
www.it-ebooks.info

http://www.it-ebooks.info/

IntelliJ IDEA Essentials

Develop better software fast with IntelliJ IDEA

Jarosław Krochmalski

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

IntelliJ IDEA Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1161214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-693-0

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Jarosław Krochmalski

Reviewers
Scott Battaglia

Andrew C. Dvorak

Grzegorz Ligas

Jan Thomä

Commissioning Editor
Dipika Gaonkar

Acquisition Editors
Ellen Bishop

Sam Wood

Content Development Editor
Govindan K

Technical Editor
Aman Preet Singh

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jarosław Krochmalski is a passionate software designer and developer who
specializes in the financial business domain. He has over 12 years of experience in
software development. He is a clean-code and software craftsmanship enthusiast.
He is a Certified ScrumMaster and a fan of Agile. His professional interests include
new technologies in web application development, design patterns, enterprise
architecture, and integration patterns. He likes to experiment with NoSQL and
cloud computing.

Jarosław has been working with IDEA since its first release and has observed the IDE
grow and mature. He has been designing and developing software professionally
since 2000 and has been using Java as his primary programming language since 2002.
In the past, he worked for companies such as Kredyt Bank (KBC) and Bank BPS on
many large-scale projects such as international money orders, express payments, and
collection systems. He currently works as a consultant for the Danish company 7N
and writes software for the Nykredit bank. You can reach him via Twitter at @jkroch
or by e-mail at jarek@finsys.pl.

I would like to thank my wife, Marylka, and my two boys, Wojtuś and
Mati, for being patient and letting me finish the book. Without their
help and understanding, this book would not have been possible.

I would like to thank all the people at Packt Publishing, especially
Govindan K, Aman Preet Singh, Ellen Bishop, Richard Gall, and Sam
Wood—you've made the entire writing and publishing process very
smooth and straightforward. A special thanks to all the technical
reviewers and proofreaders for providing me with valuable feedback
from which I have learned a lot. Thank you.

Greetings to my friends at 7N, Nykredit, Kredyt Bank, and Bank
BPS—I hope you enjoy reading the book as much as I enjoyed
writing it.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Scott Battaglia is a senior software development engineer for Audible Inc.
(http://www.audible.com/), which is an Amazon.com, Inc. company and the
leading provider of premium digital spoken audio information. He currently leads
the shared Android platform team and coaches on a variety of topics, including
open source, interviewing, and Scrum. Prior to this, he was an identity management
architect and senior application developer with Rutgers, the State University of
New Jersey.

He actively contributed to various open source projects, including Apereo Central
Authentication Service (CAS) and Inspektr, and has previously contributed to Spring
Security, Apereo OpenRegistry, and Apereo uPortal. He has spoken at a variety of
conferences, including Jasig, EDUCAUSE, and Spring Forward on topics such as
CAS, identity management, Spring Security, and software development practices.

Grzegorz Ligas is a software developer passionate about delivering solutions
that are efficient and reliable. He started his career with a small company, writing
software for the manufacturing industry, and then moved to retail banking. He
currently works for an investment bank in London. Working in various sectors
exposed him to technologies varying from mobile to highly distributed grid
applications. He's the author of, and main contributor to, the IntelliJ XQuery
Support plugin whose goal is to make XQuery development a pleasure.

www.it-ebooks.info

http://www.audible.com/)
http://www.it-ebooks.info/

Jan Thomä is an IT consultant with over 15 years of experience in the IT industry.
He has worked for various organizations and businesses, both small and large,
including the City of Hamburg, Deutsche Telekom, and the Social Democratic Party
of Germany. He has been using and endorsing IntelliJ IDEA ever since he discovered
it in 2005 while searching for a truly productive and integrated development
environment. He wrote and contributed to several plugins for the IntelliJ platform,
including the OSGi and Leiningen plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy-and-paste, print, and bookmark content
•	 On-demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Get to Know Your IDE, Fast	 7

Comparing the various editions	 7
Installing IntelliJ IDEA	 8
An overview of the workspace	 9

Tool windows	 9
View modes in tool windows	 11

Pinned Mode	 11
Docked Mode	 11
Floating Mode	 12
Split Mode	 12

Multiple views in tool windows	 13
Navigating inside the tool window	 14
Tool windows set up for a specific project	 15

Editor tabs	 16
Crafting your settings	 17

Searching for options	 17
Setting keyboard shortcuts	 17
Colors and fonts	 18
Picking your plugins	 19

Configuration tips and tricks	 21
Exporting and importing settings	 21
Sharing settings	 22
Tuning IntelliJ IDEA	 23

Summary	 24

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Off We Go – To the Code	 25
What is a project?	 26

Project structure and configuration	 26
Comparison of Eclipse, NetBeans, and IntelliJ IDEA terminologies	 27
The project	 27
Modules	 28
Folders	 29
Libraries	 31
Facets	 33
Artifacts	 35

Creating a project	 37
Creating a new project from scratch	 38
Importing the existing project	 40
Project format	 43

The directory-based format	 44
The file-based format	 44
The directory-based format versus the file-based format	 45

Summary	 45
Chapter 3: The Editor	 47

An overview of the editor and setup	 47
The gutter area	 48
The Status bar	 51
Tabs	 53
Scratches	 55
Scrollbar	 56

Navigating in the editor	 57
Navigating between files	 58
Navigating within a single file	 64
The Search Everywhere feature	 66

The editor basics	 67
Searching for and replacing text	 67
Syntax-aware selection	 69

Column selection mode	 69
Clipboard history	 70
Reformatting the code	 70
Code completion	 71
Language injection	 73
Generating code	 74
Code inspection	 75

Using Live Templates	 76
Postfix code completion	 79

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Comparing files and folders	 80
Comparing files	 80
Comparing folders	 82

Looking for help	 83
Viewing inline documentation	 84
Viewing type definitions	 84
Looking for usages	 85
Viewing method parameters	 85
Viewing the external documentation	 86

Summary	 87
Chapter 4: Make It Better – Refactoring	 89

An overview of refactoring	 89
Refactoring actions	 95

Rename	 95
Find and Replace Code Duplicates	 96
Copy	 96
Move 	 97
Move Instance Method	 99
Safe Delete	 99
Change Signature	 100
Type Migration	 101
Make Static	 101
Convert to Instance Method	 101
Extract refactorings	 102
Extract Variable	 102
Extract Constant	 102
Extract Field	 103
Extract Parameter	 104
Introduce Parameter Object	 105
Extract Method	 105
The Extract Method object	 106
Delegate	 107
Extract Interface	 109
Extract Superclass	 110
Inline	 110
Remove Middleman	 112
Wrap Return Value	 112
Invert Boolean	 113
Pull Members Up or Push Members Down	 113
Replace Inheritance With Delegation	 113

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Convert Anonymous Class to Inner	 114
Encapsulate Fields	 115
Replace Constructor with Factory Method / Builder	 116
Generify	 116

Summary	 118
Chapter 5: Make It Happen – Running Your Project	 119

A temporary configuration	 120
The permanent configuration	 121

The Run/Debug configuration for a Java application	 122
Creating a Tomcat server local configuration	 128
The Node.js configuration	 133

Configuration defaults	 134
Sharing the configuration	 135
Running	 136
Summary	 138

Chapter 6: Building Your Project	 139
Editing Maven settings	 140
The Maven tool window	 144
Running Maven goals	 144
Using Gradle	 148
Executing Gradle tasks	 150
Summary	 151

Chapter 7: Red or Green? Test Your Code	 153
Enabling the testing plugins	 154
Creating the test	 156
Creating a run/debug configuration for the test	 160
Running or debugging the test	 164
Keyboard shortcuts	 170
Summary	 170

Chapter 8: Squash'em – The Debugger	 171
Debugger settings	 171
Setting up the JavaScript debugger	 178
Managing breakpoints	 180
Starting the debugger	 191
The Debug tool window	 193
Inspecting variables and evaluating expressions	 196
Debugger actions	 203
Keyboard shortcuts summary	 206
Summary	 206

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 9: Working with Your Team	 207
Enabling version control	 207
Configuring version control	 210
Working with version control	 217

Changelists	 217
Adding files to version control	 218
Committing files	 220
Getting changes from the repository	 224
Browsing the changes	 226
Reverting the local changes	 227
Using the difference viewer	 228
Displaying the history	 231

The log viewer	 233
Quickly executing VCS actions	 234

Keyboard shortcuts	 236
Summary	 236

Chapter 10: Not Enough? Extend It	 237
Setting up the environment and project	 238
Developing the plugin functionality	 241
Deploying and publishing	 247
Summary	 251

Index	 253

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The first version of IntelliJ IDEA was released in January 2001. It is a mature,
integrated development environment (IDE), designed to help you in the coding
process, and supports a large number of different frameworks, tools, and targets.
It works with multiple programming languages. It now includes full support for
Java 8 and Java EE 7.

The key objective of IntelliJ IDEA is to increase and assist developer productivity.
Whether you develop in Java, Scala, or PHP, or make the frontend using HTML
and JavaScript, IntelliJ IDEA's smart and relevant suggestions and code completion,
on-the-fly code analysis, and respectable refactoring tools will support you in
every step.

When you are migrating from NetBeans or Eclipse, you will quickly see that IntelliJ
IDEA is different because it understands the context. The IDE knows where you are
in the editor and reacts accordingly; you will be surprised at how smart IntelliJ
IDEA behaves.

This tool is a generic workhorse rather than a strict Java IDE. In this book, you will
learn how to make IntelliJ IDEA work for you and get your job done in the most
efficient and pleasant way.

What this books covers
Although the book describes the latest version of IntelliJ IDEA - 14, most of the
concepts will also work on the previous revision of the IDE.

Chapter 1, Get to Know Your IDE, Fast, is a very concise note on editions comparison,
requirements and installing IntelliJ IDEA in Windows, OSX, and Linux. This
chapter guides you through the main workspace and show you ways to customize
it for different tasks, presenting briefly the most useful plugins, IDE settings, and
configuration tips.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 2, Off We Go—To the Code, describes the process of setting up a new project
or importing an existing one. The chapter explains terminology differences with
NetBeans and Eclipse and presents the concept of modules and artifacts.

Chapter 3, The Editor, describes the core of IntelliJ IDEA—the editor. In this chapter,
you use state-of-the-art code completion, templates, and other great IntelliJ
IDEA features. This chapter shows how to set up the editor and gives you some
productivity tips.

Chapter 4, Make It Better—Refactoring, presents the powerful refactoring toolset
of IntelliJ IDEA. You are guided through the most useful refactoring techniques.

Chapter 5, Make It Happen—Running Your Project, covers configuring the runtime
environment for your project. We also talk about adding run configurations, either
on the server or standalone. This chapter focusses not only on Java, but on other
technologies such as Node.js as well.

Chapter 6, Building Your Project, focusses on building a project. You use IntelliJ
IDEA's own build system, and Maven and Gradle integration as well.

Chapter 7, Red or Green? Test Your Code, is all about unit testing in IntelliJ IDEA.
We focus on setting IntelliJ IDEA up specifically to run tests. You create JUnit and
TestNG run configurations and then run and debug the tests. Then, you are given a
brief overview of the test runner windows, useful settings, and option suggestions.

Chapter 8, Squash'em – The Debugger, focusses on the IntelliJ IDEA debugger. You get
familiar with the debugger tool window and debugger options. We look under the
hood—evaluating expressions, using watches, conditional breakpoints, and other
debugger features. We also talk briefly about remote debugging.

Chapter 9, Working with Your Team, This chapter is all about version control, and
managing change lists and tasks. There is a brief description on how to set up
VCS integration, with the main focus on Git. This chapter describes integration
with popular bug trackers, such as JIRA and YouTRACK.

Chapter 10, Not Enough? Extend It, describes briefly the plugin architecture of IntelliJ
IDEA. We talk about possibilities and develop a simple plugin, so that you have
knowledge of how to extend the IDE. You are also presented with useful links
and resources to develop your knowledge even further.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What you need for this book
You will need a Mac or PC, running OS X, MS Windows, or Linux, to be able to set
up and run IntelliJ IDEA. To learn the presented features, you will also need the
tool itself, of course. You can use the free 30-day trial of Ultimate Edition or use the
Community Edition, which is available free of charge. We will flag the differences
and let you know what features are not available in the free version of the IDE.
You can read how to get it in Chapter 1, Get to Know Your IDE, Fast.

Who this book is for
This book is a fast-paced introduction to IntelliJ IDEA and is aimed at users
who want to learn the essentials of the new IDE in a nimble and efficient way.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If you keep getting OutOfMemoryError in PermGen space exceptions, try to
change the -XX:MaxPermSize setting."

A block of code is set as follows:

private boolean isValid(int a) {
 return a > 15 && a < 100;
}

Any command-line input or output is written as follows:

git clone git://git.jetbrains.org/idea/community.git idea

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To do this,
first download the IntelliJ Configuration Server plugin, using the Plugins page of the
Settings dialog box."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast
In this chapter, we will compare IntelliJ IDEA editions and licenses, install the tool,
and quickly introduce the main workspace. IntelliJ IDEA comes with many settings;
it is not possible to cover all of them in one book so we will focus on the most
important ones. We will cover the following topics in this chapter:

•	 Comparing the various editions
•	 Installing the tool
•	 Workspace overview
•	 IDE settings
•	 Configuration tips and tricks

Comparing the various editions
IntelliJ IDEA is available as a free Community Edition and full-fledged Ultimate
Edition. From the licensing point of view, the good thing is you can use both
editions to develop the software you want to sell. It is worth mentioning that
the new Android Studio that is used for the development of mobile Android
applications is also based on IntelliJ IDEA.

The detailed comparison table can be found on the JetBrains website: http://www.
jetbrains.com/idea/features/editions_comparison_matrix.html. To cut a
long story short, there are many features missing in the Community Edition, but
there are some workarounds available if you look close enough. For example, when
you want to use Tomcat or Jetty servers in the Community Edition, you can use
Maven plugins to run and debug your web applications freely. We will discuss
this in Chapter 5, Make It Happen – Running Your Project.

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[8]

You can use the Community Edition to develop applications using many
frameworks such as Play, Struts, or Spring. It's all Java, after all. The IDE will not
assist you in that. Most of the configuration hints, warnings, autocompletion, and
runtime configuration features will be unavailable.

The Ultimate Edition, on the other hand, is the full-featured commercial IDE. You
have the full support of almost all of the modern frameworks and application
servers. The IDE will assist you by providing code completion, hints, and diagrams.
The language support in this edition is also more comprehensive; you will get HTML
and scripting languages analysis available on the fly, for example.

Apart from the provided features, the Ultimate Edition can be categorized
based on the license. Depending on your needs, you can purchase any of the
following licenses:

•	 Commercial license: IntelliJ IDEA can be used by any developer in your
company but the total number of concurrent users cannot exceed the
number of purchased licenses.

•	 Personal license: IntelliJ IDEA can be used only by the person who
purchased it. You can use it on as many computers as you own, as long as
you are the only user. The Personal license, of course, can also be used to
develop commercial products.

Additionally, there are some licensing options and discounts based on the target
audience, for startups, students, and teachers, for education or training, and finally,
for open source projects.

When you decide to buy the Ultimate Edition, sometimes it is wise
to wait till the holidays, for example, Christmas or Easter. The
JetBrains team usually provides some discounts on their products
then.

Installing IntelliJ IDEA
Installing IntelliJ IDEA is straightforward. Perform the following steps:

1.	 Go to http://www.jetbrains.com/idea/download/.
2.	 Pick the OS version and edition of your choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

3.	 After opening the downloaded installation package in MS Windows,
you should see the installation wizard. In Mac OS, double-click on
the downloaded .dmg file and then just drag IntelliJ IDEA to the
Applications folder.

When you install IntelliJ IDEA over an existing installation, the
installation wizard will ask if you want to import settings from the
previous set up. Don't worry, your settings will be preserved.

During the first startup, IntelliJ IDEA will ask you which plugins should be enabled
by default. Usually, it's best to enable only what you need, so the IDE loads and
works faster with fewer plugins enabled. Don't worry if you don't know what to
select; you can always change your mind later by editing the IDE settings. On the
first startup, you will not be able to see the workspace without the project opened.
While we will go through the details of creating the project in the next chapter, you
can now just create the basic Java project by choosing New Project
from the File menu, selecting Java, and proceeding with the New Project wizard
by clicking on Next a couple of times.

An overview of the workspace
Basically, the workspace in IntelliJ IDEA consists of the main editor with tabs,
menus, and many tool windows.

Tool windows
The tool windows are hidden, by default, in Version 13 and later of IDEA. You
can toggle them on and off using the button in the bottom-left corner of the screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[10]

Tool windows are those little "tabs" visible at the edges of the workspace.
These edges are called tool window bars, as shown in the following screenshot:

Some of the tool windows are always available, such as Project or Structure, while
some of them are available only when the corresponding plugins are enabled.

You can arrange the order of the tool windows by dragging them with your mouse.
You can drag the tool window to other screen edges as well.

There's a fourth tool window bar available at the top of the screen,
which is hidden. Just drag any tool window to the top of your
workspace to use it, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

View modes in tool windows
The tool windows have a context menu available when you right-click on them.
The context menu contains items specific to a particular tool window and some
possible view modes, as shown in the following screenshot:

Pinned Mode
The pinned tool window will stay open even when it becomes inactive by losing
focus. You may prefer to have the Project tool window pinned to have a constant
overview of the project structure. Only docked windows can be pinned. On the
other hand, you can keep the project view closed almost all the time and simply
use the keyboard shortcuts to navigate. On large projects, this approach is much
faster than searching the tree manually for your file.

Docked Mode
When docked, the tool window will share the total workspace area with other
workspace elements such as the editor. On the other hand, when undocked, the
tool window will overlap the other workspace elements when resized. An undocked
window will go away if inactive. For example, it is especially useful to have the
console tool window undocked and resized; reading huge logfiles or console output
will be a lot easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[12]

Floating Mode
Floating, as the name suggests, allows the tool window to float over the workspace
and be detached from the screen edges. It may be useful when you work on
multimonitor environments with huge display resolutions set. There are no limiting
factors for the number of floating windows shown simultaneously. When floating,
tool windows can be easily arranged to suit your needs.

Split Mode
The tool window will share the tool window bar with other tool windows when it
has Split Mode enabled. This gives you the ability to see two tool windows at once.
It's nice to see the project structure and file structure at the same time, as shown
in the following screenshot:

When you use the Ctrl + left-click (PC) or cmd + left-click (Mac) keyboard shortcuts,
the splitter between the two tool windows is displayed at once; IntelliJ IDEA will
switch them to the wide screen mode and display them in a horizontal layout. It is
priceless when you work on a fancy panoramic display and would like to use the
screen space effectively, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

You can quickly go to the specific tool window by using the
mnemonic shortcut displayed before its name, for example, Alt + 1
(PC) or cmd + 1 (MAC) will take you to the Project tool window. It
works for hidden tool windows, too.

Multiple views in tool windows
Some tool windows have more than one view available. For example, the
Project tool window can show Project, Packages, or Problems, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[14]

These views can be made visible as separate tabs by selecting Show views as tabs in
the tool window context menu:

When you have your tool windows set up, it may be a good idea to back up your
current layout. You can save the way the tool windows are currently arranged by
navigating to Window | Store Current Layout as Default in the main menu. You
can always load the saved workspace layout by navigating to Window | Restore
Default Layout or pressing Shift + F12.

You can quickly open your last active tool window by using the F12 (PC) or Fn +
F12 (Mac) keyboard shortcut. To make this shortcut work on Mac, you first need to
adjust the F12 system shortcut behavior in the System Preferences window available
in the Apple menu. To quickly hide/unhide all tool windows and focus on the
editor, press Ctrl + Shift+ F12 (PC) or cmd + Fn + Shift + F12 (Mac).

The Esc key will always get you back into the editor.

When switched off, you can temporarily show the tool window bars by pressing the
left Alt key (PC) twice or tapping and holding down the left cmd button (Mac). This
way, you can switch tool windows swiftly and save screen space at the same time.

Navigating inside the tool window
If the tool window contains a list (and most of them do, actually) to navigate or
search inside the tool window, focus on the tool window, and just start typing
the search text. It doesn't matter if it is a project or another tool window:
IntelliJ IDEA will search for the characters you typed on the fly, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Tool windows set up for a specific project
There is a very useful plugin you can find in the IntelliJ IDEA plugin repository
named ToolWindow manager. We will talk more about installing plugins later
in this chapter.

This plugin makes tool window buttons available to be controlled on a per-project
basis. It allows the creation of tool window profiles, that is, you can set specific tool
windows to be hidden for one project and shown for another. This is the way to
keep your IDE clean and tidy.

To access the settings, go to Window | Tool Window Management | Configure
Preferred Availabilities from the main menu, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[16]

Next, set up preferences for particular tool windows. Select Hide to switch off the
specific tool window and Show to turn it on, as shown in the following screenshot:

Editor tabs
An important part of the workspace is the editor tabs. They represent opened files
and have a context menu with file-specific options, such as adding a file to a favorites
list or using version control on the file.

Tabs are great to switch files, but there is a drawback here. They occupy some of the
editor space when you have many files opened. The limit of the visible tab count can
be set by navigating to Settings | Editor | General | Editor tabs (PC) or IntelliJ
IDEA | Preferences | Editor | Editor tabs (Mac) dialog box. IntelliJ IDEA autocloses
tabs if the tab count exceeds the defined limit. This is a very useful feature to reduce
the tab clutter. IntelliJ IDEA will always close the least used tab.

Consider switching tabs off completely. It may sound a little weird at the beginning,
but when you develop the habit of using keyboard shortcuts to navigate through
opened files, you will not need tabs, and will regain some of the valuable editor space.

Use Ctrl + E (PC) or cmd + E (Mac) to display the list of opened files.
Use Ctrl + Shift + E (PC) or cmd + Shift + E (Mac) to display the list of
recently edited files. You can also switch between the last opened files
with Ctrl + Tab and Ctrl + Shift + Tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Crafting your settings
In the next section, we will discuss the options of the IDE—setting keyboard
shortcuts, colors, fonts, and plugins.

Searching for options
The settings dialog is available from the main menu by navigating to File | Settings
(PC) or IntelliJ IDEA | Preferences (Mac). You can also use the wrench icon on the
toolbar or Ctrl + Alt + S (PC) or cmd + , (Mac) keyboard shortcuts. All of the settings
are divided into two groups: one for project-specific settings (such as code style,
version control, and so on) and one for global, IDE settings (such as appearance or
HTTP proxy, for example).

There are many options here. The good thing is you can use the search field to search
for a specific option. Just start typing the option name and the dialog box will be
searched from top to bottom to present you the result.

For example, if you introduce a "typo" in the search box, you will be presented with
the Inspection project settings, where you can turn the Spelling/Typo inspection
option off. In the Editor/Colors & Font/General section, you can change colors
for misspelled words.

Setting keyboard shortcuts
IntelliJ IDEA is a keyboard-centric IDE. Any action you can do by using your mouse,
you can do by using the keyboard as well.

It's possible to completely redefine default IntelliJ IDEA keymaps to suit your
needs. The keyboard shortcuts configuration is available in the Keymap section
in the IDE settings.

There are some predefined keymaps available. Whether you come from using Eclipse
or NetBeans, you can find your well-known keymap here and apply it. Please note
that predefined keymaps are not editable. To modify the keymap, you must create
and edit a copy.

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[18]

When defining a new keyboard shortcut, the Second Stroke keyboard shortcut
editor feature is very useful. You can use this to set up double strokes, easy to
remember keyboard shortcuts, or even shortcut groups. You can define your base
shortcut, such as Ctrl + Shift + O for example, and then numbers as second strokes,
as shown in the following screenshot:

The Abbreviation option in the keyboard shortcut editor is used to quickly find the
Search Everything (double Shift) dialog box. The Search Everything dialog box will
be discussed in Chapter 3, The Editor.

Colors and fonts
In IntelliJ IDEA, you can change your preferable colors and font's layout for syntax
and error highlighting in the editor, search results, debugger, and consoles.

To do this, open Editor and then Colors & Fonts in the IDE settings dialog box.

IntelliJ IDEA comes with some predefined color schemes. You can select one of them,
or create your own, and configure its settings to your liking.

Note that you are not allowed to change any of the predefined schemes. If you
decide to tweak the existing theme, you have to copy it first. To change the editor
font, select Font from the Colors & Fonts section of the IDE settings page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Many nice color themes can be found at
http://www.ideacolorthemes.org.

For example, if you use the Darcula IDE theme, the Obsidian color scheme looks
good, as shown in the following screenshot:

There is a truly great font designed especially for developers: Source Code
Pro. This font family was created specifically for coding environments—
it's very readable. It's available free of charge from Adobe, at GitHub
https://github.com/adobe/source-code-pro.
You can download Source Code Pro for Windows, Linux, and OS X
as well.

Picking your plugins
The IntelliJ IDEA plugin repository is available on the Internet at http://plugins.
jetbrains.com/?idea or from the IDE itself, by going to the Plugins section in
the Settings page. Going to the Plugins section in the IDE is more convenient in
comparison to the Internet repository. All you have to do is find your plugin, install,
and restart the IDE.

To install JetBrains' plugin, click on the Install JetBrains plugin… button. To install a
third-party plugin, choose Browse repositories. In the next dialog box, you can filter
the available plugins by category, or find a specific plugin just by typing its name.

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[20]

You can sort the list of plugins by the download count or rating to see
the most popular (and probably the most useful) plugins at the top of
the list:

To deactivate the installed plugin, uncheck the checkbox next to its name. To
uninstall the plugin, use the context menu, but take note that bundled JetBrains
plugins cannot be uninstalled from within the IDE, as shown here:

Some of the plugins add new languages to the IntelliJ IDEA arsenal. If you develop
in a language other than Java, just filter the plugins list using the Custom Languages
option. When you install the plugins, the on-the-fly analysis, hints, and refactoring
will be available in your IDE. These plugins include, for example, Scala, Python,
Ruby, PHP, and many others.

The next huge group of plugins is available when you filter using Framework
Integration. There is a big chance you will find support for the framework you
use in your project, such as AngularJS or Play, for example.

If you are new to IntelliJ IDEA, there is a plugin that is especially useful called Key
promoter. It will show you a banner with the keyboard shortcut for the action you
just performed using the mouse. It will help you memorize keyboard shortcuts and
quickly become a keyboard ninja:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Use the Key promoter plugin available in the plugins repository to
see how easy you can make the same action you just did using your
mouse, by only using your keyboard!

Feel free to browse JetBrains and the third-party plugins directory. It's a real gold
mine to extend the IDE functionality. Select the plugin, read the description to the
right, click on Install, restart the IDE, and you're all set.

Configuration tips and tricks
In this section, you will be presented with some configuration tips, such as sharing
settings and tuning IntelliJ IDEA.

Exporting and importing settings
If you have your IDE set the way you like, it may be a good idea to back up all
settings. Sometimes, it's good to have common settings across all team members.
IntelliJ IDEA gives you the ability to archive and export all or specific settings.

To export IDE settings to a JAR archive, do the following:

1.	 Go to File | Export Settings from the main menu.
2.	 Specify the settings to export the Export Settings dialog box by selecting

the checkboxes next to them. All of them are selected by default.
3.	 Specify the fully qualified name and path or click on the Browse button

to choose the target file.

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[22]

To import IDE settings from a JAR archive, do the following:

1.	 Go to File | Import Settings from the main menu.
2.	 Select the desired archive from the Import File Location dialog box.
3.	 Specify the settings to be imported in the Select Components to Import

dialog box and click on OK.

You should be really careful with importing settings. Importing a set of settings will
overwrite all your settings with the imported set. For example, if you export some
live templates and reimport them during a colleague's installation, the import will
overwrite all their live templates with the imported ones.

There are many nice-looking themes exported this way, available
to be downloaded at http://ideacolorthemes.org. Just pick
and import the JAR file and check out how beautiful your IDE
will look!

Sharing settings
Sometimes it's good to have the same configuration across all members of your team,
organization, or the company. For this purpose, IntelliJ IDEA can use a server to
store IDE settings and share them within your team.

To do this, first download the IntelliJ Configuration Server plugin, using the Plugins
page of the Settings dialog box.

To connect to the IntelliJ Configuration Server, use your JetBrains account. If you don't
have the account, you can create one on the JetBrains website using the link provided
in the login dialog.

You can connect to IntelliJ Configuration Server in two ways: during the first startup
or on demand.

During the first IntelliJ IDEA startup after installing the plugin, you can select the
connection option for the next startup, such as Show login dialog, Login silently,
or Do not login.

When the configuration server is connected, the green icon is displayed in the status
bar, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Otherwise, the red icon will be presented:

You can log in to the IntelliJ Configuration Server at any time using the button on
the status bar.

The IntelliJ IDEA server stores almost all of the IDE and project settings except for
those containing local paths. Your code style settings, keymaps, fonts, color schemes,
and inspection profiles will be synced.

Take note that the IntelliJ IDEA server is a public, third-party server. It's secured by a
username and password and uses SSL communication, but if you are very concerned
about your privacy, you should share your settings using the export/import feature
rather than the IntelliJ Configuration Server.

If you have to use a proxy to access the Internet in your
environment, you can set up the proxy settings in the login
dialog box.

Tuning IntelliJ IDEA
IDEA's Virtual Machine settings are usually very good out of the box. However,
when you work on a specific huge project and decide that you want to tweak IntelliJ
IDEA's own virtual machine settings, you can change that in the following locations,
depending on your operating system.

