.Map(removeSpaces, strings.TolLower (e.Country))
42 if , ok := countries[co]; 'ok {

43 return fmt.Errorf("invalid country %q", e.Country)
44 }

45

46 e.Country = countries|co]

47

48 return nil

49 }

50

51 // EntryPostHandler is the POST endpoint for entries
52 func EntryPostHandler (w http.ResponseWriter, req *http.Request) {

53 decoder := json.NewDecoder (req.Body)

54 defer req.Body.Close()

55 var entry Entry

56 err := decoder.Decode (&entry)

57 if err = nil {

58 log.Printf ("ERROR: could not decode Entry: %s", err)
59 w.WriteHeader (http.StatusBadRequest)
60 w.Write ([]byte (fmt.Sprintf ("Could not decode Entry: %s\n", err)))
61 return

62 }

63

64 go func(e *Entry) {

65 normalizeCountry (e)

66 } (&entry)

67

68 log.Printf ("INFO: received Entry %v", entry)
69 }

70

71 func main() {

72 http.HandleFunc ("/entries", EntryPostHandler)
73

74 log.Printf ("Running on %s ...", *addr)

75 log.Fatal (http.ListenAndServe (*addr, nil))

76}

Tooling 123

You can probably spot the race condition already - we’re trying to normalize the country name in a
goroutine in the background, then immediately trying to log the entry. Running the server with go
run normally won’t give us any errors:

$ go run server.go
2017/09/24 19:35:50 Running on 127.0.0.1:8000 ...

and we can even POST an Entry:

$ curl --data '{"country": "enGLaND", "text": "A country that is part of the \
United Kingdom"}' localhost:8000/entries

we then see this on the server:

2017/09/24 19:52:56 INFO: received Entry {enGLaND A country that is part of t\
he United Kingdom}

which is wrong - we’re supposed to be normalizing the country name to “England”. Let’s see what
happens when we run the server with -race enabled:

$ go run -race server.go
2017/09/24 20:06:17 Running on 127.0.0.1:8000 ...

That looks fine, but now let’s try to POST an Entry again:

$ curl --data '{"country": "enGLaND", "text": "A country that is part of the \
United Kingdom"}' localhost:8000/entries

2017/09/24 20:06:19 INFO: received Entry {enGLaND A country that is part of t\
he United Kingdom}

WARNING: DATA RACE
Write at 0x00c4200f2340 by goroutine 8:
main.normalizeCountry ()
/Users/gopher/mygo/src/github.com/gopher/country journal/server.go:46 +\
Ox16d
main.EntryPostHandler.funcl ()
/Users/gopher/mygo/src/github.com/gopher/country journal/server.go:65 +\
0x38

Tooling

Previous read at 0x00c4200f2340 by goroutine 6:
main.EntryPostHandler ()
/Users/gopher/mygo/src/github.com/gopher/country journal/server.go:68 +\
0x439
net/http.HandlerFunc.ServeHTTP ()
/Users/gopher/go/src/net/http/server.go:1918 +0x51
net/http. (*ServeMux) .ServeHITP ()
/Users/gopher/go/src/net/http/server.go:2254 +0xa2
net/http.serverHandler.ServeHTTP ()
/Users/gopher/go/src/net/http/server.go:2619 +0xbc
net/http. (*conn) .serve ()
/Users/gopher/go/src/net/http/server.go:1801 +0x83b

Goroutine 8 (running) created at:
main.EntryPostHandler ()
/Users/gopher/mygo/src/github.com/gopher/country_journal/server.go:64 +\
Ox41lc
net/http.HandlerFunc.ServeHTTP ()
/Users/gopher/go/src/net/http/server.go:1918 +0x51
net/http. (*ServeMux) .ServeHTTP ()
/Users/gopher/go/src/net/http/server.go:2254 +0xa2
net/http.serverHandler.ServeHTTP ()
/Users/gopher/go/src/net/http/server.go:2619 +0xbc
net/http. (*conn) .serve()
/Users/gopher/go/src/net/http/server.go:1801 +0x83b

Goroutine 6 (running) created at:

net/http. (*Server) .Serve ()
/Users/gopher/go/src/net/http/server.go:2720 +0x37c

net/http. (*Server) .ListenAndServe ()
/Users/gopher/go/src/net/http/server.go:2636 +0xc7

net/http.ListenAndServe ()
/Users/gopher/go/src/net/http/server.go:2882 +0xfe

main.main()

