
Beginning
Java MVC 1.0

Model View Controller Development
to Build Web, Cloud, and Microservices
Applications
—
Peter Späth

Beginning Java MVC 1.0
Model View Controller Development

to Build Web, Cloud, and
Microservices Applications

Peter Späth

Beginning Java MVC 1.0: Model View Controller Development to Build Web, Cloud,
and Microservices Applications

ISBN-13 (pbk): 978-1-4842-6279-5			 ISBN-13 (electronic): 978-1-4842-6280-1
https://doi.org/10.1007/978-1-4842-6280-1

Copyright © 2021 by Peter Späth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Janko Ferlic on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262795. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Peter Späth
Leipzig, Sachsen, Germany

https://doi.org/10.1007/978-1-4842-6280-1

To Nicole

v

Table of Contents

Chapter 1: �About MVC: Model, View, Controller��� 1

The History of MVC��� 3

MVC in Web Applications�� 4

MVC for Java�� 6

Finally, Java MVC (JSR-371)�� 6

Why MVC�� 7

Where Is Hello World?�� 8

Exercises�� 17

Summary��� 18

Chapter 2: �Prerequisite: Jakarta EE/Java EE��� 19

The Nature of Java for Enterprise Applications�� 19

GlassFish, a Free Java Server�� 25

Getting GlassFish�� 26

GlassFish Shell Administration��� 28

GlassFish GUI Administration�� 32

GlassFish REST Interface Administration��� 33

Using a Preinstalled Java Server��� 36

Learning Java for Enterprise Applications��� 36

RESTful Services�� 37

Exercises�� 41

Summary��� 41

About the Author�� xiii

About the Technical Reviewer��xv

Introduction��xvii

vi

Chapter 3: �Development Workflow�� 45

Using Gradle as a Build Framework��� 45

Using Eclipse as an IDE�� 46

Installing Eclipse�� 46

Configuring Eclipse��� 48

Adding Java Runtimes�� 49

Adding Plugins�� 49

Eclipse Everyday Usage�� 50

More About Gradle��� 51

A Basic Gradle Project�� 51

Gradle Main Concepts�� 53

Standard Gradle Project Layout�� 54

The Central Gradle Build File�� 55

Running Gradle Tasks��� 57

Gradle Tasks Explained��� 61

Gradle Plugins�� 63

More About Repositories�� 64

More About Dependencies�� 66

Changing the Project Structure�� 69

The Gradle Build File Is a Groovy Script��� 70

Script Variables�� 72

Custom Tasks��� 73

The Gradle Wrapper�� 74

Multi-Project Builds�� 75

Adding a Deploy Task��� 79

Developing Using the Console��� 81

Installing MVC�� 84

Exercises�� 85

Summary��� 86

Table of Contents

vii

Chapter 4: �Hello World for Java MVC��� 95

Starting the Hello World Project��� 95

The Hello World Model��� 102

The Hello World View��� 104

The Hello World Controller��� 107

Using Gradle to Build Hello World�� 108

Starting a Jakarta EE Server�� 111

Deploying and Testing Hello World��� 111

Exercises�� 114

Summary��� 115

Chapter 5: �Start Working with Java MVC�� 117

Handling User Input from Forms�� 117

Exception Handling in Java MVC�� 120

Non-String POST Parameters��� 124

Handling Query Parameters��� 126

Exercises�� 130

Summary��� 130

Chapter 6: �In-Depth Java MVC��� 133

The Model�� 133

CDI in Java MVC��� 134

Model Object Scopes�� 137

The Simplified Model Data Container��� 139

The View: JSPs��� 140

JSP Basics�� 141

Directives�� 141

Static Content��� 143

Java Scriptlets and Java Expressions�� 144

Implicit Objects��� 145

JavaBeans Components��� 145

Expression Languages�� 146

Table of Contents

viii

Output��� 148

Variables��� 149

Loops�� 150

Conditional Branching�� 152

Cookies��� 153

The View: Facelets��� 154

Facelets Files��� 155

Facelets Configuration�� 155

Templating via Facelets�� 157

The <ui:decorate> Tag��� 161

An Example Facelets Project�� 164

Mixing Facelets and JSTL��� 177

Unified Expressions�� 178

The Controller�� 179

Controller Basics�� 179

Getting Pages��� 180

Preparing the Model��� 182

Posting Data into Controllers�� 183

Exercises�� 187

Summary��� 187

Chapter 7: �In-Depth Java MVC: Part II��� 193

Adding Bean Validation�� 193

Injectable Context�� 203

Persisting State�� 205

Dealing with Page Fragments�� 207

Observers��� 212

Configuration��� 215

Exercises�� 218

Summary��� 218

Table of Contents

ix

Chapter 8: �Internationalization�� 223

Language Resources�� 223

Adding Localized Messages to the Session��� 225

Formatting Data in the View��� 229

Using JSF for Formatting��� 234

Localized Data Conversion��� 236

Exercises�� 238

Summary��� 238

Chapter 9: �Java MVC and EJBs�� 241

About Session EJBs��� 241

Defining EJBs��� 242

Accessing EJBs�� 246

EJB Projects��� 248

EJBs with Dependencies��� 250

Asynchronous EJB Invocation�� 252

Timer EJBs��� 253

Exercises�� 256

Summary��� 257

Chapter 10: �Connecting Java MVC to a Database�� 261

Abstracting Away Database Access with JPA�� 261

Setting Up a SQL Database�� 262

Creating a Datasource��� 264

Preparing the Member Registration Application�� 266

Adding EclipseLink as ORM��� 274

Controllers�� 275

Adding Data Access Objects�� 279

Updating the View�� 281

Adding Entities��� 283

Table of Contents

x

Adding Relations�� 285

Exercises�� 289

Summary��� 291

Chapter 11: �Logging Java MVC Applications��� 295

System Streams��� 295

JDK Logging in GlassFish��� 296

GlassFish Log Files��� 297

Adding Logging Output to the Console��� 297

Using the Standard Logging API for Your Own Projects�� 298

Logging Levels�� 299

The Logger Hierarchy and Thresholds�� 299

The Logging Configuration��� 301

The Logging Format��� 303

Using JDK Standard Logging for Other Servers��� 303

Adding Log4j Logging to Your Application�� 304

Adding Log4j Server-Wide�� 305

Changing the Logging Format�� 308

Adding Log4j to Jakarta EE Web Applications�� 310

Using Log4j in the Coding��� 312

Exercises�� 313

Summary��� 314

Chapter 12: �A Java MVC Example Application�� 321

The BooKlubb Database��� 321

The BooKlubb Eclipse Project�� 323

The BooKlubb Infrastructure Classes��� 326

Configuring BooKlubb Database Access�� 328

The BooKlubb Internationalization��� 328

The BooKlubb Entity Classes�� 333

BooKlubb Database Access via DAOs�� 340

The BooKlubb Model�� 347

Table of Contents

xi

The BooKlubb Controller�� 354

The BooKlubb View�� 364

Fragment Files�� 365

Landing Page�� 367

Member-Related View Files�� 368

Book-Related View Files��� 381

Deploying and Testing BooKlubb�� 390

Summary��� 391

�Appendix:��� 393

�Solutions to the Exercises�� 393

Chapter 1 Exercises�� 393

Chapter 2 Exercises�� 394

Chapter 3 Exercises�� 394

Chapter 4 Exercises�� 396

Chapter 5 Exercises�� 399

Chapter 6 Exercises�� 403

Chapter 7 Exercises�� 405

Chapter 8 Exercises�� 413

Chapter 9 Exercises�� 423

Chapter 10 Exercises�� 428

Chapter 11 Exercises�� 433

�Index�� 437

Table of Contents

xiii

About the Author

Peter Späth graduated in 2002 as a physicist and soon afterward became an IT

consultant, mainly for Java-related projects. In 2016, he decided to concentrate on

writing books on various aspects, but with a main focus on software development.

With two books about graphics and sound processing, three books on Android app

development, and a beginner’s book on Jakarta EE development, the author continues

his effort in writing software development-related literature.

xv

About the Technical Reviewer

Luciano Manelli was born in Taranto, Italy, where he

currently resides with his family. He graduated in Electronic

Engineering at the Polytechnic of Bari at 24 years of age and

then served as an officer in the Navy. In 2012, he earned a

PhD in computer science from the IT department, University

of Bari - Aldo Moro. His PhD focused on grid computing

and formal methods, and he published the results in

international publications. He is a professionally certified

engineer and an innovation manager, and in 2014, he began

working for the Port Network Authority of the Ionian Sea – Port of Taranto, after working

for 13 years for InfoCamere SCpA as a software developer. He has worked mainly in the

design, analysis, and development of large software systems; research and development;

testing; and production with roles of increasing responsibility in several areas over the

years. Luciano has developed a great capability to make decisions in technical and

business contexts and is mainly interested in project management and business process

management. In his current position, he deals with port community systems and digital

innovation.

Additionally, he has written several IT books and is a contract professor at the

Polytechnic of Bari and at the University of Bari - Aldo Moro. You can find out more at his

LinkedIn page: it.linkedin.com/in/lucianomanelli.

xvii

Introduction

Starting at the very infancy of software creation, developers tried to modularize their

applications in order to streamline their projects and increase the maintainability of

the software they created. Soon, a very basic segregation scheme was identified: One

part of the software must deal with data and persistence, another part must deal with

presenting the data to the user, and one last part must handle data input and frontend

view propagation.

This segregation scheme showed up in so many projects that it was promoted to a

common software design pattern, called Model-View-Controller, or MVC for short. Its

power also manifested in its versatility, even with big paradigm changes, like the onset of

the Internet age. With database products for the model layer, browsers for the view layer,

and some kind of user input processing for the controller layer, the pattern’s accuracy

and applicability to the majority of software projects became even more apparent with

web applications.

Interestingly, even though most web application frameworks under the hood apply

some kind of MVC layer demarcation, Java Server products up to JEE 7 did not include

a dedicated MVC framework. With JSR-371 (Java Specification Request number 371)

only recently and starting with JEE 8/Jakarta EE 8, an MVC specification entered the Java

Enterprise application realm, which is one of the reasons this book was born. It does

not describe all MVC Frameworks that you can add to Java EE/Jakarta EE as an external

library. There are just too many of them and you can learn about them by looking at

each library’s documentation. Instead, we talk about the genuine Java MVC library as

described by JSR-371.

The target version of Java MVC is 1.0, and we use a Jakarta EE version 8.0 compliant

server to run Java MVC on it.

�The Book’s Targeted Audience
The book is for beginning or advanced enterprise software developers with knowledge

of Java Standard Edition version 8 or later and some experience in Jakarta EE (or JEE)

development. It is also assumed that the reader is able to use the online API references,

xviii

as this book is not a reference in the sense that all API classes and methods are listed.

Instead, it presents techniques and technologies that help professional Java Enterprise

level developers leverage web application programming by including Java MVC in their

software.

The book uses the Linux operating system as the development platform, although

the code can be run on other platforms (Windows and macOS) without complex

adaptions. This book also does not talk about hardware issues (in case you don’t use a

laptop, a PC, or a server).

The readers will in the end be able to develop and run Java MVC programs of mid- to

high-level complexity.

�Sources
All sources shown or referred to in this book can be accessed via the Download Source

Code button located at www.apress.com/9781484262795.

�How to Read This Book
You can read this book sequentially from the beginning to the end, or you can read

chapters on an ad hoc basis if your work demands special attention on a certain topic.

Introduction

http://www.apress.com/9781484262795

1
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_1

CHAPTER 1

About MVC: Model,
View, Controller
MVC is a software design pattern. It describes the separation of software into three

elements:

•	 Model: Manages the data of an application. This is to be understood

in a narrow sense. Of course, any part of a less than trivial application

deals with the application’s data in one way or another, but the

model from MVC corresponds to data items viewable to the user and

possibly subject to change by user interactions. The model is agnostic

to the way the data is represented to the user or any application

workflow, so it can be said that the model is the central part of a MVC

application. It is not surprising that developing a model is among the

first steps of any MVC software project.

•	 View: Describes the presentation of the data and control elements

(inputs, buttons, check boxes, menus, and so on) to the user. A view

may provide different modes, like paged or non-paged tables, a

formatted list or a link list, and so on. A view also may use different

technologies, like a GUI component installed on the user’s PC, an

app on a mobile phone, or a web page to be viewed in a browser.

•	 Controller: Handles user input and prepares the data set necessary

for the view part to do its work. While a view shows model items, the

view never has to know how data is stored and retrieved from some

persistent storage (database). This is the controller’s responsibility.

Because the user input determines what an application has to do next,

the controller also contains the application logic. Any calculation and

data transformation happens in the control part of MVC.

https://doi.org/10.1007/978-1-4842-6280-1_1#DOI

2

For example, consider a book club application. In this case, the model consists of

elements such as books (including rental status), book storage location (building, room,

or shelf), and member. For search application modules, you normally define lists of

books, users, and so on, as model values.

The view part of the book club application will contain pages that show books, show

members, show book locations, enable members to rent books, add club members, show

book and member lists, as well as various search functionalities, and so on. Technically,

this will often go hand in hand with a templating engine that defines placeholders for

model elements, shortcuts for loops (for tables and lists), and other view elements like

menus and buttons.

The controller handles the data the user enters. If, for example, the view currently

shows a search page for books and the user enters a book’s name and clicks on the

Search button, the controller is informed as to which button was clicked. The controller

then reads the request parameters (the book’s name in this case) and possibly some

model values (for example, the username and whether the user is logged in), queries

the database, builds a result list, creates a model from this list, and finally decides which

view page to show next.

There exists some fluffiness concerning the implementation details. This comes

from the technical details of the data flow between view elements and model elements.

MVC makes no assumption about when updates to view elements and model elements

actually happen and which procedure is chosen to keep them synchronized. This is why,

for MVC, you find many different diagrams in the literature.

For Java MVC, we can narrow our ideas about MVC to the following—a model

(stored in memory) defines the application’s state; a view shows model values and sends

user interactions to a controller; and the controller prepares model data, handles user

input and accordingly changes model values, and then decides which view page to show

next. This kind of MVC model is depicted in Figure 1-1.

Chapter 1 About MVC: Model, View, Controller

3

�The History of MVC
The advent of MVC dates back to the 1970s. It was introduced into the computer

language Smalltalk as a programming concept. At that time, it did not have a name. Only

later, in the late 1980s, was the moniker MVC explicitly used. It appeared in an article in

the periodical Journal of Object Technology.

MVC steadily became more and more widespread, and its ideas were so widely

adopted that variants evolved from MVC. We don’t talk about these variants in this book,

but a short list includes:

•	 PAC (Presentation-Abstraction-Control) and HMVC (Hierarchical
MVC). This is a variation of MVC, where submodules have their own

MVC-like structure and only later is a view page constructed from

them.

Figure 1-1.  The Java MVC design pattern

Chapter 1 About MVC: Model, View, Controller

4

•	 MVA (Model-View-Adapter). In this pattern, the view and the model

are separated and only the controller (called an adapter in this case)

mediates between the model and the view. The view has no direct

access to model values.

•	 MVP (Model-View-Presenter). In MVP, the view contains logic to

inform the controller (called a presenter in this case) about view-

related data changes. The presenter then performs some activities

and eventually calls back to the view in order to inform the user

about data changes.

•	 MVVM (Model-View-View-Model). In MVVM, some automatism is

introduced, which translates model values to view elements and vice

versa.

The real power of MVC was revealed in the 1990s with the rise of the Internet.

Although some technical details changed—such as the exact technical characteristics of

the data flow and the point in time when data traverses the layer boundaries—the idea

remained the same: a model holds the application state, a view presents the browser

pages, and a controller handles the interaction between the browser and the model, and

decides which view page to show.

Various MVC web frameworks were invented; https://en.wikipedia.org/wiki/

Comparison_of_web_frameworks shows you a comprehensive list (further down on

the page, MVC capabilities are also listed).

�MVC in Web Applications
Web applications impose some restrictions if we try to let them work the MVC way. The

most important distinction comes from the stateless nature of the HTTP protocol, which

is used for communication between the view (browser window) and the controller

(HTTP server). In fact, the way web application frameworks handle the HTTP protocol

leads to decisive differences between the different MVC implementations.

Chapter 1 About MVC: Model, View, Controller

https://en.wikipedia.org/wiki/Comparison/_of/_web/_frameworks
https://en.wikipedia.org/wiki/Comparison/_of/_web/_frameworks

5

In more detail, important questions concerning MVC for web applications

are as follows:

•	 Sessions: We already pointed out the stateless nature of HTTP. So, if

the browser sends a request, maybe because the user entered some

string into a text field and then pressed the Submit button, how

would the server know which user is performing the request? This

usually gets handled by a session, which is identified by a session ID

transmitted as a cookie, request, or POST parameter. Sessions are

transparently handled by the framework, so you don’t have to create

and maintain sessions from inside the application’s code.

•	 Accessing model values from the view: With web applications,

some kind of templating engine usually handles the view generation.

There, we could have expressions like ${user.firstName} to read the

contents of a model entry.

•	 Transmitted data extent: If data is submitted from the web page to

the server, we basically have two options. First, the complete form

could be transmitted. Second, only the data that changed could be

sent to the server. The latter reduces network traffic, but requires

some script logic (JavaScript) to perform the data collection on the

web page.

•	 Updating the view: With web applications, the way a view is updated

is crucial. Either the complete page is loaded after the controller

works a request, or only those parts of a web page that actually need

an update are transmitted from the server to the browser. Again, the

latter method reduces network traffic.

From these points, you can see that programming a MVC framework for web

applications is not an utterly trivial task. This is also why there are quite a large number

of different MVC frameworks you can use for web applications. In the rest of the book, I

will show you why choosing Java MVC is not the worst thing you can do if you need MVC

software for your Java platform.

Chapter 1 About MVC: Model, View, Controller

6

�MVC for Java
In the Java ecosystem, a framework named Struts entered the software world around

2000. It is a MVC framework aimed at web applications and integrating with Java EE/

Jakarta EE and Tomcat (a server product boiled down to web functionalities). It has been

used in many software projects and is still being used, albeit it is not part of the Java EE/

Jakarta EE specification. Instead, Java EE/Jakarta EE names JSF (Java Server Faces) as the

dedicated web framework. JSF, in contrast to MVC, uses a component-oriented approach

for creating web applications.

JSF works out-of-the-box for any Java EE/Jakarta EE 8 or later product. Up to version

7, if you wanted to use MVC, Struts was one of the prominent frameworks you could

use. However, in order for Struts to work, an external library had to be added to the

application, and Struts always felt like an extension and not so much like something that

seamlessly integrated with Java EE/Jakarta EE.

With Java EE 8/Jakarta EE 8, the MVC world reentered the game in form of a Java

MVC specification. It is still kind of a second-class citizen in the Java EE/Jakarta EE

world, but there are reasons to favor MVC over JSF. We talk about the merits and

disadvantages of MVC over other frameworks like JSF at the end of this chapter.

�Finally, Java MVC (JSR-371)
The latest Java EE/Jakarta EE MVC implementation operates under the name Java MVC

and is governed by JSR-371. It is the first MVC framework available for Java EE/Jakarta

EE servers version 8 or higher. In fact, the JSR describes an interface. For Java MVC to

actually work, you need to add an implementation library.

Note W e use Eclipse Krazo as the Java MVC implementation library. See
https://projects.eclipse.org/proposals/eclipse-krazo

or

https://projects.eclipse.org/projects/ee4j.krazo

We will later see how to install Eclipse Krazo for your web application.

Chapter 1 About MVC: Model, View, Controller

https://projects.eclipse.org/proposals/eclipse-krazo
https://projects.eclipse.org/projects/ee4j.krazo

7

Java MVC is a lean and clever extension of the REST technology JAX-RS included

within Java EE/Jakarta EE. This relationship gives Java MVC a modern touch and allows

for a concise and highly comprehensive programming style.

We already learned that MVC allows for some fluffiness concerning the

implementation details. Figure 1-1 describes how Java MVC works quite well: A request

for a first page in the browser window routes to the controller, which prepares model

values (with or without querying some backend for additional data). The controller

then decides which view page (browser page) to show next (maybe a login page). The

view can access model values. With a data set entered by the user and submitted to

the controller, the controller takes request parameters (for example, the login name

and password), possibly queries the backend (the user database), updates the model,

and finally selects a new view page (for example, a welcome page after successful

authentication).

But there is an additional feature that seamlessly integrates with Java MVC. Instead

of always loading a complete new page after each HTTP request, you can decide to

let parts of your web application use AJAX for more fine-grained frontend-backend

communication. Because we use Java MVC in a Java EE/Jakarta EE 8 (or later)

environment, we can use JAX-RS for that aim out-of-the-box.

�Why MVC
With so many web frontend technologies out there, it is not easy to decide which to use

for your project. The new Java MVC certainly is an option and it might very well suit your

needs. In order to help you make a decision, here is a list of pros and cons of Java MVC.

Cons:

•	 MVC seems to be a old-fashioned design pattern. Although this is

true, it also has been proven to work well for many projects, and Java

MVC allows developers to mix in more modern web development

techniques.

•	 MVC forces the developer to be aware of HTTP internals. MVC is

also said to be an action-based design pattern. Actions in a web

environment mean HTTP requests and responses. MVC doesn’t

really hide the internals of the HTTP communication like other

frameworks do.

Chapter 1 About MVC: Model, View, Controller

8

•	 MVC does not introduce two-way data bindings like other

frameworks do. With two-way data bindings, a change in a frontend

input field immediately reflects in the model value changes. Instead,

in a MVC controller, you have to explicitly implement the update of

model values.

Pros:

•	 Since it’s closer to the HTTP communication internals compared

to other frameworks, despite introducing some complexity, this

introduces less invasive memory management. If you look at JSF, a

complete component tree (and component data tree) is built with

each browser request. In contrast, a MVC application can be tailored

with an extremely small memory footprint.

•	 Java MVC is part of the Java EE/Jakarta EE 8 specification. This helps

to more reliably handle maintenance.

•	 If you are used to Struts or similar frontend frameworks, switching

to Java MVC feels more natural compared to switching to other

products with other frontend design patterns.

�Where Is Hello World?
In many software-related development instruction books, you find a really simple ”Hello

World” example in one of the first chapters. For Jakarta EE, this means we must provide a

shortcut way to do the following:

•	 Write a short program that does something simple, like output the

string "Hello World".

•	 Build a deployable artifact from the string (for example, a .war file).

•	 Run a Jakarta EE server.

•	 Deploy the application (the .war file) on the server.

•	 Connect a client (for example, a browser) to the server.

•	 Observe the output.

Chapter 1 About MVC: Model, View, Controller

9

This is a lot of stuff, so instead of building a quick-and-dirty setup to run such an

example, I prefer to first talk about Java/Jakarta Enterprise Edition (Java/Jakarta EE) in

general, then discuss the development workflow, and only after that, introduce a simple

first project. This way, we can make sure your first Java MVC application is developed

and runs correctly.

If you think a quick-and-dirty Hello World example will help you, the following

paragraphs show you how to create one. Note that we won’t use the development

processes shown here in the rest of the book—this is simply a simplistic and fast, and

maybe not-so-clean, approach. You can also skip this section safely, because we create a

proper Hello World project in Chapter 4.

	 1.	 First make sure OpenJDK 8 is installed on your PC. Go to https://

jdk.java.net/java-se-ri/8-MR3 to download it. In the rest of

this section, we call the OpenJDK 8 folder OPENJDK8_DIR.

	 2.	 Download and install GlassFish 5.1 from https://projects.

eclipse.org/projects/ee4j.glassfish/downloads (choose

the ”Full Profile” variant). In the rest of this section, we call the

GlassFish installation folder GLASSFISH_INST_DIR.

	 3.	 Inside the GLASSFISH_INST_DIR/glassfish/config/asenv.conf

(Linux) or GLASSFISH_INST_DIR/glassfish/config/asenv.bat

(Windows) file, add the following lines:

 REM Windows:

 REM Note, if the OPENJDK8_DIR contains spaces, wrap it

 REM inside "..."

 set AS_JAVA=OPENJDK8_DIR

 # Linux:

 AS_JAVA="OPENJDK8_DIR"

You must replace OPENJDK8_DIR with the installation folder of the OpenJDK 8 installation.

	 4.	 Start the GlassFish server:

 REM Windows:

 chdir GLASSFISH_INST_DIR

 bin\asadmin start-domain

Chapter 1 About MVC: Model, View, Controller

https://jdk.java.net/java-se-ri/8-MR3
https://jdk.java.net/java-se-ri/8-MR3
https://projects.eclipse.org/projects/ee4j.glassfish/downloads
https://projects.eclipse.org/projects/ee4j.glassfish/downloads

10

 # Linux:

 cd GLASSFISH_INST_DIR

 bin/asadmin start-domain

You must replace GLASSFISH_INST_DIR with the installation folder

of GlassFish.

	 5.	 Create a folder called hello_world anywhere on your file system.

Its contents have to be (instructions follow):

 build

 |- <empty>

 src

 |- java

 | |- book

 | |- javamvc

 | |- helloworld

 | |- App.java

 | |- RootRedirector.java

 | |- HelloWorldController.java

 |- webapp

 | |- META-INF

 | | |- MANIFEST.MF

 | |- WEB-INF

 | |- lib

 | | |- activation-1.1.jar

 | | |- javaee-api-8.0.jar

 | | |- javax.mail-1.6.0.jar

 | | |- javax.mvc-api-1.0.0.jar

 | | |- jstl-1.2.jar

 | | |- krazo-core-1.1.0-M1.jar

 | | |- krazo-jersey-1.1.0-M1.jar

 | |- views

 | | |- greeting.jsp

 | | |- index.jsp

 | |- beans.xml

Chapter 1 About MVC: Model, View, Controller

11

 | |- glassfish-web.xml

 make.bat

 make.sh

	 6.	 Get the JARs for the lib folder from https://mvnrepository.com.

Enter each name without the version and the .jar extension in

the search field, select the version, and then get the JAR file.

	 7.	 The Java code reads as follows:

 // App.java:

 package book.javamvc.helloworld;

 import javax.ws.rs.ApplicationPath;

 import javax.ws.rs.core.Application;

 @ApplicationPath("/mvc")

 public class App extends Application {

 }

 // RootRedirector.java

 package book.javamvc.helloworld;

 import javax.servlet.FilterChain;

 import javax.servlet.annotation.WebFilter;

 import javax.servlet.http.HttpFilter;

 import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 import java.io.IOException;

 /**

 * Redirecting http://localhost:8080/HelloWorld/

 * This way we don't need a <welcome-file-list> in web.xml

 */

 @WebFilter(urlPatterns = "/")

 public class RootRedirector extends HttpFilter {

 @Override

 protected void doFilter(HttpServletRequest req,

 HttpServletResponse res,

Chapter 1 About MVC: Model, View, Controller

https://mvnrepository.com

12

 FilterChain chain) throws IOException {

 res.sendRedirect("mvc/hello");

 }

 }

 // HelloWorldController.java

 package book.javamvc.helloworld;

 import javax.inject.Inject;

 import javax.mvc.Controller;

 import javax.mvc.Models;

 import javax.mvc.binding.MvcBinding;

 import javax.ws.rs.FormParam;

 import javax.ws.rs.GET;

 import javax.ws.rs.POST;

 import javax.ws.rs.Path;

 import javax.ws.rs.core.Response;

 @Path("/hello")

 @Controller

 public class HelloWorldController {

 @Inject

 private Models models;

 @GET

 public String showIndex() {

 return "index.jsp";

 }

 @POST

 @Path("/greet")

 public Response greeting(@MvcBinding @FormParam("name")

 String name) {

 models.put("name", name);

 return Response.ok("greeting.jsp").build();

 }

 }

Chapter 1 About MVC: Model, View, Controller

13

	 8.	 As MANIFEST.MF, write the following:

 Manifest-Version: 1.0

	 9.	 The view files read as follows:

 <%-- index.jsp --%>

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

 <head>

 <meta charset="UTF-8">

 <title>Hello World</title>

 </head>

 <body>

 <form method="post"

 action="${mvc.uriBuilder('HelloWorldController#

 greeting').build()}">

 Enter your name: <input type="text" name="name"/>

 <input type="submit" value="Submit" />

 </form>

 </body>

 </html>

 <%-- greeting.jsp --%>

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

 <head>

 <meta charset="UTF-8">

 <title>Hello World</title>

 </head>

Chapter 1 About MVC: Model, View, Controller

14

 <body>

 Hello ${name}

 </body>

 </html>

(Remove the line break and the spaces after HelloWorldController#.)

	 10.	 As beans.xml, create an empty file (the file must exist, though!).

	 11.	 The contents of glassfish-web.xml reads as follows:

 <?xml version="1.0" encoding="UTF-8"?>

 <glassfish-web-app error-url="">

 <class-loader delegate="true"/>

 </glassfish-web-app>

	 12.	 The Linux build file called make.sh reads as follows:

 #!/bin/bash

 JAVA_HOME=/path/to/your/openjdk-8

 rm -rf build/*

 cp -a src/webapp/* build

 mkdir build/WEB-INF/classes

 $JAVA_HOME/bin/javac \

 -cp src/webapp/WEB-INF/lib/javaee-api-8.0.jar:

 src/webapp/WEB-INF/lib/javax.mvc-api-1.0.0.jar \

 -d build/WEB-INF/classes \

 src/java/book/javamvc/helloworld/*

 cd build

 $JAVA_HOME/bin/jar cf ../HelloWorld.war *

 cd ..

(Remove the line break and spaces after the :.)

Chapter 1 About MVC: Model, View, Controller

15

	 13.	 The Windows build file make.bat reads as follows:

 set JAVA_HOME=C:\dev\java-se-8u41-ri

 mkdir build

 CD build && RMDIR /S /Q .

 CD ..

 rmdir build

 xcopy src\webapp build /s /e /i

 mkdir build\WEB-INF\classes

 %JAVA_HOME%\bin\javac ^

 -cp src\webapp\WEB-INF\lib\javaee-api-8.0.jar;

 src\webapp\WEB-INF\lib\javax.mvc-api-1.0.0.jar ^

 -d build\WEB-INF\classes ^

 src\java\book\javamvc\helloworld/*

 cd build

 %JAVA_HOME%\bin\jar cf ..\HelloWorld.war *

 cd ..

(Remove the line break and spaces after the ;.)

To build the application from inside the console, move into the hello_world folder

and start the script:

Linux

cd hello_world

./make.sh

rem Windows

chdir hello_world

make

Apart from some error messages for the Windows build script that you can safely

ignore, you will end up with the HelloWorld.war web application in the main folder.

From there, you can deploy the application via the following:

Linux

GLASSFISH_INST_DIR/bin/asadmin deploy --force=true \

 HelloWorld.war

Chapter 1 About MVC: Model, View, Controller

16

rem Windows

GLASSFISH_INST_DIR\bin\asadmin deploy --force=true ^

 HelloWorld.war

For GLASSFISH_INST_DIR, you must substitute the GlassFish installation folder.

To see it running, enter the following URL in the address line of your browser:

http://localhost:8080/HelloWorld

See Figures 1-2 and 1-3.

Figure 1-2.  Hello World start page

Chapter 1 About MVC: Model, View, Controller

17

�Exercises
Exercise 1: Identify the three constituent elements of MVC.

Exercise 2: True or false: The model’s responsibility is to talk with

enterprise information systems (e.g., databases).

Exercise 3: True or false: For MVC, passing user-generated data to

the model elements is done automatically.

Exercise 4: True or false: Views can read and access model values.

Exercise 5: Which is true: (A) A session is a model object, (B) A

session is a property from inside the HTTP protocol, (C) You must

create and handle sessions from inside the application code.

Exercise 6: Java MVC became part of the Java EE/Jakarta EE

specification with version 7.

Figure 1-3.  Hello World response page

Chapter 1 About MVC: Model, View, Controller

18

�Summary
MVC stands for Model-View-Controller and is a software design pattern. The Model

manages an application’s data (limited to what is shown to the user and subject to

change by the user); the View represents the graphical user interface (GUI); and the

Controller prepares the model, handles user input, and determines what to show in the

view (which view page gets shown).

MVC originated in the 1970s/1980s for desktop applications, and was later adapted

to handle web applications.

MVC for Java Enterprise applications (Java EE/Jakarta EE) is called Java MVC and it

gets handled by JSR-371. Java MVC became part of the Java EE/Jakarta EE specification

starting with version 8.

In order to use Java MVC, an implementation needs to be added to the application.

Eclipse Krazo is such an implementation.

Java MVC helps save memory, but the developer, to some extent, must be aware of

HTTP protocol characteristics. User sessions are handled by a cookie, request, or POST

parameter. Sessions are transparently handled by the framework.

In the next chapter, we talk about Java MVC’s relationship to Java EE/Jakarta EE in

more detail.

Chapter 1 About MVC: Model, View, Controller

19
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_2

CHAPTER 2

Prerequisite: Jakarta
EE/Java EE
You can’t run Java MVC in a standalone mode. Instead, it must be accompanied by the

infrastructure a Java Enterprise Edition Server (Java EE or Jakarta EE) provides. We talk

about what this means in this chapter.

�The Nature of Java for Enterprise Applications
In a corporate environment, a programming language and software platform like Java

has to cover a couple of needs that are important to run a business. It has to be able to

connect to one or more databases, reliably establish communication with other IT-based

systems in the same company or with connected businesses, and it has to be powerful

enough to reliably handle input and perform calculations based on input and database

data, and present the appropriate output to clients. As a cross-concern, security also

plays an important role. An authentication process needs to be established that forces

the users to identify themselves, and an authorization needs to be achieved to limit the

amount of resources a particular user is allowed to access. In addition, activities need

to be logged for technical maintenance and auditing purposes, and the platform should

be able to present monitoring data for technical sanity checks and performance-related

investigations.

For all these to work in a desired way, a language and platform must be stable with

respect to future changes and enhancements. This has to happen in a way that new

language and platform versions can be appropriately handled by the IT staff. Java

EE/Jakarta EE follow this trail and thus are very useful in corporate environments.

The Jakarta EE 8 server entirely runs on and depends on Java. Java was invented in

1991 but was first publicly released under version 1.0 by Sun Microsystems in 1996. Java

https://doi.org/10.1007/978-1-4842-6280-1_2#DOI

20

has since played an important role as both a language and a runtime environment or

platform. There are several reasons that Java became so successful:

•	 The same Java program can run on different operating systems.

•	 Java runs in a sandboxed environment. This improves execution

security.

•	 Java can be easily extended with custom libraries.

•	 The Java language was extended only slowly. While a slow evolution

means new and helpful language constructs may be missing in the

most current version, it helps developers easily keep track of new

features and thoroughly perform transitions to new Java versions in

longer running projects. Furthermore, with only a small number of

exceptions, Java versions were backward-compatible.

•	 Java includes a garbage collector that automatically cleans up unused

memory.

Since 1998 and the major rebranding as Java 2, the platform was made available in

different configurations:

•	 The standard edition J2SE for running on a desktop. It was further

separated into JRE (Java Runtime Environment) for running Java, and

JDK (Java Development Kit) for compiling and running Java.

•	 The micro edition J2ME for mobile and embedded devices.

•	 The enterprise edition J2EE with enterprise features added to

J2SE. Each J2EE configuration includes a complete J2SE installation.

For marketing purposes, the “2” was removed in 2006 and the configurations were

named JSE (or JDK, which is JSE plus development tools), JME, and JEE, respectively.

In 2018, JEE was moved to the Eclipse foundation and renamed Jakarta EE. The Java

language substantially changed from Java 7 to Java 8. We will be using all the modern

features of Java 8 in our explanations and code examples.

Java of course continues to be developed. While the latest version of Jakarta EE was

8 while writing this book, and the underlying Java standard edition was version 8 as well,

the latest JavaSE (JSE) version you could download was 13. We won’t be talking about

JavaSE versions 9 or higher in this book.

Chapter 2 Prerequisite: Jakarta EE/Java EE

21

While knowledge of the Java standard edition JSE version 8 is considered a

prerequisite in this book, for readers who are only partly familiar with Java 8, the

following new features are worth an investigation before you move to subsequent

chapters:

•	 Functional interfaces

•	 Lambda calculus (unnamed functions)

•	 The streams API for working with collections and maps

•	 The new date and time API

We will be using these where appropriate in the book’s examples.

The specifications that describe the parts of Java EE/Jakarta EE tell what each part

can do and how it does it, and they keep track of new versions. Java EE/Jakarta EE 8

includes sub-technologies also closely described by exact version numbers. We list them

here and include a short description of what each technology does. Note that the list

is not exhaustive—it does not include some more advanced APIs, which you can learn

about if you look at the official documentation.

•	 Java MVC 1.0 - JSR-371: This is our main concern in this book.

•	 Enterprise Java Beans EJB - Version 3.2: EJBs represent entry

points for business logic. Each EJB plays the role of a component in

the overall Jakarta EE architecture and is responsible for a dedicate

business task. EJBs allow developers to add security, transactional

features, JPA features to communicate with databases, and web

services functionality, and they can also be entry points for messaging.

•	 Java Server Faces JSF - Version 2.3: JSF is the component-based

dedicated primary web frontend technology to be used for browser

access. Using Java MVC is somewhat an alternative approach,

and nobody hinders you from mixing them freely. JSFs usually

communicate over EJBs with the business logic.

•	 RESTful Web-Services JAX-RS - Version 2.1: REST

(REpresentational State Transfer) is the original HTTP protocol that

defines reading and writing resources. It recently gained increased

attention for single page web applications, where the frontend page

flow is completely handled by JavaScript running in the browser.

Chapter 2 Prerequisite: Jakarta EE/Java EE

22

•	 JSON Processing JSON-P - Version 1.1: JSON (JavaScript Object

Notation) is a lean data-format particularly useful if a considerable

amount of the presentation logic gets handled by JavaScript running

in the browser.

•	 JSON Binding JSON-B - Version 1.0: This technology simplifies

mapping between JSON data and Java classes.

•	 Web Sockets - Version 1.1: Provides a full-duplex communication

between web clients (browsers) and the Jakarta EE server. Other than

“normal” access via HTTP, web sockets allow for the server to send

messages to a browser client as well!

•	 JPA - Version 2.2: The Java Persistence API provides high-level access

to databases.

•	 Java EE Security API - Version 1.0: A new security API that didn’t

exist prior to Jakarta EE 8. It includes an HTTP authentication

mechanism, an identity store abstraction for validating user

credentials and group memberships, and a security context API that

programmatically handles security.

•	 Java Messaging Service JMS - Version 2.0: This is about messaging,

which means messages can be produced and consumed

asynchronously. A message sender produces and issues a message

and can instantaneously continue its work, even when the message

gets consumed later.

•	 Java Transaction API (JTA) - Version 1.2: JTA makes sure that

processes that combine several steps acting as a unit can be

committed or rolled back as a whole. This can become tricky if

distributed partners are involved. JTA helps a lot here to ensure

transactionality even for more complex systems.

•	 Servlets - Version 4.0: Servlets are the underlying technology for

server-browser communication. You usually configure them only

once at the beginning of a project. We describe servlets where

necessary to get other technologies to run.

Chapter 2 Prerequisite: Jakarta EE/Java EE

23

•	 Context And Dependency Injection CDI - Version 2.0: CDI allows

developers to bind contexts to elements that are governed by a

dedicated lifecycle. In addition, it injects dependencies into objects,

which simplifies class associations. We will use CDI to connect JSF

elements to the application logic.

•	 JavaMail - Version 1.6: Provides facilities for reading and sending

email. This is just an API. For an implementation, you can for

example use Oracle’s reference implementation: https://javaee.

github.io/javamail/

•	 Bean Validation - Version 2.0: This allows developers to restrict

method call parameters to comply with certain value predicates.

•	 Interceptors - Version 1.2: Interceptors allow you to wrap method

calls into invocations of interceptor classes. While this can be done

by programmatic method calls as well, interceptors allow developers

to do it in a declarative way. You typically use interceptors for

crosscutting concerns like logging, security issues, monitoring, and

the like.

•	 Java Server Pages JSP - Version 2.3: JSPs can be used to establish

a page flow in server-browser communication. JSP is an older

technology, but you still can use it if you like. You should however

favor JSFs over JSPs, and in this book we don’t handle JSPs.

•	 JSP Standard Tag Library JSTL - Version 1.2: Tags used in

conjunction with JSPs for page elements.

Java EE/Jakarta EE runs on top of the Java Standard Edition (SE), so you can always

use any classes and interfaces of the Java SE if you program for Java EE/Jakarta EE. A

couple of technologies included within the Java Standard Edition SE play a prominent

role in a Java Enterprise Edition environment:

•	 JDBC - Version 4.0: An access API for databases. All major database

vendors provide JDBC drivers for their product. You could use it, but

you shouldn’t. Use the higher-level JPA technology instead. You’ll get

in contact once in a while, because JPA under-the-hood uses JDBC.

Chapter 2 Prerequisite: Jakarta EE/Java EE

https://javaee.github.io/javamail/
https://javaee.github.io/javamail/

24

•	 Java Naming and Directory Interface JNDI: In a Jakarta EE 8

environment, objects will be accessed by other objects in a rather

loose way. In modern enterprise edition applications, this usually

happens via CDI, more precisely, via dependency injection.

Under the hood, however, a lookup service plays a role, governed

by JNDI. In the past, you’d have to directly use JNDI interfaces to

programmatically fetch dependent objects. You could use JNDI for

Jakarta EE 8, but you normally don’t have to.

•	 Java API for XML Processing JAXP - Version 1.6: A general-purpose

XML processing API. You can access XML data via DOM (complete

XML tree in memory), SAX (event-based XML parsing), or StAX. This

is just an API. Normally you’d have to also add an implementation,

but the Jakarta EE server does this automatically for you.

•	 Streaming API for XML StAX - Version 1.0: Used for streaming

access to XML data. Streaming here means you serially access XML

elements on explicit demand (pull parsing).

•	 Java XML Binding JAXB - Version 2.2: JAXB connects XML elements

to Java classes.

•	 XML Web Services JAX-WS - Version 2.2: Web services remotely

connect components using XML as a messaging format.

•	 JMX - Version 2.0: JMX is a communication technology you can use

to monitor components of a running Jakarta EE application. It is up

to the server implementation what information is available for JMX

monitoring, but you can add monitoring capabilities to your own

components.

The specifications are handled by a community process, and vendors have to

pass tests if they want to be able to say their server products conform to a certain

version of Jakarta EE (or one of its predecessors, JEE or J2EE). If you are interested, the

corresponding online resources provide information about it. As a start, enter “java

community process jcp” or ”java eclipse ee.next working group” into your favorite search

engine.

Chapter 2 Prerequisite: Jakarta EE/Java EE

25

The Java Enterprise Edition was initially developed by Sun Microsystems and was

called J2EE. In 2006, the naming and versioning schema was changed to JEE, and after

J2EE version 1.4 came JEE version 5. Since then, major updates happened and versions

JEE 6, JEE 7, and JEE 8 were released. In 2010, Sun Microsystems was acquired by Oracle

corp. Under Oracle, versions JEE 7 and JEE 8 were released. In 2017, Oracle Corporation

submitted Java EE to the Eclipse Foundation, and the name was changed to Jakarta EE 8.

As of the beginning of 2020, the transition from JEE 8 to Jakarta EE 8 was an ongoing

process. So depending on when you read this book, it still could be that for online

research about Jakarta EE 8, you have to consult pages about both JEE 8 and Jakarta EE

8. This is something you should keep in mind. To keep things simple in this book, we will

only talk about Jakarta EE.

When this book was written, there were not many Jakarta EE 8 servers released.

There are basically the following:

•	 GlassFish Server, Open Source Edition, from Oracle Inc.

•	 WildFly Server, from Red Hat

•	 JBoss Enterprise Application Platform, from Red Hat

•	 WebSphere Application Server Liberty, from IBM

•	 Open Liberty, from IBM

These servers have different licensing models. GlassFish, WildFly, and Open Liberty

are free. This means you can use them without charge, both for development purposes

and for production. To run the JBoss Enterprise Application Platform, you need a

subscription, although the sources are open. WebSphere Application Server Liberty is

proprietary.

In this book, we will talk about running Java MVC inside the GlassFish server,

open source edition, version 5.1. Due to the nature of Jakarta EE 8, a transition to other

servers is always possible, although you’ll have to spend a considerable amount of time

changing the administration workflow.

�GlassFish, a Free Java Server
There are several free Java EE/Jakarta EE servers you can use for evaluation and

development. The GlassFish server is a particularly good choice, especially for learning

purposes, because it is open source.

Chapter 2 Prerequisite: Jakarta EE/Java EE

26

�Getting GlassFish
The latest version as of the writing of this book is 5.1, and you can download it from the

following:

https://projects.eclipse.org/

 projects/ee4j.glassfish/downloads

Choose the “Full Profile” variant.

Note A t the time this book is published, there are likely later versions for
GlassFish available. You could try versions greater than 5.1 and you might not have
any problems installing and using them with this book. But to avoid any chance of
problems, it will always be possible to use an archived GlassFish 5.1 installer.

After you download the ZIP file, extract it anywhere on your file system. We will

henceforth call the installation folder GLASSFISH_INST_DIR. Before GlassFish can be

started, you must make sure you have Java 8 JDK installed on your system.

Note  JDK 8 is a requirement for GlassFish 5.1. You cannot use a later version
and you should not use an earlier version.

Get the JDK from one of the following links (for the www.oracle.com variant, you

must get a paid subscription for commercial projects):

https://www.oracle.com/java/technologies/javase/

 javase-jdk8-downloads.html

https://jdk.java.net/java-se-ri/8-MR3

The jdk.java.net variant points to the OpenJDK distribution. For Linux, chances

are good your distribution’s package provider has a pre-built Java installation package

for you.

Chapter 2 Prerequisite: Jakarta EE/Java EE

http://www.oracle.com/

27

If JDK 8 is not your system default, you can check by entering java -version in a

console window. You must add the following line

REM Windows:

REM Note, if the JDK_INST contains spaces, wrap it

REM inside "..."

set AS_JAVA=JDK_INST

Linux:

AS_JAVA="JDK_INST"

inside the GLASSFISH_INST_DIR/glassfish/config/asenv.conf (Linux) or

GLASSFISH_INST_DIR/glassfish/config/asenv.bat (Windows) file, where you must

replace JDK_INST with the installation folder of the JDK 8 installation.

You can now check the installation in a console window. Change the user directory

(current directory) to the GlassFish installation folder and then use asadmin to start the

server:

REM Windows:

chdir GLASSFISH_INST_DIR

bin\asadmin start-domain

Linux:

cd GLASSFISH_INST_DIR

bin/asadmin start-domain

The output should be something like this:

Waiting for domain1 to start .

Successfully started the domain : domain1

domain Location: [...]/glassfish/domains/domain1

Log File: [...]/glassfish/domains/domain1/logs/server.log

Admin Port: 4848

Command start-domain executed successfully.

You can also check the indicated log file to see whether the startup worked correctly.

You can open your browser at http://localhost:4848 to see whether the web

administrator is available (it should be).

Chapter 2 Prerequisite: Jakarta EE/Java EE

28

Once you verify that the server started up correctly, you can stop it if you like. To do

so, enter the following:

REM Windows:

bin\asadmin stop-domain

Linux:

bin/asadmin stop-domain

Note I n the rest of this chapter, we assume that you entered cd GLASSFISH_
INST_DIR to change to the GlassFish installation directory. I will also stop
distinguishing between Windows and Linux and write bin/asadmin, which on
Windows should be bin\asadmin.bat.

The GlassFish server has three administrative frontends:

•	 A shell (or windows command prompt) frontend

•	 A GUI frontend for browser access

•	 A REST HTTP frontend

�GlassFish Shell Administration
The shell frontend works via the bin/asadmin script, which you can call from a shell (or a

windows command prompt). This command is extremely powerful; it contains hundreds

of options and subcommands. We do not list them all here, so for a complete online list,

enter “oracle glassfish server administration guide” in your favorite search engine.

As a starting point, the asadmin command also provides a “help” functionality. To see

it, enter one of the following:

bin/asadmin help

bin/asadmin -?

Chapter 2 Prerequisite: Jakarta EE/Java EE

29

Where the first variant (help) opens a MORE pager. To list all the subcommands,

enter the following:

Note: server must be running!

bin/asadmin list-commands

To see the help for a particular subcommand, you can write one of the following:

bin/asadmin help <SUB-COMMAND>

bin/asadmin -? <SUB-COMMAND>

Where you substitute the name of the subcommand for <SUB-COMMAND>.

Note I n order for many subcommands to run properly, the server must be
running as well. In the following discussion, we assume that the server has started
before you issue any subcommands.

There is also a multimode session, where a special subshell is opened. In this

subshell you can enter subcommands directly without prepending the bin/asadmin. To

start a multimode session, enter the following without arguments:

bin/asadmin

You can also use the multimode subcommand to start a multimode session:

bin/asadmin multimode

The subcommand allows for an optional --file <FILE_NAME> argument, which

causes the specified file to be read in as a list of subcommands to be executed

sequentially:

bin/asadmin multimode --file commands_file.txt

The file path is relative to the current working directory. In the following paragraphs,

we show a list of the most useful options and subcommands. The most useful general

options are shown in Table 2-1. You add them as in bin/asadmin --host 192.168.1.37

list-applications.

Chapter 2 Prerequisite: Jakarta EE/Java EE

30

For a complete list of the options you can add to the asadmin command, see the

output of bin/asadmin -?.

Subcommands used to inquire various types of information from the server are

shown in Table 2-2. You enter them as in bin/asadmin list-applications (obviously,

the list will be empty if you haven’t installed any applications yet).

Table 2-1.  General Options

Option Description

--host <HOST> Specifies the host where the server is running. If you don’t specify it,

localhost will be used.

--port <PORT> The administration port. The default is 4848

--user

<USER_NAME>

Uses the specified user to authenticate to the server. Use this if you restricted

access to the asadmin utility. The default is the admin user.

--passwordfile

<FILE_NAME>

If you restricted access to the asadmin utility, and you want to prevent a

user password from being prompted, you can specify a file with password

information instead. For details, see the output of bin/asadmin -?.

Table 2-2.  Inquiring Information

Subcommand Description

version Outputs the GlassFish server version.

list-

applications

Lists all applications deployed and running on the server.

list-containers Containers embrace components (modules, if you like) of a certain type. Use

this subcommand to list all the containers running in the server.

list-modules Lists all OSGi modules running in the server. We won’t be talking about OSGi

in this book, but in case you are interested, GlassFish incorporates an Apache
Felix OSGi module management system. You can administer GlassFish

components also via an OSGi shell named “Gogo,” which needs more

configuration work to run.

(continued)

Chapter 2 Prerequisite: Jakarta EE/Java EE

31

After you perform the installation of the GlassFish server, there will be one

administration user named admin without a password. Not having a password makes

administrative tasks easy, but it will also leave your server insecure. To remedy that and

give the admin user a password, enter the following:

bin/asadmin change-admin-password

You will then be asked for the actual password, which is empty so just press Enter.

Then enter the new password twice.

Once the admin user has a password, you will have to enter the password for most

asadmin subcommands.

To start a domain means to start the GlassFish server. We could have several domains

in one GlassFish server, but a multi-domain setup is left for advanced users, so we’ll go

with the single domain1 domain, which is installed by default.

To start, stop, or restart the GlassFish server, enter one of the following commands:

bin/asadmin start-domain

bin/asadmin stop-domain

bin/asadmin restart-domain

All three subcommands take an optional domain name as a parameter (for example,

domain1 or domain2), but since we have only one default domain, it can be left off here.

To see the uptime of the server, which is the time that has elapsed since the default

domain started, enter the following:

bin/asadmin uptime

Subcommand Description

list-commands Lists all the subcommands. If you add --localonly the server doesn’t have

to be running and only subcommands that can be issued with the server not

running will be listed.

list-timers Shows all timers. We don’t talk about timers in this book.

list-domains Lists all domains. In this book, we will be using the preinstalled default

domain, called domain1, so this will be the only entry showing up here.

Table 2-2.  (continued)

Chapter 2 Prerequisite: Jakarta EE/Java EE

32

The Jakarta EE GlassFish server comes with a built-in database. This comes in

handy for development purposes, although you probably won’t use this database for

production setups. This database is an Apache Derby database. It does not run by default

when the GlassFish server is started. Instead, to start and stop the database, enter the

following:

bin/asadmin start-database

bin/asadmin stop-database

where the database port by default reads 1527.

�GlassFish GUI Administration
After you start the GlassFish server, a GUI console is provided and you should use it to

open the following URL in a browser:

http://localhost:4848

The GUI will then show up, as seen in Figure 2-1.

Chapter 2 Prerequisite: Jakarta EE/Java EE

33

We don’t talk about details of the GUI administration here. We will, however, use and

describe it once in a while in this book, and the help button on the top-right corner is a

good starting point for your own experiments and investigations.

Note  Many asadmin operations that you can enter in a terminal have their
counterparts in the admin GUI.

�GlassFish REST Interface Administration
The GlassFish Jakarta EE 8 server provides a REST interface that you can use to

investigate and control the server. You can issue the following to see the domain logs via

REST for example:

curl -X GET -H "Accept: application/json" \

http://localhost:4848/monitoring/domain/view-log/details

Figure 2-1.  Browser GUI administration

Chapter 2 Prerequisite: Jakarta EE/Java EE

34

Note  For this to work, the curl utility must be installed on your system.
Alternatively, you can use any other REST client (Firefox REST-client add-on, REST
Client for Eclipse, and others).

We investigate a couple of examples. To find more in-depth information about this

interface, enter “rest interface administer glassfish” in your favorite search engine. Also,

we use the jq tool to provide a pretty format output of the generated JSON data. For jq,

there are installers for Linux and Windows.

The administrative REST interface is subdivided into two parts for configuration and

monitoring:

http://host:port/management/domain/[path]

http://host:port/monitoring/domain/[path]

For a vanilla GlassFish installation, the host is localhost and the port is 4848. For

[path], you must substitute a resource identifier. For example, to see the log entries, you

enter the following:

curl -X GET -H "Accept: application/json" \

http://localhost:4848/management/domain/view-log

(Remove the backslash if you enter this on one line.)

The REST interface is very extensive. You can query a lot of properties using REST’s

GET verb, and you can alter resources using POST or PUT. As a starting point, you can

investigate the verbose output of REST capabilities you will get once you enter the

following:

curl -X GET -H "Accept: application/json" \

http://localhost:4848/management/domain

The output will for example include the following:

"commands": [

 ...

 {

 "path": "list-commands",

 "method": "GET",

 "command": "list-commands"

Chapter 2 Prerequisite: Jakarta EE/Java EE

35

 },

 {

 "path": "restart-domain",

 "method": "POST",

 "command": "restart-domain"

 },

 {

 "path": "uptime",

 "method": "GET",

 "command": "uptime"

 },

 {

 "path": "version",

 "method": "GET",

 "command": "version"

 }

 ...

]

There are lots of others. To see version and uptime, you enter the following:

curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/version | jq .

curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/uptime | jq .

If you use a browser and enter REST URLs there, you get more information about

REST resources. If you open a browser and enter http://localhost:4848/management/

domain/version, you will get an HTML variant of this CURL output. Both also tell us

about child resources.

So this code, for example, shows us about commands referring to installed

application:

curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/applications |

jq .

It tells us that, for the actual list, we have to enter the following:

Chapter 2 Prerequisite: Jakarta EE/Java EE

36

curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/applications/ list-applications |

 jq .

(No line break after applications/.) It tells us about attributes. To get more verbose

output, we can add a ?long=true, as in:

curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/applications/

 list-applications?long=true | jq .

�Using a Preinstalled Java Server
Java MVC applications usually reside in WAR files (ZIP files ending with .war), so they

may be installed on any Jakarta EE compliant server.

For this reason, you don’t have to use GlassFish. In this book, we will use GlassFish,

but if you prefer a different Jakarta EE 8 server, you may use it. Of course, you have to

learn how to administer that server by consulting its manual.

Note I f you target a proprietary server, it is generally not recommended to start
development with a different product from a different vendor. You should at least
try to develop with a free variant of the same server, or try to get a developer
license. To learn Jakarta EE 8 first using GlassFish and later switching to a different
product or vendor is a reasonable approach, though.

�Learning Java for Enterprise Applications
In order to learn the Java language (or the standard edition APIs) or improve your skills,

you can choose among a wealth of books and online resources. A good place to start

looking is the official Java tutorial from Oracle, found at

https://docs.oracle.com/javase/tutorial/

Chapter 2 Prerequisite: Jakarta EE/Java EE

37

Real-world corporate projects may require you to look at other technologies from

the Java EE/Jakarta EE technology stack. There is also a tutorial for the enterprise edition

Java EE/Jakarta EE, which you can find at:

https://javaee.github.io/tutorial/toc.html

You may also want to consult the book Beginning Jakarta EE: Enterprise Edition for

Java: From Novice to Professional (ISBN: 978-1484250785) from the same author. Here,

we mainly talk about Java MVC and handle other Java EE/Jakarta EE technologies only

where appropriate and needed.

�RESTful Services
There is a good reason to also briefly talk about JAX-RS, even though it’s an exception to

the limitation of this book’s scope to Java MVC. JAX-RS is the subtechnology of Java EE/

Jakarta EE handling RESTful services. As a matter of fact, Java MVC sits on top of JAX-

RS, which was a clever decision of the framework programmers. Not only does it allow

developers to let Java MVC very cleanly integrate with the rest of the Java EE/Jakarta EE

framework, it also gives a straightforward clue as to how to mix Java MVC development

techniques and more fine-grained client-server communication using AJAX and JSON

data snippets.

REST is an acronym for representational state transfer. It is an architectural style for

web related operations. Clients use a predefined set of operations or HTTP methods

on data—GET, POST, PUT, and DELETE (and a few more) for communicating with servers.

As no state is involved, the client communicates using one of the verbs GET, DELETE,

POST, PUT, and so on, and immediately after the server has performed the operation

and/or returned data, the server forgets about the communication step. The name

“representational state transfer” stems from the fact that, from the client’s point of view,

Chapter 2 Prerequisite: Jakarta EE/Java EE

38

the representation of data inquired from the server changes between communication

steps (or might change).

