
Beginning
jOOQ

Learn to Write Efficient and Effective
Java-Based SQL Database Operations
—
Tayo Koleoso

Beginning jOOQ
Learn to Write Efficient

and Effective Java-Based SQL
Database Operations

Tayo Koleoso

Ещё больше книг по Java в нашем телеграм
канале: https://t.me/javalib

Beginning jOOQ: Learn to Write Efficient and Effective Java-Based SQL

Database Operations

ISBN-13 (pbk): 978-1-4842-7430-9		 ISBN-13 (electronic): 978-1-4842-7431-6
https://doi.org/10.1007/978-1-4842-7431-6

Copyright © 2022 by Tayo Koleoso

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Josh Rose on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484274309. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Tayo Koleoso
Silver Spring, MD, USA

https://doi.org/10.1007/978-1-4842-7431-6

iii

Table of Contents

Chapter 1: �Welcome to jOOQ��1

Database Operations in Java: The Good Parts���2

Database Operations in Java: The…Not So Good Parts���4

You Have Got to Be jOOQing���9

jOOQ Feature Tour��10

Database Aware��11

Code Generation���11

Type Safety���12

Domain-Specific Language��12

Tooling Support��13

JVM Languages��14

Chapter 2: �Getting Started with jOOQ��15

Eden Auto Mart��19

Setting Up jOOQ���20

Install Dependencies for Commercial-Licensed jOOQ������������������������������������22

CRUD with jOOQ���24

Your SQL Dialect and You��25

Tools of CRUD in jOOQ��28

About the Author���vii

About the Technical Reviewer��ix

iv

Select Statements��34

Insert Statements���63

Update Statements���66

Delete Statements��67

Alternative Data Access Modes��69

Transactions���73

With Locking���76

Configuration���78

Connection Management��79

Schema, Catalog, and Multi-tenant Deployment��81

Query Management��84

Query Lifecycle Integration���86

Chapter 3: �Working with jOOQ���89

Generating Code��89

Tools of jOOQ Code Generation���90

Working with Generated Code���109

CRUD with Generated Code��109

Advanced Database Operations���117

Joins���117

Batch Operations��128

Advanced Query Syntax��137

Chapter 4: �Integrating with jOOQ���145

Java Persistence API with jOOQ���146

Generate JPA Entities���147

Generate from JPA Entities���151

Generate SQL Queries��153

Table of Contents

v

Spring Boot and jOOQ��162

Configure jOOQ in Spring Boot��163

Quarkus and jOOQ��168

Chapter 5: �Packaging and Testing jOOQ��173

Package Code with jOOQ���174

When You Don’t Need Code Generation��175

When You Don’t Have an Active Database Connection���������������������������������177

When Your Schema Needs to Incrementally Evolve�������������������������������������178

Testing with jOOQ���185

Tools of the (SQL) Testing Trade��187

Unit Testing with jOOQ��191

Integration Testing with Docker and TestContainers������������������������������������198

�Index��211

Table of Contents

Ещё больше книг по Java в нашем телеграм канале:
 https://t.me/javalib

vii

About the Author

Tayo Koleoso is the Founder and CEO of

LettuceWork (www.lettucework.io), the

platform dedicated to engineering culture.

He created the Better Managed Development

method for building and sustaining an effective

product engineering culture. He's a lifelong

learner, engineer, and engineering leader

committed to building people and software in

a healthy, sustainable, and effective ecosystem.

Outside of tech, comedy is the only thing he

consumes in large quantity. King of the Hill,

Peep Show and 30 Rock are his comfort telly,

I tell you what.

He got his start in software engineering as a teenage database

programmer with Oracle 8i. The jOOQ platform is therefore a natural fit and

a return to his roots: his love affair with SQL.

https://www.lettucework.io

ix

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated in 2018

from BITS Pilani, where he studied mechanical

engineering. Currently, he is working at

Mercedes Benz Research and Development

India Pvt. Ltd. as an ADAS Engineer. He has

also co-authored Machine Learning for

OpenCV 4 (Second Edition), The Computer

Vision Workshop, and Data Science for

Marketing Analytics (Second Edition) by Packt.

When he is not writing blogs or working on

projects, he likes to go on long walks or play

his acoustic guitar.  

Ещё больше книг по Java в нашем телеграм канале:
 https://t.me/javalib

1© Tayo Koleoso 2022
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_1

CHAPTER 1

Welcome to jOOQ
I got my start in software engineering (and really, serious computer business)

at 15 years old, with Oracle 8i SQL. Yes, I’ve been an old man from a young

age, technologically speaking. Playing with SQL* Plus, trying (and failing) my

first Oracle SQL certification exam, before I even started university, taught me

the value of getting SQL right. Don’t take it from me, take it from this chap:

I was a data access purist: I like my DAOs chilled, my
PreparedStatements prepared, and my SQL handwritten with
the care and tenderness of a lover... The world moved on to
Hibernate, Java Persistence API (JPA), and everything in
between... I still believe in raw SQL – a well-crafted SQL state-
ment will outperform Object-Relational Mapping (ORM).

—A tall, dark, dashing young and cool man, with flowing
locks of jet black hair and piercing brown eyes1

That tall drink of SQL? Probably me; I don’t know. The point is I deeply

appreciate Structured Query Language (SQL) and all it has to offer. The

industry’s been going gaga about NoSQL because it’s “easy to use” and it

“scales quickly,” but the fact of the matter is that SQL is still the undisputed

king of Online Analytical Processing (OLAP). When you want sanity

and integrity in your data, SQL is there. When you want (most of 2) the

1 Editor’s note: Oh brother. Here we go again.
2 �I say “most of” here because different Relational Database Management Systems

provide varying degrees of ACID strength.

https://doi.org/10.1007/978-1-4842-7431-6_1

2

guarantees of reliable transaction handling (à la ACID), you’re still going to

need solid SQL in your stack. Not for nothing, database stored procedures

will typically outperform application-layer (e.g., Java, .Net) processing in

many cases. In the words of the late, great Thanos: “SQL is inevitable. It’s in

the interests of your application’s scalability and correctness to get it right.”

Unfortunately, SQL gets very short shrift from devs nowadays. The

database is just another “black box” that we’re supposed to yell commands

at, so it yields some data and then we move on. It’s not until our queries

progressively degrade due to preventable problems; our schema is an

incoherent mess after two versions of our applications; SQL injection

attacks expose our weaknesses; the application chokes on queries

returning more than a few hundred rows. One of the dark sides of SQL is

that you’re not likely to realize that your SQL query is returning incorrect

or incomplete data at first glance. You ran a query, it returned some

queries, and that’s that, right? Yikes.

This book isn’t about the fundamentals of SQL. Or even the joys of

SQL per se (there are many). This book is about taking a different look at

handling SQL work in Java.

�Database Operations in Java: The Good
Parts
Your options for handling SQL data in the Java world are fairly

straightforward:

	 1.	 JDBC (Java Database Connectivity): JDBC is the

most fundamental API supporting Relational

Database Management System (RDBMS) access. It

provides

•	 Connection management

•	 Direct SQL statement control

Chapter 1 Welcome to jOOQ

3

•	 Stored procedure and function execution

•	 Mostly SQL injection safe componentry

•	 Transaction management

Save for one or two JakartaEE specifications, pretty

much everything else RDBMS related in the Java

ecosystem is based on JDBC. Because of JDBC, we

can then have…

	 2.	 Mapping Frameworks: Yes, I’m talking about

Object-Relational Mapping (ORM) frameworks

like Hibernate, MyBatis, and EclipseLink. These

are très convenient frameworks, based on the

premise that developers don’t want to spend any

time…developing SQL or other database-related

constructs. Neato. With these mapping frameworks,

you get to define some classes, slap some

annotations on them and the framework:

•	 Maps your java classes (the object model) to your

database tables (the domain model). This mapping

is used to convert query results into java objects,

known as entities. These entities are managed

objects – like a concierge service – changes to the

entities in memory are tracked and persisted by the

ORM runtime.

•	 Allows you to declaratively model the relationships

between your tables in your RDBMS, using java

object relationships (is-a, has-a type stuff). An

absolute cornucopia of annotations supports this

feature of ORMs.

Chapter 1 Welcome to jOOQ

4

•	 Completely spares you of any details related to the

SQL involved in all this magic. It just works.

•	 Provides declarative transaction handling – with

more annotations.

•	 Provides an additional query language, Hibernate

Query Language (HQL), that introduces an object-

oriented flavor to the mix. This way, you can

abandon SQL altogether (!) and just speak fluent

OOP all the time!

Most ORM providers offer some form of caching of the results of

database queries. The goal here is to save the travel time to the database

for subsequent trips to the database. So that when one user loads some

data once, if they request the same rows, it’s already in memory.

Then we have the Java Persistence API (JPA). This is a JakartaEE

specification that attempts to standardize the usage and behavior of ORMs

in the Java platform. The various providers (Hibernate, etc.) implement

this specification to varying degrees. They each also have implementation-

specific syntactic sugar that isn’t supported by the API. The API still allows

you to write your raw SQL if you like, and the results can still be managed

objects. Pretty neat.

In addition to all this, a framework like Spring offers the JdbcTemplate

as a wrapper around JDBC proper. SQL in the Java system is just one raging

party of convenience. Nice!

�Database Operations in Java: The…Not
So Good Parts
Ask yourself this: why aren’t JavaServer Pages (JSP) and JavaServer

Faces (JSF) as wildly popular as, say, React.js or Vue.js, when front-end

development is concerned? A lot of Java-based organizations are happy to

Chapter 1 Welcome to jOOQ

5

have Java or Kotlin Spring Boot back ends, but fronted by not Java. Because

when you care about performance and resource efficiency in a domain like

the browser, nothing beats raw JavaScript.

And I say this as someone that’s spent a fair bit of time teaching about

JSF and answering questions on StackOverflow. Don’t get me wrong: JSF

is super convenient. Heck, that’s why I got into the business of JSF in the

first place: a cheap, convenient, and practical way to belch out markup and

scripting into a web page. But when no one’s watching, I know. I know that

raw JavaScript is still where it’s at. If you want to make your browser dance,

deal with the quirks and nuances of individual browsers, you turn to the

language invented for browsers. These hips stylesheets don’t lie.

Yet here we are, where many have decided that SQL should take a

backseat when interacting with databases. Park the language built for the

platform in the garage; Java, the language of kings, is preferable. In many

scenarios, it isn’t. Here are some reasons why:

	 1.	 JPA isn’t aware of what type of database you’re

using, which is a shame, when you consider that

there are specific quirks, features, and limitations of

individual databases, for example:

•	 MySQL doesn’t support the INTERSECT or EXCEPT

set operations; FULL JOIN is also off the menu. You

wouldn’t know until you tried to use it and your

operation chokes.

•	 JPA doesn’t know what to do with nulls in the ORDER

BY clause; there’s also no support for the ORDER BY

NULLS FIRST clause from standard SQL.3 You’re on

your own here.

3 �Coming soon with Hibernate 6: https://docs.jboss.org/hibernate/orm/6.0/
userguide/html_single/Hibernate_User_Guide.html#hql-order-by

Chapter 1 Welcome to jOOQ

https://docs.jboss.org/hibernate/orm/6.0/userguide/html_single/Hibernate_User_Guide.html#hql-order-by
https://docs.jboss.org/hibernate/orm/6.0/userguide/html_single/Hibernate_User_Guide.html#hql-order-by

6

•	 JPA doesn’t deal well with the IN clause in some

scenarios:

•	 When you want to take advantage of query plan

caching

•	 When there are nulls in the list of parameters

passed to the IN clause

•	 PostgreSQL supports a massive array of data types

that are hyper-specific and hyper-optimized to

some use cases. There’s a wide assortment of data

types you can leverage in this RDBMS that you will

have to do a bunch of extra work to support with

UserTypes in Hibernate.

•	 Many of the mainstream database providers

(Oracle, PostgreSQL, and MySQL at least) provide

document storage and SQL querying – that’s

right, you can save your JSON documents in

these databases, query, and navigate inside the

documents with SQL. Basically combine NoSQL

and SQL in the same box. Some benchmarks have

shown the performance to be comparable to the

likes of MongoDB up to certain scales. These aren’t

your grandmother’s RDBMSes.

“But I want to make my application portable.” Your

enterprise has spent borderline sinful sums of money

on an Oracle license, but you’re going to use like 5% of

its capabilities, like a really fancy Excel spreadsheet?

Chapter 1 Welcome to jOOQ

7

	 2.	 Even with native query capabilities, neither JPA nor

Hibernate will save you from yourself. Your raw SQL

is still open to SQL injection if you make the right

mistakes. Your SQL could still be incorrect, and you

won’t find out until you try to execute the native

query. Java Persistence Query Language (JPQL)

and Hibernate Query Language (HQL) aren’t going

to save you either. You won’t find out your query

syntax is broken or incorrect until you try to run it.

And if you accidentally make changes to a managed

JPA entity, it’s going to be committed to the database

the first chance it gets.

	 3.	 Remember the caching that Hibernate and other

tools will do for you by default? Guess whose RAM

is slowly being devoured? Go on, guess. You might

be surprised to find out that every entity retrieved

and managed by a single hibernate session is

cached – for just that hibernate session – so that in

a large enterprise application with any number of

concurrent users, they’re all liable to hold copies

of exactly the same data in RAM of the application

server. Imagine how thirsty your application will get

at scale!

	 4.	 Can you confidently say you know what’s going

on inside of Hibernate or EclipseLink? Have

you tried to look at the actual queries being

generated by Hibernate? You might be in for a lot of

disappointment. There are many scenarios where

Hibernate is simply wasteful with database trips that

are hidden from view:

Chapter 1 Welcome to jOOQ

8

•	 Batch inserts and updates aren’t enabled by

default, and you’re going to do a bit of work to fully

support both.

•	 Even more specifically, using GenerationType.

IDENTITY with PostgreSQL and some others,

Hibernate will still ignore any batching directives.4

	 5.	 The challenges of an ORM really get in your face

when you need to scale. A couple rows, maybe a

couple hundred, and you could skate by. Larger

result sets, on the other hand, are sometimes not

practical (see the previous discussion: loading all

retrieved entities into memory). You could struggle

to handle an increase in query volume. JPA 2.2

introduced support for more efficient streaming

from the database; but again different kinds of

databases handle this feature differently. So that

despite your best efforts, MySQL and PostgreSQL

could still very well retrieve the entire ResultSet,5

ignoring your JPA 2.2 expectations of efficient results

streaming.

	 6.	 Fundamentally, ORM as a concept is at odds with

relational data representations. The technical name

for it is the Object-Relational Impedance Mismatch.

Don’t take it from me; ask the nerds at Hibernate

themselves6:

4 https://vladmihalcea.com/postgresql-serial-column-hibernate-identity/
5 �https://vladmihalcea.com/whats-new-in-jpa-2-2-stream-the-result-of-
a-query-execution/

6 http://hibernate.org/orm/what-is-an-orm/

Chapter 1 Welcome to jOOQ

https://vladmihalcea.com/postgresql-serial-column-hibernate-identity/
https://vladmihalcea.com/whats-new-in-jpa-2-2-stream-the-result-of-a-query-execution/
https://vladmihalcea.com/whats-new-in-jpa-2-2-stream-the-result-of-a-query-execution/
http://hibernate.org/orm/what-is-an-orm/

9

The way you access data in Java is fundamentally different
than (sic) the way you do it in a relational database. In Java,
you navigate from one association to another walking the
object network. This is not an efficient way of retrieving data
from a relational database. You typically want to minimize
the number of SQL queries and thus load several entities via
JOINs and select the targeted entities before you start walking
the object network.

Point is that past a certain point, you’re either going to be dealing with

a mess of annotations and a hopelessly complex entity class graph, or

you’re going to need to roll up your sleeves and get SQL-y.

You can’t avoid writing SQL if you’re going to do data access correctly

in Java. This isn’t a dig at the gang over at Hibernate; that framework

is a dang miracle for many use cases. But we’re not here to talk about

Hibernate, are we?

�You Have Got to Be jOOQing
Yes, I’m here to give you the good news of the jOOQ framework. First

things first: jOOQ is not a complete replacement for Hibernate, JPA, or

anything in that realm. JPA delivers on its goals of standardizing most

of RDBMS access for Java developers. Hibernate is hella powerful and

convenient; particularly for write operations, you can ORM to your heart’s

content and delight. I mean, what can beat the convenience of simply

updating a field of a java object and persist-ing or flush-ing?

For adult-tier, large-scale SQL data wrestling? Where there are a lot of

read operations? You’ll need the big guns. jOOQ is as big a gun as you’ll

get in this business of ours. Don’t take it from me, take it from an actual

ORM expert:

Chapter 1 Welcome to jOOQ

10

How about this chap:

…But while abstracting the SQL write statements is a doable
task, when it comes to reading data, nothing can beat native
SQL...native querying is unavoidable on almost any enterprise
system...While you can fire native queries from JPA, there’s no
support for dynamic native query building. jOOQ allows you to
build typesafe dynamic native queries, strengthening your
application against SQL injection attacks. jOOQ can be inte-
grated with JPA, as I already proven on my blog, and the JPA-
jOOQ combo can provide a solid data access stack.

—Vlad Mihalcea7

Vlad was a contributor to the Hibernate platform and continues to

support his own query performance optimizer, and he’s an authority on

the relationship between Java and relational databases. Cheers to that.

If you think of JPA and its implementations as being too Object-

Oriented Programming (OOP) friendly, jOOQ seeks to bring a balance to

the force. Providing strong awareness of the nuances of safe, effective, and

efficient SQL handling, all the while maintaining a solid grip on the object-

oriented side of things. So what’s in the jOOQ box?

�jOOQ Feature Tour
Alright, gather round everyone8! Let me sing you the song of my people

jOOQ. Ohhh, this is a tale of…

7 �https://blog.jooq.org/2015/04/14/jooq-tuesdays-vlad-mihalcea-gives-
deep-insight-into-sql-and-hibernate/

8 �Editor’s note: How many people do you think are concurrently reading a single
copy of your book?

Chapter 1 Welcome to jOOQ

https://blog.jooq.org/2015/04/14/jooq-tuesdays-vlad-mihalcea-gives-deep-insight-into-sql-and-hibernate/
https://blog.jooq.org/2015/04/14/jooq-tuesdays-vlad-mihalcea-gives-deep-insight-into-sql-and-hibernate/

11

�Database Aware
jOOQ is unapologetically RDBMS vendor aware.9 Unlike those other guys,

jOOQ provides API kits built specifically for a wide range of major database

vendors. This way, when you’re using jOOQ tools and APIs, you can be

sure you’re idiomatically correct; the syntax and semantics of your code is

transparently optimized and tightly mated with your database of choice.

And the delightful part of this is that it doesn’t translate to a tight coupling

to your Java code. Because jOOQ skews closer to the database, your Java

code can still remain technically database agnostic; your jOOQ library

implementation will quietly handle the finer details and nuances of your

specific database of choice. You can then quite easily flip a configuration in

jOOQ to support another, should you choose to switch databases.

�Code Generation
jOOQ is all about convenience when it comes to the developer experience.

Observe.

Starting with any one of the following:

•	 Existing database schema

•	 Database table

•	 Stored procedure or function

•	 Sequence

•	 JPA entity

•	 XML file

9 www.jooq.org/download/support-matrix

Chapter 1 Welcome to jOOQ

http://www.jooq.org/download/support-matrix

12

•	 Plaintext file containing SQL

•	 Liquibase YAML, XML, or JSON file

•	 Custom data types

jOOQ will generate java classes, JPA-annotated entity classes,

interfaces, or even XML that correctly maps what is represented in the

source material. If you’re starting with stored procedures or functions,

jOOQ will generate “routines”: classes that represent that database code,

making it as convenient as physically possible to use what’s already

available.

�Type Safety
All the entities, data, and fields you’ll be working with are typesafe –

guaranteed correct. The fields from your database tables, bind variables

from your stored procedures and functions, etc. are translated to the

closest match available in Java.

�Domain-Specific Language
jOOQ provides a DSL that mirrors the specific SQL dialect that’s

implemented by your choice of database vendor. Even beyond that, the

library integrates the quirks and non-standard features of the supported

database vendors. You know the ones, the bad boy databases (looking at

you, Oracle). This compile-time checking of your SQL syntax means that

you’ll have to go out of your way to write broken or otherwise unsupported

SQL. No more waiting till runtime to find out your SQL doesn’t compile!

Chapter 1 Welcome to jOOQ

13

�Tooling Support
You also get a robust toolkit to support a lot of developer convenience and

safe usage of the library:

•	 Maven: jOOQ offers configurable Maven plugins and

tools to support a variety of tasks around the code

generation feature.

•	 Command Line: Also supports the powerful code

generation feature of jOOQ. Additionally, there’s a

Schema Diff feature that helps compare two schemata

and output the difference.

•	 Flyway and Liquibase: You can use the two most popular

DML and DDL version control libraries with jOOQ.

•	 Raw SQL Vendor Safety: Should you opt to not use

the SQL DSL, instead choosing raw SQL, you can use

jOOQ’s Parser anywhere in your code to ensure that

the SQL you’re writing is correct and valid for the

selected database.

•	 SQL Disabler: The PlainSQLChecker allows you to

disable support for raw SQL anywhere in your project.