/Users/gopher/mygo/src/github.com/gopher/country_journal/server.go:75 +\

124

Tooling 125

and there is our data race. We could fix this race in a similar manner to the way we fixed the cat

race earlier, but instead let’s try using a sync.WaitGroup*’:

Country journal API with sync.WaitGroup

package main

import (

"encoding/json"

"flag"
"fmt"
"log"
"net/http"
"strings"
"sync"
"unicode"
)
var (
addr = flag.String("http", "127.0.0.1:8000", "HTTP listen address")
countries = map[string]string{
"england": "England",
"Jjapan": "Japan",
"southafrica": "South Africa",
"unitedstates": "United States",
}
)

// Entry is a user-submitted entry summarizing their trip
// to a given country
type Entry struct {

Country string

Text string

// removeSpaces is a function for strings.Map that removes
// all spaces from a string
func removeSpaces(r rune) rune {

if unicode.IsSpace(r) {

“*https://golang.org/pkg/sync/#WaitGroup

https://golang.org/pkg/sync/#WaitGroup
https://golang.org/pkg/sync/#WaitGroup

Tooling 126

35 return -1
36 1

37 return r

38}

39

40 // normalizeCountry takes an Entry and normalizes its country name

41 func normalizeCountry(e *Entry) error {

42 co := strings.Map(removeSpaces, strings.TolLower (e.Country))
43 if , ok := countries[co]; 'ok {

44 return fmt.Errorf("invalid country %q", e.Country)
45 }

46

47 e.Country = countries[co]

48

49 return nil

50 }

51

52 // EntryPostHandler is the POST endpoint for entries
53 func EntryPostHandler (w http.ResponseWriter, req *http.Request) {

54 decoder := Jjson.NewDecoder (req.Body)

55 defer req.Body.Close()

56 var entry Entry

57 err := decoder.Decode (&entry)

58 if err !'= nil {

59 log.Printf ("ERROR: could not decode Entry: %s", err)
60 w.WriteHeader (http.StatusBadRequest)

61 w.Write([]byte (fmt.Sprintf ("Could not decode Entry: %s\n", err)))
62 return

63 }

64

65 var wg sync.WaitGroup

66 wg . Add (1)

67 go func(e *Entry) {

68 defer wg.Done ()

69 normalizeCountry (e)

70 } (&entry)

71 wg. Wait O

72

73 log.Printf ("INFO: received Entry %v", entry)

]
=

=~

ol

Tooling 127

func main() {

http.HandleFunc ("/entries", EntryPostHandler)

log.Printf ("Running on %s ...", *addr)
log.Fatal (http.ListenAndServe (*addr, nil))

You can see that we now have a sync.WaitGroup, onto which we add a delta of 1 to the counter. Inside
the goroutine we decrement the counter with defer wg.Done (), then we block until the counter is
zero with wg.Wait (). Since we’re blocking until the goroutine finishes, there is no longer a data race:

$ go run -race server.go
2017/09/24 20:08:36 Running on 127.0.0.1:8000 ...

$ curl --data '{"country": "enGLaND", "text": "A country that is part of the \
United Kingdom"}' localhost:8000/entries

2017/09/24 20:08:44 INFO: received Entry {England A country that is part of t\
he United Kingdom}

and we see that our country is normalized now to “England”.

Go Report Card

Full disclosure: we are the authors of this free and open source tool.

Go Report Card*' is a web application that takes a go set path to a package and gives the package
a grade based on how well it scores with various linters and tools. It is a popular application in the
open source community, with thousands of projects using the generated badge to indicate the code
quality and link to known quality issues from the project’s GitHub repository. You can try it on
goreportcard.com if your source code is open source, or run the server locally to make use of the
tool on your internal network or private repositories.

“'https://goreportcard.com/

https://goreportcard.com/
https://goreportcard.com/

Security

CSRF

Content Security Policy (CSP)

Setting a Content-Security-Policy header can help us prevent attacks such as cross-site scripting
(XSS) on our web application. The CSP header value allows us to specify the origins of our content.

HTTP Strict Transport Security (HSTS)

bluemonday
(https://github.com/microcosm-cc/bluemonday)

Continuous Integration

The build

Now that we have tests and linters/tooling, we need a build.