On Windows, you can tweak IntelliJ IDEA's own virtual machine settings by
executing the following code:

<IntelliJ IDEA installation folder>/bin/idea.exe.vmoptions

 Alternatively, you can use the following code:

<IntelliJ IDEA installation folder>/bin/idea64.exe.vmoptions

On Linux and Unix systems, you can tweak IntelliJ IDEA's own virtual machine
settings by executing the following code:

<IntelliJ IDEA installation folder>/bin/idea.vmoptions

www.it-ebooks.info

http://www.it-ebooks.info/

Get to Know Your IDE, Fast

[24]

Alternatively, you can use the following code:

<IntelliJ IDEA installation folder>/bin/idea64.vmoptions

On OS X, since Version 12, the file /Applications/IntelliJ IDEA.app/Contents/
bin/idea.vmoptions should be copied to the following path:

~/Library/Preferences/IntelliJIdeaXX/idea.vmoptions

In this file, you can find, or change, Java Virtual Machine settings that IntelliJ
IDEA runs on. For example, to increase the IntelliJ IDEA heap size, modify the
-Xmx setting. If you keep getting an OutOfMemoryError message in the PermGen
space exceptions, try changing the -XX:MaxPermSize setting.

The file-scanning applications (such as Spotlight or Alfred on OS
X, for example) can slow down the IDE a bit; think about excluding
IDEA's folders from their scope.
Having an SSD drive to develop helps a lot with the performance.
Indexing, looking for usages, and other file-related tasks will be a lot
faster on the SSD drive.

Summary
In this chapter, we discussed what IntelliJ IDEA is, briefly presented a comparison
of the available editions, and revealed the main workspace elements and how to
customize them.

Install IntelliJ IDEA and try to set up your IDE the way you like it. Use the tips
provided to configure the workspace like a pro. Back up your configuration or
share it with others.

In the next chapter, we will create and import a project and start the actual work.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code
This chapter is all about setting up or importing your project in the IDE. We will
focus on understanding IntelliJ IDEA concepts such as modules, libraries, and
artifacts. We will discuss the difference in terminology and see how the terminology
used in IntelliJ IDEA is different from that used in NetBeans and Eclipse, so you can
switch from them faster.

We will cover the following topics in this chapter:

•	 A comparison of Eclipse, NetBeans, and IntelliJ IDEA terminologies
•	 Project structure and configuration—modules, libraries, facets, and artifacts
•	 Creating a new project from scratch
•	 Importing the existing project
•	 The project's format

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[26]

What is a project?
Almost everything you do in the IDE is contained within the scope of a project.
The project represents the software you are working on—it is the top-level container
for all your modules, libraries, and configuration settings. There can be only one
project open in a single IDE window. If you would like to have multiple projects
open, IntelliJ IDEA will open them in separate, isolated windows. You can switch
between the windows using the Next Project Window or Previous Project Window
options from the Window menu or using the keyboard shortcut, Ctrl + Alt + open/
close bracket.

IntelliJ IDEA stores the project's configuration in two different formats. The project's
format is covered later in the Project format section.

Project structure and configuration
Before we create a new project from scratch or import an existing one, we will focus
on IntelliJ IDEA's key concepts that will define the project. We will start by listing the
terminology differences between different IDEs and then explain all of the concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Comparison of Eclipse, NetBeans, and IntelliJ
IDEA terminologies
IntelliJ IDEA has a different terminology when compared to the terminologies
used in Eclipse and NetBeans. The following table compares the Eclipse and
IntelliJ IDEA terminologies:

Eclipse IntelliJ IDEA
Workspace (contains one or more projects) Project

Project Module

Project-specific JRE Module SDK

User library Global library

Classpath variable Path variable

Project dependency Module dependency

Library Module library

The next table will highlight the differences in the terminology used in NetBeans and
IntelliJ IDEA:

NetBeans IntelliJ IDEA
Project Module
Project-specific JDK Module SDK
Global library Global library
Project library Module library
Project dependency Module dependency

Now that we have seen the differences, let's have a closer look at these concepts.

The project
The project is the concept that represents a complete software application. It
doesn't contain the source code and other development files such as the build or
configuration scripts. It defines the project-wide settings and contains the collection
of modules and libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[28]

Modules
A project in IntelliJ IDEA consists of modules. A module is a discrete, separate entity
that can be compiled, run, and debug autonomously from other modules in the
project. The module can contain source code, resources, scripts, documentation,
or other files.

At any time, you can import, add, or remove the module from the project using the
Project Structure dialog box, by navigating to File | Project structure. To create
or import a new module, use the + button on the toolbar or use the Alt + Insert
keyboard shortcut:

Of course, you can add a new module to an existing project. Modules can also
depend on each other—they can be added as dependencies for other modules.
To create such a dependency, click on Module Dependency… and use the
Alt + Insert keyboard shortcut, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

In the next dialog box, select one or more modules that the current modules should
depend on, as shown in the following screenshot:

IntelliJ IDEA stores module configurations in a file with the .iml extension. You
can put the .iml files into version control to be able to share module specific
configuration easily.

It might be worth mentioning that if you are using external build tool such as Maven
or Gradle in your project, these files will be regenerated by opening or importing the
project. In this case, it's better not to store IntelliJ IDEA module configuration files in
the version control system.

Folders
The structure of the module is represented by the folders on the disk. It begins with
Content Root. You can have multiple content roots in the module. Each content root
can have different types of folders:

•	 Sources: These folders contain your source files. They will be analyzed and
indexed, and they are available to the compiler. If you develop in Java, the
structure of the subfolders will match the package hierarchy.

•	 Tests: This is the location of your unit tests. The files from these folders will
be compiled and available to run tests. The compile output will go to the same
output folder as for the Sources folders. The source code in the Sources folder
is visible to the code in the Tests folder, but not vice versa. We will discuss
running unit tests in Chapter 7, Red or Green? Test Your Code.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[30]

•	 Excluded: The contents of the Excluded folders will not be indexed by IntelliJ
IDEA. It means that you will not get parameter completion hints for source
files contained in the folder of that type. IDE will know nothing about files
in such folder and will ignore it. The compiler output directory, target, is
excluded by default. The excluded directories and their contents are also not
displayed in the tree structure in the Project tool window. It is usually good
to exclude folder with large files which you don't want to be indexed, for
example, logfiles.

Indexing large files can slow down your IDE, so think about
excluding them.

•	 Resources: Files in the resource folders will be simply copied untouched to
the output directory during the compiling process. Store your configuration,
properties, and static resources here. For a project imported from Maven,
the Maven compiler will do resource filtering based on the configuration
in pom.xml and the contents of these folders will be changed.

•	 Test Resources: This is similar to the Resources folders, but it's used for
unit tests.

To set up the content root and folder types, open the Project Structure dialog box,
select the desired module, and switch to the first tab, Sources. In the following
screenshot, you can see that we add or pick the content root and then mark a folder
with the appropriate folder type:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

You can also mark a folder with the specified type by using the context menu, which
can be accessed using the right-mouse button or using the respective keyboard
shortcut, as shown here:

Libraries
A library is set of compiled code or resources that the module uses during
compilation or runtime. If you develop in Java, this will be the set of class files
enclosed in the JAR and ZIP files or directories. On the other hand, if you develop
in other languages such as JavaScript, for instance, the library will consist of one
or more JavaScript files similar to Angular.js or React.js.

The libraries are defined on the following three levels:

•	 Global (IDE) level: The global libraries will be shared by all projects.
Use this level to set up the common libraries that you use across all of
your projects, such as Apache Commons or Google Guava.

•	 Project level: The project libraries are common for all of the modules in
the project. Use this to set up the library that will be used by more than
one module.

•	 Module level: The library that will be recognized only by the module
in which it is defined. Use this level to set up the library, which is only
appropriate to a specific module.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[32]

When you set up the library, include the library source and
documentation. IntelliJ IDEA will use this to provide you with
hints such as parameters completion and API documentation
during the coding process.

As with modules, you can add or remove the library from the project at any time
using the Project Structure dialog box, by navigating to File | Project structure.

To add the project level library, click on Libraries and then click on the green plus
icon. Alternatively, use the keyboard shortcut Alt + Insert as shown here:

Creating the library using the From Maven... option is a brilliant feature that makes
the creation of simple projects much easier. Just enter the name of the library you are
looking for in the dialog box and use the keyboard shortcut Shift + Enter, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

You don't need to search for and download the library manually from the Internet
any more. Pick the required library from the drop-down list and IntelliJ IDEA will
do it for you automatically.

To add a library on the module level, select the module, switch to the Dependencies
tab, and then click the green plus icon or use the keyboard shortcut Alt + Insert as
shown here:

Actually, when it comes to Java development, managing libraries manually can be a
painful process. I highly recommend using a dependency manager such as Maven,
Gradle, or Ivy to set up the libraries. Maven build files are first-class citizens in
IntelliJ IDEA. If you import the Maven project, the IDE will parse the build file and
manage the libraries list automatically. We will talk about importing Maven projects
later in this chapter.

Facets
Think about facets as an extension or as the "nature" of the module. Facets add
support for frameworks and technologies to your module. When you add the facet
to the module, IntelliJ IDEA will recognize the particular technology, language,
or framework and then give you proper support. This support will consist of hints
and helpers in the editor, availability of new tool windows, or the possibility of
downloading framework libraries. For instance, the Spring facet allows you to
navigate between Spring XML configuration files with Ctrl + mouse click, displays
the autowiring icons, and lets you navigate to the autowired dependencies in
your Java code. If you don't enable the Spring facet, you don't get any of that
awesome functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[34]

Some of the facets available in the IDE are Android, Web, Struts, Spring, Hibernate,
and so on.

Facets can be added to the module manually using the Project Structure dialog
box, or they can be detected by IntelliJ IDEA. To add the facet manually, switch
to the Facets section and click on the green plus icon or use the keyboard shortcut
Alt + Insert as shown here:

IntelliJ IDEA scans the module source code, and if it finds the file characteristic of a
certain framework, it suggest the matching facet. Just click on the Configure link to
create facets.

IntelliJ IDEA will then display the facet configuration dialog box, for example, the
Setup Frameworks dialog box where you can set up the new facet, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Note that a single module can have multiple facets. Expand the module branch
to see the facets contained in the module, as shown in the following screenshot:

The module with two facets

Artifacts
Artifacts refer to the output of the project. Think about the artifact as a recipe that
can be used to create and package the output. This can be a simple JAR resulting
from compiling the Java module or a very complex, deployable file such as Java EE
Enterprise ARchive (EAR).

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[36]

If you're using Maven, Gradle, or a similar build tool, you don't need to bother
about manually creating artifacts—IntelliJ IDEA will create the desired artifacts
automatically. There is also another advantage of using the external build tool: you
will be able to build and package your project outside of the IDE. This can be useful
when deploying the application or running the build in the continuous integration
system. We will focus on the external build process in Chapter 6, Building Your
Project. Anyhow, when required, you can create artifacts manually in the IDE. To
add and remove artifacts, use the Project Structure dialog. You can either choose the
predefined artifact type, for example, Web Application: Archive to create the .war
file, or select Other to create custom one, as shown in the following screenshot:

To set up the contents of artifact, pick the item (let it be library, module, or another
artifact from the Available Elements list) and drag your artifact contents to the left.

Any item has the context menu available when you right-click on it, we can present
the default predefined locations in the artifact for that item. This is shown in the
following screenshot:

Artifact element's context menu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

You can double-click on the element to put it in the default
predefined place within the artifact.

To see precisely what will be included in the output, select the Show content of
elements checkbox. You will see which files and directories will actually go to the
generated output as shown here:

Displaying the artifact contents

Once defined, artifacts are available in the Build artifacts command in the Build
menu. We will more about building the module in Chapter 6, Building Your Project.

There is actually no limit for the number of artifacts in the project;
create as many as you like!

Creating a project
Now that we have the most important IntelliJ IDEA project concepts explained,
we can create or import the project. Let's start with the creating a completely
new project.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[38]

Creating a new project from scratch
To create the new project, select New Project form the File menu or use the
standard Alt shortcuts for operation on menus: Alt + F, Alt + N, and then press
Enter. You will be presented with the New Project wizard window, as shown
in the following screenshot:

In the New Project wizard window, choose the technology you would like to
develop with. Depending on the selected option, the dialog will change to allow
you to enter settings that are more specific. For Java projects, for example, you will
be able to select the framework you would like to be included in the project. Any
framework needs a library of classes—IntelliJ IDEA can reuse the existing library or
automatically download the proper library from the Internet. The newest version of
the library is selected by default, but you can change this using the Configure button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

If you cannot see your preferred language or framework in the
New Project dialog box, refer to the Pick your plugins section
in the previous chapter to find the plugin for the language and
framework of your choice.

When you select Maven as a starting point for your project, you can also pick the
Maven archetype IntelliJ IDEA will use as the project base. This is shown in the
following screenshot:

The next few windows of the New Project wizard will vary according to the option
selected at the beginning. It will be the selection of SDK for Java, Scala, Ruby, and
Python projects or other framework-specific options.

The last page of the wizard allows you to set paths for the project and, optionally,
the project format, module location, and module name.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[40]

If the project you are creating is the first one, you will probably need to set up the
SDK for the project. Click on the New button in the Project SDK section and point
to the home directory of your JDK, as shown in the following screenshot:

The first three buttons in the file chooser section of the toolbar are Home Directory,
Desktop Directory, and Project Directory.

You can use them as quick shortcuts to get straight to the desired directory.
They are very handy and appear in every file selection dialog of IntelliJ IDEA.

When you click on Finish, in almost all of the cases, IntelliJ IDEA will create
a project containing a module. We talked about modules earlier in the Modules
section of this chapter.

Importing the existing project
The existing project can be imported into the IDE in two ways: from the existing
sources or from the build model (it can be Maven or Gradle, for example). You
can also import the Eclipse project into IntelliJ IDEA. For NetBeans, currently
there is no such functionality in the IDE. However, if you would like to import
the NetBeans project, you can create a new project with the existing sources.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

To start the import process, click on Import project from the File menu. In the next
dialog, choose the existing directory or the build file (pom.xml or build.gradle),
as shown in the following screenshot:

Selecting the directory or the model to import

For Maven projects, you can also use the Open option from the File menu and
then point to the pom.xml file of your project. The IDE will then import the project
automatically without any additional import dialogs to fill out. Basically, IntelliJ IDEA
treats Maven-based projects as first-class citizens, equal to its own project format.

If you decide to import a project from the existing Maven model, IntelliJ IDEA
will create the project configuration matching the pom structure; project modules
will be shaped from the pom modules and dependencies defined in the pom file
will be set up as project or module libraries. The Maven output directory, target,
will be excluded automatically by default. If you leave Use Maven output
directories checked, IntelliJ IDEA will reuse Maven output directories as the
compiler output—target or classes by default.

When you create project from the existing sources, IntelliJ IDEA will not copy the
files anywhere. It will just create project in the directory of your choice; the existing
sources will stay where they are.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[42]

It's good to have the Automatically download Sources and Documentation
option checked; IntelliJ IDEA will try to download the library sources and API
documentation to assist you better in the editor. The option can be seen in the
following screenshot:

When you select Import Maven projects automatically, changes
in the pom.xml file get automatically synchronized with the
IntelliJ IDEA's project structure each time your pom.xml file
is changed. It should be noted that when working with large
projects, this synchronization can take a while. I suggest that you
should disable this option when you are working on such projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

If you choose to import the project from the existing sources, select the directory
containing your project and then select the Create project from existing sources
option, as shown in the following screenshot:

First, IntelliJ IDEA will scan the directory recursively for source files and libraries.
The next scan will look for files specific to any known frameworks; IntelliJ IDEA will
try to generate the facets if any of such file is found. Review these findings carefully;
IntelliJ IDEA will try to form the project structure from them.

Then, open Project Structure from the File menu and review the generated project
structure again. Look for the proper modules, libraries, and facets definitions. You
can always tweak the project structure here. Feel free to modify it: add or remove
modules, mark the folders with proper type, or set up the facets.

Project format
IntelliJ IDEA can store project configuration files in two alternative formats. The
first one is directory-based—it is newer, recommended, and the default. The second
format is file-based. You can choose the desired format in the project setup or project
import wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Off We Go – To the Code

[44]

The directory-based format
When you choose a directory-based format, IntelliJ IDEA will create the .idea
directory in your project folder. This directory will contain all project-wide
configuration settings in a number of XML files. Specific settings are grouped in
different files: compiler.xml will contain the compiler settings, modules.xml
will contain the module setup, and so on.

You can throw files from the .idea folder or even the whole .idea
folder into the version control system if you like with the exception
of workspace.xml and tasks.xml. These files hold your personal
settings, such as the tasks list, the list of opened files, local history,
version control setup, and the running configurations. If you are
using Maven, it's better to just throw the pom.xml file into the
version control system and let IntelliJ IDEA do the rest.

The file-based format
If you decide to set up the project using a file-based format, IntelliJ IDEA will create
two project files for you with the extensions .ipr and .iws. The first one, .ipr file,
will contain project-specific settings. On the other hand, the .iws file will contain
your personal settings, similar to the workspace.xml in the directory-based setup.
IntelliJ IDEA will automatically put the .iws file on the ignore list of your version
control system.

You should not put the .iws file into the version control
system.

Later on, if you decide that you want to switch to the directory-based format, use
the Save as Directory-Based Format option from the File menu. IntelliJ IDEA will
convert your project files and reopen the project. After the project reopens, you are
safe to delete the .ipr and .iws files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

The directory-based format versus the file-based
format
The rationale behind the new directory-based format was to reduce merge conflicts
that occurred a lot more with the file-based format. Since the settings are spread over
a dozen files instead of being located in a single file, the chances of merge conflicts
are somewhat reduced. The features of the directory-based format are as follows:

•	 You can decide what group of settings you want to share with your team
using the version control system; just put the file you do not want to share
in the ignore list.

•	 It is easier to find specific settings; the files are small and have meaningful
filenames.

•	 IntelliJ IDEA will recognize the directory containing the .idea subdirectory
as a project in the File dialog box. You do not need to select the .ipr file
manually.

I believe there is no reason to use file-based configuration anymore. So let's stick to
the directory-based configuration.

Summary
Project definition in IntelliJ IDEA can seem complex at first sight, but you will find
that it is very flexible and well designed. In this chapter, you learned about the
project concepts, such as modules, libraries, facets, and artifacts. We looked at project
creation and the process of importing. From now on, you will be able to create,
import, and tweak your project structure in the IDE easily.

In the next chapter, we will talk about the core of IntelliJ IDEA, that is, the editor,
and start actual coding.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor
The editor is the core and strongest feature of IntelliJ IDEA. This is the part of the
IDE where IntelliJ IDEA really shines and shows its huge potential. In this chapter,
we will have an overview of the editor, set it up, use state of the art code completion
and hints, discuss how to effectively navigate through the files, quickly display code
documentation, and get to know how to compare files and folders. We will also
set up and use powerful features of Live Templates. You will spend most of your
development time in the editor, so we will focus on productivity tips and the most
useful keyboard shortcuts throughout the chapter.

We will cover the following topics in this chapter:

•	 An overview of the editor and setup
•	 Navigating in the editor
•	 The editor basics
•	 Using Live Templates and postfix completion
•	 Comparing files and folders
•	 Looking for help

An overview of the editor and setup
The IntelliJ IDEA editor supports all of the standard features, such as file tabs,
bookmarks, and syntax highlighting. The main parts of the editor workspace
are the editor itself, tabs, gutter area, status bar, and scroll bar.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[48]

The gutter area
The gutter area is placed vertically on the left-hand side of the editor. It presents
additional information about the code you are working on. The gutter is very
powerful and an interactive tool. You can click on an element in the gutter to
execute the action at any time. You can also hover your mouse over a symbol
to see additional information or a hint.

In the gutter area, you will find various icons that identify the code structure.
When you are editing the Java class or interface, for example, the gutter will show
the overrides or is overridden by icons. Clicking on these icons will list the related,
appropriate files, allowing you to open them in the editor instantly. If you work
with the specific framework and have plugins installed, there will be more icons
available in the gutter. For example, if you are working on the Spring project, the
icons in the gutter will allow you to jump from the class implementing Spring
components to places where they are used by Spring and vice versa, as shown
in the following screenshot:

The gutter with the symbols and code-folding icons

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

If the file being edited is under the version control system and becomes modified, the
gutter will show the change marker in the modified lines as shown in the following
screenshot. Clicking on the change marker allows you to rollback the change or show
the difference. You will learn more about working with version control in Chapter 9,
Working with Your Team.

The version control tab on the gutter

The gutter also contains the code folding icons. The code-folding feature can be used
to collapse the source code blocks and reduce them visually to a single line. The icon
with the minus sign indicates the beginning of the code block that can be folded.
When folded, the code block is represented by the ellipsis mark in the editor and the
icons with the plus mark on the gutter. You can hover the mouse over the ellipsis
mark in the editor to see the content of the folded block.

At any time, clicking on the icon or ellipsis mark will expand the source code block.
You can also use the following keyboard shortcuts:

Action PC shortcut Mac shortcut
Expand/collapse the code
block

Ctrl + + / - key on the numpad cmd + Shift + .

Expand all Ctrl + Shift + + key on the
numpad

cmd + Shift + =

Collapse all Ctrl + Shift + - key on the
numpad

cmd + Shift + -

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[50]

Additionally, the code-folding options can be accessed by navigating to Code |
Folding or from the context menu in the editor, as shown in the following screenshot:

The code-folding icons

When you hover the mouse over the ellipsis of the collapsed block, IntelliJ
IDEA will display its preview in a pop-up window. If the code-fold
marker towards the upper side is outside the visible area of the editor,
hover the mouse over the lower marker. IntelliJ IDEA will display the
whole block in the pop-up window, as shown in the following screenshot:

The preview for the code outside the editor area

IntelliJ IDEA can fold some predefined code blocks, such as file headers, import
sections, and anonymous classes, automatically. You can also switch the code folding
outline completely off if you don't plan to use it. To set up the code folding behavior,
go to IDE Settings | Editor | Code folding in the Settings dialog box. Select the
desired code block types to have them collapsed by default; for example, you can
have anonymous classes collapsed by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

The code-folding feature is extremely useful if you analyze the legacy
source code and would like to hide specific blocks to get a better
understanding of the code structure.

If you have a debugging configuration set up, you use the gutter to set the
breakpoints in the code. Just click on the gutter at the line you would like the
debugger to stop. The big red dot will indicate the breakpoint setup. You will
learn more about debugging your project in Chapter 8, Squash'em – The Debugger.

The breakpoint indicators

The Status bar
Information about the file currently being edited is shown at the bottom of the
editor, in the status bar. The information provided here is the current line number
and column number, the line separator type (CR (Mac) or CRLF (Windows), for
example), and the character encoding being used. The line separator and file
encoding can be modified. Just click on the encoding to see the list of available
encodings and select the desired encoding to use. If the encoding switch requires
the file to be modified, IntelliJ IDEA will ask to reload or convert the file, as shown
in the following screenshot:

Selecting the file encoding

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[52]

The little lock icon represents the file's read-only status. If it's unlocked, you can
modify the file; if it's locked, the file is in read-only mode:

The file writing mode indicator

The status bar also indicates that IntelliJ IDEA is currently performing some lengthy
process such as building indices:

While building indices, some of IntelliJ IDEA's features are disabled for a while,
such as navigating to Go To Class or Find Usages.

When you code, IntelliJ IDEA runs the code analysis continuously to support you
with visual hints and catch potential bugs in the code. This feature is called code
inspection. We will discuss this aspect in the Code inspection section in this chapter.
On the status bar, there is an icon of a little guy wearing the Billycock. Clicking on
this icon allows you to change the current code inspections profile to be more or less
restrictive, as shown in the following screenshot:

Setting the code inspections profile

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

If you use GIT for version control, the status bar will present the current branch of
the project. Clicking on the branch label will open a list of local and remote branches
and allow you to quickly switch to another branch or create a new one, as shown
in the following screenshot. We will cover more of this subject in Chapter 9, Working
with Your Team.

The GIT branches menu

Tabs
The IntelliJ IDEA editor is tab-based. Every file you open in the editor will have
its own tab. The tabs can be rearranged by dragging them with your mouse.

The tab bar can have either top, bottom, left, or right placement in the workspace.
The setting for the tabs placement can be accessed by navigating to Settings |
Editor | General | Editor Tabs in the Settings dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[54]

To start working on the file, select its tab to bring it to the front. Every tab has a
context menu that is available when you right-click on it. Using this menu allows
you to execute file-specific actions, such as closing the file, closing the other files,
adding the file to the Favorites list, renaming files, displaying the local history of
the file, displaying version control commands, and so on:

The tab context menu

There is a nice feature available in the tab context menu: editor splitting. You can
select Split Horizontally or Split Vertically to be able to work on two or more files
in the editor at the same time. You can also work on different parts of the same file.
You may find it useful to set up keyboard shortcuts for this. Good candidates here
can be Ctrl + Alt + Shift + H and Ctrl + Alt + Shift + V (PC) and control + Shift + H and
control + Shift + V (Mac); they're memorable and not already taken. It's much faster to
use keyboard shortcut rather than the mouse.

The editor can be divided almost infinitely, so your display size and
resolution are the only boundary.

As we discussed earlier, tabs are optional in IntelliJ IDEA. If you memorize the
keyboard shortcuts to navigate through the opened files, you can switch them off
in the Settings dialog box if you like. We will cover the details of navigation in the
Navigating in the editor section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Scratches
Apart from working on ordinary disk-based files, you can work with scratches
in IntelliJ IDEA. It is a very handy feature that helps you experiment and create
prototypes without modifying your project or creating new files. Depending on the
type of scratch, IntelliJ IDEA will provide all of its coding assistance, such as code
completion and hints, in a way that is similar to the regular file. To create a scratch,
choose New Scratch File from the Tools menu or use control + Alt + Shift + Insert
(PC) or Ctrl + Shift + N (Mac) and then select the type of scratch:

Scratches are not saved or preserved when you close or switch
to another project.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[56]

Scrollbar
IntelliJ IDEA analyses your source files all the time. If it detects some potential
problems, it marks the corresponding lines with warning (yellow) or error (red)
marks on the right scrollbar. These are called stripe marks. Stripe marks are also used
to mark the search results, modified lines if using version control, TODO marks, and
so on. You can navigate to the next error in the editor by pressing F2, or Shift + F2 if
you want to go to the previous error, as shown in the following screenshot. We will
discuss this more fully later in this chapter.

The stripe marks on the scrollbar

Clicking on each of these marks will make an instant jump to the marked line. You
can also hover the mouse over the marks to see the description of the stripe marks,
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

The problem descriptions for the stripe marks

You can configure colors or add other types of stripe marks by navigating to IDE
Settings | Editor | Colors and Fonts | General in the Settings window.

When the marked line is out of the current editor's visible scope and you
hover the mouse over the stripe marks, the IDE will display the code
fragment with that line in the loupe-like pop-up window. This assists in
understanding the context a marker applies to. It works not only for lines
marked with stripes, but for regular source code lines as well, as shown in
the following screenshot:

Loupe-like pop-up window

Now, as we have gone through the editor's features, let's move on to navigating
between files, between types, and within a single file.

Navigating in the editor
When working on a project, you work on a set of files. You switch between them a
lot, so knowledge of how to navigate efficiently between files, types, or methods is
essential to speed up development. Basically, the faster you switch between files,
the more productive you are.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[58]

Navigating between files
IntelliJ IDEA provides a switcher between opened files and tool windows. It's similar
to the application switcher in your operating system such as Alt + Tab on Windows
or cmd + Tab on the Mac. The switcher in IntelliJ IDEA is available by using the Ctrl
+ Tab keyboard shortcut. If the switcher pop-up is visible, keep the Ctrl key pressed
and use the Tab key (or the cursor + up and down arrow keys) to select the desired
tool window or file. In the switcher, you will see only the files that are currently
opened in the editor, as shown in the following screenshot:

The tab switcher

You can also use Alt + the left arrow key to switch to the previous tab and Alt +
the right arrow key to move to the next tab. The tab switcher can be helpful when
you start working with the project. However, later, when your working set of files
stabilizes and is more or less defined, there are many more powerful switching
methods to select the file in the editor; these include as Recent files and Recently
edited files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The Recent files dialog box is a real time-saver. Available via Ctrl + E in Windows
(cmd + E in Mac), it opens by default the last accessed file. You can also select any
tool window in this dialog box, just as you could in the Tab switcher, as shown in
the following screenshot:

The Recent Files dialog box

An even more powerful file switcher is the Recently edited files dialog box, available
via Shift + Ctrl + E (PC) or Shift + cmd + E (Mac). It is visually identical to the Recent
Files dialog box, but presents only the files you are most interested in, that is, files
that were recently modified. This dialog box will highlight the files currently open.
Please note that it will not include the file you are currently in.

If you become familiar with the Recent files and Recently edited files dialog boxes,
you will find the normal Tab switcher pretty useless.

It's good to increase the number of recent files in these dialog boxes.
To do this, navigate to IDE Settings | Editor | Recent files limit in
the Settings window. As we already know from the first chapter, any
list-based dialog box can be filtered simply by typing the characters
you want to find—this applies to the recent files dialog box as well.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[60]

If you install IntelliJ IDEA for the first time, you will see Navigation Bar at the top
of the editor, as shown in the following screenshot. It's visible by default, but most
of the time it's not very useful and takes precious screen space.