The communication verbs have been part of the HTTP specification since the

infancy of the web. In more detail, we have the following verbs:

•	 GET: Used to retrieve a resource. Resources are identified by URIs,

so the communication might be described by something like GET

http://some.server.com/myclub/member/37. A GET operation is not

allowed to change any data (except for access statistics and the like),

and it must be idempotent. That means a second GET using the same

URI with no intermediate operations between those two GETs must

return exactly the same data. Note that GET operations were widely

abused for any kind of operations, including changing data. With

REST we return to the roots and data must not be changed.

•	 DELETE: Used to delete information. Again the resource in question

gets addressed by an URI, so you write DELETE http://some.server.

com/myclub/member/37. A DELETE must be idempotent, which means

deleting again using the same URI must not change the data. In this

case, the second DELETE is of course superfluous; deleting what was

already deleted is not supposed to do anything. As a characteristic

of REST concerning a second DELETE, the server must not return an

error message, but just ignore the request instead.

•	 POST: Used to post new information. POSTs commonly happen when

the user submits a form. POSTs are not idempotent, so a second post

using the same data will lead to a second data set on the server side.

A post might be described by POST http://some.server.com/mycl

ub/member/37 [data], where [data] stands for the transmitted data,

usually in the form of XML or JSON, passed over in the transmitted

message body.

•	 PUT: Used to store data. If the resource described by the data already

exists, the resource will be altered according to the data. If it does

not exist, the server might decide to act as if a POST were specified. A

PUT is idempotent, PUTting again using the same input data will not

change the data on the server.

Chapter 2 Prerequisite: Jakarta EE/Java EE

http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37
http://some.server.com/mycl

39

The other verbs are less frequently used in real-world applications. HEAD is for

retrieving metadata about a resource (information about it, but not the resource itself).

Using a TRACE, you can see what happens to the data on the way to the server. This is

more a technical operation and does not pay particular attention to the data payload.

A PATCH is like a PUT with partial data. PUTs, with the complete information, are more

frequently used over PATCHs. The OPTIONS verb requests the server’s capability for a

dedicated resource (like telling what can be done with the resource). A CONNECT is used

to establish transparent tunnels on the server side. Again this is more a technical facility

and does not reveal anything about the transmitted data.

To define a REST endpoint, you write a Java class with annotation javax.ws.rs.Path

added at class and/or method level. For example, consider a REST controller that returns

the current date and time as JSON:

package book.javavmc.restdate;

import java.time.ZonedDateTime;

import javax.ws.rs.*;

/**

 * REST Web Service

 */

@Path("/d")

public class RestDate {

 @GET

 @Path("date")

 @Produces("application/json")

 public String stdDate() {

 return "{\"date\":\"" + ZonedDateTime.now().toString() +

 "\"}";

 }

}

The @Path annotations merge, so in the end, we get an endpoint URL such as

http://localhost:8080/theAppName/d/date.

Chapter 2 Prerequisite: Jakarta EE/Java EE

40

You will start developing your first Java MVC application soon. This is why I show

you this first code snippet without explaining how to build and deploy it. A Java MVC

controller looks very similar:

package book.javavmc.somecontroller;

import java.util.List;

import javax.inject.Inject;

import javax.mvc.Controller;

import javax.mvc.Models;

import javax.ws.rs.*;

@Path("/pets")

@Controller

public class PetshopController {

 @Inject

 private Models models;

 @GET

 public String showIndex() {

 final List<Pet> pets = ...;

 models.put("pets", pets);

 return "index.jsp";

 }

}

You can see that we again use javax.ws.rs.Path to define an endpoint. We will

later see that the main differences between Java MVC and JAX-RS are the @Controller

annotation and that the action method returns the name of the next view page instead of

data.

Note  You will find more online information about JAX-RS, including the official
specification, if you enter “jax-rs” in your favorite search engine.

Chapter 2 Prerequisite: Jakarta EE/Java EE

41

�Exercises
Exercise 1: Describe the relationship between JSE and Java EE/

Jakarta EE.

Exercise 2: True or false? Java MVC can run directly inside a PC’s

or server’s operating system.

Exercise 3: True or false? Java MVC is a Jakarta EE server.

Exercise 4: True or false? Jakarta EE is a competitor of Java EE.

Exercise 5: True or false? There is no difference between

OpenJDK 8 and Oracle’s JSE 8.

Exercise 6: True or false? GlassFish can be used for commercial

products without paying for a license.

Exercise 7: Why do we use GlassFish in this book?

Exercise 8: True or false? PURGE is an HTTP verb.

Exercise 9: Describe the relationship between Java MVC and

JAX-RS.

�Summary
Java MVC is accompanied by the infrastructure that a Java Enterprise Edition server (Java EE

or Jakarta EE) provides. In a corporate environment, a programming language and software

platform like Java has to cover a couple of needs that are important to run a business. It

has to be able to connect to one or more databases, reliably establish communication with

other IT-based systems in the same company or with connected businesses, and it has to

be powerful enough to reliably handle input and perform calculations based on input and

database data, and present the appropriate output to clients.

The Jakarta EE 8 server runs on and depends on Java. There are several reasons that

Java became so successful:

•	 The same Java program can run on different operating systems.

•	 Java runs in a sandboxed environment. This improves execution

security.

Chapter 2 Prerequisite: Jakarta EE/Java EE

42

•	 Java can be easily extended with custom libraries.

•	 The Java language was extended only slowly. While a slow evolution

means new and helpful language constructs may be missing in the

most current version, it helps developers easily keep track of new

features and thoroughly perform transitions to new Java versions in

longer running projects. Furthermore, with only a small number of

exceptions, Java versions were backward-compatible.

•	 Java includes a garbage collector that automatically cleans up unused

memory.

Java continues to be developed. While the latest version of Jakarta EE was 8 while

writing this book, and the underlying Java standard edition was version 8 as well, the

latest JavaSE (JSE) version you could download was 13. We won’t be talking about JavaSE

versions 9 or higher in this book.

The specifications that describe the parts of Java EE/Jakarta EE tell what each part

can do and how it does it, and they keep track of new versions. Java EE/Jakarta EE 8

includes sub-technologies, which are also closely described by exact version numbers.

The specifications are handled by a community process, and vendors have to pass tests

if they want to be able to say their server products conform to a certain version of Jakarta

EE (or one of its predecessors, JEE or J2EE).

The Java Enterprise Edition was initially developed by Sun Microsystems and was

called J2EE. In 2006, the naming and versioning schema was changed to JEE, and after

J2EE version 1.4 came JEE version 5. Since then, major updates happened and versions

JEE 6, JEE 7, and JEE 8 were all released. In 2010, Sun Microsystems was acquired by

Oracle corp. Under Oracle, versions JEE 7 and JEE 8 were released. In 2017, Oracle

Corporation submitted Java EE to the Eclipse Foundation, and the name was changed to

Jakarta EE 8.

In this book, we will talk about running Java MVC inside the GlassFish server,

open source edition, version 5.1. Due to the nature of Jakarta EE 8, a transition to

other servers is always possible, although you have to spend a considerable amount of

time changing the administration workflow. GlassFish provides three administrative

interfaces—command-line tools for a shell or console, a web administrator GUI, and an

administrative REST interface.

Chapter 2 Prerequisite: Jakarta EE/Java EE

43

Java MVC sits on top of JAX-RS, which was a clever decision of the framework

programmers. Not only does it allow Java MVC to very cleanly integrate with the rest of

the Java EE/Jakarta EE framework, it also gives a straightforward clue as to how to mix

Java MVC development techniques and more fine-grained client-server communication

using AJAX and JSON data snippets. REST controllers and Java MVC controllers look very

similar.

In the next chapter, we handle the development workflow suitable for this book and

other Java MVC projects.

Chapter 2 Prerequisite: Jakarta EE/Java EE

45
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_3

CHAPTER 3

Development Workflow
In this chapter, we talk about development techniques, procedures, and tools you can

use for the examples in this book and any subsequent projects using Java MVC.

�Using Gradle as a Build Framework
Gradle is a modern build framework/build automation tool. It provides for a pure

declarative configuration style, but you can also add imperative build code in the form of

Groovy (or Kotlin) script snippets, if needed.

Note  Best practices indicate that for build scripts, declarative programming
(which tells what a build script has to do, not how it should do it) is favorable over
imperative programming (precise step-by-step instructions).

In the rest of this book, we use Gradle for build automation, because it has a very

concise build configuration and can be used from the console (the Linux bash and

Windows consoles) and from inside IDEs like Eclipse. Gradle build scripts can be as

small as just three lines, but they can also contain arbitrarily long code. We will use

Gradle as a tool and a little later in this chapter describe more of its characteristics.

Caution  If you want to use OpenJDK 8 to build and run applications, you must
add a valid cacerts file. Simply install OpenJDK version 10, and then copy the
OpenJDK10-INST-DIR/lib/security/cacerts to OpenJDK8-INST-DIR/
lib/security/cacerts file.

https://doi.org/10.1007/978-1-4842-6280-1_3#DOI

46

�Using Eclipse as an IDE
Eclipse is an IDE (Integrated Development Environment) with a plethora of

functionalities that help to develop Java Enterprise projects. It is freely available and you

can use it for both commercial and non-commercial projects without charge.

Eclipse can be extended by plugins, from which many are developed by the

community and are free to use. Plugins, however, might also come from vendors and you

might have to buy licenses to use them. In this book, we will only use free plugins. If you

feel tempted to try proprietary plugins, which under the circumstances might boost your

development, visit the Eclipse marketplace at https://marketplace.eclipse.org and

consult each plugin.eclipse.orgtevelopment, which under censes to use

�Installing Eclipse
Eclipse comes in several variants. To download any of them, go to https://www.

eclipse.org/downloads/ or https://www.eclipse.org/downloads/packages/. We will

use the Eclipse IDE for Enterprise Java Developers variant in this book.

Note  If you choose to download the installer, you will be asked for the variant. To
select the Enterprise variant from the start, click the Download Packages link and
choose the Enterprise version on the next page.

In this book, we will use Eclipse version 2020-03, but you might be able to use higher

versions. Just keep in mind that if you run into trouble without an obvious solution,

downgrading to Eclipse 2020-03 is an option.

Use any installation folder suitable for your needs. Plugin installations and version

upgrades go in the folder you choose, so ensure appropriate file access rights. On my

Linux box, I usually put Eclipse in a folder called:

/opt/eclipse-2019-09

(Or whatever version you have.) Then I make it writable to my Linux user:

cd /opt

USER=... # enter user name here

GROUP=... # enter group name here

chown -R $USER.$GROUP eclipse-2019-09

Chapter 3 Development Workflow

https://marketplace.eclipse.org
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/packages/

47

This changes the ownership of all files of the Eclipse installation, which makes sense

for a one-user workstation. If instead you have different users for Eclipse, you can create

a new group called eclipse and give that group write access:

cd /opt

groupadd eclipse

chgrp -R eclipse eclipse-2019-09

chmod -R g+w eclipse-2019-09

USER=... # enter your username here

usermod -a -G eclipse $USER

The chgrp ... command changes the group ownership and the chmod ...

command allows write access for all group members. The usermod ... command adds a

particular user to the new group.

Note  You need to be root for these commands. Also note that the usermod
command does not affect the currently active window manager session on the
PC. You must, for example, restart your system or, depending on your distribution,
log out and log in again for that command to take effect.

As a last step, you can provide a symbolic link to the Eclipse installation folder:

cd /opt

ln -s eclipse-2019-09 eclipse

This makes it easier to switch between different Eclipse versions on your system.

On a Windows system, the installer sets the access rights for you and it is normally

possible for any normal user to install plugins. This depends on the Windows version

and on your system’s configuration. Corporate environments often have more fine-

grained access rights, with normal users who are unable to install plugins and to

upgrade, and superusers for administrative purposes. These rights can be configured

using Windows access rights management.

Chapter 3 Development Workflow

48

�Configuring Eclipse
Upon startup, Eclipse uses the default Java version installed on your system. In case it

cannot find it or you have several Java versions installed, you can explicitly tell Eclipse

which Java to choose. For this aim, open this file

ECLIPSE-INST/eclipse.ini

And add two lines:

-vm

/path/to/your/jdk/bin/java

Directly above the -vmargs line:

...

openFile

--launcher.appendVmargs

-vm

/path/to/your/jdk/bin/java

-vmargs

...

Note  The format of the eclipse.ini file depends on the Eclipse version. Check
https://wiki.eclipse.org/Eclipse.ini for the correct syntax. On that
site you will also find precise instructions for specifying the Java executable path.
The syntax shown here is for Eclipse 2020-03.

On Windows PCs, you specify the path as follows:

...

-vm C:\path\to\your\jdk\bin\javaw

...

Don’t use escaped backslashes, like in C:\\path\\to\\..., as you would expect for

Java-related files!

Chapter 3 Development Workflow

https://wiki.eclipse.org/Eclipse.ini

49

In order to see which version Java Eclipse uses for running (not for building

projects!), start Eclipse, then navigate to Help➤About Eclipse IDE➤Installation

Details➤Configuration tab. In the pane, find the line that starts with java.runtime.

version=....

�Adding Java Runtimes
Eclipse itself is a Java application, and in the preceding section, we learned how to tell

Eclipse which Java version to choose for its own interests. For the development itself, you

have to tell Eclipse which Java version to use for compiling and running the applications

it hosts.

To do so, note the paths of all JDK installations you want to use for Eclipse

development. Then, start Eclipse.

Note  When you start Eclipse, it asks you for a workspace. This folder can hold
several distinct or interrelated projects. It is up to you if you want to choose an
existing workspace or prefer to use a fresh new folder for an empty workspace.

Inside Eclipse, go to Window➤Preferences➤Java➤Installed JREs. Usually Eclipse

is clever enough to automatically provide the JRE it used for its own startup. If this is

enough for you, you don’t have to do anything here. Otherwise, click the Add... button to

register more JREs. In the subsequent dialog, select Standard VM as the JRE type.

Note F or Java 8, and other than when the name suggests, you must provide the
paths to JDK installations, not JRE installations in the strict sense.

Select the check box to mark your primary JRE. Don’t forget to click the Apply or

Apply and Close button to register your changes.

�Adding Plugins
Eclipse can be extended by many useful plugins. Some of them are necessary for your

development, and some just improve your development workflow. In this book, we

won’t use too many extra plugins, and I will provide plugin installation instructions

when they are needed.

Chapter 3 Development Workflow

50

As an exception, we will now install a Gradle plugin. We will later see that we can use

Gradle from the console, but the Gradle plugin in Eclipse allows us to use Gradle directly

from inside the IDE. Open Help➤Install New Software... and enter Eclipse Buildship

(Gradle) and http://download.eclipse.org/buildship/updates/latest in the dialog.

Select all the features and finish the wizard.

�Eclipse Everyday Usage
Eclipse provides a lot of functions and you can learn about them by opening the built-in

help. To give you a starting point, the following are tips that help you get the most out of

Eclipse:

•	 You can get to an identifier’s definition by placing the cursor over

it and pressing F3. This works for variables (to navigate to their

declarations) and classes/interfaces (to navigate to their definitions).

You can even inspect referenced and Java standard library classes

that way. Eclipse will download sources and show the code. This is a

great way to learn about libraries in-depth by looking at the code.

•	 To rapidly find a resource, such as a file, class, or interface, press

Ctrl+Shift+R.

•	 Start typing code and press Ctrl+Space and Eclipse will show

you suggestions on how to finish your typing. For example, type

new SimpleDa and then press Ctrl+Space. The list provided will

contain all the constructors for the SimpleDateFormat class. Even

better, you can make that shorter by typing new SiDF and pressing

Ctrl+Space, because Eclipse will guess the missing lowercase letters.

An additional goody is that you don’t have to write the import

statements for classes and interfaces you introduce that way. Eclipse

will add the imports for you.

•	 Let Eclipse add the imports for all classes not yet resolved by pressing

Shift+Ctrl+O (think of O as “organize imports”).

•	 Format your code by pressing Ctrl+Alt+F. This also works with XML

and other file types.

Chapter 3 Development Workflow

http://download.eclipse.org/buildship/updates/latest

51

•	 Let Eclipse show you super- and subtypes by pressing F4 over a type

designator.

•	 Use F5 to update the Project Explorer view, in case files were added

or removed from outside of Eclipse.

•	 With a new Eclipse installation, open the Problems view by choosing

Window➤Show View➤Other...➤General➤Problems. This will

readily point you to any problems that Eclipse detects (compiler

problems, configuration problems, and others).

•	 Open the tasks view from Window➤Show

View➤Other...➤General➤Tasks to get a list of all occurrences of

“TODO” that you entered in code comments.

•	 In case “TODO” is not fine-grained enough for you, you can add

bookmarks by right-clicking the vertical bar anywhere on the left side

of the code editor. Bookmarks are then listed in the Bookmarks view.

�More About Gradle
With Eclipse and the Gradle plugin at hand, we can improve our knowledge of the Gradle

framework. To keep things simple for now, we start with a very simple non-Java MVC project.

Note  You can find the Gradle user manual at https://docs.gradle.org/
current/userguide/userguide.html.

�A Basic Gradle Project
In order to learn more about Gradle, we build a simple EchoLibrary library with just one

class and one method, printing a string to the console. Start Eclipse, and you’ll be asked

for a workspace. Choose any folder of your choice.

Note  You may add all example projects from this book to a single workspace
called JavaMVCBook to keep things together, but this is up to you.

Chapter 3 Development Workflow

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html

52

Go to File➤New➤Other...➤Gradle➤Gradle Project. Choose EchoLibrary as the

project name. You can use the default settings for the Gradle project options. Upon

completion, the New Project wizard prepares the project and adds a few files to the

project that holds the Gradle configuration.

The next thing we do is make sure the project can use an existing JSE installation.

The Gradle project wizard might try to use a nonexistent JRE and an error marker will

appear. See Figure 3-1.

To fix such a mismatch or to check whether the correct JRE is used, right-click the

project, then choose Properties➤Java Build Path➤Libraries. See Figure 3-2.

Figure 3-1.  Project error marker (red exclamation mark)

Figure 3-2.  JRE mismatch

Chapter 3 Development Workflow

53

If there is a mismatch, remove the invalid entry by clicking Classpath and then

choosing Add Library...➤JRE System Library. Add the version 8 JRE you registered with

Eclipse. Then click the Apply and Close button.

Next, add a package called book.javamvc.echo by right-clicking src/main/-

java➤New➤Package. Inside the package, add an Echo class with these contents:

package book.javamvc.echo;

public class Echo {

 public void echo(String msg) {

 System.out.println(msg);

 }

}

�Gradle Main Concepts
By default, Gradle uses one central build file named build.gradle inside the root folder

of the project. Before we start talking about this file, we first need to cover Gradle’s main

concepts:

•	 Gradle has a core, which provides the infrastructure for build-related

activities. The activities themselves live in Gradle plugins, which need

to be specified in the build file and which run on top of the core. For

each project, you can specify which plugins are to be used for Gradle

builds. There are plugins for compiling Java classes; for packaging

artifacts into ZIP, WAR, or EAR files; for running applications; and

for publishing applications into a Maven repository. There are also

various analysis plugins, IDE integration plugins, utility plugins, and

more. And you can of course develop your own plugins.

•	 Plugins perform tasks. For example, the Java plugin has, among

others, a compileJava task for compiling Java classes and a jar task

for compressing and gathering several compiled classes.

•	 Each Gradle build consists of an initialization, a configuration, and

an execution phase. In the initialization phase, Gradle determines

whether the subprojects need to be included win the build. (We talk

about subprojects later.) In the configuration phase, Gradle evaluates

dependencies and builds a task graph, which contains all the tasks

Chapter 3 Development Workflow

54

that need to be executed for a build. Configurations on all objects

always run with every Gradle build. This is an important point and

a common pitfall for beginning Gradle users. It means that for a task

execution, the configuration for seemingly totally unrelated tasks

is called as well. So, for performance reasons, the configuration for

any task should be really fast. A task’s configurations should not

do anything that depends on whether the task is actually subject to

execution. In the execution phase, the tasks actually do their jobs

(compiling, moving, zipping, and so on).

Note M any Gradle manuals and tutorials at the beginning center around user-
defined tasks, which is actually a little bit misleading to the beginning Gradle user.
In many, even bigger projects, the corresponding build.gradle file specifies and
configures plugins, but hardly ever addresses tasks directly. Tasks are important
from a technical point of view, but starting Gradle introductions by talking
about the different phases and the plugin architecture leads to a more thorough
understanding of Gradle’s functioning.

�Standard Gradle Project Layout
The project layout that all Gradle plugins by default expect is as follows:

src

 |- main

 | |- java

 | | |- <java source files>

 | |- resources

 | |- <resource files>

 |

 |- test

 |- java

 | |- <java source files>

 |- resources

 |- <resource files>

build

Chapter 3 Development Workflow

55

 |- <any files built by Gradle>

build.gradle <Gradle build file>

settings.gradle <(Sub-)Project settings>

gradle.properties <optional project properties>

Note  If you know the Maven build framework, the layout of the src folder will
look familiar to you.

We will learn how to change the project structure in a later section.

�The Central Gradle Build File
The Gradle project wizard from Eclipse creates a sample build.gradle file inside the

project’s root folder. For any Gradle project, including projects that don’t use Eclipse, this

is the central build file. The Eclipse plugin provides a basic build file with some example

entries, but you can of course build this file from scratch.

Caution  The Eclipse Gradle plugin sometimes has a funny idea about when and
where to show the build file. If you can’t find the file in the Project Explorer, open
the Gradle Task view and right-click the project, then choose the Open Gradle Build
Script option.

A build file usually starts by defining which plugins are to be used, and then

configures the plugins. User-defined tasks with operating instructions can also go to

the build file, if needed. It is also possible to add Groovy or Kotlin code to existing tasks,

which gives you the power to fine-tune plugins according to your needs.

Note  In this book, we show only Groovy code for Gradle build purposes. Groovy
is dynamically typed and because of that maybe just a little bit more concise
compared to the statically typed Kotlin. Besides, Groovy dedicatedly is a scripting
language, so it’s equipped with many utilities for scripting purposes, while Kotlin is
a large-scale computer language and a competitor to Java.

Chapter 3 Development Workflow

56

Plugins usually have a very precise and reasonable idea about their defaults, so

there is not much to configure for your project. For this reason, the build file could be

rather small. This convention-over-configuration style is not an invention of Gradle, but

Gradle—with its design aiming at elegance-gratefully adopts this idea.

Back to the EchoLibrary sample project. We dismiss the sample build.gradle file

created by the wizard and overwrite its contents with the following:

// The EchoLibrary build file

plugins {

 id 'java-library'

}

java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

}

The first three lines plugins { id 'java-library' } specify that we want to use the

java-library plugin. The name tells all, we in fact want to build a Java library, but you

can learn about the details in the plugins section of the user manual.

The java { sourceCompatibility = JavaVersion.VERSION_1_8;

targetCompatibility = JavaVersion.VERSION_1_8 } settings specify the JRE version

of our library. Possible values can be looked up in the org.gradle.api.JavaVersion

class, but you won’t find anything surprising there (JDK 13 = JavaVersion.

VERSION_1_13 and so on).

Chapter 3 Development Workflow

57

Note  Gradle uses your operating system’s default JDK to compile classes. You
should not use your Gradle project configuration to set the JDK path, because then
you’d introduce some unneeded dependency. After all, a JRE 13 can very well
handle JRE 8 files and maybe other developers want to use the same build scripts
on their own systems. Instead you can change your operating system’s JAVA_
HOME environment variable to specify a JDK path prior to Gradle invocations.

The repositories { jcenter() } lines indicate where Gradle will try to load

libraries that your project depends on. The jcenter() points to Bintray’s JCenter, but

you can also use google() for Android projects and mavenCentral() for Maven Central.

Or, you could specify a custom URL, as in repositories { maven { url "http://

my.company.com/myRepo" } }, which comes in handy with private or company-owned

repositories. See the Gradle manual section called “Declaring Repositories.”

The dependencies section indicates which libraries our project needs. For the

EchoLibrary example, we have no dependency to an external library, but for unit tests,

which we did not write in this case but could very well be an exercise for the inclined

reader, we add a dependency to the JUnit test library.

All other settings—like the position of the source files, how the generated JAR file is

named and where it is written to, where to store and cache downloaded dependencies,

and so on—are handled by the plugin defaults.

This build file with a handful of settings can now be used to perform various build

tasks.

�Running Gradle Tasks
Build-related and user-triggered activities in Gradle are called tasks. The main objective

of Gradle from a handling perspective is about invoking tasks.

The Eclipse Gradle plugin has a Gradle Tasks and a Gradle Executions view. In

addition, diagnostic output goes to the standard Console view. The two Gradle-related

views open by default after you install the Gradle plugin. See Figure 3-3.

Chapter 3 Development Workflow

http://my.company.com/myRepo
http://my.company.com/myRepo

58

If this is not the case for you, go to Window➤Show View➤Other...➤Gradle to open a

Gradle view. The Console view is available from Window➤Show View➤Console.

The Gradle Tasks view lists all available tasks in a tree view; see Figure 3-4. The

scope of the tasks shown can be filtered using the view menu (small down triangle in

the menu). If you introduce any custom tasks, this is a good time to enable the Show All

Tasks item; otherwise, the custom tasks don’t show up in the list. See Figure 3-5.

Figure 3-3.  Gradle views

Figure 3-4.  Gradle tasks view tree

Chapter 3 Development Workflow

59

Caution  If you change the project structure, for example by adding, removing, or
renaming custom tasks, you must click the Refresh Tasks for All Projects button in
the menu (the bent double arrow); otherwise, the view won’t reflect the changes.

In order to run a Gradle task from inside the Gradle Tasks view, you first have to

locate it inside the tree. Depending on how precise your idea is where to look inside

the tree, you can also use the menu filter to find a task. Once you find it, double-click it

to run the task. Diagnostic output, including any error messages, is shown in both the

Gradle Executions and the Console views.

Tasks might have option parameters that control their functioning. For example,

there is a tasks task that lists only a certain subset of all tasks. More precisely, tasks have

a group property, and one of the groups is called other. If you run the tasks task without

a parameter, tasks belonging to the other group are not included in the output. To show

all tasks using that command, you must add an --all parameter. To do so from Eclipse,

go to Run➤Run Configurations, navigate to Gradle Task, and add a new entry, as shown

in Figure 3-6 (click the Add button twice to enter tasks and --all). Click Run and switch

to the Console view to see the output.

Figure 3-5.  Gradle tasks view menu

Chapter 3 Development Workflow

60

For the EchoLibrary example, building a library JAR most probably is the main task.

You can find it in the build section. Once you run it, the final JAR is presented in the

build/libs folder.

Caution  The build folder might be filtered from the Eclipse project view. In this case,
if you want to see it, open the project view menu at the small triangle, go to Filters and
Customization, and remove the check mark from the Gradle Build Folder entry.

Figure 3-6.  Custom Gradle task run configuration

Chapter 3 Development Workflow

61

�Gradle Tasks Explained
Tasks get defined by plugins, and plugins also might amend or overwrite tasks defined

by other plugins, so there is no one-to-one relationship between tasks and plugins. In

addition there are plugin-independent tasks defined by Gradle itself. Table 3-1 defines

most of the tasks you’ll normally use in your Java projects.

Table 3-1.  Gradle Tasks

Name Group Description

help help Displays a help message.

projects help Shows the name of the project and lists the names of all

subprojects, if applicable. We talk about subprojects later

in this chapter.

tasks help Displays the tasks runnable from the project. You have to

add the --all options to include tasks from the other

group. To see tasks belonging to a certain group, add the

--group <groupName> option (for the groupname,

use build, build setup, documentation, help,

verification, or other).

dependencies help Plugin-independent. Calculates and displays all the

dependencies of the project. You can use this to determine

which libraries the project depends on, including transitive

dependencies (dependencies introduced indirectly, as

dependencies of dependencies).

init build setup Adds files necessary for the current directory to serve as a

root for Gradle builds. You do this normally only once and

at the beginning of a new project. With the Eclipse Gradle

plugin and the New Gradle Project wizard, this task is

called automatically. This task does not depend on Gradle

plugins being activated.

(continued)

Chapter 3 Development Workflow

62

Table 3-1.  (continued)

Name Group Description

wrapper build setup Adds a Gradle wrapper to the project. Gradle builds can

then be performed without Gradle being installed at an

operating system level (Java must be installed). With the

Eclipse Gradle plugin and the New Gradle Project wizard,

this task is called automatically. This task does not depend

on Gradle plugins being activated.

check verification A lifecycle task. Abstractly defined in the base plugin and

materialized by activated plugins. Depends on test, but

may run additional checks.

test verification Runs all unit tests.

assemble build A lifecycle task. Abstractly defined in the base plugin and

materialized by activated plugins. Any plugin that produces

a distribution or other consumable artifacts is supposed to

make the assemble task depend on it. In a custom task,

you would write something like assemble.dependsOn(

someTask). Invoking this task bypasses any tests.

build build A lifecycle task. Abstractly defined in the base plugin and

materialized by activated plugins. Depends on the check

and assemble tasks, and thus performs all tests and then

produces a distribution or other consumable artifacts,

depending on the activated plugins.

clean build A lifecycle task. Deletes the build directory. You invoke

this task if you want to make sure a subsequent build

performs all build steps, even those that seemingly could

have been reused from previous build operations. You do

not normally invoke this task in everyday work, because if

properly set up, Gradle should be able to determine which

preparatory tasks need to be executed and which do not

(because of previous builds).

(continued)

Chapter 3 Development Workflow

63

Table 3-1.  (continued)

Name Group Description

classes build Any plugin which, somewhere in its build procedures,

needs to build Java classes provided in this task. Its

responsibility is to create Java classes from the main

section (not test classes) of the sources.

testClasses build Similar to the classes task, but handles the test section

from the sources.

jar build Assembles a JAR archive containing the classes from the

main section.

ear build Only for the EAR plugin. Assembles an EAR archive from

the subprojects (web applications and EJBs).

javadoc documentation Generates JavaDoc API documentation for the source code

from the main section.

compileJava other Compiles Java source from the main section.

compileTestJava other Compiles Java source from the test section.

Each plugin’s documentation may also describe more tasks of particular interest for

that plugin.

�Gradle Plugins
If you’re developing for Java MVC and other Java and JEE/Jakarta EE related projects, the

following list shows you the plugins you will most often encounter:

•	 Base: Provides basic tasks and conventions common for most builds.

•	 Java: Any type of Java project.

•	 Java Library: Extends the Java plugin and provides knowledge about

the API exposed to consumers.

•	 Java Platform: Does not contain any sources, but describes a set of

interrelated libraries that are usually published together.

Chapter 3 Development Workflow

64

•	 Application: Implicitly applies the Java plugin and allows for

declaring a main class to be used as an application entry point.

•	 WAR: Extends the Java plugin and adds capabilities to build a web

application in the form of a WAR file.

•	 EAR: Allows for creating an EAR file.

•	 Maven Publish: Adds capabilities to publish artifacts to a Maven

repository.

•	 Ivy Publish: Adds capabilities to publish artifacts to an Ivy repository.

•	 Distribution: Adds functionalities for simplifying artifact

distribution.

•	 Java Library Distribution: Adds functionalities for simplifying

artifact distribution, with special attention paid to Java libraries.

•	 Checkstyle: Adds checkstyle checks.

•	 PMD: Adds PMD checks.

•	 JaCoCo: Adds JaCoCo checks.

•	 CodeNarc: Adds CodeNarc checks.

•	 Signing: Adds signing capabilities.

•	 Project Report Plugin: Allows for generating a build report.

You can learn more about each plugin by looking into the Gradle user manual,

specifically the chapter entitled “Gradle Plugin Reference.”

�More About Repositories
Gradle loads libraries from a repository if it determines that the project refers to such

libraries. You specify repositories in a repositories { } section inside build.gradle:

repositories {

 repoSpec1 (repository specification, see below)

 repoSpec2

 ...

}

Chapter 3 Development Workflow

65

You can use the following as repository specifications:

•	 mavenCentral()

Hardcoded to point to the publicly available Maven repository at

https://repo.maven.apache.org/maven2/

•	 jcenter()

Hardcoded to point to the publicly available Maven repository at

https://jcenter.bintray.com/

•	 google()

Hardcoded to point to the publicly available Android specific

Maven repository at https://maven.google.com/

•	 flatDir { ... }

Points to a folder with libraries. The precise syntax is flatDir

{ dirs '/path1/to/folder', '/path2/to/folder', ... }.

It does not support meta-information, so if a dependency can

be looked up in a flatDir repository and in another repository

with meta-information (Maven, Ivy, and so on), the latter has

precedence.

•	 maven { ... }

Points to a Maven repository given an explicit URL. The precise

syntax is

maven { url "http://repo.mycompany.com/maven2" }

•	 ivy { ... }

Points to an Ivy repository given an explicit URL. The precise

syntax is

ivy { url "http://repo.mycompany.com/ivy" }

•	 mavenLocal()

Uses the local Maven cache (usually in HOME-DIR/.m2)

For URLs you specify as repository locations, Gradle also supports the https:, file:,

sftp:, and s3: (Amazon s3 services) protocols, or gcs: (Google cloud storage).

Chapter 3 Development Workflow

https://repo.maven.apache.org/maven2/
https://jcenter.bintray.com/
https://maven.google.com/

66

The first three, and of course the standard http:// protocol, use the standard URL

syntax. If needed, the Gradle manual explains more about the syntaxes for s3: and gcs.

If you need to provide credentials for connecting to a repository, you can specify

them in a credentials { } section:

repositories {

 maven {

 url "http://repo.mycompany.com/maven2"

 credentials {

 username "user"

 password "password"

 }

 }

}

This is for basic authentication. For more advanced authentication schemes, see the

section called “Declaring Repositories” in the Gradle manual.

�More About Dependencies
Dependencies in Gradle center on configurations. A (dependency-related)

configuration is a dependency scope, which means it describes a usage scenario.

Consider for example that you have one set of dependencies important only for testing,

another set of dependencies needed for the internal functioning of some library, and

yet another set of dependencies needed for internal functioning and forwarded to

clients (because they show up in public method calls). All those are different scopes, or

configurations.

Dependency-related configurations are defined by plugins, but there is a common

sense about configuration names, and internally configurations also inherit from each

other, which leads to configuration name matches between different plugins. Table 3-2

list the configurations you’ll often encounter in Java-related projects.

Chapter 3 Development Workflow

67

Table 3-2.  Gradle Configurations

Name Description

implementation Any dependency needed to compile the main section of the sources can

use this configuration. The dependency also will be used at runtime.

compile DEPRECATED. To be replaced by implementation. You find this

often in blogs and tutorials, so this is added for your information. Use

implementation instead.

compileOnly Dependency only needed to compile the main section of the sources.

During runtime, some kind of container will provide the dependency, so

the project is not required to add this kind of dependency to a deliverable

artifact.

runtimeOnly Dependency not needed for compilation of the main section of the sources,

but subject to being added to deliverable artifacts.

api Only for the Java Library plugin, identifies a dependency that must be

transferred to library clients as well, because types from the dependency

show up in public method calls.

providedCompile Only for the WAR plugin; same as implementation, but the dependency

will not be added to the WAR file.

providedRuntime Only for the WAR plugin; same as runtime, but the dependency will not be

added to the WAR file.

deploy Only for the EAR plugin; add the dependency to the root of the EAR file.

earlib Only for the EAR plugin; add the dependency to the lib folder of the EAR

file.

testImplementation Any dependency needed to compile the test section of the sources can

use this configuration. The dependency also will be used at runtime.

testCompile DEPRECATED. To be replaced by testImplementation. You find this

often in blogs and tutorials, so this is added for your information. Use

testImplementation instead.

testCompileOnly Similar to compileOnly, but for the test section of the sources.

testRuntimeOnly Similar to runtimeOnly, but for the test section of the sources.

Chapter 3 Development Workflow

68

Once you identify the configurations you need, you specify a list in the dependencies

{ } section of your build.gradle file:

dependencies {

 implementation 'org.apache.commons:commons-math3:3.6.1'

 // This is the same:

 implementation group:'org.apache.commons',

 name:'commons-math3',

 version:'3.6.1'

 // You can combine:

 implementation 'org.apache.commons:commons-math3:3.6.1',

 'org.apache.commons:commons-lang3:3.10'

 // or like that:

 implementation(

 [group:'org.apache.commons',

 name:'commons-math3', version:'3.6.1'],

 [group:'org.apache.commons',

 name:'commons-lang3', version:'3.10']

)

 // or like that:

 implementation 'org.apache.commons:commons-math3:3.6.1'

 implementation 'org.apache.commons:commons-lang3:3.10'

 testImplementation 'junit:junit:4.12'

}

Normally any indirect dependency, which comes from dependencies of

dependencies, gets resolved automatically. Such dependencies are called transitive

dependencies. So if you declare a dependency on some library A, which in turn depends

on libraries B and C, Gradle will take care of including B and C in the build, without

needing to explicitly declare the dependencies on B and C in build.gradle. If you want

to prevent Gradle from including transitive dependencies, you can mark them using

transitive = false:

dependencies {

 implementation (group: 'org.eclipse.jetty',

 name: 'jetty-webapp',

Chapter 3 Development Workflow

69

 version: '9.4.28.v20200408') {

 transitive = false

 }

}

You can investigate such transitive dependencies if you invoke the dependencies

task. The output will be a tree-like representation of dependencies and transitive

dependencies, as for example, in the following:

...

runtimeClasspath - Runtime classpath of source set 'main'.

\--- com.sparkjava:spark-core:2.8.0

 +--- org.slf4j:slf4j-api:1.7.25

 +--- org.eclipse.jetty:jetty-server:9.4.12

 | +--- javax.servlet:javax.servlet-api:3.1.0

 | +--- org.eclipse.jetty:jetty-http:9.4.12

 | | +--- org.eclipse.jetty:jetty-util:9.4.12

 | | \--- org.eclipse.jetty:jetty-io:9.4.12

 | | \--- org.eclipse.jetty:jetty-util:9.4.12

...

(The noted dependency here is implementation com.sparkjava:spark-core:-

2.8.0.)

�Changing the Project Structure
We learned that, by adhering to the default project structure, we don’t have to spend

time in configuring the project, telling it where to find sources and resources.

If for whatever reason you need a custom project layout, add the following lines to

your build.gradle file:

sourceSets {

 main {

 java {

 srcDirs = ['src99/main/java']

 }

 resources {

Chapter 3 Development Workflow

70

 srcDirs = ['src99/main/resources']

 }

 }

 test {

 java {

 srcDirs = ['src99/test/java']

 }

 resources {

 srcDirs = ['src99/test/resources']

 }

 }

}

Because all directory settings are specified as lists (seen from [...]), you can also

distribute sources and resources over several folders (use commas as separators).

In order to change the build folder where Gradle puts the temporary and final output

files, write the following in your build.gradle file:

project.buildDir = 'gradle-build'

�The Gradle Build File Is a Groovy Script
Let’s revise the EchoLibrary example build.gradle file:

// The EchoLibrary build file

plugins {

 id 'java-library'

}

java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

repositories {

 jcenter()

}

Chapter 3 Development Workflow

71

dependencies {

 testImplementation 'junit:junit:4.12'

}

Apart from the suspicious () in jcenter() and the strange mixture of A B and A =

B constructs, this file might look like a configuration file with a syntax limited to setting

some properties. The truth is much more gloomy, however. In fact, the build.gradle file

is a Groovy script, and Groovy is a fully fledged scripting language running on top of a

JVM engine.

Although we already stated that, for build definition files, a declarative programming

style is preferable over a declarative programming style, it is, under certain

circumstances, acceptable to add programming language constructs like conditional

statements, switch constructs, loops, and calls to library objects for IO (files and the

console), math, streams, date and time, and whatever else you might think of. Also,

the { } brackets in the build files actually do not denote blocks, but closures. So the

dependencies { } construct is actually a shortcut for dependencies({ }), and any A

B construct in fact is a method call A(B).

For example, if you wanted to add a runtimeOnly dependency only if some system

property is defined, and furthermore wanted to output a corresponding diagnostic

message, you could write the following:

...

dependencies {

 if(System.getProperty("add.math") != null) {

 println("MATH added")

 runtimeOnly group: 'org.apache.commons',

 name: 'commons-math3', version: '3.6.1'

 }

 ...

 testImplementation 'junit:junit:4.12'

}

...

You could now call any task with the extra option -Dadd.math added to see the

conditional statement and console output working.

Chapter 3 Development Workflow

72

�Script Variables
For increased readability and maintenance optimization, you can add variables

(properties) to your build file. To do so, you can use an ext { } call:

...

ext {

 MATH_VERSION = '3.6.1'

 JUNIT_VERSION = '4.12'

}

dependencies {

 implementation group: 'org.apache.commons',

 name: 'commons-math3', version: MATH_VERSION

 testImplementation "junit:junit:${JUNIT_VERSION}"

}

...

In order for the ${} substitution to work, the double quotation marks are

required—this is a Groovy language feature (GString objects). Otherwise in Groovy you

can use both single and double quotation marks to denote strings.

If the variable scope is limited to the current closure (inside a { }), you can also use

the standard Groovy local variable declaration:

...

dependencies {

 def MATH_VERSION = '3.6.1'

 def JUNIT_VERSION = '4.12'

 implementation group: 'org.apache.commons',

 name: 'commons-math3', version: MATH_VERSION

 testImplementation "junit:junit:${JUNIT_VERSION}"

}

...

Chapter 3 Development Workflow

73

�Custom Tasks
We can define our own tasks inside the build.gradle file. Because we can use the

Groovy language inside the build script, the possibilities are endless here. We can add

logging, include non-standard files in archives, perform encryption, deploy artifacts on

servers, publish files in a non-standard way, perform timing, invoke extra preparation

and cleanup steps, and more.

To define your own task, you write the following anywhere in your build.gradle

script file:

task hello {

 group = 'build'

 description = 'Hello World'

 println 'Hello world! CONFIG'

 doFirst {

 println 'Hello world! FIRST'

 }

 doLast {

 println 'Hello world! LAST'

 }

}

The group and description settings are both optional; the default for the group

is other, and if you omit the description, an empty string will be taken instead. The

possible values for group are build, build setup, documentation, help, verification,

and other.

To execute a custom task, you do the same thing as you do for built-in tasks or tasks

defined by plugins. However, in order for the Eclipse Gradle plugin to be able to see the

new task, you first must right-click the project and then choose Gradle➤Refresh Gradle

Project. Then you’ll see the new task in the tree view of the Gradle Tasks view and can

execute it by double-clicking it.

The instructions inside the main { } are executed during the configuration phase.

It is important to know that such instructions are executed unconditionally for all tasks

declared! For task-execution matters, you instead put instructions into doFirst { } or

Chapter 3 Development Workflow

74

doLast { }. Each task has an action list; if you use doFirst, instructions are prepended

to the action list, if you use doLast, actions are appended to the action list.

It is possible to add instructions to the task’s action list at a later point, by writing:

hello.doLast {

 println 'Hello world! MORE LAST'

}

hello.doFirst {

 println 'Hello world! MORE FIRST'

}

You can add your custom task to the dependent’s list of existing tasks, or add existing

tasks to the dependent’s list of the new task. To do so, write the following, for example:

build.dependsOn hello

hello.dependsOn build

The magic behind that is that any task is directly available by its name inside the

build.gradle script. So, if you write build.dependsOn hello, any execution of the

build task first leads to executing hello. In hello.dependsOn build, an execution of the

hello task first yields a build execution. This way, it is possible to add task dependency

relations to existing standard and non-standard tasks.

�The Gradle Wrapper
If you use the wrapper task or the Eclipse Gradle plugin to start a new project, the

wrapper scripts are installed, which allow you to run Gradle without any Gradle

installation on the operating system (Java must be working, though). You can see that

from the following files:

gradlew

gradlew.bat

gradle

 |- wrapper

 |- gradle-wrapper.jar

 |- gradle-wrapper.properties

Chapter 3 Development Workflow

75

gradlew and gradlew.bat are Gradle startup scripts for Linux and Windows,

respectively. The gradle folder contains the standalone Gradle installation.

The Eclipse Gradle plugin does not use these wrapper scripts. Instead, upon starting

the first Gradle task, a Gradle daemon from inside USER_HOME/gradle is started. This

daemon runs in the background and any Gradle task execution triggered from Eclipse

contacts this daemon for the actual build work. This allows for faster task executions.

If Gradle gets invoked from the console, the wrapper is used, and such a daemon

process will be started as well. We talk about the console-oriented way of development

in the “Developing Using the Console” section.

�Multi-Project Builds
Gradle projects can have subprojects. Apart from gathering projects that exhibit

some kind of inter-relation, such a hierarchy built of one main project and one or

more subprojects also is important for EAR projects, where we typically have one web

application, maybe some EJBs, and possibly some libraries.

To build such a multi-project from inside Eclipse, first create a normal Gradle project

as described previously. Then, open the settings.gradle file and add the following line:

include 'proj1', 'proj2'

Of course you can choose different names for the subprojects. Next, create two

folders inside the project folder, with names proj1 and proj2 (or whatever names you

have chosen). Add an empty build.gradle file to each of the new folders. You can later

add any subproject-related build instructions there.

Right-click the project and choose Gradle➤Refresh Gradle Project. Eclipse will

update the Project Explorer and show the main project and the two subprojects as

different entries; see Figure 3-7.

Chapter 3 Development Workflow

76

Due to a bug in the Gradle plugin, you have to fix the JRE library assignment for

all three entries. On each of them, right-click and then choose Properties➤Libraries.

Remove the wrong entry, then click Add Library (to classpath)➤JRE System

Library➤Workspace Default JRE (or whatever suits your needs). The error markers

should now be gone, as shown in Figure 3-8.

Figure 3-7.  Gradle multi-project in Eclipse

Chapter 3 Development Workflow

77

Each subproject can be configured independently using its own build.gradle file,

but it is also possible to refer to subprojects from the root project’s build.gradle file:

// referring to a particular sub-project

project(':proj1') { proj ->

 // adding a new task to proj1

 task('hello').doLast { task ->

Figure 3-8.  Gradle multi-project in Eclipse, fixed

Chapter 3 Development Workflow

78

 println "I'm $task.project.name" }

}

// we can directly address tasks

project(':proj1').hello {

 doLast { println "I'm $project.name" }

}

// or, referring to all sub-projects

subprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

// or, referring to the root project and all sub-projects

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

We can address the root project from inside the configuration of a subproject via the

rootProject variable:

task action {

 doLast {

 println("Root project: " +

 "${rootProject.name}")

 }

}

Chapter 3 Development Workflow

79

You can read more about multi-project builds in the sections called “Configuring

Multi-Project Builds” and “Authoring Multi-Project Builds” in the Gradle user manual.

We will use a multi-project in Chapter 9.

�Adding a Deploy Task
A good candidate for a custom task is a deployment process. We can use the standard

build task to create a WAR or EAR file, but in order to deploy it on a local development

server, a custom Gradle task comes in handy. Throughout the book, we will use the

following tasks for deployment and “un-deployment” on a local GlassFish server:

task localDeploy(dependsOn: build,

 description:">>> Local deploy task") {

 doLast {

 def FS = File.separator

 def glassfish = project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def libsDir = "${project.projectDir}${FS}build" +

 "${FS}libs"

 def procStr = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 deploy --force=true

 ${libsDir}/${project.name}.war"""

 // For Windows:

 if(FS == "\\") procStr = "cmd /c " + procStr

 def proc = procStr.execute()

 proc.waitForProcessOutput(sout, serr)

 println "out> ${sout}"

Chapter 3 Development Workflow

80

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

task localUndeploy(

 description:">>> Local undeploy task") {

 doLast {

 def FS = File.separator

 def glassfish = project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def procStr = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 undeploy ${project.name}"""

 // For Windows:

 if(FS == "\\") procStr = "cmd /c " + procStr

 def proc = procStr.execute()

 proc.waitForProcessOutput(sout, serr)

 println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

These tasks depend on a properties file. Gradle automatically tries to read a

properties file named gradle.properties and, if it exists, creates a map from the

properties and puts it into the project.properties variable. We create such a file in the

project folder, and let it read as follows:

Chapter 3 Development Workflow

81

glassfish.inst.dir = /path/to/glassfish/inst

glassfish.user = admin

glassfish.passwd =

The tasks create a temporary password file; this is just the GlassFish way of avoiding

manual password entry. The "...".execute() creates a process running on the

operating system; for the Windows variant, we have to prepend a cmd /c.

We can now perform a deployment or “un-deployment” by invoking the

localDeploy or localUndeploy task, respectively. Since we added a dependsOn: build

as a task dependency for deployment, it is not necessary to build a deployable artifact;

this is done automatically.

�Developing Using the Console
Because the Eclipse Gradle plugin installed wrapper scripts inside the project folder, it

is therefore possible to do all build-related work from inside a console (bash terminal in

Linux, command interpreter in Windows) instead of from the Eclipse GUI. It is a matter

of style; using the console, you can avoid having to switch around Eclipse views and

collapsing and scrolling trees. Besides, if you have to add task options or arguments,

using the console is much more straightforward and faster compared to the GUI. If you

don’t have a GUI because you want to do the build on a server, using the console is your

only option.

This section covers using the console for Gradle builds. It is possible to freely mix

console and GUI triggered builds, so you can use both approaches at the same time.

If you didn’t use the Eclipse Gradle plugin to start a Gradle project, you can use the

wrapper task to create the wrapper. In this case, Gradle must be installed on your OS. The

Linux script reads as follows:

java -version

observe output

if you want to specify a different JDK:

export JAVA_HOME=/path/to/the/jdk

cd /here/goes/the/project

gradle init wrapper

Chapter 3 Development Workflow

82

For Windows, it reads as follows:

java -version

observe output

if you want to specify a different JDK: set JAVA_HOME=C:\path\to\the\jdk

chdir \here\goes\the\project

gradle init wrapper

This assumes that the gradle is in the PATH (in Windows, gradle.bat is in your

PATH). Otherwise, you must specify the complete path to the gradle command. For

example: C:\gradle\bin\gradle.bat.

To check the wrapper installation, you can list the available tasks from inside the

project directory via the following:

./gradlew tasks

Windows: gradlew tasks

The output should be something like this:

> Task :tasks

--

All tasks runnable from root project

--

Build Setup tasks

init - Initializes a new Gradle build.wrapper - Generates Gradle wrapper

files.

[...]

You can see the complete synopsis of the gradlew (gradlew.bat for Windows)

wrapper command if you enter the following:

./gradlew -help

Windows: gradlew -help

Chapter 3 Development Workflow

83

A non-exhaustive list of interesting and important option parameters is shown in

Table 3-3. Specify any tasks to be executed behind the option list.

Table 3-3.  Gradle Command Options

Option Description

-?, -h, –

help

Shows this help message.

-Dprop=val Sets a JVM property. You can use System.getProperty("prop") inside the

script to read it.

-Pprop=val Sets a project property. You can use prop inside the script to directly read it.

-w, –warn Adds warning level diagnostic output.

-i, –info Adds some info level diagnostic output.

-d, –debug Enables debugging messages when something goes wrong.

-q, –quiet Shows error level messages only (quiet).

–offline Normally libraries referred to in a Java build task are downloaded into a cache. If

you want to disable network access, use this option.

–status Shows the status of Gradle daemon(s). Normally upon first startup, a background

process (daemon) is started to speed up subsequent Gradle calls. Use this to

show the status of the daemon(s).

–stop Stops the daemon if it is running.

-v, –version Shows the version info.

Tasks can have options and parameters. In order to use the tasks task (show all

task), for example, you can add --all as an option:

./gradlew tasks --all

Windows: gradlew tasks --all

This shows tasks from the other group (which are normally discarded). If you run ./

gradlew help --task <task>, you can view the info (options) about any particular task.

Chapter 3 Development Workflow

84

To troubleshoot build script execution performance problems, there is another

option called --profile, which will lead to a performance report being added to build/

reports/profile.

For our little EchoLibrary example project, navigate to the project folder and then

execute the following:

./gradlew build

Windows: gradlew build

The output JAR called EchoLibrary.jar is generated inside the build/libs folder.

Note F or simplicity in the rest of the book, we will only show console Gradle
commands, and only the Linux variant.

�Installing MVC
In order to be able to use Java MVC, from a Gradle perspective, we need to check a few

things. First, we configure Java MVC as a web application. For this reason, we create a

web project and use the WAR plugin. Inside build.gradle, add the following:

plugins {

 id 'war'

}

Next we add the Jakarta EE 8 API, the Java MVC API, and a Java MVC implementation

inside the dependencies section of build.gradle. This comes together with a repository

specification, the usual JUnit test library inclusion, and the indication that we want to

use Java 1.8:

plugins {

 id 'war'

}

java {

 sourceCompatibility = 1.8

 targetCompatibility = 1.8

}

Chapter 3 Development Workflow

85

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

 implementation 'javax:javaee-api:8.0'

 implementation 'javax.mvc:javax.mvc-api:1.0.0'

 implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

 // more dependencies...

}

// ... more tasks

That is it; the build process will make sure that all libraries are downloaded, and that

Java MVC is added to the web application during a ./gradlew build.

�Exercises
Exercise 1: True or false? Using imperative programming (step-

by-step instructions) is the preferred programming style for build

scripts.

Exercise 2: True or false? For imperative code snippets, you can

use C++ code inside a Gradle build script.

Exercise 3: True or false? Eclipse uses the same JRE for its own

functionalities and for building projects.

Exercise 4: Identify the three phases of a Gradle build process.

Exercise 5: True or false? Using the standard Gradle Java project

layout, Java classes go into src/java/main.

Exercise 6: True or false? The Gradle plugins to be used are

specified in the settings.gradle file.

Chapter 3 Development Workflow

86

Exercise 7: Gradle downloads project dependencies as necessary.

True or false? Where to download from is specified in a downloads

{ } section inside build.gradle.

Exercise 8: Describe what a configuration is in Gradle jargon.

Exercise 9: Using the Eclipse Gradle plugin, create a

GraphicsPrimitives Java library with two classes: Circle and

Rectangle. Configure it to use JRE 1.8. Adapt all Gradle build

configuration files as necessary.

Exercise 10: If you have two custom tasks:

task a {

 println "Hi, I'm A"

}

task b {

 println "Hi, I'm B"

}

Under which condition is "Hi, I’m A" printed to the console?

Exercise 11: True or false? The Gradle wrapper works only if

Gradle is installed on the operating system.

Exercise 12: Describe what needs to be done to let Gradle use the

JDK at /opt/jdk8 (or for Windows, at C:\jdk8).

�Summary
In this chapter, we talked about development techniques, procedures, and tools you can

use for the examples in this book and any subsequent projects using Java MVC.

Gradle is a modern build framework/build automation tool. You can use a

declarative configuration style, but you can also add imperative build code in the form

of Groovy (or Kotlin) script snippets. Best practices indicate that, for build scripts,

declarative programming (which says what a build script has to do, not how it should do

it) is favorable over imperative programming (precise step-by-step instructions).

Chapter 3 Development Workflow

87

Eclipse is an IDE (Integrated Development Environment) with a plethora of

functionalities that help to develop Java Enterprise projects. It can be extended by

plugins, which add additional functionalities. We use the Eclipse IDE for Enterprise Java

Developers variant for this book.

For the book, we need the Eclipse Gradle plugin. Gradle can also be used from the

console, but the Gradle plugin in Eclipse allows us to use Gradle directly from inside the

IDE. Open Help➤Install New Software and enter Eclipse Buildship (Gradle) and http://

download.eclipse.org/buildship/updates/latest in the dialog . Select all features

and finish the wizard.

To start a Gradle project inside Eclipse, go to File➤New➤Other...➤Gradle➤Gradle

Project.

The main Gradle concepts are as follows. Gradle has a core, which provides the

infrastructure for build-related activities. Gradle plugins are specified in the main build

file. They run on top of the core and add features to it. Each plugin exhibits build-related

activities in form of tasks. Each Gradle build consists of an initialization, a configuration,

and an execution phase. In the initialization phase, Gradle determines whether or not

subprojects need to be included within the build. In the configuration phase, Gradle

evaluates dependencies and builds a task graph that contains all the tasks that need to

be executed for a build. Configurations on all objects always run with every Gradle build.

During the execution phase, the tasks do their jobs (compiling, moving, zipping, and so

on).

The default project layout for all Gradle plugins is as follows:

src

 |- main

 | |- java

 | | |- <java source files>

 | |- resources

 | |- <resource files>

 |

 |- test

 |- java

 | |- <java source files>

 |- resources

 |- <resource files>

build

Chapter 3 Development Workflow

http://download.eclipse.org/bui
http://download.eclipse.org/bui

88

 |- <any files built by Gradle>

build.gradle <Gradle build file>

settings.gradle <(Sub-)Project settings>

gradle.properties <optional project properties>

The Gradle project wizard from Eclipse creates a sample build configuration build.

gradle file inside the project’s root folder. For any Gradle project, including projects that

don’t use Eclipse, this is the central build file. The Eclipse plugin provides a basic build

file with some example entries.

A build file usually starts by defining which plugins are to be used, and then

configures the plugins. User-defined tasks with operating instructions also can go to

the build file. Besides, it is possible to add Groovy or Kotlin code to existing tasks, which

enables you to fine-tune plugins according to your needs.

Plugins usually have a very precise and reasonable idea about their defaults, so there

is probably not much to configure for your project. For this reason, the build file could be

rather small. This convention-over-configuration style is not an invention of Gradle, but

Gradle gratefully adopts this idea.

The Eclipse Gradle plugin has Gradle Tasks and Gradle Executions views. In

addition, diagnostic output goes into the standard Console view. The two Gradle-related

views open by default after you install the Gradle plugin.

In order to run a Gradle task from inside the Gradle Tasks view, you first have to

locate the task inside the tree. Depending on how precisely you look inside the tree, you

can also use the filter from the menu to find a task. Once you find it, double-click it to

run the task. Diagnostic output, including any error messages, is shown in the Gradle

Executions and Console views.

Gradle loads libraries from repositories if it determines that the project refers to such

libraries. You specify repositories in a repositories { } section inside build.gradle:

repositories {

 repoSpec1 (repository specification, see below)

 repoSpec2

 ...