We recommend setting up a Makefile with targets for installing, building, and testing the application.
Here is a slightly modified example from Go Report Card**:

Go Report Card Makefile
all: 1lint build test

build:
go build ./...
install:
./scripts/make-install.sh
lint:

gometalinter ——exclude=vendor —-exclude=repos ——disable-all —-enable=golint \
——enable=vet —-—enable=gofmt ./...

find . -name '*.go' | xargs gofmt -w -s

test:

go test —cover ./check ./handlers
start:

go run main.go
misspell:

find . -name '*.go' -not -path './vendor/*' -not -path './ repos/*' | xargs \

misspell -error

For an open source project, we can use Travis CI** for free. Even if the project is not open source,
Travis Cl is a good choice. It’s easy to set up - just sign in to their webapp, add the repository, and
add a .travis.yml file to the repository. Here is an example .travis.yml from Go Report Card:

“*http://github.com/gojp/goreportcard
“https://travis-ci.org/

http://github.com/gojp/goreportcard
https://travis-ci.org/
http://github.com/gojp/goreportcard
https://travis-ci.org/

Continuous Integration

Go Report Card .travis.yml

130

language: go

go:
- 1.8.x
- 1.9.x
- 1.10.x
- 1.11.x
- tip

install:

- make install

script:
- make lint

- make test

This runs our make lint and make test targets on multiple Go versions.

Deployment

Deployment of a Go application will be highly dependent on existing infrastructure; if there is no
infrastructure in place already,

Monitoring

Prometheus

Prometheus is an open source system (written in Go) which, at the time of writing this book, is very
common and popular.

Grafana

Grafana is a platform for analytics and monitoring. We can use Grafana to graph various data
exposed by Prometheus on our Go server.

Alerts

Optimization

Common Gotchas

Nil interface

Further Reading

The Go Programming Language Specification**

Effective Go* is a good overview document for how to write idiomatic Go code.
Golang Weekly** is a weekly newsletter about Go.

The Go Blog*’ is the official blog for Go.

Gophers Slack*® is a Slack community of Go developers. There is a #golang-newbies channel,
#performance, #golang-jobs, and many more.

“*https://golang.org/ref/spec
“https://golang.org/doc/effective_go.html
“Shttps://golangweekly.com/
“"https://blog.golang.org/
“*https://invite.slack.golangbridge.org/

https://golang.org/ref/spec
https://golang.org/doc/effective_go.html
https://golangweekly.com/
https://blog.golang.org/
https://invite.slack.golangbridge.org/
https://golang.org/ref/spec
https://golang.org/doc/effective_go.html
https://golangweekly.com/
https://blog.golang.org/
https://invite.slack.golangbridge.org/

Acknowledgements

The Go gopher was designed by Renée French.

Licenses

The Go source code license

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this 1list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Acknowledgements 137

github.com/gorilla/mux

Copyright (c) 2012 Rodrigo Moraes. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright
notice, this 1list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TODO: Add licenses for any open source code we use as examples

	Table of Contents
	Introduction
	Getting Started
	Installing Go
	Installation
	GOPATH
	Editor Integrations
	Linters and Correctness Tooling

	Basics
	Program Structure
	Variables and Constants
	Basic Data Types
	Structs
	Operators
	Conditional Statements
	Arrays
	Slices
	Maps
	Loops
	Functions
	Exported Names
	Pointers
	Goroutines
	Channels
	Interfaces
	Error Handling
	Reading Input
	Writing Output

	Style and Error Handling
	Style
	Error Handling
	Wrapping Up

	Strings
	Appending to Strings
	Splitting strings
	Counting and finding substrings
	Advanced string functions
	Ranging over a string

	Supporting Unicode
	A very brief history of string encodings
	Strings are byte slices
	Printing strings
	Runes and safely ranging over strings
	Handling right-to-left languages

	Concurrency
	sync.WaitGroup
	Channels
	Goroutines in web handlers
	Pollers
	Race conditions

	Testing
	Why do we need tests?
	Writing Tests
	Testing HTTP Handlers
	Mocking
	Generating Coverage Reports
	Writing Examples

	Benchmarks
	A simple benchmark
	Comparing benchmarks
	Resetting benchmark timers
	Benchmarking memory allocations
	Modulo vs Bitwise-and

	Tooling
	Godoc
	Go Guru
	Race Detector
	Go Report Card

	Security
	CSRF
	Content Security Policy (CSP)
	HTTP Strict Transport Security (HSTS)
	bluemonday (https://github.com/microcosm-cc/bluemonday)

	Continuous Integration
	The build

	Deployment
	Monitoring
	Prometheus

	Optimization
	Common Gotchas
	Nil interface

	Further Reading

	Acknowledgements
	Licenses

