Beginning
ava MV(1.0

Model View Controller Development
to Build Web, Cloud, and Microservices

Applications

Peter Spath

Apress:

Beginning Java MVC 1.0

Model View Controller Development
to Build Web, Cloud, and
Microservices Applications

Peter Spath

Apress’

Beginning Java MVC 1.0: Model View Controller Development to Build Web, Cloud,
and Microservices Applications

Peter Spith
Leipzig, Sachsen, Germany

ISBN-13 (pbk): 978-1-4842-6279-5 ISBN-13 (electronic): 978-1-4842-6280-1
https://doi.org/10.1007/978-1-4842-6280-1

Copyright © 2021 by Peter Spidth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Janko Ferlic on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262795. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6280-1

To Nicole

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns Xiii
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss XV
11T 11T (1 . xvii
Chapter 1: About MVC: Model, View, Controller..........ccccummmmmmmmmmmmmessssssssssssssssesssssnas 1
The HiStory 0f MVC........cccieerrerireserese s s s s sesss s s ssssssssesssssssssssessssensnns 3
MVG in WED ApPPlICALIONS......ccviiiicirierere et 4
L (0] - T 6
Finally, Java MVC (JSR-371)....ccccuriiiirirernnnrninssssssssesesesesesesess s s s s s s ssssssssssssssssssssssssssssssesenes 6
WRY MVC....ceeccceeeeeeess s s bbb bbb e e e e e 7
WheEre IS HEllO WOEIU? ... 8
(] (01T 17
SUMIMAIY....ceiieeteesese s Re e e e e e e e R e e s R e e ne e e e e Re e be e nen e e nnnnn s 18
Chapter 2: Prerequisite: Jakarta EE/Java EE.............ccciinnemmmmnnsssnnnnnssssnsnnsssssssnnnns 19
The Nature of Java for Enterprise AppliCations........cccccvvrverennsnseniennser s sessese e sessessessens 19
GlassFish, @ Free Java SEIVET ... s 25
GEttiNg GIASSFISN......ccovieiiccrir s 26
GlassFish Shell AdmiIniStration ... s 28
GlassFish GUI ADMINISTration...........cccovrernnnmseserennsssse s sesssssssaes 32
GlassFish REST Interface AdminiStration..........c.covveenenennnsnsnesesssssssesess s sessssseas 33
Using a PreinStalled JAVA SEIVETcvvivverernrersereseressesessessssssessesssssssessessesssssssessesssssssensesaes 36
Learning Java for Enterprise Applications ... 36
RESTIUI SEIVICES....uceeeecrereerreseree e resese s se s s n s sss e s s enns 37
(] (01T 41
SUMIMAIY ...ttt e e e e R e b e e e R e e R e e e A e e a e e e Re e b e e e e n e nnnsn e 4

TABLE OF CONTENTS

Chapter 3: Development WOrkflowccceurnsssennmmssssnsnsessssnsssssssssnssssssssssssssssnnnsnsss 45
Using Gradle as a BUild FramEWOIK...........ccceererrrernenernserenesesssessssesessesessssessssessssessssssessssesenns 45
Using EClipse @s an IDE...........coviiinninenc ettt s s s 46

INSTAINNG ECHIPSE ..veueeeieiesirer sttt b s s b e et s et 46
Configuring ECHIPSE.....ccueiiirire st e e s r s e 48
Adding Java RUNTIMES........ccccciiiirenirinene e st se s 49
AddiNg PIUGINS......coiiiirerere st n s bbb s 49
Eclipse Everyday USAge...........ccucriniinininn s ss s s s se s s sss s s 50
MOre ADOUL GrAGIEcceeecereee s 51
A BasiC Gradle ProjECtcccovererenereeserenesessese s sesessese s sessesesse e e sessesessssessssesessssssssnens 51
Gradle Main CONCEPLSccvvircirererin st r e s s s r e nne s 53
Standard Gradle Project LayouL...........ccoeeoreernerreer e 54
The Central Gradle BUilt File ..o 55
RUNNiNg Gradle TaSKScovciivrrinn s s s s s s 57
Gradle Tasks EXPIAINEU..........ccoeriniininienn s sss e se s ssesnssessesnens 61
Gradle PIUGINSccveirererie et e e s b sn e e nne s 63
More ADOut REPOSITOMIESccecerereriririre s 64
More About DEPENUENCIES.ccccreriiccrere e 66
Changing the Project SIrUCLUIE ... e 69
The Gradle Build File IS @ Groovy SCHPLcccccvvrireirrre s 70
SCHPLVAMADIES........ceeeeer et st e e et 72
CUSTOM TASKS ...vuveeecereresssseesesesessssessese e sssesesesss s s s e e s ssss s s sesassasssssssssesssssnssssssensassnsaes 73
The Gradle WIAPPET ..ottt sa s e s e e sttt st s senne e 74
MUHi=ProjeCt BUilds..........covieriirerininrircne s s 75
Adding @ Deploy TaSKccccveierieierininsenese s s s sr s 79
Developing Using the CONSOIE..........cccuiimiririinninn s s ss s srs e snes 81
INSTAIING MVC ... 84
(] (oSSR 85
E 11104 RS 86

TABLE OF CONTENTS

Chapter 4: Hello World for Java MVC.........ccccussseenmmssssnnssessssnssssssssssssssssssssssssssnnnssnss 95
Starting the Hello WOrld ProjJECT ..ot 95
The Hello WOrld MOccoueeeeeeeeeerescrerese e se e s s s sennenens 102
THe HEllo WOIIA VIBWcoveerercrereseriee s se s ses e se s s sssnssessssssesssssnssnens 104
The Hello World CONtrollErcouveeiinernsesssesesese s sessess e s ssssesssssssssssessssessssenens 107
Using Gradle to Build Hello WOIIdccucererniininene s sesese s sesse s s sessessessessssessesaens 108
Starting @ JaKarta EE SEIVETcccvevrvrrere e sene e sss e sse s s sse s saessssessesaesssssssesaesnes 111
Deploying and Testing HElIO WOKId...........ccooeerircrce et se e 111
(] (o1 114
£ 111 T S 115

Chapter 5: Start Working with Java MVCccccccmmmmmmmmmmssssssssssnssssssssssssssssssssnnss 117
Handling User INput from FOrMSccvienieniiisc e ss s sessesenns 117
Exception Handling in Java MVC...........ccccuvrirnnninenn s sessessessessssessessessssessessessesssssssesaens 120
NON-String POST Parameters.......cccccreverrerrererensersesesssssssessessessssessessesssssssessesssssssessessesssssssessens 124
Handling QUEry Parameters........ccovvrninineniners s s se s s sesse s 126
(] (o 130
£ 11T T 130

Chapter 6: In-Depth Java MVC..........cccccusemmmmmsssnnnnmmssssssnmsssssssnsssssssssssssssssssssssnnnnss 133
THE MOUEL ... b bbbt 133

CDIiN JaVa MVC........coiieriririnis st se ettt 134
Model ODJECE SCOPES....cciveerrrerrrrirerese s er e ra e 137
The Simplified Model Data CoNtaiNercccvivvrinininnnn e 139
TRE VIBW: JSPS.....ccccccrcsss e bbb s 140
JSP BASICS....ucuiiiriirisisese e 141
DIrECHIVES. .. eeereerrrer et p e p e R e 141
STALIC CONTENT.......cceccceceer s 143
Java Scriptlets and Java EXPressions ... sessessssssesesssssnns 144
IMPIICIE ODJECIS. ...uerieeerircer e e 145
JavaBeans COMPONENTScccccviiririerenn et e sae e se e nne s 145
EXPreSSion LANQUAGES.coevruerrrrenersesersssessssessssesesssssssssesssssssssssessssessssssssssnsssssssssssnssssnsssnnes 146

vii

TABLE OF CONTENTS

1] O 148
LT 10 T 149
00 1SS 150
Conditional BranChiNgccccvrerererserieressssessesessesessessessessssessessessssessessesassssssssessesssssssessees 152
L0101 153
The VIEW: FACEIELS ..o s s 154
L TeT=] (o 3| TSN 155
Facelets CONfIgUIatioN..........ccvcvieviernrriere s s s saesae e s saennes 155
Templating via FACEIETS.......c.ccevererirer s s s 157
The <uizdecOorate> TAQccvvrveriririr e e a e s e 161

An Example Facelets Project ..o e s s ssae s sae s 164
Mixing FAcelets @and JSTL........ccuceviererreriererensenessessssessessessessssessessessssessessesssssssessesassssssssesaes 177
UNified EXPrESSIONScvieieeririersie et ressee s s e s s s s s e sa e s s s s s st e sa e s s e s snesae s e nnean 178
LI 0011 0] P 179
CONTrOHIEE BASICScervrerreseeeresesseseesesesss s e s s se s ses s sesassssss s sesssssnsaes 179
[T T J a2 Vo[180
Preparing the MOGELcocvvriere e s r e s s sa e s ne e aenae e 182
Posting Data into CONTIOIIEIS.......c.cevrvererererierrere e ses e s s e s s e saesae e s saesaesa s e saesnes 183
(] (o1 T 187
£ 0111 187
Chapter 7: In-Depth Java MVC: Part Il.........cccunnmmmmmmmmnnnmmmsmsssssssssssssssssssssssssssnnnes 193
Adding Bean Validationcccvieirinieniennninsire s sessessessessssessessessessssessesssssessssessessens 193
INJECLADIE CONTEXEvevveererertr e re s s s se s e s a e s r e s s ae e e e e e saeene e e e naenae e 203
Persisting STate........cccoecieirrre e s 205
Dealing with Page Fragments ..o sse st sessesnens 207
(00T 1T 212
[10 TH 0 o SRS 215
o= {1 RN 218
£ 11134 7R 218

viil

TABLE OF CONTENTS

Chapter 8: Internationalization.........cccccuseemrrnsssnnnnnnssssnnnnnsssnmnssssns———— 223
Language RESOUICES.......ccccuerriireresie i s e se s s sr s s se s s s n e e s be st e e nnens 223
Adding Localized Messages t0 the SESSION ... 225
Formatting Data in the VIEW.........cccveerrcnrererecrs e 229
Using JSF for FOrMattingccovenerenernsmsnnessssss s s s ssssssessssesessesenns 234
Localized Data CONVEISION..........c.coverrrinmsissssssssse s s s s 236
(=] (1T O 238
£ 11134 7 238

Chapter 9: Java MVC and EJBS.......ccccrussssnnnmsssssssnssssssssssssssssnsssssssnnsssssssssssssssnnnnss 241
ADOUL SESSION EUBS ... e s e se s s e e 241
DEfiNNG EJBS......coviiereeeriecriresere e e 242
ACCESSING EUBS.....ceiviiiricirese e s s sr s sr s nna s 246
S o 0] T OSSN 248
EJBS With DEPENAENCIES....ccuerrererrererrererserersessssessessessessssessessessssessessesssssssessessessssessessesssssnsessens 250
Asynchronous EJB INVOCALIONccecervrieenerersir e reres e s e s sne s s 252
LT = TR 253
(] (o1 256
B30T 111 T o OSSR 257

Chapter 10: Connecting Java MVC to a Database...........ccccsusemsssnsssansssassssnsssansssans 261
Abstracting Away Database Access With JPA ... nennens 261
Setting Up @ SAL DAtahASEcccverrrerirerirese s s 262
Creating @ DAtASOUICE........cccueririerne st p st 264
Preparing the Member Registration Application ... 266
Adding EClipSELINK @S ORMccovermrenerrenereresesese s se e ses e e sessssessssessssessenes 274
[0 0101 275
Adding Data ACCESS DDJECTS ..cvuevriveriiriererrrr s s nne s 279
UPAAting the VIBWcvvvcerereririerere s sse e sss e s sas e sessessesessessesaessssessesnesasssssesaesassssssnsesaens 281
D ¥0 o T 0= L 283

ix

TABLE OF CONTENTS

Adding RElAtiONScceiiriiiii it 285
(] (01T T O 289
SUMIMANY ..ttt b e e e e e bR e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrn 291
Chapter 11: Logging Java MVC Applications......cccccussemmmmssssnssmssssssnnssssssssssssssnnnnss 295
SYSTEIM SIrBAMS.....ccvieeerreserrre e n e ne s p e e s 295
JDK LOgQing in GIASSFISN........ccceiiieriserinesnnesess e sr s s ss s sessssssnenens 296
GIASSFISN LOG FIlEScceivieriririrreserissessse s s e s s ss e e s s snssssssnssensans 297
Adding Logging Output 10 the CONSOIEcceveerrrenmrinernsesrse s sesnenens 297
Using the Standard Logging API for Your Own Projects.......c.cueuererernsesessessssssessnsessssssessnns 298
LOGGING LEVEIS......ccveeeerieerircsire s s nra s 299
The Logger Hierarchy and THreSholds..........cooueevrenninernnesnsesesese s sss e sessesessenens 299
The Logging Configurationc.ucevenerenernsesesesesese s sesse s sss e sessessssssessssesesssssssenens 301
The Logging FOrMALccccveeerenrnesrsesesese s sn s s sesse s e senssssssenens 303
Using JDK Standard Logging for Other SErVers..........cuererrnsesnsesnneses s sessesenns 303
Adding Log4j Logging to Your AppliCation........c.cceeevvrrverernnensensenesssssssesessessssessessesssssssessensens 304
Adding LOg4j SEIVEr-Witeeoeveerrerrerirnerserersesessessessessesessessessessssessessessessssessessesssssssessesses 305
Changing the Logging FOrmatcccvevrinininennsnie s s ses e s ssessssessesaees 308
Adding Log4j to Jakarta EE Web Applicationsc.cccvvvrrvienenssnsene s ses s sessessessenees 310
Using Log4j in the COdiNg......cccccvererrerieresinsersenesse s s sse s sesessessssessessesaessssessessesssssssesneses 312
(] (0T T 313
£ 1134 7 314
Chapter 12: A Java MVC Example Application.........ccccccvvnssssseemsmmnnnnnnssssssssssssnns 321
The BOOKIUDD Databhase........ccoueererenerreserensesrssenessssessssssesssssssssesessssssssssssssssssssssssssssssnsssssssssssnens 321
The BoOKIUDD ECIIPSE PrOJECLcecervecerrneriseserise s s s se e s ss s e sessessssenens 323
The BooKIubb INfrastructure CIASSES...........currmimnmserinmnssssse s sesssnns 326
Configuring BoOKIUDD DataDase ACCESScvvererrerreresersersersersesessessessessssessessessssessessessessssessesses 328
The BooKlubb Internationalizationcooerenrnnnnnnc e 328
The BooKIubb Entity ClaSSES.......cccvirrrrerienininsine s s s srs s s s s ssssessesne s 333
BooKlubb Database ACCESS Vid DADSccocveererrenmrenseresesesese s sesesese s e sessesessssessesesessesenns 340
The BOOKIUDD MOTEL ..ottt 347

TABLE OF CONTENTS

The BOOKIUDD CONTIOIIETcovoveicierericsee s 354
The BOOKIUDD VIBWeeeeeericcerce e 364
Fragment Files........o s s s s 365

[1010] T T = Vo - S 367
Member-Related VIEW FileS.........cco i 368
BOOK-Related VIEW FilES.........ccoviierererrereseeree s 381
Deploying and Testing BOOKIUDD..........cco oo 390
£ T S 391
APP NI e eiriiiinnnnrssssnnnnessssnsnnessssnnnnessssnnnsessssnnneessssnsnnessssnnnsessssnnnesssssnnnsssssnnnnssssnnns 393
SOIULIONS t0 The EXEICISES.....uueierieeriserireserese e sr e 393
CHapLEr T EXEICISES...ccuvuierrrrerrrreserrssesrse s e s s ss s s e nnnna s 393
(081 10 (= g o (=T o LT OO 394
Chapler 3 EXBICISES...uvuiuirriririeririesirse st st s st b e s 394
ChapPIEr 4 EXEICISES...ueiuirriiriereriesir st s s s e s s s st b p e e s 396
Chapler 5 EXBICISES...uciueiiiirereriesir ettt e et e bbb e s 399
Chapler B EXEICISES....ciueviiiriererir st s s st e st s s e s 403
ChaPIEr 7 EXBICISES..ccueiverieiririeriesis st rs st s e st s bbb e s 405
Chapler 8 EXBICISES....ciueiriirieririrsis st s s st e b e e s e b e s 413
Chapler 9 EXEICISES....ciuiviiirrire sttt st s b s e b e s 423
Chapler 10 EXEICISES......cuiuiriririsinsinese s s s st s st s st st 428
Chapler 11 EXEICISES.....uiiirveririsirsine s s s et s st s st e s s 433
1T - 437

xi

About the Author

Peter Spéth graduated in 2002 as a physicist and soon afterward became an IT
consultant, mainly for Java-related projects. In 2016, he decided to concentrate on
writing books on various aspects, but with a main focus on software development.
With two books about graphics and sound processing, three books on Android app
development, and a beginner’s book on Jakarta EE development, the author continues
his effort in writing software development-related literature.

xiii

About the Technical Reviewer

Luciano Manelli was born in Taranto, Italy, where he
currently resides with his family. He graduated in Electronic
Engineering at the Polytechnic of Bari at 24 years of age and
then served as an officer in the Navy. In 2012, he earned a
PhD in computer science from the IT department, University
of Bari - Aldo Moro. His PhD focused on grid computing

and formal methods, and he published the results in

international publications. He is a professionally certified

engineer and an innovation manager, and in 2014, he began
working for the Port Network Authority of the Ionian Sea - Port of Taranto, after working
for 13 years for InfoCamere SCpA as a software developer. He has worked mainly in the
design, analysis, and development of large software systems; research and development;
testing; and production with roles of increasing responsibility in several areas over the
years. Luciano has developed a great capability to make decisions in technical and
business contexts and is mainly interested in project management and business process
management. In his current position, he deals with port community systems and digital
innovation.

Additionally, he has written several IT books and is a contract professor at the

Polytechnic of Bari and at the University of Bari - Aldo Moro. You can find out more at his
LinkedIn page: it.linkedin.com/in/lucianomanelli.

Introduction

Starting at the very infancy of software creation, developers tried to modularize their
applications in order to streamline their projects and increase the maintainability of
the software they created. Soon, a very basic segregation scheme was identified: One
part of the software must deal with data and persistence, another part must deal with
presenting the data to the user, and one last part must handle data input and frontend
view propagation.

This segregation scheme showed up in so many projects that it was promoted to a
common software design pattern, called Model-View-Controller, or MVC for short. Its
power also manifested in its versatility, even with big paradigm changes, like the onset of
the Internet age. With database products for the model layer, browsers for the view layer,
and some kind of user input processing for the controller layer, the pattern’s accuracy
and applicability to the majority of software projects became even more apparent with
web applications.

Interestingly, even though most web application frameworks under the hood apply
some kind of MVC layer demarcation, Java Server products up to JEE 7 did not include
a dedicated MVC framework. With JSR-371 (Java Specification Request number 371)
only recently and starting with JEE 8/Jakarta EE 8, an MVC specification entered the Java
Enterprise application realm, which is one of the reasons this book was born. It does
not describe all MVC Frameworks that you can add to Java EE/Jakarta EE as an external
library. There are just too many of them and you can learn about them by looking at
each library’s documentation. Instead, we talk about the genuine Java MVC library as
described by JSR-371.

The target version of Java MVC is 1.0, and we use a Jakarta EE version 8.0 compliant
server to run Java MVC on it.

The Book’s Targeted Audience

The book is for beginning or advanced enterprise software developers with knowledge
of Java Standard Edition version 8 or later and some experience in Jakarta EE (or JEE)
development. It is also assumed that the reader is able to use the online API references,

xvii

INTRODUCTION

as this book is not a reference in the sense that all API classes and methods are listed.
Instead, it presents techniques and technologies that help professional Java Enterprise
level developers leverage web application programming by including Java MVC in their
software.

The book uses the Linux operating system as the development platform, although
the code can be run on other platforms (Windows and macOS) without complex
adaptions. This book also does not talk about hardware issues (in case you don’t use a
laptop, a PC, or a server).

The readers will in the end be able to develop and run Java MVC programs of mid- to
high-level complexity.

Sources

All sources shown or referred to in this book can be accessed via the Download Source
Code button located at waw.apress.com/9781484262795.

How to Read This Book

You can read this book sequentially from the beginning to the end, or you can read
chapters on an ad hoc basis if your work demands special attention on a certain topic.

xviii

http://www.apress.com/9781484262795

CHAPTER 1

About MVC: Model,
View, Controller

MVC is a software design pattern. It describes the separation of software into three
elements:

e Model: Manages the data of an application. This is to be understood
in a narrow sense. Of course, any part of a less than trivial application
deals with the application’s data in one way or another, but the
model from MVC corresponds to data items viewable to the user and
possibly subject to change by user interactions. The model is agnostic
to the way the data is represented to the user or any application
workflow, so it can be said that the model is the central part of a MVC
application. It is not surprising that developing a model is among the
first steps of any MVC software project.

e View: Describes the presentation of the data and control elements
(inputs, buttons, check boxes, menus, and so on) to the user. A view
may provide different modes, like paged or non-paged tables, a
formatted list or a link list, and so on. A view also may use different
technologies, like a GUI component installed on the user’s PC, an
app on a mobile phone, or a web page to be viewed in a browser.

o Controller: Handles user input and prepares the data set necessary
for the view part to do its work. While a view shows model items, the
view never has to know how data is stored and retrieved from some
persistent storage (database). This is the controller’s responsibility.
Because the user input determines what an application has to do next,
the controller also contains the application logic. Any calculation and
data transformation happens in the control part of MVC.

© Peter Spath 2021
P. Spith, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_1

https://doi.org/10.1007/978-1-4842-6280-1_1#DOI

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

For example, consider a book club application. In this case, the model consists of
elements such as books (including rental status), book storage location (building, room,
or shelf), and member. For search application modules, you normally define lists of
books, users, and so on, as model values.

The view part of the book club application will contain pages that show books, show
members, show book locations, enable members to rent books, add club members, show
book and member lists, as well as various search functionalities, and so on. Technically,
this will often go hand in hand with a templating engine that defines placeholders for
model elements, shortcuts for loops (for tables and lists), and other view elements like
menus and buttons.

The controller handles the data the user enters. If, for example, the view currently
shows a search page for books and the user enters a book’s name and clicks on the
Search button, the controller is informed as to which button was clicked. The controller
then reads the request parameters (the book’s name in this case) and possibly some
model values (for example, the username and whether the user is logged in), queries
the database, builds a result list, creates a model from this list, and finally decides which
view page to show next.

There exists some fluffiness concerning the implementation details. This comes
from the technical details of the data flow between view elements and model elements.
MVC makes no assumption about when updates to view elements and model elements
actually happen and which procedure is chosen to keep them synchronized. This is why,
for MVC, you find many different diagrams in the literature.

For Java MVC, we can narrow our ideas about MVC to the following—a model
(stored in memory) defines the application’s state; a view shows model values and sends
user interactions to a controller; and the controller prepares model data, handles user
input and accordingly changes model values, and then decides which view page to show
next. This kind of MVC model is depicted in Figure 1-1.

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Read R Update Model
Model Values Prepares *, After Submit
Model R

Data
Submitted

Select View
Page

Reads /
Updates

Backend i

(Not Part of MVC)

Figure 1-1. The Java MVC design pattern

The History of MVC

The advent of MVC dates back to the 1970s. It was introduced into the computer

language Smalltalk as a programming concept. At that time, it did not have a name. Only
later, in the late 1980s, was the moniker MVC explicitly used. It appeared in an article in

the periodical Journal of Object Technology.

MVC steadily became more and more widespread, and its ideas were so widely

adopted that variants evolved from MVC. We don’t talk about these variants in this book,

but a short list includes:

PAC (Presentation-Abstraction-Control) and HMVC (Hierarchical
MVC). This is a variation of MVC, where submodules have their own
MVC-like structure and only later is a view page constructed from
them.

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

e MVA (Model-View-Adapter). In this pattern, the view and the model
are separated and only the controller (called an adapter in this case)
mediates between the model and the view. The view has no direct
access to model values.

e« MVP (Model-View-Presenter). In MVP, the view contains logic to
inform the controller (called a presenter in this case) about view-
related data changes. The presenter then performs some activities
and eventually calls back to the view in order to inform the user
about data changes.

¢ MVVM (Model-View-View-Model). In MVVM, some automatism is
introduced, which translates model values to view elements and vice

versa.

The real power of MVC was revealed in the 1990s with the rise of the Internet.
Although some technical details changed—such as the exact technical characteristics of
the data flow and the point in time when data traverses the layer boundaries—the idea
remained the same: a model holds the application state, a view presents the browser
pages, and a controller handles the interaction between the browser and the model, and
decides which view page to show.

Various MVC web frameworks were invented; https://en.wikipedia.org/wiki/
Comparison\ of\ web\ frameworks shows you a comprehensive list (further down on
the page, MVC capabilities are also listed).

MVC in Web Applications

Web applications impose some restrictions if we try to let them work the MVC way. The
most important distinction comes from the stateless nature of the HTTP protocol, which
is used for communication between the view (browser window) and the controller
(HTTP server). In fact, the way web application frameworks handle the HTTP protocol
leads to decisive differences between the different MVC implementations.

https://en.wikipedia.org/wiki/Comparison/_of/_web/_frameworks
https://en.wikipedia.org/wiki/Comparison/_of/_web/_frameworks

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

In more detail, important questions concerning MVC for web applications

are as follows:

Sessions: We already pointed out the stateless nature of HTTP. So, if
the browser sends a request, maybe because the user entered some
string into a text field and then pressed the Submit button, how
would the server know which user is performing the request? This
usually gets handled by a session, which is identified by a session ID
transmitted as a cookie, request, or POST parameter. Sessions are
transparently handled by the framework, so you don’t have to create
and maintain sessions from inside the application’s code.

Accessing model values from the view: With web applications,
some kind of templating engine usually handles the view generation.
There, we could have expressions like ${user.firstName} to read the
contents of a model entry.

Transmitted data extent: If data is submitted from the web page to
the server, we basically have two options. First, the complete form
could be transmitted. Second, only the data that changed could be
sent to the server. The latter reduces network traffic, but requires
some script logic (JavaScript) to perform the data collection on the
web page.

Updating the view: With web applications, the way a view is updated
is crucial. Either the complete page is loaded after the controller
works a request, or only those parts of a web page that actually need
an update are transmitted from the server to the browser. Again, the
latter method reduces network traffic.

From these points, you can see that programming a MVC framework for web

applications is not an utterly trivial task. This is also why there are quite a large number

of different MVC frameworks you can use for web applications. In the rest of the book, I

will show you why choosing Java MVC is not the worst thing you can do if you need MVC

software for your Java platform.

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

MVC for Java

In the Java ecosystem, a framework named Struts entered the software world around
2000. It is a MVC framework aimed at web applications and integrating with Java EE/
Jakarta EE and Tomcat (a server product boiled down to web functionalities). It has been
used in many software projects and is still being used, albeit it is not part of the Java EE/
Jakarta EE specification. Instead, Java EE/Jakarta EE names JSF (Java Server Faces) as the
dedicated web framework. JSE in contrast to MVC, uses a component-oriented approach
for creating web applications.

JSF works out-of-the-box for any Java EE/Jakarta EE 8 or later product. Up to version
7, if you wanted to use MVC, Struts was one of the prominent frameworks you could
use. However, in order for Struts to work, an external library had to be added to the
application, and Struts always felt like an extension and not so much like something that
seamlessly integrated with Java EE/Jakarta EE.

With Java EE 8/Jakarta EE 8, the MVC world reentered the game in form of a Java
MVC specification. It is still kind of a second-class citizen in the Java EE/Jakarta EE
world, but there are reasons to favor MVC over JSE. We talk about the merits and
disadvantages of MVC over other frameworks like JSF at the end of this chapter.

Finally, Java MVC (JSR-371)

The latest Java EE/Jakarta EE MVC implementation operates under the name Java MVC
and is governed by JSR-371. It is the first MVC framework available for Java EE/Jakarta
EE servers version 8 or higher. In fact, the JSR describes an interface. For Java MVC to
actually work, you need to add an implementation library.

Note We use Eclipse Krazo as the Java MVC implementation library. See
https://projects.eclipse.org/proposals/eclipse-krazo

or

https://projects.eclipse.org/projects/ee4j.krazo

We will later see how to install Eclipse Krazo for your web application.

https://projects.eclipse.org/proposals/eclipse-krazo
https://projects.eclipse.org/projects/ee4j.krazo

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Java MVC is a lean and clever extension of the REST technology JAX-RS included
within Java EE/Jakarta EE. This relationship gives Java MVC a modern touch and allows
for a concise and highly comprehensive programming style.

We already learned that MVC allows for some fluffiness concerning the
implementation details. Figure 1-1 describes how Java MVC works quite well: A request
for a first page in the browser window routes to the controller, which prepares model
values (with or without querying some backend for additional data). The controller
then decides which view page (browser page) to show next (maybe a login page). The
view can access model values. With a data set entered by the user and submitted to
the controller, the controller takes request parameters (for example, the login name
and password), possibly queries the backend (the user database), updates the model,
and finally selects a new view page (for example, a welcome page after successful
authentication).

But there is an additional feature that seamlessly integrates with Java MVC. Instead
of always loading a complete new page after each HTTP request, you can decide to
let parts of your web application use AJAX for more fine-grained frontend-backend
communication. Because we use Java MVC in a Java EE/Jakarta EE 8 (or later)
environment, we can use JAX-RS for that aim out-of-the-box.

Why MVC

With so many web frontend technologies out there, it is not easy to decide which to use

for your project. The new Java MVC certainly is an option and it might very well suit your

needs. In order to help you make a decision, here is a list of pros and cons of Java MVC.
Cons:

e MVC seems to be a old-fashioned design pattern. Although this is
true, it also has been proven to work well for many projects, and Java
MVC allows developers to mix in more modern web development
techniques.

e MVC forces the developer to be aware of HTTP internals. MVC is
also said to be an action-based design pattern. Actions in a web
environment mean HTTP requests and responses. MVC doesn’t
really hide the internals of the HTTP communication like other
frameworks do.

CHAPTER 1

Pros:

ABOUT MVC: MODEL, VIEW, CONTROLLER

MVC does not introduce two-way data bindings like other
frameworks do. With two-way data bindings, a change in a frontend
input field immediately reflects in the model value changes. Instead,
in a MVC controller, you have to explicitly implement the update of
model values.

Since it’s closer to the HTTP communication internals compared

to other frameworks, despite introducing some complexity, this
introduces less invasive memory management. If you look at JSE a
complete component tree (and component data tree) is built with
each browser request. In contrast, a MVC application can be tailored
with an extremely small memory footprint.

Java MVC is part of the Java EE/Jakarta EE 8 specification. This helps

to more reliably handle maintenance.

If you are used to Struts or similar frontend frameworks, switching
to Java MVC feels more natural compared to switching to other
products with other frontend design patterns.

Where Is Hello World?

In many software-related development instruction books, you find a really simple "Hello

World” example in one of the first chapters. For Jakarta EE, this means we must provide a

shortcut way to do the following:

Write a short program that does something simple, like output the
string "Hello World".

Build a deployable artifact from the string (for example, a .war file).
Run a Jakarta EE server.

Deploy the application (the .war file) on the server.

Connect a client (for example, a browser) to the server.

Observe the output.

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

This is a lot of stuff, so instead of building a quick-and-dirty setup to run such an
example, I prefer to first talk about Java/Jakarta Enterprise Edition (Java/Jakarta EE) in
general, then discuss the development workflow, and only after that, introduce a simple

first project. This way, we can make sure your first Java MVC application is developed

and runs correctly.

If you think a quick-and-dirty Hello World example will help you, the following

paragraphs show you how to create one. Note that we won'’t use the development
processes shown here in the rest of the book—this is simply a simplistic and fast, and

maybe not-so-clean, approach. You can also skip this section safely, because we create a
proper Hello World project in Chapter 4.

1.

3.

First make sure OpenJDK 8 is installed on your PC. Go to https://
jdk.java.net/java-se-ri/8-MR3 to download it. In the rest of
this section, we call the OpenJDK 8 folder OPENJDK8 DIR.

Download and install GlassFish 5.1 from https://projects.
eclipse.org/projects/ee4j.glassfish/downloads (choose
the "Full Profile” variant). In the rest of this section, we call the
GlassFish installation folder GLASSFISH_INST_DIR.

Inside the GLASSFISH_INST DIR/glassfish/config/asenv.conf
(Linux) or GLASSFISH_INST DIR/glassfish/config/asenv.bat
(Windows) file, add the following lines:

REM Windows:

REM Note, if the OPENJIDK8 DIR contains spaces, wrap it
REM inside "..."

set AS_JAVA=OPENJDK8 DIR

Linux:
AS_JAVA="OPENJDK8 DIR"

You must replace OPENIDK8_DIR with the installation folder of the OpenJDK 8 installation.

4.

Start the GlassFish server:

REM Windows:
chdir GLASSFISH INST DIR
bin\asadmin start-domain

https://jdk.java.net/java-se-ri/8-MR3
https://jdk.java.net/java-se-ri/8-MR3
https://projects.eclipse.org/projects/ee4j.glassfish/downloads
https://projects.eclipse.org/projects/ee4j.glassfish/downloads

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Linux:
cd GLASSFISH INST DIR
bin/asadmin start-domain

You must replace GLASSFISH_INST DIR with the installation folder
of GlassFish.

5. Create a folder called hello world anywhere on your file system.
Its contents have to be (instructions follow):

build
|- <empty>
src
|- java
| |- book
| |- javamvc
| |- helloworld
| |- App.java
| |- RootRedirector.java
| |- HelloWorldController.java
|- webapp
| |- META-INF
| | |- MANIFEST.MF
| |- WEB-INF
| |- 1ib
| | |- activation-1.1.jar
| | |- javaee-api-8.0.jar
| | |- javax.mail-1.6.0.jar
| | |- javax.mvc-api-1.0.0.jar
| | |- jstl-1.2.jar
| | |- krazo-core-1.1.0-M1.jar
| | |- krazo-jersey-1.1.0-M1.jar
| |- views
| | |- greeting.jsp
| | |- index.jsp
| |- beans.xml

10

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

| |- glassfish-web.xml
make.bat
make.sh

Get the JARs for the 1ib folder from https://mvnrepository.com.
Enter each name without the version and the . jar extension in
the search field, select the version, and then get the JAR file.

The Java code reads as follows:

// App.java:
package book.javamvc.helloworld;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

// RootRedirector.java
package book.javamvc.helloworld;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

/**
* Redirecting http://localhost:8080/HelloWorld/
* This way we don't need a <welcome-file-list> in web.xml
*/
@WebFilter(urlPatterns = "/")
public class RootRedirector extends HttpFilter {
@verride
protected void doFilter(HttpServletRequest req,
HttpServletResponse res,

11

https://mvnrepository.com

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

FilterChain chain) throws IOException {
res.sendRedirect("mvc/hello");

}

// HelloWorldController.java
package book.javamvc.helloworld;

import javax.inject.Inject;

import javax.mvc.Controller;

import javax.mvc.Models;

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

@Path("/hello")

@Controller

public class HelloWorldController {
@Inject
private Models models;

@GET
public String showIndex() {
return "index.jsp";

}

@POST
@Path("/greet")
public Response greeting(@MvcBinding @FormParam("name")
String name) {
models.put("name", name);

return Response.ok("greeting.jsp").build();

12

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER
As MANIFEST.MF, write the following:

Manifest-Version: 1.0

The view files read as follows:

<%-- index.jsp --%>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
<form method="post"
action="${mvc.uriBuilder('HelloWorldController#
greeting').build()}">
Enter your name: <input type="text" name="name"/>
<input type="submit" value="Submit" />
</form>
</body>
</html>

<%-- greeting.jsp --%>

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>
<meta charset="UTF-8">
<title>Hello World</title>

</head>

13

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

<body>

Hello ${name}
</body>
</html>

(Remove the line break and the spaces after Hel1loWorldController#.)
10. Asbeans.xml, create an empty file (the file must exist, though!).

11. The contents of glassfish-web.xml reads as follows:

<?xml version="1.0" encoding="UTF-8"?>

<glassfish-web-app error-url="">
<class-loader delegate="true"/>

</glassfish-web-app>

12. The Linux build file called make.sh reads as follows:

#!/bin/bash
JAVA _HOME=/path/to/your/openjdk-8

rm -rf build/*
cp -a src/webapp/* build
mkdir build/WEB-INF/classes

$JAVA_HOME/bin/javac \
-cp src/webapp/WEB-INF/1ib/javaee-api-8.0.jar:
src/webapp/WEB-INF/1ib/javax.mvc-api-1.0.0.jar \
-d build/WEB-INF/classes \
src/java/book/javamvc/helloworld/*

cd build
$JAVA_HOME/bin/jar cf ../HelloWorld.war *
cd ..

(Remove the line break and spaces after the :.)

14

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

13. The Windows build file make.bat reads as follows:

set JAVA_HOME=C:\dev\java-se-8u41-ri

mkdir build

CD build && RMDIR /S /Q .
c ..

rmdir build

xcopy src\webapp build /s /e /i
mkdir build\WEB-INF\classes

%JAVA_HOME%\bin\javac "
-cp src\webapp\WEB-INF\1ib\javaee-api-8.0.jar;
src\webapp\WEB-INF\1ib\javax.mvc-api-1.0.0.jar *
-d build\WEB-INF\classes "

src\java\book\javamvc\helloworld/*

cd build
%JAVA_HOME%\bin\jar cf ..\HelloWorld.war *
cd ..

(Remove the line break and spaces after the ;.)

To build the application from inside the console, move into the hello world folder
and start the script:

Linux
cd hello_world
./make.sh

rem Windows
chdir hello_world
make

Apart from some error messages for the Windows build script that you can safely
ignore, you will end up with the HelloWorld.war web application in the main folder.
From there, you can deploy the application via the following:

Linux
GLASSFISH INST DIR/bin/asadmin deploy --force=true \
HelloWorld.war

15

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

rem Windows
GLASSFISH_INST DIR\bin\asadmin deploy --force=true *
HelloWorld.war

For GLASSFISH_INST DIR, you must substitute the GlassFish installation folder.
To see it running, enter the following URL in the address line of your browser:

http://localhost:8080/HelloWorld

See Figures 1-2 and 1-3.

Hello World - Mozilla Firefox

Hello world b+

1€

%
I

<) @ © | @ %5 localhost:8080/Helloworld/mvc/hello »

Enter your name: | Peter Submit

Figure 1-2. Hello World start page

16

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Hello World - Mozilla Firefox

Hello world X ISR

L

11

<« @ © @ 25 localhost:8080/Helloworld/mvc/hell » ¥

&

Hello Peter

Figure 1-3. Hello World response page

Exercises

Exercise 1: Identify the three constituent elements of MVC.

Exercise 2: True or false: The model’s responsibility is to talk with
enterprise information systems (e.g., databases).

Exercise 3: True or false: For MVC, passing user-generated data to
the model elements is done automatically.

Exercise 4: True or false: Views can read and access model values.

Exercise 5: Which is true: (A) A session is a model object, (B) A
session is a property from inside the HTTP protocol, (C) You must
create and handle sessions from inside the application code.

Exercise 6: Java MVC became part of the Java EE/Jakarta EE
specification with version 7.

17

CHAPTER 1 ABOUT MVC: MODEL, VIEW, CONTROLLER

Summary

MVC stands for Model-View-Controller and is a software design pattern. The Model
manages an application’s data (limited to what is shown to the user and subject to
change by the user); the View represents the graphical user interface (GUI); and the
Controller prepares the model, handles user input, and determines what to show in the
view (which view page gets shown).

MVC originated in the 1970s/1980s for desktop applications, and was later adapted
to handle web applications.

MVC for Java Enterprise applications (Java EE/Jakarta EE) is called Java MVC and it
gets handled by JSR-371. Java MVC became part of the Java EE/Jakarta EE specification
starting with version 8.

In order to use Java MVC, an implementation needs to be added to the application.
Eclipse Krazo is such an implementation.

Java MVC helps save memory, but the developer, to some extent, must be aware of
HTTP protocol characteristics. User sessions are handled by a cookie, request, or POST
parameter. Sessions are transparently handled by the framework.

In the next chapter, we talk about Java MVC'’s relationship to Java EE/Jakarta EE in
more detail.

18

CHAPTER 2

Prerequisite: Jakarta
EE/Java EE

You can’t run Java MVC in a standalone mode. Instead, it must be accompanied by the
infrastructure a Java Enterprise Edition Server (Java EE or Jakarta EE) provides. We talk
about what this means in this chapter.

The Nature of Java for Enterprise Applications

In a corporate environment, a programming language and software platform like Java
has to cover a couple of needs that are important to run a business. It has to be able to
connect to one or more databases, reliably establish communication with other IT-based
systems in the same company or with connected businesses, and it has to be powerful
enough to reliably handle input and perform calculations based on input and database
data, and present the appropriate output to clients. As a cross-concern, security also
plays an important role. An authentication process needs to be established that forces
the users to identify themselves, and an authorization needs to be achieved to limit the
amount of resources a particular user is allowed to access. In addition, activities need
to be logged for technical maintenance and auditing purposes, and the platform should
be able to present monitoring data for technical sanity checks and performance-related
investigations.

For all these to work in a desired way, a language and platform must be stable with
respect to future changes and enhancements. This has to happen in a way that new
language and platform versions can be appropriately handled by the IT staff. Java
EE/Jakarta EE follow this trail and thus are very useful in corporate environments.

The Jakarta EE 8 server entirely runs on and depends on Java. Java was invented in
1991 but was first publicly released under version 1.0 by Sun Microsystems in 1996. Java

19
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_2

https://doi.org/10.1007/978-1-4842-6280-1_2#DOI

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

has since played an important role as both a language and a runtime environment or

platform. There are several reasons that Java became so successful:
e The same Java program can run on different operating systems.

e Javaruns in a sandboxed environment. This improves execution

security.
e Java can be easily extended with custom libraries.

o TheJavalanguage was extended only slowly. While a slow evolution
means new and helpful language constructs may be missing in the
most current version, it helps developers easily keep track of new
features and thoroughly perform transitions to new Java versions in
longer running projects. Furthermore, with only a small number of
exceptions, Java versions were backward-compatible.

o Javaincludes a garbage collector that automatically cleans up unused
memory.

Since 1998 and the major rebranding as Java 2, the platform was made available in
different configurations:

e The standard edition J2SE for running on a desktop. It was further
separated into JRE (Java Runtime Environment) for running Java, and
JDK (Java Development Kit) for compiling and running Java.

¢ The micro edition J2ME for mobile and embedded devices.

o The enterprise edition J2EE with enterprise features added to
J2SE. Each J2EE configuration includes a complete J2SE installation.

For marketing purposes, the “2” was removed in 2006 and the configurations were
named JSE (or JDK, which is JSE plus development tools), JME, and JEE, respectively.
In 2018, JEE was moved to the Eclipse foundation and renamed Jakarta EE. The Java
language substantially changed from Java 7 to Java 8. We will be using all the modern
features of Java 8 in our explanations and code examples.

Java of course continues to be developed. While the latest version of Jakarta EE was
8 while writing this book, and the underlying Java standard edition was version 8 as well,
the latest JavaSE (JSE) version you could download was 13. We won't be talking about
JavaSE versions 9 or higher in this book.

20

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

While knowledge of the Java standard edition JSE version 8 is considered a

prerequisite in this book, for readers who are only partly familiar with Java 8, the

following new features are worth an investigation before you move to subsequent

chapters:

Functional interfaces
Lambda calculus (unnamed functions)
The streams API for working with collections and maps

The new date and time API

We will be using these where appropriate in the book’s examples.

The specifications that describe the parts of Java EE/Jakarta EE tell what each part

can do and how it does it, and they keep track of new versions. Java EE/Jakarta EE 8

includes sub-technologies also closely described by exact version numbers. We list them

here and include a short description of what each technology does. Note that the list

is not exhaustive—it does not include some more advanced APIs, which you can learn

about if you look at the official documentation.

Java MVC 1.0 - JSR-371: This is our main concern in this book.

Enterprise Java Beans EJB - Version 3.2: E]Bs represent entry

points for business logic. Each EJB plays the role of a component in
the overall Jakarta EE architecture and is responsible for a dedicate
business task. E]Bs allow developers to add security, transactional
features, JPA features to communicate with databases, and web
services functionality, and they can also be entry points for messaging.

Java Server Faces JSF - Version 2.3: JSF is the component-based
dedicated primary web frontend technology to be used for browser
access. Using Java MVC is somewhat an alternative approach,

and nobody hinders you from mixing them freely. JSFs usually
communicate over EJBs with the business logic.

RESTful Web-Services JAX-RS - Version 2.1: REST
(REpresentational State Transfer) is the original HTTP protocol that
defines reading and writing resources. It recently gained increased
attention for single page web applications, where the frontend page
flow is completely handled by JavaScript running in the browser.

21

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

e JSON Processing JSON-P - Version 1.1: JSON (JavaScript Object
Notation) is a lean data-format particularly useful if a considerable
amount of the presentation logic gets handled by JavaScript running

in the browser.

e JSON Binding JSON-B - Version 1.0: This technology simplifies
mapping between JSON data and Java classes.

e Web Sockets - Version 1.1: Provides a full-duplex communication
between web clients (browsers) and the Jakarta EE server. Other than
“normal” access via HTTP, web sockets allow for the server to send
messages to a browser client as well!

o JPA - Version 2.2: The Java Persistence API provides high-level access
to databases.

o Java EE Security API - Version 1.0: A new security API that didn’t
exist prior to Jakarta EE 8. It includes an HTTP authentication
mechanism, an identity store abstraction for validating user
credentials and group memberships, and a security context API that
programmatically handles security.

o Java Messaging Service JMS - Version 2.0: This is about messaging,
which means messages can be produced and consumed
asynchronously. A message sender produces and issues a message
and can instantaneously continue its work, even when the message
gets consumed later.

e Java Transaction API (JTA) - Version 1.2: JTA makes sure that
processes that combine several steps acting as a unit can be
committed or rolled back as a whole. This can become tricky if
distributed partners are involved. JTA helps a lot here to ensure
transactionality even for more complex systems.

o Servlets - Version 4.0: Servlets are the underlying technology for
server-browser communication. You usually configure them only
once at the beginning of a project. We describe servlets where
necessary to get other technologies to run.

22

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

e Context And Dependency Injection CDI - Version 2.0: CDI allows
developers to bind contexts to elements that are governed by a
dedicated lifecycle. In addition, it injects dependencies into objects,
which simplifies class associations. We will use CDI to connect JSF
elements to the application logic.

o JavaMail - Version 1.6: Provides facilities for reading and sending
email. This is just an API. For an implementation, you can for
example use Oracle’s reference implementation: https://javaee.
github.io/javamail/

e Bean Validation - Version 2.0: This allows developers to restrict
method call parameters to comply with certain value predicates.

o Interceptors - Version 1.2: Interceptors allow you to wrap method
calls into invocations of interceptor classes. While this can be done
by programmatic method calls as well, interceptors allow developers
to do it in a declarative way. You typically use interceptors for
crosscutting concerns like logging, security issues, monitoring, and
the like.

o Java Server Pages JSP - Version 2.3: JSPs can be used to establish
a page flow in server-browser communication. JSP is an older
technology, but you still can use it if you like. You should however
favor JSFs over JSPs, and in this book we don’t handle JSPs.

o JSP Standard Tag Library JSTL - Version 1.2: Tags used in
conjunction with JSPs for page elements.

Java EE/Jakarta EE runs on top of the Java Standard Edition (SE), so you can always
use any classes and interfaces of the Java SE if you program for Java EE/Jakarta EE. A
couple of technologies included within the Java Standard Edition SE play a prominent
role in a Java Enterprise Edition environment:

o JDBC - Version 4.0: An access API for databases. All major database
vendors provide JDBC drivers for their product. You could use it, but
you shouldn’t. Use the higher-level JPA technology instead. You'll get
in contact once in a while, because JPA under-the-hood uses JDBC.

23

https://javaee.github.io/javamail/
https://javaee.github.io/javamail/

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

o Java Naming and Directory Interface JNDI: In a Jakarta EE 8
environment, objects will be accessed by other objects in a rather
loose way. In modern enterprise edition applications, this usually
happens via CDI, more precisely, via dependency injection.
Under the hood, however, a lookup service plays a role, governed
by JNDI. In the past, you'd have to directly use JNDI interfaces to
programmatically fetch dependent objects. You could use JNDI for
Jakarta EE 8, but you normally don’t have to.

o Java API for XML Processing JAXP - Version 1.6: A general-purpose
XML processing API. You can access XML data via DOM (complete
XML tree in memory), SAX (event-based XML parsing), or StAX. This
is just an API. Normally you’d have to also add an implementation,
but the Jakarta EE server does this automatically for you.

o Streaming API for XML StAX - Version 1.0: Used for streaming
access to XML data. Streaming here means you serially access XML
elements on explicit demand (pull parsing).

o Java XML Binding JAXB - Version 2.2: JAXB connects XML elements
to Java classes.

e XML Web Services JAX-WS - Version 2.2: Web services remotely
connect components using XML as a messaging format.

e JMX - Version 2.0: J]MX is a communication technology you can use
to monitor components of a running Jakarta EE application. It is up
to the server implementation what information is available for JMX
monitoring, but you can add monitoring capabilities to your own
components.

The specifications are handled by a community process, and vendors have to
pass tests if they want to be able to say their server products conform to a certain
version of Jakarta EE (or one of its predecessors, JEE or J2EE). If you are interested, the
corresponding online resources provide information about it. As a start, enter “java
community process jcp” or "java eclipse ee.next working group” into your favorite search
engine.

24

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

The Java Enterprise Edition was initially developed by Sun Microsystems and was
called J2EE. In 2006, the naming and versioning schema was changed to JEE, and after
J2EE version 1.4 came JEE version 5. Since then, major updates happened and versions
JEE 6, JEE 7, and JEE 8 were released. In 2010, Sun Microsystems was acquired by Oracle
corp. Under Oracle, versions JEE 7 and JEE 8 were released. In 2017, Oracle Corporation
submitted Java EE to the Eclipse Foundation, and the name was changed to Jakarta EE 8.

As of the beginning of 2020, the transition from JEE 8 to Jakarta EE 8 was an ongoing
process. So depending on when you read this book, it still could be that for online
research about Jakarta EE 8, you have to consult pages about both JEE 8 and Jakarta EE
8. This is something you should keep in mind. To keep things simple in this book, we will
only talk about Jakarta EE.

When this book was written, there were not many Jakarta EE 8 servers released.

There are basically the following:
¢ GlassFish Server, Open Source Edition, from Oracle Inc.
o WildFly Server, from Red Hat
e JBoss Enterprise Application Platform, from Red Hat
o WebSphere Application Server Liberty, from IBM
e Open Liberty, from IBM

These servers have different licensing models. GlassFish, WildFly, and Open Liberty
are free. This means you can use them without charge, both for development purposes
and for production. To run the JBoss Enterprise Application Platform, you need a
subscription, although the sources are open. WebSphere Application Server Liberty is
proprietary.

In this book, we will talk about running Java MVC inside the GlassFish server,
open source edition, version 5.1. Due to the nature of Jakarta EE 8, a transition to other
servers is always possible, although you’ll have to spend a considerable amount of time
changing the administration workflow.

GlassFish, a Free Java Server

There are several free Java EE/Jakarta EE servers you can use for evaluation and
development. The GlassFish server is a particularly good choice, especially for learning
purposes, because it is open source.

25

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Getting GlassFish

The latest version as of the writing of this book is 5.1, and you can download it from the
following:

https://projects.eclipse.org/
projects/ee4j.glassfish/downloads

Choose the “Full Profile” variant.

Note At the time this book is published, there are likely later versions for
GlassFish available. You could try versions greater than 5.1 and you might not have
any problems installing and using them with this book. But to avoid any chance of
problems, it will always be possible to use an archived GlassFish 5.1 installer.

After you download the ZIP file, extract it anywhere on your file system. We will
henceforth call the installation folder GLASSFISH INST DIR. Before GlassFish can be
started, you must make sure you have Java 8 JDK installed on your system.

Note JDK 8 is a requirement for GlassFish 5.1. You cannot use a later version
and you should not use an earlier version.

Get the JDK from one of the following links (for the www.oracle.com variant, you
must get a paid subscription for commercial projects):

https://www.oracle.com/java/technologies/javase/
javase-jdk8-downloads.html
https://jdk.java.net/java-se-ri/8-MR3

The jdk. java.net variant points to the OpenJDK distribution. For Linux, chances
are good your distribution’s package provider has a pre-built Java installation package
for you.

26

http://www.oracle.com/

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

If JDK 8 is not your system default, you can check by entering java -versionina
console window. You must add the following line

REM Windows:

REM Note, if the IDK_INST contains spaces, wrap it
REM inside "..."

set AS JAVA=IDK INST

Linux:
AS_JAVA="JDK_INST"

inside the GLASSFISH_INST _DIR/glassfish/config/asenv.conf (Linux) or
GLASSFISH INST DIR/glassfish/config/asenv.bat (Windows) file, where you must
replace JDK_INST with the installation folder of the JDK 8 installation.

You can now check the installation in a console window. Change the user directory
(current directory) to the GlassFish installation folder and then use asadmin to start the

Server:

REM Windows:
chdir GLASSFISH INST DIR
bin\asadmin start-domain

Linux:
cd GLASSFISH_INST DIR
bin/asadmin start-domain

The output should be something like this:

Waiting for domainl to start .

Successfully started the domain : domaini

domain Location: [...]/glassfish/domains/domain1

Log File: [...]/glassfish/domains/domain1/logs/server.log
Admin Port: 4848

Command start-domain executed successfully.

You can also check the indicated log file to see whether the startup worked correctly.
You can open your browser at http://localhost:4848 to see whether the web
administrator is available (it should be).

27

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Once you verify that the server started up correctly, you can stop it if you like. To do
so, enter the following:

REM Windows:
bin\asadmin stop-domain

Linux:
bin/asadmin stop-domain

Note In the rest of this chapter, we assume that you entered cd GLASSFISH
INST DIR to change to the GlassFish installation directory. | will also stop
distinguishing between Windows and Linux and write bin/asadmin, which on
Windows should be bin\asadmin.bat.

The GlassFish server has three administrative frontends:
e Ashell (or windows command prompt) frontend
e« A GUI frontend for browser access

e ARESTHTTP frontend

GlassFish Shell Administration

The shell frontend works via the bin/asadmin script, which you can call from a shell (or a
windows command prompt). This command is extremely powerful; it contains hundreds
of options and subcommands. We do not list them all here, so for a complete online list,
enter “oracle glassfish server administration guide” in your favorite search engine.

As a starting point, the asadmin command also provides a “help” functionality. To see
it, enter one of the following:

bin/asadmin help
bin/asadmin -?

28

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Where the first variant (help) opens a MORE pager. To list all the subcommands,
enter the following:

Note: server must be running!
bin/asadmin list-commands

To see the help for a particular subcommand, you can write one of the following:

bin/asadmin help <SUB-COMMAND>
bin/asadmin -? <SUB-COMMAND>

Where you substitute the name of the subcommand for <SUB-COMMAND>.

Note In order for many subcommands to run properly, the server must be
running as well. In the following discussion, we assume that the server has started
before you issue any subcommands.

There is also a multimode session, where a special subshell is opened. In this
subshell you can enter subcommands directly without prepending the bin/asadmin. To

start a multimode session, enter the following without arguments:
bin/asadmin

You can also use the multimode subcommand to start a multimode session:
bin/asadmin multimode

The subcommand allows for an optional --file <FILE _NAME> argument, which
causes the specified file to be read in as a list of subcommands to be executed
sequentially:

bin/asadmin multimode --file commands_ file.txt

The file path is relative to the current working directory. In the following paragraphs,
we show a list of the most useful options and subcommands. The most useful general
options are shown in Table 2-1. You add them as in bin/asadmin --host 192.168.1.37
list-applications.

29

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Table 2-1. General Options

Option Description

--host <HOST> Specifies the host where the server is running. If you don’t specify it,
localhost will be used.

--port <PORT> The administration port. The default is 4848

--user Uses the specified user to authenticate to the server. Use this if you restricted
<USER_NAME> access to the asadmin utility. The default is the admin user.

--passwordfile If you restricted access to the asadmin utility, and you want to prevent a
<FILE_NAME> user password from being prompted, you can specify a file with password
information instead. For details, see the output of bin/asadmin -?.

For a complete list of the options you can add to the asadmin command, see the
output of bin/asadmin -?.

Subcommands used to inquire various types of information from the server are
shown in Table 2-2. You enter them as in bin/asadmin list-applications (obviously,
the list will be empty if you haven’t installed any applications yet).

Table 2-2. Inquiring Information

Subcommand Description

version Outputs the GlassFish server version.

list- Lists all applications deployed and running on the server.
applications

list-containers Containers embrace components (modules, if you like) of a certain type. Use
this subcommand to list all the containers running in the server.

list-modules Lists all 0SGi modules running in the server. We won’t be talking about 0SGi
in this book, but in case you are interested, GlassFish incorporates an Apache
Felix 0SGi module management system. You can administer GlassFish
components also via an 0SGi shell named “Gogo,” which needs more
configuration work to run.

(continued)

30

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Table 2-2. (continued)

Subcommand Description

list-commands Lists all the subcommands. If you add --1ocalonly the server doesn’t have
to be running and only subcommands that can be issued with the server not
running will be listed.

list-timers Shows all timers. We don’t talk about timers in this book.

list-domains Lists all domains. In this book, we will be using the preinstalled default
domain, called domain1, so this will be the only entry showing up here.

After you perform the installation of the GlassFish server, there will be one
administration user named admin without a password. Not having a password makes
administrative tasks easy, but it will also leave your server insecure. To remedy that and
give the admin user a password, enter the following:

bin/asadmin change-admin-password

You will then be asked for the actual password, which is empty so just press Enter.
Then enter the new password twice.

Once the admin user has a password, you will have to enter the password for most
asadmin subcommands.

To start a domain means to start the GlassFish server. We could have several domains
in one GlassFish server, but a multi-domain setup is left for advanced users, so we’ll go
with the single domain1 domain, which is installed by default.

To start, stop, or restart the GlassFish server, enter one of the following commands:

bin/asadmin start-domain
bin/asadmin stop-domain
bin/asadmin restart-domain

All three subcommands take an optional domain name as a parameter (for example,
domaini or domain2), but since we have only one default domain, it can be left off here.

To see the uptime of the server, which is the time that has elapsed since the default
domain started, enter the following:

bin/asadmin uptime

31

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

The Jakarta EE GlassFish server comes with a built-in database. This comes in
handy for development purposes, although you probably won’t use this database for
production setups. This database is an Apache Derby database. It does not run by default
when the GlassFish server is started. Instead, to start and stop the database, enter the
following:

bin/asadmin start-database
bin/asadmin stop-database

where the database port by default reads 1527.

GlassFish GUI Administration

After you start the GlassFish server, a GUI console is provided and you should use it to
open the following URL in a browser:

http://localhost:4848

The GUI will then show up, as seen in Figure 2-1.

32

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Home About

User: admin Domain: domaini Server: localhost

GlassFish™ Server Open Source Edition

B common Taske GlassFish Console - Common Tasks
@ Domain
E] server (Admin Server)
i Setas GlassFish News Documentation
> - m o— i GlassFish News el Open Source Edition
i g Applicati I_ Documentation Set .
ations
& Lifecycle Modules Deployment | Quick Start Guide "
[&m) Monitoring Data .| List Deployed Applications Il “ Administration Guide N
v (g Resources " Deploy an Application " Application Development
* [@ Concurent Resources l Guide .
- ﬁ? Jc;::clm Administration |, Application Deployment Guide |
>
. e A —— Change Administrator
. o o Password 1 Resources
kd 5)
(=] JavaMail Sessions || List Password Aliases » || Create New JDBC Resource
¢4 Resource Adapter Configs Monitori Create New JDBC Connection
v [§ Configurations gutorny | Pool
» |g§] default-config .| Monitoring Data "
> By server-config

Figure 2-1. Browser GUI administration

We don’t talk about details of the GUI administration here. We will, however, use and
describe it once in a while in this book, and the help button on the top-right corner is a
good starting point for your own experiments and investigations.

