
Лямбда-
выражения

Функциональное программирование

в Java 8

Ричард Уорбэртон

Лямбда-выражения в Java 8

Ричард Уорбэртон

Java 8 Lambdas
Functional Programming for the Masses

Richard Warburton

Лямбда-выражения
в Java 8

Функциональное программирование –
в массы

Москва, 2014

Ричард Уорбэртон

УДК 004.432.42Java 8
ББК 32.973.26-018.1
 У62

 Уорбэртон Р.
У62 Лямбда-выражения в Java 8. Функциональное программиро-

вание – в массы / пер. с анг. А. А. Слинкина. – М.: ДМК Пресс,
2014. – 192 с.: ил.

 ISBN 978-5-97060-919-6

Если вы имеете опыт работы с Java SE, то из этой книги узнаете
об изменениях в версии Java 8, обусловленных появлением в языке
лямбда-выражений. Вашему вниманию будут представлены примеры
кода, упражнения и увлекательные объяснения того, как можно ис-
пользовать эти анонимные функции, чтобы сделать код проще и чище,
и как библиотеки помогают в решении прикладных задач.

Лямбда-выражения — относительно простое изменение в языке Java;
в первой части книги показано, как правильно ими пользоваться. В по-
следующих главах демонстрируется, как лямбда-выражения позволяют
повысить производительность программы за счет распараллеливания,
писать более простой конкурентный код и точнее моделировать пред-
метную область, в том числе создавать более качественные предметно-
ориентированные языки.

Издание предназначено для программистов разной квалификации,
как правило уже работающих с Java, но не имеющих опыта функцио-
нального программирования.

 УДК 004.432.42Java 8
 ББК 32.973.26-018.1

Все права защищены. Любая часть этой книги не может быть воспроиз-
ведена в какой бы то ни было форме и какими бы то ни было средствами без
письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но по-
скольку вероятность технических ошибок все равно существует, издательство
не может гарантировать абсолютную точность и правильность приводимых
сведений. В связи с этим издательство не несет ответственности за возможные
ошибки, связанные с использованием книги.

ISBN 978-1-449-37077-0 (анг.) Copyright © 2014 Richard
 Warburton
ISBN 978-5-97060-919-6 (рус.) © Оформление, перевод,
 ДМК Пресс, 2014

Содержание

Об авторе ..9

Предисловие..10

Глава 1. Введение ..16
Зачем понадобилось снова изменять Java? ..16
Что такое функциональное программирование?18
Пример предметной области ...18

Глава 2. Лямбда-выражения ..20
Наше первое лямбда-выражение ...20
Как опознать лямбда-выражение ..21
Использование значений ...23
Функциональные интерфейсы ...24
Выведение типов ...26
Основные моменты ..29
Упражнения ..29

Глава 3. Потоки ..31
От внешнего итерирования к внутреннему ...31
Что происходит на самом деле ...34
Наиболее распространенные потоковые операции36

collect(toList()) ...36
map ..37
filter ...38
flatMap ...39
max и min ..40
Проявляется общий принцип ...41
reduce ...43
Объединение операций ...44

Рефакторинг унаследованного кода ...46
Несколько потоковых вызовов ..49
Функции высшего порядка ...50
Полезное применение лямбда-выражений ..51
Основные моменты ..52

6 � Содержание

Упражнения ..53
Упражнения повышенной сложности ...54

Глава 4. Библиотеки ..55
Использование лямбда-выражений в программе55
Примитивы ..57
Разрешение перегрузки ..59
Аннотация @FunctionalInterface ...61
Двоичная совместимость интерфейсов ...62
Методы по умолчанию ..63

Методы по умолчанию и наследование ...64
Множественное наследование ..67

Три правила ...68
Компромиссы ...69
Статические методы в интерфейсах ...70
Тип Optional ..70
Основные моменты ..72
Упражнения ..72
Задача для исследования..74

Глава 5. Еще о коллекциях и коллекторах75
Ссылки на методы...75
Упорядочение элементов ..76
Знакомство с интерфейсом Collector ...78

Порождение других коллекций ..79
Порождение других значений ...80
Разбиение данных ...81
Группировка данных ...82
Строки ...83
Композиция коллекторов ...84
Рефакторинг и пользовательские коллекторы86
Редукция как коллектор ...94

Усовершенствование интерфейса коллекций ...95
Основные моменты ..96
Упражнения ..97

Глава 6. Параллелизм по данным ..98
Параллелизм и конкурентность ...98
Почему параллелизм важен? ... 100
Параллельные потоковые операции.. 101

Содержание � 7

Моделирование ... 102
Подводные камни... 106
Производительность ... 107
Параллельные операции с массивами .. 110
Основные моменты ... 112
Упражнения ... 113

Глава 7. Тестирование, отладка и рефакторинг 114
Когда разумно перерабатывать код с использованием
лямбда-выражений .. 114

Инкапсуляция внутреннего состояния .. 115
Переопределение единственного метода ... 116
Поведенческий паттерн «пиши все дважды».................................. 117

Автономное тестирование лямбда-выражений 120
Использование лямбда-выражений в тестовых двойниках 123
Отложенное вычисление и отладка ... 125
Протоколирование и печать ... 125
Решение: метод peek .. 126
Точки останова в середине потока ... 127
Основные моменты ... 127

Глава 8. Проектирование и архитектурные
принципы ... 128
Паттерны проектирования и лямбда-выражения 129

Паттерн Команда .. 130
Паттерн Стратегия ... 133
Паттерн Наблюдатель ... 136
Паттерн Шаблонный метод .. 139

Предметно-ориентированные языки с поддержкой
лямбда-выражений .. 143

Предметно-ориентированный язык на Java 144
Как это делается .. 145
Оценка .. 148

Принципы SOLID и лямбда-выражения... 148
Принцип единственной обязанности .. 149
Принцип открытости-закрытости .. 152
Принцип инверсии зависимости... 155

Что еще почитать ... 159
Основные моменты ... 160

8 � Содержание

Глава 9. Конкурентное программирование
и лямбда-выражения ... 161
Зачем нужен неблокирующий ввод-вывод? ... 161
Обратные вызовы ... 162
Архитектуры на основе передачи сообщений .. 167
Пирамида судьбы ... 168
Будущие результаты ... 171
Завершаемые будущие результаты .. 173
Реактивное программирование ... 177
Когда и где .. 180
Основные моменты ... 181
Упражнения ... 181

Глава 10. Что дальше? .. 183

Алфавитный указатель .. 185

Об авторе
Ричард Уорбэртон – технолог-эмпирик, увлекающийся решением
сложных технических задач, требующих глубокого понимания пред-
мета. Профессионально занимался проблемами статического ана-
лиза, верификацией части компилятора и разработкой усовершен-
ствованной автоматизированной технологии обнаружения ошибок.
Позже заинтересовался методами анализа данных для высокопро-
изводительных вычислений. Является руководителем лондонского
сообщества пользователей Java и членом комитета JCP, организует
процесс подачи запросов на улучшение для Java 8 в части лямбда-
выражений и механизмов работы с датой и временем. Ричард также
часто выступает на конференциях, в том числе JavaOne, DevoxxUK и
JAX London. Получил степень доктора философии по информатике
в Варвикском университете, где занимался теоретическими вопроса-
ми построения компиляторов.

Предисловие
В течение многих лет функциональное программирование считалось
уделом небольшой кучки специалистов, неизменно провозглашав-
ших его превосходство, но не способных убедить массы в мудрости
своего подхода. И эту книгу я написал прежде всего для того, чтобы
оспорить идею о том, будто функциональному стилю присущи какое-
то особое превосходство и убежденность в том, что он доступен лишь
немногим избранным.

Последние два года я убеждал разработчиков, входящих в лондон-
ское сообщество пользователей Java, попробовать те или иные аспек-
ты Java 8. Как оказалось, многим членам нашего сообщества очень
нравятся предоставленные им новые идиомы и библиотеки. Возмож-
но, их несколько смущают терминология и элитарность технологии,
но преимущества, которые несет с собой толика несложного функцио-
нального программирования, никого не оставляют равнодушными.
Все согласны, что гораздо проще читать код манипуляции объектами
и коллекциями, написанный с использованием нового Streams API, –
например, для выделения музыкальных альбомов, выпущенных в Ве-
ликобритании, из списка List всех альбомов.

Из опыта проведения таких мероприятий я вынес важный урок –
все зависит от примеров. Человек учится, решая простые примеры и
осознавая стоящие за ними закономерности. Я также понял, что тер-
минология легко может оттолкнуть учащегося, поэтому всегда стара-
юсь объяснять трудные идеи простыми словами.

Для многих механизмы функционального программирования,
включенные в Java 8, представляются невероятно ограниченными:
ни тебе монад1, ни отложенных вычислений на уровне языка, ни до-
полнительной поддержки неизменяемости. С точки зрения програм-
миста-прагматика, это прекрасно; нам нужна возможность выражать
абстракции на уровне библиотек, чтобы можно быть писать простой и
чистый код, решающий конкретную задачу. Даже лучше, если кто-то
уже написал за нас эти библиотеки, чтобы мы могли сосредоточиться
на своей повседневной работе.

1 Больше это слово в тексте ни разу не встретится.

Предисловие � 11

Зачем мне читать эту книгу?
В этой книге мы рассмотрим следующие вопросы.

 � Как писать простой, чистый и понятный читателю код, особен-
но в части работы с коллекциями.

 � Как с помощью параллелизма повысить производительность.
 � Как более точно моделировать предметную область и создавать

более качественные предметно-ориентированные языки.
 � Как писать более простой и безошибочный параллельный код.
 � Как тестировать и отлаживать лямбда-выражения.

Повышение продуктивности разработчика – не единственная при-
чина добавления лямбда-выражений в Java; действуют еще и глубин-
ные течения в нашей индустрии.

Кому стоит прочитать эту книгу?
Эта книга предназначена разработчикам, пишущим на Java, знако-
мым с основами Java SE и желающим идти в ногу со значительными
изменениями, появившимися в Java 8.

Если вам интересно узнать о том, что такое лямбда-выражения и
как они могут повысить ваш профессионализм, читайте дальше! Не
предполагается никаких предварительных знаний о лямбда-выра же-
ниях или еще каких-то новшествах в базовых библиотеках; все необ-
ходимые сведения будут изложены по ходу дела.

Конечно, мне хотелось бы, чтобы каждый разработчик приобрел
эту книгу, но, по совести говоря, она нужна не всем. Если вы вообще
не знаете языка Java, то эта книга не для вас. С другой стороны,
хотя тема лямбда-выражений в Java рассматривается очень подроб-
но, я ничего не рассказываю о том, как они используются в других
языках.

Не ожидайте введения в такие аспекты Java SE, как коллекции,
анонимные внутренние классы или механизм обработки событий
в Swing. Предполагается, что все это вы уже знаете.

Как читать эту книгу
Эта книга построена на примерах: вслед за знакомством с новой кон-
цепцией сразу идет код. Иногда в коде может встретиться что-то та-
кое, с чем вы не совсем знакомы. Не пугайтесь – объяснение последу-
ет очень скоро, чаще всего в следующем же абзаце.

12 � Предисловие

У такого подхода есть еще и то достоинство, что он позволяет по
ходу дела экспериментировать с новыми идеями. Более того, в конце
многих глав имеются дополнительные примеры для самостоятельной
работы. Я настоятельно рекомендую выполнять эти упражнения –
ката. Навык мастера ставит, и – как известно любому программисту-
прагматику – очень легко впасть в заблуждение, думая, что понимаешь
какой-то код, тогда как на самом деле упустил из виду важную деталь.

Поскольку смысл лямбда-выражений заключается в том, чтобы
абстрагировать сложность, убрав ее в библиотеки, то я остановлюсь
на нескольких приятных нововведениях в общих библиотеках. В гла-
вах 2–6 рассматриваются изменения в самом языке и усовершенство-
ванные библиотеки, входящие в состав JDK 8.

Последние три главы касаются практических применений функ-
ционального программирования. В главе 7 я расскажу о нескольких
приемах, упрощающих тестирование и отладку кода. В главе 8 объ-
ясняется, как применить к лямбда-выражениям общепринятые прин-
ципы правильного проектирования программного обеспечения. За-
тем, в главе 9, мы поговорим о параллелизме и о том, как с помощью
лямбда-выражений писать понятный параллельный код, пригодный
для сопровождения. Там, где это уместно, я буду знакомить вас со сто-
ронними библиотеками.

Первые четыре главы, наверное, стоит рассматривать как вводный
материал – вещи, которые должен знать всякий, кто хочет правильно
использовать Java 8. Последующие главы сложнее, зато они научат вас
полноценно и уверенно применять лямбда-выражения в собственных
проектах. По всей книге рассыпаны упражнения, решения к ним име-
ются на сайте в GitHub. Если вы не будете пренебрегать упражнения-
ми, то очень скоро овладеете лямбда-выражениями в совершенстве.

Графические выделения
В книге применяются следующие графические выделения:

Курсив
Новые термины, URL-адреса, адреса электронной почты, име-
на и расширения имен файлов.

�����������	
Листинги программ, а также элементы кода в основном тексте:
имена переменных и функций, базы данных, типы данных, пе-
ременные окружения, предложения и ключевые слова языка.

Предисловие � 13

�����������	
���
����	
Команды и иной текст, который пользователь должен вводить
точно в указанном виде.

�����������	
����

Текст, вместо которого следует подставить значения, заданные
пользователем или определяемые контекстом.

 Так обозначаются совет или рекомендация.

 Так обозначаются примечания общего характера.

 Так обозначаются предупреждения или предостережения.

О примерах кода
Дополнительные материалы (примеры кода, упражнения и т. д.)
можно скачать с сайта https://github.com/RichardWarburton/java-8-
lambdas-exercises.

Эта книга призвана помогать вам в работе. Поэтому вы можете
использовать приведенный в ней код в собственных программах и
в документации. Спрашивать у нас разрешения необязательно, если
только вы не собираетесь воспроизводить значительную часть кода.
Например, никто не возбраняет включить в свою программу несколь-
ко фрагментов кода из книги. Однако для продажи или распростране-
ния примеров из книг издательства O’Reilly на компакт-диске разре-
шение требуется. Цитировать книгу и примеры в ответах на вопросы
можно без ограничений. Но для включения значительных объемов
кода в документацию по собственному продукту нужно получить раз-
решение.

Мы высоко ценим, хотя и не требуем, ссылки на наши издания.
В ссылке обычно указываются название книги, имя автора, изда-
тельство и ISBN, например: «Java 8 Lambdas by Richard Warburton
(O’Reilly). Copyright 2014 Richard Warburton, 978-1-449-37077-0».

Если вы полагаете, что планируемое использование кода выходит
за рамки изложенной выше лицензии, пожалуйста, обратитесь к нам
по адресу permissions@oreilly.com.

Как с нами связаться
Вопросы и замечания по поводу этой книги отправляйте в издатель-
ство:

14 � Предисловие

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (в США и Канаде)
707-829-0515 (международный или местный)
707-829-0104 (факс)

Для этой книги имеется веб-страница, на которой публикуются
списки замеченных ошибок, примеры и прочая дополнительная ин-
формация. Адрес страницы: http://oreil.ly/java_8_lambdas.

Замечания и вопросы технического характера следует отправлять
по адресу bookquestions@oreilly.com.

Дополнительную информацию о наших книгах, конференциях
и новостях вы можете найти на нашем сайте по адресу http://www.
oreilly.com.

Читайте нас на Facebook: http://facebook.com/oreilly.
Следите за нашей лентой в Twitter: http://twitter.com/oreillymedia.
Смотрите нас на YouTube: http://www.youtube.com/oreillymedia.

Благодарности
Хотя на обложке книги стоит мое имя, ее выходу в свет немало по-
способствовали и многие другие.

Прежде всего, хочу сказать спасибо редактору Меган и всему коллек-
тиву издательства O’Reilly, благодаря которым процесс оказался очень
приятным, а сроки – достаточно гибкими. И если бы Мартин и Бен не
представили меня Меган, то эта книга никогда и не появилась бы.

Рецензирование сильно помогло улучшить книгу, поэтому я сер-
дечно благодарен всем, кто принимал участие в официальном и не-
официальном рецензировании: Мартину Вербургу (Martijn Verburg),
Джиму Гафу (Jim Gough), Джону Оливеру (John Oliver), Эдварду
Вонгу (Edward Wong), Брайану Гетцу (Brian Goetz), Даниэлю Брай-
анту (Daniel Bryant), Фреду Розенбергу (Fred Rosenberger), Джай-
киран Пай (Jaikiran Pai) и Мани Саркар (Mani Sarkar). А особенно
Мартину, который таки убедил меня написать техническую книгу.

Нельзя также не упомянуть группу разработчиков проекта Project
Lambda в Oracle. Модернизировать уже сложившийся язык – задача
не из легких, и они отлично справились с этой работой в Java 8, заодно
предоставив мне материал, о котором можно писать. Благодарности
заслуживает также лондонское сообщество пользователей Java, кото-

Предисловие � 15

рое так активно участвовало в тестировании ранних выпусков Java,
демонстрируя, какие ошибки допускают разработчики и как их мож-
но исправить.

Помощь и поддержку на протяжении всей работы над книгой мне
оказывало множество людей. Особенно хочется выделить родителей,
которые приходили на выручку по первому зову. И невыразимо при-
ятно было получать ободрение и позитивные замечания от друзей,
в том числе от старых членов компьютерного общества, а особенно
от Садика Джаффера (Sadiq Jaffer) и Бойса Бригейда (Boys Brigade).

Глава 1
Введение

Прежде чем вплотную заняться вопросом о том, что такое лямбда-
выражения и как ими пользоваться, надо бы понять, для чего вообще
они существуют. В этой главе я расскажу об этом, а заодно опишу
структуру книги и причины ее появления.

Зачем понадобилось снова изменять
Java?
Версия Java 1.0 была выпущена в январе 1996 года, и с тех пор мир
программирования претерпел кое-какие изменения. Бизнес требует
все более сложных приложений, а программы по большей части ис-
полняются на машинах с мощными многоядерными процессорами .
Появление целого ряда виртуальных машин Java (JVM) с эффектив-
ными JIT-компиляторами означает, что теперь программисты могут
сосредоточиться на создании чистого, удобного для сопровождения
кода, а не выжимать из оборудования все до последнего такта про-
цессора, трясясь над каждым байтом памяти.

Все знают о нашествии многоядерных процессоров, но мало кто
задумывается об этом. Алгоритмы с применением блокировок чрева-
ты ошибками и требуют много времени на разработку. В пакете java.
util.concurrent и многочисленных внешних библиотеках предлага-
ются различные абстракции параллелизма, помогающие писать код,
эффективно работающий на многоядерных процессорах. К сожале-
нию, до сих пор мы продвинулись не слишком далеко. Но времена
меняются.

В настоящее время есть пределы уровню абстрагирования, до-
ступному авторам библиотек на Java. Хороший пример – отсутствие
эффективных параллельных операций с большими коллекциями
данных. Java 8 позволяет записывать сложные алгоритмы обработ-

� 17

ки коллекций, а путем простого изменения всего лишь одного вызо-
ва метода этот код будет эффективно исполняться на многоядерных
процессорах. Но чтобы такие библиотеки распараллеливания массо-
вых операций над данными были возможны, в Java пришлось внести
дополнение на уровне языка: лямбда-выражения.

Разумеется, за все нужно платить. В данном случае придется на-
учиться читать и писать код с лямбда-выражениями, но это неплохая
сделка. Программисту проще изучить новый синтаксис и несколько
новых идиом, чем писать вручную горы сложного потокобезопасного
кода. Хорошие библиотеки и каркасы существенно сократили вре-
менные и финансовые затраты на разработку корпоративных при-
ложений, а теперь следует устранить все барьеры на пути создания
простых в использовании и эффективных библиотек.

Идея абстракции знакома всем, кто занимается объектно-ориенти-
рованным программированием. Различие же состоит в том, что в объ-
ектно-ориентированном программировании абстрагируются глав-
ным образом данные, а в функциональном – поведение. В реальном
мире, как и в наших программах, все перемешано, поэтому мы можем
и должны изучать обе тенденции.

У нового аспекта абстракции есть и другие достоинства – сущест-
венные для тех из нас, кому не приходится постоянно писать код,
который должен выполняться максимально эффективно. Теперь вы
можете писать код, который проще читать, уделяя главное внимание
способам выражения своих намерений, а не механизмам их достиже-
ния. А код, который легко читать, легко также сопровождать, он более
надежен и в меньшей степени подвержен ошибкам.

При создании обратных вызовов и обработчиков событий вы боль-
ше не связаны многословностью и неудобочитаемостью анонимных
вложенных классов. При таком подходе программисту проще рабо-
тать с системами обработки событий. Возможность передавать функ-
ции из одного места в другое позволяет без особого труда писать от-
ложенный код, в котором значения инициализируются в тот момент,
когда это необходимо.

Ко всему прочему, появление в языке методов коллекций по умол-
чанию (default) позволяет программисту лучше сопровождать соб-
ственные библиотеки.

Сегодня язык Java не тот, на котором писал ваш дедушка, – и это
хорошо.

18 � Глава 1. Введение

Что такое функциональное
программирование?
Разные люди понимают под словами функциональное программирова-
ние разные вещи. В его основе лежит осмысление предметной области
в терминах неизменяемых значений и функций, которые их преоб-
разуют.

Сообщества, сформировавшиеся вокруг какого-то языка програм-
мирования, полагают, что набор средств, включенных в их любимый
язык, – единственно правильный. На данном этапе еще слишком рано
говорить о том, как определят функциональное программирование
программисты, пишущие на Java. Но в определенном смысле это и
не важно; существенно то, как писать хороший – а не функциональ-
ный – код.

В этой книге предметом моего внимания будет прагматичное
функциональное программирование, в том числе приемы, которые
легко сможет понять и использовать большинство программистов,
чтобы создавать программы, более понятные и удобные для сопро-
вождения .

Пример предметной области
 Все примеры в этой книге относятся к общей предметной области:
музыке. Точнее, мы будем иметь дело с данными, присутствующими
в музыкальных альбомах. Ниже приведена краткая сводка терминов.

Исполнитель
Один человек или группа, исполняющая музыкальные произве-
дения:

 � name: имя или название исполнителя (например, «The Beatles»);
 � members: другие исполнители, входящие в состав группы (на-

пример, «Джон Леннон»), это поле может быть пустым;
 � origin: место, где возникла группа (например, «Ливерпуль»).

Произведение
Одно музыкальное произведение:

 � name: название произведения (например, «Yellow Submarine»).

Альбом
Собрание нескольких музыкальных произведений в одном изда-
нии:

� 19Пример предметной области

 � name: название альбома (например, «Revolver»);
 � tracks: список произведений;
 � musicians: список исполнителей, принимавших участие в рабо-

те над альбомом.

На примере этой предметной области мы продемонстрируем при-
менение функционального программирования в типичном бизнес-
приложении на Java. Возможно, на ваш взгляд, этот пример не идеа-
лен, но он простой, а многие приведенные в этой книге фрагменты
кода аналогичны встречающимся в реальных задачах.

Глава 2
Лямбда-выражения

 Самое серьезное изменение на уровне языка, появившееся в Java 8, –
лямбда-выражения – компактный способ передать поведение из од-
ного места программы в другое. Поскольку это тот элемент, который
лежит в основе всей книги, поговорим о том, что же он собой пред-
ставляет.

Наше первое лямбда-выражение
Swing – это платформенно-независимая Java-библиотека для созда-
ния графического интерфейса пользователя (ГИП). В ней повсемест-
но встречается идиома, в соответствии с которой для выяснения того,
что сделал пользователь, необходимо зарегистрировать прослушива-
тель событий. Затем прослушиватель сможет выполнить что-то по-
лезное в ответ на действие пользователя (см. пример 2.1).

Пример 2.1 � Использование анонимного внутреннего класса
для связывания поведения с нажатием кнопки
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.out.println("button clicked");
 }
});

Здесь мы создаем новый объект, предоставляющий реализацию
интерфейса ActionListener . В этом интерфейсе определен единствен-
ный метод actionPerformed, который вызывается объектом button, ког-
да пользователь нажимает кнопку на экране. Анонимный внутренний
класс как раз и предоставляет реализацию этого метода. В примере 2.1
он просто печатает сообщение о том, что была нажата кнопка.

 На самом деле это пример использования кода как данных – мы передаем
кнопке объект, который представляет действие.

Анонимные внутренние классы были придуманы, чтобы упростить
передачу кода как данных в Java. К сожалению, упрощение оказалось

� 21Как опознать лямбда-выражение

недостаточным. Мы по-прежнему видим четыре строки стереотип-
ного кода, обрамляющих единственно важную строку, содержащую
логику.

Но наличие стереотипного кода – не единственная проблема: этот
код довольно трудно читать, потому что он затемняет намерение про-
граммиста. Мы не хотим передавать никакой объект, в действитель-
ности требуется передать некое поведение. В Java 8 этот код можно
переписать в виде лямбда-выражения, как показано в примере 2.2.

Пример 2.2 � Использование лямбда-выражения для связывания
поведения с нажатием кнопки
button.addActionListener(event -> System.out.println("button clicked"));

Вместо объекта, реализующего интерфейс, мы передаем блок ко-
да – функцию без имени. Здесь event – имя параметра, такое же, как
в примере с анонимным внутренним классом, – а -> отделяет пара-
метр от тела лямбда-выражения, содержащего код, исполняемый при
нажатии кнопки.

Еще одно отличие этого примера от анонимного внутреннего клас-
са – способ объявления переменной event. Раньше нужно было явно
указать тип – ActionEvent event. Теперь тип не указывается вовсе, и тем
не менее код компилируется. Подспудно компилятор javac выводит
тип переменной event из контекста – в данном случае из сигнатуры
метода addActionListener. Это означает, что нет нужды явно выписы-
вать тип в случае, когда он очевиден. Ниже мы рассмотрим механизм
выведения типа более подробно, но сначала познакомимся с различ-
ными способами записи лямбда-выражений.

 Хотя для записи параметров лямбда-метода требуется меньше стереотипно-
го кода, чем раньше, они все равно статически типизированы. Для большей
удобочитаемости объявления типов можно включать явно, а иногда компиля-
тор просто не может вывести их автоматически!

Как опознать лямбда-выражение
 В примере 2.3 показано несколько вариантов основного формата
запи си лямбда-выражений.

Пример 2.3 � Различные способы записи лямбда-выражений
Runnable noArguments = () -> System.out.println("Hello World"); �

ActionListener oneArgument = event -> System.out.println("button clicked"); �

Runnable multiStatement = () -> { �

22 � Глава 2. Лямбда-выражения

 System.out.print("Hello");
 System.out.println(" World");
};

BinaryOperator<Long> add = (x, y) -> x + y; �

BinaryOperator<Long> addExplicit = (Long x, Long y) -> x + y; �

� показывает, как можно записать лямбда-выражение вообще без
аргументов . Отсутствие аргументов обозначается парой пустых ско-
бок (). Это лямбда-выражение реализует интерфейс Runnable, един-
ственный метод которого run не принимает аргументов и «возвраща-
ет» значение типа void.

В случае � имеется лямбда-выражение с одним аргументом, и
в этой ситуации окружающие его скобки можно опустить. Это имен-
но тот формат, который использовался в примере 2.2.

Лямбда-выражение может включать не только единственное вы-
ражение, но и целый блок кода, заключенный в фигурные скобки ({}),
как в случае �. К таким блокам применяются те же правила, что и для
обычных методов. В частности, они могут возвращать значения и воз-
буждать исключения. В фигурные скобки можно заключать и одно-
строчное лямбда-выражение, например чтобы яснее показать, где оно
начинается и заканчивается.

С помощью лямбда-выражений можно также представлять методы,
принимающие несколько аргументов, как в случае �. Сейчас стоит
поговорить о том, как читать такое лямбда-выражение. В этой строке
мы не складываем два числа, а создаем функцию, складывающую два
числа. Переменная с именем add, имеющая тип BinaryOperator<Long>, –
это не результат сложения чисел, а код, который их складывает.

До сих пор типы параметров лямбда-выражений выводил за нас
компилятор. Это замечательно, но иногда удобно иметь возможность
задать тип явно. Поступая так, мы должны заключить аргументы
лямбда-выражения в круглые скобки. Скобки необходимы и тогда,
когда аргументов несколько. Это показано в случае �.

 Целевым типом лямбда-выражения называется тип контекста, в котором это
выражение встречается, – например, тип локальной переменной, которой оно
присваивается, или тип параметра метода, вместо которого оно передается.

Во всех этих примерах неявно подразумевается, что тип лямбда-
выражения зависит от контекста. Он выводится компилятором. Вы-
ведение целевого типа не является новшеством. Как видно из при-
мера 2.4, типы инициализаторов массива всегда выводились в Java из

� 23

контекста. Другой знакомый пример – null. Какой тип имеет null, мы
понимаем сразу, как видим его присваивание чему-либо.

Пример 2.4 � Тип правой части не указан, он выводится из контекста

 nal String[] array = { "hello", "world" };

Использование значений
 В прошлом, используя анонимные внутренние классы, вы, наверное,
встречались с ситуацией, когда требуется использовать переменную,
определенную в объемлющем методе. Для этого переменную нужно
было объявлять с ключевым словом
 nal, как показано в примере 2.5.
Переменной, объявленной как
 nal, нельзя присвоить другое значе-
ние. Это означает, что, используя
 nal-переменную , мы точно знаем,
что она сохранит именно то значение, которое ей было когда-то при-
своено.

Пример 2.5 � Локальная final-переменная, захваченная анонимным
внутренним классом

 nal String name = getUserName();
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.out.println("hi " + name);
 }
});

 В Java 8 это ограничение немного ослаблено. Теперь разрешено
ссылаться на переменные, в объявлении которых нет слова
 nal; од-
нако они должны быть эффективно финальными . Хотя включать
 nal
в объявление переменной не требуется, использовать переменные, на
которые ссылается лямбда-выражение, как нефинальные, запрещено.
Попытка сделать это приведет к ошибке компиляции.

Таким образом, эффективно финальной переменной значение мож-
но присвоить только один раз. По-другому осознать это ограничение
можно, поняв, что лямбда-выражение захватывает не переменные,
а значения. В примере 2.6 name – эффективно финальная переменная.

Пример 2.6 � Эффективно final-переменная, захваченная лямбда-
выражением
String name = getUserName();
button.addActionListener(event -> System.out.println("hi " + name));

 Лично мне подобный код читать легче, когда слово
 nal опущено,
потому что оно воспринимается как лишний шум. Разумеется, быва-

Использование значений

24 � Глава 2. Лямбда-выражения

ют ситуации, когда проще понять код, если
 nal явно присутствует.
В конечном итоге использовать механизм «эффективной финально-
сти» или нет – дело вкуса.

Если присвоить переменной значение несколько раз, а затем по-
пытаться использовать ее в лямбда-выражении, компилятор выдаст
ошибку. Так, при попытке откомпилировать программу из приме-
ра 2.7 мы получим сообщение local variables referenced from a lambda
expression must be
 nal or effectively
 nal1.

Пример 2.7 � Не компилируется из-за использования переменной,
не являющейся эффективно финальной
String name = getUserName();
name = formatUserName(name);
button.addActionListener(event -> System.out.println("hi " + name));

Это поведение помогает объяснить одну из причин, по которым
некоторые называют лямбда-выражения «замыканиями» . Перемен-
ная, которой не присвоено значение, замыкается в объемлющем со-
стоянии и затем связывается со значением. В интернет-сообществе
оживленно дебатировался вопрос, а правда ли в Java есть замыкания,
коль скоро ссылаться можно только на эффективно финальные пере-
менные. Перефразируя Шекспира, можно сказать: «Замыкание оста-
ется замыканием, хоть замыканием назови его, хоть нет»2. Чтобы не
вступать в бессмысленные споры, я буду употреблять в книге термин
«лямбда-выражение». Так или иначе, лямбда-выражения, как я уже
говорил, статически типизированы, поэтому давайте разберемся с ти-
пами самих лямбда-выражений; они называются функциональными
интерфейсами.

Функциональные интерфейсы
 Функциональным интерфейсом называет интерфейс с единственным аб-
страктным методом, который и является типом лямбда-выражения.

 В Java у всех параметров метода есть типы; если мы передаем методу
значение 3 в качестве аргумента, то параметр должен иметь тип int.
Тогда каков же тип лямбда-выражения?

1 Локальные переменные, на которые имеются ссылки в лямбда-выражении,
должны быть финальными или эффективно финальными. – Прим. перев.

2 «Что значит имя? Роза пахнет розой, хоть розой назови ее, хоть нет» //
Ромео и Джульетта / перевод Б. Л. Пастернака.

� 25

Существует старая-престарая идиома использования интерфейса
с единственным методом для представления и повторного использо-
вания метода. Все мы знакомы с ней по программированию в Swing,
и именно это и имеет место в примере 2.2. Никакого нового волшеб-
ства здесь нет. Точно такая же идиома используется для лямбда-вы-
ражений, а интерфейс такого рода мы называем функциональным.
В примере 2.8 показан функциональный интерфейс для рассмотрен-
ного выше примера.

Пример 2.8 � Интерфейс ActionListener: на входе ActionEvent, на вы-
ходе ничего
public interface ActionListener extends EventListener {
 public void actionPerformed(ActionEvent event);
}

В интерфейсе ActionListener имеется только один абстрактный
метод, actionPerformed, мы используем его, чтобы представить дей-
ствие, которое принимает один аргумент и не возвращает ничего.
Напомним, что коль скоро метод actionPerformed объявлен в интер-
фейсе, предпосылать ему ключевое слово abstract необязательно – он
и так абстрактный. У него также имеется родительский интерфейс
EventListener, вообще без методов.

Итак, мы имеем функциональный интерфейс. Совершенно не важ-
но, как называется его единственный метод, – он сопоставится с лямб-
да-выражением при условии совместимости сигнатур. Функциональ-
ные интерфейсы также позволяют нам придать полезное имя типу
параметра – такое, которое поможет понять, для чего он предназначен.

В данном случае функциональный интерфейс принимает один
параметр типа ActionEvent и ничего не возвращает (void), однако они
могут представать и в других обличьях. Например, функциональный
интерфейс может принимать два параметра и возвращать значение.
В них допустимы также универсальные типы; все зависит от предпо-
лагаемого использования.

Начиная с этого момента, я буду использовать диаграммы для
представления различных видов функциональных интерфейсов.
Входящими стрелками обозначаются аргументы, а исходящей (если
она присутствует) – тип возвращаемого значения. Так, на рис. 2.1 изо-
бражен функциональный интерфейс ActionListener.

Вам еще встретится много функциональных интерфейсов, но
в JDK существует несколько основных интерфейсов, повторяющихся
снова и снова. Наиболее важные перечислены в табл. 2.1.

Функциональные интерфейсы

26 � Глава 2. Лямбда-выражения

Таблица 2.1. Важные функциональные интерфейсы в Java

Имя интерфейса Аргументы Возвращает Пример
Predicate<T> T Boolean Этот альбом уже вышел?
Consumer<T> T Void Распечатка значения
Function<T,R> T R Получить имя из объекта

Artist
Supplier<T> Нет T Фабричный метод
UnaryOperator<T> T T Логическое НЕТ (!)
BinaryOperator<T> (T, T) T Умножение двух чисел (*)

Я уже говорил о том, какие типы могут принимать функциональ-
ные интерфейсы, и отметил, что javac умеет автоматически выво-
дить типы параметров и что вы можете указать их вручную. Но как
узнать, когда нужно указывать типы явно, а когда нет? Чтобы отве-
тить на этот вопрос, придется познакомиться с деталями выведения
типов.

Выведение типов
 Есть случаи, когда обязательно указывать типы вручную, а вообще
я рекомендую поступать так, как вам и вашим коллегам кажется пра-
вильным с точки зрения удобочитаемости. Иногда отсутствие явно
указанных типов позволяет устранить лишний шум и прояснить, что
происходит на самом деле. А иногда их лучше оставить – с точно та-
кой же целью. Лично мне типы поначалу казались полезными, но со
временем я стал указывать их только тогда, когда это действительно
необходимо. Чтобы понять, когда это так, нужно освоить несколько
простых правил, с которыми мы познакомимся в этой главе.

Выведение типов в лямбда-выражениях – это на самом деле обоб-
щение аналогичного механизма, появившегося в Java 7. Вы, наверное,
знаете о ромбовидном операторе (операторе diamond) в Java 7, с по-
мощью которого мы просим javac вывести типы универсальных аргу-
ментов. Ниже приведен пример.

Рис. 2.1 � Интерфейс ActionListener:
на входе ActionEvent, на выходе ничего (void)

ActionEvent ActionListener

� 27

Пример 2.9 � Применение ромбовидного оператора для выведения
типа переменной
Map<String, Integer> oldWordCounts = new HashMap<String, Integer>(); 1
Map<String, Integer> diamondWordCounts = new HashMap<>(); 2

В объявлении переменной oldWordCounts 1 мы явно указали уни-
версальные типы, а в объявлении переменной diamondWordCounts 2 вос-
пользовались ромбовидным оператором. Универсальные типы отсут-
ствуют – компилятор сам определил, что вы хотите сделать. Магия!

Конечно, никакой магии тут нет. Универсальные типы-аргументы
HashMap можно вывести из типа diamondWordCounts. Но указывать уни-
версальные типы в объявлении переменной, которой присваивается
значение, все равно надо.

Если передавать методу выражение конструирования, то универ-
сальные типы также можно вывести – из сигнатуры метода. В при-
мере 2.10 мы передаем экземпляр HashMap в виде аргумента методу,
в сигнатуре которого типы уже указаны.

Пример 2.10 � Применение ромбовидного оператора для выведения
типа в аргументе метода
useHashmap(new HashMap<>());
...
private void useHashmap(Map<String, String> values);

Если в Java 7 разрешалось опускать универсальные типы-аргумен-
ты в конструкторе, то в Java 8 можно опускать типы параметров лямб-
да-выражений. И опять-таки никакой магии: javac ищет информацию
в непосредственной близости от лямбда-выражения и использует ее
для принятия решения о типе. Типы по-прежнему проверяются, так
что привычная безопасность никуда не девается, но явно указывать
типы нет необходимости. Именно это и называется выведением типов.

 Стоит также отметить, что в Java 8 механизм выведения типов улучшен. При-
веденный выше пример, где выражение new HashMap<>() передавалось в ме-
тод useHashmap, в Java 7 не откомпилировался бы, хотя у компилятора имеется
вся информация для принятия решения.

Приведем еще несколько примеров, чтобы уточнить детали.
В обоих случаях мы присваиваем значение переменной типа функ-

ционального интерфейса, чтобы было проще следить за происходя-
щим. В примере 2.11 мы имеем лямбда-выражение, определяющее,
верно ли, что значение типа Integer больше 5. На самом деле это
 Predicate – функциональный интерфейс, который возвращает true
или false.

Выведение типов

28 � Глава 2. Лямбда-выражения

Пример 2.11 � Выведение типа
Predicate<Integer> atLeast5 = x -> x > 5;

Лямбда-выражение, возвращающее значение, также имеет тип
Predicate – в отличие от предыдущих примеров, где фигурировал тип
ActionListener. В данном случае тело лямбда-выражения имеет вид x
> 5. При вычислении лямбда-выражения будет возвращено значение,
получающееся в результате вычисления его тела.

Из примера 2.11 видно, что у типа Predicate имеется универсаль-
ный тип-аргумент; в данном случае мы взяли тип Integer. Поэтому
компилятор выводит, что единственный аргумент лямбда-выраже-
ния, реализующего Predicate, имеет тип Integer. javac может также
проверить, что выражение возвращает значение типа boolean, потому
что именно таким должен быть тип значения, возвращаемого мето-
дом интерфейса Predicate (см. рис. 2.2).

Пример 2.12 � Интерфейс Predicate в коде, получающем объект
и возвращающем boolean
public interface Predicate<T> {
 boolean test(T t);
}

Рис. 2.2 � Диаграмма интерфейса Predicate,
который возвращает boolean, получая объект типа T

T booleanPredicate

Рассмотрим еще один, чуть более сложный пример функциональ-
ного интерфейса: интерфейс BinaryOperator, показанный в приме-
ре 2.13. Он принимает два аргумента одного типа и возвращает значе-
ние того же типа. В примере мы взяли тип Long.

Пример 2.13 � Более сложный пример выведения типа
BinaryOperator<Long> addLongs = (x, y) -> x + y;

Механизм выведения типа достаточно «умный», но если информа-
ции недостаточно, он не сможет принять правильное решение. В та-
ких случаях он не занимается гаданием на кофейной гуще, а просто
останавливается и просит у вас помощи – в форме сообщения компи-
лятора об ошибке. Например, удалив часть информации о типе в пре-
дыдущем примере, мы получим код, показанный ниже.

� 29

Пример 2.14 � Этот код не компилируется из-за отсутствия универ-
сального типа
BinaryOperator add = (x, y) -> x + y;

При попытке компиляции выдается такое сообщение:

Operator '+' cannot be applied to java.lang.Object, java.lang.Object.

Выглядит совершенно непонятно. Но напомним, что BinaryOpera-
tor – функциональный интерфейс с универсальным типом-аргумен-
том. Именно такой тип имеют оба аргумента, x и y, и возвращаемое
значение. Однако в коде выше мы не указали тип-аргумент в объяв-
лении переменной add. Получилось определение простого типа. По-
этому компилятор думает, что аргументы и возвращаемое значение
имеют тип java.lang.Object.

Мы еще вернемся к механизму выведения типов и его взаимосвязи
с перегрузкой методов в разделе «Разрешение перегрузки» ниже, а до
тех пор уже сказанного будет вполне достаточно.

Основные моменты
 � Лямбда-выражение – это безымянный метод, который служит

для передачи поведения из одного места программы в другое
так, будто это данные.

 � Лямбда-выражения выглядят следующим образом: BinaryOpe-
rator<Integer> add = (x, y) � x + y.

 � Функциональным интерфейсом называется интерфейс с един-
ственным абстрактным методом; он используется в качестве
типа лямбда-выражения.

Упражнения
В конце каждой главы имеются упражнения, чтобы вы могли про-
верить, насколько хорошо усвоен изложенный материал. Ответы
к упражнениям можно найти на сайте GitHub.

1. Вопросы о функциональном интерфейсе Function.

Пример 2.15 � Функциональный интерфейс Function
public interface Function<T, R> {
 R apply(T t);
}

a. Можете ли вы изобразить диаграмму этого функционального
интерфейса?