The floating navigation bar

You can switch Navigation Bar on or off by navigating to View | Navigation Bar.
It becomes useful when shown on demand, using the Alt + Home shortcut. It will
display as a floating bar over the editor and allow opening files from the directory
structure of the project. As with almost every IntelliJ IDEA component, Navigation
Bar has the context menu available by right-clicking. The context menu contains
folder- or file-specific actions, such as Compile or Reformat code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

You learned a couple of file switching methods, but there are some more. One of
them is a very useful file switching action: Navigate file. Execute it by using Ctrl +
Shift + N (PC) or cmd + Shift + O (Mac). A small dialog box will pop up waiting for
you to start typing the filename. You can use wildcards such as * to represent any
number of characters and ? to represent exactly one character.

In addition to wildcards, you can type the first few letters of each word in
PascalCase, camelCase, kebab-case, or snake_case. For example, to navigate to the
src/some/package/BillAcceptorService.java path just use BAS or bas. If you
have two files of the same name in different packages/folders, you can include
the folder portion of the path as well; s/p/bas will show src/some/package/
BillAcceptorService.java but not src/other/package/BillAcceptorService.
java. The search is not case-sensitive, but the case will be considered if there's more
than one file that matches the pattern you type. For example, if file A matches the
capitalization of your search and file B does not, file A will be listed first. It's a super
powerful feature.

The list of matching files will be shown. Just select the file to open it in the editor. If
you would like to include non-project files (from the external libraries or resources)
in the search, mark the corresponding checkbox or just use the keyboard shortcut
again. If you decide to include only specific file types in the search, click on the little
funnel icon and select the desired file types, as shown in the following screenshot:

Filename search

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[62]

IntelliJ IDEA is not just a text file editor, but also a full-fledged development
environment. The IDE knows about the types of development environment defined
in your project and allows you to navigate between them. To navigate to a class,
use Ctrl + N (PC) or cmd + O (Mac) to display the Navigate Class dialog box. The
pop-up will be almost the same as Navigate file, but will show classes instead of
files. Similarly, using the shortcut again will include non-project classes and the
funnel icon narrows the search results according to the chosen type, as shown in
the following screenshot:

Class search

If you would like to open a file with a particular symbol (such as a method or field
name, for example), execute the Navigate symbol action, by using the following
shortcut: Ctrl + Alt + Shift + N (PC) or cmd + Alt + Shift + N (Mac). Again, the same
rules apply; just start typing to find the file containing the specified symbol. You can
also use the first letters from the CamelCase symbol name, exactly in the same way as
navigating to a file. Hit the shortcut again to include symbols that are specific to non-
projects, such as classes from external libraries, as shown in the following screenshot:

Symbol search

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

There are three more navigation shortcuts, specific to object-oriented languages.
If you develop in Java, for example, you may find them very useful. To navigate
to a file with a class declaration, use Ctrl + B (PC) or cmd + B (Mac). It's the equivalent
of Ctrl + left-click of the mouse (PC) or cmd + left-click of the mouse (Mac).
Alternatively, you can also use the F4 shortcut, for jumping to the source.

To list the implementations of the type, use Ctrl + Alt + B (PC) or cmd + option +
B (Mac). To quickly go to the superclass of the class you opened in the editor, use
Ctrl + U (PC) or cmd + U (Mac). It might be worth mentioning that the same set of
shortcuts applies to methods as well.

You probably do many unit tests for your code. To quickly switch from the file
being edited to a unit test, use Shift + Ctrl + T (PC) or Shift + cmd + T (Mac).

IntelliJ IDEA supports the feature available in almost all modern IDEs—bookmarks.
To place a bookmark at a specified line, press F11 (PC) or F3 (Mac). You can also
use Ctrl + F11 (PC) or Alt + F3 (Mac) to place a bookmark with its mnemonic. The
mnemonic will be displayed in the gutter area and can be in the form of a number
or letter; it lets you distinguish between different bookmarks. To display the list
of bookmarks, press Shift + F11 (PC) or cmd + F3 (Mac); the output is shown in the
following screenshot:

The bookmarks window

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[64]

The following table summarizes file switching actions and associated shortcuts:

Action PC shortcut Mac shortcut
Switch tab (opened files) Ctrl + Tab cmd + Tab
View recent files Ctrl + E cmd + E
View recently modified files Ctrl + Shift + E cmd + Shift + E
Navigate to a file Ctrl + Shift + N cmd + Shift + O
Navigate to a class Ctrl + N cmd + O
Navigate to a symbol Ctrl + Alt + Shift + N cmd + Alt + O
Navigate to declaration Ctrl + B cmd + B
Navigate to super Ctrl + U cmd + U
Navigate to implementations Ctrl + Alt + B cmd + Alt + B
Navigate to a test Ctrl + Shift + T cmd + Shift + T
Place a bookmark F11 F3
Show bookmarks Shift + F11 cmd + F3

Now we know how to look for and open files instantly, let's look at how to navigate
within a single file.

Navigating within a single file
IntelliJ IDEA supports the standard way of jumping to a specific line: Ctrl + G (PC)
or cmd + G (Mac)— used as the go to line shortcut. It's useful when you know the
line number you want to go to. However, if you don't, perhaps the most useful
action to navigate within a single file is File structure. It's available in the Navigate
menu or by using Ctrl + F12 (PC) or cmd + F12 (Mac). This action will display a
pop-up window presenting the full file structure breakdown. This will be the method
names if you are editing a Java file, or the elements tree if editing an XML file. Again,
by entering a keyword using the keyboard, the list can be narrowed down to find a
specific item instantly. Of course, as always, you can use wildcards and camel humps
here. Using the shortcut again will turn on the additional option; for Java classes,
it will include the inherited members in the list.

To quickly jump between methods in a file, use Alt + the up arrow key or the down
arrow key (PC) or control + the up arrow key or the down arrow key (Mac). Take
note that this shortcut is actually overridden by Mac's mission control, so you need
to disable it by navigating to System Preferences | Keyboard | Keyboard Shortcuts
| Mission Control before the user can use it in IntelliJ IDEA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

To swiftly leap between braces, use Ctrl + { and Ctrl + } (PC) or cmd + { and cmd + }
(Mac). To scroll the contents of the editor without changing the current position of
the cursor, use Ctrl + the up arrow key or the down arrow key (PC) or cmd + the up
arrow key or the down arrow key (Mac).

We already know that, if IntelliJ IDEA detects some errors or warnings, it marks
them with stripe marks. The easiest way to navigate to the next/previous error or
warning is by using the F2 and Shift + F2 keyboard shortcuts, respectively. When
you hover the cursor over the issue, you can display its details using Ctrl + F1. There
is an editor setting that allows you to modify the behavior of F2, so it goes to errors
first and only goes to warnings once all errors are gone. Right-click on the stripe
marks area and choose Go to high priority problems only to have IntelliJ IDEA skip
warnings, infos, and other minor issues. Choose Go to next problem to have the IDE
jump between all detected issues:

The following table summarizes navigation within a single file:

Action PC shortcut Mac shortcut
Go to a line Ctrl + G cmd + L
Check the file structure Ctrl + F12 cmd + F12
Navigate between methods Alt + up arrow key or

the down arrow key
control + up arrow key
or the down arrow key

Scroll the editor content Ctrl + up arrow key or
the down arrow key

cmd + up arrow key or
the down arrow key

Navigate between braces Ctrl + { / } cmd + { / }
Navigate to the next error/warning F2 F2
Navigate to the previous error/warning Shift + F2 Shift + F2

There are two more navigation actions available in IntelliJ IDEA. I believe these are the
most powerful of them all; they work within a single file and across files, as well. These
actions are Navigate back/forward and Navigate/Last edit location.

The Navigate back / forward action is accessible by using Ctrl + Alt + the left arrow
key (PC) or cmd + Alt + the left arrow key (Mac), and Ctrl + Alt + the right arrow key
(PC) or cmd + Alt + the right arrow key (Mac) works just like the back and forward
buttons on your Internet browser.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[66]

When you code, you very often switch to another file apart from the one currently
being edited. Navigate / Last edit location, available by using Ctrl + Shift + Backspace
(PC) or cmd + Shift + Backspace (Mac), allows you to check the other file to look
something up and then instantly gets you back to your last edited line. Try it, it's a
real time-saver.

Navigate/Last edit location will always get you back to your latest
changes in the code.

The Search Everywhere feature
The Search Everywhere feature, available by pressing the left Shift key twice, is
the most potent navigation feature; it allows you to search for everything. Literally
everything! Just press the shortcut to see the list of recent files. Start typing and
IntelliJ IDEA will show you a list of files and symbols. Press Shift twice, again, to
include non-project files in the search. Most importantly, the search results list will
also include all the matching IDE actions and preference settings. For example, if
you don't recall the shortcut for the GIT push action, just type push in the dialog box
and choose the action found. It's that easy. The following screenshot shows how the
window will look:

Search Everywhere in action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

The Search Everywhere feature is the king of all shortcuts in IntelliJ
IDEA. When in doubt, just double-press the left Shift key and start
typing!

By now, you have learned how to effectively find any place in a project where we
want to make a change. We can navigate to the desired file and move freely within it.
It's time to start editing the source.

The editor basics
IntelliJ IDEA's editor supports all the standard features of a text editor such as
selecting text, searching, cutting, copying, and pasting. Let's start with some basic
editor commands and then focus on more advanced features of IntelliJ IDEA, such as
syntax-aware selection, clipboard history, code reformatting, smart code completion,
and code inspections.

To duplicate a line of code (or a selected block) use Ctrl + D (PC) or cmd + D (Mac).
To remove a line of code or selected block, use Ctrl + Y (PC) or cmd + Y (Mac).

Sometimes it may be useful to comment portions of code. To use the line comment,
press Ctrl + / (PC) or cmd + / (Mac). If you favor the block comment, use Shift + Ctrl
+ / (PC) or Shift + cmd + / (Mac). IntelliJ IDEA will be aware of the programming
language of the file you are editing and use the comments that are appropriate to this
language. Like almost every programmer's editor, IntelliJ IDEA provides you with
the option to search for text and text replace functionality.

Searching for and replacing text
To execute a text search, use the Ctrl + F (PC) or cmd + F (Mac) keyboard shortcut.
The search bar will pop up at the top of the editor. Start typing the text you want to
find and IntelliJ IDEA will automatically highlight all the occurrences of the text in
the content of the editor, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[68]

To move to the next occurrence of the text you are searching for, press F3. To get
back to the previous one, press Shift + F3. If you are done, press the Esc to close
the search bar.

The search functionality is available not only in the scope of the file opened in the
editor, but also in the scope of a folder, module, or the whole project. In this case,
the search will be called Find In Path. It's available in the context menu of a folder
or with the Ctrl + Shift + F shortcut. For Find In Path, however, the results will be
presented in a separate Find Occurrences tool window at the bottom of the IDE,
as shown in the following screenshot:

Double-clicking on the item in the list will open the file in the editor. The Replace
functionality is very similar to Find. To execute Replace in the editor, press Ctrl + R
(PC) or cmd + R (Mac):

In the Replace bar, you will have the option to restrict the replacement of text to
within the selected block of code; to replace a single occurrence; or replace all of
them. If you want to replace text globally in more than one file, you can also execute
Replace In Path. It's available with the Ctrl + Shift + F keyboard shortcut or in the
context menu of the folder in the Project tool window. Just like in the Find dialog
box, you provide the scope for replacement; it can be a folder, module, or the whole
project. If you accept the dialog box, IntelliJ IDEA will show the findings in the Find
Occurrences tool window and ask if you want to replace the code occurrence, as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

You can now perform the replacement of a single occurrence, all occurrences in this
file, or all occurrences in all files.

Syntax-aware selection
The Ctrl + W (PC) and cmd + W (Mac) shortcuts will run the syntax-aware text
selection. If executed for the first time, it will select the syntax block under the cursor.
Every next press will expand the selection in a smart way, analyzing the source code
being edited. Pressing Ctrl + Shift + W (PC) and cmd + Shift + W (Mac) will deselect
the items. Context-aware selection is a very handy feature; if you get used to it,
you will not use the cursor and arrow keys to select a block of code. Apart from the
normal selection, you can also switch to the column selection mode.

Column selection mode
To make a selection in column selection mode, select the desired area with your
mouse with the Alt key pressed. To toggle between the line and column selection
modes permanently, pick Column Mode from the Edit menu or from the editor's
context menu. Alternatively, press the Alt + Shift + Insert keyboard shortcut. Then,
make the selection with the mouse cursor as usual:

To move the selected block or just the current line up and down in the editor, use
Shift + Ctrl + the up arrow key or down arrow key (PC) and Shift + cmd + the up
arrow key or down arrow key (Mac).

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[70]

Clipboard history
During the coding process, the clipboard is an indispensable tool. We select, cut, and
copy often. Sometimes there is a need to paste the previous content of the clipboard.
Press Ctrl + Shift + V (PC) or cmd + Shift + V (Mac) to display the clipboard history
dialog box and select content to paste. As always, start entering search keywords to
narrow the list, as shown in the following screenshot:

The clipboard history dialog box

Reformatting the code
In IntelliJ IDEA, any file, selected block of code, or all files in any directory may be
formatted according to the specified code style settings. The Code Style section is
a project-specific setting and is available in the Code Style section of the Project
Settings window. There is the General page for general options, such as line endings
and tab size. The dialog box also contains pages for other file types such as Java or
SQL. The code style settings include many options, such as wrapping, braces, tabs,
and indents. I believe most of the settings are very good out of the box but, if you
prefer, you can tweak them to match your own code style or your organization's
code style. To execute code formatting, press Ctrl + Alt + L (PC) or cmd + option
+ L (Mac). You can also use separate code formatting actions. To just fix the line
indentations, use Ctrl + Alt + I (PC) or cmd + Option + I (Mac). Of course, standard
Tab and Shift + Tab keyboard shortcuts will also work in IntelliJ IDEA. If you keep
the text selected, pressing Tab or Shift + Tab will indent or unindent the selection
accordingly. To clean up and organize your imports, use Ctrl + Alt + O (PC) or
cmd + Option + O (Mac).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

If you want to exclude a specific text block from code formatting, create
formatting markers in the General pane of the Project settings/Code
style dialog box. Use the Formatter off and Formatter on markers as
comments to specify the code block to be excluded from formatting.

One of the newest additions to the IDE features is detecting the code style settings in
the currently edited file on-the-fly. The option shown in the following screenshot is
enabled by default and is available by navigating to Settings | Editor | Code Style:

Having this option selected means that, even if a file has a code style different from
your current settings, it will still be preserved.

Code completion
When you code, IntelliJ IDEA stands over your shoulder, watching what you are
doing, and tries to help by showing hints. Sometimes the suggestion is displayed
automatically without you doing anything. The methods of the specified type are
displayed automatically when you put a dot after the variable name, for example.
To force the hint—for example, to show the completion list for the method
parameters—use the Ctrl + Space bar keyboard shortcut. Note that, when you press
the Tab key to accept a completion, IntelliJ IDEA will overwrite partial expressions
right to your caret. When you press Enter to accept a completion, IntelliJ IDEA will
simply insert the completion and move everything behind the caret to make room
for the completion.

The code completion hint

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[72]

Besides using the Ctrl + Space Bar keyboard shortcut to get the list, you can use
the Smart Type code completion feature available using the Ctrl + Shift + Space Bar
keyboard shortcut. This will show a suggestion list that includes only those types
that are applicable in the current code context. The Smart code completion works
only in the context in which IntelliJ IDEA can determine the proper type. These
contexts include the list of parameters of a method, the right part of the assignment
statements, variable initializers, return statements, and the throws and new
keywords, as shown in the following screenshot:

The Smart Type completion hint

To force IntelliJ IDEA to scan even deeper and show more items on the
autocomplete list, press the Ctrl + Shift + Space Bar shortcut again. IntelliJ
IDEA will include the static methods that return the required type and the
methods returning the collection of the desired type; you will also be able
to use chained expressions. Using Ctrl/cmd + Alt + Space Bar, you can force
IntelliJ IDEA to look for matches outside the currently imported classes;
this is useful if you want to use a class that you haven't yet imported.

The IntelliJ IDEA code completion feature is extremely flexible. It even recognizes
other languages inside string literals such as SQL assigned to String variables in the
Java code and shows the code completion lists for them too.

Of course, code completion works not only in Java but in many other languages and
file types, such as JavaScript, HTML, XML, CSS, Groovy, Scala, Ruby, Python, SQL,
and PHP. You can also use code completion when editing resource or property files.

Code completion doesn't just work in the editor. It works in a debugger, when
evaluating expressions, search inputs, and many other places in the IDE. When in
doubt, try the Ctrl + Space Bar keyboard shortcut!

You can customize the hint settings by navigating to Preferences / IDE / Editor /
Code Completion. You can set up various code completion options here, such as the
pop-up timeout or toggle showing JavaDoc documentation. The code completion
in IntelliJ IDEA is available also when you have some other language embedded in
your source in the form of string literals. This feature is called language injection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Language injection
Typical examples of the language injection are HTML fragments injected into the
JavaScript code or SQL statements in Java. This feature will be active when you
have the IntelliLang plugin enabled. The IDE will provide syntax highlighting, code
completion, and hints in the scope of this string. This includes most of the supported
languages, such as Java, JavaScript, Groovy, Python, Ruby, XML, and PHP. To
inject the language, start typing the string expression and then press the Alt + Enter
keyboard shortcut. Next, choose the Inject Language/Reference action, as shown in
the following screenshot:

For an existing string expression, IntelliJ IDEA will try to recognize the injected
language automatically. If it fails, you can use the Alt + Enter keyboard shortcut and
again pick the Inject Language/Reference action. Sometimes you can help IntelliJ
IDEA with the recognition process, for example, by choosing the SQL dialect, again
with the Alt + Enter keyboard shortcut, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[74]

The language injection can be forced by using the @Language Java annotation or
comments such as //language=<language_name>, /*language=<language_name>*/,
#language=<language_name>, and <!--language=<language_name!-- >. An
example is shown in the following screenshot:

Generating code
Often, throughout the coding process, there are tasks that have to be done in the
same way repeatedly. Generating the setters and the getter for the POJO Java class is
just one example. IntelliJ IDEA supports the generation of such boilerplate coding.
Press Alt + Insert (PC) or Control + N (Mac) or go to Code | Generate to display the
Generate pop-up:

After picking the desired code block to be generated, the next pop-up will be shown
with the selection of properties that should be used to generate this block. Select the
properties and watch the boilerplate code generate automatically in the editor. Apart
from just generating simple code snippets, Generate can also guess what should
be added to the constructor by looking at the class, finding defined variables, and
proposing to add them as constructor parameters, which really makes this feature
powerful. Code generation can save a lot of development time everyday.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Code inspection
IntelliJ IDEA's editor can show not only compiler errors, but also compliance with
the coding guidelines and standards, dead code, probable bugs, performance
issues, and conformity to specifications, such as Struts, JSF, EJB, and many others.
The analysis of the source code is performed as you type, so no additional action is
required for the feature to run, but it can be forced by using Inspect Code from the
Analyze menu. The result of the analysis will be presented in the Inspection Results
tool window:

Clicking on an item in the list will open the specific file in the editor. If it might be
possible to automatically fix the issue found, IntelliJ IDEA will present a yellow
bulb icon; this denotes a quick fix hint, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[76]

If the quick fix icon is displayed, the keyboard shortcut Alt + Enter will list the
possible actions that can be taken to eliminate the issue. Select the action of your
choice. Most of the time, issues will be fixed automatically. Alt + Enter is probably
one of the most important shortcuts you need to know in IntelliJ IDEA. Basically, if
used correctly, you can get a ton of productivity with it. It can also be applied to code
that is not actually marked as an error. If you use it, IntelliJ IDEA will analyze the
context you are in and propose to perform quick tasks, such as creating a subclass,
adding getters and setters, assigning constructor parameters to variables, adding
casts, using static import instead of a fully qualified name, autogeneration of variable
assignments (if executed at the beginning of a line, which would evaluate to a value),
and so on, all with the same keystroke—Alt + Enter.

Experiment with Alt + Enter while using the editor to see which
tasks are possible. It's a huge time-saver.

As you can see by now, the editor in IntelliJ is very powerful and equipped
with many productivity shortcuts. However, there's more: Live Templates
and postfix completion.

Using Live Templates
Live Templates lets you use the editor to insert frequently used code blocks into your
source code.

Live Templates can be simple, parameterized, and surrounded. A simple template
contains code blocks that will be expanded and inserted into the editor, replacing the
abbreviation. Parameterized templates, on the other hand, have variables that will be
filled automatically by IntelliJ IDEA or will prompt the user for input.

When a parameterized template is invoked and expanded in the editor, IntelliJ IDEA
will suggest some predefined values for the defined variables. The surrounding
templates expand before and after the selected code block. To insert a live template
into the editor, just type the abbreviation and press the expand key (Tab is the default
key). The other way to insert a template is to press Ctrl + J (PC) or cmd + J (Mac) and
select the template from the pop-up list. As always, you can filter the list by typing.

The pop-up list will contain Live Templates that can be applied in the current
context. The context is related to the file type you edit (Java or HTML, for example)
and also to the code block you are in, such as a method or field declaration. The
templates are context-aware; IntelliJ IDEA will try to autocomplete the sections
of the template, based on the current context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

Executing a parameterized live template

The surrounding live templates are executed by using the Ctrl + Alt + J (PC) or cmd
+ Option + J (Mac) keyboard shortcut. Select the text you want to execute a template
with, hit the keyboard shortcut, and you are done. The surrounding template
isn't any different from the normal templates, besides the fact that the chosen
block of code (or text) is assigned to the $SELECTION$ variable, as shown in the
following screenshot:

Executing the surrounding live template

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[78]

IntelliJ IDEA has many inbuilt templates out of the box; you can use them after
installing the IDE. You can also create your own live templates. To do this, go to
IDE Settings | Live Templates in the Settings dialog box.

Feel free to browse and look into the existing templates to get familiar with
the syntax.

To add a new template, select the green + icon on the right-hand side of the window,
as shown in the following screenshot:

Adding a new live template

The template definition consists of the abbreviation, the actual template text, the
variables, and the context this template should be recognized in.

The context will be a development language such as Java, for example, and a syntax
element such as a declaration or expression, for example.

Variable names begin and end with the dollar sign. There are two predefined
variables available. The END variable is where the cursor will be when the template
expands and the $SELECTION$ variable mentioned earlier represents the selected text
in the case of surrounding templates.

If the template contains the $SELECTION$ variable, it will become a surrounding
template and will be available with the surrounding template keyboard shortcut.
Also, this kind of template will not appear in the list of normal templates provided
via Ctrl + J (PC) or cmd + J (Mac).

When defining a template, you can use these two predefined variables or define your
own. If you decide to use your own variable, just type its name with dollar signs in
the template body. The Edit variables button will become active, allowing you to
define this custom variable. The variable editor allows you to enter an expression,
which can be a function, and the default value. Refer to the documentation for the
list of supported functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

You can even execute Groovy scripts as the expression. This is a
powerful feature with almost endless possibilities! You can try to
change the Live Template expansion shortcut key from the Tab key,
which is set by default to Space Bar. You may find it more natural to
expand live templates using the Space Bar.

Live Templates is a mighty feature. If you memorize the abbreviations for the
templates you use the most, your coding speed will be unbeaten. A feature
somewhat related to the live templates is postfix completion.

Postfix code completion
Postfix code completion lets you transform an already typed expression into another
one. This can be explained by the following example. Let's use the .format postfix
completion. If you type "myString".format and then press Tab, the code will get
wrapped into String.format("myString"). automatically. Postfix completions
just like Live Templates can be of the neighboring type. For example, the .notnull
postfix completion will wrap the expression with the null value checking code block.

You can see all defined postfix templates and disable the ones you don't want
by navigating to Settings | Editor | General | Postfix Completion, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[80]

Although you cannot define your own postfix completion templates, the provided
set for Java and JavaScript is more than enough to dramatically improve the speed of
the development process. Combined with Live Templates, postfix code completion is
a very powerful editor feature.

We already know a lot about editing code in IntelliJ IDEA. In the next section, you
will learn how to compare files and folders.

Comparing files and folders
When you develop a project, often there is a need to compare the contents of the files
or the structures of the folders. Usually, you would have to use an external tool for
that, and there are plenty of such tools in the market. IntelliJ IDEA provides its own
file diff and folder synchronization features. Let's start with comparing files.

Comparing files
To compare two files, select them keeping the Ctrl key pressed in the project
structure tree and choose Compare Two Files from the context menu; or press
Ctrl + D (PC) or cmd + D (Mac). The differences viewer will open with the
differences highlighted:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

You can move between code differences using the arrows in the differences viewer
toolbar or by pressing the keyboard shortcuts; F7 will jump to the next difference and
Shift + F7 to the previous one.

To synchronize two files, use the "Replace" arrow buttons in the middle of the
editor. To move the change from the left file to the right one, press the >> icon. To
move from right to left, use the << icon. Every difference block has a context menu
available, where you can select the whole modified block. You can replace, insert,
or remove the change, as shown in the following screenshot:

Take note that the contents shown in the diff editor are syntax-highlighted and still
have a gutter area and stripe marks on the scroll area. On the status bar of the diff
editor, the information about the number of remaining differences is displayed,
as shown in the following screenshot:

The number of differences

The differences viewer can also compare the current editor contents with the
contents of the clipboard. Just right-click inside the editor area and choose
Compare with Clipboard.

You can also compare images using the differences viewer.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[82]

Comparing folders
To compare two folders, select them in the project tree with the Ctrl key pressed
and, again, use Ctrl + D (PC) or cmd + D (Mac). The folder directory diff window
will open, displaying the differences between the chosen folders, as shown in the
following screenshot:

The directory differences dialog box

In the upper toolbar, you can filter the file list contents to display new files on the
left side, new files on the right side, different files on both sides, and equal files
on the both sides.

At the bottom of the directory differences viewer, there is a regular diff viewer pane,
showing the detailed breakdown of differences of the selected files, the same as
when comparing files.

Use the arrows in the middle section of the diff viewer to mark the files to be copied
from the left to right, right to left, or deleted if non-existent in one of the directories.
Pressing Enter will synchronize the selected files, and pressing Ctrl + Enter (PC) or
cmd + Enter (Mac) will synchronize all files.

From now on, you will not need an external tool to see the differences and
synchronize files and directories. Let's summarize the keyboard shortcuts you
learned so far.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

The following table summarizes basic editor commands:

Action PC shortcut Mac shortcut
Duplicating the line or selected block Ctrl + D cmd + D
Deleting the line or selected block Ctrl + Y cmd + Y
Line comment Ctrl + / cmd + /
Block comment Shift + Ctrl + / Shift + cmd + /
Joining lines Shift + Ctrl + J Shift + Ctrl + J
Toggle case Shift + Ctrl + U Shift + cmd + U
Find Ctrl + F cmd + F
Find In Path Shift + Ctrl + F Shift + Ctrl + F
Replace Ctrl + R cmd + R
Replace In Path Shift + Ctrl + R Shift + Ctrl + R
Reformatting code Ctrl + Alt + L cmd + option + L
Automatically indenting lines Ctrl + Alt + I cmd + option + I
Indenting a selection Tab Tab
Unindenting a selection Shift + Tab Shift + Tab
Optimizing imports Ctrl + Alt + O cmd + option + O
Executing the Live Template Ctrl + J cmd + J
Executing the surrounding Live
Template

Ctrl + Alt + J cmd + option + J

Showing the intention pop/up Alt + Enter Alt + Enter
Showing the code completion pop/up Ctrl + Space Bar control + Space Bar
Generating code Alt + Insert control + N
Comparing files or folders Ctrl + D cmd + D

Looking for help
During the coding process, it's convenient to have the code documentation close
at hand. IntelliJ IDEA can extract the documentation straight from the source
(using JavaDoc) or display the external documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[84]

Viewing inline documentation
To view inline documentation, use Quick Documentation Lookup, which is
available with Ctrl + Q (PC) or control + J (Mac). The dialog box will display the
documentation for the symbol or method under the cursor, but only if the symbol
or method has been provided with documentation comments. You can go through
the quick documentation using the provided hyperlinks and arrow buttons to move
back and forth through the pages. The Quick Documentation Lookup window can
be pinned to become a tool window (we described this in the first chapter), as shown
in the following screenshot:

Quick documentation lookup

For markup languages, IntelliJ IDEA will show the documentation
extracted from a document definition file such as DTD or XML
Schema.

Viewing type definitions
To look at the implementation of the symbol at the cursor, execute the quick
definition pop-up by pressing Shift + Ctrl + I (PC) or cmd + Y (Mac). IntelliJ IDEA
will display the source code fragment with the definition of the symbol. It can be
the type, variable, or method as shown in the following screenshot:

The quick definition pop-up

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

Looking for usages
The Show Usages feature is a very handy feature that will display the usages
for any symbol under the cursor. Execute an action using Alt + Ctrl + F7 (PC) or
cmd + Alt + F7 (Mac):

The Show Usages pop up

You can also use Alt + F7 (in both PC and Mac) if you want to have the usages in
an extra Find Usages tool window for later reference.

Quick Documentation Lookup, Quick Definition, and Show Usages
pop-up windows also work in the code completion lists. When
choosing a method from the code completion list, for example, just
press the corresponding shortcut to display the documentation. It
works even for the elements in the navigation bar we discussed earlier.

Viewing method parameters
To view the method parameter information, press Ctrl + P or cmd + P (Mac).
IDEA will display the pop up with the required parameters, extracted from
the source code:

Viewing parameter information

www.it-ebooks.info

http://www.it-ebooks.info/

The Editor

[86]

Viewing the external documentation
If the documentation is long and more detailed, it may be more convenient to display
it in the external browser, outside the IDE. To do this, use the Shift + F1 keyboard
shortcut or the View/External documentation menu option.