Drop it in your Maven POM.xml and it’ll disallow

compilation of any raw SQL in your project. This way,

you can guarantee that anyone that’s working on your

project or codebase will have to use jOOQ-generated

code and jOOQ’s fluent API; eliminating the probability

of incorrect SQL creeping into the code.

Chapter 1 Welcome to jOOQ

14

�JVM Languages
We get to take the jOOQ box on tour! You can use jOOQ with

•	 Kotlin

•	 Scala

•	 Groovy

This has been a 50,000 ft. flyover of jOOQ and what it brings to the

table. I want to stress here that jOOQ isn’t a replacement for ORM – the

right tool for the right job, etc. Where Hibernate, etc. don’t give you the

coverage you need, that’s where jOOQ swings into action.

So! Whaddya think so far? Pretty neat, huh? I’ll just catch my breath for

a moment here, and see you in the next chapter!

Chapter 1 Welcome to jOOQ

15© Tayo Koleoso 2022
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_2

CHAPTER 2

Getting Started
with jOOQ
Let’s take this thing for spin! But first, you should get to know these classes

and interfaces; they’re at the heart of 75% of what you’ll be doing in jOOQ:

	 1.	 org.jooq.impl.DSL

This is the sturdy, wise grandparent of most of

jOOQ’s functionality. With this class, you can

•	 Manipulate parts of a strongly typed SQL query in a

typesafe manner.

•	 Access database functions (concat, coalesce, etc.)

as if they were java methods.

•	 Specify database dialects. This is for when you need to

perform operations that are unique to your datastore

(Oracle, Amazon Redshift, PostgreSQL, etc.).

•	 Carry out Database Definition Language (DDL)

operations like ALTER, CREATE, DROP, etc., all in a

typesafe manner.

•	 Perform more mundane tasks like

•	 Constructing plaintext SQL

•	 Configuring the database connections

https://doi.org/10.1007/978-1-4842-7431-6_2

16

Almost all of its functionality are static methods in

the class, so you’ll typically just need to perform an

import static org.jooq.impl.DSL.* to use its

features.

	 2.	 org.jooq.DSLContext

Where DSL offers almost all its functionality in

static methods without state, DSLContext is more

object oriented. There’s some overlap between

this component and the DSL class, but there’s a

fundamental difference. It’s really in the name DSL:

Domain-Specific Language Context. Keeping state

in a context object provides runtime capabilities that

you’re not going to get from DSL – comes in handy

when your SQL operation is a multi-step one or is

part of a longer process. Overall, DSLContext offers

•	 Fluent programming style

•	 Stateful components

•	 Better integration with dependency injection

frameworks like Spring (more on that later)

The fluent programming style of DSLContext is

remarkable. This isn’t your standard builder-pattern

style chain of method calls. This is a true DSL

that will prevent you from accidentally (or even

purposefully) constructing incorrect SQL. Each

method call in the chain is possible only if the

previous method call will correctly support it. Truly,

you’ll need to work super hard to construct incorrect

SQL in jOOQ. Because the DSLContext usage is

mostly stateful, you’ll need to be more conscious of

thread safety when using this class.

Chapter 2 Getting Started with jOOQ

17

	 3.	 org.jooq.conf.Settings

The Settings class will let you further customize

your jOOQ context with simple, straightforward

parameters that change the behavior of the API. An

instance of this class can help you control factors like

•	 The kind of JDBC Statement that’s jOOQ uses – a

regular Statement or a PreparedStatement.1

•	 Mapping different schemas in same jOOQ context.

•	 Controlling the logging of SQL statements being

executed by jOOQ.

•	 Disabling support for Java Persistence API (JPA)

annotations, for a slight performance improvement.

•	 Configuring the behavior of jOOQ’s internal SQL

parser – for example, to set it up for a specific SQL

dialect. This would apply if you’re using jOOQ to

process raw SQL strings instead of its typesafe options.

•	 Configuring JDBC-specific options like

queryTimeout and maxRows.

•	 Configuring batch size for batch operations.

	 4.	 org.jooq.Configuration

The Configuration class contains the core

configuration items that control how your jOOQ

runtime behaves. Configuration is responsible

1 Unlike with standard usage of PreparedStatement vs. Statement, you’re at no
greater risk of SQL injection by selecting one or the other in jOOQ. The difference
here is largely performance related, where PreparedStatement queries are
cacheable by the RDBMs.

Chapter 2 Getting Started with jOOQ

18

for managing your database connection, plugging

into the jOOQ engine to customize its behavior on

a broader scope than just individual SQL queries.

org.jooq.Configuration provides methods that

allow you to plug in custom code that can replace or

support standard jOOQ functionality altogether.

	 5.	 org.jooq.meta.jaxb.Configuration

You’ll be using this class to control the code

generation feature of jOOQ. It’s a direct analog of

a jOOQ configuration file named library.xml.

Generating java representations of your database

tables, rows, columns, stored procedures, etc. is a

major feature of the jOOQ platform, and I’m looking

forward to getting to that part of this book! Yes: org.

jooq.Configuration vs. org.jooq.meta.jaxb.

Configuration could lead to some awkwardness.

Which import statement is wearing it best? Trick question: it’s Becky.

Chapter 2 Getting Started with jOOQ

19

�Eden Auto Mart
I’m going to use a car dealership as the background for all the examples

that I’ll be showing throughout this book. Eden Auto is a car dealer that

sells new and used cars via a web portal so that customers can

•	 Search for cars by many different attributes of the

vehicle itself

•	 Search across brands of vehicle

•	 Search across a price range

On the back end, the staff of Eden Auto can

•	 Upload cars for sale

•	 Update existing prices and other attributes

•	 Remove cars from the inventory

•	 View existing inventory

•	 Search the inventory for cars by many attributes

We’re going to use a relatively simplified data model here just for the

purpose of demonstrating specific jOOQ features. Here’s what that looks like.

Chapter 2 Getting Started with jOOQ

20

To help run some of the examples in this book, you can bootstrap with

the database definition that comes with the code sample attached to this

book.

�Setting Up jOOQ
To start, you’ll need to reckon with the particulars of the RDBMS you’re

going to be working with. A lot of the beauty of jOOQ is how it allows you

to use pretty much any database with tons of convenience. Features that

aren’t available in your chosen database can be emulated transparently by

the jOOQ API. For this book, I’ll be doing most of the demonstrations with

MySQL, with some detours into the some other popular databases every

now and then.

Chapter 2 Getting Started with jOOQ

21

I’ll need MySQL’s Connector/J database driver as a dependency:

<dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <version>${mysql-driver-version}</version>

</dependency>

On to the actual setup of jOOQ, where things get a little…interesting.

See, jOOQ is offered as both free and commercial software – a dual

licensing model. The license model determines (among other things)

•	 The SQL dialects you can use in your application

•	 The way you set jOOQ up in your project

For the free version of jOOQ, it’s a straightforward maven entry,

because it’s publicly available in the global Maven repo:

<dependency>

 <groupId>org.jooq</groupId>

 <artifactId>jooq</artifactId>

 <version>3.15.1</version>

</dependency>

<dependency>

 <groupId>org.jooq</groupId>

 <artifactId>jooq-meta</artifactId>

 <version>3.15.1</version>

</dependency>

<dependency>

 <groupId>org.jooq</groupId>

 <artifactId>jooq-codegen</artifactId>

 <version>3.15.1</version>

</dependency>

Chapter 2 Getting Started with jOOQ

22

Simple enough, yes? Bueno. When you’ve paid for the commercial

version however, things get a bit more manual. Here’s how.

�Install Dependencies for Commercial-Licensed
jOOQ
The dependencies for the commercial2 version of jOOQ aren’t available in

public repositories because, well, they’re not free and thus not available

for public download. To get the commercial version (or a trial), visit www.

jooq.org/download/versions to download the version that matches your

version of Java.

<screenshot of versions page>

Once you’ve plugged in your particulars, you’ll be prompted to

download a zip file containing

•	 Sources

•	 Compiled JARs

•	 Helper scripts

There are two helper scripts in the zip file:

•	 maven-deploy

•	 maven-install

Both helpers do the same thing with different targets: build and install

the jOOQ jars into repositories. maven-deploy will set up the jOOQ JARs

in a remote repository, so reach for that to set up the JAR in a central

2 Commercial = Express, Professional, and Enterprise licenses

Chapter 2 Getting Started with jOOQ

http://www.jooq.org/download/versions
http://www.jooq.org/download/versions

23

Artifactory or similar dependency repository. For a local maven repository,

reach for the maven-install script and you’re sorted. After all this scriptin’

action, you can then add commercial jOOQ to your project like so:

<dependency>

 <groupId>org.jooq.pro</groupId>

 <artifactId>jooq</artifactId>

 <version>3.15.1</version>

</dependency>

<dependency>

 <groupId>org.jooq.pro</groupId>

 <artifactId>jooq-meta</artifactId>

 <version>3.15.1</version>

</dependency>

<dependency>

 <groupId>org.jooq.pro</groupId>

 <artifactId>jooq-codegen</artifactId>

 <version>3.15.1</version>

</dependency>

It’s the same artifactId as the free version, but with a different

groupId:org.jooq.pro. You can use a trial license for the commercial

version of jOOQ by using org.jooq.trial for the groupId. The open

source version is just as functional for many use cases, but with limited

database vendor support and fewer features.3 Also noteworthy that jOOQ’s

JDK support starts from JDK 6, all the way up to the latest (17, as at the

time of this writing). The older JDK versions are supported only with the

paid version.

3 www.jooq.org/download/#feature-comparison

Chapter 2 Getting Started with jOOQ

https://www.jooq.org/download/#feature-comparison

24

Tip  The trial version of the commercial jOOQ distribution will print
a message indicating that yes, you are indeed on a trial version of
the commercial jOOQ distribution. But rejoice, oh ye trial version
users, for jOOQ is effective as it is generous: set the org.jooq.
no-logo=true JVM property to disable the trial license warning
message.

And that’s it! jOOQ is set up in your project. Now to do stuff with it…

�CRUD with jOOQ
With your jOOQ JARs in place, database driver configured, we now should

start using this bad boy. We’re going to need to acquire connections, load

the driver, etc. If you haven’t done database work in Java before now, I’m

going to show you how the least cool way to do it in Java:

try(Connection connection = DriverManager.

getConnection("jdbc:mysql://localhost/test?user=testuser&

password=thisisaterriblepassword")){

 //more to come

}catch(SQLException sqlex){

}

The goal of the preceding snippet is to acquire a database connection;

jOOQ can take care of everything following that. jOOQ on its own isn’t

too particular about how you acquire the connection if you follow some

established commonsense principles. This isn’t a particularly great way

to do connection acquisition in a modern application. You should be

using the javax.sql.Datasource class and connection pools instead of

manually wrangling connection drivers. But more on that later. For now,

we have a database connection, and thus it’s time to start jOOQin’.

Chapter 2 Getting Started with jOOQ

25

Remember  DSL and DSLContext are the primary entry points into
the jOOQ ecosystem.

Fundamentally, most jOOQ operations will begin with some variation

of the following:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);

In the preceding sample

•	 I supply the JDBC connection object (how I obtained

the connection isn’t important for now).

•	 And I supply a dialect from the SQLDialect enum to

pass to the DSLContext.

According to the manufacturer, DSLContext isn’t always guaranteed to

be thread safe – it is a context object after all. However, if you personally

take sensible precautions, you could enjoy thread safety with this class.

Having provided DSLContext with a valid JDBC connection, you can now

get into the nitty-gritty of Create, Read, Update, and Delete (CRUD). But

first, a word from our sponsors…

�Your SQL Dialect and You
While it’s not mandatory to set a SQL dialect on your DSLContext, it’s ideal

you do. See, RDBMSes have many different quirks as I’ve already covered.

Some of them are glaring and easily detectable. Other more trivial ones

can trip you up unexpectedly. Take my choice of MySQL database, for

example:

•	 Identifier Style: You might already be aware that

different databases use different quote styles for

identifiers. Because of this, standard SQL will have

Chapter 2 Getting Started with jOOQ

26

select "e"."first_name", "e"."last_name" from

"employees" "e"

but MySQL has4

select `e`.`first_name`, `e`.`last_name` from

`employees` `e`

Backticks, instead of double quotes. This isn’t to say

that you’ll be denied a lot of functionality without

specifying a dialect. Au contraire, jOOQ will routinely

go out of its way to emulate features that are supported

natively by one or two databases but not by others, for

example:

•	 Returning Keys: A SQL INSERT... RETURNING in

PostgreSQL will return with the generated keys of the

rows that have been inserted, and it’s immediately

available because of the insert operation. This is

provided for by the SQL standard but isn’t uniformly

supported by databases. Among those that do, the

implementation details vary. jOOQ can emulate this

feature for you, regardless of the kind of database

you’re using. Fair warning here: depending on the kind

of support your database has for it, jOOQ may be forced

to silently initiate a second SELECT trip to the database

to retrieve the generated keys.

4 You can control this behavior by configuring the ANSI_QUOTES option
for MySQL (https://dev.mysql.com/doc/refman/8.0/en/sql-mode.
html#sqlmode_ansi_quotes).

Chapter 2 Getting Started with jOOQ

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes

27

•	 Dummy Tables: Different SQL databases allow you to

select from dummy tables in different ways. Oracle has

the famous DUAL table, for example. Sometimes, you

just want to run some functions, but then your RDBMS

requires you to specify a FROM clause – without offering

a dummy table. jOOQ supports select statements

without from clauses so you can do whatever sorcery

you like, with or without a dummy table.

If you don’t specify any dialect, you’ll get the default SQLDialect.

DEFAULT and then via con Dios!5

Caution  For your own peace of mind, go ahead and configure the
org.jooq.conf.Settings.backslashEscaping property on
your Settings object. MySQL and some versions of PostgreSQL
support non-standard escape characters that can cause you a lot of
grief when you least expect it. This property lets jOOQ properly handle
this “feature” from MySQL.

5 Lukas: If you provide DSL.using(connection), then jOOQ will try to “guess”
the appropriate SQLDialect from the JDBC DatabaseMetaData – https://docs.
oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html

Chapter 2 Getting Started with jOOQ

https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html

28

And that has been the word from our sponsors!

Thank you for reading!

Okay, let’s now get into…

�Tools of CRUD in jOOQ
jOOQ offers a lot of fine-grained control of the entirety of a SQL

statement – really, an insane amount of control at your fingertips.

Starting from a pretty high level, I’m going to go over some of the key

components that you’re going to need to get familiar with if you’re going

to CRUD with jOOQ:

	 1.	 org.jooq.Query

This is the fundamental unit of a SQL query in

jOOQ-land. It extends org.jooq.Statement along

with the jOOQ representations of other executable

Chapter 2 Getting Started with jOOQ

29

database units of work like stored procedures and

functions. You can use it to execute

•	 Plaintext SQL that you pass in as an argument

•	 Strongly typed SQL fragments constructed using

the jOOQ API

It can help you convert a manually derived plaintext

SQL to a jOOQ DSL-typed SQL object and vice versa.

It’s the quintessential representation of a SQL query;

use it to execute SQL statements when you don’t

need a return value from the operation (like Data

Manipulation Language operations).

	 2.	 org.jooq.ResultQuery

This class is basically org.jooq.Query, but you can

obtain return values from it, like query results. Some

notable qualities of this class:

•	 It’s efficient in that it doesn’t need an active

database connection to provide access to its

results – once the query has been successfully

executed, the connection can be discharged, and

you can interrogate your instance of this class for

all the query results.6 This is useful when you are

resource conscious and want to protect against

long-running transactions. Compare this feature to

detached hibernate entities.

6 Lukas: It’s time to deprecate that ancient feature of the mutable ResultQuery!
This won’t be available in the future anymore. In the future, only
ResultQuery::fetch and similar methods should be used.

Chapter 2 Getting Started with jOOQ

30

•	 It provides typed or untyped result fetching,

comparable to what you get with the Spring

JdbcTemplate.

•	 It maps to custom Plain Old Java Objects (POJOs).

•	 It supports lazy fetching of query results using an

underlying database cursor. If you go this route,

be mindful that it depends on maintaining the live

database connection.

•	 It supports reactive programming.

•	 It supports streams via the java.util.stream.

Stream interface.

All told, it provides a very flexible interface for

wrangling query results. It’s as powerful as anything

you’ll get with Hibernate or JPA, with much less

verbosity than what JDBC would put you through for

the same outcomes.

	 3.	 org.jooq.QueryPart

On its own, not too powerful. But it’s the parent type

of a large suite of classes that help you construct

complex queries dynamically. Compare this class to

the CriteriaBuilder in JPA or the Specification from

Spring Data JPA. To be clear, this API is exorbitantly

richer than either of what JPA or Spring Data provide.

Pretty much every fragment of the SQL standard

specification can be represented as variant of org.

jooq.QueryPart, for example:

•	 Field to represent a field that can be used

anywhere, in any kind of SQL statement

•	 Condition to represent predicates like WHERE, HAVING

Chapter 2 Getting Started with jOOQ

31

•	 SQL to represent a whole SQL statement or fragment

•	 Table to represent a whole table, wherever a table is

needed in your query

•	 Row to represent tuples (or in layman’s terms,

something like a row of a table)

•	 Field to represent…yes, a column

•	 Constraint to represent a database constraint, as

part of a DDL operation

•	 Schema to represent the schema part of any SQL

query

This is a small sampling of the level of granularity

that QueryPart can get to. Heck, there are even more

specialized versions of each of these that offer specific

advantages. If you’ve ever dreamed of being able to

support a powerful dynamic filter as part of a search

function, but without concatenating strings of ugly

plaintext SQL all over the place, this is where you

want to be.

You get powerful and reusable components to

construct any kind of SQL use case you can dream of.

When you use jOOQ’s code generation feature, the

artifacts that are generated inherit from this family as

well. Incredibly powerful stuff.

	 4.	 org.jooq.Record

This is the parent class for representations of a row

of data from a table. This is in addition to jOOQ’s

capability to work with your custom POJOs and

Data Transfer Object (DTOs). You get the following

specializations of this class, among others:

Chapter 2 Getting Started with jOOQ

32

•	 org.jooq.UpdatableRecord

Compare this to a hibernate entity: it’s a live

object that remains bound to the underlying

database row for its lifetime. This way, you can

modify the refresh, modify, or delete an instance

of UpdatableRecord, and it can reflect the

change in the underlying table.

When you use jOOQ’s generated artifacts, you’ll

get classes that extend this one by default. This

applies only to tables with primary keys – without

primary keys, you’ll get a different generated

artifact. Additionally, you’ll be able to navigate to

related entities of an updatable record using its

foreign key references. Just like JPA! But better!

UpdatableRecords isn’t cached, so you can be

guaranteed you’re always working with up-to-

date, live data. It’s also easier on RAM.

•	 org.jooq.TableRecord

This is what you get instead of an

UpdatableRecord when the underlying table

doesn’t use a primary key. So, you won’t be able

to refresh or update parts of these records; you’ll

still be able to insert rows with this class, however.

•	 org.jooq.RecordMapper

Use this class for finer-grained control over the

translation of your query results. Compare this

to Spring’s RowMapper class.

Chapter 2 Getting Started with jOOQ

33

	 5.	 org.jooq.Result

This is a container class to hold query results. In practice,

your Record objects or lists of Record objects will be

wrapped by an instance of Result. It’s a Collection,

Iterable, List, and Serializable – so you can do

a lot with it (functional, reactive, and JDK Stream

programming). It’s interoperable with JDBC’s ResultSet

as well. It has the added advantage that it doesn’t hang

on to the open database connection like the ResultSet.

Do you feel the power?

Do you?

I hope so because we’re about to use this power for…

Chapter 2 Getting Started with jOOQ

34

�Select Statements
Let’s say hello to our old friend, DSLContext:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);

//hullo!

For starters, we need to be able to run a vanilla SQL query. Here’s

what that looks like. Given a custom CompleteVehicleRecord POJO that I

manually created:

public class CompleteVehicleRecord {

 Long id;

 String brand;

 String model;

 String trim;

 BigDecimal price;

 String color;

//getters, setters, toString and hashCode;

}

This class encapsulates an individual vehicle for sale in the database.

I’m interested in selecting all available vehicles in the database. In SQL

terms, it would look something like this:

SELECT * FROM edens_car.complete_car_listing;

Chapter 2 Getting Started with jOOQ

35

Here’s how it looks in terms of jOOQ:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);

 �ResultQuery resultQuery = context.

resultQuery("SELECT * FROM edens_car.complete_

car_listing"); (1)

 �List<CompleteVehicleRecord> allVehicles =

resultQuery.fetchInto(CompleteVehicleRecord.

class); (2)

 logger.info(allVehicles.toString());

Nothing fancy, just your vanilla select statement.7 Here:

	 1.	 I pass in my plaintext SQL to the

DSLContext#resultQuery method to retrieve all

available cars. I choose to obtain a ResultQuery

from the execution because I want to get the results

from it. If this were a query that I didn’t want results

from (say, a delete or insert statement), I would have

just used the Query class instead.