}

Chapter 3 Development Workflow

89

You can use the following as repository specifications:

–– mavenCentral()

�Hardcoded to point to the publicly available Maven repository at

https://repo.maven.apache.org/maven2/

–– jcenter()

�Hardcoded to point to the publicly available Maven repository at

https://jcenter.bintray.com/

–– google()

�Hardcoded to point to the publicly available Android specific Maven

repository at https://maven.google.com/

–– flatDir { ... }

Points to a folder with libraries. The precise syntax is

flatDir { dirs '/path1/to/folder', '/path2/to/folder', ... }

�Does not support meta-information, so if a dependency can be

looked up in a flatDir repository and in another repository with

meta-information (Maven, Ivy, and so on), the latter has precedence.

–– maven { ... }

�Points to a Maven repository given an explicit URL. The precise

syntax is

maven { url "http://repo.mycompany.com/maven2" }

–– – ivy { ... }

Points to an Ivy repository given an explicit URL. The precise syntax is

ivy { url "http://repo.mycompany.com/ivy" }

–– mavenLocal()

Uses the local Maven cache (usually in HOME-DIR/.m2).

Dependencies in Gradle center on configurations. A dependency-related

configuration is a dependency scope, which means it describes a usage scenario like

testing, compiling, provisioning, and so on. Dependency-related configurations are

Chapter 3 Development Workflow

https://repo.maven.apache.org/maven2/
https://jcenter.bintray.com/
https://maven.google.com/
http://repo.mycompany.com/maven2
http://repo.mycompany.com/ivy

90

defined by plugins, but there is a common sense about configuration names, and

internally configurations also inherit from each other, which leads to configuration name

matches between different plugins.

Once you identify the configurations you need, you specify a list in the dependencies

{ } section of your build.gradle file:

dependencies {

 implementation 'org.apache.commons:commons-math3:3.6.1'

 // This is the same:

 implementation group:'org.apache.commons',

 name:'commons-math3',

 version:'3.6.1'

 // You can combine:

 implementation 'org.apache.commons:commons-math3:3.6.1',

 'org.apache.commons:commons-lang3:3.10'

 // or like that:

 implementation(

 [group:'org.apache.commons',

 name:'commons-math3', version:'3.6.1'],

 [group:'org.apache.commons',

 name:'commons-lang3', version:'3.10']

)

 // or like that:

 implementation 'org.apache.commons:commons-math3:3.6.1'

 implementation 'org.apache.commons:commons-lang3:3.10'

 testImplementation 'junit:junit:4.12'

}

Inside build.gradle, it is possible to add programming language constructs like

conditional statements, switch constructs, loops, and calls to library objects for IO (files

and the console), math, streams, date and time, and whatever else you might think of.

Also, the { } brackets in the build files actually do not denote blocks, but closures. So the

dependencies { } construct is actually a shortcut for dependencies({ }), and any A

B construct in fact is a method call A(B).

Chapter 3 Development Workflow

91

For increased readability and maintenance optimization, you can add variables

(properties) to your build file. To do so, use an ext { } call:

...

ext {

 MATH_VERSION = '3.6.1'

 JUNIT_VERSION = '4.12'

}

dependencies {

 implementation group: 'org.apache.commons',

 name: 'commons-math3', version: MATH_VERSION

 testImplementation "junit:junit:${JUNIT_VERSION}"

}

...

In order for the ${} substitution to work, the double quotation marks are required.

This is a Groovy language feature (GString objects). Otherwise, in Groovy, you can use

both single and double quotation marks to denote strings.

We can define our own tasks inside the build.gradle file. Because we can use

the Groovy language inside the build script, the possibilities are endless. We can add

logging, include non-standard files in archives, perform encryption, deploy artifacts on

servers, publish files in a non-standard way, perform timing, invoke extra preparation

and cleanup steps, and more.

To define your own task, you write the following anywhere in your build.gradle

script file:

task hello {

 group = 'build'

 description = 'Hello World'

 println 'Hello world! CONFIG'

 doFirst {

 println 'Hello world! FIRST'

 }

 doLast {

Chapter 3 Development Workflow

92

 println 'Hello world! LAST'

 }

}

The group and description settings are both optional; the default for group is other,

and if you omit the description, an empty string will be taken instead. All possible values

for group are build, build setup, documentation, help, verification, and other.

You can add your custom task to the dependent’s list of existing tasks, or add existing

tasks to the dependent’s list of the new task. To do so, write the following, for example:

build.dependsOn hello

hello.dependsOn build

The magic behind that is that any task is directly available by its name inside the

build.gradle script. So, if you write build.dependsOn hello, any execution of the

build task first leads to executing hello. With hello.dependsOn build, an execution

of the hello task first yields a build execution. This way, it is possible to add task

dependency relations to existing standard and non-standard tasks.

Because the Eclipse Gradle plugin installed wrapper scripts inside the project folder,

it is therefore possible to do all build-related work from inside a console (bash terminal

in Linux, command interpreter in Windows) instead of from the Eclipse GUI. It is a

matter of style; using the console, you can avoid having to switch around Eclipse views

and collapsing and scrolling trees. Besides, if you have to add task options or arguments,

using the console is much more straightforward and faster compared to the GUI. If you

don’t have a GUI because you want to do the build on a server, using the console is your

only option.

If you didn’t use the Eclipse Gradle plugin to start a Gradle project, you can use the

wrapper task to create the wrapper. In this case, Gradle must be installed on your OS. The

Linux script reads as follows:

java -version

observe output

if you want to specify a different JDK:

export JAVA_HOME=/path/to/the/jdk

cd /here/goes/the/project

gradle init wrapper

Chapter 3 Development Workflow

93

The Windows script is as follows:

java -version

observe output

if you want to specify a different JDK:

set JAVA_HOME=C:\path\to\the\jdk

chdir \here\goes\the\project

gradle init wrapper

This assumes that the gradle is in the PATH (in Windows, gradle.bat is in your

PATH). Otherwise, you must specify the complete path to the gradle command. For

example: C:\gradle\bin\gradle.bat.

You can see the complete synopsis of the gradlew (gradlew.bat for Windows)

wrapper command if you enter the following:

./gradlew -help

Windows: gradlew -help

Tasks can have options and parameters as well. In order to use the tasks task (show

all task), for example, you can add --all as an option:

./gradlew tasks --all

Windows: gradlew tasks --all

This shows tasks from the other group (which are normally discarded). If you run ./

gradlew help --task <task>, you can view the info (options) about any particular task.

In order to be able to use Java MVC, from a Gradle perspective, we need to verify a

few things. First, we configure Java MVC as a web application. For this reason, we create

a web project and use the WAR plugin. Inside build.gradle, add the following:

plugins {

 id 'war'

}

Next we add the Jakarta EE 8 API, the Java MVC API, and a Java MVC implementation

inside the dependencies section of build.gradle. This comes together with a repository

Chapter 3 Development Workflow

94

specification, the usual JUnit test library inclusion, and the indication that we want to

use Java 1.8:

plugins {

 id 'war'

}

java {

 sourceCompatibility = 1.8

 targetCompatibility = 1.8

}

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

 implementation 'javax:javaee-api:8.0'

 implementation 'javax.mvc:javax.mvc-api:1.0.0'

 implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

 // more dependencies...

}

// ... more tasks

In the next chapter, we talk about a clean "Hello World" style project using the

development workflow we just described.

Chapter 3 Development Workflow

95
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_4

CHAPTER 4

Hello World for Java MVC
In Chapter 1, I presented a quick-and-dirty Hello World style Java MVC web application.

With the knowledge of how to use Eclipse as an IDE and Gradle as a build framework,

we can now investigate a cleaner approach to a Hello World web application. The

functionality will be the same: one page serves as a landing page and asks the users

for their name. After they submit it, the controller processes the name and shows a

submission response page with a personalized greeting.

�Starting the Hello World Project
Open Eclipse and choose any suitable workspace. Since in previous chapters we used

JavaMVCBook as a workspace, there is no reason not to use it again for this Hello World

project. Remember that we added a JDK 1.8 to this workspace, so you don’t have to do

this again.

Start a new project. Choose File ➤ New ➤ Other ➤ Gradle ➤ Gradle Project. Click

Next, which leads to the first page of the Gradle New Project wizard being shown. This is

a welcome page and it shows some information about the wizard. See Figure 4-1.

https://doi.org/10.1007/978-1-4842-6280-1_4#DOI

96

If you like, you can uncheck the check box stating whether or not you want to see this

wizard welcome page the next time the wizard is started. Click the Next button.

On the second page, shown in Figure 4-2, you are asked for the project name. Enter

HelloWorld. On the same page, you can enter a project location. If you select the default

location, the project files are created inside the workspace folder. Otherwise, you can

enter a folder anywhere on your file system. This makes sense if you, for example, use a

version control system and prefer to use a project folder inside a special version control

area of your file system.

Figure 4-1.  Gradle project wizard welcome page

Chapter 4 Hello World for Java MVC

97

For learning and working through this book, using the default project location and

leaving the appropriate check box checked probably is the most common approach for

placing projects. The last setting on this page allows you to define and use a working set

for the new project. Working sets are mainly used to filter the projects seen in Eclipse’s

Project Explorer. It is also possible to apply this setting later, so you safely can leave the

Add Project to Working Sets check box unchecked. Click Next to advance to the next

page.

Figure 4-2.  Gradle project wizard page 2

Chapter 4 Hello World for Java MVC

98

On the third wizard page, you can specify some options about Gradle executions.

It is possible to select a dedicated Gradle installation, add some extra Gradle program

execution parameters, or prescribe a certain Gradle version. See Figure 4-3.

Figure 4-3.  Gradle project wizard page 3

Chapter 4 Hello World for Java MVC

99

For a Hello World style application, you can use the defaults, which leaves the

Override Workspace Settings unchecked. In case you are curious: If you click the

Configure Workspace Settings, you can investigate or alter these workspace settings.

The default is to use the Gradle Wrapper, which means that the Gradle Wrapper that’s

installed during the project creation and available after the wizard finishes will be used.

But you are free to experiment with those options, if you like. Clicking Next will start the

actual project generation, and you can see the last page of the wizard, which summarizes

the wizard’s activities. See Figure 4-4. Clicking Finish completes the wizard.

Figure 4-4.  Gradle project wizard page 4

Chapter 4 Hello World for Java MVC

100

After the project generation wizard does its work, the new project shows up in the

Project Explorer. If an error marker appears, there is probably a JRE version mismatch.

Chapter 3 described the procedure to fix this problem in detail. (In short, go to the

project settings by right-clicking the project and then clicking Properties, navigate to Java

Build Path ➤ Libraries, remove the erroneous JRE assignment, and finally add JRE 1.8 as

a library.)

To have the build process correctly add the libraries and construct a WAR web

application, we change the build.gradle file’s content and write the following:

/*

 * GRADLE project build file

 */

plugins {

 id 'war'

}

sourceCompatibility = 1.8

targetCompatibility = 1.8

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

 implementation 'javax:javaee-api:8.0'

 implementation 'javax.mvc:javax.mvc-api:1.0.0'

 implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

 implementation 'jstl:jstl:1.2'

}

task localDeploy(dependsOn: build,

 description:">>> Local deploy task") {

 doLast {

 def FS = File.separator

 def glassfish = project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

Chapter 4 Hello World for Java MVC

101

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def libsDir = "${project.projectDir}${FS}build" +

 "${FS}libs"

 def procStr = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 deploy --force=true

 ${libsDir}/${project.name}.war"""

 // For Windows:

 if(FS == "\\") procStr = "cmd /c " + procStr

 def proc = procStr.execute()

 proc.waitForProcessOutput(sout, serr)

 println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

task localUndeploy(

 description:">>> Local undeploy task") {

 doLast {

 def FS = File.separator

 def glassfish = project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def procStr = """${glassfish}${FS}bin${FS}asadmin

Chapter 4 Hello World for Java MVC

102

 --user ${user} --passwordfile ${temp.absolutePath}

 undeploy ${project.name}"""

 // For Windows:

 if(FS == "\\") procStr = "cmd /c " + procStr

 def proc = procStr.execute()

 proc.waitForProcessOutput(sout, serr) println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

This configuration adds the Jakarta EE 8 API (javax:javaee-api:8.0 in the

dependencies { } section), the Java MVC libraries (javax.mvc:javax.mvc- api:1.0.0

and org.eclipse.krazo:krazo-jersey:1.1.0-M1), and JSTL as a frontend view

templating engine (jstl:jstl:1.2). The build file also contains two custom tasks—

localDeploy and localUndeploy—which help you deploy the project on a local

development GlassFish server. We talked about these tasks in the previous chapter.

For the build to work correctly, add the gradle.properties file to the project folder:

glassfish.inst.dir = /path/to/your/glassfish5.1

glassfish.user = admin

glassfish.passwd =

These settings are addressed by the project.properties['..'] expressions in the

custom tasks. They tell us where GlassFish is and the user credentials needed to contact

it. Adapt the property items according to your needs (admin and an empty password is

the default for a GlassFish server). Right-click the project then choose Gradle ➤ Refresh

Gradle Project to update the project library assignments.

The project is now set up and you can start adding Java class and resource files.

�The Hello World Model
Don’t confuse the model layer of the Java MVC application with a database model.

All that “model” means in the MVC part of an application is a data holder for values

to be transported between different pages, and between the pages and the controller

Chapter 4 Hello World for Java MVC

103

components. For our Hello World application, the model is very small—it consists of a

single string that the user enters on the landing page as a username.

For many MVC web applications, it makes sense to introduce Java classes that hold

model values. So for this Hello World application, you might want to think about a model

class like the following:

public class HelloWorldModel {

 private String userName;

 public String getUserName() {

 return userName; }

 public void setUserName(String userName) {

 this.userName = userName; }

}

However, for such easy cases, and generally if for whatever reason you don’t want

want to introduce model classes, Java MVC provides a model value holder mechanism.

In a controller class, you simply use @Inject to let Java MVC (more precisely, the CDI

part) inject a javax.mvc.Models instance:

import javax.inject.Inject;

import javax.mvc.Models;

...

public class SomeController {

 @Inject

 private Models models;

 ...

}

You can then write the following in the controller:

...

// somehow get String 'name' from the request

String name = ...; models.put("name", name);

...

Chapter 4 Hello World for Java MVC

104

And write this on the web pages:

...

Hello ${name}

...

For this simple Hello World application, we use the Models data container for the

username, so we don’t introduce any dedicated model classes.

�The Hello World View
We need two pages for the view: one landing page where we ask the users for their name,

and a greeting page showing the name just entered. We call the landing page index.jsp

and it has to go into the src/main/webapp/WEB-INF/views folder.

The src/main/webapp path is a convention dictated by Gradle; the WEB-INF/views

path underneath marks the page as a Java MVC controlled view. The index.jsp page

code reads as follows:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Hello World</title>

</head>

<body>

 <form method="post" action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 Enter your name: <input type="text" name="name"/>

 <input type="submit" value="Submit" />

 </form>

</body>

</html>

Chapter 4 Hello World for Java MVC

105

Java MVC allows for two templating engines: JSPs and Facelets. We use JSPs (you can

see from the <%@ ...>, which doesn’t exist in Facelets).

The action attribute from the form tag follows a special syntax dictated by the

Java MVC framework—the ${ mvc. ... } by convention connects to a special

object provided without further configuration work. This object, for example, has a

uriBuilder() method that allows us to generically construct form actions aimed at a

certain method from a Java MVC controller. In this case, it is the HelloWorldController

controller (the class name of the controller without the package) and its greeting()

method.

Placing the view pages somewhere is not enough for the web application to work

correctly. As an additional step, we need to announce that index.jsp is the landing

page. This means a http://localhost:8080/HelloWo rld/mvc must be redirected to

run through the controller and end up in the index.jsp page being loaded. We use two

Java classes for that aim. The first one adds /mvc to the target URL:

package book.javamvc.helloworld;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {

}

You can put it as shown into the book.javamvc.helloworld package. The class is

empty by intention—the @ApplicationPath annotation and the javax.ws.rs.core.

Application superclass lead to the desired behavior.

The second class, RootRedirector, makes sure the "/" or "" path (behind mvc)

is forwarded to mvc/hello, which will later be fetched by the controller as a GET verb

(targeting index.jsp):

package book.javamvc.helloworld;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

Chapter 4 Hello World for Java MVC

106

import java.io.IOException;

/**

 * Redirecting http://localhost:8080/HelloWorld/

 * This way we don't need a <welcome-file-list> in web.xml

 */

@WebFilter(urlPatterns = "/")

public class RootRedirector extends HttpFilter {

 private static final long serialVersionUID =

 7332909156163673868L;

 @Override

 protected void doFilter(final HttpServletRequest req,

 final HttpServletResponse res,

 final FilterChain chain) throws IOException {

 res.sendRedirect("mvc/hello");

 }

}

The response page is called greeting.jsp, and we put it next to index.jsp in the

src/main/webapp/WEB-INF/views folder:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Hello World</title>

</head>

<body>

 Hello ${name}

</body>

</html>

Chapter 4 Hello World for Java MVC

107

You can see that it is extremely limited concerning functionalities. It just outputs the

"Hello NAME" string with NAME replaced by whatever was entered in the landing page.

It refers to the name via ${name}, which addresses the model value name (see the next

section).

�The Hello World Controller
The controller class reacts to user input from browser pages and governs navigation

between the pages. It is called HelloWorldController and we put it in the book.

javamvc.helloworld package:

package book.javamvc.helloworld;

import javax.inject.Inject;

import javax.mvc.Controller;

import javax.mvc.Models;

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

@Path("/hello")

@Controller

public class HelloWorldController {

 @Inject

 private Models models;

 @GET

 public String showIndex() {

 return "index.jsp";

 }

 @POST

 @Path("/greet")

 public Response greeting(

Chapter 4 Hello World for Java MVC

108

 @MvcBinding @FormParam("name") String name) {

 models.put("name", name);

 return Response.ok("greeting.jsp").build();

 }

}

The controller class looks very similar to a JAX-RS controller for RESTful services.

The main difference is that we don’t let requests return data values in the form of JSON

structures or whatever. Instead, the methods are supposed to return page specifiers. The

controller for HelloWorld listens to HTTP GET verbs for URL /hello by virtue of the class’

@Path annotation and no extra @Path annotation for the showIndex() method. Thus, for

/hello, the landing page index.jsp will be loaded.

The greeting() method connects to POSTs from the hello/greet URL, because

the @Path from the class and the @Path from the method are concatenated. We need

the HTTP POST verb here, because we want to connect this method to a form submit.

Accordingly, for /hello/greet, the response page greeting.jsp will be loaded.

CDI injects the Models instance. It is a general-purpose data container in case you

don’t want to introduce Java beans to hold model values. It is fed by a POST and can be

used inside the response view simply by writing ${someName}, where someName is the

name of the POST parameter.

Caution T he Models instance is request scoped, which means the model values
exist only in direct response to a POST action.

�Using Gradle to Build Hello World
In order to build the Hello World web application, you have two options. First, you can use

the Eclipse Gradle plugin to build a project that’s deployable from inside Eclipse. For this

aim, go to the Gradle Tasks view, open the HelloWorld drawer, and find the WAR task in

the build section. See Figure 4-5. To start the task, double-click the task name. The view

then automatically switches to the Gradle Executions window, as shown in Figure 4-6.

There, you get an overview of what exactly Gradle does while performing the task.

Chapter 4 Hello World for Java MVC

109

Figure 4-5.  The Hello World Gradle tasks

Figure 4-6.  Gradle Executions view

Chapter 4 Hello World for Java MVC

110

After the build, you can then find the WAR file inside the build/libs folder. If you

can’t see it in the Project Explorer, left-click the project and press F5 to update the view.

If you still can’t see it, you may have to remove a filter. Open the Project Explorer’s menu,

go to Filters and Customization ➤ Preset Filters (see Figure 4-7), and make sure the

Gradle Build Folder check box is unchecked.

The second option consists of invoking the Gradle wrapper from the console.

Change to the project directory and then enter the following:

./gradlew war

Or enter this if your system does not use a decent Java by default (enter your JDK path):

JAVA_HOME=/path/to/jdk ./gradlew war

After this, you should find the WAR file inside the build/libs folder.

Figure 4-7.  The Project Explorer view filter

Chapter 4 Hello World for Java MVC

111

�Starting a Jakarta EE Server
Chapter 2 described installing and operating a GlassFish Jakarta EE server. For the Hello

World example, make sure you followed that trail and ensured that GlassFish is running

on your local system.

�Deploying and Testing Hello World
To build and deploy the project, you again have two options. From Eclipse, you first have

to make sure that the two custom Gradle tasks—localDeploy and localUndeploy—are

visible to the Eclipse Gradle plugin. For this purpose, open the Gradle Tasks view’s menu

and make sure the Show All Tasks item is checked; see Figure 4-8.

The custom tasks then show up in the Other section of the view, as shown in

Figure 4-9. To invoke any of the custom tasks, simply double-click the task name.

Figure 4-8.  Show All Tasks

Chapter 4 Hello World for Java MVC

112

If you instead want to perform the deployment or “un-deployment” from the

console, you can use the Gradle wrapper as well. Change to the project directory and

then enter the following:

./gradlew localDeploy

or

./gradlew localUndeploy

Or use this if your system does not use a decent Java by default:

JAVA_HOME=/path/to/jdk ./gradlew localDeploy

or

JAVA_HOME=/path/to/jdk ./gradlew localUndeploy

In order to test the Hello World web application, open a browser and enter the

following URL:

http://localhost:8080/HelloWorld

Figure 4-9.  Custom Tasks view

Chapter 4 Hello World for Java MVC

113

The URL is automatically redirected to http://localhost:8080/HelloWorld/mvc/

hello, which leads to rendering the landing page.

Note  8080 is the default HTTP port for web applications in a GlassFish
server. The /HelloWorld comes from the WAR file’s name (a server-specific
feature), the /mvc comes from the App class, and the hello comes from the
RootRedirector class.

The landing page and the response page are shown in Figure 4-10.

Figure 4-10.  Hello World web application

Chapter 4 Hello World for Java MVC

114

�Exercises
Exercise 1: True or false? The Eclipse Gradle plugin’s New Gradle

project wizard adds a Gradle wrapper to the project by default.

Exercise 2: Which of the following are true? (A) A Gradle

wrapper wraps operating system configurations around Gradle

invocations. (B) A Gradle wrapper provides a standalone Gradle

installation inside the project folder. (C) You can tell the Gradle

wrapper which JDK to use. (D) A Gradle wrapper adds the project

to the operating system’s Gradle project list.

Exercise 3: True or false? Gradle has built-in tasks for deploying

WAR files on a Jakarta EE server.

Exercise 4: Which frontend view templating technologies does

Java MVC support?

Exercise 5: True or false? Java MVC model values must map to

fields in dedicated Java bean classes.

Exercise 6: In which environment does a Java MVC web

application run?

Exercise 7: True or false? Gradle is required to build Java MVC

web applications.

Exercise 8: Inside the HelloWorld project, remove the models field

in the controller and instead add a CDI managed bean as follows:

public class UserData {

 private String name; // + getter / setter

}

Hint: You must add the javax.enterprise.context.

RequestScoped and javax.inject.Named annotations to UserData.

In the controller, you must add a @Inject userData field. In the

view, you must use ${userData.name} to access the bean.

Exercise 9: Add a Back link to the response page of the

HelloWorld example.

Chapter 4 Hello World for Java MVC

115

�Summary
In this chapter, we talked about a Hello World style web application using Eclipse and/or

the console, and Gradle as the build framework. In the next chapter, we continue looking

at some aspects from a use-case perspective, in order to improve our skills of using Java

MVC in projects.

Chapter 4 Hello World for Java MVC

117
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_5

CHAPTER 5

Start Working
with Java MVC
Before we thoroughly handle the Java MVC parts—model, view, and controller—we

first need to talk about a number of topics that look upon Java MVC from a use-case

perspective. This sits somewhat intermediary between the basic Hello World chapter

and the subsequent survey of Java MVC implementation concepts. This chapter’s

purpose is to gently improve your proficiency in Java MVC development. In detail, we are

going to talk about handling data from form posts, parsing query parameters, converting

input data types, and handling exceptions.

�Handling User Input from Forms
In the Java MVC world, the transmission of data between the frontend (browser) and

the controller can happen via <form> elements on web pages, a POST request initiated

by a frontend user’s submit, and method parameters in the controller class. The

corresponding view code for two example parameters reads as follows:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<html>

...

<body>

 ...

 <form method="post"

 action="${mvc.uriBuilder(

https://doi.org/10.1007/978-1-4842-6280-1_5#DOI

118

 'SomeController#someMethod').build()}">

 P1 Parameter: <input type="text" name="p1" />

 P2 Parameter: <input type="text" name="p2" />

 ...

 </form>

 ...

</body>

</html>

The mvc object used here refers to mvc, an automatically provided MvcContext

instance (in the javax.mvc package), and its method uriBuilder() enables generic

construction of MVC project related URIs/URLs.

As the controller addressed by the <form>’s action attribute, we take a class similar to

the following:

...

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.FormParam;

...

@Path("/abc")

@Controller

public class SomeController {

 ...

 @POST

 @Path("/xyz")

 public Response someMethod(

 @MvcBinding @FormParam("p1") String p1,

 @MvcBinding @FormParam("p2") String p2,

 ...more parameters...

) {

 // handle user input ...

 ...

 return Response.ok("responsePage.jsp").build();

 }

}

Chapter 5 Start Working with Java MVC

119

We talk about the controller later in this chapter, in its own section. For now, the

@Controller annotation identifies the class as a Java MVC controller, and the @Path

annotations are used to build the URL (sub) path used by the controller and its methods.

The p1 from @FormParam("p1") corresponds to a <input name = "p1" > inside a

submitted <form>, and accordingly a @FormParam("p2") to a <input name = "p2">.

It is also possible to avoid using method parameters and let the user data instead be

passed over to controller instance fields. This kind of data binding uses the following

construct:

...

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.FormParam;

...

@Path("/abc")

@Controller

public class SomeController {

 @MvcBinding @FormParam("p1")

 private String p1;

 @MvcBinding @FormParam("p2")

 private String p2;

 ...

 @POST

 @Path("/xyz")

 public Response someMethod() {

 // handle user input via "p1" and "p2" fields

 ...

 return Response.ok("responsePage.jsp").build();

 }

}

Normally it is better to declare the parameters in the methods, because other

methods might have other parameters and placing all those parameters at the class level

will lead to a mess.

Chapter 5 Start Working with Java MVC

120

For the form parameters, we know that the @FormParam annotation directly connects

the method parameter or field to a <form> input element. See Figure 5-1. We talk about

the second parameter annotation shown in the listings, @MvcBinding, in the next section.

�Exception Handling in Java MVC
The @MvcBinding annotation used in the Java code listings in the previous section

introduces some magic about exception handling. Normally, because Java MVC sits on

top of JAX-RS, an exception thrown during input data handling can only be caught by a

special exception mapper. This procedure does not fit very well into the Java MVC world.

We want to have an explicit relationship between a controller and a form submit, and an

exception handling mapper class introduces a kind of additional “controller” type, which

strictly spoken, has no relation to any MVC concept. Instead, by using the @MvcBinding

annotation, the same controller and controller method is called whether or not there

is an error, and passing-over errors caused by validation mismatches and conversion

errors are fed into an injected instance of javax.mvc.binding.BindingResult.

Figure 5-1.  Form to controller connection

Chapter 5 Start Working with Java MVC

121

You can then check for any errors programmatically by using the methods of the

BindingResult instance:

...

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.BindingResult;

import javax.ws.rs.FormParam;

import javax.validation.constraints.Size;

...

@Path("/abc")

@Controller

public class SomeController {

 @Named

 @RequestScoped

 public static class ErrorMessages {

 private List<String> msgs = new ArrayList<>();

 public List<String> getMsgs() {

 return msgs;

 }

 public void setMsgs(List<String> msgs) {

 this.msgs = msgs;

 }

 public void addMessage(String msg) {

 msgs.add(msg);

 }

 }

 // Errors while fetching parameters

 // automatically go here:

 private @Inject BindingResult br;

 // We use this to pass over error messages

 // to the response page:

 private @Inject ErrorMessages errorMessages;

 ...

Chapter 5 Start Working with Java MVC

122

 @POST

 @Path("/xyz")

 public Response someMethod(

 @MvcBinding @FormParam("p1")

 @Size(min=3,max=10)

 String p1,

 @MvcBinding @FormParam("p2")

 String p2)

 {

 // ERROR HANDLING //////////////////////////

 if(br.isFailed()) {

 br.getAllErrors().stream().

 forEach((ParamError pe) -> {

 errorMessages.addMessage(pe.getParamName() +

 ": " + pe.getMessage());

 });

 }

 // END ERROR HANDLING //////////////////////

 // handle user input via "p1" and "p2" params

 ...

 // advance to response page

 return Response.ok("responsePage.jsp").build();

 }

}

Here, we used an inner class for the error messages. Of course, you can also use your

own class in your own file for the messages. Also observe the @Size constraint for the p1

parameter. This belongs to bean validation, which we are going to talk about in detail

later. The @Size constraint used here means that if you enter a string shorter than three

characters or longer than ten characters, a validation error will be handed over via the

BindingResult typed br field.

On the response page, you could render errors like the following:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

Chapter 5 Start Working with Java MVC

123

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<html>

...

<body>

 <div style="color:red">

 <c:forEach var="e" items="${errorMessages.msgs}">

 ${e}

 </c:forEach>

 </div>

...

</body>

</html>

The ${errorMessages. ...}, by virtue of the @Named annotation, connects to the

injected instance of ErrorMessages (the first letter lowered).

An alternative to presenting error messages in the normal response page consists of

deviating the page flow to a different view page instead. This is easy, because we decide

where to go next in the controller method. We thus can write the following:

...

@POST

@Path("/xyz")

public Response someMethod(...) {

 // ERROR HANDLING //////////////////////////

 if(br.isFailed()) {

 br.getAllErrors().stream().

 forEach((ParamError pe) -> {

 errorMessages.addMessage(pe.getParamName() +

 ": " + pe.getMessage());

 });

 // advance to error page

 return Response.ok("errorPage.jsp").build();

 }

 // END ERROR HANDLING //////////////////////

 // handle user input via "p1" and "p2" params

Chapter 5 Start Working with Java MVC

124

 ...

 // advance to response page

 return Response.ok("responsePage.jsp").build();

}

...

�Non-String POST Parameters
In the previous section, we only used String-typed POST parameters. In Java MVC, you

can also use numeric types int, long, float, double, BigDecimal, BigInteger, and

boolean (true or false). So it is possible to write the following:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<html>

...

<body>

 ...

 <form method="post"

 action="${mvc.uriBuilder(

 'SomeController#someMethod').build()}">

 Int Parameter: <input type="text"

 name="theInt" />

 Double Parameter: <input type="text"

 name="theDouble" />

 Boolean Parameter: <input type="text"

 name="theBoolean" />

 ...

 </form>

 ...

</body>

</html>

Chapter 5 Start Working with Java MVC

125

In the controller class, write the following:

...

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.FormParam;

...

@Path("/abc")

@Controller

public class SomeController {

 ...

 @POST

 @Path("/xyz")

 public Response someMethod(

 @MvcBinding @FormParam("theInt")

 int theInt,

 @MvcBinding @FormParam("theDouble")

 double theDouble,

 @MvcBinding @FormParam("theBoolean")

 boolean theBoolean)

 {

 // handle user input via the fields

 ...

 return Response.ok("responsePage.jsp").build();

 }

}

Java MVC takes care of properly converting the POST parameters into the designated

Java types.

If a conversion cannot be performed properly, maybe because an “x” was entered

in the theInt input field, for example, an injected BindingResult (as described in the

previous section) can be used to catch the conversion error.

Chapter 5 Start Working with Java MVC

126

�Handling Query Parameters
HTTP verbs comprise POST, GET, PUT, DELETE, and others. So far in browser-to-controller

communication, we talked about POST requests for transmitting data via HTML <form>

elements, and GET requests for requesting the landing page. Consider the following case:

On the landing page, the user is asked for some data, and a Submit button is provided

which transmits the data to the controller and advances to a response page. On the

response page, we want to add a Back button. That button needs the following additional

functionality: all data entered in the fields should show up again. How can we do that?

The controller @FormParam fields cannot be used, because they only work with form

POSTs.

Up to now, we also didn’t use session data storage, which prolongs a single request/

response cycle. If we had, storing the user input there and later using it to preset input

fields would be a valid approach. It is in fact possible to use sessions, but we talk about

that later in this chapter. Also, not using sessions decreases the memory footprint and

simplifies state housekeeping.

What we can do instead and what Java MVC supports is the use of query parameters.

If you have a GET on, for example, http://xyz.com/the-app/start, query parameters

are added in an appended string starting with ? and using & as a delimiter:

http://xyz.com/the-app/start?name=John&birthday=19971230

To fetch such query parameters in a controller, you can use the @QueryParam

annotation:

...

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

@Path("/")

@Controller

public class SomeController {

 private @Inject BindingResult br;

 @GET

 @Path("/start")

 public String someMethod(

Chapter 5 Start Working with Java MVC

http://xyz.com/the-app/start
http://xyz.com/the-app/start?name=John&birthday=19971230

127

 @MvcBinding @QueryParam("name") String name,

 @MvcBinding @QueryParam("birthday") String birthday

) {

 if(name != null) {

 // handle "name" parameter

 }

 if(birthday != null) {

 // handle "birthday" parameter

 }

 // advance to page

 return "index.jsp";

 }

 ...

}

Again, as with POST parameters, it is also possible to use fields for fetching the query

parameters:

...

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

@Path("/")

@Controller

public class SomeController {

 private @Inject BindingResult br;

 @MvcBinding @QueryParam("name")

 private String name;

 @MvcBinding @QueryParam("birthday")

 private String birthday);

 @GET

 @Path("/start")

 public String someMethod() {

Chapter 5 Start Working with Java MVC

128

 if(name != null) {

 // handle "name" parameter

 }

 if(birthday != null) {

 // handle "birthday" parameter

 }

 // advance to page

 return "index.jsp";

 }

 ...

}

On the JSP page, the dedicated element used to issue such a parameterized GET

request is a <a> link:

<a href="${mvc.uriBuilder('SomeController#someMethod').

 queryParam('name', userData.name).

 queryParam('birthday', userData.birthday).

 build()}">Link

This snippet uses a userData variable, which could have been injected as an instance

of the following:

@Named

@RequestScoped

public class UserData {

 private String name;

 private String birthday;

 // Getters, setters...

}

Obviously, this object has to be filled with data in the controller action, which ends

up calling the page with the <a> link.

For request parameters, the same conversion rules apply to non-string typed

parameters as to POST requests. You can use fields or method parameters of type string,

numeric types int, long, float, double, BigDecimal, BigInteger, and boolean (true or

false). Query parameters that are passed over are appropriately converted. Likewise,

Chapter 5 Start Working with Java MVC

129

because we marked the parameters with @MvcBinding, the same methodology for

handling exceptions described for POST parameters applies here.

The detailed procedure for creating a Back link that fills the original page with

previously entered values would thus be as follows:

	 1.	 On a data input page (called dataInput.jsp), values are posted

from inside <form> elements.

	 2.	 In the corresponding controller class and method, we retrieve the

data via the @FormParam annotated fields or method parameters,

and programmatically transport the values into an injected object

(marked with @Named).

	 3.	 On the follow-up page (called responsePage.jsp), we create a

Back link with query parameters taken from the injected object.

	 4.	 In the corresponding controller class and method, we retrieve

the data via @QueryParam annotated fields or method parameters,

and programmatically transport the values into an injected object

(marked with @Named).

	 5.	 We amend the <input> elements from dataInput.jsp and add

value attributes: <input ... value = "${injectedObject.

field}">, where injectedObject corresponds to the field of the

injected class InjectedObject.

	 6.	 For validation and conversion errors, we inject an instance of

BindingResult. We use it in the controller methods to check for

errors. For this to work, we must add @MvcBinding to all form and

query parameters.

Note I t is possible to use form (POST) parameters and query parameters at
the same time. Just add queryParam('name', value) method calls to
the <form> action’s URI builder. However, we don’t want to make things too
complicated, so we don’t further investigate this kind of mixture in this book.

Chapter 5 Start Working with Java MVC

130

�Exercises
Exercise 1: Which of the following is true? A <form> element

on a web page connects to: (A) The method userPosts() of

a controller class. (B) A certain method of a controller class

determined by the form’s action = "..." attribute and @Path

annotations used by the controller class and its methods. (C) A

certain model element injected into the controller.

Exercise 2: Describe what is minimally necessary for a Java class

to become a Java MVC controller class.

Exercise 3: What is the most obvious similarity between JAX-RS

and Java MVC? What is the most prominent difference between

the two?

Exercise 4: What is the purpose of the @MvcBinding annotation?

Exercise 5: Add error handling, as described in this chapter, to the

HelloWorld application from the previous chapter.

Exercise 6: Continuing from the previous exercise, add a

validation constraint ensuring that the user only enters English

letters as names. Hint: A corresponding regular expression reads

[A-Za-z]*.

Exercise 7: Add a Back link to the response page of the

HelloWorld application from the previous chapter. Add the

username as a query parameter, and make sure the entered

username shows up again in the input field from the starting page.

�Summary
In the Java MVC world, transmitting data between the frontend (browser) and the

controller can happen via <form> elements on web pages (and/or query parameters), a

POST (or GET) request initiated by a frontend user’s submit (or a link click), and method

parameters in the controller class.

Chapter 5 Start Working with Java MVC

131

The @Controller annotation identifies the class as a Java MVC controller, and the

@Path annotations are used to build the URL (sub) path used by the controller and its

methods.

Normally, because Java MVC sits on top of JAX-RS, an exception thrown during input

data handling can only be caught by a special exception mapper.

This procedure does not fit very well into the Java MVC world. Instead, by using

the @MvcBinding annotation, the same controller and controller method are called

whether or not there is an error, and passing-over errors due to validation mismatches

and conversion errors are fed into an injected instance of javax.mvc.binding.

BindingResult.

In addition to posting string-type parameters (and/or transmitting string-type query

parameters) in Java MVC, you can also use numeric types int, long, float, double,

BigDecimal, BigInteger, and boolean (true or false). Java MVC takes care of properly

converting the POST parameters into the designated Java types.

If a conversion cannot be performed properly, maybe because an “x” was entered in

an integer typed input field for example, an injected BindingResult can be used to catch

the conversion error.

After this somewhat more use-case-centric view of Java MVC, we continue the

discussion in the next chapter with a more concept-centric view, starting with the model

and commencing with the view and the controller part of Java MVC.

Chapter 5 Start Working with Java MVC

133
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_6

CHAPTER 6

In-Depth Java MVC
In this chapter, we thoroughly handle the various features provided by Java MVC. Note

that this chapter is not a substitute for the official Java MVC specification (the latest

version is 1.0 as of the writing of this book), which you can find at:

https://download.oracle.com/otndocs/jcp/mvc-1-final-spec

Instead, this chapter covers the patterns you will most often encounter, and we will

also work through some example snippets.

�The Model
For the model part of Java MVC, not to be confused with a database model, the original

idea of a MVC framework is rather unagitated. Model classes were just Java bean classes

(classes with fields, getters, and setters), and developers would add them to the view

programmatically in some way similar to the following (which is pseudo-code, not

really Java):

...

// inside some controller

String name = ...; // somehow via form POST

int i1 = ...; // somehow via form POST

 HttpRequest req = ..; // somehow via framework

 MyBean b = new MyBean(); b.setName(name); b.setSomeInt(i1);

 req.setBean("beanName", b);

 // somehow advance to response page

 ...

https://doi.org/10.1007/978-1-4842-6280-1_6#DOI

134

In a response view, you would then probably access the model beans using some

expression similar to the following:

Hello ${beanName.name}

where beanName corresponds to the setBean() method parameter from the

pseudo-code, and name corresponds to a field name.

�CDI in Java MVC
Java MVC is a modern framework and its model capabilities supersede the idea of

simply referring to beans. It does so by incorporating the CDI (Context and Dependency

Injection) technology for Jakarta EE 8 in version CDI 2.0. CDI is not a small technology—its

specification PDF has more than 200 pages! Needless to say, we cannot introduce every

concept of CDI, but we discuss the most important ideas and center our survey on the way

Java MVC uses CDI.

Note  You can find the CDI specification at https://jakarta.ee/
specifications/cdi/2.0/.

The basic idea is the same: we want to instantiate bean classes (data classes that

contain mainly fields and their getters and setters) and provision those instances to both

the controllers and the views. The main difference between the pre-CDI and the CDI way

is that we don’t instantiate such model classes ourselves and instead let CDI do it.

To tell Java MVC that we want a model class to be controlled by CDI and available to

the view pages, we use the @Named annotation from the javax.inject package:

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class UserData {

 private String name;

 private String email;

 // Getters and setters...

}

Chapter 6 In-Depth Java MVC

https://jakarta.ee/specifications/cdi/2.0/
https://jakarta.ee/specifications/cdi/2.0/

135

We also use the @RequestScoped annotation to bind the lifecycle of the object

instance to a single HTTP request/response cycle. We talk more about scopes in the next

section.

Once we announce a bean via @Named to the CDI framework, two things happen

in Java MVC. First we can use @Inject (package javax.inject) to refer to the bean

instance from inside any Java MVC controller and from inside any other CDI controlled

class. Second, we can use the instance from the view pages by using the class name with

the first letter lowercased: ${userData.name} and ${userData.email}. See Figure 6-1.

Chapter 6 In-Depth Java MVC

136

Figure 6-1.  CDI in Java MVC

Chapter 6 In-Depth Java MVC

137

If you want to use a different name for the CDI beans, you can use @Named with a

parameter:

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named("user")

@RequestScoped

public class UserData {

 private String name;

 private String email;

 // Getters and setters...

}

You can then use the altered name in a view page: ${user.name}. Since, in @Inject,

the reference happens by class name and not by an annotation parameter, for injection

into a Java class, you still use @Inject private UserName userName;, even with the

altered name.

�Model Object Scopes
If you’re using CDI to manage model data, model class instances subordinate to a

lifecycle control governed by CDI. This means CDI decides when to construct beans and

when to abandon them. In injected beans, the way CDI controls the lifecycle of instances

is by a characteristic called scope. In Java MVC, the following scopes exist:

•	 Request scope: An instance of an injected bean is created during an

HTTP request and prevails only for the lifespan of the HTTP request

and the response sent to the client (the browser). A typical usage

scenario of request scope variables is when communicating POST

form data or GET query parameters to the view layer page defined

in the response. So you inject @Named request scope beans into

controllers, set their fields there, and use the beans in the view layer.

Because the lifespan of request scoped beans is short, they help keep

the memory footprint of a web application low and avoid memory

leaks.

Chapter 6 In-Depth Java MVC

138

•	 Session scope: A session is bound to a browser window and spans

several HTTP request/response cycles. A session is started whenever

the user enters a web application and terminates upon some timeout

or an explicit session cancellation. Session scoped data objects

prevail until some timeout is fired or the session is explicitly closed.

You use session scoped objects when you need to maintain state with

a lifecycle exceeding a single HTTP request/response cycle. Session

data simplifies state handling, but significantly increases the danger

of having a memory consuming web application or of establishing

destabilizing memory leaks.

•	 Redirect scope: In order to support the POST-redirect-GET design

pattern, Java MVC defines a redirect scope for CDI beans. You use this

pattern if you want to avoid reposts when a browser user clicks the

reload button prior to a POST action being terminated. The lifecycle

of beans with a redirect scope span the POST and a subsequent GET

(because the browser was made to receive a redirect code 303). In the

Java MVC controller, you start POST-redirect-GET by either returning

a Response.seeOther(URI.create("response/path")).build()

or a string "redirect:response/path" from inside the method that

handles the POST. The process is as follows:

	 1.	 The user enters data in a form and submits it. The Java MVC

controller is invoked.

	 2.	 The controller works through the form parameters, and

the method in the end returns Response.seeOther(

URI.create("response/path")).build() or

"redirect:response/path".

	 3.	 The browser automatically sends a redirect to the given path.

	 4.	 The response/path path (adapt it accordingly) points to

another controller method with the GET verb. It advances to

a view page showing the appropriate response to the user’s

request.

Chapter 6 In-Depth Java MVC

139

The redirect scope CDI beans span a lifetime from the original

POST request to the response generated by the subsequent GET

request, which is two HTTP request/response cycles.

•	 Application scope: Any application-wide user-independent data can

use this scope. Data prevails until the web application is undeployed

or the server is stopped.

•	 Dependent scope: This is a pseudo-scope. It means the CDI bean

gets the same scope as the bean it was activated from. The dependent

scope is the default if no scope is explicitly set.

In order to define the scope for an injected bean, you use one of the following

annotations:

@RequestScoped

@SessionScoped

@ApplicationScoped

@RedirectScoped

@Dependent

They are all from the javax.enterprise.context package, except for

RedirectScoped, which is a Java MVC extension and belongs to the javax.mvc.

annotation package.

�The Simplified Model Data Container
Instead of using CDI beans marked with the @Named annotation, you can use an injected

instance of Models (in the javax.mvc package). In a controller, you can then write the

following:

import javax.inject.Inject;

import javax.mvc.Controller;

import javax.mvc.Models;

...

@Path("/abc")

@Controller

public class SomeController {

Chapter 6 In-Depth Java MVC

140

 @Inject private Models models;

 ...

 // inside any method:

 models.put("name", name);

 ...

}

The model values are then available from inside view pages without a prefix:

Hello ${name}

Use the Models interface only when you need to handle a small amount of data.

Otherwise, you risk unstructured, incomprehensive code.

Note  Models data has a request scope.

If you need model values from the Models object (still inside the same request/

response cycle!), you can use the get() method:

 Object o = models.get("someKey");

 // or, if you know the type

 String s = models.get("someKey", String.class);

}

�The View: JSPs
The view part of Java MVC is responsible for presenting the frontend to the client (the

browser), for both input and output. Those Java MVC view files, which are connected to

controller methods, are in the WEB-INF/views folder, or, because we are using Gradle as a

build framework, in the src/main/webapp/WEB-INF/views folder.

Java MVC, out-of-the-box, supports two view engines—JSPs (JavaServer Pages) and

Facelets (the view declaration language for JSF, JavaServer Faces). By design, other view

engines can be included by an extension mechanism based on CDI. In this section, we

talk about the JSP variant of Java MVC views.

Chapter 6 In-Depth Java MVC

141

Note  For the JSP specification, see https://download.oracle.com/
otndocs/jcp/jsp-2_3-mrel2-spec/.

�JSP Basics
JSPs allow developers to interleave static content, for example HTML, and dynamic

content, represented by JSP elements. A JSP page is internally compiled into one big Java

class inheriting from Servlet. A file containing JSP code has the ending .jsp.

Note  For GlassFish, you can see the generated servlets in the GLASSFISH_INST/
glassfish/domains/domain1/generated/jsp/-[PROJECT-NAME] folder.

�Directives
JSP directives provide directions to the container. Table 6-1 gives a description of the

directives and Table 6-2 specifically lists the JSP page directives.

Table 6-1.  JSP Directives

Name Description

<% page ... %> Page-dependent attributes.

Possible parameters are shown in Table 6-2 (space-separated list).

<% include

file="relative url" %>

Include another file in this place. For example: <% include

file = "header1a.jsp" %>

<% taglib uri="uri"

prefix="prefix" %>

Include a tag library. The precise syntax is shown in the tag

library documentation.

Chapter 6 In-Depth Java MVC

https://download.oracle.com/otndocs/jcp/jsp-2_3-mrel2-spec/
https://download.oracle.com/otndocs/jcp/jsp-2_3-mrel2-spec/

142

Table 6-2.  JSP Page Directives

Name Description

buffer="..." Use this to set the output buffer’s size. Possible values:

none (no buffer), or Nkb, where N is a number and kb

stands for kilobytes (for example: 8kb).

autoFlush="true"|"false" Auto-flushes the output buffer once it’s filled.

Otherwise, an exception will be thrown. Default is

true.

contentType="..." Sets the output’s content type. Examples: text/html,

text/xml. To also specify the character encoding,

add ;charset=..., as in contentType = "text/

html;charset=UTF-8"

errorPage="..." Specify an error page to be shown if an exception is

thrown. This is a relative URL. Example: errorPage =

"error.jsp"

isErrorPage="true"|"false" If true, qualifies this JSP as an error page.

extends="some.pckg.SomeClass" Makes the generated servlet extend the given

class. This way you can provide your own servlet

implementation.

import="..." Works exactly like a Java import statement.

info="..." Add any text here that describes the JSP.

isThreadSafe="true"|"false" If false, only one thread at a time will be working the

JSP. Default is true.

language="..." Indicates the programming language used.

Write java here.

session="true"|"false" If true, sessions will be enabled. Default is true.

isELIgnored="true"|"false”" If true, expression language constructs ${ ... } are

not evaluated. Default is false.

isScriptingEnabled="true"|"false" If true, dynamic JSP scripting is enabled. Default is

true, and setting this to false normally makes no

sense except for truly static pages.

Chapter 6 In-Depth Java MVC

143

A basic JSP file header with the most common directives reads as follows:

<%@ page language="java"

 contentType="text/html;charset=UTF-8" %>

<%@ taglib prefix = "c"

 uri = "http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix = "fmt"

 uri = "http://java.sun.com/jsp/jstl/fmt" %>

This implies that the text editors use UTF-8 (I presume this is the case). The two

taglibs refer to the JSTL (JavaServer Pages Standard tag Library) tag library. The core

and fmt parts of this taglib refer to useful tags common to many web applications.

Note  JSTL has more parts, which we don’t use for Java MVC. If you want to learn
more about JSTL, go to https://jcp.org/aboutJava/communityprocess/
final/jsr052/index.html.

�Static Content
To produce static content, you just write it verbatim in the JSP file:

<%@ page language="java"

 contentType="text/html;charset=UTF-8" %>

<%@ taglib prefix = "c"

 uri = "http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix = "fmt"

 uri = "http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Model And CDI</title>

</head>

<body>

 <%-- The string inside action is dynamic contents --%>

 <form method="post"

Chapter 6 In-Depth Java MVC

https://jcp.org/aboutJava/communityprocess/final/jsr052/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr052/index.html

144

 action="${mvc.

 uriBuilder('ModelAndCdiController#response').

 build()}">

 Enter your name: <input type="text" name="name" />

 <input type="submit" value="Submit" />

 </form>

</body>

</html>

This code will be output as is, with three exceptions. The directives on top, the

<%-- ... --%>, which embraces a comment, and the ${ ... }, which stands for an

expression to be handled by a processing step inside the JSP engine.

�Java Scriptlets and Java Expressions
Because JSPs are transcribed into Java classes, JSP allows Java code and expressions to be

included in JSP pages. The syntax is as follows:

<%=

 Any Java code

 ...

%>

<%=

 Any Java expression (semicolons not allowed)

 ...

%>

The second construct, <%= ... %>, adds the expression result to the servlet’s output

stream.

Caution  Do not overuse these constructs. After all, Java is an object oriented
language, not a frontend templating language.

Chapter 6 In-Depth Java MVC

145

�Implicit Objects
Inside <%= ... %> or <% ... %>, there are a couple of implicit objects you can use:

•	 out: The servlet’s output stream of type JspWriter (extends java.

io.Writer).

•	 request: The request, type HttpServletRequest.

•	 response: The response, type HttpServletResponse.

•	 session: The session, type HttpSession.

•	 application: The application, type ServletContext.

•	 config: The servlet configuration, type ServletConfig.

•	 page: The servlet itself, type Object (runtime type javax.servlet.

http.HttpServlet).

•	 pageContext: The page context, type PageContext.

You can use these objects to achieve fancy results, but bear in mind that you

somehow leave official development patterns if you use them. This might make your

code hard for others to read, and by putting functionality into the view pages, the natural

demarcation between the model, the view, and the controller is broken.

�JavaBeans Components
CDI beans with the @Named annotation are directly provisioned to the JSPs:

@Named

public class UserName {

 private String name;

 // Getters and setters...

}

JSP:

...

Hello ${userName.name}

Chapter 6 In-Depth Java MVC

146

If you add model data to an injected javax.mvc.Models CDI bean, you can directly

access it without a prefix:

Controller:

import javax.mvc.Models;

...

@Controller

public class SomeController {

 @Inject private Models models;

 ...

 // inside any method:

 models.put("name", name);

 ...

}

JSP:

...

Hello ${name}

In both cases, you use an expression language construct ${ ... } inside the JSP. We

talk about the expression languages in the next section.

Caution  Because of the implicit objects, you can refer to POST or query parameters
directly from inside the JSPs. This is not MVC-like, however, because it introduces
a second model layer out of reach to the controllers, and it moves controller
responsibilities to the view. So don’t do that and always use injected CDI beans instead.

�Expression Languages
Constructs in JSP pages like ${ ... } are treated as an expression and are processed by

an expression language handler. Expression elements are:

•	 name: Directly refers to a CDI managed bean or an implicit object.

While rendering the view, the expression leads to using the

toString() method for generating output. Example: ${user}.

Chapter 6 In-Depth Java MVC

147

•	 value.property: Refers to a property field of a value object (there

must be a getter), or a map entry keyed by property if value is a map.

Examples: ${user.firstName} (there must be a getFirstName() in

the user CDI bean) and ${receipt.amount} (receipt is a map, and

amount a key therein).

•	 value[property]: Refers to a field value-of-property of a value

object (there must be a getter), or a map entry keyed by value-of-

property if value is a map, or an item of a list or array if property

evaluates to an int (for the index) and if value is a list or array. The

property can also be a literal, like 42 or 1.3 or 'someString' or

"someString". Examples: ${user['firstName']} (same as ${user.

firstName}) and ${list[2]} (third element in a list or array).

•	 unaryOperator value: Applies unaryOperator to value. Unary

operators are − (negate), not or !, and empty (value is null or empty).

•	 value1 binaryOperator value2: Applies binaryOperator to value1

and value2. Binary operators are:

•	 Arithmetical: +, -, *, /, and div, %, and mod (modulo)

•	 Logical: and and &&, or and ||

•	 Relational: == and eq, != and ne, < and lt, > and gt <=, and le,

>=, and ge

•	 value1 ternaryOperatorA value2 ternaryOperatorB value3:

Applies ternaryOperator to value1, value2, and value3. There is

just one: a ? b : c evaluates to b if a is true; otherwise, it evaluates

to c.

There are several implicit objects you can use in expressions, as outlined in Table 6-3.

Chapter 6 In-Depth Java MVC

148

�Output
If you prefer to use a tag for dynamic output, you can use the <c:out> tag as follows:

Hello <c:out value="${userData.name}" />

<%-- Similar to --%>

Hello ${userData.name}

They are not exactly the same, though. Without an additional escapeXml = "false",

the tag will for example replace > with > and < with <. If ${userData.name} happens to

Table 6-3.  EL Implicit Objects

Name Description

pageScope A map with scoped variables from page scope.

requestScope A map with scoped variables from request scope.

sessionScope A map with scoped variables from session scope.

applicationScope A map with scoped variables from application scope.

paramValues A map with request parameters as collections of strings. In a Java MVC

application, you normally don’t access such data via expressions, so don’t

use it.

param A map with request parameters as strings (the first of each request

parameter). In a Java MVC application, you normally don’t access such

data via expressions, so don’t use it.

headerValues A map with HTTP request headers as collections of strings.

header A map with HTTP request headers as strings (the first of each header).

To access a certain header, you’d for example write ${header["user-

agent"]}.

initParam A map with context initialization parameters.

cookie Maps cookie names to instances of javax.servlet.http.Cookie.

pageContext An object of type javax.servlet.jsp.PageContext. Allows you to

access various objects, like the request, the response, and the session.

Chapter 6 In-Depth Java MVC

149

be <John>, you won’t see anything in the browser window for Hello ${userData.name}.

The browser sees a <John>, which it interprets as an (invalid) tag. The tag variant instead

outputs a <John> which shows up as a <John>.

The attributes of <c:out> are as follows:

•	 escapeXml: Whether to escape special XML characters. Not required;

the default is true.

•	 value: The value to print. Required. Typically you write an expression

like ${someBean.someProperty} here.

•	 default: The default to write if something goes wrong with the value.

Not required.

�Variables
Using the <c:set> tag, we can introduce variables for further use on the page. In the

Java MVC world, the most common usage scenario is introducing aliases for improving

readability. Tasks like setting session scope variables should not be done from inside

JSPs, since this is the controller’s responsibility.

<c:set var="firstName" value=${user.firstName} />

<%-- We can henceforth use 'firstName' in expressions

 Instead of 'user.firstName' --%>

Hi ${firstName}

The complete attribute set for the <c:set> tag reads as follows:

•	 value: The value to be used for the new variable (or property). Typically,

you write an expression like ${someBean.someProperty} here.

•	 var: The name of a new variable that stores the value. Not required,

but if not given, target and property must be used.

•	 scope: The scope of the variable given in var="...". The default is

page (only the currently rendered page).

•	 target: An object or map that stores the value. Not required.

•	 property: The name of a property (field) or key (for maps) if target

is specified. Not required.

Chapter 6 In-Depth Java MVC

150

�Loops
For loops over lists or arrays, you can use the <c:forEach> tag (the c signifies the jstl/

core taglib):

<c:forEach items="${theList}" var="item">

 ${item}

</c:forEach}

The expression inside items="..." can be any array or a list of strings, primitives, or

other objects.

You will often use such loops for HTML tables. In the controller, you construct a list

of item objects, with each item representing a row in the table:

// probably inside a models package:

@Named

@RequestScoped

public class Members {

 private List<Member> list = new ArrayList<>();

 public void add(Member member) {

 list.add(member);

 }

 // Getters, setters...

}

public class Member {

 private int id;

 private String firstName;

 private String lastName;

 // Constructors, getters, setters...

}

// probably inside a controllers package:

@Controller

public class MyController {

 @Inject private Members members;

 // inside a method:

 members.add(new Member(...));

Chapter 6 In-Depth Java MVC

151

 members.add(new Member(...));

 ...