Note Many asadmin operations that you can enter in a terminal have their
counterparts in the admin GUI.

GlassFish REST Interface Administration

The GlassFish Jakarta EE 8 server provides a REST interface that you can use to
investigate and control the server. You can issue the following to see the domain logs via
REST for example:

curl -X GET -H "Accept: application/json" \
http://localhost:4848/monitoring/domain/view-log/details

33

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Note For this to work, the curl utility must be installed on your system.
Alternatively, you can use any other REST client (Firefox REST-client add-on, REST
Client for Eclipse, and others)

We investigate a couple of examples. To find more in-depth information about this
interface, enter “rest interface administer glassfish” in your favorite search engine. Also,
we use the jq tool to provide a pretty format output of the generated JSON data. For jq,
there are installers for Linux and Windows.

The administrative REST interface is subdivided into two parts for configuration and
monitoring:

http://host:port/management/domain/[path]
http://host:port/monitoring/domain/[path]

For a vanilla GlassFish installation, the host is localhost and the port is 4848. For
[path], you must substitute a resource identifier. For example, to see the log entries, you
enter the following:

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain/view-log

(Remove the backslash if you enter this on one line.)

The REST interface is very extensive. You can query a lot of properties using REST’s
GET verb, and you can alter resources using POST or PUT. As a starting point, you can
investigate the verbose output of REST capabilities you will get once you enter the
following:

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain

The output will for example include the following:

"commands": [

{
"path": "list-commands",
"method": "GET",
"command": "list-commands"

34

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

b

{
"path": "restart-domain",
"method": "POST",
"command": "restart-domain"

})

{
"path": "uptime",
"method": "GET",
"command": "uptime"

})

{
"path": "version",
"method": "GET",
"command": "version"

}

]

There are lots of others. To see version and uptime, you enter the following:

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain/version | jq .

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain/uptime | jq .

If you use a browser and enter REST URLs there, you get more information about
REST resources. If you open a browser and enter http://localhost:4848/management/
domain/version, you will get an HTML variant of this CURL output. Both also tell us
about child resources.

So this code, for example, shows us about commands referring to installed

application:

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain/applications |

jaq -
It tells us that, for the actual list, we have to enter the following:

35

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain/applications/ list-applications |
ja .
(No line break after applications/.) It tells us about attributes. To get more verbose
output, we can add a ?long=true, as in:

curl -X GET -H "Accept: application/json" \
http://localhost:4848/management/domain/applications/
list-applications?long=true | jq .

Using a Preinstalled Java Server

Java MVC applications usually reside in WAR files (ZIP files ending with .war), so they
may be installed on any Jakarta EE compliant server.

For this reason, you don’t have to use GlassFish. In this book, we will use GlassFish,
but if you prefer a different Jakarta EE 8 server, you may use it. Of course, you have to
learn how to administer that server by consulting its manual.

Note If you target a proprietary server, it is generally not recommended to start
development with a different product from a different vendor. You should at least
try to develop with a free variant of the same server, or try to get a developer
license. To learn Jakarta EE 8 first using GlassFish and later switching to a different
product or vendor is a reasonable approach, though.

Learning Java for Enterprise Applications

In order to learn the Java language (or the standard edition APIs) or improve your skills,
you can choose among a wealth of books and online resources. A good place to start
looking is the official Java tutorial from Oracle, found at

https://docs.oracle.com/javase/tutorial/

36

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Real-world corporate projects may require you to look at other technologies from
the Java EE/Jakarta EE technology stack. There is also a tutorial for the enterprise edition
Java EE/Jakarta EE, which you can find at:

https://javaee.github.io/tutorial/toc.html

You may also want to consult the book Beginning Jakarta EE: Enterprise Edition for
Java: From Novice to Professional (ISBN: 978-1484250785) from the same author. Here,
we mainly talk about Java MVC and handle other Java EE/Jakarta EE technologies only
where appropriate and needed.

RESTful Services

There is a good reason to also briefly talk about JAX-RS, even though it’s an exception to
the limitation of this book’s scope to Java MVC. JAX-RS is the subtechnology of Java EE/
Jakarta EE handling RESTful services. As a matter of fact, Java MVC sits on top of JAX-
RS, which was a clever decision of the framework programmers. Not only does it allow
developers to let Java MVC very cleanly integrate with the rest of the Java EE/Jakarta EE
frameworlk, it also gives a straightforward clue as to how to mix Java MVC development
techniques and more fine-grained client-server communication using AJAX and JSON
data snippets.

REST is an acronym for representational state transfer. It is an architectural style for
web related operations. Clients use a predefined set of operations or HTTP methods
on data—GET, POST, PUT, and DELETE (and a few more) for communicating with servers.
As no state is involved, the client communicates using one of the verbs GET, DELETE,
POST, PUT, and so on, and immediately after the server has performed the operation
and/or returned data, the server forgets about the communication step. The name
“representational state transfer” stems from the fact that, from the client’s point of view,

37

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

the representation of data inquired from the server changes between communication
steps (or might change).

The communication verbs have been part of the HTTP specification since the
infancy of the web. In more detail, we have the following verbs:

o GET: Used to retrieve a resource. Resources are identified by URIs,
so the communication might be described by something like GET
http://some.server.com/myclub/member/37. A GET operation is not
allowed to change any data (except for access statistics and the like),
and it must be idempotent. That means a second GET using the same
URI with no intermediate operations between those two GETs must
return exactly the same data. Note that GET operations were widely
abused for any kind of operations, including changing data. With
REST we return to the roots and data must not be changed.

o DELETE: Used to delete information. Again the resource in question
gets addressed by an URI, so you write DELETE http://some.server.
com/myclub/member/37. ADELETE must be idempotent, which means
deleting again using the same URI must not change the data. In this
case, the second DELETE is of course superfluous; deleting what was
already deleted is not supposed to do anything. As a characteristic
of REST concerning a second DELETE, the server must not return an
error message, but just ignore the request instead.

e POST: Used to post new information. POSTs commonly happen when
the user submits a form. POSTs are not idempotent, so a second post
using the same data will lead to a second data set on the server side.
A post might be described by POST http://some.server.com/mycl
ub/member/37 [data], where [data] stands for the transmitted data,
usually in the form of XML or JSON, passed over in the transmitted
message body.

e PUT: Used to store data. If the resource described by the data already
exists, the resource will be altered according to the data. If it does
not exist, the server might decide to act as if a POST were specified. A
PUT is idempotent, PUTting again using the same input data will not
change the data on the server.

38

http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37
http://some.server.com/mycl

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

The other verbs are less frequently used in real-world applications. HEAD is for
retrieving metadata about a resource (information about it, but not the resource itself).
Using a TRACE, you can see what happens to the data on the way to the server. This is
more a technical operation and does not pay particular attention to the data payload.

A PATCH s like a PUT with partial data. PUTs, with the complete information, are more
frequently used over PATCHs. The OPTIONS verb requests the server’s capability for a
dedicated resource (like telling what can be done with the resource). A CONNECT is used
to establish transparent tunnels on the server side. Again this is more a technical facility
and does not reveal anything about the transmitted data.

To define a REST endpoint, you write a Java class with annotation javax.ws.rs.Path
added at class and/or method level. For example, consider a REST controller that returns
the current date and time as JSON:

package book.javavmc.restdate;

import java.time.ZonedDateTime;
import javax.ws.rs.s;

/%%

* REST Web Service
«/
@Path("/d")
public class RestDate {
@GET
@Path("date")
@Produces("application/json")
public String stdDate() {
return "{\"date\":\"" + ZonedDateTime.now().toString() +
s

The @Path annotations merge, so in the end, we get an endpoint URL such as
http://localhost:8080/theAppName/d/date.

39

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

You will start developing your first Java MVC application soon. This is why I show
you this first code snippet without explaining how to build and deploy it. A Java MVC
controller looks very similar:

package book.javavmc.somecontroller;

import java.util.Llist;
import javax.inject.Inject;
import javax.mvc.Controller;
import javax.mvc.Models;
import javax.ws.rs.s;

@Path("/pets™)

@Controller

public class PetshopController {
@Inject
private Models models;

@GET

public String showIndex() {
final List<Pet> pets = ...;
models.put("pets”, pets);
return "index.jsp";

You can see that we again use javax.ws.rs.Path to define an endpoint. We will
later see that the main differences between Java MVC and JAX-RS are the @Controller
annotation and that the action method returns the name of the next view page instead of
data.

Note You will find more online information about JAX-RS, including the official
specification, if you enter “jax-rs” in your favorite search engine.

40

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Exercises

Exercise 1: Describe the relationship between JSE and Java EE/
Jakarta EE.

Exercise 2: True or false? Java MVC can run directly inside a PC’s
or server’s operating system.

Exercise 3: True or false? Java MVC is a Jakarta EE server.
Exercise 4: True or false? Jakarta EE is a competitor of Java EE.

Exercise 5: True or false? There is no difference between
Open]DK 8 and Oracle’s JSE 8.

Exercise 6: True or false? GlassFish can be used for commercial
products without paying for a license.

Exercise 7: Why do we use GlassFish in this book?
Exercise 8: True or false? PURGE is an HTTP verb.

Exercise 9: Describe the relationship between Java MVC and
JAX-RS.

Summary

Java MVC is accompanied by the infrastructure that a Java Enterprise Edition server (Java EE
or Jakarta EE) provides. In a corporate environment, a programming language and software
platform like Java has to cover a couple of needs that are important to run a business. It
has to be able to connect to one or more databases, reliably establish communication with
other IT-based systems in the same company or with connected businesses, and it has to
be powerful enough to reliably handle input and perform calculations based on input and
database data, and present the appropriate output to clients.

The Jakarta EE 8 server runs on and depends on Java. There are several reasons that
Java became so successful:

e The same Java program can run on different operating systems.

e Javarunsin a sandboxed environment. This improves execution
security.

41

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

e Java can be easily extended with custom libraries.

o TheJavalanguage was extended only slowly. While a slow evolution
means new and helpful language constructs may be missing in the
most current version, it helps developers easily keep track of new
features and thoroughly perform transitions to new Java versions in
longer running projects. Furthermore, with only a small number of
exceptions, Java versions were backward-compatible.

o Javaincludes a garbage collector that automatically cleans up unused
memory.

Java continues to be developed. While the latest version of Jakarta EE was 8 while
writing this book, and the underlying Java standard edition was version 8 as well, the
latest JavaSE (JSE) version you could download was 13. We won'’t be talking about JavaSE
versions 9 or higher in this book.

The specifications that describe the parts of Java EE/Jakarta EE tell what each part
can do and how it does it, and they keep track of new versions. Java EE/Jakarta EE 8
includes sub-technologies, which are also closely described by exact version numbers.
The specifications are handled by a community process, and vendors have to pass tests
if they want to be able to say their server products conform to a certain version of Jakarta
EE (or one of its predecessors, JEE or J2EE).

The Java Enterprise Edition was initially developed by Sun Microsystems and was
called J2EE. In 2006, the naming and versioning schema was changed to JEE, and after
J2EE version 1.4 came JEE version 5. Since then, major updates happened and versions
JEE 6, JEE 7, and JEE 8 were all released. In 2010, Sun Microsystems was acquired by
Oracle corp. Under Oracle, versions JEE 7 and JEE 8 were released. In 2017, Oracle
Corporation submitted Java EE to the Eclipse Foundation, and the name was changed to
Jakarta EE 8.

In this book, we will talk about running Java MVC inside the GlassFish server,
open source edition, version 5.1. Due to the nature of Jakarta EE 8, a transition to
other servers is always possible, although you have to spend a considerable amount of
time changing the administration workflow. GlassFish provides three administrative
interfaces—command-line tools for a shell or console, a web administrator GUI, and an
administrative REST interface.

42

CHAPTER 2 PREREQUISITE: JAKARTA EE/JAVA EE

Java MVC sits on top of JAX-RS, which was a clever decision of the framework
programmers. Not only does it allow Java MVC to very cleanly integrate with the rest of
the Java EE/Jakarta EE framework, it also gives a straightforward clue as to how to mix
Java MVC development techniques and more fine-grained client-server communication
using AJAX and JSON data snippets. REST controllers and Java MVC controllers look very
similar.

In the next chapter, we handle the development workflow suitable for this book and
other Java MVC projects.

43

CHAPTER 3

Development Workflow

In this chapter, we talk about development techniques, procedures, and tools you can
use for the examples in this book and any subsequent projects using Java MVC.

Using Gradle as a Build Framework

Gradle is a modern build framework/build automation tool. It provides for a pure
declarative configuration style, but you can also add imperative build code in the form of
Groovy (or Kotlin) script snippets, if needed.

Note Best practices indicate that for build scripts, declarative programming
(which tells what a build script has to do, not how it should do it) is favorable over
imperative programming (precise step-by-step instructions).

In the rest of this book, we use Gradle for build automation, because it has a very
concise build configuration and can be used from the console (the Linux bash and
Windows consoles) and from inside IDEs like Eclipse. Gradle build scripts can be as
small as just three lines, but they can also contain arbitrarily long code. We will use
Gradle as a tool and a little later in this chapter describe more of its characteristics.

Caution If you want to use OpendDK 8 to build and run applications, you must
add a valid cacerts file. Simply install OpendDK version 10, and then copy the
OpenJ]DK10-INST-DIR/1ib/security/cacerts to OpenJIDK8-INST-DIR/
lib/security/cacerts file.

45
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_3

https://doi.org/10.1007/978-1-4842-6280-1_3#DOI

CHAPTER 3 DEVELOPMENT WORKFLOW

Using Eclipse as an IDE

Eclipse is an IDE (Integrated Development Environment) with a plethora of
functionalities that help to develop Java Enterprise projects. It is freely available and you
can use it for both commercial and non-commercial projects without charge.

Eclipse can be extended by plugins, from which many are developed by the
community and are free to use. Plugins, however, might also come from vendors and you
might have to buy licenses to use them. In this book, we will only use free plugins. If you
feel tempted to try proprietary plugins, which under the circumstances might boost your
development, visit the Eclipse marketplace at https://marketplace.eclipse.org and
consult each plugin.eclipse.orgtevelopment, which under censes to use

Installing Eclipse

Eclipse comes in several variants. To download any of them, go to https://www.
eclipse.org/downloads/ or https://www.eclipse.org/downloads/packages/. We will
use the Eclipse IDE for Enterprise Java Developers variant in this book.

Note If you choose to download the installer, you will be asked for the variant. To
select the Enterprise variant from the start, click the Download Packages link and
choose the Enterprise version on the next page.

In this book, we will use Eclipse version 2020-03, but you might be able to use higher
versions. Just keep in mind that if you run into trouble without an obvious solution,
downgrading to Eclipse 2020-03 is an option.

Use any installation folder suitable for your needs. Plugin installations and version
upgrades go in the folder you choose, so ensure appropriate file access rights. On my
Linux box, I usually put Eclipse in a folder called:

/opt/eclipse-2019-09
(Or whatever version you have.) Then I make it writable to my Linux user:

cd /opt

USER=... # enter user name here
GROUP=... # enter group name here
chown -R $USER.$GROUP eclipse-2019-09

46

https://marketplace.eclipse.org
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/packages/

CHAPTER 3 DEVELOPMENT WORKFLOW

This changes the ownership of all files of the Eclipse installation, which makes sense
for a one-user workstation. If instead you have different users for Eclipse, you can create
anew group called eclipse and give that group write access:

cd /opt

groupadd eclipse

chgrp -R eclipse eclipse-2019-09
chmod -R g+w eclipse-2019-09

USER=... # enter your username here
usermod -a -G eclipse $USER

The chgrp ... command changes the group ownership and the chmod ...
command allows write access for all group members. The usermod ... command adds a
particular user to the new group.

Note You need to be root for these commands. Also note that the usermod
command does not affect the currently active window manager session on the
PC. You must, for example, restart your system or, depending on your distribution,
log out and log in again for that command to take effect.

As alast step, you can provide a symbolic link to the Eclipse installation folder:

cd /opt
In -s eclipse-2019-09 eclipse

This makes it easier to switch between different Eclipse versions on your system.

On a Windows system, the installer sets the access rights for you and it is normally
possible for any normal user to install plugins. This depends on the Windows version
and on your system’s configuration. Corporate environments often have more fine-
grained access rights, with normal users who are unable to install plugins and to
upgrade, and superusers for administrative purposes. These rights can be configured
using Windows access rights management.

47

CHAPTER 3 DEVELOPMENT WORKFLOW

Configuring Eclipse

Upon startup, Eclipse uses the default Java version installed on your system. In case it
cannot find it or you have several Java versions installed, you can explicitly tell Eclipse
which Java to choose. For this aim, open this file

ECLIPSE-INST/eclipse.ini
And add two lines:

-vm
/path/to/your/jdk/bin/java

Directly above the -vmargs line:

openFile
--launcher.appendVmargs
-vm
/path/to/your/jdk/bin/java
-vmargs

Note The format of the eclipse.ini file depends on the Eclipse version. Check
https://wiki.eclipse.org/Eclipse.ini for the correct syntax. On that
site you will also find precise instructions for specifying the Java executable path.
The syntax shown here is for Eclipse 2020-03.

On Windows PCs, you specify the path as follows:
-vm C:\path\to\your\jdk\bin\javaw

Don’t use escaped backslashes, like in C: \\path\\to\\..., as you would expect for
Java-related files!

48

https://wiki.eclipse.org/Eclipse.ini

CHAPTER 3 DEVELOPMENT WORKFLOW

In order to see which version Java Eclipse uses for running (not for building
projects!), start Eclipse, then navigate to Help»About Eclipse IDE»Installation
Details» Configuration tab. In the pane, find the line that starts with java.runtime.
version=....

Adding Java Runtimes

Eclipse itself is a Java application, and in the preceding section, we learned how to tell
Eclipse which Java version to choose for its own interests. For the development itself, you
have to tell Eclipse which Java version to use for compiling and running the applications
it hosts.

To do so, note the paths of all JDK installations you want to use for Eclipse
development. Then, start Eclipse.

Note When you start Eclipse, it asks you for a workspace. This folder can hold
several distinct or interrelated projects. It is up to you if you want to choose an
existing workspace or prefer to use a fresh new folder for an empty workspace.

Inside Eclipse, go to Window» Preferences»Java» Installed JREs. Usually Eclipse
is clever enough to automatically provide the JRE it used for its own startup. If this is
enough for you, you don’t have to do anything here. Otherwise, click the Add... button to
register more JREs. In the subsequent dialog, select Standard VM as the JRE type.

Note For Java 8, and other than when the name suggests, you must provide the
paths to JDK installations, not JRE installations in the strict sense.

Select the check box to mark your primary JRE. Don’t forget to click the Apply or
Apply and Close button to register your changes.

Adding Plugins

Eclipse can be extended by many useful plugins. Some of them are necessary for your
development, and some just improve your development workflow. In this book, we
won't use too many extra plugins, and I will provide plugin installation instructions
when they are needed.

49

CHAPTER 3 DEVELOPMENT WORKFLOW

As an exception, we will now install a Gradle plugin. We will later see that we can use
Gradle from the console, but the Gradle plugin in Eclipse allows us to use Gradle directly
from inside the IDE. Open Help>»Install New Software... and enter Eclipse Buildship
(Gradle) and http://download.eclipse.org/buildship/updates/latest in the dialog.
Select all the features and finish the wizard.

Eclipse Everyday Usage

Eclipse provides a lot of functions and you can learn about them by opening the built-in
help. To give you a starting point, the following are tips that help you get the most out of
Eclipse:

¢ You can get to an identifier’s definition by placing the cursor over
it and pressing F3. This works for variables (to navigate to their
declarations) and classes/interfaces (to navigate to their definitions).
You can even inspect referenced and Java standard library classes
that way. Eclipse will download sources and show the code. This is a
great way to learn about libraries in-depth by looking at the code.

o Torapidly find a resource, such as afile, class, or interface, press
Ctrl+Shift+R.

o Start typing code and press Ctrl+Space and Eclipse will show
you suggestions on how to finish your typing. For example, type
new SimpleDa and then press Ctrl+Space. The list provided will
contain all the constructors for the SimpleDateFormat class. Even
better, you can make that shorter by typing new SiDF and pressing
Ctrl+Space, because Eclipse will guess the missing lowercase letters.
An additional goody is that you don’t have to write the import
statements for classes and interfaces you introduce that way. Eclipse
will add the imports for you.

o LetEclipse add the imports for all classes not yet resolved by pressing
Shift+Ctrl+O (think of O as “organize imports”).

o Format your code by pressing Ctrl+Alt+F This also works with XML
and other file types.

50

http://download.eclipse.org/buildship/updates/latest

CHAPTER 3 DEVELOPMENT WORKFLOW

Let Eclipse show you super- and subtypes by pressing F4 over a type
designator.

Use F5 to update the Project Explorer view, in case files were added
or removed from outside of Eclipse.

With a new Eclipse installation, open the Problems view by choosing
Window>» Show View» Other...» General»Problems. This will
readily point you to any problems that Eclipse detects (compiler
problems, configuration problems, and others).

Open the tasks view from Window» Show
View>» Other...»General»Tasks to get a list of all occurrences of
“TODO” that you entered in code comments.

In case “TODO” is not fine-grained enough for you, you can add
bookmarks by right-clicking the vertical bar anywhere on the left side
of the code editor. Bookmarks are then listed in the Bookmarks view.

More About Gradle

With Eclipse and the Gradle plugin at hand, we can improve our knowledge of the Gradle

framework. To keep things simple for now, we start with a very simple non-Java MVC project.

You can find the Gradle user manual at https://docs.gradle.oxrg/

current/userguide/userguide.html.

A Basic Gradle Project

In order to learn more about Gradle, we build a simple EchoLibrary library with just one

class and one method, printing a string to the console. Start Eclipse, and you'll be asked

for a workspace. Choose any folder of your choice.

You may add all example projects from this book to a single workspace

called JavaMVCBook to keep things together, but this is up to you.

51

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html

CHAPTER 3 DEVELOPMENT WORKFLOW

Go to File»New>» Other...»Gradle» Gradle Project. Choose EcholLibrary as the
project name. You can use the default settings for the Gradle project options. Upon
completion, the New Project wizard prepares the project and adds a few files to the
project that holds the Gradle configuration.

The next thing we do is make sure the project can use an existing JSE installation.
The Gradle project wizard might try to use a nonexistent JRE and an error marker will
appear. See Figure 3-1.

B Project Explorer & | PEBe v=n
w § EchoLibrary

P Bcrc/main/iava

Figure 3-1. Project error marker (red exclamation mark)

To fix such a mismatch or to check whether the correct JRE is used, right-click the
project, then choose Properties»Java Build Path» Libraries. See Figure 3-2.

Properties For EcholLibrary

-|- Y, Build path entryis missing: org.eclipse.jdt.laun...ernal.debug.ui.launcher.StandardVMType/JavaSE-13/ voovrw
¥ Resource (=Source 1=Projects ®Libraries %;Order and Export @ Module Dependencies

Builders JARs and class folders on the build path:

Coverage

% Modulepath Add JARs
Gradle \Jdc uef: A :
v &;Classpa
Java Build Path a}" g JRF?S tem Library [JavasE-13] (unbound) Add External JARs...
-‘ em Library [JavaSE-13] (unboun
» Java Code Style > i I y :
; P @\ Project and External Dependencies Add Variable

» Java Compiler

» Java Editor Add Library
Javadoc Location
Project Facets
Project Natures Add Externa
Project References
Run/Debug Settings

P Task Repository

Task Tags
» validation Migrate JAR File
wikiText
Apply
@ Cancel Apply and Close

Figure 3-2. JRE mismatch

52

CHAPTER 3 DEVELOPMENT WORKFLOW

If there is a mismatch, remove the invalid entry by clicking Classpath and then
choosing Add Library...»]JRE System Library. Add the version 8 JRE you registered with
Eclipse. Then click the Apply and Close button.

Next, add a package called book. javamvc.echo by right-clicking src/main/-
java»New» Package. Inside the package, add an Echo class with these contents:

package book.javamvc.echo;

public class Echo {
public void echo(String msg) {
System.out.println(msg);

Gradle Main Concepts

By default, Gradle uses one central build file named build.gradle inside the root folder
of the project. Before we start talking about this file, we first need to cover Gradle’s main
concepts:

e Gradle has a core, which provides the infrastructure for build-related
activities. The activities themselves live in Gradle plugins, which need
to be specified in the build file and which run on top of the core. For
each project, you can specify which plugins are to be used for Gradle
builds. There are plugins for compiling Java classes; for packaging
artifacts into ZIP, WAR, or EAR files; for running applications; and
for publishing applications into a Maven repository. There are also
various analysis plugins, IDE integration plugins, utility plugins, and
more. And you can of course develop your own plugins.

e Plugins perform tasks. For example, the Java plugin has, among
others, a compileJava task for compiling Java classes and a jar task
for compressing and gathering several compiled classes.

o Each Gradle build consists of an initialization, a configuration, and
an execution phase. In the initialization phase, Gradle determines
whether the subprojects need to be included win the build. (We talk
about subprojects later.) In the configuration phase, Gradle evaluates
dependencies and builds a task graph, which contains all the tasks

53

CHAPTER 3 DEVELOPMENT WORKFLOW

that need to be executed for a build. Configurations on all objects
always run with every Gradle build. This is an important point and
a common pitfall for beginning Gradle users. It means that for a task
execution, the configuration for seemingly totally unrelated tasks

is called as well. So, for performance reasons, the configuration for
any task should be really fast. A task’s configurations should not

do anything that depends on whether the task is actually subject to
execution. In the execution phase, the tasks actually do their jobs
(compiling, moving, zipping, and so on).

Note Many Gradle manuals and tutorials at the beginning center around user-
defined tasks, which is actually a little bit misleading to the beginning Gradle user.
In many, even bigger projects, the corresponding build.gradle file specifies and
configures plugins, but hardly ever addresses tasks directly. Tasks are important
from a technical point of view, but starting Gradle introductions by talking

about the different phases and the plugin architecture leads to a more thorough
understanding of Gradle’s functioning.

Standard Gradle Project Layout

The project layout that all Gradle plugins by default expect is as follows:

|- java
| |- <java source files>

|

|

|

| |- resources
| |- <resource files>
|

|

|- java
| |- <java source files>
|- resources
|- <resource files>
build

54

CHAPTER 3 DEVELOPMENT WORKFLOW

|- <any files built by Gradle>

build.gradle <Gradle build file>
settings.gradle <(Sub-)Project settings>
gradle.properties <optional project properties>

Note If you know the Maven build framework, the layout of the sxc folder will
look familiar to you.

We will learn how to change the project structure in a later section.

The Central Gradle Build File

The Gradle project wizard from Eclipse creates a sample build.gradle file inside the
project’s root folder. For any Gradle project, including projects that don’t use Eclipse, this
is the central build file. The Eclipse plugin provides a basic build file with some example
entries, but you can of course build this file from scratch.

Caution The Eclipse Gradle plugin sometimes has a funny idea about when and
where to show the build file. If you can’t find the file in the Project Explorer, open
the Gradle Task view and right-click the project, then choose the Open Gradle Build
Script option.

A build file usually starts by defining which plugins are to be used, and then
configures the plugins. User-defined tasks with operating instructions can also go to
the build file, if needed. It is also possible to add Groovy or Kotlin code to existing tasks,
which gives you the power to fine-tune plugins according to your needs.

Note In this book, we show only Groovy code for Gradle build purposes. Groovy
is dynamically typed and because of that maybe just a little bit more concise
compared to the statically typed Kotlin. Besides, Groovy dedicatedly is a scripting
language, so it’s equipped with many utilities for scripting purposes, while Kotlin is
a large-scale computer language and a competitor to Java.

55

CHAPTER 3 DEVELOPMENT WORKFLOW

Plugins usually have a very precise and reasonable idea about their defaults, so
there is not much to configure for your project. For this reason, the build file could be
rather small. This convention-over-configuration style is not an invention of Gradle, but
Gradle—with its design aiming at elegance-gratefully adopts this idea.

Back to the EchoLibrary sample project. We dismiss the sample build.gradle file
created by the wizard and overwrite its contents with the following:

// The Echolibrary build file
plugins {
id 'java-library'

}
java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}
repositories {
jecenter()
}

dependencies {
testImplementation 'junit:junit:4.12'

The first three lines plugins { id 'java-library' } specify that we want to use the
java-library plugin. The name tells all, we in fact want to build a Java library, but you
can learn about the details in the plugins section of the user manual.

The java { sourceCompatibility = JavaVersion.VERSION 1 8;
targetCompatibility = JavaVersion.VERSION 1 8 } settings specify the JRE version
of our library. Possible values can be looked up in the org.gradle.api.JavaVersion
class, but you won'’t find anything surprising there (JDK 13 = JavaVersion.
VERSION 1 13 andso on).

56

CHAPTER 3 DEVELOPMENT WORKFLOW

Note Gradle uses your operating system’s default JDK to compile classes. You
should not use your Gradle project configuration to set the JDK path, because then
you’d introduce some unneeded dependency. After all, a JRE 13 can very well
handle JRE 8 files and maybe other developers want to use the same build scripts
on their own systems. Instead you can change your operating system’s JAVA
HOME environment variable to specify a JDK path prior to Gradle invocations.

The repositories { jcenter() }linesindicate where Gradle will try to load
libraries that your project depends on. The jcenter() points to Bintray’s JCenter, but
you can also use google() for Android projects and mavenCentral() for Maven Central.
Or, you could specify a custom URL, as in repositories { maven { url "http://
my . company.com/myRepo” } }, which comes in handy with private or company-owned
repositories. See the Gradle manual section called “Declaring Repositories.”

The dependencies section indicates which libraries our project needs. For the
EcholLibrary example, we have no dependency to an external library, but for unit tests,
which we did not write in this case but could very well be an exercise for the inclined
reader, we add a dependency to the JUnit test library.

All other settings—Ilike the position of the source files, how the generated JAR file is
named and where it is written to, where to store and cache downloaded dependencies,
and so on—are handled by the plugin defaults.

This build file with a handful of settings can now be used to perform various build
tasks.

Running Gradle Tasks

Build-related and user-triggered activities in Gradle are called tasks. The main objective
of Gradle from a handling perspective is about invoking tasks.

The Eclipse Gradle plugin has a Gradle Tasks and a Gradle Executions view. In
addition, diagnostic output goes to the standard Console view. The two Gradle-related
views open by default after you install the Gradle plugin. See Figure 3-3.

57

http://my.company.com/myRepo
http://my.company.com/myRepo

CHAPTER 3 DEVELOPMENT WORKFLOW
||y ¥
ternal Depel |,

12= dependencies {
13 testImnlementation 'iunit:iunit:4.12"

I*! Problems | # Gradle Tasks 2 # Gradle Executions & Console [2! Markers

If

d
0
4|0

ll:l‘
%
%
B

Name Description
» (& EchoLibrary

Figure 3-3. Gradle views

If this is not the case for you, go to Window>» Show View>» Other...»Gradle to open a
Gradle view. The Console view is available from Window» Show View>» Console.

The Gradle Tasks view lists all available tasks in a tree view; see Figure 3-4. The
scope of the tasks shown can be filtered using the view menu (small down triangle in
the menu). If you introduce any custom tasks, this is a good time to enable the Show All
Tasks item; otherwise, the custom tasks don’t show up in the list. See Figure 3-5.

BE2$S < |
Name Description
w (& EchoLibrary
» 2 build setup

¥ 2 build
assemble Assembles the outputs of this project.
@ build Assembles and tests this project.
buildDependents Assembles and tests this project and all projects that depend oniit.
% buildNeeded Assembles and tests this project and all projects it depends on.
classes Assembles main classes.
& clean Deletes the build directory.
% jar Assembles a jar archive containing the main classes.
& tectClacces Acsembles test clas<ec

Figure 3-4. Gradle tasks view tree
58

CHAPTER 3 DEVELOPMENT WORKFLOW

D LU LUoOND Uuwvil L o1ivww u

Show Task Selectors
Show Project Tasks
Show All Tasks

Order Tasks by Type
Order Tasks by Visibility

Group Tasks
Il projects that depend onit. Flatten Project Hierarchy
Il projects it depends on. LaTeX ¥ T

Figure 3-5. Gradle tasks view menu

Caution If you change the project structure, for example by adding, removing, or
renaming custom tasks, you must click the Refresh Tasks for All Projects button in
the menu (the bent double arrow); otherwise, the view won’t reflect the changes.

In order to run a Gradle task from inside the Gradle Tasks view, you first have to
locate it inside the tree. Depending on how precise your idea is where to look inside
the tree, you can also use the menu filter to find a task. Once you find it, double-click it
to run the task. Diagnostic output, including any error messages, is shown in both the
Gradle Executions and the Console views.

Tasks might have option parameters that control their functioning. For example,
there is a tasks task that lists only a certain subset of all tasks. More precisely, tasks have
a group property, and one of the groups is called other. If you run the tasks task without
a parameter, tasks belonging to the other group are not included in the output. To show
all tasks using that command, you must add an --all parameter. To do so from Eclipse,
go to Run»Run Configurations, navigate to Gradle Task, and add a new entry, as shown
in Figure 3-6 (click the Add button twice to enter tasks and --all). Click Run and switch
to the Console view to see the output.

59

CHAPTER 3 DEVELOPMENT WORKFLOW

Run Configurations

Create, manage, and run configurations @

iFe@X B~ Name: | Tasks-All

type filter text @ Gradle Tasks & Project Settings;] common
Ed Eclipse Data Tools Gradle Tasks:
& Generic Server tasks
& Generic Server(Extern|| _au
w # Gradle Task
& EchoLibrary-assem Add

& EcholLibrary-classe
EcholLibrary-clean ||| Working Directory:
™ EchoLibrary-init S{workspace_loc:/EchoLibrary}
& EchoLibrary-jar
& Helloworld - deploy
& JavaMvc - help
.../ Tasks-All
& Gradle Test
@ Groovy Console
@ Groovy Script
@ Groovy Shell
MGrunt
Gulp
8 HTTP Preview
 J2EE Preview

W iain amalat Ty T
Revert Apply

Filter matched 33 of 33 iter

Workspace... | | File System... | | Variables...

@ Close Run

Figure 3-6. Custom Gradle task run configuration

For the EcholLibrary example, building a library JAR most probably is the main task.
You can find it in the build section. Once you run it, the final JAR is presented in the
build/libs folder.

Caution The build folder might be filtered from the Eclipse project view. In this case,
if you want to see it, open the project view menu at the small triangle, go to Filters and
Customization, and remove the check mark from the Gradle Build Folder entry.

60

Gradle Tasks Explained

CHAPTER 3 DEVELOPMENT WORKFLOW

Tasks get defined by plugins, and plugins also might amend or overwrite tasks defined

by other plugins, so there is no one-to-one relationship between tasks and plugins. In

addition there are plugin-independent tasks defined by Gradle itself. Table 3-1 defines

most of the tasks you'll normally use in your Java projects.

Table 3-1. Gradle Tasks

Name

Group

Description

help

projects

tasks

dependencies

init

help
help

help

help

build setup

Displays a help message.

Shows the name of the project and lists the names of all
subprojects, if applicable. We talk about subprojects later
in this chapter.

Displays the tasks runnable from the project. You have to
add the --all options to include tasks from the other
group. To see tasks belonging to a certain group, add the
--group <groupName> option (for the groupname,
use build, build setup, documentation, help
verification, or other).

Plugin-independent. Calculates and displays all the
dependencies of the project. You can use this to determine
which libraries the project depends on, including transitive
dependencies (dependencies introduced indirectly, as
dependencies of dependencies).

Adds files necessary for the current directory to serve as a
root for Gradle builds. You do this normally only once and
at the beginning of a new project. With the Eclipse Gradle
plugin and the New Gradle Project wizard, this task is
called automatically. This task does not depend on Gradle
plugins being activated.

(continued)

61

CHAPTER 3 DEVELOPMENT WORKFLOW

Table 3-1. (continued)

Name Group Description

wrapper build setup Adds a Gradle wrapper to the project. Gradle builds can
then be performed without Gradle being installed at an
operating system level (Java must be installed). With the
Eclipse Gradle plugin and the New Gradle Project wizard,
this task is called automatically. This task does not depend
on Gradle plugins being activated.

check verification Alifecycle task. Abstractly defined in the base plugin and
materialized by activated plugins. Depends on test, but
may run additional checks.

test verification Runs all unit tests.

assemble build A lifecycle task. Abstractly defined in the base plugin and
materialized by activated plugins. Any plugin that produces
a distribution or other consumable artifacts is supposed to
make the assemble task depend on it. In a custom task,
you would write something like assemble.dependsOn(
someTask). Invoking this task bypasses any tests.

build build A lifecycle task. Abstractly defined in the base plugin and
materialized by activated plugins. Depends on the check
and assemble tasks, and thus performs all tests and then
produces a distribution or other consumable artifacts,
depending on the activated plugins.

clean build A lifecycle task. Deletes the build directory. You invoke
this task if you want to make sure a subsequent build
performs all build steps, even those that seemingly could
have been reused from previous build operations. You do
not normally invoke this task in everyday work, because if
properly set up, Gradle should be able to determine which
preparatory tasks need to be executed and which do not
(because of previous builds).

(continued)

62

Table 3-1. (continued)

CHAPTER 3 DEVELOPMENT WORKFLOW

Name Group Description

classes build Any plugin which, somewnhere in its build procedures,
needs to build Java classes provided in this task. Its
responsibility is to create Java classes from the main
section (not test classes) of the sources.

testClasses build Similar to the classes task, but handles the test section
from the sources.

jar build Assembles a JAR archive containing the classes from the
main section.

ear build Only for the EAR plugin. Assembles an EAR archive from
the subprojects (web applications and EJBS).

javadoc documentation Generates JavaDoc API documentation for the source code
from the main section.

compileJava other Compiles Java source from the main section.

compileTestJava other

Compiles Java source from the test section.

Each plugin’s documentation may also describe more tasks of particular interest for

that plugin.

Gradle Plugins

If you're developing for Java MVC and other Java and JEE/Jakarta EE related projects, the

following list shows you the plugins you will most often encounter:

o Base: Provides basic tasks and conventions common for most builds.

o Java: Any type of Java project.

o Java Library: Extends the Java plugin and provides knowledge about

the API exposed to consumers.

o Java Platform: Does not contain any sources, but describes a set of

interrelated libraries that are usually published together.

63

CHAPTER 3 DEVELOPMENT WORKFLOW

e Application: Implicitly applies the Java plugin and allows for
declaring a main class to be used as an application entry point.

e WAR: Extends the Java plugin and adds capabilities to build a web
application in the form of a WAR file.

o EAR: Allows for creating an EAR file.

e Maven Publish: Adds capabilities to publish artifacts to a Maven
repository.

o IvyPublish: Adds capabilities to publish artifacts to an Ivy repository.

o Distribution: Adds functionalities for simplifying artifact
distribution.

o Java Library Distribution: Adds functionalities for simplifying
artifact distribution, with special attention paid to Java libraries.

o Checkstyle: Adds checkstyle checks.

e PMD: Adds PMD checks.

o JaCoCo: Adds JaCoCo checks.

o CodeNarc: Adds CodeNarc checks.

o Signing: Adds signing capabilities.

o Project Report Plugin: Allows for generating a build report.

You can learn more about each plugin by looking into the Gradle user manual,
specifically the chapter entitled “Gradle Plugin Reference.”

More About Repositories

Gradle loads libraries from a repository if it determines that the project refers to such
libraries. You specify repositories in a repositories { } section inside build.gradle:

repositories {
repoSpecl (repository specification, see below)
repoSpec2

64

CHAPTER 3 DEVELOPMENT WORKFLOW

You can use the following as repository specifications:
o mavenCentral()

Hardcoded to point to the publicly available Maven repository at
https://repo.maven.apache.org/maven2/

o jcenter()

Hardcoded to point to the publicly available Maven repository at
https://jcenter.bintray.com/

« google()

Hardcoded to point to the publicly available Android specific
Maven repository at https://maven.google.com/

o flatDir { ... }

Points to a folder with libraries. The precise syntax is flatDir

{ dirs '/pathi/to/folder', '/path2/to/folder', ... }.
It does not support meta-information, so if a dependency can
be looked up in a flatDir repository and in another repository
with meta-information (Maven, Ivy, and so on), the latter has
precedence.

e maven { ... }

Points to a Maven repository given an explicit URL. The precise
syntax is

maven { url "http://repo.mycompany.com/maven2" }
o dvy { ...}

Points to an Ivy repository given an explicit URL. The precise
syntax is

ivy { url "http://repo.mycompany.com/ivy" }
o mavenlLocal()
Uses the local Maven cache (usually in HOME-DIR/ .m2)
For URLs you specify as repository locations, Gradle also supports the https:, file:,

sttp:, and s3: (Amazon s3 services) protocols, or gcs: (Google cloud storage).

65

https://repo.maven.apache.org/maven2/
https://jcenter.bintray.com/
https://maven.google.com/

CHAPTER 3 DEVELOPMENT WORKFLOW

The first three, and of course the standard http:// protocol, use the standard URL
syntax. If needed, the Gradle manual explains more about the syntaxes for s3: and gcs.

If you need to provide credentials for connecting to a repository, you can specify
themin a credentials { } section:

repositories {
maven {
url "http://repo.mycompany.com/maven2”
credentials {
username "user"
password "password"

This is for basic authentication. For more advanced authentication schemes, see the

section called “Declaring Repositories” in the Gradle manual.

More About Dependencies

Dependencies in Gradle center on configurations. A (dependency-related)
configuration is a dependency scope, which means it describes a usage scenario.
Consider for example that you have one set of dependencies important only for testing,
another set of dependencies needed for the internal functioning of some library, and
yet another set of dependencies needed for internal functioning and forwarded to
clients (because they show up in public method calls). All those are different scopes, or
configurations.

Dependency-related configurations are defined by plugins, but there is a common
sense about configuration names, and internally configurations also inherit from each
other, which leads to configuration name matches between different plugins. Table 3-2
list the configurations you'll often encounter in Java-related projects.

66

CHAPTER 3 DEVELOPMENT WORKFLOW

Table 3-2. Gradle Configurations

Name Description

implementation Any dependency needed to compile the main section of the sources can
use this configuration. The dependency also will be used at runtime.

compile DEPRECATED. To be replaced by implementation. You find this
often in blogs and tutorials, so this is added for your information. Use
implementation instead.

compileOnly Dependency only needed to compile the main section of the sources.
During runtime, some kind of container will provide the dependency, so
the project is not required to add this kind of dependency to a deliverable
artifact.

runtimeOnly Dependency not needed for compilation of the main section of the sources,
but subject to being added to deliverable artifacts.

api Only for the Java Library plugin, identifies a dependency that must be
transferred to library clients as well, because types from the dependency
show up in public method calls.

providedCompile Only for the WAR plugin; same as implementation, but the dependency
will not be added to the WAR file.

providedRuntime Only for the WAR plugin; same as runtime, but the dependency will not be
added to the WAR file.

deploy Only for the EAR plugin; add the dependency to the root of the EAR file.

earlib Only for the EAR plugin; add the dependency to the 1ib folder of the EAR
file.

testImplementation Any dependency needed to compile the test section of the sources can
use this configuration. The dependency also will be used at runtime.

testCompile DEPRECATED. To be replaced by testImplementation. You find this
often in blogs and tutorials, so this is added for your information. Use
testImplementation instead.

testCompileOnly Similar to compileOnly, but for the test section of the sources.

testRuntimeOnly Similar to runtimeOnly, but for the test section of the sources.

67

CHAPTER 3 DEVELOPMENT WORKFLOW

Once you identify the configurations you need, you specify a list in the dependencies
{ }section of your build.gradle file:

dependencies {
implementation 'org.apache.commons:commons-math3:3.6.1"
// This is the same:
implementation group:'org.apache.commons’,
name: 'commons-math3',
version:'3.6.1'

// You can combine:
implementation 'org.apache.commons:commons-math3:3.6.1",
'org.apache.commons:commons-lang3:3.10"
// or like that:
implementation(
[group:'org.apache.commons',
name: 'commons-math3', version:'3.6.1"'],
[group:'org.apache.commons',
name:'commons-lang3', version:'3.10"']
)
// or like that:
implementation 'org.apache.commons:commons-math3:3.6.1'
implementation 'org.apache.commons:commons-lang3:3.10'

testImplementation 'junit:junit:4.12'

Normally any indirect dependency, which comes from dependencies of
dependencies, gets resolved automatically. Such dependencies are called fransitive
dependencies. So if you declare a dependency on some library A, which in turn depends
on libraries B and C, Gradle will take care of including B and C in the build, without
needing to explicitly declare the dependencies on B and C in build.gradle. If you want
to prevent Gradle from including transitive dependencies, you can mark them using
transitive = false:

dependencies {
implementation (group: 'org.eclipse.jetty’',
name: 'jetty-webapp',

68

CHAPTER 3 DEVELOPMENT WORKFLOW

version: '9.4.28.v20200408"') {
transitive = false

You can investigate such transitive dependencies if you invoke the dependencies
task. The output will be a tree-like representation of dependencies and transitive
dependencies, as for example, in the following:

runtimeClasspath - Runtime classpath of source set 'main'.
\--- com.sparkjava:spark-core:2.8.0

+--- org.slf4j:slf4j-api:1.7.25

+--- org.eclipse.jetty:jetty-server:9.4.12

| +--- javax.servlet:javax.servlet-api:3.1.0

| +--- org.eclipse.jetty:jetty-http:9.4.12

| | +--- org.eclipse.jetty:jetty-util:9.4.12

| | \--- org.eclipse.jetty:jetty-io:9.4.12

| \--- org.eclipse.jetty:jetty-util:9.4.12

(The noted dependency here is implementation com.sparkjava:spark-core:-
2.8.0.)

Changing the Project Structure

We learned that, by adhering to the default project structure, we don’t have to spend
time in configuring the project, telling it where to find sources and resources.

If for whatever reason you need a custom project layout, add the following lines to
your build.gradle file:

sourceSets {
main {
java {
srcDirs = ['src99/main/java']

}

resources {

69

CHAPTER 3 DEVELOPMENT WORKFLOW

srcDirs = ['src99/main/resources’]
}
}
test {
java {
srcDirs = ['src99/test/java']
}
resources {
srcDirs = ['src99/test/resources’]
}
}

Because all directory settings are specified as lists (seen from [...]), you can also
distribute sources and resources over several folders (use commas as separators).

In order to change the build folder where Gradle puts the temporary and final output
files, write the following in your build.gradle file:

project.buildDir = 'gradle-build'

The Gradle Build File Is a Groovy Script

Let’s revise the EchoLibrary example build.gradle file:

// The Echolibrary build file

plugins {
id 'java-library'
}
java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}
repositories {
jecenter()
}

70

CHAPTER 3 DEVELOPMENT WORKFLOW

dependencies {
testImplementation 'junit:junit:4.12'

Apart from the suspicious () in jcenter () and the strange mixture of A Band A =
B constructs, this file might look like a configuration file with a syntax limited to setting
some properties. The truth is much more gloomy, however. In fact, the build.gradle file
is a Groovy script, and Groovy is a fully fledged scripting language running on top of a
JVM engine.

Although we already stated that, for build definition files, a declarative programming
style is preferable over a declarative programming style, it is, under certain
circumstances, acceptable to add programming language constructs like conditional
statements, switch constructs, loops, and calls to library objects for IO (files and the
console), math, streams, date and time, and whatever else you might think of. Also,
the { } brackets in the build files actually do not denote blocks, but closures. So the
dependencies { } constructis actually a shortcut for dependencies({ }), and anyA
B construct in fact is a method call A(B).

For example, if you wanted to add a runtimeOnly dependency only if some system
property is defined, and furthermore wanted to output a corresponding diagnostic
message, you could write the following:

dependencies {
if(System.getProperty("add.math") != null) {
println("MATH added")
runtimeOnly group: 'org.apache.commons',
name: ‘commons-math3', version: '3.6.1'

testImplementation 'junit:junit:4.12'

}

You could now call any task with the extra option -Dadd.math added to see the
conditional statement and console output working.

71

CHAPTER 3 DEVELOPMENT WORKFLOW

Script Variables

For increased readability and maintenance optimization, you can add variables
(properties) to your build file. To do so, you can use an ext { } call:

ext {
MATH_VERSION = '3.6.1'
JUNIT VERSION = '4.12'

}

dependencies {
implementation group: 'org.apache.commons',
name: 'commons-math3', version: MATH VERSION
testImplementation "junit:junit:${JUNIT_VERSION}"

}

In order for the ${} substitution to work, the double quotation marks are
required—this is a Groovy language feature (GString objects). Otherwise in Groovy you
can use both single and double quotation marks to denote strings.

If the variable scope is limited to the current closure (inside a { }), you can also use
the standard Groovy local variable declaration:

dependencies {
def MATH VERSION = '3.6.1'
def JUNIT VERSION = '4.12'

implementation group: 'org.apache.commons',
name: 'commons-math3', version: MATH _VERSION
testImplementation "junit:junit:${IJUNIT VERSION}"

}

72

CHAPTER 3 DEVELOPMENT WORKFLOW

Custom Tasks

We can define our own tasks inside the build.gradle file. Because we can use the
Groovy language inside the build script, the possibilities are endless here. We can add
logging, include non-standard files in archives, perform encryption, deploy artifacts on
servers, publish files in a non-standard way, perform timing, invoke extra preparation
and cleanup steps, and more.

To define your own task, you write the following anywhere in your build.gradle
script file:

task hello {
group = 'build’
description = 'Hello World'

println 'Hello world! CONFIG'

doFirst {
println 'Hello world! FIRST'
}
doLast {
println 'Hello world! LAST'
}
}

The group and description settings are both optional; the default for the group
is other, and if you omit the description, an empty string will be taken instead. The
possible values for group are build, build setup, documentation, help, verification,
and other.

To execute a custom task, you do the same thing as you do for built-in tasks or tasks
defined by plugins. However, in order for the Eclipse Gradle plugin to be able to see the
new task, you first must right-click the project and then choose Gradle» Refresh Gradle
Project. Then you'll see the new task in the tree view of the Gradle Tasks view and can
execute it by double-clicking it.

The instructions inside the main { } are executed during the configuration phase.
It is important to know that such instructions are executed unconditionally for all tasks
declared! For task-execution matters, you instead put instructions into doFirst { } or

73

CHAPTER 3 DEVELOPMENT WORKFLOW

doLast { }.Each task has an action list; if you use doFirst, instructions are prepended
to the action list, if you use doLast, actions are appended to the action list.
It is possible to add instructions to the task’s action list at a later point, by writing:

hello.dolLast {
println 'Hello world! MORE LAST'

}

hello.doFirst {
println 'Hello world! MORE FIRST'

}

You can add your custom task to the dependent’s list of existing tasks, or add existing
tasks to the dependent’s list of the new task. To do so, write the following, for example:

build.dependsOn hello
hello.dependsOn build

The magic behind that is that any task is directly available by its name inside the
build.gradle script. So, if you write build.dependsOn hello, any execution of the
build task first leads to executing hello. In hello.dependsOn build, an execution of the
hello task first yields a build execution. This way, it is possible to add task dependency
relations to existing standard and non-standard tasks.

The Gradle Wrapper

If you use the wrapper task or the Eclipse Gradle plugin to start a new project, the
wrapper scripts are installed, which allow you to run Gradle without any Gradle
installation on the operating system (Java must be working, though). You can see that
from the following files:

gradlew
gradlew.bat

gradle
|- wrapper
|- gradle-wrapper.jar
|- gradle-wrapper.properties

74

CHAPTER 3 DEVELOPMENT WORKFLOW

gradlew and gradlew.bat are Gradle startup scripts for Linux and Windows,
respectively. The gradle folder contains the standalone Gradle installation.

The Eclipse Gradle plugin does not use these wrapper scripts. Instead, upon starting
the first Gradle task, a Gradle daemon from inside USER_HOME/gradle is started. This
daemon runs in the background and any Gradle task execution triggered from Eclipse
contacts this daemon for the actual build work. This allows for faster task executions.

If Gradle gets invoked from the console, the wrapper is used, and such a daemon
process will be started as well. We talk about the console-oriented way of development
in the “Developing Using the Console” section.

Multi-Project Builds

Gradle projects can have subprojects. Apart from gathering projects that exhibit
some kind of inter-relation, such a hierarchy built of one main project and one or
more subprojects also is important for EAR projects, where we typically have one web
application, maybe some EJBs, and possibly some libraries.

To build such a multi-project from inside Eclipse, first create a normal Gradle project
as described previously. Then, open the settings.gradle file and add the following line:

include ‘proj1', 'proj2'

Of course you can choose different names for the subprojects. Next, create two
folders inside the project folder, with names proj1 and proj2 (or whatever names you
have chosen). Add an empty build.gradle file to each of the new folders. You can later
add any subproject-related build instructions there.

Right-click the project and choose Gradle»Refresh Gradle Project. Eclipse will
update the Project Explorer and show the main project and the two subprojects as
different entries; see Figure 3-7.

75

CHAPTER 3 DEVELOPMENT WORKFLOW

~

(5 Project Explorer 2 \ BE®e v=08

v MultiProject

P B src/main/java
» @ src/main/resources
P @ src/test/java
» @ src/test/resources
» =)\ Project and External Dependencies
» &=bin
» =gradle
P &src
build.gradle
= gradlew
[2 gradlew.bat
& settings.gradle
v £ proj1
» =\ Project and External Dependencies
 build.gradle
v £ proj2
» =\ Project and External Dependencies
build.gradle

L. w

Figure 3-7. Gradle multi-project in Eclipse

Due to a bug in the Gradle plugin, you have to fix the JRE library assignment for
all three entries. On each of them, right-click and then choose Properties» Libraries.
Remove the wrong entry, then click Add Library (to classpath)»JRE System
Library»Workspace Default JRE (or whatever suits your needs). The error markers
should now be gone, as shown in Figure 3-8.

76

CHAPTER 3 DEVELOPMENT WORKFLOW

¢ Project Explorer %2 '_ El@s v=0 |
» #src/main/java
» @ src/main/resources
» B src/test/java
P @ src/test/resources
» =\ Project and External Dependencies
» =\ JRE System Library [openjdk-8.40]
» &= Dbin
» >gradle
P =src
& build.gradle
[# gradlew
[gradlew.bat
& settings.gradle
v & proj1
» =\ Project and External Dependencies
» ®\ JRE System Library [openjdk-8.40]
» & Dbin
~ build.gradle
v & proj2
» =\ Project and External Dependencies
» =)\ JRE System Library [openjdk-8.40]
» &bin
& build.gradle

Figure 3-8. Gradle multi-project in Eclipse, fixed

Each subproject can be configured independently using its own build.gradle file,
but it is also possible to refer to subprojects from the root project’s build.gradle file:

// referring to a particular sub-project
project(':proj1') { proj ->
// adding a new task to proj1
task('hello"').doLast { task -»>

77

CHAPTER 3 DEVELOPMENT WORKFLOW

println "I'm $task.project.name" }

}

// we can directly address tasks
project(':proj1').hello {

doLast { println "I'm $project.name" }
}

// or, referring to all sub-projects
subprojects {
task hello {
doLast { task -»
println "I'm $task.project.name"

}
}
}

// or, referring to the root project and all sub-projects
allprojects {
task hello {
doLast { task -»>
println "I'm $task.project.name"

We can address the root project from inside the configuration of a subproject via the
rootProject variable:

task action {

doLast {
println("Root project: " +
"${rootProject.name}")

78

CHAPTER 3 DEVELOPMENT WORKFLOW

You can read more about multi-project builds in the sections called “Configuring
Multi-Project Builds” and “Authoring Multi-Project Builds” in the Gradle user manual.
We will use a multi-project in Chapter 9.

Adding a Deploy Task

A good candidate for a custom task is a deployment process. We can use the standard
build task to create a WAR or EAR file, but in order to deploy it on a local development
server, a custom Gradle task comes in handy. Throughout the book, we will use the
following tasks for deployment and “un-deployment” on a local GlassFish server:

task localDeploy(dependsOn: build,
description:">>> Local deploy task") {
doLast {
def FS = File.separator
def glassfish = project.properties|'glassfish.inst.dir']
def user = project.properties['glassfish.user']
def passwd = project.properties|'glassfish.passwd']

File temp = File.createTempFile("asadmin-passwd",
n .tmpll)
temp << "AS_ADMIN ${user}=${passwd}\n"

def sout = new StringBuilder()

def serr = new StringBuilder()

def libsDir = "${project.projectDir}${FS}build" +
"${FS}1libs"

def procStr = """${glassfish}${FS}bin${FS}asadmin

--user ${user} --passwordfile ${temp.absolutePath}
deploy --force=true
${1ibsDir}/${project.name}.war
// For Windows:
if(FS == "\\") procStr = "emd /c " + procStr
def proc = procStr.execute()

proc.waitForProcessOutput(sout, serr)
println "out> ${sout}"

79

CHAPTER 3 DEVELOPMENT WORKFLOW
if(serr.toString()) System.err.println(serr)

temp.delete()

}
}

task localUndeploy(
description:">>> Local undeploy task") {
doLast {
def FS = File.separator
def glassfish = project.properties|'glassfish.inst.dir"']
def user = project.properties|'glassfish.user"']
def passwd = project.properties|'glassfish.passwd']

File temp = File.createTempFile("asadmin-passwd",
n .tmpll)
temp << "AS_ADMIN ${user}=${passwd}\n"

def sout = new StringBuilder()

def serr = new StringBuilder()

def procStr = """${glassfish}${FS}bin${FS}asadmin
--user ${user} --passwordfile ${temp.absolutePath}
undeploy ${project.name}"""

// For Windows:

if(FS == "\\") procStr = "cmd /c " + procStr

def proc = procStr.execute()

proc.waitForProcessOutput(sout, serr)
println "out> ${sout}"
if(serr.toString()) System.err.println(serr)

temp.delete()

These tasks depend on a properties file. Gradle automatically tries to read a
properties file named gradle.properties and, if it exists, creates a map from the
properties and puts it into the project.properties variable. We create such a file in the
project folder, and let it read as follows:

80

CHAPTER 3 DEVELOPMENT WORKFLOW

glassfish.inst.dir = /path/to/glassfish/inst
glassfish.user = admin
glassfish.passwd =

The tasks create a temporary password file; this is just the GlassFish way of avoiding
manual password entry. The "...".execute() creates a process running on the
operating system; for the Windows variant, we have to prepend a cmd /c.

We can now perform a deployment or “un-deployment” by invoking the
localDeploy or localUndeploy task, respectively. Since we added a dependsOn: build
as a task dependency for deployment, it is not necessary to build a deployable artifact;
this is done automatically.

Developing Using the Console

Because the Eclipse Gradle plugin installed wrapper scripts inside the project folder, it
is therefore possible to do all build-related work from inside a console (bash terminal in
Linux, command interpreter in Windows) instead of from the Eclipse GUL. It is a matter
of style; using the console, you can avoid having to switch around Eclipse views and
collapsing and scrolling trees. Besides, if you have to add task options or arguments,
using the console is much more straightforward and faster compared to the GUI. If you
don’t have a GUI because you want to do the build on a server, using the console is your
only option.

This section covers using the console for Gradle builds. It is possible to freely mix
console and GUI triggered builds, so you can use both approaches at the same time.