	 2.	 On the ResultQuery, I call the fetchInto method to

automatically map each row from the results by

•	 Mapping each row returned into an instance of

CompleteVehicleRecord

•	 Putting all the mapped rows into a list of

CompleteVehicleRecord

jOOQ is able to infer the mappings between the

fields of my POJO and the columns returned in the

jOOQ select statement. As you’ve probably guessed,

7 This isn’t the best type of select statement – you want to be specific about the
columns you want in a query. However, the focus of this book is on working the
best way with jOOQ, not necessarily SQL.

Chapter 2 Getting Started with jOOQ

36

the names of the class variables and the columns in

the SQL query need to match. There are other ways

to deliberately establish this mapping; we’ll check

them out later in the book.

Alternatively, I could use the fetchMany method so I can take more

control of mapping each row:

resultQuery.fetchMany().forEach(results -> {

 //container for all the results

 results.forEach(record -> {

 logger.info("New result row");

 logger.info("Brand: {}",record.getValue("brand"));

 logger.info("Model: {}",record.getValue("model"));

 logger.info("Trim: {}",record.getValue("trim"));

 logger.info("Color: {}",record.getValue("color"));

 logger.info("Price: {}",record.getValue("price"));

 });

 });

The fetchMany method is guaranteed to never return a null, so don’t base

any logic around null checking. If I were expecting just one result, I’d have

used the fetch method instead. You can also use this method to execute

multiple SQL statements in the same execution - this is an understated but

very powerful method. Keep reading for more uses of this method.

I could also supply query parameters to my SQL statement like so:

ResultQuery resultQuery2 = context.resultQuery("SELECT * FROM

edens_car.complete_car_listing where color = ?","BLUE");

Query bindings – the bit where I say “BLUE” – are how you provide

parameters to your SQL statements. This approach to binding query

parameters offers some SQL injection protection when combined with the

PreparedStatement configuration on the underlying DSLContext API.

Chapter 2 Getting Started with jOOQ

37

Remember  jOOQ can use the JDBC PreparedStatement
component by default if you configure it to, so your parameters can
still benefit from the inbuilt SQL injection safety in that component.
You can also cache the underlying PreparedStatement by calling
the keepStatement method on the Query object; this gives a
performance boost for frequently used, stable queries.

Let’s look at some much cooler, purpose-driven uses of the jOOQ

library.

�The SELECT DSL

jOOQ offers to protect you from malformed SQL, SQL injection,

missing parameters, and overly restrictive and ugly code. It does this in

incrementally powerful ways, so you can move at your own pace. Let’s

revisit the DSLContext in the context (hehe) of the SELECT statement again:

SELECT * FROM edens_car.complete_car_listing

I can rewrite the preceding plaintext SELECT * like so:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);

List<CompleteVehicleRecord> allVehicles =

context.select().from(table("complete_car_listing")).

fetchInto(CompleteVehicleRecord.class);

Both statements are functionally identical and will return the same

results:

	 1.	 select() is jOOQ shorthand for SELECT *. jOOQ

is chock full of shorthand like this that helps to cut

down on verbosity.

Chapter 2 Getting Started with jOOQ

38

	 2.	 table is a function from the DSL class, imported

statically. It helps me convert the plaintext SQL

name of the table to an instance of org.jooq.

Table. The effect of this is that jOOQ can treat my

statement almost like a typesafe version.

What I have here is still partially in the plain SQL realm, and as a result,

I must use helper functions in the DSL class to sort of translate my plain

SQL into something like the typesafe API of jOOQ. Think about it this way:

if I’m still using plain strings in key parts of my select statement, jOOQ still

can’t 100% guarantee correctness in many aspects. This DSL makes sure

that my queries are syntactically correct, but it can’t make guarantees as to

the semantic correctness – I’m still allowed to make typographical errors in

the names of tables, columns, etc.

Now, the SELECT * is a tad wasteful, so I would typically prefer to use

SQL projections to be more succinct about which columns I’m interested in:

List<CompleteVehicleRecord> allVehicles = context.select(field(

name("brand")),field("model"),field("price"))

 .from(table("complete_car_listing"))

 .fetchInto(CompleteVehicleRecord.class);

Like the table function, field comes from org.jooq.impl.DSL, and

I’m using it here just to bridge the gap between my hand-crafted, gluten-

free, artisanal SQL and jOOQ’s strongly typed, DSL-centric world. The

field function converts my raw SQL field name into an instance of org.

jooq.Field, table will convert my table name to an org.jooq.Table, and

name will create an instance of org.jooq.Name. All of them are QueryParts,

and they form the basis of being able to construct powerful and complex

queries.

Chapter 2 Getting Started with jOOQ

39

Another way I can construct a select statement is by setting up the

relevant fields individually:

Field<?> brandField = field("brand"); (1)

Field<?> modelField = field("model",String.class);

Field<BigDecimal> priceField = field("price", BigDecimal.

class); (2)

List<Field> fieldList = Arrays.asList(brandField,modelField,

priceField); (3)

List<CompleteVehicleRecord> allVehicles = context.select(fieldList)

 .from(table("complete_car_listing"))

 .fetchInto(CompleteVehicleRecord.class);

logger.info(allVehicles.toString());

In the preceding snippet

	 1.	 I manually construct an instance of org.jooq.Field

from plaintext “SQL.” Note the wildcard syntax I’m

using here, Field<?>. It’s purposeful: jOOQ is all

about type safety, so at many turns it would like

something resembling type information. Get used

to specifying the types of Field, and when you can’t

provide it, use the wildcard.

	 2.	 Even better, I can supply type information on both

sides of the variable declaration. Field can be

typesafe, and the field function can be provided

with type safety info. Because I’m not quite using

jOOQ’s typesafe-generated code, any additional

information I can provide along with my hand-

carved SQL can be used by jOOQ to protect the

integrity and reliability of my SQL statements.

Chapter 2 Getting Started with jOOQ

40

	 3.	 I can then stash all the necessary fields into a

standard java List.

	 4.	 The list can then be used by any part of a jOOQ

query.

It’s really powerful stuff, this mechanism. I can gain a lot of reusability

and flexibility in my code with this approach, even when I’m not

generating code with jOOQ. I’ll be showing you more scenarios of this sort

of reusability as we go – this is the power of the QueryParts components in

the jOOQ library.

Tip  Use the DSL#name function to handle your raw SQL identifiers
in a schema-safe format. It can also provide SQL injection protection
when quoting is enabled for the DSLContext.

Other options with select include

•	 Running a SELECT DISTINCT with selectDistinct.

•	 Selecting from dummy tables (like DUAL for Oracle, or

nothing for PostgreSQL) by running selectOne().fetch.

This feature depends on a correctly set SQLDialect

parameter in the DSLContext.

•	 Combining individually constructed SELECT

statements; more on this later in the book.

What if I want a query within a query? You know it! It’s time to dig into

SELECTing…

Chapter 2 Getting Started with jOOQ

41

�With the WHERE DSL

Having decided on which columns I’m interested in from my vehicle

table, I want to be more restrictive about which rows come back – enter the

almighty WHERE clause. Here’s what could look like:

List<CompleteVehicleRecord> allVehicles = context.select(

field("brand"),field("model"),field("price"))

 .from(table("complete_car_listing"))

 .where(condition("color = 'BLUE'"))

 .fetchInto(CompleteVehicleRecord.class);

I’m technically using the DSL here, though not to great effect. This is

still very much a plaintext SQL where clause, and I should be ashamed of

myself – which I am. So, I’ll try again with bind variables like so:

context.select(field(name("brand")),field("model"),field("price"))

 .from(table("complete_car_listing"))

 .where(condition("color = ?","BLUE"))

 .fetchInto(CompleteVehicleRecord.class);

This is a bit safer from a SQL injection perspective. I’m still responsible

for making sure that the syntax of the preceding snippet is correct and

will come out properly when the whole thing’s stitched together. Overall,

this still reads better and more fluently. One of the things I love about the

jOOQ DSL is that it’s devoted to making sure one doesn’t make mistakes

in constructing SQL. For example, it’ll be impossible for me to use the

where node anywhere but after a from clause. So even if I choose to keep

using plain SQL at specific intervals, I still get some protection from the

fact that my SQL is syntactically correct. Additionally, I’m benefitting

from the resource-efficient approach that jOOQ uses with handling JDBC

connections.

Chapter 2 Getting Started with jOOQ

42

Pop Quiz: What’s the difference between the org.jooq.impl.
Settings and the org.jooq.impl.Configuration classes?

Answer: The Settings class will allow you to change predefined
behavior of the jOOQ runtime by simply changing a setting. The
Configuration class provides access to extension points in jOOQ,
for you to supply custom code that will replace or alter the behavior
of the jOOQ runtime.

Now, for one of my favorite components of the jOOQ API…

Conditions

The arguments you supply to the from node of the select DSL are in

reality instances of org.jooq.Condition. The Condition is a powerful

class that lets you compose simple or complex predicate components.

You can then attach to almost anywhere in the SQL structure that accepts

conditional logic. So, I can write a Condition like this:

Condition colourCondition = condition("color = ?","BLUE");

...and then pass that into my constructed {select} execution:

context.select(fieldList)

 .from(table("complete_car_listing"))

 .where(colourCondition)

 .fetchInto(CompleteVehicleRecord.class);

Being able to dynamically construct parts of a whole SQL query is

fundamental to the way jOOQ works.8 You’ll see different flavors of this

statement as you go through this book, but every section of your SQL

statement can be constructed independently of the rest. Your SELECT,

8 www.jooq.org/doc/latest/manual/sql-building/dynamic-sql

Chapter 2 Getting Started with jOOQ

https://www.jooq.org/doc/latest/manual/sql-building/dynamic-sql

43

WHERE, or HAVING clauses, etc? You can build them independently and later

stitch them together.

Things can get even more flexible with some of the convenience utilities

that jOOQ offers with Condition. For example, I can construct a jOOQ query

with an optional WHERE clause like so. Consider the following jOOQ query

that I use to select car details from the complete_car_listing table:

List<CompleteVehicleRecord> allVehicles = context.select(field(

name("brand")),field("model"),field("price"))

 .from(table("complete_car_listing"))

 .where(colourCondition)

 .fetchInto(CompleteVehicleRecord.class);

So, this looks like the same jOOQ query that you’ve been seeing so far,

yes? How can I make this query work with an optional WHERE clause? This

way, I can reuse the same query whether the website user selects filter

criteria or not. So, consider a hypothetical user interface like this:

The filter criteria selection box for the Eden Auto website

Chapter 2 Getting Started with jOOQ

44

There are multiple options to filter search results by. You need to be

able to use the same jOOQ statement, whether the user selects any of the

filter criteria or not. Here’s what that jOOQ query looks like:

public static void selectWithOptionalCondition(boolean

hasFilter, Map<?,Object> filterValues) throws SQLException{

 ...

 Condition conditionChain = DSL.noCondition(); (1)

 if (hasFilter) {

 for(String key: filterValues.keySet()){

 �conditionChainStub = conditionChainStub.

and(field(key).eq(filterValues.get(key))); (2)

 }

 }

 �List<CompleteVehicleRecord> allVehicles = context.select

(field(name("brand")),field("model"),field("price"))

 .from(table("complete_car_listing"))

 .where(conditionChain)

 .fetchInto(CompleteVehicleRecord.class);

 logger.info(allVehicles.toString());

 }

}

Here’s the breakdown:

	 1.	 To get maximum flexibility with the Condition}

class, jOOQ provides the DSL#noCondition()

method. This generates a condition stub that I

can optionally chain other conditions to. There

are others like DSL.trueCondition and DSL.

falseCondition that generate conditions that are

set to true and false, respectively.

Chapter 2 Getting Started with jOOQ

45

	 2.	 Condition provides the and operator. Using this

facility, I can combine the filter conditions that are

passed in from the web tier, if they exist. If no filter

parameters are passed in (i.e., hasFilter is false), no

WHERE condition will be applied to the eventual SQL

statement that’s executed. Otherwise, the constructed

Conditions will be applied.

As you can probably tell, the Condition class provides all the

boolean operators you’d need: or, not, exists, as well as all the useful

permutations of all of them. Let’s not forget the comparison operators on

the Field class:

Condition condition = field(name("price")).

greaterOrEqual(BigDecimal.valueOf(360000));

That’s right: the Field class itself can yield conditions by virtue of the

many, many comparison operators available on the class itself.

For even more flexibility in constructing your conditions, check out the

CustomCondition class:

CustomCondition customCondition = CustomCondition.of(

conditionChain ->{

 conditionChain.sql("color ='BLUE'")

 .sql(" AND price < 35000");

 });

CustomCondition provides the opportunity to perform complex

logic in the process of building the condition. By providing a functional

interface that accepts a lambda, you can take even more control of the

process. It still yields an object that you can combine with any other flavor

of condition you have.

Flexibility!

Chapter 2 Getting Started with jOOQ

46

Pro Tip  The Field class offers the isNull and isNotNull for
all your null comparison needs. Stay safe; use the appropriate null
comparison methods. Note that these are offered in addition to the
database functions dedicated to handling nulls (e.g., COALESCE,
NVL, etc.).

�Subqueries

As an example, I want to search for vehicles of a specific manufacturer that

have had recent price reductions – because I’m thinking price reductions

means that nobody’s buying the car, and the dealer might be willing to give

me a bargain.9 Here’s what the plain SQL query would look like:

SELECT * (1)

FROM complete_car_listing ccl

WHERE (ccl.vehicle_id , ccl.price) IN (1a)

 (SELECT vpc.vehicle_id, vpc.revised_price (2)

 FROM vehicle_price_change vpc

 WHERE vpc.revised_price < vpc.current_price

 AND (vpc.vehicle_id , vpc.last_changed) IN

 (SELECT vc.vehicle_id, MAX(vc.last_changed) (2a)

 FROM vehicle_price_change vc

 GROUP BY vc.vehicle_id))

9 Editor’s note: smh.

Chapter 2 Getting Started with jOOQ

47

This query (technically one main query and two subqueries) will

	 1.	 Retrieve all the details of cars that are in the

inventory

	a)	 I match the rows of the top-level query by using

the SQL row value expression mechanism to

compare against the results of the subquery.

	 2.	 Find cars that have a price that has been revised

downward

	a)	 And of that subset, make sure that the most

recent price revision was a reduction.

Caution  “jOOQ is all about type safety” – me, a couple of pages
ago. This is still true, but you’ll see me skip some type safety
convention in subsequent code samples, for example, using
field("price") instead of field("price",BigDecimal.
class). This is largely to cut out a bunch of boilerplate code; the
fundamental truth of type safety remains intact. Using plaintext SQL
is still an inferior option compared to generating typesafe code
with jOOQ. As you continue your jOOQ journey, plaintext SQL will start
yielding issues and weirdness as a direct consequence of not having
type safety. Please bear this in mind as you proceed.

To be clear, there are other, probably better ways of achieving the same

results: joins, window functions (more on those later), and others. This is a

contrived example to demonstrate some specifics of subqueries in jOOQ.

If you run this query against the schema that accompanies this book, you

should get results that look something like the following:

'3', 'Lexus', 'ES 350', 'BASE', '36000.0000', 'BLUE', 'Car', 2018

'4', 'Acura', 'MDX', 'SPORT', '50000.0000', 'BLUE', 'Car', 2018

Chapter 2 Getting Started with jOOQ

48

What would this look like in jOOQ? To begin, I’m going to declare a

couple of fields and tables for easier reuse in the queries I’m going to be

constructing:

Field<Long> vehicleId = field(name("vehicle_id"),Long.class);

Field<BigDecimal> vehicleRevisedPrice = field(name("revised_

price"),BigDecimal.class);

Field<BigDecimal> vehicleCurrentPrice = field(name("current_

price"),BigDecimal.class);

Field<BigDecimal> price = field(name("price"),BigDecimal.class);

Table vehiclePriceChange = table(name("vehicle_price_change"));

Field<LocalDateTime> lastPriceUpdate = field(name("last_

changed"),LocalDateTime.class);

These being set up, I can go about setting up the actual queries:

final SelectCorrelatedSubqueryStep<Record2<Long,

LocalDateTime>> mostRecentPriceChange = context.

select(vehicleId, max(lastPriceUpdate)).

from(vehiclePriceChange).groupBy(vehicleId); (1)

final SelectConditionStep<Record2<Long, BigDecimal>>

mostRecentPriceReduction = context.select(vehicleId,vehicle

RevisedPrice)

.from(vehiclePriceChange)

.where(vehicleRevisedPrice.lessThan(vehicleCurrentPrice))

.and(row(vehicleId, lastPriceUpdate).

in(mostRecentPriceChange)); (2)

Here's what I’m up to with these queries:

	 1.	 I construct the query that will provide the most

recent price change per vehicle ID. The max method

comes from the trusty DSL class.

Chapter 2 Getting Started with jOOQ

49

	 2.	 Next, I use the query from (1) to construct the

query that gets the vehicles that have had only price

reductions recently. The row method is also from the

DSL class to enable tuple comparisons against the

subquery.

What’s happened is that I’ve separately constructed jOOQ SQL

queries to facilitate reuse. Now, a word from our sponsors: “jOOQ doesn’t

officially recommend this approach for reusing queries, in part because

of mutability concerns.” If the readability wouldn’t be too poor, you’re

safer inlining the subquery into the main query. For the purposes of this

demonstration, I’ve broken the subqueries out and made them final.

Right, subqueries constructed, let’s crack on with using them:

SelectConditionStep<Record> potentialDealsQuery = context.

select().from(table(name("complete_car_listing")))

 .where(row(vehicleId,price)

 .in(mostRecentPriceReduction));

String sql = potentialDealsQuery.getSQL();

logger.info(sql);

The potentialDealsQuery uses the mostRecentPriceReduction

subquery to get the cars that have had recent price reductions. To

see what the generated query looks like, I can get the SQL off the

potentialDealsQuery with the getSQL method. Here’s the result:

select * from `complete_car_listing` where (`vehicle_id`,

`price`) in (select `vehicle_id`, `revised_price` from

`vehicle_price_change` where (`revised_price` < `current_price`

and (`vehicle_id`, `last_changed`) in (select `vehicle_id`,

max(`last_changed`) from `vehicle_price_change` group by

`vehicle_id`)))

Chapter 2 Getting Started with jOOQ

50

Largely a faithful translation of the raw SQL intent, yeah? As usual, I’ll

fetch the results:

List<CompleteVehicleRecord> potentialDeals =

potentialDealsQuery.fetchInto(CompleteVehicleRecord.class);

That was a lot huh? You’ve bought the book; please feel free to go

over this section again if it didn’t land the first go around. I’ve introduced

multiple concepts here at once that will be helpful overall in jOOQ. It’s

completely understandable if it doesn’t all click at first read through 😊

Pop Quiz: How would you safely refer to fields when working with
your plaintext SQL in jOOQ?

a) Field myField = field("myField")

b) Field <?> myField = field("myField")

c) Field<Integer> myField = field("myField", Integer.class)

Answer: (b) and (c) are the recommended approaches; (c) more
preferably!

�Conditional Logic in Queries

If you’d like to get fancy, you could have some sophisticated conditional

logic in your SQL. In case I didn’t make it clear before now: I’m firmly in

the camp of “Let the database do the things the database is very good at,

with maintainability in mind.” To that end, my soul frowns when I see

code that

•	 First retrieves query results into the application layer

•	 Then performs complex analysis that the database is

otherwise exceedingly good at

Chapter 2 Getting Started with jOOQ

51

So, we’ve established I’m a cheapskate and I’m always looking for a

good deal on a car – these two are mutually exclusive. We’ve seen how to

find cars with price reductions, and therefore might probably offer good

deals. How good of a deal are we talking about here? I’d say

•	 5% reduction, “Okay”

•	 10% reduction, “Good”

•	 Above 10%? “Great!”

How would a SQL query present this? With the CASE function:

SELECT vpc.vehicle_id 'vehicle', vpc.current_price 'old price',

vpc.revised_price 'new price', max(last_changed) 'last price

update',

case when ((vpc.current_price - vpc.revised_price)/vpc.current_

price)*100 <=5 then 'OK'

 �when ((vpc.current_price - vpc.revised_price)/

vpc.current_price)*100 BETWEEN 5 AND 10 then 'GOOD'

 �when ((vpc.current_price - vpc.revised_price)/

vpc.current_price)*100 > 10 then 'GREAT'

else ‘NO DEAL’

 end as 'deal'

FROM vehicle_price_change vpc

WHERE vpc.revised_price < vpc.current_price

GROUP BY vpc.vehicle_id, vpc.current_price, vpc.revised_price

For results that look like this:

vehicle old price new price deal

2 48000.0000 47380.00 OK

3 37565.0000 36000.00 OK

4 55342.0000 50000.00 GOOD

Chapter 2 Getting Started with jOOQ

52

You probably know where this is going: how to represent this in jOOQ?