Упражнения

30 � Глава 2. Лямбда-выражения

b. Для каких лямбда-выражений можно было бы использовать
этот функциональный интерфейс в программе калькулятора?

c. Какие из следующих лямбда-выражений являются коррект-
ными реализациями интерфейса Function<Long,Long>?

x -> x + 1;
(x, y) -> x + 1;
x -> x == 1;

2. Лямбда-выражения и класс ThreadLocal. В Java имеется класс
ThreadLocal, который работает как контейнер значения, локаль-
ного для текущего потока. В Java 8 появился новый фабричный
метод для порождения экземпляров ThreadLocal, который при-
нимает лямбда-выражение, позволяющее создать объект, не за-
водя новых подклассов.
a. Найдите этот метод в Javadoc в своей интегрированной среде

разработки (IDE).
b. Класс DateFormatter в Java небезопасен относительно пото-

ков. Используйте конструктор для создания потокобезопас-
ного экземпляра DateFormatter, который печатает даты в виде
«01-Jan-1970».

3. Правила выведения типов. Ниже приведено несколько приме-
ров передачи лямбда-выражений функциям. Может ли javac
правильно вывести типы аргументов для этих лямбда-выраже-
ний? Иначе говоря, будут ли они компилироваться?
a. Runnable helloWorld = () -> System.out.println("hello world");
b. Лямбда-выражение, выступающее в роли ActionListener:

JButton button = new JButton();
button.addActionListener(event ->
 System.out.println(event.getActionCommand()));

c. Будет ли выведен тип в выражении check(x -> x > 5), если име-
ются следующие перегруженные варианты check?

interface IntPred {
 boolean test(Integer value);
}
boolean check(Predicate<Integer> predicate);
boolean check(IntPred predicate);

 Чтобы узнать, есть ли у метода несколько перегруженных вариантов, можно
изучить документацию Javadoc или посмотреть типы аргументов в IDE.

Глава 3
Потоки

 Изменения языка, появившиеся в Java 8, призваны помочь нам
в напи сании более качественного кода. Наибольший вклад в дости-
жение этой цели вносят новые базовые библиотеки, к рассмотрению
которых мы и переходим. Наиболее существенные изменения в биб-
лиотеках касаются API коллекций и нового понятия потоков. Потоки
позволяют писать код работы с коллекциями на более высоком уров-
не абстракции.

В интерфейсе Stream объявлены многочисленные функции, ко-
торые мы будет изучать в этой главе. Каждая из них соответствует
какой-то типичной операции с объектами типа Collection.

От внешнего итерирования к внутреннему

 Примеры в этой главе и остальной части книги ссылаются на классы пред-
метной области, описанные выше в разделе «Пример предметной области».

 В программах на Java часто приходится обходить коллекции, приме-
няя операцию к каждому элементу по очереди. Например, код, пока-
занный в примере 3.1, подсчитывает общее количество исполнителей
родом из Лондона.

Пример 3.1 � Подсчет исполнителей из Лондона в цикле for
int count = 0;
for (Artist artist : allArtists) {
 if (artist.isFrom("London")) {
 count++;
 }
}

Однако у такого подхода есть несколько недостатков. В нем мно-
го стереотипного кода, который приходится писать всякий раз, как
мы хотим обойти какую-то коллекцию. Кроме того, такой цикл for
трудно распараллелить – для этого пришлось бы написать несколько
циклов.

32 � Глава 3. Потоки

Наконец, глядя на этот код, не сразу понимаешь, что хотел сде-
лать программист. Стереотипная структура цикла for затемняет его
смысл; чтобы докопаться до него, необходимо прочитать все тело
цикла. Если цикл for всего один, то ничего страшного в этом нет, но
когда есть значительный объем написанного кода, в котором встреча-
ется множество циклов (особенно вложенных), возникает проблема.

Если заглянуть под капот, то окажется, что цикл for – на самом
деле синтаксическая глазурь, которая обертывает и скрывает итери-
рование. Стоит немного задержаться и посмотреть, что происходит
под капотом. На первом шаге вызывается метод iterator, который
создает новый объект Iterator, управляющий процессом итерирова-
ния. Этот механизм называется внешним итерированием. Далее в про-
цессе итерирования явно вызываются методы hasNext и next объекта
Iterator. В примере 3.2 приведен развернутый таким образом код, а на
рис. 3.1 графически показано его выполнение.

Пример 3.2 � Подсчет исполнителей из Лондона с помощью итера-
тора
int count = 0;
Iterator<Artist> iterator = allArtists.iterator();
while(iterator.hasNext()) {
 Artist artist = iterator.next();
 if (artist.isFrom("London")) {
 count++;
 }
}

Рис. 3.1 � Внешнее итерирование

hasNext()
hasNext

next()
элемент

Код приложения Код коллекции
Итерирование

Но у внешнего итерирования есть темные стороны. Во-первых,
становится трудно абстрагировать различные операции, с которыми
мы встретимся далее в этой главе. Кроме того, это принципиально по-

� 33

следовательное решение. В общем, выходит, что цикл for неразрывно
соединяет две разные вещи: что мы хотим сделать и как мы хотим это
сделать.

На рис. 3.2 показан альтернативный подход: внутреннее итери-
рование. Прежде всего обратите внимание на вызов метода stream(),
который играет примерно такую же роль, как метод iterator() в пре-
дыдущем примере. Но вместо Iterator он возвращает эквивалентный
интерфейс, предназначенный для внутреннего итерирования: Stream.

Пример 3.3 � Подсчет исполнителей из Лондона с помощью
внутреннего итерирования
long count = allArtists.stream()
 .
 lter(artist -> artist.isFrom("London"))
 .count();

На рис. 3.2 показана последовательность вызовов методов относи-
тельно библиотеки; сравните с рис. 3.1.

Рис. 3.2 � Внутреннее итерирование

Код приложения Код коллекции
Итерирование

Сконструировать операцию

Результат

 Stream – это средство конструирования сложных операций над коллекциями с
применением функционального подхода.

Этот пример можно разбить на две более простые операции:
 � найти всех исполнителей из Лондона;
 � подсчитать количество элементов в списке исполнителей.

Обеим операциям соответствуют методы в интерфейсе Stream. Что-
бы найти артистов из Лондона, мы вызываем метод
 lter. В данном
случае фильтрация означает «оставить только элементы, удовлетво-
ряющие условию». Условие же определяется функцией, которая воз-
вращает true, если исполнитель родом из Лондона, и false в противном
случае. Поскольку при работе с API потоков используется функцио-

От внешнего итерирования к внутреннему

34 � Глава 3. Потоки

нальное программирование, содержимое коллекции не изменяется;
мы лишь объявляем, каким будет содержимое потока Stream. Метод
count() подсчитывает количество объектов в данном потоке.

Что происходит на самом деле
 В предыдущем примере я выделил две операции: фильтрацию и под-
счет. Может показаться, что это чрезмерно расточительно, – ведь
в примере 3.1 был только один цикл for. Складывается впечатление,
что теперь нам понадобятся два цикла, коль скоро имеются две опе-
рации. На самом деле библиотека устроена так, что обход списка ис-
полнителей производится только один раз.

Традиционно при вызове метода в Java компьютер что-то выпол-
няет; например, метод System.out.println("Hello World"); выводит
строку на экран терминала. Некоторые методы интерфейса Stream
работают иначе. Это обычные методы Java, но возвращенный объект
типа Stream – это не новая коллекция, а рецепт создания коллекции.
Подумайте, что делает код из примера 3.4. Не расстраивайтесь, если
зайдете в тупик, – я сейчас все объясню!

Пример 3.4 � Просто фильтр, никакого сбора данных нет
allArtists.stream()
 .
 lter(artist -> artist.isFrom("London"));

А делает он совсем немного – метод
 lter строит рецепт обработки
Stream, но нет ничего такого, что привело бы этот рецепт в действие.
Методы, которые, подобно
 lter, строят рецепты обработки Stream, но
не приводят к порождению нового значения, называются отложен-
ными . Методы, которые, подобно count, порождают конечное значе-
ние на основе последовательности Stream, называются энергичными .

Простейший способ посмотреть, что происходит, – добавить внутрь
фильтра вызов println, который печатает имена исполнителей. В при-
мере 3.5 приведен вариант программы с такой распечаткой. Если вы-
полнить этот код, то программа не напечатает ничего.

Пример 3.5 � Имена исполнителей не печатаются, потому что вы-
числение отложено
allArtists.stream()
 .
 lter(artist -> {
 System.out.println(artist.getName());
 return artist.isFrom("London");
 });

� 35

Если же точно такую же распечатку включить в состав потока,
имею щего финальный шаг, например операции подсчета в листин-
ге 3.3, то имена исполнителей будут напечатаны (пример 3.6).

Пример 3.6 � Распечатка имен исполнителей
long count = allArtists.stream()
 .
 lter(artist -> {
 System.out.println(artist.getName());
 return artist.isFrom("London");
 })
 .count();

Если выполнить код из примера 3.6, подав на вход список членов
группы Битлз, то на экране будут напечатаны их имена, как показано
в примере 3.7.

Пример 3.7 � Пример распечатки имен исполнителей из группы
Битлз
John Lennon
Paul McCartney
George Harrison
Ringo Starr

Понять, является операция отложенной или энергичной, очень
просто; достаточно посмотреть, что она возвращает. Если возвраща-
ется Stream, значит, операция отложенная, если что-то другое, в том
числе void, то энергичная. И это понятно, так как идея заключается
в том, чтобы сформировать цепочку отложенных операций, а в конец
поместить одну энергичную операцию, которая и порождает оконча-
тельный результат. Именно так работает пример подсчета, но это са-
мый простой случай – всего две операции.

Подход в целом чем-то напоминает знакомый паттерн Построи-
тель , в котором имеется последовательность вызовов, задающих
свойства, или конфигурацию, за которыми следует единственный вы-
зов метода build . Конечный объект не создается, пока не будет вызван
метод build.

Уверен, вы задаетесь вопросом: «А зачем нужно это различие меж-
ду отложенными и энергичными методами?» Отложив вычисление
до момента, когда мы будем больше знать о желаемом результате и
операциях, мы сможем затем выполнить его более эффективно. Хо-
роший пример – нахождение первого элемента последовательности,
который > 10. Для этого не нужно вычислять все элементы – лишь
столько, сколько необходимо для получения первого подходящего.

Что происходит на самом деле

36 � Глава 3. Потоки

Это также означает, что различные операции над коллекцией можно
объединить и произвести ее обход только один раз.

Наиболее распространенные потоковые
операции
 Сейчас будет уместно сделать обзор наиболее распространенных опе-
раций класса Stream , чтобы лучше почувствовать, какие возможности
предоставляет API. Поскольку мы рассмотрим лишь несколько наи-
более важных примеров, я рекомендую заглянуть в документацию
Javadoc по новому API и посмотреть, что есть еще.

collect(toList())

 collect(toList()) – энергичная операция, порождающая список из значений
в объекте Stream.

 Значения в Stream, над которыми выполняется операция, – это ре-
зультат применения к исходным значениям рецепта, сконструиро-
ванного последовательностью предыдущих вызовов методов объекта
Stream. На самом деле collect – весьма общая и мощная конструкция,
которую мы будем изучать более детально в главе 5. А пока приведем
пример:

List<String> collected = Stream.of("a", "b", "c")
 .collect(Collectors.toList());

assertEquals(Arrays.asList("a", "b", "c"), collected);

Здесь показано, как можно использовать collect(toList()) для по-
строения результирующего списка из объекта Stream. Важно помнить,
что многие методы Stream отложенные, поэтому в конце цепочки вы-
зовов должна находиться какая-нибудь энергичная операция, напри-
мер collect.

На этом примере также виден формат, общий для всех последую-
щих примеров в этом разделе. Сначала создается объект Stream из
спис ка List. Затем следует какая-то операция и в конце вызов collect
для преобразования потока в список. Напоследок мы с помощью
утверж дения проверяем, что результат совпадает с ожидаемым.

Открывающий вызов метода stream и закрывающий вызов collect
или иного финального метода можно сравнить с половинками булоч-
ки . Они не определяют начинку нашего потокового гамбургера, но по-
казывают, где начинаются и заканчиваются операции.

� 37

map
 Если имеется функция, которая преобразует значение из одного типа в дру-
гой, то метод map позволит применить ее к потоку значений и тем самым по-
родить поток новых значений.

 Скоро вы поймете, что уже давным-давно занимаетесь отображением
одного на другое. Допустим, требуется написать на Java код, который
получает список строк и преобразует каждую из них в верхний регистр.
Можно было бы обойти все элементы списка и для каждого вызвать
метод toUppercase. А в конце поместить получившиеся значения в но-
вый список. В примере 3.8 продемонстрирован именно такой подход.

Пример 3.8 � Преобразование строк в верхний регистр в цикле for
List<String> collected = new ArrayList<>();
for (String string : asList("a", "b", "hello")) {
 String uppercaseString = string.toUpperCase();
 collected.add(uppercaseString);
}

assertEquals(asList("A", "B", "HELLO"), collected);

Операция map – одна из наиболее употребительных (см. рис. 3.3).
Впрочем, вы, надо думать, и сами догадались об этом, приняв во вни-
мание, как часто приходится писать что-то, подобное приведенному
выше циклу for. В примере 3.9 показано, как сделать то же самое с по-
мощью потокового API.

Рис. 3.3 � Операция map

Пример 3.9 � Преобразование строк в верхний регистр с помощью map
List<String> collected = Stream.of("a", "b", "hello")
 .map(string -> string.toUpperCase())
 .collect(toList());

assertEquals(asList("A", "B", "HELLO"), collected);

Наиболее распространенные потоковые операции

38 � Глава 3. Потоки

Лямбда-выражение, переданное map, принимает String в качестве
единственного аргумента и возвращает String. Типы аргумента и ре-
зультата не обязаны совпадать, но лямбда-выражение должно при-
надлежать типу Function (рис. 3.4) – универсальному функциональ-
ному интерфейсу с одним аргументом.

Рис. 3.4 � Интерфейс Function

T RFucntion

filter
Поймав себя на том, что перебираете коллекцию в цикле и проверяете
каждый элемент, подумайте об использовании метода
 lter из интер-
фейса Stream (рис. 3.5).

Рис. 3.5 � Операция filter

filter (зеленый
или оранжевый)

 Пример использования
 lter мы уже видели, так что можете про-
пустить этот раздел, если считаете, что все поняли. Вы еще здесь?
Отлично! Допустим, имеется список строк и нужно найти среди них
все, начинающиеся с цифры. То есть строка "1abc" подходит, а строка
"abc" – нет. Можно было бы обойти список в цикле и в предложении
if проверить первый символ, как показано в примере 3.10.

Пример 3.10 � Обход списка в цикле и использование if
List<String> beginningWithNumbers = new ArrayList<>();
for(String value : asList("a", "1abc", "abc1")) {
 if (isDigit(value.charAt(0))) {

� 39

 beginningWithNumbers.add(value);
 }
}

assertEquals(asList("1abc"), beginningWithNumbers);

Уверен, вам доводилось писать подобный код, такая методика на-
зывается фильтрацией. Ее основная идея – оставить одни элементы
коллекции и отбросить другие. В примере 3.11 показано, как перепи-
сать этот код в функциональном стиле.

Пример 3.11 � Функциональный стиль
List<String> beginningWithNumbers
 = Stream.of("a", "1abc", "abc1")
 .
 lter(value -> isDigit(value.charAt(0)))
 .collect(toList());

assertEquals(asList("1abc"), beginningWithNumbers);

Как и map, метод
 lter принимает в качестве аргумента одну функ-
цию – в данном случае мы воспользовались лямбда-выражением. Эта
функция делает то же самое, что выражение в показанном выше пред-
ложении if, – возвращает true, если строка начинается цифрой. При
переработке старого кода обращайте внимание на наличие if в сере-
дине цикла for – это верный признак того, что может пригодиться
метод
 lter.

Поскольку задача этой функции такая же, как у предложения if,
она должна возвращать true или false. После применения фильтра
в потоке Stream остаются элементы, для которых функция вернула
true. Функциональный интерфейс для такого рода функций – наш
старый знакомый, Predicate (рис. 3.6).

Рис. 3.6 � Интерфейс Predicate

T booleanPredicate

flatMap

 Метод � atMap (рис. 3.7) позволяет заменить значение объектом Stream и кон-
катенировать все потоки.

Мы уже встречались с операцией map, которая заменяет одно значе-
ние в потоке другим. Иногда бывает необходим вариант map, порож-

Наиболее распространенные потоковые операции

40 � Глава 3. Потоки

даю щий в качестве замены новый объект Stream. Но зачастую нам ни
к чему поток потоков, и вот тогда на помощь приходит � atMap .

Рассмотрим простой пример. Имеется объект Stream, содержащий
несколько списков чисел, и мы хотим получить все числа из всех
спис ков. Эту задачу можно решить, как показано в примере 3.12.

Пример 3.12 � Список потоков
List<Integer> together = Stream.of(asList(1, 2), asList(3, 4))
 .� atMap(numbers -> numbers.stream())
 .collect(toList());

assertEquals(asList(1, 2, 3, 4), together);

Мы заменяем каждый объект List объектом Stream с помощью ме-
тода stream, а остальное делает � atMap. Этому методу соответствует та-
кой же функциональный интерфейс, как методу map, – Function , – но
возвращать он может только потоки, а не произвольные значения.

max и min
 К потокам довольно часто применяются операции нахождения ми-
нимума или максимума, для чего очень удобны методы min и max . Для
демонстрации в примере 3.13 приведен код, который ищет самое ко-
роткое произведение в альбоме. Чтобы было проще убедиться в пра-
вильности результата, я явно перечислил все произведения (признаю,
что это не самый известный альбом).

Пример 3.13 � Поиск самого короткого произведения с помощью
потоков
List<Track> tracks = asList(new Track("Bakai", 524),
 new Track("Violets for Your Furs", 378),

Рис. 3.7 � Операция flatMap

� 41

 new Track("Time Was", 451));

Track shortestTrack = tracks.stream()
 .min(Comparator.comparing(track -> track.getLength()))
 .get();

assertEquals(tracks.get(1), shortestTrack);

При поиске минимального и максимального элементов нужно
преж де всего подумать о способе сравнения. Музыкальные произве-
дения сравниваются по длительности звучания.

 Чтобы сообщить объекту Stream о том, что произведения сравнива-
ются по длительности, мы передаем ему объект Comparator . По счастью,
в Java 8 добавлен статический метод comparing, который позволяет
создавать компараторы, зная, как получить доступ к сравниваемым
величинам. Раньше приходилось писать уродливый код, в котором
мы извлекали поля из обоих сравниваемых объектов и сравнивали
их значения. Теперь, чтобы получить одно и то же поле из обоих объ-
ектов, достаточно предоставить метод чтения. В данном случае таким
методом является getLength.

Подумайте, что представляет собой метод comparing. Это функция,
которая принимает и возвращает функцию. Звучит мудрено, но идея
невероятно полезная. Такой метод можно было бы включить в стан-
дартную библиотеку Java давным-давно, но из-за неудобочитаемости
и многословности анонимных внутренних классов это оказалось бы
непрактично. Теперь же, с появлением лямбда-выражений, выразить
идею можно кратко и элегантно.

Метод max можно вызывать и для пустого объекта Stream, тогда он
вернет значение типа Optional . Это довольно странный тип: он пред-
ставляет значение, которое может как присутствовать, так и отсут-
ствовать. Если поток пуст, то максимум не существует, иначе сущест-
вует. Но не будем пока забивать себе голову деталями типа Optional,
у нас еще будет случай поговорить о нем ниже. Важно лишь запом-
нить, что получить значение объекта этого типа можно с помощью
метода get.

Проявляется общий принцип
Методы max и min – примеры более общего подхода к кодированию.
Проще всего увидеть это, взяв код из примера 3.13 и переписав его
в виде цикла for, потом можно будет установить общий принцип. Код
в примере 3.14 делает то же, что и выше: ищет самое короткое произ-
ведение в альбоме, только на этот раз с применением цикла for.

Наиболее распространенные потоковые операции

42 � Глава 3. Потоки

Пример 3.14 � Поиск самого короткого произведения с помощью
цикла for
List<Track> tracks = asList(new Track("Bakai", 524),
 new Track("Violets for Your Furs", 378),
 new Track("Time Was", 451));

Track shortestTrack = tracks.get(0);
for (Track track : tracks) {
 if (track.getLength() < shortestTrack.getLength()) {
 shortestTrack = track;
 }
}

assertEquals(tracks.get(1), shortestTrack);

Сначала мы инициализируем переменную shortestTrack, запи-
сывая в нее первый элемент списка. Затем перебираем все произве-
дения. Если найдено более короткое произведение, то мы записыва-
ем его в shortestTrack вместо текущего значения. Таким образом, по
выходе из цикла в shortestTrack действительно окажется самое ко-
роткое произведение. Не сомневаюсь, что за свою карьеру вы напи-
сали тысячи циклов for, и многие из них были устроены точно так
же. В примере 3.15 показан псевдокод, иллюстрирующий эту общую
схему.

Пример 3.15 � Принцип редукции
Object accumulator = initialValue;
for(Object element : collection) {
 accumulator = combine(accumulator, element);
}

Объект accumulator модифицируется в теле цикла и по выходе
из него содержит конечное значение, которое мы хотели вычис-
лить. Первоначально accumulator содержит значение initialValue,
а затем комбинируется с каждым элементом списка путем вызова
combine.

Конкретные реализации этой схемы отличаются только началь-
ным значением initialValue и функцией combine. В приведенном выше
примере в качестве initialValue мы брали первый элемент списка, но
это совершенно необязательно. Для поиска самого короткого произ-
ведения функция combine возвращает минимум из двух значений: те-
кущего элемента и аккумулятора .

Теперь можно взглянуть, как этот общий принцип воплощается
в операции потокового API.

� 43

reduce
Операцию reduce стоит использовать, когда имеется коллекция значе-
ний, а нужно получить единственное значение в качестве результата.
Рассмотренные выше методы count, min и max включены в стандартную
библиотеку, потому что это распространенные частные случаи обще-
го принципа редукции.

Продемонстрируем операцию reduce на примере суммирования по-
тока чисел. Идея показана на рис. 3.8. Сначала аккумулятор равен 0
(сумма пустого потока), а затем мы комбинируем его с каждым эле-
ментом – складываем. По достижении последнего элемента потока
аккумулятор будет содержать сумму всех элементов.

Рис. 3.8 � Реализация сложения
с помощью операции редукции

Начальное значение Результат

В примере 3.16 показано, как выглядит соответствующий код.
Лямбда-выражение, которое называется редуктором, принимает два
аргумента и возвращает их сумму. Аргумент acc – это аккумулятор,
в котором накапливается сумма. Кроме него, редуктору передается
текущий элемент потока.

Пример 3.16 � Реализация суммирования с помощью reduce
int sum = Stream.of(1, 2, 3)
 .reduce(0, (acc, element) -> acc + element);

assertEquals(6, sum);

Лямбда-выражение возвращает новое значение acc – сумму преж-
него значения и текущего элемента. Редуктор имеет тип BinaryOpe-
rator, с которым мы познакомились в главе 2.

Наиболее распространенные потоковые операции

44 � Глава 3. Потоки

 В числе «примитивов», о которых пойдет речь на стр. 57, упоминается и метод
sum из стандартной библиотеки. В реальных программах я рекомендую поль-
зоваться им, а не показанным выше кодом.

В табл. 3.1 показаны промежуточные значения переменных при
обработке каждого элемента потока. Можно было бы развернуть все
вызовы функций, порождающие окончательный результат; получит-
ся код, показанный в примере 3.17.

Пример 3.17 � Разворачивание reduce в последовательность
вызовов функций
BinaryOperator<Integer> accumulator = (acc, element) -> acc + element;
int sum = accumulator.apply(
 accumulator.apply(
 accumulator.apply(0, 1),
 2),
 3);

Таблица 3.1. Вычисление суммы внутри reduce

element acc Результат

Нет Нет 0

1 0 1

2 1 3

3 3 6

Теперь рассмотрим эквивалентный императивный код на Java
(пример 3.18) и сравним функциональную и императивную версии.

Пример 3.18 � Императивная реализация суммирования
int acc = 0;
for (Integer element : asList(1, 2, 3)) {
 acc = acc + element;
}
assertEquals(6, acc);

Как видно, в императивной версии аккумулятор – это переменная,
обновляемая на каждой итерации цикла. А обновление заключает-
ся в сложении с элементом. Цикл является внешним по отношению
к коллекции, и обновление переменной производится нами самостоя-
тельно.

Объединение операций
 При таком изобилии операций в интерфейсе Stream поиск нужной
иногда оказывается сродни блужданию в лабиринте. Поэтому давай-

� 45

те поставим конкретную задачу и посмотрим, как разбить ее на не-
сколько простых потоковых операций.

Первая задача звучит так: для данного альбома определить нацио-
нальности всех групп-исполнителей. Исполнителем произведения
может быть как один солист, так и целая группа. Мы воспользуемся
знанием предметной области и с некоторой долей вольности пред-
положим, что исполнитель, название которого начинается словом
The, – на самом деле группа. Это не совсем так, но довольно близко
к истине!

Прежде всего нужно согласиться, что решение не сводится к вы-
зову какого-то одного метода API. Это не преобразование значений,
как в map, не фильтрация и не получение единственного значения
в конце обработки потока. Задачу можно следующим образом раз-
бить на части.

1. Получить всех исполнителей для данного альбома.
2. Определить, какие из них являются группами.
3. Получить национальность каждой группы.
4. Объединить найденные значения.
Теперь уже проще понять, какие вызовы API соответствуют этим

шагам.
1. В нашем классе Album есть замечательный метод getMusicians,

который возвращает Stream.
2. С помощью метода
 lter оставим в потоке только исполните-

лей, являющихся группами.
3. С помощью метода map сопоставим группе ее национальность.
4. С помощью collect(toList()) получим список национально-

стей.
Собрав все вместе, получаем такой код:

Set<String> origins = album.getMusicians()
 .
 lter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .collect(toSet());

В этом примере идиома сцепления операций проявляется более от-
четливо. Вызовы getMusicians,
 lter и map возвращают объекты Stream,
то есть являются отложенными, тогда как метод collect энергичный.
Метод map – это функция, которая принимает лямбда-выражение и
применяет его к каждому элементу Stream, возвращая новый объект
Stream.

Наш предметный класс удобен в том смысле, что возвращает объект
Stream, когда мы хотим получить список музыкантов, участвовавших

Наиболее распространенные потоковые операции

46 � Глава 3. Потоки

в записи альбома. В ваших собственных предметных классах, скорее
всего, нет методов, возвращающих потоки, зато есть методы, которые
возвращают коллекции, например List или Set. Ничего страшного –
нужно будет лишь вызвать метод stream для List или Set.

Но, пожалуй, самое время задуматься о том, стоит ли раскрывать
в модели предметной области объекты List или Set явным образом.
Быть может, лучше создать фабрику объектов Stream. У доступа к кол-
лекциям через интерфейс Stream есть большое преимущество – улуч-
шенная инкапсуляция структуры данных модели. Если вы раскры-
ваете только Stream, то пользователь ваших классов никоим способом
не сможет повлиять на внутреннее содержимое List или Set.

К тому же у пользователей ваших классов будет стимул писать код
в современном стиле Java 8. Никто не мешает производить рефакто-
ринг постепенно – оставить существующие методы чтения и доба-
вить к ним новые, ориентированные на потоковый API. Со временем
старый код можно будет переписать и в конце концов полностью из-
бавиться от методов чтения, возвращающих List или Set. Представь-
те, как вы будете довольны, почистив свой код от древних наслоений!

Рефакторинг унаследованного кода
 Раз уж зашла речь о рефакторинге, рассмотрим пример унаследован-
ного кода работы с коллекциями, основанного на циклах, и покажем
процесс его постепенного преобразования в код на основе потоков.
После каждого шага рефакторинга все тесты по-прежнему проходят,
хотя тут вам придется либо поверить мне на слово, либо тестировать
самостоятельно.

В этом примере мы ищем названия всех произведений в заданных
альбомах, которые звучат дольше одной минуты. Унаследованный
код показан в примере 3.19. Сначала мы инициализируем объект Set,
в котором будут храниться названия всех произведений. Затем в двух
вложенных циклах for обходим все альбомы и все произведения
в каждом альбоме. Для каждого произведения мы смотрим, звучит
ли оно дольше 60 секунд, и если это так, добавляем его название во
множество названий.

Пример 3.19 � Унаследованный код поиска названий произведений
дольше одной минуты
public Set<String>
 ndLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 for(Album album : albums) {

� 47

 for (Track track : album.getTrackList()) {
 if (track.getLength() > 60) {
 String name = track.getName();
 trackNames.add(name);
 }
 }
 }
 return trackNames;
}

Мы наткнулись на этот код в своем хранилище и обратили вни-
мание на два вложенных цикла. Беглого взгляда на код не хватило,
чтобы понять, что он делает, поэтому мы решили подвергнуть его ре-
факторингу. (Есть много способов переделать существующий код под
потоки, ниже приведен только один из них. Когда вы получше позна-
комитесь с API, не будет нужды продвигаться вперед такими мелки-
ми шажками. Но в педагогических целях полезно замедлить темп, по
сравнению с профессиональной деятельностью.)

Первым делом мы изменим циклы for . Оставим пока прежний
стиль кодирования в телах циклов, но воспользуемся методом forEach
интерфейса Stream. Это удобно для подготовки к последующим шагам
рефакторинга. Чтобы получить первый поток, вызовем метод stream
списка альбомов. Напомним, что в предметном классе Album уже име-
ется метод getTracks, который возвращает поток произведений. Код,
получившийся после шага 1, показан в примере 3.20.

Пример 3.20 � Шаг 1 рефакторинга: поиск названий произведений
дольше одной минуты
public Set<String>
 ndLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 albums.stream()
 .forEach(album -> {
 album.getTracks()
 .forEach(track -> {
 if (track.getLength() > 60) {
 String name = track.getName();
 trackNames.add(name);
 }
 });
 });
 return trackNames;
}

На шаге 1 мы перешли на использование потоков, но еще не рас-
крыли весь их потенциал. Более того, код даже стал безобразнее, чем
был! Что ж, самое время двигаться дальше в сторону потоков. Первой
мишенью разумно будет избрать внутренний вызов forEach.

Рефакторинг унаследованного кода

48 � Глава 3. Потоки

Внутри него делаются три вещи: поиск произведений дольше ми-
нуты, получение их названий и добавление названий в коллекцию
Set. Следовательно, нам понадобятся три операции Stream. Поиск
произведений, отвечающих условию, – это работа для
 lter. С пере-
ходом от произведения к его названию отлично справится map. Но нам
еще нужно добавлять названия в Set, поэтому финальной операцией
пока останется forEach. После разбиения внутреннего вызова forEach
на час ти получается код, показанный в примере 3.21.

Пример 3.21 � Шаг 2 рефакторинга: поиск названий произведений
дольше одной минуты
public Set<String>
 ndLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 albums.stream()
 .forEach(album -> {
 album.getTracks()
 .
 lter(track -> track.getLength() > 60)
 .map(track -> track.getName())
 .forEach(name -> trackNames.add(name));
 });
 return trackNames;
}

Внутренний цикл стал больше походить на потоковое решение, но
все еще напоминает пирамиду судьбы. Не надо нам вложенных по-
токовых операций, мы хотим иметь одну простую и ясную последо-
вательность вызовов методов.

Что нам в действительности нужно? Каким-то образом преобра-
зовать альбом в поток произведений. Мы знаем, что для трансфор-
мации или подмены предназначена операция map. Здесь же нужен бо-
лее продвинутый вариант map – операция � atMap, которая возвращает
конкатенацию отдельных результирующих потоков. Заменив вызов
forEach на � atMap, получаем код, показанный в примере 3.22.

Пример 3.22 � Шаг 3 рефакторинга: поиск названий произведений
дольше одной минуты
public Set<String>
 ndLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 albums.stream()
 .� atMap(album -> album.getTracks())
 .
 lter(track -> track.getLength() > 60)
 .map(track -> track.getName())
 .forEach(name -> trackNames.add(name));
 return trackNames;
}

� 49

Гораздо лучше, правда? Вместо двух вложенных циклов for мы
имеем одну понятную последовательность вызовов методов, вы-
полняющую всю операцию целиком. Но цели мы еще не достигли.
Объект Set по-прежнему создается вручную, и элементы в него тоже
добавляются вручную. Хотелось бы, чтобы все вычисление состояло
только из цепочки потоковых вызовов.

Я еще не показывал рецепта этой трансформации, но с его близки-
ми приятелями мы уже встречались. Чтобы в конце построить список
List значений, мы вызывали collect(toList()). Ну а для построения
множества Set нужно вызвать collect(toSet()). Так что заменим по-
следний вызов forEach обращением к collect, после чего можно будет
удалить переменную trackNames.

Пример 3.23 � Шаг 4 рефакторинга: поиск названий произведений
дольше одной минуты
public Set<String>
 ndLongTracks(List<Album> albums) {
 return albums.stream()
 .� atMap(album -> album.getTracks())
 .
 lter(track -> track.getLength() > 60)
 .map(track -> track.getName())
 .collect(toSet());
}

Что в итоге? Мы взяли кусок унаследованного кода и, подвергнув
его рефакторингу, перешли к идиоматическому представлению с ис-
пользованием потоков. Начали мы просто с включения потоков в код
без применения каких-либо операций над ними. А на каждом шаге
идиоматичность повышалась. И после каждого шага я прогонял авто-
номные тесты, дабы удостовериться, что код по-прежнему работает.
Это очень полезно при рефакторинге унаследованного кода.

Несколько потоковых вызовов
 Можно было бы не сцеплять вызовы методов, а принудительно вы-
числять результат каждого шага. Умоляю вас – не делайте так. В при-
мере 3.24 показано, как в этом стиле можно было бы написать приве-
денный выше код поиска национальностей участников группы. Для
сравнения в примере 3.25 повторен исходный код.

Пример 3.24 � Неправильное использование потоков
List<Artist> musicians = album.getMusicians()
 .collect(toList());

List<Artist> bands = musicians.stream()

Несколько потоковых вызовов

50 � Глава 3. Потоки

 .
 lter(artist -> artist.getName().startsWith("The"))
 .collect(toList());

Set<String> origins = bands.stream()
 .map(artist -> artist.getNationality())
 .collect(toSet());

Пример 3.25 � Идиоматическое сцепление потоковых вызовов
Set<String> origins = album.getMusicians()
 .
 lter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .collect(toSet());

Версия из примера 3.24 хуже идиоматической по нескольким при-
чинам.

 � Труднее понять, что в ней происходит, потому что доля стерео-
типного кода, не имеющего отношения к собственно бизнес-ло-
гике, выше.

 � Она менее эффективна, так как на каждом промежуточном
шаге энергично создается новая коллекция объектов.

 � Код загроможден лишними переменными, нужными только
для хранения промежуточных результатов.

 � Операции сложнее автоматически распараллелить.
Разумеется, когда вы только начинаете писать код с потоками,

появление такого рода фрагментов можно считать нормальным. Но
если вы замечаете, что такие блоки появляются уж слишком часто, то
стоит сделать паузу и подумать, нельзя ли преобразовать их в более
лаконичную и удобочитаемую форму.

 Если от изобилия сцепленных вызовов вам несколько неуютно, не расстраи-
вайтесь – это совершенно нормально. Со временем вы наберетесь опыта, и
такой код будет казаться вам вполне естественным. И в любом случае это не
причина для того, чтобы разбивать цепочки операций, как показано в приме-
ре 3.24. Расположение операций в отдельных строках, как при использовании
паттерна Построитель, также вселяет чувство уверенности.

Функции высшего порядка
 На протяжении этой главы мы постоянно встречались с тем, что
в функциональном программировании называют функциями высше-
го порядка. Это функция, которая либо принимает другую функцию
в качестве аргумента, либо возвращает функцию в качестве значе-
ния. Выявить функцию высшего порядка очень просто, достаточно
взглянуть на ее сигнатуру. Если тип аргумента или возвращаемого

� 51

значения – функциональный интерфейс, значит, мы имеем функцию
высшего порядка.

map – функция высшего порядка, потому что ее аргумент mapper –
функция. Вообще, почти все рассмотренные нами методы интерфей-
са Stream – функции высшего порядка. В примере сортировки мы ис-
пользовали также функцию comparing, которая не только принимает
другую функцию для извлечения сравниваемых полей, но и возвра-
щает новый объект Comparator. Можно, конечно, считать Comparator
объектом, но у него есть единственный абстрактный метод и, значит,
это функциональный интерфейс.

На самом деле можно высказать еще более сильное утверждение.
Интерфейс Comparator был придуман, когда возникла необходимость
в функции, но в то время в Java не было ничего, кроме объектов, по-
этому был создан тип класса – анонимный класс, с которым можно
было обращаться, как с функцией. Тот факт, что это объект – несу-
щественная подробность. Функциональные интерфейсы – шаг в пра-
вильном направлении.

Полезное применение лямбда-выражений
 Знакомя вас с лямбда-выражениями, я в качестве примера привел об-
ратный вызов для печати какой-то информации. Это вполне допус-
тимое использование лямбда-выражения, но так мы не сделаем код
ни более простым, ни более абстрактным, потому что все равно про-
сим компьютер выполнить некую операцию. Устранение стереотип-
ного кода – вещь хорошая, но этим достоинства лямбда-выражений
в Java 8 отнюдь не исчерпываются.

Рассмотренные в этой главе идеи позволяют писать более простой
код, поскольку описывают операции над данными в терминах того,
какое преобразование выполнить, а не как это сделать. В итоге полу-
чается код, в котором меньше шансов для появления ошибок, а наме-
рения программиста выражены более отчетливо.

Еще один аспект перехода к «что» от «как» – идея функции без
побочных эффектов . Такие функции важны, потому что позволяют
оценить все последствия работы функции, взглянув лишь на возвра-
щаемое ей значение.

Функции без побочных эффектов не изменяют состояния програм-
мы или внешнего мира. У первого лямбда-выражения, приведенного
в этой главе, побочный эффект был, потому что она печатала что-то

Полезное применение лямбда-выражений

52 � Глава 3. Потоки

на экране, то есть мы наблюдали побочный эффект функции. А как
насчет следующего примера?

private ActionEvent lastEvent;

private void registerHandler() {
 button.addActionListener((ActionEvent event) -> {
 this.lastEvent = event;
 });
}

Здесь мы запоминаем параметр event в поле. Это более тонкий
побочный эффект: присваивание значения переменной. На выводе
программы он никак не отражается, но ее состояние изменилось. Но
Java полагает определенные пределы в этом отношении. Взгляните на
присваивание переменной localEvent в следующем фрагменте:

ActionEvent localEvent = null;
 button.addActionListener(event -> {
 localEvent = event;
 });

Здесь мы пытаемся записать тот же параметр event в локальную пе-
ременную. Только не надо слать мне уведомления об ошибках в тексте
книги – я знаю, что этот код не откомпилируется! И это было созна-
тельное решение проектировщиков языка: лямбда-выражения долж-
ны использоваться для захвата значений, а не переменных. Захват
значений побуждает писать код без побочных эффектов, поскольку
альтернатива труднее. В главе 2 я уже говорил, что хотя внутри лямб-
да-выражения и можно использовать переменные, объявленные без
ключевого слова
 nal, они все равно должны быть эффективно фи-
нальными.

Передавая лямбда-выражения в методы интерфейса Stream, являю-
щиеся функциями высшего порядка, стремитесь избегать побочных
эффектов. Единственное исключение – метод forEach, который явля-
ется финальной операцией.

Основные моменты
 � Внутреннее итерирование – это способ обхода коллекции, при

котором у самой коллекции оказывается больше контроля над
итерированием.

 � Stream – аналог Iterator, только с внутренним итерированием.

� 53

 � Многие распространенные операции над коллекциями можно
выполнить, комбинируя методы интерфейса Stream с лямбда-
выражениями.

Упражнения
 Ответы к упражнениям можно найти на сайте GitHub.

1. Распространенные операции Stream. Реализуйте:
a. Функцию сложения чисел, то есть int addUp(Stream<Integer>

numbers).
b. Функцию, которая получает исполнителя и возвращает спи-

сок строк, содержащих имена и место происхождения.
c. Функцию, которая получает альбомы и возвращает список

альбомов, содержащих не более трех произведений.
2. Итерирование. Перепишите этот код с использованием внут-

реннего итерирования вместо внешнего.

int totalMembers = 0;
for (Artist artist : artists) {
 Stream<Artist> members = artist.getMembers();
 totalMembers += members.count();
}

3. Вычисление. Взгляните на сигнатуры следующих методов интер-
фейса Stream. Являются они энергичными или отложенными?
a. boolean anyMatch(Predicate<? super T> predicate);
b. Stream<T> limit(long maxSize);

4. Функции высшего порядка. Являются ли следующие методы
Stream функциями высшего порядка? Почему?
a. boolean anyMatch(Predicate<? super T> predicate);
b. Stream<T> limit(long maxSize);

5. Чистые функции. Является ли следующее лямбда-выражение
свободным от побочных эффектов, или оно изменяет состоя-
ние?

x -> x + 1

Рассмотрим пример кода:

AtomicInteger count = new AtomicInteger(0);
List<String> origins = album.musicians()
 .forEach(musician -> count.incAndGet();)

a. Лямбда-выражение, переданное в forEach в данном примере.

Упражнения

54 � Глава 3. Потоки

6. Подсчитайте количество строчных букв в строке (подсказка:
воспользуйтесь методом chars класса String).

7. Пусть дан список строк List<String>. Найдите в нем строку, со-
держащую максимальное число строчных букв. Чтобы код пра-
вильно работал, когда входной список пуст, можете возвращать
объект типа Optional<String>.

Упражнения повышенной сложности
1. Напишите реализацию метода map интерфейса Stream, пользуясь

только методом reduce и лямбда-выражениями. Если хотите,
можете возвращать List вместо Stream.

2. Напишите реализацию метода
 lter интерфейса Stream, пользу-
ясь только методом reduce и лямбда-выражениями. Как и рань-
ше, можете возвращать List вместо Stream.

Глава 4
Библиотеки

 Я рассказал о том, как писать лямбда-выражения, но пока не затронул
другую сторону медали: как их использовать. А это важно, даже если
вы не собираетесь писать такую насыщенную функциональными кон-
струкциями библиотеку, как потоковый API. Даже в самом простом
приложении может найтись место для трактовки кода как данных.

Еще одно новшество в Java 8, изменившее наше представление
о библиотеках, – появление методов по умолчанию и статических ме-
тодов в интерфейсах. Это означает, что методы, объявленные в интер-
фейсах, отныне могут иметь тела и содержать код.

В этой главе я восполню еще несколько пробелов, в частности рас-
скажу о том, что происходит, когда лямбда-выражения перегружают
методы, и о том, как используются примитивы. Все это важно знать
при написании кода с лямбда-выражениями.

Использование лямбда-выражений
в программе
 В главе 2 я сказал, что лямбда-выражение имеет тип функциональ-
ного интерфейса, и описал, как этот тип выводится. С точки зрения
вызывающей программы, вызов лямбда-выражения ничем не отлича-
ется от вызова метода интерфейса.