}

In the JSP, we can now access the Members object via ${members. ...} and build a

table from the list:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Table</title>

</head>

<body>

 <table>

 <thead>

 <tr>

 <th>ID</th>

 <th>Last Name</th>

 <th>First Name</th>

 </tr>

 </thead>

 <tbody>

 <c:forEach items="${members.list}" var="item">

 <tr>

 <td>${item.id}</td>

 <td>${item.lastName}</td>

 <td>${item.firstName}</td>

 </tr>

 </c:forEach>

 </tbody>

 </table>

</body>

</html>

Chapter 6 In-Depth Java MVC

152

All possible attributes for the <c:forEach> tag are as follows:

•	 items: The items to iterate through. Not required, but if missing, the

loop will iterate over an integer. This is where you probably write an

expression like ${someBean.someListOrArray}.

•	 var: The name of a page scope variable that will be generated and

then will hold each item of the loop. Not required.

•	 begin: Element to start with. Not required; the default is 0 (the first

item).

•	 end: Element to end with. Not required; the default is the last

element.

•	 step: The step. Not required; the default is 1.

•	 varStatus: The name of a loop status variable (the page scope). Not

required. The variable will hold an object of type javax.servlet.

jsp.jstl.core.LoopTagStatus.

If you want to use the <c:forEach> tag for an integer-valued range loop, you don’t

specify the items attribute, but use the begin and end attributes instead:

<c:forEach begin="1" end="10" var="i">

 ${i}

</c:forEach>

�Conditional Branching
For conditional branching inside a JSP, you can use one of the <c:if> and <c:choose>

tags. The simple <c:if> test allows for a simple condition check without alternatives and

without an else branch:

<c:if test="${showIncome}">

 <p>Your income is: <c:out value="${income}"/></p>

</c:if>

Chapter 6 In-Depth Java MVC

153

An if-else can be painlessly achieved by using the following construct:

<c:if test="${showIncome}">

 <p>Your income is: <c:out value="${income}"/></p>

</c:if><c:if test="${!showIncome}">

 <p>Your income is: ***</p>

</c:if>

However, for a real if-elseif-elseif-...-else, the <choose> tag is the better

candidate:

<c:choose>

 <c:when test="${income <= 1000}">

 Income is not good.

 </c:when>

 <c:when test="${income > 10000}">

 Income is very good.

 </c:when>

 <c:otherwise>

 Income is undetermined...

 </c:otherwise>

</c:choose>

�Cookies
Cookies can be read directly from inside JSPs by using the implicit cookie object:

Cookie name: ${cookie.theCookieName.name} <p/>

Cookie value: ${cookie.theCookieName.value} <p/>

where theCookieName is replaced with the cookie name. The ${cookie.theCookieName}

then refers to an object of type javax.servlet.http.Cookie. However, only the name

and the value are available.

For testing purposes, you can create a cookie named theCookieName in a controller

method (set the cookie properties at will):

@Controller

@Path("abc")

public class MyController {

Chapter 6 In-Depth Java MVC

154

 @GET

 public Response myResponse() {

 ...

 // This is a subclass of Cookie:

 NewCookie ck = new NewCookie("theCookieName",

 "cookieValue",

 "the/path",

 "my.domain.com",

 42,

 "Some Comment",

 3600*24*365,

 false);

 return Response.

 ok("responsePage.jsp").

 cookie(ck).

 build();

 }

 ...

}

In the response page (or some later page), you can then write the JSP code shown to

investigate the cookie.

Caution  For a local test server, you must set localhost as the cookie domain. Also,
you must set the appropriate path value, maybe / for simplicity (it matches all paths).

�The View: Facelets
The other view technology that Java MVC supports, apart from JSP, are Facelets. Facelets

is the templating framework especially created for JSF, and JSF (JavaServer Faces) is the

dedicated main frontend technology for Jakarta EE. JSF is component-based, in contrast

to Java MVC, which is action-based. This is where a problem shows up: Java MVC is

somewhat of a competitor to JSF, so Java MVC and Facelets at first sight don’t seem to

match. The good news is that, because JSF and Facelets are highly decoupled, we don’t

Chapter 6 In-Depth Java MVC

155

have to use JSF components, and Facelets as a mere templating engine can be used for

Java MVC as well. This is nice, because Facelets is more apt to a modern programming

style compared to JSP, which is sometimes considered old-school, although venerable.

We didn’t put Facelets at second place as a templating engine for Java MVC without

intention, though. JSPs have proven to be valuable for decades now, and they are a little

bit closer to basic programming paradigms often used by frontend developers. Besides,

if you have some experience programming in JSF, using Facelets obviates the danger of

trying to use JSF features for Java MVC, which easily messes up your application design.

Facelets, in contrast, applies a higher degree of abstraction, and, if it’s used by a skilled

developer, allows for a leaner and cleaner application design.

Having said that, it is totally up to you which frontend technology you use. This

section shows you how to use Facelets for Java MVC.

�Facelets Files
Facelets files for Java MVC go in the same folder as JSP files: the WEB-INF/views folder,

or, because we are using Gradle as a build framework, in the src/main/webapp/WEB-INF/

views folder.

Facelets files are XML files, which is maybe the most noticeable difference between JSPs

and Facelets. You don’t have directives like \ci{<\% ... \%>} in Facelets, and you can’t use

legacy HTML constructs which are not valid XML, but nevertheless allowed for JSPs.

�Facelets Configuration
What we achieved in JSP programming, avoiding the need to provide a web.xml

configuration file, can be achieved in Facelets as well. At first, we provide an App class to

add mvc to the URL context path:

package any.project.package;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {

}

Chapter 6 In-Depth Java MVC

156

This class is empty by intention; the context path element is added by the annotation

alone.

Next, we add a redirector, which allows us to use the base URL http://the.

server:8080/WarName/ to start the application (this is for GlassFish, WarName needs to

be replaced with the WAR filename). The redirector forwards such a request to http://

the.server:8080/WarName/mvc/facelets, which we will use as an entry point for the

landing page configured in the controller class. The name doesn’t matter; we call it

RootRedirector:

package any.project.package;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

@WebFilter(urlPatterns = "/")

public class RootRedirector extends HttpFilter {

 private static final long serialVersionUID =

 7332909156163673868L;

@Override

 protected void doFilter(final HttpServletRequest req,

 final HttpServletResponse res,

 final FilterChain chain) throws IOException {

 res.sendRedirect("mvc/facelets");

 }

}

What is left is to take care that in the controller a “facelets” path will lead to a GET on

the landing page:

import javax.mvc.Controller;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

Chapter 6 In-Depth Java MVC

http://the.server:8080/WarName/
http://the.server:8080/WarName/
http://the.server:8080/WarName/mvc/facelets
http://the.server:8080/WarName/mvc/facelets

157

@Path("/facelets")

@Controller

public class MyFaceletsController {

 @GET

 public Response showIndex() {

 return Response.ok("index.xhtml").build();

 }

 ...

}

�Templating via Facelets
Facelets allow us to introduce parameterized template HTML pages, HTML snippets

(components) to be included in pages, placeholders for such snippets, and decorators

and repetitions for things like elaborated list views. In the following pages, we first enlist

the Facelets tags, and after that develop a sample application to get you started.

To use Facelets, you have to add the Facelets namespace to the XHTML files:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h:head>

 <title>Facelet Title</title>

 </h:head>

<body>

 ...

</body>

</html>

In the following sections, we explain the Facelets tags you can include in a XHTML

file to apply or mix templates, include XHTML snippets, or pass parameters.

Chapter 6 In-Depth Java MVC

158

�The <ui:include> Tag

Include another XHTML file, as in

<ui:include src="incl.xhtml" />

If the included file contains a <ui:composition> or a <ui:component>, only the inner

contents of the <ui:composition> or <ui:component> tag will be included. This allows

designers to style the included files independent of their later plumbing together by the

server.

�The <ui:composition> Tag, First Variant

If it’s used without template="...", as in

<ui:composition>

 ...

</ui:composition>

it defines a subtree (collection) of HTML elements. The idea behind that is, if

you use <ui:include> and the included file contains a <ui:composition> ... </

ui:composition>, only the inner contents of the <ui:composition> ... </

ui:composition> will be included. The tag itself and anything around it will be

ignored. So you can let page designers create a completely valid XHTML file, put a

<ui:composition> ... </ui:composition> around the interesting parts, and write

<ui:include> in any other JSF page to extract exactly such parts.

�The <ui:composition> Tag, Second Variant

If it . used with template="...", as in

<ui:composition template="templ.xhtml">

 ...

</ui:composition>

it defines a collection of XHTML snippets to be passed into placeholders inside the

template file (corresponding to the template = "..." attribute).

This is a completely different usage scenario compared to <ui:composition> without

template="...". In the template file, you have one or more elements like <ui:insert

name="name1" /> and in the file with the <ui:composition template="...">,

Chapter 6 In-Depth Java MVC

159

you use <ui:define> tags inside the <ui:composition template="..."> ... </

ui:composition>

<ui:composition template="templ.xhtml">

 <ui:define name = "someName"> ... </ui:define>

 <ui:define name = "someName2"> ... </ui:define>

 ...

</ui:composition>

to define contents to be used for the <ui:insert> tags. Anything around the

<ui:composition> tag will be ignored again, so you can let designers create the

snippets using non-JSF aware HTML editors and only later extract interesting parts with

<ui:define name = "someName"> ... </ui:define> to be used for materializing the

template file.

�The <ui:insert> Tag

Use this to define placeholders inside template files. A <ui:insert name="name1"/>

tag inside a template file thus means that any file referring to this template may define

contents for the placeholders. This definition has to happen inside <ui:composition>,

<ui:component>, <ui:decorate>, or <ui:fragment>.

Usually you don’t provide contents in this tag. If you add contents, such as

<ui:insert name="name1">

 Hello

</ui:insert>

it will be taken as a default if the placeholder is not defined otherwise.

�The <ui:define> Tag

This tag declares what will be inserted at the insertion points:

<ui:define name="theName">

 Contents...

</ui:define>

Since insertion points can only exist in template files, the <ui:define> tag can only

show up in files referring to template files via <ui:composition template = "...">

Chapter 6 In-Depth Java MVC

160

�The <ui:param> Tag

Specifies a parameter that gets passed to an <ci:include>-ed file, or to the template

specified in <ui:composition template = "..."> ... Simply add it as a child element,

as in the following:

<ui:include src="comp1.xhtml">

 <ui:param name="p1" value="Mark" />

</ui:include>

Inside the referred-to file, add #{paramName} to use the parameter:

<h:outputText value="Hello #{p1}" />

�The <ui:component> Tag

This is the same as <ui:composition>, first variant without template specification, but it

adds an element to the JSF component tree. This tag supports the following attributes:

•	 id: The element’s ID in the component tree. Not required; JSF

generates an automatic ID if you don’t specify it. May be an EL

(expression language) string value.

•	 binding: For binding the component to a Java class (must inherit

from javax.faces.component.UIComponent). Not required. May be

an EL string value (class name).

•	 rendered: Whether or not the component is to be rendered. Not

required. May be an EL boolean value.

It is common practice to use <ui:param> to pass parameters to components. You

can, for example, tell the component to use a particular ID. The caller is as follows:

<ui:include src="comp1.xhtml">

 <ui:param name="id" value="c1" />

</ui:include>

The callee (comp1.xhtml) is as follows:

<ui:component id="#{id}">

 ...

</ui:component>

Chapter 6 In-Depth Java MVC

161

�The <ui:decorate> Tag
Similar to <ui:composition>, but this tag does not disregard the XHTML code around it:

...

I'm written to the output!

<ui:decorate template="templ.xhtml">

 <ui:define name="def1">

 I'm passed to "templ.xhtml", you can refer to

 me in "templ.xhtml" via

 <ui:insert name="def1"/>h;

 </ui:define>

</ui:include>

...

In contrast to <ui:composition>, the file with the <ui:decorate> will contain the

completely valid XHTML code, including html, head, and body, and the template file will

be inserted where the <ui:decorate> appears. Therefore, it must not contain html, head,

or body. This is more or less an extended include, where passed-over data is not given

by the attributes but listed in the tag body instead.

You usually apply the <ui:decorate> tag to further elaborate code snippets. You can

wrap them into more <div>s to apply more styles, add a label or a heading, and more.

�The <ui:fragment> Tag

This tag is the same as <ui:decorate>, but it creates an element in the JSF component

tree. It has the following attributes:

•	 id: For the element’s ID in the component tree. Not required; JSF

generates an automatic ID if you don’t specify it. May be an EL

(expression language) string value.

•	 binding: For binding the component to a Java class (must inherit

from javax.faces.component.UIComponent). Not required. May be

an EL string value (class name).

•	 rendered: Whether or not the component is rendered. Not required.

May be an EL boolean value.

Chapter 6 In-Depth Java MVC

162

You can use this to extract existing code snippets and to convert them partly to a

component. For example, consider the following code:

<DOCTYPE html>

<html ...><head>...</head>

<h:body>

 ...

 <table>

 [Some table|

 </table>

 ...

</h:body></html>

If we now extract the table to a different file, called table1_frag.xhtml:

<!-- Caller: ############################# -->

<!-- original file -->

<DOCTYPE html>

<html ...><head>...</head>

<h:body>

 ...

 <ui:include src="table1_frag.xhtml"/>

 ...

</h:body></html>

<!-- Callee: ############################# -->

<!-- table1_frag.xhtml -->

<div xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://xmlns.jcp.org/jsf/html"

xmlns:f="http://xmlns.jcp.org/jsf/core"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

 <div>I am the table caption</div>

 <ui:fragment>

 <table>

Chapter 6 In-Depth Java MVC

163

 [Some table|

 </table>

 </ui:fragment>

 </div>

We have introduced XHTML (the caption) and a new component (the table).

�The <ui:repeat> Tag

This is not necessarily a templating related tag, but it gets used to loop over a collection

or an array. Its attributes are:

•	 begin: Not required. If it’s specified, the iteration begins in the list or

array. May be an int valued value expression.

•	 end: Not required. If specified, the iteration ends (inclusive) in the list

or array. May be an int valued value expression.

•	 step: Not required. If specified, steps inside the list or array. May be

an int valued value expression.

•	 offset: Not required. If specified, an offset is added to the iterated-

over values. May be an int valued value expression.

•	 size: Not required. If specified, it’s the maximum number of

elements to read from the collection or array. Must not be greater

than the array size.

•	 value: The list or array to iterate over. An Object valued expression.

Required.

•	 var: The name of an expression language variable to hold the current

item of the iteration. May be a String value expression.

•	 varStatus: Not required. The name of a variable to hold the iteration

status. A POJO with read-only values: begin (int), end (int), index

(int), step (int), even (boolean), odd (boolean), first (boolean), or

last (boolean).

•	 rendered: Whether the component is to be rendered. Not required.

May be an EL boolean value.

Chapter 6 In-Depth Java MVC

164

Note T he JSTL (Java Standard Tag Library) collection provides a <c:forEach>
tag for looping. JSF and JSTL do not work together very well because of conceptual
differences. In tutorials and blogs, you will find lots of examples for loops with
JSTL. It is, however, better to use <ui:repeat> instead to avoid problems.

�The <ui:debug> Tag

Add this to your page during the development phase of your project. Using a hotkey,

the tag will then lead to the JSF component tree and the other information to be shown

on the page. Use the hotkey="x" attribute to change the hotkey. Shift+Ctrl+x will then

display the component (note that the default d does not work with the Firefox browser!).

The second optional attribute is rendered="true|false" (you can also use an EL

boolean expression) to switch on or off this component.

Note T his tag only works in the development project stage. Inside WEB-INF/
web.xml, you can add this tag:

<context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
</context-param>

to specify the project stage (any of Development (default), UnitTest,
SystemTest, or Production).

�An Example Facelets Project
We build an example Facelets project with a music box database, which shows similarly

designed pages for titles, composers, and performers. We have a header, a footer, and a

menu to appear on every page of the web application, no matter which functionality the

user is currently using. Facelets does a good job of letting us factor out common page

parts, so we have to code them only once. See Figure 6-2.

Chapter 6 In-Depth Java MVC

165

Start a new Gradle project in Eclipse and name it MusicBox. Use the build.gradle

file and replace its contents with:

plugins {

 id 'war'

}

java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

 implementation 'javax:javaee-api:8.0'

 implementation 'javax.mvc:javax.mvc-api:1.0.0'

 implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

 implementation 'jstl:jstl:1.2'

 implementation 'com.google.guava:guava:28.0-jre'

}

Figure 6-2.  Templating with Facelets

Chapter 6 In-Depth Java MVC

166

task localDeploy(dependsOn: war,

 description:">>> Local deploy task") {

 doLast {

 def FS = File.separator

 def glassfish = project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def libsDir =

 "${project.projectDir}${FS}build${FS}libs"

 def proc = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 deploy --force=true

 ${libsDir}/${project.name}.war""".execute()

 proc.waitForProcessOutput(sout, serr)

 println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

task localUndeploy(

 description:">>> Local undeploy task") {

 doLast {

 def FS = File.separator

 def glassfish = project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

Chapter 6 In-Depth Java MVC

167

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def proc = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 undeploy ${project.name}""".execute()

 proc.waitForProcessOutput(sout, serr) println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

Apart from dependency handling, this build file introduces two custom tasks for

deploying and undeploying the MusicBox web application on a local server. The Guava

library is just a collection of useful tools for streamlining basic development needs.

To connect to the asadmin tool, we create another file, called gradle.properties, in

the project root:

glassfish.inst.dir = /path/to/glassfish5.1

glassfish.user = admin

glassfish.passwd =

You should enter your own GlassFish server installation path. An empty admin

password is An empty password is Glassfish’ default setting. If you changed this, you

must enter the password in this file.

For the musicbox data, we create three Java classes. For simplicity they return static

information. In real life, you would connect to a database to get the data. Create a

package called book.javamvc.musicbox.model and add the following:

// Composers.java:

package book.javamvc.musicbox.model;

import java.io.Serializable;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

Chapter 6 In-Depth Java MVC

168

import com.google.common.collect.Lists;

@SessionScoped

@Named

public class Composers implements Serializable {

 private static final long serialVersionUID =

 -5244686848723761341L;

 public List<String> getComposers() {

 return Lists.newArrayList("Brahms, Johannes",

 "Debussy, Claude");

 }

}

// Titles.java:

package book.javamvc.musicbox.model;

import java.io.Serializable;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

import com.google.common.collect.Lists;

@SessionScoped

@Named

public class Titles implements Serializable {

 private static final long serialVersionUID =

 -1034755008236485058L;

 public List<String> getTitles() {

 return Lists.newArrayList("Symphony 1",

 "Symphony 2", "Childrens Corner");

 }

}

// Performers.java:

package book.javamvc.musicbox.model;

Chapter 6 In-Depth Java MVC

169

import java.io.Serializable;

import java.util.List;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

import com.google.common.collect.Lists;

@SessionScoped

@Named

public class Performers implements Serializable {

 private static final long serialVersionUID =

 6941511768526140932L;

 public List<String> getPerformers() {

 return Lists.newArrayList(

 "Gewandhausorchester Leipzig",

 "Boston Pops");

 }

}

For CDI to work correctly, create an empty file called src/main/webapp/WEB-INF/

beans.xml. Add one more file, called src/main/webapp/WEB-INF/glassfish-web.xml. It

should contain the following:

<?xml version="1.0" encoding="UTF-8"?>

<glassfish-web-app error-url="">

 <class-loader delegate="true"/>

</glassfish-web-app>

Before we get into the view coding, Figure 6-3 shows an impression of what we want

to achieve. To apply the Facelets functionalities, we add a template file called src/main/

webapp/WEB-INF/frame.xhtml:

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

Chapter 6 In-Depth Java MVC

170

 <title>Musicbox</title>

 <link rel="stylesheet" href="../../css/style.css" />

</head>

<body>

 <div class="header-line">

 <ui:insert name="header">

 <h2>Top Section</h2>

 </ui:insert>

 </div>

 <div class="center-line">

 <div class="menu-column">

 <ui:insert name="menu">

 Menu1Menu2

 </ui:insert>

 </div>

 <div class="contents-column">

 <ui:insert name="contents">

 Contents

 </ui:insert>

 </div>

 </div>

 <div class="bottom-line">

 <ui:insert name="footer">Footer</ui:insert>

 </div>

</body>

</html>

This template file defines a common page structure and declares a couple of

placeholders via <ui:insert> tags. The CSS file we are referring to is called style.css

and it goes to src/main/webapp/css/style.css:

body { color: blue; }

.header-line { height: 3em; background-color: #CCF000; }

.bottom-line { clear: both; height: 1.5em; }

.menu-column { float: left; width: 8em;

 background-color: #FFC000; height: calc(100vh - 7em); }

Chapter 6 In-Depth Java MVC

171

.menu-column ul { margin:0.5em; padding: 0;

 list-style-position: inside; }

.contents-column { float: left; padding: 0.5em;

 background-color: #FFFF99;

 width: calc(100% - 9em); height: calc(100vh - 8em); }

.bottom-line { padding-top: 1em;

 background-color: #CCFFFF; }

For common page elements, we define a couple of XHTML files inside the src/main/

webapp/common folder:

<!-- File commonHeader.xhtml -->

<!DOCTYPE html>

<div xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 <h2>Musicbox</h2>

</div>

<!-- File commonMenu.xhtml -->

<!DOCTYPE html>

<div xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 Titles

 Composers

 Performers

</div>

<!-- File commonFooter.xhtml -->

<!DOCTYPE html>

<div xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

 (c) The Musicbox company 2019

</div>

Inside commonMenu.xhtml, we provide <a> links to the titles, composers, and

performers pages. The href attributes do not directly correspond to XHTML pages;

Chapter 6 In-Depth Java MVC

172

instead, they point to methods inside the controller. This is a Java class called

MusicBoxController.java inside the book.javamvc.musicbox.controller package:

package book.javamvc.musicbox.controller;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import javax.inject.Named;

import javax.mvc.Controller;

import javax.mvc.binding.BindingResult;

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.ParamError;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.NewCookie;

import javax.ws.rs.core.Response;

@Path("/musicbox")

@Controller

public class MusicBoxController {

 private @Inject BindingResult br;

 @GET

 public Response showIndex() {

 return Response.ok("titles.xhtml").build();

 }

 @GET

 @Path("/titles")

 public Response showTitles() {

 return Response.ok("titles.xhtml").build();

 }

Chapter 6 In-Depth Java MVC

173

 @GET

 @Path("/composers")

 public Response showComposers() {

 return Response.ok("composers.xhtml").build();

 }

 @GET

 @Path("/performers")

 public Response showPerformers() {

 return Response.ok("performers.xhtml").build();

 }

 @POST

 @Path("/response")

 public Response response(

 @MvcBinding @FormParam("name")

 String name) {

 if(br.isFailed()) {

 // ... handle errors

 }

 // ... handle user POSTs

 // ... advance to response page

 return Response.ok("response.xhtml").build();

 }

}

The response() method is not implemented in this example. It is shown here to get

you started if you want to include forms.

The three page files—titles.xhtml, composers.xhtml, and performers.xhtml—

inside the src/main/webapp/WEB-INF/views folder refer to the template file and the

common page elements:

<!-- File titles.xhtml ********************** -->

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

Chapter 6 In-Depth Java MVC

174

 xmlns:ui="http://java.sun.com/jsf/facelets">

<body>

<ui:composition template="frame.xhtml">

 <ui:define name="header">

 <ui:include src="/common/commonHeader.xhtml" />

 </ui:define>

 <ui:define name="menu">

 <ui:include src="/common/commonMenu.xhtml" />

 </ui:define>

 <ui:define name="contents">

 <h2>Titles</h2>

 <ui:repeat var="t" value="${titles.titles}"

 varStatus="status">

 ${t}

 </ui:repeat>

 </ui:define>

 <ui:define name="footer">

 <ui:include src="/common/commonFooter.xhtml" />

 </ui:define>

</ui:composition>

</body>

</html>

<!-- File composers.xhtml ********************** -->

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

Chapter 6 In-Depth Java MVC

175

<body>

<ui:composition template="frame.xhtml">

 <ui:define name="header">

 <ui:include src="/common/commonHeader.xhtml" />

 </ui:define>

 <ui:define name="menu">

 <ui:include src="/common/commonMenu.xhtml" />

 </ui:define>

 <ui:define name="contents">

 <h2>Composers</h2>

 <ui:repeat var="c" value="${composers.composers}"

 varStatus="status">

 ${c}

 </ui:repeat>

 </ui:define>

 <ui:define name="footer">

 <ui:include src="/common/commonFooter.xhtml" />

 </ui:define>

</ui:composition>

</body>

</html>

<!-- File performers.xhtml ********************** -->

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:c="http://java.sun.com/jsp/jstl/core">

<body>

<ui:composition template="frame.xhtml">

Chapter 6 In-Depth Java MVC

176

 <ui:define name="header">

 <c:if test="true">

 <ui:include src="/common/commonHeader.xhtml" />

 </c:if>

 </ui:define>

 <ui:define name="menu">

 <ui:include src="/common/commonMenu.xhtml" />

 </ui:define>

 <ui:define name="contents">

 <h2>Performers</h2>

 <ui:repeat var="p" value="${performers.performers}"

 varStatus="status">

 ${p}

 </ui:repeat>

 </ui:define>

 <ui:define name="footer">

 <ui:include src="/common/commonFooter.xhtml" />

 </ui:define>

</ui:composition>

</body>

</html>

You can see that we use the <ui:composition> tag to apply the page template.

Caution T he pages deliberately do not use any JSF tags. If you look for Facelets
tutorials, in most cases they will include JSF tags. I consider it a dangerous
practice to use Facelets and JSF tags in Java MVC projects. The different design
paradigms for Java MVC (action based) and JSF (component based) will very likely
lead to problems that are hard to fix. It is however possible to use Facelets and
JSTL together; see the following section.

Chapter 6 In-Depth Java MVC

177

Build and deploy the application by running the Gradle task localDeploy. Then

point your browser to http://localhost:8080/MusicBox to see the application running.

See Figure 6-3.

�Mixing Facelets and JSTL
We already pointed out that, with Java MVC, we don’t want to mix-in JSF components

and Facelets pages for stability reasons. This however leads to a severe lack of

functionalities, including a missing if-else construct. In the JSF world, you switch on

and off components (or component subtrees) via the rendered attribute. So what can

we do if we want to use Facelets for Java MVC and need conditional branching on a view

page? The answer is astonishingly simple. Because we don’t use JSF components, we can

simply add the JSTL tag libraries without any danger of breaking proper page rendering.

Then we can use the <c:if> and <c:choose> tags.

Consider, for example, that we want to add a messages box based on some condition.

It is then possible to write the following:

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

Figure 6-3.  The Musicbox Facelets application

Chapter 6 In-Depth Java MVC

178

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:c="http://java.sun.com/jsp/jstl/core">

<head>

 ...

</head>

<body>

 ...

 <c:if test="${pageControl.showMessages}">

 <div class="messages">

 ... the messages ...

 </div>

 </c:if>

 ...

</body>

</html>

Because JSPs and JSTL have been taken care of in our build.gradle file, we just have

to add the JSTL namespace in order to be able to use JSTL.

�Unified Expressions
For JSF, the expression language handling has been extended to use deferred expressions,

denoted by #{ ... } instead of ${ ... }. Such deferred expressions aren’t evaluated

prior to the JSF component reacting to the requests initiated by forms. This way, it was

possible to use expressions as lvalues, meaning you can assign user input to them. A #{

someBean.someProperty } thus can serve both output and input.

The combination of immediate expressions and deferred expressions, more precisely

the enhanced expression language, is also called unified expressions.

For Java MVC, form input is exclusively handled by controller methods. There is by

design no such thing as autowiring form input to CDI beans. For this reason, we don’t

need deferred expressions, and to make things clear as a rule of thumb consider:

Caution  Don’t use deferred expressions #{ ... } in Java MVC Facelets views.

Chapter 6 In-Depth Java MVC

179

�The Controller
Controller classes describe the action part of a Java MVC application. They are

responsible for preparing the model, taking user requests, updating the model, and

deciding which view pages to show after a request.

�Controller Basics
To mark a class as a Java MVC controller, add the @Controller annotation (in the javax.

mvc package) and the @Path annotation (in the javax.ws.rs package) to the class:

...

import javax.mvc.Controller;

import javax.ws.rs.Path;

...

@Path("/controllerPath")

@Controller

public class MyController {

 ...

}

The @Path will make sure the controller acts on URLs starting with WEB_

APPLICATION_BASE/mvc/controllerPath, where WEB_APPLICATION_BASE depends on

the Jakarta EE server product (for GlassFish, for example, it e http://the.server:8080/

TheWarName), and /mvc is configured as the application path in some class:

...

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

...

@ApplicationPath("/mvc")

public class App extends Application {

}

You don’t have to use controllerPath for the @Path parameter; this is just an

example.

Chapter 6 In-Depth Java MVC

http://the.server:8080/TheWarName
http://the.server:8080/TheWarName

180

�Getting Pages
For pages that are not the result of some form post, you use the GET verb and mark the

corresponding methods:

import javax.mvc.Controller; import javax.ws.rs.GET; import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

@Path("/controllerPath")

@Controller

public class MyController {

 @GET

 public Response showIndex() {

 return Response.ok("index.jsp").build();

 }

 @GET

 @Path("/b")

 public String showSomeOtherPage() {

 return "page_b.jsp";

 }

}

In this snippet, you can see the two possible return types—you return a string

pointing to a JSP (or Facelets page) and then use suffix .xhtml, or you return a

Response object. While returning a string is easier, with the Response instance, you

have more options. For example, you can precisely specify the HTTP status code, and

actually specify status codes (like OK, Server Error, Accepted, Created, No Content,

Not Modified, See Other, Temporary Redirect, or Not Acceptable). You can also set the

encoding, the cache control, HTTP headers, the language, the media type, expired and

last modification times, and add cookies. For details, see the API documentation of the

javax.ws.rs.core.Response class.

The triggering path is calculated by concatenating the classat@Path annotation and

the methodng @Path annotation, and then prepending the applications’ URL path. If

you, for example, deployed a WAR named TheWAR.war on a local GlassFish server with

an HTTP connector running on port 8080 (the default), and furthermore added this class

anywhere in your package hierarchy:

Chapter 6 In-Depth Java MVC

181

...

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

...

@ApplicationPath("/mvc")

public class App extends Application {

}

Then this controller:

import javax.mvc.Controller;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

@Path("/controllerPath")

@Controller

public class MyController {

 @GET

 public Response showIndex() {

 return Response.ok("index.jsp").build();

 }

 @GET

 @Path("/b")

 public String showSomeOtherPage() {

 return "page_b.jsp";

 }

}

will ensure the following mappings apply:

http://localhost:8080/TheWAR/mvc/controllerPath

 -> method showIndex()

http://localhost:8080/TheWAR/mvc/controllerPath/b

 -> method showSomeOtherPage()

Chapter 6 In-Depth Java MVC

182

See Figure 6-4.

�Preparing the Model
If you need to prepare model values for the called page to use, you can inject CDI beans

in the controller and adjust their values from inside the controller methods.

import javax.mvc.Controller;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

import javax.inject.Inject;

@Path("/controllerPath")

@Controller

public class MyController {

 // The controller is under custody of CDI, so

 // we can inject beans.

 @Inject private SomeDataClass someModelInstance;

 @GET

 public Response showIndex() {

Figure 6-4.  Controller URLs

Chapter 6 In-Depth Java MVC

183

 // Preparing the model:

 someModelInstance.setVal(42);

 ...

 return Response.ok("index.jsp").build();

 }

 @GET

 @Path("/b")

 public String showSomeOtherPage() {

 // Preparing the model:

 someModelInstance.setVal(43);

 return "page_b.jsp";

 }

}

The updated or initialized model can then be used from inside the called view page.

We described that in the previous view-related text sections.

�Posting Data into Controllers
In order to transport user input from a form to a controller method, you mark the

method with a @POST annotation and add the form fields as parameters of the method:

@POST

@Path("/response")

public Response response(

 @MvcBinding @FormParam("name") String name,

 @MvcBinding @FormParam("userId") int userId) {

 // Handle form input, set model data, ...

 return Response.ok("response.jsp").build();

}

For the parameter type, you can choose String, int, long, float, double,

BigDecimal, BigInteger, and boolean (true or false). Java MVC makes sure that user

input is appropriately converted if you choose any type other than String.

Chapter 6 In-Depth Java MVC

184

The @MvcBinding allows Java MVC to pass over validation and conversion errors in

an injected BindingResult object. You can then handle the errors programmatically

inside the POST method:

...

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.ParamError;

import javax.mvc.binding.BindingResult;

import javax.ws.rs.FormParam;

...

@Path("/controllerPath")

@Controller

public class MyController {

 // Errors while fetching parameters

 // automatically go here:

 private @Inject BindingResult br;

 @POST

 @Path("/response")

 public Response response(

 @MvcBinding @FormParam("name") String name,

 @MvcBinding @FormParam("userId") int userId) {

 // ERROR HANDLING //////////////////////////

 if(br.isFailed()) {

 br.getAllErrors().stream().

 forEach((ParamError pe) -> {

 ...

 });

 }

 // END ERROR HANDLING //////////////////////

 // Handle form input, set model data, ...

 return Response.ok("response.jsp").build();

 }

}

Chapter 6 In-Depth Java MVC

185

Instead of passing the form input as method parameters, you can also use controller

fields to receive the data:

import javax.mvc.Controller;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

import javax.inject.Inject;

@Path("/controllerPath")

@Controller

public class MyController {

 // Errors while fetching parameters

 // automatically go here:

 private @Inject BindingResult br;

 @MvcBinding @FormParam("name")

 private String name;

 @MvcBinding @FormParam("userId")

 private int userId;

 @POST

 @Path("/response")

 public Response response() {

 // Handle form input, set model data, ...

 return Response.ok("response.jsp").build();

 }

}

Generally, it is recommended to use method parameters, because class instance

fields somehow suggest that parameter passing is the controller classeqresponsibility,

without respecting which method is used, while it actually depends on the method as to

which parameters make sense.

Chapter 6 In-Depth Java MVC

186

If you need to make query parameters (a and b in http://xyz.com/app?a=3&b=4)

available to controller methods, you basically do the same thing as for posted

parameters. What is different though is that you must use the QueryParam annotation for

query parameters, as follows:

...

import javax.mvc.binding.MvcBinding;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

@Path("/")

@Controller

public class SomeController {

 private @Inject BindingResult br;

 @GET

 @Path("/start")

 public String someMethod(

 @MvcBinding @QueryParam("name") String name,

 @MvcBinding @QueryParam("birthday") String birthday

) {

 if(name != null) {

 // handle "name" parameter

 }

 if(birthday != null) {

 // handle "birthday" parameter

 }

 // advance to page

 return "index.jsp";

 }

 ...

}

This is possible for @GET and @POST annotated methods.

Chapter 6 In-Depth Java MVC

http://xyz.com/app?a=3&b=4

187

�Exercises
Exercise 1: In the HelloWorld application from two chapters ago,

remove the Models field in the controller and instead add a new

request scoped model class called UserData with one field, name.

Update the controller and the views accordingly.

Exercise 2: Which one is true? JSPs are handled by one Servlet.

Or, each JSP is transformed into one new Servlet.

Exercise 3: Which view technology is newer—Facelets or JSPs?

Exercise 4: True or false? In order to use Facelets in Java MVC,

you must also use JSF.

�Summary
For the model part of Java MVC, the original idea of a MVC framework is rather

unchanged. Model classes were just Java bean classes (classes with fields, getters, and

setters), and developers would add them to the view programmatically. In a response

view, you then would access the model beans using some expression similar to Hello

${beanName.name}. Java MVC however is a modern framework and its model capabilities

supersede the idea of simply referring to beans. It does so by incorporating the CDI

(Context and Dependency Injection) technology for Jakarta EE 8 in version CDI 2.0.

The basic idea is still the same: we want to instantiate bean classes (data classes that

contain mainly fields and their getters and setters) and provision those instances to the

controllers and the views. The main difference between the pre-CDI and CDI way is that

we don’t instantiate model classes ourselves and let instead CDI do it.

To tell Java MVC that we want a model class to be controlled by CDI and available to

the view pages, we use the @Named annotation from the javax.inject package. We can

also add the @RequestScoped annotation to bind the lifecycle of the object instance to a

single HTTP request/response cycle.

Once we announce a bean via @Named to the CDI framework, two things happen in

Java MVC. First, we can use @Inject (in the javax.inject package) to refer to the bean

instance from inside any Java MVC controller and from inside any other CDI controlled

class. Second, we can use the instance from view pages by using the class name with the

first letter lowercase: ${userData.name} and ${userData.email}.

Chapter 6 In-Depth Java MVC

188

If you’re using CDI to manage model data, model class instances subordinate to a

lifecycle control governed by CDI. This means CDI decides when to construct beans and

when to abandon them. In injected beans, the way CDI controls the lifecycle of instances

is by a characteristic called scope. In Java MVC, the following scopes exist: request scope,

session scope, redirect scope, and application scope.

Instead of using CDI beans marked with the @Named annotation, you can also use

an injected instance of Models (in the javax.mvc package). The model values are then

available from inside view pages without a prefix: Hello ${name}.

The view part of Java MVC is responsible for presenting the frontend to the client (the

browser), for both input and output. Those view files for Java MVC, which are connected

to controller methods, go in the WEB-INF/-views folder, or, because we are using Gradle

as a build framework, in the src/main/webapp/WEB-INF/views folder.

Java MVC, out-of-the-box, supports two view engines—JSPs (JavaServer Pages) and

Facelets (view declaration language for JSF, JavaServer Faces). By design, other view

engines can be included with an extension mechanism based on CDI.

JSPs allow you to interleave static content, for example HTML and dynamic content,

represented by JSP elements. A JSP page is internally compiled into one big Java class

inheriting from Servlet. A file containing JSP code has the ending .jsp. JSP directives

<% ... %> provide directions to the container. To produce static content, you just write it

verbatim in the JSP file. Because JSPs are transcribed into Java classes, JSP allows for the

inclusion of Java code and Java expressions into JSP pages. Inside <%= ... %> or <% ...

%>, there are a couple of implicit objects you can use:

•	 out: The servlet’s output stream of type JspWriter (extends java.

io.Writer).

•	 request: The request, type HttpServletRequest.

•	 response: The response, type HttpServletResponse.

•	 session: The session, type HttpSession.

•	 application: The application, type ServletContext.

•	 config: The servlet configuration, type ServletConfig.

•	 page: The servlet itself, type Object (runtime type javax.servlet.

http.HttpServlet).

•	 pageContext: The page context, type PageContext.

Chapter 6 In-Depth Java MVC

189

You can use these objects to achieve fancy things, but bear in mind that you

somehow leave official development patterns if you use them. This might make your

code hard for others to read, and by putting functionality into the view pages, the natural

demarcation between the model, the view, and the controller is broken.

CDI beans with the @Named annotation are directly provisioned to the JSPs: Hello

${userName.name}. If you add model data to an injected javax.mvc.Models CDI bean,

you can directly access it without a prefix, as in Hello ${name}.

Constructs in JSP pages like ${ ... } are treated as expressions and are processed

by an expression language handler. There are several implicit objects you can use in

expressions: pageScope, requestScope, sessionScope, applicationScope, paramValues,

param, headerValues, header, initParam, cookie, and pageContext.

If you prefer to use a tag for dynamic output, you can use the <c:out> tag as follows:

Hello <c:out value="${userData.name}" />.

By using the <c:set> tag, you can introduce variables for further use in the page.

For loops over lists or arrays, you can use the <c:forEach> tag (the c signifies the

jstl/core taglib). If you want to use the <c:forEach> tag for an integer-valued range

loop, you use the begin and end attributes, such as <c:forEach begin="1" end="10"

var="i">.

For conditional branching inside a JSP, you can use one of the <c:if> and

<c:choose> tags.

Cookies can be read directly from inside JSPs by using the implicit cookie object.

The other view technology that Java MVC supports apart from JSP is called Facelets.

Facelets is the templating framework especially created for JSF. Facelets files for Java

MVC go in the same folder as JSP files, the WEB-INF/views folder, or, because we are

using Gradle as a build framework, in the src/main/webapp/WEB-INF/views folder.

Facelets files are XML files, which is maybe the most noticeable difference between JSPs

and Facelets.

Facelets allow you to introduce parameterized template HTML pages, HTML

snippets (components) to be included in pages, placeholders for such snippets, and

decorators and repetitions for things like elaborated list views.

For Java MVC, we don’t want to mix JSF components into Facelets pages for stability

reasons. This, however, leads to a severe lack of functionalities, including a missing

if-else construct. In the JSF world, you switch on and off components (or component

subtrees) via the rendered attribute. So what can we do if we want to use Facelets for Java

MVC and need a conditional branching on some view page? The answer is astonishingly

Chapter 6 In-Depth Java MVC

190

simple. Because we don’t use JSF components, we can simply add the JSTL tag libraries

without danger of breaking proper page rendering. Then we can use the <c:if> and

<choose> tags.

For JSF, expression language handling has been extended to use deferred

expressions, denoted by #{ ... } instead of ${ ... }. These deferred expressions

aren’t evaluated prior to the JSF component reacting to the requests initiated by forms.

This way, it was possible to use expressions as lvalues, meaning you can assign user

input to them. A #{ someBean.someProperty } thus can serve for both output and input.

The combination of immediate expressions and deferred expressions, more precisely

the enhanced expression language, is also called unified expressions. For Java MVC, form

input is exclusively handled by controller methods. There is by design no such thing as

autowiring form input to CDI beans. For this reason, we don’t need deferred expressions.

Caution  Don’t use deferred expressions #{ ... } in Java MVC Facelets views.

Controller classes describe the action part of a Java MVC application. They are

responsible for preparing the model, taking user requests, updating the model, and

deciding which view pages to show after a request. To mark a class as a Java MVC

controller, add the @Controller annotation (in the javax.mvc package) and the @Path

annotation (in the javax.ws.rs package) to the class.

For pages that are not the result of some form post, you use the GET verb and mark

the corresponding methods with the @GET annotation.

In controller methods marked with @GET or @POST, you either return a string pointing

to a JSP (or Facelets page) and then use suffix .xhtml, or you can return a Response

object. While returning a string is easier, with the Response instance you have more

options. For example, you can precisely specify the HTTP status code and actually

specify status codes (like OK, Server Error, Accepted, Created, No Content, Not Modified,

See Other, Temporary Redirect, or Not Acceptable). You can also set the encoding,

the cache control, HTTP headers, the language, the media type, expired and last

modification times, and add cookies.

The triggering path is calculated by concatenating the class’ @Path annotation and

the method’s @Path annotation, and then prepending the applications’ URL path.

If you need to prepare model values for the called page to use, you can inject CDI

beans in the controller and just adjust their values from inside the controller methods.

The updated or initialized model can then be used from inside the called view page.

Chapter 6 In-Depth Java MVC

191

In order to transport user input from a form to a controller method, you mark the

method with a @POST annotation and add the form fields as parameters of the method.

For the parameter type, you can choose String, int, long, float, double, BigDecimal,

BigInteger, and boolean (true or false). Java MVC makes sure that user input is

appropriately converted if you choose any type other than String.

The @MvcBinding allows Java MVC to pass over validation and conversion errors in

an injected BindingResult object. You can then handle the errors programmatically

inside the POST method.

If you need to make query parameters (a and b in http://xyz.com/app?a=3&b=4)

available to controller methods, you basically do the same thing as with posted

parameters. What is different though is that you must use the QueryParam annotation for

query parameters. This is possible for @GET and @POST annotated methods.

In the next chapter, we cover more advanced topics of Java MVC.

Chapter 6 In-Depth Java MVC

http://xyz.com/app?a=3&b=4

193
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_7

CHAPTER 7

In-Depth Java MVC: Part II
In this chapter, we continue our in-depth survey of Java MVC. We talk about some topics

that you’ll encounter less frequently compared to the topics discussed in the last chapter,

but that could be important to your project, depending on the circumstances. This includes

bean validation, injectable context, partial page updates, and observer classes. We also

deepen our knowledge about state handling, and we include some configuration topics.

�Adding Bean Validation
Bean validation (version 2.0) is described by the JSR 380 specification. The full

specification can be downloaded from https://jcp.org/en/jsr/detail?id=380.

This technology is about constraints defined by annotations. You can add checks to

determine whether a field or method parameter is null, whether a number exceeds some

lower or upper bound, whether a string’s size is within a certain range, whether a date

is in the past or future, and more. You even can define your own custom annotations to

check certain parameters or fields.

We don’t talk about the full gamut of possibilities of bean validation—the

specification and many tutorials on the Internet readily tell you more. We talk about

where bean validation fits into Java MVC, and we cover some built-in constraints that

you will often use, as well as a couple of custom constraints.

You can easily use bean validation in Java MVC next to form and query parameters

inside controllers. If you have constraints, such as @CONSTRAINT1, @CONSTRAINT2, and so

on (we will talk about possible values and constraint parameters soon), you can use any

of the following:

 public class SomeController {

 // constraints for fields:

 @MvcBinding @FormParam("name")

https://doi.org/10.1007/978-1-4842-6280-1_7#DOI
https://jcp.org/en/jsr/detail?id=380

194

 @CONSTRAINT1

 @CONSTRAINT2

 ...

 private String formParam; // or other type

 // or, for query parameters:

 @MvcBinding @QueryParam("name")

 @CONSTRAINT1

 @CONSTRAINT2

...

 private String queryParam; // or other type

 // or, in controller action:

 @POST

 @Path("/xyz")

 public Response someMethod(

 @MvcBinding @FormParam("name")

 @CONSTRAINT1

 @CONSTRAINT2

 ...

 String name)

 {

 ...

 }

 // or, for query parameters:

 @GET

 @Path("/xyz")

 public Response someMethod(

 @MvcBinding @QueryParam("name")

 @CONSTRAINT1

 @CONSTRAINT2

 ...

Chapter 7 In-Depth Java MVC: Part II

195

 String name)

 {

...

 }

}

Any violation will be forwarded as an error inside an injected BindingResult:

 @Controller

 @Path("/xyz")

 public class SomeController {

 @Inject BindingResult br;

 ...

 }

For example, if we want to limit a form parameter string to have more than two, but

less than ten, characters, we write the following:

 @Controller

 @Path("/xyz")

 public class SomeController {

 @Inject BindingResult br;

 @MvcBinding @FormParam("name")

 @Size(min=3,max=10)

 private String formParam;

 ...

 }

The most interesting built-in bean validation constraints are defined in Table 7-1.

Chapter 7 In-Depth Java MVC: Part II

196

Table 7-1.  Built-in Bean Validation Constraints

Name Description

@Null Checks whether the value is null.

@NotNull Checks whether the value is not null.

@AssertTrue Checks whether the boolean value is true.

@AssertFalse Checks whether the boolean value is false.

@Min(min) Checks whether the numerical value (short, int, long,

BigDecimal, or BigInteger) is greater or equal to the supplied

parameter.

@Max(max) Checks whether the numerical value (short, int, long,

BigDecimal, or BigInteger) is less or equal to the supplied

parameter.

@Negative Checks whether the numerical value (short, int, long,

BigDecimal, or BigInteger) is less than zero.

@NegativeOrZero Checks whether the numerical value (short, int, long,

BigDecimal, or BigInteger) is less than or equal to zero.

@Positive Checks whether the numerical value (short, int, long,

BigDecimal, BigInteger) is greater than zero.

@PositiveOrZero Checks whether the numerical value (short, int, long,

BigDecimal, BigInteger) is greater than or equal to zero.

@Size(min=minSize,

max=maxSize)

Checks whether the string value has a length between the specified

bounds. Both bounds are optional; if omitted, 0 or Integer.

MAX_VALUE is assumed. Example: @Size(max=10) means size

ten or less.

@NotEmpty Checks whether the value is not empty. For strings, this means the

string length must be greater than 0.

@NotBlank Checks whether the string value contains at least one non-

whitespace character.

(continued)

Chapter 7 In-Depth Java MVC: Part II

197

You can see that there is no min or max check for float or double values. These were

left out intentionally. Because of possible precision errors, these types of checks cannot

reliably be performed.

It is also possible to define your own bean validators. For the lack of a double valued

bound check, you might for example want to define a double (float) range validator

(including some precision grace). For such an annotation, you would write the following:

package book.javamvc.validation;

import javax.validation.Constraint;

import javax.validation.Payload;

import static java.lang.annotation.ElementType.*;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Target;

@Constraint(validatedBy = FloatRangeValidator.class)

@Target({ PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface FloatRange {

 String message() default

 "Value out of range [{min},{max}]";

 Class<?>[] groups() default {};

Table 7-1.  (continued)

Name Description

@Pattern(regexp=regExp,

flags={f1,f2,...})

Checks whether the string value matches the given regular

expression. The optional flags parameter may be a list of javax.

validation.constraints.Pattern.Flag.* constants

controlling the match, such as case insensitiveness. As is usually

the case for annotations, you can omit the { } if you have only one

element in the list.

@Email(regexp=regExp,

flags={f1,f2,...})

Checks whether the string value represents an email address.

The optional regexp and flags parameters specify an additional

pattern, with the same meaning as the @Pattern constraint.

Chapter 7 In-Depth Java MVC: Part II

198

 Class<? extends Payload>[] payload() default {};

 String[] value() default { };

 double min() default -Double.MAX_VALUE;

 double max() default Double.MAX_VALUE;

 double precision() default 0.0;

}

The important parts are as follows:

–– validatedBy = FloatRangeValidator.class

The implementation class, see next code section.

–– @Target

We want to allow this annotation for fields and method parameters.

–– @Retention(RUNTIME)

RUNTIME is important here, so the annotation won’t get lost during

compilation.

–– message()

The message to be shown if the validation fails, with placeholders for

the parameters.

–– value()

This is the default parameter if there is no named parameter. We want

to introduce three named parameters—min, max, and precision—so

we don’t use a default parameter.

–– min(), max(), precision()

The three named parameters, as methods.

–– groups(), payload()

Not used here.

Chapter 7 In-Depth Java MVC: Part II

199

The implementation class checks the code and reads as follows:

package book.javamvc.validation;

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class FloatRangeValidator implements

 ConstraintValidator<FloatRange, Number> {

 private double min;

 private double max;

 private double precision;

 @Override

 public void initialize(FloatRange constraint) {

 min = constraint.min();

 max = constraint.max();

 precision = constraint.precision();

}

 @Override

 public boolean isValid(Number value,

 ConstraintValidatorContext context) {

 return value.doubleValue() >=

 (min == -Double.MAX_VALUE ? min :

 min - precision)

 && value.doubleValue() <= (max == Double.MAX_VALUE ?

 max : max + precision);

 }

}

The overwritten isValid() method performs the actual validation. In this case, we

have to make sure the precision grace is not applied to the default values +/- Double.

MAX_VALUE.

To add the new constraint to a Java MVC controller, we use the same method as for

the built-in constraints:

...

import book.javamvc.validation.FloatRange;

Chapter 7 In-Depth Java MVC: Part II

200

...

@Path("/abc")

@Controller

public class SomeController {

 @MvcBinding @FormParam("theDouble")

 @FloatRange(min=1.0, max=2.0, precision = 0.000001)

 private double theDouble;

 ...

}

As another custom bean validator using the value annotation default parameter,

consider a check that allows string values only from a certain set. We call it StringEnum

and its code is as follows:

package book.javamvc.validation;

import javax.validation.Constraint;

import javax.validation.Payload;

import static java.lang.annotation.ElementType.*;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Target;

@Constraint(validatedBy = StringEnumValidator.class)

@Target({ PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface StringEnum {

 String message() default

 "String '${validatedValue}' not inside {value}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 String[] value() default { };

}

Chapter 7 In-Depth Java MVC: Part II

201

This time, no named parameters are introduced, only the default value attribute is.

The implementation then looks as follows:

package book.javamvc.validation;

import java.util.Arrays;

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class StringEnumValidator implements

 ConstraintValidator<StringEnum, String> {

 private String[] val;

 @Override

 public void initialize(StringEnum constraint) {

 this.val = constraint.value();

}

 @Override

 public boolean isValid(String value,

 ConstraintValidatorContext context) {

 return Arrays.asList(val).contains(value);

 }

}

Because there is only one default parameter, we don’t need the name to use it:

...

import book.javamvc.validation.StringEnum;

...

@Path("/abc")

@Controller

public class SomeController {

 @MvcBinding @FormParam("fruit")

 @StringEnum({"grape", "apple", "banana"})

 private String fruit;

 ...

}

Chapter 7 In-Depth Java MVC: Part II

202

So far, for validation failure messages, we have seen named parameter placeholders

in the form {paramName} or {value} for the annotation’s default value, and an expression

language construct for the checked value, ${validatedValue}. In an internationalized

application, it would be better if we could add a reference to a localized message file.

This is possible, and the name of the bundle file is ValidationMessages.properties.

The localized properties files then have the following names:

 ValidationMessages.properties (default)

 ValidationMessages_en.properties (English)

 ValidationMessages_fr.properties (French)

 ValidationMessages_de.properties (German)

 ...

In a Gradle project layout, you’d place them inside the src/main/resources folder.

In the properties files, you then write messages like this:

 myapp.user.name.error = Invalid User Name: \

 ${validatedValue}

 myapp.user.address.error = Invalid Address

 ...

In the message method of the bean validation annotation, you use curly brackets and

the property key name:

 String message() default

 "{myapp.user.name.error}";

Note R esource bundles like these belong to the JRE standard. Using
Validation-Messages as a base name is a bean validation technology
convention.

Chapter 7 In-Depth Java MVC: Part II

203

�Injectable Context
Inside a Java MVC controller class, we can use a couple of context objects. There are

basically two methods to access them. First, we can use the @Inject annotation provided

by CDI on a class instance level, as follows:

...

import javax.servlet.http.HttpSession;

import javax.mvc.MvcContext;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.ServletContext;

import javax.mvc.binding.BindingResult;

import javax.ws.rs.core.Application;

import javax.enterprise.inject.spi.BeanManager;

...

@Controller

public class SomeController {

 // Access to the session. You can use it to retrieve

 // the session ID, the creation time, the last

 // accessed time, and more.

 @Inject private HttpSession httpSession;

 // Access to the MVC context. This is a context

 // object provided by Java MVC. You can use it to

 // construct URIs given the simple controller name

 // and method name, to retrieve the current

 // request's locale, to look up the base URI, and

 // more.

 @Inject private MvcContext mvcContext;

 // Access to the current servlet request. You can use

 // it to get various HTTP request related properties,

 // like headers, user information, and many more.

 @Inject private HttpServletRequest httpServletRequest;

 // Access to the servlet context. There you can for

 // example get the URI of a resource file, or an

Chapter 7 In-Depth Java MVC: Part II

204

 // info about the server (container), and more.

 @Inject private ServletContext servletContext;

 // Use this to fetch conversion and validation errors.

 // Parameters (@FormParam or @QueryParam) must have

 // been marked with @MvcBinding for this error

 // fetching process to work.

 @Inject private BindingResult bindingResult;

 // Use this to access the application scope

 // Application object. You can for example register

 // and retrieve application-wide custom properties.

 @Inject private Application application;

 // In case you ever need to have programmatic access

 // to CDI, you can inject the BeanManager. This can

 // also be handy for diagnostic purposes.

 @Inject private BeanManager beanManager;

 ...

}

Second, and as an additional feature of Java MVC, it is also possible to inject javax.

ws.rs.core.Request and javax.ws.rs.core.HttpHeaders directly into controller

methods:

...

import javax.ws.rs.core.Context;

import javax.ws.rs.core.HttpHeaders;

import javax.ws.rs.core.Request;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

...

@Controller

public class SomeController {

...

@GET // or @POST

Chapter 7 In-Depth Java MVC: Part II

205

public String someMethod(

 ... query and post parameters...,

 @Context HttpHeaders httpHeaders,

 @Context Request request)

 {

 ...

 }

 ...

}

It does not matter where in the method’s parameter list you add such @Context

parameters. The httpHeaders parameter then enables to access HTTP header values, the

language, cookie values, and more. The request parameter provides helper methods for

preconditions and variants (we don’t talk about preconditions and variants in this book).

For more details about such injected types, consult the API documentation (Jakarta

EE, JAX-RS, and Java MVC).

�Persisting State
If you need to persist state between several requests, the HttpSession class from the

javax.servlet.http package is your friend. Whenever a user starts a web application

on a browser, an instance of HttpSession is created. Once it exists, the very same session

object is transparently assigned to any subsequent HTTP request/response cycles,

provided all the following are met:

•	 The user stays inside the same web application on the same server

•	 The user uses the same browser instance (the browser wasn’t

restarted)

•	 The session was not destroyed by the container because of a timeout

•	 The session was not destroyed explicitly by the web application

Chapter 7 In-Depth Java MVC: Part II

206

From your web application, you usually don’t have to take any precautions in order

to use sessions. All you have to do is register sessions-scoped CDI beans:

...

import javax.enterprise.context.SessionScoped;

...

@Named

@SessionScoped

public class UserData {

...

}

@Controller

public class SomeController {

 @Inject UserData userData;

 // <- same object inside a session

 ...

}

The container automatically ensures that, inside the same browser session, exactly

one instance of each session-scoped CDI bean is used.

Note T he server transparently maintains session identification by cookies, automatically
adding session IDs in URL query parameters, or adding invisible fields in forms.

We already know that to programmatically access session data, we can inject the

session as a class instance field:

 ...

 import javax.servlet.http.HttpSession;

 ...

 @Controller

 public class SomeController {

 @Inject private HttpSession httpSession;

 ...

 }

Chapter 7 In-Depth Java MVC: Part II

207

This is also the place where we can programmatically ask for the session ID:

httpSession.getId() (a string). Or we can invalidate a session: httpSession.

invalidate().

Session data can be important for your web application to work properly, but

bear in mind that for many concurrently working web users, you also have many

concurrently active sessions. Therefore, if you store many data items in the session

storage, the memory footprint of your web application will rise, possibly destabilizing the

application.