If you didn’t use the Eclipse Gradle plugin to start a Gradle project, you can use the
wrapper task to create the wrapper. In this case, Gradle must be installed on your OS. The
Linux script reads as follows:

java -version
observe output

if you want to specify a different JDK:
export JAVA HOME=/path/to/the/jdk

cd /here/goes/the/project

gradle init wrapper

81

CHAPTER 3 DEVELOPMENT WORKFLOW
For Windows, it reads as follows:

java -version
observe output

if you want to specify a different IDK: set JAVA HOME=C:\path\to\the\jdk
chdir \here\goes\the\project
gradle init wrapper

This assumes that the gradle is in the PATH (in Windows, gradle.bat is in your
PATH). Otherwise, you must specify the complete path to the gradle command. For
example: C:\gradle\bin\gradle.bat.

To check the wrapper installation, you can list the available tasks from inside the
project directory via the following:

./gradlew tasks
Windows: gradlew tasks

The output should be something like this:

> Task :tasks

init - Initializes a new Gradle build.wrapper - Generates Gradle wrapper
files.

[...]

You can see the complete synopsis of the gradlew (gradlew.bat for Windows)
wrapper command if you enter the following:

./gradlew -help
Windows: gradlew -help

82

CHAPTER 3 DEVELOPMENT WORKFLOW

A non-exhaustive list of interesting and important option parameters is shown in
Table 3-3. Specify any tasks to be executed behind the option list.

Table 3-3. Gradle Command Options

Option Description
-?, -h, - Shows this help message.
help

-Dprop=val Setsa JVM property. You can use System.getProperty("prop") inside the
script to read it.

-Pprop=val Sets a project property. You can use prop inside the script to directly read it.
-W, -Warn Adds warning level diagnostic output.

-i, -info Adds some info level diagnostic output.

-d, -debug Enables debugging messages when something goes wrong.

-q, -quiet Shows error level messages only (quiet).

-offline Normally libraries referred to in a Java build task are downloaded into a cache. If
you want to disable network access, use this option.

-status Shows the status of Gradle daemon(s). Normally upon first startup, a background
process (daemon) is started to speed up subsequent Gradle calls. Use this to
show the status of the daemon(s).

-stop Stops the daemon if it is running.

-v, -version Shows the version info.

Tasks can have options and parameters. In order to use the tasks task (show all
task), for example, you can add --all as an option:

./gradlew tasks --all
Windows: gradlew tasks --all

This shows tasks from the other group (which are normally discarded). If you run ./
gradlew help --task <task>, you can view the info (options) about any particular task.

83

CHAPTER 3 DEVELOPMENT WORKFLOW

To troubleshoot build script execution performance problems, there is another
option called --profile, which will lead to a performance report being added to build/
reports/profile.

For our little EchoLibrary example project, navigate to the project folder and then
execute the following:

./gradlew build
Windows: gradlew build

The output JAR called EcholLibrary. jar is generated inside the build/1ibs folder.

Note For simplicity in the rest of the book, we will only show console Gradle
commands, and only the Linux variant.

Installing MVC

In order to be able to use Java MVC, from a Gradle perspective, we need to check a few
things. First, we configure Java MVC as a web application. For this reason, we create a
web project and use the WAR plugin. Inside build.gradle, add the following:

plugins {
id 'war'

Next we add the Jakarta EE 8 API, the Java MVC API, and a Java MVC implementation
inside the dependencies section of build.gradle. This comes together with a repository
specification, the usual JUnit test library inclusion, and the indication that we want to
use Java 1.8:

plugins {
id 'war'
}
java {
sourceCompatibility = 1.8
targetCompatibility = 1.8
}

84

CHAPTER 3 DEVELOPMENT WORKFLOW

repositories {

}

jecenter()

dependencies {

}

/...

testImplementation 'junit:junit:4.12'

implementation 'javax:javaee-api:8.0'
implementation 'javax.mvc:javax.mvc-api:1.0.0'
implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

// more dependencies...

more tasks

That is it; the build process will make sure that all libraries are downloaded, and that

Java MVC is added to the web application during a . /gradlew build.

Exercises

Exercise 1: True or false? Using imperative programming (step-
by-step instructions) is the preferred programming style for build
scripts.

Exercise 2: True or false? For imperative code snippets, you can
use C++ code inside a Gradle build script.

Exercise 3: True or false? Eclipse uses the same JRE for its own
functionalities and for building projects.

Exercise 4: Identify the three phases of a Gradle build process.

Exercise 5: True or false? Using the standard Gradle Java project
layout, Java classes go into src/java/main.

Exercise 6: True or false? The Gradle plugins to be used are
specified in the settings.gradle file.

85

CHAPTER 3 DEVELOPMENT WORKFLOW

Exercise 7: Gradle downloads project dependencies as necessary.
True or false? Where to download from is specified in a downloads
{ }section inside build.gradle.

Exercise 8: Describe what a configuration is in Gradle jargon.

Exercise 9: Using the Eclipse Gradle plugin, create a
GraphicsPrimitives Java library with two classes: Circle and
Rectangle. Configure it to use JRE 1.8. Adapt all Gradle build
configuration files as necessary.

Exercise 10: If you have two custom tasks:

task a {

println "Hi, I'm A"
}
task b {

println "Hi, I'm B"
}

Under which condition is "Hi, I’m A" printed to the console?

Exercise 11: True or false? The Gradle wrapper works only if
Gradle is installed on the operating system.

Exercise 12: Describe what needs to be done to let Gradle use the
JDK at /opt/jdk8 (or for Windows, at C:\jdk8).

Summary

In this chapter, we talked about development techniques, procedures, and tools you can
use for the examples in this book and any subsequent projects using Java MVC.

Gradle is a modern build framework/build automation tool. You can use a
declarative configuration style, but you can also add imperative build code in the form
of Groovy (or Kotlin) script snippets. Best practices indicate that, for build scripts,
declarative programming (which says what a build script has to do, not how it should do
it) is favorable over imperative programming (precise step-by-step instructions).

86

CHAPTER 3 DEVELOPMENT WORKFLOW

Eclipse is an IDE (Integrated Development Environment) with a plethora of
functionalities that help to develop Java Enterprise projects. It can be extended by
plugins, which add additional functionalities. We use the Eclipse IDE for Enterprise Java
Developers variant for this book.

For the book, we need the Eclipse Gradle plugin. Gradle can also be used from the
console, but the Gradle plugin in Eclipse allows us to use Gradle directly from inside the
IDE. Open Help»Install New Software and enter Eclipse Buildship (Gradle) and http://
download.eclipse.org/buildship/updates/latest in the dialog . Select all features
and finish the wizard.

To start a Gradle project inside Eclipse, go to File»New>» Other...»Gradle»Gradle
Project.

The main Gradle concepts are as follows. Gradle has a core, which provides the
infrastructure for build-related activities. Gradle plugins are specified in the main build
file. They run on top of the core and add features to it. Each plugin exhibits build-related
activities in form of tasks. Each Gradle build consists of an initialization, a configuration,
and an execution phase. In the initialization phase, Gradle determines whether or not
subprojects need to be included within the build. In the configuration phase, Gradle
evaluates dependencies and builds a task graph that contains all the tasks that need to
be executed for a build. Configurations on all objects always run with every Gradle build.
During the execution phase, the tasks do their jobs (compiling, moving, zipping, and so
on).

The default project layout for all Gradle plugins is as follows:

srC
|- main
| |- java
| | |- <java source files>
| |- resources
| |- <resource files>
|
|- test
|- java
| |- <java source files>
|- resources
|- <resource files>
build

87

http://download.eclipse.org/bui
http://download.eclipse.org/bui

CHAPTER 3 DEVELOPMENT WORKFLOW

|- <any files built by Gradle>
build.gradle <Gradle build file>
settings.gradle <(Sub-)Project settings>
gradle.properties <optional project properties>

The Gradle project wizard from Eclipse creates a sample build configuration build.
gradle file inside the project’s root folder. For any Gradle project, including projects that
don’t use Eclipse, this is the central build file. The Eclipse plugin provides a basic build
file with some example entries.

A build file usually starts by defining which plugins are to be used, and then
configures the plugins. User-defined tasks with operating instructions also can go to
the build file. Besides, it is possible to add Groovy or Kotlin code to existing tasks, which
enables you to fine-tune plugins according to your needs.

Plugins usually have a very precise and reasonable idea about their defaults, so there
is probably not much to configure for your project. For this reason, the build file could be
rather small. This convention-over-configuration style is not an invention of Gradle, but
Gradle gratefully adopts this idea.

The Eclipse Gradle plugin has Gradle Tasks and Gradle Executions views. In
addition, diagnostic output goes into the standard Console view. The two Gradle-related
views open by default after you install the Gradle plugin.

In order to run a Gradle task from inside the Gradle Tasks view, you first have to
locate the task inside the tree. Depending on how precisely you look inside the tree, you
can also use the filter from the menu to find a task. Once you find it, double-click it to
run the task. Diagnostic output, including any error messages, is shown in the Gradle
Executions and Console views.

Gradle loads libraries from repositories if it determines that the project refers to such
libraries. You specify repositories in a repositories { } section inside build.gradle:

repositories {
repoSpecl (repository specification, see below)
repoSpec2

88

CHAPTER 3 DEVELOPMENT WORKFLOW

You can use the following as repository specifications:

mavenCentral()

Hardcoded to point to the publicly available Maven repository at
https://repo.maven.apache.org/maven2/

- jcenter()

Hardcoded to point to the publicly available Maven repository at
https://jcenter.bintray.com/

— google()
Hardcoded to point to the publicly available Android specific Maven
repository at https://maven.google.com/

- flathir { ... }
Points to a folder with libraries. The precise syntax is
flatDir { dirs '/pathi/to/folder', '/path2/to/folder', ... }

Does not support meta-information, so if a dependency can be
looked up in a flatDir repository and in another repository with
meta-information (Maven, Ivy, and so on), the latter has precedence.

— maven { ... }

Points to a Maven repository given an explicit URL. The precise
syntax is

maven { url "http://repo.mycompany.com/maven2" }
- -ivy { ... }
Points to an Ivy repository given an explicit URL. The precise syntax is
ivy { url "http://repo.mycompany.com/ivy" }
— mavenLocal()
Uses the local Maven cache (usually in HOME-DIR/ .m2).

Dependencies in Gradle center on configurations. A dependency-related
configuration is a dependency scope, which means it describes a usage scenario like
testing, compiling, provisioning, and so on. Dependency-related configurations are

89

https://repo.maven.apache.org/maven2/
https://jcenter.bintray.com/
https://maven.google.com/
http://repo.mycompany.com/maven2
http://repo.mycompany.com/ivy

CHAPTER 3 DEVELOPMENT WORKFLOW

defined by plugins, but there is a common sense about configuration names, and
internally configurations also inherit from each other, which leads to configuration name
matches between different plugins.

Once you identify the configurations you need, you specify a list in the dependencies
{ } section of your build.gradle file:

dependencies {
implementation 'org.apache.commons:commons-math3:3.6.1'
// This is the same:
implementation group:'org.apache.commons’,
name: 'commons-math3',
version:'3.6.1"

// You can combine:
implementation 'org.apache.commons:commons-math3:3.6.1",
"org.apache.commons:commons-lang3:3.10'
// or like that:
implementation(
[group:'org.apache.commons',
name: 'commons-math3', version:'3.6.1"],
[group:'org.apache.commons',
name: 'commons-lang3', version:'3.10"']

// or like that:
implementation 'org.apache.commons:commons-math3:3.6.1'
implementation 'org.apache.commons:commons-lang3:3.10'

testImplementation 'junit:junit:4.12'

Inside build.gradle, it is possible to add programming language constructs like
conditional statements, switch constructs, loops, and calls to library objects for 10 (files
and the console), math, streams, date and time, and whatever else you might think of.
Also, the { } brackets in the build files actually do not denote blocks, but closures. So the
dependencies { } constructis actually a shortcut for dependencies({ }), and anyA
B construct in fact is a method call A(B).

90

CHAPTER 3 DEVELOPMENT WORKFLOW

For increased readability and maintenance optimization, you can add variables
(properties) to your build file. To do so, use an ext { } call:

ext {
MATH_VERSION = '3.6.1'
JUNIT VERSION = '4.12'

}

dependencies {
implementation group: 'org.apache.commons’,
name: 'commons-math3', version: MATH_ VERSION
testImplementation "junit:junit:${JUNIT VERSION}"

}

In order for the ${} substitution to work, the double quotation marks are required.
This is a Groovy language feature (GString objects). Otherwise, in Groovy, you can use
both single and double quotation marks to denote strings.

We can define our own tasks inside the build.gradle file. Because we can use
the Groovy language inside the build script, the possibilities are endless. We can add
logging, include non-standard files in archives, perform encryption, deploy artifacts on
servers, publish files in a non-standard way, perform timing, invoke extra preparation
and cleanup steps, and more.

To define your own task, you write the following anywhere in your build.gradle
script file:

task hello {
group = 'build’
description = 'Hello World'

println 'Hello world! CONFIG'

doFirst {
println 'Hello world! FIRST'

}
dolLast {

91

CHAPTER 3 DEVELOPMENT WORKFLOW

println 'Hello world! LAST'

}
}

The group and description settings are both optional; the default for group is other,
and if you omit the description, an empty string will be taken instead. All possible values
for group are build, build setup, documentation, help, verification, and other.

You can add your custom task to the dependent’s list of existing tasks, or add existing
tasks to the dependent’s list of the new task. To do so, write the following, for example:

build.dependsOn hello
hello.dependsOn build

The magic behind that is that any task is directly available by its name inside the
build.gradle script. So, if you write build.dependsOn hello, any execution of the
build task first leads to executing hello. With hello.dependsOn build, an execution
of the hello task first yields a build execution. This way, it is possible to add task
dependency relations to existing standard and non-standard tasks.

Because the Eclipse Gradle plugin installed wrapper scripts inside the project folder,
it is therefore possible to do all build-related work from inside a console (bash terminal
in Linux, command interpreter in Windows) instead of from the Eclipse GUL. It is a
matter of style; using the console, you can avoid having to switch around Eclipse views
and collapsing and scrolling trees. Besides, if you have to add task options or arguments,
using the console is much more straightforward and faster compared to the GUI. If you
don’t have a GUI because you want to do the build on a server, using the console is your
only option.

If you didn’t use the Eclipse Gradle plugin to start a Gradle project, you can use the
wrapper task to create the wrapper. In this case, Gradle must be installed on your OS. The
Linux script reads as follows:

java -version
observe output

if you want to specify a different JDK:
export JAVA HOME=/path/to/the/jdk

cd /here/goes/the/project

gradle init wrapper

92

CHAPTER 3 DEVELOPMENT WORKFLOW
The Windows script is as follows:

java -version
observe output

if you want to specify a different JDK:
set JAVA HOME=C:\path\to\the\jdk

chdir \here\goes\the\project

gradle init wrapper

This assumes that the gradle is in the PATH (in Windows, gradle.bat is in your
PATH). Otherwise, you must specify the complete path to the gradle command. For
example: C:\gradle\bin\gradle.bat.

You can see the complete synopsis of the gradlew (gradlew.bat for Windows)
wrapper command if you enter the following:

./gradlew -help
Windows: gradlew -help

Tasks can have options and parameters as well. In order to use the tasks task (show
all task), for example, you can add --all as an option:

./gradlew tasks --all
Windows: gradlew tasks --all

This shows tasks from the other group (which are normally discarded). If you run ./
gradlew help --task <task>, you can view the info (options) about any particular task.

In order to be able to use Java MVC, from a Gradle perspective, we need to verify a
few things. First, we configure Java MVC as a web application. For this reason, we create
a web project and use the WAR plugin. Inside build.gradle, add the following:

plugins {

id 'war'

Next we add the Jakarta EE 8 API, the Java MVC API, and a Java MVC implementation
inside the dependencies section of build.gradle. This comes together with a repository

93

CHAPTER 3 DEVELOPMENT WORKFLOW

specification, the usual JUnit test library inclusion, and the indication that we want to
use Java 1.8:

plugins {
id 'war'

}

java {
sourceCompatibility
targetCompatibility

1.8
1.8

}

repositories {
jcenter()

}

dependencies {
testImplementation 'junit:junit:4.12'

implementation 'javax:javaee-api:8.0'
implementation 'javax.mvc:javax.mvc-api:1.0.0'
implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

// more dependencies...

}

// ... more tasks

In the next chapter, we talk about a clean "Hello World" style project using the
development workflow we just described.

94

CHAPTER 4

Hello World for Java MVC

In Chapter 1, I presented a quick-and-dirty Hello World style Java MVC web application.

With the knowledge of how to use Eclipse as an IDE and Gradle as a build framework,
we can now investigate a cleaner approach to a Hello World web application. The
functionality will be the same: one page serves as a landing page and asks the users
for their name. After they submit it, the controller processes the name and shows a
submission response page with a personalized greeting.

Starting the Hello World Project

Open Eclipse and choose any suitable workspace. Since in previous chapters we used
JavaMVCBook as a workspace, there is no reason not to use it again for this Hello World
project. Remember that we added a JDK 1.8 to this workspace, so you don’t have to do
this again.

Start a new project. Choose File » New » Other » Gradle » Gradle Project. Click

Next, which leads to the first page of the Gradle New Project wizard being shown. This is

a welcome page and it shows some information about the wizard. See Figure 4-1.

© Peter Spath 2021
P. Spith, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_4

95

https://doi.org/10.1007/978-1-4842-6280-1_4#DOI

CHAPTER 4 HELLO WORLD FOR JAVA MVC

New Gradle Project X

Welcome
Learn how to make best use of the Gradle project creation wizard. “

How to experience the best Gradle integration

Smart project creation
Give the new project a name and point the wizard to the location where to create the
Gradle project. Buildship will take care of creating a functional Gradle project and
importingit.

Gradle Wrapper
You will experience the best Gradle integration if you make use of the Gradle
wrapper that was automatically configured during the creation of the Gradle project.

Advanced options
Unless you have a very specific reason, leave the advanced options at their default

values. The advanced options can be useful to quickly try different settings and see
their impact on the creation and import.

Show the welcome paae the next time the wizard appears

Click the Next button to start the wizard and configure the
project creation and import.

@ < Back Next > Cancel Finish

Figure 4-1. Gradle project wizard welcome page

If you like, you can uncheck the check box stating whether or not you want to see this
wizard welcome page the next time the wizard is started. Click the Next button.

On the second page, shown in Figure 4-2, you are asked for the project name. Enter
HelloWorld. On the same page, you can enter a project location. If you select the default
location, the project files are created inside the workspace folder. Otherwise, you can
enter a folder anywhere on your file system. This makes sense if you, for example, use a
version control system and prefer to use a project folder inside a special version control
area of your file system.

96

CHAPTER 4 HELLO WORLD FOR JAVA MVC

New Gradle Project x

New Gradle Project

Specify the name of the Gradle project to create.

Project name | Helloworld2|

Project location
Use default location
Location | /home/peter/Dokumente/GESCHAEFT/Apress/JavaMVC/e

Working sets

Add project to working sets

:.\.:: sets

Click the Finish button to create the project and import it
into the workspace. Click the Next button to select optional
options.

@' <Back Next > Cancel

Figure 4-2. Gradle project wizard page 2

Finish

For learning and working through this book, using the default project location and

leaving the appropriate check box checked probably is the most common approach for

placing projects. The last setting on this page allows you to define and use a working set

for the new project. Working sets are mainly used to filter the projects seen in Eclipse’s

Project Explorer. It is also possible to apply this setting later, so you safely can leave the
Add Project to Working Sets check box unchecked. Click Next to advance to the next

page.

97

CHAPTER 4 HELLO WORLD FOR JAVA MVC

On the third wizard page, you can specify some options about Gradle executions.
It is possible to select a dedicated Gradle installation, add some extra Gradle program
execution parameters, or prescribe a certain Gradle version. See Figure 4-3.

New Gradle Project

Options
Specify optional options to apply when creating, importing, and interacting with the Gradle ﬂ
project.

Override workspace settings Configure Workspace Settings...

Gradle distribution

@

Specific Gradle version 6.5-rc-1 -
Advanced Options
Gradle user home Browse.
Java home Browse...
ACQd

Program Arguments

JVM Arguments

® < Back Next > Cancel Finish

Figure 4-3. Gradle project wizard page 3

98

CHAPTER 4 HELLO WORLD FOR JAVA MVC

For a Hello World style application, you can use the defaults, which leaves the
Override Workspace Settings unchecked. In case you are curious: If you click the
Configure Workspace Settings, you can investigate or alter these workspace settings.

The default is to use the Gradle Wrapper, which means that the Gradle Wrapper that’s
installed during the project creation and available after the wizard finishes will be used.
But you are free to experiment with those options, if you like. Clicking Next will start the
actual project generation, and you can see the last page of the wizard, which summarizes
the wizard’s activities. See Figure 4-4. Clicking Finish completes the wizard.

New Gradle Project

Preview
Review the configuration before starting the creation and import of the Gradle project. ﬁ

Project root directory: /home/peter/Dokumente/GESCHAEFT/Apress/JavaMVC/e/Helloworld:

Gradle user home directory: /home/pet
Gradle distribution: (
Gradle version: 6.0

Java home directory: Jopt/openjdk-13.0.1

Gradle project structure: i
Helloworld2

Click the Finish button to create the project and importit
into the workspace. Click the Back button to adjust the
configuration.

'@' <Back Next > Cancel Finish

Figure 4-4. Gradle project wizard page 4

99

CHAPTER 4 HELLO WORLD FOR JAVA MVC

After the project generation wizard does its work, the new project shows up in the
Project Explorer. If an error marker appears, there is probably a JRE version mismatch.
Chapter 3 described the procedure to fix this problem in detail. (In short, go to the
project settings by right-clicking the project and then clicking Properties, navigate to Java
Build Path » Libraries, remove the erroneous JRE assignment, and finally add JRE 1.8 as
alibrary.)

To have the build process correctly add the libraries and construct a WAR web
application, we change the build.gradle file’s content and write the following:

/*
* GRADLE project build file
*/
plugins {
id 'war'
}
sourceCompatibility = 1.8
targetCompatibility = 1.8

repositories {
jcenter()
}

dependencies {
testImplementation 'junit:junit:4.12'
implementation 'javax:javaee-api:8.0'
implementation 'javax.mvc:javax.mvc-api:1.0.0'
implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'
implementation 'jstl:jstl:1.2'

}

task localDeploy(dependsOn: build,
description:">>> Local deploy task") {
doLast {
def FS = File.separator
def glassfish = project.properties|'glassfish.inst.dir"]
def user = project.properties['glassfish.user"]
def passwd = project.properties|'glassfish.passwd']

100

CHAPTER 4 HELLO WORLD FOR JAVA MVC

File temp = File.createTempFile("asadmin-passwd",
n .tmp")
temp << "AS_ADMIN_${user}=${passwd}\n"

def sout = new StringBuilder()

def serr = new StringBuilder()

def 1libsDir = "${project.projectDir}${FS}build" +
"${FS}libs"

def procStr = """${glassfish}${FS}bin${FS}asadmin
--user ${user} --passwordfile ${temp.absolutePath}
deploy --force=true
${1ibsDir}/${project.name}.war

// For Windows:

if(FS == "\\") procStr = "emd /c " + procStr

def proc = procStr.execute()

proc.waitForProcessOutput(sout, serr)
println "out> ${sout}"
if(serr.toString()) System.err.println(serr)

temp.delete()

}
}

task localUndeploy(
description:">>> Local undeploy task") {
dolLast {
def FS = File.separator
def glassfish = project.properties|'glassfish.inst.dir']
def user = project.properties|'glassfish.user’]
def passwd = project.properties|'glassfish.passwd']

File temp = File.createTempFile("asadmin-passwd",
n .tmp")
temp << "AS_ADMIN ${user}=${passwd}\n"

def sout = new StringBuilder()
def serr = new StringBuilder()
def procStr = """${glassfish}${FS}bin${FS}asadmin

101

CHAPTER 4 HELLO WORLD FOR JAVA MVC

--user ${user} --passwordfile ${temp.absolutePath}
undeploy ${project.name}
// For Windows:
if(FS == "\\") procStr = "emd /c " + procStr
def proc = procStr.execute()

proc.waitForProcessOutput(sout, serr) println "out> ${sout}"
if(serr.toString()) System.err.println(serr)

temp.delete()

This configuration adds the Jakarta EE 8 API (javax:javaee-api:8.0in the
dependencies { } section), the Java MVC libraries (javax.mvc:javax.mvc- api:1.0.0
and org.eclipse.krazo:krazo-jersey:1.1.0-M1), and JSTL as a frontend view
templating engine (jstl:jstl:1.2). The build file also contains two custom tasks—
localDeploy and localUndeploy—which help you deploy the project on a local
development GlassFish server. We talked about these tasks in the previous chapter.

For the build to work correctly, add the gradle.properties file to the project folder:

glassfish.inst.dir = /path/to/your/glassfish5.1
glassfish.user = admin
glassfish.passwd =

These settings are addressed by the project.properties['.."'] expressionsin the
custom tasks. They tell us where GlassFish is and the user credentials needed to contact
it. Adapt the property items according to your needs (admin and an empty password is
the default for a GlassFish server). Right-click the project then choose Gradle » Refresh
Gradle Project to update the project library assignments.

The project is now set up and you can start adding Java class and resource files.

The Hello World Model

Don’t confuse the model layer of the Java MVC application with a database model.
All that “model” means in the MVC part of an application is a data holder for values
to be transported between different pages, and between the pages and the controller

102

CHAPTER 4 HELLO WORLD FOR JAVA MVC

components. For our Hello World application, the model is very small—it consists of a
single string that the user enters on the landing page as a username.

For many MVC web applications, it makes sense to introduce Java classes that hold
model values. So for this Hello World application, you might want to think about a model
class like the following:

public class HelloWorldModel {
private String userName;
public String getUserName() {
return userName; }
public void setUserName(String userName) {
this.userName = userName; }

However, for such easy cases, and generally if for whatever reason you don’t want
want to introduce model classes, Java MVC provides a model value holder mechanism.
In a controller class, you simply use @Inject to let Java MVC (more precisely, the CDI
part) inject a javax.mvc.Models instance:

import javax.inject.Inject;
import javax.mvc.Models;

public class SomeController {
@Inject
private Models models;

You can then write the following in the controller:

// somehow get String 'name' from the request
String name = ...; models.put("name", name);

103

CHAPTER 4 HELLO WORLD FOR JAVA MVC

And write this on the web pages:
Hello ${name}

For this simple Hello World application, we use the Models data container for the
username, so we don’t introduce any dedicated model classes.

The Hello World View

We need two pages for the view: one landing page where we ask the users for their name,
and a greeting page showing the name just entered. We call the landing page index. jsp
and it has to go into the src/main/webapp/WEB-INF/views folder.

The src/main/webapp path is a convention dictated by Gradle; the WEB-INF/views
path underneath marks the page as a Java MVC controlled view. The index. jsp page
code reads as follows:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
<form method="post" action="${mvc.uriBuilder(
"HelloWorldController#greeting').build()}">
Enter your name: <input type="text" name="name"/>
<input type="submit" value="Submit" />
</form>
</body>
</html>

104

CHAPTER 4 HELLO WORLD FOR JAVA MVC

Java MVC allows for two templating engines: JSPs and Facelets. We use JSPs (you can
see from the <%@ ...>, which doesn’t exist in Facelets).

The action attribute from the form tag follows a special syntax dictated by the
Java MVC framework—the ${ mvc. ... } by convention connects to a special
object provided without further configuration work. This object, for example, has a
uriBuilder () method that allows us to generically construct form actions aimed at a
certain method from a Java MVC controller. In this case, it is the HelloWorldController
controller (the class name of the controller without the package) and its greeting()
method.

Placing the view pages somewhere is not enough for the web application to work
correctly. As an additional step, we need to announce that index. jsp is the landing
page. This means a http://localhost:8080/HellolWo rld/mvc must be redirected to
run through the controller and end up in the index. jsp page being loaded. We use two
Java classes for that aim. The first one adds /mvc to the target URL:

package book.javamvc.helloworld;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

You can put it as shown into the book. javamvc.helloworld package. The class is
empty by intention—the @ApplicationPath annotation and the javax.ws.rs.core.
Application superclass lead to the desired behavior.

The second class, RootRedirector, makes sure the "/" or "" path (behind mvc)
is forwarded to mvc/hello, which will later be fetched by the controller as a GET verb
(targeting index. jsp):

package book.javamvc.helloworld;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

105

CHAPTER 4 HELLO WORLD FOR JAVA MVC

import java.io.IOException;

/%%

* Redirecting http://localhost:8080/HelloWorld/
* This way we don't need a <welcome-file-list> in web.xml
*/
@WebFilter(urlPatterns = "/")
public class RootRedirector extends HttpFilter {
private static final long serialVersionUID =
7332909156163673868L ;

@verride

protected void doFilter(final HttpServletRequest req,
final HttpServletResponse res,
final FilterChain chain) throws IOException {
res.sendRedirect("mvc/hello");

The response page is called greeting.jsp, and we put it next to index. jsp in the
src/main/webapp/WEB-INF/views folder:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
Hello ${name}
</body>
</html>

106

CHAPTER 4 HELLO WORLD FOR JAVA MVC

You can see that it is extremely limited concerning functionalities. It just outputs the

"Hello NAME" string with NAME replaced by whatever was entered in the landing page.

It refers to the name via ${name}, which addresses the model value name (see the next

section).

The Hello World Controller

The controller class reacts to user input from browser pages and governs navigation

between the pages. It is called HelloWorldController and we put it in the book.

javamvc.helloworld package:

package book.javamvc.helloworld;

import
import
import
import
import
import
import
import
import

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

inject.Inject;
mvc.Controller;
mvc.Models;
mvc.binding.MvcBinding;
ws.rs.FormParam;
ws.rs.GET;

ws.rs.POST;

ws.rs.Path;
ws.rs.core.Response;

@Path("/hello")
@Controller
public class HelloWorldController {
@Inject
private Models models;

@GET
public String showIndex() {
return "index.jsp";

}

@POST
@Path("/greet")
public Response greeting(

107

CHAPTER 4 HELLO WORLD FOR JAVA MVC

@MvcBinding @FormParam("name") String name) {
models.put("name", name);
return Response.ok("greeting.jsp").build();

The controller class looks very similar to a JAX-RS controller for RESTful services.
The main difference is that we don’t let requests return data values in the form of JSON
structures or whatever. Instead, the methods are supposed to return page specifiers. The
controller for HelloWorld listens to HTTP GET verbs for URL /hello by virtue of the class’
@Path annotation and no extra @Path annotation for the showIndex() method. Thus, for
/hello, the landing page index. jsp will be loaded.

The greeting() method connects to POSTs from the hello/greet URL, because
the @Path from the class and the @Path from the method are concatenated. We need
the HTTP POST verb here, because we want to connect this method to a form submit.
Accordingly, for /hello/greet, the response page greeting. jsp will be loaded.

CDl injects the Models instance. It is a general-purpose data container in case you
don’t want to introduce Java beans to hold model values. It is fed by a POST and can be
used inside the response view simply by writing ${ someName}, where someName is the
name of the POST parameter.

Caution The Models instance is request scoped, which means the model values
exist only in direct response to a POST action.

Using Gradle to Build Hello World

In order to build the Hello World web application, you have two options. First, you can use
the Eclipse Gradle plugin to build a project that’s deployable from inside Eclipse. For this
aim, go to the Gradle Tasks view, open the HelloWorld drawer, and find the WAR task in
the build section. See Figure 4-5. To start the task, double-click the task name. The view
then automatically switches to the Gradle Executions window, as shown in Figure 4-6.
There, you get an overview of what exactly Gradle does while performing the task.

108

CHAPTER 4 HELLO WORLD FOR JAVA MVC

s Qi) = O~ Q-G GrE i sy - HUR R Ao R el Quick Access || &2
‘1 Project Explorer 2 W T=n D HelloworldControllerjava 2 = 8 |E Outline &2 | [l Task List)
v 1 package book.javamvc.helloworld; vBRRWew v
7 Java Resources F # book.javamvc. helloworld
* (= src/mainfjava 4= import javax.inject.Inject;[] A4
~ i book javamvc.helloworld _'3 o models : Models
» B Appjava Jis // http://\ocalhost:8080/Hellonorld/ @ showindex() : String
» [1) HelloworldController java 16 @Pathf]"/hello”) @ greeting(@mMveBinding @Forr
I 1 17 @Controller
fi o Sooecisoniav 18 public class HelloWorldController {
¥ (& src/main/resources 19= @Inject
» @8 src/ftest/java 20 private Models models;
b @ src/ftest/resources o e
¥ mhLibrarles ¥] problems | # Gradle Tasks 5 | Gradle Executions & Console [£] Markers “
risbu Name Description
¥ & build =
» & gradle * [='Helloworld
» Susrc ¥ B build setup
2 build

» build.gradle

| gradle.properties o bl A bles the outputs of this project.

) gradlew o, build Assembles and tests this project.

% gradlew.bat @, buildD d A bles and tests this project and all projects that depend onit.

settings.gradle 4 buildNeeded A bles and tests this project and all projects it depends on.
» 2 Helloworld2 @ classes Assembles main classes.

» %8 Java Resources @, clean Deletes the build directory.
» & bin o jar Assembles a jar archive containing the main classes.
¥ > gradle @, testClasses Assembles test classes.
- (s 5rc & war Generates a war archive with all the compiled classes, the web-app content and the libraries.

Figure 4-5. The Hello World Gradle tasks

".‘_ Problems # Gradle Tasks |# Gradle Executions £ | & Console [£] Markers HER0AL X% L~ =0
Operation
¥ © Run build
» © Load build
» © Configure build
» © Calculate task graph
¥ © Runtasks
© Notify task graph whenReady listeners
P © :compilelava
@ :processResources
o :classes
P & :war
© Build model 'java.lang.Void’ for root project 'Helloworld'

Figure 4-6. Gradle Executions view

109

CHAPTER 4 HELLO WORLD FOR JAVA MVC

After the build, you can then find the WAR file inside the build/1ibs folder. If you
can’t see it in the Project Explorer, left-click the project and press F5 to update the view.
If you still can’t see it, you may have to remove a filter. Open the Project Explorer’s menu,
go to Filters and Customization » Preset Filters (see Figure 4-7), and make sure the
Gradle Build Folder check box is unchecked.

@ Project Explorer 2 | & & ¥ = 0 ||) HelloworldControllerjava [build

» 2 Helloworld Projects Presentation iévéx Ve
Top Level Elements org.eclips
fIstl:)stl:

Select Working S

Edit Active Working Set... bendsOn: bu
1 window Working Set
2 EcholLibrary
* & 3Helloworld
4 Helloworld2
5 MultiProject

Package Presentation »
= _ _ e, createTem
v Show 'Referenced Libraries’' Node
"~ ~ Filters and Customization... SRACELISS

Recent Filters

v Link with Editor

def procStr = """${glassfi
41 --user ${user} --passw

Figure 4-7. The Project Explorer view filter

The second option consists of invoking the Gradle wrapper from the console.
Change to the project directory and then enter the following:

./gradlew war
Or enter this if your system does not use a decent Java by default (enter your JDK path):
JAVA HOME=/path/to/jdk ./gradlew war

After this, you should find the WAR file inside the build/1ibs folder.

110

CHAPTER 4 HELLO WORLD FOR JAVA MVC

Starting a Jakarta EE Server

Chapter 2 described installing and operating a GlassFish Jakarta EE server. For the Hello
World example, make sure you followed that trail and ensured that GlassFish is running
on your local system.

Deploying and Testing Hello World

To build and deploy the project, you again have two options. From Eclipse, you first have
to make sure that the two custom Gradle tasks—localDeploy and localUndeploy—are
visible to the Eclipse Gradle plugin. For this purpose, open the Gradle Tasks view’s menu
and make sure the Show All Tasks item is checked; see Figure 4-8.

[2] Problems & Gradle Tasks & | & Gradle Executions © Console (2] Markers
Mame Description

& Helloworld
» 2 build setup

w (2 build
©, assemble Assembles the outputs of this project.
@, build Assembles and tests this project.
¢ buildDependents Assembles and tests this project and all projects that depend onit.
@, buildNeeded Assembles and tests this project and all projects it depends on.
o, classes Assembles main classes.
o, clean Deletes the build directory.
@ jar Assembles a jar archive containing the main classes.

Figure 4-8. Show All Tasks

The custom tasks then show up in the Other section of the view, as shown in
Figure 4-9. To invoke any of the custom tasks, simply double-click the task name.

111

CHAPTER 4 HELLO WORLD FOR JAVA MVC

[22 Problems | # Gradle Tasks &2 | # Gradle Executions & Console [£! Markers BE®SLST Y =0 |

Name Description

w (2 Helloworld

» 2 build setup

» 2 build

» 2 documentation

» 2 help

P Bide

¥ 2 other
&, cleanEclipseClasspal
&, cleanEclipseJdt
. cleanEclipseProject
&, cleanEclipseWtpCon
& cleanEclipseWtpFace

&, compileJava Compiles main Java source.
&, compileTestJava Compiles test Java source.
<. deploywar >>>Localdeploytask >
L B
< undeploywar >>>Localundeploytask __—>

#, cleanEclipseClasspal

M rlasnCrlinea 1dr

Figure 4-9. Custom Tasks view

If you instead want to perform the deployment or “un-deployment” from the
console, you can use the Gradle wrapper as well. Change to the project directory and

then enter the following:

./gradlew localDeploy
or
./gradlew localUndeploy

Or use this if your system does not use a decent Java by default:

JAVA HOME=/path/to/jdk ./gradlew localDeploy
or
JAVA HOME=/path/to/jdk ./gradlew localUndeploy

In order to test the Hello World web application, open a browser and enter the
following URL:

http://localhost:8080/HelloWorld

112

CHAPTER 4 HELLO WORLD FOR JAVA MVC

The URL is automatically redirected to http://localhost:8080/HelloWorld/mvc/
hello, which leads to rendering the landing page.

Note 8080 is the default HTTP port for web applications in a GlassFish
server. The /HelloWorld comes from the WAR file’s name (a server-specific
feature), the /mvc comes from the App class, and the hello comes from the
RootRedirector class.

The landing page and the response page are shown in Figure 4-10.

Hello World - Mozilla Firefox

Hello world
<> @ | @ 25 localhost:8080/Helloworld/mve/hello 110% | | oo || Qse » =
Enter your name: | Cherill Submit

Hello World - Mozilla Firefox

Hello World x Ieg

&« Q © (@ 25 localhost:8080/Helloworld,/mv ofgreet [110% wee g 2 Search »

Hello Cherill

Figure 4-10. Hello World web application

113

CHAPTER 4 HELLO WORLD FOR JAVA MVC

Exercises

114

Exercise 1: True or false? The Eclipse Gradle plugin’s New Gradle
project wizard adds a Gradle wrapper to the project by default.

Exercise 2: Which of the following are true? (A) A Gradle
wrapper wraps operating system configurations around Gradle
invocations. (B) A Gradle wrapper provides a standalone Gradle
installation inside the project folder. (C) You can tell the Gradle
wrapper which JDK to use. (D) A Gradle wrapper adds the project
to the operating system’s Gradle project list.

Exercise 3: True or false? Gradle has built-in tasks for deploying
WAR files on a Jakarta EE server.

Exercise 4: Which frontend view templating technologies does
Java MVC support?

Exercise 5: True or false? Java MVC model values must map to
fields in dedicated Java bean classes.

Exercise 6: In which environment does a Java MVC web
application run?

Exercise 7: True or false? Gradle is required to build Java MVC
web applications.

Exercise 8: Inside the HelloWorld project, remove the models field
in the controller and instead add a CDI managed bean as follows:

public class UserData {
private String name; // + getter / setter

}

Hint: You must add the javax.enterprise.context.
RequestScoped and javax.inject.Named annotations to UserData.
In the controller, you must add a @Inject userData field. In the
view, you must use ${userData.name} to access the bean.

Exercise 9: Add a Back link to the response page of the
HelloWorld example.

CHAPTER 4 HELLO WORLD FOR JAVA MVC

Summary

In this chapter, we talked about a Hello World style web application using Eclipse and/or
the console, and Gradle as the build framework. In the next chapter, we continue looking
at some aspects from a use-case perspective, in order to improve our skills of using Java

MVC in projects.

115

CHAPTER 5

Start Working
with Java MVC

Before we thoroughly handle the Java MVC parts—model, view, and controller—we

first need to talk about a number of topics that look upon Java MVC from a use-case
perspective. This sits somewhat intermediary between the basic Hello World chapter
and the subsequent survey of Java MVC implementation concepts. This chapter’s
purpose is to gently improve your proficiency in Java MVC development. In detail, we are
going to talk about handling data from form posts, parsing query parameters, converting
input data types, and handling exceptions.

Handling User Input from Forms

In the Java MVC world, the transmission of data between the frontend (browser) and
the controller can happen via <form> elements on web pages, a POST request initiated
by a frontend user’s submit, and method parameters in the controller class. The
corresponding view code for two example parameters reads as follows:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<body>
<form method="post"

action="${mvc.uriBuilder(

117
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_5

https://doi.org/10.1007/978-1-4842-6280-1_5#DOI

CHAPTER 5 START WORKING WITH JAVA MVC

'SomeControllerttsomeMethod').build()}">
P1 Parameter: <input type="text" name="p1" />
P2 Parameter: <input type="text" name="p2" />

</form>
</body>
</html>
The mvc object used here refers to mvc, an automatically provided MvcContext
instance (in the javax.mvc package), and its method uriBuilder () enables generic
construction of MVC project related URIs/URLs.

As the controller addressed by the <form>’s action attribute, we take a class similar to
the following:

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.FormParam;

@Path("/abc™)
@Controller
public class SomeController {

@POST

@Path("/xyz")

public Response someMethod(
@MvcBinding @FormParam("p1") String p1,
@MvcBinding @FormParam("p2") String p2,
...more parameters...

) o

// handle user input ...

return Response.ok("responsePage.jsp").build();

118

CHAPTER 5 START WORKING WITH JAVA MVC

We talk about the controller later in this chapter, in its own section. For now, the
@Controller annotation identifies the class as a Java MVC controller, and the @Path
annotations are used to build the URL (sub) path used by the controller and its methods.
The p1 from @FormParam("p1") corresponds to a <input name = "p1" > inside a
submitted <formy, and accordingly a @FormParam("p2") to a <input name = "p2">.

Itis also possible to avoid using method parameters and let the user data instead be
passed over to controller instance fields. This kind of data binding uses the following
construct:

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.FormParam;

@Path("/abc")

@Controller

public class SomeController {
@MvcBinding @FormParam("p1")
private String p1;

@MvcBinding @FormParam("p2")
private String p2;

@POST
@Path("/xyz")
public Response someMethod() {
// handle user input via "p1" and "p2" fields

return Response.ok("responsePage.jsp").build();

Normally it is better to declare the parameters in the methods, because other
methods might have other parameters and placing all those parameters at the class level
will lead to a mess.

119

CHAPTER 5 START WORKING WITH JAVA MVC

For the form parameters, we know that the @FormParam annotation directly connects
the method parameter or field to a <form> input element. See Figure 5-1. We talk about
the second parameter annotation shown in the listings, @vcBinding, in the next section.

<form method="post"
action="${mvc.uriBuilder('SomeController#someMethod').build()}">
Enter your name: <input type="tex@# name="name"
<input type="submit" value="Submi@@ />
</form>

Those must
match

@Path("/abc")

@Controller

public class SomeController {
@vcBinding @FormParam(“name")
private String name;

@POST
@Path("/xyz")
public Response someMethod() {
System.out.println("Name: " + name);
return Response.ok("responsePage.jsp").build();

Figure 5-1. Form to controller connection

Exception Handling in Java MVC

The @MvcBinding annotation used in the Java code listings in the previous section
introduces some magic about exception handling. Normally, because Java MVC sits on
top of JAX-RS, an exception thrown during input data handling can only be caught by a
special exception mapper. This procedure does not fit very well into the Java MVC world.
We want to have an explicit relationship between a controller and a form submit, and an
exception handling mapper class introduces a kind of additional “controller” type, which
strictly spoken, has no relation to any MVC concept. Instead, by using the @MvcBinding
annotation, the same controller and controller method is called whether or not there

is an error, and passing-over errors caused by validation mismatches and conversion
errors are fed into an injected instance of javax.mvc.binding.BindingResult.

120

CHAPTER 5 START WORKING WITH JAVA MVC

You can then check for any errors programmatically by using the methods of the
BindingResult instance:

import javax.mvc.binding.MvcBinding;
import javax.mvc.binding.BindingResult;
import javax.ws.rs.FormParam;

import javax.validation.constraints.Size;

@Path("/abc")
@Controller
public class SomeController {
@Named
@RequestScoped
public static class ErrorMessages {
private List<String> msgs = new Arraylist<>();

public List<String> getMsgs() {
return msgs;

}

public void setMsgs(List<String> msgs) {
this.msgs = msgs;

}

public void addMessage(String msg) {
msgs.add(msg);
}
}

// Errors while fetching parameters
// automatically go here:
private @Inject BindingResult br;

// We use this to pass over error messages
// to the response page:
private @Inject ErrorMessages errorMessages;

121

CHAPTER 5 START WORKING WITH JAVA MVC

@POST
@Path("/xyz")
public Response someMethod(
@MvcBinding @FormParam("p1")
@Size(min=3,max=10)
String p1,
@MvcBinding @FormParam("p2")
String p2)

// ERROR HANDLING /////777711111171111111117
if(br.isFailed()) {
br.getAllErrors().stream().
forkach((ParamError pe) -> {
errorMessages.addMessage(pe.getParamName() +
": " + pe.getMessage());
s

}
// END ERROR HANDLING ///777777117111171177177

// handle user input via "p1" and "p2" params

// advance to response page
return Response.ok("responsePage.jsp").build();

Here, we used an inner class for the error messages. Of course, you can also use your
own class in your own file for the messages. Also observe the @5ize constraint for the p1
parameter. This belongs to bean validation, which we are going to talk about in detail
later. The @Size constraint used here means that if you enter a string shorter than three
characters or longer than ten characters, a validation error will be handed over via the
BindingResult typed br field.

On the response page, you could render errors like the following:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

122

CHAPTER 5 START WORKING WITH JAVA MVC

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<body>
<div style="color:red">
<c:forEach var="e" items="${errorMessages.msgs}">
${e}
</c:forEach>
</div>
</body>
</html>
The ${errorMessages. ...}, by virtue of the @Named annotation, connects to the
injected instance of ExrorMessages (the first letter lowered).
An alternative to presenting error messages in the normal response page consists of

deviating the page flow to a different view page instead. This is easy, because we decide
where to go next in the controller method. We thus can write the following:

@POST
@Path("/xyz")
public Response someMethod(...) {
// ERROR HANDLING //////777/7171/1117177111711/
if(br.isFailed()) {
br.getAllErrors().stream().
forEach((ParamError pe) -> {
errorMessages.addMessage(pe.getParamName() +
": " + pe.getMessage());
};
// advance to error page
return Response.ok("errorPage.jsp").build();

}
// END ERROR HANDLING ////777117111111111117

// handle user input via "p1" and "p2" params

123

CHAPTER 5 START WORKING WITH JAVA MVC

// advance to response page
return Response.ok("responsePage.jsp").build();

}

Non-String POST Parameters

In the previous section, we only used String-typed POST parameters. In Java MVC, you
can also use numeric types int, long, float, double, BigDecimal, BigInteger, and
boolean (true or false). So it is possible to write the following:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<body>
<form method="post"
action="${mvc.uriBuilder(
'SomeControllerttsomeMethod').build()}">

Int Parameter: <input type="text"
name="theInt" />

Double Parameter: <input type="text"
name="theDouble" />

Boolean Parameter: <input type="text"
name="theBoolean" />

</form>
</body>
</html>

124

CHAPTER 5 START WORKING WITH JAVA MVC

In the controller class, write the following:

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.FormParam;

@Path("/abc")
@Controller
public class SomeController {

@POST
@Path("/xyz")
public Response someMethod(
@MvcBinding @FormParam("theInt")
int thelnt,
@MvcBinding @FormParam("theDouble")
double theDouble,
@MvcBinding @FormParam("theBoolean")
boolean theBoolean)

{
// handle user input via the fields
return Response.ok("responsePage.jsp").build();
}
}
Java MVC takes care of properly converting the POST parameters into the designated
Java types.

u_n

If a conversion cannot be performed properly, maybe because an “x” was entered
in the theInt input field, for example, an injected BindingResult (as described in the
previous section) can be used to catch the conversion error.

125

CHAPTER 5 START WORKING WITH JAVA MVC

Handling Query Parameters

HTTP verbs comprise POST, GET, PUT, DELETE, and others. So far in browser-to-controller
communication, we talked about POST requests for transmitting data via HTML <form>
elements, and GET requests for requesting the landing page. Consider the following case:
On the landing page, the user is asked for some data, and a Submit button is provided
which transmits the data to the controller and advances to a response page. On the
response page, we want to add a Back button. That button needs the following additional
functionality: all data entered in the fields should show up again. How can we do that?
The controller @FormParam fields cannot be used, because they only work with form
POSTs.

Up to now, we also didn’t use session data storage, which prolongs a single request/
response cycle. If we had, storing the user input there and later using it to preset input
fields would be a valid approach. It is in fact possible to use sessions, but we talk about
that later in this chapter. Also, not using sessions decreases the memory footprint and
simplifies state housekeeping.

What we can do instead and what Java MVC supports is the use of query parameters.
If you have a GET on, for example, http://xyz.com/the-app/start, query parameters
are added in an appended string starting with ? and using & as a delimiter:

http://xyz.com/the-app/start?name=John&birthday=19971230

To fetch such query parameters in a controller, you can use the @QueryParam
annotation:

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

@Path("/")
@Controller
public class SomeController {
private @Inject BindingResult br;

@GET
@Path("/start")
public String someMethod(

126

http://xyz.com/the-app/start
http://xyz.com/the-app/start?name=John&birthday=19971230

CHAPTER 5 START WORKING WITH JAVA MVC

@MvcBinding @QueryParam(“"name") String name,
@MvcBinding @QueryParam(“"birthday") String birthday
) |
if(name != null) {
// handle "name" parameter
}
if(birthday != null) {
// handle "birthday" parameter
}

// advance to page
return "index.jsp";

Again, as with POST parameters, it is also possible to use fields for fetching the query

parameters:

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

@Path("/")
@Controller
public class SomeController {
private @Inject BindingResult br;

@MvcBinding @QueryParam("name™)
private String name;

@MvcBinding @QueryParam("birthday")
private String birthday);

@GET
@Path("/start")
public String someMethod() {

127

CHAPTER 5 START WORKING WITH JAVA MVC

if(name != null) {
// handle "name" parameter
}
if(birthday != null) {
// handle "birthday" parameter
}

// advance to page
return "index.jsp";

On the JSP page, the dedicated element used to issue such a parameterized GET

request is a <a> link:

<a href="${mvc.uriBuilder('SomeController#someMethod").
queryParam('name', userData.name).
queryParam('birthday', userData.birthday).
build()}">Link

This snippet uses a userData variable, which could have been injected as an instance
of the following:

@Named

@RequestScoped

public class UserData {
private String name;
private String birthday;
// Getters, setters...

}

Obviously, this object has to be filled with data in the controller action, which ends
up calling the page with the <a> link.

For request parameters, the same conversion rules apply to non-string typed
parameters as to POST requests. You can use fields or method parameters of type string,
numeric types int, long, float, double, BigDecimal, BigInteger, and boolean (true or
false). Query parameters that are passed over are appropriately converted. Likewise,

128

CHAPTER 5 START WORKING WITH JAVA MVC

because we marked the parameters with @vcBinding, the same methodology for

handling exceptions described for POST parameters applies here.

The detailed procedure for creating a Back link that fills the original page with

previously entered values would thus be as follows:

1.

On a data input page (called dataInput.jsp), values are posted
from inside <form> elements.

In the corresponding controller class and method, we retrieve the
data via the @FormParam annotated fields or method parameters,
and programmatically transport the values into an injected object
(marked with @Named).

On the follow-up page (called responsePage.jsp), we create a
Back link with query parameters taken from the injected object.

In the corresponding controller class and method, we retrieve

the data via @QueryParam annotated fields or method parameters,
and programmatically transport the values into an injected object
(marked with @Named).

We amend the <input> elements from dataInput.jsp and add
value attributes: <input ... value = "${injectedObject.
field}">, where injectedObject corresponds to the field of the
injected class InjectedObject.

For validation and conversion errors, we inject an instance of
BindingResult. We use it in the controller methods to check for
errors. For this to work, we must add @MvcBinding to all form and
query parameters.

Note

It is possible to use form (POST) parameters and query parameters at

the same time. Just add queryParam('name’, value) method calls to
the <form> action’s URI builder. However, we don’t want to make things too
complicated, so we don’t further investigate this kind of mixture in this book.

129

CHAPTER 5 START WORKING WITH JAVA MVC

Exercises

Exercise 1: Which of the following is true? A <form> element
on a web page connects to: (A) The method userPosts() of

a controller class. (B) A certain method of a controller class
determined by the form’s action = "..." attribute and @Path
annotations used by the controller class and its methods. (C) A

certain model element injected into the controller.

Exercise 2: Describe what is minimally necessary for a Java class
to become a Java MVC controller class.

Exercise 3: What is the most obvious similarity between JAX-RS
and Java MVC? What is the most prominent difference between
the two?

Exercise 4: What is the purpose of the @vcBinding annotation?

Exercise 5: Add error handling, as described in this chapter, to the
HelloWorld application from the previous chapter.

Exercise 6: Continuing from the previous exercise, add a
validation constraint ensuring that the user only enters English
letters as names. Hint: A corresponding regular expression reads
[A-Za-z]*.

Exercise 7: Add a Back link to the response page of the
HelloWorld application from the previous chapter. Add the
username as a query parameter, and make sure the entered
username shows up again in the input field from the starting page.

Summary

In the Java MVC world, transmitting data between the frontend (browser) and the
controller can happen via <form> elements on web pages (and/or query parameters), a
POST (or GET) request initiated by a frontend user’s submit (or a link click), and method
parameters in the controller class.

130

CHAPTER 5 START WORKING WITH JAVA MVC

The @Controller annotation identifies the class as a Java MVC controller, and the
@Path annotations are used to build the URL (sub) path used by the controller and its
methods.

Normally, because Java MVC sits on top of JAX-RS, an exception thrown during input
data handling can only be caught by a special exception mapper.

This procedure does not fit very well into the Java MVC world. Instead, by using
the @MvcBinding annotation, the same controller and controller method are called
whether or not there is an error, and passing-over errors due to validation mismatches
and conversion errors are fed into an injected instance of javax.mvc.binding.
BindingResult.

In addition to posting string-type parameters (and/or transmitting string-type query
parameters) in Java MVC, you can also use numeric types int, long, float, double,
BigDecimal, BigInteger, and boolean (true or false). Java MVC takes care of properly
converting the POST parameters into the designated Java types.

If a conversion cannot be performed properly, maybe because an “x” was entered in
an integer typed input field for example, an injected BindingResult can be used to catch
the conversion error.

After this somewhat more use-case-centric view of Java MVC, we continue the
discussion in the next chapter with a more concept-centric view, starting with the model
and commencing with the view and the controller part of Java MVC.

131

CHAPTER 6

In-Depth Java MVC

In this chapter, we thoroughly handle the various features provided by Java MVC. Note
that this chapter is not a substitute for the official Java MVC specification (the latest
version is 1.0 as of the writing of this book), which you can find at:

https://download.oracle.com/otndocs/jcp/mvc-1-final-spec

Instead, this chapter covers the patterns you will most often encounter, and we will
also work through some example snippets.

The Model

For the model part of Java MVC, not to be confused with a database model, the original
idea of a MVC framework is rather unagitated. Model classes were just Java bean classes
(classes with fields, getters, and setters), and developers would add them to the view
programmatically in some way similar to the following (which is pseudo-code, not
really Java):

// inside some controller
String name = ...; // somehow via form POST
int i1 = ...; // somehow via form POST

HttpRequest req = ..; // somehow via framework
MyBean b = new MyBean(); b.setName(name); b.setSomeInt(il);
req.setBean("beanName", b);

// somehow advance to response page

133
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_6

https://doi.org/10.1007/978-1-4842-6280-1_6#DOI

CHAPTER 6 IN-DEPTH JAVA MVC

In a response view, you would then probably access the model beans using some
expression similar to the following:

Hello ${beanName.name}

where beanName corresponds to the setBean() method parameter from the
pseudo-code, and name corresponds to a field name.

CDI in Java MVC

Java MVC is a modern framework and its model capabilities supersede the idea of

simply referring to beans. It does so by incorporating the CDI (Context and Dependency
Injection) technology for Jakarta EE 8 in version CDI 2.0. CDI is not a small technology—its
specification PDF has more than 200 pages! Needless to say, we cannot introduce every
concept of CDI, but we discuss the most important ideas and center our survey on the way
Java MVC uses CDI.

Note You can find the CDI specification at https://jakarta.ee/
specifications/cdi/2.0/.

The basic idea is the same: we want to instantiate bean classes (data classes that
contain mainly fields and their getters and setters) and provision those instances to both
the controllers and the views. The main difference between the pre-CDI and the CDI way
is that we don’t instantiate such model classes ourselves and instead let CDI do it.

To tell Java MVC that we want a model class to be controlled by CDI and available to
the view pages, we use the @Named annotation from the javax.inject package:

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named

@RequestScoped

public class UserData {
private String name;
private String email;
// Getters and setters...

134

https://jakarta.ee/specifications/cdi/2.0/
https://jakarta.ee/specifications/cdi/2.0/

CHAPTER 6 IN-DEPTH JAVA MVC

We also use the @RequestScoped annotation to bind the lifecycle of the object
instance to a single HTTP request/response cycle. We talk more about scopes in the next
section.

Once we announce a bean via @Named to the CDI framework, two things happen
in Java MVC. First we can use @Inject (package javax.inject) to refer to the bean
instance from inside any Java MVC controller and from inside any other CDI controlled
class. Second, we can use the instance from the view pages by using the class name with
the first letter lowercased: ${userData.name} and ${userData.email}. See Figure 6-1.

135

CHAPTER 6 IN-DEPTH JAVA MVC

@Named

@RequestScoped

public class UserData {
private String name;
private String email;
private Person person;
// Getters and setters...

Ller
class ModelAndC

rivate @Inject UserData userData;

@POST

@Path("/response")

public Response response(
@vcBinding @FormParam("name")
String name) {

userData.setName(name) ;

return Response.ok("response.jsp").build();

<%@ page contentTyf€s"text/html;charset=UTF-8" language="java" %>
<%@ taglib prefix uri="http://java.sun.com/jsp/jstl/core" %>

</head>

‘<body>
Hello ${userData.name}

</body>

</html>

Figure 6-1. CDI in Java MVC

136

CHAPTER 6 IN-DEPTH JAVA MVC

If you want to use a different name for the CDI beans, you can use @Named with a
parameter:

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;
@Named("user"
@RequestScoped
public class UserData {
private String name;
private String email;
// Getters and setters...

You can then use the altered name in a view page: ${user.name}. Since, in @Inject,
the reference happens by class name and not by an annotation parameter, for injection
into a Java class, you still use @Inject private UserName userName;, even with the

altered name.

Model Object Scopes

If you're using CDI to manage model data, model class instances subordinate to a
lifecycle control governed by CDI. This means CDI decides when to construct beans and
when to abandon them. In injected beans, the way CDI controls the lifecycle of instances
is by a characteristic called scope. In Java MVC, the following scopes exist:

o Request scope: An instance of an injected bean is created during an
HTTP request and prevails only for the lifespan of the HTTP request
and the response sent to the client (the browser). A typical usage
scenario of request scope variables is when communicating POST
form data or GET query parameters to the view layer page defined
in the response. So you inject @Named request scope beans into
controllers, set their fields there, and use the beans in the view layer.
Because the lifespan of request scoped beans is short, they help keep
the memory footprint of a web application low and avoid memory
leaks.