Рассмотрим конкретный пример, взятый из области библиотек
протоколирования . В нескольких подобных библиотеках на Java,
в том числе slf4j и log4j , имеются методы, которые выводят что-
то в журнал, лишь если установленный уровень протоколирования
не ниже определенного порога. Например, метод void debug(String
message) выведет сообщение message, только если уровень протоколи-
рования не ниже debug.

К сожалению, затраты на само построение сообщения message часто
не являются пренебрежимо малыми. Поэтому возникает ситуация,
когда программист начинает явно вызывать метод isDebugEnabled , что-

56 � Глава 4. Библиотеки

бы оптимизировать эти затраты. Соответствующий код показан в при-
мере 4.1. Хотя при обращении к методу debug сообщение не попало бы
в журнал, мы все же вызываем накладный метод expensiveOperation
и конкатенируем его результат со строкой. Поэтому явная проверка
уровня протоколирования в предложении if оказывается быстрее.

Пример 4.1 � Вызывается метод isDebugEnabled, чтобы избежать
накладных расходов
Logger logger = new Logger();
if (logger.isDebugEnabled()) {
 logger.debug("Look at this: " + expensiveOperation());
}

А хотелось бы иметь возможность передать лямбда-выражение, ко-
торое порождает строку сообщения. Это выражение вызывалось бы
лишь в том случае, когда уровень протоколирования действительно
не ниже debug. При таком подходе мы могли бы переписать показан-
ный выше код в следующем виде (пример 4.2).

Пример 4.2 � Применение лямбда-выражений упрощает код прото-
колирования
Logger logger = new Logger();
logger.debug(() -> "Look at this: " + expensiveOperation());

И как реализовать такой метод в классе Logger? С точки зрения
биб лиотеки, мы можем просто использовать встроенный функцио-
нальный интерфейс Supplier, имеющий единственный метод get . За-
тем можно с помощью isDebugEnabled определить, нужно ли вызывать
этот метод, и если да, то передать результат в метод debug. Соответ-
ствующий код приведен в примере 4.3.

Пример 4.3 � Реализация регистратора с применением лямбда-вы-
ражения
public void debug(Supplier<String> message) {
 if (isDebugEnabled()) {
 debug(message.get());
 }
}

Вызов метода get() в этом примере соответствует вызову лямбда-
выражения, переданного в вызываемый метод. Это решение работает
и с анонимными внутренними классами , что позволяет сохранить об-
ратную совместимость API для клиентов вашего кода, которые еще
не перешли на Java 8. Важно помнить, что фактическое имя метода
зависит от конкретного функционального интерфейса. Так, если бы

� 57

мы использовали интерфейс Predicate, то метод назывался бы test,
а в интерфейсе Function он называется apply.

Примитивы
 Вы, наверное, обратили внимание, что в предыдущем разделе мы
мельком упомянули примитивные типы. В Java имеются пары типов –
например, int и Integer – один из которых примитивный, а другой
упакованный . Примитивные типы встроены в язык и в среду исполне-
ния в качестве фундаментальных структурных единиц; упакованные
типы – это обычные классы Java, обертывающие примитивы.

Поскольку механизм универсальных типов в Java основан на сти-
рании типа универсального параметра – как будто это экземпляр
класса Object, – то в роли типов-аргументов могут выступать только
упакованные типы. Именно поэтому список целых в Java объявляет-
ся как List<Integer>, а не List<int>.

Но раз упакованные типы – это объекты, с их хранением сопряже-
ны накладные расходы. Так, int занимает 4 байта памяти, а Integer –
уже 16 байтов. Проблема еще обостряется, когда речь идет о массивах
чисел, потому что размер каждого элемента массива примитивов ра-
вен размеру этого примитива, тогда как элемент массива упакован-
ных типов – это указатель на объект в куче Java. В худшем случае
массив Integer[] занимает в шесть раз больше памяти, чем массив
int[] того же размера.

Преобразование примитивного типа в упакованный – упаковка –
также не обходится без накладных расходов. Как, впрочем, и обратное
преобразование – распаковка . Если алгоритм подразумевает выпол-
нение большого количества численных операций, то затраты на упа-
ковку и распаковку в сочетании с дополнительным расходом памяти
на хранение упакованных объектов могут заметно снизить его произ-
водительность.

Из-за описанных накладных расходов в потоковой библиотеке не-
которые функции имеют по нескольку версий: для примитивных и
для упакованных типов. Функция высшего порядка mapToLong и функ-
ция ToLongFunction , показанная на рис. 4.1, – примеры такого рода ре-
шений. В Java 8 специализации существуют только для примитивных
типов int, long и double , потому что именно они в наибольшей степени
влияют на производительность численных алгоритмов.

К специализациям для примитивных типов применяется очень
четкое соглашение об именовании. Если тип возвращаемого значе-

Примитивы

58 � Глава 4. Библиотеки

ния примитивный, то имя интерфейса начинается словом To и именем
примитивного типа, например ToLongFunction (как на рис. 4.1). Если
аргумент имеет примитивный тип, то имя интерфейса начинается
просто с имени типа, например LongFunction (рис. 4.2). Если в функ-
ции высшего порядка используется примитивный тип, то ее имя за-
канчивается словом To, за которым следует имя примитивного типа,
например mapToLong.

Рис. 4.1 � ToLongFunction

T

T

long

long

long long

ToLongFunction

LongFunction

LongUnaryOperator

Рис. 4.2 � LongFunction

 Существуют также специализированные версии интерфейса Stream
для примитивных типов, они начинаются именем типа, например
LongStream . На самом деле методы наподобие mapToLong возвращают не
Stream, а объекты специализированных потоков. В специализирован-
ном потоке реализация map также специализирована: она принимает
функцию LongUnaryOperator (рис. 4.3), которая преобразует long в long.
Можно также перейти от примитивного потока к упакованному с по-
мощью вариантов функции высшего порядка, например mapToObj , и
метода boxed , который возвращает поток упакованных объектов, на-
пример Stream<Long>.

Рис. 4.3 � LongUnaryOperator

Рекомендуется всюду, где возможно, пользоваться функциями,
специализированными для примитивных типов, потому что они ра-
ботают быстрее. К тому же у специализированных потоков имеются
дополнительные функциональные возможности. Это позволяет не реа-
лизовывать заново уже имеющуюся функциональность и писать код,

� 59

который лучше передает намерение операций над числами. Пример
использования дополнительной функциональности приведен ниже.

Пример 4.4 � Использование метода summaryStatistics для полу-
чения представления о распределении длительности звучания произ-
ведений
public static void printTrackLengthStatistics(Album album) {
 IntSummaryStatistics trackLengthStats
 = album.getTracks()
 .mapToInt(track -> track.getLength())
 .summaryStatistics();

 System.out.printf("Max: %d, Min: %d, Ave: %f, Sum: %d",
 trackLengthStats.getMax(),
 trackLengthStats.getMin(),
 trackLengthStats.getAverage(),
 trackLengthStats.getSum());
}

Здесь мы печатаем на экране сводные данные о длительности произ-
ведений. Вместо того чтобы производить вычисления самостоятельно,
мы отображаем каждое произведение на его длительность с помощью
метода потока, специализированного для примитива, mapToInt. По-
скольку этот метод возвращает объект типа IntStream, мы можем вы-
звать его метод summaryStatistics , который вычисляет различные ста-
тистические характеристики: минимум, максимум, среднее и сумму.

Этот метод имеется во всех специализированных потоках, в част-
ности в DoubleStream и LongStream. Можно также вычислять отдельные
характеристики, если все сразу не нужны; для этого существуют ме-
тоды min, max, average и sum.

Разрешение перегрузки
 В Java разрешается перегружать методы, то есть иметь несколько ме-
тодов с одним и тем же именем, но разными сигнатурами. Однако при
этом возникает проблема при выведении типов параметров, так как
появляется возможность вывести разные типы. В таких случаях javac
выбирает самый специфический тип. Так, в примере 4.5 из двух мето-
дов, показанных в примере 4.6, будет выбран тот, что печатает String,
а не Object.

Пример 4.5 � Метод, при разрешении которого можно выбрать один
из двух методов
overloadedMethod("abc");

Разрешение перегрузки

60 � Глава 4. Библиотеки

Пример 4.6. Два перегруженных метода
private void overloadedMethod(Object o) {
 System.out.print("Object");
}

private void overloadedMethod(String s) {
 System.out.print("String");
}

Тип BinaryOperator – это частный случай типа BiFunction, для кото-
рого типы аргументов и возвращаемого значения одинаковы. Напри-
мер, функция сложения двух целых чисел имеет тип BinaryOperator.

Поскольку тип лямбда-выражения совпадает с типом его функцио-
нального интерфейса, при передаче их в качестве аргументов приме-
нимы те же правила. Мы можем иметь два перегруженных варианта
метода: с параметром типа BinaryOperator и параметром типа расши-
ряющего его интерфейса. При вызове такого метода Java выведет
в качестве типа лямбда-выражения тип самого специфичного функ-
ционального интерфейса. Так, при наличии двух методов, показанных
в примере 4.8, код из примера 4.7 напечатает IntegerBinaryOperator.

Пример 4.7 � Еще один пример вызова перегруженного метода
overloadedMethod((x, y) -> x + y);

Пример 4.8 � Выбор между двумя перегруженными методами
private interface IntegerBiFunction extends BinaryOperator<Integer> {
}

private void overloadedMethod(BinaryOperator<Integer> lambda) {
 System.out.print("BinaryOperator");
}

private void overloadedMethod(IntegerBiFunction lambda) {
 System.out.print("IntegerBinaryOperator");
}

Разумеется, если есть несколько перегруженных вариантов метода,
«самый специфичный тип» существует не всегда. Взгляните на при-
мер 4.9.

Пример 4.9 � Ошибка компиляции из-за невозможности выбрать
один из перегруженных методов
overloadedMethod((x) -> true);

private interface IntPredicate {

� 61

 public boolean test(int value);
}

private void overloadedMethod(Predicate<Integer> predicate) {
 System.out.print("Predicate");
}

private void overloadedMethod(IntPredicate predicate) {
 System.out.print("IntPredicate");
}

Лямбда-выражение, переданное методу overloadedMethod, совмести-
мо как с обычным типом Predicate, так и с типом IntPredicate. И для
каждого типа имеется перегруженный вариант метода. В таком слу-
чае javac отказывается компилировать код, жалуясь на неоднознач-
ность: поскольку IntPredicate не расширяет Predicate, компилятор не
может сказать, какой тип более специфичен.

Чтобы исправить ошибку, нужно привести лямбда-выражение
к одному из типов IntPredicate или Predicate<Integer> – в зависимо-
сти от того, какое поведение вам нужно. Конечно, если бы вы проек-
тировали библиотеку сами, то могли бы заподозрить этот код в «по-
пахивании» и прийти к выводу, что перегруженные методы надо бы
переименовать.

Подведем итог: параметры-типы лямбда-выражения выводятся из
целевого типа, при этом действуют следующие правила:

 � если существует всего один целевой тип , то тип лямбда-выра-
жения выводится из типа соответствующего аргумента метода
функционального интерфейса;

 � если возможных целевых типов несколько, выбирается самый
специфичный из них;

 � если возможных целевых типов несколько и самого специфич-
ного не существует, тип необходимо указать явно.

Аннотация @FunctionalInterface
В главе 2 я уже говорил о том, что такое функциональный интерфейс,
но не упомянул об аннотации @FunctionalInterface . Этой аннотацией
следует снабжать любой интерфейс, который предполагается исполь-
зовать как функциональный.

А что она означает? Дело в том, что в Java есть интерфейсы с един-
ственным методом, которые вообще-то не предназначены для реали-
зации лямбда-выражениями. Например, может предполагаться, что

Аннотация @FunctionalInterface

62 � Глава 4. Библиотеки

у объекта есть какое-то внутреннее состояние, а наличие всего одного
метода – случайное совпадение. В качестве примеров приведу интер-
фейсы java.lang.Comparable и java.io.Closeable.

Если класс реализует интерфейс Comparable, значит, между его эк-
земплярами определено отношение порядка, например лексикогра-
фический порядок на строках. Обычно мы не рассматриваем функ-
ции как допускающие сравнение объекты, поскольку в них нет полей
и внутреннего состояния, а если состояния нет, то что можно сравни-
вать?

С другой стороны, чтобы объект принадлежал типу Closeable , он
должен хранить какой-то открытый ресурс, например описатель фай-
ла, который надлежит закрыть в будущем. Метод такого интерфейса
не может быть чистой функцией, поскольку закрытие ресурса – еще
один пример изменения состояния.

В отличие от Closeable и Comparable , все новые интерфейсы, предна-
значенные для совместной работы с интерфейсом Stream, рассчитаны
на реализацию лямбда-выражениями. Они и существуют-то толь-
ко для того, чтобы можно было оформить код как данные. Поэтому
к ним следует применять аннотацию @FunctionalInterface.

Наличие этой аннотации заставляет javac проверить, отвечает
ли интерфейс критерию «функциональности». Если она применена
к enum, class или annotation, либо в интерфейсе объявлено более од-
ного абстрактного метода, то javac выдаст ошибку. Это очень полезно
для обнаружения ошибок во время рефакторинга.

Двоичная совместимость интерфейсов
 В главе 3 мы видели, что одно из самых значительных изменений
в Java 8 претерпела библиотека коллекций. По мере эволюциониро-
вания Java всегда сохранялась обратная двоичная совместимость . На
практике это означает, что библиотека или приложение, откомпили-
рованные в любой версии Java от 1 до 7, будут без всяких изменений
работать в Java 8.

Разумеется, ошибки случаются, но, по сравнению со многими
другими программными платформами, двоичная совместимость не-
изменно считалась одним из ключевых преимуществ Java. Если не
считать добавления новых ключевых слов, например enum, всегда при-
лагались усилия для сохранения также совместимости на уровне ис-
ходного кода. Есть гарантия, что исходный код, написанный на Java
1–7, будет компилироваться в Java 8.

� 63

Подобные гарантии очень трудно обеспечить при изменении таких
основополагающих компонентов, как библиотека коллекций. В ка-
честве умозрительного упражнения рассмотрим конкретный при-
мер. В интерфейс Collection в Java 8 был добавлен метод stream, а это
означает, что в любом классе, реализующем Collection, такой метод
должен существовать. Для классов из самих базовых библиотек (на-
пример, ArrayList) проблему решить легко – нужно лишь реализо-
вать этот метод.

К несчастью, это не поможет устранить нарушение двоичной со-
вместимости, потому что существует немало классов вне JDK, реали-
зующих интерфейс Collection (допустим, MyCustomList), и в них тоже
должен быть реализован метод stream. Следовательно, в Java 8 класс
MyCustomList перестанет компилироваться, а если у вас есть его версия,
откомпилированная ранее, то при попытке загрузить MyCustomList
в виртуальную машину Java (JVM) ClassLoader возбудит исключение.

Такого кошмарного развития событий, угрожающего всем сторон-
ним библиотекам, удалось избежать, но ценой введения нового язы-
кового механизма: методов по умолчанию.

Методы по умолчанию
Итак, в интерфейсе Collection появился новый метод stream; каким
образом класс MyCustomList удается откомпилировать, хотя он пред-
ставления не имеет о существовании нового метода? В Java 8 эта
проб лема решается за счет того, что интерфейс Collection может ска-
зать: «Если у какого-то из моих потомков нет метода stream, пусть он
воспользуется вот этим». Такие методы интерфейса называются ме-
тодами по умолчанию . Они могут существовать в любом интерфейсе,
а не только функциональном.

Еще один добавленный метод по умолчанию – forEach в интер-
фейсе Iterable . Он предоставляет функциональность, аналогичную
циклу for, но позволяет использовать лямбда-выражение в качестве
тела цикла. В примере 4.10 показано, как это могло бы быть реализо-
вано в JDK.

Пример 4.10 � Пример метода по умолчанию, демонстрирующий
возможную реализацию forEach
default void forEach(Consumer<? super T> action) {
 for (T t : this) {
 action.accept(t);
 }
}

Методы по умолчанию

64 � Глава 4. Библиотеки

Теперь, когда идея о том, что лямбда-выражения можно использо-
вать, просто вызывая методы интерфейсов, не кажется вам чуждой,
этот пример не должен вызывать недоумения. Здесь в обычном цикле
for производится обход объекта Iterable, и для каждого значения вы-
зывается метод accept.

Но если все так просто, зачем бы и затевать разговор? Важный
момент – ключевое слово default в начале определения метода. Оно
говорит javac, что мы хотим добавить метод в интерфейс. Помимо но-
вого ключевого слова, для методов по умолчанию действуют немного
отличающиеся правила наследования.

Еще одно существенное отличие состоит в том, что, в отличие от
классов, у интерфейсов не может быть полей, поэтому методы по
умолчанию могут модифицировать состояние дочерних классов,
только вызывая их методы. Это позволяет избежать предположений
о конкретной реализации потомков.

Методы по умолчанию и наследование
 Существуют некоторые тонкие моменты, касающиеся того, как мето-
ды по умолчанию переопределяют другие методы и переопределяют-
ся сами. Начнем с простейшего случая: переопределение отсутствует.
В примере 4.11 в интерфейсе Parent определен метод welcome, который
отправляет сообщение. В классе ParentImpl метод welcome не реализо-
ван, поэтому наследуется метод по умолчанию.

Пример 4.11 � Интерфейс Parent: метод welcome является методом
по умолчанию
public interface Parent {

 public void message(String body);

 public default void welcome() {
 message("Parent: Hi!");
 }

 public String getLastMessage();
}

При том использовании этого класса, которое показано в приме-
ре 4.12, вызывается метод по умолчанию, и утверждение оказывается
истинным.

Пример 4.12 � Использование метода по умолчанию в клиентском коде
@Test
public void parentDefaultUsed() {
 Parent parent = new ParentImpl();

� 65

 parent.welcome();
 assertEquals("Parent: Hi!", parent.getLastMessage());
}

Теперь расширим интерфейс Parent, создав интерфейс Child, код
которого приведен в примере 4.13. В Child реализован собственный
метод по умолчанию welcome. Мы интуитивно ожидаем, что метод по
умолчанию в интерфейсе Child переопределяет метод по умолчанию
в Parent. В данном случае класс ChildImpl также не предоставляет реа-
лизации welcome, и, значит, наследуется метод по умолчанию.

Пример 4.13 � Интерфейс Child расширяет Parent
public interface Child extends Parent {

 @Override
 public default void welcome() {
 message("Child: Hi!");
 }
}

Эта иерархия классов изображена на рис. 4.4.

Рис. 4.4 � Иерархия наследования к этому моменту

В примере 4.14 этот метод вызывается и отправляет сообщение
"Child: Hi!".

Пример 4.14 � Клиентский код вызывает метод интерфейса Child
@Test
public void childOverrideDefault() {
 Child child = new ChildImpl();
 child.welcome();
 assertEquals("Child: Hi!", child.getLastMessage());
}

Interface Parent –
welcom

Interface Child –
welcom

extends

implements

implements

class ParentImp1
welcome �
 Parent

Class ChildImp1
welcome �
 Child

Методы по умолчанию

66 � Глава 4. Библиотеки

Метод по умолчанию является виртуальным , а не статическим.
Это означает, что в случае выбора между ним и методом, переопре-
деленным в классе, предпочтение всегда отдается последнему. Этот
принцип проиллюстрирован в примерах 4.15 и 4.16, где выбран метод
welcome из класса OverridingParent, а не из интерфейса Parent.

Пример 4.15 � Родительский класс, в котором переопределена реа-
лизация welcome по умолчанию
public class OverridingParent extends ParentImpl {

 @Override
 public void welcome() {
 message("Class Parent: Hi!");
 }
}

Пример 4.16 � Предпочтение отдается конкретному методу,
а не методу по умолчанию
@Test
public void concreteBeatsDefault() {
 Parent parent = new OverridingParent();
 parent.welcome();
 assertEquals("Class Parent: Hi!", parent.getLastMessage());
}

А в примере 4.18 показана ситуация, в которой переопределение
метода по умолчанию в конкретном классе выглядит неожиданно.
Класс OverridingChild наследует метод welcome как от Child, так и от
OverridingParent, а сам ничего не делает. В примере 4.17 выбирается
метод, унаследованный от OverridingParent, хотя тип Child более спе-
цифичен. Причина в том, что предпочтение отдается конкретному
методу, а не методу по умолчанию (см. рис. 4.5).

Пример 4.17 � Как и раньше, в дочернем интерфейсе метод по умол-
чанию переопределен
public class OverridingChild extends OverridingParent implements Child {

}

Пример 4.18 � Предпочтение отдается конкретному методу, а не ме-
тоду по умолчанию, определенному в более специфичном интерфейсе
@Test
public void concreteBeatsCloserDefault() {
 Child child = new OverridingChild();
 child.welcome();
 assertEquals("Class Parent: Hi!", child.getLastMessage());
}

� 67

Короче говоря: класс всегда выигрывает. Такое решение принято
потому, что методы по умолчанию предназначены прежде всего для
обеспечения двоичной совместимости при эволюции API. Отдавая
предпочтение классам, а не методам по умолчанию, удается избежать
многих сложностей в различных сценариях наследования.

Допустим, что у нас была собственная реализация списка MyCustom-
List, в которой мы реализовали метод addAll, и что в новом интерфей-
се List появился метод по умолчанию addAll, делегирующий работу
методу add. Если бы не гарантировалось, что нашему методу addAll
будет отдано предпочтение, то уже написанные программы могли бы
перестать работать.

Множественное наследование
 Поскольку разрешено множественное наследование интерфейсов,
может возникнуть ситуация, когда в двух интерфейсах имеются ме-
тоды по умолчанию с одной и той же сигнатурой. В примере ниже
в интерфейсах Carriage и Jukebox имеется метод rock, но служит он
совершенно разным целям. Имеется также класс MusicalCarriage, реа-
лизующий оба интерфейса Jukebox и Carriage, который пытается уна-
следовать метод rock.

Рис. 4.5 � Полная иерархия наследования

extends

extends

extends

implements

implements

im
ple

me
nts

class ParentImp1
welcome �
 Parent

class OverridingParent
welcome �
 Parent

class OverridingChild
welcome �
 Parent

Class ChildImp1
welcome �
 Child

Множественное наследование

Interface Parent – welcom

Interface Child –
welcom

68 � Глава 4. Библиотеки

Пример 4.19 � Интерфейс Jukebox
public interface Jukebox {

 public default String rock() {
 return "... all over the world!";
 }
}

Пример 4.20 � Интерфейс Carriage
public interface Carriage {

 public default String rock() {
 return "... from side to side";
 }
}

public class MusicalCarriage implements Carriage, Jukebox {
}

Поскольку javac не уверен, какой метод наследовать, он просто воз-
вращает ошибку компиляции class MusicalCarriage inherits unrelated
defaults for rock() from types Carriage and Jukebox. Разумеется, ситуа-
цию можно разрешить, реализовав метод rock, как показано в приме-
ре 4.21.

Пример 4.21 � Реализация метода rock
public class MusicalCarriage implements Carriage, Jukebox {

 @Override
 public String rock() {
 return Carriage.super.rock();
 }
}

В этом примере используется усовершенствованный синтаксис
super, чтобы выбрать в качестве предпочтительной реализацию rock
из интерфейса Carriage. В прежних версиях ключевое слово super обо-
значало ссылку на родительский класс, а новый вариант InterfaceName.
super позволяет указать метод унаследованного интерфейса.

Три правила
 Если вы не уверены, что случится при использовании методов по
умолчанию или множественного наследования, руководствуйтесь
следующими тремя простыми правилами разрешения конфликтов.

1. Классу всегда отдается предпочтение перед интерфейсом. Та-
ким образом, если в цепочке родительских классов существует

� 69

метод, содержащий тело, или хотя бы его абстрактное объявле-
ние, об интерфейсах вообще можно забыть.

2. Подтипу отдается предпочтение перед супертипом. В ситуа-
ции, когда два интерфейса предоставляют один и тот же метод
по умолчанию и один интерфейс расширяет другой, выигрыва-
ет расширенный интерфейс.

3. Нет никакого правила 3. Если предыдущие два правила не дают
ответа, то подкласс должен либо реализовать метод, либо объ-
явить его абстрактным.

Правило 1 – это то, что обеспечивает совместимость с ранее напи-
санным кодом.

Компромиссы
Описанные изменения вызывают целый ряд вопросов относительно
того, что же такое интерфейс в Java 8, если в нем можно определять
методы, имеющие тело. Это означает, что теперь интерфейсы несут
с собой некую форму множественного наследования, которое раньше
вызывало порицание и изъятие которого из языка считалось важным
преимуществом Java над C++.

Но никакой языковой механизм нельзя назвать абсолютным доб-
ром или абсолютным злом. Широко распространено мнение, что на-
стоящая проблема связана с множественным наследованием состоя-
ния, а не просто кода. Но методы по умолчанию как раз запрещают
наследование состояния, то есть обходят самые глубокие ямы, свя-
занные с множественным наследованием в C++.

Возникает сильное искушение как-то обойти и эти ограничения.
В блогах уже появляются статьи, в которых делаются попытки реа-
лизовать полноценные типажи (traits) с множественным наследова-
нием состояния и методов по умолчанию. Но стремление хитростью
обойти намеренно встроенные в Java 8 ограничения ведет прямиком
к старым трудностям, свойственным C++.

Ясно также, что существует четкое различие между интерфейсами
и абстрактными классами. Интерфейсы открывают возможность мно-
жественного наследования, но не имеют полей, тогда как абстрактные
классы позволяют наследовать поля, но унаследовать сразу несколь-
ким таким классам нельзя. Разрабатывая модель предметной обла-
сти, необходимо помнить об этом компромиссе, что в прежних верси-
ях Java было необязательно.

Компромиссы

70 � Глава 4. Библиотеки

Статические методы в интерфейсах
 Мы уже неоднократно встречали вызовы метода Stream.of, но в дета-
ли я пока не вдавался. Как вы помните, Stream – это интерфейс, сле-
довательно, мы имеем дело со статическим методом интерфейса. Это
еще одно языковое новшество, появившееся в Java 8, прежде всего
чтобы помочь разработчикам библиотек. Впрочем, прикладным про-
граммистам оно тоже полезно.

Со временем сформировалась идиома создания классов, содер-
жащих множество статических методов. Иногда класс – подходя-
щее место для служебного кода. Примером может служить класс
Objects, который был включен в Java 7 и содержит функциональные
возможности, которые нельзя отнести к какому-то определенному
классу.

Конечно, если метод семантически соотносится с какой-то кон-
цепцией, то следует помещать его в соответствующий класс или ин-
терфейс, а не скрывать в служебном классе. Тем самым вы структу-
рируете свой код таким образом, что читателю будет проще найти
интересующий его метод.

Например, желая создать простой поток значений, вы, наверное,
будете искать подходящий метод в интерфейсе Stream. Раньше это
было невозможно, но добавление насквозь пронизанного интерфей-
сами API, конкретно Stream, все же стало достаточным основанием
для включения в интерфейсы статических методов.

 В интерфейсе Stream и его вариантах, специализированных для примитивов,
есть и другие статические методы. Точнее, range и iterate предоставляют
иные способы порождения потоков.

Тип Optional
 До сих пор я обходил молчанием тот факт, что есть две формы reduce:
одна – мы ее уже видели – принимает начальное значение, а другая
не принимает. Если начальное значение опущено, то при первом об-
ращении к редуктору используются первые два элемента потока. Это
полезно, когда для операции reduce не существует разумного началь-
ного значения и возвращается экземпляр типа Optional.

Optional – это новый тип данных из базовой библиотеки, призван-
ный предложить более удобную альтернативу null . Старое доброе
значение null у многих вызывает ненависть. Даже его изобретатель
Тони Хоар признался, что это была «ошибка на миллиард долларов».

� 71

Вот ведь как плохо быть авторитетным ученым – можно сделать
ошибку на миллиард долларов, а самого миллиарда в глаза не видеть!

Часто null используют, чтобы представить отсутствие значения, и
именно в этом случае Optional предпочтительнее. Проблема в том, что
в случае, когда null обозначает отсутствие значения, возникает всеми
проклинаемое исключение NullPointerException . Стоить обратить-
ся к переменной, содержащей null, как программа «падает». У типа
Optional цель двоякая. Во-первых, он поощряет программиста про-
верять, равна ли переменная null, во избежание ошибок. Во-вторых,
он документирует, какие значения могут отсутствовать в API класса.
В результате проще искать, где могут таиться мины.

Давайте взглянем на API класса Optional, чтобы понять, как его
следует использовать. Чтобы создать экземпляр Optional по имею-
щемуся значению, нужно воспользоваться фабричным методом of.
Отныне экземпляр Optional будет контейнером для этого значения,
а достать его можно с помощью метода get, как показано на рис. 4.22.

Пример 4.22 � Создание экземпляра Optional по имеющемуся зна-
чению
Optional<String> a = Optional.of("a");
assertEquals("a", a.get());

Поскольку Optional может также представлять отсутствующее
значение, существует еще фабричный метод empty . А допускающее
null значение можно преобразовать в Optional с помощью метода
ofNullable . Оба способа показаны в примере 4.23 наряду с использо-
ванием метода isPresent (который сообщает, содержит ли данный эк-
земпляр Optional какое-нибудь значение).

Пример 4.23 � Создание пустого экземпляра Optional и проверка
наличия значения
Optional emptyOptional = Optional.empty();
Optional alsoEmpty = Optional.ofNullable(null);

assertFalse(emptyOptional.isPresent());

// a ���������� ����
assertTrue(a.isPresent());

Один из способов использования Optional состоит в том, чтобы
перед каждым вызовом get() проверять наличие значение с помощью
isPresent(). Более разумный подход – вызывать метод orElse , кото-
рый возвращает альтернативное значение, если экземпляр Optional

Тип Optional

72 � Глава 4. Библиотеки

пуст. Если создание альтернативного значения сопряжено с больши-
ми накладными расходами, то лучше использовать метод orElseGet .
Это позволяет передать объект Supplier, который вызывается лишь
в том случае, когда экземпляр Optional действительно пуст. Оба вари-
анта показаны в примере 4.24.

Пример 4.24 � Использование методов orElse и orElseGet
assertEquals("b", emptyOptional.orElse("b"));
assertEquals("c", emptyOptional.orElseGet(() -> "c"));

Optional – обычный класс, который вы можете использовать в соб-
ственном коде, а не только совместно с новыми API, появившимися
в Java 8. Его определенно стоит иметь в виду, когда вы пытаетесь из-
бежать ошибок, связанных со значением null, в том числе неперехва-
ченных исключений.

Основные моменты
 � Добиться заметного повышения производительности позволя-

ет использование типов лямбда-выражений и потоков, специа-
лизированных для примитивных типов, например IntStream.

 � Методами по умолчанию называются методы интерфейсов,
имеющие тела; их объявления начинаются ключевым словом
default.

 � Класс Optional позволяет избежать использования null для
представления отсутствующего значения.

Упражнения
1. Пусть дан интерфейс Performance, показанный в примере 4.25.

Добавьте в него метод getAllMusicians, который возвращает
поток Stream исполнителей, принимавших участие в представ-
лении, а в случае, когда исполнителем является группа, – еще
и всех входящих в нее исполнителей. Так, если getMusicians
возвращает The Beatles, то следует вернуть The Beatles, а также
Lennon, McCartney и т. д.

Пример 4.25 � Интерфейс, описывающий концепцию музы-
кального представления
/** �������������, � ������� ����������� ��
������, – ��������, ������
 ��� ������� */.
public interface Performance {

� 73

 public String getName();

 public Stream<Artist> getMusicians();
}

2. Принимая во внимание описанные выше правила разрешения,
можно ли переопределить equals или hashCode в методе по умол-
чанию?

3. Рассмотрим предметный класс Artists в примере 4.26, кото-
рый представляет группу исполнителей. Ваша задача – пере-
работать метод getArtist, так чтобы он возвращал объект
Optional<Artist>. Этот объект должен содержать элемент, если
индекс допустимый, и быть пустым в противном случае. Не за-
будьте, что придется также переработать метод getArtistName,
сохранив при этом прежнее поведение.

Пример 4.26 � Предметный класс Artists, представляющий не-
сколько исполнителей
public class Artists {

 private List<Artist> artists;

 public Artists(List<Artist> artists) {
 this.artists = artists;
 }

 public Artist getArtist(int index) {
 if (index < 0 || index >= artists.size()) {
 indexException(index);
 }
 return artists.get(index);
 }

 private void indexException(int index) {
 throw new IllegalArgumentException(index +
 " doesn't correspond to an Artist");
 }

 public String getArtistName(int index) {
 try {
 Artist artist = getArtist(index);
 return artist.getName();
 } catch (IllegalArgumentException e) {
 return "unknown";
 }
 }
}

Упражнения

74 � Глава 4. Библиотеки

Задача для исследования
1. Просмотрите весь код своего проекта или какого-нибудь знако-

мого вам проекта с открытым исходным кодом и попытайтесь
найти классы, содержащие только статические методы, кото-
рые можно было бы сделать статическими методами интерфей-
сов. По возможности обсудите с коллегами, правы вы или нет.

Глава 5
Еще о коллекциях

и коллекторах

В библиотеку коллекций внесено куда больше изменений, чем я упо-
мянул в главе 3. Настало время рассмотреть некоторые из более
продвинутых изменений, в том числе новую абстракцию Collector.
Я также расскажу о ссылках на методы – способе использования су-
ществующего кода в лямбда-выражениях почти без подготовитель-
ных церемоний. Это оказывается чрезвычайно полезным при напи-
сании кода, плотно работающего с коллекциями. Будут освещены
также другие изменения API, в том числе упорядочение элементов
внутри потоков.

Ссылки на методы
 Вы уже, наверное, обратили внимание на стандартную идиому – соз-
дание лямбда-выражения, которое вызывает метод от имени своего
параметра. Так, желая, чтобы лямбда-выражение получало имя ис-
полнителя, мы можем написать:

artist -> artist.getName()

Эта идиома употребляется настолько часто, что для нее имеется
сокращенный синтаксис, который позволяет повторно использовать
существующий метод. Называется он ссылкой на метод. Воспользо-
вавшись ссылкой на метод, предыдущее лямбда-выражение можно
переписать так:

Artist::getName

В общем случае ссылка на методы имеет вид Classname::methodName.
Хотя это и метод, указывать скобки не следует, так как мы ничего не
вызываем. Это просто эквивалент лямбда-выражения, вызов которо-
го приведет к вызову метода. Ссылки на методы можно использовать
всюду, где допустимы лямбда-выражения.

76 � Глава 5. Еще о коллекциях и коллекторах

С помощью такого же сокращенного синтаксиса можно вызывать
и конструкторы. Лямбда-выражение, создающее объект Artist, могло
бы выглядеть так:

(name, nationality) -> new Artist(name, nationality)

То же самое можно выразить и с помощью ссылки на метод:

Artist::new

Этот код не только короче, но и читается гораздо легче. Запись
Artist::new сразу же говорит читателю, что создается новый объект
Artist; и не нужно изучать целую строку кода. Отметим также, что
ссылки на методы автоматически поддерживают несколько парамет-
ров при условии, что имеется подходящий функциональный интер-
фейс.

Так можно создавать и массивы. Вот, например, как создается мас-
сив строк:

String[]::new

Начиная с этого момента, мы будем использовать ссылки на ме-
тоды там, где это уместно, поэтому вскоре вы увидите еще много
примеров такого рода. Когда мы только начинали исследовать изме-
нения в Java 8, мой приятель заметил, что ссылки на метод «отдают
мошенничеством». Он имел в виду, что после того как было приложе-
но столько усилий для поддержки лямбда-выражений как механиз-
ма передачи кода по аналогии с данными, возможность ссылаться на
методы напрямую выглядит каким-то обманом.

Успокойтесь – нет тут никакого обмана! Нужно просто помнить,
что всякий раз, записывая лямбда-выражение вида x -> foo(x), вы по
существу делаете то же самое, что сам метод foo. Ссылки на методы –
просто упрощенный синтаксис, в котором этот факт используется.

Упорядочение элементов
 До сих пор я еще ни слова не сказал о том, как упорядочены элемен-
ты в потоках. Вы, наверное, знаете, что для одних типов коллекций,
например List, порядок определен, а для других, например HashSet , –
нет. В случае операций с потоками вопрос об упорядочении оказыва-
ется несколько более сложным.

Интуитивно представляется, что в потоке имеется определенный
порядок, потому что операции производятся над каждым элемен-
том по очереди. Такой порядок называется порядком поступления

� 77

(encounter order). Как именно определен порядок поступления, зави-
сит от источника данных и от операций, выполняемых над потоком.

Если поток создается из коллекции, в которой определен порядок,
то и порядок поступления в потоке тоже определен. Поэтому утверж-
дение в примере 5.1 истинно.

Пример 5.1 � Предположение об упорядоченности в этом
утверждении истинно
List<Integer> numbers = asList(1, 2, 3, 4);

List<Integer> sameOrder = numbers.stream()
 .collect(toList());

assertEquals(numbers, sameOrder);

Если изначально порядок не был определен, то и в потоке, создан-
ном на основе такого источника, нет определенного порядка. При-
мером неупорядоченной коллекции является HashSet, и утверждение
в примере 5.2 может оказаться ложным.

Пример 5.2 � Истинность предположения об упорядоченности
не гарантирована
Set<Integer> numbers = new HashSet<>(asList(4, 3, 2, 1));

List<Integer> sameOrder = numbers.stream()
 .collect(toList());

// ��� ����������� ����� ���
����$ ������
assertEquals(asList(4, 3, 2, 1), sameOrder);

Цель потоков – не просто преобразовать одну коллекцию в другую;
важно предоставить общий набор операций над данными. И эти опе-
рации могут создать порядок поступления там, где его изначально не
было. Рассмотрим код в примере 5.3.

Пример 5.3 � Создание порядка поступления
Set<Integer> numbers = new HashSet<>(asList(4, 3, 2, 1));

List<Integer> sameOrder = numbers.stream()
 .sorted()
 .collect(toList());

assertEquals(asList(1, 2, 3, 4), sameOrder);

Если порядок поступления существует, то он распространяется на
последующие операции; например, если мы выполним операцию map

Упорядочение элементов

78 � Глава 5. Еще о коллекциях и коллекторах

над потоком, в котором есть порядок поступления, то он будет сохра-
нен. Если же во входном потоке нет порядка поступления, то его не
будет и в выходном. Рассмотрим два фрагмента кода в примере 5.4.
Для коллекции HashSet можно высказать только более слабые утверж-
дения hasItem, потому что отсутствие определенного порядка поступ-
ления в HashSet сохраняется и после применения map.

Пример 5.4 � Предположения об упорядочении
List<Integer> numbers = asList(1, 2, 3, 4);

List<Integer> stillOrdered = numbers.stream()
 .map(x -> x + 1)
 .collect(toList());

// ���$��� ����������$ ����� ���������
assertEquals(asList(2, 3, 4, 5), stillOrdered);

Set<Integer> unordered = new HashSet<>(numbers);

List<Integer> stillUnordered = unordered.stream()
 .map(x -> x + 1)
 .collect(toList());

// 9���
����� ����K� ���������� � ���$��� ����������$
assertThat(stillUnordered, hasItem(2));
assertThat(stillUnordered, hasItem(3));
assertThat(stillUnordered, hasItem(4));
assertThat(stillUnordered, hasItem(5));

Некоторые операции для упорядоченных потоков оказываются бо-
лее накладными. Эту проблему можно решить, отказавшись от упо-
рядочения. Для этого достаточно вызвать метод потока unordered . Од-
нако большинство операций, в том числе
 lter, map и reduce, работают
с упорядоченными потоками очень эффективно.

Возможно и неожиданное поведение. Например, forEach не дает
никаких гарантий относительно порядка поступления при использо-
вании параллельных потоков (эта тема подробнее обсуждается в гла-
ве 6). Если в таких ситуациях необходима гарантия безопасности,
пользуйтесь методом forEachOrdered!

Знакомство с интерфейсом Collector
 Мы уже использовали идиому collect(toList()) для порождения спис-
ков из потоков. Понятно, что List – самая естественная коллекция,
порождаемая из Stream, но не всегда самая желательная. Быть может,

� 79

вам нужно создать Map или Set. А может быть, вообще имеет смысл за-
вести предметный класс, абстрагирующий нужную вам концепцию?

Вы уже знаете, как по сигнатуре метода интерфейса Stream опре-
делить, соответствует ли он энергично вычисляемой финальной
операции, порождающей значение. Для этой цели очень даже годит-
ся операция reduce. Но иногда хочется зайти дальше, чем позволяет
reduce.

Позвольте представить вам коллектор – конструкцию общего ха-
рактера для порождения составных значений из потоков. Коллектор
можно использовать с произвольным потоком, передав его в качестве
аргумента метода collect.

В стандартной библиотеке имеется ряд готовых полезных коллек-
торов, поэтому для начала познакомимся с ними. В примерах кода
из этой главы коллекторы статически импортируются из класса java.
util.stream.Collectors.

Порождение других коллекций
 Некоторые коллекторы просто конструируют другие коллекции. Мы
уже встречались с коллектором toList , который порождает экземпля-
ры класса java.util.List. Есть также коллекторы toSet и toCollection ,
порождающие соответственно экземпляры Set и Collection. Я уже
много говорил о сцеплении операций Stream, но все же бывают случаи,
когда в качестве конечного значения требуется получить Collection.
Например:

 � при передаче коллекции в существующий код, рассчитанный
на работу с коллекциями;

 � при создании конечного значения в конце цепочки коллекций;
 � при написании в тесте утверждения, относящегося к конкрет-

ной коллекции.
Обычно при создании коллекции мы указываем конкретный тип,

вызывая соответствующий конструктор:

List<Artist> artists = new ArrayList<>();

Но при обращении к методу toList или toSet задавать конкретную
реализацию List или Set не нужно. Потоковая библиотека сама вы-
берет подходящую реализацию. Ниже в этой книге я расскажу о том,
как можно использовать потоковую библиотеку для выполнения
параллельных операций; для сбора результатов параллельных опе-
раций может потребоваться порождать другой тип Set, чтобы учесть
требование потокобезопасности.

Знакомство с интерфейсом Collector

80 � Глава 5. Еще о коллекциях и коллекторах

Иногда желательно, чтобы метод collect создавал коллекцию кон-
кретного типа, если она понадобится в дальнейшем. Например, не ис-
ключено, что вам нужен объект класса TreeSet , а не того подкласса
Set, который выбрала бы библиотека. Это можно сделать, восполь-
зовавшись коллектором toCollection, который принимает в качестве
аргумента функцию, конструирующую коллекцию (см. пример 5.5).

Пример 5.5 � Создание конкретной коллекции с помощью метода
toCollection
stream.collect(toCollection(TreeSet::new));

Порождение других значений
 Коллекторы позволяют сворачивать коллекцию в одно значение. Так,
коллекторы maxBy и minBy дают возможность получить одно значение
в соответствии с некоторым отношением порядка. В примере 5.6 пока-
зано, как найти группу с наибольшим числом участников. Здесь зада-
ется лямбда-выражение, отображающее исполнителя на количест во
участников. Затем оно используется для определения компаратора,
который передается в коллектор maxBy.