Hang on to your keyboard:

context.select(vehicleId, vehicleCurrentPrice,

vehicleRevisedPrice, max(field("last_changed")),

 �when((vehicleCurrentPrice.subtract(vehicle

RevisedPrice))

 .divide(vehicleCurrentPrice)

 .multiply(100)

 �.lessOrEqual(BigDecimal.

valueOf(5)), "OK") (1)

 �.when(condition("((current_price –

revised_price)/current_price)*100

BETWEEN 5 AND 10"), "GOOD") (2)

 �.when(condition("((current_price -

revised_price)/current_price)*100 >

10"), "GREAT")

 .otherwise("NO DEAL") (3)

 .as("deal")) (4)

 .from(table("vehicle_price_change"))

 .where(vehicleRevisedPrice.lessThan(vehicleCurrentPrice))

 .groupBy(vehicleId)

 .fetch()

 .forEach(result -> {

 �logger.info("Vehicle Id: {} | Revised

Price: {} | Former Price: {}| Deal

Rating: {}", result.get(vehicleId),

result.get(vehicleRevisedPrice), result.

get(vehicleCurrentPrice), result.get("deal"));

 });

 }

 }

Chapter 2 Getting Started with jOOQ

53

Let’s break this down:

	 1.	 Skipping past the other fields in the SELECT

statement: I start with the when method, into which I

use various methods of the Field class to construct

the arithmetic that constitutes a deal. I do the

arithmetic and then pass “OK” as the outcome of

this when condition. Note how this doesn’t actually

feature the case keyword/method.

•	 Alternatively, if you’re looking to use the form

of CASE (column), you’d begin with the choose

method instead of when.

	 2.	 I use the plain SQL option for this when to

demonstrate the utter flexibility that’s available.

You’ll notice that I’m using the condition method

here, because that’s essentially what the when

method needs: a jOOQ Condition. This means that

you can construct and reuse Conditions before you

need them in a select statement.

	 3.	 The otherwise method gives me the ELSE clause for

my CASE – the catch-all.

	 4.	 as gives me an alias for the whole case statement.

All of this gives me the following output:

Vehicle Id: 2 | Revised Price: 47380.0000 | Former Price:

48000.0000| Deal Rating: OK

Vehicle Id: 3 | Revised Price: 36000.0000 | Former Price:

37565.0000| Deal Rating: OK

Vehicle Id: 4 | Revised Price: 50000.0000 | Former Price:

55342.0000| Deal Rating: GOOD

This is one of my favorite demonstrations in this book, because it

shows just how flexible jOOQ gets.

Chapter 2 Getting Started with jOOQ

54

Everything fits everywhere, and you can compose SQL statements from

any level of granularity; and this isn’t even a complicated example of that

power.

jOOQ supports some of the more vendor-specific conditional

functions like

•	 DECODE

•	 COALESCE

•	 NVL

•	 NVL2

•	 IIF and IF

•	 NULLIF

All of these are available as functions in…you guessed it: the DSL class!

�With the… WITH Clause

If I were interested in calculating the median price of all the vehicles in the

database, I would have to get a little creative. See, it’s not a standard SQL

function (yet). PostgreSQL supports it somewhat natively,10 but for most other

databases, it’s going to take some tinkering. In my experience, “tinkering” in

SQL tends to require fairly unsightly SQL; SQL that I’d really want to be able

to reuse elsewhere in my SQL query. Here’s what it looks like when I use SQL

window functions (more on those later) to calculate the median price of all

the vehicles in the inventory:

WITH median_cte as(SELECT ROUND(AVG(price)) median

 �FROM (select price, ROW_NUMBER() OVER (ORDER

BY price ASC) AS rowpos, COUNT(*) OVER () AS

total_cars from complete_car_listing) price_mod

10 �www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-
ORDEREDSET-TABLE

Chapter 2 Getting Started with jOOQ

http://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE
http://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

55

 �WHERE rowpos BETWEEN total_cars / 2.0 AND

total_cars / 2.0 + 1)

select brand, model, trim, price, CONCAT((ROUND((price -

median_cte.median)/price,2) * 100),'%') 'relative to median'

from complete_car_listing, median_cte

In MySQL, the WITH clause runs the median query once, stashing

the result in a temporary “table.”11 I can then refer to the result in the

subsequent SELECT statement using the name I specified, {median_cte},

almost like a table. This is what’s known “in the biz” as a Common Table

Expression (CTE) – which you may already know. What does that look

like in jOOQ?

Field<BigDecimal> price = field("price",BigDecimal.class);

//define field and table for reuse

Table completeCarListing = table("complete_car_listing");

CommonTableExpression<Record1<BigDecimal>> medianCte =

name("median_cte") (1)

 .as(context.select(round(avg(price)).as("median")) (2)

 �.from(select(price, rowNumber().

over(orderBy(price.asc())).

as(name("rowpos")),

 �count().over().as("total_

cars"))

 .from(completeCarListing))

 �.where("rowpos BETWEEN

(total_cars / 2.0) AND

(total_cars / 2.0 + 1)")

);

11 �The mechanism for the WITH clause varies from database to database, but the
outcomes are identical.

Chapter 2 Getting Started with jOOQ

56

What voodoo is happening here? I’ll tell you:

	 1.	 I construct an instance of CommonTableExpression,

a variant of org.jooq.Table. This means that I can

treat this object a lot like a standard SQL table in

many instances. The logic in this block is a window

function to calculate the median price of vehicles

in the database. I cover window functions in a later

section of this book; you can disregard it for now.

What’s most important is that I’ve encapsulated the

query in here and named it median_cte.

	 2.	 The median calculation I perform here is aliased as

a field named median.

With the CTE object wired and ready to go, I can use it in the actual

jOOQ query like so:

context.with(medianCte) (1)

 �.select(field("brand"), field("model"),

field("trim"),field("price"),

concat(round((price.subtract(medianCte.field("median"))).

divide(2),2).multiply(100),field("'%'"))

 .as("relative to median price"))

 .from(completeCarListing, medianCte) (2)

 .fetchMany();

It gives me a much less cumbersome main query:

	 1.	 I just drop in my CTE into the with method on DSLContext.

•	 Take note of my usage of medianCte.field("median").

For all intents and purposes, the CTE will be treated

almost like a table after the WITH clause. As a result, I

can refer to (or “dereference”) the columns available in

my CTE just like I would any SQL table or subquery.

	 2.	 Then I can use the CTE like any old table.

Chapter 2 Getting Started with jOOQ

57

Pop Quiz: What is the jOOQ parent class of all the clauses and
smaller bits that can be composed into a full SQL statement ?

a) {Query}

b) {QueryPart}

c) {Field}

Answer: {QueryPart} is the parent class that can be used to
represent every part of your SQL statement. You can compose any
kind of SQL statement with all the children of {Query Part}

�With the GROUP BY DSL

Grouping query results in jOOQ is as straightforward as anything else

you’ve seen so far. I’ve also been quietly using the groupBy clause without

introducing you two. No more! I’d now like to retrieve

•	 All Sedans

•	 Grouped by brand

•	 The grand total of all the Sedans regardless of brand

In MySQL, the query for this would look something like the following:

select brand, count(*) "# of units"

from complete_car_listing

where brand = 'Sedan'

group by brand with rollup

Oracle uses the GROUP BY ROLLUP (...) syntax. Translating that to

jOOQ is the same syntax:

Chapter 2 Getting Started with jOOQ

58

Result<Record2<Object, Integer>> results = context.

select(field("brand"),count().as("units"))

 .from(table("complete_car_listing"))

 .groupBy(rollup(field("brand")))

 .fetch()

The trusty old org.jooq.DSL supplies all the grouping functions I’ll

need to pull this query off – the count and rollup functions come from

there. The other grouping functions (cube, groupingSets) are also on the

menu. Bon appétit!

With the HAVING DSL

With or without the GROUP BY clause, you can have the HAVING clause to

restrict groups – in SQL and in jOOQ. To restrict my list of vehicle counts

to brands with an average price higher than $20,000, I would have a jOOQ

query that looks like this:

Result<Record2<Object, Integer>> results = context.

select(field("brand"),count().as("units"))

 .from(table("complete_car_listing"))

 .groupBy(rollup(field("brand")))

 �.having(avg(field("price",BigDecimal.

class)).gt(BigDecimal.valueOf(20000L)))

 .fetch()

That’s it. Nothing fancy to it.

�With the ORDER BY DSL

Ordering query results with jOOQ is also as straightforward as you can

imagine. I’ve used it a fair bit already in many queries up to this point to

order my car search results; I simply add the orderBy clause to the fluent

chain I’ve constructed:

Chapter 2 Getting Started with jOOQ

59

List<CompleteVehicleRecord> allVehicles = context.select()

 .from(table("complete_car_listing"))

 .orderBy(field("year").desc() ,two())

 .fetchInto(CompleteVehicleRecord.class);

Like I’ve been doing, I convert my plain SQL year column into an instance

of Field. I then call the desc method on the Field instance to convert it to an

OrderField – a Field type dedicated to ordering query results. Additionally,

I use the two method to pass the literal “2” to the ORDER BY clause. This will

additionally order the query results by the second column in the result set.

Also note that you can supply a list of sort fields to the orderBy method.

ORDER BY CASE

One underrated approach to ordering is being able to conditionally

order query results. If you think of “pinned” posts on forums like

Reddit or “sticky” articles on blogs, this is one way to achieve that. This

is a mechanism that will ensure that specific rows of result set will be

positioned within the results based on specific criteria. For Eden’s car

shop, I want to be able to permanently list “featured” vehicles that will be

at the top of every search result page. With SQL, that could look like

SELECT *

FROM edens_car.complete_car_listing

ORDER BY CASE featured

 WHEN true then 0

 ELSE 1 END ASC

Representing this in jOOQ will look something like

List<CompleteVehicleRecord> allVehicles = context

 �.select(field(name("brand")),

field("model"), field("price"))

 .from(table("complete_car_listing"))

Chapter 2 Getting Started with jOOQ

60

 .orderBy(

 case_(field("featured"))

 .when(true,0)

 .otherwise(1))

 .fetchInto(CompleteVehicleRecord.class);

What I’ve done here is to

	 1.	 Specify that I want vehicles with weight set to -1

listed first.

	 2.	 Then I want any other arbitrary sort criteria passed

in dynamically applied.

This will guarantee that vehicles that are flagged as “featured” always

show up at the top of any search results. Another approach to exerting

more control over ordering is to use a map of my sort criteria to manually

determine the positioning of specific rows in the overall query result:

HashMap<String, Integer> sortMap = new HashMap<>();

sortMap.put("Toyota",Integer.valueOf(0));

sortMap.put("Acura",Integer.valueOf(5));

The preceding map indicates Toyotas should come first in the list

of results; Acuras should start from position 6 in the list; rows weighted

2 should show up around the 4th row. I can then pass the map to the

orderBy clause like so:

.select(field(name("brand")), field("model"), field("price"))

 .from(table("complete_car_listing"))

 �.orderBy(field(name("brand"),String.class).

sort(sortMap))

 .fetchInto(CompleteVehicleRecord.class);

Alternatively, I could use the…

Chapter 2 Getting Started with jOOQ

61

�ORDER BY NULL

The behavior of the ORDER BY clause varies from database to database.

Oracle and PostgreSQL will treat nulls as larger than others, so that when

you ORDER BY weight ASC, rows with nulls show up last. MySQL, SQL

Server, and SQLite treat nulls the opposite way: those rows will show up first

when you ORDER BY ASC. Being specific about the direction in which you

want nulls sorted is exactly the sort of deliberate coding you’ll want to do if

you like consistent results across RDBMSes. So, consider this SQL query:

SELECT *

FROM edens_car.complete_car_listing

ORDER BY color NULLS FIRST

Now, MySQL doesn’t support this syntax; PostgreSQL and a couple others

do. For MySQL however, nulls are considered to weigh the least. So, nulls

will show up first when you sort in ascending order. jOOQ will transparently

emulate this function so it’s available regardless of the underlying server. To

represent the same results in jOOQ with the orderBy DSL, I’ll have

List<CompleteVehicleRecord> allVehicles = context

 �.select(field(name("brand")),

field("model"), field("price"))

 .from(table("complete_car_listing"))

 �.orderBy(field(name("trim"),String.class).

asc().nullsLast())

 .fetchInto(CompleteVehicleRecord.class);

Easy peasy. On to the next!

�Paginate Query Results

There’s the standard SQL OFFSET...FETCH clause to restrict the number

of items returned from a query and to paginate results. MySQL’s

dialect provides the LIMIT...OFFSET clause that performs largely

the same function. MySQL, H2, PostgreSQL, SQLite, and HSQLDB

Chapter 2 Getting Started with jOOQ

62

all support LIMIT keyword. Oracle and a couple other databases are

in the OFFSET...FETCH camp. jOOQ’s going to make the difference

between the two syntaxes irrelevant. A query to retrieve the top 10 most

expensive vehicles in MySQL will look like the following:

SELECT *

FROM complete_vehicle_listing

ORDER BY price DESC

LIMIT 10

The same query will be written in Oracle like this:

SELECT *

FROM complete_vehicle_listing

ORDER BY price DESC

FETCH NEXT 10 ROWS ONLY;

Either database will seamlessly get the correct SQL interpretation in

jOOQ with the following snippet:

context.select()

 .from(table("complete_car_listing"))

 .orderBy(field("price").desc())

 .limit(10)

 .fetchInto(CompleteVehicleRecord.class);

The limit method is all I need. I can add the WITH TIES SQL clause to

ensure that within with my top-N query, rows that have the same value for the

ORDER BY column (i.e., tied) will be featured in the results. What this means

is that when I query for the top 10 most expensive vehicles in the database, if

vehicle #11 is tied with #10 for price, it will be included in the query results,

regardless of exceeding the limit clause. Here’s what that looks like in jOOQ:

 context.select(fieldList)

 .from(table("complete_car_listing"))

 .orderBy(field("price").desc())

Chapter 2 Getting Started with jOOQ

63

 .limit(10)

 .withTies()

 �.fetchInto(CompleteVehicleRecord.

class);

 logger.info(allVehicles.toString());

To get a sorted list of vehicles in descending order of price and to

support pagination, I’ll introduce the offset clause in my jOOQ DSL:

<jooq offset>

This query will retrieve a page of value results, with an offset starting

point. Note that you’ll use the limit function regardless of the type of

RDBMS you’re using – jOOQ handles the translation.

Pop Quiz: Which jOOQ class lets you construct conditional WHERE
clauses?

Answer: The DSL class, with the DSL#noCondition() function.

�Insert Statements
The veritable “C” in CRUD. Inserting one new vehicle into the database

with jOOQ looks like this:

context.insertInto(

table("vehicle"),

 �field("vehicle_manufacturer"),field("vehicle_curr_

price"),field("vehicle_model_year"),field(

"vehicle_status"),field("vehicle_color"),

field("vehicle_model_id"),field("vehicle_trim"),

field("vehicle_style"),field("featured"))

Chapter 2 Getting Started with jOOQ

64

 �.values(4,BigDecimal.valueOf(46350.00), LocalDate.

parse("2021-01-01").getYear(),"ACTIVE","BLUE",

13,2,1,1)

 .execute();

The insertInto node provides the fluent API to deliver on the features

that we’ve come to expect from jOOQ. For all incarnations of the insert

API, the first argument is a Table; after that, you can optionally provide the

individual fields to insert as is the standard SQL INSERT statement.

In addition to the standard INSERT...VALUES syntax, jOOQ offers some

other flavors, such as…

�With Multiple Rows

I can insert multiple vehicles into the database like so:

context.insertInto(table("vehicle"),field("vehicle_manufacturer"),

field("vehicle_curr_price"),field("vehicle_model_year"),

field("vehicle_status"),field("vehicle_color"),field("vehicle_

model_id"),field("vehicle_trim"),field("vehicle_style"),

field("featured"))

 �.values(4,BigDecimal.valueOf(46350.00),

LocalDate.parse("2021-01-01").getYear(),

"ACTIVE","BLUE",13,2,1,1)

 �.values(9,BigDecimal.valueOf(83000.00),

LocalDate.parse("2021-01-01").getYear(),

"ACTIVE","GREY",20,9,1,1)

 �.values(9,BigDecimal.valueOf(77000.00),

LocalDate.parse("2016-01-01").getYear(),

"ACTIVE","WHITE",20,9,1,1)

 .execute();

Chapter 2 Getting Started with jOOQ

65

Caution  While the multi-values insert is part of the ANSI standard
SQL specification, it’s not uniformly supported by all databases. jOOQ
will emulate this for noncompliant databases. Even then, you might
still hit a wall as a result of the maximum packet size that’s allowed
by the database server. For MySQL, this is the max_allowed_
packet server parameter.

�With Sequences

While MySQL provides the AUTO_INCREMENT function to autogenerated

indices, you can still get a hold of custom sequences and trigger a

generation this way:

BigInteger nextVehicleManufacturerId = context.nextval

("vehicle_manuf_seq");

Sequences are a lot more fun to use when generated for you by jOOQ

though, so stay tuned!

�With Select

I can use the INSERT...SELECT standard SQL syntax to copy rows from one

table into another. For my use case, I’ll use this syntax to archive vehicles

that have been sitting in the inventory for a long time. Using the age of the

row as the filter condition, I’ve determined I want to copy vehicles from

vehicles to vehicle_archive. The way this will look in jOOQ:

context.insertInto(table("vehicle_archive"))

 �.select(DSL.selectFrom("vehicle").where

("datediff(date(now()),created) < 365"))

 .execute();

…and that’s it. Moving on!

Chapter 2 Getting Started with jOOQ

66

�Update Statements
Yes, I too have accidentally done an UPDATE...SET without the WHERE clause.

I’d rather not talk about how much destruction I wrought as a result.

And lady, if you tell anyone who set the status column to the same for
all 500k rows...

Here’s what it’ll look like when I want to update the price of an existing

vehicle in the inventory:

context.update(table("vehicle"))

 .set(field("featured"),false)

 .where(field("vehicle_id").eq(7))

 .execute();

Also very straightforward. Now, jOOQ can protect you (i.e.,

me) from accidental UPDATE...without a where clause with the

setExecuteUpdateWithoutWhere method on the Settings class.

//Non! Disallow updates without a where clause by throwing an

exception

new Settings().setExecuteUpdateWithoutWhere(ExecuteWithout

Where.THROW);

Chapter 2 Getting Started with jOOQ

67

Together with the ExecuteUpdateWithoutWhere enum, you can

configure whether to

•	 Ignore the condition with IGNORE

•	 Log a warning with WARN

•	 Log at debug with DEBUG

•	 Log at info level with INFO

•	 Fail all attempts to do this with THROW

No more messes to clean up!

�Delete Statements
It really is time to move on. I’ve archived the vehicles I couldn’t sell. Now’s

the time to get rid of them from the inventory altogether.

One of you will cease to exist shortly. Say your goodbyes

Chapter 2 Getting Started with jOOQ

68

Pretty straightforward, the delete DSL (because, of course it is):

context.deleteFrom(table("vehicle_archive"))

 .where(field("vehicle_id").eq(7))

 .execute();

Simple, yes? Great. Now let’s try…

�Tuple Syntax

I can get a little bit fancier with my delete statement. As you may have

noticed already, jOOQ supports the tuple syntax (a.k.a. row value

expressions) where we can do whole row comparisons:

UPDATE vehicle_archive

SET (vehicle_status,featured) = ("ARCHIVE",0)

WHERE (vehicle_status,featured) = ("ACTIVE",1)

It’s basically hard coding, but for SQL. With this query, I’m asking the

query to delete all vehicles, except the specific rows or tuples that match

the specific combination of columns that I’ve specified. This way, I update

everything except these specific rows or tuples.

MySQL doesn’t support this. Yes, I could have also written this as

separate clauses in the WHERE condition, but where’s the fun in that?

To replicate this in jOOQ terms, I’ll have

context.update(table("vehicle_archive"))

 �.set(row(field("featured"), field("vehicle_

status")),

 row(1,"UNARCHIVED"))

 �.where(row(field("vehicle_status"),

field("featured")).eq(row("ACTIVE",0)))

 .execute();

Chapter 2 Getting Started with jOOQ

69

Goodbye to those vehicles (except the ones I’ve chosen to save for

some reason)!

�Alternative Data Access Modes
I’ve shown only synchronous data access operations so far:

•	 A user request initiates the CRUD.

•	 The calling thread waits for the data to return from the

database.

•	 There’s some transformation work done in the same

calling thread.

•	 Then the data is returned to the caller.

All of this happens in one thread. The org.jooq.Result class, the

fundamental unit of handling database query results, contains all the

results returned from the query. This has the benefit of not needing an

open database connection to access all your results. The downside is that

for large query results, you’ll be using up a lot of memory. There’s also the

added disadvantage of single threading the processing of large results.12

<glutton image>

But there are other ways – the ways of the lazy, the streamer, and the

reactive. Let’s first talk about streaming.

12 �Careful here: there’s a point of diminishing returns when multithreading over
data. I talk about this in my concurrent data access course on LinkedIn:
www.linkedin.com/learning/java-concurrency-troubleshooting-data-
access-and-consistency/java-streams-and-lambda-concurrency-issues

Chapter 2 Getting Started with jOOQ

http://www.linkedin.com/learning/java-concurrency-troubleshooting-data-access-and-consistency/java-streams-and-lambda-concurrency-issues
http://www.linkedin.com/learning/java-concurrency-troubleshooting-data-access-and-consistency/java-streams-and-lambda-concurrency-issues

70

�Streaming Access

jOOQ offers a couple of conveniences for streaming data from the

database, in every sense of the word “stream”:

•	 The org.jooq.Result class extends java.util.List.

Therefore, you have access to all the features that java.

util.Stream affords you simply by opening a stream

on your instance of Result after a query.