137

CHAPTER 6

138

IN-DEPTH JAVA MVC

Session scope: A session is bound to a browser window and spans
several HTTP request/response cycles. A session is started whenever
the user enters a web application and terminates upon some timeout
or an explicit session cancellation. Session scoped data objects
prevail until some timeout is fired or the session is explicitly closed.
You use session scoped objects when you need to maintain state with
a lifecycle exceeding a single HTTP request/response cycle. Session
data simplifies state handling, but significantly increases the danger
of having a memory consuming web application or of establishing
destabilizing memory leaks.

Redirect scope: In order to support the POST-redirect-GET design
pattern, Java MVC defines a redirect scope for CDI beans. You use this
pattern if you want to avoid reposts when a browser user clicks the
reload button prior to a POST action being terminated. The lifecycle
of beans with a redirect scope span the POST and a subsequent GET
(because the browser was made to receive a redirect code 303). In the
Java MVC controller, you start POST-redirect-GET by either returning
aResponse.seeOther(URI.create("response/path")).build()
or astring "redirect:response/path” from inside the method that
handles the POST. The process is as follows:

1. The user enters data in a form and submits it. The Java MVC
controller is invoked.

2. The controller works through the form parameters, and
the method in the end returns Response. seeOther (
URI.create("response/path"”)).build() or
"redirect:response/path".

3. The browser automatically sends a redirect to the given path.

4. Theresponse/path path (adapt it accordingly) points to
another controller method with the GET verb. It advances to
a view page showing the appropriate response to the user’s
request.

CHAPTER 6 IN-DEPTH JAVA MVC

The redirect scope CDI beans span a lifetime from the original
POST request to the response generated by the subsequent GET
request, which is two HTTP request/response cycles.

e Application scope: Any application-wide user-independent data can
use this scope. Data prevails until the web application is undeployed
or the server is stopped.

e Dependent scope: This is a pseudo-scope. It means the CDI bean
gets the same scope as the bean it was activated from. The dependent
scope is the default if no scope is explicitly set.

In order to define the scope for an injected bean, you use one of the following
annotations:

@RequestScoped
@SessionScoped
@ApplicationScoped
@RedirectScoped
@Dependent

They are all from the javax.enterprise.context package, except for
RedirectScoped, which is a Java MVC extension and belongs to the javax.mvc.
annotation package.

The Simplified Model Data Container

Instead of using CDI beans marked with the @Named annotation, you can use an injected
instance of Models (in the javax.mvc package). In a controller, you can then write the
following:

import javax.inject.Inject;
import javax.mvc.Controller;
import javax.mvc.Models;

@Path("/abc")
@Controller
public class SomeController {

139

CHAPTER 6 IN-DEPTH JAVA MVC

@Inject private Models models;

// inside any method:
models.put("name", name);

The model values are then available from inside view pages without a prefix:
Hello ${name}

Use the Models interface only when you need to handle a small amount of data.
Otherwise, you risk unstructured, incomprehensive code.

Note Models data has a request scope.

If you need model values from the Models object (still inside the same request/
response cycle!), you can use the get () method:

Object o = models.get("someKey");

// or, if you know the type
String s = models.get("someKey", String.class);

The View: JSPs

The view part of Java MVC is responsible for presenting the frontend to the client (the

browser), for both input and output. Those Java MVC view files, which are connected to

controller methods, are in the WEB-INF/views folder, or, because we are using Gradle as a

build framework, in the stc/main/webapp/WEB-INF/views folder.

Java MVC, out-of-the-box, supports two view engines—]JSPs (JavaServer Pages) and

Facelets (the view declaration language for JSE JavaServer Faces). By design, other view

engines can be included by an extension mechanism based on CDI. In this section, we

talk about the JSP variant of Java MVC views.

140

CHAPTER 6 IN-DEPTH JAVA MVC

Note For the JSP specification, see https://download.oracle.com/
otndocs/jcp/jsp-2_3-mrel2-spec/.

JSP Basics

JSPs allow developers to interleave static content, for example HTML, and dynamic
content, represented by JSP elements. A JSP page is internally compiled into one big Java
class inheriting from Servlet. A file containing JSP code has the ending . jsp.

Note For GlassFish, you can see the generated servlets in the GLASSFISH _INST/
glassfish/domains/domaini/generated/jsp/-[PROJECT-NAME] folder.

Directives

JSP directives provide directions to the container. Table 6-1 gives a description of the
directives and Table 6-2 specifically lists the JSP page directives.

Table 6-1. JSP Directives

Name Description
<% page ... %> Page-dependent attributes.

Possible parameters are shown in Table 6-2 (space-separated list).
<% include Include another file in this place. For example: <% include
file="relative url" %> file = "headeria.jsp" %>
<% taglib uri="uri" Include a tag library. The precise syntax is shown in the tag
prefix="prefix" %> library documentation.

141

https://download.oracle.com/otndocs/jcp/jsp-2_3-mrel2-spec/
https://download.oracle.com/otndocs/jcp/jsp-2_3-mrel2-spec/

CHAPTER 6 IN-DEPTH JAVA MVC

Table 6-2.]JSP Page Directives

Name

Description

buffer="..."

autoFlush="true" |"false"

contentType="...

errorPage="...

isErrorPage="true"|"false"

extends="some.pckg.SomeClass"

import="..."

info="...

isThreadSafe="true"|"false"

language="...

session="true"|"false"

n | n »nu

isELIgnored="true"|"false

isScriptingEnabled="true" |"false"

Use this to set the output buffer’s size. Possible values:
none (no buffer), or Nkb, where N is a number and kb
stands for kilobytes (for example: 8kb).

Auto-flushes the output buffer once it’s filled.
Otherwise, an exception will be thrown. Default is
true.

Sets the output’s content type. Examples: text/html,
text/xml. To also specify the character encoding,
add j;charset=...,asin contentType = "text/
html;charset=UTF-8"

Specify an error page to be shown if an exception is
thrown. This is a relative URL. Example: errorPage =
"error.jsp"

If true, qualifies this JSP as an error page.

Makes the generated servlet extend the given
class. This way you can provide your own servlet
implementation.

Works exactly like a Java import statement.
Add any text here that describes the JSP.

If false, only one thread at a time will be working the
JSP. Default is true.

Indicates the programming language used.
Write java here.

If true, sessions will be enabled. Default is true.

If true, expression language constructs ${ ... }are
not evaluated. Default is false.

If true, dynamic JSP scripting is enabled. Default is
true, and setting this to false normally makes no
sense except for truly static pages.

142

CHAPTER 6 IN-DEPTH JAVA MVC
A basic JSP file header with the most common directives reads as follows:

<%@ page language="java"
contentType="text/html;charset=UTF-8" %>
<%@ taglib prefix = "c"
uri = "http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix = "fmt"
uri = "http://java.sun.com/jsp/jstl/fmt" %>

This implies that the text editors use UTF-8 (I presume this is the case). The two
taglibs refer to the JSTL (JavaServer Pages Standard tag Library) tag library. The core
and fmt parts of this taglib refer to useful tags common to many web applications.

Note JSTL has more parts, which we don’t use for Java MVC. If you want to learn
more about JSTL, go to https://jcp.org/aboutlava/communityprocess/
final/jsr052/index.html.

Static Content

To produce static content, you just write it verbatim in the JSP file:

<%@ page language="java"
contentType="text/html;charset=UTF-8" %>
<%@ taglib prefix = "c"
uri = "http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix = "fmt"
uri = "http://java.sun.com/jsp/jstl/fmt" %>

<html>
<head>
<meta charset="UTF-8">
<title>Model And CDI</title>
</head>
<body>
<%-- The string inside action is dynamic contents --%>
<form method="post"

143

https://jcp.org/aboutJava/communityprocess/final/jsr052/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr052/index.html

CHAPTER 6 IN-DEPTH JAVA MVC

action="${mvc.
uriBuilder('ModelAndCdiController#response').
build()}">
Enter your name: <input type="text" name="name" />
<input type="submit" value="Submit" />
</form>
</body>
</html>

This code will be output as is, with three exceptions. The directives on top, the
<%-- ... --%>,which embraces a comment, and the ${ ... }, which stands for an
expression to be handled by a processing step inside the JSP engine.

Java Scriptlets and Java Expressions

Because JSPs are transcribed into Java classes, JSP allows Java code and expressions to be
included in JSP pages. The syntax is as follows:

<=
Any Java code
%>
<=
Any Java expression (semicolons not allowed)
%>

The second construct, <%= ... %>, adds the expression result to the servlet’s output

stream.

Caution Do not overuse these constructs. After all, Java is an object oriented
language, not a frontend templating language.

144

CHAPTER 6 IN-DEPTH JAVA MVC

Implicit Objects
Inside <%= ... %>or<% ... %>, there are a couple of implicit objects you can use:

o out: The servlet’s output stream of type JspWriter (extends java.
io.Writer).

o request: The request, type HttpServletRequest.

o response: The response, type HttpServletResponse.

e session: The session, type HttpSession.

o application: The application, type ServletContext.

o config: The servlet configuration, type ServletConfig.

o page: The servlet itself, type Object (runtime type javax.servlet.
http.HttpServlet).

o pageContext: The page context, type PageContext.

You can use these objects to achieve fancy results, but bear in mind that you
somehow leave official development patterns if you use them. This might make your
code hard for others to read, and by putting functionality into the view pages, the natural
demarcation between the model, the view, and the controller is broken.

JavaBeans Components

CDI beans with the @Named annotation are directly provisioned to the JSPs:

@Named

public class UserName {
private String name;
// Getters and setters...

}
JSP:

Hello ${userName.name}

145

CHAPTER 6 IN-DEPTH JAVA MVC

If you add model data to an injected javax.mvc.Models CDI bean, you can directly
access it without a prefix:

Controller:
import javax.mvc.Models;
@Controller

public class SomeController {
@Inject private Models models;

// inside any method:
models.put("name", name);

}
ISP:

Hello ${name}

In both cases, you use an expression language construct ${ ... }inside the JSP. We
talk about the expression languages in the next section.

Caution Because of the implicit objects, you can refer to POST or query parameters
directly from inside the JSPs. This is not MVC-like, however, because it introduces

a second model layer out of reach to the controllers, and it moves controller
responsibilities to the view. So don’t do that and always use injected CDI beans instead.

Expression Languages

Constructs in JSP pages like ${ ... } are treated as an expression and are processed by
an expression language handler. Expression elements are:

e name: Directly refers to a CDI managed bean or an implicit object.
While rendering the view, the expression leads to using the
toString() method for generating output. Example: ${user}.

146

CHAPTER 6 IN-DEPTH JAVA MVC

o value.property: Refers to a property field of a value object (there
must be a getter), or a map entry keyed by property if value is a map.
Examples: ${user.firstName} (there must be a getFirstName() in
the user CDI bean) and ${receipt.amount} (receipt is a map, and
amount a key therein).

o value[property]: Refers to a field value-of-property of a value
object (there must be a getter), or a map entry keyed by value-of-
property if value is a map, or an item of a list or array if property
evaluates to an int (for the index) and if value is a list or array. The
property can also be a literal, like 42 or 1.3 or 'someString' or
"someString". Examples: ${user[' firstName']} (same as ${user.
firstName}) and ${1ist[2]} (third element in a list or array).

e unaryOperator value: Applies unaryOperator to value. Unary
operators are — (negate), not or !, and empty (value is null or empty).

o valuel binaryOperator value2: Applies binaryOperator to valuel
and value2. Binary operators are:

e Arithmetical: +, -, *, /, and div, %, and mod (modulo)
o Logical: and and &&, or and | |

o Relational: == and eq, !=and ne, < and 1t, > and gt <=, and le,
>=,and ge

o valuel ternaryOperatorA value2 ternaryOperatorB value3:
Applies ternaryOperator to valuel, value2, and value3. There is
justone:a ? b : cevaluatesto b if a is true; otherwise, it evaluates
to C.

There are several implicit objects you can use in expressions, as outlined in Table 6-3.

147

CHAPTER 6 IN-DEPTH JAVA MVC

Table 6-3. EL Implicit Objects

Name Description

pageScope A map with scoped variables from page scope.
requestScope A map with scoped variables from request scope.
sessionScope A map with scoped variables from session scope.

applicationScope A map with scoped variables from application scope.

paramValues A map with request parameters as collections of strings. In a Java MVC
application, you normally don’t access such data via expressions, so don’t
use it.

param A map with request parameters as strings (the first of each request

parameter). In a Java MVC application, you normally don’t access such
data via expressions, so don’t use it.

headerValues A map with HTTP request headers as collections of strings.

header A map with HTTP request headers as strings (the first of each header).
To access a certain header, you’d for example write ${header["user-
agent"]}.

initParam A map with context initialization parameters.

cookie Maps cookie names to instances of javax.servlet.http.Cookie.

pageContext An object of type javax.servlet. jsp.PageContext. Allows you to

access various objects, like the request, the response, and the session.

Output

If you prefer to use a tag for dynamic output, you can use the <c:out> tag as follows:
Hello <c:out value="${userData.name}" />

<%-- Similar to --%>
Hello ${userData.name}

They are not exactly the same, though. Without an additional escapeXml = "false",
the tag will for example replace > with > and < with <. If ${userData.name} happens to

148

CHAPTER 6 IN-DEPTH JAVA MVC

be <John>, you won't see anything in the browser window for Hello ${userData.name}.
The browser sees a <John>, which it interprets as an (invalid) tag. The tag variant instead
outputs a <John> which shows up as a <John>.

The attributes of <c:out> are as follows:

escapeXml: Whether to escape special XML characters. Not required;
the default is true.

value: The value to print. Required. Typically you write an expression
like ${someBean.someProperty} here.

default: The default to write if something goes wrong with the value.
Not required.

Variables

Using the <c:set> tag, we can introduce variables for further use on the page. In the

Java MVC world, the most common usage scenario is introducing aliases for improving

readability. Tasks like setting session scope variables should not be done from inside
JSPs, since this is the controller’s responsibility.

<c:set var="firstName" value=${user.firstName} />

<%-- We can henceforth use 'firstName' in expressions
Instead of 'user.firstName' --%>
Hi ${firstName}

The complete attribute set for the <c:set> tag reads as follows:

value: The value to be used for the new variable (or property). Typically,
you write an expression like ${ someBean.someProperty} here.

var: The name of a new variable that stores the value. Not required,
but if not given, target and property must be used.

scope: The scope of the variable given in var="...". The default is
page (only the currently rendered page).

target: An object or map that stores the value. Not required.

property: The name of a property (field) or key (for maps) if target
is specified. Not required.

149

CHAPTER 6 IN-DEPTH JAVA MVC

Loops

For loops over lists or arrays, you can use the <c:forEach> tag (the c signifies the jst1/
core taglib):

<c:forEach items="${thelList}" var="item">
${item}

</c:forEach}

The expression inside items="..." can be any array or a list of strings, primitives, or
other objects.
You will often use such loops for HTML tables. In the controller, you construct a list

of item objects, with each item representing a row in the table:

// probably inside a models package:

@Named

@RequestScoped

public class Members {
private List<Member> list = new ArraylList<>();
public void add(Member member) {

list.add(member);

}

// Getters, setters...

}

public class Member {
private int id;
private String firstName;
private String lastName;
// Constructors, getters, setters...

}

// probably inside a controllers package:
@Controller
public class MyController {

@Inject private Members members;

// inside a method:
members.add(new Member(...));

150

CHAPTER 6

members.add(new Member(...));

In the JSP, we can now access the Members object via ${members.
table from the list:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Table</title>
</head>
<body>
<table>
<thead>
<tr>
<th>ID</th>
<th>Last Name</th>
<th>First Name</th>
</tr>
</thead>
<tbody>
<c:forkach items="${members.list}" var="item">
<tr>
<td>${item.id}</td>
<td>${item.lastName}</td>
<td>${item.firstName}</td>
</tr>
</c:forkach>
</tbody>
</table>
</body>
</html>

IN-DEPTH JAVA MVC

...} and build a

151

CHAPTER 6 IN-DEPTH JAVA MVC

All possible attributes for the <c:forEach> tag are as follows:

o 1items: The items to iterate through. Not required, but if missing, the
loop will iterate over an integer. This is where you probably write an
expression like ${someBean. someListOrArray}.

o var: The name of a page scope variable that will be generated and
then will hold each item of the loop. Not required.

o begin: Element to start with. Not required; the default is 0 (the first
item).

e end: Element to end with. Not required; the default is the last
element.

o step: The step. Not required; the default is 1.

e varStatus: The name of a loop status variable (the page scope). Not
required. The variable will hold an object of type javax.servlet.
jsp.jstl.core.LoopTagStatus.

If you want to use the <c:forEach> tag for an integer-valued range loop, you don’t
specify the items attribute, but use the begin and end attributes instead:

<c:forkach begin="1" end="10" var="i">
${i}

</c:forkach>

Conditional Branching

For conditional branching inside a JSP, you can use one of the <c:if> and <c:choose>
tags. The simple <c:1f> test allows for a simple condition check without alternatives and
without an else branch:

<c:if test="${showIncome}">
<p>Your income is: <c:out value="${income}"/></p>
</ciif>

152

CHAPTER 6 IN-DEPTH JAVA MVC
An if-else can be painlessly achieved by using the following construct:

<c:if test="${showIncome}">

<p>Your income is: <c:out value="${income}"/></p>
</c:ify<c:if test="${!showIncome}">

<p>Your income is: ***</p>
</c:if>

However, for areal if-elseif-elseif-...-else, the <choose> tag is the better
candidate:

<c:choose>
<c:when test="${income <= 1000}">
Income is not good.
</c:when>
<c:when test="${income > 10000}">
Income is very good.
</c:when>
<c:otherwise>
Income is undetermined...
</c:otherwise>
</c:choose>

Cookies

Cookies can be read directly from inside JSPs by using the implicit cookie object:

Cookie name: ${cookie.theCookieName.name} <p/>
Cookie value: ${cookie.theCookieName.value} <p/>

where theCookieName is replaced with the cookie name. The ${cookie.theCookieName}
then refers to an object of type javax.servlet.http.Cookie. However, only the name
and the value are available.

For testing purposes, you can create a cookie named theCookieName in a controller
method (set the cookie properties at will):

@Controller
@Path("abc")
public class MyController {

153

CHAPTER 6 IN-DEPTH JAVA MVC

@GET
public Response myResponse() {

// This is a subclass of Cookie:
NewCookie ck = new NewCookie("theCookieName",
"cookieValue",
"the/path",
"my.domain.com",
42,
"Some Comment",
3600%24*365,
false);

return Response.
ok("responsePage.jsp").
cookie(ck).
build();

In the response page (or some later page), you can then write the JSP code shown to
investigate the cookie.

Caution For a local test server, you must set localhost as the cookie domain. Also,
you must set the appropriate path value, maybe / for simplicity (it matches all paths).

The View: Facelets

The other view technology that Java MVC supports, apart from JSP, are Facelets. Facelets
is the templating framework especially created for JSE and JSF (JavaServer Faces) is the
dedicated main frontend technology for Jakarta EE. JSF is component-based, in contrast
to Java MVC, which is action-based. This is where a problem shows up: Java MVC is
somewhat of a competitor to JSE so Java MVC and Facelets at first sight don’t seem to
match. The good news is that, because JSF and Facelets are highly decoupled, we don’t

154

CHAPTER 6 IN-DEPTH JAVA MVC

have to use JSF components, and Facelets as a mere templating engine can be used for
Java MVC as well. This is nice, because Facelets is more apt to a modern programming
style compared to JSP, which is sometimes considered old-school, although venerable.

We didn’t put Facelets at second place as a templating engine for Java MVC without
intention, though. JSPs have proven to be valuable for decades now, and they are a little
bit closer to basic programming paradigms often used by frontend developers. Besides,
if you have some experience programming in JSE using Facelets obviates the danger of
trying to use JSF features for Java MVC, which easily messes up your application design.
Facelets, in contrast, applies a higher degree of abstraction, and, if it’s used by a skilled
developer, allows for a leaner and cleaner application design.

Having said that, it is totally up to you which frontend technology you use. This
section shows you how to use Facelets for Java MVC.

Facelets Files

Facelets files for Java MVC go in the same folder as JSP files: the WEB-INF/views folder,
or, because we are using Gradle as a build framework, in the src/main/webapp/WEB-INF/
views folder.

Facelets files are XML files, which is maybe the most noticeable difference between JSPs
and Facelets. You don't have directives like \ci{<\% ... \%>} in Facelets, and you can’t use
legacy HTML constructs which are not valid XML, but nevertheless allowed for JSPs.

Facelets Configuration

What we achieved in JSP programming, avoiding the need to provide a web.xml
configuration file, can be achieved in Facelets as well. At first, we provide an App class to
add mvc to the URL context path:

package any.project.package;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

155

CHAPTER 6 IN-DEPTH JAVA MVC

This class is empty by intention; the context path element is added by the annotation
alone.

Next, we add a redirector, which allows us to use the base URL http://the.
server:8080/WarName/ to start the application (this is for GlassFish, WarName needs to
be replaced with the WAR filename). The redirector forwards such a request to http://
the.server:8080/WarName/mvc/facelets, which we will use as an entry point for the
landing page configured in the controller class. The name doesn’t matter; we call it
RootRedirector:

package any.project.package;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebFilter(urlPatterns = "/")
public class RootRedirector extends HttpFilter {
private static final long serialVersionUID =
7332909156163673868L;

@verride
protected void doFilter(final HttpServletRequest req,
final HttpServletResponse res,
final FilterChain chain) throws IOException {
res.sendRedirect("mvc/facelets");

What is left is to take care that in the controller a “facelets” path will lead to a GET on
the landing page:

import javax.mvc.Controller;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

156

http://the.server:8080/WarName/
http://the.server:8080/WarName/
http://the.server:8080/WarName/mvc/facelets
http://the.server:8080/WarName/mvc/facelets

CHAPTER 6 IN-DEPTH JAVA MVC

@Path("/facelets")
@Controller
public class MyFaceletsController {
@GET
public Response showIndex() {
return Response.ok("index.xhtml").build();

Templating via Facelets

Facelets allow us to introduce parameterized template HTML pages, HTML snippets
(components) to be included in pages, placeholders for such snippets, and decorators
and repetitions for things like elaborated list views. In the following pages, we first enlist
the Facelets tags, and after that develop a sample application to get you started.

To use Facelets, you have to add the Facelets namespace to the XHTML files:

<?xml version="1.0"' encoding="UTF-8"' ?>
<!DOCTYPE html>
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<h:head>
<title>Facelet Title</title>
</h:head>
<body>
</body>
</html>

In the following sections, we explain the Facelets tags you can include in a XHTML
file to apply or mix templates, include XHTML snippets, or pass parameters.

157

CHAPTER 6 IN-DEPTH JAVA MVC

The <ui:include> Tag
Include another XHTML file, as in
<ui:include src="incl.xhtml" />

If the included file contains a <ui:composition> or a <ui:component>, only the inner
contents of the <ui:composition> or <ui:component> tag will be included. This allows
designers to style the included files independent of their later plumbing together by the
server.

The <ui:composition> Tag, First Variant
If it’s used without template="...", asin

<ui:composition>

</ui:composition>

it defines a subtree (collection) of HTML elements. The idea behind that is, if
you use <ui:include> and the included file contains a <ui:composition> ... </
ui:composition>, only the inner contents of the <ui:composition> ... </
ui:composition> will be included. The tag itself and anything around it will be
ignored. So you can let page designers create a completely valid XHTML file, put a
<ui:composition> ... </ui:composition> around the interesting parts, and write
<ui:include> in any other JSF page to extract exactly such parts.

The <ui:composition> Tag, Second Variant

If it . used with template="...", asin

<ui:composition template="templ.xhtml">

</ui:composition>

it defines a collection of XHTML snippets to be passed into placeholders inside the

template file (corresponding to the template = "..." attribute).
This is a completely different usage scenario compared to <ui:composition> without
template="...". In the template file, you have one or more elements like <ui:insert

name="name1" /> and in the file with the <ui:composition template="...">,

158

CHAPTER 6 IN-DEPTH JAVA MVC
you use <ui:define> tags inside the <ui:composition template="..."> ... </
ui:composition>

<ui:composition template="templ.xhtml">
"someName"> ... </ui:define>
"someName2"> ... </ui:define>

<ui:define name
<ui:define name

</ui:composition>

to define contents to be used for the <ui:insert> tags. Anything around the
<ui:composition> tag will be ignored again, so you can let designers create the
snippets using non-JSF aware HTML editors and only later extract interesting parts with
<ui:define name = "someName"> ... </ui:define> to be used for materializing the
template file.

The <ui:insert> Tag

Use this to define placeholders inside template files. A <ui:insert name="name1"/>
tag inside a template file thus means that any file referring to this template may define
contents for the placeholders. This definition has to happen inside <ui:composition>,
<ui:component>, <ui:decorate>, or <ui:fragment>.

Usually you don’t provide contents in this tag. If you add contents, such as

<ui:insert name="name1">
Hello
</ui:insert>

it will be taken as a default if the placeholder is not defined otherwise.

The <ui:define> Tag
This tag declares what will be inserted at the insertion points:

<ui:define name="theName">
Contents...
</ui:define>

Since insertion points can only exist in template files, the <ui:define> tag can only

show up in files referring to template files via <ui:composition template = "...">

159

CHAPTER 6 IN-DEPTH JAVA MVC

The <ui:param> Tag

Specifies a parameter that gets passed to an <ci:include>-ed file, or to the template

specified in <ui:composition template = "..."> ... Simplyadditasa child element,
as in the following:

<ui:include src="comp1.xhtml">
<ui:param name="p1" value="Mark" />
</ui:include>

Inside the referred-to file, add #{paramName} to use the parameter:

<h:outputText value="Hello #{p1}" />

The <ui:component> Tag

This is the same as <ui:compositiony, first variant without template specification, but it
adds an element to the JSF component tree. This tag supports the following attributes:

e id: The element’s ID in the component tree. Not required; JSF
generates an automatic ID if you don'’t specify it. May be an EL
(expression language) string value.

o binding: For binding the component to a Java class (must inherit
from javax.faces.component.UIComponent). Not required. May be
an EL string value (class name).

¢ rendered: Whether or not the component is to be rendered. Not
required. May be an EL boolean value.

It is common practice to use <ui:param> to pass parameters to components. You
can, for example, tell the component to use a particular ID. The caller is as follows:

<ui:include src="comp1.xhtml">
<ui:param name="id" value="c1" />
</ui:include>

The callee (comp1.xhtml) is as follows:

<ui:component id="#{id}">

</ui:component>

160

CHAPTER 6 IN-DEPTH JAVA MVC

The <ui:decorate> Tag

Similar to <ui:composition>, but this tag does not disregard the XHTML code around it:

I'm written to the output!
<ui:decorate template="templ.xhtml">
<ui:define name="def1">
I'm passed to "templ.xhtml", you can refer to
me in "templ.xhtml" via
<ui:insert name="def1"/8gth;
</ui:define>
</ui:include>

In contrast to <ui:compositiony, the file with the <ui:decorate> will contain the
completely valid XHTML code, including html, head, and body, and the template file will
be inserted where the <ui:decorate> appears. Therefore, it must not contain html, head,
or body. This is more or less an extended include, where passed-over data is not given
by the attributes but listed in the tag body instead.

You usually apply the <ui:decorate> tag to further elaborate code snippets. You can
wrap them into more <div>s to apply more styles, add a label or a heading, and more.

The <ui:fragment> Tag

This tag is the same as <ui:decorate>, but it creates an element in the JSF component
tree. It has the following attributes:

e 1id: For the element’s ID in the component tree. Not required; JSF
generates an automatic ID if you don’t specify it. May be an EL
(expression language) string value.

o binding: For binding the component to a Java class (must inherit
from javax.faces.component.UIComponent). Not required. May be
an EL string value (class name).

e rendered: Whether or not the component is rendered. Not required.
May be an EL boolean value.

161

CHAPTER 6 IN-DEPTH JAVA MVC

You can use this to extract existing code snippets and to convert them partly to a
component. For example, consider the following code:

<DOCTYPE html>
<html ...><head>...</head>
<h:body>
<table>
[Some table|
</table>

</h:body></html>
If we now extract the table to a different file, called table1 frag.xhtml:

<I-- Caller: HHHHHHHHHHHHHHIHHHH A -->
<!-- original file -=>
<DOCTYPE html>

<html ...><head>...</head>

<h:body>

<ui:include src="table1l frag.xhtml"/>

</h:body></html>

<!-- Callee: #Ht#HHHHHHHHHIHHIHHHHHHHHE -->
<!-- table1_frag.xhtml -->
<div xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets”
xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<div>I am the table caption</div>

<ui:fragment>

<table>

162

CHAPTER 6 IN-DEPTH JAVA MVC

[Some table|
</table>
</ui:fragment>
</div>

We have introduced XHTML (the caption) and a new component (the table).

The <ui:repeat> Tag

This is not necessarily a templating related tag, but it gets used to loop over a collection
or an array. Its attributes are:

e begin: Notrequired. If it’s specified, the iteration begins in the list or
array. May be an int valued value expression.

e end: Not required. If specified, the iteration ends (inclusive) in the list
or array. May be an int valued value expression.

o step: Notrequired. If specified, steps inside the list or array. May be
an int valued value expression.

o offset: Notrequired. If specified, an offset is added to the iterated-
over values. May be an int valued value expression.

e size:Notrequired. If specified, it's the maximum number of
elements to read from the collection or array. Must not be greater
than the array size.

o value: The list or array to iterate over. An Object valued expression.
Required.

e var: The name of an expression language variable to hold the current
item of the iteration. May be a String value expression.

o varStatus: Notrequired. The name of a variable to hold the iteration
status. A POJO with read-only values: begin (int), end (int), index
(int), step (int), even (boolean), odd (boolean), first (boolean), or
last (boolean).

e rendered: Whether the component is to be rendered. Not required.
May be an EL boolean value.

163

CHAPTER 6 IN-DEPTH JAVA MVC

Note The JSTL (Java Standard Tag Library) collection provides a <c:forEach>
tag for looping. JSF and JSTL do not work together very well because of conceptual
differences. In tutorials and blogs, you will find lots of examples for loops with
JSTL. It is, however, better to use <ui:repeat> instead to avoid problems.

The <ui:debug> Tag

Add this to your page during the development phase of your project. Using a hotkey,
the tag will then lead to the JSF component tree and the other information to be shown

x" attribute to change the hotkey. Shift+Ctrl+x will then
display the component (note that the default d does not work with the Firefox browser!).

on the page. Use the hotkey=

The second optional attribute is rendered="true|false" (you can also use an EL
boolean expression) to switch on or off this component.

Note This tag only works in the development project stage. Inside WEB-INF/
web.xml, you can add this tag:

<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>

to specify the project stage (any of Development (default), UnitTest,
SystemTest, or Production).

An Example Facelets Project

We build an example Facelets project with a music box database, which shows similarly
designed pages for titles, composers, and performers. We have a header, a footer, and a
menu to appear on every page of the web application, no matter which functionality the
user is currently using. Facelets does a good job of letting us factor out common page
parts, so we have to code them only once. See Figure 6-2.

164

CHAPTER 6 IN-DEPTH JAVA MVC

Placeholder

Placehoer]

Figure 6-2. Templating with Facelets

Start a new Gradle project in Eclipse and name it MusicBox. Use the build.gradle
file and replace its contents with:

plugins {
id 'war'
}
java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}
repositories {
jcenter()
}

dependencies {
testImplementation 'junit:junit:4.12'
implementation 'javax:javaee-api:8.0'
implementation 'javax.mvc:javax.mvc-api:1.0.0'
implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'
implementation 'jstl:jstl:1.2'
implementation 'com.google.guava:guava:28.0-jre’

165

CHAPTER 6 IN-DEPTH JAVA MVC

task localDeploy(dependsOn: war,
description:">>> Local deploy task") {
doLast {
def FS = File.separator
def glassfish = project.properties['glassfish.inst.dir']
def user = project.properties['glassfish.user’]
def passwd = project.properties|'glassfish.passwd']

File temp = File.createTempFile("asadmin-passwd",
n ._tmp")
temp << "AS_ADMIN_${user}=${passwd}\n"

def sout = new StringBuilder()

def serr = new StringBuilder()

def libsDir =

"${project.projectDir}${FS}build${FS}1libs"

def proc = """${glassfish}${FS}bin${FS}asadmin
--user ${user} --passwordfile ${temp.absolutePath}
deploy --force=true
${1ibsDir}/${project.name}.war""".execute()

proc.waitForProcessOutput(sout, serr)

println "out> ${sout}"

if(serr.toString()) System.err.println(serr)

temp.delete()

}
}

task localUndeploy(
description:">>> Local undeploy task") {
dolLast {
def FS = File.separator
def glassfish = project.properties|'glassfish.inst.dir']
def user = project.properties['glassfish.user’]
def passwd = project.properties|'glassfish.passwd']

File temp = File.createTempFile("asadmin-passwd",
n ._tmp")

166

CHAPTER 6 IN-DEPTH JAVA MVC
temp << "AS ADMIN ${user}=${passwd}\n"

def sout = new StringBuilder()
def serr = new StringBuilder()
def proc = """${glassfish}${FS}bin${FS}asadmin
--user ${user} --passwordfile ${temp.absolutePath}
undeploy ${project.name}""".execute()
proc.waitForProcessOutput(sout, serr) println "out> ${sout}"
if(serr.toString()) System.err.println(serr)

temp.delete()

Apart from dependency handling, this build file introduces two custom tasks for
deploying and undeploying the MusicBox web application on a local server. The Guava
library is just a collection of useful tools for streamlining basic development needs.

To connect to the asadmin tool, we create another file, called gradle.properties, in
the project root:

glassfish.inst.dir = /path/to/glassfish5.1
glassfish.user = admin
glassfish.passwd =

You should enter your own GlassFish server installation path. An empty admin
password is An empty password is Glassfish’ default setting. If you changed this, you
must enter the password in this file.

For the musicbox data, we create three Java classes. For simplicity they return static
information. In real life, you would connect to a database to get the data. Create a
package called book. javamvc.musicbox.model and add the following

// Composers.java:
package book.javamvc.musicbox.model;

import java.io.Serializable;
import java.util.list;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

167

CHAPTER 6 IN-DEPTH JAVA MVC
import com.google.common.collect.Lists;

@SessionScoped
@Named
public class Composers implements Serializable {
private static final long serialVersionUID =
-5244686848723761341L;

public List<String> getComposers() {
return Lists.newArraylList("Brahms, Johannes",
"Debussy, Claude");

}

// Titles.java:
package book.javamvc.musicbox.model;

import java.io.Serializable;
import java.util.Llist;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

import com.google.common.collect.Lists;

@SessionScoped
@Named
public class Titles implements Serializable {
private static final long serialVersionUID =
-1034755008236485058L ;

public List<String> getTitles() {
return Lists.newArraylList("Symphony 1",
"Symphony 2", "Childrens Corner");

}

// Performers.java:
package book.javamvc.musicbox.model;

168

CHAPTER 6 IN-DEPTH JAVA MVC

import java.io.Serializable;
import java.util.list;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

import com.google.common.collect.Lists;

@SessionScoped
@Named
public class Performers implements Serializable {
private static final long serialVersionUID =
6941511768526140932L ;

public List<String> getPerformers() {
return Lists.newArraylList(
"Gewandhausorchester Leipzig",
"Boston Pops");

For CDI to work correctly, create an empty file called src/main/webapp/WEB-INF/
beans.xml. Add one more file, called stc/main/webapp/WEB-INF/glassfish-web.xml. It
should contain the following:

<?xml version="1.0" encoding="UTF-8"?>

<glassfish-web-app error-url="">
<class-loader delegate="true"/>

</glassfish-web-app>

Before we get into the view coding, Figure 6-3 shows an impression of what we want
to achieve. To apply the Facelets functionalities, we add a template file called src/main/
webapp/WEB-INF/frame.xhtml:

<!DOCTYPE html>

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

169

CHAPTER 6 IN-DEPTH JAVA MVC

<title>Musicbox</title>
<link rel="stylesheet" href="../../css/style.css" />
</head>

<body>
<div class="header-1line">
<ui:insert name="header">
<h2>Top Section</h2>
</ui:insert>
</div>
<div class="center-line">
<div class="menu-column">
<ui:insert name="menu">
Menui1</1i><1li>Menu2</1i>
</ui:insert>
</div>
<div class="contents-column">
<ui:insert name="contents">
Contents
</ui:insert>
</div>
</div>
<div class="bottom-line">
<ui:insert name="footer">Footer</ui:insert>
</div>
</body>
</html>

This template file defines a common page structure and declares a couple of
placeholders via <ui:insert> tags. The CSS file we are referring to is called style.css
and it goes to src/main/webapp/css/style.css:

body { color: blue; }
.header-line { height: 3em; background-color: #CCF000; }
.bottom-1line { clear: both; height: 1.5em; }
.menu-column { float: left; width: 8em;
background-color: #FFC000; height: calc(100vh - 7em); }

170

CHAPTER 6 IN-DEPTH JAVA MVC

.menu-column ul { margin:0.5em; padding: 0;
list-style-position: inside; }
.contents-column { float: left; padding: 0.5em;
background-color: #FFFF99;
width: calc(100% - 9em); height: calc(100vh - 8em); }
.bottom-1line { padding-top: 1em;
background-color: #CCFFFF; }

For common page elements, we define a couple of XHTML files inside the src/main/
webapp/common folder:

<!-- File commonHeader.xhtml -->
<!DOCTYPE html>
<div xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<h2>Musicbox</h2>
</div>

<!-- File commonMenu.xhtml -->
<!DOCTYPE html>
<div xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

Titles</1i>
Composers</1i>
Performers</1i>

</div>

<!-- File commonFooter.xhtml -->
<!DOCTYPE html>
<div xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
(c) The Musicbox company 2019
</div>

Inside commonMenu. xhtml, we provide <a> links to the titles, composers, and
performers pages. The href attributes do not directly correspond to XHTML pages;

171

CHAPTER 6 IN-DEPTH JAVA MVC

instead, they point to methods inside the controller. This is a Java class called
MusicBoxController. java inside the book.javamvc.musicbox.controller package:

package book.javamvc.musicbox.controller;

import java.util.Arraylist;
import java.util.list;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import javax.inject.Named;

import javax.mvc.Controller;

import javax.mvc.binding.BindingResult;

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.ParamError;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.core.NewCookie;
import javax.ws.rs.core.Response;

@Path("/musicbox™)

@Controller

public class MusicBoxController {
private @Inject BindingResult br;

@GET
public Response showIndex() {
return Response.ok("titles.xhtml").build();

}

@GET
@Path("/titles")
public Response showTitles() {
return Response.ok("titles.xhtml").build();

172

CHAPTER 6

@GET
@Path("/composers")
public Response showComposers() {
return Response.ok("composers.xhtml").build();

}

@GET
@Path("/performers")
public Response showPerformers() {
return Response.ok("performers.xhtml").build();

}

@POST
@Path("/response")
public Response response(
@MvcBinding @FormParam("name™)
String name) {
if(br.isFailed()) {
// ... handle errors

// ... handle user POSTs

// ... advance to response page
return Response.ok("response.xhtml").build();

IN-DEPTH JAVA MVC

The response() method is not implemented in this example. It is shown here to get

you started if you want to include forms.

The three page files—titles.xhtml, composers.xhtml, and performers.xhtml—

<l-- Fl].e titleS.Xhtml >k >k okook ok ok ok >k ok ok ok ok ok ok ok kook ok sk sk sk k -S>
<!DOCTYPE html>
<html lang="en"

xmlns="http://www.w3.0rg/1999/xhtml"

inside the stc/main/webapp/WEB-INF/views folder refer to the template file and the
common page elements:

173

CHAPTER 6 IN-DEPTH JAVA MVC
xmlns:ui="http://java.sun.com/jsf/facelets">

<body>
<ui:composition template="frame.xhtml">

<ui:define name="header">
<ui:include src="/common/commonHeader.xhtml" />
</ui:define>

<ui:define name="menu">
<ui:include src="/common/commonMenu.xhtml" />
</ui:define>

<ui:define name="contents">
<h2>Titles</h2>

<ui:repeat var="t" value="${titles.titles}"
varStatus="status">
${t}</1i>
</ui:repeat>

</ui:define>

<ui:define name="footer">
<ui:include src="/common/commonFooter.xhtml" />
</ui:define>

</ui:composition>

</body>
</html>

<l-- Fl].e ComposerS.Xhtml koK ok >k ok ok >k ok ok >k ok >k ok ok ok ok ok >k ok sk k ok -=>
<IDOCTYPE html>
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

174

CHAPTER 6

<body>
<ui:composition template="frame.xhtml">

<ui:define name="header">
<ui:include src="/common/commonHeader.xhtml" />
</ui:define>

<ui:define name="menu">
<ui:include src="/common/commonMenu.xhtml" />
</ui:define>

<ui:define name="contents">
<h2>Composers</h2>

<ui:repeat var="c" value="${composers.composers}"
varStatus="status">
${c}</1i>
</ui:repeat>

</ui:define>

<ui:define name="footer">
<ui:include src="/common/commonFooter.xhtml" />
</ui:define>

</ui:composition>
</body>
</html>

<!-- File performers.xhtml #¥iiiiiiiiiiiiiiiiiir -y
<!DOCTYPE html>
<html lang="en"

xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"”
xmlns:c="http://java.sun.com/jsp/jstl/core">
<body>
<ui:composition template="frame.xhtml">

IN-DEPTH JAVA MVC

175

CHAPTER 6 IN-DEPTH JAVA MVC

<ui:define name="header">
<c:if test="true">
<ui:include src="/common/commonHeader.xhtml" />
</c:if>

</ui:define>

<ui:define name="menu">
<ui:include src="/common/commonMenu.xhtml" />
</ui:define>

<ui:define name="contents">
<h2>Performers</h2>

<ui:repeat var="p" value="${performers.performers}"
varStatus="status">
${p}</1i>
</ui:repeat>

</ui:define>

<ui:define name="footer">
<ui:include src="/common/commonFooter.xhtml" />
</ui:define>

</ui:composition>
</body>
</html>

You can see that we use the <ui:composition> tagto apply the page template.

Caution The pages deliberately do not use any JSF tags. If you look for Facelets
tutorials, in most cases they will include JSF tags. | consider it a dangerous
practice to use Facelets and JSF tags in Java MVC projects. The different design
paradigms for Java MVC (action based) and JSF (component based) will very likely
lead to problems that are hard to fix. It is however possible to use Facelets and
JSTL together; see the following section.

176

CHAPTER 6 IN-DEPTH JAVA MVC

Build and deploy the application by running the Gradle task localDeploy. Then
point your browser to http://localhost:8080/MusicBox to see the application running.
See Figure 6-3.

Musicbox

: Composers
s Perh Titles
» Symphony 1

» Symphony 2
» Childrens Corner

(c) The Musicbox company 2019

Figure 6-3. The Musicbox Facelets application

Mixing Facelets and JSTL

We already pointed out that, with Java MVC, we don’t want to mix-in JSF components
and Facelets pages for stability reasons. This however leads to a severe lack of
functionalities, including a missing if-else construct. In the JSF world, you switch on
and off components (or component subtrees) via the rendered attribute. So what can
we do if we want to use Facelets for Java MVC and need conditional branching on a view
page? The answer is astonishingly simple. Because we don’t use JSF components, we can
simply add the JSTL tag libraries without any danger of breaking proper page rendering.
Then we can use the <c:if> and <c:choose> tags.

Consider, for example, that we want to add a messages box based on some condition.
It is then possible to write the following:

<!DOCTYPE html>
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"

177

CHAPTER 6 IN-DEPTH JAVA MVC

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:c="http://java.sun.com/jsp/jstl/core">
<head>
</head>
<body>
<c:if test="${pageControl.showMessages}">
<div class="messages">
... the messages ...
</div>
</c:if>
</body>
</html>

Because JSPs and JSTL have been taken care of in our build.gradle file, we just have
to add the JSTL namespace in order to be able to use JSTL.

Unified Expressions

For JSE the expression language handling has been extended to use deferred expressions,
denoted by #{ ... }instead of ${ ... }.Such deferred expressions aren’t evaluated
prior to the JSF component reacting to the requests initiated by forms. This way, it was
possible to use expressions as lvalues, meaning you can assign user input to them. A #{
someBean.someProperty } thus can serve both output and input.

The combination of immediate expressions and deferred expressions, more precisely
the enhanced expression language, is also called unified expressions.

For Java MVC, form input is exclusively handled by controller methods. There is by
design no such thing as autowiring form input to CDI beans. For this reason, we don’t
need deferred expressions, and to make things clear as a rule of thumb consider:

Caution Don’t use deferred expressions #{ ... } inJava MVC Facelets views.

178

CHAPTER 6 IN-DEPTH JAVA MVC

The Controller

Controller classes describe the action part of a Java MVC application. They are
responsible for preparing the model, taking user requests, updating the model, and
deciding which view pages to show after a request.

Controller Basics

To mark a class as a Java MVC controller, add the @Controller annotation (in the javax.
mvc package) and the @Path annotation (in the javax.ws.rs package) to the class:

import javax.mvc.Controller;
import javax.ws.rs.Path;

@Path("/controllerPath")
@Controller
public class MyController {

The @Path will make sure the controller acts on URLs starting with WEB_
APPLICATION BASE/mvc/controllerPath, where WEB_ APPLICATION BASE depends on
the Jakarta EE server product (for GlassFish, for example, it e http://the.server:8080/
TheWarName), and /mvc is configured as the application path in some class:

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

You don’t have to use controllerPath for the @Path parameter; this is just an

example.

179

http://the.server:8080/TheWarName
http://the.server:8080/TheWarName

CHAPTER 6 IN-DEPTH JAVA MVC

Getting Pages

For pages that are not the result of some form post, you use the GET verb and mark the
corresponding methods:

import javax.mvc.Controller; import javax.ws.rs.GET; import javax.ws.rs.Path;
import javax.ws.rs.core.Response;

@Path("/controllerPath™)
@Controller
public class MyController {
@GET
public Response showIndex() {
return Response.ok("index.jsp").build();

}

@GET

@Path("/b")

public String showSomeOtherPage() {
return "page b.jsp";

In this snippet, you can see the two possible return types—you return a string
pointing to a JSP (or Facelets page) and then use suffix . xhtml, or you return a
Response object. While returning a string is easier, with the Response instance, you
have more options. For example, you can precisely specify the HTTP status code, and
actually specify status codes (like OK, Server Error, Accepted, Created, No Content,
Not Modified, See Other, Temporary Redirect, or Not Acceptable). You can also set the
encoding, the cache control, HTTP headers, the language, the media type, expired and
last modification times, and add cookies. For details, see the API documentation of the
javax.ws.rs.core.Response class.

The triggering path is calculated by concatenating the classat@Path annotation and
the methodng @Path annotation, and then prepending the applications’ URL path. If
you, for example, deployed a WAR named TheWAR.war on a local GlassFish server with
an HTTP connector running on port 8080 (the default), and furthermore added this class
anywhere in your package hierarchy:

180

CHAPTER 6

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

Then this controller:

import javax.mvc.Controller;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;

@Path("/controllerPath™)
@Controller
public class MyController {
@GET
public Response showIndex() {
return Response.ok("index.jsp").build();

}

@GET

@Path("/b")

public String showSomeOtherPage() {
return "page b.jsp";

}

will ensure the following mappings apply:

http://localhost:8080/TheWAR/mvc/controllerPath
-> method showIndex()

http://localhost:8080/TheWAR/mvc/controllerPath/b
-> method showSomeOtherPage()

IN-DEPTH JAVA MVC

181

CHAPTER 6 IN-DEPTH JAVA MVC

See Figure 6-4.

Figure 6-4. Controller URLs

Preparing the Model

If you need to prepare model values for the called page to use, you can inject CDI beans
in the controller and adjust their values from inside the controller methods.

import javax.mvc.Controller;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;
import javax.inject.Inject;

@Path("/controllerPath™)

@Controller

public class MyController {
// The controller is under custody of CDI, so
// we can inject beans.
@Inject private SomeDataClass someModelInstance;

@GET
public Response showIndex() {

182

CHAPTER 6 IN-DEPTH JAVA MVC

// Preparing the model:
someModelInstance.setVal(42);

return Response.ok("index.jsp").build();

}

@GET

@Path("/b")

public String showSomeOtherPage() {
// Preparing the model:
someModelInstance.setVal(43);

return "page b.jsp";

The updated or initialized model can then be used from inside the called view page.

We described that in the previous view-related text sections.

Posting Data into Controllers

In order to transport user input from a form to a controller method, you mark the
method with a @POST annotation and add the form fields as parameters of the method:

@POST

@Path("/response™)

public Response response(
@MvcBinding @FormParam(“"name") String name,
@MvcBinding @FormParam(“"userId") int userId) {

// Handle form input, set model data, ...

return Response.ok("response.jsp").build();

For the parameter type, you can choose String, int, long, float, double,
BigDecimal, BigInteger, and boolean (true or false). Java MVC makes sure that user
input is appropriately converted if you choose any type other than String

183

CHAPTER 6 IN-DEPTH JAVA MVC

The @MvcBinding allows Java MVC to pass over validation and conversion errors in
an injected BindingResult object. You can then handle the errors programmatically
inside the POST method:

import javax.mvc.binding.MvcBinding;
import javax.mvc.binding.ParamError;
import javax.mvc.binding.BindingResult;
import javax.ws.rs.FormParam;

@Path("/controllerPath™)
@Controller
public class MyController {

// Errors while fetching parameters
// automatically go here:
private @Inject BindingResult br;

@POST

@Path("/response")

public Response response(
@MvcBinding @FormParam(“name") String name,
@MvcBinding @FormParam("userId") int userId) {

// ERROR HANDLING /////7/7711111111111111111/
if(br.isFailed()) {
br.getAllErrors().stream().
forEach((ParamError pe) -> {

D
}
// END ERROR HANDLING /////771111111111111111
// Handle form input, set model data, ...

return Response.ok("response.jsp").build();

184

CHAPTER 6 IN-DEPTH JAVA MVC

Instead of passing the form input as method parameters, you can also use controller
fields to receive the data:

import javax.mvc.Controller;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;
import javax.inject.Inject;

@Path("/controllerPath™)

@Controller

public class MyController {
// Errors while fetching parameters
// automatically go here:
private @Inject BindingResult br;

@MvcBinding @FormParam(“name")
private String name;

@MvcBinding @FormParam(“userId")
private int userId,

@POST
@Path("/response")
public Response response() {
// Handle form input, set model data, ...

return Response.ok("response.jsp").build();

Generally, it is recommended to use method parameters, because class instance
fields somehow suggest that parameter passing is the controller classeqresponsibility,
without respecting which method is used, while it actually depends on the method as to
which parameters make sense.

185

CHAPTER 6 IN-DEPTH JAVA MVC

If you need to make query parameters (a and b in http://xyz.com/app?a=3&b=4)
available to controller methods, you basically do the same thing as for posted
parameters. What is different though is that you must use the QueryParam annotation for
query parameters, as follows:

import javax.mvc.binding.MvcBinding;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

@Path("/")
@Controller
public class SomeController {
private @Inject BindingResult br;
@GET
@Path("/start")
public String someMethod(
@MvcBinding @QueryParam(“"name") String name,
@MvcBinding @QueryParam("birthday") String birthday
)
if(name != null) {
// handle "name" parameter
}
if(birthday != null) {
// handle "birthday" parameter
}

// advance to page
return "index.jsp";

This is possible for @GET and @POST annotated methods.

186

http://xyz.com/app?a=3&b=4

CHAPTER 6 IN-DEPTH JAVA MVC

Exercises

Exercise 1: In the HelloWorld application from two chapters ago,
remove the Models field in the controller and instead add a new
request scoped model class called UserData with one field, name.
Update the controller and the views accordingly.

Exercise 2: Which one is true? JSPs are handled by one Servlet.
Or, each JSP is transformed into one new Servlet.

Exercise 3: Which view technology is newer—Facelets or JSPs?

Exercise 4: True or false? In order to use Facelets in Java MVC,
you must also use JSE.

Summary

For the model part of Java MVC, the original idea of a MVC framework is rather
unchanged. Model classes were just Java bean classes (classes with fields, getters, and
setters), and developers would add them to the view programmatically. In a response
view, you then would access the model beans using some expression similar to Hello
${beanName.name}. Java MVC however is a modern framework and its model capabilities
supersede the idea of simply referring to beans. It does so by incorporating the CDI
(Context and Dependency Injection) technology for Jakarta EE 8 in version CDI 2.0.

The basic idea is still the same: we want to instantiate bean classes (data classes that
contain mainly fields and their getters and setters) and provision those instances to the
controllers and the views. The main difference between the pre-CDI and CDI way is that
we don’t instantiate model classes ourselves and let instead CDI do it.

To tell Java MVC that we want a model class to be controlled by CDI and available to
the view pages, we use the @Named annotation from the javax.inject package. We can
also add the @RequestScoped annotation to bind the lifecycle of the object instance to a
single HTTP request/response cycle.

Once we announce a bean via @Named to the CDI framework, two things happen in
Java MVC. First, we can use @Inject (in the javax.inject package) to refer to the bean
instance from inside any Java MVC controller and from inside any other CDI controlled
class. Second, we can use the instance from view pages by using the class name with the
first letter lowercase: ${userData.name} and ${userData.email}.

187

CHAPTER 6 IN-DEPTH JAVA MVC

If you're using CDI to manage model data, model class instances subordinate to a
lifecycle control governed by CDI. This means CDI decides when to construct beans and
when to abandon them. In injected beans, the way CDI controls the lifecycle of instances
is by a characteristic called scope. In Java MVC, the following scopes exist: request scope,
session scope, redirect scope, and application scope.

Instead of using CDI beans marked with the @Named annotation, you can also use
an injected instance of Models (in the javax.mvc package). The model values are then
available from inside view pages without a prefix: Hello ${name}.

The view part of Java MVC is responsible for presenting the frontend to the client (the
browser), for both input and output. Those view files for Java MVC, which are connected
to controller methods, go in the WEB-INF/-views folder, or, because we are using Gradle
as a build framework, in the src/main/webapp/WEB-INF/views folder.

Java MVC, out-of-the-box, supports two view engines—]JSPs (JavaServer Pages) and
Facelets (view declaration language for JSE JavaServer Faces). By design, other view
engines can be included with an extension mechanism based on CDI.

JSPs allow you to interleave static content, for example HTML and dynamic content,
represented by JSP elements. A JSP page is internally compiled into one big Java class
inheriting from Servlet. A file containing JSP code has the ending . jsp. JSP directives
<% ... %> provide directions to the container. To produce static content, you just write it
verbatim in the JSP file. Because JSPs are transcribed into Java classes, JSP allows for the
inclusion of Java code and Java expressions into JSP pages. Inside <%= ... %>or<% ...
%>, there are a couple of implicit objects you can use:

o out: The servlet’s output stream of type JspWriter (extends java.
io.Writer).

o request: The request, type HttpServletRequest.

o response: The response, type HttpServletResponse.

o session: The session, type HttpSession.

o application: The application, type ServletContext.

o config: The servlet configuration, type ServletConfig.

o page: The servlet itself, type Object (runtime type javax.servlet.
http.HttpServlet).

o pageContext: The page context, type PageContext.

188

CHAPTER 6 IN-DEPTH JAVA MVC

You can use these objects to achieve fancy things, but bear in mind that you
somehow leave official development patterns if you use them. This might make your
code hard for others to read, and by putting functionality into the view pages, the natural
demarcation between the model, the view, and the controller is broken.

CDI beans with the @Named annotation are directly provisioned to the JSPs: Hello
${userName.name}. If you add model data to an injected javax.mvc.Models CDI bean,
you can directly access it without a prefix, as in Hello ${name}.

Constructs in JSP pages like ${ ... } are treated as expressions and are processed
by an expression language handler. There are several implicit objects you can use in
expressions: pageScope, requestScope, sessionScope, applicationScope, paramValues,
param, headerValues, header, initParam, cookie, and pageContext.

If you prefer to use a tag for dynamic output, you can use the <c:out> tag as follows:
Hello <c:out value="${userData.name}" />.

By using the <c:set> tag, you can introduce variables for further use in the page.

For loops over lists or arrays, you can use the <c:forEach> tag (the c signifies the
jstl/core taglib). If you want to use the <c:forEach> tag for an integer-valued range
loop, you use the begin and end attributes, such as <c:forEach begin="1" end="10"
var="1i">.

For conditional branching inside a JSP, you can use one of the <c:if> and
<c:choose> tags.

Cookies can be read directly from inside JSPs by using the implicit cookie object.

The other view technology that Java MVC supports apart from JSP is called Facelets.
Facelets is the templating framework especially created for JSE Facelets files for Java
MVC go in the same folder as JSP files, the WEB-INF/views folder, or, because we are
using Gradle as a build framework;, in the stc/main/webapp/WEB-INF/views folder.
Facelets files are XML files, which is maybe the most noticeable difference between JSPs
and Facelets.

Facelets allow you to introduce parameterized template HTML pages, HTML
snippets (components) to be included in pages, placeholders for such snippets, and
decorators and repetitions for things like elaborated list views.

For Java MVC, we don’t want to mix JSF components into Facelets pages for stability
reasons. This, however, leads to a severe lack of functionalities, including a missing
if-else construct. In the JSF world, you switch on and off components (or component
subtrees) via the rendered attribute. So what can we do if we want to use Facelets for Java
MVC and need a conditional branching on some view page? The answer is astonishingly

189

CHAPTER 6 IN-DEPTH JAVA MVC

simple. Because we don’t use JSF components, we can simply add the JSTL tag libraries
without danger of breaking proper page rendering. Then we can use the <c:if> and
<choose> tags.

For JSE expression language handling has been extended to use deferred
expressions, denoted by #{ ... }instead of ${ ... }. These deferred expressions
aren’t evaluated prior to the JSF component reacting to the requests initiated by forms.
This way, it was possible to use expressions as 1values, meaning you can assign user
input to them. A #{ someBean.someProperty } thus can serve for both output and input.
The combination of immediate expressions and deferred expressions, more precisely
the enhanced expression language, is also called unified expressions. For Java MVC, form
input is exclusively handled by controller methods. There is by design no such thing as
autowiring form input to CDI beans. For this reason, we don’t need deferred expressions.

Caution Don’t use deferred expressions #{ ... }in Java MVC Facelets views.

Controller classes describe the action part of a Java MVC application. They are
responsible for preparing the model, taking user requests, updating the model, and
deciding which view pages to show after a request. To mark a class as a Java MVC
controller, add the @Controller annotation (in the javax.mvc package) and the @Path
annotation (in the javax.ws.rs package) to the class.

For pages that are not the result of some form post, you use the GET verb and mark
the corresponding methods with the @GET annotation.

In controller methods marked with @GET or @POST, you either return a string pointing
to a JSP (or Facelets page) and then use suffix .xhtml, or you can return a Response
object. While returning a string is easier, with the Response instance you have more
options. For example, you can precisely specify the HTTP status code and actually
specify status codes (like OK, Server Error, Accepted, Created, No Content, Not Modified,
See Other, Temporary Redirect, or Not Acceptable). You can also set the encoding,
the cache control, HTTP headers, the language, the media type, expired and last
modification times, and add cookies.

The triggering path is calculated by concatenating the class’ @Path annotation and
the method’s @Path annotation, and then prepending the applications’ URL path.

If you need to prepare model values for the called page to use, you can inject CDI
beans in the controller and just adjust their values from inside the controller methods.
The updated or initialized model can then be used from inside the called view page.

190

CHAPTER 6 IN-DEPTH JAVA MVC

In order to transport user input from a form to a controller method, you mark the
method with a @P0ST annotation and add the form fields as parameters of the method.
For the parameter type, you can choose String, int, long, float, double, BigDecimal,
BigInteger, and boolean (true or false). Java MVC makes sure that user input is
appropriately converted if you choose any type other than String.

The @MvcBinding allows Java MVC to pass over validation and conversion errors in
an injected BindingResult object. You can then handle the errors programmatically
inside the POST method.

If you need to make query parameters (a and b in http://xyz.com/app?a=3&b=4)
available to controller methods, you basically do the same thing as with posted
parameters. What is different though is that you must use the QueryParam annotation for
query parameters. This is possible for @GET and @POST annotated methods.