Пример 5.6 � Нахождение группы с наибольшим числом участников
public Optional<Artist> biggestGroup(Stream<Artist> artists) {
 Function<Artist,Long> getCount = artist -> artist.getMembers().count();
 return artists.collect(maxBy(comparing(getCount)));
}

Коллектор minBy аналогично используется для определения мини-
мума.

Существуют также коллекторы, реализующие стандартные опера-
ции над числами. Познакомимся с ними, написав компонент, кото-
рый находит среднее число произведений в альбоме (пример 5.7).

Пример 5.7 � Нахождение среднего числа произведений во всех аль-
бомах из списка
public double averageNumberOfTracks(List<Album> albums) {
 return albums.stream()
 .collect(averagingInt(album -> album.getTrackList().size()));
}

Как обычно, мы запускаем конвейер методом stream, а затем со-
бираем результаты методом collect. После этого мы вызываем метод
averagingInt, который принимает лямбда-выражение, преобразующее
каждый элемент потока в число типа int, перед тем как усреднить
результаты. Существуют также перегруженные операции для типов

� 81

double и long, позволяющие преобразовать элемент в число соответ-
ствующего типа.

В разделе «Примитивы» выше мы говорили, что у вариантов по-
токов, специализированных для примитивных типов, например
IntStream, имеется дополнительная функциональность, применимая
только к операциям над числами. Существует также и группа коллек-
торов, предлагающих похожие функциональные возможности, одним
из них как раз и является averagingInt. Значения можно складывать
с помощью метода summingInt и его вариантов для других типов. С по-
мощью метода summarizingInt и ему подобных можно собирать свод-
ную статистику SummaryStatistics.

Разбиение данных
 Еще одна типичная операция интерфейса Stream – разбиение потока
на две коллекции значений. Например, поток исполнителей можно
разбить на солистов и группы. Один из подходов к решению этой
задачи – произвести две операции фильтрации: сначала найти соли-
стов, потом группы.

Но у такого подхода есть два недостатка. Во-первых, для выполне-
ния двух операций потребуются два потока. Во-вторых, если перед
фильтрами выполняется длинная последовательность других опера-
ций, то все эти операции придется выполнять дважды – в одном и
в другом потоке. Такой код чистым не назовешь.

Поэтому существует коллектор partitioningBy , который принимает
поток и разбивает его содержимое на две группы (рис. 5.1). Чтобы
определить, куда какой элемент поместить, этот коллектор пользует-
ся предикатом Predicate, а возвращает отображение Map, сопоставляю-

Рис. 5.1 � Коллектор partitioningBy

Знакомство с интерфейсом Collector

82 � Глава 5. Еще о коллекциях и коллекторах

щее булеву значению список List. Таким образом, в списке, соответ-
ствующем значению true, будут находиться элементы потока, для
которых предикат вернул true, в списке, соответствующем значению
false, – все остальные.

С помощью этого механизма мы можем отделить группы (испол-
нители с несколькими участниками) от солистов. В данном случае
функция разбиения сообщает, является ли исполнитель солистом. Ее
реализация показана в примере 5.8.

Пример 5.8 � Разбиение потока исполнителей на группы и солистов
public Map<Boolean, List<Artist>> bandsAndSolo(Stream<Artist> artists) {
 return artists.collect(partitioningBy(artist -> artist.isSolo()));
}

То же самое можно выразить с помощью ссылки на метод, как по-
казано в примере 5.9.

Пример 5.9 � Разбиение потока исполнителей на группы и солистов
с помощью ссылки на метод
public Map<Boolean, List<Artist>> bandsAndSoloRef(Stream<Artist> artists) {
 return artists.collect(partitioningBy(Artist::isSolo));
}

Группировка данных
 Существует естественный способ обобщить разбиение, изменив опе-
рацию группировки. Большая общность заключается в том, что вмес-
то двух групп, соответствующих значениям true и false, мы можем
создать сколько угодно групп, каждой из которых соответствует не-
которое общее значение. Предположим, что вы получили откуда-то
поток альбомов и хотите сгруппировать их по имени основного музы-
канта. Это можно сделать, как показано в примере 5.10.

Пример 5.10 � Группировка альбомов по основному исполнителю
public Map<Artist, List<Album>> albumsByArtist(Stream<Album> albums) {
 return albums.collect(groupingBy(album -> album.getMainMusician()));
}

Как и в других примерах, мы вызываем метод collect потока Stream,
передавая ему объект Collector. Коллектор groupingBy (рис. 5.2) при-
нимает функцию classi
 er, которая разбивает данные, – точно так же,
как коллектор partitioningBy принимал предикат, относивший эле-
менты потока к двум категориям: true и false. Классификатор имеет
тип Function – такой же, как применяется в операции map.

� 83

 Читатели, работавшие с SQL, знакомы с конструкцией group by . Описываемая
здесь концепция аналогична, но реализована в соответствии с идиомами по-
токовой библиотеки.

Строки
 Очень часто сбор данных из потоков организуется для того, чтобы
в конце сгенерировать строки. Предположим, что мы хотим создать
отформатированный список имен исполнителей, участвовавших
в запи си альбома. Если, например, альбом называется «Let It Be», то
на выходе мы ожидаем получить строку "[George Harrison, John Lennon,
Paul McCartney, Ringo Starr, The Beatles]".

До выхода Java 8 мы написали бы для решения этой задачи код вро-
де того, что приведен в примере 5.11. Здесь мы обходим список испол-
нителей и для построения строки пользуемся объектом StringBuilder.
На каждой итерации извлекается имя исполнителя и добавляется
в StringBuilder.

Пример 5.11 � Форматирование имен исполнителей в цикле
StringBuilder builder = new StringBuilder("[");
for (Artist artist : artists) {
 if (builder.length() > 1)
 builder.append(", ");

 String name = artist.getName();
 builder.append(name);
}

builder.append("]");
String result = builder.toString();

Рис. 5.2 � Коллектор groupingBy

Знакомство с интерфейсом Collector

84 � Глава 5. Еще о коллекциях и коллекторах

Конечно, этот код шедевром не назовешь. Довольно трудно понять,
что здесь происходит, не пройдя по всей программе шаг за шагом.
В Java 8 с помощью потоков и коллекторов то же самое можно запи-
сать гораздо яснее (пример 5.12).

Пример 5.12 � Форматирование имен исполнителей с помощью по-
токов и коллекторов
String result =
 artists.stream()
 .map(Artist::getName)
 .collect(Collectors.joining(", ", "[", "]"));

Здесь мы с помощью map извлекаем имена исполнителей, а затем
собираем данные из потока с помощью коллектора Collectors.joining .
Этот метод – удобное средство построения строк из данных, полу-
чаемых из потока. В нем можно задать разделитель (символ, встав-
ляемый между элементами), а также начальный и конечный ограни-
читель.

Композиция коллекторов
 Коллекторы, с которыми мы уже познакомились, сами по себе до-
вольно мощные, но их мощь многократно возрастает благодаря воз-
можности композиции.

Ранее мы группировали альбомы по основному исполнителю,
а теперь займемся задачей подсчета количества альбомов, в которых
участвовал каждый исполнитель. Для этого можно просто приме-
нить предыдущую группировку, а затем подсчитать число элементов
в группе. Соответствующий код приведен в примере 5.13.

Пример 5.13 � Наивный подход к подсчету количества альбомов для
каждого исполнителя
Map<Artist, List<Album>> albumsByArtist
 = albums.collect(groupingBy(album -> album.getMainMusician()));

Map<Artist, Integer> numberOfAlbums = new HashMap<>();
for(Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
 numberOfAlbums.put(entry.getKey(), entry.getValue().size());
}

Гм, просто, конечно, но как-то неряшливо. Это императивный код,
не допускающий автоматического распараллеливания.

А хотелось бы иметь еще один коллектор, который говорит
 groupingBy, что вместо построения списка альбомов для каждого ис-
полнителя их нужно просто пересчитать. И надо же – в базовой биб-

� 85

лиотеке как раз такой коллектор есть, и называется он counting. По-
этому мы можем переписать этот код, как показано в примере 5.14.

Пример 5.14 � Использование коллекторов для подсчета количества
альбомов для каждого исполнителя
public Map<Artist, Long> numberOfAlbums(Stream<Album> albums) {
 return albums.collect(groupingBy(album -> album.getMainMusician(),
 counting()));
}

Этот вариант groupingBy разбивает множество элементов на клас-
теры. Каждый кластер ассоциируется с ключом, который предо-
ставляет функция классификации: getMainMusician. Затем операция
groupingBy использует подчиненный коллектор для сбора данных из
каждого кластера и создает отображение Map, содержащее результаты.

Рассмотрим еще один пример, в котором вместо группировки аль-
бомов нам нужны только их названия. Можно было бы снова взять
исходный коллектор, а затем подправить результирующие значения
в Map. Как это сделать, показано в примере 5.15.

Пример 5.15 � Наивный подход к нахождению названий всех альбо-
мов, в записи который участвовал исполнитель
public Map<Artist, List<String>> nameOfAlbumsDumb(Stream<Album> albums) {
 Map<Artist, List<Album>> albumsByArtist =
 albums.collect(groupingBy(album ->album.getMainMusician()));

 Map<Artist, List<String>> nameOfAlbums = new HashMap<>();
 for(Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
 nameOfAlbums.put(entry.getKey(), entry.getValue()
 .stream()
 .map(Album::getName)
 .collect(toList()));
 }
 return nameOfAlbums;
}

Как и раньше, можно написать более элегантный, быстрый и до-
пускающий распараллеливание код, воспользовавшись еще одним
коллектором. Мы уже умеем группировать альбомы по основному
исполнителю с помощью коллектора groupingBy, однако он порождает
объект Map<Artist, List<Album>>. А нам нужно ассоциировать с каждым
объектом Artist не список альбомов, а список строк, содержащих на-
звания альбомов.

В данном случае мы хотели бы выполнить операцию map над спис-
ком, сопоставив каждому исполнителю название альбома. Но мы не

Знакомство с интерфейсом Collector

86 � Глава 5. Еще о коллекциях и коллекторах

можем просто воспользоваться методом map потока, потому что нуж-
ный нам список создан коллектором groupingBy. Необходимо как-то
сказать коллектору groupingBy, чтобы он применил map к значениям,
помещаемым в результирующий список.

Любой коллектор – это рецепт построения конечного значения.
Нам нужен рецепт получения другого рецепта – еще одного коллекто-
ра. К счастью, умные головы в Oracle предусмотрели такой случай и
включили коллектор, который называется mapping .

Коллектор mapping позволяет выполнять операции типа map над
контейнером другого коллектора. Еще ему нужно сказать, в какой
коллекции сохранять результаты, это можно сделать с помощью кол-
лектора toList. На всем пути сплошные коллекторы!

Как и операция map, коллектор получает на входе реализацию ин-
терфейса Function. После рефакторинга с использованием второго
коллектора получается код, показанный в примере 5.16.

Пример 5.16 � Применение коллекторов для нахождения названий
альбомов, в записи которых принимал участие исполнитель
public Map<Artist, List<String>> nameOfAlbums(Stream<Album> albums) {
 return albums.collect(groupingBy(Album::getMainMusician,
 mapping(Album::getName, toList())));
}

В обоих случаях мы использовали второй коллектор для обработ-
ки части конечного результата. Такие коллекторы называются под-
чиненными (downstream). Если коллектор – это рецепт построения
конечного значения, то подчиненный коллектор – рецепт построения
части этого значения, которая затем используется главным коллек-
тором. Возможность такой композиции коллекторов превращает их
в еще более мощный компонент потоковой библиотеки.

Функции, специализированные для примитивных типов, напри-
мер averagingInt или summarizingLong , на самом деле не дают ничего
нового, по сравнению с вызовом метода самого специализированного
потока. А истинное их предназначение – использоваться в качестве
подчиненных коллекторов.

Рефакторинг и пользовательские коллекторы
 Встроенные в Java коллекторы отлично подходят для выполнения ти-
пичных составных операций с потоками, но, вообще говоря, механизм
коллекторов весьма общий. В тех, что входят в состав JDK, нет ниче-
го сверхъестественного, написать собственный коллектор совсем не-
трудно. Именно этим мы сейчас и займемся.

� 87

Вы, наверное, помните, что, рассматривая пример со строками, мы
пришли к выводу, что запрограммировать его на Java 7 можно, хотя
и не слишком изящно. Давайте постепенно переработаем этот код
в коллектор, конкатенирующий строки. Использовать данный код
в реальных программах нет нужды – в JDK имеется отлично рабо-
тающий коллектор joining, однако это станет поучительным упраж-
нением, в ходе которого мы узнаем, как устроены пользовательские
коллекторы и как подходить к рефакторингу унаследованного кода
при переходе на Java 8.

В примере 5.17 повторен код конкатенации строк, написанный для
Java 7.

Пример 5.17 � Использование цикла for и класса StringBuilder для
форматирования списка имен исполнителей
StringBuilder builder = new StringBuilder("[");
for (Artist artist : artists) {
 if (builder.length() > 1)
 builder.append(", ");

 String name = artist.getName();
 builder.append(name);
}
builder.append("]");
String result = builder.toString();

Очевидно, что мы можем воспользоваться операцией map для пре-
образования потока исполнителей в поток имен (строк). В приме-
ре 5.18 показано, как выглядит этот код после перехода на потоки
и map.

Пример 5.18 � Использование forEach и класса StringBuilder для
форматирования списка имен исполнителей
StringBuilder builder = new StringBuilder("[");
artists.stream()
 .map(Artist::getName)
 .forEach(name -> {
 if (builder.length() > 1)
 builder.append(", ");

 builder.append(name);
 });
builder.append("]");
String result = builder.toString();

Уже немного лучше, потому что, видя отображение на имена, мы
быстрее понимаем, что же здесь строится. Но, к сожалению, остается

Знакомство с интерфейсом Collector

88 � Глава 5. Еще о коллекциях и коллекторах

еще большой блок forEach, который не отвечает нашей цели: написать
понятный с первого взгляда код путем композиции высокоуровневых
операций.

Оставим ненадолго поставленную задачу создания пользователь-
ского коллектора и подумаем, какие операции над потоками уже есть
в нашем распоряжении. Ближе всего к построению нужной нам стро-
ки, пожалуй, операция reduce. Включив ее в пример 5.18, мы получим
код, показанный в примере 5.19.

Пример 5.19 � Использование reduce и класса StringBuilder для фор-
матирования списка имен исполнителей
StringBuilder reduced =
 artists.stream()
 .map(Artist::getName)
 .reduce(new StringBuilder(), (builder, name) -> {
 if (builder.length() > 0)
 builder.append(", ");

 builder.append(name);
 return builder;
 }, (left, right) -> left.append(right));

reduced.insert(0, "[");
reduced.append("]");
String result = reduced.toString();

Я надеялся, что этот шаг рефакторинга сделает код яснее. Увы, по-
хоже, он ничуть не лучше предыдущего. Но все же посмотрим, что
здесь происходит. Вызовы stream и map остались такими же, как и
раньше. Операция reduce строит строку имен исполнителей, разделяя
их запятыми. Мы начинаем с пустого объекта StringBuilder – началь-
ного значения reduce. Следующее далее лямбда-выражение добавляет
в построитель имя. Третий аргумент reduce – лямбда-выражение, ко-
торое принимает два экземпляра StringBuilder и объединяет их. По-
следний шаг – добавить ограничители в начало и в конец.

На следующем шаге рефакторинга я попытаюсь оставить редук-
цию, но убрать неразбериху, то есть абстрагировать детали, скрыв их
в классе StringCombiner. В примере 5.20 показано, что получилось.

Пример 5.20 � Использование reduce и класса StringCombiner для
форматирования списка имен исполнителей
StringCombiner combined =
 artists.stream()
 .map(Artist::getName)

� 89

 .reduce(new StringCombiner(", ", "[", "]"),
 StringCombiner::add,
 StringCombiner::merge);

String result = combined.toString();

Хотя выглядит этот код совсем не так, как предыдущий, под ка-
потом он делает ровно то же самое. Мы используем reduce, чтобы
добавить имена и разделители в StringBuilder. Но теперь логика до-
бавления элементов делегирована методу StringCombiner.add, а логи-
ка объединения двух разных комбинаторов – методу StringCombiner.
merge. Посмотрим, как выглядит код этих методов. Начнем с метода
add (пример 5.21).

Пример 5.21 � Метод add объекта StringCombiner возвращает этот
же объект, в который добавлен новый элемент
public StringCombiner add(String element) {
 if (areAtStart()) {
 builder.append(pre
 x);
 } else {
 builder.append(delim);
 }
 builder.append(element);
 return this;
}

Метод add делегирует содержательную работу экземпляру String-
Builder. Если данная операция комбинирования первая, то мы добав-
ляем начальный ограничитель, иначе – разделитель между элемента-
ми. После этого добавляется сам элемент. Мы возвращаем сам объект
StringCombiner, потому что он проталкивается по всей цепочке редук-
ции. Показанный в примере 5.22 код объединения делегирует свою
работу экземпляру StringBuilder.

Пример 5.22 � Метод merge объекта StringCombiner объединяет
результаты двух комбинаторов StringCombiner
public StringCombiner merge(StringCombiner other) {
 builder.append(other.builder);
 return this;
}

Мы почти закончили рефакторинг редукции, осталась всего одна
мелочь. Хочется вставить в конец цепочки вызовов обращение к ме-
тоду toString, чтобы весь код сводился к единственной цепочке. Для
этого достаточно просто добавить вызов toString после reduce, под-
готовив код к применению API коллекторов.

Знакомство с интерфейсом Collector

90 � Глава 5. Еще о коллекциях и коллекторах

Пример 5.23 � Использование reduce и делегирование работы
нашему классу StringCombiner
String result =
 artists.stream()
 .map(Artist::getName)
 .reduce(new StringCombiner(", ", "[", "]"),
 StringCombiner::add,
 StringCombiner::merge)
 .toString();

Теперь код выглядит более-менее пристойно, но его крайне труд-
но будет использовать повторно, если аналогичное комбинирование
понадобится в другом месте. Поэтому мы заменим операцию reduce
коллектором, который можно будет использовать где угодно. Я назо-
ву этот коллектор StringCollector. Результат очередного шага рефак-
торинга показан в примере 5.24.

Пример 5.24 � Конкатенация строк с помощью класса StringCollector
String result =
 artists.stream()
 .map(Artist::getName)
 .collect(new StringCollector(", ", "[", "]"));

Полностью отдав задачу конкатенации строк на откуп специально-
му коллектору, наш код может ничего не знать о внутреннем устрой-
стве StringCollector. Это просто еще один коллектор – такой же, как
коллекторы, включенные в базовую библиотеку.

Начнем с реализации интерфейса Collector (пример 5.25). Этот ин-
терфейс универсальный, поэтому нужно решить, какие типы будут
его аргументами:

 � тип собираемых коллектором элементов – String;
 � тип аккумулятора – StringCombiner, мы его уже рассмотрели;
 � тип результата – тоже String.

Пример 5.25 � Как определяется коллектор строк
public class StringCollector implements
 Collector<String, StringCombiner, String> {

Коллектор состоит из четырех компонентов. Первый – поставщик
supplier, то есть фабрика, изготавливающая контейнер, в данном слу-
чае StringCombiner. Аналогом может служить первый аргумент опера-
ции reduce, содержащий начальное значение (см. пример 5.26).

Пример 5.26 � Метод supplier – фабрика по изготовлению контейнеров
public Supplier<StringCombiner> supplier() {
 return () -> new StringCombiner(delim, pre
 x, suf
 x);
}

� 91

Будем изображать исполнение кода в форме диаграмм, чтобы на-
глядно видеть, как все увязывается вместе. Поскольку коллекторы
могут собирать данные параллельно, мы покажем операцию сборки,
в которой два контейнерных объекта (например, StringCombiner) ис-
пользуются параллельно.

Все четыре компонента коллектора – функции, поэтому будем
представлять их стрелками. Значения в потоке показаны кружоч-
ками, а конечное порождаемое значение – овалом. В начале опе-
рации сбора поставщик создает два новых контейнерных объекта
(рис. 5.3).

Рис. 5.3 � Поставщик

Аккумулятор accumulator нашего коллектора выполняет ту же ра-
боту, что второй аргумент reduce. Он принимает текущий элемент и
результат предыдущей операции, а возвращает новое значение. Эту
логику мы уже реализовали в методе add класса StringCombiner, поэто-
му просто сошлемся на него (пример 5.27).

Пример 5.27 � Метод accumulator – функция, добавляющая текущий
элемент в коллектор
public BiConsumer<StringCombiner, String> accumulator() {
 return StringCombiner::add;
}

Наш аккумулятор добавляет значения, получаемые из потока,
в объекты-контейнеры (рис. 5.4).

Метод combine – аналог третьего метода операции reduce. У нас
должна быть возможность объединить два контейнера. Поскольку и
это уже было сделано на предыдущем шаге рефакторинга, мы можем
просто воспользоваться методом StringCombiner.merge (пример 5.28).

Поставщик

Поток Поток

Контейнер Контейнер

Знакомство с интерфейсом Collector

92 � Глава 5. Еще о коллекциях и коллекторах

Пример 5.28 � Комбинатор объединяет два контейнера
public BinaryOperator<StringCombiner> combiner() {
 return StringCombiner::merge;
}

Во время операции сбора контейнерные объекты объединяются
попарно с помощью определенного нами метода combiner, пока в кон-
це не останется только один контейнер (рис. 5.5).

Рис. 5.4 � Аккумулятор

Аккумулятор Аккумулятор
Поток

Контейнер Контейнер

Рис. 5.5 � Комбинатор

КомбинаторКонтейнер Контейнер

Контейнер

Вы, наверное, помните, что на последнем шаре рефакторинга – до
того как мы перешли к коллекторам – мы поместили метод toString
в конец цепочки вызовов. Тем самым мы преобразовали объект
StringCombiner в строку, к чему, собственно, и стремились (рис. 5.6).

Метод коллектора
 nisher служит той же цели. Мы уже сложили
поток значений в изменяемый контейнер, но это еще не конечное зна-
чение, которое нам нужно. Теперь один раз вызывается метод
 nisher,
чтобы совершить окончательное преобразование. Особенно это по-
лезно, если требуется создать неизменяемое конечное значение, на-
пример типа String, а контейнер является изменяемым.

� 93

Чтобы реализовать завершитель для этой операции, мы просто де-
легируем работу уже написанному методу toString (пример 5.29).

Пример 5.29 � Метод finisher порождает конечное значение опера-
ции сбора
public Function<StringCombiner, String>
 nisher() {
 return StringCombiner::toString;
}

Мы создаем конечное значение из единственного оставшегося кон-
тейнера.

У коллекторов есть один аспект, который я пока не описал: ха-
рактеристики. Характеристика – это множество Set объектов, опи-
сывающих коллектор, зная которые, библиотека может выполнить
некоторые оптимизации. Определяется она с помощью метода cha-
rac teristics.

Сейчас имеет смысл вспомнить, что этот код написан только в пе-
дагогических целях и немного отличается от внутренней реализации
коллектора joining. Кроме того, класс StringCombiner тоже выглядит
вполне полезным. Но не волнуйтесь – вам писать его не придется.
В Java 8 уже имеется класс java.util.StringJoiner, выполняющий по-
хожие действия и обладающий аналогичным API.

В этом упражнении я хотел не только показать, как работают поль-
зовательские коллекторы, но и написать собственный коллектор.
Это бывает полезно, когда имеется предметный класс, экземпляр
которого строится в процессе некоторой операции над элементами
коллекции, а ни один стандартный коллектор для такого построения
не подходит.

В нашем коллекторе StringCollector контейнер для сбора значений
отличался от конечного значения (объекта String). Так часто бывает,
когда в результате сбора требуется построить неизменяемое значе-

Рис. 5.6 � Завершитель

Контейнер

Завершитель Конечное
значение

Знакомство с интерфейсом Collector

94 � Глава 5. Еще о коллекциях и коллекторах

ние, поскольку иначе на каждом шаге операции сбора пришлось бы
создавать новое значение.

Но вполне возможно, что конечное желаемое значение совпадает
с контейнером, в который собираются элементы коллекции. Именно
так происходит, когда конечное значение само является коллекцией,
как в случае коллектора toList.

В таком случае методу
 nisher ничего не нужно делать с контейнер-
ным объектом. Точнее, можно сказать, что метод
 nisher – тождест-
венная функция: он возвращает значение, полученное в качестве
аргумента. Если это так, то коллектор обладает характеристикой IDEN-
TITY_FINISH, о чем следует объявить с помощью метода charac te ristics.

Редукция как коллектор
 Как вы только что видели, написать пользовательский коллектор не-
трудно, но, подумывая о том, чтобы заняться этим ради построения
предметного класса из коллекции, полезно рассмотреть альтернати-
вы. Самое очевидное – построить один или несколько объектов кол-
лекций и передать их конструктору предметного класса. Это действи-
тельно просто и годится, если предметный класс – составной объект,
содержащий несколько коллекций.

Но, конечно, если предметный класс – не просто композиция кол-
лекций, а должен выполнять какие-то вычисления с имеющимися
данными, то такой способ – не выход. Впрочем, даже в этой ситуации
без разработки собственного коллектора можно обойтись. Существу-
ет коллектор reducing, предоставляющий обобщенную реализацию
операции редукции потоков. В примере 5.30 показано, как можно
было бы записать рассмотренную выше обработку строк с помощью
этого коллектора.

Пример 5.30 � Редукция – удобный способ создания пользователь-
ских коллекторов
String result =
 artists.stream()
 .map(Artist::getName)
 .collect(Collectors.reducing(
 new StringCombiner(", ", "[", "]"),
 name -> new StringCombiner(", ", "[", "]").add(name),
 StringCombiner::merge))
 .toString();

Это очень напоминает основанную на методе reduce реализацию,
показанную в примере 5.20, что и неудивительно, если принять во

� 95

внимание название. Основное отличие – второй аргумент метода
Collectors.reducing; мы создаем отдельный StringCombiner для каждо-
го элемента в потоке. Если это вызывает у вас шок или отвращение,
то вы совершенно правы! Такой способ чудовищно неэффективен,
потому-то я и предпочитаю разрабатывать пользовательские коллек-
торы.

Усовершенствование интерфейса
коллекций
 Введение в язык лямбда-выражений дало возможность реализовать
и новые методы коллекций. Познакомимся с некоторыми полезными
изменениями в классе Map.

При построении любого объекта Map есть общее требование – вы-
числить значение для данного ключа. Классический пример – реа-
лизация кэша. Традиционная идиома – попытаться найти значение
в Map, а если оно отсутствует, то создать.

Допустим, что кэш определен как Map<String, Artist> artistCache,
а поиск исполнителей производится с помощью накладного обра-
щения к базе данных. Тогда мы могли бы написать код, показанный
в примере 5.31.

Пример 5.31 � Кэширование значения с помощью явной проверки
на null

public Artist getArtist(String name) {
 Artist artist = artistCache.get(name);
 if (artist == null) {
 artist = readArtistFromDB(name);
 artistCache.put(name, artist);
 }
 return artist;
}

В Java 8 появился новый метод computeIfAbsent, который принима-
ет лямбда-выражение, вычисляющее новое значение, если оно отсут-
ствует. Таким образом, этот пример можно переписать следующим
образом.

Пример 5.32 � Кэширование значения с помощью computeIfAbsent

public Artist getArtist(String name) {
 return artistCache.computeIfAbsent(name, this::readArtistFromDB);
}

Усовершенствование интерфейса коллекций

96 � Глава 5. Еще о коллекциях и коллекторах

Иногда бывает нужен вариант этого кода, который не выполняет
вычисление, только если значение отсутствует; в таких случаях по-
лезны новые методы compute и computeIfPresent в интерфейсе Map.

Бывает, что нужно обойти коллекцию Map. Исторически для этого
использовался метод values, возвращающий коллекцию Set значе-
ний, которая и обходилась. Получающийся код читать было трудно.
В примере 5.33 показано, как мы выше в этой главе создавали объект
Map, сопоставляющий каждому исполнителю количество альбомов,
в записи которых он принимал участие.

Пример 5.33 � Некрасивый способ обхода всех элементов Map
Map<Artist, Integer> countOfAlbums = new HashMap<>();
for(Map.Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
 Artist artist = entry.getKey();
 List<Album> albums = entry.getValue();
 countOfAlbums.put(artist, albums.size());
}

По счастью, появился новый метод forEach, который принимает
объект типа BiConsumer (два элемента на входе, ничего на выходе) и
порождает понятный читателю код, основанный на внутреннем ите-
рировании (см. выше раздел «От внешнего итерирования к внутрен-
нему»). Эквивалентный код показан в примере 5.34.

Пример 5.34 � Использование внутреннего итерирования для обхо-
да всех элементов Map
Map<Artist, Integer> countOfAlbums = new HashMap<>();
albumsByArtist.forEach((artist, albums) -> {
 countOfAlbums.put(artist, albums.size());
});

Основные моменты
 � Ссылки на методы – это упрощенная синтаксическая нотация

следующего вида: ClassName::methodName.
 � Коллекторы позволяют вычислять конечные результаты обработ-

ки потоков и являются изменяемым аналогом метода reduce.
 � В Java 8 имеются готовые реализации коллекторов, порождаю-

щие различные типы коллекций, а также механизм для построе-
ния пользовательских коллекторов.

� 97

Упражнения
1. Ссылки на методы. Вернитесь к главе 3 и попробуйте перепи-

сать следующие примеры из нее с помощью ссылок на методы.
a. Перевод в верхний регистр.
b. Реализация count с помощью reduce.
c. Конкатенация списков на основе � atMap.

2. Коллекторы.
a. Найдите исполнителя с самым длинным именем. В решении

воспользуйтесь коллектором и функцией высшего порядка
reduce, описанной в главе 3. Сравните обе реализации: какую
проще писать, а какую – читать? При следующих исходных
данных должно быть возвращено имя «Stuart Sutcliffe»:

Stream<String> names = Stream.of("John Lennon", "Paul McCartney",
"George Harrison", "Ringo Starr", "Pete Best", "Stuart Sutcliffe");

b. Пусть дан поток, элементы которого – слова. Посчитайте,
сколько раз встречается каждое слово. При следующих ис-
ходных данных должен быть возвращен такой объект Map:
[John � 3, Paul � 2, George � 1]:

Stream<String> names = Stream.of("John", "Paul", "George", "John",
"Paul", "John");

c. Реализуйте метод Collectors.groupingBy в виде пользователь-
ского коллектора. Предоставлять подчиненный коллектор
необязательно, достаточно реализовать простейший вари-
ант. Заглядывать в исходный код JDK нельзя! Подсказка:
имеет смысл начать с public class GroupingBy<T, K> implements
Collector<T, Map<K, List<T>>, Map<K, List<T>>>. Это трудное
упражнение, поэтому займитесь им в последнюю очередь.

3. Усовершенствования Map.
Найдите эффективный способ вычисления последовательно-
сти чисел Фибоначчи, в котором используется только метод
computeIfAbsent интерфейса Map. Под «эффективностью» я по-
нимаю, что ни одно число Фибоначчи не вычисляется дважды.

Упражнения

Глава 6
Параллелизм

по данным
 Выше я уже неоднократно отмечал, что в Java 8 писать параллельный
код стало намного проще. Связано это с тем, что с помощью лямбда-
выражений в сочетании с потоковой библиотекой (см. главу 3) мы
можем сказать, что должна делать программа, не уточняя, как она это
делает: последовательно или параллельно. Я знаю, что это очень по-
ходит на то, как вы писали код на Java в течение многих лет, но есть
большая разница между описанием того, что требуется вычислить, и
того, как это нужно вычислить.

Переход от внешнего итерирования к внутреннему (также описан
в главе 3) стал важной вехой на пути к созданию простого и чистого
кода, но у этой идеи есть и еще одно существенное достоинство: те-
перь нам не нужно управлять итерированием вручную. Итерирова-
ние необязательно выполняется последовательно. Мы говорим, что
хотим сделать, а затем, изменив вызов всего одного метода, просим
библиотеку самостоятельно определить, как добиться этого резуль-
тата.

Вносимые в код изменения настолько малозаметны, что в боль-
шей части этой главы мы не будем говорить о том, как изменяется
программа. Вместо этого я объясню, зачем может понадобиться рас-
параллеливать код и как при этом повышается производительность.
Отмечу также, что эта глава не является общим руководством по про-
изводительности в Java; мы лишь рассмотрим простые способы улуч-
шить ее, которые дает Java 8.

Параллелизм и конкурентность
 Просматривая оглавление книги, вы, наверное, обратили внимание,
что в названии этой главы встречается слово «параллелизм», а в на-
звании главы 9 – слово «конкурентность». Не подумайте, что я повто-

� 99

рил один и тот же материал, чтобы увеличить объем книги и заставить
вас выложить побольше денег! Параллелизм и конкурентность – раз-
ные вещи, предназначенные для достижения разных целей.

Конкурентность означает, что выполнение двух задач перекры-
вается во времени. В случае параллелизма выполнение двух задач
реально происходит в одно и то же время, как, например, на много-
ядерном процессоре. Если программа запускает две задачи, которые
попеременно получают небольшие кванты времени на одноядерном
процессоре, то имеет место конкурентность, но не параллелизм. Раз-
личие показано на рис. 6.1.

Рис. 6.1 � Сравнение
конкурентности и параллелизма

Конкурентные, но не параллельные

Ядро 1

Ядро 1

Ядро 2

Ядро 2

Параллельные и конкурентные

Задача 1

Задача 1

Задача 2

Задача 2

Цель параллелизма – уменьшить время работы конкретной задачи,
разбив ее на меньшие части, которые работают параллельно. Это не
означает, что общий объем работы уменьшается, по сравнению с по-
следовательным выполнением той же задачи, – просто один и тот же
воз тянут больше лошадей и справляются с этим быстрее. На самом
деле обычно для распараллеливания задачи процессору приходится
делать даже больше работы, чем при последовательном выполнении.

В этой главе мы рассмотрим один очень частный случай паралле-
лизма – параллелизм по данным. Распараллеливание при этом дости-

Параллелизм и конкурентность

100 � Глава 6. Параллелизм по данным

гается за счет того, что рабочий набор данных разбивается на пор-
ции, и каждой порции назначается отдельный обрабатывающий блок.
Продолжая аналогию с возом и лошадьми, можно сказать, что мы пе-
реложили половину груза на другой воз, в который запрягли другую
лошадь, и обе лошади движутся к цели одним и тем же маршрутом.

Параллелизм по данным оказывается прекрасным решением,
когда одну и ту же операцию требуется выполнить над различными
данными. Задачу необходимо подвергнуть декомпозиции, так чтобы
порции данных можно было обрабатывать одновременно, а в конце
объединить частичные результаты, полученные для каждой порции.

Параллелизму по данным часто противопоставляют параллелизм
на уровне задач, когда каждый поток выполнения решает свою задачу.
Пожалуй, самым известным примером параллелизма на уровне задач
является контейнер приложений в Java EE. Различные потоки могут
не только работать над задачами разных пользователей, но и выпол-
нять совершенно разные задачи, например один поток занимается
аутентификацией пользователя, а другой добавляет товар в корзину.

Почему параллелизм важен?
 Исторически мы привыкли полагаться на возрастание тактовой час-
тоты процессоров. Тактовая частота процессора Intel 8086, выпущен-
ного в 1979 году, составляла всего 5 МГц, а у процессора Pentium, по-
явившегося в 1993 году, достигла уже 60 МГц. Поступательный рост
тактовой частоты продолжался и в начале 2000-х годов.

Но в последнее десятилетие основные производители процессоров
неуклонно двигаются в сторону разработки процессоров со все боль-
шим и большим числом ядер. Сейчас не редкость серверы с 32 или
64 ядрами, распределенными по нескольким центральным процессо-
рам. И не похоже, что эта тенденция в обозримом будущем сойдет на
нет.

Это оказывает влияние и на проектирование программного обеспе-
чения. Мы больше не можем считать, что масштабировать программу
удастся за счет перехода на более быстрый процессор, теперь прихо-
дится применять в своих интересах особенности архитектуры совре-
менных процессоров. И сделать это можно только путем написания
параллельных программ.

Полагаю, вы уже знакомы со следующим положением. И немуд-
рено – ведь оно уже много лет популяризуется многочисленными
докладчиками на конференциях, авторами книг и консультантами.

� 101

Именно следствия закона Амдала и заставили меня всерьез отнестись
к важности параллелизма.

 Закон Амдала – это простое правило, позволяющее предсказать
теоретически максимальное ускорение программы при запуске на
машине с несколькими ядрами. Если взять строго последовательную
программу и распараллелить только ее половину, то вне зависимости
от количества ядер невозможно будет добиться ускорения более чем
в 2 раза. Даже при большом числе ядер – а оно уже сейчас достаточно
велико – время выполнения определяется последовательной частью
программы.

Начав размышлять о производительности в таких терминах, мы
быстро приходим к выводу, что для оптимизации любой счетной за-
дачи, то есть связанной преимущественно с вычислениями, необхо-
димо максимально эффективно использовать имеющееся оборудо-
вание. Разумеется, не все задачи счетные, но в этой главе мы будем
иметь дело с таковыми.

Параллельные потоковые операции
 Чтобы распараллелить операцию, реализованную с помощью пото-
ковой библиотеки, достаточно изменить вызов одного метода. Если
уже имеется объект Stream, то для превращения его в параллельный
нужно вызвать его метод parallel. Если объект Stream создается из
Collection, то для получения параллельного потока нужно создавать
его с по мощью метода parallelStream .

Для определенности рассмотрим простой пример. В примере 6.1
вычисляется полная длительность звучания последовательности
альбомов. Каждый альбом преобразуется в набор составляющих его
произведений, после чего длительности произведений суммируются.

Пример 6.1 � Последовательное суммирование длительностей про-
изведений
public int serialArraySum() {
 return albums.stream()
 .� atMap(Album::getTracks)
 .mapToInt(Track::getLength)
 .sum();
}

Для распараллеливания мы вызываем метод parallelStream, как по-
казано в примере 6.2; больше ничего в программе не изменяется. Рас-
параллеливание просто работает.

Параллельные потоковые операции

102 � Глава 6. Параллелизм по данным

Пример 6.2 � Параллельное суммирование длительностей
произведений
public int parallelArraySum() {
 return albums.parallelStream()
 .� atMap(Album::getTracks)
 .mapToInt(Track::getLength)
 .sum();
}

Я понимаю, что после знакомства с этим кодом возникает желание
немедленно заменить повсюду вызов stream на вызов parallelStream –
ведь это так просто! Но попридержите коней! Понятно, что для вы-
жимания максимума из оборудования важно с толком пользоваться
параллелизмом, однако потоковая библиотека дает нам лишь парал-
лелизм по данным.

Мы должны спросить себя, что быстрее: выполнить потоковый
код последовательно или параллельно, а это отнюдь не простой во-
прос. Предыдущая программа вычисления полной длительности
звучания произведений из всех альбомов может работать быстрее
в параллельном или последовательном варианте в зависимости от
обстоятельств.

При замере времени работы примеров 6.1 и 6.2 на 4-ядерной ма-
шине при 10 альбомах последовательная версия оказывается в 8 раз
быстрее. При 100 альбомах обе версии работают одинаково быстро,
а при 10 000 альбомов параллельная версия опережает последова-
тельную в 2,5 раза.

 Все результаты измерений в этой главе приводятся только для сведения. На
вашей машине они могут оказаться совершенно другими.

Размер входного потока – не единственный фактор, определяю-
щий, даст ли распараллеливание ускорение. Результаты могут также
зависеть от способа написания кода и количества доступных ядер.
Мы еще вернемся к этой теме в разделе «Производительность» ниже,
но сначала рассмотрим более сложный пример.

Моделирование
 Параллельная потоковая библиотека особенно хороша для задач,
в которых над большим количеством данных производятся простые
операции, например для моделирования. В этом разделе мы построим
простую модель бросания костей, но те же идеи и подходы примени-
мы к более крупным практическим задачам.

� 103

Рассматриваемый здесь способ моделирования называется мето-
дом Монте-Карло . Его смысл заключается в многократном повторе-
нии одного и того же действия со случайными входными данными.
Результаты отдельных прогонов сохраняются и агрегируются для по-
лучения полного решения. Метод Монте-Карло находит применение
в научных и технических расчетах, в построении финансовых моделей.

Если бросить «честную» кость два раза и сложить очки, выпавшие
на верхней грани, то получится число от 2 до 12. Минимум равен 2,
потому что наименьшее количество очков на одной кости равно 1,
а мы бросаем кость дважды. Максимум равен 12, потому что наиболь-
шее количество очков на одной кости равно 6. Мы хотим для каждого
числа от 2 до 12 вычислить, какова вероятность выпадения именно
такой суммы очков.

Один из подходов к решению этой задачи – перечислить все ком-
бинации очков, которые в сумме дают каждое значение. Например,
получить 2 можно только одним способом: два раза подряд выкинуть
1. Всего существует 36 различных комбинаций, поэтому вероятность
два раза выкинуть 1 равна 1/36.

Другой способ – смоделировать бросание двух костей с помощью
случайных чисел от 1 до 6, затем сложить количество выпадений
каждой суммы и разделить результат на количество бросаний. Это и
есть простое применение метода Монте-Карло. Чем больше раз мы
бросаем кость, тем точнее получается приближение, поэтому число
бросаний должно быть велико.

В примере 6.3 показано, как можно реализовать метод Монте-
Карло с помощью потоковой библиотеки. Здесь N – число прогонов
модели, а функция IntStream в строке � применяется для создания
потока размера N. В строке � мы вызываем метод parallel, чтобы ис-
пользовать параллельную версию потоковой библиотеки. Функция
twoDiceThrows моделирует два бросания кости и возвращает сумму
выпавших очков. Метод mapToObj в строке � служит для применения
этой функции к потоку данных.

Пример 6.3 � Параллельное моделирование бросания кости мето-
дом Монте-Карло
public Map<Integer, Double> parallelDiceRolls() {
 double fraction = 1.0 / N;
 return IntStream.range(0, N) �
 .parallel() �
 .mapToObj(twoDiceThrows()) �
 .collect(groupingBy(side -> side, �
 summingDouble(n -> fraction))); �
}

Моделирование

104 � Глава 6. Параллелизм по данным

В строке � мы имеем поток Stream всех результатов моделирова-
ния, которые необходимо объединить. Чтобы агрегировать все оди-
наковые результаты, мы воспользовались коллектором groupingBy,
представленным в предыдущей главе. Я говорил, что наша цель – под-
считать, сколько раз встретилось каждое число, и разделить эту вели-
чину на N. Но при работе с потоковой библиотекой проще отобразить
каждое число на 1/N и просуммировать – результат получится тот же
самый. Делается это в строке � с помощью функции summingDouble.
Возвращаемый в конце объект Map<Integer, Double> сопоставляет каж-
дой сумме выпавших граней ее вероятность.