�Dealing with Page Fragments
We learned that verbatim output from JSP view pages is not checked for syntactical

correctness. So a file like this, for example:

<%@ page language="java"

 contentType="text/html;charset=UTF-8" %>

<%@ taglib prefix = "c"

 uri = "http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix = "fmt"

 uri = "http://java.sun.com/jsp/jstl/fmt" %>

This is a JSP generated page. Hello ${userData.name}

Is literally a correct JSP page, even though it does not produce valid HTML. The

output complies to the text/plain media type though, so a corresponding controller

method could read the following:

...

import javax.mvc.Controller;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

@Path("/abc")

@Controller

public class SomeController {

Chapter 7 In-Depth Java MVC: Part II

208

 // Assuming the JSP is stored at

 // WEB-INF/views/fragm1.jsp

 @POST

 @Path("/fragm1")

 public Response fragm1(...) {

 ...

 return Response.ok("fragm1.jsp").

 type(MediaType.TEXT_PLAIN).build();

 }

}

You can even send this response to a browser client, which typically produces simple

text output (most browsers that I’m aware of do so, at least). Such text/plain pages

neither contain any formatting instructions nor do they possibly present any input fields,

so the question is how an application can take advantage of this fragmentary output.

When MVC was invented, the usual paradigm was to reload the whole page after

any user submit, or to load a complete new page if the navigation demands it. Web

developers felt uncomfortable from the very beginning about even very small changes

to the resulting page leading to a full page being passed over the network. It just seemed

to be an unnecessary waste of network resources. For this reason, in the mid 2000s,

AJAX started to become more and more popular. AJAX (Asynchronous JavaScript and

XML) allowed browsers to request data from the server using JavaScript and work the

result into the page, again using JavaScript. To ensure maximum frontend usability, this

happens in the background (asynchronously) and the user can operate the browser

while the AJAX process is still active.

Modern and highly dynamic web applications use AJAX quite often, so this begs the

question as to whether we can also use AJAX from inside Java MVC.

The answer is yes, because we learned that we can ask the server for page snippets.

All that is missing are a couple of JavaScript functions to initiate an AJAX server request

and later work in the result from the server into corresponding page parts. You could use

plain JavaScript for this purpose, but using a JavaScript library like jQuery comes handy

to even out browser differences and to simplify AJAX handling.

As an example, we revive the HelloWorld application from Chapter 4 and add a

second form for an AJAX request and an area for showing AJAX call results.

Chapter 7 In-Depth Java MVC: Part II

209

First we add the jQuery library, which you can download from https://jquery.com/

download/. Any decent version should do (the examples are tested with version 3.5.1).

Move the file to src/main/webapp/js.

Note T he jQuery library provides many more tool functions apart from AJAX. You
also get functions for finding HTML elements, traversing the DOM, manipulating
HTML elements, and more.

Next, we update index.jsp to include jQuery and add a new form and an area to

receive AJAX responses:

...

<head>

 ...

 <script type="text/javascript"

 src="${mvc.basePath}/../js/jquery-3.5.1.min.js">

 </script>

</head>

<body>

 ...

 <form>

 <script type="text/javascript">

 function submitAge() {

 var age = jQuery('#age').val();

 var url = "${mvc.uriBuilder(

 'HelloWorldController#ageAjax'). build()}";

 jQuery.ajax({

 url : url,

 method: "POST",

 data : { age: age },

 dataType: 'text',

 success: function(data, textStatus, jqXHR) {

 jQuery('#ajax-response').html(data);

 },

 error: function (jqXHR, textStatus,

Chapter 7 In-Depth Java MVC: Part II

https://jquery.com/download/
https://jquery.com/download/

210

 errorThrown) {

 console.log(errorThrown);

 }

 });

 return false;

 }

 </script>

 Enter your age: <input type="text" id="age" />

 <button onclick="return submitAge()">Submit</button>

 </form>

 <div>

 AJAX Response:

 <div id="ajax-response">

 </div>

 </div>

 ...

</body>

...

A couple of important notes on this JSP code seem appropriate:

•	 The <div id = "ajax-response"> is just a placeholder. It is filled by

JavaScript once the AJAX call returns data.

•	 The ${ ... } inside the JavaScript function is an expression

language construct, and it is handled correctly only if the JSP engine

sees it. So you cannot export this JavaScript code to a script.js file

without further precautions. What you could do prior to exporting the

code to its own file is to add the URL as a parameter to the function:

function submitAge(url) { ... }. In the onclick = ...

event handler declaration, you then must write onclick = "return

submitAge('${ ... }')".

•	 The form is never submitted. This is why it does not have an action

attribute and the onclick handler returns false. The <form> is not

actually required if you’re using AJAX. We add it here for clarity.

Chapter 7 In-Depth Java MVC: Part II

211

•	 To use jQuery objects, you usually apply the shortcut notation $ (it

has the same meaning as in jQuery). We can’t do that in JSP pages,

because, there, a $ starts a JSP expression.

•	 An AJAX error for simplicity just writes to the console. In real-world

applications, you should place error messages to a place visible to the

users.

•	 In the <head> script tag, you must of course refer to the jQuery

version you downloaded.

•	 The dataType: 'text' refers to the AJAX call returning text/plain

data. If the server returns something different, for example XML or

JSON, you must change this.

You add a new AJAX-related method to the controller class:

 @POST

 @Path("/ageAjax")

 public Response ageAjax(

 @MvcBinding @FormParam("age")

 int age)

 {

 if(br.isFailed()) {

 br.getAllErrors().stream().

 forEach((ParamError pe) -> {

 errorMessages.addMessage(

 pe.getParamName() + ": " +

 pe.getMessage());

 });

 }

 userData.setAge(age);

 return Response.ok("ageAjaxFragm.jsp").

 type(MediaType.TEXT_PLAIN).build();

}

Chapter 7 In-Depth Java MVC: Part II

212

This assumes that we use a private @Inject UserData userData; field in the

controller class and that UserData gets a new age field:

package book.javamvc.helloworld;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class UserData {

 private String name;

 private int age;

 // Getters and setters...

}

We introduced this class in one of the exercises in Chapter 4.

The fragment page ageAjaxFragm.jsp inside src/main/webapp/-WEB-INF/views is

addressed from the controller class. As a result, the AJAX request reads as follows:

<%@ page language="java"

 contentType="text/html;charset=UTF-8" %>

<%@ taglib prefix = "c"

 uri = "http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix = "fmt"

 uri = "http://java.sun.com/jsp/jstl/fmt" %>

This is a JSP generated fragment. Your age is: ${userData. age}

�Observers
Java MVC, by virtue of CDI, provides an elegant observer mechanism, which you can use

for cross-cutting concerns like logging, monitoring, and performance measurement, or

for just diagnostic purposes.

All you have to do is provide a CDI bean class with one or more methods with a

parameter of an event type from the javax.mvc.event package. It should be marked

with @Observes (in the javax.enterprise.event package):

Chapter 7 In-Depth Java MVC: Part II

213

package book.javamvc.helloworld.event;

import java.io.Serializable;

import java.lang.reflect.Method;

import javax.enterprise.context.SessionScoped;

import javax.enterprise.event.Observes;

import javax.mvc.event.AfterControllerEvent;

import javax.mvc.event.AfterProcessViewEvent;

import javax.mvc.event.BeforeControllerEvent;

import javax.mvc.event.BeforeProcessViewEvent;

import javax.mvc.event.ControllerRedirectEvent;

@SessionScoped

public class HelloWorldObserver implements Serializable {

private static final long serialVersionUID =

 -2547124317706157382L;

public void update(@Observes BeforeControllerEvent

 beforeController) {

 Class<?> clazz = beforeController.getResourceInfo().

 getResourceClass();

 Method m = beforeController.getResourceInfo().

 getResourceMethod();

 System.err.println(this.toString() + ": " +

 clazz + " - " + m);

}

public void update(@Observes AfterControllerEvent

 afterController) {

 System.err.println(this.toString() + ": " +

 afterController);

}

public void update(@Observes ControllerRedirectEvent

 controllerRedirect) {

 System.err.println(this.toString() + ": " +

 controllerRedirect);

}

Chapter 7 In-Depth Java MVC: Part II

214

public void update(@Observes BeforeProcessViewEvent

 beforeProcessView) {

 String view = beforeProcessView.getView();

 System.err.println(this.toString() + ": " +

 view);

}

public void update(@Observes AfterProcessViewEvent

 afterProcessView) {

 System.err.println(this.toString() + ": " +

 afterProcessView);

 }

}

That is all. Java MVC takes care of calling the appropriate observer methods during

its processing requests.

Marking the observer class with @SessionScoped is not a requirement for the

observer class to work. If you, however, need to collect elapsed times, as in the following:

package book.javamvc.helloworld.event;

import java.io.Serializable;

import java.lang.reflect.Method;

import java.time.Instant;

import javax.enterprise.context.SessionScoped;

import javax.enterprise.event.Observes;

import javax.mvc.event.AfterControllerEvent;

import javax.mvc.event.BeforeControllerEvent;

@SessionScoped

public class HelloWorldObserver implements Serializable {

 private long controllerStarted;

 public void update(@Observes BeforeControllerEvent

 beforeController) {

 controllerStarted = Instant.now().toEpochMilli();

 ...

}

Chapter 7 In-Depth Java MVC: Part II

215

 public void update(@Observes AfterControllerEvent

 afterController) {

 long controllerElapseMillis =

 Instant.now().toEpochMilli()

 - controllerStarted;

 ...

 }

 ...

}

It is important that we have only one instance of the observer class spanning several

invocations, and using the session scope ensures this is the case. If you don’t need

that, the @SessionScoped annotation can be removed (this is the same as using the @

Dependent scope annotation).

Note T he Serializable marker interface is necessary for the session scope
CDI bean to work correctly. If you omit it, you will get a runtime error message.

�Configuration
Since Java MVC sits on top of JAX-RS, we can use a class inheriting from javax.ws.rs.

core.Application to add an entry to the URL context path:

package any.project.package;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {

}

This class is empty by intention. The context path element /mvc is added by the

annotation alone. The resulting URL then is a server-dependent path, plus /mvc, plus

whatever is specified in the controller’s @Path annotation. We have used this kind of

application configuration quite often in this book.

Chapter 7 In-Depth Java MVC: Part II

216

Note  For GlassFish, this server-dependent path by default reads http://ser.
ver.addr:8080/WarName/, where WarName needs to be replaced with the
name of the deployed WAR file, minus the .war file suffix.

You can specify a few more configuration items in the Application class. This time,

we overwrite the getProperties() method and write the following:

package any.project.package;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

import javax.mvc.engine.ViewEngine;

import javax.mvc.security.Csrf;

...

@ApplicationPath("/mvc")

public class App extends Application {

 @Override

 public Map<String,Object>getProperties(){

 final Map<String,Object> map = new HashMap<>();

 // This setting makes sure view files

 // will be looked up at some specified location

 // (default is /WEB-INF/views)

 map.put(ViewEngine.VIEW_FOLDER,"/jsp/");

 // Set a CSRF (cross site request forgery)

 // security mode. See Chapter 4 of the

 // specification

 map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.OFF); // default

 // ...or...

 map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.EXPLICIT);

 // ...or...

 map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.IMPLICIT);

 // Set CSRF header name. See Chapter 4 of the

 // specification. Default is "X-CSRF-TOKEN".

Chapter 7 In-Depth Java MVC: Part II

http://ser.ver.addr:8080/WarName/
http://ser.ver.addr:8080/WarName/

217

 map.put(Csrf.CSRF_HEADER_NAME,

 "CSRF-HDR");

 return map;

 }

}

To add a welcome file (a landing page), again avoiding a web.xml XML configuration

file to simplify development, you can use an HTTP filter as follows:

package any.project.package;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

@WebFilter(urlPatterns = "/")

public class RootRedirector extends HttpFilter {

 private static final long serialVersionUID =

 7332909156163673868L;

 @Override

 protected void doFilter(final HttpServletRequest req,

 final HttpServletResponse res,

 final FilterChain chain) throws IOException {

 res.sendRedirect("mvc/facelets");

 }

}

If it’s used this way, an URL http://my.server:8080/TheWAR/ (on GlassFish,

this corresponds to /, because this is the base URL) will send a REDIRECT to http://

my.server:8080/TheWAR/mvc/facelets, which in turn is supposed to trigger, for

example, a @GET annotated method of a Java MVC controller. In this example, the @Path

from the controller class plus the @Path from the controller method must concatenate to

/facelets (remember, the leading mvc/ is from the previous application configuration).

Chapter 7 In-Depth Java MVC: Part II

http://my.server:8080/TheWAR/
http://my.server:8080/TheWAR/mvc/facelets
http://my.server:8080/TheWAR/mvc/facelets

218

�Exercises
Exercise 1: In the HelloWorld application from Chapter 4, first

ensure that a model class UserData is used, then add a new

integer field called age. Update the form in the view and add an

input field labeled ”What is your age?”. Update the controller, and

apply a bean validation constraint, making sure the users enter an

age greater than zero. Add error handling, as described in

Chapter 6. Also update the response page by adding the age.

Exercise 2: In the HelloWorld application from Chapter 4, inject

the session into the controller. In the controller’s showIndex()

method, write the session ID into System.err.

Exercise 3: In the HelloWorld application from Chapter 4, inject

the headers into the greeting() method. Write all request

headers into System.err.

Exercise 4: From the previous exercise, extract the age input field

into a new form and use AJAX to react to user input from that field

(add a button). Write a page fragment using JSON as the AJAX

response ({"Text" : "Your age is ... " }) and let it pass the

response into an area <div id = "ajax-response"> </div>. Use

jQuery as a JavaScript AJAX library.

Exercise 5: In the HelloWorld application from Chapter 4, write

an observer calculating the controller response time. Output the

result to System.err.

�Summary
Bean validation (version 2.0) is described by the JSR 380 specification. This technology

is about constraints defined by annotations. You can check whether a field or method

parameter is null, whether a number exceeds some lower or upper bound, whether a

string’s size is within a certain range, whether a date is in the past or future, and more.

You even can define your own custom annotations to check certain parameters or fields.

You can easily use bean validation in Java MVC next to form and query parameters

inside controllers. If you have constraints, such as @CONSTRAINT1, @CONSTRAINT2, and so

Chapter 7 In-Depth Java MVC: Part II

219

on, you can add them to fields and method parameters of controllers. Any violation will

be forwarded as an error inside an injected BindingResult.

We can use a couple of context objects inside a Java MVC controller class. There are

basically two methods to access them. First, we can use the @Inject annotation provided

by CDI on a class instance level. Second, and as an additional feature of Java MVC, it is

also possible to inject javax.ws.rs.core.Request and javax.ws.rs.core.HttpHeaders

directly into controller methods. It does not matter where in the method’s parameter

list you add such @Context parameters. The httpHeaders parameter then enables

access to HTTP header values, the language, cookie values, and more. The request

parameter provides helper methods for preconditions and variants (we don’t talk about

preconditions and variants in this book).

For more details about such injected types, consult the API documentation (Jakarta

EE, JAX-RS, and Java MVC).

If you need to persist state between several requests, the HttpSession class from the

javax.servlet.http package is your friend. Whenever a user starts a web application

on a browser, an instance of HttpSession is created. Once it exists, the very same session

object is transparently assigned to subsequent HTTP request/response cycles, provided

all the following are met:

•	 The user stays inside the same web application on the same server

•	 The user uses the same browser instance (the browser wasn’t

restarted)

•	 The session was not destroyed by the container because of a timeout

•	 The session was not destroyed explicitly by the web application

From your web application, you usually don’t have to take any precautions in

order to use sessions. All you have to do is register sessions-scoped CDI beans via the

@SessionScoped annotation. The container automatically ensures that exactly one

instance of each session-scoped CDI bean is used inside the same browser session.

Session data can be important for your web application to work properly, but

bear in mind that, for many concurrently working web users, you also have many

concurrently active sessions. Therefore, if you store many data items in the session

storage, the memory footprint of your web application will rise, possibly destabilizing the

application.

Chapter 7 In-Depth Java MVC: Part II

220

We learned that verbatim output from JSP view pages is not checked for syntactical

correctness. So a file can be a correct JSP page, even though it does not produce

valid HTML. If, for example, the output complies to the text/plain media type, a

corresponding controller method return could read as follows:

return Response.ok("fragm1.jsp").type(MediaType.TEXT_PLAIN).build();

You can even send this text/plain response to a browser client, which typically

produces simple text output. Such text/plain pages neither contain any formatting

instructions nor do they possibly present any input fields, so the question is how an

application can take advantage of this fragmentary output.

When MVC was invented, the usual paradigm was to reload the whole page after

any user submit, or to load a complete new page if the navigation demands it. Web

developers felt uncomfortable from the very beginning about even very small changes

to the resulting page leading to a full page being passed over the network. It seemed

to be an unnecessary waste of network resources. For this reason, in the mid-2000s,

AJAX started to become more and more popular. AJAX (Asynchronous JavaScript and

XML) allowed browsers to request data from the server using JavaScript and work the

result into the page, again using JavaScript. To ensure maximum frontend usability, this

happens in the background (asynchronously) and the user can operate the browser

while the AJAX process is still active.

Modern and highly dynamic web applications use AJAX quite often, so this begs the

question as to whether we can also use AJAX from inside Java MVC. The answer is yes,

because we learned that we can ask the server for page snippets. All that is missing are

a couple of JavaScript functions to initiate an AJAX server request and later work in the

result from the server into corresponding page parts. You could use plain JavaScript for

this purpose, but using a JavaScript library like jQuery comes handy to even out browser

differences and to simplify AJAX handling. You then add a new AJAX-related method to

the controller class.

Java MVC, by virtue of CDI, provides an elegant observer mechanism, which you can

use for cross-cutting concerns like logging, monitoring, and performance measurement,

or for just diagnostic purposes. All you have to do is provide a CDI bean class with one

or more methods with a parameter of an event type from the javax.mvc.event package.

It must be marked with @Observes (in the javax.enterprise.event package). Java

MVC then takes care of calling the appropriate observer methods during its processing

requests.

Chapter 7 In-Depth Java MVC: Part II

221

Since Java MVC sits on top of JAX-RS, we can use a class inheriting from

javax.ws.rs.core.Application to add an entry to the URL context path. This class is

empty by intention. The context path element /mvc is added by the annotation alone.

You can specify a few more configuration items in the Application class. You can, for

example, overwrite the getProperties() method to add properties.

To add a welcome file (a landing page), again avoiding a web.xml XML configuration

file to simplify development, you can use an HTTP filter.

In the next chapter, we talk about the internationalization of Java MVC applications.

Chapter 7 In-Depth Java MVC: Part II

223
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_8

CHAPTER 8

Internationalization
Java provides built-in internationalization support via resource bundles. It is possible

to save text snippets in different languages in different language-related property files.

Using tags, it is also possible to output numbers and dates in locale-specific formats, and

Java MVC can handle user input based on the locale.

�Language Resources
In standard JSP, language-related resources are addressed by the fmt:setBundle and

fmt:bundle tags, and by the fmt:message tag, which uses the key attribute to refer to text

from the bundle. You can, for example, write the following:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"

 prefix="c" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <title>JSTL Bundles</title>

</head>

<body>

 <fmt:bundle

 basename="book.javamvc.helloworld.messages.Messages">

 <fmt:message key="msg.first"/>

 <fmt:message key="msg.second"/>

 <fmt:message key="msg.third"/>

 </fmt:bundle>

</body>

</html>

https://doi.org/10.1007/978-1-4842-6280-1_8#DOI

224

The basename attribute specifies where in the file system the language files exist.

For Facelets, you normally use JSF methodologies to access language resources. In

the JSF configuration file faces-config.xml, you write the following:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-facesconfig_2_0.xsd" version="2.0">

 <application>

 <resource-bundle>

 <base-name>

 book.javamvc.helloworld.messages.Messages

 </base-name>

 <var>msg</var>

 </resource-bundle>

...

 </application>

</faces-config>

In JSF/Facelets pages, you can then simply write ${msg.MSG_KEY} to refer to

messages.

For the book.javamvc.helloworld.messages.Messages base name (and for both

JSPs and Facelets), in the src/main/resources/book/javamvc/helloworld/messages

folder, you now add these properties files: Messages.properties (default), Messages_

en.properties (English), Messages_en_US.properties (English variant), Messages_

de.properties (German), and so on:

-- File 'Messages.properties':

msg.first = First Message

msg.second = Second Message

msg.third = Third Message

-- File 'Messages_en.properties':

msg.first = First Message

msg.second = Second Message

msg.third = Third Message

Chapter 8 Internationalization

225

-- File 'Messages_de.properties':

msg.first = Erste Nachricht

msg.second = Zweite Nachricht

msg.third = Dritte Nachricht

These approaches might suit your needs and you are free to use them. There are a

couple of downsides, though:

•	 For JSPs, messages depend on the fmt: tag library. We cannot write

something like ${msg.first} to access a message.

•	 For JSPs, you have to use the rather awkward syntax <input title =

"<fmt:message key = "msg.first" />" /> to place a message in an

attribute. Editors with syntax highlighting might not be able to cope

with that.

•	 For JSPs, the view needs to know about some internal stuff, like

the file position of the language properties files. Usually, the view

shouldn’t have to deal with such internals.

•	 For Facelets, we have to mix JSF and Java MVC, which, because of

architecture paradigm mismatches, we rather want to avoid.

In the next section of this chapter, we work out an alternative message-access method.

�Adding Localized Messages to the Session
It would be nice if we could just write ${msg.KEY} to access a localized message

anywhere on the page, for both JSPs and Facelets, without further JSF configuration.

To achieve that, we let a @WebFilter register a localized resource bundle as a session

attribute:

package book.javamvc.i18n;

import java.io.IOException;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

Chapter 8 Internationalization

226

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletRequest;

@WebFilter("/*")

public class SetBundleFilter implements Filter {

 @Override

 public void init(FilterConfig filterConfig)

 throws ServletException {

 }

 @Override

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws IOException, ServletException {

 BundleForEL.setFor((HttpServletRequest) request);

 chain.doFilter(request, response);

 }

 @Override

 public void destroy() {

 }

}

The doFilter() method is invoked for any request (the "/*" is an URL pattern

matching any request), and it sends the request to the BundleForEL class.

The customized bundle class extracts the session and locale from the request and

registers itself in the session’s attribute store. The code reads as follows:

package book.javamvc.i18n;

import java.util.Enumeration;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

Chapter 8 Internationalization

227

public class BundleForEL extends ResourceBundle {

 // This is the variable name used in JSPs

 private static final String TEXT_ATTRIBUTE_NAME =

 "msg";

 // This is the base name (including package) of

 // the properties files:

 // TEXT_BASE_NAME + ".properties" -> default

 // TEXT_BASE_NAME + "_en.properties" -> English

 // TEXT_BASE_NAME + "_en_US.properties"

 // TEXT_BASE_NAME + "_fr.properties" -> Fench

 // ...

 private static final String TEXT_BASE_NAME =

 "book.javamvc.helloworld.messages.Messages";

 private BundleForEL(Locale locale) {

 setLocale(locale);

 }

 public static void setFor(

 HttpServletRequest request) {

 if (request.getSession().

 getAttribute(TEXT_ATTRIBUTE_NAME) == null) {

 request.getSession().

 setAttribute(TEXT_ATTRIBUTE_NAME,

 new BundleForEL(request.getLocale()));

 }

 }

 public static BundleForEL getCurrentInstance(

 HttpServletRequest request) {

 return (BundleForEL) request.getSession().

 getAttribute(TEXT_ATTRIBUTE_NAME);

 }

 public void setLocale(Locale locale) {

 if (parent == null ||

 !parent.getLocale().equals(locale)) {

Chapter 8 Internationalization

228

 setParent(getBundle(TEXT_BASE_NAME, locale));

 }

 }

 @Override

 public Enumeration<String> getKeys() {

 return parent.getKeys();

 }

 @Override

 protected Object handleGetObject(String key) {

 return parent.getObject(key);

 }

}

The API documentation for ResourceBundle contains detailed information about

the overridden methods. Important for our purposes is the setFor() method, which

registers the localized bundle as a session attribute. The EL from JSTL (and Facelets) out-

of-the-box knows how to handle Resource-Bundle objects, so we can write the following:

 ${msg.MSG_KEY}

 <someTag someAttr="${msg.MSG_KEY}" />

To access localized messages from inside JSPs or Facelets, replace MSG_KEY with the

message key used inside the properties files.

Because it is very hard for a new developer to understand what msg refers to, you

should add a comment in each JSP or Facelets page, describing where msg comes from:

<%-- ${msg} is the localized bundle variable,

 registered by class SetBundleFilter --%>

Use this with Facelets:

<ui:remove> ${msg} is the localized bundle variable,

 registered by class SetBundleFilter </ui:remove>

Chapter 8 Internationalization

229

Note T he <ui:remove> ... </ui:remove> at first sight looks strange.
However, if you use HTML comments <!– –>, they will be written to the output.
The <ui:remove> tag actually makes sure everything inside will be discarded for
rendering.

�Formatting Data in the View
If, on a view page, you write ${dbl} and dbl refers to a double valued number, the

toString() representation of this number is printed. This is acceptable only if your

frontend user expects numbers formatted in the English locale. To make sure all other

users get the expected number format according to their country rules, JSTL provides

an http://java.sun.com/jsp/jstl/fmt tag library, which gathers tags for object

formatting using the locale information.

The full specification of this tag library can be examined at https://docs.oracle.

com/javaee/5/jstl/1.1/docs/tlddocs/fmt/tld-frame.html(one line), but the

two most important tags are <fmt:formatNumber> and <fmt:formatDate>. You use

<fmt:formatNumber> in JSP pages as follows:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

...

 <%-- Supposing ${dbl1} refers to a float or double --%>

 <fmt:formatNumber value="${dbl1}" type="number" var="n1" />

 <%-- <= Use Java's DecimalFormat class to format --%>

 <%-- the number. Store as string in variable n1 --%>

 <fmt:formatNumber value="${dbl1}" type="currency" var="n1" />

 <%-- <= Format as currency --%>

Chapter 8 Internationalization

http://java.sun.com/jsp/jstl/fmt
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/fmt/tld-frame.html
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/fmt/tld-frame.html

230

 <fmt:formatNumber value="${dbl1}" type="percent" var="n1" />

 <%-- <= Format as percentage --%>

 <fmt:formatNumber value="${dbl1}" type="number"

 maxFractionDigits="6"

 minFractionDigits="2"

 var="n1" />

 <%-- <= We can set the minimum and maximum --%>

 <%-- number of fraction digits --%>

 <fmt:formatNumber value="${dbl1}" type="number"

 pattern="#,##0.00;(#,##0.00)"

 var="n1" />

 <%-- <= Set the pattern according to the --%>

 <%-- DecimalFormat API documentation --%>

 The number reads: ${n1}

...

</html>

On Facelets pages, you write the same code, but with a different header (and the

<%edertscomments removed):

<!DOCTYPE html>

<html lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:c="http://java.sun.com/jsp/jstl/core"

 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt">

...

 <fmt:formatNumber value="${dbl1}" type="number"

 var="n1" />

...

</html>

The complete set of attributes for <fmt:formatNumber> are explained in Table 8-1.

Chapter 8 Internationalization

231

With fmt:formatDate, it is possible to format a java.util.Date object. Using

various attributes, it is possible to output only the day part, or only the time-of-day part,

or both given some pattern:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

Table 8-1.  FormatNumber Tag

Attribute Required Description

value x The value. Use EL syntax, such as ${someBean.someField}

type - The type. One of number, currency, or percent. Default is

number.

pattern - Formatting pattern, as described for the DecimalFormat

class.

currencyCode - ISO 4217 currency code. Only if type = "currency".

currencySymbol - The currency symbol. Only if type = "currency".

groupingUsed - Whether or not grouping is used (e.g., the thousands separator).

True or false.

minFractionDigits - Minimum number of fraction digits.

maxFractionDigits - Maximum number of fraction digits.

minIntegerDigits - Minimum number of integer digits.

maxIntegerDigits - Maximum number of integer digits.

var - Name of the variable where the formatting result will be written

to. If you use this attribute, the direct output of the number will

be suppressed.

scope - Scope of the variable where the formatting result will be

written to. One of page (default), application, session, or

request.

Chapter 8 Internationalization

232

<html>

...

 <%-- Supposing ${date1} refers to a java.util.Date --%>

 <fmt:formatDate value="${date1}" type="date" var="d1" />

 <%-- <= Use Java's DateFormat class to format a --%>

 <%-- day (ignore the time-of-day) in the user's --%>

 <%-- locale default format. --%>

 <%-- Store the result in page scope variable "d1" --%>

 <fmt:formatDate value="${date1}" type="date"

 dateStyle="long"

 var="d1" />

 <%-- <= Use Java's DateFormat class to format a --%>

 <%-- day in the user's locale "long" format --%>

 <%-- Instead of "long" you can also write --%>

 <%-- "default", "short", "medium", "long" or --%>

 <%-- "full" --%>

 <fmt:formatDate value="${date1}" type="time"

 var="d1" />

<%-- <= Use Java's DateFormat class to format a --%>

<%-- time-of-day (ignore the day) in the user's --%>

<%-- locale default format. --%>

 <%-- Store the result in page scope variable "d1" --%>

 <fmt:formatDate value="${date1}" type="time" timeStyle="long"

 var="d1" />

 <%-- Time-of-day in long format. --%>

 <%-- Instead of "long" you can also write --%>

 <%-- "default", "short", "medium", "long" or --%>

 <%-- "full" --%>

 <fmt:formatDate value="${date1}" type="both"

 var="d1" />

 <%-- Write both day and time-of day. Use --%>

 <%-- "dateStyle" and "timeStyle" to control the --%>

 <%-- day and time-of-day styling as described --%>

Chapter 8 Internationalization

233

 <%-- above. --%>

 <fmt:formatDate value="${date1}"

 pattern="yyyy-MM-dd hh:mm:ss"

 var="d1" />

 <%-- Write day and/or time, as described by the --%>

 <%-- pattern (see class SimpleDateFormat for a --%>

 <%-- pattern description). --%>

 The date reads: ${d1}

...

</html>

The complete synopsis of fmt:formatDate is described in Table 8-2

Table 8-2.  FormatDate Tag

Attribute Required Description

value x The value. Use EL syntax, such as ${someBean.someField}.

type - Which part to format. One of date, time, or both.

dateStyle - Specify the day style. One of default, short, medium, long, or full.

Use Java’s DateFormat class to specify the detail grade. Type must be

date or both.

timeStyle - Specify the time-of-day style. One of default, short, medium, long, or

full. Use JavaefaDateFormat class to specify the detail grade. Type

must be date or both.

pattern - Write day and/or time, as described by the pattern. See the

SimpleDateFormat class for a pattern description.

timeZone - Set the time zone. The format is described in the API documentation of

java.util.TimeZone, method getTimeZone(). Directly passing a

TimeZone object is also possible.

var - Name of the variable where the formatting result will be written to. If

you use this attribute, the direct output will be suppressed.

scope - Scope of the variable where the formatting result will be written to. One

of page (default), application, session, or request.

Chapter 8 Internationalization

234

�Using JSF for Formatting
If you use Facelets as a view engine and decide to disregard my warning about mixing

Java MVC and JSF, the construct to declare number converters reads as follows:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<body>

...

<h:outputText value="${someBean.someField}">

 <f:convertNumber type="number"

 maxIntegerDigits="5"

 maxFractionDigits="5"

 groupingUsed="false"/>

</h:outputText>

...

</body>

</html>

So you have to put <f:convertNumber> inside the text output tag.

The various attributes of <f:convertNumber> do not differ much from the JSTL

equivalent and are shown in Table 8-3.

Chapter 8 Internationalization

235

In order to convert java.util.Date objects to string representations, you write the

following in JSF:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<body>

...

<h:outputText value="${someBean.someField}">

 <f:convertDateTime type="both"

 dateStyle="full"

Table 8-3.  ConvertNumber Tag

Attribute Required Description

type - The type. One of number, currency, or percent. Default is

number.

pattern - Formatting pattern, as described for the DecimalFormat class.

currencyCode - ISO 4217 currency code. Only if type = "currency".

currencySymbol - The currency symbol. Only if type = "currency".

groupingUsed - Whether or not grouping is used (e.g., the thousands separator).

Use true or false.

minFractionDigits - Minimum number of fraction digits.

maxFractionDigits - Maximum number of fraction digits.

minIntegerDigits - Minimum number of integer digits.

maxIntegerDigits - Maximum number of integer digits.

integerOnly - If true, fractional digits are ignored. Either true or false.

locale - The locale to be used for displaying the number. Either directly

a java.util.-Locale object, or a string suitable as the first

argument to the Locale constructor.

Chapter 8 Internationalization

236

 timeStyle="medium" />

</h:outputText>

...

</body>

</html>

Not surprisingly, the set of possible attributes for f:convertDateTime very much

resembles the attributes from the JSTL equivalent <fmt:formatDate>; see Table 8-4.

Table 8-4.  ConvertDateTime Tag

Attribute Required Description

type - Which part to format. One of date, time, both, localDate,

localTime, localDateTime, offsetTime, offset- DateTime, or

zonedDateTime. Default is date.

dateStyle - Specify the day style. One of default, short, medium, long, or full.

Use Java’s DateFormat class to specify the detail grade.

timeStyle - Specify the time-of-day style. One of default, short, medium, long,

or full. Use Java’s DateFormat class to specify the detail grade.

pattern - Write day and/or time, as described by the pattern. See the

SimpleDateFormat class for a pattern description.

timeZone - Set the time zone. The format is described in the API documentation of

java.util.TimeZone, method getTimeZone(). Directly passing a

TimeZone object also is possible.

locale - The locale to be used for displaying the date/time. Either directly via a

java.- util.Locale object, or a string suitable as first argument to

the Locale constructor.

�Localized Data Conversion
We already used non-string types for form parameters in our MVC controllers:

 @POST

 @Path("/response")

 public Response response(

Chapter 8 Internationalization

237

 @MvcBinding @FormParam("name") String name,

 @MvcBinding @FormParam("userId") int userId) {

 @MvcBinding @FormParam("rs") long timeStamp,

 @MvcBinding @FormParam("rank") double rank) {

 // Handle form input, set model data, ...,

 // return response

 }

For the parameter type, you can choose among String, int, long, float, double,

BigDecimal, BigInteger, and boolean (true or false). Java MVC makes sure that

user input is appropriately converted if you choose any type other than string. This

conversion happens in a locale-specific manner. In an English locale, a user input of

0.45 has the correct format for a double parameter. In a German locale, for example, the

same number has to be entered as 0,45. Correct conversion happens behind the scenes.

There is currently no reliable way to define custom converters. Also, there are no

converters for times and dates. As a workaround, you can always pass values as Strings

to the controller and then perform conversions programmatically.

 @POST

 @Path("/response")

 public Response response(

 @MvcBinding @FormParam("day") String day,

 @Context HttpHeaders httpHeaders) {

 Locale loc = httpHeaders.getLanguage();

 // <- You could use this for locale specific

 // conversion rules.

 DateTimeFormatter formatter1 =

 DateTimeFormatter.ofPattern("yyyy-MM-dd");

 LocalDate ld = LocalDate.parse(day,

 formatter1);

 ...

}

Chapter 8 Internationalization

238

�Exercises
Exercise 1: In the HelloWorld application from Chapter 4, put

the messages from the view files into a resource bundle and

use the method described in the section entitled”Adding

Localized Messages to the Session” to access the messages.

Put the resource files in the src/main/resources/book/javamvc/

helloworld/-messages folder.

Exercise 2: Continuing from the previous exercise, use the

App class to move the constants from the BundleForEL class

to application properties. Inject the application object into

SetBundleFilter and update BundleForEL.setFor() to receive a

bundle variable name and a bundle resources package name from

the application object.

Exercise 3: Continuing from the previous exercise, add a

double-valued rank field to the model class UserData. Add a

Rank: labeled input field to the index.jsp view, and add

formatted output for the same value to greeting.jsp. Update

the controller class and add a method parameter called double

rank to the @POST method.

Exercise 4: Continuing from the previous exercise, add a

dateOfBirth field to the model class called UserData. Add a

Date of Birth: labeled input field to the index.jsp view, and add

a formatted output for the same value to greeting.jsp. Update

the controller class and add a method parameter called String

dateOfBirth to the @POST method.

�Summary
Java provides built-in internationalization support via resource bundles. It is possible

to save text snippets in different languages in different language-related property files.

Using tags, it is also possible to output numbers and dates in locale-specific formats, and

Java MVC can handle user input based on the locale.

Chapter 8 Internationalization

239

In standard JSP, language-related resources are addressed by the fmt:setBundle and

fmt:bundle tags, and by the fmt:message tag, which uses the key attribute to refer to text

from the bundle.

For Facelets, you normally use JSF methodologies to access language resources, In

the JSF configuration file faces-config.xml, you specify a resource bundle that can

henceforth be used inside the views.

Although these approaches might suit your needs, there are a couple of downsides.

By using a web filter and a ResourceBundle custom class, a simplified access to language

resources can be provided.

If on a view page you write ${dbl} and dbl refers to a double valued number, the

toString() representation of this number is printed. This is acceptable only if your

frontend user expects numbers formatted in the English locale. To make sure all other

users get the expected number format according to their country rules, JSTL provides

an http://java.sun.com/jsp/jstl/fmt tag library, which gathers tags for object

formatting using the locale information.

In Facelets pages, you write the same code as for JSPs, but with a different header.

We already used non-string types for form parameters in our MVC controllers.

For the parameter type, you can choose among String, int, long, float, double,

BigDecimal, BigInteger, and boolean (true or false). Java MVC makes sure that the

user input is appropriately converted if you choose any type other than string. This

conversion happens in a locale-specific manner. In an English locale, a user input 0.45

has the correct format for a double parameter. In a German locale, for example, the same

number has to be entered as 0,45. Correct conversion happens behind the scenes.

There is currently no reliable way to define custom converters. Also, there are no

converters for times and dates. As a workaround, you can always pass values as Strings

to the controller and then perform conversions programmatically.

In the next chapter, we talk about Java MVC addressing EJBs, which is a standardized

way to communicate with backend components.

Chapter 8 Internationalization

http://java.sun.com/jsp/jstl/fmt

241
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_9

CHAPTER 9

Java MVC and EJBs
Enterprise Java Beans (EJBs) are classes that encapsulate business functionalities,

each of a certain kind. Unlike normal Java classes, however, EJBs run in a container

environment, which means the server adds system-level services to them. These

services include lifecycle management (instantiating and destroying, when and

how), transactionality (building logical, atomic, rollback-enabled units of work), and

security (which users can invoke which methods). Because Java MVC runs inside

such a container, namely Jakarta EE, EJBs are a good way for Java MVC applications to

encapsulate their business functionalities.

The EJB technology includes session beans and message driven beans. However, the

latter go beyond the scope of this book, so here we will talk about session EJBs only.

�About Session EJBs
Session EJBs can be accessed locally (in the same application), remotely (over the

network, via method invocation), or via some web service interface (distributed

applications across heterogeneous networks, HTML, XML, or JSON data formats).

Concerning the creation and destruction of session EJBs, there are three types of

session EJBs:

•	 Singleton: With a singleton session EJB, the container instantiates

only one instance and all clients share this single instance. You can

do this if the EJB does not have a state that discriminates clients, and

concurrent access does not impose problems.

•	 Stateless: EJBs of the “stateless” kind do not maintain a state, so a

particular client can have different instances assigned to subsequent

EJB invocations (the container handles this; the client doesn’t know

about this assignment).

https://doi.org/10.1007/978-1-4842-6280-1_9#DOI

242

•	 Stateful: Stateful EJBs maintain a state and a client can be sure it

will receive the same session EJB instance from the container for

subsequent uses of the same EJB. You will often hear that stateful

EJB clients maintain a conversational state concerning using stateful

EJBs. Stateful session EJBs cannot implement web services, because

web services are not allowed to have state and no session information

is communicated.

�Defining EJBs
To define a singleton EJB, a stateless EJB, or a stateful EJB, you add one of these

annotations—@Singleton, @Stateless, or @Stateful, respectively—to the EJB

implementation.

Consider three examples. An EJB called Configuration for the encapsulated access

to application-wide configuration settings. Another EJB called Invoice, which handles

invoice registration and inquiry given some invoice ID. A third EJB called TicTacToe for

a simple tic-tac-toe game implementation. Obviously, for the configuration EJB we can

use a singleton EJB, since neither local state nor concurrency matter. Similarly, for the

invoice EJB, we can use a stateless EJB, since the state is mediated by the ID, which does

not access an EJB state but rather a database state. The last one, the tic-tac-toe EJB, needs

to maintain the game board for each client and we thus must use a stateful EJB for it.

import javax.ejb.Singleton;

import javax.ejb.Stateless;

import javax.ejb.Stateful;

...

@Singleton

public class Configuration {

 ... configuration access methods

}

@Stateless

public class Invoice {

 ... invoice access methods

}

Chapter 9 Java MVC and EJBs

243

@Stateful

public class TicTacToe {

 ... tic-tac-toe methods

}

Of course, all those classes must go to different files. We put them together for

illustration purposes only.

Concerning their accessibility from client code, session EJBs can use one or a

combination of three methods (all annotations shown are from the javax.ejb package):

•	 No-interface: You use this method if you don’t want to describe

the EJB access via an interface. This is only possible with local

clients running inside the same application. While the separation

into interfaces (describing what gets done in interfaces) and the

implementation (the how, implemented in non-abstract classes) is

generally a good idea for clean code, a no-interface view can make

sense for simple EJBs. For no-interface EJBs, you just declare the

implementation, as follows:

 @Stateless public class Invoice {

 ... implementation

 }

The EJB clients can then of course only access the implementation

class directly, without mediating interfaces.

•	 Local: If you want to define local access to session EJBs (EJBs and EJB

clients running in the same application) and want to use an interface

view for that, you can mark the interface with @Local and let the EJB

implementation class implement the interface:

 @Local public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless public class Invoice

 implements InvoiceInterface {

 ... implementation

 }

Chapter 9 Java MVC and EJBs

244

Or you use the @Local annotation in the implementation class:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceInterface.class)

 public class Invoice implements InvoiceInterface {

 ... implementation

 }

You can even omit the implementation, as follows:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceInterface.class)

 public class Invoice {

 ... implementation

 }

This last method will further reduce the coupling of the interface,

although this is in general not recommended.

•	 @Remote: Use the @Remote annotation for this session EJB to be

accessible from outside the application. You can simply replace

@Local with @Remote and everything that was said for the local

access and concerning the interfaces is true unaltered for remote

access. So you write the following, for example:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Remote(InvoiceInterface.class)

 public Invoice

Chapter 9 Java MVC and EJBs

245

 implements InvoiceInterface {

 ... implementation

 }

EJBs can have a local and a remote interface; just use both

annotations together:

 public interface InvoiceLocal {

 ... abstract interface methods

 }

 public interface InvoiceRemote {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceLocal.class)

 @Remote(InvoiceRemote.class)

 public Invoice

 implements InvoiceLocal,

 InvoiceRemote {

 ... implementation

 }

Also, nobody hinders us from using the same interface for both

local and remote access:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceInterface.class)

 @Remote(InvoiceInterface.class)

 public Invoice implements InvoiceInterface {

 ... implementation

 }

Chapter 9 Java MVC and EJBs

246

Caution R emote access means parameters in method calls are passed by
value, not by reference! So, although local and remote interfaces are declared co-
natural to each other, you must be careful with method parameters under certain
circumstances.

�Accessing EJBs
Accessing local EJBs from a Java MVC controller is easy: you just use the @EJB injection to

let CDI assign an instance access to an EJB:

public class SomeController {

 ...

 @EJB

 private SomeEjbInterface theEjb;

 // or, for no-interface EJBs

 @EJB

 private SomeEjbClass theEjb;

 ...

}

Addressing remote EJBs is considerably more complicated compared

to local-access EJBs. You have to set up a JNDI context and then use it to do a lookup of a

remote instance:

...

String remoteServerHost = "localhost";

// or "192.168.1.111" or something

String remoteServerPort = "3700";

// Port 3700 is part of the GlassFish conf

Properties props = new Properties();

props.setProperty("java.naming.factory.initial",

 "com.sun.enterprise.naming."+

 "SerialInitContextFactory");

props.setProperty("java.naming.factory.url.pkgs",

Chapter 9 Java MVC and EJBs

247

 "com.sun.enterprise.naming");

props.setProperty("java.naming.factory.state",

 "com.sun.corba.ee.impl.presentation.rmi."+

 "JNDIStateFactoryImpl");

props.setProperty("org.omg.CORBA.ORBInitialHost",

 remoteServerHost);

props.setProperty("org.omg.CORBA.ORBInitialPort",

 remoteServerPort);

try {

 InitialContext ic = new InitialContext(props);

 // Use this to see what EJBs are available

 // and how to name them

 //NamingEnumeration<NameClassPair> list =

 // ic.list("");

 //while (list.hasMore()) {

 // System.out.println(list.next().getName());

//}

// Looking up a remote EJB

 SomeEjbRemote testEJB = (SomeEjbRemote)

 ic.lookup(

 "book.jakarta8.testEjbServer.SomeEjbRemote");

 // Invoking some EJB method

 System.out.println(testEJB.tellMe());

}catch(Exception e) {

 e.printStackTrace(System.err);

}

This example assumes that, on the remote server side, you created a session EJB with

a remote interface:

package book.jakarta8.testEjbServer;

public interface SomeEjbRemote {

 String tellMe();

}

Chapter 9 Java MVC and EJBs

248

And an implementation like this one:

package book.jakarta8.testEjbServer;

import javax.ejb.Remote;

import javax.ejb.Stateless;

@Stateless

@Remote(SomeEjbRemote.class)

public class SomeEjb implements SomeEjbRemote {

 @Override

 public String tellMe() {

 return "Hello World";

 }

}

Obviously, for this to work, the Java MVC application must have access to the

compiled remote interfaces. That means in the EJB server build, you must have

somehow included a step to extract the interfaces from the generated classes. We’ll talk

about that in detail later.

If the remote EJB server is a GlassFish server, you can also use its asadmin command

to see which EJBs are eligible for remote access and how they are named:

cd [GLASSFISH_INST]

cd bin

./asadmin list-jndi-entries

Other Java Enterprise Edition (JEE or Jakarta EE) application servers probably

apply other naming schemes for remotely accessible EJBs. So you must consult their

documentation and/or get the remotely visible JNDI entry listing. For the latter, you

can try programmatic access (commented out in the previous listing), or use some

administration features implemented for the remote EJB server.

�EJB Projects
Jakarta EE projects don’t have to be web projects; they can also just expose services to

clients accessing their remote EJB interfaces. Web interfaces, like REST or web service

interfaces, are your first choice for interoperability with web browsers and non-Jakarta

Chapter 9 Java MVC and EJBs

249

EE servers. But for faster communication among Jakarta EE participants in a larger

system with different network nodes, using Component-to-EJB communication might be

a better choice.

Web projects can also expose remote EJBs to appropriate clients. If you want to have

a streamlined project without web capabilities, the procedure to do that inside Eclipse is

described in the following paragraphs.

Start a new Gradle project similar to the web projects we created so far, but change

the plugin declaration to the following:

plugins {

 id 'java-library'

}

From there on, create the EJBs and their remote interfaces as described, with the

following additional constraint: move the EJB interfaces to their own package. For

example:

book.javamvc.ejbproj.ejb <- Implementation

book.javamvc.ejbproj.ejb.interfaces <- Interfaces

Inside the build file, we add a task that automates the EJB stub generation:

task extractStubs (type: Jar, dependsOn:classes) {

 archiveClassifier = 'ejb-stubs'

 from "$buildDir/classes/java/main"

 include "**/interfaces/*.class"

}

jar.finalizedBy(extractStubs)

This ensures that, after each jar task execution, the stubs are created. You can then

run the jar task to create the full EJB jar and the stubs. You’ll find both in the build/libs

folder. You may have to press F5 on that folder to update the view. Any client wishing to

communicate with the EJBs must include the interface JAR as a dependency. Of course,

the EJB project itself must be deployed on the server for the EJBs to work.

Chapter 9 Java MVC and EJBs

250

�EJBs with Dependencies
Until now, we developed only very simple EJBs without the need to use libraries

included as JARs. Once you need to add libraries to an EJB, you’ll run into trouble. The

reason for this is that there is no standard way to add dependencies to isolated EJB

modules. If you need to add library JARs, the best way is to pack the EJB module into an

Enterprise Archive (EAR).

EARs are archives that bundle EJBs, web applications (WARs), and library JARs.

Dealing with EARs instead of isolated EJBs somewhat increases the complexity of the

administration activities. But adding library JARs to EARs is the best way of including

dependencies with non-web applications.

In order to add EAR functionality to an application inside Eclipse, you basically have

to do the following:

	 1.	 Build a new Gradle project. Go to New ➤ Other... ➤ Gradle ➤

Gradle Project.

	 2.	 Choose any name you like. It’s a good idea to add “ear” to the end

of the name.

	 3.	 Inside build.gradle, change the plugins { } section to plugins

{ id 'ear' }.

	 4.	 Inside build.gradle, use as the dependencies { } section:

 dependencies {

 deploy project(path: ':war',

 configuration: 'archives')

 deploy project(path: ':ejb1',

 configuration: 'archives')

 earlib "org.apache.commons:"+

 "commons-math3:3.6.1"

 }

	 5.	 Create the war and ejb1 folders in the project root.

Chapter 9 Java MVC and EJBs

251

	 6.	 Open the settings.gradle file and add the following:

 include 'war', 'ejb1'

	 7.	 Invoke Gradle ➤ Refresh Gradle Project. Eclipse might throw an

error message; you can ignore it for now.

	 8.	 The two subprojects war and ejb1 show up in the Project Explorer.

You may have to update the working set if you are using one.

	 9.	 Convert both subprojects to a Faceted form (choose Configure

➤ Convert to Faceted Form...), and in the settings, add Java 1.8

capabilities.

We now have an EAR project with two subprojects. What is left to do is to add Gradle

capabilities to each of the subprojects. The WAR project needs a build file like one of the

many build.gradle files we used for Java MVC projects. What is different, though, is that

we add a dependency to the sibling EJB project:

dependencies {

 implementation project(":ejb1")

 // Other dependencies...

}

Note T his is for the Gradle dependencies. In order for Eclipse to recognize the
dependency, you have to add the EJB project as a dependency in the Java Build
Path (choose Project Settings ➤ Java Build Path ➤ Projects tab).

For the EJB project, you probably use a build.gradle file like the following:

plugins {

 id 'java-library'

}

java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

Chapter 9 Java MVC and EJBs

252

repositories {

 jcenter()

}

dependencies {

 implementation 'javax:javaee-api:8.0'

 // Add dependencies here...

}

If you run the ear task, the subprojects and the EAR file will be built. The latter can

be found in the build/libs folder.

�Asynchronous EJB Invocation
EJB clients call EJB methods asynchronously. This means the client invokes an EJB

method that was marked eligible for asynchronous invocation, immediately regains

control of the program execution, and handles the result from the EJB invocation later,

when it is available.

To mark an EJB method for asynchronous invocation, you add the @Asynchronous

annotation from the javax.ejb package to the method:

import java.util.concurrent.Future;

import javax.ejb.AsyncResult;

import javax.ejb.Asynchronous;

import javax.ejb.Singleton;

@Singleton // Example only, all EJB types work!

public class SomeEjb {

 @Asynchronous

 public Future<String> tellMeLater() {

 // Simulate some long running calculation

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 }

Chapter 9 Java MVC and EJBs

253

 return new AsyncResult<String>(

 "Hi from tellMeLater()");

 }

}

This example EJB uses the no-interface method, but asynchronous invocation works

for local and remote interfaces as well. AsyncResult is a convenience class that allows

for the easy creation of a Future. This Future object will not be exposed to the client;

its main purpose is to obey the method signature. The Future returned to the client will

instead be transparently created by the EJB container.

On the EJB client side, you invoke the EJB as usual, and handle the Future you

received from the EJB invocation as used from the JRE concurrency API:

...

@EJB

private SomeEjb someEjb;

...

Future<String> f = someEjb.tellMeLater();

try {

 // Example only: block until the result

 // is available:

 String s = f.get();

 System.err.println(s);

} catch (Exception e) {

 e.printStackTrace(System.err);

}

�Timer EJBs
EJBs can be equipped with timer facilities, such as for delayed execution of some task or

recurring automatic method invocations. You have two options: automatic timers and

programmatic timers.

For automatic timers, you add a @Schedule or @Schedules annotation (from the

javax.ejb package) to any void method (the visibility doesn’t matter) either without

a parameter, or with a javax.ejb.Timer parameter. The parameters of the @Schedule

annotation describe the frequency, as follows:

Chapter 9 Java MVC and EJBs

254

@Stateless

public class SomeEjb {

 @Schedule(minute="*", hour="0", persistent=false)

 // every minute during the hour between 00:00 and 01:00

 public void timeout1() {

 System.err.println("Timeout-1 from " + getClass());

 }

}

A delayed execution like “Do something once ten seconds after the server has

started” is not possible with automatic timers.

The following is a listing of some example schedules you can use inside automatic timers:

@Schedule(second="10", minute="0", hour="0")

 // <- at 00:00:10 every day

@Schedule(minute="30", hour="0",

 dayOfWeek="Tue")

 // <- at 00:30:00 on Tuesdays (second defaults to 00)

@Schedule(minute="11", hour="15",

 dayOfWeek="Mon,Tue,Fri")

 // <- at 15:11:00 on mondays, Tuesdays and Fridays

@Schedule(minute="*/10", hour="*")

 // <- every 10 minutes, every hour

@Schedule(minute="25/10", hour="1")

 // <- 01:25, 01:35, 01:45 and 01:55

@Schedule(hour="*", dayOfMonth="1,2,3")

 // <- every hour at 1st, 2nd and 3rd each month

 // (minute defaults to 00)

@Schedule(hour="*/10")

 // <- every 10 hours

Chapter 9 Java MVC and EJBs

255

@Schedule(month="Feb,Aug")

 // <- 00:00:00 each February and August

 // (hour defaults to 00)

@Schedule(dayOfMonth="1", year="2020")

 // <- 00:00:00 each 1st each month during 2020

@Schedule(dayOfMonth="1-10")

 // <- 00:00:00 each 1st to 10th each month

The @Schedules annotation can be used to apply several @Schedule specifications to

a timer callback:

@Schedules({

 @Schedule(hour="*"),

 @Schedule(hour="0", minute="30")

})

private void someMethod(Timer tm) {

 ...

}

This means every x:00:00 (x = 00 through 23), but also at 00:30:00. Unless you also

give a persistent=false to the @Schedule annotation, a timer survives an application

and a server restart.

Timers can also be defined programmatically. Here it is also possible to define a one-

time shot, such as this:

@Singleton

@Startup

public class Timer1 {

 @Resource

 private SessionContext context;

 @PostConstruct

 public void go() {

 context.getTimerService().

 createSingleActionTimer(5000, new TimerConfig());

 }

Chapter 9 Java MVC and EJBs

256

 @Timeout

 public void timeout(Timer timer) {

 System.err.println("Hello from " + getClass());

 }

}

The method annotated with @Timeout is called every time the timer fires. For

this example, this will be 5000 milliseconds after EJB creation, because of the

createSingleActionTimer() invocation. The timer service you get with context.

getTimerService() enables various scheduling options; see the API documentation for

details.

�Exercises
Exercise 1

Which of the following is/are true?

•	 EJBs must have a local and a remote interface.

•	 Not providing interfaces means EJBs are automatically assigned

to local and remote interfaces by the EJB container (the part of the

Jakarta EE server that handles EJBs).

•	 A remote EJB means the EJB can be accessed from other applications

on the same server. Access from other Jakarta EE servers is not

possible.

•	 EJBs cannot have a state.

•	 If a client accesses an EJB, a new instance of the EJB is created on the

server side.

•	 To access any EJB from a client, you must use do a lookup in a JNDI

context.

•	 In order to use an EJB from a client, the EJB’s interfaces and its

implementation must be imported into the client project.

Chapter 9 Java MVC and EJBs

257

Exercise 2
Create four projects:

•	 A JSE project (no Jakarta EE capabilities) with a single MyDateTime

class and a method called date(String format), which returns

the LocalDateTime as a string, according to the format string

specified as a parameter. Make it a Gradle project.

•	 An EJB project with a single EJB MyDateTimeEjb and local and remote

interfaces. Have it use the JAR file generated from the JRE project

above. Hint: You can use something like implementation files(

'../../- SimpleNoJEE/build/libs/SimpleNoJEE.jar') to specify

a local dependency.

•	 An EAR project that contains the EJB project and adds the necessary

JAR dependency.

•	 A simple no-Jakarta-EE EJB client project that tests the remote

interface from the MyDateTimeEjb EJB. Hint: Include gf-client.jar

from GlassFish’s lib folder as a library dependency.

�Summary
Enterprise Java Beans (EJBs) are classes that encapsulate business functionalities,

each of a certain kind. Unlike normal Java classes, however, EJBs run in a container

environment, which means the server adds system-level services to them. These include

lifecycle management (instantiating and destroying, when and how), transactionality

(building logical, atomic, rollback-enabled units of work), and security (which users

can invoke which methods). Because Java MVC runs inside such a container, namely

Jakarta EE, EJBs are a good way for Java MVC applications to encapsulate their business

functionalities.

The EJB technology includes session beans and message driven beans. Session

EJBs can be accessed locally (in the same application), remotely (over the network, via

method invocation), or via some web service interface (distributed applications across

heterogeneous networks, HTML, XML or JSON data formats).

Concerning the creation and destruction of session EJBs, there are three types of

session EJBs. Singleton EJBs, stateless EJBs, and stateful EJBS. To define any of them, you

Chapter 9 Java MVC and EJBs

258

add the appropriate annotation—@Singleton, @Stateless, or @Stateful—to the EJB

implementation.

Concerning their accessibility from client code, session EJBs can use one or a

combination of three methods: no-interface access, local access, or remote access.

Accessing local EJBs from a Java MVC controller is easy: you just use the @EJB

injection to let CDI assign instance access to an EJB: @EJB private SomeEjbInterface

theEjb.

Addressing remote EJBs is considerably more complicated compared to l

ocal-access EJBs. You have to set up a JNDI context and then use it to do a lookup of a

remote instance.

For this to work, the Java MVC application must have access to the compiled remote

interfaces. That means, in the EJB server build, you must have somehow included a step

to extract the interfaces from the generated classes.