Take note that the paths to the external documentation have to be properly defined
in the Project structure dialog box. To add documentation for a module, select the
module in the Modules section, and click on the globe icon in the JavaDoc pane,
as shown in the following screenshot:

Adding external documentation for a module

To set up the external documentation for a library, select the library from the
Libraries section and click on the same globe icon:

Adding external documentation for a library

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

IntelliJ IDEA provides a number of ways to display the documentation. The
following table summarizes the keyboard shortcuts for them:

Action PC shortcut Mac shortcut
Quick documentation lookup Ctrl + Q control + J
Quick definition Shift + Ctrl + I cmd + Y
Show usages Alt + Ctrl + F7 cmd + Alt + F7
Parameter info Ctrl + P cmd + P
External documentation Shift + F1 Shift + F1

Summary
This was a long chapter. After all, the editor is the main functionality of the IDE. You
learned how to quickly navigate across many files in a project and within a single file
as well. You are now able to use and define live templates, compare files and folders,
and look for the documentation. In the next chapter, we will focus on refactoring—a
powerful technique to improve the source code and see how IntelliJ IDEA supports
this feature.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring
In this chapter, we will take a look at source code refactoring in IntelliJ IDEA.
Refactoring is the process of restructuring your source code base without changing
its behavior. It enhances code readability and reduces its complexity. When the
internal code structure improves, the code becomes easier to maintain and extend.
Refactoring is important not only during everyday work on your own code, but for
legacy code as well. The refactoring patterns are catalogued by Martin Fowler at
www.refactoring.com. This is a great resource—the catalogue contains a detailed
description of each refactoring along with the corresponding code example. We
will focus on how IntelliJ IDEA helps with executing these refactoring actions.

We will cover the following topics in this chapter:

•	 An overview of refactoring
•	 The most important refactoring actions
•	 A summary of refactoring shortcuts

With every new release, IntelliJ IDEA contains additional refactoring actions,
so the arsenal grows. Let's take a look at the refactoring process now.

An overview of refactoring
IntelliJ IDEA offers an impressive set of code refactoring actions. The good
thing is that the refactoring process in IntelliJ IDEA is not limited purely to
the Java language. If you have installed the corresponding plugins, refactoring
will be available for other languages and frameworks as well. This includes
SQL expressions, database table definitions, Spring annotations, expressions,
configurations, Hibernate mappings, JSF expressions, and so on.

www.it-ebooks.info

www.refactoring.com
http://www.it-ebooks.info/

Make It Better – Refactoring

[90]

To start refactoring, you will first have to select the code fragment that you want
to refactor; we will call it the refactoring target. This can be a symbol or just a piece
of code. The symbol can be selected in the editor; it is usually sufficient to have the
caret on the symbol that you want to refactor. IntelliJ IDEA will expand the selection
automatically. This is quite a time saver. You can also pick the symbol in the Project
view, Structure tool window, or the Commander tool window, if you have the
Commander plugin installed.

In the Ultimate edition, if you have the UML plugin installed,
you can select the target in the UML Class diagram.

Having selected your target, pick the desired refactoring action. All of them are
available in the Refactor menu item, or in the context menu that we get by clicking
on the right mouse button, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

As always, it's a lot more convenient to use keyboard shortcuts to pick refactoring
actions. Try to memorize the ones you use the most or pick the first option Refactor
This... from the menu, the result of which is shown in the following screenshot:

The Refactor This... pop-up menu

Use the Ctrl + Shift + Alt + T (PC) or control + T (Mac) keyboard shortcut
to display the pop-up menu with refactoring actions available in the
current context.

Refactoring works together with code analysis; it uses the index that IntelliJ IDEA
built during code scanning. This is the reason why most refactorings are disabled
when IntelliJ IDEA updates its indexes. Naturally, not all of the refactoring actions
are available for all of the chosen targets. For example, you cannot pull a class
member up if the class doesn't have the superclass or interface it implements.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[92]

When you choose any of the refactoring actions, IntelliJ IDEA will analyze the selected
target to check whether the chosen action is possible in the current context. If the
refactoring action is not possible, IntelliJ IDEA will prompt that it cannot be done,
giving detailed information about the reason, as shown in the following screenshot:

On the other hand, if refactoring is possible, most of the time you will be presented
with a supplementary action-specific dialog box with refactoring options.

For certain types of refactoring, the IDE will give you the possibility to preview
the scope of the changes to be made. In the Find Refactoring Preview tool window,
IntelliJ IDEA will list the references that will be changed. You can right-click on
a single item or the whole subtree in the list and exclude it from the refactoring
process, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

To execute refactoring, select the Do Refactor button. To cancel the process, just
hit Cancel.

If IntelliJ IDEA detects that a certain action can cause problems in the source, it
will show the Problems Detected dialog box, giving you a detailed description
of the problem, as shown in the following screenshot:

You can now list the problems in a separate tool window by clicking on the Show
conflicts in view button. This will allow you to investigate the problems found,
exclude some of the changes, cancel the action, or force to do it anyway, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[94]

Depending on the refactoring action chosen, IntelliJ IDEA can display in-place
suggestions in the refactoring prompt. For example, if you decide to execute the
Rename refactoring action, use the corresponding shortcut (Shift + F6 in this case)
and IntelliJ IDEA will suggest some new names for you, as shown in the following
screenshot:

If you use the shortcut again, instead of the in-place prompt, the refactoring options
dialog box will be shown. If you don't like the in-place refactoring options and prefer
to see the dialog box always, the in-place mode can be switched off in the Settings
window in the Editor | General section, as shown in the following screenshot:

Don't be afraid to mess up your code. You can always revert the
refactoring, using Undo from the Edit menu, or by using the Ctrl + Z
(PC) or cmd + Z (Mac) shortcut. It also never hurts to have a version
control system for your project.

Now we know how to select the refactoring target and execute the refactoring
actions. Let's take a look at some of the important and useful refactoring
actions available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

Refactoring actions
There are many different refactoring actions available in IntelliJ IDEA. Let's cover
the important ones first: Rename, Copy, Move, and Safe Delete.

Rename
This is probably the most commonly used refactoring. The target for the rename
action can be any symbol in the source code: class, method, field, method parameter,
or local variable.

To rename, just pick the target and press Shift + F6. This action will start the
in-place prompt, as shown in the following screenshot:

If you use the Shift + F6 shortcut twice, the Rename dialog box will offer additional
options such as searching within comments and text strings, as shown here:

IntelliJ IDEA handles renaming intelligently; it will offer to rename the getter and
setter methods if any of them are found. If the target to be renamed is the name of a
type, the IDE will offer to rename variables of that type, the inheritors, implementing
classes, and corresponding tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[96]

Find and Replace Code Duplicates
According to the don't repeat yourself (DRY) principle, you should avoid code
duplication. Find and Replace Code Duplication refactoring will search code
duplicates for the designated target. First, pick the scope for the duplicates search;
it can be the whole project, a selected module, uncommitted files, or just the current
file, as shown in the following screenshot:

When a duplicate is found, IntelliJ IDEA will show the dialog box with the option
to replace or skip the occurrence, as shown in the following screenshot:

Copy
The Copy refactoring allows you to make a copy of the class selected as the target.
It can be copied into the same package or a new package. The copy will be opened
in the editor, by default. In the dialog box, enter the new name of the class and,
optionally, a different package or directory, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

You can execute the Copy refactoring by applying your OS copy
and paste commands (Ctrl + C or Ctrl + V on PC and cmd + C / cmd
+ V on MAC) to the project tree. You can also use the default copy
shortcut copy, which is F5.

Move
If used on a class, Move refactoring is similar to the Copy refactoring but will move
the selected target to the new package or directory instead of copying it. The default
shortcut for the Move operation is F6.

Move refactoring can also be used to move the static members of a class or static
methods to an other class. In this case, the dialog box will ask for the destination
class and present its visibility pane to give you the opportunity to change the
visibility of the property or method being moved, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[98]

The To (fully qualified name) field has somewhat similar behavior to a standard
editor (it performs code completion so you don't have to type the fully classified
name but just the class name; IntelliJ IDEA will offer a list of proposed classes).
Additionally, if you type the name of a class that doesn't exist yet, IntelliJ IDEA will
propose to create it. The Choose Destination Class window allows you to not only
change the target package/directory but also the source root (for example, to move
a class from the main tree to the test tree), as shown here:

You can execute Move refactoring by dragging the class to the
other package in the project tree.

You can also execute Move refactoring on the whole package. In this case,
IntelliJ IDEA will ask what your intentions are; you can just move the package
or the directory to another source root or move everything to another directory,
as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Move Instance Method
If you decide to execute Move refactoring on the method that is not static,
it will become Move Instance Method refactoring. Move Instance Method is
not available as a separate item in the Refactor menu. IntelliJ IDEA detects that
the method you want to move is the instance method and will present a dialog
box to select an instance parameter and visibility, as shown here:

Safe Delete
The target for delete refactoring can be a class, interface, method, field, or parameter.
IntelliJ IDEA will find all the usages of the specified target within the whole project.
If the object you want to delete is not being used anywhere, IntelliJ IDEA will just
silently remove it. On the other hand, if the object is being referenced somewhere
else in the project, the usages will be presented in the Find usages tool window.
You can inspect the usages and force the deletion from here:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[100]

You can execute Find Safe Delete by selecting the class in the project
tree and using the Alt + Delete (PC) or cmd + delete (MAC) keyboard
shortcut.

Change Signature
Use this action to change the signature of a method. You can change a method's
visibility, name, number of parameters and their types and order, the returned
type, and a list of exceptions the method throws. The default shortcut for Change
Signature is Ctrl + F6 (PC) or cmd + F6 (Mac).

When changing the parameter's type, IntelliJ IDEA will show a list containing the
types found in the current project. Just start entering text to narrow the list down.

At the bottom of the dialog box, there is a rendered preview of what the
method signature would look like after performing the action, as shown
in the following screenshot:

The standard shortcuts (Alt + Insert, Alt + Delete, Alt + the up arrow key, and
Alt + the down arrow key) can be used to insert, delete, move up, and move
down parameters respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Type Migration
Use the Type Migration feature to change the type of the symbol, for example, from
String to Integer. The symbol can be a method parameter or class member. This
feature is really powerful and allows changing all the code related to the changed
symbol to accommodate that type of migration. Select the type you want to migrate
and execute the action. The standard shortcut for this is Ctrl + Shift + F6 (PC) or cmd
+ Shift + F6 (Mac). IntelliJ IDEA will show a dialog box with a drop-down list of
types available, as shown in the following screenshot:

Make Static
The Make Static refactoring can be used to convert a method from being an instance
method to a static method. If you select Add object as a parameter with name,
IntelliJ IDEA will create the static method with a parameter of the same type as the
method's origin class. If you refactor a method, there is also an option to create a
parameter for fields that are referenced from that method instead of passing the
whole object instance.

Be cautious about converting a method so it's static. It's not
considered a good practice to have a static method that changes state.

Convert to Instance Method
This action is the opposite of Make static. Use the action to turn a static method
into a class instance method. The type of the static method parameter will be picked
by IntelliJ IDEA as the target class for the method. You will be asked whether the
visibility of the new method is public, protected, or private.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[102]

Extract refactorings
The largest group of refactoring actions is the Extract group. They are very useful
when restructuring code. If IntelliJ IDEA detects multiple occurrences of the selected
refactoring target, it will offer the option to replace all the found occurrences. Let's
take a look at extract refactorings in detail.

Extract Variable
Extract Variable refactoring, executed with Ctrl + Alt + V (PC) or cmd + option + V
(Mac), will turn the target—the expression selected in the editor—into a variable.
The type of the new variable will be the same type as returned by the expression.
IntelliJ IDEA will propose some meaningful names for the variable to choose from.
If you don't select an expression but just have your caret over one, IntelliJ will ask
you which part of the expression should be converted into a variable. Also, if your
code contains a similar expression to the one that you just converted to a variable,
then IntelliJ will offer to use the newly introduced variable. Additionally, you can
declare the variable as final, as shown here:

Extract Constant
This refractoring is similar to the Extract Variable refactoring, but this time the target
is a code block that can be represented as a constant variable; a number or string,
for example. Again, IntelliJ IDEA will present you with some names to choose from.
You can move the constant variable to another class if you wish to, by selecting the
checkbox in the pop up, as shown in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

In IntelliJ IDEA, pop-ups usually have these checkboxes with the standard
Alt + <UnderscoredLetter> shortcuts available. In our preceding example,
this would be Alt + M.

Execute Extract Constant by using the Ctrl + Alt + C (PC) or cmd + option + C
(Mac) keyboard shortcut.

Extract Field
The target for Extract Field refactoring could be the local variable or expression.
Execute Extract Field refactoring with Ctrl + Alt + F (PC) or cmd + option + F (Mac).
The selection will be transformed to the class field and then initialized. All the
references to the selection will be replaced by the field usage. IntelliJ IDEA will ask
for the place you want to initialize the variable in. It can be the current method, field
declaration, or constructor of the class. If there is no constructor defined in the class,
it will be generated for you, as shown here:

If you execute Extract Field refactoring in the test class, you will have the chance
to initialize the variable in the setUp method as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[104]

Extract Parameter
If you use the Ctrl + Alt + P (PC) or cmd + option + P (Mac) shortcut, Extract
Parameter method refactoring will transform the selected expression or field into the
method parameter. When the method in which the new parameter is introduced is
one of the inherited ones, IntelliJ IDEA will display a pop-up where you confirm the
method you would like to place the new parameter in. This has been shown in the
following screenshot:

IntelliJ IDEA will then scan for usages of the method and present a second dialog
box where you can delegate the method call via the overloading method, as shown
in the following screenshot:

If you press the keyboard shortcut again, you'll be shown a dialog box with more
advanced options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Introduce Parameter Object
When a method has a large number of parameters, it is a good idea to encapsulate
them into a wrapper—parameter object. It will be easier to modify the list of
parameters later, especially where there is a chain of delegating method calls.

In the Introduce Parameter Object dialog box, you will have the choice to create
a new wrapper class or use the existing class. All of the method parameters will
be selected by default, but you can amend the list by checking the appropriate
checkboxes as shown here:

Extract Method
Extract method—executed with Ctrl + Alt + M (PC) or cmd + option + M (Mac)—will
turn a selected block of code into a method and place a call to this method in place
of the selected block. This can be useful when the body of your method is long and
complicated and needs to be broken down into smaller pieces. Duplicated code
fragments are the best candidates to be extracted as a method.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[106]

Variables used in the selection will be analyzed and proposed as a method's input
parameters. This action is opposite to Inline method, which we will describe in a
while. In the dialog box, you provide the method's name. IntelliJ IDEA will suggest
parameter names and their order, but you can change them at will. As with Change
Signature refactoring, there is a preview of the new method's signature available,
as shown in the following screenshot:

The Extract Method object
This is the alternative action for Extract Method and can be used when the method
has multiple return values. The extracted method will be placed in the new object;
it can be the inner or anonymous class. The local variables in the method will be
converted into fields of the new class being created. Consider the following code
example (made to be readable). Before the refactoring, we create a method that
computes something and returns multiple values:

private int calculate (int one, int two, int three) {
 if (three == 0) {
 return 0;
 }
 else {
 return one + two;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

After extracting the method object from the method's body, the new class is created
as shown in the following code snippet:

private class Calculator {
 private int one;
 private int two;
 private int three;

 public Calculator(int one, int two, int three) {
 this.one = one;
 this.two = two;
 this.three = three;
 }

 public int invoke() {
 if (three == 0) {
 return 0;
 }
 else {
 return one + two;
 }
 }
}

The call will be a lot cleaner with just one return point:

private int calculate (int one, int two, int three) {
 return new Calculator(one, two, three).invoke();
}

Delegate
Delegate is Extract Class refactoring. You have probably heard about the single
responsibility principle—S in the SOLID principles. The SOLID principles were
proposed by Robert C. Martin (Uncle Bob). They contain five basic principles
of object-oriented programming and design. You can read more about them at
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod. One of the
principles is that every class should have only one responsibility. Delegate comes
in handy when you need to extract members (fields and methods) to a new class,
thus reducing the responsibility of the original class.

www.it-ebooks.info

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.it-ebooks.info/

Make It Better – Refactoring

[108]

In the following dialog box, specify a name and package for the new class and
select members to extract with their visibility. If you check the Generate accessors
checkbox, setter and getter methods will be generated for the extracted:

As a result of the refactoring action, IntelliJ IDEA will create a new class, instantiate
it in the original class, and then delegate all the required method calls to the new
class. Delegate is the opposite of the Remove Middleman refactoring we will see
in a while.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

Extract Interface
The Extract Interface refactoring creates an interface from the selected class. The
class will be changed to implement this new interface. There are two options here.
You can just extract the interface by providing its name and selecting the methods
and static fields for extraction. You can also rename the original class, so the name
of the interface will be the same as the class name previously. IntelliJ IDEA will then
scan for its usages and try to use the new interface where possible. The scan results
will be presented in the Preview tool window, where you can review the changes
and approve or reject them, as shown in the following screenshot:

You can execute Extract Interface not only on classes, but on
interfaces as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[110]

Extract Superclass
The Extract Superclass refactoring mimics the Extract Interface refactoring but,
instead of an interface, a superclass will be created. The existing class will be amended
to extend the newly created superclass. In the dialog box, select the members you
would like to move to the superclass. Again, we have two options here. The first
option is that we can just extract the superclass. The second option is to rename the
original class, giving the superclass its previous name. IntelliJ IDEA will then scan
for its usages and try to use the superclass where possible:

The Extract Superclass dialog box

Inline
The Inline family of refactorings is the exact opposite of the Extract refactorings.
The target can be a superclass, local field, or method. Execute the Inline
refactoring with Ctrl + Alt + N (PC) or cmd + Option + N (Mac).

If the target you pick is the superclass, IntelliJ IDEA will move all fields from the
superclass into its inheritors. The dialog box will show all the inheritors found and
give you the option to delete the superclass, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

If you pick the field as the target, IntelliJ IDEA will give you the choice to either
make all references inline and then remove the field, or to make the only selected
reference inline and keep the field, as shown in the following screenshot:

The same dialog box with the Inline Method selected is shown in the next screenshot;
you will be able to make all invocations inline and then remove the method:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[112]

Remove Middleman
This is the opposite of the Delegate refactoring. Sometimes, Middleman classes
simply take calls and forward them to other components without doing any work.
This is an unnecessary layer and can be removed with minimal effort in IntelliJ
IDEA. The IDE will analyze the class and, if it detects that a class is being used as a
delegate, it will simply replace all calls to the delegating methods with equivalent
direct calls. To execute this action, place the cursor on the delegate and then select
Remove Middleman from the Refactor menu. If possible, IntelliJ IDEA will offer
to remove the delegating methods if they become obsolete.

Wrap Return Value
The Wrap Return Value refactoring will create a wrapper around the method's
return value. In the additional options dialog box, you can choose to create a
new class or use an existing class, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

Invert Boolean
The Invert Boolean refactoring allows you to quickly invert the logical value of the
variable or method that returns a boolean value. It can be quite useful even when
you have complicated boolean calculations. Take a look at the following example.
Enter the following code before the inversion:

private boolean isValid(int a) {
 return a > 15 && a < 100;
}

Enter the following code after the inversion:

private boolean isValid(int a) {
 return a <= 15 || a >= 100;
}

Inverting a boolean value comes in handy when your variables does not reflect
what is currently happening or when you want to get cleaner method naming
as a preparation for extracting a method.

Pull Members Up or Push Members Down
The Pull Members Up or Push Members Down refactorings are especially useful
to redesign the class hierarchy. Pull Members Up allows you to move members of
a class to the superclass or interface. On the other hand, Push Members Down will
move the class members to a subclass.

In the dialog box, select the members you want to pull up or push down and
preview or apply the changes.

Replace Inheritance With Delegation
Replace Inheritance With Delegation is another class hierarchy refactoring.
IntelliJ IDEA will create a field that refers to an instance of the superclass. Next,
each method defined in the subclass will be amended to use the delegate field.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[114]

If your class uses only a part of its superclass, it may be a good candidate to execute
Replace Inheritance With Delegation on. This way, you promote composition over
inheritance, so the behavior of your class is easier to change later.

In the dialog box, set the field name for the delegate and select the methods
you want to delegate. Additionally, you may generate accessors for the delegate
field, by checking Generate getter for delegated component, as shown in the
following screenshot:

Convert Anonymous Class to Inner
The Convert Anonymous Class to Inner refactoring will simply convert an
anonymous class to a named inner class. If there are any local variables being
accessed in the anonymous class, IntelliJ IDEA will create the constructor for
the inner class and pass the local variables using the constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

Encapsulate Fields
The Encapsulate Fields option will replace direct read and write access to the
selected fields with corresponding getter and setter methods. If there are no accessor
methods present in the class, they will be generated. Otherwise, the existing methods
will be used. In the dialog box, you can choose to encapsulate read or write access
and set the encapsulated field's visibility, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[116]

Replace Constructor with Factory
Method / Builder
Both these refactorings will form a method that will produce the instance of the class.
The constructor calls will then be replaced with calls to this method. The difference is
that Replace Constructor with Factory Method will create the static factory method
and Replace Constructor with Builder will produce the instance method in the new
class or in some other existing class. In the dialog box, you can enter a new class
name or point to the existing class you would like to create the method in, as shown
in the following screenshot:

Generify
The Generify option will transform source code that does not use Java generics in
the code that does. IntelliJ IDEA will analyze the code and, according to the options
selected, will introduce generic types into the selected class. In the Generify options
dialog box, you can customize refactoring action behavior such as dropping obsolete
casts and producing wildcard types, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

As usual, nothing beats using keyboard shortcuts when it comes to performance,
so let's summarize refactoring keyboard shortcuts in the following table:

Action PC shortcut Mac shortcut
Copy F5 F5
Move F6 F6
Safe delete Alt + Delete cmd + delete
Rename Shift + F6 Shift + F6
Type Migration Ctrl + Shift + F6 cmd + Shift + F6
Change Signature Ctrl + F6 cmd + F6
Inline Ctrl + Alt + N cmd + option + N
Extract Method Ctrl + Alt + M cmd + option + M
Introduce Variable Ctrl + Alt + V cmd + option + V
Introduce Field Ctrl + Alt + F cmd + option + F
Introduce Constant Ctrl + Alt + C cmd + option + C
Introduce Parameter Ctrl + Alt + P cmd + option + P

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Better – Refactoring

[118]

Summary
In this chapter, we covered powerful refactoring functionalities in IntelliJ IDEA.
By now, you should have a fairly good idea what refactoring in IntelliJ IDEA
is all about. Using the actions from the refactoring toolset will help you make
code cleaner, more maintainable, and easy to extend. Thanks to its advanced
code analysis, IntelliJ IDEA can perform most refactorings automatically, saving
significant time. However, it's not only about the speed but also about the confidence
you can have with the IDE altering your source code. Most of the time, automatic
refactorings performed in IntelliJ IDEA are smart and safe.

Feel free to experiment by selecting targets and refactoring actions. Remember that
you can always undo.

Now you know how to make your code refactored and clean, so the next step
will be to run it. We will do this in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running
Your Project

In IntelliJ IDEA, you can run or debug your project in numerous ways. In this chapter,
we will focus on creating runtime configurations and explain its options. We will cover
topics such as running a standalone application, a web application using the Tomcat
server, and to step out of the Java world for a while, the Node.js application. This
chapter will give you an overview of the configuration dialog boxes and make it easier
for you to create your own configurations.

Each run or debug configuration is the named set of parameters IntelliJ IDEA will use
to run your application. The IDE comes with some predefined settings. By installing
the corresponding plugin, you can extend the IDE runtime features even further. We
covered the installing process of plugins in Chapter 1, Get to Know Your IDE Fast.

The run/debug configurations in IntelliJ IDEA are categorized into temporary
and permanent. Let's start with the temporary one because this is the type of
run configuration that you will probably work with most often.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[120]

A temporary configuration
The temporary setup is created by the selected environment when you select Run
or Debug on a particular element, such as a Java class or test class for example. To
create a temporary configuration, use the Ctrl + Shift + F10 (PC) or control + Shift + R
(Mac) shortcuts, or just right-click on a particular element and select Run or Debug
from the context menu, as shown in the following screenshot:

You can also create a temporary configuration by right-clicking on a single test
method, a main method in the editor window, or a Maven target in the Maven
sidebar window. After executing the temporary profile for the first time, it gets
added in the Run menu, along with your permanent configurations, as shown in
the following screenshot. Take note that the icon of the temporary configuration
will be semitransparent to easily distinguish it from the permanent configuration
that we will describe in a while.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

By default, IntelliJ IDEA will store up to five different temporary configurations. They
will persist across restarts.

It is usually much more efficient to start with a temporary run
configuration and convert it into a permanent one later. You can get a
90 percent complete configuration by right-clicking somewhere in your
code and selecting the Run… entry in the context menu. Starting from
here will take much less time than starting from scratch.

At any time, the temporary configuration can be converted to a permanent one by
using the Save Configuration item in the Run drop-down menu. Let's talk about the
permanent configurations now.

The permanent configuration
To edit configurations, open the Edit Configurations screen from the Run menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[122]

The Edit Configurations screen will open. On the left pane, there is the list of
created configurations contained within the groups. To create a new configuration
setup, click on the green plus icon (+) or use the Alt + Insert (PC) or cmd + N (Mac)
keyboard shortcut:

The list of possible configuration types depends on the installed plugins. If you
cannot find the specific type, install the corresponding plugin first. To give you
an overview of how to create runtime or debug configuration, we will define the
standard Java application profile now.

The Run/Debug configuration for a Java
application
Select Application from the Add New Configuration list to see your new Unnamed
configuration in the Application group. On the pane towards the right of the dialog
box, the IDE will present the details of the newly created configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

In the Name field, you give the configuration a name under which the configuration
will be available later in the Run drop-down menu:

If you select the Single instance only checkbox every time your run your project,
IntelliJ IDEA will check whether there is a configuration of that type already
running. If so, the IDE will display the confirmation dialog box asking whether
you want to stop the currently running instance and execute it again:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[124]

This can be useful especially if the runtime configuration uses resources that can be
allocated only one at a time, such as the listening ports in the web server.

The Share checkbox allows you to share your configuration. We'll talk more about
sharing configurations later in this chapter.

In the Main class field, you specify the fully qualified name of the class to be executed,
which contains the main() method. Using the Shift + Enter keyboard shortcut will
bring out the Choose Main Class dialog box, helping you find a specific class.

The Shift + Enter keyboard shortcut works in all these text fields
that have a small button next to them, which pops up an additional
window to insert data.

You can search for a class by name or in the project tree. As usual, just start entering
the text to narrow the list down:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

If you need to pass VM options to the executing application, use the VM options
field. Separate multiple options with a space. The button after the VM options text
field will open up a small dialog box where you can edit VM options line by line.
This is useful if you have many VM options to edit. IntelliJ IDEA will pass those
VM options to the Java Virtual Machine just before executing the application, for
example -Xmx1024m or –Dlogback.configurationFile, as shown here:

If the VM options text box includes spaces, enclose the argument in
double quotes. If the option includes double quotes, escape them with
backslashes.

By default, the working directory of the application will be the directory containing
the project file. This directory will be the base for all relative input and output file
paths. To select another directory, use the Working directory field or click on the
Browse button as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[126]

As you already know from Chapter 2, Off We Go – To the Code, the project structure
consists of the modules. The Use classpath of module drop-down list allows you
to select the module that the classpath of IntelliJ IDEA will use to execute the
application, as shown in the following screenshot:

The configuration dialog box allows you to specify an alternative JRE to be used with
this specific run/debug configuration. To use this feature, mark the Use alternative
JRE checkbox and pick the desired runtime environment from the list, as shown in
the following screenshot:

If you want some specific tasks to be executed before running the profile, use the
Before launch section of the dialog box. By default, the only task before executing
the application is the Make task. IntelliJ IDEA will automatically make the project
before launching. The other options include executing the external tool or Maven
task, for example. Any other configuration can be executed before as well. You can
add multiple items to the list and reorder them. The possibilities are endless here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

In the Logs tab, you can specify which of the log files generated by the running
application should be displayed in the console. By default, IntelliJ IDEA will display
a standard output on the console, but you can add a specific logfile to be shown
in the console as well. To add a log file, just use the Alt + Insert keyboard shortcut,
create an alias, and select the file to be included in the console output as shown here:

To activate the output console and bring it forward if an associated process writes to
Standard.out or Standard.err, select the corresponding checkboxes as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[128]

This was the general Java application setup. To give you an idea of how to configure
different types of runtime configurations, let's take a look at how to configure the
web application profile using the local Tomcat server as an example.

Creating a Tomcat server local configuration
The Ultimate edition of IntelliJ IDEA is capable of running your projects using
different application servers. To create a local Tomcat server configuration,
select Tomcat/Local from the Add New Configuration pane of the Run/Debug
Configurations dialog box, as shown in the following screenshot:

This time, the details pane of the configuration will be specific to the Tomcat server,
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Again, you provide the configuration name. This name will then be present in the
Run menu.

In the Server tab, you can configure VM options and the ports Tomcat will be
listening on. You can also specify the action that will be taken when updating the
web application on the server or the frame deactivation. The frame deactivation
switches from IntelliJ IDEA to a different application.