•	 You can call the fetchStream method on the Result

class as a convenience for the same purpose.

Before we go any further, I should be clear: using the stream-centric

jOOQ functionality changes the operating model somewhat. Where

org.jooq.Result will load all your results into memory and disconnect

from the open database connection, fetchStream will sustain the open

database connection. What this means is that you will now need to

remember to close the connection when you’re done processing. So, what

does stream code in jOOQ look like? Remember how I like deals on cars?

 �DSLContext context = DSL.using(connection,

SQLDialect.MYSQL);

 �try(final Stream<Record> records = context.

select().from(table("complete_car_listing"))

 .fetchSize(100) (1)

 .fetchStream()){ (2)

 records.parallel().forEach(recordList -> {

 //deal with records

 });

 }

Chapter 2 Getting Started with jOOQ

71

In a change from how I ran this same query earlier, I’m now running

it inside a try...with resources block. This means that all associated

underlying resources will be closed automatically after I exit the block.

Under the hood, jOOQ uses an org.jooq.Cursor to efficiently process the

results in chunks from the database.

	 1.	 I use fetchSize setting to hint Connector/J

(the MySQL driver) that I want my query results

streamed row by row instead of loading it all into

memory at. Yes, this is in addition to jOOQ’s own

best effort attempts to do the same. I’m highlighting

this specifically because at this point, different

databases will give you different behaviors when you

attempt to stream with Cursors.

•	 Because I’m using MySQL, I must finish consuming

all the results associated with this query,13 on the

instance of the JDBC connection that I’m using

to serve the results. Failing to do so will render

the connection useless for any other thread in the

same application – which is asking for trouble in a

connection pool scenario.

•	 Any locks associated with the rows in the result will

be held until all the rows are read.

•	 As a result of all this, I want to get through the query

results as quickly as reasonably possible.

	 2.	 Then I parallelize the stream so that I can use a

couple of threads to run through the results faster.

13 �https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-
implementation-notes.html

Chapter 2 Getting Started with jOOQ

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html

72

Note  Standard Java stream rules still apply. For example, once I
exit the try block, the stream is no longer accessible; neither can
you scroll backward in a stream – once an item is consumed, it’s
done.

This is one way to handle data, but it’s still fairly synchronous. What

else is there?

�Lazy Access

If it starts with “lazy,” I’m already halfway there. jOOQ provides the

fetchLazy method as the One True Way to properly fetch data in

manageable chunks. It’s usable for when you don’t need the conversion of

org.jooq.Result to a stream. This time, I’ll need to handle the org.jooq.

Cursor myself:

DSLContext context = DSL.using(connection, SQLDialect.MYSQL);

 �try(final Cursor<Record> records = context.

select().from(table("complete_car_listing")).

fetchSize(100).fetchLazy()){ (1)

 while(records.hasNext()){ (2)

 �CompleteVehicleRecord

completeVehicleRecord = records.fetch

NextInto(CompleteVehicleRecord.class);

 }

 }

	 1.	 A cursor is a resource, so I’m still opening it in a

try-with-resources block.

	 2.	 I work through the items as normal.

Chapter 2 Getting Started with jOOQ

73

The same caveats apply as in fetchLazy stream: the Cursor maintains

an open JDBC connection and PreparedStatement, so don’t keep it

around longer than it needs to be. This and fetchStream are the best bet

for running large queries.

�Transactions
They are the fundamental unit of every SQL operation carried out in the

database. Yes, transactions are happening in the database whether you

explicitly do anything to define them or not. This section is about being

deliberate about transaction settings when operating in jOOQ. I’m going to

show you how to use jOOQ to deliver on the ACID guarantee. ACID stands for

•	 Atomicity: When you designate a block of code as being

transactional, any failure in execution or exception

thrown within that block will cause the reversal of

all the Database Manipulation Language (DML)

executions within that block. This means all inserts,

updates, or deletes.

•	 Consistency: Means that any transactional code

block that executes DML changes is guaranteed to

adhere to any integrity rules defined in the underlying

datasource. So that uniqueness, constraints, foreign-

primary key relations will be respected by any attempts

to modify the data.

•	 Isolation: Database transactions can be configured

to protect the data being operated on from

multithreading-related corruption. Some of the issues

to protect against include

•	 Dirty Reads: Where one thread can read uncommitted

data being written by a different thread

Chapter 2 Getting Started with jOOQ

74

•	 Non-repeatable Reads: Where one thread reading

from the same row within a time window will get

different results each time

•	 Phantom Reads: Where data essentially disappears

during successive reads by the same transaction

•	 Lost Updates: Where two transactions (threads)

executing updates against the same row corrupt the

data, each without knowledge of the other’s actions

•	 Durability: The warranty that changes that have been

written to the database and acknowledged by the

RDBMS are guaranteed to be persisted and retrievable.

So, that’s ACID. How does this work in jOOQ? Plain jOOQ, without

Spring, JTA, or any other framework with dedicated transaction

management, will defer to standard JDBC semantics. This means manually

defining the transaction boundaries like so:

context.transaction(configuration -> { (1)

 updateVehiclePrice(configuration);

 insertPriceChange(configuration); (2)

 configuration.dsl().transaction(innerConfig ->{

 //more work

 });

 //profit?? (4)

 });

	 1.	 This line marks the start of a transaction boundary. Here:

•	 jOOQ sets AUTO_COMMIT off for the underlying JDBC

driver.

•	 It supplies an instance of org.jooq.

TransactionalRunnable (no, not that Runnable

from java.lang.Runnable). This is my handle to

begin executing in my transaction boundary.

Chapter 2 Getting Started with jOOQ

75

	 2.	 My insert and update execute as normal, but

without being committed. This way, if either of them

fail for any reason, the entire code block is unwound

with the exception that caused the failure.

•	 Note how I’m passing the Configuration object

into the nested methods. This is necessary to

ensure the database operations in those methods

participate in the same transaction boundary.

	 3.	 Additionally, I can nest transactions so that

•	 This transaction block inherits from the outer

transaction block.

•	 A failure within this block will roll the operation

back to the last save point before this block. This

way, the rest of the operation can continue if that’s

what I choose.

	 4.	 If everything proceeds without choking on an

exception up till this point, another transaction

boundary is defined. This then marks the whole

transaction as complete.

This is the way of the default jOOQ transaction provider. You have the

option of supplying a custom transaction provider in the way of the Spring

framework or others; that comes later in this book.

Caution  This approach to transaction handling delivers on only the
Atomicity component of the ACID guarantee. Most RDBMSes will offer
Consistency and Durability out of the box, perhaps with some tuning. To
protect against lost updates and other Isolation-related problems, you’ll
need to do a little bit more work – still within the jOOQ framework.

Chapter 2 Getting Started with jOOQ

76

�With Locking
Locking is how you get the Isolation part of the ACID guarantee.

Specifically, you’re able to

•	 Support concurrent reads of table rows

•	 Prevent Isolation-related failures by causing concurrent

updates and deletes to fail

What this means in jOOQ is that you can be sure that when two

transactions (or threads) are trying to modify a row concurrently, only

one of them will succeed. The other will get an org.jooq.exception.

DataChangedException when it tries to commit its changes.

There are different approaches to supporting locking:

•	 SELECT FOR UPDATE is a SQL standard query that locks

rows in preparation for an update or a delete operation.

jOOQ will transparently run this query before executing

the actual DML. This is what’s known as pessimistic

locking.

•	 Using Multi-Version Concurrency Control (MVCC),

a form of what’s known as optimistic locking. This

approach is supplied by jOOQ only when you use

jOOQ-generated code; more on this approach later in

the book.

The MVCC approach is available only with jOOQ-generated code. For

plain SQL, you can have the pessimistic locking like so:

context.select(field("vehicle_curr_price"))

 .from(table("vehicle")

 .where(field("vehicle_id").eq(11))

 .forUpdate()

 .fetch();

Chapter 2 Getting Started with jOOQ

77

The forUpdate call in the preceding snippet will obtain an exclusive

lock to the affected row in the underlying table. This means that no other

database transaction (or application thread) can perform DML on that

row. With MySQL, you could even achieve blocking any other thread from

reading the same row. The underlying mechanism that supports this varies

from database to database.

Now, locking is all well and good in happy path scenarios. This kind

of power could become problematic when a lock doesn’t get released

due to application error or bad weather on a given day. Like any locking

mechanism in software engineering, you typically want some form of a

failsafe. I have a couple of options:

	 1.	 The wait method lets me specify a timeout for either

attempting to acquire a row lock or holding on to

an existing lock. This way, I don’t inadvertently wait

forever to acquire a lock:

context.select(field("vehicle_curr_price"))

 .from(table("vehicle")

 .where(field("vehicle_id").eq(11))

 .forUpdate().wait(3000)

 .fetch();

It accepts the timeout in milliseconds. This syntax

is supported by MySQL, Postgres, Oracle, and

MSSQL. The default behavior is to not wait at all for

a lock.

	 2.	 MySQL14 and Postgres offer a forShare clause as an

enhancement that supports shareable locks. This

way, other threads can still read the same row, while

the thread that owns the lock can commit changes:

14 Only the InnoDB engine in MySQL provides locking.

Chapter 2 Getting Started with jOOQ

78

context.select(field("vehicle_curr_price"))

 .from(table("vehicle")

 .where(field("vehicle_id").eq(11))

 .forShare().wait(3000)

 .fetch();

forShare also supports the wait flag.

	 3.	 jOOQ also supports the SKIP LOCKED option with…

skipLocked:

context.select(field("vehicle_curr_price"))

 .from(table("vehicle")

 .where(field("vehicle_id").eq(11))

 .forShare().skipLocked().wait(3000)

 .fetch();

skipLocked will make the transaction ignore rows

or tables that have already been locked by another

transaction. The safety valve wait is available here

as well.

Overall, you want to be cautious with pessimistic locking. If your

transaction isn’t committed, your calling thread hangs on to the lock and

we’re all going to have a bad time.

�Configuration
Let’s try for some more advanced control of the jOOQ runtime. There are

a couple of interesting attachments you can plug into the runtime to gain

more control over how jOOQ works. Check these out.

Chapter 2 Getting Started with jOOQ

79

�Connection Management
I’ve been using a solitary JDBC connection for my examples thus far:

try (Connection connection = DriverManager.

getConnection("jdbc:mysql://localhost/edens_car?user=test&pass

word=thisisabadpassword")) {

 //business things

}

In a production-grade deployment, you need something

more…production-y. jOOQ provides an org.jooq.impl.

DefaultConnectionProvider to handle the default usage of jOOQ – a

single connection that you supply to the context like I show in the

preceding snippet. In a production strength application, you’re more than

likely going to be dealing with a connection pool and an instance of javax.

sql.DataSource. What to do?

Enter the org.jooq.ConnectionProvider interface. This is an extension

point you can implement to take more responsibility for how connections to

your database are handled. ConnectionProvider offers two methods:

public class CustomConnectionProvider implements

ConnectionProvider {

 DataSource dataSource;

 @Override

 public Connection acquire() throws DataAccessException {

 try {

 return dataSource.getConnection();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return null;

 }

Chapter 2 Getting Started with jOOQ

80

 @Override

 �public void release(Connection connection) throws

DataAccessException {

 try {

 connection.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

The jOOQ runtime will call acquire to obtain the JDBC connection for

statement execution. It will then call release to dispose of the connection

when execution is done. Here, I’m interested in tracking the interval

between connection acquisition and disposal. This is a crude way to

keep an eye on how long my query is executing. The disposal mechanism

depends on what the underlying configuration stipulates. When you’re

working with a connection pool, the connection won’t actually be closed;

it’ll be returned to the pool for subsequent reuse.

jOOQ also offers the DataSourceConnectionProvider as direct support

for javax.sql.DataSource. So, in a Spring Boot application, for example,

this is probably what you’ll be using. To use my connection provider:

Configuration config = new DefaultConfiguration();

CustomConnectionProvider customConnectionProvider = new

CustomConnectionProvider();

//set it directly on the Configuration

config.set(customConnectionProvider);

//Alternative: pass it to the DSLContext

DSLContext context = DSL.using(new CustomConnectionProvider(),

SQLDialect.MYSQL,settings);

Chapter 2 Getting Started with jOOQ

81

It’s that simple: pass it to an instance of Configuration which

in turn goes into the DSLContext; alternatively, pass it directly to

the DSLContext. Unless you do something you’re not supposed to,

the DataSourceConnectionProvider should be thread safe. What

this means is that you could design your app to reuse the same

DataSourceConnectionProvider across the app, plugged in to the same

connection pool. You can also pass the datasource directly to your

configuration and skip all the other hassle.

Caution  When you implement a custom ConnectionProvider,
you’ll lose access to a few convenience methods that the default
jOOQ implementation provides. For example, commit and rollback
are off the table. You’re tacitly taking a few matters into your own
hands with this feature.

�Schema, Catalog, and Multi-tenant Deployment
Databases support some combinations of the following:

•	 Schema: A collection of related tables, views, stored

procedures, and functions. It’s the bag for all the “stuff”

you create in the database. Not all databases see it this

way – for example, MySQL considers the database and

everything inside as the schema. Oracle and SQL Server

consider the schema as separate from other contents of

the database server.

Chapter 2 Getting Started with jOOQ

82

•	 Catalog15: The catalog is a higher level of abstraction of

the schema. So, a catalog can contain multiple schemas

(or schemata if you’re fancy). MySQL thinks exclusively

in terms of catalogs so that there’s no schema – the

catalog is the collection of related tables, etc.

These two mechanisms can be used to support multiple separate

instances of a single application on the same database server instance.

This means that for different clients of your application, they can share the

same database server instance(s) with their tables walled off and separate.

This is what’s known by the nerds as multi-tenancy.

Given that I’m using a MySQL database for my online car sales website,

I have to use the catalog as the discriminator to support multi-tenancy.

When you’re using jOOQ-generated code, jOOQ by default will qualify

all components (tables, sequences, views, etc.) with the schema/catalog

name to be sure we’re routing all queries to the correct schema. You can

disable that with the following setting:

new Settings()

 .withRenderCatalog(false)

 .withRenderSchema(false);

This way, you can control the schema or catalog used at runtime by

simply prefixing the elements of your SQL query with the correct catalog.

What if you need to do this at runtime? You have a “master” or “dev”

schema that you’re working on at development time. At deployment time,

you would want “master” or “dev” translated to a production schema or

even a dynamic schema specified at runtime. What does that look like in

jOOQ terms?

15 As of jOOQ 3.15, catalogs are available only for Sybase ASE and SQL Server.

Chapter 2 Getting Started with jOOQ

83

Settings settings = new Settings()

 .withRenderMapping(new RenderMapping()

 .withDefaultSchema(“default_schema”)

 .withDefaultCatalog(“default_catalog)

 �.withSchemata(new MappedSchema().

withInput("master").withOutput(schemaInEffect))

 �.withCatalogs(new MappedCatalog().

withInput("master").

withOutput(schemaInEffect)));

 ...

 �DefaultConfiguration configuration = new

DefaultConfiguration();

 configuration.setSQLDialect(SQLDialect.MYSQL);

 configuration.setConnection(connection)

 configuration.setSettings(settings);

 DSLContext context = DSL.using(configuration);

This Settings snippet demonstrates the usage of the MappedSchema

and MappedCatalog classes.

•	 With these two classes, I can instruct the jOOQ runtime

to translate an input schema (master in this case) to a

different runtime schema.

•	 The withDefaultSchema and withDefaultCatalog

methods let me set up a default schema for all queries.

These schemas will not be used as prefixes for any

query components – it’s the default, so there’s no need

to specify them in every query.

•	 I then feed the enclosing Settings instance into a

Configuration instance. The configuration can then

be fed to the DSLContext. This means that my query

components (tables, sequences, stored procedures,

Chapter 2 Getting Started with jOOQ

84

etc.) will be prefixed with an org.jooq.Catalog or

org.jooq.Schema class that specifies which catalog or

schema I want to deal with at runtime.

Another approach to dynamically configuring the schema is to set it on

the DSLContext itself with

context.setSchema(selectedSchema).execute();

//or

context.setCatalog(selectedCatalog).execute();

where selectedCatalog or selectedSchema could be an org.jooq.

Name, a plain string, or instances of org.jooq.Catalog and org.jooq.

Schema, respectively. For objects in your query that don’t already have a

schema prefix, this sets the active schema or catalog at runtime.

Query parts for the win!

�Query Management
There are more than a few facilities to control how SQL statements are

handled by the jOOQ runtime. Feast your eyes.

•	 Pretty print SQL with withRenderFormatted:

new Settings().setRenderFormatted(true);

•	 Control how identifiers are rendered. Different

databases provide some perks depending on whether

the identifier is quoted or not.

.withRenderQuotedNames(RenderQuotedNames.ALWAYS);

The RenderQuotedNames enum provides a few

options to control this behavior:

Chapter 2 Getting Started with jOOQ

85

•	 Optimize the performance of SQL statements that use

the IN comparison parameter. Because of the way most

databases cache PreparedStatements, it’s important

that IN comparisons use a constant-sized list of items.

What this means is that this statement

SELECT * from complete_vehicle_listing where vehicle_

manufacturer in (?)

and this statement

SELECT * from complete_vehicle_listing where vehicle_

manufacturer in (?,?,?,?)

will be treated as different statements by the

database, even though the only difference is that

the number of parameters in the IN list is different.

In a high traffic RDBMS, this can yield shockingly

poor performance. jOOQ’s solution is called “IN list

padding.” With this feature, jOOQ will pad the query

parameter with a constant multiplier. This will help

increase the rate at which the database can cache

PreparedStatements, yielding better performance.

It’s a simple Settings operation:

new Settings().withInListPadding(true) �//�defaults to

false

 .withInListPadBase(4) //�starting count to

pad with

•	 Set JDBC parameters, for example, queryTimeout and

maxRows:

Settings settings = new Settings().withQueryTimeout(5)

//in seconds

 .withMaxRows(1000)

Chapter 2 Getting Started with jOOQ

86

Check out the Settings javadoc for more interesting parameters you

can tweak.

�Query Lifecycle Integration
I’ll use jOOQ’s org.jooq.ExecuteListener to key into the query execution

by the jOOQ runtime. It provides the opportunity to intercept the process

during up to 20 events. jOOQ ships with these two listeners, among others:

•	 org.jooq.tools.StopWatchListener is a listener that

will help you track the execution times around key

events in the query execution process.

•	 org.jooq.tools.LoggerListener prints log statements

during key events of the statement execution lifecycle.

ExecuteListeners are ideal for introducing cross-cutting functions

like logging (like you’ve already seen), exception handling, or even security

features.

public class QueryIntrospectionListener extends

DefaultExecuteListener { (1)

 �final Logger logger = LoggerFactory.getLogger(Query

IntrospectionListener.class);

 @Override

 public void fetchStart(ExecuteContext ctx) { (2)

 logger.info("Executing: {}",ctx.sql()); (a)

 logger.info("Query type: {}",ctx.type()); (b)

 �//ctx.query().getBindValues() to retrieve bind

parameters for the query

 }

Chapter 2 Getting Started with jOOQ

87

 @Override

 public void exception(ExecuteContext ctx) { (3)

 if(Objects.nonNull(ctx.sqlException())){

 //handle exception

 }

 }

}

First off, I should mention that I’m a big fan of the context object16

pattern, and all my favorite frameworks lean into it, hard. Here’s what’s

going on with the preceding snippet:

	 1.	 Extending org.jooq.impl.DefaultExecuteListener

is the recommended approach to getting your own

listener going. That class contains many lifecycle

methods that you can override. Overriding these

methods provides privileged access to the jOOQ

runtime, so you can inject your own logic and

designs into the overall query execution process.

	 2.	 I’ve chosen to override the fetchStart method.

This means that I can step in before the execution of

the fetch operation of the jOOQ API. This method

(and all the others in DefaultExecuteListener)

is supplied with an instance of org.jooq.

ExecuteContext. This beautiful context object

contains all the contextual information you’ll need

about the currently executing query. I have access to

16 �https://stackoverflow.com/questions/986865/can-you-explain-the-
context-design-pattern/

Chapter 2 Getting Started with jOOQ

https://stackoverflow.com/questions/986865/can-you-explain-the-context-design-pattern/
https://stackoverflow.com/questions/986865/can-you-explain-the-context-design-pattern/

88

a.	 The raw SQL being executed with

b.	 The type of query being executed:

c.	 The actual Query object and inspect the

parameters.

	 3.	 In my overridden exception method, I can get a

hold of any exceptions that occur during query

processing and do…whatever I want with it.

With my custom listener defined, here’s how I plug it into the

DSLContext:

Configuration configuration = new DefaultConfiguration();

 configuration.set(connection)

 .set(SQLDialect.MYSQL)

 .set(new QueryIntrospectionListener());

 DSLContext context = DSL.using(configuration);

To be able to use my custom ExecutionListener

	 1.	 I’ll use the set method to supply an instance of that

listener to my instance of org.jooq.Configuration.

	 2.	 I then use that configuration to obtain a DSLContext

and voila!

Being able to interweave custom logic into the execution of

queries and the richness of context presents so many opportunities for

customization.

Man, I love context objects.