In the next chapter, we cover more advanced topics of Java MVC.

191

http://xyz.com/app?a=3&b=4

CHAPTER 7

In-Depth Java MVC: Part |

In this chapter, we continue our in-depth survey of Java MVC. We talk about some topics
that you'll encounter less frequently compared to the topics discussed in the last chapter,
but that could be important to your project, depending on the circumstances. This includes
bean validation, injectable context, partial page updates, and observer classes. We also
deepen our knowledge about state handling, and we include some configuration topics.

Adding Bean Validation

Bean validation (version 2.0) is described by the JSR 380 specification. The full
specification can be downloaded from https://jcp.org/en/jsr/detail?id=380.

This technology is about constraints defined by annotations. You can add checks to
determine whether a field or method parameter is null, whether a number exceeds some
lower or upper bound, whether a string’s size is within a certain range, whether a date
is in the past or future, and more. You even can define your own custom annotations to
check certain parameters or fields.

We don’t talk about the full gamut of possibilities of bean validation—the
specification and many tutorials on the Internet readily tell you more. We talk about
where bean validation fits into Java MVC, and we cover some built-in constraints that
you will often use, as well as a couple of custom constraints.

You can easily use bean validation in Java MVC next to form and query parameters
inside controllers. If you have constraints, such as @CONSTRAINT1, @CONSTRAINT2, and so
on (we will talk about possible values and constraint parameters soon), you can use any
of the following:

public class SomeController {

// constraints for fields:
@MvcBinding @FormParam("name"

193
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_7

https://doi.org/10.1007/978-1-4842-6280-1_7#DOI
https://jcp.org/en/jsr/detail?id=380

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

194

@CONSTRAINT1
@CONSTRAINT2

private String formParam; // or other type
// or, for query parameters:

@MvcBinding @QueryParam("name")
@CONSTRAINT1
@CONSTRAINT2

private String queryParam; // or other type

// or, in controller action:

@POST

@Path("/xyz")

public Response someMethod(
@MvcBinding @FormParam("name"
@CONSTRAINT2

@CONSTRAINT2

String name)

{
}

// or, for query parameters:

@GET

@Path("/xyz")

public Response someMethod(
@vcBinding @QueryParam("name"
@CONSTRAINT1
@CONSTRAINT2

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

String name)

{

Any violation will be forwarded as an error inside an injected BindingResult:

@Controller

@Path("/xyz")

public class SomeController {
@Inject BindingResult br;

}

For example, if we want to limit a form parameter string to have more than two, but

less than ten, characters, we write the following:

@Controller

@Path("/xyz")

public class SomeController {
@Inject BindingResult br;

@vcBinding @FormParam("name"
@Size(min=3,max=10)
private String formParam;

}

The most interesting built-in bean validation constraints are defined in Table 7-1.

195

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

Table 7-1. Built-in Bean Validation Constraints

Name Description

@Null Checks whether the value is null.

@NotNull Checks whether the value is not null.

@AssertTrue Checks whether the boolean value is true.

@AssertFalse Checks whether the boolean value is false.

@Min(min) Checks whether the numerical value (short, int, long,
BigDecimal, or BigInteger) is greater or equal to the supplied
parameter.

@Max (max) Checks whether the numerical value (short, int, long,
BigDecimal, or BigInteger) is less or equal to the supplied
parameter.

@Negative Checks whether the numerical value (short, int, long,
BigDecimal, or BigInteger) is less than zero.

@NegativeOrZero Checks whether the numerical value (short, int, long,
BigDecimal, or BigInteger) is less than or equal to zero.

@Positive Checks whether the numerical value (short, int, long,
BigDecimal, BigInteger) is greater than zero.

@PositiveOrZero Checks whether the numerical value (short, int, long,

@Size(min=minSize,
max=maxSize)

@NotEmpty

@NotBlank

BigDecimal, BigInteger) is greater than or equal to zero.

Checks whether the string value has a length between the specified
bounds. Both bounds are optional; if omitted, 0 or Integer.
MAX_VALUE is assumed. Example: @Size(max=10) means size
ten or less.

Checks whether the value is not empty. For strings, this means the
string length must be greater than 0.

Checks whether the string value contains at least one non-
whitespace character.

196

(continued)

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

Table 7-1. (continued)

Name Description

@Pattern(regexp=regExp, Checks whether the string value matches the given regular

flags={f1,f2,...}) expression. The optional flags parameter may be a list of javax.
validation.constraints.Pattern.Flag.* constants
controlling the match, such as case insensitiveness. As is usually
the case for annotations, you can omit the { } if you have only one
element in the list.

@Email(regexp=regExp, Checks whether the string value represents an email address.
flags={f1,f2,...}) The optional regexp and flags parameters specify an additional
pattern, with the same meaning as the @Pattern constraint.

You can see that there is no min or max check for float or double values. These were
left out intentionally. Because of possible precision errors, these types of checks cannot
reliably be performed.

It is also possible to define your own bean validators. For the lack of a double valued
bound check, you might for example want to define a double (float) range validator
(including some precision grace). For such an annotation, you would write the following:

package book.javamvc.validation;

import javax.validation.Constraint;

import javax.validation.Payload;

import static java.lang.annotation.ElementType.:;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

@Constraint(validatedBy = FloatRangeValidator.class)
@Target({ PARAMETER, FIELD })
@Retention(RUNTIME)
public @interface FloatRange {
String message() default
"Value out of range [{min},{max}]";
Class<?>[] groups() default {};

197

CHAPTER 7

198

IN-DEPTH JAVA MVC: PART I

Class<? extends Payload>[] payload() default {};
String[] value() default { };

double min() default -Double.MAX VALUE;

double max() default Double.MAX VALUE;

double precision() default 0.0;

The important parts are as follows:

validatedBy = FloatRangeValidator.class

The implementation class, see next code section.

@Target

We want to allow this annotation for fields and method parameters.
@Retention(RUNTIME)

RUNTIME is important here, so the annotation won’t get lost during
compilation.

message()

The message to be shown if the validation fails, with placeholders for
the parameters.

value()

This is the default parameter if there is no named parameter. We want
to introduce three named parameters—min, max, and precision—so
we don’t use a default parameter.

min(), max(), precision()
The three named parameters, as methods.

groups(), payload()

Not used here.

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il
The implementation class checks the code and reads as follows:
package book.javamvc.validation;

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;

public class FloatRangeValidator implements
ConstraintValidator<FloatRange, Number> {
private double min;
private double max;
private double precision;

@verride

public void initialize(FloatRange constraint) {
min = constraint.min();
max = constraint.max();
precision = constraint.precision();

@verride
public boolean isValid(Number value,
ConstraintValidatorContext context) {
return value.doubleValue() »>=
(min == -Double.MAX VALUE ? min :
min - precision)
88 value.doubleValue() <= (max == Double.MAX VALUE ?
max : max + precision);

The overwritten isValid() method performs the actual validation. In this case, we
have to make sure the precision grace is not applied to the default values +/- Double.
MAX_VALUE.

To add the new constraint to a Java MVC controller, we use the same method as for

the built-in constraints:

import book.javamvc.validation.FloatRange;

199

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

@Path("/abc™)

@Controller

public class SomeController {
@MvcBinding @FormParam("theDouble")
@FloatRange(min=1.0, max=2.0, precision = 0.000001)
private double theDouble;

As another custom bean validator using the value annotation default parameter,
consider a check that allows string values only from a certain set. We call it StringEnum
and its code is as follows:

package book.javamvc.validation;

import javax.validation.Constraint;

import javax.validation.Payload;

import static java.lang.annotation.ElementType.:;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

@Constraint(validatedBy = StringEnumValidator.class)
@Target({ PARAMETER, FIELD })
@Retention(RUNTIME)
public @interface StringEnum {
String message() default
"String '${validatedValue}' not inside {value}";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
String[] value() default { };

200

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

This time, no named parameters are introduced, only the default value attribute is.
The implementation then looks as follows:

package book.javamvc.validation;

import java.util.Arrays;
import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;

public class StringEnumValidator implements
ConstraintValidator<StringEnum, String> {
private String[] val;

@0verride
public void initialize(StringEnum constraint) {
this.val = constraint.value();

}
@0verride
public boolean isValid(String value,
ConstraintValidatorContext context) {
return Arrays.aslist(val).contains(value);
}
}

Because there is only one default parameter, we don’t need the name to use it:

import book.javamvc.validation.StringEnum;

@Path("/abc")

@Controller

public class SomeController {
@MvcBinding @FormParam("fruit")
@StringEnum({"grape", "apple", "banana"})
private String fruit;

201

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

So far, for validation failure messages, we have seen named parameter placeholders
in the form {paramName} or {value} for the annotation’s default value, and an expression
language construct for the checked value, ${validatedValue}. In an internationalized
application, it would be better if we could add a reference to a localized message file.
This is possible, and the name of the bundle file is ValidationMessages.properties.
The localized properties files then have the following names:

ValidationMessages.properties (default)
ValidationMessages en.properties (English)
ValidationMessages fr.properties (French)
ValidationMessages de.properties (German)

In a Gradle project layout, you'd place them inside the src/main/resources folder.
In the properties files, you then write messages like this:

myapp.user.name.error = Invalid User Name: \
${validatedvalue}
myapp.user.address.error = Invalid Address

In the message method of the bean validation annotation, you use curly brackets and
the property key name:

String message() default
"{myapp.user.name.error}";

Note Resource bundles like these belong to the JRE standard. Using
Validation-Messages as a base name is a bean validation technology
convention.

202

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

Injectable Context

Inside a Java MVC controller class, we can use a couple of context objects. There are

basically two methods to access them. First, we can use the @Inject annotation provided

by CDI on a class instance level, as follows:

import
import
import
import
import
import
import

javax.
javax.
javax.
javax.
javax.
javax.
javax.

@Controller
public class SomeController {

servlet.http.HttpSession;
mvc.MvcContext;
servlet.http.HttpServletRequest;
servlet.ServletContext;
mvc.binding.BindingResult;
ws.rs.core.Application;
enterprise.inject.spi.BeanManager;

// Access to the session. You can use it to retrieve
// the session ID, the creation time, the last
// accessed time, and more.

@Inject private HttpSession httpSession;

// Access to the MVC context. This is a context
// object provided by Java MVC. You can use it to
// construct URIs given the simple controller name

// and method name, to retrieve the current
// request's locale, to look up the base URI, and

// more.
@Inject private MvcContext mvcContext;

// Access to the current servlet request. You can use
// it to get various HTTP request related properties,
// like headers, user information, and many more.

@Inject private HttpServletRequest httpServletRequest;

// Access to the servlet context. There you can for
// example get the URI of a resource file, or an

203

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

// info about the server (container), and more.
@Inject private ServletContext servletContext;

// Use this to fetch conversion and validation errors.
// Parameters (@FormParam or @QueryParam) must have
// been marked with @MvcBinding for this error

// fetching process to work.

@Inject private BindingResult bindingResult;

// Use this to access the application scope

// Application object. You can for example register
// and retrieve application-wide custom properties.
@Inject private Application application;

// In case you ever need to have programmatic access
// to (DI, you can inject the BeanManager. This can
// also be handy for diagnostic purposes.
@Inject private BeanManager beanManager;

Second, and as an additional feature of Java MVC, it is also possible to inject javax.
ws.rs.core.Request and javax.ws.rs.core.HttpHeaders directly into controller
methods:

import javax.ws.rs.core.Context;
import javax.ws.rs.core.HttpHeaders;
import javax.ws.rs.core.Request;
import javax.ws.rs.GET;

import javax.ws.rs.POST;

@Controller
public class SomeController {

@GET // or @POST

204

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

public String someMethod(
... query and post parameters...,
@Context HttpHeaders httpHeaders,
@Context Request request)

{

It does not matter where in the method’s parameter list you add such @Context
parameters. The httpHeaders parameter then enables to access HTTP header values, the
language, cookie values, and more. The request parameter provides helper methods for
preconditions and variants (we don’t talk about preconditions and variants in this book).

For more details about such injected types, consult the API documentation (Jakarta
EE, JAX-RS, and Java MVC).

Persisting State

If you need to persist state between several requests, the HttpSession class from the
javax.servlet.http package is your friend. Whenever a user starts a web application
on a browser, an instance of HttpSession is created. Once it exists, the very same session
object is transparently assigned to any subsequent HTTP request/response cycles,
provided all the following are met:

o The user stays inside the same web application on the same server

¢ The user uses the same browser instance (the browser wasn’t
restarted)

o The session was not destroyed by the container because of a timeout

e The session was not destroyed explicitly by the web application

205

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

From your web application, you usually don’t have to take any precautions in order
to use sessions. All you have to do is register sessions-scoped CDI beans:

import javax.enterprise.context.SessionScoped;
@Named

@SessionScoped

public class UserData {

}

@Controller
public class SomeController {
@Inject UserData userData;
// <- same object inside a session

The container automatically ensures that, inside the same browser session, exactly
one instance of each session-scoped CDI bean is used.

Note The server transparently maintains session identification by cookies, automatically
adding session IDs in URL query parameters, or adding invisible fields in forms.

We already know that to programmatically access session data, we can inject the
session as a class instance field:

import javax.servlet.http.HttpSession;

@Controller
public class SomeController {
@Inject private HttpSession httpSession;

206

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

This is also the place where we can programmatically ask for the session ID:
httpSession.getId() (a string). Or we can invalidate a session: httpSession.
invalidate().

Session data can be important for your web application to work properly, but
bear in mind that for many concurrently working web users, you also have many
concurrently active sessions. Therefore, if you store many data items in the session
storage, the memory footprint of your web application will rise, possibly destabilizing the
application.

Dealing with Page Fragments

We learned that verbatim output from JSP view pages is not checked for syntactical
correctness. So a file like this, for example:

<%@ page language="java"
contentType="text/html;charset=UTF-8" %>
<%@ taglib prefix = "c"
uri = "http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix = "fmt"
uri = "http://java.sun.com/jsp/jstl/fmt" %>

This is a ISP generated page. Hello ${userData.name}

Is literally a correct JSP page, even though it does not produce valid HTML. The
output complies to the text/plain media type though, so a corresponding controller
method could read the following:

import javax.mvc.Controller;
import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

@Path("/abc™)
@Controller
public class SomeController {

207

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

// Assuming the JSP is stored at
// WEB-INF/views/fragmi.jsp
@POST

@Path("/fragm1")

public Response fragmi(...) {

return Response.ok("fragmi.jsp").
type(MediaType.TEXT PLAIN).build();

You can even send this response to a browser client, which typically produces simple
text output (most browsers that I'm aware of do so, at least). Such text/plain pages
neither contain any formatting instructions nor do they possibly present any input fields,
so the question is how an application can take advantage of this fragmentary output.

When MVC was invented, the usual paradigm was to reload the whole page after
any user submit, or to load a complete new page if the navigation demands it. Web
developers felt uncomfortable from the very beginning about even very small changes
to the resulting page leading to a full page being passed over the network. It just seemed
to be an unnecessary waste of network resources. For this reason, in the mid 2000s,
AJAX started to become more and more popular. AJAX (Asynchronous JavaScript and
XML) allowed browsers to request data from the server using JavaScript and work the
result into the page, again using JavaScript. To ensure maximum frontend usability, this
happens in the background (asynchronously) and the user can operate the browser
while the AJAX process is still active.

Modern and highly dynamic web applications use AJAX quite often, so this begs the
question as to whether we can also use AJAX from inside Java MVC.

The answer is yes, because we learned that we can ask the server for page snippets.
All that is missing are a couple of JavaScript functions to initiate an AJAX server request
and later work in the result from the server into corresponding page parts. You could use
plain JavaScript for this purpose, but using a JavaScript library like jQuery comes handy
to even out browser differences and to simplify AJAX handling.

As an example, we revive the HelloWorld application from Chapter 4 and add a
second form for an AJAX request and an area for showing AJAX call results.

208

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

First we add the jQuery library, which you can download from https://jquery.com/
download/. Any decent version should do (the examples are tested with version 3.5.1).
Move the file to stc/main/webapp/js.

Note The jQuery library provides many more tool functions apart from AJAX. You
also get functions for finding HTML elements, traversing the DOM, manipulating
HTML elements, and more.

Next, we update index. jsp to include jQuery and add a new form and an area to
receive AJAX responses:

<head>
<script type="text/javascript"
src="${mvc.basePath}/../js/jquery-3.5.1.min.js">
</script>

</head>
<body>

<form>
<script type="text/javascript">
function submitAge() {

var age = jQuery('#age').val();

var url = "${mvc.uriBuilder(
"HelloWorldController#ageAjax"'). build()}";

jQuery.ajax({
url : url,

method: "POST",

data : { age: age },

dataType: 'text',

success: function(data, textStatus, jgqXHR) {
jQuery('#ajax-response').html(data);

}J

error: function (jgXHR, textStatus,

209

https://jquery.com/download/
https://jquery.com/download/

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

errorThrown) {
console.log(errorThrown);
}
D;
return false;
}
</script>
Enter your age: <input type="text" id="age" />
<button onclick="return submitAge()">Submit</button>
</form>
<div>
AJAX Response:
<div id="ajax-response">
</div>
</div>

</body>

A couple of important notes on this JSP code seem appropriate:

o The<«div id = "ajax-response"> isjust a placeholder. It is filled by
JavaScript once the AJAX call returns data.

e The${ ... }inside the JavaScript function is an expression
language construct, and it is handled correctly only if the JSP engine
sees it. So you cannot export this JavaScript code to a script. js file
without further precautions. What you could do prior to exporting the
code to its own file is to add the URL as a parameter to the function:
function submitAge(url) { ... }.Intheonclick = ...
event handler declaration, you then must write onclick = "return

submitAge("${ ... }')".

e The form is never submitted. This is why it does not have an action
attribute and the onclick handler returns false. The <form> is not
actually required if you're using AJAX. We add it here for clarity.

210

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

To use jQuery objects, you usually apply the shortcut notation $ (it
has the same meaning as in jQuery). We can’t do that in JSP pages,
because, there, a $ starts a JSP expression.

An AJAX error for simplicity just writes to the console. In real-world
applications, you should place error messages to a place visible to the

users.

In the <head> script tag, you must of course refer to the jQuery
version you downloaded.

The dataType: 'text' refersto the AJAX call returning text/plain
data. If the server returns something different, for example XML or
JSON, you must change this.

You add a new AJAX-related method to the controller class:

@POST

@Path("/ageAjax")
public Response ageAjax(

{

@MvcBinding @FormParam("age")
int age)

if(br.isFailed()) {
br.getAllErrors().stream().
forEach((ParamError pe) -> {
errorMessages.addMessage(

pe.getParamName() + ": " +
pe.getMessage());

};

}
userData.setAge(age);

return Response.ok("ageAjaxFragm.jsp").
type(MediaType.TEXT PLAIN).build();

211

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

This assumes that we use a private @Inject UserData userData; field in the
controller class and that UserData gets a new age field:

package book.javamvc.helloworld;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named

@RequestScoped

public class UserData {
private String name;
private int age;
// Getters and setters...

We introduced this class in one of the exercises in Chapter 4.
The fragment page ageAjaxFragm. jsp inside stc/main/webapp/-WEB-INF/views is
addressed from the controller class. As a result, the AJAX request reads as follows:

<%@ page language="java"

contentType="text/html;charset=UTF-8" %>
<%@ taglib prefix = "c"

uri = "http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix = "fmt"

uri = "http://java.sun.com/jsp/jstl/fmt" %>

This is a ISP generated fragment. Your age is: ${userData. age}

Observers

Java MVC, by virtue of CDI, provides an elegant observer mechanism, which you can use
for cross-cutting concerns like logging, monitoring, and performance measurement, or
for just diagnostic purposes.

All you have to do is provide a CDI bean class with one or more methods with a
parameter of an event type from the javax.mvc.event package. It should be marked
with @0bserves (in the javax.enterprise.event package):

212

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il
package book.javamvc.helloworld.event;

import java.io.Serializable;
import java.lang.reflect.Method;

import javax.enterprise.context.SessionScoped;
import javax.enterprise.event.Observes;

import javax.mvc.event.AfterControllerEvent;
import javax.mvc.event.AfterProcessViewEvent;
import javax.mvc.event.BeforeControllerEvent;
import javax.mvc.event.BeforeProcessViewEvent;
import javax.mvc.event.ControllerRedirectEvent;

@SessionScoped

public class HelloWorldObserver implements Serializable {

private static final long serialVersionUID =
-2547124317706157382L;

public void update(@Observes BeforeControllerEvent
beforeController) {
Class<?> clazz = beforeController.getResourceInfo().

getResourceClass();
Method m = beforeController.getResourceInfo().
getResourceMethod();
System.err.println(this.toString() + ": " +
clazz + " - " + m);

}

public void update(@Observes AfterControllerEvent
afterController) {
System.err.println(this.toString() + ": " +
afterController);

}

public void update(@Observes ControllerRedirectEvent
controllerRedirect) {
System.err.println(this.toString() + ": " +
controllerRedirect);

213

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

public void update(@Observes BeforeProcessViewEvent
beforeProcessView) {
String view = beforeProcessView.getView();
System.err.println(this.toString() + ": " +
view);

}

public void update(@Observes AfterProcessViewEvent
afterProcessView) {

System.err.println(this.toString() + ": " +
afterProcessView);

That is all. Java MVC takes care of calling the appropriate observer methods during
its processing requests.

Marking the observer class with @SessionScoped is not a requirement for the
observer class to work. If you, however, need to collect elapsed times, as in the following:

package book.javamvc.helloworld.event;

import java.io.Serializable;
import java.lang.reflect.Method;
import java.time.Instant;

import javax.enterprise.context.SessionScoped;
import javax.enterprise.event.Observes;

import javax.mvc.event.AfterControllerEvent;
import javax.mvc.event.BeforeControllerEvent;

@SessionScoped
public class HelloWorldObserver implements Serializable {
private long controllerStarted;

public void update(@0Observes BeforeControllerEvent
beforeController) {
controllerStarted = Instant.now().toEpochMilli();

214

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

public void update(@0Observes AfterControllerEvent
afterController) {

long controllerElapseMillis =
Instant.now().toEpochMilli()
- controllerStarted;

It is important that we have only one instance of the observer class spanning several
invocations, and using the session scope ensures this is the case. If you don’t need
that, the @SessionScoped annotation can be removed (this is the same as using the @
Dependent scope annotation).

Note The Serializable marker interface is necessary for the session scope
CDI bean to work correctly. If you omit it, you will get a runtime error message.

Configuration

Since Java MVC sits on top of JAX-RS, we can use a class inheriting from javax.ws.rs.
core.Application to add an entry to the URL context path:

package any.project.package;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {

}

This class is empty by intention. The context path element /mvc is added by the
annotation alone. The resulting URL then is a server-dependent path, plus /mvc, plus
whatever is specified in the controller’s @Path annotation. We have used this kind of
application configuration quite often in this book.

215

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

Note For GlassFish, this server-dependent path by default reads http://ser.
ver.addr:8080/WarName/, where WarName needs to be replaced with the
name of the deployed WAR file, minus the .war file suffix.

You can specify a few more configuration items in the Application class. This time,
we overwrite the getProperties() method and write the following:

package any.project.package;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;
import javax.mvc.engine.ViewEngine;
import javax.mvc.security.Csrf;

@ApplicationPath("/mvc")
public class App extends Application {
@verride
public Map<String,Object>getProperties(){
final Map<String,Object> map = new HashMap<>();
// This setting makes sure view files
// will be looked up at some specified location
// (default is /WEB-INF/views)
map.put(ViewEngine.VIEW_FOLDER,"/jsp/");

// Set a CSRF (cross site request forgery)

// security mode. See Chapter 4 of the

// specification

map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.OFF); // default
// ...or...

map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.EXPLICIT);

// ...or...

map.put(Csrf.CSRF_PROTECTION, Csrf.CsrfOptions.IMPLICIT);

// Set CSRF header name. See Chapter 4 of the
// specification. Default is "X-CSRF-TOKEN".

216

http://ser.ver.addr:8080/WarName/
http://ser.ver.addr:8080/WarName/

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

map.put (Csr.CSRF_HEADER NAME,
"CSRF-HDR");

return map;

}

To add a welcome file (a landing page), again avoiding a web . xm1 XML configuration
file to simplify development, you can use an HTTP filter as follows:

package any.project.package;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebFilter(urlPatterns = "/")
public class RootRedirector extends HttpFilter {
private static final long serialVersionUID =
7332909156163673868L;
@0verride
protected void doFilter(final HttpServletRequest req,
final HttpServletResponse res,
final FilterChain chain) throws IOException {
res.sendRedirect("mvc/facelets");

}

If it’s used this way, an URL http://my.server:8080/TheWAR/ (on GlassFish,
this corresponds to /, because this is the base URL) will send a REDIRECT to http://
my.server:8080/TheWAR/mvc/facelets, which in turn is supposed to trigger, for
example, a @GET annotated method of a Java MVC controller. In this example, the @Path
from the controller class plus the @Path from the controller method must concatenate to
/facelets (remember, the leading mvc/ is from the previous application configuration).

217

http://my.server:8080/TheWAR/
http://my.server:8080/TheWAR/mvc/facelets
http://my.server:8080/TheWAR/mvc/facelets

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

Exercises

Exercise 1: In the HelloWorld application from Chapter 4, first
ensure that a model class UserData is used, then add a new
integer field called age. Update the form in the view and add an
input field labeled "What is your age?” Update the controller, and
apply a bean validation constraint, making sure the users enter an
age greater than zero. Add error handling, as described in
Chapter 6. Also update the response page by adding the age.

Exercise 2: In the HelloWorld application from Chapter 4, inject
the session into the controller. In the controller’s showIndex()
method, write the session ID into System.err.

Exercise 3: In the HelloWorld application from Chapter 4, inject
the headers into the greeting() method. Write all request
headers into System.err.

Exercise 4: From the previous exercise, extract the age input field
into a new form and use AJAX to react to user input from that field
(add a button). Write a page fragment using JSON as the AJAX
response ({"Text" : "Your age is ... " })and letit passthe
response into an area <div id = "ajax-response"> </div>.Use
jQuery as a JavaScript AJAX library.

Exercise 5: In the HelloWorld application from Chapter 4, write
an observer calculating the controller response time. Output the
result to System.err.

Summary

Bean validation (version 2.0) is described by the JSR 380 specification. This technology

is about constraints defined by annotations. You can check whether a field or method

parameter is null, whether a number exceeds some lower or upper bound, whether a

string’s size is within a certain range, whether a date is in the past or future, and more.

You even can define your own custom annotations to check certain parameters or fields.
You can easily use bean validation in Java MVC next to form and query parameters

inside controllers. If you have constraints, such as @CONSTRAINT1, @CONSTRAINT2, and so

218

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

on, you can add them to fields and method parameters of controllers. Any violation will
be forwarded as an error inside an injected BindingResult.

We can use a couple of context objects inside a Java MVC controller class. There are
basically two methods to access them. First, we can use the @Inject annotation provided
by CDI on a class instance level. Second, and as an additional feature of Java MVC, it is
also possible to inject javax.ws.rs.core.Request and javax.ws.rs.core.HttpHeaders
directly into controller methods. It does not matter where in the method’s parameter
list you add such @Context parameters. The httpHeaders parameter then enables
access to HTTP header values, the language, cookie values, and more. The request
parameter provides helper methods for preconditions and variants (we don’t talk about
preconditions and variants in this book).

For more details about such injected types, consult the API documentation (Jakarta
EE, JAX-RS, and Java MVC).

If you need to persist state between several requests, the HttpSession class from the
javax.servlet.http package is your friend. Whenever a user starts a web application
on a browser, an instance of HttpSession is created. Once it exists, the very same session
object is transparently assigned to subsequent HTTP request/response cycles, provided
all the following are met:

o The user stays inside the same web application on the same server

e The user uses the same browser instance (the browser wasn’t

restarted)
o The session was not destroyed by the container because of a timeout
e The session was not destroyed explicitly by the web application

From your web application, you usually don’t have to take any precautions in
order to use sessions. All you have to do is register sessions-scoped CDI beans via the
@SessionScoped annotation. The container automatically ensures that exactly one
instance of each session-scoped CDI bean is used inside the same browser session.
Session data can be important for your web application to work properly, but
bear in mind that, for many concurrently working web users, you also have many
concurrently active sessions. Therefore, if you store many data items in the session
storage, the memory footprint of your web application will rise, possibly destabilizing the
application.

219

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

We learned that verbatim output from JSP view pages is not checked for syntactical
correctness. So a file can be a correct JSP page, even though it does not produce
valid HTML. If, for example, the output complies to the text/plain media type, a
corresponding controller method return could read as follows:

return Response.ok("fragmi.jsp"”).type(MediaType.TEXT PLAIN).build();

You can even send this text/plain response to a browser client, which typically
produces simple text output. Such text/plain pages neither contain any formatting
instructions nor do they possibly present any input fields, so the question is how an
application can take advantage of this fragmentary output.

When MVC was invented, the usual paradigm was to reload the whole page after
any user submit, or to load a complete new page if the navigation demands it. Web
developers felt uncomfortable from the very beginning about even very small changes
to the resulting page leading to a full page being passed over the network. It seemed
to be an unnecessary waste of network resources. For this reason, in the mid-2000s,
AJAX started to become more and more popular. AJAX (Asynchronous JavaScript and
XML) allowed browsers to request data from the server using JavaScript and work the
result into the page, again using JavaScript. To ensure maximum frontend usability, this
happens in the background (asynchronously) and the user can operate the browser
while the AJAX process is still active.

Modern and highly dynamic web applications use AJAX quite often, so this begs the
question as to whether we can also use AJAX from inside Java MVC. The answer is yes,
because we learned that we can ask the server for page snippets. All that is missing are
a couple of JavaScript functions to initiate an AJAX server request and later work in the
result from the server into corresponding page parts. You could use plain JavaScript for
this purpose, but using a JavaScript library like jQuery comes handy to even out browser
differences and to simplify AJAX handling. You then add a new AJAX-related method to
the controller class.

Java MVC, by virtue of CDI, provides an elegant observer mechanism, which you can
use for cross-cutting concerns like logging, monitoring, and performance measurement,
or for just diagnostic purposes. All you have to do is provide a CDI bean class with one
or more methods with a parameter of an event type from the javax.mvc.event package.
It must be marked with @0bserves (in the javax.enterprise.event package). Java
MVC then takes care of calling the appropriate observer methods during its processing
requests.

220

CHAPTER 7 IN-DEPTH JAVA MVC: PART Il

Since Java MVC sits on top of JAX-RS, we can use a class inheriting from
javax.ws.rs.core.Application to add an entry to the URL context path. This class is
empty by intention. The context path element /mvc is added by the annotation alone.
You can specify a few more configuration items in the Application class. You can, for
example, overwrite the getProperties() method to add properties.

To add a welcome file (a landing page), again avoiding a web . xm1 XML configuration
file to simplify development, you can use an HTTP filter.

In the next chapter, we talk about the internationalization of Java MVC applications.

221

CHAPTER 8

Internationalization

Java provides built-in internationalization support via resource bundles. It is possible

to save text snippets in different languages in different language-related property files.
Using tags, it is also possible to output numbers and dates in locale-specific formats, and
Java MVC can handle user input based on the locale.

Language Resources

In standard JSP, language-related resources are addressed by the fmt: setBundle and
fmt:bundle tags, and by the fmt :message tag, which uses the key attribute to refer to text
from the bundle. You can, for example, write the following:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>
<title>JSTL Bundles</title>

</head>

<body>
<fmt:bundle

basename="book.javamvc.helloworld.messages.Messages">

<fmt:message key="msg.first"/>

<fmt:message key="msg.second"/>

<fmt:message key="msg.third"/>

</fmt:bundle>

</body>

</html>

223
© Peter Spath 2021

P. Spith, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_8

https://doi.org/10.1007/978-1-4842-6280-1_8#DOI

CHAPTER 8 INTERNATIONALIZATION

The basename attribute specifies where in the file system the language files exist.
For Facelets, you normally use JSF methodologies to access language resources. In
the JSF configuration file faces-config.xml, you write the following

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/
xml/ns/javaee/web-facesconfig 2 0.xsd" version="2.0">
<application>
<resource-bundle>
<base-name>
book.javamvc.helloworld.messages.Messages

</base-name>

<var>msg</var>

</resource-bundle>

</application>
</faces-config>

In JSF/Facelets pages, you can then simply write ${msg.MSG_KEY} to refer to
messages.

For the book. javamvc.helloworld.messages.Messages base name (and for both
JSPs and Facelets), in the stc/main/resources/book/javamvc/helloworld/messages
folder, you now add these properties files: Messages . properties (default), Messages
en.properties (English), Messages en US.properties (English variant), Messages
de.properties (German), and so on:

-- File 'Messages.properties’:
msg.first = First Message
msg.second = Second Message
msg.third = Third Message

-- File 'Messages en.properties':
msg.first = First Message
msg.second = Second Message
msg.third = Third Message

224

CHAPTER 8 INTERNATIONALIZATION

-- File 'Messages de.properties':
msg.first = Erste Nachricht
msg.second = Zweite Nachricht
msg.third = Dritte Nachricht

These approaches might suit your needs and you are free to use them. There are a

couple of downsides, though:

For JSPs, messages depend on the fmt: taglibrary. We cannot write
something like ${msg.first} to access a message.

For JSPs, you have to use the rather awkward syntax <input title =
"<fmt:message key = "msg.first" />" /> to place a messagein an
attribute. Editors with syntax highlighting might not be able to cope
with that.

For JSPs, the view needs to know about some internal stuff, like
the file position of the language properties files. Usually, the view
shouldn’t have to deal with such internals.

For Facelets, we have to mix JSF and Java MVC, which, because of

architecture paradigm mismatches, we rather want to avoid.

In the next section of this chapter, we work out an alternative message-access method.

Adding Localized Messages to the Session

It would be nice if we could just write ${msg.KEY} to access a localized message

anywhere on the page, for both JSPs and Facelets, without further JSF configuration.

To achieve that, we let a @WebFilter register a localized resource bundle as a session

attribute:

package book.javamvc.i18n;

import java.io.IOException;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

225

CHAPTER 8 INTERNATIONALIZATION

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;

@WebFilter("/+")
public class SetBundleFilter implements Filter {

@verride
public void init(FilterConfig filterConfig)
throws ServletException {

}

@verride
public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)
throws IOException, ServletException {
BundleForEL.setFor((HttpServletRequest) request);
chain.doFilter(request, response);

}

@Override
public void destroy() {

}

The doFilter () method is invoked for any request (the "/*" is an URL pattern
matching any request), and it sends the request to the BundleForEL class

The customized bundle class extracts the session and locale from the request and
registers itself in the session’s attribute store. The code reads as follows:

package book.javamvc.i18n;

import java.util.Enumeration;
import java.util.locale;
import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

226

CHAPTER 8 INTERNATIONALIZATION

public class BundleForEL extends ResourceBundle {
// This is the variable name used in JSPs
private static final String TEXT ATTRIBUTE_NAME =
Ilmsgll;

// This is the base name (including package) of

// the properties files:

// TEXT_BASE NAME + ".properties" -> default

// TEXT_BASE_NAME + " _en.properties” -> English

// TEXT BASE NAME + " en US.properties"

// TEXT_BASE NAME + " fr.properties” -> Fench

/...

private static final String TEXT_BASE_NAME =
"book.javamvc.helloworld.messages.Messages";

private BundleForEL(Locale locale) {
setlocale(locale);

}

public static void setFor(
HttpServletRequest request) {
if (request.getSession().
getAttribute(TEXT _ATTRIBUTE _NAME) == null) {
request.getSession().
setAttribute(TEXT ATTRIBUTE_NAME,
new BundleForEL(request.getlocale()));
}
}

public static BundleForEL getCurrentInstance(
HttpServletRequest request) {
return (BundleForEL) request.getSession().
getAttribute(TEXT ATTRIBUTE NAME);

}

public void setlocale(Locale locale) {
if (parent == null ||
Iparent.getLocale().equals(locale)) {

227

CHAPTER 8 INTERNATIONALIZATION

setParent(getBundle(TEXT _BASE_NAME, locale));

}
}

@verride
public Enumeration<String> getKeys() {
return parent.getKeys();

}

@verride
protected Object handleGetObject(String key) {
return parent.getObject(key);

}

The API documentation for ResourceBundle contains detailed information about
the overridden methods. Important for our purposes is the setFor () method, which
registers the localized bundle as a session attribute. The EL from JSTL (and Facelets) out-
of-the-box knows how to handle Resource-Bundle objects, so we can write the following:

${msg.MSG_KEY}
<someTag someAttr="${msg.MSG_KEY}" />

To access localized messages from inside JSPs or Facelets, replace MSG_KEY with the
message key used inside the properties files.

Because it is very hard for a new developer to understand what msg refers to, you
should add a comment in each JSP or Facelets page, describing where msg comes from:

<%-- ${msg} is the localized bundle variable,
registered by class SetBundleFilter --%>

Use this with Facelets:

<ui:remove> ${msg} is the localized bundle variable,
registered by class SetBundleFilter </ui:remove>

228

CHAPTER 8 INTERNATIONALIZATION

Note The <ui:remove> ... </ui:remove> at first sight looks strange.
However, if you use HTML comments <!- ->, they will be written to the output.
The <ui:remove> tag actually makes sure everything inside will be discarded for
rendering.

Formatting Data in the View

If, on a view page, you write ${db1} and db1 refers to a double valued number, the
toString() representation of this number is printed. This is acceptable only if your
frontend user expects numbers formatted in the English locale. To make sure all other
users get the expected number format according to their country rules, JSTL provides
an http://java.sun.com/jsp/jstl/fmt taglibrary, which gathers tags for object
formatting using the locale information.

The full specification of this tag library can be examined at https://docs.oracle.
com/javaee/5/jstl/1.1/docs/tlddocs/fmt/t1ld-frame.html(one line), but the
two most important tags are <fmt: formatNumber> and <fmt:formatDate>. You use
<fmt:formatNumber> in JSP pages as follows:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<%-- Supposing ${dbl1} refers to a float or double --%>

<fmt:formatNumber value="${dbl1}" type="number" var="n1" />
<%-- <= Use Java's DecimalFormat class to format --%>
<%-- the number. Store as string in variable n1 --%>

<fmt:formatNumber value="${dbl1}" type="currency" var="n1" />
<%-- <= Format as currency --%>

229

http://java.sun.com/jsp/jstl/fmt
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/fmt/tld-frame.html
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/fmt/tld-frame.html

CHAPTER 8 INTERNATIONALIZATION

<fmt:formatNumber value="${dbl1}" type="percent" var="n1" />
<%-- <= Format as percentage --%>

<fmt:formatNumber value="${dbl1}" type="number"
maxFractionDigits="6"
minFractionDigits="2"
var="n1" />
<%-- <= We can set the minimum and maximum --%>
<%-- number of fraction digits --%>

<fmt:formatNumber value="${dbl1}" type="number"
pattern="#,##0.00; (#,##0.00)"

var="n1" />
<%-- <= Set the pattern according to the --%>
<%-- DecimalFormat API documentation --%>

The number reads: ${ni}
</html>

On Facelets pages, you write the same code, but with a different header (and the
<%edertscomments removed):

<!DOCTYPE html>

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:fmt="http://java.sun.com/jsp/jstl/fmt">

<fmt:formatNumber value="${dbl1}" type="number"
var="n1" />

</html>

The complete set of attributes for <fmt: formatNumber> are explained in Table 8-1.

230

CHAPTER 8 INTERNATIONALIZATION

Table 8-1. FormatNumber Tag

Attribute Required Description

value X The value. Use EL syntax, such as ${someBean.someField}

type - The type. One of number, currency, or percent. Default is
number.

pattern - Formatting pattern, as described for the DecimalFormat
class.

currencyCode - ISO 4217 currency code. Only if type = "currency".

currencySymbol - The currency symbol. Only if type = "currency".

groupingUsed - Whether or not grouping is used (e.g., the thousands separator).
True or false.

minFractionDigits - Minimum number of fraction digits.

maxFractionDigits - Maximum number of fraction digits.

minIntegerDigits - Minimum number of integer digits.

maxIntegerDigits - Maximum number of integer digits.

var - Name of the variable where the formatting result will be written
to. If you use this attribute, the direct output of the number will
be suppressed.

scope - Scope of the variable where the formatting result will be

written to. One of page (default), application, session, or
request.

With fmt:formatDate, it is possible to format a java.util.Date object. Using

various attributes, it is possible to output only the day part, or only the time-of-day part,

or both given some pattern:

<%@ page contentType="text/html;charset=UTF-8"

language="java" %>
<%@ taglib prefix="c"

uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

uri="http://java.sun.com/jsp/jstl/fmt" %>

231

CHAPTER 8 INTERNATIONALIZATION

<html>

<%-- Supposing ${date1l} refers to a java.util.Date --%>

<fmt:formatDate value="${date1}" type="date" var="d1" />
<%-- <= Use Java's DateFormat class to format a --%>
<%-- day (ignore the time-of-day) in the user's --%>
<%-- locale default format. --%>

<%-- Store the result in page scope variable "d1" --%>

<fmt:formatDate value="${date1}" type="date"
dateStyle="long"

var="d1" />
<%-- <= Use Java's DateFormat class to format a --%>
<%-- day in the user's locale "long" format --%>
<%-- Instead of "long" you can also write --%>
<%-- "default", "short", "medium", "long" or --%>
<%-- "full" --%
<fmt:formatDate value="${date1}" type="time"
var="d1" />
<%-- <= Use Java's DateFormat class to format a --%>
<%-- time-of-day (ignore the day) in the user's --%>

<%-- locale default format. --%>
<%-- Store the result in page scope variable "d1" --%>

<fmt:formatDate value="${date1}" type="time" timeStyle="long"

var="d1" />
<%-- Time-of-day in long format. --%>
<%-- Instead of "long" you can also write --%>
<%-- "default", "short", "medium", "long" or --%>
<Gh-- "full" --%

<fmt:formatDate value="${date1}" type="both"
var="d1" />
<%-- Write both day and time-of day. Use --%>
<%-- "dateStyle" and "timeStyle" to control the --%>
<%-- day and time-of-day styling as described --%>

232

<%-- above.

CHAPTER 8 INTERNATIONALIZATION

--%>

<fmt:formatDate value="${date1}"

pattern="yyyy-MM-dd hh:mm:ss'

var="d1" />
<%-- Write day and/or time, as described by the --%>
<%-- pattern (see class SimpleDateFormat for a --%>
<%-- pattern description). --%>

The date reads: ${d1}

</html>

The complete synopsis of fmt : formatDate is described in Table 8-2

Table 8-2. FormatDate Tag

Attribute Required Description

value X The value. Use EL syntax, such as ${someBean.someField}.

type - Which part to format. One of date, time, or both.

dateStyle - Specify the day style. One of default, short, medium, long, or full.
Use Java’s DateFormat class to specify the detail grade. Type must be
date or both.

timeStyle - Specify the time-of-day style. One of default, short, medium, long, or
full. Use JavaefaDateFormat class to specify the detail grade. Type
must be date or both.

pattern - Write day and/or time, as described by the pattern. See the
SimpleDateFormat class for a pattern description.

timeZone - - Set the time zone. The format is described in the APl documentation of
java.util.TimeZone, method getTimeZone(). Directly passing a
TimeZone object is also possible.

var - Name of the variable where the formatting result will be written to. If
you use this attribute, the direct output will be suppressed.

scope - Scope of the variable where the formatting result will be written to. One

of page (default), application, session, or request.

233

CHAPTER 8 INTERNATIONALIZATION

Using JSF for Formatting

If you use Facelets as a view engine and decide to disregard my warning about mixing
Java MVC and JSE the construct to declare number converters reads as follows:

<?xml version='1.0" encoding="UTF-8' ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<body>

<h:outputText value="${someBean.someField}">
<f:convertNumber type="number"
maxIntegerDigits="5"
maxFractionDigits="5"
groupingUsed="false"/>
</h:outputText>
</body>
</html>
So you have to put <f:convertNumber> inside the text output tag.
The various attributes of <f: convertNumber> do not differ much from the JSTL
equivalent and are shown in Table 8-3.

234

CHAPTER 8 INTERNATIONALIZATION

Table 8-3. ConvertNumber Tag

Attribute Required Description

type - The type. One of number, currency, or percent. Default is
number.

pattern - Formatting pattern, as described for the DecimalFormat class.

currencyCode - ISO 4217 currency code. Only if type = "currency".

currencySymbol - The currency symbol. Only if type = "currency".

groupingUsed - Whether or not grouping is used (e.g., the thousands separator).
Use true or false.

minFractionDigits - Minimum number of fraction digits.

maxFractionDigits - Maximum number of fraction digits.

minIntegerDigits - Minimum number of integer digits.

maxIntegerDigits - Maximum number of integer digits.

integerOnly - If true, fractional digits are ignored. Either true or false

locale - The locale to be used for displaying the number. Either directly

a java.util.-Locale object, or a string suitable as the first
argument to the Locale constructor.

In order to convert java.util.Date objects to string representations, you write the

following in JSF:

<?xml version='1.0" encoding="UTF-8' ?>

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

<body>

<h:outputText value="${someBean.someField}">

<f:convertDateTime type="both"

dateStyle="full"

235

CHAPTER 8

INTERNATIONALIZATION

timeStyle="medium" />
</h:outputText>

</body>
</html>

Not surprisingly, the set of possible attributes for f: convertDateTime very much
resembles the attributes from the JSTL equivalent <fmt:formatDate>; see Table 8-4.

Table 8-4. ConvertDateTime Tag

Attribute Required Description

type - Which part to format. One of date, time, both, localDate
localTime, localDateTime, offsetTime, offset- DateTime, or
zonedDateTime. Default is date.

dateStyle - Specify the day style. One of default, short, medium, long, or full
Use Java’s DateFormat class to specify the detail grade.

timeStyle - Specify the time-of-day style. One of default, short, medium, long,
or full. Use Java’'s DateFormat class to specify the detail grade.

pattern - Write day and/or time, as described by the pattern. See the
SimpleDateFormat class for a pattern description.

timeZone - Set the time zone. The format is described in the APl documentation of
java.util.TimeZone, method getTimeZone(). Directly passing a
TimeZone object also is possible.

locale - The locale to be used for displaying the date/time. Either directly via a

java.- util.Locale object, or a string suitable as first argument to
the Locale constructor.

Localized Data Conversion

We already used non-string types for form parameters in our MVC controllers:

@POST

@Path("/response")
public Response response(

236

CHAPTER 8 INTERNATIONALIZATION

@MvcBinding @FormParam("name") String name,
@MvcBinding @FormParam("userId") int userId) {
@MvcBinding @FormParam("rs") long timeStamp,
@MvcBinding @FormParam("rank") double rank) {

// Handle form input, set model data, ...,
// return response

}

For the parameter type, you can choose among String, int, long, float, double,
BigDecimal, BigInteger, and boolean (true or false). Java MVC makes sure that
user input is appropriately converted if you choose any type other than string. This
conversion happens in a locale-specific manner. In an English locale, a user input of
0.45 has the correct format for a double parameter. In a German locale, for example, the
same number has to be entered as 0,45. Correct conversion happens behind the scenes.

There is currently no reliable way to define custom converters. Also, there are no
converters for times and dates. As a workaround, you can always pass values as Strings
to the controller and then perform conversions programmatically.

@POST

@Path("/response™)

public Response response(

@MvcBinding @FormParam(“day") String day,
@Context HttpHeaders httpHeaders) {

Locale loc = httpHeaders.getlLanguage();
// <- You could use this for locale specific
// conversion rules.

DateTimeFormatter formatteri =
DateTimeFormatter.ofPattern("yyyy-MM-dd");

LocalDate 1d = LocalDate.parse(day,
formatter1);

237

CHAPTER 8 INTERNATIONALIZATION

Exercises

Exercise 1: In the HelloWorld application from Chapter 4, put
the messages from the view files into a resource bundle and

use the method described in the section entitled’Adding
Localized Messages to the Session” to access the messages.

Put the resource files in the src/main/resources/book/javamvc/
helloworld/-messages folder.

Exercise 2: Continuing from the previous exercise, use the

App class to move the constants from the BundleForEL class

to application properties. Inject the application object into
SetBundleFilter and update BundleForEL.setFor() to receive a
bundle variable name and a bundle resources package name from
the application object.

Exercise 3: Continuing from the previous exercise, add a
double-valued rank field to the model class UserData. Add a
Rank: labeled input field to the index. jsp view, and add
formatted output for the same value to greeting.jsp. Update
the controller class and add a method parameter called double
rank to the @POST method.

Exercise 4: Continuing from the previous exercise, add a
dateOfBirth field to the model class called UserData. Add a
Date of Birth: labeled input field to the index. jsp view, and add
a formatted output for the same value to greeting.jsp. Update
the controller class and add a method parameter called String
dateOfBirth to the @POST method.

Summary

Java provides built-in internationalization support via resource bundles. It is possible

to save text snippets in different languages in different language-related property files.
Using tags, it is also possible to output numbers and dates in locale-specific formats, and
Java MVC can handle user input based on the locale.

238

CHAPTER 8 INTERNATIONALIZATION

In standard JSP, language-related resources are addressed by the fmt : setBundle and
fmt:bundle tags, and by the fmt :message tag, which uses the key attribute to refer to text
from the bundle.

For Facelets, you normally use JSF methodologies to access language resources, In
the JSF configuration file faces-config.xml, you specify a resource bundle that can
henceforth be used inside the views.

Although these approaches might suit your needs, there are a couple of downsides.
By using a web filter and a ResourceBundle custom class, a simplified access to language
resources can be provided.

If on a view page you write ${db1} and dbl refers to a double valued number, the
toString() representation of this number is printed. This is acceptable only if your
frontend user expects numbers formatted in the English locale. To make sure all other
users get the expected number format according to their country rules, JSTL provides
an http://java.sun.com/jsp/jstl/fmt taglibrary, which gathers tags for object
formatting using the locale information.

In Facelets pages, you write the same code as for JSPs, but with a different header.

We already used non-string types for form parameters in our MVC controllers.

For the parameter type, you can choose among String, int, long, float, double,
BigDecimal, BigInteger, and boolean (true or false). Java MVC makes sure that the

user input is appropriately converted if you choose any type other than string. This
conversion happens in a locale-specific manner. In an English locale, a user input 0.45
has the correct format for a double parameter. In a German locale, for example, the same
number has to be entered as 0, 45. Correct conversion happens behind the scenes.

There is currently no reliable way to define custom converters. Also, there are no
converters for times and dates. As a workaround, you can always pass values as Strings
to the controller and then perform conversions programmatically.

In the next chapter, we talk about Java MVC addressing E]Bs, which is a standardized
way to communicate with backend components.

239

http://java.sun.com/jsp/jstl/fmt

CHAPTER 9

Java MVC and EJBs

Enterprise Java Beans (EJBs) are classes that encapsulate business functionalities,
each of a certain kind. Unlike normal Java classes, however, EJBs run in a container
environment, which means the server adds system-level services to them. These
services include lifecycle management (instantiating and destroying, when and
how), transactionality (building logical, atomic, rollback-enabled units of work), and
security (which users can invoke which methods). Because Java MVC runs inside
such a container, namely Jakarta EE, E]Bs are a good way for Java MVC applications to
encapsulate their business functionalities.

The EJB technology includes session beans and message driven beans. However, the
latter go beyond the scope of this book, so here we will talk about session EJBs only.

About Session EJBs

Session EJBs can be accessed locally (in the same application), remotely (over the
network, via method invocation), or via some web service interface (distributed
applications across heterogeneous networks, HTML, XML, or JSON data formats).

Concerning the creation and destruction of session EJBs, there are three types of
session EJBs:

o Singleton: With a singleton session E]B, the container instantiates
only one instance and all clients share this single instance. You can
do this if the EJB does not have a state that discriminates clients, and
concurrent access does not impose problems.

+ Stateless: E]Bs of the “stateless” kind do not maintain a state, so a
particular client can have different instances assigned to subsequent
EJB invocations (the container handles this; the client doesn’t know
about this assignment).

241
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_9

https://doi.org/10.1007/978-1-4842-6280-1_9#DOI

CHAPTER9 JAVA MVC AND EJBS

o Stateful: Stateful EJBs maintain a state and a client can be sure it
will receive the same session EJB instance from the container for
subsequent uses of the same EJB. You will often hear that stateful
EJB clients maintain a conversational state concerning using stateful
EJBs. Stateful session EJBs cannot implement web services, because
web services are not allowed to have state and no session information
is communicated.

Defining EJBs

To define a singleton EJB, a stateless EJB, or a stateful EJB, you add one of these
annotations—@Singleton, @Stateless, or @Stateful, respectively—to the EJB
implementation.

Consider three examples. An EJB called Configuration for the encapsulated access
to application-wide configuration settings. Another EJB called Invoice, which handles
invoice registration and inquiry given some invoice ID. A third E]B called TicTacToe for
a simple tic-tac-toe game implementation. Obviously, for the configuration EJB we can
use a singleton EJB, since neither local state nor concurrency matter. Similarly, for the
invoice EJB, we can use a stateless EJB, since the state is mediated by the ID, which does
not access an EJB state but rather a database state. The last one, the tic-tac-toe EJB, needs
to maintain the game board for each client and we thus must use a stateful EJB for it.

import javax.ejb.Singleton;
import javax.ejb.Stateless;
import javax.ejb.Stateful;

@Singleton
public class Configuration {
. configuration access methods

}

@Stateless
public class Invoice {
. invoice access methods

242

CHAPTER9 JAVA MVC AND EJBS

@Stateful
public class TicTacToe {

... tic-tac-toe methods

Of course, all those classes must go to different files. We put them together for

illustration purposes only.

Concerning their accessibility from client code, session EJBs can use one or a

combination of three methods (all annotations shown are from the javax.ejb package):

No-interface: You use this method if you don’t want to describe

the EJB access via an interface. This is only possible with local
clients running inside the same application. While the separation
into interfaces (describing what gets done in interfaces) and the
implementation (the how, implemented in non-abstract classes) is
generally a good idea for clean code, a no-interface view can make
sense for simple EJBs. For no-interface EJBs, you just declare the
implementation, as follows:

@Stateless public class Invoice {
. implementation

The EJB clients can then of course only access the implementation
class directly, without mediating interfaces.

Local: If you want to define local access to session EJBs (EJBs and EJB
clients running in the same application) and want to use an interface
view for that, you can mark the interface with @Local and let the EJB
implementation class implement the interface:

@Local public interface InvoiceInterface {
. abstract interface methods

}

@Stateless public class Invoice
implements InvoiceInterface {
. implementation

243

CHAPTER9 JAVA MVC AND EJBS
Or you use the @Local annotation in the implementation class:

public interface Invoicelnterface {
. abstract interface methods

}

@Stateless

@Local(InvoiceInterface.class)

public class Invoice implements InvoiceInterface {
. implementation

}

You can even omit the implementation, as follows:

public interface Invoicelnterface {
. abstract interface methods

}

@Stateless
@Local(InvoiceInterface.class)
public class Invoice {

. implementation

}

This last method will further reduce the coupling of the interface,
although this is in general not recommended.

¢ @Remote: Use the @Remote annotation for this session EJB to be
accessible from outside the application. You can simply replace
@Local with @Remote and everything that was said for the local
access and concerning the interfaces is true unaltered for remote
access. So you write the following, for example:

public interface Invoicelnterface {
. abstract interface methods

}

@Stateless
@Remote(InvoiceInterface.class)
public Invoice

244

CHAPTER9 JAVA MVC AND EJBS

implements InvoiceInterface {
. implementation

}

EJBs can have a local and a remote interface; just use both
annotations together:

public interface Invoicelocal {

. abstract interface methods
}
public interface InvoiceRemote {

. abstract interface methods

}

@Stateless
@Local(Invoicelocal.class)
@Remote(InvoiceRemote.class)
public Invoice
implements Invoicelocal,
InvoiceRemote {
. implementation

b

Also, nobody hinders us from using the same interface for both
local and remote access:

public interface InvoiceInterface {
. abstract interface methods

}

@Stateless

@Local(InvoiceInterface.class)

@Remote(InvoiceInterface.class)

public Invoice implements InvoiceInterface {
. implementation

245

CHAPTER9 JAVA MVC AND EJBS

Caution Remote access means parameters in method calls are passed by
value, not by reference! So, although local and remote interfaces are declared co-
natural to each other, you must be careful with method parameters under certain
circumstances.

Accessing EJBs

Accessing local E]Bs from a Java MVC controller is easy: you just use the @EJB injection to
let CDI assign an instance access to an EJB:

public class SomeController {
@EJB
private SomeEjbInterface theEjb;
// or, for no-interface EJBs

@EJB
private SomeEjbClass theEjb;

Addressing remote EJBs is considerably more complicated compared
to local-access EJBs. You have to set up a JNDI context and then use it to do a lookup of a
remote instance:

String remoteServerHost = "localhost";

// or "192.168.1.111" or something

String remoteServerPort = "3700";

// Port 3700 is part of the GlassFish conf

Properties props = new Properties();

props.setProperty("java.naming.factory.initial",
"com.sun.enterprise.naming."+
"SerialInitContextFactory");

props.setProperty("java.naming.factory.url.pkgs",

246

CHAPTER 9

"com.sun.enterprise.naming");
props.setProperty("”java.naming.factory.state",
"com.sun.corba.ee.impl.presentation.rmi."+
"INDIStateFactoryImpl");
props.setProperty("org.omg.CORBA.ORBInitialHost",
remoteServerHost);
props.setProperty("org.omg.CORBA.ORBInitialPort",
remoteServerPort);

try {
InitialContext ic = new InitialContext(props);

// Use this to see what EJBs are available

// and how to name them

//NamingEnumeration<NameClassPair> list =

// ic.list("");

//while (list.hasMore()) {

// System.out.println(list.next().getName());
/1}

// Looking up a remote EJB
SomeEjbRemote testEJB = (SomeEjbRemote)
ic.lookup(
"book.jakarta8.testEjbServer.SomeEjbRemote");

// Invoking some EJB method

System.out.println(testEJIB.tellMe());
}catch(Exception e) {

e.printStackTrace(System.err);

}

JAVA MVC AND EJBS

This example assumes that, on the remote server side, you created a session EJB with

aremote interface:
package book.jakarta8.testEjbServer;

public interface SomeEjbRemote {
String tellMe();

247

CHAPTER9 JAVA MVC AND EJBS
And an implementation like this one:
package book.jakarta8.testEjbServer;

import javax.ejb.Remote;
import javax.ejb.Stateless;

@Stateless
@Remote(SomeEjbRemote.class)
public class SomeEjb implements SomeEjbRemote {
@verride
public String tellMe() {
return "Hello World";

}

Obviously, for this to work, the Java MVC application must have access to the
compiled remote interfaces. That means in the EJB server build, you must have
somehow included a step to extract the interfaces from the generated classes. We'll talk
about that in detail later.

If the remote EJB server is a GlassFish server, you can also use its asadmin command
to see which E]Bs are eligible for remote access and how they are named:

cd [GLASSFISH INST]
cd bin
./asadmin list-jndi-entries

Other Java Enterprise Edition (JEE or Jakarta EE) application servers probably
apply other naming schemes for remotely accessible E]JBs. So you must consult their
documentation and/or get the remotely visible JNDI entry listing. For the latter, you
can try programmatic access (commented out in the previous listing), or use some
administration features implemented for the remote E]B server.

EJB Projects

Jakarta EE projects don’t have to be web projects; they can also just expose services to
clients accessing their remote EJB interfaces. Web interfaces, like REST or web service
interfaces, are your first choice for interoperability with web browsers and non-Jakarta

248

CHAPTER9 JAVA MVC AND EJBS

EE servers. But for faster communication among Jakarta EE participants in a larger
system with different network nodes, using Component-to-EJB communication might be
a better choice.