Choose Update classes and resources on the frame deactivation to have
the classes and resources of your application reloaded automatically
when you switch from IntelliJ IDEA to the web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[130]

In the Application server drop-down list, there are instances of the configured
Tomcat application servers. If needed, the new application server can be added to
the list using the Configure button. Click on the button and point to your local server
installation directory. IntelliJ IDEA will then pick up the required libraries and create
the application server instance in the IDE, as shown in the following screenshot:

It may be convenient to have the web browser of your choice started with the URL
of your application. To do this automatically, check the After launch checkbox as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

On the second Deployment tab, you can specify what will be deployed on the
chosen server during startup. In the Tomcat server, the external source or the artifact
can be deployed. We were talking about artifacts in Chapter 2, Off We Go – To the
Code. To add the item to be deployed, use the Alt + Insert shortcut or click on the
green plus icon (+). You can specify under which context URL each artifact should
be deployed in the Tomcat application server, as shown in the following screenshot:

The Logs tab is very similar to the tab we saw in the normal Java application profile.
This time, however, we have some predefined logfiles present in the list, taken from
the chosen Tomcat application server picked in the first tab as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[132]

Finally, the last tab, Startup/Connection, allows you to tweak the application server
startup and shutdown routines. The default scripts presented here are usually
very good out of the box, but if you want to change the procedure, just uncheck
the Use default checkbox and provide your own scripts, as shown in the following
screenshot. IntelliJ IDEA will use these scripts to launch and stop the server.

We covered setting up the runtime configuration of the local Tomcat server. From
now on, you can easily develop, run, and debug Java web applications. However,
IntelliJ IDEA is not only about Java. If you have a corresponding plugin installed,
you can create runtime configuration profiles for other technologies and languages
as well. Let's take a look at how to create the Node.js runtime setup as an example.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

The Node.js configuration
Pick Node.js from the list of available configuration templates:

Node.js is totally different from Java, so the runtime/debug configuration dialog
box is totally different as well. Only some of the possible options are common with
the other runtime configurations: the configuration name, the Before launch section
mentioned earlier, and the Share/Single instance only option.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[134]

In the corresponding fields, you need to point to the node interpreter installed locally
to set up the working directory. In the JavaScript file field, you should enter the
application's starting point file that you want IntelliJ IDEA to execute. Type the paths
manually or use the "browsing" buttons on the right.

If your Node.js application has the web/HTML user interface, you can make
IntelliJ IDEA run the web browser of your choice in the second tab, which is
Browser / Live Edit.

If you end up having many run/debug configurations, you can create folders in the
Run/Debug Configurations dialog box and organize them.

You can organize your configurations by moving them into
the folders by dragging them using the mouse.

In Run/Debug Configurations, one of the groups is the special group. This is the
Defaults group, which we will discuss now.

Configuration defaults
In the Defaults group, you can edit the default configuration options that IntelliJ
IDEA will copy later to every specific configuration you create. Actually, changing
the default settings is rarely needed, but in case you need to do this, the IDE gives
you this possibility. Take note that these changes are applied to newly created
configurations only.

The settings defined in the Defaults node of the Run/Debug
Configurations dialog box will be used in permanent and
temporary configurations.

To create the default setup, expand the Defaults node, select the desired runtime
type and fill out the form towards the right hand side of the on-screen window. For
example, if you select the Default/Application configuration, you can edit Java VM
options or environment variables that IntelliJ IDEA will then duplicate to every new
profile, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Note that the list of available default configuration types reflects the possible
configuration types you can create and depends on the plugins you installed.

Sharing the configuration
If you decide to share your runtime or debug setup and make it available to the other
team members, select the Share checkbox as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[136]

If you mark the Share checkbox and the directory-based format is used, IntelliJ IDEA
will save the run/debug configuration in a separate file in the runConfiguration
folder. On the other hand, if you use the file-based format, the runtime/debug
configuration will be saved in the .ipr file. You can throw the runtime configuration
into the version control then.

If you have your run/debug configuration defined, it's time to run the application.

Running
To run the specific run/debug configuration, pick it from the Run drop-down menu
and choose Run from the toolbar or hit the Shift + F10 (PC) or control + R (Mac)
keyboard shortcut.

You can also use Alt + Shift + F10 (PC) or control + Option + R (Mac) to see a
handy pop up with all the defined configurations for you to pick and then run.
Additionally, the first item on the pop up is Edit Configurations…, which is a
nice shortcut to open the Run/Debug configuration dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

The results of the launch will be presented in the Run tool window, which is placed
at the bottom of the workspace by default, as shown in the following screenshot:

The largest part of the Run tool window is occupied by the Console view (in case
of a standalone Java application) or the Output view (in case of a web application).
The standard output will presented here. The buttons on the left side of the Console
or Output view allow clearing the view, toggling the line wrapping, or printing the
content. If you had specified the additional log files in the configuration dialog box,
the log files will be presented in the corresponding tabs.

Displaying many logs in the console impacts performance—it will slow
down the execution of your application.

The buttons towards the left will let you stop, restart, or pause the execution and also
pin the Run tool window.

The pinned results of a previous run will not be overwritten by a new
run. This is especially helpful when running unit tests as you can run all
the tests, pin the test results, and then fix failing tests one by one without
losing the information about the tests that still need to be fixed.

On the other hand, the Debug tool window is a little bit more complicated; we will
cover it in detail in Chapter 8, Squash'em – The Debugger.

www.it-ebooks.info

http://www.it-ebooks.info/

Make It Happen – Running Your Project

[138]

Summary
In this chapter, you learned how to create runtime or debug configurations for your
project. The configuration editor in IntelliJ IDEA is very flexible and allows you to
freely tweak runtime parameters, environment variables, and options.

Until now, you used the automatic build process supported by the IDE. In the next
chapter, you will learn how to make IntelliJ IDEA use the build files we provide
using Maven or Gradle.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Project
You can build and package your project in several ways in IntelliJ IDEA. In this
chapter, we will focus on building a project using external tools like Maven and
Gradle. Maven is the industry standard to build Java projects nowadays, so we
will focus our attention on it and discuss how IntelliJ IDEA makes your work
with Maven more simple and intuitive. The Maven build file is a first-class citizen
in IntelliJ IDEA. The best thing is that if you use Maven or Gradle to build your
application in IntelliJ IDEA, you will be able to build the project outside of the IDE
as well. If you are new to Maven, check out their website at http://maven.apache.
org, and for Gradle, take a look at http://www.gradle.org.

We will cover the following topics in this chapter:

•	 Editing Maven settings
•	 The Maven tool window
•	 Executing Maven goals and plugins
•	 Editing Gradle settings
•	 Executing Gradle tasks

We already mentioned how to import the Maven project and manage its dependencies
in Chapter 2, Off We Go – To the Code. Let's take a closer look at how to edit Maven
settings and how to actually execute the build or single tasks.

www.it-ebooks.info

http://maven.apache.org
http://maven.apache.org
http://www.gradle.org
http://www.it-ebooks.info/

Building Your Project

[140]

Editing Maven settings
The Maven project settings can be configured at two levels: for the current project
and the project template. For the current project, select Settings from File (PC) or
navigate to IDEA | Preferences (Mac). The settings dialog box will pop up, where
you need to navigate to Build, Execution, Deployment | Build Tools | Maven, as
shown in the following screenshot:

You can also start typing Maven in the search box in the Settings dialog
box to quickly go to the Maven settings page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

If you want to define settings for the default project template, choose Maven by
navigating to File | Other Settings | Default Settings. These settings will be
used as the default settings every time a Maven project is imported or a new
Maven module is created. Most of the settings are the equivalents for the Maven
command-line switches.

Let's now examine the Maven settings in detail. On each launch, Maven looks into
the remote repositories and checks for updates. Executing a Maven goal can result
in downloading new archives. To avoid this behavior, check Work offline. Maven
will then use resources that are only available locally. If something is missing, it will
report the problems. The Work offline checkbox is the equivalent of the --offline
Maven switch command line.

The offline mode is useful when you need to work offline or when your
network connection is slow.

IntelliJ IDEA determines the Maven home directory from the M2_HOME environment
variable. This can be overridden by selecting the Override checkbox and entering a
fully qualified name for the Maven installation directory. You can also browse for the
location using the ellipsis browse button. The Maven settings IntelliJ IDEA will use
are taken from the settings.xml file in the .m2 folder of your home directory. If you
need to specify other settings for the project, check the Override checkbox again and
provide another location for the settings.xml file.

The local Maven repository refers to a copy on your own installation, which is a cache
of the remote downloads and temporary build artifacts that are not yet released. By
default, it resides in the Repository folder in the .m2 folder of your home directory.
To override the location, mark the Override checkbox and provide the other location.

To set the policy to deal with checksum matching while downloading the artifacts,
use the Checksum Policy option. The Fail value, which is equivalent to the
--strict-checksums command-line option, will fail the download if the checksums
do not match. If you just want a warning to be printed, set it to the Warn value
(equal to --lax-checksums).

Two options can be useful if you have a multiproject build file. The first one, Execute
goals recursively, enabled by default, makes the build recur into the nested projects.
On the contrary, if you uncheck this option, Maven will behave like it behaves with
the --non-recursive command-line switch.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Project

[142]

The second option, Multiproject build fail policy, specifies how Maven should
behave in the case of a build failure: at the very first failure (the--fail-fast
command-line option) or Fail at the end (the--fail-at-end command-line option).
The last value, Ignore failures (the--fail-never command-line option), will make
the build process never fail, regardless of the result.

If you want the output of the build process to be more verbose, two options can come
in handy (they are basically the –X switch of Maven):

•	 Print exception stack traces will make Maven generate the complete stack
trace in the case of a failure.

•	 Output level will set the Maven logger to the desired level, with the Debug
value being the most verbose.

Sometimes a specific version of the plugins is needed to build your project. In such
cases, you can make Maven use the plugin registry. The plugin registry configuration
is located usually in plugin-registry.xml in the .m2 folder. This configuration is
disabled by default. To enable it, check the Use plugin registry checkbox. Refer to
the Maven documentation to get details about the plugin registry.

To make IntelliJ IDEA always update fresh snapshots from
the remote repository, check the Always update snapshots
checkbox. This is inadvisable when you are using a project
with many snapshot dependencies. Downloading new
snapshots on every build will take a lot of time.

If your project is huge and you would like to speed up the build process, you may
try using a parallelized build. To do this, provide a value in the Threads (-T option)
field. This is equivalent to the –T Maven option. The performance boost depends
deeply on your module structure, but according to the Maven documentation, 20 to
50 percent speed improvement is quite common. Use the number as a parameter to
provide the number of threads to be run or use the C option to provide the number
of threads per core. For example, -T 4 will execute the build with four threads and
using -T 1C will execute the build with one thread per CPU core.

If your build runs slowly, consider executing it with
more threads.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

On the Ignored Files page, you can specify the file types and individual files that
will not be included in the build process.

The Import page is identical to the one displayed when you import your project from
the Maven model. If you mark Keep projects files in and specify the directory, IntelliJ
IDEA will create.iml and .idea in the specified directory. This option is not selected
by default; IntelliJ IDEA will create its project files next to the pom.xml files. If Create
module groups for multi-module Maven projects is selected, IntelliJ IDEA will create
a module group from the parent Maven project with the nested modules included in
the group. As you may remember, the Import Maven projects automatically option
will force IntelliJ IDEA to automatically synchronize its own project structure each
time your pom.xml is modified.

The Runner page gives you the possibility to tweak the external Maven configuration
that will be used to run goals. For example, you can pick the JRE that will be used to
execute the build goal. You can also specify Java VM options that will be passed to
this JRE.

As usual, if the VM option contains spaces, wrap the spaces or the
argument that contains them with double quotes. If an option includes
double quotes, avoid the double quotes with backslashes.

The Skip tests option is the equivalent of the Maven -Dmaven.test.skip=true
command-line switch and will result, as the name suggests, in no test being executed
during the build.

The last page of the Maven settings dialog box is the list of local and remote
repositories. The table shows the list of repositories discovered in the loaded project.
Here, you can find the URLs of the local and remote repositories, type (local or
remote), and the date of the latest update.

Now that we have explained our Maven options, let's take a look at the Maven
tool window.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Project

[144]

The Maven tool window
If you work with Maven projects, the Maven tool window will probably be one of
your most used windows. You can use it to run Maven goals, execute plugins, and
browse the dependencies. Execute the Maven tool window by navigating to View |
Tool Windows as shown here:

We will now use this tool window to execute Maven goals and plugins.

Running Maven goals
In IntelliJ IDEA, you can run specific Maven goals in two ways: either by creating the
run/debug configuration or running it directly from the Maven tool window. To run
the selected goal, expand the Lifecycle branch in the Maven tool window and choose
Run Maven Build from the context menu, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

If you choose Create from the context menu, the permanent run configuration to
run this goal will be produced. The Create Run/Debug configuration will show up,
allowing you to tweak the parameters of the newly created run configuration.

Basically, you need to create a permanent run configuration for a
Maven goal if you try to run that goal with non-standard options
(for example, if you need to add certain parameters).

On the other hand, picking Run or Debug will execute the build and then create
a temporary configuration you can save later as a permanent one. We described
temporary and permanent configurations in detail in the previous chapter. Refer
to this chapter for directions on how to deal with the Run/Debug configurations.

You can also run a specific goal by selecting it and pressing the Ctrl + Shift + F10
(PC) or control + Shift + R (Mac) keyboard shortcut.

You can assign your own keyboard shortcut to run a
specific goal.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Project

[146]

To create a shortcut, select Assign shortcut… from the menu. In the Keymap dialog
box, the selected goal will be highlighted; pick the desired shortcut type from the
context menu, as shown in the following screenshot:

As well as running goals, you can also execute Maven plugins defined in the pom.
xml file. Just expand the Plugins branch of the module tree, select the desired plugin,
and then pick the action from the context menu. The same rules as the running goals
apply here; Run Maven Build will just execute the plugin, Create will create the
permanent configuration, and Run or Debug will create the temporary run or debug
configuration:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

The result of the goal or plugin execution will be presented in the Run tool window,
as shown here:

The goal execution window is the typical Run tool window we described in the
previous chapter. It will present the whole build process output with the build
summary at the end. Basically, this is the exact output you would get if you
execute Maven from outside IntelliJ IDEA in the OS shell.

You can also use the embedded terminal in IntelliJ IDEA to execute
Maven goals. Make sure you have the terminal plugin enabled.

The Maven tool window can also be used to download documentation and source
codes for the dependencies defined in the pom.xml file. To download sources or
documentation, select the toolbar icon in the Maven tool window, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Project

[148]

To download sources or documentation for individual dependencies, expand
the Dependencies branch and pick the desired action from the context menu as
shown here:

Downloaded sources and documentation will then be used by IntelliJ IDEA to
provide completion and Javadoc hints in the editor.

Now that we have covered Maven in IntelliJ IDEA, let's take a look at the alternative
build tool, Gradle. Gradle, powered by the Groovy language, is quickly becoming
the build system of choice for many open source and commercial projects. IntelliJ
IDEA supports Gradle in a similar way it supports Maven.

Using Gradle
To use Gradle, you must first enable the Gradle and Groovy plugins in the IDE
settings. Refer to Chapter 1, Get to Know Your IDE, Fast, for information on how to
enable the required plugins.

The second thing you need to do is link your project to the Gradle project. If an
IntelliJ IDEA project is not linked to a Gradle project, then the Gradle tool window
will be disabled and IntelliJ IDEA will display the prompt:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

Select Import Gradle project, point to build.gradle, and you are all set. The Gradle
tool window will become available. Later, if you decide to change the Gradle settings
for the project, you can do so by picking Settings from the File (PC) menu or by
navigating to IDEA | Preferences (Mac) and then to Build, Execution, Deployment
| Build Tools | Gradle. The Gradle configuration settings window will show up
as follows:

Start typing Gradle in the search box in the Settings dialog box to
quickly go to the Gradle settings page.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Project

[150]

In the Gradle window, you specify the Gradle project settings. Select the Use
auto-import checkbox to make IntelliJ IDEA determine all the changes made
to the Gradle project automatically every time you refresh your project.

In the Gradle world, the Gradle wrapper is the preferred way to start a Gradle build.
The wrapper is a batch script on Windows, and a shell script for other operating
systems. Checking the value of Use gradle wrapper (recommended) will make
IntelliJ IDEA start a Gradle build via the wrapper. Gradle will then be automatically
downloaded and used to run the build. On the other hand, Use customizable gradle
wrapper will allow you to use the custom Gradle wrapper.

Similar to Maven, the Offline work switch will make Gradle work offline. The
needed dependencies will be taken from the cache, and if any required dependency
is not present in the cache, the build will fail.

IntelliJ IDEA determines the Gradle installation path from the GRADLE_HOME or PATH
environment variables. If you would like to override the location, click on the browse
button in the Gradle home field and point to the location or specify the fully qualified
path to your Gradle installation manually.

Use the Gradle VM options field to pass additional options to the JRE running Gradle.
Again, wrap spaces in double quotes and avoid double quotes with backslashes.

Executing Gradle tasks
In the Gradle tool window, double-click on your linked Gradle project to expand the
branch with the Gradle tasks available. Double-clicking on the task will execute it.
You can also click on the task using the right-mouse button and select Run or Debug
from the context menu or use the Ctrl + Shift + F10 (PC) or control + Shift + R (Mac)
keyboard shortcut; the screen will look as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

As with Maven goals, a specific Gradle task can be used to create a permanent
run/debug configuration. Just pick Create… from the context menu to open the
Create Run/Debug Configuration dialog box.

If you run or debug the Gradle task, it will be listed on the Recent tasks list for
your convenience at the top of the Gradle tool window:

You can run a task by selecting it and using the Ctrl + Shift + F10 (PC) or
control + Shift + R (Mac) keyboard shortcut or by double-clicking on it.

The output of executing the task—as with the Maven output—will be presented
in the typical Run tool window.

Summary
In this chapter, you learned how to use Maven and Gradle to build your project.
You can now execute the build process or pick a single goal or plugin to be executed.
Maven and Gradle are the most powerful build tools, and having them integrated in
the IDE makes using them a lot more convenient.

The next chapter will cover testing. IntelliJ IDEA is designed to support developers
and teams who incorporate unit testing in their software development practices.
We will create and execute unit tests using JUnit and TestNG.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green?
Test Your Code

Usually, we run our unit tests from the build script. However, having the possibility
to run them from the IDE can come in handy—one can jump to the failing class
and start fixing bugs in no time. In IntelliJ IDEA, you can test your applications
using multiple test frameworks. In this chapter, we will focus on installing plugins
to test libraries, create tests, and set the runtime configuration to run them. After
reading this chapter, you will be able to execute unit tests and include them in your
workflow. Let's start with activating the needed plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[154]

Enabling the testing plugins
Before you start, make sure you have the needed plugins installed and activated.
Plugins for the most common testing libraries, such as JUnit, TestNG, and Karma
are bundled in IntelliJ IDEA. Make sure that you have them activated in the Plugins
dialog box in Settings:

If you skipped the installation of these plugins when you set up the IDE, click on
Install Jetbrains plugin, select Unit Testing from the Category drop-down menu,
and install them as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

There are many other plugins used for unit testing coming from third-party authors.
Click on Browse repositories, select Unit Testing from the Category drop-down
menu, and install the desired plugin, as shown in the following screenshot. There
is a big chance you will find the plugin to test a library of your choice—even the
exotic one.

If you install a plugin for a specific framework, IntelliJ IDEA will provide support for
it. This will include code completion, the ability to create run/debug configurations to
run tests (all tests in a directory, specified test classes, or individual test methods).

Please refer to the first chapter for a general guide on how to manage
your installed plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[156]

Creating the test
To create the unit test for your class, choose Test from the Navigate menu.
Alternatively, you can use the Ctrl + Shift + T (PC) or cmd + Shift + T (Mac) keyboard
shortcut. If the class you have open in the editor doesn't have any unit tests, the
Create New Test dialog box will pop up asking you to create one as shown here:

Depending on the plugins installed, the Testing library list will differ. Select the
desired library from the list. The libraries for JUnit and TestNG are shipped with
IntelliJ IDEA. Unless you have the testing dependencies defined in your Maven build
file, these libraries will not be included in the classpath of your project or module by
default. IntelliJ IDEA will warn you about this—you can fix this by clicking on the
Fix button. The needed library will then be included to the module classpath. If you
skip this step, the references to the testing library classes and annotations will not be
resolved. In this case, you can do it later in the editor, which we will cover later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

In Class name, provide the class name for the unit test. IntelliJ IDEA will add the
Test suffix by default. The destination package will be set to the same as the package
of the class to be tested. In Java, this will allow you to have packaged and protected
level access to variables, methods, and constructors of the tested class.

Depending on the style of tests that you are creating, accessing package
and protected level variables, methods, and constructors may or may
not be a good idea. You should be careful not to tie your unit tests too
much to the implementation details of the class as this will make your
tests very brittle.

The dialog box will list all the public and protected methods in the class. Select the
ones you want to write tests for.

You can mark the Generate checkboxes to set up and tear down methods that have
been generated. If you click on OK, a new class will be created with empty methods,
ready for you to fill the test method bodies, as shown in the following screenshot:

Usually, you will have more than one method in your test class testing a
single method of your class under test. Trying to fit everything into a
single method will make your tests hard to maintain and understand.

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[158]

If you use the Alt + Insert keyboard shortcut inside the test class, you'll be presented
with quite an extensive list of typical methods found in test classes that can be
autogenerated for you by IntelliJ IDEA, as shown in the following screenshot:

IntelliJ IDEA supports the reverse scenario (the TDD-like one). You can first create
a test class and then use IntelliJ IDEA intentions (such as create class, create method,
and others) on non-existing (highlighted in red) pieces of test code that you wrote to
create these objects (production classes and methods).

If your monitor has a high enough resolution, another really useful
technique when writing tests in a TDD manner is splitting the screen
into two halves (Split Vertically) and having your test code in the left
window and your production code in the right one. Also, in this case,
defining additional shortcuts to split and jump between the previous
and next splits is very useful.

You switch back to the class being tested by using the Ctrl + Shift + T (PC) or cmd +
Shift + T (Mac) keyboard shortcut. This will give you an option to create another test
for the class or navigate to the test you just created, as shown here:

Using Ctrl + Shift + T (PC) or cmd + Shift + T (Mac) is a very convenient
way to navigate between the class and its unit tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

If you decided not to include the testing library using the Create Test dialog box,
you can do it now in the editor. Place the cursor on the unrecognized reference and
press Alt + Enter. The intention drop-down menu will pop up where you can select
Add library from the list. IDEA will automatically add the necessary library to the
classpath, as shown in the following screenshot:

Another way to create a unit test for the class is by using the Create Test intention
action. This intention action is available in the editor when the cursor is within the
line containing the declaration of a class. Navigate to the class you want to test in
the editor, place the cursor within the line containing the class declaration, and press
Alt + Enter to show the list of the intention actions as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[160]

Now choose Create Test from the suggestion list to see the same Create Test dialog
box we described earlier.

When writing tests, it is really useful to have templates for very
common things such as assertions and setting up the mock objects.
IntelliJ IDEA comes with a really brilliant templating feature that
allows you to make IntelliJ IDEA really smart and context-sensitive; for
example, for assertions that are based on the context propose objects.
Refer to Chapter 3, The Editor, for directions on how to create templates.

Creating a run/debug configuration for
the test
In general, IntelliJ IDEA runs and debugs tests in the same way as every other
application. The run/debug configuration setup is almost identical to the one we
described in Chapter 5, Make It Happen – Running Your Project. When the run/debug
configuration is created, IntelliJ IDEA passes the individual test classes or methods
to the test runner.

The run/debug configuration can be shaped in a number of ways. The first method
is to pick the Edit Configurations… option from the run configuration's drop-down
menu, as shown in the following screenshot:

Now you can either click on the green plus icon or use the Alt + Insert (PC) or cmd
+ N (Mac) keyboard shortcut. From the list of available run/debug configuration
templates, choose the desired test runner configuration as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[161]

A new unnamed configuration will be created (shown in the following screenshot)
allowing you to specify more detailed settings:

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[162]

The options will differ according to the testing framework selected, but most of them
have the same meaning. In Test kind, you can specify what exactly you want to
run using this configuration. It can be just a single method in the test class, all tests
in the class, all tests in the package, or all tests in the directory. If you choose All
in package and then the In whole project option, IntelliJ IDEA will run tests in all
modules of the current project and also include the test you will create in the future.

Choosing All in package or All in directory allows you
to run multiple test classes under a single run/debug
configuration and thus, declutters your run/debug list.

The other options in this dialog box have the same meaning as when you configure
a normal application. VM Options will make IntelliJ IDEA pass a specified string to
the VM to launch the tests. Take note that the -classpath option specified in this
field overrides the classpath of the module.

The Working directory text box specifies the current directory to be used when
running a test. This directory defines the starting point for all relative input and
output paths.

When needed, the additional environment variables can be passed to the Java virtual
machine during the test execution. Place them in the Environment variables field.

You can also specify an alternative JRE to run the tests. You usually want your tests to
be run in the same Java environment where the classes are being tested. This option,
however, allows you to run the same compiled codebase against multiple versions of
JRE, which is really useful for applications that support multiple Java versions.

Defining the test run configuration by hand is not very convenient. As you may
remember from Chapter 5, Make It Happen – Running Your Project, the easier way to
create a run configuration is to begin with a temporary one. You can create a test
runtime configuration by right-clicking on the test class in the Project tool window
and picking the Run or Debug item from the context menu, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[163]

Running the test this way will create a temporary runtime configuration. The
temporary configuration will have a semitransparent icon in the configurations
list. To save a temporary configuration, choose Save from the context menu or the
runtime configurations drop-down menu, as shown in the following screenshot:

It is also possible to create a run/debug configuration just for a single method in the
test class. To do this, open the test class in the editor, place the cursor inside the body
of the method you want to create the configuration for, right-click, and then pick
Create from the context menu as shown here:

This will also create a temporary runtime configuration; this time for a single test
method only.

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[164]

If you want to create the configuration for multiple tests, the same can be achieved
by right-clicking on the same directory in the Project tool window and selecting Run
all tests.

You can also use the Ctrl + Shift + F10 (PC) or control + Shift + R
(Mac) shortcut. It's much quicker—the same shortcut can be used
on every level (project, source root, package, class, and method). It
makes life much easier when you don't have to use the mouse and
you don't have to manually create configurations every time.

Now that we have the test runtime configuration defined, let's execute some tests.
The test results will be presented in the tool window we have seen before: the Run
tool window with the tests results tab.

Running or debugging the test
To start running the test, pick the run configuration you created from the drop-down
menu as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[165]

Next, click on the Run icon, select Run from the Run menu, or just use the
Shift + F10 (PC) or control + R (Mac) keyboard shortcut, as you would do with
an ordinary application.

To see the list of available configurations and swiftly select the one you
want, use the following keyboard shortcuts: Shift + Alt + F10 (PC) or
control + option + R (Mac) for the run configurations, or Shift + Alt + F9
(PC) or control + option + D (Mac) for the debug configurations.

During the execution, the progress bar will show the percentage of tests executed
so far.

The test runner status bar indicates whether the tests have passed successfully. It
will be green if everything passes and will turn red if at least one of the tests fails.

Sometimes there's a need to debug the test execution. You can debug the test in
the same way as you do with every other debug configuration; select it from the
configurations drop-down menu and choose Debug. Alternatively, just use the
Shift + F9 (PC) or control + D (Mac) keyboard shortcut. If the debugger stops on
the breakpoint, you will be presented with the Debugger tool window, as shown
in the following screenshot:

We will cover debugging in detail in Chapter 8, Squash'em – The Debugger.

After execution, the tests results will be presented in the Run tool window we know
from Chapter 5, Make It Happen – Running Your Project. This time, the tool window
will be a little different; it will contain options and views specific to testing. On
the left pane, you can see the list of tests executed; you can expand the list to see a
particular test's methods. You can navigate the tests in this pane by using the up
arrow and down arrow keys on the keyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[166]

To quickly navigate between failing tests only, use the Ctrl + Alt + the up
arrow key (PC) or cmd + option + the up arrow key (Mac), and Ctrl + Alt +
the down arrow key (PC) or cmd + option + the down arrow key (Mac)
keyboard shortcuts.

In the right pane of the tool window, there is a console with the test output as shown
in the following screenshot:

After executing the tests, the message on the IntelliJ IDEA's status bar informs you
about the number of failed tests and elapsed time as shown here:

The test runner tab contains the menu with some useful options; open it using the
blue cog icon in the toolbar, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[167]

It's good to have Select First Failed Test When Finished and Open
Source at Exception checked to quickly focus on the source code of
the failing test in the editor.

Show statistic will open the statistics window, showing the information about the
approximate time it took to run the test, as shown here:

The Show statistic tool window is very helpful to determine slow
tests so you can make them faster. Unit tests should run as fast as
possible, so you can run them every time you make a change in your
project without having to wait a few minutes for the tests to complete.