Вынужден признать, что этот код не вполне тривиален, но реали-
зация параллельного моделирования методом Монте-Карло в пяти
строчках – впечатляющее достижение. А поскольку приближение тем
точнее, чем больше количество прогонов модели, то у нас есть стимул
это количество увеличить. Данная реализация – удачный пример рас-
параллеливания, потому что позволяет получить заметное ускорение.

Не стану вдаваться в детали реализации, но для сравнения в при-
мере 6.4 показано, как выглядит тот же алгоритм параллельного мо-
делирования методом Монте-Карло, написанный вручную. Большая
часть кода связана с запуском, планированием и ожиданием заверше-
ния задач из пула потоков. Все эти проблемы остаются за кадром при
использовании параллельной потоковой библиотеки.

Пример 6.4 � Моделирование бросания костей с помощью явной
реализации потоков
public class ManualDiceRolls {

 private static
 nal int N = 100000000;

 private
 nal double fraction;
 private
 nal Map<Integer, Double> results;
 private
 nal int numberOfThreads;
 private
 nal ExecutorService executor;
 private
 nal int workPerThread;

 public static void main(String[] args) {
 ManualDiceRolls roles = new ManualDiceRolls();
 roles.simulateDiceRoles();
 }

 public ManualDiceRolls() {
 fraction = 1.0 / N;
 results = new ConcurrentHashMap<>();
 numberOfThreads = Runtime.getRuntime().availableProcessors();

� 105

 executor = Executors.newFixedThreadPool(numberOfThreads);
 workPerThread = N / numberOfThreads;
 }

 public void simulateDiceRoles() {
 List<Future<?>> futures = submitJobs();
 awaitCompletion(futures);
 printResults();
 }

 private void printResults() {
 results.entrySet()
 .forEach(System.out::println);
 }

 private List<Future<?>> submitJobs() {
 List<Future<?>> futures = new ArrayList<>();
 for (int i = 0; i < numberOfThreads; i++) {
 futures.add(executor.submit(makeJob()));
 }
 return futures;
 }

 private Runnable makeJob() {
 return () -> {
 ThreadLocalRandom random = ThreadLocalRandom.current();
 for (int i = 0; i < workPerThread; i++) {
 int entry = twoDiceThrows(random);
 accumulateResult(entry);
 }
 };
 }

 private void accumulateResult(int entry) {
 results.compute(entry, (key, previous) ->
 previous == null ? fraction
 : previous + fraction
);
 }

 private int twoDiceThrows(ThreadLocalRandom random) {
 int
 rstThrow = random.nextInt(1, 7);
 int secondThrow = random.nextInt(1, 7);
 return
 rstThrow + secondThrow;
 }

 private void awaitCompletion(List<Future<?>> futures) {
 futures.forEach((future) -> {
 try {
 future.get();

Моделирование

106 � Глава 6. Параллелизм по данным

 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 });
 executor.shutdown();
 }
}

Подводные камни
 Сказав выше, что параллельные потоки «просто работают», я немного
слукавил. Существующий код можно выполнить параллельно после
минимальной модификации, только если он написан идиоматично.
Для оптимального использования параллельной потоковой библио-
теки нужно соблюдать несколько правил и ограничений.

 Ранее при вызове reduce начальный элемент мог быть произволь-
ным значением, однако чтобы эта операция правильно работала в па-
раллельном режиме, этот элемент должен быть нейтральным значе-
нием комбинирующей функции . Нейтральное значение обладает тем
свойством, что при редукции с любым другим элементом оставляет
его без изменения. Например, если мы с помощью операции reduce
суммируем элементы, то комбинирующая функция имеет вид (acc,
element) -> acc + element. Начальным элементом должен быть 0, потому
что сложение произвольного числа x с нулем дает x.

С операцией reduce связано еще одно ограничение: комбинирую-
щая функция должна быть ассоциативной. Это означает, что резуль-
тат не зависит от порядка применения комбинирующей функции, при
условии что сама последовательность значений остается неизменной.
Запутались? Не страшно! Взгляните на пример 6.5, где показано, что
применение операций + и * к последовательности значений дает один
и тот же результат вне зависимости от порядка.

Пример 6.5 � Операции + и * ассоциативны
(4 + 2) + 1 = 4 + (2 + 1) = 7
(4 * 2) * 1 = 4 * (2 * 1) = 8

Следует избегать захвата блокировок. Потоковая библиотека сама
занимается синхронизацией доступа, поэтому блокировать структу-
ры данных нет необходимости. Попытка блокировки тех структур
данных, с которыми работает библиотека, например исходной кол-
лекции, скорее всего, приведет к неприятностям.

Выше я говорил, что существующий поток можно преобразовать
в параллельный путем вызова метода parallel. Если по ходу чтения

� 107

книги вы заглядываете также в справочник по API, то, наверное, за-
метили, что есть еще метод sequential . Не существует смешанного
режима вычисления потокового конвейера, он либо параллельный,
либо последовательный. Если в конвейере встречаются вызовы обо-
их методов parallel и sequential, действует последний установленный
режим.

Производительность
 Я уже мимоходом отмечал, что есть много факторов, определяющих,
какая версия потока – последовательная или параллельная – будет
работать быстрее; рассмотрим их более подробно. Понимая, что хоро-
шо, а что плохо, вы сможете принять обоснованное решение о том, как
и когда использовать параллельные потоки. Существует пять важных
факторов, от которых зависит производительность параллельных по-
токов.

 � Объем данных. Величина ускорения при параллельной обра-
ботке зависит от объема входных данных. С декомпозицией за-
дачи на исполняемые параллельно подзадачи и последующим
объединением результатов сопряжены накладные расходы. По-
этому делать это имеет смысл лишь в том случае, когда данных
достаточно, чтобы эти расходы амортизировались. Мы изучали
эту проблему в разделе «Параллельные потоковые операции»
выше.

 � Структура исходных данных. Любой конвейер операций обра-
батывает некоторый источник начальных данных, обычно кол-
лекцию. Ускорение, достигаемое за счет распараллеливания,
зависит от того, как источник разбит на несколько участков.

 � Упаковка. Значения примитивных типов обрабатываются
быст рее, чем упакованных.

 � Число ядер. В крайнем случае, когда имеется всего одно ядро,
распараллеливать операции не имеет смысла. Очевидно, что
чем больше доступно ядер, тем больше потенциальный вы-
игрыш от распараллеливания. На практике важно не общее
число процессорных ядер в машине, а количество ядер, доступ-
ных для использования во время выполнения. Поэтому на про-
изводительность влияют такие вещи, как число одновременно
исполняемых процессов и привязка потоков к ядрам (когда
определенные потоки должны выполняться строго на опреде-
ленных ядрах или процессорах).

Производительность

108 � Глава 6. Параллелизм по данным

 � Стоимость обработки элемента. Как и объем данных, этот
фактор является частью компромисса между выигрышем от
распараллеливания и накладными расходами на декомпози-
цию и объединение. Чем больше времени тратится на обра-
ботку каждого элемента потока, тем выше потенциальный вы-
игрыш от распараллеливания.

При использовании параллельной потоковой библиотеки полезно
понимать, как производятся декомпозиция задачи и объединение ре-
зультатов. Это позволит нам заглянуть под капот, не вникая в детали
реализации.

Рассмотрим декомпозицию и объединение на конкретном примере.
Код в примере 6.6 выполняет параллельное сложение целых чисел.

Пример 6.6 � Параллельное сложение целых чисел
private int addIntegers(List<Integer> values) {
 return values.parallelStream()
 .mapToInt(i -> i)
 .sum();
}

Под капотом параллельные потоки реализованы с помощью раз-
ветвления и соединения. На этапе разветвления задача рекурсивно
разбивается на части. Затем каждая часть обрабатывается параллель-
но. На стадии соединения частичные результаты объединяются.

На рис. 6.2 показано, как этот механизм мог бы быть применен
к примеру 6.6.

Рис. 6.2 � Реализация декомпозиции и объединения
с помощью разветвления и соединения

1 … N/4

mapToInt

sum sum

sum

Элементы 1 … N/2

Элементы 1 … N

N/2 … 3/4N

mapToInt

Элементы N/2 … N

N/4 … N/2

mapToInt

3/4N … N

mapToInt

Разветвление

Листовый
уровень

Соединение

� 109

Предположим, что потоковая библиотека разбивает всю работу на
части для параллельной обработки на четырехъядерной машине.

1. Производится декомпозиция источника данных на четыре пор-
ции.

2. В каждом потоке из примера 6.6 производятся вычисления
над элементами в одном из листьев. Вычисление сводится
к отобра жению Integer на int и суммированию четверти зна-
чений. В идеале хотелось бы как можно больше времени за-
ниматься вычислениями на листовом уровне, потому что при
этом выигрыш от распараллеливания максимален.

3. Результаты объединяются. В примере 6.6 для этого использует-
ся операция sum, но ее место могла бы занять reduce, collect или
еще какая-то финальная операция.

С учетом того, как производится декомпозиция задачи, понятно,
что природа источника исходных данных играет огромную роль. Ин-
туитивно очевидно, что чем проще разбить данные на две половины,
тем быстрее их можно будет обработать. Кроме того, желательно, что-
бы в каждой половине данных было поровну.

Типичные источники данных из базовой библиотеки можно от-
нести к трем основным группам по характеристикам производитель-
ности.

 � Хорошие. ArrayList , массив и конструктор IntStream.range . Все
эти источники поддерживают произвольную выборку, поэтому
их легко разбить на любые части.

 � Нормальные. HashSet и TreeSet . Произвести их декомпозицию,
сохранив сбалансированность, нелегко, но в большинстве слу-
чаев возможно.

 � Плохие. Некоторые структуры данных с трудом поддаются
разбиению, например на это может уйти время порядка O(N).
К таковым относится объект LinkedList , который вычислитель-
но сложно разбить пополам. Длина объектов Streams.iterate и
BufferedReader.lines изначально неизвестна, поэтому оценить,
в каком месте производить разбиение, довольно трудно.

От структуры исходных данных может зависеть очень многое. Если
взять крайний случай: 10 000 целых чисел, представленных в ви де
объектов ArrayList и LinkedList, – то в первом случае параллельное
суммирование займет в 10 раз меньше времени, чем во втором. Это не
значит, что для логики вашей программы характерны такие же пока-
затели производительности, но влияние подобного рода факторов на-
лицо. Кроме того, структуры типа LinkedList, плохо приспособ ленные

Производительность

110 � Глава 6. Параллелизм по данным

для декомпозиции, с гораздо большей вероятностью будут медленно
работать при распараллеливании.

В идеале, после того как библиотека произвела декомпозицию
задачи на меньшие подзадачи, каждая порция данных должна обра-
батываться в отдельном потоке, и эти потоки не должны ни взаимо-
действовать между собой, ни конкурировать. Увы, реальность часто
бывает далека от идеала!

Говоря об операциях в потоковом конвейере, применяемых к от-
дельным порциям данных, мы можем выделить два типа таковых:
 с состоянием и без состояния . У операций без состояния нет никаких
данных, которые нужно было бы сохранять на протяжении всей опе-
рации; у операций с состоянием такие данные есть, и их сохранение
влечет за собой определенные накладные расходы и ограничения.

Если удастся обойтись только операциями без состояния, то про-
изводительность параллельных вычислений будет выше. Примеры
операций без состояния: map,
 lter и � atMap; у операций sorted, distinct
и limit состояние есть.

 Тестируйте производительность своей программы. Приведенные в этом раз-
деле соображения подсказывают, на что следует обращать внимание, но ни-
что не заменит измерения и профилирование.

Параллельные операции с массивами
 В Java 8 имеется еще несколько не входящих в потоковую библио-
теку параллельных операций с массивами, в которых используются
лямбда-выражения. Как и операции из потоковой библиотеки, они
реализуют параллелизм по данным. Посмотрим, как с их помощью
решаются задачи, которые трудно решить с применением потоков.

Все эти операции находятся в служебном классе Arrays наря-
ду с прочей полезной функциональностью, относящейся к масси-
вам и появившейся в предыдущих версиях Java. Они перечислены
в табл. 6.1.

Таблица 6.1. Параллельные операции с массивами

Имя Операция

parallelPre
 x Вычисляет накопительный итог элементов массива с помощью
произвольной функции

parallelSetAll Обновляет элементы массива с помощью лямбда-выражения

parallelSort Параллельно сортирует элементы

� 111

Возможно, вам доводилось раньше писать код наподобие приведен-
ного в примере 6.7, где массив инициализируется в цикле for. В дан-
ном случае мы записываем в каждый элемент массива его индекс.

Пример 6.7 � Инициализация массива в цикле for
public static double[] imperativeInitilize(int size) {
 double[] values = new double[size];
 for(int i = 0; i < values.length;i++) {
 values[i] = i;
 }
 return values;
}

Эту задачу легко распараллелить, воспользовавшись методом
paral lel SetAll. Как это делается, показано в примере 6.8. Мы подаем
на вход инициализируемый массив и лямбда-выражение, которое вы-
числяет значение элемента по его индексу. В нашем случае то и другое
совпадает. Следует отметить, что все указанные методы модифициру-
ют сам переданный массив, а не создают новую копию.

Пример 6.8 � Инициализация массива с помощью параллельной
операции
public static double[] parallelInitialize(int size) {
 double[] values = new double[size];
 Arrays.parallelSetAll(values, i -> i);
 return values;
}

Операция parallelPre
 x гораздо полезнее при вычислении частич-
ных итогов последовательностей данных. Она изменяет массив, за-
меняя каждый элемент суммой этого элемента и предшествующих
ему. Слово сумма не нужно понимать буквально – это необязательно
операция сложения, годится любой BinaryOperator.

Пример операции, вычисляемой таким образом, – простое скользя-
щее среднее. В этом случае на временной ряд накладывается скользя-
щее окно и вычисляется среднее арифметическое элементов, оказав-
шихся внутри окна. Так, если дан ряд 0, 1, 2, 3, 4, 3.5, то в результате
вычисления простого скользящего среднего размера 3 получается ряд
1, 2, 3, 3.5. В примере 6.9 показано, как такое скользящее среднее вы-
числяется с помощью префиксного суммирования.

Пример 6.9 � Вычисление простого скользящего среднего
public static double[] simpleMovingAverage(double[] values, int n) {
 double[] sums = Arrays.copyOf(values, values.length); �
 Arrays.parallelPre
 x(sums, Double::sum); �

Параллельные операции с массивами

112 � Глава 6. Параллелизм по данным

 int start = n - 1;
 return IntStream.range(start, sums.length) �
 .mapToDouble(i -> {
 double pre
 x = i == start ? 0 : sums[i - n];
 return (sums[i] - pre
 x) / n; �
 })
 .toArray(); �
}

Код довольно сложный, поэтому рассмотрим его по частям. Пара-
метр n задает размер сдвигающегося окна, по которому мы вычисляем
скользящее среднее. В точке � мы создаем копию входных данных.
Поскольку префиксное суммирование – модифицирующая опера-
ция, то это необходимо сделать, чтобы не изменять исходных данных.

В точке � мы применяем префиксную операцию, чтобы вычислить
сумму значений. Теперь в массиве sums хранятся частичные суммы.
Например, если на вход был подан массив 0, 1, 2, 3, 4, 3.5, то в sums ока-
жутся значения 0.0, 1.0, 3.0, 6.0, 10.0, 13.5.

Имея частичные суммы, мы можем найти сумму по временному
окну, для чего нужно вычесть частичную сумму в начале этого окна.
Для получения среднего нужно разделить результат на n. Это вы-
числение можно проделать с помощью потоковой библиотеки, так
не упустим этот шанс! Необходимый нам поток, содержащий ин-
дексы нужных нам элементов, создается посредством вызова метода
Intstream.range.

В точке � мы вычитаем величину частичной суммы в начале окна
и выполняем деление, чтобы получить среднее. Отметим граничный
случай элемента с индексом n – 1, для которого нет никакой частич-
ной суммы, которую можно было бы вычесть. Наконец, мы преобра-
зуем Stream снова в массив.

Основные моменты
 � Параллелизм по данным подразумевает разбиение всей работы на

части, выполняемые одновременно на нескольких ядрах.
 � Если при написании программы используется потоковая библио-

тека, то для реализации параллелизма по данным следует вызвать
один из методов parallel или parallelStream.

 � Производительность определяется пятью основными факторами:
объем данных, структура исходных данных, являются ли данные
упакованными или примитивными, число доступных ядер и вре-
мя, затрачиваемое на обработку одного элемента.

� 113

Упражнения
1. В примере 6.10 последовательно суммируются квадраты эле-

ментов потока. Преобразуйте эту программу в параллельную
с помощью потоковой библиотеки.

Пример 6.10 � Последовательное суммирование квадратов
элементов списка
public static int sequentialSumOfSquares(IntStream range) {
 return range.map(x -> x * x)
 .sum();
}

2. В примере 6.11 все элементы списка перемножаются, а резуль-
тат умножается на 5. Последовательная версия этого кода рабо-
тает правильно, но при распараллеливании появляется ошиб-
ка. Преобразуйте эту программу в параллельную с помощью
потоковой библиотеки и исправьте ошибку.

Пример 6.11 � Неправильный способ перемножения всех
элементов списка и умножения результата на 5
public static int multiplyThrough(List<Integer> linkedListOfNumbers) {
 return linkedListOfNumbers.stream()
 .reduce(5, (acc, x) -> x * acc);
}

3. В примере 6.12 также вычисляется сумма квадратов элементов
списка. Попробуйте улучшить производительность этой про-
граммы, не жертвуя ее качеством. Я хотел бы, чтобы вы внесли
всего два простых изменения.

Пример 6.12 � Медленная реализация суммирования квадра-
тов элементов списка
public int slowSumOfSquares() {
 return linkedListOfNumbers.parallelStream()
 .map(x -> x * x)
 .reduce(0, (acc, x) -> acc + x);
}

 Не забывайте, что для повышения точности хронометража исследуемый код
должен прогоняться несколько раз. В примерах кода на сайте GitHub имеется
оснастка для эталонного тестирования, которой вы можете пользоваться.

Упражнения

Глава 7
Тестирование,

отладка и рефакторинг
Рост популярности таких методов, как рефакторинг , разработка через
тестирование (TDD) и непрерывная интеграция (CI) , означает, что
если мы намерены использовать лямбда-выражения в повседневном
программировании, то нужно понимать, как тестировать содержащий
их код.

В материалах по тестированию и отладке программ нет недостат-
ка, и я в этой главе не собираюсь повторять их. Если вам интересно
узнать , как правильно применять TDD на практике, горячо рекомен-
дую книги Kent Beck «Test-Driven Development»1 и Steve Freeman,
Nat Pryce «Growing Object-Oriented Software, Guided by Tests».

Я рассмотрю только приемы, относящиеся к использованию в про-
грамме лямбда-выражений, и расскажу, когда лучше воздержаться от
их (непосредственного) использования. Мы поговорим также о не-
которых специальных методах отладки программ, в которых интен-
сивно применяются лямбда-выражения и потоки.

Но сначала рассмотрим несколько примеров рефакторинга сущест-
вующего кода с целью использования лямбда-выражений. Я уже демон-
стрировал некоторые локальные операции рефакторинга, например
замену цикла for потоковой операцией. Теперь мы более пристально
изучим способы улучшения кода, не связанного с коллекциями.

Когда разумно перерабатывать код
с использованием лямбда-выражений
 Процесс рефакторинга кода с целью использования лямбда-выраже-
ний получил неблагозвучное название «точечная лямбдификация »

1 Кент Бек. Экстремальное программирование: разработка через тестирова-
ние. – СПб.: Питер, 2003.

� 115

(а практикующие его программисты называются «лямбдификато-
рами», или «ответственными разработчиками»). Именно это было
проделано с базовыми библиотеками Java при выпуске версии Java 8.
Принимая решение о внутренней структуре приложения, всегда сто-
ит подумать о том, какие методы его API раскрывать подобным об-
разом.

Размышляя над тем, какое место приложения или библиотеки под-
вергнуть лямбдификации, можно руководствоваться несколькими
эвристическими соображениями. Такое место можно рассматривать
как проявление какого-то антипаттерна или «запашок» в коде, кото-
рые точечная лямбдификация призвана устранить.

Инкапсуляция внутреннего состояния
В примере 7.1 повторен код протоколирования из главы 4. Как видите,
булево значение isDebugEnabled нужно только для того, чтобы прове-
рить его и в зависимости от результата вызвать метод объекта Logger.
Обнаружив, что программа в нескольких местах опрашивает некото-
рое свойство объекта, чтобы решить, нужно ли вызывать его метод, мы
можем включить соответствующий код в сам класс объекта.

Пример 7.1 � Использование свойства регистратора
isDebugEnabled, чтобы избежать лишних накладных расходов
Logger logger = new Logger();
if (logger.isDebugEnabled()) {
 logger.debug("Look at this: " + expensiveOperation());
}

 Протоколирование – типичный пример такой ситуации, в которой
поставленная цель исторически была трудно достижима, потому что
в разных местах требовалось разное поведение. В данном случае по-
ведение заключается в построении строки сообщения, которая зави-
сит от того, где происходит протоколирование и какая информация
записывается в журнал.

Справиться с этим антипаттерном легко – достаточно передать код
как данные. Вместо того чтобы опрашивать свойство объекта, а затем
вызывать его метод, мы можем передать лямбда-выражение, кото-
рое представляет требуемое поведение, путем вычисления значения.
Я повторно привожу такое решение в примере 7.2 – в качестве напо-
минания. Это лямбда-выражение вызывается, только если установ-
лен уровень протоколирования не выше отладочного, при этом логи-
ка проверки остается внутри объекта Logger.

Когда разумно перерабатывать код

116 � Глава 7. Тестирование, отладка и рефакторинг

Пример 7.2 � Упрощение кода протоколирования с помощью
лямбда-выражения
Logger logger = new Logger();
logger.debug(() -> "Look at this: " + expensiveOperation());

Протоколирование – это также пример использования лямбда-вы-
ражений для повышения объектной ориентированности кода. Одна из
ключевых концепций ООП – инкапсуляция внутреннего состоя ния,
каковым, в частности, является уровень протоколирования. Обычно
оно инкапсулировано не слишком хорошо, потому что раскрывается
через свойство isDebugEnabled. Но если воспользоваться подходом на
основе лямбда-выражения, то коду за пределами класса Logger про-
верять уровень протоколирования вообще не нужно.

Переопределение единственного метода
 Этот «запашок» ощущается, когда вы создаете подкласс ради пере-
определения только одного метода. Хорошим примером может
служить класс ThreadLocal, который позволяет создать фабрику, ге-
нерирующую поточно-локальное значение. Это простой способ га-
рантировать безопасное использование небезопасного относительно
потоков класса в конкурентном окружении. Например, если требуется
найти исполнителя в базе данных, но делать это однократно в каждом
потоке, то можно написать код наподобие показанного в примере 7.3.

Пример 7.3 � Поиск исполнителя в базе данных
ThreadLocal<Album> thisAlbum = new ThreadLocal<Album> () {
 @Override protected Album initialValue() {
 return database.lookupCurrentAlbum();
 }
};

В Java 8 мы можем воспользоваться фабричным методом
withInitial, передав ему экземпляр класса Supplier, который занима-
ется созданием, как показано в примере 7.4.

Пример 7.4 � Применение фабричного метода
ThreadLocal<Album> thisAlbum
 = ThreadLocal.withInitial(() -> database.lookupCurrentAlbum());

Второй вариант предпочтительнее первого по нескольким причи-
нам. Во-первых, здесь можно взять любой существующий экземпляр
Supplier<Album> без специального конфигурирования для данного
случая, что облегчает повторное использование и композицию.

� 117

Кроме того, конструкция получается более короткой, что при про-
чих равных условиях само по себе является преимуществом. Важнее,
однако, что краткость – прямое следствие чистоты кода: отношение
сигнал/шум в этом коде выше. А это означает, что на решение конк-
ретной задачи вы потратите меньше времени и не придется возиться
со стереотипным кодом создания подкласса. Да и виртуальная маши-
на Java должна будет загружать на один класс меньше.

Наконец, читателю этого кода гораздо проще понять, в чем его
смысл. Попробуйте произнести вслух слова из второго примера –
получится связная фраза. О первом примере такого определенно не
скажешь.

Интересно, что до Java 8 подобный способ выражения считался не
антипаттерном, а идиоматической записью кода, точно так же, как не
считалось антипаттерном создавать анонимные внутренние классы
для передачи поведения, – это был единственный способ выразить
свое намерение на Java. Но по мере развития языка меняются и при-
меняемые идиомы.

Поведенческий паттерн «пиши все дважды»
 Принцип «пиши все дважды » (Write Everything Twice – WET) –
противоположность хорошо известному принципу «не повторяйся»
(Don’t Repeat Yourself – DRY). Этот «запашок» проникает в програм-
му в ситуациях, когда вследствие повторяющихся стереотипных кон-
струкций образуется больше кода – и этот лишний код приходится
тестировать, его труднее подвергнуть рефакторингу, и любое измене-
ние чревато «поломкой».

Не все проявления WET – подходящие кандидаты для точечной
лямбдификации. Иногда дублирование – единственная альтерна-
тива созданию слишком сильно связанной системы. Но существует
прос той эвристический способ выявить ситуации, в которых наличие
WET настоятельно требует прибегнуть к точечной лямбдификации.
Попробуйте добавить лямбда-выражения в те места, где может по-
надобиться в целом схожее, но различающееся в деталях поведение.

Рассмотрим конкретный пример. Я решил добавить поверх нашей
музыкальной предметной области простой класс Order, вычисляющий
полезные свойства альбомов, которые пожелал купить пользователь.
Мы будем подсчитывать суммарное количество музыкантов, произ-
ведений и общую длительность звучания по всем вошедшим в заказ
альбомам. Императивный код на Java мог бы выглядеть, как показано
в примере 7.5.

Когда разумно перерабатывать код

118 � Глава 7. Тестирование, отладка и рефакторинг

Пример 7.5 � Императивная реализация класса Order
public long countRunningTime() {
 long count = 0;
 for (Album album : albums) {
 for (Track track : album.getTrackList()) {
 count += track.getLength();
 }
 }
 return count;
}

public long countMusicians() {
 long count = 0;
 for (Album album : albums) {
 count += album.getMusicianList().size();
 }
 return count;
}

public long countTracks() {
 long count = 0;
 for (Album album : albums) {
 count += album.getTrackList().size();
 }
 return count;
}

Во всех случаях налицо стереотипный код обхода альбомов и при-
бавления какого-то значения к итоговой сумме – например, продол-
жительности звучания произведения или количества музыкантов.
Мы упускаем возможность повторного использования общих концеп-
ций и оставляем больше кода, который нам же придется тестировать
и сопровождать. Объем кода можно сократить, воспользовавшись аб-
стракцией потока и библиотекой коллекций в Java 8. В примере 7.6
показано, что получится, если в лоб преобразовать императивный код
в потоковый.

Пример 7.6 � Рефакторинг императивного класса Order с использо-
ванием потоков
public long countRunningTime() {
 return albums.stream()
 .mapToLong(album -> album.getTracks()
 .mapToLong(track -> track.getLength())
 .sum())
 .sum();
}

public long countMusicians() {

� 119

 return albums.stream()
 .mapToLong(album -> album.getMusicians().count())
 .sum();
}

public long countTracks() {
 return albums.stream()
 .mapToLong(album -> album.getTracks().count())
 .sum();
}

Но и этот код страдает теми же проблемами, затрудняющими по-
вторное использование и ухудшающими удобочитаемость, поскольку
некоторые абстракции и общие конструкции выразимы только в тер-
минах предметной области. Потоковая библиотека не предоставляет
метода, который мог бы подсчитать количество чего-то по множеству
альбомов – метод получения «чего-то» относится к предметной об-
ласти, и мы должны написать его самостоятельно. Причем до выхода
Java 8 писать такие методы было трудно, потому что каждый из них
делал что-то свое.

Прикинем, как мы стали бы реализовывать подобную функцию.
Нам нужно вернуть число типа long, равное количеству некоего свой-
ства по всем альбомам. Необходимо также принять лямбда-выраже-
ние, которое говорит, как вычислять это свойство. Следовательно,
нужен параметр-метод, который возвращает long для каждого альбо-
ма; по счастливому стечению обстоятельств, в базовых библиотеках
Java 8 уже есть метод ToLongFunction. Как показано на рис. 7.1, он па-
раметризован типом своего аргумента, так что нас интересует метод
ToLongFunction<Album>.

T longToLongFunction

После того как решения приняты, написать тело метода уже прос-
то. Мы берем поток альбомов, сопоставляем каждому альбому значе-
ние типа long и суммируем эти значения. При реализации видимых
потребителю методов, например countTracks, мы передаем лямбда-
выражение, определяющее поведение, специфичное для предметной
области. В примере 7.7 показано, на что стал похож код после такого
выделения метода подсчета.

Рис. 7.1 � ToLongFunction

Когда разумно перерабатывать код

120 � Глава 7. Тестирование, отладка и рефакторинг

Пример 7.7 � Рефакторинг класса Order с выделением методов,
специфичных для предметной области

public long countFeature(ToLongFunction<Album> function) {
 return albums.stream()
 .mapToLong(function)
 .sum();
}

public long countTracks() {
 return countFeature(album -> album.getTracks().count());
}

public long countRunningTime() {
 return countFeature(album -> album.getTracks()
 .mapToLong(track -> track.getLength())
 .sum());
}

public long countMusicians() {
 return countFeature(album -> album.getMusicians().count());
}

Автономное тестирование
лямбда-выражений

 Автономным1 тестированием называется методика тестирования отдельных
кусков кода с целью удостовериться, что они ведут себя, как задумано.

 Обычно из автономного теста вызывается метод, который вызывает
также приложение. Подавая на вход определенные данные и, возмож-
но, применяя тестовые двойники, мы хотим удостовериться, что этот
метод демонстрирует определенное поведение, и с этой целью опи-
сываем, какие изменения должны произойти в результате его вызова.

С точки зрения автономного тестирования кода, с лямбда-выра-
жениями связана одна проблема. Поскольку лямбда-выражение не
имеет имени, его невозможно вызвать из тестового кода напрямую.

Можно было бы скопировать тело лямбда-выражения в тестовый
код и таким образом протестировать копию, но такой подход страда-
ет тем недостатком, что тестируется не поведение самой реализации.

1 В русскоязычной литературе распространен также термин «модульное тес-
тирование», но, на мой взгляд, он не вполне уместен по различным причи-
нам, в том числе из-за перегруженности слова «модуль». – Прим. перев.

� 121

Если изменить код реализации, то тест по-прежнему будет прохо-
дить, хотя реализация уже ведет себя по-другому.

Есть два заслуживающих внимания решения этой проблемы. Пер-
вое – рассматривать лямбда-выражение как блок кода внутри объем-
лющего его метода. Если пойти по этому пути, то мы должны будем
тестировать поведение объемлющего метода, а не самого лямбда-вы-
ражения. В примере 7.8 показан метод, преобразующий список строк
в список тех же строк, но записанных в верхнем регистре.

Пример 7.8 � Преобразование строк в верхний регистр
public static List<String> allToUpperCase(List<String> words) {
 return words.stream()
 .map(string -> string.toUpperCase())
 .collect(Collectors.<String>toList());
}

Единственное, что делает лямбда-выражение в теле этого метода, –
прямой вызов метода из базовой библиотеки. В силу простоты пове-
дения тестировать это лямбда-выражение как независимую единицу
кода вообще не имеет смысла.

Если бы мне нужно было автономно протестировать этот код, я со-
средоточился бы на поведении всего метода. Так, в примере 7.9 при-
веден тест, проверяющий, что если в потоке есть несколько слов, то
все они преобразуются в верхний регистр.

Пример 7.9 � Тестирование преобразования слов в верхний регистр
@Test
public void multipleWordsToUppercase() {
 List<String> input = Arrays.asList("a", "b", "hello");
 List<String> result = Testing.allToUpperCase(input);
 assertEquals(asList("A", "B", "HELLO"), result);
}

Иногда лямбда-выражение обладает сложной функционально-
стью. Быть может, в нем есть ряд граничных случаев или оно вычис-
ляет чрезвычайно важную для предметной области функцию. Вам
абсолютно необходимо протестировать эту часть кода, но она реали-
зована в виде лямбда-выражения, на которое невозможно сослаться.

В качестве примера такой проблемы рассмотрим метод, который
лишь немного сложнее преобразования списка строк в верхний ре-
гистр. Мы будем преобразовывать не всю строку, а только первый
символ. С помощью потоков и лямбда-выражений мы могли бы ре-
шить эту задачу, как показано в примере 7.10. Лямбда-выражение, вы-
полняющее преобразование, находится в точке �.

Автономное тестирование лямбда-выражений

122 � Глава 7. Тестирование, отладка и рефакторинг

Пример 7.10 � Преобразование первого символа каждого элемента
списка в верхний регистр
public static List<String> elementFirstToUpperCaseLambdas
 (List<String> words) {
 return words.stream()
 .map(value -> { �
 char
 rstChar = Character.toUpperCase(value.charAt(0));
 return
 rstChar + value.substring(1);
 })
 .collect(Collectors.<String>toList());
}

Чтобы протестировать этот метод, нам нужно было бы для каждого
интересующего нас случая создать список и проверить результат его
преобразования. В примере 7.11 показано, каким громоздким может
оказаться такое решение. Но не расстраивайтесь – выход есть!

Пример 7.11 � Тестирование того, что в случае строки из двух сим-
волов в верхний регистр преобразуется только первый
@Test
public void twoLetterStringConvertedToUppercaseLambdas() {
 List<String> input = Arrays.asList("ab");
 List<String> result = Testing.elementFirstToUpperCaseLambdas(input);
 assertEquals(asList("Ab"), result);
}

Не используйте лямбда-выражение. Я понимаю, что такой совет
может показаться странным в книге, посвященной лямбда-выраже-
ниям, но стоит ли непременно пытаться оседлать корову? Если мы
согласимся, что не стоит, то возникает вопрос, как все же автономно
протестировать код, не жертвуя удобством библиотек с поддержкой
лямбда-выражений.

Используйте ссылки на методы. Любой метод, который можно
было бы написать в виде лямбда-выражения, можно также записать
в виде обычного метода, а затем обращаться к нему в других местах
программы с помощью ссылки на метод .

В примере 7.12 я вынес лямбда-выражение в отдельный метод, ко-
торый затем вызывается из главного метода, занимающегося преоб-
разованием списка строк.

Пример 7.12 � Преобразование первого символа в верхний регистр
и применение этого метода ко всему списку
public static List<String> elementFirstToUppercase(List<String> words) {
 return words.stream()
 .map(Testing::
 rstToUppercase)

� 123

 .collect(Collectors.<String>toList());
}

public static String
 rstToUppercase(String value) { �
 char
 rstChar = Character.toUpperCase(value.charAt(0));
 return
 rstChar + value.substring(1);
}

Выделив метод, который отвечает за обработку строки, мы смо-
жем охватить все граничные случаи, тестируя этот метод автономно.
В примере 7.13 показан рассмотренный выше тестовый код в упро-
щенном виде.

Пример 7.13 � Тест строки из двух символов, примененный к одному
методу
@Test
public void twoLetterStringConvertedToUppercase() {
 String input = "ab";
 String result = Testing.
 rstToUppercase(input);
 assertEquals("Ab", result);
}

Использование лямбда-выражений
в тестовых двойниках
 При написании автономных тестов нередко применяются тестовые
двойники , которые описывают ожидаемое поведение других компо-
нентов системы. Это полезно, потому что задача автономного тести-
рования – проверить работу класса или метода изолированно от всех
прочих частей программы, а тестовые двойники позволяют реализо-
вать такую изоляцию для целей тестирования.

 Хотя тестовые двойники часто называют подставными объектами (mock),
на самом деле есть два типа двойников: подставки и заглушки . Различие в
том, что подставки позволяют проверить поведение кода. Самое лучшее
изложение этого предмета см. в статье Мартина Фаулера по адресу http://
martinfowler.com/articles/mocksArentStubs.html.

Один из самых простых способов использования лямбда-выраже-
ний в тестовом коде – реализация облегченных заглушек. Это дей-
ствительно легко и естественно, если компонент, который необходи-
мо заглушить, уже является функциональным интерфейсом.

В разделе «Поведенческий паттерн “пиши все дважды”» выше я
показал, как оформить общую предметную логику в виде отдельного
метода countFeature, а для реализации подсчета различных вещей ис-

Использование лямбда-выражений в тестовых двойниках

124 � Глава 7. Тестирование, отладка и рефакторинг

пользовать лямбда-выражения. В примере 7.14 демонстрируется, как
можно было автономно протестировать это поведение.

Пример 7.14 � Использование лямбда-выражения в качестве
тестового двойника, передаваемого методу countFeature
@Test
public void canCountFeatures() {
 OrderDomain order = new OrderDomain(asList(
 newAlbum("Exile on Main St."),
 newAlbum("Beggars Banquet"),
 newAlbum("Aftermath"),
 newAlbum("Let it Bleed")));

 assertEquals(8, order.countFeature(album -> 2));
}

Ожидаемое поведение состоит в том, что метод countFeature воз-
вращает сумму некоторого числа, повторенного столько раз, сколько
имеется альбомов. Здесь я передаю четыре разных альбома, а заглуш-
ка в моем тесте возвращает для каждого альбома число 2. В утверж-
дении проверяется, что метод возвращает 8, то есть 2�4. Если вы ожи-
даете, что вашему коду будет передано лямбда-выражение, то обычно
имеет смысл написать автономный тест, в котором какое-то выраже-
ние действительно передается.

В большинстве тестовых двойников ожидания более сложные.
В таких случаях часто применяются каркасы типа Mockito , которые
автоматически генерируют тестовые двойники. Рассмотрим простой
пример, в котором нужно создать тестовый двойник для объекта List.
Вместо того чтобы возвращать размер List, мы хотим вернуть размер
другого List. Реализуя метод size подставного объекта List, мы не хо-
тим задавать один-единственный ответ. Мы хотим, чтобы ответ был
результатом выполнения некоей операции, поэтому передаем лямб-
да-выражение (пример 7.15).

Пример 7.15 � Использование лямбда-выражения в сочетании с
библиотекой Mockito
List<String> list = mock(List.class);

when(list.size()).thenAnswer(inv -> otherList.size());

assertEquals(3, list.size());

В библиотеке Mockito применяется интерфейс Answer , который по-
зволяет предоставить альтернативную реализацию поведения. Ины-

� 125

ми словами, она уже поддерживает нашего старого знакомца: пере-
дачу кода как данных. Здесь можно использовать лямбда-выражение,
потому что Answer – вот ведь как удачно получилось – функциональ-
ный интерфейс.

Отложенное вычисление и отладка
 Работа с отладчиком обычно подразумевает пошаговое прохождение
программы или установку точек останова. Иногда при использова-
нии потоковой библиотеки можно столкнуться с ситуацией, когда от-
ладка усложняется, потому что итерированием управляет сама биб-
лиотека, а многие потоковые операции отложены.

При традиционном императивном программировании, когда код
является последовательностью действий, направленных на достиже-
ние цели, исследование состояния до или после действия имеет пря-
мой смысл. В Java 8 сохраняется доступ ко всем существующим в IDE
средствам отладки, но для получения полезных результатов иногда
приходится идти на хитрость.

Протоколирование и печать
 Допустим, требуется отладить код, в котором над коллекцией выпол-
няется последовательность операций, и мы хотим видеть результат
каждой операции по отдельности. Можно было бы распечатывать
коллекцию после каждого шага. Но при работе с потоковой библио-
текой это затруднительно, так как вычисление промежуточных шагов
отложено.

Посмотрим, как можно было бы вывести промежуточные значе-
ния в журнал, взяв за образец императивную версию отчета о нацио-
нальности исполнителей из главы 3. Если вы запамятовали – с кем
не бывает? – напомню, что мы пытаемся найти страну, откуда родом
каждый исполнитель альбома. В примере 7.16 найденные националь-
ности записываются в журнал.

Пример 7.16 � Протоколирование промежуточных результатов для
отладки цикла for
Set<String> nationalities = new HashSet<>();
for (Artist artist : album.getMusicianList()) {
 if (artist.getName().startsWith("The")) {
 String nationality = artist.getNationality();
 System.out.println("Found nationality: " + nationality);

Протоколирование и печать

126 � Глава 7. Тестирование, отладка и рефакторинг

 nationalities.add(nationality);
 }
}
return nationalities;

Мы могли бы воспользоваться методом forEach для распечатки
значений из потока, и это заодно привело к выполнению отложен-
ных вычислений. Увы, у такого решения есть недостаток – после вы-
зова forEach продолжить работу с потоком не получится, потому что
поток можно использовать только один раз. И если мы настаиваем
на применении такого подхода, то поток придется создать заново.
В примере 7.17 показано, насколько безобразный при этом получа-
ется код.

Пример 7.17 � Наивное применение forEach для протоколирования
промежуточных результатов
album.getMusicians()
 .
 lter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .forEach(nationality -> System.out.println("Found: " + nationality));

Set<String> nationalities
 = album.getMusicians()
 .
 lter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .collect(Collectors.<String>toSet());

Решение: метод peek
По счастью, в потоковой библиотеке есть метод, который позволяет
по очереди просматривать каждое значение и при этом продолжать
операции с потоком. Он называется peek . В примере 7.18 предыдущий
пример переписан с использованием peek, чтобы можно было распе-
чатать значения из потока без необходимости заново запускать кон-
вейер операций.

Пример 7.18 � Использование peek для протоколирования промежу-
точных результатов
Set<String> nationalities
 = album.getMusicians()
 .
 lter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .peek(nation -> System.out.println("Found nationality: " + nation))
 .collect(Collectors.<String>toSet());

� 127

Метод peek можно использовать и для вывода в имеющиеся систе-
мы протоколирования, например log4j , java.util.logging или slf4j, –
точно таким же способом.

Точки останова в середине потока
 Протоколирование – лишь один из многих трюков, на которые спо-
собен метод peek. Чтобы отлаживать поток поэлементно, по аналогии
с пошаговым прохождением цикла мы можем поставить точку оста-
нова в теле метода peek.

В данном случае у метода peek может быть пустое тело, внутри ко-
торого ставится точка останова. Некоторые отладчики не позволяют
поставить точку останова в пустом теле, тогда, чтобы удовлетворить
отладчик, я обычно добавляю отображение некоторого значения на
само себя. Решение не идеальное, но работает.

Основные моменты
 � Подумайте, как подвергнуть рефакторингу унаследованный код,

применив лямбда-выражения; на этот счет имеются общие реко-
мендации.

 � Чтобы автономно протестировать лямбда-выражение любой слож-
ности, поместите его внутрь обычного метода.

 � Метод peek очень полезен для протоколирования промежуточных
значений во время отладки.

Основные моменты

Глава 8
Проектирование
и архитектурные

принципы
Главным инструментом проектирования
программного обеспечения является мозг
человека, хорошо знакомого с принципа-
ми проектирования. Это не технология.