Jakarta EE projects don’t have to be web projects; they can also just expose services

to clients accessing their remote EJB interfaces. Web interfaces, like REST or web service

interfaces, are your first choice for interoperability with web browsers and non-Jakarta

EE servers. For faster communication among Jakarta EE participants in a larger system

with different network nodes, using Component-to-EJB communication might be a

better choice. Web projects also can expose remote EJBs to appropriate clients.

Once you need to add libraries to an EJB, the best way is to pack the EJB module

into an Enterprise Archive (EAR). EARs are archives that bundle EJBs, web applications

(WARs), and library JARs. Dealing with EARs instead of isolated EJBs somewhat

increases the complexity of the administration activities. But once you’re finished, if you

run the ear task, the subprojects and the EAR file will be built. The latter can be found in

the build/libs folder.

EJB clients call EJB methods asynchronously. This means the client invokes an EJB

method that was marked eligible for asynchronous invocation, immediately regains

control of the program execution, and handles the result from the EJB invocation later,

when it is available.

To mark an EJB method for asynchronous invocation, you add the @Asynchronous

annotation from the javax.ejb package to the method.

EJBs can be equipped with timer facilities, such as for delayed execution of some

task or reoccurring automatic method invocations. You have two options: automatic

timers and programmatic timers.

Chapter 9 Java MVC and EJBs

259

With automatic timers, you add a @Schedule or @Schedules annotation (from the

javax.ejb package) to any void method (the visibility doesn’t matter), either without

a parameter or with a javax.ejb.Timer parameter. The parameters of the @Schedule

annotation describe the frequency.

Timers can also be defined programmatically. It is also possible to define a one-time

invocation.

In the next chapter, we learn how to connect Java MVC to databases.

Chapter 9 Java MVC and EJBs

261
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_10

CHAPTER 10

Connecting Java MVC
to a Database
Databases are needed if you want to persist data for a longer period of time, or if data

must consistently be accessible from different sessions (different users). This chapter

refers to SQL (Structured Query Language) databases. For an introduction, see for

example the article at https://en.wikipedia.org/wiki/Database.

JPA (Java Persistence API) is the dedicated technology used to access relational

databases from inside Jakarta EE. Its aim is to provide a bridge between SQL tables and

Java objects. This task is much more complex than in other basic data schemes. The

reason for this is that, in relational database schemes, we have associations between

different tables: One row in one table may refer to one or many rows in another table or

the other way round, and there could be references spanning three or more tables. And

think of column-type conversions—a database may have different ideas about numbers,

boolean indicators, and dates and times compared to Java. In addition, null values in

database tables require increased attention if they’re used in table references and while

converting to Java values.

In this chapter, we talk about basic issues when using JPA inside Java MVC. For a

complete and deep overview of JPA, covering more complex issues than we do in this

chapter, consult the online JPA documentation and specification on the web. A good

starting URL is https://docs.oracle.com/javaee/6/tutorial/doc/bnbpy.html.

�Abstracting Away Database Access with JPA
One of the primary purposes of JPA is to abstract away database access and map

database objects to Java classes. In the end, we want to be able to query the database

and get Java objects, or to put Java objects in the database. JPA hides the details of how

https://doi.org/10.1007/978-1-4842-6280-1_10#DOI
https://en.wikipedia.org/wiki/Database
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpy.html

262

this can be done, including connection properties like usernames and passwords, and

including handling connection lifecycles.

The central JPA class for this purpose is EntityManager, which uses a single

configuration file called persistence.xml, together with some settings inside the Jakarta

EE application server. On the Java side, the classes that correspond to table rows are

called entity classes. See Figure 10-1 for an overview of JPA.

�Setting Up a SQL Database
SQL databases come in two flavors—you can have fully fledged client-server databases

and embedded databases (possibly using some in-memory storage). In this book, we use

the Apache Derby database included in the GlassFish server distribution. This database

runs independent from GlassFish, but the GlassFish administrative tools also provide

some commands for handling the Apache Derby instance. As a client, we use JPA from

inside the Java MVC application.

Figure 10-1.  JPA inside Jakarta EE at work

Chapter 10 Connecting Java MVC to a Database

263

Note I n the GlassFish documentation, you’ll frequently see the name “JavaDB”
as the product name for the database. JavaDB actually was the name of Derby
while it was included in the JDK versions 6 through 8. Now it’s kind of obsolete, so
we don’t use the name “JavaDB” in this book.

Switching to a different database product is a non-intrusive operation, so you can

start learning JPA with Apache Derby and only later switch to some other database

management system.

Note  From an architectural point of view, database access is best included in an
EJB or EAR module. For simplicity, we include JPA directly in a Java MVC project,
but the procedures to do that in an EJB or EAR module are very similar.

If you start a GlassFish server, the Apache Derby database does not automatically

start as well. Instead, you must run it inside the console:

cd [GLASSFISH_INST]

bin/asadmin start-database

where [GLASSFISH_INST] is your GlassFish server’s installation directory.

Caution A lthough they are both administered by asadmin, the GlassFish Jakarta
EE server and the Apache Derby database management system are independent of
each other. If you stop either of them, the other one continues running.

To stop a running Apache Derby, enter this inside the console:

cd [GLASSFISH_INST]

bin/asadmin stop-database

Chapter 10 Connecting Java MVC to a Database

264

�Creating a Datasource
In order for JPA to work, we need to add an object relational mapping (ORM) library

to the project. There are several options here, but we choose EclipseLink as an ORM

library, since EclipseLink is the reference implementation of JPA 2.2 (this is the version of

JPA used in Jakarta EE 8 and Java MVC 1.0).

ORMs do not directly connect to databases but instead connect to datasources that

abstract away the database access. This indirection allows for establishing connection

pools, caches, transactionality, and administration of data handling using server-side

administrative tools.

In order to create a suitable datasource for GlassFish, enter the following in the same

terminal you used to start the database:

cd [GLASSFISH_INST]

cd javadb/bin

start the DB client

./ij

(Or use ij for Windows.) We are now inside the ij database client, which you

can see since the ij> prompt appears in the terminal. Enter the following to create a

database named hello (enter this in one line without spaces in front of the create=):

ij> connect 'jdbc:derby://localhost:1527/hello;

 create=true;user=user0';

The database is now created with an owner named user0. We also add a password

for the user:

ij> call SYSCS_UTIL.SYSCS_CREATE_USER('user0','pw715');

Note A pache Derby by default does not enable authentication for new databases.
This normally does not cause problems if you’re using the database only for
development, because network access is restricted to local users only. Many Java
applications and database tools, however, behave strangely if you try to access the
database without authentication, so we add a password.

Chapter 10 Connecting Java MVC to a Database

265

Next, restart the database for the authentication to start working:

cd [GLASSFISH_INST]

cd bin

./asadmin stop-database

./asadmin start-database

This needs to be done only once. Quit and reopen the connection inside the ij tool

(or quit ij altogether by pressing Ctrl+D; then restart ij and connect again):

ij> disconnect;

ij> connect 'jdbc:derby://localhost:1527/hello;

 user=user0;password=pw715';

(Enter the last ij command in one line.) You can check the authentication

mechanism: if you omit the username or password, or both, you’ll get an appropriate

error message.

For transparent and simple connection to the database, we create two resources in

the GlassFish server configuration:

cd [GLASSFISH_INST]

cd bin

./asadmin create-jdbc-connection-pool \

 --datasourceclassname \

 org.apache.derby.jdbc.ClientXADataSource \

 --restype javax.sql.XADataSource \

 --property \

 portNumber=1527:password=pw715:user=user0:

 serverName=localhost:databaseName=hello:

 securityMechanism=3 \

 HelloPool

./asadmin create-jdbc-resource \

 --connectionpoolid HelloPool jdbc/Hello

(No line break and no spaces after user=user0: or databaseName = hello:.) This

creates a connection pool and a JDBC resource connecting to it. We will later be using

the jdbc/Hello identifier to allow JPA to connect to the database.

Chapter 10 Connecting Java MVC to a Database

266

You can see both configuration items if you enter the administration console in

your web browser at http://localhost:4848. Navigate to Resources ➤ JDBC ➤ JDBC

Resources and Resources ➤ JDBC ➤ JDBC Connection Pools. See Figure 10-2.

In the rest of this chapter, we assume you know how to enter database commands.

Either use the ij tool (don’t forget to connect after you start it), or use any other

database client, such as the open source tool called Squirrel.

�Preparing the Member Registration Application
In this chapter, we develop a basic member administration application for Java

MVC. The members are stored in a database table called MEMBER. The SQL commands to

create the table and a sequence generator for the unique ID generation are as follows:

CREATE TABLE MEMBER (

 ID INT NOT NULL,

 NAME VARCHAR(128) NOT NULL,

 PRIMARY KEY (ID));

INSERT INTO MEMBER (ID, NAME)

Figure 10-2.  JDBC resources

Chapter 10 Connecting Java MVC to a Database

267

 VALUES (-3, 'John'),

 (-2, 'Linda'),

 (-1, 'Pat');

CREATE SEQUENCE MEMBER_SEQ start with 1 increment by 50;

We also added a couple of example entries.

Note A pache Derby knows how to auto-generate unique IDs. We however let
EclipseLink take care of that. For this reason, the ID field is left as a simple integer
value field without any additional semantics. EclipseLink needs the sequence to
take care of generating such unique IDs (at least if it’s used the way we are going
to use it).

The project structure for the new database project is as follows:

Project HelloJpa

 src/main/java

 book.javamvc.jpa

 data

 User.java

 db

 Member.java

 MemberDAO.java

 i18n

 BundleForEL.java

 SetBundleFilter.java

 model

 UserEntering.java

 UserList.java

 AjaxController.java

 App.java

 HelloJpaController.java

 RootRedirector.java

 src/main/resources

 book.javamvc.jpa.messages

Chapter 10 Connecting Java MVC to a Database

268

 Messages.properties

 META-INF

 persistence.xml

 src/main/webapp

 js

 jquery-3.5.1.min.js

 WEB-INF

 views

 index.jsp

 beans.xml

 glassfish-web.xml

 build.gradle

 gradle.properties

 settings.gradle

We don’t want to mix Java MVC model classes and database model classes, so in the

User.java class, we abstract away any user data:

package book.javamvc.jpa.data;

public class User {

 private int id;

 private String name;

 public User() {

 }

 public User(int id, String name) {

 this.id = id;

 this.name = name;

 }

 // Getters and setters...

}

Chapter 10 Connecting Java MVC to a Database

269

The BundleForEL and SetBundleFilter classes are exactly the same as in the

HelloWorld application, but with the addition to factor out configuration values (made

in one of the exercises). For clarity, I repeat the code here:

package book.javamvc.jpa.i18n;

import java.util.Enumeration;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

public class BundleForEL extends ResourceBundle {

 private BundleForEL(Locale locale, String baseName) {

 setLocale(locale, baseName);

 }

 public static void setFor(HttpServletRequest request,

 String i18nAttributeName, String i18nBaseName) {

 if (request.getSession().

 getAttribute(i18nAttributeName) == null) {

 request.getSession().setAttribute(

 i18nAttributeName,

 new BundleForEL(request.getLocale(),

 i18nBaseName));

 }

 }

 public void setLocale(Locale locale,

 String baseName) {

 if (parent == null ||

 !parent.getLocale().equals(locale)) {

 setParent(getBundle(baseName, locale));

 }

 }

 @Override

 public Enumeration<String> getKeys() {

 return parent.getKeys();

 }

Chapter 10 Connecting Java MVC to a Database

270

 @Override

 protected Object handleGetObject(String key) {

 return parent.getObject(key);

 }

}

and

package book.javamvc.jpa.i18n;

import java.io.IOException;

import java.util.Map;

import javax.inject.Inject;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletRequest;

import javax.ws.rs.core.Application;

@WebFilter("/*")

public class SetBundleFilter implements Filter {

 @Inject private Application appl;

 private String i18nAttributeName;

 private String i18nBaseName;

 @Override

 public void init(FilterConfig filterConfig)

 throws ServletException {

 Map<String,Object> applProps = appl.getProperties();

 i18nAttributeName = (String) applProps.get(

 "I18N_TEXT_ATTRIBUTE_NAME");

 i18nBaseName = (String) applProps.get(

 "I18N_TEXT_BASE_NAME");

 }

Chapter 10 Connecting Java MVC to a Database

271

 @Override

 public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws IOException, ServletException {

 BundleForEL.setFor((HttpServletRequest) request,

 i18nAttributeName, i18nBaseName);

 chain.doFilter(request, response);

 }

 @Override

 public void destroy() {

 }

}

We place the two Java MVC model classes for the new member entry and the

member list into the book.javamvc.jpa.model package. The code reads as follows:

package book.javamvc.jpa.model;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import book.javamvc.jpa.data.User;

@Named

@RequestScoped

public class UserEntering extends User {

}

and

package book.javamvc.jpa.model;

import java.util.ArrayList;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import book.javamvc.jpa.data.User;

@Named

@RequestScoped

Chapter 10 Connecting Java MVC to a Database

272

public class UserList extends ArrayList<User>{

 private static final long serialVersionUID =

 8570272213112459191L;

}

The App and RootRedirector classes are the same as in the HelloWorld application,

but with the refactoring done in one of the exercises:

package book.javamvc.jpa;

import java.util.HashMap;

import java.util.Map;

import javax.annotation.PostConstruct; import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {

 @PostConstruct

 public void init() {

 }

 @Override

 public Map<String, Object> getProperties() {

 Map<String, Object> res = new HashMap<>();

 res.put("I18N_TEXT_ATTRIBUTE_NAME",

 "msg");

 res.put("I18N_TEXT_BASE_NAME",

 "book.javamvc.jpa.messages.Messages");

 return res;

 }

}

and

package book.javamvc.jpa;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpFilter;

Chapter 10 Connecting Java MVC to a Database

273

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

/**

 * Redirecting http://localhost:8080/HelloJpa/

 * This way we don't need a <welcome-file-list> in web.xml

 */

@WebFilter(urlPatterns = "/")

public class RootRedirector extends HttpFilter {

 private static final long serialVersionUID =

 7332909156163673868L;

 @Override

 protected void doFilter(final HttpServletRequest req,

 final HttpServletResponse res,

 final FilterChain chain) throws IOException {

 res.sendRedirect("mvc/hello");

 }

}

build.gradle takes the following code:

plugins {

 id 'war'

}

java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

 implementation 'javax:javaee-api:8.0'

Chapter 10 Connecting Java MVC to a Database

274

 implementation 'javax.mvc:javax.mvc-api:1.0.0'

 implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

 implementation 'jstl:jstl:1.2'

 implementation 'org.eclipse.persistence:'+

 'eclipselink:2.7.7'

}

task localDeploy(dependsOn: war,

 description:">>> Local deploy task") {

 // Take the code from the HelloWorld example

}

task localUndeploy(

 description:">>> Local undeploy task") {

 // Take the code from the HelloWorld example

}

The settings.gradle file is prepared by the project generator wizard, and the

gradle.properties file can directly be taken from Chapter 4.

All other files are described in the subsequent sections.

�Adding EclipseLink as ORM
To add the EclipseLink ORM to the project, add the following to the dependencies { }

section of the build.gradle file:

dependencies {

 ...

 implementation 'org.eclipse.persistence:'+

 'eclipselink:2.7.7'

}

Next, create a src/main/resources/META-INF/persistence.xml file with the

following contents:

<persistence

 xmlns=

 "http://java.sun.com/xml/ns/persistence"

Chapter 10 Connecting Java MVC to a Database

275

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"

 version="1.0">

<persistence-unit name="default"

 transaction-type="JTA">

 <jta-data-source>jdbc/Hello</jta-data-source>

 <exclude-unlisted-classes>

 false

 </exclude-unlisted-classes>

 <properties />

</persistence-unit>

</persistence>

This is the central configuration file for JPA. Here, we indicate how to connect to the

database. Note that we refer to the datasource resources we configured previously.

Note T he Eclipse IDE has a few helper wizards for JPA-related development, and
it also has a JPA facet you can add to projects. I decided against using these in this
introductory level chapter, to avoid a vendor lock-in and to show the basics needed
while following the JPA specification. You are free to try the JPA facet of Eclipse.

�Controllers
The controller for the member registration application closely resembles the HelloWorld

controller from previous chapters—we again have a landing page that this time lists

all the members, and an input form for new members. Adding a member leads to a

database INSERT operation, and in contrast to HelloWorld, we don’t show a response

page but reload the index page with the updated member list. The code reads as follows:

package book.javamvc.jpa;

import java.util.ArrayList;

import java.util.List;

Chapter 10 Connecting Java MVC to a Database

276

import java.util.stream.Collectors;

import javax.ejb.EJB;

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import javax.inject.Named;

import javax.mvc.Controller;

import javax.mvc.binding.BindingResult;

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.ParamError;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

import book.javamvc.jpa.data.User;

import book.javamvc.jpa.db.MemberDAO;

import book.javamvc.jpa.model.UserEntering;

import book.javamvc.jpa.model.UserList;

@Path("/hello")

@Controller

public class HelloJpaController {

 @Named

 @RequestScoped

 public static class ErrorMessages {

 private List<String> msgs = new ArrayList<>();

 public List<String> getMsgs() {

 return msgs;

 }

 public void setMsgs(List<String> msgs) {

 this.msgs = msgs;

 }

 public void addMessage(String msg) {

Chapter 10 Connecting Java MVC to a Database

277

 msgs.add(msg);

 }

 }

 @Inject private ErrorMessages errorMessages;

 @Inject private BindingResult br;

 @Inject private UserEntering userEntering;

 @Inject private UserList userList;

 @EJB private MemberDAO memberDao;

 @GET

 public String showIndex() {

 addUserList();

 return "index.jsp";

 }

 @POST

 @Path("/add")

 public Response addMember(

 @MvcBinding @FormParam("name") String name) {

 if(br.isFailed()) {

 br.getAllErrors().stream().

 forEach((ParamError pe) -> {

 errorMessages.addMessage(pe.getParamName() +

 ": " + pe.getMessage());

 });

 }

 userEntering.setName(name);

 memberDao.addMember(userEntering.getName());

 addUserList();

 return Response.ok("index.jsp").build();

 }

Chapter 10 Connecting Java MVC to a Database

278

 //

 //

 private void addUserList() {

 userList.addAll(

 memberDao.allMembers().stream().map(member -> {

 return new User(member.getId(),

 member.getName());

 }).collect(Collectors.toList())

);

 }

}

An important distinction in the HelloWorld example application is the inclusion

of the MemberDAO data access object for database operations it gets referred to from the

member addition and listing methods. We’ll talk about the DAO in the next sections.

A member deletion is handled by an AJAX request. In contrast to what we did in

previous chapters, we don’t let the Java MVC controller deal with AJAX requests. Instead,

we add an additional JAX-RS controller, as follows:

just for AJAX:

package book.javamvc.jpa;

import javax.ejb.EJB;

import javax.ws.rs.DELETE;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.core.Response;

import book.javamvc.jpa.db.MemberDAO;

@Path("/ajax")

public class AjaxController {

 @EJB private MemberDAO memberDao;

 @DELETE

 @Path("/delete/{id}")

 public Response delete(@PathParam("id") int id) {

Chapter 10 Connecting Java MVC to a Database

279

 memberDao.deleteMember(id);

 return Response.ok("{}").build();

 }

}

�Adding Data Access Objects
A data access object, or DAO, is a Java class that encapsulates database operations like

CRUD (create, read, update, and delete). A client of the DAO then doesn’t have to know

how the DAO works and only needs to take care of the business functionality.

Inside the controllers, a DAO class called MemberDAO is injected via the @EJB

annotation. This class goes to the book.javamvc.jpa.db package. Create the package

and the class, and then write the following class code:

package book.javamvc.jpa.db;

import java.util.List;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.TypedQuery;

@Stateless

public class MemberDAO {

 @PersistenceContext

 private EntityManager em;

 public int addMember(String name) {

 List<?> l = em.createQuery(

 "SELECT m FROM Member m WHERE m.name=:name").

 setParameter("name", name).

 getResultList();

 int id = 0;

 if(l.isEmpty()) {

 Member member = new Member();

 member.setName(name);

Chapter 10 Connecting Java MVC to a Database

280

 em.persist(member);

 em.flush(); // needed to get the ID

 id = member.getId();

 } else {

 id = ((Member)l.get(0)).getId();

 }

 return id;

 }

 public List<Member> allMembers() {

 TypedQuery<Member> q = em.createQuery(

 "SELECT m FROM Member m", Member.class);

 List<Member> l = q.getResultList();

 return l;

 }

 public void deleteMember(int id) {

 Member member = em.find(Member.class, id);

 em.remove(member);

 }

}

We provide methods to add members (avoiding duplicates), to list all members,

and to delete members. Update and search methods are left for future improvements.

You can see that database operations are exclusively handled by an EntityManager,

which is injected by the @PersistenceContext annotation. By the configuration file

persistence.xml, JPA knows which database the entity manager needs to access. For

most operations currently needed, we can use the methods from the EntityManager

class. The only exception is the complete list for which we use the JPA query language

expression SELECT m FROM Member m.

The application knows that this DAO is an EJB by the @Stateless class annotation.

Because of this, the container (the part of the server that handles EJB objects) knows that

instances of this class don’t have a state.

Chapter 10 Connecting Java MVC to a Database

281

�Updating the View
For the basic member registration application, as a view, we only need the index.jsp file:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <script type="text/javascript"

 src="${mvc.basePath}/../js/jquery-3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

 <script type="text/javascript">

 function deleteItm(id) {

 var url =

 "${pageContext.servletContext.contextPath}" +

 "/mvc/ajax/delete/" + id;

 jQuery.ajax({

 url : url,

 method: "DELETE",

 dataType: 'json',

 success: function(data, textStatus, jqXHR) {

 jQuery('#itm-'+id).remove();

 },

 error: function (jqXHR, textStatus,

 errorThrown) {

 console.log(errorThrown);

 }

 });

 return false;

 }

Chapter 10 Connecting Java MVC to a Database

282

 </script>

</head>

<body>

 <form method="post"

 action="${mvc.uriBuilder(

 'HelloJpaController#greeting').build()}">

 ${msg.enter_name}

 <input type="text" name="name" />

 <input type="submit" value="${msg.btn_submit}" />

 </form>

 <table>

 <thead>

 <tr>

 <th>${msg.tblhdr_id}</th>

 <th>${msg.tblhdr_name}</th>

 <th></th>

 </tr>

 <thead>

 <tbody>

 <c:forEach items="${userList}" var="itm">

 <tr id="itm-${itm.id}">

 <td>${itm.id}</td>

 <td>${itm.name}</td>

 <td><button onclick="deleteItm(${itm.id})">

 ${msg.btn_delete}</button></td>

 </tr>

 </c:forEach>

 </tbody>

 </table>

</body>

</html>

This page shows the form for entering a new member and the full member list.

Because of the itm-[ID] we add to each table row, the AJAX code to remove an item can

remove a table row without having to reload the full page.

Chapter 10 Connecting Java MVC to a Database

283

The view refers to the jQuery library. Download it and copy it to src/main/webapp/

js. Adapt versions accordingly.

A language resource goes to src/main/resources/book/javamvc/jpa/messages/

Messages.properties:

title = Hello Jpa

enter_name = Enter your name:

btn_delete = Delete

btn_submit = Submit

tblhdr_id = ID

tblhdr_name = Name

You can copy the beans.xml and glassfish-web.xml files from Chapter 4.

�Adding Entities
An entity is a representation of a table row as an object. If we think of the MEMBER table,

an entity is something that has a name and a single ID. Obviously, this corresponds to

a Java class with the name and id fields. So we create such a class and put it in the book.

javamvc.jpa.db package:

public class Member {

 private int id; // + getter/setter

 private String name; // + getter/setter

}

To complete the database-interfacing process, we need to add meta-information

though. The information that this is an entity class, the table name, column names, a

dedicated ID column name, a unique ID generator specification, and database field

value constraints. As is usually the case with Java, we use annotations for such meta-

information. Our class, with all those amendments, reads as follows:

package book.javamvc.jpa.db;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

Chapter 10 Connecting Java MVC to a Database

284

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.SequenceGenerator;

import javax.persistence.Table;

import javax.validation.constraints.NotNull;

@Entity

@Table(name="MEMBER")

@SequenceGenerator(name="HELLO_SEQ",

 initialValue=1, allocationSize = 50)

public class Member {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY,

 generator = "HELLO_SEQ")

 @Column(name = "id")

 private int id;

 @NotNull

 @Column(name = "name")

 private String name;

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

Chapter 10 Connecting Java MVC to a Database

285

In detail, the annotations we added are:

•	 @Entity: Marks this as an entity so JPA knows this is an entity class.

•	 @Table: Used to specify the table name. If omitted, the class name

(without package) will be used as a table name.

•	 @SequenceGenerator: Used to specify a sequence generator for

unique IDs.

•	 @Id: Indicates that the corresponding field refers to the unique ID of

the entity.

•	 @GeneratedValue: Indicates that new entities will auto-generate

values for this field.

•	 @Column: Used to specify the column name corresponding to this

field. If unspecified, the field name will be used as the column name.

•	 @NotNull: A constraint indicating that neither the field nor the

database field can be null.

Given the entity classes, JPA now knows how to map database entry fields to Java

classes. With the Java MVC controller adapted and the DAO and entity classes added,

the application has a fully functional JPA support engaged and you can deploy and try

it at http://localhost:8080/HelloJpa. Also try restarting the server and verify that

the entries were persisted and survive a server restart. You can also directly check the

database using a database client tool and investigate the table rows that were added

there.

�Adding Relations
Relational data is about relationships like one table entry referring to entries from other

tables. JPA provides a solution to such relationships, again by special annotations you

can add to entity classes.

Consider the following example: In our membership application, we add another

table called STATUS that contains membership status entries, such as Gold, Platinum,

Senior, or whatever you might think of. Each member may have 0 to N status entries, so

we talk about a “one-to-many” relationship between members and status entries.

To achieve this, we first create the STATUS table and a STATUS_SEQ sequence for it:

Chapter 10 Connecting Java MVC to a Database

286

CREATE TABLE STATUS (

 ID INT NOT NULL,

 MEMBER_ID INT NOT NULL,

 NAME VARCHAR(128) NOT NULL,

 PRIMARY KEY (ID));

CREATE SEQUENCE STATUS_SEQ start with 1 increment by 50;

Next, we create a new entity class called Status inside the book.javamvc.jpa.db

package with the following contents:

package book.jakarta8.calypsojpa.jpa;

import javax.persistence.*;

import javax.validation.constraints.*;

@Entity

@Table(name="STATUS")

@SequenceGenerator(name="STATUS_SEQ",

 initialValue=1, allocationSize = 50)

public class Status implements Comparable<Status> {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY,

 generator="STATUS_SEQ")

 @Column(name = "ID")

 private int id;

 @NotNull

 @Column(name = "MEMBER_ID")

 private int memberId;

 @NotNull

 @Column(name = "NAME")

 private String name;

 public Status() {

 }

 public Status(String name) {

Chapter 10 Connecting Java MVC to a Database

287

 this.name = name;

 }

 @Override

 public int compareTo(Status o) {

 return -o.name.compareTo(name);

 }

 // + getters and setters

}

We added a constructor for easy construction using the name. It is important to

know that the JPA specification requires that there be a public no-argument constructor.

Inside the entity class Member, we add a field that corresponds to the actual

relationship between member and status:

...

@JoinColumn(name = "MEMBER_ID")

@OneToMany(cascade = CascadeType.ALL, orphanRemoval= true)

private Set<Status> status; // + getter / setters

...

Everything else is untouched. The @JoinColumn field refers to a member in the

associated class or table, so we don’t have to update the member table for this new field.

Because the two entity classes’ relationship is announced via @OneToMany, any

entity manager operations will automatically take care of correctly cascading database

operations to related entities. For example, to create a new member, you can write the

following:

...

Member m = new Member();

m.setName(...);

Set<Status> status = new HashSet<>();

status.add(new Status("Platinum"));

status.add(new Status("Priority"));

m.setStatus(status);

em.persist(m);

...

Chapter 10 Connecting Java MVC to a Database

288

So you don’t have to explicitly tell the entity manager to persist the related Status

entities.

In the frontend code, you can add a text field with a comma-separated list of status

values, or a select listbox or menu to reflect the relationship. The same holds for

UPDATE and DELETE operations. Because of the cascade = CascadeType.ALL inside the

@OneToMany annotation, JPA will even delete related Status entries from the STATUS table

if members are deleted.

There are other association types in a relational data model. The possible association

types you can declare for entities in JPA are as follows:

–– @OneToMany

For entities of entity class A, zero to many related entries of entity

class B exist. Inside class A, you define a field of type Set with the

OneToMany annotation. Inside entity B’s table, you then have a foreign

key called ID_A (or whatever name you like), and inside the entity

class B is a field called aId (or whatever name you like) pointing to A

IDs. To tell A how it is related to B, you then add another annotation

called @JoinColumn, as in:

 @OneToMany

 @JoinColumn(name="ID_A") // In table B!

 private Set b;

Or you add an attribute to @OneToMany, as in:

 @OneToMany(mappedBy = "aId") // Field in class B!

 private Set b;

–– @ManyToOne

For zero or many entities of entity class A, one related entry of

entity class B exists. Inside class A, you add a field of type B with

the @ManyToOne and @JoinColumn annotations, where for the latter,

you provide a column name (inside A’s table) for the join:

 @ManyToOne

 @JoinColumn(name="ID_B") // In table A

 private B b;

Chapter 10 Connecting Java MVC to a Database

289

–– @OneToOne

For one entity of entity class A, one related entry of entity class B

exists. Inside class A, you add a field of type B with the @OneToOne

and @JoinColumn annotations, where for the latter, you provide a

column name (inside A’s table) for the join:

 @OneToOne

 @JoinColumn(name="ID_B") // In table A

 private B b;

–– @ManyToMany

For zero or many entities of entity class A, zero or many related

entries of entity class B exist. Here, we need a third table serving as an

intermediate join table; for example MTM_A_B, with columns ID_A and

ID_B. The annotations in entity class A (with ID column "ID") then

read as follows:

 @ManyToMany

 @JoinTable(

 name = "MTM_A_B",

 joinColumns = @JoinColumn(

 name = "ID_A",

 referencedColumnName="ID"),

 inverseJoinColumns = @JoinColumn(

 name = "ID_B",

 referencedColumnName="ID"))

 private Set b;

�Exercises
Exercise 1: Which of the following are true?

	 1.	 JPA connects to a database via some datasource, which is a server-

managed resource.

	 2.	 JPA connects to a database via some datasource, which JPA itself

provides.

Chapter 10 Connecting Java MVC to a Database

290

	 3.	 JPA connects to a database via JDBC.

	 4.	 JPA connects to a database via EJB.

Exercise 2: Which component of JPA (or concept, if you like)

translates between database tables and Java objects (three letter

acronym)?

Exercise 3: Which of the following is true:

	 1.	 DAOs are needed to connect to databases via JPA.

	 2.	 DAOs are needed to provide the database username and

password.

	 3.	 In DAOs, database column names have to be specified.

	 4.	 DAOs are used to avoid using database table details in JPA client

classes.

	 5.	 To use DAOs, they must be injected as EJBs.

Exercise 4: Which of the following are true?

	 1.	 One entity class corresponds to one database table.

	 2.	 An entity class must have the same name as the database table.

	 3.	 Properties (fields) of entity classes must have the same names as

the columns in the database table.

	 4.	 Properties of entity classes can have restrictions.

Exercise 5: Add the STATUS table to the database and update the

member entry application’s code to reflect the status of members.

For simplicity, use a text field whereby you can enter a comma-

separated list of status values.

Exercise 6: Name the four annotations used inside JPA for

relationships between tables.

Chapter 10 Connecting Java MVC to a Database

291

�Summary
JPA (Java Persistence API) is the dedicated technology used to accessing relational

databases from inside Jakarta EE. Its aim is to provide a bridge between SQL tables and

Java objects.

One of the primary purposes of JPA is to abstract away database access and map

database objects to Java classes. In the end, we want to be able to query the database

and get Java objects, or to put Java objects in the database. JPA helps to hide the details of

how this can be done, including connection properties like usernames and passwords,

and including handling connection lifecycles.

The central JPA class for this purpose is the EntityManager class, which uses a single

configuration file called persistence.xml, together with some settings inside the Jakarta

EE application server. On the Java side, the classes that correspond to table rows are

called entity classes.

In order for JPA to work, we need to add an object relational mapping (ORM) library

to the project. There are several options here, but we choose EclipseLink as an ORM

library, since EclipseLink is the reference implementation of JPA 2.2 (this is the version of

JPA used in Jakarta EE 8 and Java MVC 1.0).

ORMs do not directly connect to databases, but instead connect to datasources that

abstract away the database access. This indirection allows for establishing connection

pools, caches, transactionality, and administration of data handling using server-side

administrative tools. Datasources are installed in a server product specific manner.

A data access object, or DAO, is a Java class that encapsulates database operations

like CRUD (create, read, update, and delete). A client of the DAO then doesn’t have to

know how the DAO works and only needs to take care of the business functionality.

An entity is a representation of a table row as an object. To complete the database-

interfacing process, we need to add meta-information. The information that this is an

entity class, the table name, column names, a dedicated ID column name, a unique ID

generator specification, and database field value constraints. As is usually the case with

Java, we use annotations for such meta-information.

Given the entity classes, JPA now knows how to map database entry fields to Java

classes. With the Java MVC controller adapted and the DAO and entity classes added, the

application has fully functional JPA support engaged.

Relational data is about relationships, such as one table entry referring to entries

from other tables. JPA provides a solution to such relations, again by special annotations

you can add to entity classes.

Chapter 10 Connecting Java MVC to a Database

292

The possible association types you can declare for entities in JPA are as follows:

–– @OneToMany

For entities of entity class A, zero to many related entries of

entity class B exist. Inside class A, you define a field of type Set

with the OneToMany annotation. Inside entity B’s table, you then

have a foreign key called ID_A (or whatever name you like), and

inside the entity class B is a aId field (or whatever name you like)

pointing to A IDs. To tell A how it is related to B, you then add

another annotation called @JoinColumn, as in:

 @OneToMany

 @JoinColumn(name="ID_A") // In table B!

 private Set b;

Or you add an attribute to @OneToMany, as in:

 @OneToMany(mappedBy = "aId") // Field in class B!

 private Set b;

–– @ManyToOne

For zero or many entities of entity class A, one related entry of

entity class B exists. Inside class A, you add a field of type B with

the @ManyToOne and @JoinColumn annotations, where for the latter

you provide a column name (inside A’s table) for the join:

 @ManyToOne

 @JoinColumn(name="ID_B") // In table A

 private B b;

–– @OneToOne

For one entity of entity class A, one related entry of entity class B

exists. Inside class A, you add a field of type B with the @OneToOne

and @JoinColumn annotations, where for the latter, you provide a

column name (inside A’s table) for the join:

 @OneToOne

 @JoinColumn(name="ID_B") // In table A

 private B b;

Chapter 10 Connecting Java MVC to a Database

293

–– @ManyToMany

For zero or many entities of entity class A, zero or many related

entries of entity class B exist. Here, we need a third table serving

as an intermediate join table; for example, MTM_A_B, with columns

ID_A and ID_B. The annotations in entity class A (with ID column

"ID") then read as follows:

 @ManyToMany

 @JoinTable(

 name = "MTM_A_B",

 joinColumns = @JoinColumn(

 name = "ID_A",

 referencedColumnName="ID"),

 inverseJoinColumns = @JoinColumn(

 name = "ID_B",

 referencedColumnName="ID"))

 private Set b;

In the next chapter, we talk about logging in Java MVC.

Chapter 10 Connecting Java MVC to a Database

295
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_11

CHAPTER 11

Logging Java MVC
Applications
Logging is a vital part of any application of mid- to high-level complexity. While the

program runs through its execution paths, several logging statements describe what

the program is doing, which parameters are passed to method calls, what values local

variables and class fields have and how they change, which decisions are made, and so

on. This logging information is collected and sent to a file, a database, a message queue,

or whatever, and the developer and the operations team can investigate program flows

for bug-fixing or auditing purposes.

This chapter is about the various options you have to add logging to your programs

or to investigate existing server logging.

�System Streams
The Java Standard Environment (JSE) on which Jakarta EE builds its server technologies

provides the well-known standard output and error output streams you address as

follows:

System.out.println("Some information: ...");

System.err.println("Some error: ...");

While at first sight, it seems easy to generate diagnostic information using these

streams, it is not recommended that you use this procedure. The primary reason is that

method is highly operating system and server product dependent. We will introduce

superior methods shortly, but in case you are temporarily tempted to use the system

streams for diagnostic output, it is important to know that most Jakarta EE servers fetch

the streams and redirect them to some file.

https://doi.org/10.1007/978-1-4842-6280-1_11#DOI

296

Note  Up until now, we used the output and error output streams for diagnostic
output. We did that for simplicity. In any serious project, you should not do that, and
the subsequent sections show you how to avoid it.

The Jakarta EE 8 GlassFish server version 5.1 adds the output and error output

stream to the server.log file you will find at

GLASSFISH_INST/glassfish/domains/domain1/logs

In this usually verbose listing, you will recognize the System.out and System.err

output as lines containing an [SEVERE] (for System.err) and [INFO] (for System.out):

...

[2019-05-20T14:42:03.791+0200] [glassfish 5.1] [SEVERE]

 [] [] [tid: _ThreadID=28 _ThreadName=Thread-9]

 [timeMillis: 1558356123791] [levelValue: 1000] [[

 The System.err message]]

...

[2019-05-20T14:42:03.796+0200] [glassfish 5.1] [INFO]

 [NCLS-CORE-00022] [javax.enterprise.system.core]

 [tid: _ThreadID=28

 _ThreadName=RunLevelControllerThread-1558356114688]

 [timeMillis: 1558356123796] [levelValue: 800] [[

 The System.out message]]

...

We will later learn how to change the verbosity level and the format of these logging

lines.

�JDK Logging in GlassFish
The logging API specification JSR 47 is part of Java and can be used by any Java program,

including Jakarta EE server applications and of course Java MVC programs. You can

download the specification from https://jcp.org/en/jsr/detail?id=47.

Chapter 11 Logging Java MVC Applications

https://jcp.org/en/jsr/detail?id=47

297

�GlassFish Log Files
GlassFish uses this platform standard API JSR 47 for logging. Unless you change the

configuration, you can find the logging file at

GLASSFISH_INST/glassfish/domains/domain1/logs/server.log

In the same folder, you will also find archived logs called server.log_TS, were TS is a

timestamp, such as 2019-05-08T15-45-58.

The standard logging format is defined as a combination of various information

snippets, of course including the actual logging message:

[Timestamp] [Product-ID]

 [Message-Type] [Message-ID] [Logger-Name] [Thread-ID]

 [Raw-Timestamp] [Log-Level]

 [[Message]]

For example:

[2019-05-20T14:42:03.796+0200] [glassfish 5.1] [INFO]

 [NCLS-CORE-00022] [javax.enterprise.system.core]

 [tid: _ThreadID=28

 _ThreadName=RunLevelControllerThread-1558356114688]

 [timeMillis: 1558356123796]

 [levelValue: 800]

 [[Loading application xmlProcessing done in 742 ms]]

�Adding Logging Output to the Console
If you want to have the logging output also appear in the terminal where your start the

GlassFish server, use the following:

cd GLASSFISH_INST

bin/asadmin start-domain --verbose

This will show the complete logging output. It will also not place the server process

in the background, as a asadmin start-domain without –verbose does, so the server will

be stopped when you close the terminal. You will not be able to enter more commands

Chapter 11 Logging Java MVC Applications

298

into the terminal after the server started (for new commands you can of course enter a

second terminal). To stop this foreground server process, press Ctrl+C.

�Using the Standard Logging API for Your Own Projects
To add diagnostic output to your own classes using the JSR 47 methodology, you write

something like the following in your classes:

...

import java.util.logging.Logger;

public class MyClass {

 private final static Logger LOG =

 Logger.getLogger(MyClass.class.toString());

 public void someMethod() {

 LOG.entering(this.getClass().toString(),"someMethod");

 ...

 // different logging levels:

 LOG.finest("Finest: ...");

 LOG.finer("Finer: ...");

 LOG.fine("Fine: ...");

 LOG.info("Some info: ...");

 LOG.warning("Some warning: ...");

 LOG.severe("Severe: ...");

 ...

 LOG.exiting(this.getClass().toString(),"someMethod");

 }

 ...

}

For LOG.entering(), there is also a variant where you can add method parameters

to the logging statement. Likewise, for LOG.exiting(), a variant allows you to add a

returned value to the logging statement:

 ...

 public String someMethod(String p1, int p2) {

 LOG.entering(this.getClass().toString(),"someMethod",

Chapter 11 Logging Java MVC Applications

299

 new Object[]{ p1, p2 });

 ...

 String res = ...;

 LOG.exiting(this.getClass().toString(),"someMethod",

 res);

 return res;

 }

 ...

}

�Logging Levels
From these examples, you can see there are several levels you can use to indicate the

severity of logging output. For standard logging, the levels are, in order, severe ➤ warning

➤ info ➤ fine ➤ finer ➤ finest. This greatly improves the usability of logging. At an early

stage of a project, you can set the logging threshold to a low value, for example fine, and

you will see all the fine-level logging and all higher levels up to severe in the logging file.

If you lower the threshold (to finest, for example), the logging shows more detail,

but the logging file will be larger of course. This is why you do this for bug-fixing

purposes; having more detail helps you more easily identify problematic code. Later

in the project, when the maturity rises, you apply a higher threshold (such as warning

for example). This way, the logging file does not get too big, but you still see important

issues in the logging.

The special Logger methods called entering() and exiting() belong to the log

level finer. All the other methods we showed here match the equally named level, so a

LOG.severe() belongs to level severe, a LOG.warning() belongs to level warning,

and so on.

�The Logger Hierarchy and Thresholds
If you create a logger like this:

Logger.getLogger("com.example.projxyz.domain.Person");

You can span up a hierarchy com ➤ com.example ➤com.example.projxyz ➤ com.

example.projxyz.domain ➤ com.example.projxyz.domain.Person.

Chapter 11 Logging Java MVC Applications

300

This plays a role if you assign logging thresholds. This assignment happens in the

configuration, via asadmin, or in the web administration console. We will see shortly

how to do that. It is important to know that the threshold setting follows the logger

hierarchy. If you assign a level LEV1 (severe, warning, info, and so on) to com, this means

the complete subtree at com gets the LEV1 threshold., unless you also specify levels for

elements deeper in the hierarchy. So if you also assign a LEV2 level to com.example, LEV2

takes precedence over LEV1 for com.example and all elements deeper in that hierarchy.

More precisely, the rules are shown in Table 11-1.

Table 11-1.  Logging Hierarchy Rules

Hierarchy Level Logger Description

com FINE com.ClassA FINE applies, because com.ClassA is inside the com

hierarchy.

com FINE org.ClassA FINE does not apply, because org.ClassA is not

inside the com hierarchy.

com.ClassA FINER com.ClassA FINER applies, because com.ClassA is inside the

com.ClassA hierarchy. FINE no longer applies,

because the hierarchy specification com.ClassA is

more specific compared to just com.

com.example WARNING com.ClassA WARNING does not apply, because com.ClassA is not

inside the com.example hierarchy.

com.example WARNING com.

example.

ClassA

WARNING applies, because com.example.ClassA is

inside the com.example hierarchy. The level specified

for com no longer applies, because com.example is

more specific compared to com.

com.example WARNING org.

example.

ClassA

WARNING does not apply, because org. is not inside

the com.example hierarchy.

Chapter 11 Logging Java MVC Applications

301

�The Logging Configuration
The logging configuration of a JSR 47 standard logging relies on a configuration file

called logging.properties. Normally, this file resides in the JDK installation directory,

but the GlassFish server overrules the standard logging configuration and uses this file

instead:

GLASSFISH_INST/glassfish/domains/domain1/

 config/logging.properties

Here, the various logging properties are specified. We don’t talk about all of them—

the specification for JSR 47 and the GlassFish server documentation will give you more

ideas. The most important settings are the level thresholds. You will find them under the

#All log level details line:

...

#All log level details

com.sun.enterprise.server.logging.GFFileHandler.level=ALL

javax.enterprise.system.tools.admin.level=INFO

org.apache.jasper.level=INFO

javax.enterprise.system.core.level=INFO

javax.enterprise.system.core.classloading.level=INFO

java.util.logging.ConsoleHandler.level=FINEST

javax.enterprise.system.tools.deployment.level=INFO

javax.enterprise.system.core.transaction.level=INFO

org.apache.catalina.level=INFO

org.apache.coyote.level=INFO

javax.level=INFO

...

Here, we already have an example for the hierarchic level assignment: if you change

the level at javax.enterprise.system.core.level to FINE, any javax. logger will use

the threshold INFO because of the javax.level = INFO line, but a javax.enterprise.

system.core.Main logger will use FINE, because it matches the level we just entered and

is more specific.

A setting of the form .level=INFO later in the logging.properties file ensures that

all loggers not dedicatedly specified in the logging properties will use the INFO threshold.

Chapter 11 Logging Java MVC Applications

302

That is why, in the standard configuration variant of GlassFish, no fine, finer, or finest

messages appear.

Instead of changing the file, you can also use the web administration console

at http://localhost:4848. Navigate to Configurations ➤ Server-Config ➤ Logger

Settings. Changes will be directly written to the logging.properties file.

As a third way to change the logging configuration, the asadmin command-line utility

provides us with various logging related subcommands. The following shows you some

examples:

./asadmin list-log-levels

-> A list of all log levels, like

javax <INFO>

javax.mail <INFO>

javax.org.glassfish.persistence <INFO>

org.apache.catalina <INFO>

org.apache.coyote <INFO>

org.apache.jasper <INFO>

...

./asadmin delete-log-levels javax.mail

-> Deletes a level specification

./asadmin set-log-levels javax.mail=WARNING

-> Setting a specific log level

./asadmin list-log-attributes

-> Shows all log attributes (not the levels)

./asadmin set-log-attributes \

 com.sun.enterprise.server.logging.

 GFFileHandler.rotationLimitInBytes=2000000

(discard the line break after "logging.")

-> Sets an attribute. Attribute names are the same

as in the logging.properties file

./asadmin rotate-log

-> Manually rotates the log file. Takes the current

server.log file, archives it and starts a fresh

empty server.log file.

Chapter 11 Logging Java MVC Applications

303

Logging level changes are dynamic, so you can change logging levels while the server

is running.

�The Logging Format
For the JSR 47 standard logging, the logging format is prescribed by the logging handler.

In order to change the logging format, you have to develop a new logging handler. This is

not particularly hard to achieve, but we leave it to your discretion if you need to change

the format and want to stick to the Java platform logging.

Otherwise, you can easily switch to using a logging library. Most of the candidates

for such a choice allow you to change the logging format by adjusting a configuration

property. We will shortly talk about the Log4j logging framework and also discuss the

logging formatting options that Log4j provides.

�Using JDK Standard Logging for Other Servers
Although most developers prefer to use a logging library like Apache Commons Logging,

Log4j, or Logback, you can use the JSR 47 logging for servers other than GlassFish as

well. Just make sure you provide a customized logging.properties file. Do not change

the logging.properties file in the JDK installation folder, though—changing the

configuration there is highly discouraged.

Instead, provide your own logging.properties file and add the following to the

server startup parameters (on one line, remove the line break and the spaces after =):

-Djava.util.logging.config.file=

 /path/to/logging.properties

Your server documentation will tell you how to do that.

Chapter 11 Logging Java MVC Applications

304

�Adding Log4j Logging to Your Application
Log4j is a logging framework often used for all kinds of Java applications. Its features

include:

•	 Clear separation of API and implementation. In a server

environment, you install the Log4j implementation on the server

itself, while on the clients, you only refer to a small-footprint Log4j

API library.

•	 High performance. Log4j includes lambda support, so message

calculations can be avoided if a corresponding log level will

not be logged. For example, in LOG.info("Error", () ->

expensiveOperation()), the method call will not happen if info-

level messages are disabled for the logger.

•	 Automatic configuration reloading. For Log4j, it is easy to enable

automatic configuration reloading. Any change in the logging

configuration will then be applied immediately without a server

restart.

•	 The logging format and various other logging properties can be set in

the configuration.

•	 The Log4 configuration files can be formatted in XML, Java

properties, JSON, and YAML.

•	 Log4j can easily be extended by plugins.

Log4j can be downloaded from http://logging.apache.org/log4j/2.x/. The still

widely used Log4j version 1.x is deprecated and we will not talk about Log4j in version

1.x in this book.

Log4j needs a couple of additional permissions in order to pass security checks. For

this aim, open this file:

GLASSFISH_INST/glassfish/domains/domain1/

 config/server.policy

Chapter 11 Logging Java MVC Applications

http://logging.apache.org/log4j/2.x/

305

And add the following to the end:

// Added for Log4j2

grant {

 permission

 java.lang.reflect.ReflectPermission

 "suppressAccessChecks";

 permission

 javax.management.MBeanServerPermission "*";

 permission

 javax.management.MBeanPermission "*", "*";

 permission

 java.lang.RuntimePermission "getenv.*";

};

Caution T his requirement is specific to the GlassFish server. For other servers,
different settings might be necessary.

�Adding Log4j Server-Wide
Adding Log4j server-wide means you put the Log4j implementation into a common

libraries folder, write one Log4j configuration file, which serves all Jakarta EE

applications running on that server at once, and let all applications and application

modules use the Log4j API. This setting needs to be configured only once and then all

the current and future applications on a server can easily use Log4 for their logging

purposes. Because it’s simple, this way of including Log4j is probably used most often.

You can instead add Log4j on a per-application basis, but you should do this only if you

have important reasons to encapsulate Log4j with the applications, such as if you are

also running legacy applications that use old Log4j 1.x versions. We describe this method

a little bit later.

Chapter 11 Logging Java MVC Applications

306

To add Log4j server-wide, you first download the Log4j distribution from https://

logging.apache.org/log4j/2.x/. Then copy the log4j-core-2.11.2.jar, log4j-api-

2.11.2.jar, and log4j-appserver-2.11.2 files (or whatever version you downloaded)

to the following folder:

GLASSFISH_INST/glassfish/domains/domain1/

 modules/autostart

Note T he Log4j JAR files are implemented as OSGi bundles. This is why we put
them into the modules folder. If you don’t know OSGi, consider it an advanced
library management framework.

Then add a file called log4j2.json to the GLASSFISH_INST/glassfish/domains/

domain1/lib/classes folder. As basic contents of this file, use:

{

"configuration": {

 "name": "Default",

 "appenders": {

 "RollingFile": {

 "name":"File",

 "fileName":

 "${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

 "filePattern":

 "${sys:com.sun.aas.instanceRoot}/

 logs/log4j-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",

 "PatternLayout": {

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 },

 "Policies": {

 "SizeBasedTriggeringPolicy": {

 "size":"10 MB"

 }

 },

Chapter 11 Logging Java MVC Applications

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

307

 "DefaultRolloverStrategy": {

 "max":"10"

 }

 }

 },

 "loggers": {

 "logger" : [

 {

 "name" : "book.javamvc",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 },{

 "name" : "some.other.logger",

 "level":"info",

 "appender-ref": {

 "ref":"File"

 }

 }

],

 "root": {

 "level":"error",

 "appender-ref": {

 "ref":"File"

 }

 }

 }

}

}

This adds a root logger with the error level and two more loggers, called

book.javamvc and some.other.logger, with threshold levels set to debug and info,

respectively. The logger names inside the “logger” array correspond to logger hierarchy

specifications. They work the same way as described for the standard JDK logging

process (JSR 47). So the book.javamvc logger applies to logging statements

Chapter 11 Logging Java MVC Applications

308

for book.javamvc.SomeClass and book.javamvc.pckg.OtherClass, but not to

book.jakarta99.FooClass. The special “root” logger serves as the default and matches

all loggers for which no explicit logger specification can be found.

This file gives you a starting point. You can add more appenders and loggers. See the

latest Log4j2 documentation on the Internet to learn how to extend the configuration.

Note  Log4j allows configuration files to use different formats. We chose the
JSON format because of its conciseness.

If the server is running, restart it. This needs to be done because of the global

nature of adding Log4j this way. You can now start using Log4j in your applications, as

described in the ”Using Log4j in the Coding” section.

Note A dd -Dlog4j2.debug as a server startup JVM parameter to get more
output about what Log4j is doing. This meta-diagnostic information is printed to
the standard server.log file.

�Changing the Logging Format
In the Log4j configuration file, we already specified a logging pattern:

...

"pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

...

This prints a timestamp, as specified by %d{yyyy-MM-dd HH:mm:ss}, the logging level

as specified by %p (the −5 adds a padding to the output), the last path element of the

logger name as specified by %c{1}, the line number because of the %L, and the message

because of the %m. The %n finally adds a line break at the end.

You can change this at will. The section entitled “Layouts” of online Log4j2 manual

lists all the options. Table 11-2 shows the most important options.

Chapter 11 Logging Java MVC Applications

309

Table 11-2.  Logging Patterns

Pattern Description

m The message.

C The name of the logger.

c[N] Only the last N path parts of the logger name. So with a logger called

org.example.memory.Main, a %c{1} creates Main as output, a

%{2} creates memory.Main, and so on.

c[-N] Remove the first N path parts of the logger name. So with a logger called

org.example.memory.Main, a %c{-1} creates example.memory.

Main, and so on.

c[1.] Replaces all but the last part of the logger name with a dot “.”. So with

a logger called org.example.memory.Main, a %c{1.} creates

o.e.m.Main.

p The log level.

-5p The log level, right-padded with spaces to five characters.

d Outputs a timestamp like 2019-09-23

07:23:45,123.

d[DEFAULT_MICROS] Same as plain %d, but adds the microseconds: 2019-09-23

07:23:45,123456.

d[ISO8601] Output such as 2019-09-23T07:23:45,123.

d[UNIX_MILLIS] Milliseconds since 1970-01-01 00:00:00 UTC.

highlight{p} Adds ANSI colors to the enclosed pattern, p. For example:

highlight{%d %-5p %c{1.}: %m}%n.

L The line number. This is an expensive operation; use it with care.

M The method name. This is an expensive operation; use it with care.

n Line break.

t The name of the thread.

T The ID of the thread.

Log4j2 also creates logging output in CSV format, in GELF format, embedded in a

HTML page, and as JSON, XML, or YAML. See the Log4j2 manual for details.

Chapter 11 Logging Java MVC Applications

310

�Adding Log4j to Jakarta EE Web Applications
If you think you should add Log4j on a per-application basis and leave other applications

running on the server unaffected, you can add the Log4j implementation to your web

application (WAR).

Note R unning Log4j in such an isolated way could be necessary if your server is
also running legacy applications that use the the old Log4j 1.x .

To add the Log4j implementation, we update the dependencies in our Gradle build

file. Open the build.gradle file and add the following to the dependencies { } section:

implementation 'org.apache.logging.log4j:log4j-core

 :2.11.2'

implementation 'com.fasterxml.jackson.core:jackson-core

 :2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-

 databind:2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-

 annotations:2.7.4'

Here, the central part is the dependency on log4j-core; the dependencies on

jackson are needed because we will be using JSON-formatted configuration files and

Log4j needs jackson to parse them.

The Log4j configuration file needs to be called log4j2.json and it must be placed in

the src/main/resources folder for web applications (WARs). As a simple configuration,

set the contents of log4j2.json to the following:

{

"configuration": {

 "name": "Default",

 "appenders": {

 "RollingFile": {

 "name":"File",

 "fileName":

 "${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

 "filePattern":

Chapter 11 Logging Java MVC Applications

311

 "${sys:com.sun.aas.instanceRoot}/

 logs/log4j-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",

 "PatternLayout": {

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 },

 "Policies": {

 "SizeBasedTriggeringPolicy": {

 "size":"10 MB"

 }

 },

 "DefaultRolloverStrategy": {

 "max":"10"

 }

 }

 },

 "loggers": {

 "logger" : [

 {

 "name" : "book.javamvc",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 },{

 "name" : "some.other.logger",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 }

],

 "root": {

 "level":"debug",

 "appender-ref": {

Chapter 11 Logging Java MVC Applications

312

 "ref":"File"

 }

 }

 }

}

}

�Using Log4j in the Coding
To use Log4 in your Java MVC application, make sure each project in question has the

following Gradle dependency:

implementation 'org.apache.logging.log4j:log4j-api:2.11.2'

You then import Logger and LogManager into the classes and use a static logger field,

as follows:

import org.apache.logging.log4j.*;

public class SomeClass {

 private final static Logger LOG =

 LogManager.getLogger(SomeClass.class);

 ...

 public void someMethod() {

 ...

 // different logging levels:

 LOG.trace("Trace: ...");

 LOG.debug("Debug: ...");

 LOG.info("Some info: ...");

 LOG.warn("Some warning: ...");

 LOG.error("Some error: ...");

 LOG.fatal("Some fatal error: ...");

 ...

 // Logging in try-catch clauses

 try {

 ...

 } catch(Exception e) {

 ...

Chapter 11 Logging Java MVC Applications

313

 LOG.error("Some error", e);

 }

 }

}

Inside the log4j2.json configuration file, the level inside each logger then declares

a logging threshold:

"loggers": {

 "logger": [

 {

 "name":"book.javamvc",

 "level":"debug",

 "appender-ref": {

 "ref":"appenderName"

 }

 }

 ...

]

 ...

}

The level can be set to trace, debug, info, warn, error, or fatal.

�Exercises
Exercise 1: Add JSR 47 logging (in the java.util.logging

package) to the @PostConstruct public void init() and

@Override public Map<String, Object> getProperties()

methods of the App class from Chapter 4 (the HelloWorld

application). Tell how to enter each method, and also about the

properties set in getProperties().

Exercise 2: Add server-wide Log4j logging to your GlassFish

server. Choose any of your projects and add Log4j logging to it.

Chapter 11 Logging Java MVC Applications

314

�Summary
Logging is a vital part of any application of mid- to high-level complexity. While the

program runs through its execution paths, several logging statements describe what

the program is doing, which parameters are passed to method calls, what values local

variables and class fields have and how they change, which decisions are made, and so

on. This logging information is collected and sent to a file, a database, a message queue,

or whatever, and the developer and the operations team can investigate program flows

for bug-fixing or auditing purposes.