Chapter 2 Getting Started with jOOQ

89© Tayo Koleoso 2022
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_3

CHAPTER 3

Working with jOOQ
And now for my next demonstration, we’re going to take a much deeper

dive into the jOOQ toolbox. There’s a lot of convenience in the jOOQ

toolbox – heck, jOOQ is all about convenience when you think about it.

All of the hand-rolled SQL I was doing in the last chapter, the hand-made

entity classes and parsing of query results; it can get significantly easier

and more importantly typesafe. And that’s the second key to enjoying

jOOQ: type safety. Put together, this chapter is a saunter through jOOQ’s

features that offer convenience and type safety. First, let’s look at jOOQ’s

code generation capabilities.

�Generating Code
This is approximately half the point of jOOQ as a concept: being able to

typesafely refer to columns, tables, sequences, really, any part of a SQL

query. Among other advantages, you’ll find that

•	 Incorrect SQL will no longer be a thing to worry about

when the SQL is derived directly from what is in your

database; zero guesswork required.

•	 A lot of boilerplate code will be automatically taken

care of. I can tell you from experience that it’s nice to

not have to type out yet another entity class or Data

Access Object (DAO) by hand.

https://doi.org/10.1007/978-1-4842-7431-6_3

90

•	 Your IDE experience is markedly improved by the

fact that you can take advantage of things like code

completion, hints, and “find usages” while working

with database components.

•	 Your data-driven unit and integration tests become

much more of a guarantee of the behavior and quality

of your code. In a packaging model where your data

access components (schemas, entities, etc.) are

managed separately from the business logic, you can

structure your application to independently validate

any updates that have been made to the schema

without going through a full deployment cycle. More on

this technique later.

All told, typesafe generated database artifacts is where it’s at, so let’s go

there!

�Tools of jOOQ Code Generation
What we’re interested in at this point is a way to use jOOQ to generate Java

classes to represent the content of Eden Auto Mart database. There are

three ways we can go about this:

	 1.	 Programmatically: jOOQ offers a simple API that

you can use to generate classes from your database

schema.

	 2.	 Command Line: You can also generate artifacts

using a command-line interface.

Chapter 3 Working with jOOQ

91

	 3.	 Build Tools: jOOQ ships with Maven and Gradle

tooling1 that you can use to run the code generation

operation.

The results from the preceding three methods are identical: java

classes in packages, representing your database catalog or schema.

They also share common configuration elements. Foundationally, the

configuration for the code generator is represented as an XML document.

The three modes of generating jOOQ code invariably wind up as this

XML entity at some point in the lifecycle, mostly as a JAXB-annotated

class. Therefore, it makes sense to start by looking at what that XML

configuration document might look like.

�Configure jOOQ for Code Generation

So, what does configuration look like? Hang tight: it’s a fair bit of XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<configuration>

 <!-- Configure the database connection here -->

 <jdbc>

 <driver>com.mysql.cj.jdbc.Driver</driver>

 <url>jdbc:mysql://localhost/edens_car</url>

 <user>eden_admin</user>

 <password>_*thisisabadpassword*_</password>

 </jdbc>

 <generator>

 <name>org.jooq.codegen.JavaGenerator</name>

 <database>

 <name>org.jooq.meta.mysql.MySQLDatabase</name>

1 https://github.com/etiennestuder/gradle-jooq-plugin

Chapter 3 Working with jOOQ

https://github.com/etiennestuder/gradle-jooq-plugin

92

 <inputSchema>edens_car</inputSchema>

 <includeTables>true</includeTables>

 <includes>.*</includes>

 </database>

 <generate>

 <javaTimeTypes>true</javaTimeTypes>

 <daos>true</daos>

 <pojos>true</pojos>

 �<pojosAsJavaRecordClasses>true</pojosAsJavaRecord

Classes>

 �<pojosEqualsAndHashCode>true</pojosEqualsAnd

HashCode>

 <pojosToString>true</pojosToString>

 </generate>

 <target>

 �<packageName>com.apress.jooq.generated

</packageName>

 �<directory>C:\Users\SIGINT-X\eclipse-workspace\

jooq-demo\src\main\java</directory>

 </target>

 </generator>

</configuration>

Okay, you don’t need to take it all in right now. Feel free to copy paste

what’s in here as is. Let me talk you through the most salient bits. After the

top-level <configuration> tag (and its associated schema document link),

there’s a mix of optional and mandatory elements that control the behavior

of jOOQ’s code generation:

Chapter 3 Working with jOOQ

93

	 1.	 Database Connection: The <jdbc/> element defines

how the code generator will have access to the

database to begin with. Can’t generate classes from

a database you can’t get access to.

	 2.	 Generator Semantics: The <generator/> element

is where I provide additional context to the code

generator. This node is a container for some other

higher-level concerns. Here, I’ve defined

	a)	 The style of code I’m interested in generating –

Java. Other options include Scala and Kotlin.

The <name/> element controls the type of code

generation that will occur.

	b)	 The database dialect I’m interested in with

<database/>.

	c)	 The schema in the database that contains the

artifacts from which I want to generate my classes.

I also have the option to supply multiple schemas

by nesting a <schemata> element here containing

each <schema/> I want to generate from.

	d)	 The <includeXXX/> tags allow me to specify what

types of components I want to generate from

the database. Without this, you’re more than

likely going to wind up with a bunch of system

components and other cruft you don’t really need.

i.	 <includes/> lets me specify by name what

artifacts I want to include in the generation.

This is the difference between saying “I want to

include all tables in the generated code” with

<includeTables/> vs. saying “I want to include

these specific tables for code generation” with

<includes>.

Chapter 3 Working with jOOQ

94

	e)	 I prefer the use of the newer time classes in

the java.time package. This way, I can use

LocalDateTime and others instead of java.sql.

Time, etc.

	f)	 With <dao>true</dao>, jOOQ will generate Data

Access Objects2 (DAO) for each table. This means

I have yet another convenient component to run

typesafe queries for whole objects.

	g)	 For actual transmission of entities in my web

application, I don’t want to send actual jOOQ

records or Tables – that’s not neat code. No, what I

want is a POJO – a Plain Old Java Object devoid of

any framework code – jOOQ’s or otherwise. Enter

the <pojo/> configuration to generate POJOs.

	h)	 target helps me set the location and package

structure I want my generated classes to be stored.

There’s a lot more power and flexibility to configuring the jOOQ code

generator; I highly recommend you check out the official manual for

advanced options. For now, let’s press on!

Given my preceding configuration, I should be able to use one of the

available generator options to generate code from my existing database

schema. What are my options?

�Generate Code with Maven

jOOQ provides the jooq-codegen-maven Maven plugin to carry out your

code generation business. The groupId of the plugin you use will depend

on the distribution of jOOQ you’re working with (commercial or open

source), as well as the version of Java you’re running:

2 www.oracle.com/java/technologies/data-access-object.html

Chapter 3 Working with jOOQ

http://www.oracle.com/java/technologies/data-access-object.html

95

•	 Open Source Edition – org.jooq

•	 Commercial Edition – org.jooq.pro; org.jooq.pro-

java-8 for Java 8 support

•	 Free trial of the commercial version – org.jooq.trial

Because I’m just too cool for school and doing well for myself,3 I’m

going to pop in my commercial Maven plugin config like so:

<maven demo>

Here’s what I’ve wrought in the preceding snippet:

	 1.	 I’m defining the use of the jOOQ plugin per

standard Maven plugin usage.

	 2.	 I specify that I want the plugin to kick in during

the generate-sources phase of the Maven build

lifecycle.

	 3.	 I then declare a generate goal. This is the Maven

goal I’ll use to trigger the code generation process

for the jOOQ plugin.

	 4.	 Providing the skip.jooq.generation property

allows me to dynamically enable or disable the code

generation at build time.

	 5.	 configurationFile points to the location of my

XML config file for code generation as seen earlier.

I also have the option to wholesale include the

entire content of that config file in my Maven

POM.xml (Maven’s Project Object Model) file. It’s

possible, but you probably shouldn’t do it because

3 Also, Lukas hooked me up with a commercial license, gratis.

Chapter 3 Working with jOOQ

96

	a.	 The code generation config file will likely see more

change than the POM. Therefore, it’s probably best

that you cleanly separate the two to minimize the

churn in the POM as a whole.

	b.	 Separating the code generation config from your

POM opens up the opportunity to version the

config file.

	c.	 It keeps your POM file shorter and therefore more

readable.

	d.	 It supports reusability. Think about it: when you

have a standalone XML config file for your code

generation, you can refer to that file from Maven,

the command line, or even programmatically. And

if you change your build system to Gradle, you

don’t need to rewrite a bunch of config!

With all of this in place, I can then run the following Maven command

to generate the source files that I’m interested in:

mvn package

Chapter 3 Working with jOOQ

97

I can see all the new classes and packages in my IDE.

Pictured: Success

�Generate Code from the Command Line

If Maven or another build tool isn’t your thing, you could straight up run

the generator from a terminal or command-line interface. Given the same

XML configuration file, I can execute the following command from a

terminal window:

java -cp jooq-3.15.1.jar;jooq-meta-3.15.1.jar;jooq-codegen--

3.15.1.jar;reactive-streams-1.0.2.jar;mysql-connector-

java-8.0.24.jar;jaxb-api-2.3.1.jar ;r2dbc-spi-0.9.0.M1.jar;

org.jooq.codegen.GenerationTool jooq-configuration.xml

Chapter 3 Working with jOOQ

98

Yes, it’s exactly what you’re probably thinking. I’m running the code

generator like it were vanilla java code.4 Using the java tool that’s bundled

standard with the JDK, I run the org.jooq.codegen.GenerationTool class

that ships with jOOQ. Additionally:

	 1.	 I use the -cp flag to configure my classpath. This flag

then allows me to supply the JAR dependencies for

the GenerationTool needs to do its business.

	 a.	 Note the inclusion of the JAXB dependency jaxb-
api-2.3.1.jar. This is necessary for JDK 11 and

up environments. Since Java went all fancy with

modularity, excluding JAXB dependencies by

default, we now need to be explicit about including

it whenever it's needed. Without this additional

JAR, you’re probably going to get some variety

of ClassNotFoundException while running code

generation from the command line. Fun.

	 2.	 I also supply the location of the XML configuration

file.

I also have the option to configure the core requirements of the code

generator with these fine environment variables; enjoy:

•	 -Djooq.codegen.configurationFile to define the

location of the XML configuration file

•	 -Djooq.codegen.jdbc.driver to configure the driver

class that will be used to connect to the database

•	 -Djooq.codegen.jdbc.url to configure the URL for

connecting to the database

4 �I’m using the semicolon (“;”) separator here from a Windows environment; for
Unix environments, go full colon (“:”).

Chapter 3 Working with jOOQ

99

•	 -Djooq.codegen.jdbc.username and -Djooq.codegen.

jdbc.password to define the username and password,

respectively, for the database connection

•	 -Djooq.codegen.logging to set the logging level for the

code generation process; standard logging levels like

DEBUG, WARN, INFO, etc. apply

•	 -Djooq.codegen.skip to disable code generation

altogether

The environment variable options are a great way to set defaults for

your jOOQ project. They can be overridden by what’s defined in the XML

file, Maven, or even in the programmatic code generation option.

�Generate Code Programmatically

The most powerful option of them all [thunderclap/lightning strike]! You

can programmatically generate code with the API provided by jOOQ. It

goes a little something like this:

 �org.jooq.meta.jaxb.Configuration generatorConfiguration =

JAXB.unmarshal(new File("src/main/resources/jooq-

configuration.xml"), org.jooq.meta.jaxb.Configuration.class);

 GenerationTool.generate(generatorConfiguration);

Here, I’m simply reusing the XML configuration I previously defined,

this time wrapped as an instance of org.jooq.meta.jaxb.Configuration.

Vanilla JDK’s JAXB API loads the XML file and unmarshals it to a

Configuration object. I then use the GenerationTool#generate static

method to run the generator.

Chapter 3 Working with jOOQ

100

Note T he JAXB module has been separated from the JDK core;
you’ll need to manually include it as a dependency in your POM to be
able to run the preceding sample.

For more fine-grained control, I could just do away with the XML file

altogether like so:

org.jooq.meta.jaxb.Configuration generatorConfiguration = new

org.jooq.meta.jaxb.Configuration()

 .withJdbc(new Jdbc()

 .withDriver("com.mysql.cj.jdbc.Driver")

 �.withUrl("jdbc:mysql://localhost/

edens_car")

 �.withUsername("root").withPassword

("admin"))

 .withGenerator(new Generator()

 �.withName("org.jooq.codegen.

JavaGenerator")

 �.withDatabase(new Database()

 �.withName("org.jooq.meta.mysql.

MySQLDatabase")

 .withInputSchema("edens_car")

 .withIncludeTables(true)

 .withIncludes(".*"))

 .withGenerate(new Generate()

 .withJavaTimeTypes(true)

 �.withJavaBeansGettersAnd

Setters(true)

 .withDaos(true)

 .withPojos(true)

 �.withPojosEqualsAndH

ashCode(true)

Chapter 3 Working with jOOQ

101

 .withPojosToString(true))

 .withTarget(new Target()

 .withClean(true)

 .withDirectory("src/main/java")

 �.withEncoding(StandardCharsets.

UTF_8.toString())

 �.withPackageName("com.apress.

jooq.generated")

))

 .withLogging(Logging.DEBUG)

 .withOnError(OnError.LOG);

 GenerationTool.generate(generatorConfiguration);

This is simply a faithful duplication of the contents of the XML file

for greater flexibility and more horsepower – the result is the same.

You could combine the two approaches where some values could be

preset in the XML file; then some values can be supplied dynamically

programmatically.

Programmatic code generation is a wonderful opportunity to leverage

jOOQ in scenarios where an XML file or command-line parameters won’t

cut it, like integration tests (more on those later). Another opportunity is

to use jOOQ in slightly unconventional scenarios like when the database

connection is dynamically generated.

Pop Quiz: Which element of the jOOQ configuration schema lets you
configure which type of code (Java, Scala, etc.) should be generated?

Answer: The name element defines the output type of jOOQ code
generation. Use org.jooq.codegen.JavaGenerator to generate
Java code.

Chapter 3 Working with jOOQ

102

�Results of Code Generation

Whichever method of code generation you choose, the results would

largely be identical. Check ‘em out:

Tables

Each table in your schema or catalog will largely result in the following:

	 1.	 Classes that extend org.jooq.impl.TableImpl,

itself an implementation of org.jooq.Table. It’ll

look a little something like this for my Eden Auto

database:

public class Vehicle extends TableImpl<VehicleRecord> {

 private static final long serialVersionUID = 1L;

 /**

 �* The reference instance of <code>edens_car.

vehicle</code>

 */

 public static final Vehicle VEHICLE = new Vehicle();

 /**

 * The class holding records for this type

 */

 @Override

 public Class<VehicleRecord> getRecordType() {

 return VehicleRecord.class;

 }

 /**

 �* The column <code>edens_car.vehicle.vehicle_id

</code>.

 */

Chapter 3 Working with jOOQ

103

 �public final TableField<VehicleRecord, Long>

VEHICLE_ID = createField(DSL.name("vehicle_id"),

SQLDataType.BIGINT.nullable(false).identity(true),

this, "");

...

}

It’s these classes that you can use to construct typesafe SQL queries;

this is instead of using the DSL#table function that I was previously using

to convert raw SQL to jOOQ types. There’s no possibility of error with these

classes.

	 2.	 Classes that extend org.jooq.impl.*RecordImpl,

itself an implementation of org.jooq.Record.

Sound familiar? Record is what you get back from

your database queries. There are two general flavors

of these that could be generated:

	 a.	 UpdatableRecordImpl is what you get when the

underlying table has a primary key and jOOQ has

access to the primary key during code generation.

	 b.	 TableRecordImpl is what you’ll get when the

underlying table doesn’t have a primary key, jOOQ

doesn’t have access to the primary key data, or it

isn’t even a real table – a database view, for example.

So, use your *RecordImpl to iterate through

results of your queries; UpdatableRecordImpl

specifically to perform DML operations against a

table.

Chapter 3 Working with jOOQ

104

	 3.	 Plain Old Java Objects (POJOs) also come out of the

box automatically, also representing rows in your

database tables. Typically, a generated POJO class

will extend Serializable. Here’s what one looks

like for Eden Auto:

public class Vehicle implements Serializable {

 private static final long serialVersionUID = 1L;

 private Long vehicleId;

 private Long vehicleManufacturer;

 private BigDecimal vehicleCurrPrice;

 private LocalDate vehicleModelYear;

 private String vehicleStatus;

 private String vehicleColor;

 private Long vehicleModelId;

 private Long vehicleTrim;

 private Long vehicleStyle;

 private Byte featured;

 private LocalDateTime created;

 public Vehicle() {}

 ...

}

Like I mentioned earlier, these come in handy as Data

Transfer Objects (DTO) or value objects that you can

use for shifting data around and into your application.

It gets even better: you can have Bean Validation5

specifications like @NotNull and @Size generated from

information from the columns of the table. Pretty neat!

5 https://en.wikipedia.org/wiki/Bean_Validation

Chapter 3 Working with jOOQ

https://en.wikipedia.org/wiki/Bean_Validation

105

	 4.	 Data Access Objects (DAOs) are analogous to

Spring’s various Repository methods. They do what

they sound like: help you access strongly typed data

from your tables. DAOs will help you query their

respective tables to retrieve the desired records.

DAOs are generated only for tables with primary

keys by default. This means that a view won’t

automatically generate DAOs.

jOOQ allows you a great deal of control over table primary keys as part

of the code generation process. If you want to add primary key information

along with something like a database view, use this feature to manually

inform jOOQ:

<database>

 <name>org.jooq.meta.mysql.MySQLDatabase</name>

 ...

 �<syntheticPrimaryKeys>edens_car.complete_car_

listing.vehicle_id</syntheticPrimaryKeys>

 ...

</database>

Because a view isn’t really a table, most databases won’t provide the

same primary key information they offer for actual tables. As a result, I’ve

had to configure the path to the key column for the database view that

I’m interested. This feature is known as a synthetic primary key. With this

configuration, complete_car_listing inside the database will produce a

DAO. The downside here is that it requires some combination of

•	 Hard coding the name of a column

•	 Consistent naming conventions of primary key columns

•	 A regular expression that you will need to validate

against the names of your primary key columns

But wait; there’s more:

Chapter 3 Working with jOOQ

106

Global Artifacts

More convenience incoming: jOOQ can also generate most cross-cutting

components as high-level “global” classes. These will be generated as

static members of the following class definitions:

	 1.	 Keys.java will contain static fields referencing all

primary, foreign, and unique keys defined on a per

table basis. These will come in handy when you

need to build typesafe queries with SQL joins.

	 2.	 Sequences.java will give you all the sequences

defined in your database schema. You can reach for

these when you want to manually generate a key

value for some reason.

	 3.	 Tables.java will contain all the tables defined in

your schema, useful for when you’re constructing

queries and such.

There are other statically generated components coming out of the

jOOQ code generation process, some of which are out of the scope of this

book. I highly recommend checking out the official documentation for

more of the good stuff.

Pop Quiz: What jOOQ methods will produce a SQL {CASE} clause?

a) {choose}

b) {when}

c) {case}

Answer: {choose} and {when} are the valid ways to start a {CASE}
statement with jOOQ

Chapter 3 Working with jOOQ

107

�Add Custom Code to Generated Code

If you’re fancy (like me), you may be interested in adding hand-woven

code blocks to all (or some) of the generated code. For example, some

corporate environments could be interested in adding trademark and

copyright information to all their code. To pull this off, you’ll need an

implementation of JavaGenerator. Here’s what it would look like to add a

header comment to all class files:

import org.jooq.codegen.JavaGenerator;

import org.jooq.codegen.JavaWriter;

import org.jooq.meta.TableDefinition;

public class CopyrightGenerator extends JavaGenerator {

 �protected void printClassJavadoc(JavaWriter out, String

comment) { (1)

 �out.println("/** This is proprietary code of Initech co

*/");

 }

 �protected void generateRecordClassFooter(TableDefinition

table, JavaWriter out){ (2)

 out.println();

 �out.tab(1).println("public static String

getInitTechWarning(){");

 �out.tab(2).println("return \"This is proprietary code

of Initech co\";");

 out.tab(1).println("}");

 out.println();

 }

}

Chapter 3 Working with jOOQ

108

I told you I’m fancy

This is an uber-trivial use of this class – there’s almost nothing you

can’t rewrite or add to generated code using the JavaGenerator facility.

	 1.	 printClassJavadoc allows me to prepend any

arbitrary Javadoc content to the top of a class

declaration (after imports).

	 2.	 generateRecordClassFooter lets me append arbitrary

code to the end of a Record class – basically any table

or view. You may recognize the risk here: this facility

deals with plain type-unsafe strings (ironic, I know),

but there are trivial ways to make sure you never

accidentally include snippets that won’t compile.

The default JavaGenerator provides an impressive array of methods

available to override and change any part of the generated code. Go ahead

and have fun with it!

Chapter 3 Working with jOOQ

109

�Working with Generated Code
When you have code that’s directly woven from your database schema,

type safety is a benefit in and of itself. But it doesn’t stop there. See, when

jOOQ is the source of your data access code, there are unique benefits that

accrue.