In the case of test failure, the failing test will be shown with the exclamation
icon. IntelliJ IDEA differentiates the failure because of an assertion from the
failure due to an error/exception. The assertion failure will show up as an orange
exclamation mark and the exception failure will show up as a red one, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[168]

In the console, you will be given the stacktrace of the failing test; this can be seen in
the following screenshot:

If the test fails because of the assertion error, you will be given the expected and
actual value of the assertion in the console pane. The link in the console pane will
open the Comparison Failure window allowing you to examine the differences in
detail. You can also view the difference between the actual and expected value by
selecting the failing test and using the Ctrl + D keyboard shortcut (the usual shortcut
to compare in IntelliJ IDEA) or selecting View difference from the context menu, as
shown in the following screenshot:

Viewing the difference can be helpful if you have a test framework such as JUnit,
where all you can see are assertions. When using more modern test frameworks
(such as Spock, for example), you will rarely need to use this feature; if requested,
the test framework will provide you with a much better error message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[169]

If you have many tests in a single configuration, it's usually a good idea to hide
passing tests to focus better on the failing ones. Select Hide Passed to display the
failing tests as shown here:

The Run and Debug tool windows allow rerunning, terminating, and suspending
the execution of the tests in the same way as every other application. You can repeat
the execution process without leaving the test runner tab of the Run tool window.
The tests will be executed again using the same run configuration as the initial run.
To rerun a testing session, click on the Rerun button on the toolbar of the Run tool
window or just use the Ctrl + F5 (PC) or control + R (Mac) keyboard shortcut. To
rerun only the failed tests, click on Rerun Failed Tests as shown here:

You can pin the tool window of a previous test run and have the
possibility to fix one test after the other. After you have worked on each
test, you can run it again and verify that it has been fixed. Without the pin
feature, you previous test results will be lost once you run a new test.

As with every other activity in IntelliJ IDEA, remembering some shortcuts comes in
handy. Testing is no different—let's summarize the most useful ones now.

www.it-ebooks.info

http://www.it-ebooks.info/

Red or Green? Test Your Code

[170]

Keyboard shortcuts
The following table includes the keyboard shortcuts that covered in this chapter:

Action PC shortcut Mac shortcut
Create or navigate to the test Ctrl + Shift + T cmd + Shift + T
Select a configuration and run Alt + Shift + F10 control + option + R
Select a configuration and debug Alt + Shift + F9 control + option + D
Navigate tests in the Run
tool window

The up arrow key / the
down arrow key

The up arrow key / The
down arrow key

Navigate failed tests in the Run
tool window

Ctrl + Alt + the up arrow
key / Ctrl + Alt + the
down arrow key

cmd + option + the up
arrow key / cmd + option
+ the down arrow key

View assert failure differences Alt + Enter Alt + Enter
Run test Shift + F10 control + R
Debug test Shift + F9 control + D

Summary
In this chapter, you learned how to set up the testing environment in IntelliJ IDEA.
You now know how to import the needed testing library and add it to your project.
You can create the test run/debug configuration and navigate in the tests results tool
window. In the next chapter, we will focus on the debugger itself, so you can dive into
the execution process of your code to quickly find where the potential problem is.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger
Debugging is the process of finding and reducing the number of bugs in your
application. In the past, it was a fairly complicated process, sometimes requiring
external tools. Today, most programming environments have an integrated debugger,
an easy and enjoyable way to find errors in your code. In this chapter, we will focus
on the integrated debugger. Out of the box, IntelliJ IDEA supports debugging for Java,
Groovy, and JavaScript applications. The debugging functionality is incorporated
in IntelliJ IDEA; you only need to configure its settings. Depending on the enabled
plugins, the IDE can also support debugging for other languages, for example, Scala
or PHP. We will begin by reviewing the debugger settings and options. Setting up
the Java and JavaScript debugger will give you a general idea of how to set up the
debugger for the language of your choice. Next, we will look at the debugger tool
window and then go to the debugging process itself. At the end of the chapter, we
will summarize some essential keyboard shortcuts that are valuable for debugging.

After reading this chapter, you will know how to use breakpoints, watches, and
how to evaluate expressions. Let's start with the debugger settings.

Debugger settings
At the beginning, you will have to configure the roots, dependencies, and libraries
to be passed to the compiler before the debugging process starts. This can be done in
the Project Structure dialog box. We described the project structure in Chapter 2, Off
We Go – To the Code. Refer to this chapter to recall how to set up the project structure.

The debugger-related configuration can be found in the Settings dialog box, in Build,
Execution, Deployment. Launch the Settings dialog box by picking Settings from the
File menu or just use the Ctrl + Alt + S (PC) or cmd + , (Mac) keyboard shortcut.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[172]

The important option from the debugging perspective is to make IDEA generate
debugging info for the compiled classes. This option is enabled by default; you
can find it by navigating to Java Compiler | Generate Debugging Info.

The debugger itself can be configured in the Debugger section. As you may
remember, you can quickly find a specific option by entering search keywords
in the search field of the Settings window:

Depending on the number of enabled plugins, you will find language-specific
debugger options here. Most of the options are configured properly out of the box
to enable convenient debugging. You can tweak them according to your liking.
Let's look at the available common options in detail now.

In the root page of the debugger settings, there are some general debugger options.

The Transport section will define the connection method of the process being
debugged. If you are using Windows, the available values for the transport will
include Shared memory:

The Shared memory section will be faster, but the Socket transport has an
advantage—the debugger will use the same universal debugging protocol on the
local and remote machines. When you deploy your application to a remote server,
the only evident configuration change will be the IP address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[173]

If you happen to work on some legacy code and must use the old JDK, checking the
Force classic VM for JDK 1.3.x and earlier option might be a good option. This is
a rather rare situation, given the fact, that JDK 1.3 was put in an end-of-life state in
2007. However, if you need it, debugging using the classic VM is much faster than
debugging with HotSpot under the old JDK.

Disabling JIT will basically pass Djava.compiler=NONE at runtime when the
application is launched. This will affect the JIT compiler; if checked, the JIT compiler
will be disabled.

Hide debug window on process termination will make the Debug tool window
disappear when the debugged application terminates. It's good to have this option
checked; the Debug window is useless if the debugger is not running, anyway.

If Focus application on breakpoint is selected, on hitting a breakpoint IntelliJ IDEA
will show the source code containing the breakpoint in the editor. Again, I believe it's
good to have it checked. After hitting the breakpoint, it will be easier to comprehend
what is going on and evaluate expressions or create watches.

In the Data Views section, you can customize the way the data is displayed in the
debugger. The options have very intuitive names:

•	 Value tooltips delay (ms): This will control the tooltips that show the value
of the variable when you hover the mouse cursor over the Variables tab or,
in the editor, when your application is paused on a breakpoint.

•	 Sort alphabetically: This will show the nodes in alphabetical order.
•	 Enable auto expressions in Variables view: This option will force the

debugger to analyze the source code near the breakpoint when stopped. It
will read one statement before and one statement after the line containing the
breakpoint. If there are no method invocations in the surrounding lines, the
debugger will try to pick up any expression from these lines and put them in
the Variables view. We will describe the Variables view later in this chapter.

In the Java section of Data Views, selecting Autoscroll to new local variables will
make the IDE automatically scroll the list for new variables that appear in scope
when stepping. Auto tooltips for values will make IntelliJ IDEA show the values of
the variables when you hover the mouse cursor over them. The tip will present the
value in an alternative (and sometimes more readable) way.

The Show subsection describes how the object and its properties will be presented
in the debugger. This allows you to toggle between showing and hiding various
elements such as static fields or object IDs, for example.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[174]

In the following screenshot of the debugger preferences, you can specify which
classes should be presented by executing their toString() method:

By default, IntelliJ IDEA will execute toString() on all classes that override the
standard toString() method. You can customize this action by specifying your
own list; use the Add class button to open the Choose Class dialog box or Add
Pattern to open the Filter prompt:

When defining the class filter, you can use wildcards
such as *.

In the Java Data Type Renderers section, you can tweak the way different objects are
displayed in the debugger. Instead of relying on the object's String representation,
any expression can be assigned to display the object instead.

To add a new data type renderer, click on Add, specify its name, and define the type
of objects to be affected by the renderer. This should be the fully qualified name
of the class. Click on the ellipsis browse button to display the good old Find Class
dialog box, where you can choose the desired type from the list. As always, start
entering the search keywords to narrow down the list.

The data type renderers are executed twice on rendering a node in the debugger and
on expanding the node, when the children information is presented. The dialog box
shown in the following screenshot shows the two cases in separate radio groups:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[175]

Instead of using the default renderer, you can provide your own expressions in the
Use following expression field. In the expression fields, you can use an object's
properties, constants, and String methods to construct the output.

Normally, expanding a node in the debugger lists the object's member variables
by using the renderer to correct their object types. Editing the When expanding a
node section allows you to overrule that behavior and select a single expression or
a series of expressions to render the appearance. The optional Test if the node can
be expanded field accepts a Boolean expression, that, if true, will make the IDE
display the expandable nodes for the defined objects; otherwise, no nodes will be
displayed. When editing the expressions, all of the code completion features are
at your disposal.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[176]

When editing the expression in the data type renderer, use the keyword
this to refer to the instance to which the renderer is going to be applied.

In the next section, Stepping, we can configure stepping behavior, as shown in the
following screenshot. Basically, we choose what the debugger should ignore while
stepping. By choosing what to skip, we can improve the debug stepping speed.

The Skip synthetic methods will convert stepping into methods generated by the
compiler. The Skip constructors, Skip class loaders, and Skip simple getters option
names are pretty self-explanatory; they will make the debugger ignore constructors,
class loaders, and access methods accordingly.

In the Do not step into the classes list, you can add custom classes that should be
ignored. The list of classes contains two types of entries: fully qualified class names
and class patterns.

You can include or exclude specific packages by modifying the checkboxes selection.
By default, the list contains some standard Java SDK and IntelliJ IDEA runtime class
patterns, so you can save some of your time by not stepping onto them. Use the
checkboxes in the list to disable/enable particular patterns. Use the Add Class,
Add Package, and Add Pattern buttons to manage the list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[177]

Stepping can be configured for JavaScript as well. Tick the corresponding checkboxes
to force IntelliJ IDEA to ignore the JavaScript library and other specified scripts when
stepping, as shown in the following screenshot:

Use the Hotswap page to manage the behavior of the Java HotSwap mechanism. The
components of the Hotswap page are explained in more detail in the following points:

•	 If Make project before reloading classes is turned on and you select
Reload Changed Classes form the Run menu, the make process will
be performed first.

•	 If you check the Enable "JVM will hang" warning checkbox and try
to perform the HotSwap operation while the application is suspended,
IntelliJ IDEA will produce a warning about the possible freezing of the
Java Virtual Machine. It's better to have this option checked.

•	 Select Reload classes in background to reload classes and their process in
the background; all progress messages will be displayed in IntelliJ IDEA's
status bar.

•	 The section Reload classes after compilation controls how the HotSwap
mechanism should behave. Always will reload classes automatically,
Never will basically turn HotSwap off, and Ask will make IntelliJ IDEA
prompt you whether to reload the changed classes or not.

Hot swapping is doable only if a method body is altered. If a
method or class signature has changed, the class reload will not
be possible. There is a commercial plugin named JRebel that
allows us to reload almost every change at runtime.

We covered the setting up of the Java debugger. In the next section, we will focus on
the JavaScript debugger.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[178]

Setting up the JavaScript debugger
Web applications are probably the most popular application type nowadays. If
you work on the frontend, JavaScript debugging can come in handy. Of course, the
JavaScript Developer Tools included in Chrome or Firefox's Firebug are very, very
good. However, having a common IDE with a powerful editor, refactoring tools, and
keyboard shortcuts to debug the backend and frontend at the same time will boost
your productivity a lot without question. IntelliJ IDEA comes equipped with a fully
featured JavaScript debugger. It's bundled as a JetBrains plugin and is enabled by
default. If you happen to disable it, refer the Picking your plugins section in
Chapter 1, Get to Know Your IDE, Fast, to enable it again.

You can install additional plugins to support JavaScript libraries such as AngularJS
to get the code completion and hints in the editor.

The JavaScript debugger in IntelliJ IDEA communicates with the browser; it can be
either Chrome or Firefox. Before you start the debugger, you will need to install the
extension for these browsers to enable this communication. For Chrome, head to
Chrome Web Store and search for the JetBrains IDE Support extension, as shown
in the following screenshot, and then install it:

When it comes to Firefox, if you start the debugging session for the first time and
have configured Firefox as a browser of your choice in the run/debug configuration
profile, IntelliJ IDEA will display a prompt for you to install the add-on for the
browser, as shown here:

Click on OK and then accept the request to install third-party add-ons in the
browser. Firefox will restart and communicate with the IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[179]

During a debugging session, IntelliJ IDEA will use the port specified in Built-in
server port to communicate with the Chrome extension or Firefox add-on. It's
provided by default, but you can specify another value in the Debugger settings
as shown here:

If the port is already taken, the IDE will find the closest available port and display
its value, as shown in the following screenshot:

You can also specify the port value manually. In both cases, you will need to adjust
the port number in the browser extension settings; otherwise, the IDE will not be
able to communicate with the browser and will report the following error:

The Selecting Show DOM properties window will make the IDE display the DOM
properties in the Variables pane of the Debug tool window if you use Firefox. We
will describe the Variables tab later in this chapter. If you are using Chrome, the
DOM properties will be displayed in the Elements tab.

By selecting Show function values, you force the IDE to display the values
of functions under the Functions node in the Variables tab. Showing only the
user-defined functions will limit the list to your own functions only.

If you want IntelliJ IDEA to show certain object properties in the Variables tab, add
them to the Show the following properties for an object node list. The Variables
tab will display a label with the values of the listed properties. A good candidate to
add to the list is Angular's $id property, for example.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[180]

If you want the IDE to ignore specified scripts or libraries during the debugger
stepping, add them to the list using the Do not step into library scripts and Do not
step into scripts checkboxes in the Debugger section of the Settings dialog box.

Now, if we have the JavaScript debugger set up and are able to communicate with
the browser, we can move on. From now on, we will debug in Java, but most of
the topics we are going to explain will be the same for all the supported languages:
setting breakpoints, adding watches, and evaluating the expressions. Let's place
some traps in the code—the breakpoints.

Managing breakpoints
There are a couple of breakpoint types in IntelliJ IDEA: the line, exception, field, and
method breakpoints. Let's start with the most common type: the line breakpoint.

The line breakpoints are placed on the gutter. We described the gutter in the very
first chapter. To position the breakpoint, simply click on the gutter where you want
the debugger to stop. You can also use the Ctrl + F8 (PC) or cmd + F8 (Mac) keyboard
shortcut. The selected line will be shaded in red and the big red dot on the gutter will
represent the breakpoint as shown here:

Line breakpoints can be set on executable lines only. Comments,
declarations, and blank lines are not suitable locations for line
breakpoints.

Another type of breakpoint is the method breakpoint; it lets you follow the program
flow at the method level. To set the breakpoint on the method, just click on the gutter
near the method signature as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[181]

Be warned, however, that the method breakpoint will slow down the debugging
process a lot. IntelliJ IDEA will warn you about this as shown here:

The reason for this slowdown is that the Java runtime has to add checks on every
method entry to check whether it matches the breakpointed method signature. Also,
the method inlining (an optimization performed by the Java Just-In-Time (JIT)
compiler) becomes impossible; small methods will run 10 to 100 times more slowly.

If you notice that the debugging session is very slow, you may have some method
breakpoints set up by accident. You can review, disable, or delete active breakpoints
in the Breakpoints dialog box. We will discuss this dialog box in a minute.

If you would like the debugger to stop at a method, consider placing the
ordinary line breakpoint on the first line of the method instead of using the
method breakpoint.

To move a breakpoint, just drag a line breakpoint to the needed line.
The field/method breakpoint can be dragged as well, but to another
field/method declaration only.

To delete the breakpoint, simply click on it or use the Ctrl + F8 (PC) or cmd + F8
(Mac) keyboard shortcut again.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[182]

To change the breakpoint state from active to disabled, put the caret on the line
with the breakpoint and select Toggle Breakpoint Enabled from the Run menu,
as shown here:

Alternatively, you can right-click on the breakpoint with your mouse, uncheck the
first checkbox in the pop-up dialog box, and click on Done as shown here:

The breakpoint icon on the gutter will turn green. This means that the breakpoint is
now disabled. The disabled breakpoint will no longer stop the debugger, as can
be observed from the following screenshot:

You can toggle the breakpoint state between enabled and disabled by
clicking on it using the mouse with the Alt key pressed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[183]

Sometimes you would like to stop once and investigate the problem without being
bothered with the active breakpoint set up in the code. There is a nice feature
in IntelliJ IDEA named temporary breakpoints. A temporary breakpoint will be
removed when hit. To place a temporary breakpoint, use Toggle Temporary Line
Breakpoint from the Run menu. Alternatively, you can place an ordinary line
breakpoint, then click on it with the right mouse button, select Remove once hit,
and then click on Done:

The temporary line breakpoint will be represented with a red icon containing
the number 1 inside as shown here:

If you want the debugger to stop if a specific instance variable field is being accessed
or modified, use Field Watchpoint. This is a special kind of breakpoint that will pause
the execution if any access or modification to the instance variable is being made.

To create Field Watchpoint, place the caret in the line with the field definition and
place the breakpoint in the usual way, either by clicking on the gutter or by using
the Ctrl + F8 (PC) or cmd + F8 (Mac) keyboard shortcut. The Field Watchpoint will
be represented with a slightly different gutter icon as shown here:

You can enable or disable a Field Watchpoint the same way as the other breakpoints,
by clicking on it using the mouse with the Alt key pressed. Disabled Field
Watchpoints will also turn green as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[184]

The line/method breakpoints and Field Watchpoints can be set from the editor. If
you want to tweak their behavior or define breakpoints of different types, you will
need to open the Breakpoints dialog box. To do this, use View Breakpoints from
the Run menu or use the Ctrl + Shift + F8 (PC) or cmd + Shift + F8 (Mac) keyboard
shortcut. The output is shown in the following screenshot:

You can also access the Breakpoints dialog box by right-clicking on the breakpoint
and selecting More. The keyboard shortcut for this (shown in the following
screenshot) is the same as the global View Breakpoints command; that is,
Ctrl + Shift + F8 (PC) or cmd + Shift + F8 (Mac):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[185]

On the left side of the Breakpoints dialog box, you can see all breakpoints currently
defined in the project. For each individual breakpoint in the list, you can view and
change its properties as required. Do this by selecting the breakpoint and adjusting
its options on the right side of the dialog box.

To navigate to the breakpoints source code from the Breakpoints dialog
box, double-click on the desired breakpoint, or press the F4 keyboard
shortcut and close the window using Esc.

For every defined breakpoint, you can configure the suspend policy, as shown in
the following screenshot. It defines whether the application should be suspended
on hitting the breakpoint:

If you select All, all threads will be suspended when a breakpoint is hit. On the
other hand, if Thread is selected, only the thread where the breakpoint is hit will be
suspended. If the Suspend checkbox is not selected, no threads will be suspended.

The actions that can be performed on hitting the breakpoint include logging the
message or logging the evaluated expression to the console. To log the message,
mark the corresponding checkboxes. Even if the expression field is just a single
line, it's equipped with all the benefits of IntelliJ IDEA's editor such as hints and
parameter completion, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[186]

By switching off suspension and logging the message or the expression
to the console, the debugger can provide you with some useful
debugging information, without even stopping at the breakpoint. This
is particularly useful for remote debugging situations, where you may
not change the source code to add log statements to the code.

At any time, you can hover the mouse pointer in the editor over the defined
breakpoint to quickly get the information about the suspend policy and actions
to be executed when the breakpoint is hit, as shown in the following screenshot:

In the Condition field, you can enter a Java Boolean expression that should be valid
in the line where the breakpoint is set. Again, the expression field contains a fully
featured, syntax-aware editor. The expression is evaluated every time the breakpoint
is reached. The expression can include calls to the methods that return Boolean
values. If the evaluation result of the expression is true, the actions you selected will
be performed. Otherwise, if the result is false, this breakpoint will not produce any
effect and the debugger will just skip it.

Apart from providing the Condition expression, another way to create a conditional
breakpoint is to select other breakpoints from the Disabled until selected
breakpoint is hit drop-down list as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[187]

Picking any breakpoint from the list will disable the breakpoint conditionally. The
breakpoint will become enabled when any other one is hit. If the breakpoint is hit,
it can be disabled conditionally again or left enabled, as shown here:

The breakpoint defined this way will be presented with the conditional icon in the
gutter as shown here:

You can limit breakpoint hits only with particular object instances using their IDs.
The instance ID is the Java object ID that uniquely identifies an object in the target
JVM and is reported by the JVM itself. IntelliJ IDEA uses it to display variables
with the @ character. For foo.bar.MyClass@418, the instance ID will be 418, for
example. By turning on Instance filters and providing ID values, you can make
this breakpoint active only for specific object instances.

To filter breakpoint behavior with regard to a particular class, select the Class filter
checkbox. Use the Class Filters dialog box (shown in the following screenshot) to
configure class filters that determine which classes a specific breakpoint will be
triggered in and in which classes it should not:

You specify classes and class patterns to be included on the left pane, and classes
and class patterns to exclude on the right pane. To add a class to either of the lists,
press the Add class button to open the Choose Class dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[188]

The filter specified through a class name points at the class itself as well as at all
its subclasses.

Alternatively, to add a class pattern use the Add Pattern button. IntelliJ IDEA will
show the prompt for the class pattern. The pattern may start or end with an asterisk
(*), which stands for any number (including zero) of characters. A filter specified
through a class pattern points at the classes whose fully qualified names match the
pattern. The subclasses are selected only if their fully qualified names also match
the pattern.

The class patterns are matched against fully qualified
class names.

The last option, Pass count, especially useful when debugging long loops, allows you
to specify the counter. On each breakpoint hit, the counter will be decreased; after
the specified number of passes, the execution will be suspended. In other words, this
defines the number of times a breakpoint is reached but ignored. While this may be
occasionally useful, it can be emulated by using the breakpoint condition expression,
which is faster to use than digging through a lot of nested dialog boxes. The Pass
count option is available only if Instance Filters and Class Filters are not marked
as active.

All the breakpoints in the Breakpoints dialog box (shown in the following
screenshot) are grouped by their type. You can group them additionally using
switches in the upper toolbar. Grouping by package, class, or file is possible.
To use specific grouping, just left-click on the icon.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[189]

Yet another type of breakpoint you can define is Java Exception Breakpoint. The
debugger will stop if the exception of a specified type is thrown. This kind of
breakpoint is not related to a specific source code line, but applies globally to the
runtime environment. To add an exception breakpoint, click on the green plus icon
in the upper toolbar, or as usual use the Alt + Insert keyboard shortcut to display
a list of breakpoint types you can create, as shown in the following screenshot:

Select Java Exception Breakpoints from the list or use the Alt + 3 keyboard shortcut.
The well-known Select Exception Class dialog box will pop up, allowing you to
specify the exception class from the project classpath or project. As usual, start
typing to narrow down the list, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[190]

To define a Field watchpoint using the Breakpoints dialog box, again use the
Alt + Insert keyboard shortcut and select Java Field Watchpoints from the list
this time. In the next dialog box, type the fully qualified name of the class containing
the desired instance variable. Alternatively, you can use Shift + Enter to search for
the class using the well-known class finder dialog box. When the name of the class
in filled, type the name of the instance variable or press Shift + Enter again to display
the list of instance variables to choose from, as shown in the following screenshot:

If you click on OK, by default the field will be monitored for modification only.
You can change this behavior and make IntelliJ IDEA watch for access fields
as well; just select the appropriate checkbox as shown here:

Field watchpoints can be created from the Debug tool window as well. We
will discuss this process later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[191]

The list of breakpoints is also visible in the Favorites tool window. If you want the list
to be visible all the time, just pin the tool window, as we described in the first chapter.
The icons in the tool window are the same as in the gutter to easily distinguish the
breakpoint's type. To remove the breakpoint or field watchpoint, select it from the list
and click on the minus icon; or use Delete from the context menu.

In the editor, locate the line with the watchpoint or breakpoint to be deleted and click
on its icon in the gutter. You can also remove the breakpoint using the Breakpoints
dialog box. Additionally, you can remove all breakpoints of a certain type; just select
the whole group and execute the Delete action.

Now that we have our breakpoints explained and set, let's see how they work in real
life. Let's start the debugger session.

Starting the debugger
To begin the debugging session, you will need the runtime/debug configuration
defined for the project. We described this process in detail in Chapter 5, Make It
Happen – Running Your Project. This time, though, instead of running the defined
configuration, use the Shift + F9 (PC) or Ctrl + D (Mac) keyboard shortcut; or click
on the Debug icon on the toolbar, as shown here:

When you start the debug configuration, two things will happen. First, IntelliJ IDEA
will analyze the breakpoints you set up and, if they are valid, will mark them with
the valid breakpoint icon, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[192]

Otherwise, if the breakpoint is invalid, the IDE will mark it with the invalid
breakpoint icon and thus ignore it. The breakpoint can be invalid because it is
placed on the line with the comment or in a block with an opening or closing brace,
for example, as shown here:

Hover over the invalid breakpoint to see the reason why IntelliJ IDEA decided not
to take it into account:

The validity of the breakpoints is presented only when the debugger
session is started and active.

The second thing that will happen is that the Debug tool window becomes available;
let's focus on it as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

The Debug tool window
If you are debugging multiple applications at once by executing multiple debug
configurations, each one will display its output in a separate tab. The tab will be
named after the corresponding debug configuration is executed.

By default, the Debug tool window will switch itself to the Console tab and display
the output generated by your application. If the debugger stops, the most interesting
stuff can be performed on the first tab: the Debugger tab. Let's take a closer look at
it now.

You will find three nested tabs here that present the current state of the suspended
application: Frames, Variables, and Watches as shown here:

You can hide unnecessary tabs by using the hide icon in the tab itself as shown here:

The hidden tab can then be restored using its icon in the Hide/Restore toolbar,
available in the upper-right corner of the Debug tool window. You can toggle the
additional Threads tab as well, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[194]

Let's discuss the tabs in detail. The Frames and Threads tabs are very similar. They
both give you access to the list of frames and threads in your application. A frame
corresponds to an active method or function call. A frame stores the local variables
of the method or function called, its arguments, and the code context that enables
evaluation of the expressions.

In the Frames pane, you select the thread you are interested in from the drop-down
list as shown here:

To navigate between frames, use the up and down arrow buttons on the toolbar
or the up arrow and down arrow keys on the keyboard.

The Threads tab, for a change, shows all the threads of a process as a tree view,
presenting the name, ID, and thread status, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

If you expand a single thread branch and click on it (in the Frames tab) or double-
click (in the Threads tab) on the method name, the corresponding source code of the
method will be opened in the editor. At any time, the thread view can be customized
a little by right-clicking anywhere in the Frames or Threads tab and selecting
Customize Threads View from the context menu, as shown here:

In Customize Threads View you can turn on some additional information to be
shown, such as displaying thread groups or source file names as shown here:

The currently suspended thread is marked with a red tick icon in the call stack.
You can interrupt it by selecting Interrupt from the context menu. If you select the
method currently being executed (and paused at the breakpoint), you can also drop
a frame from the call stack using the context menu, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[196]

By using the Drop Frame functionality, you can "fall back" on the previous stack
frame, in a way going back in time. You need to be aware that changes that were
already made to the global state (such as static variables) and variables outside the
stack frame will not be reverted. Only local variables will be reset. Dropping the
frame is a useful feature to explore different paths of execution, without having to
restart the application, or a particular lengthy process that led to the current stack.

Dropping a frame is very helpful to re-enter a method if you missed a critical spot.

During the debugging session, the most used functionality is inspecting variables
and evaluating expressions. Let's cover that process now in more detail.

Inspecting variables and evaluating
expressions
During the debugging session, IntelliJ IDEA will present the values of the variables
in the editor itself, next to the variable usage, as shown in the following screenshot:

While this may be useful as a quick overview for the current state, the Variables tab
gives you the opportunity to examine the values of the variables in your application
in more detail. When a stack frame is selected in the Frames tab, the Variables tab
displays all the variables within its scope, such as method parameters, and local
and instance variables. Variable here are listed with their unique internal IDs we
mentioned earlier; you can use this ID to define the breakpoint instance filter. Each
variable in the tab has a context menu when you right-click on it as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

The Set Value option allows changing the variable value. Inspect, available for
fields, local variables, and reference expressions, will display and track its reference
in its own window:

If you need to examine several references in detail, you can open an inspection
window for each one of them. A separate window is created for each reference and
all of its child references. All changes of the references are immediately reflected in
the inspection window.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[198]

The inspection window is not modal and you can open as many as
you want.

Most of the options in this context menu are self-explanatory. You can copy a
variable's value to the clipboard, compare the value with the clipboard, or set the
variable value. If you want to label the selected variable with a meaningful name,
use the Mark Object command.

Pick Customize Data Views from the context menu as shown here:

You will be presented with a dialog box containing two tabs, Data Views and Data
Type Renderers, as shown in the following screenshot:

The contents of the two tabs will be the same as we described in the Debugger settings
section at the beginning of this chapter.

If you want to evaluate a number of variables or expressions in the context of the
current frame and view all of them simultaneously, you can create watches for them.
The values of the expressions are updated with each step through the application,
but are only visible when the application is suspended.

By using the Add to Watches command, you can send the selected object to the
Watches tab. You can achieve the same effect by right-clicking on the variable in
the editor and selecting Add to Watches from the context menu, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

There is one important difference, though: the Variables tab is active only when the
debugger session is running. On the other hand, the context menu in the editor is
active whether the debugger session is active or not.

All the variables you added to watches will show up in the Watches tab, as shown
in the following screenshot:

To add an item to the Watches pane, you can also click on the green plus icon in
the toolbar; or, as always, use the Alt + Insert keyboard shortcut. To change the
expression represented by a watch, right-click on the desired watch and select
Edit in the context menu.

The expression field is, again, a fully featured advanced source code editor with
code completion and hints available, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[200]

To remove a watch, select it in the Watches pane and choose Remove Watch from
the context menu or use the Delete key.