Web projects can also expose remote EJBs to appropriate clients. If you want to have
a streamlined project without web capabilities, the procedure to do that inside Eclipse is
described in the following paragraphs.

Start a new Gradle project similar to the web projects we created so far, but change
the plugin declaration to the following:

plugins {
id 'java-library'

From there on, create the EJBs and their remote interfaces as described, with the
following additional constraint: move the EJB interfaces to their own package. For
example:

book.javamvc.ejbproj.ejb <- Implementation
book.javamvc.ejbproj.ejb.interfaces <- Interfaces

Inside the build file, we add a task that automates the EJB stub generation:

task extractStubs (type: Jar, dependsOn:classes) {
archiveClassifier = 'ejb-stubs’
from "$buildDir/classes/java/main"
include "**/interfaces/*.class"

}
jar.finalizedBy(extractStubs)

This ensures that, after each jar task execution, the stubs are created. You can then
run the jar task to create the full E]JB jar and the stubs. You'll find both in the build/1ibs
folder. You may have to press F5 on that folder to update the view. Any client wishing to
communicate with the EJBs must include the interface JAR as a dependency. Of course,
the EJB project itself must be deployed on the server for the EJBs to work.

249

CHAPTER9 JAVA MVC AND EJBS

EJBs with Dependencies

Until now, we developed only very simple EJBs without the need to use libraries
included as JARs. Once you need to add libraries to an EJB, you'll run into trouble. The
reason for this is that there is no standard way to add dependencies to isolated E]B
modules. If you need to add library JARs, the best way is to pack the EJB module into an
Enterprise Archive (EAR).

EARs are archives that bundle EJBs, web applications (WARs), and library JARs.
Dealing with EARs instead of isolated EJBs somewhat increases the complexity of the
administration activities. But adding library JARs to EARs is the best way of including
dependencies with non-web applications.

In order to add EAR functionality to an application inside Eclipse, you basically have
to do the following:

1. Build a new Gradle project. Go to New » Other... » Gradle »
Gradle Project.

2. Choose any name you like. It’s a good idea to add “ear” to the end
of the name.

3. Inside build.gradle, change the plugins { } section to plugins
{ id 'ear' }.
4. Insidebuild.gradle, use as the dependencies { } section:

dependencies {
deploy project(path: ':war',
configuration: 'archives')
deploy project(path: ':ejb1’,
configuration: 'archives')
earlib "org.apache.commons:"+
"commons-math3:3.6.1"

5. Create thewar and ejb1 folders in the project root.

250

CHAPTER9 JAVA MVC AND EJBS

6. Openthe settings.gradle file and add the following:
include 'war', 'ejb1’

7. Invoke Gradle » Refresh Gradle Project. Eclipse might throw an

error message; you can ignore it for now.

8. The two subprojects war and ejb1 show up in the Project Explorer.
You may have to update the working set if you are using one.

9. Convert both subprojects to a Faceted form (choose Configure
» Convert to Faceted Form...), and in the settings, add Java 1.8
capabilities.

We now have an EAR project with two subprojects. What is left to do is to add Gradle
capabilities to each of the subprojects. The WAR project needs a build file like one of the
many build.gradle files we used for Java MVC projects. What is different, though, is that
we add a dependency to the sibling EJB project:

dependencies {
implementation project(":ejb1")
// Other dependencies...

Note This is for the Gradle dependencies. In order for Eclipse to recognize the
dependency, you have to add the EJB project as a dependency in the Java Build
Path (choose Project Settings » Java Build Path » Projects tab).

For the EJB project, you probably use a build.gradle file like the following:

plugins {
id 'java-library'
}
java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}

251

CHAPTER9 JAVA MVC AND EJBS

repositories {
jcenter()
}

dependencies {
implementation 'javax:javaee-api:8.0'
// Add dependencies here...

If you run the ear task, the subprojects and the EAR file will be built. The latter can
be found in the build/1ibs folder.

Asynchronous EJB Invocation

EJB clients call EJB methods asynchronously. This means the client invokes an EJB
method that was marked eligible for asynchronous invocation, immediately regains
control of the program execution, and handles the result from the EJB invocation later,
when it is available.

To mark an EJB method for asynchronous invocation, you add the @Asynchronous
annotation from the javax.ejb package to the method:

import java.util.concurrent.Future;
import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.Singleton;

@Singleton // Example only, all EJB types work!
public class SomeEjb {

@Asynchronous

public Future<String> tellMelater() {

// Simulate some long running calculation

try {
Thread.sleep(2000);
} catch (InterruptedException e) {

}

252

CHAPTER9 JAVA MVC AND EJBS

return new AsyncResult<String>(
"Hi from tellMelater()");

This example EJB uses the no-interface method, but asynchronous invocation works
for local and remote interfaces as well. AsyncResult is a convenience class that allows
for the easy creation of a Future. This Future object will not be exposed to the client;
its main purpose is to obey the method signature. The Future returned to the client will
instead be transparently created by the E]JB container.

On the EJB client side, you invoke the EJB as usual, and handle the Future you
received from the EJB invocation as used from the JRE concurrency API:

@EJB
private SomeEjb someEjb;
Future<String> f = someEjb.tellMelater();
try {
// Example only: block until the result
// 1is available:
String s = f.get();
System.err.println(s);

} catch (Exception e) {
e.printStackTrace(System.err);

Timer EJBs

EJBs can be equipped with timer facilities, such as for delayed execution of some task or
recurring automatic method invocations. You have two options: automatic timers and
programmatic timers.

For automatic timers, you add a @5chedule or @Schedules annotation (from the
javax.ejb package) to any void method (the visibility doesn’t matter) either without
a parameter, or with a javax.ejb.Timer parameter. The parameters of the @Schedule
annotation describe the frequency, as follows:

253

CHAPTER9 JAVA MVC AND EJBS

@Stateless
public class SomeEjb {
@Schedule(minute="*", hour="0", persistent=false)
// every minute during the hour between 00:00 and 01:00
public void timeout1() {
System.err.println("Timeout-1 from " + getClass());
}
}

A delayed execution like “Do something once ten seconds after the server has
started” is not possible with automatic timers.
The following is a listing of some example schedules you can use inside automatic timers:

@Schedule(second="10", minute="0", hour="0")
// <- at 00:00:10 every day

@Schedule(minute="30", hour="0",
dayOfheek="Tue")
// <- at 00:30:00 on Tuesdays (second defaults to 00)

@Schedule(minute="11", hour="15",
dayOfieek="Mon, Tue,Fri")
// <- at 15:11:00 on mondays, Tuesdays and Fridays

@Schedule(minute="*/10", hour="*")
// <- every 10 minutes, every hour

@Schedule(minute="25/10", hour="1")
// <- 01:25, 01:35, 01:45 and 01:55

@Schedule(hour="*", dayOfMonth="1,2,3")
// <- every hour at 1st, 2nd and 3rd each month
// (minute defaults to 00)

@Schedule(hour="*/10")
// <- every 10 hours

254

CHAPTER9 JAVA MVC AND EJBS

@Schedule(month="Feb,Aug")
// <- 00:00:00 each February and August
// (hour defaults to 00)

@Schedule(dayOfMonth="1", year="2020")
// <- 00:00:00 each 1st each month during 2020

@Schedule(dayOfMonth="1-10")
// <- 00:00:00 each 1st to 10th each month

The @Schedules annotation can be used to apply several @Schedule specifications to
a timer callback:

@Schedules ({
@Schedule(hour="*"),
@Schedule(hour="0", minute="30")

1)

private void someMethod(Timer tm) {

This means every x:00:00 (x = 00 through 23), but also at 00:30:00. Unless you also
give a persistent=false to the @Schedule annotation, a timer survives an application
and a server restart.

Timers can also be defined programmatically. Here it is also possible to define a one-
time shot, such as this:

@Singleton
@Startup
public class Timeri {
@Resource
private SessionContext context;

@PostConstruct
public void go() {
context.getTimerService().
createSingleActionTimer (5000, new TimerConfig());

255

CHAPTER9 JAVA MVC AND EJBS

@Timeout
public void timeout(Timer timer) {
System.err.println("Hello from " + getClass());
}
}

The method annotated with @Timeout is called every time the timer fires. For
this example, this will be 5000 milliseconds after EJB creation, because of the
createSingleActionTimer() invocation. The timer service you get with context.
getTimerService() enables various scheduling options; see the API documentation for
details.

Exercises

Exercise 1
Which of the following is/are true?

¢ FEJBs must have a local and a remote interface.

e Not providing interfaces means E]JBs are automatically assigned
to local and remote interfaces by the EJB container (the part of the
Jakarta EE server that handles EJBs).

e Aremote EJB means the EJB can be accessed from other applications
on the same server. Access from other Jakarta EE servers is not
possible.

« FEJBs cannot have a state.

o Ifaclient accesses an EJB, a new instance of the EJB is created on the
server side.

e To access any EJB from a client, you must use do a lookup in a JNDI

context.

o Inorder to use an EJB from a client, the EJB’s interfaces and its
implementation must be imported into the client project.

256

CHAPTER9 JAVA MVC AND EJBS

Exercise 2
Create four projects:

o AJSE project (no Jakarta EE capabilities) with a single MyDateTime
class and a method called date(String format), which returns
the LocalDateTime as a string, according to the format string
specified as a parameter. Make it a Gradle project.

e An EJB project with a single EJB MyDateTimeE jb and local and remote
interfaces. Have it use the JAR file generated from the JRE project
above. Hint: You can use something like implementation files(
‘../../- SimpleNoJEE/build/1libs/SimpleNoJEE.jar") to specify
alocal dependency.

o An EAR project that contains the EJB project and adds the necessary
JAR dependency.

e Asimple no-Jakarta-EE EJB client project that tests the remote
interface from the MyDateTimeE jb EJB. Hint: Include gf-client.jar
from GlassFish’s 1ib folder as a library dependency.

Summary

Enterprise Java Beans (EJBs) are classes that encapsulate business functionalities,
each of a certain kind. Unlike normal Java classes, however, EJBs run in a container
environment, which means the server adds system-level services to them. These include
lifecycle management (instantiating and destroying, when and how), transactionality
(building logical, atomic, rollback-enabled units of work), and security (which users
can invoke which methods). Because Java MVC runs inside such a container, namely
Jakarta EE, EJBs are a good way for Java MVC applications to encapsulate their business
functionalities.

The EJB technology includes session beans and message driven beans. Session
EJBs can be accessed locally (in the same application), remotely (over the network, via
method invocation), or via some web service interface (distributed applications across
heterogeneous networks, HTML, XML or JSON data formats).

Concerning the creation and destruction of session EJBs, there are three types of
session EJBs. Singleton E]Bs, stateless EJBs, and stateful EJBS. To define any of them, you

257

CHAPTER9 JAVA MVC AND EJBS

add the appropriate annotation—@Singleton, @Stateless, or @Stateful—to the EJB
implementation.

Concerning their accessibility from client code, session EJBs can use one or a
combination of three methods: no-interface access, local access, or remote access.

Accessing local EJBs from a Java MVC controller is easy: you just use the @EJB
injection to let CDI assign instance access to an EJB: @EJB private SomeEjbInterface
theEjb.

Addressing remote E]Bs is considerably more complicated compared to 1
ocal-access EJBs. You have to set up a JNDI context and then use it to do a lookup of a
remote instance.

For this to work, the Java MVC application must have access to the compiled remote
interfaces. That means, in the EJB server build, you must have somehow included a step
to extract the interfaces from the generated classes.

Jakarta EE projects don’t have to be web projects; they can also just expose services
to clients accessing their remote EJB interfaces. Web interfaces, like REST or web service
interfaces, are your first choice for interoperability with web browsers and non-Jakarta
EE servers. For faster communication among Jakarta EE participants in a larger system
with different network nodes, using Component-to-EJB communication might be a
better choice. Web projects also can expose remote EJBs to appropriate clients.

Once you need to add libraries to an EJB, the best way is to pack the EJB module
into an Enterprise Archive (EAR). EARs are archives that bundle EJBs, web applications
(WARSs), and library JARs. Dealing with EARs instead of isolated EJBs somewhat
increases the complexity of the administration activities. But once you're finished, if you
run the ear task, the subprojects and the EAR file will be built. The latter can be found in
the build/1ibs folder.

EJB clients call EJB methods asynchronously. This means the client invokes an EJB
method that was marked eligible for asynchronous invocation, immediately regains
control of the program execution, and handles the result from the EJB invocation later,
when it is available.

To mark an EJB method for asynchronous invocation, you add the @Asynchronous
annotation from the javax.ejb package to the method.

EJBs can be equipped with timer facilities, such as for delayed execution of some
task or reoccurring automatic method invocations. You have two options: automatic
timers and programmatic timers.

258

CHAPTER9 JAVA MVC AND EJBS

With automatic timers, you add a @Schedule or @5chedules annotation (from the
javax.ejb package) to any void method (the visibility doesn’t matter), either without
a parameter or with a javax.ejb.Timer parameter. The parameters of the @Schedule
annotation describe the frequency.

Timers can also be defined programmatically. It is also possible to define a one-time
invocation.

In the next chapter, we learn how to connect Java MVC to databases.

259

CHAPTER 10

Connecting Java MVC
to a Database

Databases are needed if you want to persist data for a longer period of time, or if data
must consistently be accessible from different sessions (different users). This chapter
refers to SQL (Structured Query Language) databases. For an introduction, see for
example the article at https://en.wikipedia.org/wiki/Database.

JPA (Java Persistence API) is the dedicated technology used to access relational
databases from inside Jakarta EE. Its aim is to provide a bridge between SQL tables and
Java objects. This task is much more complex than in other basic data schemes. The
reason for this is that, in relational database schemes, we have associations between
different tables: One row in one table may refer to one or many rows in another table or
the other way round, and there could be references spanning three or more tables. And
think of column-type conversions—a database may have different ideas about numbers,
boolean indicators, and dates and times compared to Java. In addition, null values in
database tables require increased attention if they’re used in table references and while
converting to Java values.

In this chapter, we talk about basic issues when using JPA inside Java MVC. For a
complete and deep overview of JPA, covering more complex issues than we do in this
chapter, consult the online JPA documentation and specification on the web. A good
starting URL is https://docs.oracle.com/javaee/6/tutorial/doc/bnbpy.html.

Abstracting Away Database Access with JPA

One of the primary purposes of JPA is to abstract away database access and map
database objects to Java classes. In the end, we want to be able to query the database
and get Java objects, or to put Java objects in the database. JPA hides the details of how

261
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_10

https://doi.org/10.1007/978-1-4842-6280-1_10#DOI
https://en.wikipedia.org/wiki/Database
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpy.html

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

this can be done, including connection properties like usernames and passwords, and
including handling connection lifecycles.

The central JPA class for this purpose is EntityManager, which uses a single
configuration file called persistence.xml, together with some settings inside the Jakarta
EE application server. On the Java side, the classes that correspond to table rows are
called entity classes. See Figure 10-1 for an overview of JPA.

JPA Client
Java Classes

Directly
Correspond
to Table Rows

Figure 10-1. JPA inside Jakarta EE at work

Setting Up a SQL Database

SQL databases come in two flavors—you can have fully fledged client-server databases
and embedded databases (possibly using some in-memory storage). In this book, we use
the Apache Derby database included in the GlassFish server distribution. This database
runs independent from GlassFish, but the GlassFish administrative tools also provide
some commands for handling the Apache Derby instance. As a client, we use JPA from
inside the Java MVC application.

262

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

Note In the GlassFish documentation, you'll frequently see the name “JavaDB”
as the product name for the database. JavaDB actually was the name of Derby
while it was included in the JDK versions 6 through 8. Now it’s kind of obsolete, so
we don’t use the name “JavaDB” in this book.

Switching to a different database product is a non-intrusive operation, so you can
start learning JPA with Apache Derby and only later switch to some other database

management system.

Note From an architectural point of view, database access is best included in an
EJB or EAR module. For simplicity, we include JPA directly in a Java MVC project,
but the procedures to do that in an EJB or EAR module are very similar.

If you start a GlassFish server, the Apache Derby database does not automatically
start as well. Instead, you must run it inside the console:

cd [GLASSFISH INST]
bin/asadmin start-database

where [GLASSFISH_INST] is your GlassFish server’s installation directory.

Caution Although they are both administered by asadmin, the GlassFish Jakarta
EE server and the Apache Derby database management system are independent of
each other. If you stop either of them, the other one continues running.

To stop a running Apache Derby, enter this inside the console:

cd [GLASSFISH INST]
bin/asadmin stop-database

263

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

Creating a Datasource

In order for JPA to work, we need to add an object relational mapping (ORM) library

to the project. There are several options here, but we choose EclipseLink as an ORM
library, since EclipseLink is the reference implementation of JPA 2.2 (this is the version of
JPA used in Jakarta EE 8 and Java MVC 1.0).

ORMs do not directly connect to databases but instead connect to datasources that
abstract away the database access. This indirection allows for establishing connection
pools, caches, transactionality, and administration of data handling using server-side
administrative tools.

In order to create a suitable datasource for GlassFish, enter the following in the same
terminal you used to start the database:

cd [GLASSFISH INST]
cd javadb/bin
start the DB client
J/1j
(Or use ij for Windows.) We are now inside the ij database client, which you

can see since the 1j> prompt appears in the terminal. Enter the following to create a
database named hello (enter this in one line without spaces in front of the create=):

ij> connect 'jdbc:derby://localhost:1527/hello;
create=true;user=user0’;

The database is now created with an owner named user0. We also add a password
for the user:

ij> call SYSCS UTIL.SYSCS CREATE USER('usero’','pw715');

Note Apache Derby by default does not enable authentication for new databases.
This normally does not cause problems if you're using the database only for
development, because network access is restricted to local users only. Many Java
applications and database tools, however, behave strangely if you try to access the
database without authentication, so we add a password.

264

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE
Next, restart the database for the authentication to start working:

cd [GLASSFISH INST]

cd bin

./asadmin stop-database
./asadmin start-database

This needs to be done only once. Quit and reopen the connection inside the ij tool
(or quit ij altogether by pressing Ctrl+D; then restart ij and connect again):

ij> disconnect;
ij> connect 'jdbc:derby://localhost:1527/hello;
user=user0;password=pw715";

(Enter the last 1j command in one line.) You can check the authentication
mechanism: if you omit the username or password, or both, you'll get an appropriate
error message.

For transparent and simple connection to the database, we create two resources in
the GlassFish server configuration:

cd [GLASSFISH INST]
cd bin
./asadmin create-jdbc-connection-pool \
--datasourceclassname \
org.apache.derby. jdbc.ClientXADataSource \
--restype javax.sql.XADataSource \
--property \
portNumber=1527:password=pw715:user=usero:
serverName=localhost:databaseName=hello:
securityMechanism=3 \
HelloPool

./asadmin create-jdbc-resource \
--connectionpoolid HelloPool jdbc/Hello

(No line break and no spaces after user=user0: or databaseName = hello:.) This
creates a connection pool and a JDBC resource connecting to it. We will later be using
the jdbc/Hello identifier to allow JPA to connect to the database.

265

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

You can see both configuration items if you enter the administration console in
your web browser at http://localhost:4848. Navigate to Resources » JDBC » JDBC
Resources and Resources » JDBC » JDBC Connection Pools. See Figure 10-2.

Home About...

User: admin Domain: demain1 Server: localhost

GlassFish™ Server Open Source Edition

: Edit JDBC Resource |:Save| | Cancel
s Lifecycle Modules Edit an exisiing JOBC data source.
|8 Monitoring Data Load Delauils
v i Resources

* [Concurren! Resources JNDI Name: jdbeHelln

i Comechn Pool Name: HeloPool]

A JoBC Use the JDBC Connection Pools page to create new pools

L4 ADEC Resurces Deployment Order: 100
'II ! = Specifies the loading order of the resource at server startup. Lower numbers are loaded first.
=, idbc/_TimerPool Description:
ime:
..; i Status: L]
B idbe/_default
+ [JDBC Connection Pools Additional Properties (0}

[DerbyPool lAdd Property,| Celete Properties
& HelloPool | Select | Name | Value Description
B MyBatchPool No items found.
[~ __TimarPool

* gF JMS Resources

* [INDI

=1 JavaMail Sessions

Figure 10-2. JDBC resources

In the rest of this chapter, we assume you know how to enter database commands.
Either use the ij tool (don’t forget to connect after you start it), or use any other
database client, such as the open source tool called Squirrel.

Preparing the Member Registration Application

In this chapter, we develop a basic member administration application for Java
MVC. The members are stored in a database table called MEMBER. The SQL commands to
create the table and a sequence generator for the unique ID generation are as follows:

CREATE TABLE MEMBER (
ID INT
NAME VARCHAR(128)
PRIMARY KEY (ID));

NOT NULL,
NOT NULL,

INSERT INTO MEMBER (ID, NAME)

266

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

VALUES (-3, 'John'),
(-2, 'Linda'),
('1J Ipat');

CREATE SEQUENCE MEMBER SEQ start with 1 increment by 50;

We also added a couple of example entries.

Note Apache Derby knows how to auto-generate unique IDs. We however let
EclipseLink take care of that. For this reason, the ID field is left as a simple integer
value field without any additional semantics. EclipseLink needs the sequence to
take care of generating such unique IDs (at least if it’s used the way we are going
to use it).

The project structure for the new database project is as follows:

Project HelloJpa
src/main/java
book.javamvc. jpa
data
User.java
db
Member.java
MemberDAO. java
i18n
BundleForEL.java
SetBundleFilter.java
model
UserEntering.java
UserlList.java
AjaxController.java
App.java
HelloJpaController.java
RootRedirector.java
src/main/resources
book. javamvc. jpa.messages

267

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

Messages.properties
META-INF
persistence.xml
src/main/webapp
js
jquery-3.5.1.min.js
WEB-INF
views
index.jsp
beans.xml
glassftish-web.xml
build.gradle
gradle.properties
settings.gradle

We don’t want to mix Java MVC model classes and database model classes, so in the
User.java class, we abstract away any user data:

package book.javamvc.jpa.data;

public class User {
private int id;
private String name;

public User() {
}

public User(int id, String name) {
this.id = id;
this.name = name;

}

// Getters and setters...

268

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

The BundleForEL and SetBundleFilter classes are exactly the same as in the
HelloWorld application, but with the addition to factor out configuration values (made
in one of the exercises). For clarity, I repeat the code here:

package book.javamvc.jpa.i18n;

import java.util.Enumeration;

import java.util.Llocale;

import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

public class BundleForEL extends ResourceBundle {
private BundleForEL(Locale locale, String baseName) {
setLocale(locale, baseName);

}

public static void setFor(HttpServletRequest request,
String i18nAttributeName, String i18nBaseName) {
if (request.getSession().
getAttribute(i18nAttributeName) == null) {
request.getSession().setAttribute(
i18nAttributeName,
new BundleForEL(request.getlocale(),
i18nBaseName));

}

public void setlLocale(Locale locale,
String baseName) {
if (parent == null ||
Iparent.getLocale().equals(locale)) {
setParent(getBundle(baseName, locale));

}

@verride
public Enumeration<String> getKeys() {
return parent.getKeys();

269

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

@verride

protected Object handleGetObject(String key) {
return parent.getObject(key);

}

and

package book.javamvc.jpa.i18n;

import
import

import
import
import
import
import
import
import
import
import
import

java.io.IOException;

java.util.Map;

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

inject.Inject;

servlet.Filter;
servlet.FilterChain;
servlet.FilterConfig;
servlet.ServletException;
servlet.ServletRequest;
servlet.ServletResponse;
servlet.annotation.WebFilter;
servlet.http.HttpServletRequest;

javax.ws.rs.core.Application;

@WebFilter("/*")
public class SetBundleFilter implements Filter {

@Inject private Application appl;

private String i18nAttributeName;
private String ii18nBaseName;

@verride

public void init(FilterConfig filterConfig)

270

throws ServletException {
Map<String,Object> applProps = appl.getProperties();
i18nAttributeName = (String) applProps.get(

"I18N TEXT ATTRIBUTE NAME");
i18nBaseName = (String) applProps.get(

"I18N_TEXT BASE_NAME");

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

@verride
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
BundleForEL.setFor((HttpServletRequest) request,
i18nAttributeName, ii8nBaseName);
chain.doFilter(request, response);

}

@Override
public void destroy() {

}

We place the two Java MVC model classes for the new member entry and the
member list into the book. javamvc. jpa.model package. The code reads as follows:

package book.javamvc.jpa.model;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;
import book.javamvc.jpa.data.User;

@Named
@RequestScoped
public class UserEntering extends User {

}

and
package book.javamvc.jpa.model;

import java.util.Arraylist;
import javax.enterprise.context.RequestScoped;

import javax.inject.Named;
import book.javamvc.jpa.data.User;

@Named
@RequestScoped

271

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

public class UserlList extends ArraylList<User>{
private static final long serialVersionUID =
8570272213112459191L;

The App and RootRedirector classes are the same as in the HelloWorld application,
but with the refactoring done in one of the exercises:

package book.javamvc.jpa;

import java.util.HashMap;
import java.util.Map;

import javax.annotation.PostConstruct; import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {
@PostConstruct
public void init() {
}

@Override
public Map<String, Object> getProperties() {
Map<String, Object> res = new HashMap<>();
res.put("I18N_TEXT ATTRIBUTE NAME",
"nsg");
res.put("I18N_TEXT BASE NAME",
"book.javamvc.jpa.messages.Messages");
return res;
}
}

and
package book.javamvc.jpa;

import javax.servlet.FilterChain;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

272

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

/**

* Redirecting http://localhost:8080/Hellolpa/

* This way we don't need a <welcome-file-list> in web.xml
*/
@WebFilter(urlPatterns = "/")

public class RootRedirector extends HttpFilter {

private static final long serialVersionUID =
7332909156163673868L;

@verride
protected void doFilter(final HttpServletRequest req,
final HttpServletResponse res,
final FilterChain chain) throws IOException {
res.sendRedirect("mvc/hello");

build.gradle takes the following code:

plugins {
id 'war'

}

java {
sourceCompatibility
targetCompatibility
}

repositories {
jcenter()

JavaVersion.VERSION 1 8
JavaVersion.VERSION 1 8

}

dependencies {
testImplementation 'junit:junit:4.12'
implementation 'javax:javaee-api:8.0'

273

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

implementation 'javax.mvc:javax.mvc-api:1.0.0'

implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'

implementation 'jstl:jstl:1.2'

implementation 'org.eclipse.persistence:'+
'eclipselink:2.7.7'

}

task localDeploy(dependsOn: war,
description:">>> Local deploy task") {
// Take the code from the HelloWorld example

}

task localUndeploy(
description:">>> Local undeploy task") {
// Take the code from the HelloWorld example

}

The settings.gradle file is prepared by the project generator wizard, and the
gradle.properties file can directly be taken from Chapter 4.
All other files are described in the subsequent sections.

Adding EclipseLink as ORM

To add the EclipseLink ORM to the project, add the following to the dependencies { }
section of the build.gradle file:

dependencies {

implementation 'org.eclipse.persistence:'+
'eclipselink:2.7.7'

Next, create a src/main/resources/META-INF/persistence.xml file with the
following contents:

<persistence
xmlns=
"http://java.sun.com/xml/ns/persistence"

274

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://java.sun.com/xml/ns/persistence persistence 1 0.xsd"
version="1.0">
<persistence-unit name="default"
transaction-type="JTA">
<jta-data-source>jdbc/Hello</jta-data-source>
<exclude-unlisted-classes>
false
</exclude-unlisted-classes>
<properties />
</persistence-unit>
</persistence>

This is the central configuration file for JPA. Here, we indicate how to connect to the
database. Note that we refer to the datasource resources we configured previously.

Note The Eclipse IDE has a few helper wizards for JPA-related development, and
it also has a JPA facet you can add to projects. | decided against using these in this
introductory level chapter, to avoid a vendor lock-in and to show the basics needed
while following the JPA specification. You are free to try the JPA facet of Eclipse.

Controllers

The controller for the member registration application closely resembles the HelloWorld
controller from previous chapters—we again have a landing page that this time lists

all the members, and an input form for new members. Adding a member leads to a
database INSERT operation, and in contrast to HelloWorld, we don’t show a response
page but reload the index page with the updated member list. The code reads as follows:

package book.javamvc.jpa;
import java.util.Arraylist;

import java.util.list;

275

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

import

import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import

java.util.stream.Collectors;

javax.ejb.EJB;
javax.enterprise.context.RequestScoped;
javax.inject.Inject;
javax.inject.Named;
javax.mvc.Controller;
javax.mvc.binding.BindingResult;
javax.mvc.binding.MvcBinding;
javax.mvc.binding.ParamError;
javax.ws.rs.FormParam;
javax.ws.rs.GET;
javax.ws.rs.POST;
javax.ws.rs.Path;
javax.ws.rs.core.Response;

book.javamvc.jpa.data.User;

book. javamvc. jpa.db.MemberDAO;
book.javamvc.jpa.model.UserEntering;
book.javamvc.jpa.model.UserlList;

@Path("/hello")
@Controller

public

class HelloJpaController {

@Named
@RequestScoped
public static class ErrorMessages {
private List<String> msgs = new Arraylist<>();

public List<String> getMsgs() {

}

return msgs;

public void setMsgs(List<String> msgs) {

}

this.msgs = msgs;

public void addMessage(String msg) {

276

CHAPTER 10

msgs.add(msg);

}
}

@Inject private ErrorMessages errorMessages;
@Inject private BindingResult br;

@Inject private UserEntering userEntering;
@Inject private Userlist userlList;

@EJB private MemberDAO memberDao;

@GET

public String showIndex() {
addUserList();
return "index.jsp";

}

@POST
@Path("/add")
public Response addMember (

CONNECTING JAVA MVC TO A DATABASE

@MvcBinding @FormParam("name") String name) {

if(br.isFailed()) {
br.getAllErrors().stream().
forEach((ParamError pe) -> {

errorMessages.addMessage(pe.getParamName() +

+ pe.getMessage());

};
}

userEntering.setName(name);

memberDao.addMember (userEntering.getName());

addUserList();
return Response.ok("index.jsp").build();

277

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

[IT111777707777777777777771777777777717777717171111171177
HITT1TTTT70077777777777777777777777777777717171111771177

private void addUserList() {
userList.addAll(
memberDao.allMembers().stream().map(member -> {
return new User(member.getId(),
member.getName());
}).collect(Collectors.toList())
)5
}
}

An important distinction in the HelloWorld example application is the inclusion
of the MemberDAO data access object for database operations it gets referred to from the
member addition and listing methods. We'll talk about the DAO in the next sections.

A member deletion is handled by an AJAX request. In contrast to what we did in
previous chapters, we don’t let the Java MVC controller deal with AJAX requests. Instead,
we add an additional JAX-RS controller, as follows:

just for AJAX:
package book.javamvc.jpa;

import javax.ejb.EJB;

import javax.ws.rs.DELETE;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;
import javax.ws.rs.core.Response;

import book.javamvc.jpa.db.MemberDAO;
@Path("/ajax")

public class AjaxController {
@EJB private MemberDAO memberDao;

@DELETE
@Path("/delete/{id}")
public Response delete(@PathParam("id") int id) {

278

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

memberDao.deleteMember(id);
return Response.ok("{}").build();

Adding Data Access Objects

A data access object, or DAQ, is a Java class that encapsulates database operations like
CRUD (create, read, update, and delete). A client of the DAO then doesn’t have to know
how the DAO works and only needs to take care of the business functionality.

Inside the controllers, a DAO class called MemberDAO is injected via the @EJB
annotation. This class goes to the book. javamvc. jpa.db package. Create the package
and the class, and then write the following class code:

package book.javamvc.jpa.db;
import java.util.list;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.TypedQuery;

@Stateless

public class MemberDAO {
@PersistenceContext
private EntityManager em;

public int addMember(String name) {
List<?> 1 = em.createQuery(
"SELECT m FROM Member m WHERE m.name=:name").
setParameter("name", name).
getResultList();
int id = 0;
if(1.isEmpty()) {
Member member = new Member();
member . setName (name);

279

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

em.persist(member);
em.flush(); // needed to get the ID
id = member.getId();
} else {
id = ((Member)l.get(0)).getId();
}

return id;

}

public List<Member> allMembers() {
TypedQuery<Member> q = em.createQuery(
"SELECT m FROM Member m", Member.class);
List<Member> 1 = q.getResultList();
return 1;

}

public void deleteMember(int id) {
Member member = em.find(Member.class, id);
em.remove (member);

}

We provide methods to add members (avoiding duplicates), to list all members,
and to delete members. Update and search methods are left for future improvements.
You can see that database operations are exclusively handled by an EntityManager,
which is injected by the @PersistenceContext annotation. By the configuration file
persistence.xml, JPA knows which database the entity manager needs to access. For
most operations currently needed, we can use the methods from the EntityManager
class. The only exception is the complete list for which we use the JPA query language
expression SELECT m FROM Member m.

The application knows that this DAO is an E]JB by the @Stateless class annotation.
Because of this, the container (the part of the server that handles EJB objects) knows that
instances of this class don’t have a state.

280

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

Updating the View

For the basic member registration application, as a view, we only need the index. jsp file:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript”
src="${mvc.basePath}/../js/jquery-3.5.1.min.js">
</script>
<title>${msg.title}</title>
<script type="text/javascript">
function deleteItm(id) {
var url =
"${pageContext.servletContext.contextPath}" +
"/mvc/ajax/delete/" + id;
jQuery.ajax({
url : url,
method: "DELETE",
dataType: 'json',
success: function(data, textStatus, jgXHR) {
jQuery('#itm-"'+id).remove();
}J
error: function (jgXHR, textStatus,
errorThrown) {
console.log(errorThrown);

}
};

return false;

281

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

</script>
</head>
<body>
<form method="post"
action="${mvc.uriBuilder(
'HelloJpaController#greeting').build()}">
${msg.enter_name}
<input type="text" name="name" />
<input type="submit" value="${msg.btn_submit}" />
</form>

<table>
<thead>
<tr>
<th>${msg.tblhdr id}</th>
<th>${msg.tblhdr_name}</th>
<th></th>
</tr>
<thead>
<tbody>
<c:forkach items="${userList}" var="itm">
<tr id="itm-${itm.id}">
<td>${itm.id}</td>
<td>${itm.name}</td>
<td><button onclick="deleteItm(${itm.id})">
${msg.btn_delete}</button></td>
</tr>
</c:forkach>
</tbody>
</table>
</body>
</html>

This page shows the form for entering a new member and the full member list.
Because of the itm-[ID] we add to each table row, the AJAX code to remove an item can

remove a table row without having to reload the full page.

282

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

The view refers to the jQuery library. Download it and copy it to src/main/webapp/
js. Adapt versions accordingly.

Alanguage resource goes to stc/main/resources/book/javamvc/jpa/messages/
Messages.properties:

title = Hello Jpa

enter name = Enter your name:
btn_delete = Delete
btn_submit = Submit
tblhdr_id = ID

tblhdr name = Name

You can copy the beans.xml and glassfish-web.xml files from Chapter 4.

Adding Entities

An entity is a representation of a table row as an object. If we think of the MEMBER table,
an entity is something that has a name and a single ID. Obviously, this corresponds to
a Java class with the name and id fields. So we create such a class and put it in the book.
javamvc.jpa.db package:

public class Member {
private int id; // + getter/setter
private String name; // + getter/setter

To complete the database-interfacing process, we need to add meta-information
though. The information that this is an entity class, the table name, column names, a
dedicated ID column name, a unique ID generator specification, and database field
value constraints. As is usually the case with Java, we use annotations for such meta-
information. Our class, with all those amendments, reads as follows:

package book.javamvc.jpa.db;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;

283

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.SequenceGenerator;
import javax.persistence.Table;

import javax.validation.constraints.NotNull;

@Entity
@Table(name="MEMBER")
@SequenceGenerator (name="HELLO SEQ",
initialValue=1, allocationSize = 50)

public class Member {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY,

generator = "HELLO SEQ")
@Column(name = "id")
private int id;

@NotNull
@Column(name = "name"
private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

284

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

In detail, the annotations we added are:
e @Entity: Marks this as an entity so JPA knows this is an entity class.

e (@Table: Used to specify the table name. If omitted, the class name
(without package) will be used as a table name.

e @SequenceGenerator: Used to specify a sequence generator for
unique IDs.

e @Id: Indicates that the corresponding field refers to the unique ID of
the entity.

e (@GeneratedValue: Indicates that new entities will auto-generate
values for this field.

e @Column: Used to specify the column name corresponding to this
field. If unspecified, the field name will be used as the column name.

e @NotNull: A constraint indicating that neither the field nor the
database field can be null.

Given the entity classes, JPA now knows how to map database entry fields to Java
classes. With the Java MVC controller adapted and the DAO and entity classes added,
the application has a fully functional JPA support engaged and you can deploy and try
itathttp://localhost:8080/HelloJpa. Also try restarting the server and verify that
the entries were persisted and survive a server restart. You can also directly check the
database using a database client tool and investigate the table rows that were added
there.

Adding Relations

Relational data is about relationships like one table entry referring to entries from other
tables. JPA provides a solution to such relationships, again by special annotations you
can add to entity classes.

Consider the following example: In our membership application, we add another
table called STATUS that contains membership status entries, such as Gold, Platinum,
Senior, or whatever you might think of. Each member may have 0 to N status entries, so
we talk about a “one-to-many” relationship between members and status entries.

To achieve this, we first create the STATUS table and a STATUS_SEQ sequence for it:

285

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

CREATE TABLE STATUS (

ID INT NOT NULL,
MEMBER ID INT NOT NULL,
NAME VARCHAR(128) NOT NULL,

PRIMARY KEY (ID));
CREATE SEQUENCE STATUS SEQ start with 1 increment by 50;

Next, we create a new entity class called Status inside the book. javamvc. jpa.db
package with the following contents:

package book.jakarta8.calypsojpa.jpa;

import javax.persistence.*;
import javax.validation.constraints.*;

@Entity
@Table(name="STATUS")
@SequenceGenerator(name="STATUS SEQ",
initialValue=1, allocationSize = 50)
public class Status implements Comparable<Status> {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY,
generator="STATUS SEQ")

@Column(name = "ID")
private int id;

@NotNull
@Column(name = "MEMBER ID")
private int memberld;

@NotNull
@Column(name = "NAME")
private String name;

public Status() {
}

public Status(String name) {

286

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

this.name = name;

}

@verride
public int compareTo(Status o) {
return -o.name.compareTo(name);

}

// + getters and setters

We added a constructor for easy construction using the name. It is important to
know that the JPA specification requires that there be a public no-argument constructor.

Inside the entity class Member, we add a field that corresponds to the actual
relationship between member and status:

@JoinColumn(name = "MEMBER ID")
@0OneToMany(cascade = CascadeType.ALL, orphanRemoval= true)
private Set<Status> status; // + getter / setters

Everything else is untouched. The @JoinColumn field refers to a member in the
associated class or table, so we don’t have to update the member table for this new field.

Because the two entity classes’ relationship is announced via @neToMany, any
entity manager operations will automatically take care of correctly cascading database
operations to related entities. For example, to create a new member, you can write the
following:

Member m = new Member();
m.setName(...);

Set<Statusy> status = new HashSet<>();
status.add(new Status("Platinum"));
status.add(new Status("Priority"));
m.setStatus(status);

em.persist(m);

287

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

So you don'’t have to explicitly tell the entity manager to persist the related Status
entities.

In the frontend code, you can add a text field with a comma-separated list of status
values, or a select listbox or menu to reflect the relationship. The same holds for
UPDATE and DELETE operations. Because of the cascade = CascadeType.ALL inside the
@0neToMany annotation, JPA will even delete related Status entries from the STATUS table
if members are deleted.

There are other association types in a relational data model. The possible association
types you can declare for entities in JPA are as follows:

— @OneToMany

For entities of entity class A, zero to many related entries of entity
class B exist. Inside class A, you define a field of type Set with the
OneToMany annotation. Inside entity B’s table, you then have a foreign
key called ID_A (or whatever name you like), and inside the entity
class B is a field called ald (or whatever name you like) pointing to A
IDs. To tell A how it is related to B, you then add another annotation
called @JoinColumn, as in:

@0neToMany
@JoinColumn(name="ID A") // In table B!
private Set b;

Or you add an attribute to @neToMany, as in:

@0neToMany(mappedBy = "ald") // Field in class B!
private Set b;

— @ManyToOne

For zero or many entities of entity class A, one related entry of
entity class B exists. Inside class A, you add a field of type B with
the @anyToOne and @JoinColumn annotations, where for the latter,
you provide a column name (inside A’s table) for the join:

@ManyToOne
@JoinColumn(name="ID B") // In table A
private B b;

288

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

— @OneToOne

For one entity of entity class A, one related entry of entity class B
exists. Inside class A, you add a field of type B with the @0neToOne
and @JoinColumn annotations, where for the latter, you provide a
column name (inside A’s table) for the join:

@0neToOne
@JoinColumn(name="ID B") // In table A
private B b;

— @ManyToMany

For zero or many entities of entity class A, zero or many related
entries of entity class B exist. Here, we need a third table serving as an
intermediate join table; for example MTM_A B, with columns ID A and
ID B. The annotations in entity class A (with ID column "ID") then
read as follows:

@ManyToMany
@JoinTable(
name = "MTM_A B",
joinColumns = @JoinColumn(
name = "ID A",
referencedColumnName="1ID"),
inverseJoinColumns = @JoinColumn(
name = "ID B",
referencedColumnName="ID"))
private Set b;

Exercises

Exercise 1: Which of the following are true?

1. JPA connects to a database via some datasource, which is a server-
managed resource.

2. JPA connects to a database via some datasource, which JPA itself
provides.

289

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

290

JPA connects to a database via JDBC.
JPA connects to a database via EJB.

Exercise 2: Which component of JPA (or concept, if you like)
translates between database tables and Java objects (three letter
acronym)?

Exercise 3: Which of the following is true:
DAOs are needed to connect to databases via JPA.

DAOs are needed to provide the database username and
password.

In DAOs, database column names have to be specified.

DAOs are used to avoid using database table details in JPA client
classes.

To use DAOs, they must be injected as E]Bs.

Exercise 4: Which of the following are true?

One entity class corresponds to one database table.

An entity class must have the same name as the database table.

Properties (fields) of entity classes must have the same names as
the columns in the database table.

Properties of entity classes can have restrictions.

Exercise 5: Add the STATUS table to the database and update the
member entry application’s code to reflect the status of members.
For simplicity, use a text field whereby you can enter a comma-
separated list of status values.

Exercise 6: Name the four annotations used inside JPA for
relationships between tables.

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

Summary

JPA (Java Persistence API) is the dedicated technology used to accessing relational
databases from inside Jakarta EE. Its aim is to provide a bridge between SQL tables and
Java objects.

One of the primary purposes of JPA is to abstract away database access and map
database objects to Java classes. In the end, we want to be able to query the database
and get Java objects, or to put Java objects in the database. JPA helps to hide the details of
how this can be done, including connection properties like usernames and passwords,
and including handling connection lifecycles.

The central JPA class for this purpose is the EntityManager class, which uses a single
configuration file called persistence.xml, together with some settings inside the Jakarta
EE application server. On the Java side, the classes that correspond to table rows are
called entity classes.

In order for JPA to work, we need to add an object relational mapping (ORM) library
to the project. There are several options here, but we choose EclipseLink as an ORM
library, since EclipseLink is the reference implementation of JPA 2.2 (this is the version of
JPA used in Jakarta EE 8 and Java MVC 1.0).

ORMs do not directly connect to databases, but instead connect to datasources that
abstract away the database access. This indirection allows for establishing connection
pools, caches, transactionality, and administration of data handling using server-side
administrative tools. Datasources are installed in a server product specific manner.

A data access object, or DAQ, is a Java class that encapsulates database operations
like CRUD (create, read, update, and delete). A client of the DAO then doesn’t have to
know how the DAO works and only needs to take care of the business functionality.

An entity is a representation of a table row as an object. To complete the database-
interfacing process, we need to add meta-information. The information that this is an
entity class, the table name, column names, a dedicated ID column name, a unique ID
generator specification, and database field value constraints. As is usually the case with
Java, we use annotations for such meta-information.

Given the entity classes, JPA now knows how to map database entry fields to Java
classes. With the Java MVC controller adapted and the DAO and entity classes added, the
application has fully functional JPA support engaged.

Relational data is about relationships, such as one table entry referring to entries
from other tables. JPA provides a solution to such relations, again by special annotations
you can add to entity classes.

291

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

The possible association types you can declare for entities in JPA are as follows:
— @OneToMany

For entities of entity class A, zero to many related entries of
entity class B exist. Inside class A, you define a field of type Set
with the OneToMany annotation. Inside entity B’s table, you then
have a foreign key called ID_A (or whatever name you like), and
inside the entity class B is a aId field (or whatever name you like)
pointing to A IDs. To tell A how it is related to B, you then add
another annotation called @JoinColumn, as in:

@0neToMany
@JoinColumn(name="ID A") // In table B!
private Set b;

Or you add an attribute to @neToMany, as in:

@oneToMany(mappedBy = "ald") // Field in class B!
private Set b;

— @ManyToOne

For zero or many entities of entity class A, one related entry of
entity class B exists. Inside class A, you add a field of type B with
the @anyToOne and @JoinColumn annotations, where for the latter
you provide a column name (inside A’s table) for the join:

@ManyToOne
@JoinColumn(name="ID B") // In table A
private B b;

— @OneToOne

For one entity of entity class A, one related entry of entity class B
exists. Inside class A, you add a field of type B with the @0neToOne
and @JoinColumn annotations, where for the latter, you provide a
column name (inside A’s table) for the join:

@0neToOne
@JoinColumn(name="ID B") // In table A
private B b;

292

CHAPTER 10 CONNECTING JAVA MVC TO A DATABASE

@ManyToMany

For zero or many entities of entity class A, zero or many related
entries of entity class B exist. Here, we need a third table serving
as an intermediate join table; for example, MTM_A_B, with columns
ID Aand ID_B. The annotations in entity class A (with ID column
"ID") then read as follows:

@ManyToMany
@JoinTable(
name = "MTM_A B",
joinColumns = @JoinColumn(
name = "ID A",
referencedColumnName="ID"),
inverseJoinColumns = @JoinColumn(
name = "ID B",
referencedColumnName="1ID"))
private Set b;

In the next chapter, we talk about logging in Java MVC.

293

CHAPTER 11

Logging Java MVC
Applications

Logging is a vital part of any application of mid- to high-level complexity. While the
program runs through its execution paths, several logging statements describe what
the program is doing, which parameters are passed to method calls, what values local
variables and class fields have and how they change, which decisions are made, and so
on. This logging information is collected and sent to a file, a database, a message queue,
or whatever, and the developer and the operations team can investigate program flows
for bug-fixing or auditing purposes.

This chapter is about the various options you have to add logging to your programs
or to investigate existing server logging.

System Streams

The Java Standard Environment (JSE) on which Jakarta EE builds its server technologies
provides the well-known standard output and error output streams you address as
follows:

System.out.println("Some information: ...");
System.err.println("Some error: ...");

While at first sight, it seems easy to generate diagnostic information using these
streams, it is not recommended that you use this procedure. The primary reason is that
method is highly operating system and server product dependent. We will introduce
superior methods shortly, but in case you are temporarily tempted to use the system
streams for diagnostic output, it is important to know that most Jakarta EE servers fetch
the streams and redirect them to some file.

295
© Peter Spath 2021

P. Spith, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_11

https://doi.org/10.1007/978-1-4842-6280-1_11#DOI

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Note Up until now, we used the output and error output streams for diagnostic
output. We did that for simplicity. In any serious project, you should not do that, and
the subsequent sections show you how to avoid it.

The Jakarta EE 8 GlassFish server version 5.1 adds the output and error output
stream to the server.log file you will find at

GLASSFISH INST/glassfish/domains/domain1/logs

In this usually verbose listing, you will recognize the System.out and System.err
output as lines containing an [SEVERE] (for System.err) and [INFO] (for System.out):

[2019-05-20T14:42:03.791+0200] [glassfish 5.1] [SEVERE]
[] [] [tid: ThreadID=28 ThreadName=Thread-9]
[timeMillis: 1558356123791] [levelValue: 1000] [[
The System.err message]]

[2019-05-20T14:42:03.796+0200] [glassfish 5.1] [INFO]
[NCLS-CORE-00022] [javax.enterprise.system.core]
[tid: ThreadID=28
_ThreadName=RunLevelControllerThread-1558356114688]
[timeMillis: 1558356123796] [levelValue: 800] [[
The System.out message]]

We will later learn how to change the verbosity level and the format of these logging
lines.

JDK Logging in GlassFish

The logging API specification JSR 47 is part of Java and can be used by any Java program,
including Jakarta EE server applications and of course Java MVC programs. You can
download the specification from https://jcp.org/en/jsr/detail?id=47.

296

https://jcp.org/en/jsr/detail?id=47

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

GlassFish Log Files

GlassFish uses this platform standard API JSR 47 for logging. Unless you change the
configuration, you can find the logging file at

GLASSFISH INST/glassfish/domains/domain1/logs/server.log

In the same folder, you will also find archived logs called server.log TS, were TS is a
timestamp, such as 2019-05-08T15-45-58.

The standard logging format is defined as a combination of various information
snippets, of course including the actual logging message:

[Timestamp] [Product-ID]
[Message-Type] [Message-ID] [Logger-Name] [Thread-ID]
[Raw-Timestamp] [Log-Level]
[[Message]]

For example:

[2019-05-20T14:42:03.796+0200] [glassfish 5.1] [INFO]
[NCLS-CORE-00022] [javax.enterprise.system.core]
[tid: ThreadID=28
_ThreadName=RunLevelControllerThread-1558356114688]
[timeMillis: 1558356123796]
[levelValue: 800]
[[Loading application xmlProcessing done in 742 ms]]

Adding Logging Output to the Console

If you want to have the logging output also appear in the terminal where your start the
GlassFish server, use the following:

cd GLASSFISH_INST
bin/asadmin start-domain --verbose

This will show the complete logging output. It will also not place the server process
in the background, as a asadmin start-domain without -verbose does, so the server will
be stopped when you close the terminal. You will not be able to enter more commands

297

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

into the terminal after the server started (for new commands you can of course enter a

second terminal). To stop this foreground server process, press Ctrl+C.

Using the Standard Logging API for Your Own Projects

To add diagnostic output to your own classes using the JSR 47 methodology, you write

something like the following in your classes:

import java.util.logging.logger;

public class MyClass {

private final static Logger LOG =
Logger.getLogger(MyClass.class.toString());

public void someMethod() {

LOG.

entering(this.getClass().toString(),"someMethod");

// different logging levels:

LOG.
LOG.
LOG.
LOG.

LOG

LOG

finest("Finest: ...");
finer("Finer: ...");
fine("Fine: ...");
info("Some info: ...");

.warning("Some warning: ...");
LOG.

severe("Severe: ...");

.exiting(this.getClass().toString(),"someMethod");

For LOG.entering(), there is also a variant where you can add method parameters

to the logging statement. Likewise, for LOG.exiting(), a variant allows you to add a

returned value to the logging statement:

public String someMethod(String p1, int p2) {

298

LOG.

entering(this.getClass().toString(),"someMethod",

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

new Object[]{ p1, p2 });

String res = ...;

LOG.exiting(this.getClass().toString(),"someMethod",
res);

return res;

}

Logging Levels

From these examples, you can see there are several levels you can use to indicate the
severity of logging output. For standard logging, the levels are, in order, severe » warning
» info » fine » finer » finest. This greatly improves the usability of logging. At an early
stage of a project, you can set the logging threshold to a low value, for example fine, and
you will see all the fine-level logging and all higher levels up to severe in the logging file.

If you lower the threshold (to finest, for example), the logging shows more detail,
but the logging file will be larger of course. This is why you do this for bug-fixing
purposes; having more detail helps you more easily identify problematic code. Later
in the project, when the maturity rises, you apply a higher threshold (such as warning
for example). This way, the logging file does not get too big, but you still see important
issues in the logging.

The special Logger methods called entering() and exiting() belong to the log
level finer. All the other methods we showed here match the equally named level, so a
LOG. severe() belongs to level severe, a LOG.warning() belongs to level warning,
and so on.

The Logger Hierarchy and Thresholds
Ifyou create a logger like this:
Logger.getLogger("com.example.projxyz.domain.Person");

You can span up a hierarchy com » com.example »com.example.projxyz » com.
example.projxyz.domain » com.example.projxyz.domain.Person.

299

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

This plays a role if you assign logging thresholds. This assignment happens in the
configuration, via asadmin, or in the web administration console. We will see shortly
how to do that. It is important to know that the threshold setting follows the logger
hierarchy. If you assign a level LEV1 (severe, warning, info, and so on) to com, this means
the complete subtree at com gets the LEV1 threshold., unless you also specify levels for
elements deeper in the hierarchy. So if you also assign a LEV2 level to com.example, LEV2
takes precedence over LEV1 for com.example and all elements deeper in that hierarchy.
More precisely, the rules are shown in Table 11-1.

Table 11-1. Logging Hierarchy Rules

Hierarchy Level Logger Description

com FINE com.ClassA FINE applies, because com.ClassA is inside the com
hierarchy.

com FINE org.ClassA FINE does not apply, because org.ClassA is not

inside the com hierarchy.

com.ClassA FINER com.ClassA FINER applies, because com.ClassA is inside the
com.ClassA hierarchy. FINE no longer applies,
because the hierarchy specification com.ClassA is
more specific compared to just com.

com.example WARNING com.ClassA WARNING does not apply, because com.ClassA is not
inside the com. example hierarchy.

com.example WARNING com. WARNING applies, because com.example.ClassAis
example. inside the com.example hierarchy. The level specified
ClassA for com no longer applies, because com.example is

more specific compared to com.

com.example WARNING org. WARNING does not apply, because org. is not inside
example. the com.example hierarchy.
ClassA

300

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

The Logging Configuration

The logging configuration of a JSR 47 standard logging relies on a configuration file
called logging.properties. Normally, this file resides in the JDK installation directory,
but the GlassFish server overrules the standard logging configuration and uses this file
instead:

GLASSFISH_INST/glassfish/domains/domain1/
config/logging.properties

Here, the various logging properties are specified. We don’t talk about all of them—
the specification for JSR 47 and the GlassFish server documentation will give you more
ideas. The most important settings are the level thresholds. You will find them under the
#A1l log level details line:

#A1l log level details
com.sun.enterprise.server.logging.GFFileHandler.level=ALL
javax.enterprise.system.tools.admin.level=INFO
org.apache.jasper.level=INFO
javax.enterprise.system.core.level=INFO
javax.enterprise.system.core.classloading.level=INFO
java.util.logging.ConsoleHandler.level=FINEST
javax.enterprise.system.tools.deployment.level=INFO
javax.enterprise.system.core.transaction.level=INFO
org.apache.catalina.level=INFO
org.apache.coyote.level=INFO

javax.level=INFO

Here, we already have an example for the hierarchic level assignment: if you change
the level at javax.enterprise.system.core.level to FINE, any javax. logger will use
the threshold INFO because of the javax.level = INFOline, buta javax.enterprise.
system.core.Main logger will use FINE, because it matches the level we just entered and
is more specific.

A setting of the form . level=INFO later in the logging.properties file ensures that
all loggers not dedicatedly specified in the logging properties will use the INFO threshold.

301

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

That is why, in the standard configuration variant of GlassFish, no fine, finer, or finest
messages appear.

Instead of changing the file, you can also use the web administration console
athttp://localhost:4848. Navigate to Configurations » Server-Config » Logger
Settings. Changes will be directly written to the logging.properties file.

As a third way to change the logging configuration, the asadmin command-line utility
provides us with various logging related subcommands. The following shows you some
examples:

./asadmin list-log-levels

-> A list of all log levels, like

javax <INFO>
javax.mail <INFO>
javax.org.glassfish.persistence <INFO>
org.apache.catalina <INFO>
org.apache.coyote <INFO>
org.apache.jasper <INFO>
.

./asadmin delete-log-levels javax.mail
-> Deletes a level specification

./asadmin set-log-levels javax.mail=WARNING
-> Setting a specific log level

./asadmin list-log-attributes
-> Shows all log attributes (not the levels)

./asadmin set-log-attributes \
com.sun.enterprise.server.logging.
GFFileHandler.rotationLimitInBytes=2000000

(discard the line break after "logging.")

-> Sets an attribute. Attribute names are the same

as in the logging.properties file

./asadmin rotate-log

-> Manually rotates the log file. Takes the current
server.log file, archives it and starts a fresh

empty server.log file.

302

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Logging level changes are dynamic, so you can change logging levels while the server
is running.

The Logging Format

For the JSR 47 standard logging, the logging format is prescribed by the logging handler.
In order to change the logging format, you have to develop a new logging handler. This is
not particularly hard to achieve, but we leave it to your discretion if you need to change
the format and want to stick to the Java platform logging.

Otherwise, you can easily switch to using a logging library. Most of the candidates
for such a choice allow you to change the logging format by adjusting a configuration
property. We will shortly talk about the Log4j logging framework and also discuss the
logging formatting options that Log4j provides.

Using JDK Standard Logging for Other Servers

Although most developers prefer to use a logging library like Apache Commons Logging,
Log4j, or Logback, you can use the JSR 47 logging for servers other than GlassFish as
well. Just make sure you provide a customized logging.properties file. Do not change
the logging.properties file in the JDK installation folder, though—changing the
configuration there is highly discouraged.

Instead, provide your own logging.properties file and add the following to the
server startup parameters (on one line, remove the line break and the spaces after =):

-Djava.util.logging.config.file=
/path/to/logging.properties

Your server documentation will tell you how to do that.

303

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Adding Log4j Logging to Your Application

Log4j is a logging framework often used for all kinds of Java applications. Its features
include:

e C(lear separation of API and implementation. In a server
environment, you install the Log4j implementation on the server
itself, while on the clients, you only refer to a small-footprint Log4j
API library.

e High performance. Log4j includes lambda support, so message
calculations can be avoided if a corresponding log level will
not be logged. For example, in LOG. info("Exrror", () ->
expensiveOperation()), the method call will not happen if info-
level messages are disabled for the logger.

e Automatic configuration reloading. For Log4j, it is easy to enable
automatic configuration reloading. Any change in the logging
configuration will then be applied immediately without a server
restart.

o The logging format and various other logging properties can be set in
the configuration.

o The Log4 configuration files can be formatted in XML, Java
properties, JSON, and YAML.

o Log4j can easily be extended by plugins.

Log4j can be downloaded from http://logging.apache.org/log4j/2.x/. The still
widely used Log4j version 1.x is deprecated and we will not talk about Log4j in version
1.x in this book.

Log4j needs a couple of additional permissions in order to pass security checks. For
this aim, open this file:

GLASSFISH INST/glassfish/domains/domain1/
config/server.policy

304

http://logging.apache.org/log4j/2.x/

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS
And add the following to the end:

// Added for Log4j2
grant {
permission
java.lang.reflect.ReflectPermission
"suppressAccessChecks";
permission
javax.management.MBeanServerPermission "*";
permission
javax.management.MBeanPermission "*", "*";
permission
java.lang.RuntimePermission "getenv.*";

};

Caution This requirement is specific to the GlassFish server. For other servers,
different settings might be necessary.

Adding Log4j Server-Wide

Adding Log4j server-wide means you put the Log4j implementation into a common
libraries folder, write one Log4j configuration file, which serves all Jakarta EE
applications running on that server at once, and let all applications and application
modules use the Log4j API. This setting needs to be configured only once and then all
the current and future applications on a server can easily use Log4 for their logging
purposes. Because it’s simple, this way of including Log4j is probably used most often.
You can instead add Log4j on a per-application basis, but you should do this only if you
have important reasons to encapsulate Log4j with the applications, such as if you are
also running legacy applications that use old Log4j 1.x versions. We describe this method
a little bit later.