�CRUD with Generated Code
Things work better with generated code for vanilla CRUD operations. I can

retrieve from the vehicle table with strong typing guarantees like so:

import static com.apress.jooq.generated.EdensCar.EDENS_CAR;

import static com.apress.jooq.generated.Tables.VEHICLE; (1)

...

public static void selectWithGeneratedCode() throws

SQLException {

 ...

 DSLContext context = DSL.using(connection, SQLDialect.MYSQL);

 �List<Vehicle> vehicles = context.select(EDENS_CAR.

VEHICLE.VEHICLE_ID, EDENS_CAR.VEHICLE.VEHICLE_COLOR,

EDENS_CAR.VEHICLE.VEHICLE_CURR_PRICE) (2)

 .from(VEHICLE) (3)

 �.where(VEHICLE.VEHICLE_MANUFACTURER.

eq(val(2L))) (4)

 .orderBy(VEHICLE.VEHICLE_MODEL_YEAR)

 .fetchInto(Vehicle.class); (5)

 logger.info(vehicles.toString());

 }

 }

Chapter 3 Working with jOOQ

110

I’ve purposefully blended a couple of styles and concepts into the

preceding snippet to illustrate the flexibility you get with generated

artifacts.

Using the generated artifacts:

	 1.	 Static imports of the generated schema (EDENS_CAR)

and a generated table (VEHICLE) classes mean that

I can use their respective contents wherever I need

them later.

	 2.	 I can use the fully qualified path to columns in the

select statement – Schema.Table.Column.

	 3.	 I can drop the schema altogether and use just the

plain generated table reference provided by the

generated com.apress.jooq.generated.Tables

class.

	 4.	 Supplying parameters for filter expressions is a

breeze because

	 a.	 I don’t have to deal with placeholders like “?” or

remember the order of the parameters. I can directly

specify parameters on the fields that need them.

	 b.	 Using the val function binds the parameter value

to the correct column during the execution of the

jOOQ statement; the SQL injection protection I get is

a nice bonus. This isn’t always necessary however –

jOOQ does this under the hood in most cases.

	 5.	 Finally, I can fetch the query results into the POJO

generated from the Vehicle table.

Chapter 3 Working with jOOQ

111

So far so good. I could also just do the fetch directly into the

UpdatableRecord implementation for the vehicle table:

Result<VehicleRecord> vehicle = context.fetch(VEHICLE, VEHICLE.

VEHICLE_MANUFACTURER.eq(val(2, Long.TYPE)));

This is the concise kind of code I live for.6 I’ve done away with a lot

of the boilerplate; I simply provide the table class and my filter criteria.

In addition to the conciseness, there’s a navigation benefit to this type of

fetching, and I’ll be covering it shortly.

For an insert into the vehicle table, I can immediately retrieve the

primary key associated with the insert with the returningResult method:

long execute = context.insertInto(VEHICLE, VEHICLE.VEHICLE_

MANUFACTURER, VEHICLE.VEHICLE_CURR_PRICE, VEHICLE.VEHICLE_

MODEL_YEAR, VEHICLE.VEHICLE_STATUS, VEHICLE.VEHICLE_COLOR,

VEHICLE.VEHICLE_MODEL_ID, VEHICLE.VEHICLE_TRIM, VEHICLE.

VEHICLE_STYLE)

 �.values(4L, BigDecimal.valueOf(46350.00),

LocalDate.parse("2021-01-01"), "ACTIVE",

"BLUE", 13L, 2L, 1L)

 .returningResult(VEHICLE.VEHICLE_ID)

 .execute();

The returningResult method allows you to return fields from the

newly inserted row as part of the response from an insert. The ideal usage

is to return the primary key generated for the insert as supported by the

underlying database. For other non-key fields, jOOQ might perform a

second SQL execution to retrieve the requested data if the underlying

database doesn’t natively support INSERT...RETURNING.

6 �This isn’t a feature for just generated code; you can do this with plain SQL. It just
looks cooler here. ☺

Chapter 3 Working with jOOQ

112

All told, the risk of getting the names of tables or columns wrong is

eliminated. Combined with the fluent jOOQ DSL that makes sure that

your SQL is always going to be syntactically correct: you have bulletproof

database queries.

�Enhancements from UpdatableRecord

With generated UpdatableRecords, you gain some powerful advantages

with CRUD operations. One of my favorite bits of this component is how I

can navigate the relationships of a record:7

 �DSLContext context = DSL.using(connection, SQLDialect.MYSQL);

 �VehicleRecord vehicleRecord = context.

fetchOne(VEHICLE, VEHICLE.VEHICLE_ID.eq(7L));

 �VehicleManufacturerRecord vehicleManufacturerRecord =

vehicleRecord.fetchParent(Keys.VEH_MANUFACTURER_

ID); (1)

 �VehicleModelRecord vehicleModelRecord =

vehicleRecord.fetchParent(Keys.VEH_MODEL_ID); (1a)

 �logger.info("Vehicle Manufacturer:

{}",vehicleManufacturerRecord.

getManufacturerName());

 �logger.info("Vehicle Model Record:

{}",vehicleModelRecord.getVehicleModelName());

 �Result<VehicleModelRecord> vehicleModelRecords =

vehicleManufacturerRecord.fetchChildren(Keys.

MANUFACTURER_ID); (2)

7 �You do run the risk of the N+1 query issue: https://stackoverflow.com/
questions/97197/what-is-the-n1-selects-problem-in-orm-object-
relational-mapping

Chapter 3 Working with jOOQ

https://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem-in-orm-object-relational-mapping
https://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem-in-orm-object-relational-mapping
https://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem-in-orm-object-relational-mapping

113

 vehicleModelRecords.forEach(vmr ->{

 �logger.info("{} {}",vehicleManufacturerRecord.

getManufacturerName(),vmr.

getVehicleModelName());

 });

After retrieving a specific vehicle, I can

	 1.	 Retrieve the manufacturer record by using the

foreign key relationship between vehicle and

vehicle_manufacturer. This works by using

the appropriate generated foreign key from the

(also generated) Keys class. Pass that into the

fetchParent method and I’m sorted.

	 a.	 I use the same mechanism to retrieve the vehicle

model record associated by foreign key to the

vehicle table.

	 2.	 I can walk down the family tree instead with

fetchChildren, passing in the foreign key that ties

vehicle_manufacturer and vehicle_model_id.

What about DML? Each UpdatableRecordImpl is an Active Record –

this means that you don’t need any additional components to perform

data manipulation on retrieved records:

VehicleModelRecord vehicleModelRecord = context.

newRecord(VEHICLE_MODEL); (1)

vehicleModelRecord.setVehicleManId(2L);

vehicleModelRecord.setVehicleModelName(“Tacoma”);

vehicleModelRecord.setVehicleStyleId(3L);

vehicleModelRecord.store(); (2) //record saved

Long vehicleModelId = vehicleModelRecord.getVehicleManId(); (3)

Chapter 3 Working with jOOQ

114

vehicleModelRecord.setVehicleModelName(“Tacoma XD”);

vehicleModelRecord.store(); (4)

vehicleModelRecord.refresh(); (5)

vehicleModelRecord.delete(); (6)

	 1.	 I can create an empty VehicleModelRecord object

from the DSLContext. No record has been created in

the database yet.

	 2.	 After setting necessary, I can use the store method

on the object to then persist the record.

	 3.	 I can retrieve the id of the newly inserted record

immediately.

	 4.	 I can continue calling store at my convenience on

the same record.

	 5.	 I’ll use the refresh method to get the latest copy of

the record I’m working on.

	 6.	 And when I’m done with, I can just call the delete

method to get remove the record.

Tip  My UpdatableRecordImpl is attached to a database
connection, but lazily. What this means is that my instance of
VehicleRecord contains a reference to the Configuration
object, which has a reference to the underlying JDBC connection
pool. Therefore, VehicleRecord isn’t thread safe. The good news is
that I don’t have to worry as much about starving the connection pool
of connection objects.

Chapter 3 Working with jOOQ

115

Formatting

The Result class provides format* methods that allow you to convert

query results to different formats like

•	 CSV

•	 HTML

•	 XML

•	 JSON

So that given a Result of retrieved VehicleModelRecord, I can generate

formatted output like so:

 �Result<VehicleModelRecord> vehicleModelRecords =

vehicleManufacturerRecord.fetchChildren(Keys.MANUFACTURER_ID);

 vehicleModelRecords.formatJSON();

Pretty sweet huh? I should note that this is not a feature for just

generated code; you can get the good stuff out of plain SQL jOOQ

executions as well. The Record class offers this feature as well, so that you

can print whole result sets or individual Records.

�Optimistic Locking

To enable jOOQ’s optimistic locking mechanism, I configure my

DSLContext like so:

Settings settings = new

Settings().withExecuteWithOptimisticLocking(true);

DSLContext context = DSL.using(connection, SQLDialect.MYSQL,

settings);

Generating code with jOOQ opens up this new, for supporting

optimistic locking for transaction management. With “manual” SQL, jOOQ

needs to use the SELECT...FOR UPDATE statement to protect concurrent

Chapter 3 Working with jOOQ

116

access to rows – this means two trips to the database. With generated

code, jOOQ can use the recordVersionFields or recordTimestampFields

configuration properties instead:

</database>

...

 �<recordVersionFields>edens_car\.*\.version

</recordVersionFields>

...

</database>

Or programmatically

...

.withGenerator(new Generator()

 .withDatabase(new Database()

 �.withName("org.jooq.meta.mysql.MySQLDatabase")

 �.withRecordVersionFields("edens_car\\.*

\\.version")

...

Using a regular expression, I’ve stipulated that every table in the

edens_car schema that has a version column should be eligible for

optimistic locking. It’s achievable both programmatically and in XML

config. Both of them have the same effect: when two or more transactions

are trying to work on the same row, jOOQ will look for the configured

column (version) on the affected row. Of course, this means you need to

add a version or timestamp column to your table in support of this facility.

Whichever transaction has the latest value in recordVersionFields or

recordTimestampFields in its copy of that row “wins.” The transaction

with an older copy of the row will get an org.jooq.exception.

DataChangedException when it tries to store, update, or delete its data. If

you’ve worked with Hibernate/Spring Data JPA, you’re likely familiar with

this mechanism.

Chapter 3 Working with jOOQ

117

�Advanced Database Operations
Now that we’ve had a look at the might of generated code with the jOOQ

(lightning and thunder effects!), let’s push the envelope a little bit. Now

join me, as we look at…

�Joins
I’m interested in constructing a query that will render a listing of vehicles

that gives me a UI representation like so.

Per vehicle, I want to display

•	 Vehicle manufacturer name

•	 Vehicle model

•	 Model trim

•	 Current price

•	 Vehicle color

•	 Vehicle model year

Chapter 3 Working with jOOQ

118

All this information will need to come from different tables. What does

such a query look like?

 SELECT

 `v`.`vehicle_id` AS `vehicle_id`,

 `v_man`.`manufacturer_name` AS `brand`,

 `v_mod`.`vehicle_model_name` AS `model`,

 `v_trim`.`trim_name` AS `trim`,

 `v`.`vehicle_curr_price` AS `price`,

 `v`.`vehicle_color` AS `color`,

 `v_style`.`vehicle_style_name` AS `style`,

 `v`.`vehicle_model_year` AS `year`,

 `v`.`featured` AS `featured`

FROM ((((`vehicle` `v`

 �JOIN `vehicle_manufacturer` `v_man` ON ((`v`.`vehicle_

manufacturer` = `v_man`.`manufacturer_id`)))

 �JOIN `vehicle_model` `v_mod` ON ((`v_mod`.`vehicle_

model_id` = `v`.`vehicle_model_id`)))

 �JOIN `vehicle_trim` `v_trim` ON ((`v_trim`.`trim_id` =

`v`.`vehicle_trim`)))

 �JOIN `vehicle_style` `v_style` ON ((`v_style`.`vehicle_

style_id` = `v`.`vehicle_style`)))

In this query, I’ve joined the following tables:

•	 vehicle

•	 vehicle_manufacturer

•	 vehicle_model

•	 vehicle_trim

•	 vehicle_style

Chapter 3 Working with jOOQ

119

What does this look like in jOOQ? First, I’m going to compose the

columns that I need as a portable bundle:

List<Field<?>> fields = Arrays.asList(

 VEHICLE.VEHICLE_ID,

 �VEHICLE_MANUFACTURER.MANUFACTURER_NAME

.as("brand"),

 �VEHICLE_MODEL.VEHICLE_MODEL_

NAME.as("model"),

 VEHICLE_TRIM.TRIM_NAME.as("trim"),

 VEHICLE.VEHICLE_CURR_PRICE.as("price"),

 VEHICLE.VEHICLE_COLOR.as("color"),

 VEHICLE_STYLE.VEHICLE_STYLE_NAME.as("style"),

 VEHICLE.VEHICLE_MODEL_YEAR.as("year"),

 VEHICLE.FEATURED);

I’ve put all my desired fields into a neat bundle mostly for the

readability advantage. There is a downside here however, because I

sacrifice type information by using Field<?>. In some scenarios, jOOQ

might frown at this because it can’t provide the type safety guarantees it

would prefer. Note the use of the as method to set aliases on the columns.

Next comes the actual query. jOOQ offers support for all the major joins,

as well as flexibility for how you express the joins. Here, I’m looking to

construct an inner join. Here’s one way to pull this off:

Result<Record> results = context.select(fields).from(VEHICLE)

.join(VEHICLE_MANUFACTURER).on(VEHICLE.VEHICLE_MANUFACTURER.

eq(VEHICLE_MANUFACTURER.MANUFACTURER_ID)) (1)

 �.join(VEHICLE_MODEL).on(VEHICLE.VEHICLE_

MODEL_ID.eq(VEHICLE_MODEL.VEHICLE_MODEL_

ID))

.join(VEHICLE_TRIM).onKey() (2)

Chapter 3 Working with jOOQ

120

.join(VEHICLE_STYLE).on(VEHICLE.VEHICLE_STYLE.eq(VEHICLE_STYLE.

VEHICLE_STYLE_ID))

.fetch();

So, joining vehicle, vehicle_manufacturer, vehicle_model, and

vehicle_trim gives me all the information I want. Here’s what’s new:

	 1.	 Starting with my first table, I use the join method

to connect to the next table. The on method helps

me define the key on which I want to construct the

relation.

	 2.	 onKey is another variation of on. onKey is a jOOQ-

only enhancement that allows me to skip the part

where I have to type in the key column for the

relationship. jOOQ will transparently generate an on

SQL clause by locating a nonambiguous foreign

key-primary key relationship between the tables.

•	 The onKey feature is available only on generated

code – jOOQ needs to be sure of the structure of the

underlying tables. Your manual SQL poetry won’t

do, unfortunately.

•	 There’s a variant available where you can specify

the column to use: onKey(VEHICLE.VEHICLE_TRIM).

This yields the standard inner join: a relationship between two or more

tables, where the key value is present in all the tables referenced. If you’re

a stickler for clarity like I am, you may want to explicitly specify that it’s an

inner join like so:

context.select(fields).from(VEHICLE).innerJoin(VEHICLE_

MANUFACTURER).on(VEHICLE.VEHICLE_MANUFACTURER.eq(VEHICLE_

MANUFACTURER.MANUFACTURER_ID))

Chapter 3 Working with jOOQ

121

jOOQ supports this join along with

	 1.	 Cross-Join with crossJoin

	 2.	 Left Join with leftJoin

	 3.	 Right Join with rightJoin

	 4.	 Full Join with fullJoin

	 5.	 Partitioned Outer Join partitionBy – Oracle only

…and other combinations of joins.

Caution T here’s a jOOQ bug8 where non-distinct columns
will cause an InvalidResultException to be thrown when
performing joins with ON or USING in some scenarios. One scenario
is when the same column name occurs in more than one table in the
Join. To get around this, use SQL aliases for columns associated with
a Join. Alternatively, you could use the fully qualified (schema.table.
column) naming style for your join columns.

�Non-SQL Grouping

Consider this scenario: I want to pull the same results as a previous section

(vehicle name, model, manufacturer, trim, color, etc.), but grouping the

results by manufacturer, so that I can wind up with a Map that looks like the

following:

Map<String, List<VehicleRecord>> vendorMapping

8 https://github.com/jOOQ/jOOQ/issues/2808

Chapter 3 Working with jOOQ

https://github.com/jOOQ/jOOQ/issues/2808

122

Here’s what the SQL query might look like:

SELECT

 `v`.`vehicle_id` AS `vehicle_id`,

 `v_man`.`manufacturer_name` AS `brand`,

 `v_mod`.`vehicle_model_name` AS `model`,

 `v_trim`.`trim_name` AS `trim`,

 `v`.`vehicle_curr_price` AS `price`,

 `v`.`vehicle_color` AS `color`,

 `v_style`.`vehicle_style_name` AS `style`,

 `v`.`vehicle_model_year` AS `year`,

 `v`.`featured` AS `featured`

FROM ((((`vehicle` `v`

 �JOIN `vehicle_manufacturer` `v_man` ON ((`v`.`vehicle_

manufacturer` = `v_man`.`manufacturer_id`)))

 �JOIN `vehicle_model` `v_mod` ON ((`v_mod`.`vehicle_

model_id` = `v`.`vehicle_model_id`)))

 �JOIN `vehicle_trim` `v_trim` ON ((`v_trim`.`trim_id` =

`v`.`vehicle_trim`)))

<picture confused look caption: huh?>

What’s that? That’s exactly the same query from the section on Joins?

There’s no GROUP BY statement anywhere in there? Why am I asking you

questions when technically I’m talking to myself? Well, friend, this is where

the magic of the fetchGroups family of methods comes in.

Map<String, Result<Record>> vehiclesGroupedByBrand = context.

select(fields).from(VEHICLE)

.join(VEHICLE_MANUFACTURER).on(VEHICLE.VEHICLE_MANUFACTURER.

eq(VEHICLE_MANUFACTURER.MANUFACTURER_ID))

 �.join(VEHICLE_MODEL).on(VEHICLE.VEHICLE_MODEL_ID.eq

(VEHICLE_MODEL.VEHICLE_MODEL_ID))

.join(VEHICLE_TRIM).onKey()

Chapter 3 Working with jOOQ

123

.join(VEHICLE_STYLE).on(VEHICLE.VEHICLE_STYLE.eq(VEHICLE_STYLE.

VEHICLE_STYLE_ID))

.fetchGroups(VEHICLE_MANUFACTURER.MANUFACTURER_NAME.

as("brand"));

 vehiclesGroupedByBrand.forEach((manufacturer,vehicles) ->{

 �logger.info("Available {} vehicles: \n {}",

manufacturer,vehicles);

 });

I can still construct my join query as normal, but using fetchGroups,

I can have my results grouped and collected by the alias of a column in

the select statement. This is another one of my favorite conveniences with

jOOQ. Without this facility, I would have to pick between complex SQL

statements or manual composition of the query output to get the same

results.

There are many versions of fetchGroups that provide superb control

over the mapping. For example, I can group the results by POJO:

Map<VehicleManufacturer, List<CompleteCarListing>>

vehiclesGroupedByBrand = context

 .select(VEHICLE_MANUFACTURER.fields())

 .select(fields) (1)

 .from(VEHICLE)

.join(VEHICLE_MANUFACTURER).on(VEHICLE.VEHICLE_MANUFACTURER.

eq(VEHICLE_MANUFACTURER.MANUFACTURER_ID))

 �.join(VEHICLE_MODEL).on(VEHICLE.VEHICLE_MODEL_

ID.eq(VEHICLE_MODEL.VEHICLE_MODEL_ID))

.join(VEHICLE_TRIM).onKey()

.join(VEHICLE_STYLE).on(VEHICLE.VEHICLE_STYLE.eq(VEHICLE_STYLE.

VEHICLE_STYLE_ID))

 .fetchGroups(keyRecord -> { (2)

Chapter 3 Working with jOOQ

124

 �return keyRecord.into(VEHICLE_MANUFACTURER).

into(VehicleManufacturer.class); (a)

 }, valueRecord -> {

 �return valueRecord.into(COMPLETE_CAR_

LISTING).into(CompleteCarListing.

class); (b)

 });

logger.info("{}",vehiclesGroupedByBrand);

It’s largely the same join query with some special sauce added:

	 1.	 I stack two jOOQ select clauses so that the fields

in the two statements are available for my purposes

later in the query. I call the fields method on the

VEHICLE_MANUFACTURER table to easily load all the

fields available in that table. The fields variable is

the same hand-crafted list of org.jooq.Field that

I’ve been using through this section of the book.

	 a.	 The rest of the query contains the same joins as I’ve

been using to demonstrate up till this point.

	 2.	 By the time I get to the fetchGroups clause, of my

jOOQ query, the context has all the fields I need to

do the mapping of the query results to POJOs. Note

that these are the same POJOs jOOQ generated.

This variation of fetchGroups allows me to supply

instances of org.jooq.RecordMapper to construct

	 a.	 The key for the map by correlating the first record

into the VEHICLE_MANUFACTURER table, and that in

turn into the corresponding VehicleManufacturer

record.

Chapter 3 Working with jOOQ

125

	 b.	 The value for the map by correlating the second

supplied record into the COMPLETE_CAR_LISTING

“table” (it’s actually a view); that in turn is mapped

to the appropriate POJO.