The Watches tab context menu has very similar functionality to the one present in
the Variables tab. Additionally, you can use it to edit the watch, remove the watch,
or remove all watches, as shown here:

Watches are persisted as part of a project. They will be preserved
if you close the project.

Apart from creating watches, you can also define field watchpoints in the Variables
tab. Just select the variable and choose Add Field Watchpoint to have a breakpoint
defined as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

Probably the most often used feature of the debugger is the expression evaluation.
Apart from having values of the variables presented in the Variables or Watches
tab, you will often evaluate expressions on-the-fly. The IDE enables you to evaluate
an arbitrary expression from the context of the stack frame currently selected in
the Frames tab. The following modes are available: Expression Mode to evaluate
single-line expressions and Code Fragment Mode to evaluate short code blocks,
including declarations, assignments, if/else constructs, and loops.

IntelliJ IDEA provides a way to quickly evaluate an expression at the caret or a
selection. If the debugger stops on the breakpoint, select the variable or expression
you want to evaluate and start the Evaluate Expression dialog box (shown in the
following screenshot) by choosing the Evaluate Expression command from the
Run menu or using the Alt + F8 (PC) or option + F8 (Mac) keyboard shortcut:

Expression mode is active by default; if you want to evaluate a code fragment,
click on the Code Fragment Mode button, the result of which is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[202]

As you will quickly find out, the expression field comes with all the benefits of the
IntelliJ IDEA source code editor. You will find syntax highlighting, code completion,
hints, and every powerful feature the IDE has to offer in terms of editing code.
You can even use live templates here, as we described in Chapter 3, The Editor.

A method can be invoked within the Expression Evaluation dialog
box only if the debugger has stopped at a breakpoint, but has not been
paused manually.

Take note that, if a method invoked within Expression Evaluation has a breakpoint
inside its body, this breakpoint will be ignored.

If the specified expression cannot be evaluated, IntelliJ IDEA will describe the reason
in a few words in the Result pane of the dialog box as shown here:

If you are using the mouse during the development process, you can quickly
evaluate the value of any expression by placing the mouse cursor over the expression
during the debugger session. The value of the expression will be shown as a tooltip,
as shown in the following screenshot:

If an expression contains children, clicking on the green plus icon will expand the
hint in the object tree dialog box and display all of the children.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

Clicking on the variable in the editor with the left Alt key pressed
will show the dialog box with the expression value evaluated.

Apart from the Hide/Restore toolbar, the Debug tool window has two toolbars
of great importance: the Debug toolbar and the Stepping toolbar. We will explore
them now.

Debugger actions
All of the actions available in the toolbars mimic the actions present in the Run menu
during the debugging session. I believe that using the toolbars is more convenient
than using the menu (apart from using keyboard shortcuts, of course). Let's take
a look at them now.

The Debug toolbar contains actions to manage your debugging session. You can
restart the debugging session by using the Ctrl + F5 (PC) or option + F5 (Mac)
keyboard shortcut. If the session is stopped, this command will turn in to the
Debug button, which will start the debugging session again, as shown here:

When an application is paused, you can click on the Resume Program button, or use
the F9 (PC) or cmd + Option + R (Mac) keyboard shortcut, to resume the program
execution, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[204]

Click on the Pause button to suspend the execution and the Stop button to stop
the debugging session, as shown here:

There is a useful button you can use to temporarily disable all the defined
breakpoints: the Mute Breakpoints button (shown in the following screenshot). Use
this to change the status of the breakpoints from enabled to disabled and vice versa.
With breakpoints muted, the program will execute without stopping.

The Get thread dump button will allow you to review the thread dump in a
convenient and readable way. The tab is divided into two parts: the left one displays
all the threads and the right one displays the stack trace for the selected thread,
as shown here:

The stepping toolbar contains commands to navigate the execution flow during
the debugging session. The first one is Show Execution Point, available with
the Alt + F10 (PC) or option + F10 (Mac) keyboard shortcut, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

When you go away from the point where the debugger stopped, either by switching
the editor's windows or navigating to other files or methods, Show Execution Point
will quickly get you back to the point of interest, which is the current execution point
where you can continue stepping.

The Step Over command (the F8 keyboard shortcut) will make the debugger run
until the next line in the current method or file. If the current line is the last one in
the method, execution shifts to the line executed right after this method.

The Step Into command (the F7 keyboard shortcut) will make the debugger step
inside the method called at the current execution point. If the method is set to be
skipped in the Stepping page in the Debugger settings dialog box, as we described
at the beginning of this chapter, you can use the Force Step Into command or the
Alt + Shift + F7 (PC) or option + Shift + F7 (Mac) keyboard shortcut. The Force Step
Into command permits you to dig into a class from the list of classes not to be stepped
into; for example, a standard Java SDK class. Clicking on the Step Out command
(the Shift + F8 keyboard shortcut), will make the debugger step out of the current
method, to the line executed right after the execution of this method. One feature I
find especially useful is Run to Cursor, shown in the following screenshot:

This action will resume program execution and pause until the flow reaches the line
at the cursor position in the editor. You don't need to define the breakpoint for this.
It's like a temporary breakpoint defined implicitly. Be aware that, if the cursor is
positioned on the line that has already been executed, the execution flow will just
be resumed, and you will have no chance to go back.

When you have stepped too deep into the method's sequence and need
to step out of several methods at once, use the Run to Cursor feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Squash'em – The Debugger

[206]

Now you know how to navigate within the debugger. Let's make it even faster and
more effective by summarizing keyboard shortcuts worth using while debugging.

Keyboard shortcuts summary
The following table summarizes debugger actions and associated shortcuts:

Action PC shortcut Mac shortcut
Debug Shift + F9 control + D
Step over F8 F8
Force step over Alt + Shift + F8 option + Shift + F8
Step into F7 F7
Force step into Alt + Shift + F7 option + Shift + F7
Run to cursor Alt + F9 option + F9
Evaluate expression Alt + F8 option + F8
Resume program F9 cmd + option + R
Toggle breakpoint Ctrl + F8 cmd + F8
View breakpoints Ctrl + Shift + F8 cmd + Shift + F8
Show execution point Alt + F10 option + F10

Summary
As you can see, debugging in IntelliJ IDEA is very handy. After reading this chapter,
you know how to set up the debugger, place and manage the breakpoints, and look
under the hood (that is, inspecting variables, adding and tracking watches, and
evaluating expressions). Searching for bugs will be easy and effective.

You now know how to set up a project and unleash the power of the state-of-the
art code editor. You can define a runtime or debug configuration to execute the
application. Well, this should be enough to get you going. However, there's some
more—version control. You can probably work on your software in the team and
use a version control system, such as SVN or GIT. Even if you work alone, having
version control set up is a great idea. IntelliJ IDEA provides first-class support
for a version control system such as SVN or GIT. We are going to cover this subject
in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team
While working on the code, one of the most important aspects is version control.
A Version Control System (VCS) (also known as a Revision Control System) is
a repository of source code files with monitored access. Every change made to
the source is tracked, along with who made the change, why they made it, and
comments about problems fixed or enhancements introduced by the change. It
doesn't matter if you work alone or in a team, having the tool to efficiently work
with different versions of the code is crucial. Software development is usually
carried out by teams, either distributed or colocated. The version control system lets
developers work on a copy of the source code and then release their changes back to
the common codebase when ready. Other developers work on their own copies of
the same code at the same time, unaffected by each other's changes until they choose
to merge or commit their changes back to the project. Currently, probably the most
popular version control system is Git, but in this chapter, we will also talk about
working with other VCS systems such as Subversion. After reading this chapter, you
will be able to set up the version control mechanism of your choice, get files from the
repository, commit your work, browse changes, and handle differences. Let's start
with the version control setup.

Enabling version control
At the IDE level, version control integration is provided through a set of plugins.
IntelliJ IDEA comes bundled with a number of plugins to integrate with the most
popular version control systems. They include Git, CVS, Subversion, and Mercurial.
The Ultimate edition additionally contains Clearcase, Visual SourceSafe, and
Perforce plugins. You will need to enable them in the Plugins section of the
Settings dialog box, as we described in Chapter 1, Get to Know Your IDE, Fast.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[208]

If you find the VCS feature is not enough and you are using some other VCS, try to
find it in the Browse Repositories dialog box by choosing VCS Integration from the
Category drop-down menu, as shown here:

The list of plugins here contains not only integration plugins, but also some useful
add-ons for the installed integrations. For example, the SVN Bar plugin will create
a quick access toolbar with buttons specific for Subversion (SVN) actions. Feel free
to browse the list of plugins here and read the descriptions; you might find some
valuable extensions.

The basic principles of working with the version control systems in IntelliJ IDEA
are rather similar. We will focus on the Git and Subversion integration. Although
the detailed explanation of working with Git and Subversion is out of the scope of
this book, this chapter should give you an overview of how to deal with the setup
and version control commands in IntelliJ IDEA in general. If you have the necessary
plugins enabled in the Settings dialog box, you can start working with the version
control. We will begin with fetching the project out of the version control. Doing this
will set up the version control automatically so that further steps will not be required
unless you decide not to use the default workflow. Later, we will cover setting the
VCS integration manually, so you will be able to tweak IntelliJ's behavior then.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[209]

Checking out the project from
the repository
To be able to work on the files, first you need to get them from the repository. To
get the files from the remote Git repository, you need to use the clone command
available in the VCS menu, under the Checkout from Version Control option, as
shown here:

In the Clone Repository dialog box, provide necessary options, such as the remote
repository URL, parent directory, and the directory name to clone into, as shown in
the following screenshot:

After successful cloning, IntelliJ IDEA will suggest creating a project based on the
cloned sources. Refer to Chapter 2, Off We Go – To the Code, to find the description on
how to deal with the project creation process. If you don't have the remote repository
for your project, you can work with the offline local Git repository. To create a local
Git repository, select Create Git repository from the VCS menu, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[210]

This option will execute the git init command in the directory of your choice; it
will most probably be the root directory of your project.

For the time being, the Git plugin does not allow you to set up remote repositories.
You will probably need to set up the remote host for your newly created Git
repository before you can actually fetch and push changes.

If you are using GitHub for your projects, the great GitHub
integration plugin gives you the option to share the project on
GitHub. This will create the remote repository automatically.

Later, when you want to get the files from the remote repository, just use the Git Pull
command. This will basically retrieve changes (fetch) and apply them to the local
branch (merge).

To obtain a local working copy of a subversion repository, choose Checkout from
Version Control and then Subversion from the VCS menu. In the SVN Checkout
Options dialog box, you will be able to specify Subversion-specific settings, such as a
revision that needs to be checked (HEAD, for example). Again, IntelliJ IDEA will ask if
you want to create the project from checked out sources. If you accept the suggestion
to create a new project, New Project from Existing Code Wizard will start.

Fetching the project out of the repository will create some default VCS configuration
in IntelliJ IDEA. It is usually sufficient, but if needed, the configuration can be
changed. Let's discuss how to change the configuration in the next section.

Configuring version control
The VCS configuration in IntelliJ IDEA can be changed at the project level. Head to
the Version Control section in the Settings dialog box, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[211]

The Version Control section contains options that are common for all version
control systems and also specific options for the different VCS systems (enabled by
installing the corresponding plugins). IntelliJ IDEA uses a directory-based model for
version control. The versioning mechanism is assigned to a specific directory that can
either be a part of a project or can be just related to the project. This directory is not
required to be located under the project root.

Multiple directories can have different version control systems linked.

To add a directory into the version control integration, use the Alt + Insert keyboard
shortcut or click on the green plus button; the Add VCS Directory Mapping dialog
box will appear.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[212]

You have the option to put all the project contents, starting from its base directory
to the version control or limit the version control only to specific directories. Select
the VCS system you need from the VCS drop-down menu, as shown in the
following screenshot:

By default, IntelliJ IDEA will mark the changed files with a color in the Project tool
window, as shown here:

If you select the Show directories with changed descendants option, IntelliJ IDEA
will additionally mark the directories containing the changed files with a color,
giving you the possibility to quickly notice the changes without expanding the
project tree, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[213]

The Show changed in last <number> days option will highlight the files changed
recently during the debugging process and when displaying stacktraces.

Displaying the changed files in color can be very useful.
If you see the colored file in the stacktrace, maybe the
last change to the file is causing a problem.

The subsequent panes contain general version control settings, which apply to all
version control systems integrated with the IDE. They include specifying actions that
require confirmation, background operations set up, the ignored files list, and issuing
of navigation configuration.

In the Confirmation section, you specify what version control actions will need your
confirmation. The Background section will tell IntelliJ IDEA what operation it should
perform in the background, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[214]

If you choose to perform the operation in the background, IntelliJ IDEA will not
display any modal windows during and after the operation. The progress and result
will be presented in the status bar of the IDE and in the corresponding tool windows.
For example, after the successful execution of the Git pull command, IntelliJ IDEA will
present the Update Project Info tool window with the files changed and the Event Log
tool window with the status of the operation, as shown in the following screenshot:

In the Ignored Files section, you can specify a list of files and directories that you do
not want to put under version control, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[215]

To add a file or directory, use the Alt + Insert keyboard shortcut or hit the green plus
(+) icon. The Ignore Unversioned Files dialog box will pop up as shown here:

You can now specify a single file or the directory you want to ignore. There is also
the possibility to construct the filename pattern for files to be ignored. Backup and
logfiles are good candidates to be specified here, for example.

Most of the version control systems support the file with a list of file patterns to
ignore. For Git, this will be the .gitignore file. IntelliJ IDEA will analyze such files
during the project checkout from the existing repository and will fill the Ignored files
list automatically.

In the Issue Navigation section, you can create a list of patterns to issue navigation.
IntelliJ IDEA will try to use these patterns to create links from the commit messages.
These links will then be displayed in the Changes and Version Control tool windows.
Clicking on the link will open the browser and take you to the issue tracker of your
choice. IntelliJ IDEA comes with predefined patterns for the most popular issue
trackers: JIRA and YouTrack. To create a link to JIRA, click on the first button and
provide the URL for your JIRA instance, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[216]

To create a link to the YouTrack instance, click on the OK button and provide the
URL to the YouTrack instance. If you do not use JIRA or YouTrack, you can also
specify a generic pattern. Press the Alt + Insert keyboard shortcut to add a new
pattern. In the IssueID field, enter the regular expression that IntelliJ IDEA will use
to extract a part of the link. In the Issue Link field, provide the link expression that
IntelliJ IDEA will use to replace a issue number within. Use the Example section to
check if the resulting link is correct, as shown in the following screenshot:

The next sections in the Version Control preferences list contain options specific to
the version control system you are using. For example, the Git-specific options can be
configured in the Git section, as shown here:

You can specify the Git command executable here or select the associated SSH
executable that will be used to perform the network Git operations such as pull
and push.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[217]

The Auto-update if push of the current branch was rejected
option is quite useful—IntelliJ IDEA will execute the pull
command first if the push command fails because of the changes
in the repository revision. This saves some time.

We should now have version control integration up and running. Let's use it.

Working with version control
Before we start working with version control, we need to know about the concept
of the changelist in IntelliJ IDEA. Let's focus on this now.

Changelists
When it comes to newly created or modified files, IntelliJ IDEA introduces the concept
of a changelist. A changelist is a set of file modifications that represents a logical
change in the source. Any modified file will go to the Default changelist. You can
create new changelists if you like. The changes contained in a specific changelist are
not stored in the repository until committed. Only the active changelist contains the
files that are going to be committed. If you modify the file that is contained in the
non-active change list, there is a risk that it will not be committed. This takes us to the
last section of the common VCS settings at Settings | Version Control | Changelist
conflicts. In this section, you can configure the protection of files that are present in the
changelist that is not currently active. In other words, you define how IntelliJ IDEA
should behave when you modify the file that is not in the active changelist.

The protection is turned on by default (Enable changelist conflict tracking is
checked). If the Resolve Changelist Conflict checkbox is marked, the IDE will
display the Resolve Changelist Conflict dialog box when you try to modify such
a file. The possible options are to either shelve the changes (we will talk about the
concept of shelving in a while), move a file to the active changelist, switch changelists
to make the current changelist active, or ignore the conflict. If Highlight files with
conflicts is checked and if you try to modify a file from the non-active change list,
a warning will pop up in the editor, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[218]

Again, you will have the possibility to move the changes to another change list, switch
the active change list, or ignore the conflict. If you select Ignore, the change will be
listed in the Files with ignored conflicts list, as shown in the following screenshot:

The list of all changelists in the project is listed in the Commit Changes dialog box
(we will cover committing files in a while) and in the first tab of the Changes tool
window, as shown here:

You can create a new changelist by using the Alt + Insert keyboard shortcut. The
active list will have its name highlighted in bold. The last list is special; it contains
the list of unversioned files.

You can drag-and-drop files between the changelists
(with the exception of unversioned files).

Now that we know what a changelist is, let's add some files to the repository now.

Adding files to version control
You will probably want newly created files to be placed in version control. If you
create a file in a directory already associated with the version control system, IntelliJ
IDEA will add the file to the active changelist automatically, unless you configured
this differently in the Confirmation section of the Version Control pane in the
Settings dialog box. If you decided to have Show options before adding to
version control checked, IntelliJ IDEA will ask if you want to add the file to
the VCS, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

If you decide to check the Remember, don't ask again checkbox, IntelliJ IDEA will
throw the future new files into version control silently. You can also add new files
to the version control explicitly. Click on the file or directory you want to add in the
Project tool window and choose the corresponding VCS command; for example:

Alternatively, you can open the Changes tool window, and browse Unversioned
Files, where you can right-click on the file you want to add and select Add to VCS
from the context menu, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[220]

If there are many unversioned files, IntelliJ IDEA will render a link that allows you
to browse the files in a separate dialog box, as shown in the following screenshot:

In the Unversioned Files dialog box, right-click on the file you want to add and
select Add to VCS from the context menu, as shown in the following screenshot:

From now on, the file will be ready to commit to the repository.

If you've accidently added some files to version control and want
to change them to unversioned, you can always revert the file so
that it is no longer marked as part of the versioned files.

Committing files
If you modify a file that is tracked by the version control mechanism, it will be
marked with a color in the files tree in the project tool window, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[221]

Also, the modified lines will be marked in the editor gutter, as shown here:

You can click on the colored area in the gutter to get a pop up,
which shows the content in that line before it was edited. This
pop up also contains a button that allows you to roll back just
to change this one line.

To commit a file to the repository, use the Ctrl + K (PC) or cmd + K (Mac) keyboard
shortcut. This will show the Commit Changes dialog box, allowing you to pick
the changelist to consider and showing all modified files available to commit,
as shown here:

The dialog box will present all the modified and deleted files, giving you the
possibility to enter a commit message. If you are using Git, you can amend the
last commit by marking the Amend commit checkbox. This will be equivalent
to the –amend Git option in the commit command.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[222]

The Before Commit section contains some useful, last minute actions that can be
performed before a commit, such as code reformatting, optimizing Java imports,
or scanning the source with a CheckStyle plugin. Every file in the Commit
Changes dialog box has the context menu available, giving you the chance to
see the difference, revert the changes, or move the change to another changelist
if you decide to exclude the file from this specific commit:

To see exactly what is going to be committed to the repository, select the file and use
the Ctrl + D (PC) or cmd + D (Mac) keyboard shortcut. You will be presented with the
difference screen, showing exactly the changes made to the file. We will talk about
the difference viewer later in this chapter. Alternatively, you can expand the Details
section of the Commit Changes dialog box to see the difference pane at the bottom,
as shown in the following screenshot:

If you don't want to commit the changes at this time, then move
files to the other changelist or uncheck the checkbox before the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

If you deleted the file that was tracked by the version control mechanism, the
Commit Changes dialog box will list the deleted file as well with the filename
grayed out. In such cases, the dialog box will also show the number of files deleted,
as shown in the following screenshot:

The changes will be committed if you click on the Commit button (the dialog box
window as always supports standard shortcuts such as Alt + the underlined letter in
the caption). If you are using Git, you can commit and push changes to the remote
repository automatically. To do this, expand the Commit button and choose Commit
and Push, as shown here:

If the file you are trying to commit was modified by some other developer in the
meantime, IntelliJ IDEA will display the following message saying that the commit
has failed:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[224]

If you confirm the error after clicking on OK, the Messages tool window will show
the explanation of the problem, in this case stating you should update first, as shown
in the following screenshot:

Instead of committing the modified files, you can also create
the patch file with all the changes that you have made.
Expand the Commit button and choose Create Patch to be
able to provide a directory name for the patch file.

At the moment, we know how to commit our modifications to the repository. Let's
get the changes from the repository now.

Getting changes from the repository
To get the changes from the remote repository, execute the Update Project command
by using the Ctrl + T (PC) or cmd + T (Mac) keyboard shortcut. If you are using Git,
IntelliJ IDEA will ask how do you want the changes to be incorporated into the
local working copy; it can be either Merge or Rebase. If your working copy contains
pending changes, they can be put aside for a while using the Git stash command or
IntelliJ IDEA's own Shelve mechanism, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

Shelving is the process of storing not yet committed changes in a dedicated "shelf".
Unshelving is bringing the changes from the "shelf" back to a pending changelist,
making them ready to commit. Shelving is IntelliJ IDEA's operation similar to Git
stash with one difference: shelved changes are applied (unshelved) from within
IntelliJ IDEA, as opposed to Git stashed changes, which can be applied from outside
of the IDE, because they are generated by Git itself.

When you're not using Git, shelving is a pretty nice tool to put
your work in progress changes for later (such as Git stash).

When updating a project, if you are using Git, one very important feature is the
ability to rebase your changes against any ref with an interactive dialog box to
allow a complete reshaping of the commit history.

Mark the corresponding checkbox for not being asked for those options again and
have the pull command be executed in the background silently.

In the case of the Subversion repository, you will be presented with the Update
Project dialog box, where you can choose the branch or revision you want to switch
to. You can also mark the Do not show this dialog in the future checkbox to make
future project updates silent.

If the changes coming from the server are in different places than your local changes,
IntelliJ IDEA will automatically merge the file. Otherwise, it will state that there is a
merge conflict and give you some options, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[226]

You can now either accept your changes by right-clicking the Accept Yours
command button, it overrides the changes incoming from the VCS server, or the
Accept Theirs command button accepts their changes, which will throw away your
local changes, or right-click on the Merge command button. If you choose Merge, the
three-way merge diff viewer will show up. The left pane contains your local changes
and the right pane contains the changes coming from the server. In the middle pane,
there is the merge result. The number of detected conflicts is shown at the bottom
of the window. You must now decide what the merge result will look like. Use the
icons in the gutters of the editors to copy changes from the left (your changes) or
from the right (incoming changes) or remove the specific change, as shown in the
following screenshot:

When you click on Apply, IntelliJ IDEA will merge the file and finish the
project update.

Browsing the changes
The results of the Update Project action will be presented in the Version Control
tool window at the bottom of the IDE workspace. In the following screenshot, you
will see what files were updated or created in the repository since the last update:

You can expand the files tree to see individual files and use the context menu to see
the differences that came from the repository. You can also press the well-known
Ctrl + D (PC) or cmd + D (Mac) keyboard shortcut to show the difference window.
The successful update will be noted in the status bar, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

If you update the project and there were no changes coming from the repository,
IntelliJ IDEA will prompt you with a message in the status bar, as shown here:

Sometimes you decide that your changes have gone too far and would like to revert
them. Let's focus on reverting the changes now.

Reverting the local changes
You can throw away your local changes in a couple of ways. The first way we
already mentioned is to do it from the Commit Changes dialog box. Select the
modified file by right-clicking on the file and select Revert from the context menu,
as shown in the following screenshot:

You will be presented with the Revert dialog box (shown in the following
screenshot), where you can select one or more files you want to revert changes for:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[228]

IntelliJ IDEA's UI design is very consistent, as with almost every file list related to
version control. You can use the Ctrl + D (PC) or cmd + D (Mac) keyboard shortcut
to see the differences.

You can also revert the file by picking Revert from the context menu available in
the files tree in the Project tool window, as shown in the following screenshot:

The same action can be executed from the Changes tool window. Select the file or
the whole changelist and pick Revert from the context menu, as shown here:

From the Changes view, you can also shelve the changes. To shelve, select the whole
changelist or individual files and choose Shelve from the context menu. The Shelve
Changes dialog box will show up with the selection you made.

When we work with the version control system, either by committing or updating
the changes, we often need to see what the differences are. Let's take a look at how
to work with the difference viewer now.

Using the difference viewer
The Show Diff command, available on the file or directory context menu, executes
the difference viewer. This is the same tool we described in Chapter 3, The Editor,
with one subtle difference. When it comes to the version control, it will compare
your local version of the file with the revision taken from the version control.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

The window contains your local revision of the file in the right pane and the revision
you are comparing in the left pane. The modified lines will be highlighted in color.

Using the diff viewer, you can make changes to your local file. You can either copy
the modified lines from the left (include changes) or delete your locally modified
lines by using the icons in the gutter of the displayed files:

The number of differences is displayed in the status bar as shown in the
following screenshot:

Clicking on the icons in the gutter will either copy (the arrow icons) or remove (the
cross icon) the change. If you execute the difference viewer on the folder of the files
(on the whole changelist, for example), you can switch to the next or previous file
using the buttons on the toolbar or by using Alt + the left/right arrow keys:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[230]

To quickly go to the next or previous difference in the code, use the arrow button
icons in the toolbar as shown here:

You can tweak the display of the diff viewer by amending options using the toolbar.
For example, you can decide if you want to compare the whitespace characters,
that have been highlight by word or line, toggle between displaying the whitespace
or using line wraps. The differences viewer is very handy; you don't need an
external tool to effectively compare files. The IDE gives you the possibility to see the
differences between your local revision of the file and the same repository revision,
another branch, or the latest repository revision. To compare with the specific
revision, select the appropriate option from the file context menu:

There is also a button in the main toolbar of IntelliJ that allows you to quickly show
differences of the currently open (or selected, if you are in the project tree or in the
changes view) file compared to the repository version:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

The difference viewer is especially useful when it comes to browsing the history of
the file. Let's look at the history now.

Displaying the history
When working with the version control, one of the most frequently used activities
is looking at the file's timeline—what was changed in the past. To see the history
of the file, select Show history from the file's context menu in the Changes tool
window. It will be Git and then Show History in our example, as shown in the
following screenshot:

Again, you can use the button on the main toolbar to quickly access the history of
the file as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[232]

IntelliJ IDEA will fetch the history log from the version control you are using and
display the results in the History tab in the Version Control tool window. You will
see the version number, the date of the commit, author, and commit message, as
shown in the following screenshot:

This is a lot of useful information but the best part is that you can now compare two
versions of the file. Select the revisions you want to compare and use the Ctrl + D
(PC) or cmd + D (Mac) keyboard shortcut or choose Compare from the context menu.
Take note that if you compare two revisions fetched from the VCS, they will be
read-only in the difference viewer:

The History browser is an invaluable tool to see what was changed in the past.

Yet another option to track the history of the versioned files is to turn the annotations
on. If you want to see the VCS annotations in the editor itself, you can toggle
annotations in the VCS menu. This will be Git and then the Annotate command,
if you are using Git.

A quick way to show annotations is to right-click on the left
gutter area and select Annotate from the context menu that
appears. This works for every VCS supported by IntelliJ IDEA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

The annotations panel will be appended to the editor, showing the commit number,
the date of modification, and the author who modified the specific line in the source
code, as shown in the following screenshot:

If you are using Git, apart from the history and annotations, IntelliJ IDEA gives you
a very powerful feature that can come in handy: Git Log.

The log viewer
The Git log viewer is available as one of the tabs of the Changes tool window. It
represents the Git log graph and allows you to browse all the changes that were made
in the Git repository. It lets you list the project history, filter it, and search for specific
changes. While Git's status command lets you inspect the working directory and
staging area, Log only operates on the committed history. The main part of the Log
view is the list of revisions. To quickly find a specific commit, just start typing its name
in the search field. You can filter the list by branch, user, and date by using drop-down
menus in the Log view toolbar. Select an item in the tree to see the list of files modified
by the selected commit, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[234]

Every revision in the tree has the context menu available. From here, you can execute
Git-specific commands on the selected commit such as Cherry-pick, for example:

Of course, you can still use Git commands to display the log in the shell of your OS
or in the Terminal tool window. This can be git log --graph --all --decorate
--oneline –boundary for example. Using the Log viewer in IntelliJ IDEA is a lot
more convenient.

Basically, the Git log is a full featured Git GUI tool and doesn't
require you to remember all of Git's command-line switches. And
best of all, it's available out of the box in your IDE—you don't
need to buy any external tool to work with your repository.

Now, you have an overview of how to work with version control actions in IntelliJ
IDEA. Because you will use these commands often, the IDE introduces a quick way
of running these commands.

Quickly executing VCS actions
Most of the version control commands can be executed quickly by using the VCS
Operations pop up. Use the Alt + ' (PC) or control + V (Mac) keyboard shortcut to
see it:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[235]

As you may remember from the previous chapters, you can use the powerful Search
Everywhere action by clicking on the left shift twice:

Just start typing the VCS command you want to execute to quickly filter out the list.
The Search Everywhere option is very good, but nothing beats a single keystroke.
Let's summarize the shortcuts related to version control now.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Team

[236]

Keyboard shortcuts
The following table summarizes the version control actions and associated shortcuts:

Action PC shortcut Mac shortcut
Commit project Ctrl + K cmd + K
Update project Ctrl + T cmd + T
View recent changes Alt + Shift + C control + Shift + C
VCS operations quick pop up Alt + ' control + V

Summary
After reading this chapter, you know how to set up version control, get the project
from the repository, commit your work, and get the changes made by other members
of your team. Version control in IntelliJ IDEA is tightly integrated into the IDE. All
the versioning activities can be executed from the IDE itself—you will not need to
use an external tool for this. I believe it will shortly become natural for you to use the
provided functionalities. Not being distracted by the use of external tools will result
in higher effectiveness.