– Крейг Ларман

 Я уже показал, что лямбда-выражения – сравнительно простое из-
менение языка Java и что есть много способов их использования в со-
четании со стандартными библиотеками JDK. Большая часть кода
на Java написана разработчиками, работающими на уровне базово-
го JDK, – такими же людьми, как и вы. Чтобы получить максимум
пользы от лямбда-выражений, следует постепенно включать их в су-
ществующий код. Это всего лишь еще один инструмент в арсенале
профессионального Java-разработчика, принципиально ничем не от-
личающийся от интерфейса или класса.

В этой главе мы рассмотрим, как лямбда-выражения помогают при-
держиваться принципов SOLID, в которых выражены рекомендации
по качественному объектно-ориентированному программированию.
Многие имеющиеся паттерны проектирования можно улучшить с по-
мощью лямбда-выражений, и мы бегло познакомимся с этой темой.

Я уверен, что, работая в команде, вы попадали в ситуацию, когда
сами были довольны тем, как реализовали некую функцию или ис-
правили ошибку, но кто-то другой, взглянув на ваш код, – быть мо-
жет, в ходе рецензирования – высказал замечания. Наличие разных
мнений относительно того, что считать хорошим и плохим кодом, –
дело обычное.

� 129

Когда человек не согласен с чем-то, он чаще всего отстаивает свою
точку зрения. Рецензент написал бы код по-другому. Но ниоткуда
не следует, что прав именно он, а не вы. Пуская лямбда-выражения
в свою жизнь, вы получаете новый способ реализации, который сле-
дует принимать во внимание. Дело не в том, что они как-то особенно
трудны или спорны, просто это еще один вопрос проектирования, ко-
торый можно обсуждать и с которым можно не соглашаться.

Настоящая глава призвана помочь в этом отношении. Я расскажу
о некоторых общепризнанных принципах и паттернах, с помощью ко-
торых создаются надежные и удобные для сопровождения програм-
мы, – не просто о новеньких, еще не утративших блеск библиотеках
JDK, но и о том, как использовать лямбда-выражения в собственных
приложениях и при разработке архитектуры системы.

Паттерны проектирования
и лямбда-выражения
Все мы знакомы с одним из краеугольных камней проектирования
ПО – идеей паттернов проектирования . Паттерны документируют
стандартные подходы к решению типичных задач построения архи-
тектуры программного обеспечения. Столкнувшись с задачей, для
которой вам известен подходящий паттерн, вы можете применить его
к имеющейся ситуации. В каком-то смысле паттерны – это свод пра-
вил, признанных наилучшими подходами к решению определенных
задач.

Разумеется, никакое правило не остается наилучшим вечно. Типич-
ный пример – популярный когда-то паттерн Одиночка (Singleton),
который описывает создание единственного экземпляра класса. По-
следние десять лет его неоднократно критиковали за то, что он де-
лает приложения более хрупкими и трудными для тестирования. По
мере распространения движения за гибкие технологии выдвинулось
на передний план тестирование приложений, и проблемы, связанные
с паттерном Одиночка, превратили его в антипаттерн : паттерн, ко-
торый никогда не следует использовать.

В этом разделе я не стану толковать о том, как паттерны устаревают.
Вместо этого мы посмотрим, как некоторые существующие паттерны
можно сделать лучше, проще, а иногда и реализовать по-новому. Во
всех случаях силой, направляющей изменение паттернов, являются
нововведения в Java 8.

Паттерны проектирования и лямбда-выражения

130 � Глава 8. Проектирование и архитектурные принципы

Паттерн Команда
Команда – это объект, который инкапсулирует всю информацию, не-
обходимую для вызова метода в будущем. Паттерн Команда – это
способ использования такого объекта, позволяющий писать обоб-
щенный код, в котором последовательность вызовов методов опреде-
ляется на этапе выполнения. В паттерне Команда принимают участие
четыре класса, показанные на рис. 8.1.

 � Получатель – фактически выполняет работу.
 � Команда – инкапсулирует всю информацию, необходимую для

вызова получателя.
 � Активатор – управляет последовательностью выполнения од-

ной или нескольких команд.
 � Клиент – создает конкретные экземпляры команд.

Рис. 8.1 � Паттерн Команда

Конкретная команда

Получатель

Клиент

КомандаАктиватор

реализует

вызывает

вызывает

использует
создает

Рассмотрим конкретный пример использования паттерна Команда
и попробуем улучшить его с помощью лямбда-выражений. Предпо-
ложим, что имеется компонент графического интерфейса Editor, и
в нем определены действия, которые мы можем вызывать, например
open или save, как в примере 8.1. Мы хотим реализовать функциональ-
ность макроса, то есть последовательности операций, которую можно
где-то сохранить, а затем выполнить как одну операцию. Это и будет
наш получатель.

Пример 8.1 � Типичные функции текстового редактора
public interface Editor {

 public void save();

 public void open();

 public void close();
}

� 131

В этом примере все операции, в частности open и save, – команды.
Нам необходим обобщенный интерфейс команды, которому отвечали
бы различные операции. Я назову этот интерфейс Action, поскольку
он представляет выполнение одного действия в нашей предметной
области. Этот интерфейс будут реализовывать все объекты-команды
(пример 8.2).

Пример 8.2 � Все наши действия реализуют интерфейс Action
public interface Action {

 public void perform();

}

Теперь можно реализовать интерфейс Action для каждой операции.
Каждый класс должен вызывать один какой-то метод редактора Editor,
обернув этот вызов интерфейсом Action. Я буду именовать классы в со-
ответствии с обертываемыми ими операциями, придерживаясь опре-
деленного соглашения; так, методу save будет соответствовать класс
Save. В примерах 8.3 и 8.4 приведены наши объекты-команды.

Пример 8.3 � Действие save делегирует работу методу Editor
public class Save implements Action {

 private
 nal Editor editor;

 public Save(Editor editor) {
 this.editor = editor;
 }

 @Override
 public void perform() {
 editor.save();
 }
}

Пример 8.4 � Действие open также делегирует работу методу Editor
public class Open implements Action {

 private
 nal Editor editor;

 public Open(Editor editor) {
 this.editor = editor;
 }

 @Override

Паттерны проектирования и лямбда-выражения

132 � Глава 8. Проектирование и архитектурные принципы

 public void perform() {
 editor.open();
 }
}

 Теперь можно реализовать класс Macro. Этот класс умеет записы-
вать последовательность действий методом record и исполнять ее
как единую группу. Мы будем хранить последовательность действий
в объекте List, а для выполнения их по очереди воспользуемся мето-
дом forEach. В примере 8.5 показан наш активатор.

Пример 8.5 � Макрос состоит из последовательности действий,
вызываемых по очереди
public class Macro {

 private
 nal List<Action> actions;

 public Macro() {
 actions = new ArrayList<>();
 }

 public void record(Action action) {
 actions.add(action);
 }

 public void run() {
 actions.forEach(Action::perform);
 }
}

Создавая макрос в программе, мы добавляем в объект Macro эк земп-
ляры каждой команды. После этого мы можем запустить макрос, и он
вызовет эти команды одну за другой. Будучи ленивым программи-
стом, я высоко ценю возможность определять стандартные цепочки
действий в виде макросов. Я сказал «ленивый»? На самом деле я имел
в виду «повернутый на продуктивности». Объект Macro – это наш кли-
ент, он показан в примере 8.6.

Пример 8.6 � Создание макроса с помощью паттерна Команда
Macro macro = new Macro();
macro.record(new Open(editor));
macro.record(new Save(editor));
macro.record(new Close(editor));
macro.run();

 И как же нам помогут лямбда-выражения? На самом деле все наши
классы команд, в частности Save и Open, – это просто лямбда-выраже-

� 133

ния, жаждущие выбраться из своих скорлупок на свет Божий. Это ин-
капсулированные поведения, для передачи которых из одного места
в другое мы написали классы. Благодаря лямбда-выражениям весь
паттерн можно значительно упростить, полностью отказавшись от
обертывающих классов. В примере 8.7 показано, как можно исполь-
зовать класс Macro, заменив классы команд лямбда-выражениями.

Пример 8.7 � Создание макроса с помощью лямбда-выражений
Macro macro = new Macro();
macro.record(() -> editor.open());
macro.record(() -> editor.save());
macro.record(() -> editor.close());
macro.run();

Можно поступить еще лучше, осознав, что каждое лямбда-выраже-
ние вызывает единственный метод. А раз так, то мы можем применить
ссылки на методы, чтобы связать команды редактора с объектом-мак-
росом (см. пример 8.8).

Пример 8.8 � Создание макроса с помощью ссылок на методы
Macro macro = new Macro();
macro.record(editor::open);
macro.record(editor::save);
macro.record(editor::close);
macro.run();

Паттерн Команда изначально служил заменой отсутствующим
в языке лямбда-выражениям. Пользуясь настоящими лямбда-выра-
жениями или ссылками на методы, мы можем сделать код чище, убрав
служебные стереотипные конструкции и прояснив его назначение.

Макросы – лишь один пример возможного использования паттер-
на Команда. Он часто применяется при реализации компонентных
систем графического интерфейса пользователя (ГИП), функции от-
мены, пулов потоков, транзакций и мастеров.

 В базовых библиотеках Java уже имеется функциональный интерфейс
Runnable с такой же структурой, как у нашего интерфейса Action. Мы могли бы
использовать его для построения класса макроса, но в данном случае слово
Action лучше отражает специфику предметной области, так что я решил соз-
дать собственный интерфейс.

Паттерн Стратегия
 Паттерн Стратегия описывает способ изменения алгоритма програм-
мы на этапе выполнения. Конкретная реализация этого паттерна за-
висит от обстоятельств, но в любом случае идея одна и та же: опреде-

Паттерны проектирования и лямбда-выражения

134 � Глава 8. Проектирование и архитектурные принципы

лить общую задачу, решаемую разными алгоритмами, а затем скрыть
все алгоритмы за единым программным интерфейсом.

В качестве примера инкапсулируемого алгоритма можно взять
сжатие файлов. Мы дадим пользователям возможность сжимать фай-
лы с помощью алгоритма zip или gzip и реализуем обобщенный класс
Compressor, который сможет выбирать любой из этих алгоритмов.

Прежде всего необходимо определить API нашей стратегии (см.
рис. 8.2), которую я назову CompressionStrategy. Все алгоритмы сжа-
тия будут реализовывать этот интерфейс. У них будет метод compress,
который принимает и возвращает OutputStream. Выходной объект
OutputStream – результат сжатия входного (см. пример 8.9).

Рис. 8.2 � Паттерн Стратегия

Compressor

Cжатие ZIP Cжатие gzip

Compression
Strategy

вызывает

реализует реализует

Пример 8.9 � Определение интерфейса стратегии сжатия данных
public interface CompressionStrategy {

 public OutputStream compress(OutputStream data) throws IOException;

}

У нас есть две конкретные реализации этого интерфейса – для ал-
горитмов gzip и ZIP, – в которых мы воспользовались библиотечными
классами Java для записи файлов в форматах gzip (пример 8.10) и ZIP
(пример 8.11).

Пример 8.10 � Применение алгоритма gzip для сжатия данных
public class GzipCompressionStrategy implements CompressionStrategy {

 @Override
 public OutputStream compress(OutputStream data) throws IOException {
 return new GZIPOutputStream(data);
 }
}

� 135

Пример 8.11 � Применение алгоритма ZIP для сжатия данных
public class ZipCompressionStrategy implements CompressionStrategy {

 @Override
 public OutputStream compress(OutputStream data) throws IOException {
 return new ZipOutputStream(data);
 }
}

Теперь можно реализовать класс Compressor, являющийся контек-
стом, в котором используется наша стратегия. В этом классе есть метод
compress, который принимает пути к входному и выходному файлам
и записывает сжатую версию входного файла в выходной. Конструк-
тору в качестве параметра передается объект CompressionStrategy,
с помощью которого вызывающая программа на этапе выполнения
принимает решение о том, какую стратегию сжатия использовать, –
например, спросив пользователя о предпочтительном способе сжатия
(см. пример 8.12).

Пример 8.12 � Конструктору объекта Compressor передается
стратегия сжатия
public class Compressor {

 private
 nal CompressionStrategy strategy;

 public Compressor(CompressionStrategy strategy) {
 this.strategy = strategy;
 }

 public void compress(Path inFile, File outFile) throws IOException {
 try (OutputStream outStream = new FileOutputStream(outFile)) {
 Files.copy(inFile, strategy.compress(outStream));
 }
 }
}

При традиционной реализации паттерна Стратегия мы написали
бы клиент, который создает объект Compressor, задавая нужную стра-
тегию (пример 8.13).

Пример 8.13 � Создание объектов Compressor с конкретными
классами стратегий
Compressor gzipCompressor = new Compressor(new GzipCompressionStrategy());
gzipCompressor.compress(inFile, outFile);

Compressor zipCompressor = new Compressor(new ZipCompressionStrategy());
zipCompressor.compress(inFile, outFile);

Паттерны проектирования и лямбда-выражения

136 � Глава 8. Проектирование и архитектурные принципы

Как и в рассмотренном выше паттерне Команда, использование
лямбда-выражений или ссылок на методы позволяет исключить це-
лый слой стереотипного кода. В данном случае мы можем отказаться
от реализации конкретных стратегий и сослаться на метод, реали-
зующий алгоритм. Алгоритмы будут представлены конструкторами
соответствующих реализаций интерфейса OutputStream. При таком
подходе классы GzipCompressionStrategy и ZipCompressionStrategy ока-
зываются вообще лишними. В примере 8.14 показано, как выглядит
код при использовании ссылок на методы.

Пример 8.14 � Создание экземпляров класса Compressor
с помощью ссылок на методы
Compressor gzipCompressor = new Compressor(GZIPOutputStream::new);
gzipCompressor.compress(inFile, outFile);

Compressor zipCompressor = new Compressor(ZipOutputStream::new);
zipCompressor.compress(inFile, outFile);

Паттерн Наблюдатель
 Наблюдатель – еще один поведенческий паттерн, который можно
улучшить и упростить за счет лямбда-выражений. В этом паттерне
объект, именуемый субъектом , хранит список объектов, наблюдающих
за ним. О любом изменении состояния субъекта уведомляются все
наблюдатели. Паттерн часто используется в библиотеках построения
графических интерфейсов на основе архитектуры MVC, для того что-
бы компоненты-представления можно было обновлять при изменении
состояния модели, не организуя сильной связи между двумя классами.

Рассматривать обновление компонентов ГИП скучно, поэтому в ка-
честве субъекта возьмем Луну! Как НАСА, так и пришельцы желают
следить за аппаратами, опускающимися на Луну. Задача НАСА – обе-
спечить безопасную посадку космического корабля Аполлон с астро-
навтами, а пришельцы хотят вторгнуться на Землю, когда НАСА от-
влечется.

Для начала определим API интерфейса наблюдателей, который я
назову LandingObserver. В нем имеется единственный метод observe-
Landing, который вызывается, когда что-то опускается на Луну (при-
мер 8.15).

Пример 8.15 � Интерфейс наблюдения за аппаратами, садящимися
на Луну
public interface LandingObserver {
 public void observeLanding(String name);
}

� 137

В нашем случае классом субъекта является Moon, он хранит список
экземпляров LandingObserver, уведомляет их о посадках и умеет добав-
лять новые экземпляры LandingObserver, шпионящие за Луной (при-
мер 8.16).

Пример 8.16 � Предметный класс Moon – не такой красивый,
как настоящая Луна

public class Moon {

 private
 nal List<LandingObserver> observers = new ArrayList<>();

 public void land(String name) {
 for (LandingObserver observer : observers) {
 observer.observeLanding(name);
 }
 }

 public void startSpying(LandingObserver observer) {
 observers.add(observer);
 }
}

Имеются две конкретные реализации класса LandingObserver, соот-
ветствующие пришельцам (пример 8.17) и НАСА (пример 8.18). Как
уже было сказано, они реагируют на одно и то же событие совершенно
по-разному.

Пример 8.17 � Пришельцы могут наблюдать за высадкой людей на Луну

public class Aliens implements LandingObserver {
 @Override
 public void observeLanding(String name) {
 if (name.contains("Apollo")) {
 System.out.println("X�� ����������, ����K����$ �� \���^!");
 }
 }
}

Пример 8.18 � НАСА тоже может наблюдать за высадкой людей на Луну

public class Nasa implements LandingObserver {
 @Override
 public void observeLanding(String name) {
 if (name.contains("Apollo")) {
 System.out.println("�� ������� `��!");
 }
 }
}

Паттерны проектирования и лямбда-выражения

138 � Глава 8. Проектирование и архитектурные принципы

Как и в предыдущих случаях, традиционная реализация этого пат-
терна подразумевает, что клиент создает дополнительные стереотип-
ные классы, которые вполне можно заменить лямбда-выражениями
(примеры 8.19 и 8.20).

Пример 8.19 � Клиент создает экземпляр Moon, применяя классы,
после чего моделирует посадку на Луну

Moon moon = new Moon();
moon.startSpying(new Nasa());
moon.startSpying(new Aliens());

moon.land("An asteroid");
moon.land("Apollo 11");

Пример 8.20 � Клиент создает экземпляр Moon, применяя
лямбда-выражения, после чего моделирует посадку на Луну

Moon moon = new Moon();

moon.startSpying(name -> {
 if (name.contains("Apollo"))
 System.out.println("�� ������� `��!");
 });

moon.startSpying(name -> {
 if (name.contains("Apollo"))
 System.out.println("X�� ����������, ����K����$ �� \���^!");
 });

moon.land("An asteroid");
moon.land("Apollo 11");

Решая, как подойти к реализации паттернов Наблюдатель и
Стратегия – с помощью лямбда-выражений или производных клас-
сов, – нужно принимать во внимание сложность кода стратегии или
наблю дателя. В продемонстрированных выше случаях код был очень
простым – всего один-два вызова методов – и неплохо согласовывал-
ся с новыми возможностями языка. Но если сам наблюдатель явля-
ется достаточно сложным классом, то попытка утрамбовать слишком
много кода в один метод чревата неудобочитаемостью.

 В некотором смысле фраза «попытка утрамбовать слишком много кода в один
метод чревата неудобочитаемостью» – золотое правило, определяющее, как
следует применять лямбда-выражения. И если я до сих пор не подчеркивал
его, то лишь потому, что оно равным образом относится и к написанию обыч-
ных методов!

� 139

Паттерн Шаблонный метод
 При разработке программ часто возникает ситуация, когда имеется
некий общий алгоритм с различными вариациями. Мы хотели бы,
чтобы все вариации гарантированно реализовывали один и тот же
принципиальный алгоритм, а код было легко понять. Уяснив общий
принцип, будет проще разобраться в каждой реализации.

Паттерн Шаблонный метод предназначен как раз для таких ситуа-
ций. Структура общего алгоритма представлена абстрактным клас-
сом . В нем имеется ряд абстрактных методов, соответствующих кон-
кретным шагам алгоритма; при этом общий для всех реализаций код
содержится в самом абстрактном классе. Каждый вариант алгоритма
реализован в виде конкретного класса , который переопределяет аб-
страктные методы и предоставляет соответствующую своему назна-
чению реализацию.

Следующий сценарий поможет прояснить ситуацию. Представьте,
что вы – банк, который выдает кредиты гражданам, компаниям и сво-
им работникам. Процедура рассмотрения заявки для всех категорий
заемщиков похожа – необходимо удостоверить личность, проверить
кредитную историю и получить сведения о доходах. Эта информация
поступает из разных источников, и к ее оценке применяются различ-
ные критерии. Например, чтобы удостоверить личность физического
лица, достаточно взглянуть на выставленный по его адресу счет. Ком-
пании же внесены в официальный реестр, роль которого в США игра-
ет Комиссия по ценным бумагам и биржам, а в Великобритании – Ре-
гистрационная палата.

Мы можем смоделировать это в программе с помощью абстракт-
ного класса LoanApplication, который определяет структуру алго-
ритма и содержит общий код уведомления об исходе рассмотрения
заявки. Для каждой категории заемщиков определены конкретные
подклассы: CompanyLoanApplication, PersonalLoanApplication и Employee-
LoanApplication. В примере 8.21 показано, как выглядит класс Loan App-
lication.

Пример 8.21 � Процесс рассмотрения заявки о предоставлении кре-
дита, смоделированный с помощью паттерна Шаблонный метод
public abstract class LoanApplication {

 public void checkLoanApplication() throws ApplicationDenied {
 checkIdentity();
 checkCreditHistory();
 checkIncomeHistory();

Паттерны проектирования и лямбда-выражения

140 .:. Гilава 8. Проектирование и архитектурные принuипы

reportFindings();

protected abstract void checkIdentity() throws ApplicationDenied;

protected abstract void checkIncomeHistory() throws ApplicationDenied;

protected abstract void checkCreditHistory() throws ApplicationDenied;

private void reportFindings() 1

в классе CompanyLoanApplication метод checkIdenti ty реализован пу­
тем поиска информации в реестре компаний, например в базе данных
Регистрационной палаты. Метод checkIncomeHistory должен был бы
оценить имеющиеся отчеты компании о прибылях и убытках, а также
ее бухгалтерский баланс. Метод checkCreditHistory мог бы поинтере­
соваться имеющимися безнадежными и непогашенными задолжен­
настями.

В классе PersonalLoanApplication метод checkIdentity реализован
путем анализа представленных клиентом бумажных документов
с целью проверки существования его адреса проживания. Метод

checkIncomeHistory оценивает расчетные листки и проверяет, имеется
ли у заемщика постоянная работа. Метод checkCreditHistory делеги­
рует работу внешнему бюро кредитных историй.

Класс EmployeeLoanApplication, по сути дела, совпадает с Personal­
LoanApplication, только без проверки истории занятости. Так уж сло­
жилось, что банк проверяет историю доходов при найме на работу
(пример 8.22).

Пример 8.22 .. : .. Частный случай - работник банка обращается

за кредитом

public class EmployeeLoanApplication extends PersonalLoanApplication 1
@Override
protected void checkIncomeHistory()

11 Он же у нас работает!

Лямбда-выражения и ссылки на методы позволяют взглянуть на

паттерн Шаблонный метод в новом свете и реализовать его иначе. Ис­

тинный смысл паттерна заключается в выстраивании последователь­

ности вызова методов в определенном порядке. Если представить

функции в виде функциональных интерфейсов, а затем использовать

лямбда-выражения или ссылки на методы для реализации этих ин-

Паттерны проектировани~ и iI~мбда-8ыражени~ .:. 141

терфейсов, то МЫ получим серьезный выигрыш в гибкости, по срав­

нению с наследованием. Взгляните, как можно было бы реализовать
наш алгоритм LoanApplication (пример 8.23)!

Пример 8.23 .:. Частный случай - работник банка обращается

за кредитом

public class LoanApplication 1

private final Criteria identity;
private final Criteria creditHistory;
private final Criteria incomeHistory;

public LoanApplication(Criteria identity,
Criteria creditHistory,
Criteria incomeHistory)

this identity - identity;
this creditHistory - creditHistory;
this incomeHistory - incomeHistory;

public void checkLoanApplication() throws ApplicationDenied 1
identity.check();
creditHistory.check() ;
incomeHistory.check() ;
reportFindings();

private void reportFindings() 1

Как видите, вместо набора абстрактных методов мы завели поля
с именами identity, creditHistory и incomeHistory. Каждое поле реа­
лизует функциональный интерфейс Criteria, который проверяет
некоторый критерий и в случае его невыполнения возбуждает спе­

циальное исключение. Можно было бы возвращать из метода check
экземпляр специального класса, обозначающий успех или неудачу, но
возбуждение исключения следует общему соглашению, принятому
в исходной реализации (см. пример 8.24).

Пример 8.24 .:. Функциональный интерфейс, который возбуждает
исключение в случае отклонения заявки

public interface Criteria 1
public void check() throws ApplicationDenied;

Преимущество этого подхода, по сравнению с основанным на на­

следовании, заключается в том, что мы не привязываем реализацию

алгоритма к иерархии классов, наследующих LoanApplication, а сохра-

142 .:. Гilава 8. Проектирование и архитектурные принuипы

няем гибкость при решении о ТОМ, кому делегировать функциональ­
ность. Например, мы можем возложить ответственность за проверку

всех критериев на класс Сатрапу, в котором будут методы с показанны­

ми ниже сигнатурами.

Пример 8.25 .:. Методы проверки критериев в классе Сатрапу
public void checkIdentity() throws ApplicationDenied;

public void checkProfitAndLoss () throws ApplicationDenied;

public void checkHistoricalDebt() throws ApplicationDenied;

Теперь классу CompanyLoanApplication остается только передать

ссылки на эти методы, как показано в примере 8.26.

Пример 8.26 .:. Класс CompanyLoanApplication определяет, какие
методы проверяют каждый критерий

public class CompanyLoanApplication extends LoanApplication

public CompanyLoanApplication(Company company)
super(company: :checkIdentity,

company: :checkHistoricalDebt,
company: : checkProfitAndLoss) ;

в обоснование делегирования поведения классу Сотрапу можно
привести соображение о том, что поиск информации о компании за­
висит от страны. В Великобритании Регистрационная палата являет­
ся каноническим местом регистрации сведений о компании, тогда как

в США ситуация различна в разных штатах.

Применение функциональных интерфейсов для проверки крите­

риев вовсе не мешает поместить реализации в подклассы. Мы можем

явно использовать лямбда-выражения, в которых участвуют классы

реализации, или ссылки на методы в текущем классе.

Нет также необ ходимости связывать классы Empl oyeeLoanAppl icat ion
и PersonalLoanApplication отношением наследования, чтобы повтор­
но использовать функциональность EmployeeLoanApplication в Perso­
nalLoanApplication. Можно просто передать ссылки на одни и те же
методы. Является ли один класс подклассом другого, должно опре­

деляться тем, действительно ли выдача кредита работнику банка яв­

ляется частным случаем выдачи кредита физическому лицу или еще

кому-то. Поэтому описанный подход позволяет точнее моделировать

рассматриваемую предметную область.

Предметно-ориентированные ~зыки С iI~мбда-8ыражени~ми .:. 143

Предметно-ориентированные Я3ЫI<И

С поддержкой лямбда-выражений

Предметно-ориентированный язык (DSL) - это язык программиро­

вания, спроектированный ДЛЯ ОДНОЙ конкретной части программной

системы. Обычно такие языки невелики по объему и менее вырази­

TeльHы, чем языки общего назначения, например Java. DSL-языки
высоко специализированы: они умеют делать не всё, но то, что умеют,

делают хорошо.

Принято выделять две категории DSL-языков: внутренние и внеш­

ние. Внешний язык не связан с ИСХОДНЫМ КОДОМ вашей программы, его

анализатор и интерпретатор реализованы кем-то ДРУГИМ. Широко из­

вестными примерами внешних предметно-ориентированных языков

являются каскадные таблицы стилей (CSS) и регулярные выражения.
Внутренние DSL-языки встроены в язык программирования, на ко­

тором написаны. Если вам доводилось работать с библиотеками гене­
рации подставных объектов типа JMock или Mockito или с построите­
лями SQL-запросов типа JOOQ или Querydsl, то вы знаете, что такое
внутренний DSL-язык. В каком-то смысле это просто обычные библио­

теки с текучим API. Несмотря на свою простоту, внутренние DSL­
языки весьма ценны, потому что позволяют сделать код более кратким
и удобочитаемым. В идеале код, написанный на DSL-языке, читается
как высказывание из той предметной области, которую отражает.
е появлением лямбда-выражений стало проще реализовывать

DSL-языки с текучим интерфейсом, что добавляет еще один инстру­

мент в арсенал тех, кто желает экспериментировать с предметно-ори­

ентированными языками. Мы изучим эту тему, построив DSL-язык

для разработки на основе поведения (behavior-driven development -
BDD), который назовем LambdaBehave,

BDD - это вариант разработки через тестирование (TDD), в ко­
тором упор делается на рассуждениях о поведении про граммы, а не

просто на тестах, которые она должна пройти. За основу проекта язы­

ка мы взяли BDD-каркас Jasmine для языкаJаvаSсгiрt BDD, который
активно используется разработчиками клиентской части веб-саЙтов.

В примере 8.27 показан простой скрипт, демонстрирующий, как с по­
мощью J asmine пишутся тесты.

Пример 8.27 .:. Jasmine

de5cribe (ПА 5ui te i5 j u5t а fuпсtiопП , function ()
itC'and 50 i5 а 5реСТ', function() 1

144 .:. Гilава 8. Проектирование и архитектурные принuипы

var а - true;

expect(a) .toBe(true);
}};

}};

Признаю, что читателям, незнакомым с]avaScript, этот КОД мо­
жет показаться загадочным. Разрабатывая эквивалентный язык
ДЛЯ Java 8, мы будем продвигаться неспешно. Помните ТОЛЬКО, что
в]avaScript лямбда-выражения синтаксически записываются в виде
function () I) ..

Рассмотрим все концепции по очереди.

О Каждая спецификация описывает ОДНО поведение программы.

О Ожидание - это способ описать поведение приложения. Ожи-

дания содержатся в спецификациях.

О Группы спецификаций объединяются в комплект.
у каждой из этих концепций есть аналог в традиционных карка­

сах тестирования, например]Unit. Спецификации соответствует
тестовый метод, ожиданию - утверждение, а комплекту - тестовый

класс.

Предметно-ориентированный язык на Java
Рассмотрим пример того, что мы собираемся достичь с помощью на­
шего каркаса BDD, написанного на Java. В примере 8.28 приведена
спецификация некоторых поведений класса Stack.

Пример 8.28 .:. Избранные истории, специфицирующие класс Stack

public class StackSpec 11

describe С'а stасk П , it -> 1

it.shouldC'be empty when сrеаtеd П , expect -> 1
expect.that(new Stack()) .isEmpty();

}};

it should C'push new elements onto the top of the stасk П , expect -> 1
Stack<Integer> stack - new stack<>();
stack.push(l) ;

expect.that(stack.get(O)) .isEqualTo(l);
));

it should С'рор the last element pushed onto the stасk П , expect -> 1
Stack<Integer> stack - new stack<>();
stack. push (2) ;

Предметно-ориентированные ~зыки С iI~мбда-8ыражени~ми .:. 145

stack.push(l) ;

expect.that(stack.pop()) .isEqualTo(2);
}};

}};

}}

Комплект спецификаций начинается глаголом describe. Затем мы
присваиваем комплекту имя, сообщающее, поведение чего описыва­
ется; в данном случае мы назвали комплект "а stackl!.

Каждая спецификация читается как предложение на английском

языке. Все они начинаются фразой it. should, в которой it - ссылка

на объект, чье поведение описывается. Далее следует обычное англо­

язычное предложение, в котором словами сообщается, какое именно
поведение проверяется. Затем мы описываем свои ожидания, каждое

из которых начинается фразой expect. that.
В результате про верки спецификаций мы получаем простой ОТ­

чет с информацией о том, оправдалось ожидание или нет. Обрати­

те внимание, что в спецификации 4рОр the last element pushed onto
the stack» (извлечь из стека последний помещенный в него элемент)
ожидалось, что рор вернет 2, а не 1, так что ожидание не оправдалось:

а stack
should рор the last element pushed onto the stack[expected ~: but was: ~]
should ье empty when created
should push new elements onto the top of the stack

Как это делается

и так, вы теперь понимаете, что я имел в вид под текучестью DSL­
языка, которая обеспечивается применением лямбда-выражениЙ.

Посмотрим, как это реализовано. Надеюсь, мое объяснение проде­

монстрирует, насколько просто пишутся такого рода каркасы.

Описание любого поведения начинается глаголом describe. В дей­
ствительности это не что иное, как статически импортированный ме­

тод. Он создает экземпляр класса Description для всего комплекта и
поручает ему обработку спецификации. Классу Description принад­
лежат параметры it в нашем языке спецификаций (см. пример 8.29).

Пример 8.29 .:. Метод descгibe, который начинает определение
спецификации

public static void describe(String name, Suite behavior)
Description description - new Description(name);
behavior.specifySuite(description) ;

146 .:. Гilава 8. ПроеКТИРОЕЕние и архитектурные принuипы

в каждом комплекте имеется код, который пишется пользователем

с помощью лям6да-выражения. Поэтому нам необходим функцио­
нальный интерфейс Sui te, показанный в примере 8.30, который пред­
ставляет комплект спецификаций. Обратите внимание, что метод
этого интерфейса принимает в качестве аргумента объект Description,
переданный из метода describe.

Пример 8.30 .. :. Комплект тестов - это лямбда-выражение, реализую­

щее данный интерфейс

public interface Suite 1
public void specifySuite(Description description);

Лям6да-выражениями представлены не только комплекты в на­

шем DSL-языке, но и отдельные спецификации. Они тоже нужда­

ются в функциональном интерфейсе, который я назову Specification
(пример 8.31). Переменная expect в при мере кода выше - экземпляр

класса Expect, который я опишу ниже.

Пример 8.31 .:. Спецификация - лямбда-выражение, реализующее

данный интерфейс

public interface Specification 1
public void specifyBehaviour(Expect expect);

в этом месте оказывается полезен передаваемый экземпляр

Description. Мы хотим, чтобы пользователь мог с помощью текуче­
го синтаксиса описывать спецификации в предложении it.should.
Это означает, что в классе Description должен присутствовать метод
should (см. пример 8.32). Именно в нем и сосредоточена вся работа.
поскольку этот метод выполняет лямбда-выражение, вызывая его ме­

тод specifyBehaviour. Если спецификация не удовлетворяется, она со­
общит об этом, возбудив стандартное исключение]аvаАssеrtiопЕrror,
а любое другое исключение типа Throwable мы будем считать ошибкой.

Пример 8.32 .:. Лямбда-выражения, выражающие спецификации,
передаются методу should

public void should(String description, Specification specification) 1
try 1

Expect expect - new Expect();
specification. specifyBehaviour (expect) ;
Runner.current.recordSuccess(suite, description);

catch (AssertionError cause) 1
Runner.current.recordFailure(suite, description, cause);

Предметно-ориентированные ~зыки С iI~мбда-8ыражени~ми .:. 147

catch (Throwable cause) 1
Runner.current.recordError(suite, description, cause);

Желая описать в спецификации ожидание, мы используем фразу

expect. that. Значит, в классе Expect должен быть метод that, показан­
ный в примере 8.33. Он обертывает переданный ему объект, а обертка
может затем раскрывать текучие методы, например isEqualTo, кото­
рые возбуждают подходящее исключение в случае, когда ожидание
не удовлетворяется.

Пример 8.33 .. :. Начало текучей цепочки ожиданий

public final class Expect 1

public BoundExpectation that(Object value)
return new BoundExpectation(value);

11 Остальная часть класса опущена

Возможно, вы обратили внимание на одну деталь, на которой я до
сих не акцентировал внимания и которая не имеет отношения к лямб­
да-выражениям. В классе StackSpec нет явно реализованных методов,
но тем не менее я написал внутри него код. Тут я немного схитрил -
использовал двойные фигурные скобки в начале и в конце определе­
ния класса:

public class StackSpec 11

}}

Тем самым я определил анонимный конструктор, внутри которого

можно выполнить произвольный код HaJava. Можно было бы вместо
этого написать конструктор полностью, но это увеличило бы объем
стереотипного кода:

public class StackSpec
public StackSpec ()

Для реализации всего каркаса BDD придется еще немало пора­
ботать, но в этом разделе я ставил целью показать, как с помощью
лямбда-выражений можно создавать текучие предметно-ориентиро­

ванные языки. Я рассмотрел лишь те части DSL-языка, которые взаи-

148 .:. Гilаш 8. Проектирование и архитектурные принuипы

МQдействуют с лям6да-выражениями, чтобы вы почувствовали, как

такие вещи реализуются.

Оценка

Одна из сторон текучести - приспосо6ленноеть DSL-языка к IDE.
Иными словами, вы ДОЛЖНЫ помнить ЛИШЬ минимум информации,

а остальное подскажет механизм автоматического завершения кода.

Именно поэтому мы используем и передаем объекты Description и
Expect. Альтернатива - завести стаrnческие методы i t или expect, и
такое решение действительно применяется в некоторых DSL-языках.

Если передавать лям6да-выражению объект, а не требовать статиче­

ского импорта, то знающему пользователю IDE будет проще восполь­
зоваться авто завершением кода во время разработки.

Единственное, о чем должен помнить пользователь, - необхо­

димость вызова describe. Достоинства такого подхода трудно оце­
нить, просто читая текст книги, но я призываю вас поэксперимен­

тировать с этим каркасом на каком-нибудь простеньком проекте и
убедиться.
Еще стоит обратить внимание на то, что в большинстве каркасов

тестирования широко применяются аннотации и используется отра­

жение. Нам нет нужды прибегать к таким трюкам. Мы можем непо­

средственно представить поведение в DSL-языке с помощью лямбда­

выражений, обращаясь с ними как с обычными методами Java.

Принuипы SOLID и лямбда-выражения
SOLID - это набор принципов проектирования объектно-ориенти­

рованных про грамм. В акрониме скрыты первые буквы названий
пяти принципов: Single responsibility (принцип единственной обя­
занности). Open/closed (принцип открытости-закрытости). Liskov
substitution (принцип подстановки Лисков). Interface segregation
(принцип разделения интерфейсов) и Dependency inversion (прин­
цип инверсии зависимости). В этих принципах сформулированы ре­

комендации о том, как писать код, чтобы впоследствии его было легко
сопровождать и развивать.

Каждый принцип соответствует определенным 4запашкам», ко­

торые могут присутствовать в коде, и предлагает способ решения
вызываемых ими проблем. На эту тему написано много книг, и я не
собираюсь разбирать принципы SOLID во всех деталях. Однако я по­
кажу, как они применяются в контексте лямбда-выражениЙ. В Java 8

Принuипы SOLIO и iI~мбда-8ыражени~ .:. 149

некоторые принципы можно даже обобщить, ВЫЙДЯ за рамки исход­
ных ограничений.

Принцип единственной обязанности

у каждого класса или .метода в программе должна быть только одна

причина для изменения.
Требования к программному обеспечению со временем меняют­

ся - от этого факта никуда не деться. Причины МОГУТ быть различны:
добавляется новая функция, у вас или у заказчика изменяется пони­
мание предметной области, необходимо ускорить работу программы
и Т.Д.

Если изменяются требования к программе, то изменяются также
обязанности классов и методов, в которых были реализованы старые
требования. Если у класса несколько обязанностей, то при изменении
какой-то ОДНОЙ могут оказаться затронуты другие обязанности того

же класса. Это может привести к ошибкам и стать препятствием на

пути развития кода.

Рассмотрим простой пример программы, генерирующий сводный

баланс (BalanceSheet). Программадолжна построить баланс по списку
активов, представить его в виде таблицы и вывести в виде PDF -файла.
Если разработчик поместит две обязанности - построение таблицы и

форматирование в виде PDF - в один класс, то у этого класса будут

две причины для изменения. Возможно, в будущем понадобится дру­
гой формат вывода, например HTML. А возможно, нужно будет из­
менить уровень детализации в самом балансе. Это достаточное осно­
вание для того, чтобы разбить задачу на два класса верхнего уровня:
представление BalanceSheet в виде таблицы и вывод этой таблицы.

Однако принцип единственной обязанности этим не исчерпыва­
ется. Мало того что у класса должна быть только одна обязанность,
он еще должен ее инкапсулировать. Иначе говоря, если я захочу из­

менить формат вывода, то должен буду заниматься только классом
форматирования, полностью игнорируя класс построения таблицы.
О так спроектированных программах говорят, что они обладают

свойством сильной сцеnле1i1iосmu. Класс называется сцепленным,

если его поля и методы следует рассматривать только вместе, пото­

му что они тесно соотносятся друг с другом. Попытавшись разделить

сцепленный класс на части, вы получите сильно связанные классы.

Итак, мы познакомились с принципом единственной обязанности,
но возникает вопрос: какое отношение это имеет к лямбда-выражени -
ям? А дело в том, что благодаря лямбда-выражениям гораздо проще

150 .:. Гilава 8. ПроеКТИРОЕЕние и архитектурные принuипы

реализовать этот принцип на уровне методов. Рассмотрим КОД, кото­

рый подсчитывает количество простых чисел, не превосходящих за­

данного (пример 8.34).

Пример 8.34 .:. Подсчет простых чисел в методе, имеющем
несколько обязанностей

public long countPrimes(int upTo) 1
long tally - О;

for (int i - 1; i < ирТо; i++) 1
boolean isPrime - true;
for (int j - 2; j < i; j+t)

if (i % j -- О) 1

isPrime - false;

if (isPrime)

tally++;

return tally;

Нетрудно понять, что здесь делаются две вещи: подсчет количества

чисел, обладающих некоторым свойством, и про верка ТОГО, что число
является ПроСТЫМ. В примере 8.35 показано, как переработать этот
КОД, явно выделив обе обязанности.

Пример 8.35 .:. Подсчет простых чисел после выделения метода
isPгime, проверяющего, что число простое

pub1ic long countPrimes(int upTo) 1
long tally - О;

for (int i - 1; i < upTo; i+t) 1
if (isPrime (i)) 1

tally+t;

return tally;

private Ьоо1еап isPrime(int питЬет) 1
for (int i - 2; i < number; i+t) 1

if (nuГ!1ber % i -- О) 1
return fa1se;

return true;

Принuипы SOLIO и iI~мбда-8ыражени~

к сожалению, наш КОД по-прежнему имеет две обязанности. Боль­

шая его часть занимается перебором чисел в цикле. Если следовать
принципу единственной обязанности, то такой перебор необходи­
мо как-то инкапсулировать. Существует и еще одна вполне практи­

ческая причина усовершенствовать программу. Если значение upTo
очень велико, то хорошо бы распараллелить подсчет простых чисел.
И конечно же, потоковая модель - обязанность программы!

Этот КОД можно переработать с использованием потоковой биб­

лиотекиjаvа 8 (см. пример 8.36). поручив управление циклом самой
библиотеке. Мы воспользуемся методом range ДЛЯ построения мно­
жества чисел от О ДО upTo, методомfiltеr - ДЛЯ про верки числа на про с­

тату и методом count - для вычисления результата.

Пример 8.36 .. : .. Рефакторинг подсчета простых чисел
с использованием потоков

public long countPrimes(int upTo) 1
return IntStream.range(l, upTo)

.filter(this: :isPrime)

· count () ;

private boolean isPrime(int number) 1
return IntStream.range(2, number)

.аllМз.tсh(х -> (number % х) !- О);

Если мы захотим ускорить операцию ценой большего потребления
ресурсов процессора, то сможем воспользоваться методом parallel­
Stream, больше ничего не изменяя в коде (пример 8.37).

Пример 8.37 .. : .. Параллельный подсчет простых чисел
с использованием потоков

public long countPrimes(int upTo) 1
return IntStream.range(l, upTo)

· parallel ()
.filter(this: :isPrime)

· count () ;

private boolean isPrime(int number) 1
return IntStream.range(2, number)

.аllМз.tсh(х -> (number % х) !- О);

Таким образом, чтобы упростить реализацию принципа единствен­
ной обязанности, мы можем прибегнуть к функциям высшего порядка.