305

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

To add Log4j server-wide, you first download the Log4j distribution from https://
logging.apache.org/log4j/2.x/. Then copy the log4j-core-2.11.2.jar, log4j-api-
2.11.2.jar, and log4j-appserver-2.11.2 files (or whatever version you downloaded)
to the following folder:

GLASSFISH INST/glassfish/domains/domain1/
modules/autostart

Note The Log4j JAR files are implemented as 0SGi bundles. This is why we put
them into the modules folder. If you don’t know 0SGi, consider it an advanced
library management framework.

Then add a file called 1og4j2.json to the GLASSFISH_INST/glassfish/domains/
domaini1/1ib/classes folder. As basic contents of this file, use:

{

"configuration": {
"name": "Default",
"appenders": {
"RollingFile": {
"name":"File",
"fileName":
"${sys:com.sun.aas.instanceRoot}/logs/log4j.log",
"filePattern":
"${sys:com.sun.aas.instanceRoot}/
logs/logaj-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",
"PatternLayout”: {
"pattern”:
"%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"
}’
"Policies": {
"SizeBasedTriggeringPolicy": {
"size":"10 MB"

b

306

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

"DefaultRolloverStrategy": {

"max":"10"
}
}
})
"loggers": {
"logger" : [
{
"name" : "book.javamvc",
"level":"debug",
"appender-ref": {
"ref":"File"
}
1
"name" : "some.other.logger",
"level":"info",
"appender-ref": {
"ref":"File"
}
}

1,

"root": {
"level":"error",
"appender-ref": {

"ref":"File"
}
}
}
}
}

This adds a root logger with the error level and two more loggers, called
book.javamvc and some.other.logger, with threshold levels set to debug and info,
respectively. The logger names inside the “logger” array correspond to logger hierarchy
specifications. They work the same way as described for the standard JDK logging
process (JSR 47). So the book. javamvc logger applies to logging statements

307

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

for book. javamvc.SomeClass and book. javamvc.pckg.0OtherClass, but not to
book.jakarta99.FooClass. The special “root” logger serves as the default and matches
all loggers for which no explicit logger specification can be found.

This file gives you a starting point. You can add more appenders and loggers. See the
latest Log4j2 documentation on the Internet to learn how to extend the configuration.

Note Log4j allows configuration files to use different formats. We chose the
JSON format because of its conciseness.

If the server is running, restart it. This needs to be done because of the global
nature of adding Log4j this way. You can now start using Log4j in your applications, as
described in the "Using Log4j in the Coding” section.

Note Add -Dlog4j2.debug as a server startup JVM parameter to get more
output about what Log4j is doing. This meta-diagnostic information is printed to
the standard server. log file.

Changing the Logging Format

In the Log4j configuration file, we already specified a logging pattern:

"pattern”:
"%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

This prints a timestamp, as specified by %d{yyyy-MM-dd HH:mm:ss}, the logging level
as specified by %p (the —5 adds a padding to the output), the last path element of the
logger name as specified by %c{1}, the line number because of the %L, and the message
because of the %m. The %n finally adds a line break at the end.

You can change this at will. The section entitled “Layouts” of online Log4j2 manual
lists all the options. Table 11-2 shows the most important options.

308

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Table 11-2. Logging Patterns

Pattern Description

m The message.

C The name of the logger.

c[N] Only the last N path parts of the logger name. So with a logger called
org.example.memory.Main, a %c{1} creates Main as output, a
%{2} creates memory.Main, and so on.

c[-N] Remove the first N path parts of the logger name. So with a logger called
org.example.memory.Main, a %c{-1} creates example.memory.
Main, and so on.

c[1.] Replaces all but the last part of the logger name with a dot “.”. So with
a logger called org.example.memory.Main, a %c{1.} creates
o.e.m.Main.

p The log level.

-5p The log level, right-padded with spaces to five characters.

d Outputs a timestamp like 2019-09-23

d[DEFAULT_MICROS]

d[I508601]
d[UNIX MILLIS]
highlight{p}

07:23:45,123.

Same as plain %d, but adds the microseconds: 2019-09-23
07:23:45,123456.

Output such as 2019-09-23T07:23:45,123.
Milliseconds since 1970-01-01 00:00:00 UTC.

Adds ANSI colors to the enclosed pattern, p. For example:
highlight{%d %-5p %c{1.}: %m}%n.

The line number. This is an expensive operation; use it with care.
The method name. This is an expensive operation; use it with care.
Line break.

The name of the thread.

The ID of the thread.

Log4j2 also creates logging output in CSV format, in GELF format, embedded in a
HTML page, and as JSON, XML, or YAML. See the Log4j2 manual for details.

309

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Adding Log4j to Jakarta EE Web Applications

If you think you should add Log4j on a per-application basis and leave other applications
running on the server unaffected, you can add the Log4j implementation to your web
application (WAR).

Note Running Log4j in such an isolated way could be necessary if your server is
also running legacy applications that use the the old Log4j 1.x .

To add the Log4j implementation, we update the dependencies in our Gradle build
file. Open the build.gradle file and add the following to the dependencies { } section:

implementation 'org.apache.logging.log4j:log4j-core
:2.11.2"

implementation 'com.fasterxml.jackson.core:jackson-core
:2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-
databind:2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-
annotations:2.7.4'

Here, the central part is the dependency on log4j-core; the dependencies on
jackson are needed because we will be using JSON-formatted configuration files and
Log4j needs jackson to parse them.

The Log4j configuration file needs to be called log4j2.json and it must be placed in
the src/main/resources folder for web applications (WARs). As a simple configuration,
set the contents of 1og4j2.json to the following:

{

"configuration": {

"name": "Default",

"appenders": {
"RollingFile": {
"name":"File",

"fileName":

"${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

"filePattern":

310

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

"${sys:com.sun.aas.instanceRoot}/
logs/logaj-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",
"PatternLayout”: {
"pattern”:
"%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"
}s
"Policies": {
"SizeBasedTriggeringPolicy": {
"size":"10 MB"

}

1
"DefaultRolloverStrategy": {

}
}

max" :"10

})
"loggers": {
"logger" : [
{
"name" : "book.javamvc",
"level”:"debug",
"appender-ref": {
"ref":"File"
}
1

"name" : "some.other.logger",
"level”:"debug",
"appender-ref": {
"ref":"File"
}
}
])
"root": {
"level”:"debug",

"appender-ref": {

311

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

"ref":"File"

Using Log4j in the Coding

To use Log4 in your Java MVC application, make sure each project in question has the
following Gradle dependency:

implementation 'org.apache.logging.log4j:log4j-api:2.11.2"

You then import Logger and LogManager into the classes and use a static logger field,
as follows:

import org.apache.logging.log4j.*;

public class SomeClass {
private final static Logger LOG =
LogManager .getLogger (SomeClass.class);

public void someMethod() {

// different logging levels:
LOG.trace("Trace: ...");
LOG.debug("Debug: ...");
LOG.info("Some info: ...");
LOG.warn("Some warning: ...");
LOG.error("Some error: ...");
LOG.fatal("Some fatal error: ...");

// Logging in try-catch clauses
try {

} catch(Exception e) {

312

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

LOG.error("Some error", e);

}
}
}
Inside the log4j2. json configuration file, the level inside each logger then declares
a logging threshold:
"loggers": {
"logger": [
{

"name": "book.javamvc",

"level":"debug",

"appender-ref": {
"ref":"appenderName"

}

The level can be set to trace, debug, info, warn, error, or fatal.

Exercises

Exercise 1: Add JSR 47 logging (in the java.util.logging
package) to the @PostConstruct public void init() and
@0verride public Map<String, Object> getProperties()
methods of the App class from Chapter 4 (the HelloWorld
application). Tell how to enter each method, and also about the
properties set in getProperties().

Exercise 2: Add server-wide Log4j logging to your GlassFish
server. Choose any of your projects and add Log4j logging to it.

313

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Summary

Logging is a vital part of any application of mid- to high-level complexity. While the
program runs through its execution paths, several logging statements describe what
the program is doing, which parameters are passed to method calls, what values local
variables and class fields have and how they change, which decisions are made, and so
on. This logging information is collected and sent to a file, a database, a message queue,
or whatever, and the developer and the operations team can investigate program flows
for bug-fixing or auditing purposes.

The logging API specification JSR 47 is part of Java and can be used by any Java
program, including Jakarta EE server applications and Java MVC programs. You can
download the specification from https://jcp.org/en/jsr/detail?id=47.

GlassFish uses this platform standard API JSR 47 for logging. Unless you change the
configuration, you can find the logging file here:

GLASSFISH_INST/glassfish/domains/domain1/logs/server.log

To add diagnostic output to your own classes using the JSR 47 methodology, you
write the following in your classes:

import java.util.logging.logger;

public class MyClass {
private final static Logger LOG =
Logger.getLogger(MyClass.class.toString());

public void someMethod() {
LOG.entering(this.getClass().toString(),"someMethod");

// different logging levels:
LOG.finest("Finest: ...");
LOG.finer("Finer: ...");
LOG.fine("Fine: ...");
LOG.info("Some info: ...");
LOG.warning("Some warning: ...");
LOG.severe("Severe: ...");

314

https://jcp.org/en/jsr/detail?id=47

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

LOG.exiting(this.getClass().toString(),"someMethod");
}

For standard logging, the levels are, in order, severe » warning » info » fine » finer
» finest. This greatly improves the usability of logging. At an early stage of a project, you
can set the logging threshold to a low value, for example fine, and you will see all the
fine-level logging and higher levels, up to severe, in the logging file.

The logging configuration of a JSR 47 standard logging relies on a configuration file
called logging.properties. Normally, this file resides in the JDK installation directory,
but the GlassFish server overrules the standard logging configuration and uses this file
instead:

GLASSFISH INST/glassfish/domains/domain1/ config/logging.properties

Log4j is a logging framework often used for all kinds of Java applications. Log4j can
be downloaded from http://logging.apache.org/log4j/2.x/.

Adding Log4j server-wide means you put the Log4j implementation into a
common libraries folder, write one Log4j configuration file, which serves all Jakarta EE
applications running on that server at once, and let all applications and application
modules use the Log4j API. Because this needs to be configured only once and then
all the current and future applications on a server can easily use Log4 for their logging
purposes, this way of including Log4j is probably most common. You can instead add
Log4j on a per-application basis, but you should do this only if you have important
reasons to encapsulate Log4j with the applications, such as if you are also running legacy
applications that use old Log4j 1.x versions.

To add Log4j server-wide, you first download the Log4j distribution from https://
logging.apache.org/log4j/2.x/. Then copy the log4j-core-2.11.2.jar, log4j-api-
2.11.2.jar, and log4j-appserver-2.11.2 files (or whatever version you downloaded)
to this folder:

GLASSFISH_INST/glassfish/domains/domain1/
modules/autostart

315

http://logging.apache.org/log4j/2.x
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

Then add the log4j2.json file to the GLASSFISH _INST/glassfish/domains/
domaini/1lib/classes folder. The basic contents of this file are as follows:

{

"configuration": {
"name": "Default",
"appenders": {
"RollingFile": {
"name":"File",
"fileName":
"${sys:com.sun.aas.instanceRoot}/logs/log4j.log",
“filePattern”:
"${sys:com.sun.aas.instanceRoot}/
logs/logaj-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",
"PatternLayout": {
"pattern”:
"%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"
}J
"Policies": {
"SizeBasedTriggeringPolicy": {
"size":"10 MB"

}s
"DefaultRolloverStrategy”: {

umaxu:nlon

})
"loggers": {
"logger" : [
{
"name" : "book.javamvc",
"level":"debug",
"appender-ref": {
"ref":"File"

316

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

1

"name" : "some.other.logger",
"level":"info",
"appender-ref": {

"ref":"File"
}
}

1,

"root": {
"level":"error",
"appender-ref": {

"ref":"File"
}
}
}
}
}

If you think you should add Log4j on a per-application basis and leave other
applications running on the server unaffected, you can add the Log4j implementation to
your web application (WAR).

To add the Log4j implementation, you update the dependencies in your Gradle build
file. Open the build.gradle file and add this to the dependencies { } section:

implementation 'org.apache.logging.log4j:log4j-core
:2.11.2"

implementation 'com.fasterxml.jackson.core:jackson-core
:2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-
databind:2.7.4'

implementation 'com.fasterxml.jackson.core:jackson-
annotations:2.7.4'

Here, the central part is the dependency on log4j-core; the dependencies on
jackson are needed because we will be using JSON-formatted configuration files and
Log4j needs jackson to parse them.

317

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

The configuration file for Log4j needs to be called 1og4j2.json and it must go in the
src/main/resources folder for web applications (WARs). As a simple configuration, set
the contents of 1og4j2. json to the following:

{

"configuration": {
"name": "Default",
"appenders": {
"RollingFile": {
"name":"File",
"fileName":
"${sys:com.sun.aas.instanceRoot}/logs/log4j.log",
"filePattern":
"${sys:com.sun.aas.instanceRoot}/
logs/logaj-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",
"PatternLayout”: {
"pattern”:
"%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"
}J
"Policies": {
"SizeBasedTriggeringPolicy": {
"size":"10 MB"
}

b
"DefaultRolloverStrategy": {

"maX" : II10

}

}

})

"loggers": {

"logger" : [

{

"name" : "book.javamvc",
"level":"debug",
"appender-ref": {

318

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

"ref":"File"
}

1
"name" : "some.other.logger",
"level":"debug",
"appender-ref": {
"ref":"File"
}

}

])

"root": {
"level":"debug",
"appender-ref": {
"ref":"File"

}
}
}
}

To use Log4 in your Java MVC application, make sure each project in question also

has the following Gradle dependency:
implementation 'org.apache.logging.log4j:log4j-api:2.11.2'

You then import Logger and LogManager in the classes and use a static logger field,

as follows:
import org.apache.logging.log4j.*;
public class SomeClass {
private final static Logger LOG =
LogManager.getLogger(SomeClass.class);

public void someMethod() {

319

CHAPTER 11 LOGGING JAVA MVC APPLICATIONS

// different logging levels:
LOG.trace("Trace: ...");
LOG.debug("Debug: ...");
LOG.info("Some info: ...");
LOG.warn("Some warning: ...");
LOG.error("Some error: ...");
LOG.fatal("Some fatal error: ...");

// Logging in try-catch clauses
try {

} catch(Exception e) {

LOG.error("Some error", e);

In the next chapter, which concludes the book, we work out a comprehensive
example Java MVC application.

320

CHAPTER 12

A Java MVC Example
Application

We finish the book with a comprehensive example application covering many of the
aspects we talked about in previous chapters. The application in question is a book
club administration that we call BooK1ubb. We limit the domain to books and members,
which only to some small extent supersedes the various examples we already talked
about, but nevertheless can serve as a blueprint for many applications. You'll often
encounter this kind of people-things combination.

The BooK1lubb application concentrates on Java MVC capabilities; we do not spend
much energy on frontend design and we also do not use AJAX, to keep the distraction at
a minimum. Of course, you can work out the application to any extent you like.

The BooKlubb Database

We talked about using databases in Chapter 10. We use the same built-in Apache Derby
database for BooKlubb. There are three tables: MEMBER for BooK1ubb members, BOOK for
the books, and BOOK_RENTAL for book rental information (assigning books to members).
Before you can use Apache Derby, remember you have to start it via bin/asadmin
start-database from inside the GlassFish installation folder.
Next we connect to the new database via the ij client (use any other suitable DB
client if you like), and add user credentials to it:

cd [GLASSFISH_INST]

cd javadb/bin

start the DB client

/1]

ij> connect 'jdbc:derby://localhost:1527/booklubb;

321
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1_12

https://doi.org/10.1007/978-1-4842-6280-1_12#DOI

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

create=true;user=bk’;
ij> call SYSCS UTIL.SYSCS CREATE USER('bk','pw715');

Note Next time you connect, you have to provide the password, as in connect
'...;user=bk;password=pw715’;

To create the tables and ID sequences, you enter the following:

CREATE TABLE MEMBER (
ID INT NOT NULL,
FIRST NAME VARCHAR(128) NOT NULL,
LAST NAME VARCHAR(128) NOT NULL,
BIRTHDAY DATE NOT NULL,
SSN VARCHAR(16) NOT NULL,
PRIMARY KEY (ID));
CREATE SEQUENCE MEMBER SEQ start with 1 increment by 1;

CREATE TABLE BOOK (
1D INT NOT NULL,
TITLE VARCHAR(128) NOT NULL,
AUTHOR_FIRST NAME VARCHAR(128) NOT NULL,
AUTHOR_LAST_NAME ~ VARCHAR(128) NOT NULL,
MAKE DATE NOT NULL,
ISBN VARCHAR(24) NOT NULL,
PRIMARY KEY (ID));
CREATE SEQUENCE BOOK_SEQ start with 1 increment by 1;

CREATE TABLE RENTAL (
1D INT NOT NULL,
MEMBER_ID INT NOT NULL,
BOOK_ID INT NOT NULL,
RENTAL_DAY DATE NOT NULL,
PRIMARY KEY (ID));
CREATE SEQUENCE RENTAL_SEQ start with 1 increment by 1;

322

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

In the GlassFish server, we need to create resources for the database connection. We
can use the asadmin tool to achieve that:

cd [GLASSFISH INST]
cd bin
./asadmin create-jdbc-connection-pool \
--datasourceclassname \
org.apache.derby. jdbc.ClientXADataSource \
--restype javax.sql.XADataSource \
--property \
portNumber=1527:password=pw715:user=bk:
serverName=localhost:databaseName=booklubb:
securityMechanism=3 \
BooKlubbPool

./asadmin create-jdbc-resource \
--connectionpoolid BooKlubbPool jdbc/BooKlubb

(There should be no line break and no spaces after bk: and booklubb:.). Because of
these resources, JPA knows how to connect to the database. JPA needs a datasource and
the commands create exactly such a datasource.

Caution Datasource creation is specific to the server. If you use a server other
than GlassFish, you have to consult the manual in order to learn how to crate
datasources.

The BooKlubb Eclipse Project

Open Eclipse and select any suitable workspace. For example, choose the same
workspace as in the book’s examples.

Create a new Gradle project: choose File » New » Other... » Gradle » Gradle
Project. Enter the name BooK1ubb.

If a build path error appears (view Problems), right-click the project and choose
Properties » Java Build Path. Remove the false JRE System Library (marked unbound),
then choose Add Library and select your Java 8 JDK. Click Apply and Close. Also see the
section entitled “More About Gradle” in Chapter 3.

323

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Replace the contents of the build.gradle file with the following:

plugins {
id 'war'
}
java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}
repositories {
jecenter()
}

dependencies {
testImplementation 'junit:junit:4.12'
implementation 'javax:javaee-api:8.0'
implementation 'javax.mvc:javax.mvc-api:1.0.0'
implementation 'org.eclipse.krazo:krazo-jersey:1.1.0-M1'
implementation 'jstl:jstl:1.2'

}

task localDeploy(dependsOn: war,
description:">>> Local deploy task") {
doLast {
def FS = File.separator
def glassfish =
project.properties['glassfish.inst.dir']
def user = project.properties['glassfish.user’]
def passwd = project.properties|['glassfish.passwd"]

File temp = File.createTempFile("asadmin-passwd",
n .tmpll)
temp << "AS_ADMIN ${user}=${passwd}\n"

def sout = new StringBuilder()
def serr = new StringBuilder()
def libsDir =

324

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

"${project.projectDir}${FS}build${FS}1libs"

def proc = """${glassfish}${FS}bin${FS}tasadmin
--user ${user} --passwordfile ${temp.absolutePath}
deploy --force=true
${1ibsDir}/${project.name}.war

proc.waitForProcessOutput(sout, serr)

println "out> ${sout}"

if(serr.toString()) System.err.println(serr)

.execute()

temp.delete()

}
}

task localUndeploy(
description:">>> Local undeploy task") {
doLast {
def FS = File.separator
def glassfish =
project.properties['glassfish.inst.dir']
def user = project.properties['glassfish.user’]
def passwd = project.properties|'glassfish.passwd']

File temp = File.createTempFile("asadmin-passwd",
n ._tmp")
temp << "AS_ADMIN_${user}=${passwd}\n"

def sout = new StringBuilder()

def serr = new StringBuilder()

def proc = """${glassfish}${FS}bin${FS}asadmin
--user ${user} --passwordfile ${temp.absolutePath}
undeploy ${project.name}""".execute()

proc.waitForProcessOutput(sout, serr)

println "out> ${sout}"

if(serr.toString()) System.err.println(serr)

temp.delete()

325

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

This is the same build file described in Chapter 4. Choose Gradle » Refresh Gradle
Project to make sure the dependencies are transported to the Java build path.

As a configuration for deployment and “un-deployment,” add a gradle.properties
file to the project, adapting the values according to your needs:

glassfish.inst.dir = /path/to/your/glassfishs5.1
glassfish.user = admin
glassfish.passwd =

The BooKlubb Infrastructure Classes

Similar to the HelloWorld example in Chapter 4, we use the App and RootRedirector
classes to tailor the context path and create the landing page:

package book.javamvc.bk;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.logger;

import javax.annotation.PostConstruct;
import javax.inject.Inject;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")

public class App extends Application {
@PostConstruct
public void init() {
}

@verride
public Map<String, Object> getProperties() {
Map<String, Object> res = new HashMap<>();
res.put("I18N_TEXT ATTRIBUTE NAME",
"nsg");
res.put("I18N_TEXT BASE_NAME",
"book.javamvc.bk.messages.Messages");

326

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

return res;

}
}

and
package book.javamvc.bk;

import javax.servlet.FilterChain;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpFilter;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

/**
* Redirecting http://localhost:8080/BooKlubb/
* This way we don't need a <welcome-file-list> in web.xml
*/
@WebFilter(urlPatterns = "/")
public class RootRedirector extends HttpFilter {
private static final long serialVersionUID =
7332909156163673868L ;
@verride
protected void doFilter(final HttpServletRequest req,
final HttpServletResponse res,
final FilterChain chain) throws IOException {
res.sendRedirect("mvc/bk");
}
}

327

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Configuring BooKlubb Database Access

The application uses JPA to access the database. As described in Chapter 10, we need a
persistence.xml file in src/main/resources/META-INF, as follows:

<persistence
xmlns="http://java.sun.com/xml/ns/persistence”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://java.sun.com/xml/ns/persistence
persistence 1 0.xsd"
version="1.0">
<persistence-unit name="default" transaction-type="JTA">
<jta-data-source>jdbc/BooKlubb</jta-data-source>
<exclude-unlisted-classes>
false
</exclude-unlisted-classes>
<properties />
</persistence-unit>
</persistence>

This file’s main responsibility is to describe which database to use for the
application.

The BooKlubb Internationalization

As Chapter 8 described, we use two classes, called BundleForEL and SetBundleFilter,
for internationalization purposes:

package book.javamvc.bk.i18n;

import java.util.Enumeration;

import java.util.locale;

import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

public class BundleForEL extends ResourceBundle {
private BundleForEL(Locale locale, String baseName) {

328

}

and

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

setLocale(locale, baseName);

}

public static void setFor(HttpServletRequest request,
String i18nAttributeName, String i18nBaseName) {
if (request.getSession().
getAttribute(i18nAttributeName) == null) {
request.getSession().setAttribute(
i18nAttributeName,
new BundleForEL(request.getlocale(),
i18nBaseName));

}
}

public void setlLocale(Locale locale,
String baseName) {
if (parent == null ||
I'parent.getlocale().equals(locale)) {
setParent(getBundle(baseName, locale));

}

@verride
public Enumeration<String> getKeys() {
return parent.getKeys();

}

@verride
protected Object handleGetObject(String key) {
return parent.getObject(key);

package book.javamvc.bk.i18n;

import java.io.IOException;

import java.util.Map;

329

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

import javax.inject.Inject;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import javax.ws.rs.core.Application;

@WebFilter("/*")

public class SetBundleFilter implements Filter {
@Inject private Application appl;
private String i18nAttributeName;
private String ii8nBaseName;

@0verride
public void init(FilterConfig filterConfig)
throws ServletException {
Map<String,Object> applProps = appl.getProperties();
i18nAttributeName = (String) applProps.get(
"I18N TEXT ATTRIBUTE_NAME");
i18nBaseName = (String) applProps.get(
"T18N_TEXT_BASE_NAME");

@verride
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
BundleForEL.setFor((HttpServletRequest) request,
i18nAttributeName, ii8nBaseName);
chain.doFilter(request, response);

}

330

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

@Override
public void destroy() {

}

In src/main/resources/book/javamvc/bk/messages/Messages.properties, we put

aresources file with these contents:
title = BooKlubb

menu_search member = Search Member
menu_new_member = New Member
menu_search_book = Search Book
menu_new_book = New Book

current_member = Current Member:
enter_memberFirstName = First Name:

Last Name:
Birthday:

enter memberLastName

enter memberBirthday

enter_memberSsn = SSN:

enter authorFirstName = Author First Name:

enter_authorlLastName = Author First Name:
enter bookTitle = Title:

enter bookMake = Make:

enter_isbn = ISBN:

hd _searchResult = Search Result
Search Member

hd_searchMember
hd_newMember = New Member
hd_searchBook = Search Book
hd_newBook = New Book
hd_memberDetails = Member Details

hd_booksAssigned

Books Assigned

tblhdr_id = ID
tblhdr last name = Last Name
tblhdr first name = First Name

331

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

tblhdr_birthday = Birthday

tblhdr ssn = SSN

tblhdr author last name = Last Name
tblhdr_author_first name = First Name
tblhdr book title = Title

tblhdr book make = Make

tblhdr isbn = ISBN

btn_search = Search

btn_new = New

btn_delete = Delete

btn_select = Select

btn_details = \u2190

btn_assign = Assign
btn_unassign = Unassign

no result = ---- No result ----

new_member_added = New Member Added
new_book added = New Book Added
member_deleted = Member Deleted
book_deleted = Book Deleted

memb_id = ID:

memb_firstName = First Name:
memb_lastName = Last Name:
memb_birthday = Birthday:

memb_ssn = SSN:

These key-value pairs are used exclusively by the view pages only.

332

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

The BooKlubb Entity Classes

With the database table definitions at hand, we can immediately write the JPA entity
classes. This is possible without having defined any functionalities, since entity classes
don’t contain any programming logic. For BooK1lubb, they read as follows:

package book.javamvc.bk.db;

import java.util.Date;
import java.util.Set;

import javax.persistence.CascadeType;
import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.OneToMany;

import javax.persistence.SequenceGenerator;
import javax.persistence.Table;

import javax.validation.constraints.NotNull;

@Entity
@Table(name = "MEMBER")
@SequenceGenerator(name = "MEMBER SEQ", initialValue = 1,
allocationSize = 1)
public class Member {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY,
generator = "MEMBER_SEQ")
@Column(name = "id")

private int id;

@NotNull
@Column(name = "first name")
private String firstName;

@NotNull
333

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

@Column(name = "last name")
private String lastName;

@NotNull

@Column(name = "birthday")
private Date birthday;
@NotNull

@Column(name = "ssn"

private String ssn;

@JoinColumn(name = "MEMBER ID")
@0OneToMany(cascade = CascadeType.ALL, orphanRemoval=true)
private Set<Rental> rental;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getlLastName() {
return lastName;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

334

CHAPTER 12

public Date getBirthday() {
return birthday;

}

public void setBirthday(Date birthday) {
this.birthday = birthday;

}

public String getSsn() {
return ssn;

}

public void setSsn(String ssn) {
this.ssn = ssn;

}

public Set<Rental> getRental() {
return rental;

}

public void setRental(Set<Rental> rental) {
this.rental = rental;

}
}

and

package book.javamvc.bk.db;

import

import
import
import
import
import
import
import
import
import

java.util.Date;

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

persistence.
persistence.
persistence.
persistence.
persistence.
persistence.
persistence.
persistence.
persistence.

CascadeType;
Column;

Entity;
GeneratedValue;
GenerationType;
Id;

OneToOne;
SequenceGenerator;
Table;

A JAVA MVC EXAMPLE APPLICATION

335

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

import javax.validation.constraints.NotNull;

@Entity
@Table(name = "BOOK")
@SequenceGenerator(name = "BOOK SEQ", initialValue = 1,
allocationSize = 1)
public class Book {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY,
generator = "BOOK_SEQ")
@Column(name = "id")
private int id;

@NotNull
@Column(name = "title")
private String title;

@NotNull
@Column(name = "author first name")
private String authorFirstName;

@NotNull
@Column(name = "author last name")
private String authorLastName;

@NotNull
@Column(name = "make")
private Date make;

@NotNull
@Column(name = "isbn")
private String isbn;

@0neToOne(cascade = CascadeType.ALL, orphanRemoval=true,
mappedBy = "book")
private Rental rental;

public int getId() {
return id;

}
336

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

public void setId(int id) {
this.id = id;
}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getAuthorFirstName() {
return authorFirstName;

}

public void setAuthorFirstName(String authorFirstName) {
this.authorFirstName = authorFirstName;

}

public String getAuthorLastName() {
return authorLastName;

}

public void setAuthorLastName(String authorLastName) {
this.authorLastName = authorlLastName;

}

public Date getMake() {
return make;

}

public void setMake(Date make) {
this.make = make;

}

public String getIsbn() {
return isbn;

}

337

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

public void setIsbn(String isbn) {
this.isbn = isbn;

}

public Rental getRental() {
return rental;

}

public void setRental(Rental rental) {
this.rental = rental;

}
}

and
package book.javamvc.bk.db;
import java.util.Date;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.JoinColumn;

import javax.persistence.OneToOne;

import javax.persistence.SequenceCenerator;
import javax.persistence.Table;

import javax.validation.constraints.NotNull;

@Entity
@Table(name = "RENTAL")
@SequenceGenerator(name = "RENTAL SEQ", initialValue = 1,
allocationSize = 1)
public class Rental {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY,
generator = "RENTAL_SEQ")
@Column(name = "id")

338

CHAPTER 12

private int id;

@NotNull
@Column(name = "member id")
private int memberId;

@NotNull

@JoinColumn(name = "book id")
@0neToOne

private Book book;

@NotNull
@Column(name = "rental day")
private Date rentalDay;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public int getMemberId() {
return memberId,

}

public void setMemberId(int memberId) {
this.memberId = memberId;

}

public Book getBook() {
return book;

}

public void setBook(Book book) {
this.book = book;

}
public Date getRentalDay() {

A JAVA MVC EXAMPLE APPLICATION

339

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

return rentalDay;

}

public void setRentalDay(Date rentalDay) {
this.rentalDay = rentalDay;

}
}

These classes reflect the database table fields and the relationships via the @neToOne
and @0OneToMany annotations. The idea behind the latter is that a member may have zero,
one, or more books rented (@0neToMany), and a book may or may not be rented
(@0neToOne, with “not rented” reflected as a null value).

BooKlubb Database Access via DAOs

The DAOs encapsulate handling database access and deal with the entity classes. The
DAOs provide methods to create, update, and delete entities, and to search inside the
database. We put them in the book. javamvc.bk.db package.

package book.javamvc.bk.db;

import java.util.Date;
import java.util.list;
import java.util.Optional;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.TypedQuery;

@Stateless

public class MemberDAO {
@PersistenceContext
private EntityManager em;

public int addMember(String firstName, String lastName,
Date birthday, String ssn) {

340

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

// First check if there is already a member with the
// same SSN. Create a new entry only if none found.
List<?> 1 = em.createQuery("SELECT m FROM Member m "+
"WHERE m.ssn=:ssn").
setParameter("ssn", ssn).
getResultList();
int id = 0;
if(1.isEmpty()) {
Member member = new Member();
member .setFirstName(firstName);
member .setLastName(lastName);
member.setBirthday(birthday);
member.setSsn(ssn);
em.persist(member);
em.flush(); // needed to get the ID
id = member.getId();
} else {
id = ((Member)l.get(0)).getId();
}

return id;

}

public List<Member> allMembers() {
TypedQuery<Member> q = em.createQuery(
"SELECT m FROM Member m", Member.class);
List<Member> 1 = q.getResultList();
return 1;

}

public Member memberById(int id) {
return em.find(Member.class, id);

}

public Optional<Member> memberBySsn(String ssn) {
List<?> 1 = em.createQuery("SELECT m FROM Member m "+
"WHERE m.ssn=:ssn").
setParameter("ssn", ssn).

341

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

getResultlist();
if(1.isEmpty()) {
return Optional.empty();
} else {
return Optional.of((Member)l.get(0));

}
}

@SuppressWarnings("unchecked")
public List<Member> membersByName(String firstName,
String lastName) {

List<?> 1 = em.createQuery("SELECT m FROM Member m "+
"WHERE m.firstName LIKE :fn AND "+
"m.lastName LIKE :1n").

setParameter("fn", firstName.isEmpty() ?
"% "%" + firstName + "%").
setParameter("1n", lastName.isEmpty() ?
"%t c "%" + lastName + "%").
getResultlist();
return (List<Member>) 1;

}

public void deleteMember(int id) {
Member member = em.find(Member.class, id);
em.remove (member);

}
}

You can see that we inject an instance of EntityManager as an interface to JPA. From
there, we can use its methods to access database tables. For example, in addMember (), we
use the JPA Query Language (JQL) to search the member’s table using the SSN given as
a method parameter, and if we can’t find one, we save a new entity via EntityManager.
persist(). In memberById() instead we can directly use EntityManager.find(), since
the argument is the entity class’ primary key ID.

342

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

The other class, called BookDAO, primarily addresses the book table. Its code reads as

follows:

package book.javamvc.bk.db;

import
import
import
import
import

import
import
import
import

java.
java.
java.
java.
java.

util.Date;

util.List;
util.Optional;
util.Set;
util.stream.Collectors;

javax.ejb.Stateless;

javax.persistence.EntityManager;
javax.persistence.PersistenceContext;

javax.persistence.TypedQuery;

@Stateless
public class BookDAO {
@PersistenceContext

private EntityManager em;

public int addBook(String authorFirstName,
String authorlLastName, String title,
Date make, String isbn) {

// First check if there is already a book with the

// same ISBN in the database. Create a new entry

// only if none is found.

List<?> 1 = em.createQuery("SELECT b FROM Book b "+
"WHERE b.isbn=:isbn").

setParameter("isbn", isbn).

getResultList();

int id = 0;

if(1.isEmpty()) {

Book book = new Book();
book.setAuthorFirstName (authorFirstName);
book.setAuthorLastName(authorLastName);
book.setTitle(title);

343

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

book.setMake (make);
book.setIsbn(isbn);
em.persist(book);
em.flush(); // needed to get the ID
id = book.getId();

} else {
id = ((Book)l.get(0)).getId();

}

return id;

}

public List<Book> allBooks() {
TypedQuery<Book> q = em.createQuery(
"SELECT b FROM Book b", Book.class);
List<Book> 1 = q.getResultList();
return 1;

}

public Book bookById(int id) {
return em.find(Book.class, id);

}

public Optional<Book> bookByIsbn(String isbn) {
List<?> 1 = em.createQuery("SELECT b FROM Book b "+
"WHERE b.isbn=:isbn").
setParameter("isbn", isbn).
getResultlist();
if(1.isEmpty()) {
return Optional.empty();
} else {
return Optional.of((Book)l.get(0));
}
}

@SuppressWarnings("unchecked")
public List<Book> booksByName(String authorFirstName,
String authorLastName, String bookTitle) {

344

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

String afn = (authorFirstName == null ||
authorFirstName.isEmpty()) ?
"%" ¢ ("%"+authorFirstName+"%");
String aln = (authorLastName == null ||
authorLastName.isEmpty()) ?
"%" ¢ ("%"+authorLastName+"%");
String t = (bookTitle == null ||
bookTitle.isEmpty()) ?
"%t ("%"+bookTitle+"%");

List<?> 1 = em.createQuery("SELECT b FROM Book b "+
"WHERE b.title LIKE :title AND "+
"b.authorLastName LIKE :aln AND "+
"b.authorFirstName LIKE :afn").

setParameter("title", t).
setParameter("aln", aln).
setParameter("afn", afn).
getResultlist();

return (List<Book>) 1;

}

public void deleteBook(int id) {
Book book = em.find(Book.class, id);
em.remove (book);

}

The third DAO class, called RentalDAOQ, registers book rentals (assigns books to

members):
package book.javamvc.bk.db;

import java.util.Date;
import java.util.Set;
import java.util.stream.Collectors;

import javax.ejb.Stateless;
import javax.persistence.EntityManager;

345

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION
import javax.persistence.PersistenceContext;

@Stateless

public class RentalDAO {
@PersistenceContext
private EntityManager em;

public void rentBook(Book b, Member m, Date day) {
Rental r = b.getRental();
if(r == null) {
r = new Rental();

}

// Update the BOOK table
r.setBook(b);
r.setMemberId(m.getId());
r.setRentalDay(day);
b.setRental(r);
em.merge(b);

// Update the MEMBER table
Set<Rental> rs = m.getRental();
if(rs.stream().allMatch(r1 -> {
return ri.getBook().getId() != b.getId(); })) {
rs.add(r);
m.setRental(rs);
em.merge(m);
}
}

public void unrentBook(Book b, Member m) {
Rental r = b.getRental();
if(r == null) return;

// Update the BOOK table
b.setRental(null);
em.merge(b);

// Update the MEMBER table

346

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Set<Rental> newRental =

m.getRental().stream().filter(xr -> {

return rr.getBook().getId() != b.getId(); }).

collect(Collectors.toSet());

m.setRental(newRental);
em.merge(m);

}
}

The BooKlubb Model

The model part of the BooKlubb application (Java MVC model, not database model)

consists of a couple of classes that transport data between the controller and the views:

MemberModel: Contains a club member. We need it only as an item
type for a member search result list. Request scoped.

MemberSearchResult: A result list from a member search. Request
scoped.

BookModel: Contains book information. We need it as an item type for
a book search result list, and for the book rentals listed in the current
member’s details view. Request scoped.

BookSearchResult: A result list from a book search. Request scoped.

CurrentMember: Contains information about the currently selected
member. This is the only model bean that is session-scoped. We need
this broader scope because a current member can be chosen from
the member search result list and henceforth must be remembered
in order to assign books to this member on a different page.

We put them all in the book. javamvc.bk.model package and the code reads as

follows:

package book.javamvc.bk.model;

import java.util.Date;

public class MemberModel {

347

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

private int id;

private String firstName;
private String lastName;
private Date birthday;
private String ssn;

public MemberModel(int id, String firstName,
String lastName, Date birthday, String ssn) {
this.id = id;
this.firstName = firstName;
this.lastName = lastName;
this.birthday = birthday;
this.ssn = ssn;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getlLastName() {
return lastName;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

348

CHAPTER 12

public Date getBirthday() {
return birthday;

}

public void setBirthday(Date birthday) {
this.birthday = birthday;

}

public String getSsn() {
return ssn;

}

public void setSsn(String ssn) {
this.ssn = ssn;

}
}

and
package book.javamvc.bk.model;

import java.util.Arraylist;
import java.util.list;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

import book.javamvc.bk.db.Member;

@Named
@RequestScoped
public class MemberSearchResult extends
ArraylList<MemberModel>{
private static final long serialVersionUID =
-5926389915908884067L ;
public void addAll(List<Member> 1) {
1.forEach(m -> {
add(new MemberModel(
m.getId(),
m.getFirstName(),

A JAVA MVC EXAMPLE APPLICATION

349

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

m.getLastName(),
m.getBirthday(),
m.getSsn()

));

D;
}

}

In this class, we added a convenience method called addA11(List < Member > 1)
with the Member class from the database layer. Normally we don’t want to use database
entities outside the DAOs, but Member is just a data holder and we don’t need any
functionalities for it. So mixing of layers doesn’t impact the application architecture too
much.

package book.javamvc.bk.model;
import java.util.Date;

public class BookModel {
private int id;
private String authorFirstName;
private String authorLastName;
private String title;
private String isbn;
private Date make;

public BookModel(int id, String authorFirstName,
String authorlLastName, String title, String isbn,
Date make) {
this.id = id;
this.authorFirstName = authorFirstName;
this.authorLastName = authorLastName;
this.title = title;
this.isbn = isbn;
make;

this.make

350

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getAuthorFirstName() {
return authorFirstName;

}

public void setAuthorFirstName(String authorFirstName) {
this.authorFirstName = authorFirstName;

}

public String getAuthorLastName() {
return authorLastName;

}

public void setAuthorLastName(String authorLastName) {
this.authorLastName = authorLastName;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getIsbn() {
return isbn;

}

public void setIsbn(String isbn) {
this.isbn = isbn;

}

351

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

public Date getMake() {
return make;

}

public void setMake(Date make) {
this.make = make;
}
}

and
package book.javamvc.bk.model;

import java.util.Arraylist;
import java.util.Llist;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

import book.javamvc.bk.db.Book;

@Named
@RequestScoped
public class BookSearchResult extends
Arraylist<BookModel>{
private static final long serialVersionUID =
-5926389915908884067L ;
public void addAll(List<Book> 1) {
1.forkEach(b -> {
add(new BookModel(
b.getId(),
b.getAuthorFirstName(),
b.getAuthorLastName(),
b.getTitle(),
b.getIsbn(),
b.getMake()
));
;s
}
}

352

CHAPTER 12
and
package book.javamvc.bk.model;

import java.io.Serializable;
import java.util.Date;
import java.util.Set;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named
@SessionScoped
public class CurrentMember extends MemberModel
implements Serializable {
private static final long serialVersionUID =
-7855133427774616033L;

public CurrentMember(int id, String firstName,
String lastName, Date birthday, String ssn) {
super(id, firstName, lastName, birthday, ssn);

}

private boolean defined = false;
private Set<BookModel> rentals;

public boolean isDefined() {
return defined;

}

public void setDefined(boolean defined) {
this.defined = defined;

}

public void setRentals(Set<BookModel> rentals) {
this.rentals = rentals;

}

A JAVA MVC EXAMPLE APPLICATION

353

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

public Set<BookModel> getRentals() {
return rentals;
}
}

The BooKlubb Controller

The controller is responsible for receiving all POST and GET actions from the views. In Java
MVC and for the BooK1lubb application, it looks like this:

package book.javamvc.bk;
import ...;

@Path("/bk")
@Controller
public class BooKlubbController {
@Named
@RequestScoped
public static class ErrorMessages {
private List<String> msgs = new ArraylList<>();
public List<String> getMsgs() {
return msgs;
}
public void setMsgs(List<String> msgs) {
this.msgs = msgs;
}
public void addMessage(String msg) {
msgs.add(msg);
}
}

private @Inject ErrorMessages errorMessages;
private @Inject BindingResult br;

private @EJB MemberDAO memberDao;
private @Inject MemberSearchResult memberSearchResult;

354

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

private @EJB BookDAO bookDao;
private @Inject BookSearchResult bookSearchResult;

private @EJB RentalDAO rentalDao;

private @Inject CurrentMember currentMember;

// action methods...

We use an inner class for the error messages, and we inject the various model classes
and DAO EJBs needed to access the database.
The complete code reads as follows:

package book.javamvc.bk;

import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.
java.

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

time.

time

time.
util.
util.
util.

util

ejb
ent
inj
inj
mvc
mvc
mvc
mvc
val
WS.
WS.
WS.
WS
WS.
WS.

LocalDate;

.Zoneld;
format.DateTimeFormatter;
Arraylist;

Date;

List;

.stream.Collectors;

.EJB;
erprise.context.RequestScoped;
ect.Inject;

ect.Named;

.Controller;
.binding.BindingResult;
.binding.MvcBinding;
.binding.ParamError;
idation.constraints.Pattern;
rs.FormParam;

1s.GET;

1s5.POST;

.rs.Path;

rs.QueryParam;
Is.core.Response;

355

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

import book.javamvc.bk.db.Book;

import book.javamvc.bk.db.BookDAO;

import book.javamvc.bk.db.Member;

import book.javamvc.bk.db.MemberDAO;

import book.javamvc.bk.db.RentalDAO;

import book.javamvc.bk.model.BookModel;

import book.javamvc.bk.model.BookSearchResult;
import book.javamvc.bk.model.CurrentMember;
import book.javamvc.bk.model.MemberSearchResult;

@Path("/bk")
@Controller
public class BooKlubbController {
@Named
@RequestScoped
public static class ErrorMessages {
private List<String> msgs = new ArraylList<>();
public List<String> getMsgs() {
return msgs;
}
public void setMsgs(List<String> msgs) {
this.msgs = msgs;
}
public void addMessage(String msg) {
msgs.add(msg);
}
}

private @Inject ErrorMessages errorMessages;
private @Inject BindingResult br;

private @EJB MemberDAO memberDao;
private @Inject MemberSearchResult memberSearchResult;

private @EJB BookDAO bookDao;
private @Inject BookSearchResult bookSearchResult;

356

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION
private @EJB RentalDAO rentalDao;
private @Inject CurrentMember currentMember;

We add a couple of methods that use @GET to retrieve pages without user input:

@GET
public String showIndex() {
return "index.jsp";

}

@GET
@Path("/searchMember™)
public Response searchMember() {
return Response.ok("searchMember.jsp").build();

}

@GET
@Path("/newMember")
public Response newMember() {
return Response.ok("newMember.jsp").build();

}

@GET
@Path("/searchBook")
public Response searchBook() {
return Response.ok("searchBook.jsp").build();

}

@GET
@Path("/newBook™)
public Response newBook() {
return Response.ok("newBook.jsp").build();

}

357

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

The following are methods that relate to members: showing a list of searched-for
members, reacting to creating a new member, deleting a member, showing member

details, and selecting a member:

@GET
@Path("/searchMemberSubmit™)
public Response searchMemberSubmit(
@MvcBinding @QueryParam("firstName")
String firstName,
@MvcBinding @QueryParam("lastName")
String lastName,
@MvcBinding @QueryParam("ssn"
String ssn) {
showErrors();

String ssnNormal = ssn == null ?

"" : (ssn.replaceAll("\\D", ""));
List<Member> 1 = new ArraylList<>();
if(!ssnNormal.isEmpty()) {

memberDao.memberBySsn(ssnNormal).ifPresent(
mi -> { l.add(m1); });
} else {

1.addA11(memberDao.membersByName (

firstName, lastName));

}
memberSearchResult.addA11(1);

return Response.ok("searchMemberResult.jsp").build();

}

@POST
@Path("/newMemberSubmit")
public Response newMemberSubmit(
@MvcBinding @FormParam("firstName")
String firstName,
@MvcBinding @FormParam("lastName")
String lastName,

358

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

@MvcBinding @FormParam("birthday")
@Pattern(regexp = "\\d\\d/\\d\\d/\\d\\d\\d\\d")
String birthday,
@MvcBinding @FormParam("ssn"
String ssn) {
showErrors();

DateTimeFormatter dtf = DateTimeFormatter.ofPattern(
"MM/dd/yyyy");
LocalDate 1d = LocalDate.parse(birthday, dtf);
Date date = Date.from(1ld.atStartOfDay(
Zoneld.systemDefault()).toInstant());

memberDao.addMember (firstName, lastName, date, ssn);

return Response.ok("newMemberResult.jsp").build();

}

@POST
@Path("/deleteMember™)
public Response deleteMember (
@MvcBinding @FormParam("memberId")
int memberId) {
showErrors();

memberDao.deleteMember (memberId);

return Response.ok("deleteMemberResult.jsp").build();
}

@POST
@Path("/selectMember™)
public Response selectMember (
@MvcBinding @FormParam("memberId")
int memberId) {
showErrors();

359

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

}

Member m = memberDao.memberById(memberId);

currentMember
currentMember

currentMember.

currentMember

currentMember.

.setId(memberId);
.setFirstName(m.getFirstName());
currentMember.

setLastName(m.getLastName());
setBirthday(m.getBirthday());

.setSsn(m.getSsn());

setDefined(true);

return Response.ok("index.jsp").build();

@POST
@Path("/memberDetails™)
public Response memberDetails(

@MvcBinding @FormParam(“memberId")
int memberId) {

showErrors();

Member m = memberDao.memberById(memberId);

currentMember.
.setFirstName(m.getFirstName());

currentMember

currentMember.
currentMember.
currentMember.

currentMember

setId(memberId);

setLastName(m.getLastName());
setBirthday(m.getBirthday());
setSsn(m.getSsn());

.setRentals(

m.getRental().stream().map(r -> {
Book b = r.getBook();

return new BookModel(b.getId(),
b.getAuthorFirstName(),
b.getAuthorLastName(),
b.getTitle(), b.getIsbn(), b.getMake());

}).collect(Collectors.toSet())

)5

currentMember.setDefined(true);

return Response.ok("memberDetails.jsp").build();

}

360

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

We just need to add the book-related methods, which includes reacting to searching
for books, adding or deleting a book, and assigning or “unassigning” a book:

@GET
@Path("/searchBookSubmit™)
public Response searchBookSubmit(
@MvcBinding @QueryParam("authorFirstName")
String authorFirstName,
@MvcBinding @QueryParam("authorLastName")
String authorLastName,
@MvcBinding @QueryParam("bookTitle")
String bookTitle,
@MvcBinding @QueryParam("isbn™)
String isbn) {
showErrors();

String isbnNormal = isbn == null ?

"" : (isbn.replaceAll("\\D", ""));
List<Book> 1 = new ArraylList<>();
if(!isbnNormal.isEmpty()) {

bookDao.bookByIsbn(isbnNormal).ifPresent(m1 -> {
l.add(m1); });
} else {
1.addA11(bookDao.booksByName(authorFirstName,
authorLastName, bookTitle));

}
bookSearchResult.addA11(1);

return Response.ok("searchBookResult.jsp").build();

}

@POST
@Path("/newBookSubmit™)
public Response newBookSubmit(
@MvcBinding @FormParam(“authorFirstName")
String authorFirstName,
@MvcBinding @FormParam("authorLastName")
String authorLastName,

361

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

@MvcBinding @FormParam(“title")
String bookTitle,

@MvcBinding @FormParam(“make")

@Pattern(regexp = "((\\d\\d/)?\\d\\d/)?\\d\\d\\d\\d")
String make,

@MvcBinding @FormParam("isbn™)
String isbn) {

showErrors();
String isbnNormal = isbn == null ?

"" ¢ (isbn.replaceAll("\\D", ""));
String makeNormal = make == null ? "" : (

make.matches ("\\d\\d\\d\\d") ?
"01/01/" + make :
(make.matches ("\\d\\d/\\d\\d\\d\\d") ?
make.substring(0,2) + "/01" +
make.substring(2) : make)
)5
DateTimeFormatter dtf = DateTimeFormatter.ofPattern(
"MM/dd/yyyy");
LocalDate 1d = LocalDate.parse(makeNormal, dtf);
Date date = Date.from(1ld.atStartOfDay(
Zoneld.systemDefault()).toInstant());
bookDao.addBook (authorFirstName, authorLastName,
bookTitle, date, isbnNormal);

return Response.ok("newBookResult.jsp").build();

}

@POST
@Path("/deleteBook™)
public Response deleteBook(
@MvcBinding @FormParam("bookId")
int bookId) {
showErrors();

362

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

bookDao.deleteBook(bookId);

return Response.ok("deleteBookResult.jsp").build();
}

@POST
@Path("/assignBook")
public Response assignBook(
@MvcBinding @FormParam(“bookId")
int bookId,
@MvcBinding @FormParam(“userId")
int userId) {
showErrors();

Book b = bookDao.bookById(bookId);
memberDao.memberById(userId);
Date now = new Date();
rentalDao.rentBook(b, m, now);

Member m

return Response.ok("index.jsp").build();

}

@POST
@Path("/unassignBook™)
public Response unassignBook (
@MvcBinding @FormParam(“bookId")
int bookId,
@MvcBinding @FormParam(“memberId")
int userId) {
showErrors();

Book b = bookDao.bookById(bookId);
Member m = memberDao.memberById(userId);
rentalDao.unrentBook(b, m);

currentMember.setRentals(
m.getRental().stream().map(r -> {
Book bb = r.getBook();

363

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

return new BookModel(bb.getId(),
bb.getAuthorFirstName(),
bb.getAuthorLastName(),
bb.getTitle(),
bb.getIsbn(),
bb.getMake());

}).collect(Collectors.toSet())

);
return Response.ok("memberDetails.jsp").build();

}

We add one private method, which transports errors detected by Java MVC, and then
close the class:

private void showErrors() {
if(br.isFailed()) {
br.getAllErrors().stream().forEach(
(ParamError pe) -> {
errorMessages.addMessage(pe.getParamName() +
": " + pe.getMessage());
1)
}
}

} // closing the class

The BooKlubb View

As we did in the other Java MVC applications in this book, we add an empty file called
beans.xml to src/main/webapp/WEB-INF. Also, add the usual glassfish-web.xml to the
same folder:

<?xml version="1.0" encoding="UTF-8"?>

<glassfish-web-app error-url=""»>
<class-loader delegate="true"/>

</glassfish-web-app>

364

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Furthermore, download a jQuery distribution and put itin the src/main/webapp/js
folder.
In the following section, we describe the view-related JSP files needed for BooK1lubb.

Fragment Files

These elements are shown on every web page—a main menu, the currently selected
member, and any error information. We therefore extract them as fragments to be
included via the <%@ include ... %> directive.

The fragments are placed in the stc/main/webapp/fragments folder; the code reads
as follows:

<%-- File: currentMember.jsp ikl - %>

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"

n o

uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"

uri="http://java.sun.com/jsp/jstl/fmt" %>

<div style="background-color:#AAA;margin-bottom:1em">
${msg.current _member}
<c:choose>
<c:when test="${! currentMember.defined}">
</c:when>
<c:otherwise>
<fmt:formatDate value="${currentMember.birthday}"
pattern="MM/dd/yyyy" var="cubd" />

${currentMember.firstName}
${currentMember.lastName}
${cubd} (${currentMember.ssn})

</c:otherwise>
</c:choose>

365

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

</div>

<%__ File: errors.jsp >k >k ok ok ok ok >k >k >k ok ok ok ok ok ok ok ok ok ok sk ok >k sk ok sk sk sk sk koo __%>

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>

<div style="color:red">

<c:forEach var="e" items="${errorMessages.msgs}">
${e}
</c:forEach>
</div>

<%-- File: mainMenu.jsp Fokstokkokokstokkookstokkokoksokokokokskokokokokskok 9/

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"

n oo

uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"

uri="http://java.sun.com/jsp/jstl/fmt" %>

<div style="width:30%; float:left;">

<a href="${mvc.uriBuilder(
'BooKlubbController#searchMember').build()}">
${msg.menu_search _member}</1i>
<a href="${mvc.uriBuilder(
'BooKlubbController#newMember").build()}">
${msg.menu_new_member}</1i>
<a href="${mvc.uriBuilder(
'BooKlubbController#searchBook").build()}">
${msg.menu_search book}</1i>
<a href="${mvc.uriBuilder(
'BooKlubbController#newBook').build()}">

366

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

${msg.menu_new_book}</1i>

</div>

Landing Page

The landing page, called index. jsp (in the src/main/webapp/WEB-INF/views folder),
includes the aforementioned fragments and otherwise shows no content:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript" src="${mvc.basePath}/../js/
jquery-3.5.1.min.js">
</script>
<title>${msg.title}</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.title}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
</div>

</div>

</body>
</html>

367

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Caution Make sure you enter the correct version of the jQuery distribution you
downloaded. The same holds true for all JSP files presented in subsequent sections.

All JSP files use the same overall structure:

<div style="float:left">
</div>

This empty tag will serve as a container for the actual page contents. Figure 12-1
shows the browser page when you're entering the application.

BooKlubb

* Search Member
¢ New Member

e Search Book

* New Book

Figure 12-1. BooKlubb landing page

Member-Related View Files

To create a new member, delete a member, search for a member, and show member
details (including books assigned)—as well as for the action result pages for most of
these—we need a separate JSP page. They all reside in the src/main/webapp/WEB-INF/
views folder.

The code to create a new member and the resultant page are as follows:

<%-- File newMember.jsp wkirtikibiomtitiibioptiibik oy

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

368

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript"” src="${mvc.basePath}/../js/jquery--
3.5.1.min.js">
</script>
<title>${msg.title}</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd_newMember}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
<form method="post"
action="${mvc.uriBuilder(
'BooKlubbController#newMemberSubmit").
build()}">
<table><tbody>
<tr>
<td>${msg.enter_memberFirstName}</td>
<td><input type="text" name="firstName" /></td>
</tr>
<tr>
<td>${msg.enter memberLastName}</td>
<td><input type="text" name="lastName" /></td>
</tr>
<tr>
<td>${msg.enter memberBirthday}</td>
<td><input type="text" name="birthday" /></td>
</tr>

369

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<tr>
<td>${msg.enter_memberSsn}</td>
<td><input type="text" name="ssn" /></td>
</tr>
</tbody></table>
<input type="submit" value="${msg.btn_new}" />
</form>
</div>
</div>

</body>
</html>

<%-- File newMemberResult.jsp *i¥iiiiciiiiliiidiosst - %>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<title>Member Search</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.new_member added}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
</div>

</div>

</body>
</html>

370

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

The newMember . jsp JSP shows the input form for a new member. See Figure 12-2.
The resultant page just shows a corresponding success message.

New Member
Current Member: ----

e Search Member Flrst Meme:

¢ New Member Last Name:
* Search Book :
» New Book Birthday:
SSN:
New

Figure 12-2. BooKlubb New Member page

The code to search in the member database and the page showing the resultant list
are as follows:

<%__ File SeaIchMember.jsp kkesk sk ok sk sk sk sk ok sk sk ok sk kok sk ksk sk sk sk sk sk k >k __%>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript" src="${mvc.basePath}/../js/
jquery-3.5.1.min.js">
</script>
<title>${msg.title}</title>
</head>

371

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd_searchMember}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
<form method="get" action="${mvc.uriBuilder(
"BooKlubbController#searchMemberSubmit').
build()}">
<table><tbody>
<tr>
<td>${msg.enter memberFirstName}</td>
<td><input type="text" name="firstName" /></td>
</tr>
<tr>
<td>${msg.enter_memberLastName}</td>
<td><input type="text" name="lastName" /> </td>
</tr>
<tr>
<td>${msg.enter_memberSsn}</td>
<td><input type="text" name="ssn" /> </td>
</tr>
</tbody></table>
<input type="submit" value="${msg.btn search}" />
</form>
</div>
</div>

</body>
</html>

<%-- File searchMemberResult.jsp ik %>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

372

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript" src="${mvc.basePath}/../js/
jquery-3.5.1.min.js">
</script>
<title>Member Search</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd_searchResult}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>

<div style="float:left">
<c:choose>
<c:when test="${empty memberSearchResult}">
${msg.no_result}
</c:when>
<c:otherwise>
<table>
<thead>
<tr>
<th>${msg.tblhdr_id}</th>
<th>${msg.tblhdr last name}</th>
<th>${msg.tblhdr first name}</th>
<th>${msg.tblhdr_birthday}</th>
<th>${msg.tblhdr ssn}</th>
<th></th>
<th></th>

373

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

</tr>
<thead>
<tbody>
<c:forkEach items="${memberSearchResult}"
var="itm">
<tr id="itm-${itm.id}">
<td>${itm.id}</td>
<td>${itm.lastName}</td>
<td>${itm.firstName}</td>
<fmt:formatDate value="${itm.birthday}"
pattern="MM/dd/yyyy"
var="d1" />
<td>${d1}</td>
<td>${itm.ssn}</td>
<td><button onclick="deleteItm(${itm.id})">
${msg.btn_delete}</button></td>
<td><button onclick="selectMember(${itm.id})">
${msg.btn_select}</button></td>
<td><button onclick="showDetails(${itm.id})">
${msg.btn_details}</button></td>
</tr>
</c:forEach>
</tbody>
</table>
</c:otherwise>
</c:choose>

<script type="text/javascript">

function deleteItm(id) {
jQuery('#memberIdForDelete').val(id);
jQuery('#deleteForm").submit();

}

function selectMember(id) {
jQuery('#memberIdForSelect').val(id);
jOQuery('#selectForm").submit();

}

374

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

function showDetails(id) {
jQuery('#memberIdForDetails').val(id);
jQuery('#detailsForm").submit();
}
</script>
<form id="deleteForm" method="post"
action="${mvc.uriBuilder(
"BooKlubbController#deleteMember").
build()}">
<input id="memberIdForDelete" type="hidden"
name="memberId" />
</form>
<form id="selectForm" method="post"
action="${mvc.uriBuilder(
"BooKlubbController#selectMember").
build()}">
<input id="memberIdForSelect" type="hidden"
name="memberId" />
</form>
<form id="detailsForm" method="post"
action="${mvc.uriBuilder(
'BooKlubbController#tmemberDetails").
build()}">
<input id="memberIdForDetails" type="hidden"
name="memberId" />
</form>
</div>

</div>

</body>
</html>

The searchMember. jsp file shows an input form for a member search; see
Figure 12-3. The resultant page shows the corresponding member list, as shown in
Figure 12-4.