The logging API specification JSR 47 is part of Java and can be used by any Java

program, including Jakarta EE server applications and Java MVC programs. You can

download the specification from https://jcp.org/en/jsr/detail?id=47.

GlassFish uses this platform standard API JSR 47 for logging. Unless you change the

configuration, you can find the logging file here:

GLASSFISH_INST/glassfish/domains/domain1/logs/server.log

To add diagnostic output to your own classes using the JSR 47 methodology, you

write the following in your classes:

...

import java.util.logging.Logger;

public class MyClass {

 private final static Logger LOG =

 Logger.getLogger(MyClass.class.toString());

 public void someMethod() {

 LOG.entering(this.getClass().toString(),"someMethod");

 ...

 // different logging levels:

 LOG.finest("Finest: ...");

 LOG.finer("Finer: ...");

 LOG.fine("Fine: ...");

 LOG.info("Some info: ...");

 LOG.warning("Some warning: ...");

 LOG.severe("Severe: ...");

 ...

Chapter 11 Logging Java MVC Applications

https://jcp.org/en/jsr/detail?id=47

315

 LOG.exiting(this.getClass().toString(),"someMethod");

 }

 ...

}

For standard logging, the levels are, in order, severe ➤ warning ➤ info ➤ fine ➤ finer

➤ finest. This greatly improves the usability of logging. At an early stage of a project, you

can set the logging threshold to a low value, for example fine, and you will see all the

fine-level logging and higher levels, up to severe, in the logging file.

The logging configuration of a JSR 47 standard logging relies on a configuration file

called logging.properties. Normally, this file resides in the JDK installation directory,

but the GlassFish server overrules the standard logging configuration and uses this file

instead:

GLASSFISH_INST/glassfish/domains/domain1/ config/logging.properties

Log4j is a logging framework often used for all kinds of Java applications. Log4j can

be downloaded from http://logging.apache.org/log4j/2.x/.

Adding Log4j server-wide means you put the Log4j implementation into a

common libraries folder, write one Log4j configuration file, which serves all Jakarta EE

applications running on that server at once, and let all applications and application

modules use the Log4j API. Because this needs to be configured only once and then

all the current and future applications on a server can easily use Log4 for their logging

purposes, this way of including Log4j is probably most common. You can instead add

Log4j on a per-application basis, but you should do this only if you have important

reasons to encapsulate Log4j with the applications, such as if you are also running legacy

applications that use old Log4j 1.x versions.

To add Log4j server-wide, you first download the Log4j distribution from https://

logging.apache.org/log4j/2.x/. Then copy the log4j-core-2.11.2.jar, log4j-api-

2.11.2.jar, and log4j-appserver-2.11.2 files (or whatever version you downloaded)

to this folder:

GLASSFISH_INST/glassfish/domains/domain1/

 modules/autostart

Chapter 11 Logging Java MVC Applications

http://logging.apache.org/log4j/2.x
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

316

Then add the log4j2.json file to the GLASSFISH_INST/glassfish/domains/

domain1/lib/classes folder. The basic contents of this file are as follows:

{

"configuration": {

 "name": "Default",

 "appenders": {

 "RollingFile": {

 "name":"File",

 "fileName":

 "${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

 "filePattern":

 "${sys:com.sun.aas.instanceRoot}/

 logs/log4j-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",

 "PatternLayout": {

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 },

 "Policies": {

 "SizeBasedTriggeringPolicy": {

 "size":"10 MB"

 }

 },

 "DefaultRolloverStrategy": {

 "max":"10"

 }

 }

 },

 "loggers": {

 "logger" : [

 {

 "name" : "book.javamvc",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

Chapter 11 Logging Java MVC Applications

317

 },{

 "name" : "some.other.logger",

 "level":"info",

 "appender-ref": {

 "ref":"File"

 }

 }

],

 "root": {

 "level":"error",

 "appender-ref": {

 "ref":"File"

 }

 }

 }

}

}

If you think you should add Log4j on a per-application basis and leave other

applications running on the server unaffected, you can add the Log4j implementation to

your web application (WAR).

To add the Log4j implementation, you update the dependencies in your Gradle build

file. Open the build.gradle file and add this to the dependencies { } section:

implementation 'org.apache.logging.log4j:log4j-core

 :2.11.2'

implementation 'com.fasterxml.jackson.core:jackson-core

 :2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-

 databind:2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-

 annotations:2.7.4'

Here, the central part is the dependency on log4j-core; the dependencies on

jackson are needed because we will be using JSON-formatted configuration files and

Log4j needs jackson to parse them.

Chapter 11 Logging Java MVC Applications

318

The configuration file for Log4j needs to be called log4j2.json and it must go in the

src/main/resources folder for web applications (WARs). As a simple configuration, set

the contents of log4j2.json to the following:

{

"configuration": {

 "name": "Default",

 "appenders": {

 "RollingFile": {

 "name":"File",

 "fileName":

 "${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

 "filePattern":

 "${sys:com.sun.aas.instanceRoot}/

 logs/log4j-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",

 "PatternLayout": {

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 },

 "Policies": {

 "SizeBasedTriggeringPolicy": {

 "size":"10 MB"

 }

 },

 "DefaultRolloverStrategy": {

 "max":"10"

 }

 }

 },

 "loggers": {

 "logger" : [

 {

 "name" : "book.javamvc",

 "level":"debug",

 "appender-ref": {

Chapter 11 Logging Java MVC Applications

319

 "ref":"File"

 }

 },{

 "name" : "some.other.logger",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 }

],

 "root": {

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 }

 }

 }

}

To use Log4 in your Java MVC application, make sure each project in question also

has the following Gradle dependency:

implementation 'org.apache.logging.log4j:log4j-api:2.11.2'

You then import Logger and LogManager in the classes and use a static logger field,

as follows:

 import org.apache.logging.log4j.*;

 public class SomeClass {

 private final static Logger LOG =

 LogManager.getLogger(SomeClass.class);

 ...

 public void someMethod() {

 ...

Chapter 11 Logging Java MVC Applications

320

 // different logging levels:

 LOG.trace("Trace: ...");

 LOG.debug("Debug: ...");

 LOG.info("Some info: ...");

 LOG.warn("Some warning: ...");

 LOG.error("Some error: ...");

 LOG.fatal("Some fatal error: ...");

 ...

 // Logging in try-catch clauses

 try {

 ...

 } catch(Exception e) {

 ...

 LOG.error("Some error", e);

 }

 }

}

In the next chapter, which concludes the book, we work out a comprehensive

example Java MVC application.

Chapter 11 Logging Java MVC Applications

321
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_12

CHAPTER 12

A Java MVC Example
Application
We finish the book with a comprehensive example application covering many of the

aspects we talked about in previous chapters. The application in question is a book

club administration that we call BooKlubb. We limit the domain to books and members,

which only to some small extent supersedes the various examples we already talked

about, but nevertheless can serve as a blueprint for many applications. You’ll often

encounter this kind of people-things combination.

The BooKlubb application concentrates on Java MVC capabilities; we do not spend

much energy on frontend design and we also do not use AJAX, to keep the distraction at

a minimum. Of course, you can work out the application to any extent you like.

�The BooKlubb Database
We talked about using databases in Chapter 10. We use the same built-in Apache Derby

database for BooKlubb. There are three tables: MEMBER for BooKlubb members, BOOK for

the books, and BOOK_RENTAL for book rental information (assigning books to members).

Before you can use Apache Derby, remember you have to start it via bin/asadmin

start-database from inside the GlassFish installation folder.

Next we connect to the new database via the ij client (use any other suitable DB

client if you like), and add user credentials to it:

cd [GLASSFISH_INST]

cd javadb/bin

start the DB client

./ij

ij> connect 'jdbc:derby://localhost:1527/booklubb;

https://doi.org/10.1007/978-1-4842-6280-1_12#DOI

322

create=true;user=bk';

ij> call SYSCS_UTIL.SYSCS_CREATE_USER('bk','pw715');

Note  Next time you connect, you have to provide the password, as in connect
'...;user=bk;password=pw715';

To create the tables and ID sequences, you enter the following:

CREATE TABLE MEMBER (

 ID INT NOT NULL,

 FIRST_NAME VARCHAR(128) NOT NULL,

 LAST_NAME VARCHAR(128) NOT NULL,

 BIRTHDAY DATE NOT NULL,

 SSN VARCHAR(16) NOT NULL,

 PRIMARY KEY (ID));

CREATE SEQUENCE MEMBER_SEQ start with 1 increment by 1;

CREATE TABLE BOOK (

 ID INT NOT NULL,

 TITLE VARCHAR(128) NOT NULL,

 AUTHOR_FIRST_NAME VARCHAR(128) NOT NULL,

 AUTHOR_LAST_NAME VARCHAR(128) NOT NULL,

 MAKE DATE NOT NULL,

 ISBN VARCHAR(24) NOT NULL,

 PRIMARY KEY (ID));

CREATE SEQUENCE BOOK_SEQ start with 1 increment by 1;

CREATE TABLE RENTAL (

 ID INT NOT NULL,

 MEMBER_ID INT NOT NULL,

 BOOK_ID INT NOT NULL,

 RENTAL_DAY DATE NOT NULL,

 PRIMARY KEY (ID));

CREATE SEQUENCE RENTAL_SEQ start with 1 increment by 1;

Chapter 12 A Java MVC Example Application

323

In the GlassFish server, we need to create resources for the database connection. We

can use the asadmin tool to achieve that:

cd [GLASSFISH_INST]

cd bin

./asadmin create-jdbc-connection-pool \

 --datasourceclassname \

 org.apache.derby.jdbc.ClientXADataSource \

 --restype javax.sql.XADataSource \

 --property \

 portNumber=1527:password=pw715:user=bk:

 serverName=localhost:databaseName=booklubb:

 securityMechanism=3 \

 BooKlubbPool

./asadmin create-jdbc-resource \

--connectionpoolid BooKlubbPool jdbc/BooKlubb

(There should be no line break and no spaces after bk: and booklubb:.). Because of

these resources, JPA knows how to connect to the database. JPA needs a datasource and

the commands create exactly such a datasource.

Caution  Datasource creation is specific to the server. If you use a server other
than GlassFish, you have to consult the manual in order to learn how to crate
datasources.

�The BooKlubb Eclipse Project
Open Eclipse and select any suitable workspace. For example, choose the same

workspace as in the book’s examples.

Create a new Gradle project: choose File ➤ New ➤ Other... ➤ Gradle ➤ Gradle

Project. Enter the name BooKlubb.

If a build path error appears (view Problems), right-click the project and choose

Properties ➤ Java Build Path. Remove the false JRE System Library (marked unbound),

then choose Add Library and select your Java 8 JDK. Click Apply and Close. Also see the

section entitled “More About Gradle” in Chapter 3.

Chapter 12 A Java MVC Example Application

324

Replace the contents of the build.gradle file with the following:

plugins {

 id 'war'

}

java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

repositories {

 jcenter()

}

dependencies {

 testImplementation 'junit:junit:4.12'

 implementation 'javax:javaee-api:8.0'

 implementation 'javax.mvc:javax.mvc-api:1.0.0'

 implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

 implementation 'jstl:jstl:1.2'

}

task localDeploy(dependsOn: war,

 description:">>> Local deploy task") {

 doLast {

 def FS = File.separator

 def glassfish =

 project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def libsDir =

Chapter 12 A Java MVC Example Application

325

 "${project.projectDir}${FS}build${FS}libs"

 def proc = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 deploy --force=true

 ${libsDir}/${project.name}.war""".execute()

 proc.waitForProcessOutput(sout, serr)

 println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

task localUndeploy(

 description:">>> Local undeploy task") {

 doLast {

 def FS = File.separator

 def glassfish =

 project.properties['glassfish.inst.dir']

 def user = project.properties['glassfish.user']

 def passwd = project.properties['glassfish.passwd']

 File temp = File.createTempFile("asadmin-passwd",

 ".tmp")

 temp << "AS_ADMIN_${user}=${passwd}\n"

 def sout = new StringBuilder()

 def serr = new StringBuilder()

 def proc = """${glassfish}${FS}bin${FS}asadmin

 --user ${user} --passwordfile ${temp.absolutePath}

 undeploy ${project.name}""".execute()

 proc.waitForProcessOutput(sout, serr)

 println "out> ${sout}"

 if(serr.toString()) System.err.println(serr)

 temp.delete()

 }

}

Chapter 12 A Java MVC Example Application

326

This is the same build file described in Chapter 4. Choose Gradle ➤ Refresh Gradle

Project to make sure the dependencies are transported to the Java build path.

As a configuration for deployment and “un-deployment,” add a gradle.properties

file to the project, adapting the values according to your needs:

glassfish.inst.dir = /path/to/your/glassfish5.1

glassfish.user = admin

glassfish.passwd =

�The BooKlubb Infrastructure Classes
Similar to the HelloWorld example in Chapter 4, we use the App and RootRedirector

classes to tailor the context path and create the landing page:

package book.javamvc.bk;

import java.util.HashMap;

import java.util.Map;

import java.util.logging.Logger;

import javax.annotation.PostConstruct;

import javax.inject.Inject;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {

 @PostConstruct

 public void init() {

 }

 @Override

 public Map<String, Object> getProperties() {

 Map<String, Object> res = new HashMap<>();

 res.put("I18N_TEXT_ATTRIBUTE_NAME",

 "msg");

 res.put("I18N_TEXT_BASE_NAME",

 "book.javamvc.bk.messages.Messages");

Chapter 12 A Java MVC Example Application

327

 return res;

 }

}

and

package book.javamvc.bk;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

/**

 * Redirecting http://localhost:8080/BooKlubb/

 * This way we don't need a <welcome-file-list> in web.xml

 */

@WebFilter(urlPatterns = "/")

public class RootRedirector extends HttpFilter {

 private static final long serialVersionUID =

 7332909156163673868L;

 @Override

 protected void doFilter(final HttpServletRequest req,

 final HttpServletResponse res,

 final FilterChain chain) throws IOException {

 res.sendRedirect("mvc/bk");

 }

}

Chapter 12 A Java MVC Example Application

328

�Configuring BooKlubb Database Access
The application uses JPA to access the database. As described in Chapter 10, we need a

persistence.xml file in src/main/resources/META-INF, as follows:

<persistence

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 persistence_1_0.xsd"

 version="1.0">

<persistence-unit name="default" transaction-type="JTA">

 <jta-data-source>jdbc/BooKlubb</jta-data-source>

 <exclude-unlisted-classes>

 false

 </exclude-unlisted-classes>

 <properties />

</persistence-unit>

</persistence>

This file’s main responsibility is to describe which database to use for the

application.

�The BooKlubb Internationalization
As Chapter 8 described, we use two classes, called BundleForEL and SetBundleFilter,

for internationalization purposes:

package book.javamvc.bk.i18n;

import java.util.Enumeration;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

public class BundleForEL extends ResourceBundle {

 private BundleForEL(Locale locale, String baseName) {

Chapter 12 A Java MVC Example Application

329

 setLocale(locale, baseName);

 }

 public static void setFor(HttpServletRequest request,

 String i18nAttributeName, String i18nBaseName) {

 if (request.getSession().

 getAttribute(i18nAttributeName) == null) {

 request.getSession().setAttribute(

 i18nAttributeName,

 new BundleForEL(request.getLocale(),

 i18nBaseName));

 }

 }

 public void setLocale(Locale locale,

 String baseName) {

 if (parent == null ||

 !parent.getLocale().equals(locale)) {

 setParent(getBundle(baseName, locale));

 }

 }

 @Override

 public Enumeration<String> getKeys() {

 return parent.getKeys();

 }

 @Override

 protected Object handleGetObject(String key) {

 return parent.getObject(key);

 }

}

and

package book.javamvc.bk.i18n;

import java.io.IOException;

import java.util.Map;

Chapter 12 A Java MVC Example Application

330

import javax.inject.Inject;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletRequest;

import javax.ws.rs.core.Application;

@WebFilter("/*")

public class SetBundleFilter implements Filter {

 @Inject private Application appl;

 private String i18nAttributeName;

 private String i18nBaseName;

 @Override

 public void init(FilterConfig filterConfig)

 throws ServletException {

 Map<String,Object> applProps = appl.getProperties();

 i18nAttributeName = (String) applProps.get(

 "I18N_TEXT_ATTRIBUTE_NAME");

 i18nBaseName = (String) applProps.get(

 "I18N_TEXT_BASE_NAME");

 }

 @Override

 public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws IOException, ServletException {

 BundleForEL.setFor((HttpServletRequest) request,

 i18nAttributeName, i18nBaseName);

 chain.doFilter(request, response);

 }

Chapter 12 A Java MVC Example Application

331

 @Override

 public void destroy() {

 }

}

In src/main/resources/book/javamvc/bk/messages/Messages.properties, we put

a resources file with these contents:

title = BooKlubb

menu_search_member = Search Member

menu_new_member = New Member

menu_search_book = Search Book

menu_new_book = New Book

current_member = Current Member:

enter_memberFirstName = First Name:

enter_memberLastName = Last Name:

enter_memberBirthday = Birthday:

enter_memberSsn = SSN:

enter_authorFirstName = Author First Name:

enter_authorLastName = Author First Name:

enter_bookTitle = Title:

enter_bookMake = Make:

enter_isbn = ISBN:

hd_searchResult = Search Result

hd_searchMember = Search Member

hd_newMember = New Member

hd_searchBook = Search Book

hd_newBook = New Book

hd_memberDetails = Member Details

hd_booksAssigned = Books Assigned

tblhdr_id = ID

tblhdr_last_name = Last Name

tblhdr_first_name = First Name

Chapter 12 A Java MVC Example Application

332

tblhdr_birthday = Birthday

tblhdr_ssn = SSN

tblhdr_author_last_name = Last Name

tblhdr_author_first_name = First Name

tblhdr_book_title = Title

tblhdr_book_make = Make

tblhdr_isbn = ISBN

btn_search = Search

btn_new = New

btn_delete = Delete

btn_select = Select

btn_details = \u2190

btn_assign = Assign

btn_unassign = Unassign

no_result = ---- No result ----

new_member_added = New Member Added

new_book_added = New Book Added

member_deleted = Member Deleted

book_deleted = Book Deleted

memb_id = ID:

memb_firstName = First Name:

memb_lastName = Last Name:

memb_birthday = Birthday:

memb_ssn = SSN:

These key-value pairs are used exclusively by the view pages only.

Chapter 12 A Java MVC Example Application

333

�The BooKlubb Entity Classes
With the database table definitions at hand, we can immediately write the JPA entity

classes. This is possible without having defined any functionalities, since entity classes

don’t contain any programming logic. For BooKlubb, they read as follows:

package book.javamvc.bk.db;

import java.util.Date;

import java.util.Set;

import javax.persistence.CascadeType;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.OneToMany;

import javax.persistence.SequenceGenerator;

import javax.persistence.Table;

import javax.validation.constraints.NotNull;

@Entity

@Table(name = "MEMBER")

@SequenceGenerator(name = "MEMBER_SEQ", initialValue = 1,

 allocationSize = 1)

public class Member {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY,

 generator = "MEMBER_SEQ")

 @Column(name = "id")

 private int id;

 @NotNull

 @Column(name = "first_name")

 private String firstName;

 @NotNull

Chapter 12 A Java MVC Example Application

334

 @Column(name = "last_name")

 private String lastName;

 @NotNull

 @Column(name = "birthday")

 private Date birthday;

 @NotNull

 @Column(name = "ssn")

 private String ssn;

 @JoinColumn(name = "MEMBER_ID")

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval=true)

 private Set<Rental> rental;

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

Chapter 12 A Java MVC Example Application

335

 public Date getBirthday() {

 return birthday;

 }

 public void setBirthday(Date birthday) {

 this.birthday = birthday;

 }

 public String getSsn() {

 return ssn;

 }

 public void setSsn(String ssn) {

 this.ssn = ssn;

 }

 public Set<Rental> getRental() {

 return rental;

 }

 public void setRental(Set<Rental> rental) {

 this.rental = rental;

 }

}

and

package book.javamvc.bk.db;

import java.util.Date;

import javax.persistence.CascadeType;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.OneToOne;

import javax.persistence.SequenceGenerator;

import javax.persistence.Table;

Chapter 12 A Java MVC Example Application

336

import javax.validation.constraints.NotNull;

@Entity

@Table(name = "BOOK")

@SequenceGenerator(name = "BOOK_SEQ", initialValue = 1,

 allocationSize = 1)

public class Book {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY,

 generator = "BOOK_SEQ")

 @Column(name = "id")

 private int id;

 @NotNull

 @Column(name = "title")

 private String title;

 @NotNull

 @Column(name = "author_first_name")

 private String authorFirstName;

 @NotNull

 @Column(name = "author_last_name")

 private String authorLastName;

 @NotNull

 @Column(name = "make")

 private Date make;

 @NotNull

 @Column(name = "isbn")

 private String isbn;

 @OneToOne(cascade = CascadeType.ALL, orphanRemoval=true,

 mappedBy = "book")

 private Rental rental;

 public int getId() {

 return id;

 }

Chapter 12 A Java MVC Example Application

337

 public void setId(int id) {

 this.id = id;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 public String getAuthorFirstName() {

 return authorFirstName;

 }

 public void setAuthorFirstName(String authorFirstName) {

 this.authorFirstName = authorFirstName;

 }

 public String getAuthorLastName() {

 return authorLastName;

 }

 public void setAuthorLastName(String authorLastName) {

 this.authorLastName = authorLastName;

 }

 public Date getMake() {

 return make;

 }

 public void setMake(Date make) {

 this.make = make;

 }

 public String getIsbn() {

 return isbn;

 }

Chapter 12 A Java MVC Example Application

338

 public void setIsbn(String isbn) {

 this.isbn = isbn;

 }

 public Rental getRental() {

 return rental;

 }

 public void setRental(Rental rental) {

 this.rental = rental;

 }

}

and

package book.javamvc.bk.db;

import java.util.Date;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.OneToOne;

import javax.persistence.SequenceGenerator;

import javax.persistence.Table;

import javax.validation.constraints.NotNull;

@Entity

@Table(name = "RENTAL")

@SequenceGenerator(name = "RENTAL_SEQ", initialValue = 1,

 allocationSize = 1)

public class Rental {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY,

 generator = "RENTAL_SEQ")

 @Column(name = "id")

Chapter 12 A Java MVC Example Application

339

 private int id;

 @NotNull

 @Column(name = "member_id")

 private int memberId;

 @NotNull

 @JoinColumn(name = "book_id")

 @OneToOne

 private Book book;

 @NotNull

 @Column(name = "rental_day")

 private Date rentalDay;

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public int getMemberId() {

 return memberId;

 }

 public void setMemberId(int memberId) {

 this.memberId = memberId;

 }

 public Book getBook() {

 return book;

 }

 public void setBook(Book book) {

 this.book = book;

 }

 public Date getRentalDay() {

Chapter 12 A Java MVC Example Application

340

 return rentalDay;

 }

 public void setRentalDay(Date rentalDay) {

 this.rentalDay = rentalDay;

 }

}

These classes reflect the database table fields and the relationships via the @OneToOne

and @OneToMany annotations. The idea behind the latter is that a member may have zero,

one, or more books rented (@OneToMany), and a book may or may not be rented

(@OneToOne, with “not rented” reflected as a null value).

�BooKlubb Database Access via DAOs
The DAOs encapsulate handling database access and deal with the entity classes. The

DAOs provide methods to create, update, and delete entities, and to search inside the

database. We put them in the book.javamvc.bk.db package.

package book.javamvc.bk.db;

import java.util.Date;

import java.util.List;

import java.util.Optional;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.TypedQuery;

@Stateless

public class MemberDAO {

 @PersistenceContext

 private EntityManager em;

 public int addMember(String firstName, String lastName,

 Date birthday, String ssn) {

Chapter 12 A Java MVC Example Application

341

 // First check if there is already a member with the

 // same SSN. Create a new entry only if none found.

 List<?> l = em.createQuery("SELECT m FROM Member m "+

 "WHERE m.ssn=:ssn").

 setParameter("ssn", ssn).

 getResultList();

 int id = 0;

 if(l.isEmpty()) {

 Member member = new Member();

 member.setFirstName(firstName);

 member.setLastName(lastName);

 member.setBirthday(birthday);

 member.setSsn(ssn);

 em.persist(member);

 em.flush(); // needed to get the ID

 id = member.getId();

 } else {

 id = ((Member)l.get(0)).getId();

 }

 return id;

 }

 public List<Member> allMembers() {

 TypedQuery<Member> q = em.createQuery(

 "SELECT m FROM Member m", Member.class);

 List<Member> l = q.getResultList();

 return l;

 }

 public Member memberById(int id) {

 return em.find(Member.class, id);

 }

 public Optional<Member> memberBySsn(String ssn) {

 List<?> l = em.createQuery("SELECT m FROM Member m "+

 "WHERE m.ssn=:ssn").

 setParameter("ssn", ssn).

Chapter 12 A Java MVC Example Application

342

 getResultList();

 if(l.isEmpty()) {

 return Optional.empty();

 } else {

 return Optional.of((Member)l.get(0));

 }

 }

 @SuppressWarnings("unchecked")

 public List<Member> membersByName(String firstName,

 String lastName) {

 List<?> l = em.createQuery("SELECT m FROM Member m "+

 "WHERE m.firstName LIKE :fn AND "+

 "m.lastName LIKE :ln").

 setParameter("fn", firstName.isEmpty() ?

 "%" : "%" + firstName + "%").

 setParameter("ln", lastName.isEmpty() ?

 "%" : "%" + lastName + "%").

 getResultList();

 return (List<Member>) l;

 }

 public void deleteMember(int id) {

 Member member = em.find(Member.class, id);

 em.remove(member);

 }

}

You can see that we inject an instance of EntityManager as an interface to JPA. From

there, we can use its methods to access database tables. For example, in addMember(), we

use the JPA Query Language (JQL) to search the member’s table using the SSN given as

a method parameter, and if we can’t find one, we save a new entity via EntityManager.

persist(). In memberById() instead we can directly use EntityManager.find(), since

the argument is the entity class’ primary key ID.

Chapter 12 A Java MVC Example Application

343

The other class, called BookDAO, primarily addresses the book table. Its code reads as

follows:

package book.javamvc.bk.db;

import java.util.Date;

import java.util.List;

import java.util.Optional;

import java.util.Set;

import java.util.stream.Collectors;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.TypedQuery;

@Stateless

public class BookDAO {

 @PersistenceContext

 private EntityManager em;

 public int addBook(String authorFirstName,

 String authorLastName, String title,

 Date make, String isbn) {

 // First check if there is already a book with the

 // same ISBN in the database. Create a new entry

 // only if none is found.

 List<?> l = em.createQuery("SELECT b FROM Book b "+

 "WHERE b.isbn=:isbn").

 setParameter("isbn", isbn).

 getResultList();

 int id = 0;

 if(l.isEmpty()) {

 Book book = new Book();

 book.setAuthorFirstName(authorFirstName);

 book.setAuthorLastName(authorLastName);

 book.setTitle(title);

Chapter 12 A Java MVC Example Application

344

 book.setMake(make);

 book.setIsbn(isbn);

 em.persist(book);

 em.flush(); // needed to get the ID

 id = book.getId();

 } else {

 id = ((Book)l.get(0)).getId();

 }

 return id;

 }

 public List<Book> allBooks() {

 TypedQuery<Book> q = em.createQuery(

 "SELECT b FROM Book b", Book.class);

 List<Book> l = q.getResultList();

 return l;

 }

 public Book bookById(int id) {

 return em.find(Book.class, id);

 }

 public Optional<Book> bookByIsbn(String isbn) {

 List<?> l = em.createQuery("SELECT b FROM Book b "+

 "WHERE b.isbn=:isbn").

 setParameter("isbn", isbn).

 getResultList();

 if(l.isEmpty()) {

 return Optional.empty();

 } else {

 return Optional.of((Book)l.get(0));

 }

 }

 @SuppressWarnings("unchecked")

 public List<Book> booksByName(String authorFirstName,

 String authorLastName, String bookTitle) {

Chapter 12 A Java MVC Example Application

345

 String afn = (authorFirstName == null ||

 authorFirstName.isEmpty()) ?

 "%" : ("%"+authorFirstName+"%");

 String aln = (authorLastName == null ||

 authorLastName.isEmpty()) ?

 "%" : ("%"+authorLastName+"%");

 String t = (bookTitle == null ||

 bookTitle.isEmpty()) ?

 "%" : ("%"+bookTitle+"%");

 List<?> l = em.createQuery("SELECT b FROM Book b "+

 "WHERE b.title LIKE :title AND "+

 "b.authorLastName LIKE :aln AND "+

 "b.authorFirstName LIKE :afn").

 setParameter("title", t).

 setParameter("aln", aln).

 setParameter("afn", afn).

 getResultList();

 return (List<Book>) l;

 }

 public void deleteBook(int id) {

 Book book = em.find(Book.class, id);

 em.remove(book);

 }

}

The third DAO class, called RentalDAO, registers book rentals (assigns books to

members):

package book.javamvc.bk.db;

import java.util.Date;

import java.util.Set;

import java.util.stream.Collectors;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

Chapter 12 A Java MVC Example Application

346

import javax.persistence.PersistenceContext;

@Stateless

public class RentalDAO {

 @PersistenceContext

 private EntityManager em;

 public void rentBook(Book b, Member m, Date day) {

 Rental r = b.getRental();

 if(r == null) {

 r = new Rental();

 }

 // Update the BOOK table

 r.setBook(b);

 r.setMemberId(m.getId());

 r.setRentalDay(day);

 b.setRental(r);

 em.merge(b);

 // Update the MEMBER table

 Set<Rental> rs = m.getRental();

 if(rs.stream().allMatch(r1 -> {

 return r1.getBook().getId() != b.getId(); })) {

 rs.add(r);

 m.setRental(rs);

 em.merge(m);

 }

 }

 public void unrentBook(Book b, Member m) {

 Rental r = b.getRental();

 if(r == null) return;

 // Update the BOOK table

 b.setRental(null);

 em.merge(b);

 // Update the MEMBER table

Chapter 12 A Java MVC Example Application

347

 Set<Rental> newRental =

 m.getRental().stream().filter(rr -> {

 return rr.getBook().getId() != b.getId(); }).

 collect(Collectors.toSet());

 m.setRental(newRental);

 em.merge(m);

 }

}

�The BooKlubb Model
The model part of the BooKlubb application (Java MVC model, not database model)

consists of a couple of classes that transport data between the controller and the views:

•	 MemberModel: Contains a club member. We need it only as an item

type for a member search result list. Request scoped.

•	 MemberSearchResult: A result list from a member search. Request

scoped.

•	 BookModel: Contains book information. We need it as an item type for

a book search result list, and for the book rentals listed in the current

member’s details view. Request scoped.

•	 BookSearchResult: A result list from a book search. Request scoped.

•	 CurrentMember: Contains information about the currently selected

member. This is the only model bean that is session-scoped. We need

this broader scope because a current member can be chosen from

the member search result list and henceforth must be remembered

in order to assign books to this member on a different page.

We put them all in the book.javamvc.bk.model package and the code reads as

follows:

package book.javamvc.bk.model;

import java.util.Date;

public class MemberModel {

Chapter 12 A Java MVC Example Application

348

 private int id;

 private String firstName;

 private String lastName;

 private Date birthday;

 private String ssn;

 public MemberModel(int id, String firstName,

 String lastName, Date birthday, String ssn) {

 this.id = id;

 this.firstName = firstName;

 this.lastName = lastName;

 this.birthday = birthday;

 this.ssn = ssn;

 }

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

Chapter 12 A Java MVC Example Application

349

 public Date getBirthday() {

 return birthday;

 }

 public void setBirthday(Date birthday) {

 this.birthday = birthday;

 }

 public String getSsn() {

 return ssn;

 }

 public void setSsn(String ssn) {

 this.ssn = ssn;

 }

}

and

package book.javamvc.bk.model;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import book.javamvc.bk.db.Member;

@Named

@RequestScoped

public class MemberSearchResult extends

 ArrayList<MemberModel>{

 private static final long serialVersionUID =

 -5926389915908884067L;

 public void addAll(List<Member> l) {

 l.forEach(m -> {

 add(new MemberModel(

 m.getId(),

 m.getFirstName(),

Chapter 12 A Java MVC Example Application

350

 m.getLastName(),

 m.getBirthday(),

 m.getSsn()

));

 });

 }

}

In this class, we added a convenience method called addAll(List < Member > l)

with the Member class from the database layer. Normally we don’t want to use database

entities outside the DAOs, but Member is just a data holder and we don’t need any

functionalities for it. So mixing of layers doesn’t impact the application architecture too

much.

package book.javamvc.bk.model;

import java.util.Date;

public class BookModel {

 private int id;

 private String authorFirstName;

 private String authorLastName;

 private String title;

 private String isbn;

 private Date make;

 public BookModel(int id, String authorFirstName,

 String authorLastName, String title, String isbn,

 Date make) {

 this.id = id;

 this.authorFirstName = authorFirstName;

 this.authorLastName = authorLastName;

 this.title = title;

 this.isbn = isbn;

 this.make = make;

 }

Chapter 12 A Java MVC Example Application

351

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getAuthorFirstName() {

 return authorFirstName;

 }

 public void setAuthorFirstName(String authorFirstName) {

 this.authorFirstName = authorFirstName;

 }

 public String getAuthorLastName() {

 return authorLastName;

 }

 public void setAuthorLastName(String authorLastName) {

 this.authorLastName = authorLastName;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 public String getIsbn() {

 return isbn;

 }

 public void setIsbn(String isbn) {

 this.isbn = isbn;

 }

Chapter 12 A Java MVC Example Application

352

 public Date getMake() {

 return make;

 }

 public void setMake(Date make) {

 this.make = make;

 }

}

and

package book.javamvc.bk.model;

import java.util.ArrayList;

import java.util.List;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

import book.javamvc.bk.db.Book;

@Named

@RequestScoped

public class BookSearchResult extends

 ArrayList<BookModel>{

 private static final long serialVersionUID =

 -5926389915908884067L;

 public void addAll(List<Book> l) {

 l.forEach(b -> {

 add(new BookModel(

 b.getId(),

 b.getAuthorFirstName(),

 b.getAuthorLastName(),

 b.getTitle(),

 b.getIsbn(),

 b.getMake()

));

 });

 }

}

Chapter 12 A Java MVC Example Application

353

and

package book.javamvc.bk.model;

import java.io.Serializable;

import java.util.Date;

import java.util.Set;

import javax.enterprise.context.SessionScoped;

import javax.inject.Named;

@Named

@SessionScoped

public class CurrentMember extends MemberModel

 implements Serializable {

 private static final long serialVersionUID =

 -7855133427774616033L;

 public CurrentMember(int id, String firstName,

 String lastName, Date birthday, String ssn) {

 super(id, firstName, lastName, birthday, ssn);

 }

 private boolean defined = false;

 private Set<BookModel> rentals;

 public boolean isDefined() {

 return defined;

 }

 public void setDefined(boolean defined) {

 this.defined = defined;

 }

 public void setRentals(Set<BookModel> rentals) {

 this.rentals = rentals;

 }

Chapter 12 A Java MVC Example Application

354

 public Set<BookModel> getRentals() {

 return rentals;

 }

}

�The BooKlubb Controller
The controller is responsible for receiving all POST and GET actions from the views. In Java

MVC and for the BooKlubb application, it looks like this:

package book.javamvc.bk;

import ...;

@Path("/bk")

@Controller

public class BooKlubbController {

 @Named

 @RequestScoped

 public static class ErrorMessages {

 private List<String> msgs = new ArrayList<>();

 public List<String> getMsgs() {

 return msgs;

 }

 public void setMsgs(List<String> msgs) {

 this.msgs = msgs;

 }

 public void addMessage(String msg) {

 msgs.add(msg);

 }

 }

 private @Inject ErrorMessages errorMessages;

 private @Inject BindingResult br;

 private @EJB MemberDAO memberDao;

 private @Inject MemberSearchResult memberSearchResult;

Chapter 12 A Java MVC Example Application

355

 private @EJB BookDAO bookDao;

 private @Inject BookSearchResult bookSearchResult;

 private @EJB RentalDAO rentalDao;

 private @Inject CurrentMember currentMember;

 // action methods...

}

We use an inner class for the error messages, and we inject the various model classes

and DAO EJBs needed to access the database.

The complete code reads as follows:

package book.javamvc.bk;

import java.time.LocalDate;

import java.time.ZoneId;

import java.time.format.DateTimeFormatter;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import java.util.stream.Collectors;

import javax.ejb.EJB;

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import javax.inject.Named;

import javax.mvc.Controller;

import javax.mvc.binding.BindingResult;

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.ParamError;

import javax.validation.constraints.Pattern;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

import javax.ws.rs.core.Response;

Chapter 12 A Java MVC Example Application

356

import book.javamvc.bk.db.Book;

import book.javamvc.bk.db.BookDAO;

import book.javamvc.bk.db.Member;

import book.javamvc.bk.db.MemberDAO;

import book.javamvc.bk.db.RentalDAO;

import book.javamvc.bk.model.BookModel;

import book.javamvc.bk.model.BookSearchResult;

import book.javamvc.bk.model.CurrentMember;

import book.javamvc.bk.model.MemberSearchResult;

@Path("/bk")

@Controller

public class BooKlubbController {

 @Named

 @RequestScoped

 public static class ErrorMessages {

 private List<String> msgs = new ArrayList<>();

 public List<String> getMsgs() {

 return msgs;

 }

 public void setMsgs(List<String> msgs) {

 this.msgs = msgs;

 }

 public void addMessage(String msg) {

 msgs.add(msg);

 }

 }

 private @Inject ErrorMessages errorMessages;

 private @Inject BindingResult br;

 private @EJB MemberDAO memberDao;

 private @Inject MemberSearchResult memberSearchResult;

 private @EJB BookDAO bookDao;

 private @Inject BookSearchResult bookSearchResult;

Chapter 12 A Java MVC Example Application

357

 private @EJB RentalDAO rentalDao;

 private @Inject CurrentMember currentMember;

We add a couple of methods that use @GET to retrieve pages without user input:

@GET

public String showIndex() {

 return "index.jsp";

}

@GET

@Path("/searchMember")

public Response searchMember() {

 return Response.ok("searchMember.jsp").build();

}

@GET

@Path("/newMember")

public Response newMember() {

 return Response.ok("newMember.jsp").build();

}

@GET

@Path("/searchBook")

public Response searchBook() {

 return Response.ok("searchBook.jsp").build();

}

@GET

@Path("/newBook")

public Response newBook() {

 return Response.ok("newBook.jsp").build();

}

Chapter 12 A Java MVC Example Application

358

The following are methods that relate to members: showing a list of searched-for

members, reacting to creating a new member, deleting a member, showing member

details, and selecting a member:

@GET

@Path("/searchMemberSubmit")

public Response searchMemberSubmit(

 @MvcBinding @QueryParam("firstName")

 String firstName,

 @MvcBinding @QueryParam("lastName")

 String lastName,

 @MvcBinding @QueryParam("ssn")

 String ssn) {

 showErrors();

 String ssnNormal = ssn == null ?

 "" : (ssn.replaceAll("\\D", ""));

 List<Member> l = new ArrayList<>();

 if(!ssnNormal.isEmpty()) {

 memberDao.memberBySsn(ssnNormal).ifPresent(

 m1 -> { l.add(m1); });

 } else {

 l.addAll(memberDao.membersByName(

 firstName, lastName));

 }

 memberSearchResult.addAll(l);

 return Response.ok("searchMemberResult.jsp").build();

 }

 @POST

 @Path("/newMemberSubmit")

 public Response newMemberSubmit(

 @MvcBinding @FormParam("firstName")

 String firstName,

 @MvcBinding @FormParam("lastName")

 String lastName,

Chapter 12 A Java MVC Example Application

359

 @MvcBinding @FormParam("birthday")

 @Pattern(regexp = "\\d\\d/\\d\\d/\\d\\d\\d\\d")

 String birthday,

 @MvcBinding @FormParam("ssn")

 String ssn) {

 showErrors();

 DateTimeFormatter dtf = DateTimeFormatter.ofPattern(

 "MM/dd/yyyy");

 LocalDate ld = LocalDate.parse(birthday, dtf);

 Date date = Date.from(ld.atStartOfDay(

 ZoneId.systemDefault()).toInstant());

 memberDao.addMember(firstName, lastName, date, ssn);

 return Response.ok("newMemberResult.jsp").build();

 }

 @POST

 @Path("/deleteMember")

 public Response deleteMember(

 @MvcBinding @FormParam("memberId")

 int memberId) {

 showErrors();

 memberDao.deleteMember(memberId);

 return Response.ok("deleteMemberResult.jsp").build();

 }

 @POST

 @Path("/selectMember")

 public Response selectMember(

 @MvcBinding @FormParam("memberId")

 int memberId) {

 showErrors();

Chapter 12 A Java MVC Example Application

360

 Member m = memberDao.memberById(memberId);

 currentMember.setId(memberId);

 currentMember.setFirstName(m.getFirstName());

 currentMember.setLastName(m.getLastName());

 currentMember.setBirthday(m.getBirthday());

 currentMember.setSsn(m.getSsn());

 currentMember.setDefined(true);

 return Response.ok("index.jsp").build();

 }

 @POST

 @Path("/memberDetails")

 public Response memberDetails(

 @MvcBinding @FormParam("memberId")

 int memberId) {

 showErrors();

 Member m = memberDao.memberById(memberId);

 currentMember.setId(memberId);

 currentMember.setFirstName(m.getFirstName());

 currentMember.setLastName(m.getLastName());

 currentMember.setBirthday(m.getBirthday());

 currentMember.setSsn(m.getSsn());

 currentMember.setRentals(

 m.getRental().stream().map(r -> {

 Book b = r.getBook();

 return new BookModel(b.getId(),

 b.getAuthorFirstName(),

 b.getAuthorLastName(),

 b.getTitle(), b.getIsbn(), b.getMake());

 }).collect(Collectors.toSet())

);

 currentMember.setDefined(true);

 return Response.ok("memberDetails.jsp").build();

 }

Chapter 12 A Java MVC Example Application

361

We just need to add the book-related methods, which includes reacting to searching

for books, adding or deleting a book, and assigning or “unassigning” a book:

@GET

@Path("/searchBookSubmit")

public Response searchBookSubmit(

 @MvcBinding @QueryParam("authorFirstName")

 String authorFirstName,

 @MvcBinding @QueryParam("authorLastName")

 String authorLastName,

 @MvcBinding @QueryParam("bookTitle")

 String bookTitle,

 @MvcBinding @QueryParam("isbn")

 String isbn) {

 showErrors();

 String isbnNormal = isbn == null ?

 "" : (isbn.replaceAll("\\D", ""));

 List<Book> l = new ArrayList<>();

 if(!isbnNormal.isEmpty()) {

 bookDao.bookByIsbn(isbnNormal).ifPresent(m1 -> {

 l.add(m1); });

 } else {

 l.addAll(bookDao.booksByName(authorFirstName,

 authorLastName, bookTitle));

 }

 bookSearchResult.addAll(l);

 return Response.ok("searchBookResult.jsp").build();

}

@POST

@Path("/newBookSubmit")

public Response newBookSubmit(

 @MvcBinding @FormParam("authorFirstName")

 String authorFirstName,

 @MvcBinding @FormParam("authorLastName")

 String authorLastName,

Chapter 12 A Java MVC Example Application

362

 @MvcBinding @FormParam("title")

 String bookTitle,

 @MvcBinding @FormParam("make")

 @Pattern(regexp = "((\\d\\d/)?\\d\\d/)?\\d\\d\\d\\d")

 String make,

 @MvcBinding @FormParam("isbn")

 String isbn) {

 showErrors();

 String isbnNormal = isbn == null ?

 "" : (isbn.replaceAll("\\D", ""));

 String makeNormal = make == null ? "" : (

 make.matches("\\d\\d\\d\\d") ?

 "01/01/" + make :

 (make.matches("\\d\\d/\\d\\d\\d\\d") ?

 make.substring(0,2) + "/01" +

 make.substring(2) : make)

);

 DateTimeFormatter dtf = DateTimeFormatter.ofPattern(

 "MM/dd/yyyy");

 LocalDate ld = LocalDate.parse(makeNormal, dtf);

 Date date = Date.from(ld.atStartOfDay(

 ZoneId.systemDefault()).toInstant());

 bookDao.addBook(authorFirstName, authorLastName,

 bookTitle, date, isbnNormal);

 return Response.ok("newBookResult.jsp").build();

}

@POST

@Path("/deleteBook")

public Response deleteBook(

 @MvcBinding @FormParam("bookId")

 int bookId) {

 showErrors();

Chapter 12 A Java MVC Example Application

363

 bookDao.deleteBook(bookId);

 return Response.ok("deleteBookResult.jsp").build();

}

@POST

@Path("/assignBook")

public Response assignBook(

 @MvcBinding @FormParam("bookId")

 int bookId,

 @MvcBinding @FormParam("userId")

 int userId) {

 showErrors();

 Book b = bookDao.bookById(bookId);

 Member m = memberDao.memberById(userId);

 Date now = new Date();

 rentalDao.rentBook(b, m, now);

 return Response.ok("index.jsp").build();

}

@POST

@Path("/unassignBook")

public Response unassignBook(

 @MvcBinding @FormParam("bookId")

 int bookId,

 @MvcBinding @FormParam("memberId")

 int userId) {

 showErrors();

 Book b = bookDao.bookById(bookId);

 Member m = memberDao.memberById(userId);

 rentalDao.unrentBook(b, m);

 currentMember.setRentals(

 m.getRental().stream().map(r -> {

 Book bb = r.getBook();

Chapter 12 A Java MVC Example Application

364

 return new BookModel(bb.getId(),

 bb.getAuthorFirstName(),

 bb.getAuthorLastName(),

 bb.getTitle(),

 bb.getIsbn(),

 bb.getMake());

 }).collect(Collectors.toSet())

);

 return Response.ok("memberDetails.jsp").build();

}

We add one private method, which transports errors detected by Java MVC, and then

close the class:

 private void showErrors() {

 if(br.isFailed()) {

 br.getAllErrors().stream().forEach(

 (ParamError pe) -> {

 errorMessages.addMessage(pe.getParamName() +

 ": " + pe.getMessage());

 });

 }

 }

} // closing the class

�The BooKlubb View
As we did in the other Java MVC applications in this book, we add an empty file called

beans.xml to src/main/webapp/WEB-INF. Also, add the usual glassfish-web.xml to the

same folder:

<?xml version="1.0" encoding="UTF-8"?>

<glassfish-web-app error-url="">

 <class-loader delegate="true"/>

</glassfish-web-app>

Chapter 12 A Java MVC Example Application

365

Furthermore, download a jQuery distribution and put it in the src/main/webapp/js

folder.

In the following section, we describe the view-related JSP files needed for BooKlubb.

�Fragment Files
These elements are shown on every web page—a main menu, the currently selected

member, and any error information. We therefore extract them as fragments to be

included via the <%@ include ... %> directive.

The fragments are placed in the src/main/webapp/fragments folder; the code reads

as follows:

<%-- File: currentMember.jsp ******************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<div style="background-color:#AAA;margin-bottom:1em">

${msg.current_member}

<c:choose>

 <c:when test="${! currentMember.defined}">

 </c:when>

 <c:otherwise>

 <fmt:formatDate value="${currentMember.birthday}"

 pattern="MM/dd/yyyy" var="cubd" />

 ${currentMember.firstName}

 ${currentMember.lastName}

 ${cubd} (${currentMember.ssn})

 </c:otherwise>

</c:choose>

Chapter 12 A Java MVC Example Application

366

</div>

<%-- File: errors.jsp ******************************* --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<div style="color:red">

 <c:forEach var="e" items="${errorMessages.msgs}">

 ${e}

 </c:forEach>

</div>

<%-- File: mainMenu.jsp ***************************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<div style="width:30%; float:left;">

 <a href="${mvc.uriBuilder(

 'BooKlubbController#searchMember').build()}">

 ${msg.menu_search_member}

 <a href="${mvc.uriBuilder(

 'BooKlubbController#newMember').build()}">

 ${msg.menu_new_member}

 <a href="${mvc.uriBuilder(

 'BooKlubbController#searchBook').build()}">

 ${msg.menu_search_book}

 <a href="${mvc.uriBuilder(

 'BooKlubbController#newBook').build()}">

Chapter 12 A Java MVC Example Application

367

 ${msg.menu_new_book}

</div>

�Landing Page
The landing page, called index.jsp (in the src/main/webapp/WEB-INF/views folder),

includes the aforementioned fragments and otherwise shows no content:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 �<script type="text/javascript" src="${mvc.basePath}/../js/

jquery-3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.title}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 </div>

 </div>

</body>

</html>

Chapter 12 A Java MVC Example Application

368

Caution  Make sure you enter the correct version of the jQuery distribution you
downloaded. The same holds true for all JSP files presented in subsequent sections.

All JSP files use the same overall structure:

<div style="float:left">

</div>

This empty tag will serve as a container for the actual page contents. Figure 12-1

shows the browser page when you’re entering the application.

�Member-Related View Files
To create a new member, delete a member, search for a member, and show member

details (including books assigned)—as well as for the action result pages for most of

these—we need a separate JSP page. They all reside in the src/main/webapp/WEB-INF/

views folder.

The code to create a new member and the resultant page are as follows:

<%-- File newMember.jsp ***************************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

Figure 12-1.  BooKlubb landing page

Chapter 12 A Java MVC Example Application

369

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <�script type="text/javascript" src="${mvc.basePath}/../js/jquery--

3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_newMember}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <form method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#newMemberSubmit').

 build()}">

 <table><tbody>

 <tr>

 <td>${msg.enter_memberFirstName}</td>

 <td><input type="text" name="firstName" /></td>

 </tr>

 <tr>

 <td>${msg.enter_memberLastName}</td>

 <td><input type="text" name="lastName" /></td>

 </tr>

 <tr>

 <td>${msg.enter_memberBirthday}</td>

 <td><input type="text" name="birthday" /></td>

 </tr>

Chapter 12 A Java MVC Example Application

370

 <tr>

 <td>${msg.enter_memberSsn}</td>

 <td><input type="text" name="ssn" /></td>

 </tr>

 </tbody></table>

 <input type="submit" value="${msg.btn_new}" />

 </form>

 </div>

 </div>

</body>

</html>

<%-- File newMemberResult.jsp *********************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Member Search</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.new_member_added}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 </div>

 </div>

</body>

</html>

Chapter 12 A Java MVC Example Application

371

The newMember.jsp JSP shows the input form for a new member. See Figure 12-2.

The resultant page just shows a corresponding success message.

The code to search in the member database and the page showing the resultant list

are as follows:

<%-- File searchMember.jsp ************************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 �<script type="text/javascript" src="${mvc.basePath}/../js/

jquery-3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

</head>

Figure 12-2.  BooKlubb New Member page

Chapter 12 A Java MVC Example Application

372

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_searchMember}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <form method="get" action="${mvc.uriBuilder(

 'BooKlubbController#searchMemberSubmit').

 build()}">

 <table><tbody>

 <tr>

 <td>${msg.enter_memberFirstName}</td>

 <td><input type="text" name="firstName" /></td>

 </tr>

 <tr>

 <td>${msg.enter_memberLastName}</td>

 <td><input type="text" name="lastName" /> </td>

 </tr>

 <tr>

 <td>${msg.enter_memberSsn}</td>

 <td><input type="text" name="ssn" /> </td>

 </tr>

 </tbody></table>

 <input type="submit" value="${msg.btn_search}" />

 </form>

 </div>

 </div>

</body>

</html>

<%-- File searchMemberResult.jsp ******************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

Chapter 12 A Java MVC Example Application

373

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 �<script type="text/javascript" src="${mvc.basePath}/../js/

jquery-3.5.1.min.js">

 </script>

 <title>Member Search</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_searchResult}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <c:choose>

 <c:when test="${empty memberSearchResult}">

 ${msg.no_result}

 </c:when>

 <c:otherwise>

 <table>

 <thead>

 <tr>

 <th>${msg.tblhdr_id}</th>

 <th>${msg.tblhdr_last_name}</th>

 <th>${msg.tblhdr_first_name}</th>

 <th>${msg.tblhdr_birthday}</th>

 <th>${msg.tblhdr_ssn}</th>

 <th></th>

 <th></th>

Chapter 12 A Java MVC Example Application

374

 </tr>

 <thead>

 <tbody>

 <c:forEach items="${memberSearchResult}"

 var="itm">

 <tr id="itm-${itm.id}">

 <td>${itm.id}</td>

 <td>${itm.lastName}</td>

 <td>${itm.firstName}</td>

 <fmt:formatDate value="${itm.birthday}"

 pattern="MM/dd/yyyy"

 var="d1" />

 <td>${d1}</td>

 <td>${itm.ssn}</td>

 <td><button onclick="deleteItm(${itm.id})">

 ${msg.btn_delete}</button></td>

 <td><button onclick="selectMember(${itm.id})">

 ${msg.btn_select}</button></td>

 <td><button onclick="showDetails(${itm.id})">

 ${msg.btn_details}</button></td>

 </tr>

 </c:forEach>

 </tbody>

 </table>

 </c:otherwise>

 </c:choose>

 <script type="text/javascript">

 function deleteItm(id) {

 jQuery('#memberIdForDelete').val(id);

 jQuery('#deleteForm').submit();

 }

 function selectMember(id) {

 jQuery('#memberIdForSelect').val(id);

 jQuery('#selectForm').submit();

 }

Chapter 12 A Java MVC Example Application

375

 function showDetails(id) {

 jQuery('#memberIdForDetails').val(id);

 jQuery('#detailsForm').submit();

 }

 </script>

 <form id="deleteForm" method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#deleteMember').

 build()}">

 <input id="memberIdForDelete" type="hidden"

 name="memberId" />

 </form>

 <form id="selectForm" method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#selectMember').

 build()}">

 <input id="memberIdForSelect" type="hidden"

 name="memberId" />

 </form>

 <form id="detailsForm" method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#memberDetails').

 build()}">

 <input id="memberIdForDetails" type="hidden"

 name="memberId" />

 </form>

 </div>

 </div>

</body>

</html>

The searchMember.jsp file shows an input form for a member search; see

Figure 12-3. The resultant page shows the corresponding member list, as shown in

Figure 12-4.

Chapter 12 A Java MVC Example Application

376

Figure 12-3.  BooKlubb Search Member page

Figure 12-4.  BooKlubb search member result page

You can see that each member item in the list has three buttons—one for deleting

the member, one for making it the current member, one for showing member details. We

use JavaScript to forward button clicks to one of the invisible forms added near the end

of the file.

Chapter 12 A Java MVC Example Application

377

After member deletion, we just show a success message, which is defined in the

deleteMemberResult.jsp file:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Member Search</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.member_deleted}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 </div>

 </div>

</body>

</html>

On the details page, we show the member information and the books assigned. This

is defined by the memberDetails.jsp file:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

Chapter 12 A Java MVC Example Application

378

<html>

<head>

 <meta charset="UTF-8">

 <script type="text/javascript"

 src="${mvc.basePath}/../js/jquery-3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_memberDetails}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <table>

 <tbody>

 <tr>

 <td>${msg.memb_id}</td>

 <td>${currentMember.id}</td>

 </tr>

 <tr>

 <td>${msg.memb_firstName}</td>

 <td>${currentMember.firstName}</td>

 </tr>

 <tr>

 <td>${msg.memb_lastName}</td>

 <td>${currentMember.lastName}</td>

 </tr>

 <fmt:formatDate value="${currentMember.birthday}"

 pattern="MM/dd/yyyy"

 var="bd" />

 <tr>

 <td>${msg.memb_birthday}</td>

Chapter 12 A Java MVC Example Application

379

 <td>${bd}</td>

 </tr>

 <tr>

 <td>${msg.memb_ssn}</td>

 <td>${currentMember.ssn}</td>

 </tr>

 </tbody>

 </table>

 <h2>${msg.hd_booksAssigned}</h2>

 <c:choose>

 <c:when test="${empty currentMember.rentals}">

 </c:when>

 <c:otherwise>

 <table>

 <tbody>

 <c:forEach items="${currentMember.rentals}"

 var="r">

 <tr>

 <td>${r.authorFirstName}

 ${r.authorLastName}</td>

 <td>${r.title}</td>

 <fmt:formatDate value="${r.make}"

 pattern="MM/dd/yyyy"

 var="makeDay" />

 <td>${makeDay}</td>

 <td>

 <button onclick="unassign(

 ${currentMember.id},${r.id})">

 ${msg.btn_unassign}

 </button>

 </td>

 </tr>

 </c:forEach>

 </tbody>

Chapter 12 A Java MVC Example Application

380

 </table>

 </c:otherwise>

 </c:choose>

 <script type="text/javascript">

 function unassign(memberId,bookId) {

 jQuery('#memberIdForUnassign').val(memberId);

 jQuery('#bookIdForUnassign').val(bookId);

 jQuery('#unassignForm').submit();

 }

 </script>

 <form id="unassignForm" method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#unassignBook').build()}">

 <input id="memberIdForUnassign" type="hidden"

 name="memberId" />

 <input id="bookIdForUnassign" type="hidden"

 name="bookId" />

 </form>

 </div>

 </div>

</body>

</html>

In the books assigned list, we again use buttons to unassign books, and JavaScript to

submit an invisible form. Figure 12-5 shows a details page example. Assigning books to

members happens in the book search result list, discussed in a later section.

Chapter 12 A Java MVC Example Application

381

Figure 12-5.  BooKlubb Member Details page

�Book-Related View Files
For books, we identify the following use cases: create a new book record, delete a book

record, search for a book, and assign a book to a member (rental). We have JSP pages

to create a book and to search for a book, plus action result pages. Just as with the

members, they all reside in the src/main/webapp/WEB-INF/views folder. Book record

deletion and assignment to the current member happens from inside the book search

result list.