152 .:. Гilава 8. Проектирование и архитектурные принuипы

Принцип открытости-закрытости

Прorраммная единица должна быть ОТ­

крыта ДЛЯ расширения, но закрыта ДЛЯ

модификации.

- Бертран Мейер

Главная цель принципа открытости-закрытости аналогична цели

принципа единственной обязанности: уменьшить хрупкость прог­
раммы перед лицом изменений. Проблема, как и раньше, заключается
в ТОМ, что всего ОДНО добавление новой функции или изменение су­
ществующей может аукнуться в различных частях кода и стать при­

ЧИНОЙ НОВЫХ ошибок. Принцип открытости-закрытости - попытка

уйти от этой проблемы, проектируя классы так, чтобы их можно было
расширять, не изменяя внутренней реализации.

Когда человек впервые слышит о принципе открытости-закрыто­

СТИ, он воспринимает его как пустое прожектерство. Как это - рас­

ширить функциональность класса, не меняя его реализации? Ответ

прост - нужно опираться на абстракцию и подключать новую функ­

циональность, согласующуюся с этой абстракцией. Рассмотрим конк­
ретный пример.

Допустим, что нам нужно написать программу, которая собирает

информацию о производительности системы и представляет резуль­

таты измерений в виде графиков. Например, может быть график, по­

казывающий, сколько времени компьютер про водит в режиме поль­

зователя, в режиме ядра и в режиме ввода-вывода. Назовем класс,

отвечающий за отображение этих метрик, MetricDataGraph.
Класс MetricDataGraph можно спроектировать так, чтобы агенты, со­

бирающие данные, добавляли в него каждый новый результат изме­
рения. Тогда его открытый АР! будет выглядеть, как показано в при­

мере 8.38.

Пример 8.38 .:. Открытый API класса MetгicDataGraph

class MetricDataGraph 1

public void updateUserTime(int value);

public void updateSystemTime(int value);

public void updateIoTime(int value);

Принuипы SOLIO и iI~мбда-8ыражени~ .:. 153

Но это означает, что всякий раз, как мы захотим добавить в график
новый набор результатов измерений, класс MetricDataGraph придется
модифицировать. Эту проблему можно решить путем заведения абст­
ракции, представляющей ряд моментов времени, которую я назову

TimeSeries . Теперь АРI класса MetricDataGraph можно упростить, так
что он не будет зависеть от конкретных типов отображаемых метрик
(пример 8.39).

Пример 8.39 .:. Упрощенный API класса MetгicDataGraph
class MetricDataGraph 1

public void addTimeSeries(TimeSeries values);

Каждый набор результатов измерения метрик можно затем пред­

ставить в виде класса, реализующего интерфейс TimeSeries, и подклю­
ЧИТЬ к программе. Например, могут существовать конкретные классы

UserTimeSeries, SystemTimeSeries и IoTimeSeries. Если бы мы захотели
впоследствии показать еще и заимствованное у виртуализованной

машины процессорное время, то нужно было бы добавить еще одну
реализацию TimeSeries под названием StealTimeSeries. Таким образом,
класс MetricDataGraph расширен, но при этом не модифицирован.
Функции высшего порядка обладают тем же свойством открытости

для расширения, хотя и закрыты для модификации. Хорошим приме­

ром может служить класс ThreadLocal, с которым мы уже встречались.
Этот класс предоставляет переменную, уникальную в том смысле, что

в каждом потоке имеется отдельный ее экземпляр. Его статический

метод withInitial - это функция высшего порядка, которая прини­

мает лямбда-выражение, представляющее фабрику для порождения
начального значения.

Тем самым реализуется принцип открытости -закрытости, потому
что мы можем получить от ThreadLocal новое поведение, не внося ни­
каких модификаций. Стоит передать withInitial новый фабричный
метод, как мы получим экземпляр ThreadLocal с новым поведением.
Например, с помощью ThreadLocal можно породить потокобезопас­
ную переменную типа DateFormatter (пример 8.40).

Пример 8.40 .:. Поточно-локальный форматер данных
11 Одна реализация
ThreadLocal<DateFormat> localFormatter

- ThreadLocal withInitial(() -> new SimpleDateFormat());

11 Использование
DateFormat formatter - localFormatter.get();

154 .:. Гilава 8. Проектирование и архитектурные принuипы

Мы можем получить совершенно иное поведение, передав другое

лям6да-выражение. Так, в примере 8.41 создаются уникальные после­
довательные идентификаторы потоков J ауа.

Пример 8.41 .:. ПОТОЧНQ-ЛОКальный идентификатор
11 Или.
AtomicInteger threadId - new AtomicInteger();
ThreadLocal<Integer> localId

- ThreadLocal withInitial(() -> threadId.getAndIncrement());

11 Использование
int idForThisThread - localId.get();

Еще одна интерпретация принципа открытости-заКРЫТОС11I, не

укладывающаяся в традиционное его понимание, - идея о ТОМ, что

неизменяемые объекты этому принципу удовлетворяют. Неизменяе­
мым называется объект, который нельзя модифицировать после соз­
дания.

у термина 4неизменяемость» есть две возможные интерпретации:

наблюдаемая неuзменяемосmь и нeuзменяемосmь реализации. Наблю­
даемая неизменяемость означает, что с точки зрения любого другого
объекта класс является неизменяемым, а неизменяемость реализа­

ции - что объект действительно никогда не изменяется. Из неизме­

няемости реализации следует наблюдаемая неизменяемость, обрат­
ное верно не всегда.

Примером класса, заявляющего о своей неизменяемости, но в дей­

ствительности обладающего только свойством наблюдаемой неизме­
няеМОСТИ,являетсякласс java.lang .String- ведь он кэшируетхэш-код
при первом вызове метода hashCode. С точки зрения всех остальных
классов, это совершенно безопасно, потому что они не могут увидеть
различия между объектом сразу после конструирования и после кэ­

ширования хэш-кода.

Я завел речь о неизменяемых объектах в книге, посвященной лямб­
да-выражениям, потому что обе концепции широко применяются
в функциональном программировании, откуда лямбда-выражения,
собственно, и пришли. Поэтому они естественно ложатся на тот СПIль
программирования, о котором рассказывается в этой книге.

Неизменяемые объекты удовлетворяют принципу открытости-за­

крытости в том смысле, что их внутреннее состояние нельзя модифи­

циpoBaTь, а новые методы можно безопасно добавлять. Новые мето­
ды не могут изменить внутреннего состояния объекта, поэтому такие
объекты закрыты для модификации. Однако они добавляют новое

Принuипы SOLIO и iI~мбда-8ыражени~ .:. 155

поведение, и, значит, объекты открыты ДЛЯ расширения. Разумеется,
нужно внимательно следить за тем, чтобы ненароком не модифици­
ровать состояние где-то в другом месте программы.

Неизменяемые объекты представляют интерес еще и потому, что
ПО сути своей потоко6езопасны. У них нет внутреннего состояния, ко­

торое могло бы измениться, поэтому ими могут сообща пользоваться
несколько ПОТОКОВ. Размышления о различных подходах определен­

но завели бы нас в сторону от традиционного принципа открыто­
сти-закрытости. На самом деле, впервые формулируя этот принцип,

Бертран Мейер говорил, что сам класс нельзя изменять после того,

как его разработка завершена. Но современному программисту, прак­

тикующему гибкие методики, идея раз и навсегда завершенного клас­
са чужда. Из-за требований заказчиков и характера использования

приложения иногда класс приходится использовать так, как заранее

не предполагалось. Но это не значит, что о принципе открытости-за­

крытости можно забыть. Просто надо понимать, что принципы сле­
дует воспринимать как рекомендации и эвристические соображения,
которым необязательно следовать слепо, до последней запятой.
И последнее, о чем я предлагаю задуматься, - тот факт, что в кон­

тексте J ауа 8 интерпретация принципа открытости -закрытости как
абстракции, которой могут соответствовать различные классы, или
как призыва к использованию функций высшего порядка - по су­

ществу, одно и то же. Поскольку наша абстракция должна быть пред­
ставлена в виде интерфейса или абстрактного класса, чьи методы
вызываются, такой подход к принципу открытости-закрытости - это

просто проявление полиморфизма.

В J ауа 8 любое лямбда-выражение, передаваемое функции высше­
го порядка, представлено функциональным интерфейсом. Функция

высшего порядка вызывает его единственный метод, который приво­

дит К различным результатам в зависимости от того, какое лямбда­

выражение передано. А под капотом все тот же полиморфизм, необ­

ходимый для реализации принципа открытости -закрытости.

Принцип инверсии зависимости

Абстракции не должны зависеть от детaJlей - детaJlИ должны зави­

сеть от абстракций.
Один из способов получить жесткую и хрупкую программу, кото­

рая упорно сопротивляется внесению любых изменений, - прочно

связать между собой высокоуровневую бизнес-логику и низкоуров­

невый код, предназначенный для организации взаимосвязей между

156 .:. Гilава 8. Проектирование и архитектурные принuипы

модулями. Дело в ТОМ, ЧТО это два различных аспекта, которые могут

независимо изменяться со временем.

Цель принципа инверсии зависимости заключается в том, чтобы
дать программисту возможность разрабатывать высокоуровневую
бизнес-логику независимо от низкоуровневого связующего кода. Это
позволит повторно использовать высокоуровневый КОД, не прини­

мая во внимание деталей, от которых он зависит. Достигаемая таким

образом модульность работает в обоих направлениях: мы можем за­

менить ОДНИ детали другими при повторном использовании высоко­

уровневого кода или повторно использовать детали реализации, над­

строив над ними другую бизнес-логику.

Рассмотрим конкретный пример традиционного использования

принципа инверсии зависимости - высокоуровневую декомпози­

цию приложения, которое автоматически строит адресную книгу.

Это приложение получает на входе последовательность электронных

визитных карточек и постепенно создает адресную книгу с помощью

какого-то механизма сохранения.

Очевидно, эту программу можно разбить на три крупных модуля:
О модуль считывания визиток, который понимает формат элект­

ронной визитки;

О модуль сохранения адресной книги в текстовом файле;

О модуль сбора, который извлекает полезную информацию из
электронных визиток и помещает ее в адресную книгу.

Связи между этими модулями изображены на рис. 8.3.

Сборщик

t t
Считыватель Сохранение

визиток адресной книги

Рис. 8.3 .:. Зависимости

Повторно использовать модуль сбора из этой системы будет до­

вольно затруднительно, но модули считывания визиток и сохранения

адресной книги ни от каких других компонентов не зависят. Поэтому

их легко использовать и в других системах. Их можно также подме­

нять; например, можно взять другой считыватель, скажем, получать

Принuипы SOLIO и iI~мбда-8ыражени~ .:. 157

данные из учетных записей в Твиттере, или хранить адресную книгу

не в текстовом файле, а в базе данных.
Чтобы обеспечить гибкость, необходимую ДЛЯ подмены системных

компонентов, мы ДОЛЖНЫ позаботиться о том, чтобы реализация мо­
дуля сбора не зависела от конкретных деталей модулей считывания
визиток и сохранения адресной книги. Поэтому мы введем абстрак­

цию считывания и абстракцию записи информации. От этих абстрак­
ций и будет зависеть реализация модуля сбора. Конкретные детали
их реализаций можно будет подставить на этапе выполнения. Это и
есть принцип инверсии зависимости в действии.

Если говорить о лям6да-выражениях, то многие функции высшего
порядка, с которыми мы встречались выше, обеспечивают инверсию
зависимости. Например, функция тар позволяет повторно исполь­

зовать код общей концепции преобразования потока значений, под­
ставляя конкретное преобразование. Сама функция тар зависит не от
деталей преобразования, а от абстракции, каковой в данном случае
является функциональный интерфейс Function.

Более сложный пример инверсии зависимости дает управление
ресурсами. Очевидно, что управлять можно самыми разными ре­

сурсами: соединениями с базами данных, пулами потоков, файлами,
сетевыми соединениями и т. п. В качестве примера я возьму файлы,

потому что это относительно простой ресурс, но общий принцип при­
меним и к более сложным ресурсам, необходимым приложению.

Рассмотрим код, который извлекает заголовки из текста на гипо­

тетическом языке разметки, в котором для обозначения заголовка
применяется двоеточие в качестве суффикса. Наш метод будет чи­
тать файл, анализировать каждую строку по очереди, отфильтровы­

вать только заголовки и закрывать файл. Кроме того, мы обернем все
исключения, относящиеся к файловому вводу-выводу, специальным

исключением HeadingLookupException, больше соответствующим пред­
метной обласПI. Код приведен в примере 8.42.

Пример 8.42 .. : .. Выделение заголовков из файла
pub1ic List<String> findHeadings (Reader input) 1

try (BufferedReader reader - ne w BufferedReader(input))
return reader .1ines ()

. fi1 ter(line -> 1iпе.епdsWith(П 10))

.map(line -> 1ine.substring(O, 1ine 1ength() - 1))

.co11ect(toList());
catch (IOException е) 1

throw new HeadingLookupException(e);

158 .:. Гilаш 8. Проектирование и архитектурные принuипы

к сожалению, наш КОД выделения заголовков сильно связан с ко­

ДОМ управления ресурсами и обработки файла. В действительности
нам необходимо написать КОД, который только ищет заголовки, а де­
тали работы с файлами делегирует другому методу. Например, в ка­

честве абстракции, откоторой будет зависеть этот КОД, можно выбрать
не файл, а Stream<String>. ПОТОК Stream - вещь гораздо более безопас­

ная, которую труднее использовать неправильно. Мы также хотим

передать функцию, создающую 4предметное» исключение, если об­
наружится проблема при работе с файлом. Такой подход, показанный
в примере 8.43, позволяет разделить обработку ошибок предметной
области и ошибок управления ресурсами.

Пример 8.43 .:. Работа с файлом отделена от логики предметной
области

public List<String> findHeadings (Reader input) 1
return withLinesOf(input,

lines -> lines.filter(line -> line епdsWith(П :10))

.map(line -> line.substring(O, line length()-l))

.collect(toList()),
HeadingLookupException::new) ;

Полагаю, вам не терпится узнать, как выглядит метод withLinesOf!
Он показан в примере 8.44.

Пример 8.44 .:. Определение метода withLinesOf
private <Т> Т withLinesOf(Reader input,

Function<Stream<String>, Т> handler,
Function<IOException, RuntimeException> еттот)

try (BufferedReader reader - new BufferedReader(input))

return handler.apply(reader lines());

catch (IOException е) 1
throw error.apply(e);

Метод withLinesOf принимает объект-считыватель, который за­
нимается файловым вводом-выводом. Файл обернут объектом

BufferedReader, который позволяет читать построчно. Функция handler
представляет код, который мы хотели бы применить к прочитанным
строкам. Она принимает в качестве аргумента поток Stream строк фай­
лa. Метод принимает и еще одну функцию-обработчик error, которая
вызывается в случае исключения ввода-вывода. Она конструирует

Что еше почитать .:. 159

нужное нам 4предметное» исключение, которое и возбуждается ме­

тодом при обнаружении ошибки.
Подведем итог. Функции высшего порядка обеспечивают инвер­

сию управления - одну из форм инверсии зависимости. Их легко

использовать в сочетании с лямбда-выражениями. Говоря о прин­

ципе инверсии зависимости, стоит также отметить, что абстракция,
от которой мы зависим, не обязана быть интерфейсом. В данном
случае в качестве абстракции чтения и обработки файла выступал
существующий класс Stream. Такой подход согласуется со способом
управления ресурсами, принятым в функциональных языках про­

граммирования, - обычно ресурсом управляет функция высшего по­

рядка, которая принимает функцию обратного вызова, применяет ее
к открытому ресурсу, после чего ресурс закрывается. На самом деле

если бы во времена]ауа 7 уже были доступны лямбда-выражения, то
конструкцию trу-с-ресурсами, наверное, можно было бы реализовать

в виде одной библиотечной функции.

Что еше почитать
в этой главе затрагивались общие вопросы проектирования, мы го­
ворили скорее о программе в целом, нежели о локальных проблемах,
относящихся к отдельным методам. Но поскольку книга посвящена

лямбда-выражениям, то мы лишь едва затронули эту тему. Для тех,

кого интересуют подробности, существует немало достойных книг,
в которых рассматриваются эти и смежные проблемы.
Принципы SOLID уже давно популяризируются 4ДЯДЮШКОЙ» Бо­

бом Мартином, который много писал и выступал на эту тему. Если
вы хотите приобрести его знания задаром, почитайте серию статей,
посвященных этим принципам, на сайте компании Object Mentor
(http//www.objeetmentor.eom/resourees/publishedArtieles.html) в разде­
ле 4Design Patterns».

Тем, кто хотел бы глубже разобраться в предметно-ориентиро­

ванных языках, внешних и внутренних, рекомендую книгу Martin
Fowler, Rebecca Parsons 4Domain-Specific Languages»1 (издательство
Ad dison -Wesley).

1 Фаулер М. Предметно-ориентированные языки ПРОIpаммирования. - М.:
Вильяме. 2011.

160 .:. Глава 8. Проектирование и архитектурные принuипы

Основные MOMeHTbI
о Лям6да-выражения позволяют упростить и сделать более ПОНЯТ­

ными многие существующие паттерны проектирования, особенно
паттерн Команда.

О Java 8 предоставляет большую гибкость при разработке предмет­
но-ориентированных ЯЗЫКОВ.

О В Java 8 появились новые возможности ДЛЯ применения принци­
пав SOLID.

Глава 9
•••••••••••••••••••••••••••••••••••••••

l(oHl<ypeHTHoe
программирование

и лямБД,а-выра)l<ения

я уже затрагивал тему параллелизма по данным, а в этой главе по­

кажу, как можно использовать лямбда-выражения ДЛЯ написания

конкурентных приложений, которые эффективно обмениваются со­
общениями и выполняют неблокирующий ввод-вывод.

Некоторые приведенные в этой главе примеры написаны с исполь­

зованием каркасов Vert.x и RxJava. Но принципы ЯВЛЯЮТСЯ достаточ­
НО общими и применимы также к другим каркасам, а равно и к ва­
шему собственному коду - при6егать к каким-то каркасам вообще

необязательно.

Зачем нужен неБЛОI<ИРУЮШИЙ ВВОД-ВЫВОД?
Говоря о параллелизме, я уделил много внимания эффективному ис­

пользованию нескольких ядер. Такой подход, безусловно, полезен, но
это не единственная потоковая модель, применяемая для обработки
больших объемов данных.

Предположим, что нужно написать чат, способный обслуживать
очень много пользователей. Всякий раз как в чат входит новый

пользователь, открывается теР-соединение с сервером. Если при­

держиваться традиционной потоковой модели, то каждый раз, как

возникает необходимость передать что-то пользователю, нужно бу­

дет вызвать метод отправки данных. Этот метод заблокирует поток,
в котором вызван.

Такой подход называется блокирующим вводом-выводом, он ши­
роко распространен и прост для понимания, потому что взаимодей­

ствие с пользователем происходит строго последовательно и легко

162 .:. г /'аЕЕ 9 I(онкуr:eнтюе ПpJГj:8ММИpJЕЕние и iI~мБLiа-8ыражени~

прослеживается в программе. Недостаток же в ТОМ, что при увеличе­

нии количества пользователей приходится запускать много потоков

на сервере ДЛЯ их обслуживания. Это решение плохо масштабиру­

ется.

Неблокuрующий - или, как его часто называют, aCUJ-lXРОJiJiblЙ -

ВВОД-ВЫВОД можно использовать, когда требуется обработать много

одновременных соединений, не резервируя ДЛЯ каждого соединения

отдельного потока. В отличие от блокирующего ввода-вывода, ме­
тоды, которые читают и отправляют данные клиентам чата, возвра­

щают управление немедленно. Собственно ВВОД-ВЫВОД происходит

в каком-то другом потоке, а вы тем временем можете заняться полез­

ной работой. Как использовать освободившиеся циклы процессора,
решать вам: можно прочитать больше данных, отправленных кли­

eHToM, а можно запустить на том же оборудовании игровой сервер
Minecraftl
До сих пор я избегал кода, демонстрирующего эти идеи, потому

что есть много способов построить АР! дЛЯ неблокирующего ввода­
вывода. В стандартной библиотеке Java неблокирующий ввод-вывод
представлен в виде подсистемы NIO (New 1/0). В первоначальной
версии NIO использовалась идея селектора (класс Selector), который
позволял одному потоку выполнения управлять несколькими кана­

лами связи, например сетевыми сокетами, через которые посылаются

данные клиентам чата.

Этот подход никогда не пользовался особой популярностью у пи­

шущих на Java, поскольку получающийся код было довольно трудно
понять и отлаживать. С пришествием лямбда-выражений появился

идиоматический способ проектирования и разработки API, не стра­
дающих такими недостатками.

Обратные ВЫЗ0ВЫ
Чтобы продемонстрировать принципиальную основу нового подхо­
да, мы напишем предельно простое приложение для чата - без всяких

4бантиков и рюшечек». Пользователи просто смогут посылать друг
другу сообщения и получать их. При первом подключении пользова­
тель должен выбрать себе имя.
Мы реализуем это приложение с помощью каркаса Vert.x и по

ходу дела познакомимся с применяемыми техническими приемами.

Начнем с кода, который получает запросы на создание нового ТСР­

соединения.

Обратные вызовы .:. 163

Пример 9.1 .. :. Получение запроса на создание теР-соединения

public class ChatVerticle extends Verticle

public void start () 1
vertx.createNetServer()

.connectHandler(socket -> 1
container .logger () . info (10 socket соппесtеd П);

socket.dataHandler(new User(socket, this));
}).listen(10_000);

container .logger () . info (ПСhаtVеrtiсlе stаrtеd П);

Объект Verticle можно считать отдаленным аналогом сервле­
та, это атомарная единица развертывания в каркасе Vert.x. Точкой
входа в программу является метод start, аналогичный методу main
в обычной программе на Java. В нашем чате мы используем его толь­
ко ДЛЯ настройки сервера, принимающего запросы на создание тср­

соединений.

Мы передаем лямбда-выражение методу connectHandler, который
будет вызываться при каждом подключении к чату. Это обраrnый
вызов, который работает, по сути дела, так же, как обратные вызовы
в Swing, о которых я рассказывал в главе 1. Достоинство такого под­
хода в том, что приложению нет дела до потоковой модели, - управ­

лением потоками со всей сопутствующей сложностью занимается

каркас Vert.x, а на нашу долю остается продумывание событий и об­
ратных вызовов.

Приложение регистрирует еще один обратный вызов с помощью
метода dataHandler. Он вызывается, когда нужно прочитать какие-то
данные из сокета. В подобном случае мы хотим предоставить более
сложную функциональность, поэтому вместо лямбда-выражения
передаем экземпляр обычного класса User, который реализует необ­
ходимый функциональный интерфейс. Обратный вызов класса User
показан в примере 9.2.

Пример 9.2 .:. Обработка получения данных от пользователя

public class User implements Handler<Buffer> 1

private static final Pattern newline _ Pattern.corrvile (10\ \пП);

private final NetSocket socket;
private final Set<String> names;

164 .:. Г!laЕЕ 9 l<онкуr:eнтюе ПpJГfXJММИpJЕЕние и iI~мбill-EblfXJжени~

private final EventBu$ eventBus;

private Optional<String> пате;

publ i c User(NetSocket socket, Vert i cl e vert i cl e)
Vertx vertx - verticle getVertx();

this.socket - socket;
names - vertx.sharedData() .gеtSеt(ппamеsп);

eventBu$ - vertx.eventBus();
name - Optional.empty();

@Override

publ i c voi d handle(Buffer buffer)
ne wline splitAsstream(buffer.tostring())

. forEach (line -> 1

}};

if (!name.isPresent())

setName (line);

else
handleMessage(line) ;

11 Продолжение класса

Буфер buffer содержит данные, полученные из сетевого соедине­
ния. МЫ пользуемся текстовым протоколом, в котором поля отделя­

ются друг от друга знаками новой строки, поэтому необходимо пре­

образовать поступившие данные в объект St ring, а затем разбить эту
строку на части в местах, где находятся знаки новой строки.

Мы завели регулярное выражение newline, сопоставляемое со знака­
ми новой строки, - экземпляр класса j ava. util. regex. Pattern. В Java 8
в класс Pattern добавлен метод splitAsStream, который позволяет раз­
бивать строку String с помощью регулярного выражения и порождать
поток значений, совпадающих с выделенными подстроками.

Первое, что делает пользователь, подключившийся к серверу чата, -
выбирает себе имя. Если мы не знаем имя пользователя пате, то ак­
тивируем логику задания имени, в ПРОПIвном случае обрабатываем
сообщение как обычно.
Нам также необходим способ получать сообщения от других поль­

зователей и передавать их клиенту чата для прочтения получателем.

С этой целью в момент, когда текущий пользователь выбирает себе
имя, мы регистрируем еще один обратный вызов - тот, что будет от­

правлять сообщения (пример 9.3).

Обратные вызовы .:. 165

Пример 9.3 .:. Подписка на сообщения в чате

eventBus.registerHandler(name, (Мessage<String> msg) ->
sendClient(msg.body()) ;

}};

Здесь мы пользуемся шиной событий каркаса Vert.x - механиз­

мом, который позволяет узлам Verticle обмениваться сообщениями
без блокировки (СМ. рис. 9.1). Метод registerHandler ассоциирует
обработчик с определенным адресом, так что в случае отправки со­

общения на указанный адрес происходит вызов этого обработчика с
сообщением в качестве аргумента. Здесь адресом служит имя поль­
зователя.

VerticJe 3

Eventbus

РИС.9.1 .:. Отправка с помощью ШИНЫ событий

Благодаря регистрации обработчиков ДЛЯ адресов и отправки им
сообщений мы можем построить весьма развитый и (или) слабо свя­
занные наборы служб, реагирующих на события без какой-либо бло­

кировки выполнения программы. Отметим, что в этом дизайне нет

никакого общего состояния.
Шина событий Vert.x позволяет передавать сообщения разных

типов, но все они обертываются объектом Message. Двухточечный
обмен сообщениями реализуется самими объектами Message; в объ­
екте-отправителе может храниться обработчик ответа. Поскольку

в случае чата нам необходимо фактическое тело сообщения, то есть
его текст, то мы просто вызываем метод body. Это текстовое сооб­
щение отправляется пользователю-получателю путем передачи по

теР-соединению.

Если приложение хочет отправить сообщение одного пользователя
другому, то оно передает сообщение на адрес, представляющий вто­
рого пользователя (пример 9.4). И снова адресом является имя поль­
зователя.

Пример 9.4 .:. Отправка сообщения пользователю чата

eventBus.send(user, name.get() + '>' + message);

166 .:. г /'аЕЕ 9 I<DHКVp::'HTHC€ ПРОГj:8ММИрОЕЕние и iI5lмБLiа-8ЫfXJжени~

Немного усложним этот простейший чат-сервер, добавив широ­

воковещательную рассылку сообщений и 4ПОКЛОННИКОВ» (follower).
Для этого нам понадобятся две новые команды.

Восклицательный знак будет обозначать команду широковеща­
ния, которая посылает следующий за ней текст всем поклонникам.

Например, если пользователь ЬоЬ введет команду 4!hello followers»,
то все его поклонники получат сообщение 4bob>hello followers».

Команда follow, которая делает выполнившего ее поклонником
указанного вслед за ней пользователя, например: 4follow ЬоЬ».

Далее нам предстоит реализовать методы broadcastMessage и follow­
User, соответствующие этим командам.
В данном случае необходим другой тип связи. Вместо того чтобы

посылать сообщение одному пользователю, мы должны опубликовать
его для нескольких пользователей. К счастью, шина соБЫ11IЙ Vert.x
позволяет публиковать сообщение, адресованное нескольким обра­
ботчикам (рис. 9.2). И, таким образом, реализация оказывается по­
хожей на предьщущую.

Eventbus

Рис. 9.2 .:. Публикация с помощью шины событий

Единственное различие состоит в том, что вместо метода send шины
событий мы вызываем метод publish. Чтобы избежать конфликтов
с существующими адресами в случае, когда пользователь вводит

команду!, сообщение публикуется на адрес, составленный из имени
пользователя и суффикса .followers. Например, сообщение, опубли­
кованное пользователем ЬоЬ, передается обработчику, зарегистриро­

ванному для адреса ЬоЬ. followers (пример 9.5).

Пример 9.5 .:. Широковещательная рассылка сообщений поклонникам

private voi d broadcastMess age(String mess age) 1
String пате - this.name.get();
eventBus.publish(name + П.fоllоwеrs П , name + '>' + message);

Что же касается обработчика, то мы хотим выполнить в нем ту же
операцию, что и в зарегистрированном ранее для передачи: перепра­

вить сообщение клиенту (пример 9.6).

Архитектуры на основе переLiачи сообше ний .:. 167

Пример 9.6 .:. Прием широковещательных сообщений

private void followUser(Str i ng user)
eventBu$.regi ste r Handl er (use r + 10 fоll оwеrs П , (Message<String> message) ->1

sendClient(message.body()) ;
}};

D Если мы отправляем сообщение на адрес, который прослушивают несколько
обработчиков, то используется циклический селектор, который решает, какой

обработчик получит сообщение. Это означает, что при регистрации адресов

необходимо проявлять ОСТОРОЖНОСТЬ.

Архитектуры на основе передачи

сообшений
Выше я описал архитектуру на основе передачи сообщений и реали­
зовал ее на примере простого клиента чата. Детали этого клиента не

так интересны, как общий принцип, поэтому поговорим О передаче
сообщений как таковой.

Прежде всего отметим, что в этом дизайне нет никакого общего со­
стояния. Коммуникация между узлами Verticle производится путем
отправки сообщений через шину событий. Это означает, что нам не
нужно думать о защите общего состояния, а следовательно, ни к чему
всякого рода блокировки или ключевое слово synchronized. Механизм
обеспечения конкурентности существенно упрощается.
Дабы гарантировать отсутствие общего состояния, разделяемо­

го несколькими узлами Verticle, мы наложили ряд ограничений на
типы сообщений, передаваемых по шине событий. В данном случае
в качестве сообщений фигурировали простые строки Java. Они не­
изменяемы, а значит, их можно безопасно передавать между узлами
Ver ticle. Не будучи в силах изменить состояние Str ing, обработчик­
получатель не может как-то повлиять на поведение отправителя.

Vert.x не требует, чтобы передавались только строки; можно обме­
ниваться и более сложнымиJSОN -объектами и даже конструировать
собственные двоичные сообщения с помощью класса Buffe r . Но эти
сообщения не являются неизменяемыми, а значит, если наивно по­
пытаться передавать их, то у отправителей и обработчиков сообще­
ний может ненароком образоваться общее состояние, если они станут
что-то записывать в сообщение.

Каркас Vert.x решает эту проблему, копируя любое изменяемое
сообщение в момент его отправки. Таким образом , получатель ви -

lБВ .:. Г/'аЕЕ 9 I(OHКVp::'HTHC€ ПpJГj:8ММИpJЕЕние и iI5lмБLiа-8ЫfXJжени~

ДИТ правильное значение, и никакого обобществления состояния
не ПРОИСХОДИТ. Не важно, пользуетесь вы каркасом Vert.x или нет,
нельзя допускать, чтобы сообщения случайно стали источником
общего состояния. Проще всего добиться этого, когда сообщения
в принципе неизменяемы, но и копирование сообщения дает нуж­
ный результат.

Модель, основанная на узлах Ve rticle, позволяет к тому же реали­
зовать конкурентную систему, пригодную ДЛЯ тестирования. Связано

это с тем, что каждый узел можно тестировать изолированно, посылая

ему сообщения и сравнивая возвращенный результат с ожидаемым.
Из таких независимо протестированных компонентов мы затем мо­

жем собрать систему, не создавая многочисленных проблем, которые
неизбежно появились бы, если бы компоненты взаимодействовали
с помощью изменения общего состояния. Разумеется, сквозные тесты
по-прежнему необходимы, так как позволяют убедиться, что система

делает именно то, что от нее ожидает пользователь!

Системы на основе передачи сообщений лучше и с точки зрения
просто ты изоляции ошибок и написания надежного кода. Если в об­
работчике сообщения имеется ошибка, то достаточно перезапустить
локальный узел Verticle, а не всю виртуальную машину Java.
В главе 6 мы видели, как лямбда-выражения применяются в соче­

тании с потоковой библиотекой для распараллеливания программы
по данным. Это позволяет использовать параллелизм для ускорения

обработки больших объемов данных. Передача сообщений и реактив­
ное программирование, о котором мы будем говорить далее, состав­

ляют другой край спектра. Тут мы сталкиваемся с конкурентными

ситуациями, в которых единиц работы по вводу-выводу, например
клиентов чата, гораздо больше, чем параллельно исполняемых пото­

ков. В обоих случаях решение одно и то же: использовать лямбда-вы­

ражения для представления поведения и проектировать API, которые
берут на себя управление конкурентностью. Чем изощреннее библио­
тека, тем проще код приложения.

Пирамида судьбы

Мы уже видели, как с помощью обратных вызовов и событий создать
неблокирующий конкурентный код, но слона-то и не приметили.
Код, изобилующий обратными вызовами, очень трудно читать, даже
если использовать лямбда-выражения. Рассмотрим конкретный при­

мер, чтобы лучше понять, в чем состоит проблема.

Пирамида судьбы .:. 169

в ходе разработки чат-серверая написал ряд тестов, описывающих
поведение узла Verticle с точки зрения клиента. Один из таких тес­
тов - messageFriend - приведен в примере 9.7.

Пример 9.7 .:. Тест проверяет, могут ли общаться в чате два приятеля
@Test

public void messageFriend() 1
withModule (() -> 1

withConnection(richard -> 1
richard.dataHandler(data -> 1

}};

}};

}};

аssеrtЕquаls(ПЬоЬ>оh its уоu!П, data.tostring());
moduleTestComplete();

richard. write С' richard\n 10) ;

withConnection(bob -> 1
bob.dataHandler(data -> 1

аssеrtЕquаls(Пriсhаrd>hаi П , data.tostring());
J:юЬ.writе C'richard<oh its you! 10);

}};

ЬоЬ. write С'ЬоЬ \пП) ;

vertx setTimer(6, id -> riсhаrd.writе(П1:юЬ<hаi П));

}};

я соединяю двух клиентов, richard и ЬоЬ, затем richard говорит
4hai» ЬоЬ'у, а ЬоЬ отвечает 40h it's you!». Я вынес отдельно общий код
создания соединения, но все равно, как видите, вложенные обратные
вызовы начинают выстраиваться в nирамиду судьбы. Они сдвигаются
к правому краю экрана - как пирамида, положенная на боковую грань

(не крутите пальцем у виска - не я придумал эту метафору!). Это хо­

рошо известный антипаттерн, затрудняющий чтение и понимание

кода. Ко всему прочему логика программы оказывается размазанной

между несколькими методами.

В предыдущей главе мы обсуждали, как лямбда-выражения позво­
ляют управлять ресурсами: достаточно передать лямбда-выражение

в метод with. В этом тесте я два раза воспользовался таким приемом.
у нас есть метод withModule, который развертывает текущий модуль
Vert.x, исполняет какой -то код и останавливает модуль. Есть также ме­
тод wi thConnection, который устанавливает соединение с ChatVerticle,
а закончив работу с ним, закрывает.
В данном случае вызовы методов with обладают, по сравнению

с конструкцией trу-с-ресурсами, тем преимуществом, что хорошо со-

170 .:. Глава 9.I<DhkypeH11-i:e Пp:JграММИp:Jвание и l\~мБL\3-8ыr:eжени~

гласуются с потоковой моделью, используемой в этой главе. В при·

мере 9.8 показано, как МОЖНО переработать этот КОД, сделав его по·

нятнее.

Пример 9.8 .:. Тест, проверяющий возможность общениs:l двух

приятелей в чате, разбит на несколько методов

@Test

public void canMessdge Friend(} [
wi thModule(this : :messageFriendWithModule} ;

private void mes sage FriendWithМoduleil

withConnection {richard -> [
checkBobReplies (richard) ;

richard .wr ite ("r i chard\ n") ;
messageBob (r ichard~;

}} ;

private void messageВob(NetSocket richard)
withConnection(messageBobWithConnection(richard)) ;

private Handler<NetSocket> messageBobWithConnection(NetSocket richard) [

re turn ЬоЬ -> !
checkRichardМessagedYou(bob);

ЬОЬ . write (1'ЬоЬ \пп) ;

vertx. setTimer (6, id -> riсhаrd.writе(ПЬоЬ<hаi П));

};

private void checkRichardMessagedYou(NetSocket ЬОЬ) 1
bob . dat aHandler(dat a -> 1

аssеrtЕquаls(Пriсhаrd>hаi П , data.tostring());
ЬоЬ . writе (П riсhаrd<оh its уоu!П);

}};

private void checkBobReplies(NetSocke t richard) 1
ri chard.dataHand l er(data - > 1

}};

аssеrtЕquаl s (П ЬоЬ>оh its уоu! П, data.toString ()) ;

modul eTes t Compl et e () ;

Агрессивный рефакторинг, показанный в примере 9.8, решил про6-
лему пирам иды судьбы , но ценой разбиения единой логики теста на
несколько методов. Теперь у нас на руках не один метод, обладающий

Будушие реЗУilьтаты .:. 171

единственной обязанностью, а несколько методов, сообща исполняю­
щих одну и ту же обязанность! Наш КОД по-прежнему ТРУДНО читать,
хотя и по другой причине.

Чем больше операций в цепочке, тем острее оказывается проблема.
Необходимо решение получше.

Будушие результаты

Еще ОДИН способ построения сложных последовательностей конку­
рентных операций - воспользоваться классом будущих результатов

Future. Объект Future - это долговая расписка на значение. Метод воз­

вращает не само значение, а обязательство вернуть его в будущем -
объект Future. В момент создания объект Future не имеет значения,
но впоследствии его можно обменять на значение - точно так же, как

долговую расписку можно обменять на деньги.
Чтобы извлечь значение из объекта Future, нужно вызвать его ме­

тод get, который блокирует выполнение, до тех пор пока значение не
будет готово. К сожалению, будущие результаты страдают теми же
проблемами композиции, что и обратные вызовы. Вкратце рассмот­
рим, с какими неприятностями можно столкнуться.

Нас будет интересовать задача поиска информации о музыкаль­
ном альбоме Album с помощью внешних веб-служб. Требуется найти
список про изведений, включенных в данный альбом, и список ис­

полнителей. Кроме того, для доступа к службам необходимо иметь
соответствующие права, адля про верки их наличия представить свои

учетные данные. И так, мы должны аутентифицироваться или хотя

бы работать в контексте уже аутентифицированного сеанса.
В примере 9.9 показана реализация этой задачи с применением

существующего АРI класса Future. Сначала (точка О) мы аутенти­
фицируемся в службах произведений и исполнителей. Обе операции
аутентификации возвращают объекты Future<Credentials>, содержа­
щие информацию о результате. Интерфейс Future универсальный, по­
этому Future<Credentials> можно рассматривать как долговую распис­
ку на получение объекта Credentials.

Пример 9.9 .:. Получение информации об альбоме от внешних
веб-служб с помощью объектов Future

@Override
public Album lookupByName (String albumName) 1

Future<Credentials> trackLogin - lоgiпто(пtrасk П); О

Future<Credentials> artistLogin - loginTo C'artist 10) ;

172 .:. Г/'аЕЕ 9 I<cJHКVp::'HTHce ПрОГj:8ММИfXJЕЕние и iIflмбда-8ЫfXJжени~

try 1
Future<List<Track» tracks - lookupTracks(albumName, trackLogin.get()); ~
Future<List<Artist» artists - lookupArtists(albumName,

artistLogin.get()) ;
return new Album(albumName, tracks.get(), artists.get()); ~

catch (InterruptedException I ExecutionException е) 1
throw new AlbumLookupException(e.getCause()); ()

в точке б мы обращаемся за произведениями и исполнителями,
передавая результат аутентификации, полученный из объектов Future

с помощью метода get. В точке 8 мы конструируем возвращаемый
объект Album, вновь вызывая get и блокируя тем самым существую­
щие объекты Future. Возникшие исключения передаются выше в виде
предметного исключения в точке Ф.

Вы наверняка заметили, что, желая передать результат объекта
Future следующей операции, мы блокируем поток выполнения. Это
может стать причиной снижения производительности, потому что ра­

бота в целом выполняется не параллельно, как было задумано, а по­
следовательно.

А это означает, что в примере 9.9 мы сможем обратиться хотя бы
к одной веб-службе поиска не раньше, чем аутентифицируемся в обе­

их. Но это же лишнее ограничение: метод lookupTracks должен до­
ждаться только завершения аутентификации в службе поиска про­
изведений, а метод lookupArtists - в службе поиска исполнителей. На

рис. 9.3 показано, кто ждет завершения каких действий.
Мы могли бы перенести блокирующие вызовы get внутрь методов

lookupTracks и lookupArtists. Это решило бы проблему. но код полу-

Что мы делаем Что мы хотим сделать

loginTo ("artist") loginTo ("artist")

loginTo ("track") loginTo ("track")

ждет ждет

lookupTracks () lookupTracks ()
ждет

lookupArtis ts () lookupArtists ()

Рис. 9.3 .:. Ни одно действие поиска
не должно дожидаться завершения обоих действий аутентификации

3aBepuвeMыe будушие реЗУilьтаты .:. 173

чился бы безобразным, и мы утратили бы возможность повторно ис­

пользовать результаты аутенrnфикации в нескольких местах.

В действительности нам необходим способ начать действовать,
после того как результат объекта Future получен, не обращаясь при
этом к блокирующему методу get. Требуется объединить Future с об­
ратным ВЫЗОВОМ.

Завершаемые будушие результаты

Решение всех вопросов дает класс CompletableFuture. Он объединяет
идею ДОЛГОВОЙ расписки, заложенную в классе Future, с использова­
нием обратных вызовов ДЛЯ организации событийно-управляемой
программы. Главное в классе CompletableFuture - тот факт, что различ­

ные экземпляры можно компоновать, не образуя пирамиду судьбы.

11 Возможно, выужесталкивалисьс концепцией, лежащей BocHOBeCompletable­
Future; в других языках она называется отложенный объект, или обещание.
В библиотеке Google Guava и в каркасе Spring используется название Liste­
nableFuture.

в примере 9.1 О я переписал пример 9.9, проиллюстрировав некото­
рые способы использования объектов CompletableFuture вместо Future.