375

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Search Member
.S h Mem} First Name: '
¢ New Member Last Name: |
e Search Book .
e New Book SSN;

Figure 12-3. BooKlubb Search Member page

Search Result
Current Member: —

* Search Member

¢ New Member

¢ Search Book

* New Book
ID Last Name First Name Birthday SSN
201 Fornda Peter 12/27/1997 123456701 Delete Select -
202 Green Linda 04/13/1969 123456702 _Delete _Select =

Figure 12-4. BooKlubb search member result page

You can see that each member item in the list has three buttons—one for deleting
the member, one for making it the current member, one for showing member details. We
use JavaScript to forward button clicks to one of the invisible forms added near the end
of the file.

376

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

After member deletion, we just show a success message, which is defined in the
deleteMemberResult. jsp file:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<title>Member Search</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.member deleted}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
</div>

</div>

</body>
</html>

On the details page, we show the member information and the books assigned. This
is defined by the memberDetails. jsp file:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>

377

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript"
src="${mvc.basePath}/../js/jquery-3.5.1.min.js">
</script>
<title>${msg.title}</title>
</head>
<body>

<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd _memberDetails}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>

378

<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
<table>
<tbody>

<tr>
<td>${msg.memb_id}</td>
<td>${currentMember.id}</td>
</tr>
<tr>
<td>${msg.memb_firstName}</td>
<td>${currentMember.firstName}</td>
</tr>
<tr>
<td>${msg.memb_lastName}</td>
<td>${currentMember.lastName}</td>
</tr>
<fmt:formatDate value="${currentMember.birthday}"
pattern="MM/dd/yyyy"
var="bd" />
<tr>
<td>${msg.memb_birthday}</td>

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<td>${bd}</td>

</tr>

<tr>
<td>${msg.memb_ssn}</td>
<td>${currentMember.ssn}</td>

</tr>

</tbody>
</table>

<h2>${msg.hd_booksAssigned}</h2>
<c:choose>
<c:when test="${empty currentMember.rentals}">
</c:when>
<c:otherwise>
<table>
<tbody>
<c:forEach items="${currentMember.rentals}"
var="r">
<tr>
<td>${r.authorFirstName}
${r.authorLastName}</td>
<td>${r.title}</td>
<fmt:formatDate value="${r.make}"
pattern="MM/dd/yyyy"
var="makeDay" />
<td>${makeDay}</td>
<td>
<button onclick="unassign(
${currentMember.id},${r.id})">
${msg.btn_unassign}
</button>
</td>
</tr>
</c:forEach>
</tbody>

379

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

</table>
</c:otherwise>
</c:choose>
<script type="text/javascript">
function unassign(memberId,bookId) {
jQuery('#memberIdForUnassign').val(memberId);
jQuery('#bookIdForUnassign').val(bookId);
jOuery('#unassignForm").submit();
}
</script>
<form id="unassignForm" method="post"
action="${mvc.uriBuildexr(
"'BooKlubbController#unassignBook"').build()}">
<input id="memberIdForUnassign" type="hidden"
name="memberId" />
<input id="bookIdForUnassign" type="hidden"
name="bookId" />
</form>

</div>
</divy

</body>
</html>

In the books assigned list, we again use buttons to unassign books, and JavaScript to
submit an invisible form. Figure 12-5 shows a details page example. Assigning books to
members happens in the book search result list, discussed in a later section.

380

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

Member Details

Current Member: Peter Fornda 12/27/1997 (123456701)

1D: 201
First Name: Peter
Last Name: Fornda

® Search Member
* New Member
e Search Book

« New Book Birthday: 12/27/1997
SSN: 123456701
Books Assigned

John Barda The Midsummer 01/01/1968 Unassign
Grete Bostel The Moon's Dream 01/01/2002 Unassign

Figure 12-5. BooKlubb Member Details page

Book-Related View Files

For books, we identify the following use cases: create a new book record, delete a book
record, search for a book, and assign a book to a member (rental). We have JSP pages
to create a book and to search for a book, plus action result pages. Just as with the
members, they all reside in the stc/main/webapp/WEB-INF/views folder. Book record
deletion and assignment to the current member happens from inside the book search
result list.

The code to create a book record and its corresponding submit result page is as
follows:

<%__ File neWBOOk.jSp >k >k skook ok ok sk ok >k ok sk ok sk ok sk ok okook ok sk sk sk kskosk sk sk sk sk kokok __%>

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">

n g

0>

381

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<script type="text/javascript" src="${mvc.basePath}/../js/
jquery-3.5.1.min.js">
</script>
<title>${msg.title}</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd_newBook}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
<form method="post"
action="${mvc.uriBuilder(
'BooKlubbController#newBookSubmit').build()}">
<table><tbody>
<tr>
<td>${msg.enter authorFirstName}</td>
<td>
<input type="text" name="authorFirstName" />
</td>
</tr>
<tr>
<td>${msg.enter_authorLastName}</td>
<td>
<input type="text" name="authorLastName" />
</td>
</tr>
<tr>
<td>${msg.enter_bookTitle}</td>
<td>
<input type="text" name="title" />
</td>
</tr>

382

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<tr>
<td>${msg.enter_bookMake}</td>
<td>
<input type="text" name="make" />
</td>
</tr>
<tr>
<td>${msg.enter isbn}</td>
<td>
<input type="text" name="isbn" />
</td>
</tr>
</tbody></table>
<input type="submit" value="${msg.btn_new}" />
</form>
</div>
</div>
</body>
</html>

<%__ File newBookResult.jsp kkesk kok sk ok sk sk ok ok sk ok ok sk sk sk sk sk skok sk sk k sk >k __%>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<title>Member Search</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

n o

0>

383

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<h1>${msg.new_book added}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
</div>

</div>

</body>
</html>

The new book page is a form for entering the author’s name, the book title, make,
and the ISBN number. See Figure 12-6. The resultant page just shows an info message.

New Book
Current Member: ----
¢ Search Member AUthor R
* New Member Author First Name:
* Search Book
Title:
Make:
ISBN:

New

Figure 12-6. BooKlubb New Book entry

To search the database and present the search result list, the following two files are
used:

<%__ File SeaIChBOOk.jSp Kk ok ok ok ok ok >k ok ok ok ok ok >k >k ok ok ok sk sk ok ok skok sk sk sk >k __%>

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

384

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript" src="${mvc.basePath}/../js/
jquery-3.5.1.min.js">
</script>
<title>${msg.title}</title>
</head>
<body>
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd_searchBook}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
<form method="get"
action="${mvc.uriBuilder(
"BooKlubbController#searchBookSubmit").build()}">
<table><tbody>
<tr>
<td>${msg.enter_authorFirstName}</td>
<td>
<input type="text" name="authorFirstName" />
</td>
</tr>
<tr>
<td>${msg.enter authorLastName}</td>
<td>
<input type="text" name="authorLastName" />
</td>
</tr>
<tr>

385

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<td>${msg.enter_bookTitle}</td>
<td>
<input type="text" name="bookTitle"/>
</td>
</tr>
<tr>
<td>${msg.enter isbn}</td>
<td>
<input type="text" name="isbn"/>
</td>
</tr>
</tbody></table>
<input type="submit" value="${msg.btn search}" />
</form>
</div>
</div>

</body>
</html>

<%-- File searchBookResult.jsp *x¥ikicaciokicccliicek - %>
<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript" src="${mvc.basePath}/../js/
jquery-3.5.1.min.js">
</script>
<title>Book Search</title>
</head>
<body>

386

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION
<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.hd_searchResult}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
<c:choose>
<c:when test="${empty bookSearchResult}">
${msg.no_result}
</c:when>
<c:otherwise>
<table>
<thead>
<tr>
<th>${msg.tblhdr id}</th>
<th>${msg.tblhdr author last name}</th>
<th>${msg.tblhdr author first name}</th>
<th>${msg.tblhdr book title}</th>
<th>${msg.tblhdr_book make}</th>
<th>${msg.tblhdr_isbn}</th>
<th></th>
<th></th>
</tr>
<thead>
<tbody>
<c:forkach items="${bookSearchResult}"
var="itm">
<tr id="itm-${itm.id}">
<td>${itm.id}</td>
<td>${itm.authorLastName}</td>
<td>${itm.authorFirstName}</td>
<td>${itm.title}</td>
<fmt:formatDate value="${itm.make}"
pattern="MM/dd/yyyy"

387

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

var="d1" />
<td>${d1}</td>
<td>${itm.isbn}</td>
<td><button onclick="deleteItm(${itm.id})">
${msg.btn_delete}
</button>
</td>
<td><button onclick="assignItm(${itm.id},
${currentMember.id})">
${msg.btn_assign}
</button>
</td>
</tr>
</c:forEach>
</tbody>
</table>
</c:otherwise>
</c:choose>

<script type="text/javascript">
function deleteItm(id) {
jQuery('#bookIdForDelete').val(id);
jOuery('#deleteForm").submit();
}
function assignItm(bookId, userId) {
jQuery('#bookIdForAssign').val(bookId);
jQuery('#userIdForAssign').val(userId);
jQuery('#assignForm').submit();
}
</script>
<form id="deleteForm" method="post"
action="${mvc.uriBuilder(
'BooKlubbController#deleteBook"').build()}">
<input id="bookIdForDelete" type="hidden"
name="bookId" />
</form>

388

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

<form id="assignForm" method="post"
action="${mvc.uriBuilder(
'BooKlubbController#assignBook").build()}">
<input id="bookIdForAssign" type="hidden"
name="bookId" />
<input id="userIdForAssign" type="hidden"
name="userId" />
</form>
</div>
</div>

</body>
</html>

The book search result list is depicted in Figure 12-7. For each list item, we provide a
Delete and an Assign button. JavaScript code takes care of forwarding button presses to
one of the two invisible forms added near the end of the code.

Search Result

Current Member: Peter Fornda 12/27/1997 (123456701)

* Search Member
* New Member
e Search Book
* New Book
ID Last Name First Name Title Make ISBN
101 Barda John The Midsummer 01/01/1968 1234567890123 Delete Assign

102 Bostel Grete The Moon’s Dream 01/01/2002 1234514793451 Delete Assign

Figure 12-7. BooKlubb book search result

389

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

After clicking one of the Delete buttons, a simple success message is shown. The
deleteBookResult. jsp file takes care of that:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"

[T

uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt"
uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<meta charset="UTF-8">
<title>Book Search</title>
</head>
<body>

<%@ include file="../../fragments/errors.jsp" %>

<h1>${msg.book_deleted}</h1>
<%@ include file="../../fragments/currentMember.jsp" %>

<div>
<%@ include file="../../fragments/mainMenu.jsp" %>
<div style="float:left">
</div>

</div>

</body>
</html>

Deploying and Testing BooKlubb

To build and deploy the BooK1lubb application, you enter the following inside the
console:

./gradlew localDeploy

or, if you need to specify a certain JDK
JAVA HOME=/path/to/jdk ./gradlew localDeploy

390

CHAPTER 12 A JAVA MVC EXAMPLE APPLICATION

For this to work, the GlassFish server must be running and the gradle.properties
file must contain the correct connection properties for the GlassFish server. The WAR file
that’s built during this process is copied into the build/1ibs folder.

If everything works correctly, you can point your browser to the following URL to
enter the application:

http://localhost:8080/BooKlubb

See Figure 12-1.

Summary

This chapter concluded the book with a comprehensive example application called
BooKlubb, which illustrates many Java MVC features.

391

Appendix

Solutions to the Exercises

The following are the solutions to the exercises found in the chapters.

Chapter 1 Exercises

Exercise 1: Model, view, and controller.

Exercise 2: False. This is the controller’s responsibility. Also, this
is optional.

Exercise 3: No, this must be coded in the controller.
Exercise 4: True.

Exercise 5: None are true. Sessions are created by the framework,
and they are passed through the HTTP transport as cookies, query
parameters, or POST parameters. A session ID might be passed
over as a model object, but the session itself is not part of the
model.

Exercise 6: No, it became part of the Java EE/Jakarta EE

specification in version 8.

393
© Peter Spath 2021

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1

https://doi.org/10.1007/978-1-4842-6280-1#DOI

APPENDIX

Chapter 2 Exercises

Exercise 1: JEE/Jakarta EE (Java/Jakarta Enterprise Edition) sits
on top of JSE and extends it with enterprise features.

Exercise 2: No, Java MVC needs to be installed inside a Java EE/
Jakarta EE server.

Exercise 3: No, Java MVC is part of Java EE/Jakarta EE.

Exercise 4: Not really. While Java EE and Jakarta EE version 8
coexist, Jakarta EE is considered the successor of Java EE.

Exercise 5: No, in order to use Oracle’s JSE in a commercial
product, you must pay for a subscription. OpenJDXK is free also for
commercial projects.

Exercise 6: True.
Exercise 7: Because it is free and the reference implementation.
Exercise 8: No. We have GET, POST, PUT, DELETE, HEAD, and TRACE.

Exercise 9: Java MVC sits on top of (uses) JAX-RS, and Java MVC
and the REST controllers look similar.

Chapter 3 Exercises

394

Exercise 1: No, best practices indicate that for build scripts,
declarative programming (indicating what a build script has to do,
not how it should do it) is favorable over imperative programming
(precise step-by-step instructions).

Exercise 2: No, you can use Groovy or Kotlin code.

Exercise 3: No, Eclipse allows different JREs for building
(compiling) projects.

Exercise 4: Initialization, configuration, and execution.
Exercise 5: No, src/main/java is correct.

Exercise 6: No, you use the main build file called build.gradle
for that.

Exercise 7: No, you use the repositories { } -section for that.

Exercise 8: A configuration in Gradle is a dependency scope. You
have different scopes in a project, such as testing, compilation,
inclusion into an archive, and so on.

Exercise 9: Start a Gradle project via File » New » Other... »
Gradle » Gradle Project. Open build.gradle and replace its
contents with the following:

plugins {
id 'java-library'
}
java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}
repositories {
jcenter()
}

dependencies {
testImplementation 'junit:junit:4.12'

}

Fix any build path errors by right-clicking the project, then
choosing Properties » Java Build Path » Libraries. Remove the
erroneous JRE and add a correct JRE (JRE System Library) to

the classpath. Right-click the project and then choose Gradle

» Refresh Gradle Project. Inside src/main/java, create a new
package called book. javamvc.graphicsprimitives, and add two
classes as follows:

// File Circle.java
package book.javamvc.graphicsprimitives;
public class Circle {

private double cx, cy, 1;

// add consructor, getters, setters...

APPENDIX

395

APPENDIX

//File Rectangle.java
package book.javamvc.graphicsprimitives;
public class Rectangle {

private double x, y, w, h;

// add consructor, getters, setters...

}

Exercise 10: "Hi, I'm A” is printed unconditionally, even if task a is
not explicitly invoked. This is because instructions directly inside
task { } belong to the configuration phase, and the configuration
phase always gets called for all tasks for any build. If you want to
execute something during the execution phase, you must wrap it
inside doFirst { }ordolast { }.

Exercise 11: No, the wrapper is a standalone Gradle installation.
Java must be working, though.

Exercise 12: Do a export JAVA_HOME=/opt/jdk8 (in Linux) or a set
JAVA HOME=C:\jdk8 (in Windows).

Chapter 4 Exercises

396

Exercise 1: True. The wrapper supports both Windows and Linux.
Exercise 2: B and C are true.

Exercise 3: False. But we describe custom tasks for this purpose.
Exercise 4: Facelets and JSTL.

Exercise 5: It is possible to use dedicated Java bean classes. But
no, you can also use a built-in container to hold model values (the
javax.mvc.Models class).

Exercise 6: Inside a Jakarta EE server.

Exercise 7: False. We use Gradle in this book, but other build tools
are possible as well.

Exercise 8: The UserData class reads as follows:

APPENDIX

package book.javamvc.helloworld;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@®Named

@RequestScoped
public class UserData {

private String name;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}
}

In the controller, you write the following:

package book.javamvc.helloworld;

import
import
import
import
import
import
import
import

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

inject.Inject;

mvc.Controller;

mvc.binding.MvcBinding;

WS.
WS.
WS.
WS.
WS.

@Path("/hello")

@Controller

public class HelloWorldController {
@Inject UserData userData;

IS

IS.

Is
Is
Is

.FormParam;
GET;

.POST;

.Path;
.core.Response;

397

APPENDIX

@GET
public String showIndex() {
return "index.jsp";

}

@POST
@Path("/greet")
public Response greeting(@MvcBinding
@FormParam("name"
String name) {

userData.setName(name);

return Response.ok("greeting.jsp").build();
}

}

The greeting. jsp file reads as follows:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
Hello ${userData.name}
</body>
</html>

Exercise 9: Replace the <body> of greeting.jsp with the
following:

<body>
Hello ${userData.name}
<div>

398

APPENDIX

<a href="${mvc.uriBuilder(
"HelloWorldController#tshowIndex'
).build()}">Back
</div>
</body>

Chapter 5 Exercises

Exercise 1: (B) is true.
Exercise 2: You at least need the @Controller class annotation.

Exercise 3: The controller classes are very similar, but Java
MVC controllers must return page names, contrary to JAX-RS
controllers, which return data.

Exercise 4: Placed next to the @FormParam and @QueryParam
elements, the @vcBinding annotation ensures conversion and
validation errors don’t automatically yield some error data being
loaded (as dictated by JAX-RS). Instead, errors are passed over to
an injected BindingResult instance (class instance level).

Exercise 5: Update the controller as follows:
package book.javamvc.helloworld;

import java.util.Arraylist;
import java.util.list;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import javax.inject.Named;

import javax.mvc.Controller;

import javax.mvc.binding.BindingResult;

import javax.mvc.binding.MvcBinding;

import javax.mvc.binding.ParamError;

import javax.validation.constraints.s;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

399

APPENDIX

400

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;

@Path("/hello")
@Controller
public class HelloWorldController {
@Named
@RequestScoped
public static class ErrorMessages {
private List<String> msgs = new ArraylList<>();

public List<String> getMsgs() {
return msgs;

}

public void setMsgs(List<String> msgs) {
this.msgs = msgs;

}

public void addMessage(String msg) {
msgs.add(msg);
}
}

private @Inject ErrorMessages errorMessages;
private @Inject BindingResult br;

@POST

@Path("/greet")

public Response greeting(
@MvcBinding @FormParam(“name"
String name)

{

if(br.isFailed()) {
br.getAllErrors().stream().forEach(
(ParamError pe) -> {

APPENDIX

errorMessages.addMessage(pe.getParamName() +

};
}

+ pe.getMessage());

}
}

Inside greeting. jsp, add the following:

<div style="color:red">

<c:forEach var="e" items="${errorMessages.msgs}">
${e}

</c:forkach>

</div>

Exercise 6: Inside the controller class, add as annotation to the
greeting() method’s parameter, as follows:

import javax.validation.constraints.Pattern;
@POST
@Path("/greet")
public Response greeting(
@MvcBinding @FormParam("name")
@Pattern(regexp = "[A-Za-z]:")
String name) {

}

Exercise 7: In the controller class, write the following for the
showIndex() method:

@GET

public String showIndex(
@MvcBinding @QueryParam(“name")
String name)

401

APPENDIX

{
if(name != null) {
models.put("name", name);
}
return "index.jsp";

}

A missing name query parameter, for example when the start page
is loaded the first time, will lead to a null value. The code checks
that. Inside the index. jsp page, you can use ${ name } for the
input field’s initial value, which will yield an empty string if the
model value doesn’t exist:

<form method="post"
action="${mvc.uriBuilder(
'HelloWorldController#greeting').build()}">
Enter your name:
<input type="text" name="name" value="${name}" />
<input type="submit" value="Submit" />
</form>

In the response page called greeting. jsp, you write the
following:

Hello ${name}
<div>
<a href="${mvc.uriBuilder(
"HelloWorldController#showIndex").
queryParam('name', name).
build()}">Back
</div>

402

APPENDIX

Chapter 6 Exercises

Exercise 1: The new model class reads as follows:
package book.javamvc.helloworld.model;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named

@RequestScoped

public class UserData {
private String name;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

In the controller class, you write the following:

@Controller
public class HelloWorldController {

private @Inject UserData userData;
//private @Inject Models models; REMOVE THIS

@GET
public String showIndex(@MvcBinding
@QueryParam("name") String name) {
if(name != null) {
userData.setName(name);

}

403

APPENDIX

return "index.jsp";

}

@POST

@Path("/greet")

public Response greeting(
@MvcBinding @FormParam(“name")
@Pattern(regexp = "[A-Za-z]:")
String name)

{

userData.setName(name);
return Response.ok("greeting.jsp").build();
}
}

In the index. jsp page, you must substitute ${ userData.name }
for ${ name }, as follows:

<form method="post"
action="${mvc.uriBuilder(
'HelloWorldController#greeting').build()}">
Enter your name:
<input type="text" name="name" />
<input type="submit" value="Submit" />
</form>

Same for the greeting. jsp response page:

Hello ${userData.name}
<div>
<a href="${mvc.uriBuilder(
"HelloWorldController#showIndex").

404

APPENDIX

queryParam('name’, userData.name).
build()}">Back
</div>

Exercise 2: The second option is true—each JSP gets its own
servlet.

Exercise 3: Facelets are newer.

Exercise 4: No, you don’t have to use JSE In fact, it is better to
avoid JSF features, since JSF is component-based and Java MVC

does not use view components.

Chapter 7 Exercises

Exercise 1: As UserData, write the following:
package book.javamvc.helloworld;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named

@RequestScoped

public class UserData {
private String name;
private int age;
// Getters and setters...

}

The updated (important) parts from the controller class
HelloWorldController are as follows:

import javax.validation.constraints.Min;

@Path("/hello")
@Controller

405

APPENDIX

public class HelloWorldController {
@Named
@RequestScoped

public static class ErrorMessages {

private List<String> msgs = new ArraylList<>();

public List<String> getMsgs() {
return msgs;

}

public void setMsgs(List<String> msgs) {

this.msgs = msgs;

}

public void addMessage(String msg) {
msgs.add(msg);

}
}

private @Inject UserData userData;

private @Inject ErrorMessages errorMessages;

private @Inject BindingResult br;

@POST
@Path("/greet")
public Response greeting(
@MvcBinding @FormParam(“name")
String name,
@MvcBinding @FormParam("age")
@Min(1)
int age) {
if(br.isFailed()) {
br.getAllErrors().stream().forEach(
(ParamError pe) -> {
errorMessages.addMessage(
pe.getParamName() + ": " +
pe.getMessage());

};

406

APPENDIX

}

userData.setName(name);
userData.setAge(age);
return Response.ok("greeting.jsp").build();
}

}

As the index. jsp view page, take the following:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
<form method="post"
action="${mvc.uriBuilder(
"HelloWorldController#greeting').build()}">
Enter your name:
<input type="text" name="name" /> Enter your age:
<input type="text" name="age" />
<input type="submit" value="Submit" />
</form>
</body>
</html>

As the response page greeting. jsp:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>

<html>

407

APPENDIX

<head>
<meta charset="UTF-8">
<title>Hello World</title>
</head>
<body>
<div style="color:red">
<c:forEach var="e"
items="${errorMessages.msgs}">
${e}
</c:forEach>
</div>

Hello ${userData.name}, your age is ${userData.age}
</body>
</html>

Exercise 2: The updated (important) parts of the controller class
HelloWorldController read as follows:

package book.javamvc.helloworld;

import javax.servlet.http.HttpSession;

@Path("/hello")
@Controller
public class HelloWorldController {

private @Inject HttpSession httpSession;
@GET
public String showIndex() {

System.err.println("Session ID: " +
httpSession.getId());

408

APPENDIX

Exercise 3: The updated (important) parts of the controller class
HelloWorldController read as follows:

import javax.ws.rs.core.HttpHeaders;
import javax.ws.rs.core.Context;

@POST
@Path("/greet")
public Response greeting(
...form parameters...,
@Context HttpHeaders httpHeaders)
{
System.err.println("Headers: \n" +
httpHeaders.getRequestHeaders().entrySet().
stream().map(me -> {
return me.getKey() + ": " +
me.getValue();
}).collect(Collectors.joining("\n")));

}

Exercise 4: Download jQuery and put it into src/main/webapp/js.
The updated index. jsp file reads as follows:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<meta charset="UTF-8">
<script type="text/javascript"
src="${mvc.basePath}/../js/jquery-3.5.1.min.js">
</script>
<title>Hello World</title>
</head>

409

APPENDIX

<body>
<form method="post" action="${mvc.uriBuilder(
"HelloWorldController#greeting').build()}">
Enter your name: <input type="text" name="name"/>
<input type="submit" value="Submit" />
</form>
<form>
<script type="text/javascript">
function submitAge() {
var age = jQuery('#age').val();
var url = "${mvc.uriBuilder(
"HelloWorldController#ageAjax"').build()}";
jQuery.ajax({
url : url, method: "POST",
data : { age: age },
dataType: 'json',
success: function(data, textStatus,
jaxHR) {
jOuery('#ajax-response').html(data.text);
}J
error: function (jgXHR, textStatus,
errorThrown) {
console.log(errorThrown);

}
D;
return false;
}
</script>
Enter your age: <input type="text" id="age" />

<button onclick="return submitAge()">
Submit
</button>
</form>
<div>
AJAX Response:

410

APPENDIX

<div id="ajax-response">
</div>
</div>
</body>
</html>

Obviously, in the head’s script tag, write the jQuery version you

downloaded.

The HelloWorldController gets a new @POST method to receive
the AJAX requests:

@POST

@Path("/ageAjax")

public Response ageAjax(
@MvcBinding @FormParam(“age")
int age) {

if(br.isFailed()) {
br.getAllErrors().stream().
forEach((ParamError pe) -> {
errorMessages.addMessage(
pe.getParamName()

+": " + pe.getMessage());

1
}
userData.setAge(age);

return Response.ok("ageAjaxFragm.jsp").
type(MediaType.APPLICATION JSON).
build();

}

The JSP fragment src/main/webapp/WEB-INF/ageAjaxFragm.jsp
reads as follows:

<%@ page language="java"
contentType="application/json;charset=UTF-8" %>
<%@ taglib prefix = "c"
uri = "http://java.sun.com/jsp/jstl/core

[T

0>

411

APPENDIX

<%@ taglib prefix = "fmt"
uri = "http://java.sun.com/jsp/jstl/fmt" %>

{ "text": "This is a JSP generated fragment.
Your age is: ${userData.age}" }

Exercise 5: The observer class reads as follows (use any package
and class name you like; the method names can also be chosen
freely):

package book.javamvc.helloworld.event;

import java.io.Serializable;
import java.time.Instant;

import javax.enterprise.context.SessionScoped;
import javax.enterprise.event.Observes;

import javax.mvc.event.AfterControllerEvent;
import javax.mvc.event.BeforeControllerEvent;

@SessionScoped
public class HelloWorldObserver
implements Serializable {
private static final long serialVersionUID =
-2547124317706157382L;

private long controllerStarted;

public void update(@Observes
BeforeControllerEvent
beforeController) {
controllerStarted = Instant.now().
toEpochMilli();

}

public void update(@Observes
AfterControllerEvent
afterController) {

long controllerElapseMillis =

412

APPENDIX

Instant.now().toEpochMilli() -
controllerStarted;
System.err.println("Elapse = " +
controllerElapseMillis + "ms");

Chapter 8 Exercises

Exercise 1: Add these properties files to the src/main/resources/
book/javamvc/helloworld/messages folder:

File Messages.properties:
title = Hello World

enter name = Enter your name:
enter_age = Enter your age:
btn _submit = Submit

btn_back = Back

ajax_response = AJAX Response:
response_hello = Hello
response_age = your age is

File Messages de.properties:
title = Hallo Welt

enter_name = Dein Name:

enter age = Dein Alter:
btn_submit = Absenden

btn_back = Zuriick
ajax_response = AJAX-Antwort:
response_hello = Hallo
response_age = Dein Alter ist

(You can add other language files, if you like.) You can copy
Messages.properties to Messages_en.properties, butyou
don’t have to if you want to set English as the default. Add the two
classes—BundleForEL and SetBundleFilter—as described in the
text to your project.

413

APPENDIX
As index. jsp, use the following:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c
uri="http://java.sun.com/jsp/jstl/core" %>

<%-- ${msg} is the localized bundle variable,
registered by class SetBundleFilter --%>

<html>
<head>
<meta charset="UTF-8">
<title>${msg.title}</title>
</head>
<body>
<form method="post"
action="${mvc.uriBuilder(
'HelloWorldController#greeting').build()}">
${msg.enter_name}
<input type="text" name="name" />
<%-- Only if you added the ‘'age' --%>
<%-- field (from exercises): --%>
${msg.enter age} <input type="text" name="age" />
<input type="submit" value="${msg.btn_submit}" />
</form>
</body>
</html>

As greeting.jsp, use the following:

<%@ page contentType="text/html;charset=UTF-8"
language="java" %>

<%@ taglib prefix="c
uri="http://java.sun.com/jsp/jstl/core" %>

<%-- ${msg} is the localized bundle variable,
registered by class SetBundleFilter --%>

414

<html>

<head>
<meta charset="UTF-8">
<title>Hello World</title>

</head>

<body>
<%-- Only if you caught the error messages --%>
<%-- (from one of the exercies) --%>

<div style="color:red">

<c:forEach var="e" items="${errorMessages.msgs}">

${e}
</c:forEach>
</div>

<%-- If UserData has an 'age' field --%>
${msg.response_hello} ${userData.name}, ${msg.
response_age} ${userData.age}

<%-- otherwise --%>

${msg.response_hello} ${userData.name}

</body>
</html>

Exercise 2: As a new App class, use the following:
package book.javamvc.helloworld;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {
@verride

APPENDIX

415

APPENDIX

public Map<String, Object> getProperties() {
Map<String, Object> res = new HashMap<>();
res.put("I18N_TEXT ATTRIBUTE_NAME",
Ilmsgll);
res.put("I18N_TEXT BASE_NAME",
"book.javamvc.helloworld.messages.Messages"
)
return res;

}
}

In the SetBundleFilter class, you can then inject the
Application CDI bean to fetch the properties:

package book.javamvc.i18n;

import java.io.IOException;
import java.util.Map;

import javax.inject.Inject;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import javax.ws.rs.core.Application;

@WebFilter("/.")

public class SetBundleFilter implements Filter {
@Inject private Application appl;
private String i18nAttributeName;
private String i18nBaseName;

416

APPENDIX

@Override
public void init(FilterConfig filterConfig)
throws ServletException {
Map<String,0Object> applProps = appl.
getProperties();
i18nAttributeName = (String) applProps.
get("I18N_TEXT_ATTRIBUTE_NAME");
i18nBaseName = (String) applProps.
get("I18N_TEXT BASE NAME");
}

@Override
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
BundleForEL.setFor((HttpServletRequest) request,
i18nAttributeName,
i18nBaseName);
chain.doFilter(request, response);

}

@0verride
public void destroy() {
}

}

Because the class no longer refers to project specific classes, it
was also moved to a more general book. javamvc.118n package
location. The BundleForEL class rewrites to the following:

package book.javamvc.i18n;

import java.util.Enumeration;

import java.util.locale;

import java.util.ResourceBundle;

import javax.servlet.http.HttpServletRequest;

public class BundleForEL extends ResourceBundle {
private BundleForEL(Locale locale,

417

APPENDIX

String baseName) {
setLocale(locale, baseName);

}

public static void setFor(
HttpServletRequest request,
String i18nAttributeName,
String i18nBaseName) {
if (request.getSession().
getAttribute(i18nAttributeName) == null) {
request.getSession().setAttribute(
i18nAttributeName,
new BundleForEL(request.getlocale(),
i18nBaseName));

}

public void setlocale(Locale locale,
String baseName) {
if (parent == null ||
Iparent.getLocale().equals(locale)) {
setParent(getBundle(baseName, locale));

}

@verride
public Enumeration<String> getKeys() {
return parent.getKeys();

}

@verride
protected Object handleGetObject(String key) {
return parent.getObject(key);

}

418

APPENDIX
Exercise 3: Add the following to UserData:

private double rank;
// Plus getter, setter

The corresponding part in index. jsp reads as follows:

<form method="post"
action="${mvc.uriBuilder(
'HelloWorldController#greeting').build()}">

${msg.enter rank}
<input type="text" name="rank" />
<input type="submit" value="${msg.btn submit}" />
</form>

And, in greeting. jsp, write the following:

<fmt:formatNumber value="${userData.rank}"
type="number" var="rank" />
${msg.response_rank} ${rank}

Add values for the enter_rank and response_rank keys in
Messages.properties:

enter_rank = Enter your rank:
response rank = your rank is

(Add values for other languages if you want.)

The update for the controller class reads as follows:

@POST

@Path("/greet")

public Response greeting(
@MvcBinding @FormParam("name") String name,
@MvcBinding @FormParam("age")

419

APPENDIX

420

}

@Min(1)

int age,

@MvcBinding @FormParam("rank")
@FloatRange(min=0.0, max=1.0)
double rank,

@Context HttpHeaders httpHeaders

{

userData.setRank(rank);

@FloatRange is a validation we developed in another exercise:

// ---- File FloatRange.java
@Constraint(validatedBy = FloatRangeValidator.class)
@Target({ PARAMETER, FIELD })

@Retention(RUNTIME)

public @interface FloatRange {

}

String message() default
"Value out of range [{min},{max}]";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
String[] value() default { };
double min() default -Double.MAX VALUE;
double max() default Double.MAX VALUE;
double precision() default 0.0;

// ---- File FloatRangeValidator.java
public class FloatRangeValidator implements

ConstraintValidator<FloatRange, Number> {
private double min;

private double max;

private double precision;

APPENDIX

@Override

public void initialize(FloatRange constraint) {
min = constraint.min();
max = constraint.max();
precision = constraint.precision();

}

@verride
public boolean isValid(Number value,
ConstraintValidatorContext context) {
return value.doubleValue() »>=
(min == -Double.MAX_VALUE ? min :
min - precision)
88 value.doubleValue() <=
(max == Double.MAX VALUE ? max :
max + precision);

}

Exercise 4: Inside index. jsp, add this to the <form> tag:

${msg.enter dateOfBirth}
<input type="text" name="dateOfBirth" />

In the controller, you have to add a String parameter to the @P0ST
method, because there is no date converter. You therefore need to
parse the String manually:

@POST
@Path("/greet")
public Response greeting(

@MvcBinding @FormParam("dateOfBirth")
String dateOfBirthStr

)

421

APPENDIX

{

DateTimeFormatter dtf =
DateTimeFormatter.
ofPattern("yyyy-MM-dd");

LocalDate 1d = LocalDate.parse(
dateOfBirthStr, dtf);

userData.setDateOfBirth(1d);

}

Inside UserData, add the new date of birth field, together

with getters and setters. As an additional getter, add
getDateOfBirthDate() and return the date as a java.util.Date,
since JSPs can’t handle LocalDate objects:

private LocalDate dateOfBirth;

public LocalDate getDateOfBirth() {
return dateOfBirth;

}

public Date getDateOfBirthDate() {
Calendar cal = Calendar.getInstance();
cal.set(dateOfBirth.getYear(),
dateOfBirth.getMonthvalue()-1,
dateOfBirth.getDayOfMonth(),
0, 0, 0);
return cal.getTime();

}

public void setDateOfBirth(
LocalDate dateOfBirth) {
this.dateOfBirth = dateOfBirth;

422

APPENDIX

In greeting.jsp, you can use the <fmt:formatDate> tag to output
the date:

<fmt:formatDate value="${userData.dateOfBirthDate}"
pattern="yyyy-MM-dd" var="dob" />
${msg.response_dateOfBirth} ${dob}

As alast step, add values for the enter dateOfBirth and
response_dateOfBirth keys in the language resources files.

Obviously, the age field is obsolete now and you can remove it,
if you like.

Chapter 9 Exercises

Exercise 1: (1) No, an EJB can have only a local interface, only a
remote interface, or both. (2) No, a no-interface EJB means it can
only be used for local access. (3) No, a remote EJB can be accessed
from the same application, a different application on the same
Jakarta EE server, or applications from other servers on the same
machine or anywhere in the network. (4) No, a stateful EJB can
maintain a state. (5) No, a singleton EJB never gets instantiated
more often than just once. (6) No, for local EJBs you can also

use injection via the @EJB annotation. (7) No, only the remote
interfaces must be exported if E]Bs are used remotely.

Exercise 2: The build.gradle file of the library (JSE, plain Java)
project reads, for example:

plugins {
id 'java-library'

}

423

APPENDIX

java {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}

repositories {
jcenter()
}

dependencies {
// Use JUnit test framework
testImplementation 'junit:junit:4.12°

}

The class reads as follows:

package book.javamvc.simplenojee;
import java.time.ZonedDateTime;
import java.time.format.DateTimeFormatter;

public class MyDateTime {
public String date(String format) {
ZonedDateTime zdt = ZonedDateTime.now();

String outStr = "";

try {
outStr = (format == null || "".equals(format) ?
zdt.toString() :
zdt.format(DateTimeFormatter.

ofPattern(format)));
} catch(Exception e) {
e.printStackTrace(System.err);

}

return outStr;

}
}

424

APPENDIX
The build.gradle file of the EJB project reads as follows:

plugins {
id 'java-library'

}

java {
sourceCompatibility

JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8
}

repositories {
jecenter()

}

dependencies {
implementation 'javax:javaee-api:8.0'
implementation files(
"../../SimpleNoJEE/build/1ibs/SimpleNoJEE.jar")

}

task extractStubs (type: Jar, dependsOn:classes) {
archiveClassifier = 'ejb-stubs’
from "$buildDir/classes/java/main"
«+/interfaces/«.class"

include

}
jar.finalizedBy(extractStubs)

The classes and interfaces read as follows:

import javax.ejb.local;
import javax.ejb.Remote;
import javax.ejb.Stateless;

import [...].MyDateTimelocal;
import [...].MyDateTimeRemote;
import [...].MyDateTime;

425

APPENDIX

426

@Stateless
@Local(MyDateTimeLocal.class)
@Remote(MyDateTimeRemote.class)
public class MyDateTimeEjb {
public String date(String format) {
return new MyDateTime().date(format);
}
}

For the ellipses, you have to write the package you chose for
MyDateTime and the interfaces (see the next two listings).

public interface MyDateTimelocal {
String date(String format);

}

public interface MyDateTimeRemote {
String date(String format);

}

For the EAR project, create it as described in the text. Make the
EJB project a subproject of the EAR project. Because the EAR
project needs to refer to the non-Jakarta EE project, add the
following inside the dependencies { } section:

dependencies {

earlib files(

'../SimpleNoJEE/build/1ibs/SimpleNoJEE. jar")
// <- Assumes that the non-Jakarta EE project
// is called SimpleNoJEE. Also adapt the path
// according to your needs.

APPENDIX

You can now run the ear Gradle task, fetch the EAR from the
build/libs folder, and deploy it on the server.

For the client, first run the EJB stub generation task called
extractStubs from the EJB project. Assuming that the remote
EJB interface reads book. javamvc.mydatetimeejb.interfaces.
MyDateTimeRemote, for the client class, you can take the following

import java.util.Properties;

import javax.naming.InitialContext;
import javax.naming.NameClassPair;
import javax.naming.NamingEnumeration;

import book.javamvc.mydatetimeejb.
interfaces.MyDateTimeRemote;

public class Client {
public static void main(String[] args) {
String remoteServerHost = "localhost";
String remoteServerPort = "3700";
Properties props = new Properties();
props.setProperty("java.naming.factory.initial",
"com.sun.enterprise.naming." +
"SerialInitContextFactory");
props.setProperty("java.naming.factory.url.pkgs",
"com.sun.enterprise.naming");
props.setProperty("java.naming.factory.state",
"com.sun.corba.ee.impl.presentation.rmi.” +
"INDIStateFactoryImpl");
props.setProperty("org.omg.CORBA.ORBInitialHost",
remoteServerHost);
props.setProperty("org.omg.CORBA.ORBInitialPort",
remoteServerPort);
try {
InitialContext ic = new InitialContext(props);
MyDateTimeRemote testEJB = (MyDateTimeRemote)

427

APPENDIX

ic.lookup("book.javamvc.mydatetimeejb."+
"interfaces.MyDateTimeRemote");
System.out.println(testEJB.date(
"yyyy-MM-dd HH:mm:ss"));
} catch (Exception e) {
e.printStackTrace(System.err);
}
}
}

Make sure you've added the stubs from the EJB project and
the gf-client. jar from GlassFish’s 1ib folder as library
dependencies.

Chapter 10 Exercises

428

Exercise 1: (1) True. You administer a data source on the Jakarta
EE server. The way this needs to be done is server product
dependent, but once the data source is available, the access
mediated via JPA is standardized.

Exercise 2: The ORM—ODbject Relational Mapper.

Exercise 3: (1) No, although DAOs help improve code quality.
(2) No, the entity manager will take care of that. (3) No, this is the
entity classes’ responsibility. (4) Yes. (5) No, EJBs help improve
DAO handling, but you don’t need to use them if they don’t fit
your needs.

Exercise 4: (1) True. (2) No, you can provide the table name inside
the @Table annotation: @Table(name = "TAB_NAME"). (3) No,
you can provide the column name inside the @olumn annotation:
@Column(name = "COL_NAME"). (4) True

Exercise 5: Create a table and sequence as described in the text.
Add the table column header label tblhdr_status = Status
to the src/main/resources/book/javamvc/jpa/messages/

Messages.properties file. Inside the index. jsp view, add the

following:

<table>
<thead>
<tr>

<th>${msg.tblhdr status}</th>

</tr>
<thead>
<tbody>
<c:forEach ... >
<tr ...>

<td>${itm.statusLst}</td>

</tr>
</c:forEach>
</tbody>
</table>

Update the User class and add a field for the status (comma-

separated status list):
package book.javamvc.jpa.data;
public class User {

private String statusLst;
// + Getter / Setter

On the database side (package db), you have to add a little more
structure and introduce a new Status class. This class was

described in the text.

APPENDIX

429

APPENDIX

430

For the MemberDAO class, you have to add a (varargs) parameter
for the status of a new user, or use the following:

package book.javamvc.jpa.db;

import java.util.list;

import java.util.Set;

import java.util.stream.Collectors;
import java.util.stream.Stream;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.TypedQuery;
@Stateless

public class MemberDAO {

public int addMember(String name,
String... status) {
List<?> 1 = em.createQuery(
"SELECT m FROM Member m WHERE m.name=:name").
setParameter("name", name).
getResultList();
int id = o;
if(1.isEmpty()) {
Member member = new Member();
member . setName (name);
Set<Status> s = Stream.of(status).map(
s1 -> new Status(s1)).
collect(Collectors.toSet());
member .setStatus(s);
em.persist(member);
em.flush(); // needed to get the ID
id = member.getId();
} else {
id = ((Member)l.get(0)).getId();
}

return id;

}
}

APPENDIX

Inside the controller, update the addMember () method and add a

new parameter for the status list. Also, inside the addUserList ()

method, you must mediate between the structured status

collection from the database and the flat comma-separated status

list for the view.

package book.javamvc.jpa;

import
import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import

java.util.Arraylist;

java.util.list;
java.util.stream.Collectors;

javax

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

.ejb.EJB;

WS.
WS.
WS.
WS.
WS.

Is

IS.

Is
IS
)

enterprise.context.RequestScoped;
inject.Inject;

inject.Named;

mvc.Controller;
mvc.binding.BindingResult;
mvc.binding.MvcBinding;
mvc.binding.ParamError;
validation.constraints.Pattern;

.FormParam;
GET;

.POST;

.Path;
.core.Response;

book.javamvc.jpa.data.User;

book. javamvc. jpa.db.MemberDAO;
book.javamvc.jpa.db.Status;
book.javamvc.jpa.model.UserEntering;

book.javamvc.jpa.model.UserlList;

431

APPENDIX

@Path("/hello")
@Controller
public class HelloJpaController {
@POST
@Path("/add")
public Response addMember (
@MvcBinding @FormParam("name"
String name,
@MvcBinding @FormParam(“statusLst")
@Pattern(regexp = "(\\w:(, \\s:\\ws)+)?2")
String statusLst) {
if(br.isFailed()) {
br.getAllErrors().stream().forEach(
(ParamError pe) -> {
errorMessages.addMessage(
pe.getParamName() + ": " +
pe.getMessage());
IOF
} else {
userEntering.setName(name);
userEntering.setStatusLst(statusLst);
memberDao.addMember (name, statuslst);

}

addUserList();
return Response.ok("index.jsp").build();

}

II111777077777777777777777771177711177117771711177
[ITTT777770777777777777777771777717771717711177

private void addUserList() {
userList.addA1l(
memberDao.allMembers().stream().
map (member -> {

432

APPENDIX

int id = member.getId();
String name = member.getName();
String statusLst = member.getStatus().
stream().
map(Status::getName).
collect(Collectors.joining(", "));
return new User(id, name, statuslst);
}).collect(Collectors.tolList()));
}
}

Exercise 6: @0neToMany, @ManyToOne, @0neToOne, and @
ManyToMany.

Chapter 11 Exercises

Exercise 1: Let it read as follows:
package book.javamvc.helloworld;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.logger;

import javax.annotation.PostConstruct;
import javax.inject.Inject;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/mvc")
public class App extends Application {
private final static Logger LOG =
Logger.getLogger(App.class.toString());

@PostConstruct

public void init() {
LOG.entering(this.getClass().toString(),
"init");

433

APPENDIX

@0verride
public Map<String, Object> getProperties() {
LOG.entering(this.getClass().toString(),
"getProperties");

Map<String, Object> res = new HashMap<>();

res.put("I18N_TEXT ATTRIBUTE NAME",
"nsg");

res.put("I18N_TEXT BASE_NAME",
"book.javamvc.helloworld.messages.Messages");

LOG.info("Set 'I18N_TEXT ATTRIBUTE NAME' to "+
"msg'");

LOG.info("Set 'I18N_TEXT BASE NAME' to " +
"'book.javamvc.helloworld.messages." +
"Messages'");

return res;
}
}

Exercise 2: Adapt the server.policy file as described in the text.
Add the the log4j-core-2.11.2.jar, log4j-api-2.11.2.]jar,
and log4j-appserver-2.11.2 files (or whatever version you
downloaded) from the Log4j2 distribution to the GLASSFISH
INST/glassfish/domains/domaini/modules/autostart folder.
Add a log4j2.json file to GLASSFISH_INST/glassfish/domains/
domaini/1lib/classes. Example configuration files are presented
in the text.

To your project, inside build.gradle, add the following as a
dependency:

dependencies {

implementation 'org.apache.logging.log4j: '+
'‘log4j-api:2.11.2"

434

Add a static logger field to each class and use it:

public class SomeClass {

private final static Logger LOG =

LogManager .getLogger (SomeClass.class);

public void someMethod() {

}

}

LOG.trace("Trace: ...");
LOG.debug("Debug: ...");
LOG.info("Some info: ...");
LOG.warn("Some warning: ...");
LOG.error("Some error: ...");
LOG.fatal("Some fatal error: ...");

try {
} catch(Exception e) {

LOG.error("Some error", e);

}

APPENDIX

435

Index

A

Administrative REST interface, 34, 42

Application scope, 139, 148, 188

Asynchronous EJB invocation,
252,253

Authentication, 19, 22, 66

Automatic timers, 253, 254, 258, 259

B

Bean validation, 23, 122, 193
BundleForEL class, 226, 238, 417

C

Component-to-EJB communication,
249, 258

Conditional branching, 152, 153,
177,189

Context and dependency injection (CDI)
technology, 23, 134, 135, 187

context.getTimerService(), 256

Controller, 1, 2

ConvertDateTime tag, 236

ConvertNumber tag, 235

Cookies, 153, 154, 189

createSingleActionTimer()
invocation, 256

Custom converters, 237, 239

Customized bundle class, 226

© Peter Spath 2021

D

Dependencies, Gradle, 66-69, 89
Dependent scope, 139
doFilter() method, 226

E

Eclipse
adding plugins, 49
configuration, 48, 49
everyday usage, 50
functions, 50
Gradle multi-project, 76, 77
IDE, 46
installation, 46, 47
Java runtimes, 49
plugins, install, 47
Eclipse Gradle plugin, 55, 57, 75, 81, 88, 92
Enterprise Archive (EAR), 250, 258
Enterprise edition J2EE, 20
Enterprise Java Beans (EJBs)
accessing, 246-248
asynchronous invocation, 252, 253
container environment, 241
defining, 242-245
dependencies, 250-252
local access to session, 243
projects, 248, 249
session, 241, 242
timers, 253, 255, 256

437

P. Spéth, Beginning Java MVC 1.0, https://doi.org/10.1007/978-1-4842-6280-1

https://doi.org/10.1007/978-1-4842-6280-1#DOI

INDEX

Expression languages (EL)
deferred expressions, 178
handler, 146-148
implicit objects, 148

F

Facelets

configuration, 155-157

files, 155

JSTL, 177

language resources, 224

localized message, 225, 228

Musicbox Facelets application,

164-177

templates, 158-160
FormatDate tag, 233
FormatNumber tag, 231
Formatting data, 229-234

G

GlassFish server
administrative frontends, 28
getting, 26-28
GUI administration, 32, 33
Jakarta EE 8, 36

REST interface administration, 33-36

shell administration, 28-32
Gradle
build framework/build
automation tool, 45
build.gradle file, 69
build-related activities, 53
central build file, 55-57
command options, 83
configuration phase, 53, 67
console, builds, 81-84

438

custom tasks, 73, 74
declarative configuration style, 45
dependencies, 66-69, 89
deploy task, 79-81
EchoLibrary example, 70
EchoLibrary project, 51, 53
execution phase, 54
initialization phase, 53
multi-project builds, 75, 76, 78
MVC installation, 84, 85
plugins, 53, 63, 64
project layout, 54
repositories, 64-66
script variables, 72
tasks, 61-63
plugins, 61
run configuration, 60
view menu, 59
view tree, 58
wrapper, 74, 75
Graphical user interface (GUI), 18
greeting() method, 108
Groovy language feature, 72, 73, 91

H

HelloWorldController, 105, 107
Hello World project, 8-17
add gradle.properties file, 102
build.gradle file’s content, 100-102
controller, 107, 108
deploying and testing, 111-113
Gradle
executions view, 109
project explorer view filter, 110
tasks, 109
Gradle project wizard welcome page,
96-99

Jakarta EE server, 111

libraries, 100

model, 103, 104

view, 104-107
Hierarchical MVC (HMVC), 3

Implicit objects, 145
Integrated development environment
(IDE), 46

J, K
Jakarta EE/Java EE
authentication, 19
configurations, 20
corporate environments, 19
enterprise applications, 36
features, 21
GlassFish (see GlassFish server)
security, 19
specifications, 21
standard edition (SE), 23, 24
version numbers, 21-23
JavaBeans components, 145, 146
Java EE Security API, 22
Java/Jakarta Enterprise Edition, 9
Java Messaging Service (JMS), 22
JavaMVC(C, 7, 8
CDI, 134, 135,137
controller
basics, 179
getting pages, 180
posting data, 183-186
prepare model values, 182, 183
URLs, 182
exception handling, 120-124
form to controller connection, 120

INDEX

handling query parameters, 126-129
model object scopes, 137
non-string POST parameters, 124, 125
simplified model data container, 139
user input from forms, 117-120
view, Facelets

configuration, 155-157

files, 155

and JSTL, 177

Musicbox Facelets application,

164-177

template, 157-160, 165
view, JSPs

basics, 141

conditional branching, 152, 153

cookies, 153, 154

directives, 141, 142

dynamic output, 148

expression language handler,

146-148

implicit objects, 145

JavaBeans components, 145

Java code and expressions, 144

loops, 150-152

static content, 143, 144

variables, 149
model object scopes, 138, 139

JavaSE (JSE) version, 20
Java Server Faces (JSF), 21
Java Server Pages (JSP), 23

conditional branching, 152, 153
cookies, 153, 154

directives, 141, 142

formatting, 234-236

implicit objects, 145

Java code and expressions, 144
language-related resources, 223
localized message, 225, 228

439

INDEX

Java Server Pages (JSP) (cont.)
loops, 150-152
variables, 149
Java Transaction API (JTA), 22
JBoss Enterprise Application Platform, 25

L

Language resources, 223-225
Localized data conversion, 236, 237
Localized messages, 225, 226, 228
Loops, 150

<ui:debug> tag, 164

<ui:fragment> tag, 161, 163
<uirrepeat> tag, 163

Model-View-Adapter (MVA), 4
Model-View-Controller (MVC)

design pattern, 3

“Hello World” example, 8-17

history, 3, 4

Java, 6-8

web applications, 4, 5
Model-View-Presenter (MVP), 4
Model-View-View-Model (MVVM), 4
Musicbox Facelets application, 177
@MvcBinding annotation, 120, 184

N

@Named annotation, 145
Non-string POST parameters, 124, 125

O

OPTIONS verb requests, 39

440

P

POST method, 184

Presentation-abstraction-control
(PAC), 3

Programmatic timers, 253

Q

Query parameters, 126-129

R

@Remote annotation, 244

Remote EJB server, 248

Repositories, Gradle, 64-66

Repository specifications, 89
Representational state transfer (REST), 37
Resource bundles, 223, 228

RESTful Web-Services (JAX-RS), 21, 37-40

S

@Schedules annotation, 255
Scopes, Java MVC, 137-139
Session EJBs, 241, 242

Session scope, 138

setBean() method parameter, 134
setFor() method, 228

Singleton session EJB, 241
Standard edition J2SE, 20

Stateful EJBs, 242

Stateless EJB, 242

T

Timer E]Bs, 253, 255, 256
toString(), 229
Transitive dependencies, 69

U

Unified expressions, 178
uriBuilder(), 118

\'

Variables, 149, 150

INDEX

W XY,Z

Web applications, 4, 5
@WebkFilter, 225

Web sockets, 22

wrapper task, 74, 75, 81, 92

441

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: About MVC: Model, View, Controller
	The History of MVC
	MVC in Web Applications
	MVC for Java
	Finally, Java MVC (JSR-371)
	Why MVC
	Where Is Hello World?
	Exercises
	Summary

	Chapter 2: Prerequisite: Jakarta EE/Java EE
	The Nature of Java for Enterprise Applications
	GlassFish, a Free Java Server
	Getting GlassFish
	GlassFish Shell Administration
	GlassFish GUI Administration
	GlassFish REST Interface Administration

	Using a Preinstalled Java Server
	Learning Java for Enterprise Applications
	RESTful Services
	Exercises
	Summary

	Chapter 3: Development Workflow
	Using Gradle as a Build Framework
	Using Eclipse as an IDE
	Installing Eclipse
	Configuring Eclipse
	Adding Java Runtimes
	Adding Plugins
	Eclipse Everyday Usage

	More About Gradle
	A Basic Gradle Project
	Gradle Main Concepts
	Standard Gradle Project Layout
	The Central Gradle Build File
	Running Gradle Tasks
	Gradle Tasks Explained
	Gradle Plugins
	More About Repositories
	More About Dependencies
	Changing the Project Structure
	The Gradle Build File Is a Groovy Script
	Script Variables
	Custom Tasks
	The Gradle Wrapper
	Multi-Project Builds
	Adding a Deploy Task

	Developing Using the Console
	Installing MVC
	Exercises
	Summary

	Chapter 4: Hello World for Java MVC
	Starting the Hello World Project
	The Hello World Model
	The Hello World View
	The Hello World Controller
	Using Gradle to Build Hello World
	Starting a Jakarta EE Server
	Deploying and Testing Hello World
	Exercises
	Summary

	Chapter 5: Start Working with Java MVC
	Handling User Input from Forms
	Exception Handling in Java MVC
	Non-String POST Parameters
	Handling Query Parameters
	Exercises
	Summary

	Chapter 6: In-Depth Java MVC
	The Model
	CDI in Java MVC
	Model Object Scopes
	The Simplified Model Data Container

	The View: JSPs
	JSP Basics
	Directives
	Static Content
	Java Scriptlets and Java Expressions
	Implicit Objects
	JavaBeans Components
	Expression Languages
	Output
	Variables
	Loops
	Conditional Branching
	Cookies

	The View: Facelets
	Facelets Files
	Facelets Configuration
	Templating via Facelets
	The <ui:include> Tag
	The <ui:composition> Tag, First Variant
	The <ui:composition> Tag, Second Variant
	The <ui:insert> Tag
	The <ui:define> Tag
	The <ui:param> Tag
	The <ui:component> Tag

	The <ui:decorate> Tag
	The <ui:fragment> Tag
	The <ui:repeat> Tag
	The <ui:debug> Tag

	An Example Facelets Project
	Mixing Facelets and JSTL
	Unified Expressions

	The Controller
	Controller Basics
	Getting Pages
	Preparing the Model
	Posting Data into Controllers

	Exercises
	Summary

	Chapter 7: In-Depth Java MVC: Part II
	Adding Bean Validation
	Injectable Context
	Persisting State
	Dealing with Page Fragments
	Observers
	Configuration
	Exercises
	Summary

	Chapter 8: Internationalization
	Language Resources
	Adding Localized Messages to the Session
	Formatting Data in the View
	Using JSF for Formatting
	Localized Data Conversion
	Exercises
	Summary

	Chapter 9: Java MVC and EJBs
	About Session EJBs
	Defining EJBs
	Accessing EJBs
	EJB Projects
	EJBs with Dependencies
	Asynchronous EJB Invocation
	Timer EJBs
	Exercises
	Summary

	Chapter 10: Connecting Java MVC to a Database
	Abstracting Away Database Access with JPA
	Setting Up a SQL Database
	Creating a Datasource
	Preparing the Member Registration Application
	Adding EclipseLink as ORM
	Controllers
	Adding Data Access Objects
	Updating the View
	Adding Entities
	Adding Relations
	Exercises
	Summary

	Chapter 11: Logging Java MVC Applications
	System Streams
	JDK Logging in GlassFish
	GlassFish Log Files
	Adding Logging Output to the Console
	Using the Standard Logging API for Your Own Projects
	Logging Levels
	The Logger Hierarchy and Thresholds
	The Logging Configuration
	The Logging Format

	Using JDK Standard Logging for Other Servers
	Adding Log4j Logging to Your Application
	Adding Log4j Server-Wide
	Changing the Logging Format
	Adding Log4j to Jakarta EE Web Applications
	Using Log4j in the Coding

	Exercises
	Summary

	Chapter 12: A Java MVC Example Application
	The BooKlubb Database
	The BooKlubb Eclipse Project
	The BooKlubb Infrastructure Classes
	Configuring BooKlubb Database Access
	The BooKlubb Internationalization
	The BooKlubb Entity Classes
	BooKlubb Database Access via DAOs
	The BooKlubb Model
	The BooKlubb Controller
	The BooKlubb View
	Fragment Files
	Landing Page
	Member-Related View Files
	Book-Related View Files

	Deploying and Testing BooKlubb
	Summary

	Appendix
	Solutions to the Exercises
	Chapter 1 Exercises
	Chapter 2 Exercises
	Chapter 3 Exercises
	Chapter 4 Exercises
	Chapter 5 Exercises
	Chapter 6 Exercises
	Chapter 7 Exercises
	Chapter 8 Exercises
	Chapter 9 Exercises
	Chapter 10 Exercises
	Chapter 11 Exercises

	Index