The code to create a book record and its corresponding submit result page is as

follows:

<%-- File newBook.jsp ******************************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

Chapter 12 A Java MVC Example Application

382

 �<script type="text/javascript" src="${mvc.basePath}/../js/

jquery-3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_newBook}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <form method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#newBookSubmit').build()}">

 <table><tbody>

 <tr>

 <td>${msg.enter_authorFirstName}</td>

 <td>

 <input type="text" name="authorFirstName" />

 </td>

 </tr>

 <tr>

 <td>${msg.enter_authorLastName}</td>

 <td>

 <input type="text" name="authorLastName" />

 </td>

 </tr>

 <tr>

 <td>${msg.enter_bookTitle}</td>

 <td>

 <input type="text" name="title" />

 </td>

 </tr>

Chapter 12 A Java MVC Example Application

383

 <tr>

 <td>${msg.enter_bookMake}</td>

 <td>

 <input type="text" name="make" />

 </td>

 </tr>

 <tr>

 <td>${msg.enter_isbn}</td>

 <td>

 <input type="text" name="isbn" />

 </td>

 </tr>

 </tbody></table>

 <input type="submit" value="${msg.btn_new}" />

 </form>

 </div>

 </div>

</body>

</html>

<%-- File newBookResult.jsp ************************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Member Search</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

Chapter 12 A Java MVC Example Application

384

 <h1>${msg.new_book_added}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 </div>

 </div>

</body>

</html>

The new book page is a form for entering the author’s name, the book title, make,

and the ISBN number. See Figure 12-6. The resultant page just shows an info message.

Figure 12-6.  BooKlubb New Book entry

To search the database and present the search result list, the following two files are

used:

<%-- File searchBook.jsp **************************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

Chapter 12 A Java MVC Example Application

385

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 �<script type="text/javascript" src="${mvc.basePath}/../js/

jquery-3.5.1.min.js">

 </script>

 <title>${msg.title}</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_searchBook}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <form method="get"

 action="${mvc.uriBuilder(

 'BooKlubbController#searchBookSubmit').build()}">

 <table><tbody>

 <tr>

 <td>${msg.enter_authorFirstName}</td>

 <td>

 <input type="text" name="authorFirstName" />

 </td>

 </tr>

 <tr>

 <td>${msg.enter_authorLastName}</td>

 <td>

 <input type="text" name="authorLastName" />

 </td>

 </tr>

 <tr>

Chapter 12 A Java MVC Example Application

386

 <td>${msg.enter_bookTitle}</td>

 <td>

 <input type="text" name="bookTitle"/>

 </td>

 </tr>

 <tr>

 <td>${msg.enter_isbn}</td>

 <td>

 <input type="text" name="isbn"/>

 </td>

 </tr>

 </tbody></table>

 <input type="submit" value="${msg.btn_search}" />

 </form>

 </div>

 </div>

</body>

</html>

<%-- File searchBookResult.jsp ********************** --%>

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 �<script type="text/javascript" src="${mvc.basePath}/../js/

jquery-3.5.1.min.js">

 </script>

 <title>Book Search</title>

</head>

<body>

Chapter 12 A Java MVC Example Application

387

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.hd_searchResult}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 <c:choose>

 <c:when test="${empty bookSearchResult}">

 ${msg.no_result}

 </c:when>

 <c:otherwise>

 <table>

 <thead>

 <tr>

 <th>${msg.tblhdr_id}</th>

 <th>${msg.tblhdr_author_last_name}</th>

 <th>${msg.tblhdr_author_first_name}</th>

 <th>${msg.tblhdr_book_title}</th>

 <th>${msg.tblhdr_book_make}</th>

 <th>${msg.tblhdr_isbn}</th>

 <th></th>

 <th></th>

 </tr>

 <thead>

 <tbody>

 <c:forEach items="${bookSearchResult}"

 var="itm">

 <tr id="itm-${itm.id}">

 <td>${itm.id}</td>

 <td>${itm.authorLastName}</td>

 <td>${itm.authorFirstName}</td>

 <td>${itm.title}</td>

 <fmt:formatDate value="${itm.make}"

 pattern="MM/dd/yyyy"

Chapter 12 A Java MVC Example Application

388

 var="d1" />

 <td>${d1}</td>

 <td>${itm.isbn}</td>

 <td><button onclick="deleteItm(${itm.id})">

 ${msg.btn_delete}

 </button>

 </td>

 <td><button onclick="assignItm(${itm.id},

 ${currentMember.id})">

 ${msg.btn_assign}

 </button>

 </td>

 </tr>

 </c:forEach>

 </tbody>

 </table>

 </c:otherwise>

 </c:choose>

 <script type="text/javascript">

 function deleteItm(id) {

 jQuery('#bookIdForDelete').val(id);

 jQuery('#deleteForm').submit();

 }

 function assignItm(bookId, userId) {

 jQuery('#bookIdForAssign').val(bookId);

 jQuery('#userIdForAssign').val(userId);

 jQuery('#assignForm').submit();

 }

 </script>

 <form id="deleteForm" method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#deleteBook').build()}">

 <input id="bookIdForDelete" type="hidden"

 name="bookId" />

 </form>

Chapter 12 A Java MVC Example Application

389

 <form id="assignForm" method="post"

 action="${mvc.uriBuilder(

 'BooKlubbController#assignBook').build()}">

 <input id="bookIdForAssign" type="hidden"

 name="bookId" />

 <input id="userIdForAssign" type="hidden"

 name="userId" />

 </form>

 </div>

 </div>

</body>

</html>

The book search result list is depicted in Figure 12-7. For each list item, we provide a

Delete and an Assign button. JavaScript code takes care of forwarding button presses to

one of the two invisible forms added near the end of the code.

Figure 12-7.  BooKlubb book search result

Chapter 12 A Java MVC Example Application

390

After clicking one of the Delete buttons, a simple success message is shown. The

deleteBookResult.jsp file takes care of that:

<%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

 <meta charset="UTF-8">

 <title>Book Search</title>

</head>

<body>

 <%@ include file="../../fragments/errors.jsp" %>

 <h1>${msg.book_deleted}</h1>

 <%@ include file="../../fragments/currentMember.jsp" %>

 <div>

 <%@ include file="../../fragments/mainMenu.jsp" %>

 <div style="float:left">

 </div>

 </div>

</body>

</html>

�Deploying and Testing BooKlubb
To build and deploy the BooKlubb application, you enter the following inside the

console:

 ./gradlew localDeploy

 # or, if you need to specify a certain JDK

 JAVA_HOME=/path/to/jdk ./gradlew localDeploy

Chapter 12 A Java MVC Example Application

391

For this to work, the GlassFish server must be running and the gradle.properties

file must contain the correct connection properties for the GlassFish server. The WAR file

that’s built during this process is copied into the build/libs folder.

If everything works correctly, you can point your browser to the following URL to

enter the application:

http://localhost:8080/BooKlubb

See Figure 12-1.

�Summary
This chapter concluded the book with a comprehensive example application called

BooKlubb, which illustrates many Java MVC features.

Chapter 12 A Java MVC Example Application

393
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1

Appendix

�Solutions to the Exercises
The following are the solutions to the exercises found in the chapters.

�Chapter 1 Exercises
Exercise 1: Model, view, and controller.

Exercise 2: False. This is the controller’s responsibility. Also, this

is optional.

Exercise 3: No, this must be coded in the controller.

Exercise 4: True.

Exercise 5: None are true. Sessions are created by the framework,

and they are passed through the HTTP transport as cookies, query

parameters, or POST parameters. A session ID might be passed

over as a model object, but the session itself is not part of the

model.

Exercise 6: No, it became part of the Java EE/Jakarta EE

specification in version 8.

https://doi.org/10.1007/978-1-4842-6280-1#DOI

394

�Chapter 2 Exercises
Exercise 1: JEE/Jakarta EE (Java/Jakarta Enterprise Edition) sits

on top of JSE and extends it with enterprise features.

Exercise 2: No, Java MVC needs to be installed inside a Java EE/

Jakarta EE server.

Exercise 3: No, Java MVC is part of Java EE/Jakarta EE.

Exercise 4: Not really. While Java EE and Jakarta EE version 8

coexist, Jakarta EE is considered the successor of Java EE.

Exercise 5: No, in order to use Oracle’s JSE in a commercial

product, you must pay for a subscription. OpenJDK is free also for

commercial projects.

Exercise 6: True.

Exercise 7: Because it is free and the reference implementation.

Exercise 8: No. We have GET, POST, PUT, DELETE, HEAD, and TRACE.

Exercise 9: Java MVC sits on top of (uses) JAX-RS, and Java MVC

and the REST controllers look similar.

�Chapter 3 Exercises
Exercise 1: No, best practices indicate that for build scripts,

declarative programming (indicating what a build script has to do,

not how it should do it) is favorable over imperative programming

(precise step-by-step instructions).

Exercise 2: No, you can use Groovy or Kotlin code.

Exercise 3: No, Eclipse allows different JREs for building

(compiling) projects.

Exercise 4: Initialization, configuration, and execution.

Exercise 5: No, src/main/java is correct.

Exercise 6: No, you use the main build file called build.gradle

for that.

Appendix

395

Exercise 7: No, you use the repositories { } -section for that.

Exercise 8: A configuration in Gradle is a dependency scope. You

have different scopes in a project, such as testing, compilation,

inclusion into an archive, and so on.

Exercise 9: Start a Gradle project via File ➤ New ➤ Other... ➤

Gradle ➤ Gradle Project. Open build.gradle and replace its

contents with the following:

 plugins {

 id 'java-library'

 }

 java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

 }

 repositories {

 jcenter()

 }

 dependencies {

 testImplementation 'junit:junit:4.12'

 }

Fix any build path errors by right-clicking the project, then

choosing Properties ➤ Java Build Path ➤ Libraries. Remove the

erroneous JRE and add a correct JRE (JRE System Library) to

the classpath. Right-click the project and then choose Gradle

➤ Refresh Gradle Project. Inside src/main/java, create a new

package called book.javamvc.graphicsprimitives, and add two

classes as follows:

 // File Circle.java

 package book.javamvc.graphicsprimitives;

 public class Circle {

 private double cx, cy, r;

 // add consructor, getters, setters...

 }

Appendix

396

 //File Rectangle.java

 package book.javamvc.graphicsprimitives;

 public class Rectangle {

 private double x, y, w, h;

 // add consructor, getters, setters...

 }

Exercise 10: ”Hi, I’m A” is printed unconditionally, even if task a is

not explicitly invoked. This is because instructions directly inside

task { } belong to the configuration phase, and the configuration

phase always gets called for all tasks for any build. If you want to

execute something during the execution phase, you must wrap it

inside doFirst { } or doLast { }.

Exercise 11: No, the wrapper is a standalone Gradle installation.

Java must be working, though.

Exercise 12: Do a export JAVA_HOME=/opt/jdk8 (in Linux) or a set

JAVA_HOME=C:\jdk8 (in Windows).

�Chapter 4 Exercises
Exercise 1: True. The wrapper supports both Windows and Linux.

Exercise 2: B and C are true.

Exercise 3: False. But we describe custom tasks for this purpose.

Exercise 4: Facelets and JSTL.

Exercise 5: It is possible to use dedicated Java bean classes. But

no, you can also use a built-in container to hold model values (the

javax.mvc.Models class).

Exercise 6: Inside a Jakarta EE server.

Exercise 7: False. We use Gradle in this book, but other build tools

are possible as well.

Exercise 8: The UserData class reads as follows:

Appendix

397

 package book.javamvc.helloworld;

 import javax.enterprise.context.RequestScoped;

 import javax.inject.Named;

 @Named

 @RequestScoped

 public class UserData {

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 }

In the controller, you write the following:

 package book.javamvc.helloworld;

 import javax.inject.Inject;

 import javax.mvc.Controller;

 import javax.mvc.binding.MvcBinding;

 import javax.ws.rs.FormParam;

 import javax.ws.rs.GET;

 import javax.ws.rs.POST;

 import javax.ws.rs.Path;

 import javax.ws.rs.core.Response;

 @Path("/hello")

 @Controller

 public class HelloWorldController {

 @Inject UserData userData;

Appendix

398

 @GET

 public String showIndex() {

 return "index.jsp";

 }

 @POST

 @Path("/greet")

 public Response greeting(@MvcBinding

 @FormParam("name")

 String name) {

 userData.setName(name);

 return Response.ok("greeting.jsp").build();

 }

 }

The greeting.jsp file reads as follows:

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

 <head>

 <meta charset="UTF-8">

 <title>Hello World</title>

 </head>

 <body>

 Hello ${userData.name}

 </body>

 </html>

Exercise 9: Replace the <body> of greeting.jsp with the

following:

 <body>

 Hello ${userData.name}

 <div>

Appendix

399

 <a href="${mvc.uriBuilder(

 'HelloWorldController#showIndex'

).build()}">Back

 </div>

 </body>

�Chapter 5 Exercises
Exercise 1: (B) is true.

Exercise 2: You at least need the @Controller class annotation.

Exercise 3: The controller classes are very similar, but Java

MVC controllers must return page names, contrary to JAX-RS

controllers, which return data.

Exercise 4: Placed next to the @FormParam and @QueryParam

elements, the @MvcBinding annotation ensures conversion and

validation errors don’t automatically yield some error data being

loaded (as dictated by JAX-RS). Instead, errors are passed over to

an injected BindingResult instance (class instance level).

Exercise 5: Update the controller as follows:

 package book.javamvc.helloworld;

 import java.util.ArrayList;

 import java.util.List;

 import javax.enterprise.context.RequestScoped;

 import javax.inject.Inject;

 import javax.inject.Named;

 import javax.mvc.Controller;

 import javax.mvc.binding.BindingResult;

 import javax.mvc.binding.MvcBinding;

 import javax.mvc.binding.ParamError;

 import javax.validation.constraints.*;

 import javax.ws.rs.FormParam;

 import javax.ws.rs.GET;

Appendix

400

 import javax.ws.rs.POST;

 import javax.ws.rs.Path;

 import javax.ws.rs.QueryParam;

 import javax.ws.rs.core.Response;

 @Path("/hello")

 @Controller

 public class HelloWorldController {

 @Named

 @RequestScoped

 public static class ErrorMessages {

 private List<String> msgs = new ArrayList<>();

 public List<String> getMsgs() {

 return msgs;

 }

 public void setMsgs(List<String> msgs) {

 this.msgs = msgs;

 }

 public void addMessage(String msg) {

 msgs.add(msg);

 }

 }

 private @Inject ErrorMessages errorMessages;

 private @Inject BindingResult br;

 ...

 @POST

 @Path("/greet")

 public Response greeting(

 @MvcBinding @FormParam("name")

 String name)

 {

 if(br.isFailed()) {

 br.getAllErrors().stream().forEach(

 (ParamError pe) -> {

Appendix

401

 errorMessages.addMessage(pe.getParamName() +

 ": " + pe.getMessage());

 });

 }

 ...

 }

 }

Inside greeting.jsp, add the following:

 <div style="color:red">

 <c:forEach var="e" items="${errorMessages.msgs}">

 ${e}

 </c:forEach>

 </div>

Exercise 6: Inside the controller class, add as annotation to the

greeting() method’s parameter, as follows:

 import javax.validation.constraints.Pattern;

 ...

 @POST

 @Path("/greet")

 public Response greeting(

 @MvcBinding @FormParam("name")

 @Pattern(regexp = "[A-Za-z]*")

 String name) {

 ...

 }

Exercise 7: In the controller class, write the following for the

showIndex() method:

 @GET

 public String showIndex(

 @MvcBinding @QueryParam("name")

 String name)

Appendix

402

 {

 if(name != null) {

 models.put("name", name);

 }

 return "index.jsp";

 }

A missing name query parameter, for example when the start page

is loaded the first time, will lead to a null value. The code checks

that. Inside the index.jsp page, you can use ${ name } for the

input field’s initial value, which will yield an empty string if the

model value doesn’t exist:

 ...

 <form method="post"

 action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 Enter your name:

 <input type="text" name="name" value="${name}" />

 <input type="submit" value="Submit" />

 </form>

 ...

In the response page called greeting.jsp, you write the

following:

 ...

 Hello ${name}

 <div>

 <a href="${mvc.uriBuilder(

 'HelloWorldController#showIndex').

 queryParam('name', name).

 build()}">Back

 </div>

 ...

Appendix

403

�Chapter 6 Exercises
Exercise 1: The new model class reads as follows:

 package book.javamvc.helloworld.model;

 import javax.enterprise.context.RequestScoped;

 import javax.inject.Named;

 @Named

 @RequestScoped

 public class UserData {

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 }

In the controller class, you write the following:

 ...

 @Controller

 public class HelloWorldController {

 private @Inject UserData userData;

 //private @Inject Models models; REMOVE THIS

 ...

 @GET

 public String showIndex(@MvcBinding

 @QueryParam("name") String name) {

 if(name != null) {

 userData.setName(name);

 }

Appendix

404

 return "index.jsp";

 }

 @POST

 @Path("/greet")

 public Response greeting(

 @MvcBinding @FormParam("name")

 @Pattern(regexp = "[A-Za-z]*")

 String name)

 {

 ...

 userData.setName(name);

 return Response.ok("greeting.jsp").build();

 }

 }

In the index.jsp page, you must substitute ${ userData.name }

for ${ name }, as follows:

 ...

 <form method="post"

 action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 Enter your name:

 <input type="text" name="name" />

 <input type="submit" value="Submit" />

 </form>

 ...

Same for the greeting.jsp response page:

 ...

 Hello ${userData.name}

 <div>

 <a href="${mvc.uriBuilder(

 'HelloWorldController#showIndex').

Appendix

405

 queryParam('name', userData.name).

 build()}">Back

 </div>

 ...

Exercise 2: The second option is true—each JSP gets its own

servlet.

Exercise 3: Facelets are newer.

Exercise 4: No, you don’t have to use JSF. In fact, it is better to

avoid JSF features, since JSF is component-based and Java MVC

does not use view components.

�Chapter 7 Exercises
Exercise 1: As UserData, write the following:

 package book.javamvc.helloworld;

 import javax.enterprise.context.RequestScoped;

 import javax.inject.Named;

 @Named

 @RequestScoped

 public class UserData {

 private String name;

 private int age;

 // Getters and setters...

 }

The updated (important) parts from the controller class

HelloWorldController are as follows:

 ...

 import javax.validation.constraints.Min;

 ...

 @Path("/hello")

 @Controller

Appendix

406

 public class HelloWorldController {

 @Named

 @RequestScoped

 public static class ErrorMessages {

 private List<String> msgs = new ArrayList<>();

 public List<String> getMsgs() {

 return msgs;

 }

 public void setMsgs(List<String> msgs) {

 this.msgs = msgs;

 }

 public void addMessage(String msg) {

 msgs.add(msg);

 }

 }

 private @Inject UserData userData;

 private @Inject ErrorMessages errorMessages;

 private @Inject BindingResult br;

 ...

 @POST

 @Path("/greet")

 public Response greeting(

 @MvcBinding @FormParam("name")

 String name,

 @MvcBinding @FormParam("age")

 @Min(1)

 int age) {

 if(br.isFailed()) {

 br.getAllErrors().stream().forEach(

 (ParamError pe) -> {

 errorMessages.addMessage(

 pe.getParamName() + ": " +

 pe.getMessage());

 });

Appendix

407

 }

 userData.setName(name);

 userData.setAge(age);

 return Response.ok("greeting.jsp").build();

 }

 }

As the index.jsp view page, take the following:

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

 <head>

 <meta charset="UTF-8">

 <title>Hello World</title>

 </head>

 <body>

 <form method="post"

 action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 Enter your name:

 <input type="text" name="name" /> Enter your age:

 <input type="text" name="age" />

 <input type="submit" value="Submit" />

 </form>

 </body>

 </html>

As the response page greeting.jsp:

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

Appendix

408

 <head>

 <meta charset="UTF-8">

 <title>Hello World</title>

 </head>

 <body>

 <div style="color:red">

 <c:forEach var="e"

 items="${errorMessages.msgs}">

 ${e}

 </c:forEach>

 </div>

 Hello ${userData.name}, your age is ${userData.age}

 </body>

 </html>

Exercise 2: The updated (important) parts of the controller class

HelloWorldController read as follows:

 package book.javamvc.helloworld;

 import javax.servlet.http.HttpSession;

 ...

 @Path("/hello")

 @Controller

 public class HelloWorldController {

 ...

 private @Inject HttpSession httpSession;

 ...

 @GET

 public String showIndex() {

 System.err.println("Session ID: " +

 httpSession.getId());

 ...

 }

 ...

 }

Appendix

409

Exercise 3: The updated (important) parts of the controller class

HelloWorldController read as follows:

 import javax.ws.rs.core.HttpHeaders;

 import javax.ws.rs.core.Context;

 ...

 @POST

 @Path("/greet")

 public Response greeting(

 ...form parameters...,

 @Context HttpHeaders httpHeaders)

 {

 System.err.println("Headers: \n" +

 httpHeaders.getRequestHeaders().entrySet().

 stream().map(me -> {

 return me.getKey() + ": " +

 me.getValue();

 }).collect(Collectors.joining("\n")));

 ...

 }

Exercise 4: Download jQuery and put it into src/main/webapp/js.

The updated index.jsp file reads as follows:

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

 <head>

 <meta charset="UTF-8">

 <script type="text/javascript"

 src="${mvc.basePath}/../js/jquery-3.5.1.min.js">

 </script>

 <title>Hello World</title>

 </head>

Appendix

410

 <body>

 <form method="post" action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 Enter your name: <input type="text" name="name"/>

 <input type="submit" value="Submit" />

 </form>

 <form>

 <script type="text/javascript">

 function submitAge() {

 var age = jQuery('#age').val();

 var url = "${mvc.uriBuilder(

 'HelloWorldController#ageAjax').build()}";

 jQuery.ajax({

 url : url, method: "POST",

 data : { age: age },

 dataType: 'json',

 success: function(data, textStatus,

 jqXHR) {

 jQuery('#ajax-response').html(data.text);

 },

 error: function (jqXHR, textStatus,

 errorThrown) {

 console.log(errorThrown);

 }

 });

 return false;

 }

 </script>

 Enter your age: <input type="text" id="age" />

 <button onclick="return submitAge()">

 Submit

 </button>

 </form>

 <div>

 AJAX Response:

Appendix

411

 <div id="ajax-response">

 </div>

 </div>

 </body>

 </html>

Obviously, in the head’s script tag, write the jQuery version you

downloaded.

The HelloWorldController gets a new @POST method to receive

the AJAX requests:

 @POST

 @Path("/ageAjax")

 public Response ageAjax(

 @MvcBinding @FormParam("age")

 int age) {

 if(br.isFailed()) {

 br.getAllErrors().stream().

 forEach((ParamError pe) -> {

 errorMessages.addMessage(

 pe.getParamName()

 + ": " + pe.getMessage());

 });

 }

 userData.setAge(age);

 return Response.ok("ageAjaxFragm.jsp").

 type(MediaType.APPLICATION_JSON).

 build();

 }

The JSP fragment src/main/webapp/WEB-INF/ageAjaxFragm.jsp

reads as follows:

 <%@ page language="java"

 contentType="application/json;charset=UTF-8" %>

 <%@ taglib prefix = "c"

 uri = "http://java.sun.com/jsp/jstl/core" %>

Appendix

412

 <%@ taglib prefix = "fmt"

 uri = "http://java.sun.com/jsp/jstl/fmt" %>

 { "text": "This is a JSP generated fragment.

 Your age is: ${userData.age}" }

Exercise 5: The observer class reads as follows (use any package

and class name you like; the method names can also be chosen

freely):

 package book.javamvc.helloworld.event;

 import java.io.Serializable;

 import java.time.Instant;

 import javax.enterprise.context.SessionScoped;

 import javax.enterprise.event.Observes;

 import javax.mvc.event.AfterControllerEvent;

 import javax.mvc.event.BeforeControllerEvent;

 @SessionScoped

 public class HelloWorldObserver

 implements Serializable {

 private static final long serialVersionUID =

 -2547124317706157382L;

 private long controllerStarted;

 public void update(@Observes

 BeforeControllerEvent

 beforeController) {

 controllerStarted = Instant.now().

 toEpochMilli();

 }

 public void update(@Observes

 AfterControllerEvent

 afterController) {

 long controllerElapseMillis =

Appendix

413

 Instant.now().toEpochMilli() –

 controllerStarted;

 System.err.println("Elapse = " +

 controllerElapseMillis + "ms");

 }

 }

�Chapter 8 Exercises
Exercise 1: Add these properties files to the src/main/resources/

book/javamvc/helloworld/messages folder:

 ## File Messages.properties:

 title = Hello World

 enter_name = Enter your name:

 enter_age = Enter your age:

 btn_submit = Submit

 btn_back = Back

 ajax_response = AJAX Response:

 response_hello = Hello

 response_age = your age is

 ## File Messages_de.properties:

 title = Hallo Welt

 enter_name = Dein Name:

 enter_age = Dein Alter:

 btn_submit = Absenden

 btn_back = Zurück

 ajax_response = AJAX-Antwort:

 response_hello = Hallo

 response_age = Dein Alter ist

(You can add other language files, if you like.) You can copy

Messages.properties to Messages_en.properties, but you

don’t have to if you want to set English as the default. Add the two

classes—BundleForEL and SetBundleFilter—as described in the

text to your project.

Appendix

414

As index.jsp, use the following:

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <%-- ${msg} is the localized bundle variable,

 registered by class SetBundleFilter --%>

 <html>

 <head>

 <meta charset="UTF-8">

 <title>${msg.title}</title>

 </head>

 <body>

 <form method="post"

 action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 ${msg.enter_name}

 <input type="text" name="name" />

 <%-- Only if you added the 'age' --%>

 <%-- field (from exercises): --%>

 ${msg.enter_age} <input type="text" name="age" />

 <input type="submit" value="${msg.btn_submit}" />

 </form>

 </body>

 </html>

As greeting.jsp, use the following:

 <%@ page contentType="text/html;charset=UTF-8"

 language="java" %>

 <%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

 <%-- ${msg} is the localized bundle variable,

 registered by class SetBundleFilter --%>

Appendix

415

 <html>

 <head>

 <meta charset="UTF-8">

 <title>Hello World</title>

 </head>

 <body>

 <%-- Only if you caught the error messages --%>

 <%-- (from one of the exercies) --%>

 <div style="color:red">

 <c:forEach var="e" items="${errorMessages.msgs}">

 ${e}

 </c:forEach>

 </div>

 <%-- If UserData has an 'age' field --%>

 ${msg.response_hello} ${userData.name}, ${msg.

 response_age} ${userData.age}

 <%-- otherwise --%>

 ${msg.response_hello} ${userData.name}

 </body>

 </html>

Exercise 2: As a new App class, use the following:

 package book.javamvc.helloworld;

 import java.util.Collections;

 import java.util.HashMap;

 import java.util.Map;

 import javax.ws.rs.ApplicationPath;

 import javax.ws.rs.core.Application;

 @ApplicationPath("/mvc")

 public class App extends Application {

 @Override

Appendix

416

 public Map<String, Object> getProperties() {

 Map<String, Object> res = new HashMap<>();

 res.put("I18N_TEXT_ATTRIBUTE_NAME",

 "msg");

 res.put("I18N_TEXT_BASE_NAME",

 "book.javamvc.helloworld.messages.Messages"

);

 return res;

 }

 }

In the SetBundleFilter class, you can then inject the

Application CDI bean to fetch the properties:

 package book.javamvc.i18n;

 import java.io.IOException;

 import java.util.Map;

 import javax.inject.Inject;

 import javax.servlet.Filter;

 import javax.servlet.FilterChain;

 import javax.servlet.FilterConfig;

 import javax.servlet.ServletException;

 import javax.servlet.ServletRequest;

 import javax.servlet.ServletResponse;

 import javax.servlet.annotation.WebFilter;

 import javax.servlet.http.HttpServletRequest;

 import javax.ws.rs.core.Application;

 @WebFilter("/*")

 public class SetBundleFilter implements Filter {

 @Inject private Application appl;

 private String i18nAttributeName;

 private String i18nBaseName;

Appendix

417

 @Override

 public void init(FilterConfig filterConfig)

 throws ServletException {

 Map<String,Object> applProps = appl.

 getProperties();

 i18nAttributeName = (String) applProps.

 get("I18N_TEXT_ATTRIBUTE_NAME");

 i18nBaseName = (String) applProps.

 get("I18N_TEXT_BASE_NAME");

 }

 @Override

 public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws IOException, ServletException {

 BundleForEL.setFor((HttpServletRequest) request,

 i18nAttributeName,

 i18nBaseName);

 chain.doFilter(request, response);

 }

 @Override

 public void destroy() {

 }

 }

Because the class no longer refers to project specific classes, it

was also moved to a more general book.javamvc.i18n package

location. The BundleForEL class rewrites to the following:

 package book.javamvc.i18n;

 import java.util.Enumeration;

 import java.util.Locale;

 import java.util.ResourceBundle;

 import javax.servlet.http.HttpServletRequest;

 public class BundleForEL extends ResourceBundle {

 private BundleForEL(Locale locale,

Appendix

418

 String baseName) {

 setLocale(locale, baseName);

 }

 public static void setFor(

 HttpServletRequest request,

 String i18nAttributeName,

 String i18nBaseName) {

 if (request.getSession().

 getAttribute(i18nAttributeName) == null) {

 request.getSession().setAttribute(

 i18nAttributeName,

 new BundleForEL(request.getLocale(),

 i18nBaseName));

 }

 }

 public void setLocale(Locale locale,

 String baseName) {

 if (parent == null ||

 !parent.getLocale().equals(locale)) {

 setParent(getBundle(baseName, locale));

 }

 }

 @Override

 public Enumeration<String> getKeys() {

 return parent.getKeys();

 }

 @Override

 protected Object handleGetObject(String key) {

 return parent.getObject(key);

 }

 }

Appendix

419

Exercise 3: Add the following to UserData:

 private double rank;

 // Plus getter, setter

The corresponding part in index.jsp reads as follows:

 <form method="post"

 action="${mvc.uriBuilder(

 'HelloWorldController#greeting').build()}">

 ...

 ${msg.enter_rank}

 <input type="text" name="rank" />

 <input type="submit" value="${msg.btn_submit}" />

 </form>

And, in greeting.jsp, write the following:

 ...

 <fmt:formatNumber value="${userData.rank}"

 type="number" var="rank" />

 ${msg.response_rank} ${rank}

 ...

Add values for the enter_rank and response_rank keys in

Messages.properties:

 enter_rank = Enter your rank:

 response_rank = your rank is

(Add values for other languages if you want.)

The update for the controller class reads as follows:

 @POST

 @Path("/greet")

 public Response greeting(

 @MvcBinding @FormParam("name") String name,

 @MvcBinding @FormParam("age")

Appendix

420

 @Min(1)

 int age,

 @MvcBinding @FormParam("rank")

 @FloatRange(min=0.0, max=1.0)

 double rank,

 @Context HttpHeaders httpHeaders

) {

 ...

 userData.setRank(rank);

 ...

 }

@FloatRange is a validation we developed in another exercise:

 // ---- File FloatRange.java

 @Constraint(validatedBy = FloatRangeValidator.class)

 @Target({ PARAMETER, FIELD })

 @Retention(RUNTIME)

 public @interface FloatRange {

 String message() default

 "Value out of range [{min},{max}]";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 String[] value() default { };

 double min() default -Double.MAX_VALUE;

 double max() default Double.MAX_VALUE;

 double precision() default 0.0;

 }

 // ---- File FloatRangeValidator.java

 public class FloatRangeValidator implements

 ConstraintValidator<FloatRange, Number> {

 private double min;

 private double max;

 private double precision;

Appendix

421

 @Override

 public void initialize(FloatRange constraint) {

 min = constraint.min();

 max = constraint.max();

 precision = constraint.precision();

 }

 @Override

 public boolean isValid(Number value,

 ConstraintValidatorContext context) {

 return value.doubleValue() >=

 (min == -Double.MAX_VALUE ? min :

 min - precision)

 && value.doubleValue() <=

 (max == Double.MAX_VALUE ? max :

 max + precision);

 }

 }

Exercise 4: Inside index.jsp, add this to the <form> tag:

 ...

 ${msg.enter_dateOfBirth}

 <input type="text" name="dateOfBirth" />

 ...

In the controller, you have to add a String parameter to the @POST

method, because there is no date converter. You therefore need to

parse the String manually:

 @POST

 @Path("/greet")

 public Response greeting(

 ...

 @MvcBinding @FormParam("dateOfBirth")

 String dateOfBirthStr

 ...)

Appendix

422

 {

 ...

 DateTimeFormatter dtf =

 DateTimeFormatter.

 ofPattern("yyyy-MM-dd");

 LocalDate ld = LocalDate.parse(

 dateOfBirthStr, dtf);

 userData.setDateOfBirth(ld);

 ...

 }

Inside UserData, add the new date of birth field, together

with getters and setters. As an additional getter, add

getDateOfBirthDate() and return the date as a java.util.Date,

since JSPs can’t handle LocalDate objects:

 ...

 private LocalDate dateOfBirth;

 ...

 public LocalDate getDateOfBirth() {

 return dateOfBirth;

 }

 public Date getDateOfBirthDate() {

 Calendar cal = Calendar.getInstance();

 cal.set(dateOfBirth.getYear(),

 dateOfBirth.getMonthValue()-1,

 dateOfBirth.getDayOfMonth(),

 0, 0, 0);

 return cal.getTime();

 }

 public void setDateOfBirth(

 LocalDate dateOfBirth) {

 this.dateOfBirth = dateOfBirth;

 }

Appendix

423

In greeting.jsp, you can use the <fmt:formatDate> tag to output

the date:

 ...

 <fmt:formatDate value="${userData.dateOfBirthDate}"

 pattern="yyyy-MM-dd" var="dob" />

 ${msg.response_dateOfBirth} ${dob}

 ...

As a last step, add values for the enter_dateOfBirth and

response_dateOfBirth keys in the language resources files.

Obviously, the age field is obsolete now and you can remove it,

if you like.

�Chapter 9 Exercises
Exercise 1: (1) No, an EJB can have only a local interface, only a

remote interface, or both. (2) No, a no-interface EJB means it can

only be used for local access. (3) No, a remote EJB can be accessed

from the same application, a different application on the same

Jakarta EE server, or applications from other servers on the same

machine or anywhere in the network. (4) No, a stateful EJB can

maintain a state. (5) No, a singleton EJB never gets instantiated

more often than just once. (6) No, for local EJBs you can also

use injection via the @EJB annotation. (7) No, only the remote

interfaces must be exported if EJBs are used remotely.

Exercise 2: The build.gradle file of the library (JSE, plain Java)

project reads, for example:

 plugins {

 id 'java-library'

 }

Appendix

424

 java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

 }

 repositories {

 jcenter()

 }

 dependencies {

 // Use JUnit test framework

 testImplementation 'junit:junit:4.12'

 }

The class reads as follows:

 package book.javamvc.simplenojee;

 import java.time.ZonedDateTime;

 import java.time.format.DateTimeFormatter;

 public class MyDateTime {

 public String date(String format) {

 ZonedDateTime zdt = ZonedDateTime.now();

 String outStr = "";

 try {

 outStr = (format == null || "".equals(format) ?

 zdt.toString() :

 zdt.format(DateTimeFormatter.

 ofPattern(format)));

 } catch(Exception e) {

 e.printStackTrace(System.err);

 }

 return outStr;

 }

 }

Appendix

425

The build.gradle file of the EJB project reads as follows:

 plugins {

 id 'java-library'

 }

 java {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

 }

 repositories {

 jcenter()

 }

 dependencies {

 implementation 'javax:javaee-api:8.0'

 implementation files(

 '../../SimpleNoJEE/build/libs/SimpleNoJEE.jar')

 }

 task extractStubs (type: Jar, dependsOn:classes) {

 archiveClassifier = 'ejb-stubs'

 from "$buildDir/classes/java/main"

 include "**/interfaces/*.class"

 }

 jar.finalizedBy(extractStubs)

The classes and interfaces read as follows:

 import javax.ejb.Local;

 import javax.ejb.Remote;

 import javax.ejb.Stateless;

 import [...].MyDateTimeLocal;

 import [...].MyDateTimeRemote;

 import [...].MyDateTime;

Appendix

426

 @Stateless

 @Local(MyDateTimeLocal.class)

 @Remote(MyDateTimeRemote.class)

 public class MyDateTimeEjb {

 public String date(String format) {

 return new MyDateTime().date(format);

 }

 }

For the ellipses, you have to write the package you chose for

MyDateTime and the interfaces (see the next two listings).

 public interface MyDateTimeLocal {

 String date(String format);

 }

 –

 public interface MyDateTimeRemote {

 String date(String format);

 }

For the EAR project, create it as described in the text. Make the

EJB project a subproject of the EAR project. Because the EAR

project needs to refer to the non-Jakarta EE project, add the

following inside the dependencies { } section:

 ...

 dependencies {

 ...

 earlib files(

 '../SimpleNoJEE/build/libs/SimpleNoJEE.jar')

 // <- Assumes that the non-Jakarta EE project

 // is called SimpleNoJEE. Also adapt the path

 // according to your needs.

 }

Appendix

427

You can now run the ear Gradle task, fetch the EAR from the

build/libs folder, and deploy it on the server.

For the client, first run the EJB stub generation task called

extractStubs from the EJB project. Assuming that the remote

EJB interface reads book.javamvc.mydatetimeejb.interfaces.

MyDateTimeRemote, for the client class, you can take the following:

 import java.util.Properties;

 import javax.naming.InitialContext;

 import javax.naming.NameClassPair;

 import javax.naming.NamingEnumeration;

 import book.javamvc.mydatetimeejb.

 interfaces.MyDateTimeRemote;

 public class Client {

 public static void main(String[] args) {

 String remoteServerHost = "localhost";

 String remoteServerPort = "3700";

 Properties props = new Properties();

 props.setProperty("java.naming.factory.initial",

 "com.sun.enterprise.naming." +

 "SerialInitContextFactory");

 props.setProperty("java.naming.factory.url.pkgs",

 "com.sun.enterprise.naming");

 props.setProperty("java.naming.factory.state",

 "com.sun.corba.ee.impl.presentation.rmi." +

 "JNDIStateFactoryImpl");

 props.setProperty("org.omg.CORBA.ORBInitialHost",

 remoteServerHost);

 props.setProperty("org.omg.CORBA.ORBInitialPort",

 remoteServerPort);

 try {

 InitialContext ic = new InitialContext(props);

 MyDateTimeRemote testEJB = (MyDateTimeRemote)

Appendix

428

 ic.lookup("book.javamvc.mydatetimeejb."+

 "interfaces.MyDateTimeRemote");

 System.out.println(testEJB.date(

 "yyyy-MM-dd HH:mm:ss"));

 } catch (Exception e) {

 e.printStackTrace(System.err);

 }

 }

 }

Make sure you’ve added the stubs from the EJB project and

the gf-client.jar from GlassFish’s lib folder as library

dependencies.

�Chapter 10 Exercises
Exercise 1: (1) True. You administer a data source on the Jakarta

EE server. The way this needs to be done is server product

dependent, but once the data source is available, the access

mediated via JPA is standardized.

Exercise 2: The ORM—Object Relational Mapper.

Exercise 3: (1) No, although DAOs help improve code quality.

(2) No, the entity manager will take care of that. (3) No, this is the

entity classes’ responsibility. (4) Yes. (5) No, EJBs help improve

DAO handling, but you don’t need to use them if they don’t fit

your needs.

Exercise 4: (1) True. (2) No, you can provide the table name inside

the @Table annotation: @Table(name = "TAB_NAME"). (3) No,

you can provide the column name inside the @Column annotation:

@Column(name = "COL_NAME"). (4) True.

Exercise 5: Create a table and sequence as described in the text.

Add the table column header label tblhdr_status = Status

to the src/main/resources/book/javamvc/jpa/messages/

Appendix

429

Messages.properties file. Inside the index.jsp view, add the

following:

 <table>

 <thead>

 <tr>

 ...

 <th>${msg.tblhdr_status}</th>

 ...

 </tr>

 <thead>

 <tbody>

 <c:forEach ... >

 <tr ...>

 ...

 <td>${itm.statusLst}</td>

 ...

 </tr>

 </c:forEach>

 </tbody>

 </table>

Update the User class and add a field for the status (comma-

separated status list):

 package book.javamvc.jpa.data;

 public class User {

 ...

 private String statusLst;

 // + Getter / Setter

 ...

 }

On the database side (package db), you have to add a little more

structure and introduce a new Status class. This class was

described in the text.

Appendix

430

For the MemberDAO class, you have to add a (varargs) parameter

for the status of a new user, or use the following:

 package book.javamvc.jpa.db;

 import java.util.List;

 import java.util.Set;

 import java.util.stream.Collectors;

 import java.util.stream.Stream;

 import javax.ejb.Stateless;

 import javax.persistence.EntityManager;

 import javax.persistence.PersistenceContext;

 import javax.persistence.TypedQuery;

 @Stateless

 public class MemberDAO {

 ...

 public int addMember(String name,

 String... status) {

 List<?> l = em.createQuery(

 "SELECT m FROM Member m WHERE m.name=:name").

 setParameter("name", name).

 getResultList();

 int id = 0;

 if(l.isEmpty()) {

 Member member = new Member();

 member.setName(name);

 Set<Status> s = Stream.of(status).map(

 s1 -> new Status(s1)).

 collect(Collectors.toSet());

 member.setStatus(s);

 em.persist(member);

 em.flush(); // needed to get the ID

 id = member.getId();

 } else {

 id = ((Member)l.get(0)).getId();

 }

Appendix

431

 return id;

 }

 ...

 }

Inside the controller, update the addMember() method and add a

new parameter for the status list. Also, inside the addUserList()

method, you must mediate between the structured status

collection from the database and the flat comma-separated status

list for the view.

 package book.javamvc.jpa;

 import java.util.ArrayList;

 import java.util.List;

 import java.util.stream.Collectors;

 import javax.ejb.EJB;

 import javax.enterprise.context.RequestScoped;

 import javax.inject.Inject;

 import javax.inject.Named;

 import javax.mvc.Controller;

 import javax.mvc.binding.BindingResult;

 import javax.mvc.binding.MvcBinding;

 import javax.mvc.binding.ParamError;

 import javax.validation.constraints.Pattern;

 import javax.ws.rs.FormParam;

 import javax.ws.rs.GET;

 import javax.ws.rs.POST;

 import javax.ws.rs.Path;

 import javax.ws.rs.core.Response;

 import book.javamvc.jpa.data.User;

 import book.javamvc.jpa.db.MemberDAO;

 import book.javamvc.jpa.db.Status;

 import book.javamvc.jpa.model.UserEntering;

 import book.javamvc.jpa.model.UserList;

Appendix

432

 @Path("/hello")

 @Controller

 public class HelloJpaController {

 ...

 @POST

 @Path("/add")

 public Response addMember(

 @MvcBinding @FormParam("name")

 String name,

 @MvcBinding @FormParam("statusLst")

 @Pattern(regexp = "(\\w*(,\\s*\\w*)*)?")

 String statusLst) {

 if(br.isFailed()) {

 br.getAllErrors().stream().forEach(

 (ParamError pe) -> {

 errorMessages.addMessage(

 pe.getParamName() + ": " +

 pe.getMessage());

 });

 } else {

 userEntering.setName(name);

 userEntering.setStatusLst(statusLst);

 memberDao.addMember(name, statusLst);

 }

 addUserList();

 return Response.ok("index.jsp").build();

 }

 ...

 ///

 ///

 private void addUserList() {

 userList.addAll(

 memberDao.allMembers().stream().

 map(member -> {

Appendix

433

 int id = member.getId();

 String name = member.getName();

 String statusLst = member.getStatus().

 stream().

 map(Status::getName).

 collect(Collectors.joining(", "));

 return new User(id, name, statusLst);

 }).collect(Collectors.toList()));

 }

 }

Exercise 6: @OneToMany, @ManyToOne, @OneToOne, and @

ManyToMany.

�Chapter 11 Exercises
Exercise 1: Let it read as follows:

 package book.javamvc.helloworld;

 import java.util.HashMap;

 import java.util.Map;

 import java.util.logging.Logger;

 import javax.annotation.PostConstruct;

 import javax.inject.Inject;

 import javax.ws.rs.ApplicationPath;

 import javax.ws.rs.core.Application;

 @ApplicationPath("/mvc")

 public class App extends Application {

 private final static Logger LOG =

 Logger.getLogger(App.class.toString());

 @PostConstruct

 public void init() {

 LOG.entering(this.getClass().toString(),

 "init");

 }

Appendix

434

 @Override

 public Map<String, Object> getProperties() {

 LOG.entering(this.getClass().toString(),

 "getProperties");

 Map<String, Object> res = new HashMap<>();

 res.put("I18N_TEXT_ATTRIBUTE_NAME",

 "msg");

 res.put("I18N_TEXT_BASE_NAME",

 "book.javamvc.helloworld.messages.Messages");

 LOG.info("Set 'I18N_TEXT_ATTRIBUTE_NAME' to "+

 "'msg'");

 LOG.info("Set 'I18N_TEXT_BASE_NAME' to " +

 "'book.javamvc.helloworld.messages." +

 "Messages'");

 return res;

 }

 }

Exercise 2: Adapt the server.policy file as described in the text.

Add the the log4j-core-2.11.2.jar, log4j-api-2.11.2.jar,

and log4j-appserver-2.11.2 files (or whatever version you

downloaded) from the Log4j2 distribution to the GLASSFISH_

INST/glassfish/domains/domain1/modules/autostart folder.

Add a log4j2.json file to GLASSFISH_INST/glassfish/domains/

domain1/lib/classes. Example configuration files are presented

in the text.

To your project, inside build.gradle, add the following as a

dependency:

 dependencies {

 ...

 implementation 'org.apache.logging.log4j:'+

 'log4j-api:2.11.2'

 }

Appendix

435

Add a static logger field to each class and use it:

 public class SomeClass {

 private final static Logger LOG =

 LogManager.getLogger(SomeClass.class);

 ...

 public void someMethod() {

 ...

 LOG.trace("Trace: ...");

 LOG.debug("Debug: ...");

 LOG.info("Some info: ...");

 LOG.warn("Some warning: ...");

 LOG.error("Some error: ...");

 LOG.fatal("Some fatal error: ...");

 ...

 try {

 ...

 } catch(Exception e) {

 ...

 LOG.error("Some error", e);

 }

 }

 }

Appendix

437
© Peter Späth 2021
P. Späth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1

Index

A
Administrative REST interface, 34, 42
Application scope, 139, 148, 188
Asynchronous EJB invocation,

252, 253
Authentication, 19, 22, 66
Automatic timers, 253, 254, 258, 259

B
Bean validation, 23, 122, 193
BundleForEL class, 226, 238, 417

C
Component-to-EJB communication,

249, 258
Conditional branching, 152, 153,

177, 189
Context and dependency injection (CDI)

technology, 23, 134, 135, 187
context.getTimerService(), 256
Controller, 1, 2
ConvertDateTime tag, 236
ConvertNumber tag, 235
Cookies, 153, 154, 189
createSingleActionTimer()

invocation, 256
Custom converters, 237, 239
Customized bundle class, 226

D
Dependencies, Gradle, 66–69, 89
Dependent scope, 139
doFilter() method, 226

E
Eclipse

adding plugins, 49
configuration, 48, 49
everyday usage, 50
functions, 50
Gradle multi-project, 76, 77
IDE, 46
installation, 46, 47
Java runtimes, 49
plugins, install, 47

Eclipse Gradle plugin, 55, 57, 75, 81, 88, 92
Enterprise Archive (EAR), 250, 258
Enterprise edition J2EE, 20
Enterprise Java Beans (EJBs)

accessing, 246–248
asynchronous invocation, 252, 253
container environment, 241
defining, 242–245
dependencies, 250–252
local access to session, 243
projects, 248, 249
session, 241, 242
timers, 253, 255, 256

https://doi.org/10.1007/978-1-4842-6280-1#DOI

438

Expression languages (EL)
deferred expressions, 178
handler, 146–148
implicit objects, 148

F
Facelets

configuration, 155–157
files, 155
JSTL, 177
language resources, 224
localized message, 225, 228
Musicbox Facelets application,

164–177
templates, 158–160

FormatDate tag, 233
FormatNumber tag, 231
Formatting data, 229–234

G
GlassFish server

administrative frontends, 28
getting, 26–28
GUI administration, 32, 33
Jakarta EE 8, 36
REST interface administration, 33–36
shell administration, 28–32

Gradle
build framework/build

automation tool, 45
build.gradle file, 69
build-related activities, 53
central build file, 55–57
command options, 83
configuration phase, 53, 67
console, builds, 81–84

custom tasks, 73, 74
declarative configuration style, 45
dependencies, 66–69, 89
deploy task, 79–81
EchoLibrary example, 70
EchoLibrary project, 51, 53
execution phase, 54
initialization phase, 53
multi-project builds, 75, 76, 78
MVC installation, 84, 85
plugins, 53, 63, 64
project layout, 54
repositories, 64–66
script variables, 72
tasks, 61–63

plugins, 61
run configuration, 60
view menu, 59
view tree, 58

wrapper, 74, 75
Graphical user interface (GUI), 18
greeting() method, 108
Groovy language feature, 72, 73, 91

H
HelloWorldController, 105, 107
Hello World project, 8–17

add gradle.properties file, 102
build.gradle file’s content, 100–102
controller, 107, 108
deploying and testing, 111–113
Gradle

executions view, 109
project explorer view filter, 110
tasks, 109

Gradle project wizard welcome page,
96–99

Index

439

Jakarta EE server, 111
libraries, 100
model, 103, 104
view, 104–107

Hierarchical MVC (HMVC), 3

I
Implicit objects, 145
Integrated development environment

(IDE), 46

J, K
Jakarta EE/Java EE

authentication, 19
configurations, 20
corporate environments, 19
enterprise applications, 36
features, 21
GlassFish (see GlassFish server)
security, 19
specifications, 21
standard edition (SE), 23, 24
version numbers, 21–23

JavaBeans components, 145, 146
Java EE Security API, 22
Java/Jakarta Enterprise Edition, 9
Java Messaging Service (JMS), 22
Java MVC, 7, 8

CDI, 134, 135, 137
controller

basics, 179
getting pages, 180
posting data, 183–186
prepare model values, 182, 183
URLs, 182

exception handling, 120–124
form to controller connection, 120

handling query parameters, 126–129
model object scopes, 137
non-string POST parameters, 124, 125
simplified model data container, 139
user input from forms, 117–120
view, Facelets

configuration, 155–157
files, 155
and JSTL, 177
Musicbox Facelets application,

164–177
template, 157–160, 165

view, JSPs
basics, 141
conditional branching, 152, 153
cookies, 153, 154
directives, 141, 142
dynamic output, 148
expression language handler,

146–148
implicit objects, 145
JavaBeans components, 145
Java code and expressions, 144
loops, 150–152
static content, 143, 144
variables, 149

model object scopes, 138, 139
JavaSE (JSE) version, 20
Java Server Faces (JSF), 21
Java Server Pages (JSP), 23

conditional branching, 152, 153
cookies, 153, 154
directives, 141, 142
formatting, 234–236
implicit objects, 145
Java code and expressions, 144
language-related resources, 223
localized message, 225, 228

Index

440

loops, 150–152
variables, 149

Java Transaction API (JTA), 22
JBoss Enterprise Application Platform, 25

L
Language resources, 223–225
Localized data conversion, 236, 237
Localized messages, 225, 226, 228
Loops, 150
<ui:debug> tag, 164
<ui:fragment> tag, 161, 163
<ui:repeat> tag, 163

M
Model-View-Adapter (MVA), 4
Model-View-Controller (MVC)

design pattern, 3
“Hello World” example, 8–17
history, 3, 4
Java, 6–8
web applications, 4, 5

Model-View-Presenter (MVP), 4
Model-View-View-Model (MVVM), 4
Musicbox Facelets application, 177
@MvcBinding annotation, 120, 184

N
@Named annotation, 145
Non-string POST parameters, 124, 125

O
OPTIONS verb requests, 39

P
POST method, 184
Presentation-abstraction-control

(PAC), 3
Programmatic timers, 253

Q
Query parameters, 126–129

R
@Remote annotation, 244
Remote EJB server, 248
Repositories, Gradle, 64–66
Repository specifications, 89
Representational state transfer (REST), 37
Resource bundles, 223, 228
RESTful Web-Services (JAX-RS), 21, 37–40

S
@Schedules annotation, 255
Scopes, Java MVC, 137–139
Session EJBs, 241, 242
Session scope, 138
setBean() method parameter, 134
setFor() method, 228
Singleton session EJB, 241
Standard edition J2SE, 20
Stateful EJBs, 242
Stateless EJB, 242

T
Timer EJBs, 253, 255, 256
toString(), 229
Transitive dependencies, 69

Java Server Pages (JSP) (cont.)

Index

441

U
Unified expressions, 178
uriBuilder(), 118

V
Variables, 149, 150

W, X, Y, Z
Web applications, 4, 5
@WebFilter, 225
Web sockets, 22
wrapper task, 74, 75, 81, 92

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: About MVC: Model, View, Controller
	The History of MVC
	MVC in Web Applications
	MVC for Java
	Finally, Java MVC (JSR-371)
	Why MVC
	Where Is Hello World?
	Exercises
	Summary

	Chapter 2: Prerequisite: Jakarta EE/Java EE
	The Nature of Java for Enterprise Applications
	GlassFish, a Free Java Server
	Getting GlassFish
	GlassFish Shell Administration
	GlassFish GUI Administration
	GlassFish REST Interface Administration

	Using a Preinstalled Java Server
	Learning Java for Enterprise Applications
	RESTful Services
	Exercises
	Summary

	Chapter 3: Development Workflow
	Using Gradle as a Build Framework
	Using Eclipse as an IDE
	Installing Eclipse
	Configuring Eclipse
	Adding Java Runtimes
	Adding Plugins
	Eclipse Everyday Usage

	More About Gradle
	A Basic Gradle Project
	Gradle Main Concepts
	Standard Gradle Project Layout
	The Central Gradle Build File
	Running Gradle Tasks
	Gradle Tasks Explained
	Gradle Plugins
	More About Repositories
	More About Dependencies
	Changing the Project Structure
	The Gradle Build File Is a Groovy Script
	Script Variables
	Custom Tasks
	The Gradle Wrapper
	Multi-Project Builds
	Adding a Deploy Task

	Developing Using the Console
	Installing MVC
	Exercises
	Summary

	Chapter 4: Hello World for Java MVC
	Starting the Hello World Project
	The Hello World Model
	The Hello World View
	The Hello World Controller
	Using Gradle to Build Hello World
	Starting a Jakarta EE Server
	Deploying and Testing Hello World
	Exercises
	Summary

	Chapter 5: Start Working with Java MVC
	Handling User Input from Forms
	Exception Handling in Java MVC
	Non-String POST Parameters
	Handling Query Parameters
	Exercises
	Summary

	Chapter 6: In-Depth Java MVC
	The Model
	CDI in Java MVC
	Model Object Scopes
	The Simplified Model Data Container

	The View: JSPs
	JSP Basics
	Directives
	Static Content
	Java Scriptlets and Java Expressions
	Implicit Objects
	JavaBeans Components
	Expression Languages
	Output
	Variables
	Loops
	Conditional Branching
	Cookies

	The View: Facelets
	Facelets Files
	Facelets Configuration
	Templating via Facelets
	The <ui:include> Tag
	The <ui:composition> Tag, First Variant
	The <ui:composition> Tag, Second Variant
	The <ui:insert> Tag
	The <ui:define> Tag
	The <ui:param> Tag
	The <ui:component> Tag

	The <ui:decorate> Tag
	The <ui:fragment> Tag
	The <ui:repeat> Tag
	The <ui:debug> Tag

	An Example Facelets Project
	Mixing Facelets and JSTL
	Unified Expressions

	The Controller
	Controller Basics
	Getting Pages
	Preparing the Model
	Posting Data into Controllers

	Exercises
	Summary

	Chapter 7: In-Depth Java MVC: Part II
	Adding Bean Validation
	Injectable Context
	Persisting State
	Dealing with Page Fragments
	Observers
	Configuration
	Exercises
	Summary

	Chapter 8: Internationalization
	Language Resources
	Adding Localized Messages to the Session
	Formatting Data in the View
	Using JSF for Formatting
	Localized Data Conversion
	Exercises
	Summary

	Chapter 9: Java MVC and EJBs
	About Session EJBs
	Defining EJBs
	Accessing EJBs
	EJB Projects
	EJBs with Dependencies
	Asynchronous EJB Invocation
	Timer EJBs
	Exercises
	Summary

	Chapter 10: Connecting Java MVC to a Database
	Abstracting Away Database Access with JPA
	Setting Up a SQL Database
	Creating a Datasource
	Preparing the Member Registration Application
	Adding EclipseLink as ORM
	Controllers
	Adding Data Access Objects
	Updating the View
	Adding Entities
	Adding Relations
	Exercises
	Summary

	Chapter 11: Logging Java MVC Applications
	System Streams
	JDK Logging in GlassFish
	GlassFish Log Files
	Adding Logging Output to the Console
	Using the Standard Logging API for Your Own Projects
	Logging Levels
	The Logger Hierarchy and Thresholds
	The Logging Configuration
	The Logging Format

	Using JDK Standard Logging for Other Servers
	Adding Log4j Logging to Your Application
	Adding Log4j Server-Wide
	Changing the Logging Format
	Adding Log4j to Jakarta EE Web Applications
	Using Log4j in the Coding

	Exercises
	Summary

	Chapter 12: A Java MVC Example Application
	The BooKlubb Database
	The BooKlubb Eclipse Project
	The BooKlubb Infrastructure Classes
	Configuring BooKlubb Database Access
	The BooKlubb Internationalization
	The BooKlubb Entity Classes
	BooKlubb Database Access via DAOs
	The BooKlubb Model
	The BooKlubb Controller
	The BooKlubb View
	Fragment Files
	Landing Page
	Member-Related View Files
	Book-Related View Files

	Deploying and Testing BooKlubb
	Summary

	Appendix
	Solutions to the Exercises
	Chapter 1 Exercises
	Chapter 2 Exercises
	Chapter 3 Exercises
	Chapter 4 Exercises
	Chapter 5 Exercises
	Chapter 6 Exercises
	Chapter 7 Exercises
	Chapter 8 Exercises
	Chapter 9 Exercises
	Chapter 10 Exercises
	Chapter 11 Exercises

	Index