Пример 9.1 О .. : .. Получение информации об альбоме от внешних веб­
служб с помощью объектов CompletabIeFuture

public. Album lookupByName (String albumName) 1
CompletableFuture<List<Artist» artistLookup

- lоgiпТоС'аrtist п)

.thenCompose(artistLogin -> lookupArtists(albumName, artistLogin)); ~

return loginTo (пtrас.kП)

.thenCompose(trac.kLogin -> lookupTrac.ks(albumName, trac.kLogin)) ~

. thenCombine (artistLookup, (trac.ks, artists)
-> new Album(albumName, trac.ks, artists)) ()

.join(); О

Б примере 9.10 методы loginTo. lookupArtists и lookupTracks воз­
вращают объект CompletableFuture, а не Future. Ключевой -«фокус»
в АР! класса CompletableFuture - регистрация лямбда-выражений и

сцепление функций высшего порядка. Методы другие, но сама кон­

цепция поразительно напоминает дизайн потокового API.
В точке О мы используем метод thenCompose, чтобы преобразовать

объект Credentials в CompletableFuture, который содержит исполните-

174 .:. Г/'аЕЕ 9 I(онкуr:eнтюе Пp:JГр::'ММИp:JЕЕние и iIflмБLiа-8ыражени~

лей. Это, ПО сути, то же самое, что взять у приятеля долговую распис­

ку И, получив по ней деньги впоследствии, потратить их на сайте

Amazon. Но купленную книгу вы получаете не сразу, вместо этого от
Amazon приходит письмо с сообщением, что книга выслана, - еще

ОДИН вариант ДОЛГОВОЙ расписки.

В точке б мы снова используем метод thenCompose и объект
Credentials от АРI аутентификации в службе про изведений, чтобы
создать объект CompletableFuture, содержащий про изведения. В точ­
ке О мы ВИДИМ еще ОДИН метод: thenCombine. Он принимает результат
от CompletableFuture и комбинирует его с другим CompletableFuture.
Операция-комбинатор предоставляется пользователем в виде
лямбда-выражения. Мы хотим сконструировать объект Album из
про изведений и исполнителей, в этом и заключается действие ком­

бинатора.
Сейчас стоит вспомнить, что, как и в потоковом API, мы не вы­

полняем операции немедленно, а лишь составляем рецепт, в котором

записано, как их нужно выполнить. Наша методика не может гаран­

тировать, что CompletableFuture завершился, пока не будет вызван
какой-нибудь финальный метод. Поскольку класс CompletableFuture
реализует интерфейс Future, мы могли бы просто вызвать метод get.
Но в классе CompletableFuture имеется метод j oin, который делает то
же самое; его мы и вызываем в точке Ф. В этом случае нет ПРОПIвной

проверки исключений, загромождающей код с участием get.
Надо полагать, вы уловили основную идею использования объ­

ектов CompletableFuture, но создание их - совершенно другое дело.

у создания CompletableFuture есть две стороны: собственно создание
объекта и его завершение, то есть запись в него значения, которое он
обещал вернуть клиентскому коду.

Из примера 9.11 видно, что создать объект CompletableFuture до­
вольно легко. Нужно просто вызвать его конструктор! Клиентский

код может использовать этот объект для сцепления операций. Мы
также сохраняем ссылку на созданный объект, чтобы можно было за­

вершить работу в другом потоке.

Пример 9.11 .:. Завершение будущего результата путем записи в
него значения

CompletableFuture<Artist> createFuture (String id) 1
CompletableFuture<Artist> future - new CompletableFuture<>();
startJob(future) ;
return future;

3aBepuвeMыe будушие реЗУilьтаты .:. 175

Выполнив необходимую работу в том потоке, который использу­
ем, мы ДОЛЖНЫ сообщить объекту CompletableFuture, какое значение
он представляет. Напомним, что выполнить работу можно разными
способами. Например, мы можем отправить (методом submit) зада­
ние службе ExecutorService, воспользоваться системой на базе цикла
обработки событий типа Vert.x или просто запустить поток Thread и
сделать в нем всё, что необходимо. В примере 9.12 показано, что ДЛЯ
уведомления объекта CompletableFuture о его готовности необходимо
вызвать метод complete. Пришло время платить по ДОЛГОВОЙ расписке.

Пример 9.12 .:. Завершение будущего результата путем записи
в него значения

future complete(artist);

Клиентский код

CompletabIeFurute

Объект Fuгute
сконструирован

Зарегистрировать
обработчики

CompletabIeFurute

Объект Fuгute
сконструирован

Окончательный результат

Рабочий поток

comi>etell

Рис. 9.4 .:. Завершаемый будущий результат­
это долговая расписка, которая может быть

обработана обработчиками

Разумеется, широко распространенный способ применения объек­

тов CompletableFuture - асинхронное выполнение блока кода. По за­

вершении код возвращает некоторое значение. Чтобы разные люди не
занимались реализацией одного и того же кода снова и снова, сущест­

вует полезный фабричный метод supplyAsync для создания объекта
CompletableFuture, его применение показано в примере 9.13.

Пример 9.13 .:. Асинхронное создание объекта CompletabIeFuture

CompletableFuture<Track> lookupTrack(String id) 1
return CompletableFuture.supplyAsync(() -> 1

11 Здесь выполняется какая-то дпительная операция О

176 .:. ГilаЕЕ 9 I<cJHКVp::'HTHce ПpJграММИРОЕЕние и iIflмБL\iJ-8ЫfXJжени~

11
return track; 49

}, service); О

Метод supplyAsync принимает и выполняет объект Supplier. Клю­
чевой момент, показанный в точке О, заключается в том, что Supplier
может выполнять длительную операцию, не блокируя текущего по­
тока, - отсюда и слово Async в имени метода. Значение, возвращенное
в точке б, используется ДЛЯ завершения объекта CompletableFuture.
В точке 8 мы предоставляем объект Executor, который называется
service, сообщающий CompletableFuture, где выполнять работу. Если
Executor не указан, то используется тот же пул потоков с разветвле­
нием и соединением, в котором выполняются параллельные потоки

Stream.
Само собой, не всякая ДОЛГОВая расписка оплачивается. Иногда ис­

ключительные обстоятельства не дают нам заплатить свои долги. Как
ВИДНО из примера 9.14. АР] класса CompletableFuture предусматривает
такие ситуации, давая возможность 4завершить с исключением» пу­

тем вызова метода completeExceptionally вместо complete. Вызвать для
одного и того же объекта оба метода complete и completeExceptionally
нельзя.

Пример 9.14 .. :. Завершение будущего результата в случае ошибки
future. completeExceptionally (new AlbumLookupException C'Unable to find 10 + пате));

Полный обзор АР! класса CompletableFuture выходит за рамки этой
главы, но во многих отношениях это настоящая сокровищница. В АР!

имеется множество полезных методов для компоновки и комбиниро­

вания экземпляров CompletableFuture всеми мыслимыми способами.
К тому же теперь вы уже достаточно знакомы с текучим стилем сцеп­

ления функций высшего порядка, позволяющим сообщить компью­
теру, что делать.

Вкратце рассмотрим несколько сценариев.

О Если вы ХОПIте завершить цепочку блоком кода, который ни­
чего не возвращает, например Consumer или Runnable, обратите
внимание на методы thenAccept и thenRun.

О Для преобразования значения объекта CompletableFuture по
аналогии с методом тар интерфейса Stream можно воспользо­
ваться методом thenApply.

О Если вы хотите обработать ситуации, в которых объект Сотр­

letableFuture завершился с исключением, то метод exceptio-

Реактивное програММИРОЕЕние .:. 177

nally позволит восстановиться после ошибки, зарегистрировав
функцию, предоставляющую альтернативное значение.

О Если требуется выполнить тар, приняв во внимание как нор­

мальное завершение, так и возможность исключения, восполь­

зуйтесь методом handle.
О Для выяснения того, что случилось с объектом CompletableFu­

ture, к вашим услугам методы isDone и isCompletedExceptionally.
Класс CompletableFuture весьма полезен ДЛЯ организации конку­

рентной работы, но это не единственный игрок на поле. Далее мы рас­

смотрим родственную идею, которая предлагает несколько большую
гибкость ценой усложнения кода.

Реактивное программирование
Концепцию, лежащую в основе класса CompletableFuture, можно обоб­
щить с одиночных значений на потоки данных, с помощью идеи ре­

активного nрограммированuя. По существу, это вид декларативного

программирования, который позволяет программировать в терминах

автоматически распространяемых изменений и потоков данных.

В качестве типичного примера реактивного программирования

можно вспомнить электронную таблицу. Если в ячейку Сl ввести
формулу =В1 +5, то это будет означать, что таблица должна прибавить
5 к содержимому ячейки в1 и поместить результат в Сl. Кроме того,
электронная таблица будет реагировать на любые изменения в В1, об­
новляя значение в Сl.

Для переноса идей реактивного программирования на виртуаль­

ную машину Java написана библиотека RxJava. Здесь мы не будем
изучать ее сколько-нибудь подробно, а остановимся только на основ­

ных концепциях.

В библиотеке RxJava имеется класс Observable, который представ­
ляет последовательность событий, на которую про грамма может
отреагировать. Это долговая расписка для последовательности. Су­

ществует явственная связь между классом Observable и интерфейсом
Stream, рассмотренным в главе з.
В обоих случаях мы составляем рецепт, сцепляя функции высшего

порядка и используя лямбда-выражения, чтобы ассоциировать пове­

дение с операциями общего вида. На самом деле многие операции,
определенные в классе Observable, совпадают с методами интерфейса
Stream: тар, fi1ter, reduce.

178 .:. г /'аЕЕ 9 I<cJHКVp::'HTHce ПРОГр::'ММИрОЕЕние и iIflмБLiа-8ЫfXJжени~

Существенное различие между обоими подходами - сценарий,

в котором они используются. ПОТОКИ призваны построить последова­

тельность операций обработки коллекций в памяти. Что же касается
библиотеки RxJava, то она предназначена ДЛЯ компоновки и выстраи­
вания последовательностей в асинхронных и событийно-ориентиро­

ванных системах. Данные не вытягиваются, а заталкиваются. Можно

также считать, что RxJ ауа относится к последовательности значений
точно так же, как CompletableFutu re относится к одному значению.
На этот раз мы в качестве конкретного примера рассмотрим поиск

исполнителя (пример 9.15). Метод search фильтрует результаты по
имени и национальности. Он хранит локальный кэш имен исполни­

телей, но прочую информацию, например национальность, должен

запрашивать у внешних служб.

Пример 9.15 .:. Поиск исполнителя по имени и национальности
public Observabl e<Artist> search(String searchedName,

return getSavedArtists() ~

String searchedNational i ty,
i nt maxResu l ts) 1

.filter (name -> пате .conta ins (searchedName)) 8

.flatNap (th i s: : l ookupArti st) ~

.filter(art i st -> artist.getNat i onal i ty() Ф

.conta i ns(searchedNat i ona lity))
.take(maxResults); ~

в точке О мы получаем объект Observable, содержащий сохра­
ненные имена исполнителей. Функции высшего порядка в классе

Observable аналогичны определенным в интерфейсе Stream, поэтому
в точках 6 и Ф мы можем отфильтровать Observable по имени и на­
ционаЛЬНОС11I по аналогии с тем, как это делается для потоков типа

Stream.
В точке О мы заменяем каждое имя объектом Artist. Если бы это

сводил ось просто К вызову конструктора, то мы, очевидно, могли бы
воспользоваться операцией тар. Но в данном случае нам необходи­
мо скомпоновать последовательность обращений к внешним веб­
службам, каждое из которых может осуществляться в своем потоке
или в потоке, взятом из пула. Следовательно, мы должны заменить

каждое имя объектом Observable, представляющим одного или не­
скольких исполнителей. Поэтому используется операция flatMap.
Мы также хотим ограничить количество результатов поиска вели­

чиной maxResul ts. Для этого служит метод take объекта Observable.

Реактивное програММИРОЕЕние .:. 179

Как видите, АРI очень похож на потоковый. Существенное разли­

чие заключается в ТОМ, что интерфейс Stream предназначен ДЛЯ вычис­
ления окончательных результатов, а АРI библиотеки RxJava больше
напоминает класс CompletableFuture в части потоковой модели.
В классе CompletableFuture мы ДОЛЖНЫ были оплатить долговую

расписку вызовом метода complete, который записывает значение.
Поскольку Observable представляет поток событий, нам необходима
возможность затолкнуть несколько значений. Как это делается, пQ­

казано в примере 9 .16.

Пример 9.16 .:. Заталкивание значений в объект ObservabIe
и его завершение

оЬsеrvеr.опNехt(пап) ;
оЬsеrvеr.опNехt("Ь П) ;

observer. onNext (ПеП) ;
observer.onCompleted() ;

Мы вызываем метод onNext по одному разу для каждого элемента,
хранящегося в Observable. Это можно сделать в цикле и в любом по­
токе выполнения, в котором мы собираемся порождать значения. За­

кончив работу по генерации событий, мы вызываем метод onCompleted,
чтобы сообщить Observable о завершении. Как и в потоковой библио­
теке, имеется несколько вспомогательных фабричных методов для
создания объектов Observable из будущих результатов, итерируемых
объектов и массивов.

Как и в случае CompletableFuture, АР! класса Observable позволяет
завершать работу с исключением. Чтобы сигнализировать об ошибке,
в нашем распоряжении имеется метод onError (см. пример 9 .17). Функ­
циональность, правда, несколько отличается от CompletableFuture -
мы можем получить все события, предшествующие возникновению
исключения, но в обоих случаях завершение происходит нормально
или с исключением.

Пример 9.17 .:. Уведомление объекта ObservabIe об ошибке

observer.onError(new Exception());

Как и в случае CompletableFuture, я лишь в общих чертах описал
порядок работы с АР! класса Observable. Если вам интересны детали,
обратитесь к полной документации по проекту (https//github.com/
Netflix/RxJava/wiki/Getting-Stаrtеd). Сейчас начинается интегра­

ция RxJava в существующую экосистему библиотек Java. Например.
в каркас интеграции корпоративных приложений Apache Camel до-

1 во .:. г /'аЕЕ 9 I<DHКVp::'HTHC€ ПрОГр::'ММИfXJЕЕние и iI5lмБLiа-8ЫfXJжени~

бавлен модуль Camel RX, позволяющий использовать в этом каркасе
библиотеку RxJava. Началась также работа по изменению АРI про­
екта Vert.x на основе идей RxJ ауа.

Когда и где

в этой главе я много говорил о том, как использовать событийно-ори­

ентированные системы с неблокирующим ВВОДОМ-ВЫВОДОМ. Озна­

чает ли ЭТО, ЧТО прямо с завтрашнего ДНЯ надлежит выбросить все
существующие корпоративные ве6-приложения, написанные с ис­
пользованиемjаvа ЕЕ или Spring? Безусловно, нет.

Класс CompletableFuture и библиотека RxJava появились сравни­
тельно недавно, с применением соответствующих ИДИОМ сопряжена

дополнительная сложность. Они, конечно, проще, чем явные буду­
щие результаты и обратные вызовы, но для многих задач традицион­
ных методов веб-разработки с блокирующим вводом-выводом впол­

не достаточно. Не надо чинить то, что не сломалось.
Разумеется, я не хочу сказать, что чтение этой главы - впустую

потраченный день! Популярность событийно-ориентированных

реактивных приложений растет, и нередко они позволяют лучше

построить модель предметной области. 4Манифест реактивного
программиро вания> (http / /www.reactivemarrifesto.orgl) содержит
призыв создавать больше приложений в таком стиле, и если вам это
кажется правильным, действуйте. Особо отмечу два случая, когда
имеет смысл рассуждать в терминах реакции на события, а не блоки­
рующей обработки.

Первый - когда описание предметной области изначально форму­

лируется в терминах событий. Классический пример дает Твиттер,
служба подписки на потоки текстовых сообщений. Пользователи от­
правляют друг другу сообщения, поэтому, проектируя приложение
как событийно-ориентированное, вы точно моделируете предметную

область. Другой пример - приложение, которое строит график цен на

акции. Каждое изменение цены можно представить в виде события.
Второй очевидный случай - ситуация, когда приложение должно

выполнять много операций ввода-вывода одновременно, так что бло­

кирующий ввод-вывод потребует запуска слишком большого коли­

чества потоков. Что, в свою очередь, приведет к созданию многочис­

ленных блокировок и интенсивному контекстному переключению.
Если требуется обслуживать тысячи и более одновременных соеди­

нений, то лучше перейти к неблокирующей архитектуре.

Vпражнени~

Основные MOMeHTbI
о Событийно-ориентированная архитектура легко реализуется

с помощью обратных вызовов в виде лямбда-выражениЙ.
О Класс CompletableFuture представляет долговую расписку на полу­

чение значения в будущем. Лямбда-выражения позволяют легко
компоновать и комбинировать объекты этого класса.

О Класс Observable обобщает идею класса CompletableFuture на по­
та ки данных.

Упражнения

Эту главу сопровождает только ОДНО упражнение, ДЛЯ его выполне­

ния потребуется подвергнуть рефакторингу КОД работы с классом
CompletableFuture. Начнем с класса BlockingArtistAnalyzer, показанного
в примере 9.18. Он получает имена двух исполнителей, строит объ­
екты Artist по именам и возвращает true, если в первом исполните­
ле больше членов, чем во втором; в противном случае возвращается
false. Через конструктор класса внедрена служба поиска исполните­
лей artistLookupService; на поиск у нее может уйти некоторое время.
Поскольку объект ВlockingArtistAnalyzer два раза подряд блокирует
выполнение программы на время обращения к службе, он может рабо­
тать медленно. Наша задача в этом упражнении - повысить скорость.

Пример 9.18 .:. Класс BlockingAгtistAnalyzeг сообщает своим
клиентам, в каком исполнителе больше членов

public class BlockingArtistAnalyzer 1

private final Function<String, Artist> artistLookupService;

public BlockingArtistAnalyzer(Function<String, Artist> artistLookupService)
this.artistLookupService - artistLookupService;

public boolean isLargerGroup(String artistName, String otherArtistName) 1
return getNumberOfMembers(artistName) >

getNumberOfMembers(otherArtistName) ;

private long getNumberOfМembers(String artistName)
return artistLookupService apply(artistName)

. getMembers ()

. count () ;

182 .:. Гilаш 9 l<онкуr:eнтюе ПpJГfXJММИpJшние и iI~мБL\iJ-EblfXJжени~

в первой части упражнения вы ДОЛЖНЫ переработать блоки­
pyющий КОД возврата, воспользовавшись интерфейсом обратного
вызова. В данном случае он будет иметь тип Consumer<Boolean>. На­
помню, что Consumer - функциональный интерфейс, который вхо­

ДИТ в состав стандартной библиотеки; он принимает значение и
возвращает void. Если вы ГОТОВЫ взяться за решение, то измените
класс ВlockingArtistAnalyzer, так чтобы он реализовывал интерфейс
ArtistAnalyzer (пример 9.19).

Пример 9.19 .:. Интерфейс ArtistAnalyzeг, который должен реализовы­
вать класс BlockingAгtistAnalyzer

public interface ArtistAnalyzer 1
public void isLargerGroup(String artistName,

String otherArtistName,
Consumer<Boolean> handler);

Имея API, согласованный с моделью обратных вызовов, мы можем
отказаться от последовательного выполнения блокирующих опера­
ций поиска. Воспользовавшись классом CompletableFuture, пере60тай­
те метод isLargerGroup, так чтобы эти операции выполнялись конку­
рентно.

Глава 10
•••••••••••••••••••••••••••••••••••••••

Что д.альше?

Во многих отношениях Java можно считать языком, выдержавшим
испытание временем. Эта платформа все еще необычайно популярна
и является отличным выбором ДЛЯ разработки корпоративных биз­

hec-приложениЙ. Существует очень много библиотек и каркасов с ОТ­

крытым ИСХОДНЫМ КОДОМ ДЛЯ решения самых разнообразных задач,
начиная с написания сложных модульных ве6-приложений (Spring)
и заканчивая такими базовыми вещами, как правильные операции
с датой и временем а odatime). Диапазон инструментальных средств
также не имеет себе равных: от полноценных сред IDE типа Eclipse и
Intellij до систем сборки типа gradle и maven.
К сожалению, за прошедшие ГОДЫ Java заработал репутацию КОН­

сервативного языка, который перестал развиваться. Отчасти это свя­

зано с его длительной популярностью; хорошо знакомое перестает

вызывать уважение. Впрочем, эволюция J ауа действительно проте­
кала не без проблем. Решение во что бы ни стало сохранить обратную
совместимость, несмотря на все свои достоинства, тому немало спо­

собствовало.
По счастью, выход Java 8 - это не просто косметическое улучше­

ние языка, но новый этап в его развитии. В отличие от J ауа 6 и 7, эта
версия не сводится к мелким усовершенствованиям в библиотеках.
Я ожидаю и надеюсь, что в будущих версиях Java взятый темп не бу­
дет потерян. И это не просто потому, что мне так нравится писать кни­

ги на эту тему! Я действительно думаю, что впереди длинный путь,

который приведет к достижению основной цели программирования:

писать код, который было бы легко читать, назначение которого оче­

видно с первого взгляда и который позволяет обеспечить высокую
производительность. Я сожалею лишь, что в этой заключительной

главе недостаточно места, чтобы подробно рассмотреть потенциаль­
ные возможности будущих версий.
Мы подошли к концу книги, но я надеюсь, что это не конец вашего

знакомства с Java 8. Я рассмотрел много способов применения лямб­
да-выражений: улучшенный библиотечный код работы с коллекция-

184 .:. Гilаш 10. Что Liаilьше?

ми, параллелизм по данным, написание более простого и чистого кода
и, наконец, конкурентные программы. Я ответил на вопросы, почему,

что и как, но практическое использование остается за вами. Поэтому

я предлагаю ряд упражнений, на которые нет ответа. Их выполнение

поможет вам лучше усвоить изложенный материал.

а Объясните другому программисту, что такое лям6да-выраже­

ния и почему они заслуживают внимания. Собеседником мо­

жет быть ваш приятель или коллега.
О Попробуйте развернуть прorрамму, над которой работаете, на

платформе Java 8. Если у вас уже есть автономные тесты, ра­
ботающие в системе непрерывной интеграции J enkins CI, то
будет очень просто прогнать сборку ДЛЯ разных версиЙ]аvа.

О Начните перерабатывать унаследованный код реальной систе­

мы с использованием потоков и коллекторов. Это может быть
интересный вам проект с открытым исходным кодом или даже

программа, над которой вы работаете, если ее тестовое раз­

вертывание прошло успешно. Если вы еще не готовы принять
окончательное решение, то, быть может, стоит начать с созда­

ния прототипа в отдельной ветке.

О Сталкиваетесь ли вы с проблемами конкурентности или с об­

работкой больших объемов данных? Если да, попробуйте за­

няться рефакторингом и воспользоваться либо потоками для
распараллеливания по данным, либо новыми средствами рас­

параллеливания, появившимися в библиотеке RxJava и в клас­
се CompletableFuture.

О Проанализируйте дизайн и архитектуру хорошо знакомой вам

программной системы.

Можно ли написать лучше на макроуровне?

Можно ли упростить ее дизайн?

Можете ли вы уменьшить объем кода, необходимого для реа­

лизации определенной функции?

Можно ли улучшить удобочитаемость кода?

Алфавитный указатель

СИМВОЛЫ
@FuпсtiопаlIпtеrfaсе,аннотация, 61

А
ActionListener, класс, 20
Answer интерфейс (Mockito), 124
Apache Caтel, 179
Apache Мауеп, 183
ArrayList, источник данных, 109
Arrays, ЮIaСС, 11 О

parallelPrefix, операция, 11 О
parallelSetAll, операция, 11 О
parallelSort, операция, 11 О

averagingInt как подчиненный
коллектор, 86

в
BinaryOperator, интерфейс, 29, 60
boxedO, метод, 58
Buffer, класс (Vert,x), 167
buildO, метод, 35

С
Closeable, интерфейс, 62
Collection, интерфейс, 63
collect(toListO), операция
(Stream),36
СотратаЫе, интерфейс, 62
Comparator, 41
CompletableFuture, класс, 173

completeExceptionally, метод, 176
complete, метод, 175
exceptionally, метод, 176
Executor, 176
isCompletedExceptionally,
метод, 177
isDone, метод, 177
join, метод, 174
supply Async, метод, 176
thenAccept, метод, 176
thenApply, метод, 176

thenCommne, метод, 174
thenRun, метод, 176
сравнение с потоковым API, 173

concurrent, пакет, 17
connectHandler, метод (Vert.x), 163
Consumer, 176

D
dataHandler, метод (Vert,x), 163
debug(String message), 55
default, ключевое слово, 64
и наследование, 64

describe, глагол (DSL-язык), 145
double, тип, 57

Е
Eclipse, 183
empty, метод (класс Optional), 71

F
fiпаl-переменные,23
forEach, метод (Iterable), 63
Function, интерфейс

G

и операция flatrnap, 40
передача лямбда-выражений как
объектов типа, 38

get, метод (будущие результаты), 56
значения типа Optional, 41, 71

gradle, 183
group Ьу (SQL), 83
groupingBy, коллектор, 82, 84
Guava (библиотека Google), 173
gzip, алгоритм, 134

н
HashSet (ТИП коллекции), 76

в паРaJIЛельном

программировании, 109

186 .:. Предметный указатеllb

Intellij, 183
IntStreamrange, конструктор, 109
int. тип, 57
isDebugEnabled, метод, 115

и протоколирование, 55
isPresent, метод (класс OptionaI), 71
Iterable, интерфейс, 63

J
Jasmine, каркас, 143
Java 7,183

выведение типов, 27
J ava8, 17

@Fuпсtiоnal Iпtеrfaсе, аннотация,6 1
ключевое слово default, 64
коллекции , 95
метод comparing, 41
множественное наследование, 67
обратная двоичная совмести ­

мость,62
подсистема NJO, 162
предметная область, 19
принцип

открытости -закрытости, 155
npинципы проектирования, 128
ссылки на методы, 75
тип Optional, 70
функциональное
программирование, 18

J enkins CI, система, 184
JMock, 143
J odatime, 183
joining, метод (Collectors), 84
JOOQ,143
jSON-объекты и узлы Verticle, 167
JUnit, 144

L
lines, метод (BufferedReader), 109
LinkedList, 109
ListenableFuture, 173
List (пш коллекции), 76
log4j , система
протоколирования, 55, 127
LongStrеащ фУНКЦИЯ, 58

LongUnaryOperator, ФУНКЦИЯ, 58
long, тип, 57

м
mapping, коллектор, 86
mapToLong, функция, 57
mapToObj, функция, 58
тар, метод (Observable), 178
тар, операция (Stream), 37
для специализированных

ПОТОКОБ, 58
тахВу, коллектор, 80
тах, операция (Stream), 40
Message, объект (Yert,x), 165
rninBy, КOJиектор, 80
min, операция (Stream), 40
Mockito, каркас, 124, 143

N
NIO. СМ. Неблокирующий ВВОД-ВЫВОД
NullPointerException,71
null, значение, 70

о
Observable (библиотека RxJava), 177

flatMap метод, 178
шар метод, 178
onCompleted метод, 179
onError метод, 179
onNext метод, 179
take метод, 178
и интерфейс stгеащ 177

ofNullable, метод (класс Optional), 71
onCompleted, метод (Observable), 179
onError, метод (Observable), 179
onNext, метод (Observable) , 179
Optional, класс, 41
метод empty, 71
метод isPresent, 71
метод ofNullable, 71

Oracle,86
ог ElseGet, метод, 72
orElse, метод, 71

р

partitioningBy, коллектор, 81
Раttеrп, класс (Regex), 164

peek, операция, 126
Predicate, интерфейс, 28
и метод filter, 39

R

и переrpуженные методы, 61
разбиение КOJmекции, 81

reduce, операция (Stream), 43
в паРaJIЛельном режиме, 106

Runnable, интерфейс, 1 ЗЗ
и CompletableFuture, 176

RxJava, библиотека, 184
документация, 179
реактивное проrpаммирование, 177

s
sequential, метод (Stream), 107
slf4j, система
протоколирования, 55, 127
SOLID принципы, 148
ПРИНЦИП единственной
обязанности, 149
принцип инверсии

зависимости, 155
принцип

открытости-закрытости, 152
specifyBehaviour, метод, 146
sрlitАsStrеащ метод (Pattern), 164
Spring, каркас, 173, 183
Stream АР], 36

collect(toList(»,36
метод filter, 38
метод iterate, 109
метод шар, 37, S8
метод шах, 40
метод min, 40
методраrаllеl,101
методраrаllеlStrеащ 101
методрееk,126
метод reduce, 43, 106
метод sequential, 107
метод unordered, 78
сравнение с АР! класса
CompletableFuture, 173
сравнение с библиотекой
RxJava, 177

String, объекты
неизменяемость, 154

Предметный указатеilЬ .:. 187

разбиение методом
sp litAsStream, 164

surnmarizingInt, коллектор, 81
surnmarizingLong, как подчиненный
коллектор,86
surnmaryStatistics, метод, 59
sunшaringIпt, коллектор, 81
super, ключевое слово, 68
supplyAsync, метод
(CompletableFuture), 176
Swing, 20

т
take метод (Observable), 178
ThreadLocal, класс, 153
переопределение единственного

метода, 116
toCollection, коллектор, 79
toList, коллектор, 79
ToLongFunction, метод, 57
toSet, коллектор, 79
TreeSet,80
TreeSet (тип коллекции)

в пармлельном

программировании, 109

u
unordered, метод (Stream), 78

v
Verticle (Vert,x), 163
Vert.x, каркас, 161

Buffer, класс, 167
connectHandler, метод, 163
dataHandler, метод, 163
Verticle, 163
и CompletableFuture, 176
интеrpация с RxJava, 180
объект Message, 165
шина событий, 165
шировоковещательная рассылка

сообщений, 166

w
with, метод, 169

188 .:. ПреLiметный указатеilЬ

z
zip, алгоритм, 134

А
Абстрактные классы, 139
Автономное тестирование, 120
проблемы, 120
тестовые ДВОЙНИКИ, 123

Аккумуляторы, 42
Активатор (паттерн Команда), 130
Амдала закон, 101
Анонимный внутренний класс, 20, S6
Антипаттерны, 129
Аргументы, 22
Архитектура на основе передачи
сообщений, 167
Асинхронный ввод-вывод.

СМ. Неблокирующий ВВОД-ВЫВОД

Б
Библиотеки, S5

@FunctionalInterface,
аннотация, 61
перегрузка методов, S9
примитивные ТИПЫ, 57
тип Optional, 70

Блокировка структур данных, 106
Блокирующий ВВОД-ВЫВОД, 161
Будущие результаты, 171
завершаемые, 173

в
Виртуальные методы, 66
Внешнее итерирование, 31
Внешние DsL-языи,' 143
Внутреннее итерирование, 31
Внутренние DsL-языи,' 143
Выведение типов, 27

г
Гибкие технологии разработки, 129
и неизменяемые объекты, 155

Графический текстовый редактор,

пример, 130

д

Двоичные объекты, передача между
узлами Verticle, 167

3
Завершаемые будущие
результаты, 173
Заглушки, 123
Замыкания, 24
Значения

и

и переменные, 23
финальные, 23

Интерфейсы
ключевое слово super, 68
оrpаничения, 69
статические методы, 70

И терирование

к

внешнее и внутреннее, 31
реализация, 34

Каскадные таблицы стилей (CSS)
Как внешний DSL-язык, 143
Клиент (паттерн Команда), 130
Код
как данные, 20
разные мнения, 128

КОJL1Iекторы,78
rpуппировка данных, 82
композиция, 84
пользовательские, 86
порождение других значений, 80
порождение других КОJL1Iекций, 79
разбиение данных, 81
редукция как, 94
рефакторинг, 86
строки, 83

КОJL1Iекции,75
BJava8,95
коллекторы, 79
создание параллельных потоков

из, 101
ссьmки на методы, 75

упорядочение элементов потока, 76
Команда, паттерн, 130
илямбда-выражения, 132

Команда (паттерн Команда), 130
Комбинирующие фУНКЦИИ, 106
Комплект (DSL-языки), 144
Конкретные классы, 139
Конкурентность, 161

л

архитектура на основе передачи

сообщений, 167
будущие результаты, 171
завершаемые будущие
результаты, 173
и обратные вызовы, 162
и паРaJIЛелизм, 98
когда использовать, 180
неблокирующий ВВОД-ВЫВОД, 161
реактивное

прогр~ирование, 177

Лямбда-выражения,20

автономное тестирование, 120
библиотеки, 55
выведение типов, 26
и значения, 23
и паттерн Команда, 132
использование, 55
использование в тестовых

двойниках, 123
итерирование, 31
как читать, 22
коллекции, 75
конкурентное

прorраммирование, 161
паттерн Наблюдатель, 138
паттерн Стратегия, 135
паттерн Шаблонный метод, 140
полезное при:менение, 51
потоки,31
предметно-ориентированные

языки, 143
принципы проектирования, 128
рефакторинг, 114
формат,21
функциональные
интерфейсы, 24

Предметный указатеilЬ .:. 189

м
Макросы, 132
Манифест реактивного
проrpаммирования, 180
Мейер Бертран, 155
Метод Монте-Карло, 103
Методы по умолчанию, 63
Многоядерные процессоры, 17, 100
Множественное наследование, 67
правила, 68

Модель предметной области,
раскрытие и сокрытие элементов, 46

н
Наблюдаемая неизменяемость, 154
Наследование, 64, 67
ключевое слово super, 68
методов по умолчанию, 64
правила, 68

Неблокирующий ввод-вывод, 161
Java API, 162

Неизменяемость реализации, 154
Неизменяемые объекты, 154
Нейтральное значение, 106
Непрерывная интетрация (CI), 114

о
Обещание, 173
Обратная двоичная
совместимость, 62
Обратные вызовы, 162
пирамида судьбы, 168
сочетание с будущими
результатами, 173

Ожидание (DSL-языки), 144
Операции
параллельные потоковые, 101
параллельные с массивами, 11 О
рефакторинг унаследованного
кода,46
сцеrиение, 45

Операции с массивами, 11 О
параллельные,

производительность, 109
Отладка и отложенное
вычисление, 125

190 .:. ПреLlметный указатеllЬ

Отложенные метОДЫ, 34
Отложенные объекты, 173

п
ПаралЛeJIlIЗМ на уровне задач, 100
Параллелизм по данным, 98
и конкурентность, 98
и паРa/IЛeJJИЗМ на уровне задач, 100
и npоизводительность, 100, 107
моделирование, 102
операции с :массивами, 110
потоковые операции, 101
правила, 106

Паттерн Наблюдатель, 136
лямбда-выражения, 138
проектирование API, 136

Паттерн Одиночка, 129
Паттерн Стратегия, 133
илямбда-выражения, 136

Паттерн Шаблонный метод, 139
илямбда-выражения, 140

Паттерны проектирования, 129
Переrpузка методов, 59
и класс Thread LocaI, 116
и методы по умолчанию, 64

Пирамида судьбы , 168
Пиши все дважды (WET), 117
Побочн:ые эффекты, 51
Подставные объекты, 123
Половинки булочки, 36
Получатель (паттерн Комаида), 130
Порядок поступления, 76
Построитель паттерн, 35
Потоки, 31
итерирование,3 1
и унаследованный КОД, 46
метод filter, 38
метод flatMap, 40
несколько вызовов, 49
операЦlIlt, 36
операЦIIИ с состоянием

и без состояния, 11 О
реanизация,34
специamlзированные

для примитивных типов, S8
сцепление операций, 44
упорядочение элементов, 76

Потоковые операции
без состояния, 11 О
Потоковые операции
с состоянием, 11 О
П редм:еТНО -ОРllентированные языки
(DSL), 143

specify8ehaviour, метод, 146
внешние, 143
глагол describe, 14S
класс Expect, 147
комплект, 144
иаJаvа, 144
ожидание, 144
оценка, 148
реализация, 145
спецификация, 144
тестирование, 148

Прим:итивные типы, 57
Принцип единственной

обязанности, 149
ПРИНЦJШ инверсии зависимости, 155
ПРШIЦJШ
открытости -закрытости, 152

неизменяемые объекты, 154
ПрlffiЦИПЫ проеКТlrpоваmlЯ, 128
паперн: Коман:да, 130
паттерн Наблюдатель, 136
паттерн СтратепLЯ, 133
паттерн Шаблонный метод, 139
предметно -ориентированные

языки, 143
принципы SOLID, 148

Производительность

р

и объекты Future, 172
и параллелизм, 101, 107
и протокол ирование, 55
параллельная н последовательная

обработка данных, 102
упакованные типы, 57
ФУНКЦИИ, специализированные
JUIЯ ПРИМIfТИВНЫХ пmов, 58

Разработка на основе поведения

(8DD),143
и разработка через
тестирование, 143

Разработка через тестирование
(TDD),114
Распаковка, 57
Реактивное ПРОIpаммирование, 177
Регулярные выражения
как внешний DsL-язы,' 143
Редукция, как коллектор, 94
Рефакторинг кода, 114
паттерн WET, 117
переопределение единственного

метода, 116
протоколирование, 115
с помощью коллекторов, 86
унаследованНОГО,46

Ромбовидный оператор, 27

с
Селекторы, 162
Состояние

и потоки, 110
разделяемое несколькими узлами

Verticle, 167
Специализация ДЛЯ примитивных
ТИПОВ,57
Спецификапия (DSL), 144
Сравнения метод, 41
Ссылки на методы, 75
и автономное тестирование, 122

Статические методы, 70
Строки, 83
Субъект (паттерн Наблюдатель), 136
Сцепленность класса, 149

т
Твиттер, 180
Тестирование
конкурентных систем с помощью

объектов Verticle, 168
протоколирование, 125
точки останова в середине

потока, 127
Тестовые двойники, 123

ПреLiметный указатеilЬ .:. 191

Типы
выведение, 26
и предикаты, 27
параметров, 24
примитивные, 57

Точечная лямбдификация, 114
Точки останова в середине
потока, 127

у

Удобочитаемость кода, 19
ссьmки на методы, 76
финальные значения, 23

Упакованный тип, 57
Упаковка, 57

ф

Фаулер Мартин, 123, 159
Функциональное
проrpаммирование, 18
функции высшего порядка, 50

Функциональные интерфейсы, 24
в DSL-языкзх, 146

ц

Целевой тип

лямбда-выражения, 22, 61
Цикл fOT

и внешнее итерирование, 32
рефакторинr, 47

ш
Шина событий (Vert,x), 165
команда широковещания, 166

э
Энергичные методы, 34
Эффективно финальные
переменные, 23

Книги издательства «ДМК Пресс» можно заказать

в торгово-издательском холдинге «Планета Альянс» наложенным IVIатежом,

выслав открытку IШи письмо по почтовому адресу:

115487, г. Москва, 2-й Нагатинский пр-д, Д. БА
При оформлении заказа следует указать адрес (полностью),

по которому должны быть высланы книги;

фЗМIШию, имя И отчество получателя.

Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.аliапs-kпigа.ru.

Оптовые закупки: тел. (499) 782-38-89.
Электронный адрес: Ьооks@aliапs-kпigа.ru.

Ричард Уорбэртон

Лямбда-выражения в Java 8

Главный редактор Мовча1i Д. А.
dmkpress@gmail.com

Перевод СЛU1i}{U1i А. А.

Корректор СU1iяева Г. И.

Верстка Ча1i1iова А. А.

Дизайн обложки Мовчан А. Г.

Формат 60х90 1/16 .
ГаРНИ1Ура .Петербург>. Печать офсетная.

Усл. печ. л. 32. Тираж 200 экз.
N,

Веб-сайт издательства: www.дмк.рф

Internet�магазин:
www.dmkpress.com
Книга – почтой:
e�mail: orders@alians-kniga.ru
Оптовая продажа:
«Альянс�книга»
Тел./факс: (499) 782�3889
e�mail: books@alians-kniga.ru www.дмк.рф

Функциональное программирование

Лямбда-выражения в Java 8

“В этой книге вы найдете четкие ответы на вопросы, зачем, где и как
использовать лямбда-выражения для улучшения своего кода”.

Мартин Вербург,
генеральный директор jClaruty и обладатель звания Java Champion

“Любые похвалы этой книге будут недостаточны, она, безусловно,
должна занять место на книжной поле каждого Java-разработчика”.

Даниэль Брайант,
технический директор Instant Access Technologies

Если вы имеете опыт работы с Java SE, то из этой практической книги узнаете
об изменениях в версии Java 8, обусловленных появлением в языке лямбда-
выражений. Вашему вниманию будут представлены примеры кода, упражнения
и увлекательные объяснения того, как можно использовать эти анонимные
функции, чтобы сделать код проще и чище, и как библиотеки помогают в
решении прикладных задач.
Лямбда-выражения — относительно простое изменение в языке Java; в первой
части книги показано, как правильно ими пользоваться. В последующих
главах демонстрируется, как лямбда-выражения позволяют повысить
производительность программы за счет распараллеливания, писать более
простой конкурентный код и точнее моделировать предметную область, в том
числе создавать более качественные предметно-ориентированные языки.

В книге рассматриваются следующие темы:
• использование потоков, усовершенствованных коллекций и связанных с

ними новшеств в Java 8;
• задействование нескольких процессорных ядер и повышение производи-

тельности с помощью параллелизма по данным;
• применение техники «лямбдификации» к коду существующих приложений и

библиотек.
• практические способы тестирования и отладки лямбда-выражений;
• реализация принципов объектно-ориентированного программирования

SOLID с помощью лямбда-выражений;
• написание конкурентных приложений, в которых эффективно используется

передача сообщений и неблокирующий ввод-вывод;
• упражнения, сопровождающие каждую главу, помогут быстро освоить

лямбда-выражения.

9 785940 749196

ISBN 978-5-94074-919-6

	186-193 1.pdf
	186-193_Страница_1
	186-193_Страница_2
	186-193_Страница_3
	186-193_Страница_4
	186-193_Страница_5
	186-193_Страница_6
	186-193_Страница_7
	186-193_Страница_8

	141-159.pdf
	141-160_Страница_01
	141-160_Страница_02
	141-160_Страница_03
	141-160_Страница_04
	141-160_Страница_05
	141-160_Страница_06
	141-160_Страница_07
	141-160_Страница_08
	141-160_Страница_09
	141-160_Страница_10
	141-160_Страница_11
	141-160_Страница_12
	141-160_Страница_13
	141-160_Страница_14
	141-160_Страница_15
	141-160_Страница_16
	141-160_Страница_17
	141-160_Страница_18
	141-160_Страница_19

	160-185.pdf
	160-185_Страница_01
	160-185_Страница_02
	160-185_Страница_03
	160-185_Страница_04
	160-185_Страница_05
	160-185_Страница_06
	160-185_Страница_07
	160-185_Страница_08
	160-185_Страница_09
	160-185_Страница_10
	160-185_Страница_11
	160-185_Страница_12
	160-185_Страница_13
	160-185_Страница_14
	160-185_Страница_15
	160-185_Страница_16
	160-185_Страница_17
	160-185_Страница_18
	160-185_Страница_19
	160-185_Страница_20
	160-185_Страница_21
	160-185_Страница_22
	160-185_Страница_23
	160-185_Страница_24
	160-185_Страница_25
	160-185_Страница_26