The last few chapters we focused on the IDE workspace itself, installing plugins, and
using the editor, debugger, and version control. This should be enough to get you
going. The IDE is very extensible; the list of available plugins is growing constantly.
However, if this is not enough, you can create the plugin you need by using the
provided plugin API. We will cover this in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It
Apart from the core editor and debugger components provided by IDEA, most of
the additional functionalities are available by using plugins. IDEA is modular in its
nature. We already talked a lot about plugins in the previous chapters. If you want
to write in a language other than Java, you need the corresponding plugins. If you
require the IDE to support the framework of your choice, be it Spring or Vaadin, you
need the plugin as well. The JetBrains team made a lot of additional plugins available
in their repository. There are also a lot of plugins available from independent
vendors; you can browse through them in Settings. The list of plugins is growing
constantly. However, if you find it insufficient, let's say you want to incorporate some
custom tool your company uses, IDEA provides a well-documented API helpful to
develop your own extension. We will focus on writing one in this chapter. The whole
plugin API is huge and it's surely out of the scope of this book. The plugin we will be
creating will not be very sophisticated; it will just display the famous "Hello world"
message, but the chapter should give you an overview of how to create your own
extension and will maybe inspire you to create something great you will want to
share with the community.

We will cover the following topics in this chapter:

•	 Setting up the environment and creating a plugin project
•	 Developing plugin functionality
•	 Testing, deploying, and publishing

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[238]

Setting up the environment and project
To work on your own plugin, you can use either the Community or the Ultimate
Edition of IntelliJ IDEA; both these editions are well-suited to plugin development.
To be able to debug IDEA's core code though, you will need to use the Community
Edition and have the Community Edition sources available on the source path of
the plugin project. It's not mandatory for the plugin development process but can
sometimes be useful. To get the Community Edition source, we need to pull it out
from the repository; it's open source. Take note that the size of the sources will be
more than one gigabyte, so make sure you have plenty of free space on your drive.

To pull out the source from the repository, use the Git pull command in the shell
of your operating system:

git clone git://git.jetbrains.org/idea/community.git idea

You can use the --depth 1 Git option to create a shallow Git clone.
This will speed up the download process; the history will be truncated
to a depth of one. Note that this will be useful if you develop a plugin
against the current version of IDEA released. In all other cases, you have
to check out the tag/branch for a specific version of IDEA that you are
working on in order to be sure that you are using the right APIs.

The pulling process will take a while, depending on the speed of your Internet
connection. While waiting, you can switch to your IDEA instance and make sure
the plugin named Plugin DevKit is enabled; you will need it later to run and
debug your own plugin.

If your plugin is going to have additional windows, dialog
boxes, or other UI components, you may find the UI Designer
plugin helpful as well; make sure it's enabled in the Plugins
section in Settings.

We now have the Community Edition code retrieved and the necessary plugins
installed. Let's create the plugin project.

The plugin project is very similar to an ordinary Java project, with some subtle
differences. Refer to Chapter 2, Off We Go – To the Code for an overview of how
to create a new project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[239]

To start developing the plugin, create a new project of type IntelliJ Platform Plugin.
You will need to set up IDEA's own SDK for the project; click on New and then point
to the installation of your IDE. The correct path will be filled in automatically, as
shown in the following screenshot:

Click on OK and then select the required SDK version from the drop-down list.
Proceed with the project wizard and provide a name for your plugin project and
its location, as shown here:

If you click on Finish, IDEA will create the project with one single module. When
done, your project structure should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[240]

Note that the plugin modules have a nice plug icon attached to easily distinguish
them from other module types, as shown in the following screenshot. Note that the
run/debug configuration will also be created for you automatically with the proper
VM settings.

Starting a run/debug configuration for the plugin will spawn the second IntelliJ
IDEA instance. If you encounter freezes when starting your plugin in development
mode (most frequently, those are crashes during index rebuilding), you may want
to adjust these VM settings.

Alternatively, you can start developing plugins by creating an ordinary, plain Java
project, but this is not very convenient. In this case, you will need to manually create
a single module of type IntelliJ Platform Plugin and attach IntelliJ Platform Plugin
SDK to it. Also, the run/debug configuration needs to be created by hand.

If you want to be able to debug core classes of the IDE itself, you will need to include
the sources of the Community Edition you pulled out from the repository earlier.
To do this, open the Project Structure dialog box, switch to the Platform settings,
and choose the SDK you created as IntelliJ Platform Plugin SDK earlier. In
the Project Structure dialog box, switch to the Sourcepath tab and include the
downloaded source directory using the Alt + Insert keyboard shortcut, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[241]

IntelliJ IDEA will then scan for source roots and begin to index recently included
sources; this will take a while. Our development setup is now ready. We can start
developing the plugin functionality now.

Developing the plugin functionality
When it comes to plugin development, IntelliJ IDEA introduces the concept of the
component. There can be components at the application, module, and project level.
Application level (global) components are initialized when the IDE starts. Project
level components, on the other hand, are instantiated by the IDE for every project
instance opened. Module level components, accordingly, are instantiated for every
project's module loaded.

A further concept introduced in the plugins API is action. Here, action represents
the toolbar or menu item. It's a class whose actionPerformed method is called
when the toolbar button or menu item is selected. Action can be either defined in
the configuration file, or instantiated and registered programmatically. Every single
action must have a unique identifier.

IntelliJ IDEA provides the mechanism of groups to group actions; a group represents
the menu or toolbar. The IDE itself has its own groups defined. By adding your
actions to the already defined groups, your plugin can present its own items in
the IDE's standard menus and toolbars. Groups can contain other groups as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[242]

If a plugin will interact with other plugins or with the IntelliJ IDEA core, it must
declare one or more extension points and extensions. Think about an Extension Point
as a socket that something else can plug into. The extension on the other hand is
like a plug you can connect into the Extension Point. Each Extension Point defines
a class or an interface that is allowed to plug into it. The IDE itself contains a lot of
Extension Points defined to allow you to plug in and extend the core functionality.

If you would like to reuse the common functionality between your components
or just delegate some behavior to the external class, you can use the concept of
services. A service is a plugin component loaded on demand when your component
or action calls for it. A service is a singleton; it will be instantiated only once during
the first call. You call a service by executing the static getService () method on
the ServiceManager object. The services, just like components, have three scopes:
application, project, and module. We will create a simple service later in this chapter.

All the Components, Extension Points, Services, Action, and Groups must be defined
in the plugin configuration file, plugin.xml. This file describes the features and the
contents of a plugin. Think about it as a plugin deployment descriptor—the IDE will
analyze the file, instantiate all the necessary classes, and make necessary hooks to
make the plugin work.

Let's summarize the concepts now:

The concept The functionality
Application component Created and initialized on IntelliJ IDEA startup
Project component Created for each project instance
Module component Created for each module in every project loaded
Extension point Allow other plugins to extend this plugin functionality
Extension Allow this plugin to extend the core IntelliJ IDEA or other

plugin functionality
Service The singleton loaded on demand available for other plugins'

components
Action The class whose actionPerformed method is called when

the menu item or toolbar button is selected
Group A group of actions form a toolbar or menu
Configuration file The plugin.xml file with all the definitions of

Components, Services, Actions, and Groups with references
to their implementations

Our plugin should display a new menu item; clicking on this will show the message
on the screen. As you may have guessed, for the purpose of our example, we will
use Action. To make the example more illustrative, the message to display will come
from the service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[243]

The easiest way to create plugin modules is to use the provided wizards. The list of
wizards is available in the context menu. Right-click on the src directory of the plugin
module and choose New, and then Action, as shown in the following screenshot:

The New Action wizard will pop up, asking for a new ID for the action, its Name
that will identify the new action in the UI, and the name of the class with the action's
implementation. In the Groups list, we select the Group that represents the main
menu, and in the Actions list, we select the WindowMenu action. The Anchor
option defines the order in which we would like to include our action within the
selected group: First, Last, Before, and After. Let's choose After to have our menu
placed after the Window menu, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[244]

If you click on OK, IntelliJ IDEA will generate the HelloWorldAction class skeleton
and place the reference to it in the plugin.xml file. The plugin.xml file contains the
details of the plugin such as its name and description, vendor information, and the
applicable IDE version number. For our case, the most interesting part of this file is a
list of all the actions and components with references to their implementation classes.
In our example, it will be just a single Action element with the class attribute set to
the HelloWorldAction and add-to-group element attaching it to the main menu,
or, to be precise, to the group with the ID MainMenu. The autogenerated code looks
like the following screenshot:

The names of the elements and attributes in the plugin.xml file are rather
self-explanatory. The generated comments will get you started fast. There are
<application-components> and <project-components> elements where you
can put the references to your own components. The actions are enclosed in the
<actions> element. The internal, existing IDE actions identifiers can be found in
the IdeActions interface. Navigate to this interface by using the Go To Class
keyboard shortcut: Ctrl + N (PC) or cmd + O (Mac).

The services should be defined with the <applicationService>,
<projectService>, or <moduleService> element placed inside the <extensions>
element. To define extensions and points of an extension, place them within the
<extensions> and <extensionPoints> elements accordingly.

IntelliJ IDEA will provide you with the code completion when editing the plugin.
xml file. As you will remember from the previous chapters, Ctrl + Space Bar will
execute the code completion pop up; in this case, suggesting the names of the XML
elements and predefined values, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[245]

If you make a mistake in the plugin definition file, IntelliJ IDEA will give you the
error message when you try to run your configuration, as shown in the following
screenshot. The error description may be useful to quickly find out where the
problem is.

Let's change some of the generated code. It would be good to have a nice icon for
our action; we need to add the icon attribute pointing to the bitmap image in the
source path. In our example, we will use an 18 x 18 pixel PNG file. Additionally,
we will create our own new group and attach it to the main menu and the main
IntelliJ IDEA's toolbar. The group will contain the reference to our action. To
create the reference, we will use the reference element. The service providing
the message to be displayed will be defined in the <extensions> element as the
<applicationService> element. The modified code fragment will look like the
following screenshot:

If you select the New Action or New Component dialog box again later, the IDE will
add new references to the existing plugin.xml file.

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[246]

The main functionality of the action is contained in the implementation class. When
the newly created Platform Plugin SDK is first used, IntelliJ IDEA will prompt to
attach its annotations to the platform SDK:

Attaching the annotations will create a lot of hints and inspections related to the
plugin development available in the editor, so attaching these annotations is a
no-brainer.

The auto generated code is just a skeleton; the body of the actionPerformed
method is empty, so our action does nothing. Let's make it do something useful,
for example, let's show the message with the current day of the week. Change the
actionPerformed method to something like the following screenshot:

Of course, we need the service interface and its implementation. Note that our
service needs to implement the ApplicationComponent interface with life cycle
methods such as initComponent and disposeComponent. The following screenshot
shows our service's interface:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[247]

The code's implementation is shown as follows:

After adding the required Java imports, believe it or not, our plugin is ready to be
tested. Let's run it.

Deploying and publishing
If you created the project as an IDEA Platform Plugin project, the proper run/
debug configuration should already be present in the Run/Debug Configurations
drop down. Otherwise, if you decided to start from the Java project, you will need to
define the run/debug configuration on your own. Refer to the Running your project
section of Chapter 5, Make It Happen – Running Your Project, for information on how
to create a runtime or debug configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[248]

When developing plugins, the required profile type is Plugin, as shown here:

Running or debugging a configuration profile defined in this way will spawn a
second instance of IntelliJ.

When running the plugin development run/debug configuration
for the first time, a completely new instance of IntelliJ IDEA will be
started, complete with its own set of settings. A few dialog boxes
will pop up asking you to import settings or enter your license. Don't
worry, it will not overwrite your base IntelliJ IDEA installation settings.

Our plugin will be installed automatically. This is the moment when having a source
of the Community Edition on the source path comes in handy; you can debug IntelliJ
IDEA's own source code if something goes wrong.

Our day name reminder plugin will be active and the new action can be seen in the
toolbar (or, in other words, in the group with group-id MainToolBar), as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[249]

Of course, in the menu (again, contained in the subgroup of the group with the
group-id MainMenu value) the clicking action will execute the actionPerformed
method, as shown in the following screenshot:

Next, the name of the current day will pop up on the screen as shown here, notifying
you of the good news:

Take note that all of the log output from the second instance of the IntelliJ IDEA goes
to the log pane in the Run tool window, as shown here; you can use this for your
own purposes too:

www.it-ebooks.info

http://www.it-ebooks.info/

Not Enough? Extend It

[250]

Our plugin works flawlessly, so it's time to release it to the world. To do this, we will
need to deploy it. To prepare the deployment package, execute Prepare All Plugin
Modules For Deployment from the Build menu, as shown in the following screenshot:

After a while, IntelliJ IDEA will create a distributable .jar file and notify you about
its location and it'll display a notification as shown here:

The archive file will contain all the compiled classes with our implementation and
the META-INF directory with the plugin description file, plugin.xml. Now it's
ready to be distributed. You are now the plugin author, so you should have the
JetBrains account. You can register the account at the JetBrains Account Center web
page at http://account.jetbrains.com. If you're ready, visit https://plugins.
jetbrains.com, log in with your credentials, and click on the Add new plugin
button. After uploading the archive, the plugin will be submitted for moderation by
the JetBrains team. The process will take a couple of days. In the meanwhile, you can
provide some additional info, such as the license type, bug tracker and forum URL,
and other information that should be included on the plugin's site or when browsing
the plugin list in the Plugins section of Settings in the IDE.

www.it-ebooks.info

http://account.jetbrains.com
https://plugins.jetbrains.com
https://plugins.jetbrains.com
http://www.it-ebooks.info/

Chapter 10

[251]

Summary
Writing our own plugins in IntelliJ IDEA is not as tricky as it may seem; it's all
about the API provided by the JetBrains team, basically. This chapter covers just the
beginning of plugin development for IntelliJ IDEA. It is just the tip of the iceberg.
You can find the documentation of the API by heading to JetBrains' Confluence page
and choosing the IntelliJ IDEA plugin development space. At the time of writing this
book, the documentation was available at:

http://confluence.jetbrains.com/display/IDEADEV/PluginDevelopment

Here, you will find the IDE's architectural overview, the plugin structure, and many
guides on how to develop even the most advanced plugins. JetBrains Confluence
is the never-ending resource to extend the IDE. The explanation of IntelliJ IDEA's
virtual file system, development of the version control, and custom language plugins
is all here. The FAQ section with a lot of interesting questions already answered can
be supportive too.

The JetBrains DevNet forums are of great help if the
information cannot be found in Confluence. The forum can be
found at https://www.jetbrains.com/devnet/idea/.

In the Sample Plugins section, you will find the source code and description of how
to create plugins of different types. A few other good sources when preparing for
your journey of plugin development are:

•	 Blogs of authors of other plugins
•	 The source code of IntelliJ open source plugins
•	 The source code of open source projects created by other users

After reading the tutorials, browsing through the API, and reading source codes,
only your imagination will be the limit when it comes to extending the IDE.

www.it-ebooks.info

http://confluence.jetbrains.com/display/IDEADEV/PluginDevelopment
https://www.jetbrains.com/devnet/idea/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
action 242
application component 242
artifacts 35-37

B
breakpoints

deleting 181
Field Watchpoint, creating 183
filtering 187
managing 180-191
method breakpoint 180

C
changelists, version control 217, 218
Change Signature refactoring 100
changes, version control

browsing 226, 227
getting, from repository 224-226
local changes, reverting 227, 228

clipboard history, editor 70
code, editor

completing 71, 72
creating 74
inspecting 75, 76
reformatting 70

Colors and Fonts, IDE 18, 19
color themes

URL 19
column selection mode, editor 69

configuration
defaults 134
permanent configuration 121, 122
sharing 135
temporary configuration 120, 121

configuration file 242
configuration profile

debugging 248-250
running 248-250

Convert Anonymous Class to Inner
refactoring 114

Convert to Instance Method refactoring 101
Copy refactoring 96

D
debug configuration

creating, for test 160-164
for Java application 122-127
running 136, 137

debugger
actions 203-205
keyboard shortcuts 206
options 172-174
settings 171-176
starting 191, 192

debugging 171
Debug tool window

about 193-196
Frames tab 194, 195
Threads tab 194, 195

Delegate refactoring 107, 108
deployment, plugin 247
difference viewer, version control

using 228-231

www.it-ebooks.info

http://www.it-ebooks.info/

[254]

directory-based format
about 44
versus file-based format 45

docked mode 11
don't repeat yourself (DRY) principle 96

E
Eclipse

and IntelliJ IDEA 27
editions

comparing 7, 8
editor

about 47
gutter area 48-51
scratches 55
scrollbar 56, 57
status bar 51-53
tabs 53, 54

editor, basics
about 67
clipboard history 70
code, completing 71, 72
code, generating 74
code, inspecting 75, 76
code, reformatting 70, 71
column selection mode 69
language injection 73, 74
syntax-aware selection 69
text, replacing 67, 68
text, searching 67-69

editor tabs 16
Encapsulate Fields refactoring 115
Enterprise ARchive (EAR) 35
environment

setting up 238-241
Excluded folder 30
expressions

evaluating 196-203
extension 242
extension point 242
external documentation

viewing 86, 87
Extract Constant refactoring 102, 103
Extract Field refactoring 103
Extract Interface refactoring 109
Extract Method object refactoring 106
Extract method refactoring 105

Extract Parameter refactoring 104
Extract refactorings 102
Extract Superclass refactoring 110
Extract Variable refactoring 102

F
facets 33-35
Field Watchpoint

creating 183, 184
defining 190

file-based format
about 44
versus directory-based format 45

files
adding, to version control 218-220
committing 220-224
comparing 80, 81

file switching actions 64
Find and Replace Code Duplicates

refactoring 96
floating mode 12
folders

comparing 82, 83
Excluded 30
Resources 30
Sources 29
Test Resources 30
Tests 29

G
Generify refactoring 116, 117
Global (IDE) level, libraries 31
Gradle

tasks, executing 150, 151
URL 139
using 148-150

group 242
gutter area, editor 48-50

H
help

looking for 83
history, version control

displaying 231-233
Hotswap page 177

www.it-ebooks.info

http://www.it-ebooks.info/

[255]

I
IDE, settings

Colors and Fonts 18, 19
keyboard shortcuts 17, 18
options, searching for 17
plugins, picking 19, 20

inline documentation
viewing 84

Inline refactoring 110, 111
IntelliJ IDEA

editions, comparing 7, 8
installing 8, 9
tuning 23, 24

Introduce Parameter Object refactoring 105
Invert Boolean refactoring 113

J
Java application

debug configuration 122-128
run configuration 122-128

JavaScript debugger
setting up 178, 179

JetBrains
URL 7, 8

JetBrains Account Center
URL 250

JetBrains DevNet forums
URL 251

Just-In-Time (JIT) compiler 181

K
keyboard shortcuts, debugger 206
keyboard shortcuts, IDE

setting 17, 18
keyboard shortcuts, refactoring 117
keyboard shortcuts, test 170
keyboard shortcuts, version control

actions, executing 236

L
language injection 73
libraries

about 31
Global (IDE) level 31

module level 31
project level 31

Live Templates
about 76-78
postfix code completion 79, 80

log viewer, version control 233, 234

M
Make Static refactoring 101
Maven

goals, running 144-148
settings, editing 140-143
URL 139

Maven tool window 144
method breakpoint 180
method parameters

viewing 85
module component 242
module level, libraries 31
modules 28, 29
Move Instance Method refactoring 99
Move refactoring 97, 98

N
navigating

between files 58-64
in editor 57
within single file 64-66

NetBeans
and IntelliJ IDEA 27

Node.js configuration 133, 134

O
options

searching for 17

P
permanent configuration

about 121, 122
Node.js configuration 133, 134
run/debug configuration, for Java

application 123-128
Tomcat server local configuration,

creating 128-132

www.it-ebooks.info

http://www.it-ebooks.info/

[256]

pinned mode 11
plugin

deployment 247
functionality, developing 241-247
picking 19, 20
publishing 247

postfix code completion 79, 80
project

about 26
artifacts 36, 37
checking out, from repository 209, 210
configuration 26
facets 33-35
folders 29-31
libraries 31-33
modules 28, 29
setting up 238-240
structure 26

project component 242
project, creating

about 37
existing project, importing 40-43
format 43
from scratch 38-40

project, format
directory-based format 44
directory-based format,

versus file-based format 45
file-based format 44

project level, libraries 31
publishing, plugin 247
Pull Members Up refactoring 113
Push Members Down refactoring 113

R
refactoring

keyboard shortcuts 117
overview 89-94
URL 89

refactoring actions
about 95
Change Signature 100
Convert Anonymous Class to Inner 114
Convert to Instance Method 101

Copy 96
Delegate 107, 108
Encapsulate Fields 115
Extract Constant 102, 103
Extract Field 103
Extract Interface 109
Extract method 105
Extract Method object 106
Extract Parameter 104
Extract refactorings 102
Extract Superclass 110
Extract Variable 102
Find and Replace Code Duplicates 96
Generify 116, 117
Inline 110, 111
Introduce Parameter Object 105
Invert Boolean 113
Make Static 101
Move 97, 98
Move Instance Method 99
Pull Members Up 113
Push Members Down 113
Remove Middleman 112
Rename 95
Replace Constructor with Builder 116
Replace Constructor with Factory

Method 116
Replace Inheritance With Delegation 113
Safe Delete 99
Type Migration 101
Wrap Return Value 112

Remove Middleman refactoring 112
Rename refactoring 95
Replace Constructor with Builder

refactoring 116
Replace Constructor with Factory Method

refactoring 116
Replace Inheritance With Delegation

refactoring 113
repository

project, checking out from 209, 210
Resources folder 30
run configuration

creating, for test 160-164
for Java application 122-128
running 136, 137

www.it-ebooks.info

http://www.it-ebooks.info/

[257]

S
Safe Delete refactoring 99
scratches, editor 55
scrollbar, editor 56, 57
Search Everywhere feature 66, 67
service 242
settings

exporting 21
importing 21
sharing 22, 23

SOLID principles
URL 107

Sources folder 29
split mode 12
status bar, editor 51-53
Subversion (SVN) 208
syntax-aware selection, editor 69

T
tabs, editor 53, 54
temporary configuration 120, 121
test

creating 156-160
debug configuration, creating 160-164
debugging 164-169
keyboard shortcuts 170
run configuration, creating 160-164
running 164-169

testing plugins
enabling 154, 155

Test Resources folder 30
Tests folder 29
text

replacing 68, 69
searching 67, 68

themes
URL 22

Tomcat server local configuration
creating 128-132

tool windows
about 9, 10
multiple views 13, 14

navigating inside 14
view modes 11

tool windows, multiple views
about 13, 14
navigating inside 14
setting up, for specific project 15, 16

tool windows, view modes
docked mode 11
floating mode 12
pinned mode 11
split mode 12

type definition
viewing 84

Type Migration refactoring 101

U
Ultimate Edition

commercial license 8
personal license 8

usages
looking for 85

V
variables

inspecting 196-203
version control

about 207
actions, executing 234, 235
changelists 217, 218
changes, browsing 226, 227
changes, obtaining from repository 224-226
configuring 210-217
difference viewer, using 228-230
enabling 207, 208
files, adding 218-220
files, committing 220-224
history, displaying 231-233
local changes, reverting 227, 228
log viewer 233, 234

Version Control System
(VCS) See version control

www.it-ebooks.info

http://www.it-ebooks.info/

[258]

W
workspace

about 9
editor tabs 16
tool windows 9, 10
tool windows, multiple views 13, 14
tool windows, view modes 11

Wrap Return Value refactoring 112

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
IntelliJ IDEA Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with IntelliJ IDEA
ISBN: 978-1-84969-961-7 Paperback: 114 pages

Exploit IntelliJ IDEA's unique features to rapidly
develop web and Java Enterprise applications

1.	 Exhibit techniques that improve
development performance.

2.	 Present framework support.

3.	 Create an application that explores the
features of the integrated development
environment (IDE).

Chef Essentials
ISBN: 978-1-78398-304-9 Paperback: 218 pages

Discover how to deploy software, manage hosts,
and scale your infrastructure with Chef

1.	 Learn how to use Chef in a concise manner.

2.	 Learn ways to use Chef to integrate with cloud
services such as EC2 and Rackspace Cloud.

3.	 See advanced ways to integrate Chef into your
environment, develop tests, and even extend
Chef's core functionality.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Promises Essentials
ISBN: 978-1-78398-564-7 Paperback: 90 pages

Build fully functional web applications using
Promises, the new standard in JavaScript

1.	 Integrate JavaScript Promises into your
application by mastering the key concepts
of the Promises API.

2.	 Replace complex nested callbacks in JavaScript
with the more intuitive chained Promises.

3.	 Acquire the knowledge needed to start working
with JavaScript Promises immediately.

Mockito Essentials
ISBN: 978-1-78398-360-5 Paperback: 214 pages

A practical guide to get you up and running with unit
testing using Mockito

1.	 Explore Mockito features and learn stubbing,
mocking and spying dependencies using the
Mockito framework.

2.	 Mock external dependencies for legacy and
greenfield projects and create an automated
JUnit safety net for building reliable,
maintainable, and testable software.

3.	 A focused guide filled with examples and
supporting illustrations on testing your
software using Mockito.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Get to Know Your IDE, Fast
	Comparing the various editions
	Installing IntelliJ IDEA
	An overview of the workspace
	Tool windows
	View modes in tool windows
	Pinned Mode
	Docked Mode
	Floating Mode
	Split Mode

	Multiple views in tool windows
	Navigating inside the tool window
	Tool windows set up for a specific project

	Editor tabs

	Crafting your settings
	Searching for options
	Setting keyboard shortcuts
	Colors and fonts
	Picking your plugins

	Configuration tips and tricks
	Exporting and importing settings
	Sharing settings
	Tuning IntelliJ IDEA

	Summary

	Chapter 2: Off We Go – To the Code
	What is a project?
	Project structure and configuration
	Comparison of Eclipse, NetBeans, and IntelliJ IDEA terminologies
	The project
	Modules
	Folders
	Libraries
	Facets
	Artifacts

	Creating a project
	Creating a new project from scratch
	Importing the existing project
	Project format
	The directory-based format
	The file-based format
	The directory-based format versus the file-based format

	Summary

	Chapter 3: The Editor
	An overview of the editor and setup
	The gutter area
	The Status bar
	Tabs
	Scratches
	Scrollbar

	Navigating in the editor
	Navigating between files
	Navigating within a single file
	The Search Everywhere feature

	The editor basics
	Searching for and replacing text
	Syntax-aware selection
	Column selection mode

	Clipboard history
	Reformatting the code
	Code completion
	Language injection
	Generating code
	Code inspection

	Using Live Templates
	Postfix code completion

	Comparing files and folders
	Comparing files
	Comparing folders

	Looking for help
	Viewing inline documentation
	Viewing type definitions
	Looking for usages
	Viewing method parameters
	Viewing the external documentation

	Summary

	Chapter 4: Make it Better – Refactoring
	An overview of refactoring
	Refactoring actions
	Rename
	Find and Replace Code Duplicates
	Copy
	Move
	Move Instance Method
	Safe Delete
	Change Signature
	Type Migration
	Make Static
	Convert to Instance Method
	Extract refactorings
	Extract Variable
	Extract Constant
	Extract Field
	Extract Parameter
	Introduce Parameter Object
	Extract Method
	The Extract Method object
	Delegate
	Extract Interface
	Extract Superclass
	Inline
	Remove Middleman
	Wrap Return Value
	Invert Boolean
	Pull Members Up or Push Members Down
	Replace Inheritance With Delegation
	Convert Anonymous Class to Inner
	Encapsulate Fields
	Replace Constructor with Factory
Method / Builder
	Generify

	Summary

	Chapter 5: Make It Happen – Running Your Project
	A temporary configuration
	The permanent configuration
	The Run/Debug configuration for a Java application
	Creating a Tomcat server local configuration
	The Node.js configuration

	Configuration defaults
	Sharing the configuration
	Running
	Summary

	Chapter 6: Building Your Project
	Editing Maven settings
	The Maven tool window
	Running Maven goals
	Using Gradle
	Executing Gradle tasks
	Summary

	Chapter 7: Red or Green?
Test Your Code
	Enabling the testing plugins
	Creating the test
	Creating a run/debug configuration for the test
	Running or debugging the test
	Keyboard shortcuts
	Summary

	Chapter 8: Squash'em – The Debugger
	Debugger settings
	Setting up the JavaScript debugger
	Managing breakpoints
	Starting the debugger
	The Debug tool window
	Inspecting variables and evaluating expressions
	Debugger actions
	Keyboard shortcuts summary
	Summary

	Chapter 9: Working with Your Team
	Enabling version control
	Configuring the version control
	Working with version control
	Changelists
	Adding files to version control
	Committing files
	Getting changes from the repository
	Browsing the changes
	Reverting the local changes
	Using the difference viewer
	Displaying the history
	The log viewer

	Quickly executing VCS actions
	Keyboard shortcuts

	Summary

	Chapter 10: Not Enough? Extend It
	Setting up the environment and project
	Developing the plugin functionality
	Deploying and publishing
	Summary

	Index