What does the SQL query generated by this jOOQ query look like?

select

`vehicle_manufacturer`.`manufacturer_id`,

 `vehicle_manufacturer`.`manufacturer_name`,

.`vehicle_manufacturer`.`status`,

`vehicle_manufacturer`.`version`,

`vehicle`.`vehicle_id`,

`vehicle_manufacturer`.`manufacturer_name` as `brand`,

`vehicle_model`.`vehicle_model_name` as `model`,

`vehicle_trim`.`trim_name` as `trim`,

`vehicle`.`vehicle_curr_price` as `price`,

`vehicle`.`vehicle_color` as `color`,

`vehicle_style`.`vehicle_style_name` as `style`,

`vehicle`.`vehicle_model_year` as `year`,

`vehicle`.`featured`

from `vehicle`

join `vehicle_manufacturer` on `vehicle`.`vehicle_manufacturer`

= `vehicle_manufacturer`.`manufacturer_id`

join `vehicle_model` on `vehicle`.`vehicle_model_id` =

`vehicle_model`.`vehicle_model_id`

join `vehicle_trim` on `vehicle_trim`.`vehicle_manufacturer_id`

= `vehicle_manufacturer`.`manufacturer_id`

join `vehicle_style` on `vehicle`.`vehicle_style` = `vehicle_

style`.`vehicle_style_id`

Chapter 3 Working with jOOQ

126

As you can see, stacking my selects simply adds all the available

columns to the final SELECT statement. There’s also no GROUP BY clause,

implicit or otherwise. The grouping is done in memory after the rows have

been returned from the database. What does the result look like?

VehicleManufacturer (1, Lexus, ACTIVE,

null)=[CompleteCarListing (1, Lexus, ES 350, BASE, 35000.0000,

RED, Car, 2010-01-01, 0), CompleteCarListing (2, Lexus, ES 350,

BASE, 49000.0000, GREY, Car, 2017-01-01, 0)],

VehicleManufacturer (4, Acura, ACTIVE,

null)=[CompleteCarListing (4, Acura, MDX, SPORT, 50000.0000,

BLUE, Car, 2018-01-01, 0), CompleteCarListing (4, Acura, MDX,

BASE, 50000.0000, BLUE, Car, 2018-01-01, 0)

Fun fact: fetchGroups, fetchMap, and intoGroup – the three non-SQL

grouping functions – will preserve the order of the results as supplied

by the query. So if you orderBy, the ordering is preserved across the

groupings.

Note  Don’t forget to generate the equals and hashCode methods
on the POJOs (or implement them yourself if they’re not generated).
The Map data structure needs both hashCode and equals to be
able to uniquely identify each of its elements.

When you need to do this kind of grouping in bulk over a large result

set, you’ll need to revert to the fetchStream. This way, you can take

advantage of JDK streaming and parallelization functionality like so:

Map<VehicleManufacturer, List<CompleteCarListing>>

vehiclesGroupedByBrand = context

 .select(VEHICLE_MANUFACTURER.fields())

 .select(fields) (1)

Chapter 3 Working with jOOQ

127

 .from(VEHICLE)

 ...

 �.join(VEHICLE_STYLE).on(VEHICLE.

VEHICLE_STYLE.eq(VEHICLE_STYLE.

VEHICLE_STYLE_ID))

 .fetchSize(100) (1)

 .fetchLazy() (2)

 .collect((3)

 Collectors.groupingBy((3a)

 �record -> record.into

(VehicleManufacturer.class),

 (i) (Collectors.

mapping(record ->

 �record.into(CompleteCar

Listing.class),Collectors.

toList())) (ii)

);

Breaking out the chain of operation into the fetchSize method signals

the beginning of lazy business:

	 1.	 fetchSize sets the maximum number of rows I

want the cursor to retrieve in one go. Not setting this

might result in the entire result set being loaded into

memory.

	 2.	 fetchLazy officially begins the use of an org.jooq.

Cursor to efficiently (lazily) stream results.

	 3.	 When I go lazy fetching, fetchGroups is no longer

on the menu. I’ll have to take the grouping into my

own hands. The collect method accepts a java.

util.stream.Collectors. From this point, you

could also go parallel because we’re in the JDK

Streams API territory now.

Chapter 3 Working with jOOQ

128

	 a.	 Collectors.groupingBy9 will accept functions that

help

i.	 Generate the key object.

ii.	 Generate the value object and collect the

group into a data structure. The handy-dandy

Collectors.toList() function helps me achieve

this.

Altogether, I can now group a large dataset in memory without sacrificing

performance. Yes, yes, this goes slightly against the “SQL knows best”

mantra,10 but in the interest of readability, this is a happy medium between

complicated window functions and grossly inefficient manual processing.

�Batch Operations
I need to insert and/or export one thousand vehicles from the Eden Auto

database. What are my options in jOOQ? Well, to start, I can make better

use of my database connection:

DSLContext context = DSL.using(connection, SQLDialect.MYSQL);

 context.batched(batchedConnectionConfig -> {

 insertVehicle(batchedConnectionConfig);

 insertVehicleModel(batchedConnectionConfig);

 updateVehiclePrice(batchedConnectionConfig):

 //other inserts

 });

9 �https://docs.oracle.com/en/java/javase/11/docs/api/java.base/
java/util/stream/Collectors.html#groupingBy(java.util.function.
Function,java.util.function.Supplier,java.util.stream.Collector)

10 �Lukas: For a pure SQL approach, consider the MULTISET_AGG function that
yields the same results with even better performance: www.jooq.org/doc/
latest/manual/sql-building/column-expressions/aggregate-functions/
multiset-agg-function/

Chapter 3 Working with jOOQ

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Collectors.html#groupingBy(java.util.function.Function,java.util.function.Supplier,java.util.stream.Collector)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Collectors.html#groupingBy(java.util.function.Function,java.util.function.Supplier,java.util.stream.Collector)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Collectors.html#groupingBy(java.util.function.Function,java.util.function.Supplier,java.util.stream.Collector)
http://www.jooq.org/doc/latest/manual/sql-building/column-expressions/aggregate-functions/multiset-agg-function/
http://www.jooq.org/doc/latest/manual/sql-building/column-expressions/aggregate-functions/multiset-agg-function/
http://www.jooq.org/doc/latest/manual/sql-building/column-expressions/aggregate-functions/multiset-agg-function/

129

In the preceding snippet, I’ve combined multiple dynamically

generated insert statements to execute in one shot:

•	 The batched method on DSLContext will add the

identical statements to a queue. These statements are

being teed up for the JDBC batching mechanism to

execute in one trip to the database.

•	 Note that I’m passing the batchedConnectionConfig

into the query execution methods. The DML methods

will need to use this config instead of the original

DSLContext object.

•	 They’re still executed as independent DML statements,

so that each statement yields its own independent

INSERT, UPDATE, or DELETE. The advantage comes when

jOOQ will delay the execution of these statements for as

long as possible before sending them over to the DBMS

for execution. This is what’s known as the batched

connection in the jOOQ API.

Note T he batching connection does not kick in when you try to
retrieve results from the inserts, for example, generated keys. So,
if you have Settings# returnIdentityOnUpdatableRecord
enabled, calls to store on your UpdatableRecords will execute
immediately instead of waiting for the batch.

I can configure the batch size with the following Settings snippet:

new Settings().setBatchSize(20);

Chapter 3 Working with jOOQ

130

This limits the size of the data sent to my database server in one

go: minimizing the risk of overwhelming the network connection or

the database itself; you’ll need to tune this configuration to match your

operational needs.

�Explicit Batching

In addition to the batched connection I demonstrated earlier, jOOQ

provides convenience batch methods for the operations you’d expect:

•	 batch

•	 batchInsert

•	 batchUpdate

•	 batchDelete

•	 batchStore

•	 batchMerge

With these, I can gain more control over the batching semantics

instead of waiting for the BatchConnection to do it implicitly. Here’s

batchStore in action:

List<VehicleRecord> vehicleRecords = new ArrayList<>();

 //populate list of records to insert

context.batchStore(vehicleRecords).execute();

Using any of the other batchXXX methods is just as straightforward.11

You can supply plain SQL, jOOQ DSL statements, or whole entities.

11 Well, almost. More on this shortly.

Chapter 3 Working with jOOQ

131

There’s also the batch mode that yields the same effect:

context.batch(

 �context.insertInto(VEHICLE, VEHICLE.

VEHICLE_MANUFACTURER, VEHICLE.VEHICLE_CURR_

PRICE, VEHICLE.VEHICLE_MODEL_YEAR, VEHICLE.

VEHICLE_STATUS, VEHICLE.VEHICLE_COLOR,

VEHICLE.VEHICLE_MODEL_ID, VEHICLE.VEHICLE_

TRIM, VEHICLE.VEHICLE_STYLE, VEHICLE.

FEATURED)

 �.values((Long) null, (BigDecimal)

null, null, null, null, (Long)

null, (Long) null, (Long) null,

(Byte) null))

 �.bind(4L, BigDecimal.valueOf(46350.00),

null, "ACTIVE", "BLUE", 13L, 2L, 1L, Byte.

valueOf("0"))

 �.bind(9L, BigDecimal.

valueOf(83000.00),null, "ACTIVE", "GREY",

9L, 7L, 1L, Byte.valueOf("0"))

 �.bind(9L, BigDecimal.valueOf(77000.00),

null, "ACTIVE", null, 9L, 7L, 1L, Byte.

valueOf("0"))

 .execute();

 }

Chapter 3 Working with jOOQ

132

The batch method allows me to execute my insert statements in

bulk by way of value binding. See, instead of separate individual INSERT

statements, I can use a multi-value insert to execute the batch. The only

stipulations are

•	 To have a stub values statement that serves as the

“default” values provider. Here, I’ve used nulls in all

available slots.

•	 I will then use the bind method to set up the actual

values I want to insert.

Following this, jOOQ will execute the inserts in one shot to the

database without the delay that batchedConnection uses.

The batchInsert and batchUpdate methods will generally do what

you want them to do as well. They both work with TableRecord and

UpdatableRecord, but there’s a catch. The batchUpdate method will batch

only SQL statements that are identical. So when you have these three

VehicleRecords being prepped for a batchInsert, the results might not be

what you expect:

VehicleRecord vehicleRecord1 = context.newRecord(VEHICLE);

VehicleRecord vehicleRecord2 = context.newRecord(VEHICLE);

VehicleRecord vehicleRecord3 = context.newRecord(VEHICLE);

vehicleRecord1.setVehicleColor(null);

vehicleRecord2.setVehicleColor("GREY");

vehicleRecord3.setOptions(3L);

context.batchInsert(Arrays.asList(vehicleRecord1,vehicleRecord2,

vehicleRecord3)).execute();

Chapter 3 Working with jOOQ

133

There are varying combinations of nulls and actual values for different

columns of the same entity Vehicle in the preceding snippet. The effect of

this is that the resulting SQL from a call to batchInsert or batchStore will

generate functionally separate INSERT statements. As a result, jOOQ will

not batch this update. Instead, it would execute each one individually. In

a true batch scenario where you’ve queued up hundreds or thousands of

updates with varying combinations of missing/null fields, you’re going to

get an unpleasant surprise:

<unpleasant surprise image>

To be clear, this isn’t a jOOQ issue. For a handful of reasons that are

outside the scope of this book, most database servers (and JDBC) don’t

handle null values in INSERT and UPDATE statements the way you’d expect.

To ensure that jOOQ consistently handles my batch inserts and updates

the way I’d expect, I will set the changed value like so:

vehicleRecord1.changed(true);

The changed flag is an attribute available only with UpdatableRecord.

It signals to the jOOQ runtime that some fields on this specific entity have

been changed. As a result, jOOQ is able to optimize the generated INSERT

or UPDATE statement per batch item.

Tip  UpdatableRecord provides the previous value of a modified
instance. Call the original method on the object to get the
immediate previous value before a modification.

Chapter 3 Working with jOOQ

134

�Batch Import

Yes, you can just inhale or exhale a bunch of data from your database.

Famous batch importer

What does that look like? Let’s say I have a CSV that contains rows like

the following:

vehicle_brand,vehicle_price,model_year,status,color,model_

id,vehicle_trim, style, featured

1,35000.0000,2010-01-01,ACTIVE,RED,1,1,1,0,2021-07-05

13:22:11.0,"","","",""

1,49000.0000,2017-01-01,ACTIVE,GREY,1,1,1,0,2021-07-05

13:22:11.0,"","","",""

1,36000.0000,2018-01-01,ACTIVE,BLUE,1,1,1,0,2021-07-05

13:22:11.0,"","","",""

4,50000.0000,2018-01-01,ACTIVE,BLUE,13,2,1,0,2021-07-05

13:22:11.0,"","","",""

Chapter 3 Working with jOOQ

135

How do I get, say, 5000 such CSV rows into my database?

Easy: with the jOOQ Loader API. Observe:

context.transaction(txn -> { (1)

context.loadInto(VEHICLE) (2)

 .bulkAfter(50) (3)

 .batchAfter(10) (4)

 .commitAfter(2) (5)

 .loadCSV(csvString) (6)

 .fields(VEHICLE.fields())

 .ignoreRows(1)

 .separator(',')

 .nullString("")

 .execute();

 }

);

Here’s the breakdown:

	 1.	 I need to execute the bulk load in a transaction

block, which disables autocommit.

	 2.	 Specify the table that I want to import the CSV data

into, using the Loader object.

	 3.	 bulkAfter will configure the size of number of line

items contained in inserts sent to the database.

Here, I’m asking for each payload to contain 50

INSERT...VALUES statements.

	 a.	 bulkAll is also an option to send the whole CSV to the

database at once. Use with caution and tuning on the

database server.

Chapter 3 Working with jOOQ

136

	 4.	 batchAfter configures the number of individual

INSERT statements sent at once over the network to

the database. Here, I’m asking that ten statements

be sent at once. Combined with bulkAfter, the

configuration could be read as “Add 50 VALUES

statements to a single INSERT...VALUES statement;

then send 10 INSERT...VALUES statements at once

to the server.” So in total, a batch execution with

these instructions will contain at most 50 rows x 10

statements = 500 rows total.

	 a.	 batchNone will execute each INSERT individually.

	 5.	 commitAfter will commit my inserts only after the

set number of batches has been reached.

	 a.	 commitAll is also an option. On the database server

side, all the insert statements sent over the wire will

be committed in one large transaction. Be sure your

database can support the transaction block size.

	 6.	 loadCSV tells jOOQ that I want to load the CSV

format – JSON is another option.

	 a.	 I define the mapping of the columns in the CSV file

to the columns in the database table.

	 b.	 With ignoreRow I make jOOQ skip the first row in my

CSV, because that’s the header row.

	 c.	 The separator symbol for the “columns” in my CSV is

set with separator.

	 d.	 How I mark a CSV column as null. On encountering

this value, jOOQ will substitute NULL for any inserts

of a “blank” CSV column.

Chapter 3 Working with jOOQ

137

…and then execute!

At the time of this writing, CSV and JSON are the only supported file

formats for the Loader API. In addition to flat-file formats, I can straight up

load my data from memory with the loadArray or loadRecords methods

in the Loader API – loading arrays or jOOQ Record respectively. Neato!

�Advanced Query Syntax
Even without the gift of jOOQ-generated code and type safety, there

are a bunch of powerful and handy SQL features that you can jOOQify.

Observe…

�Merge and Upsert

How can I conditionally insert or update data in a table depending on

whether my insert conflicts with existing data?

Enter the fancy insert twins: Merge and Upsert. Both help you

combine inserts and updates into one SQL statement. No, “upsert” isn’t

a real word, just a portmanteau of update+insert. The MERGE statement

is a standard part of SQL, supported by Oracle, SQL Server, DB2, and

Sybase, among others. MySQL does not support MERGE functionality, but

it does provide an alternative. Known as the INSERT...ON DUPLICATE KEY

statement, it works just like the merge to support

•	 Inserting rows into a table.

•	 If the row already exists in the table (and a duplicate

key error occurs as a result), the existing record is

updated.

Chapter 3 Working with jOOQ

138

In MySQL, my upsert would look like the following:

INSERT INTO vehicle_model(vehicle_model_name, vehicle_style_id,

vehicle_man_id)

VALUES('ES 350', 2, 1)

ON DUPLICATE KEY UPDATE vehicle_style_id = 2, vehicle_man_id = 1

In jOOQ, I can write the same query thus:

context.insertInto(VEHICLE_MODEL,VEHICLE_MODEL.VEHICLE_MODEL_

NAME,VEHICLE_MODEL.VEHICLE_MAN_ID, VEHICLE_MODEL.VEHICLE_STYLE_ID)

 .values("ES 350",2L, 1L)

 .onDuplicateKeyUpdate()

 .set(VEHICLE_MODEL.VEHICLE_STYLE_ID,2L)

 .set(VEHICLE_MODEL.VEHICLE_MAN_ID,1L)

 .execute();

The onDuplicateKeyUpdate method allows me to define columns to

update for any insert attempt that fails due to the data already existing. I

still have the option to just straight up ignore any duplicate vehicles for

the insertion attempt with onDuplicateKeyIgnore. The SQL equivalent of

this directive is the INSERT...IGNORE SQL command,12 which is exclusive

to MySQL. For PostgreSQL, jOOQ supports the newer INSERT...ON

CONFLICT statement to achieve the same effects.

So, what if you’re not running a MySQL database? Well, you’re in luck

friend – MERGE is going to save you. jOOQ will transparently translate any

usage of onDuplicateKeyUpdate and onDuplicateKeyIgnore to a MERGE

statement, where the backing database is not MySQL:

12 With some caveats: https://github.com/jOOQ/jOOQ/issues/5211

Chapter 3 Working with jOOQ

https://github.com/jOOQ/jOOQ/issues/5211

139

context.mergeInto(VEHICLE_MODEL) (1)

 .using(selectOne()) (2)

 �.on(VEHICLE_MODEL.VEHICLE_MODEL_NAME.

eq("ES 350")) (3)

 .whenMatchedThenUpdate() (4)

 .set(VEHICLE_MODEL.VEHICLE_STYLE_ID,3L)

 �.set(VEHICLE_MODEL.VEHICLE_MAN_ID,1L)

 .whenNotMatchedThenInsert(VEHICL

E_MODEL.VEHICLE_MODEL_NAME,VEHICLE_MODEL.

VEHICLE_MAN_ID,VEHICLE_MODEL.VEHICLE_STYLE_

ID) (5)

 .values("ES 350",2L, 1L)

 .execute();

It’s a one-to-one translation where

	 1.	 It starts with the mergeInto node in the fluent chain.

	 2.	 The standard MERGE syntax requires source and

destination tables for the data. In this snippet,

my data is manually built and not coming from

another database table. Therefore, I won’t have a

source table to provide. That’s why I’m using the

selectOne() method on DSLContext. This is a

convenience feature (one of many) that generates a

query from a pseudo table (like Oracle’s DUAL table).

For any other scenario, you would supply an actual

table in this position.

	 a.	 You can use Records and subqueries in the using

clause as well. They just need to be converted to

tables. The table function will convert almost

anything into a table for the purposes of a jOOQ

query, for example:

Chapter 3 Working with jOOQ

140

List<VehicleModelRecord> vehicleModelRecords = ...

...

 context.mergeInto(VEHICLE_MODEL)

 .using(table(vehicleModelRecords))

 ...

	 3.	 I then define the condition that I want to use to

determine whether a row is a duplicate or not.

	 4.	 That being set, whenMatchedThenUpdate does what it

says: rows that match the condition will be updated

with the following set data.

	 5.	 whenNotMatchedThenInsert will kick in if no

matches are found; a new row will be inserted.

Tip  onDuplicateKeyIgnore and onDuplicateKeyUpdate are
all available for the Loader API as well. onDuplicateKeyError is
available for the Loader API only. This means that you can apply even
more flexible upsert semantics to bulk loading of data.

MERGE is definitely more powerful than the INSERT...ON DUPLICATE

KEY or INSERT...IGNORE statements. For example, in some database

dialects (Oracle, DB2, Sybase), you can DELETE rows that fail the matching

condition.

�Window Functions

I’d previously used window functions in the previous chapter to construct

a Common Table Expression (CTE) to calculate the median car price in the

inventory. I didn’t go into any detail, so here we are again.

Chapter 3 Working with jOOQ

141

While this isn’t a SQL textbook,13 window functions are an enigmatic

and enormously powerful toolkit that warrant some explanation. Here’s a

look at the vehicles in my inventory:

Nothing special, just a SELECT * of the vehicles from the complete_

car_listing table. I’m interested in getting a report that looks a little

something like this from that table:

13 Editor’s note: That could come later. ☺

Chapter 3 Working with jOOQ

142

In the screenshot above, I have a report that shows me the individual

vehicles in the inventory and their prices, among other things. Here are the

key fields:

•	 vehicle_id obviously refers to a specific vehicle. I also

have some individual vehicle details like model, year,

and price.

•	 The price column is the individual vehicle’s price

•	 Then I have a price_rank column that shows me how

the individual vehicle price ranks against the prices of

similar vehicles of the same brand.

A regular group function like AVG or MAX will collapse all the data into

a single value like “here’s the max price of any Toyota in the inventory.”

Using window functions, I can say “here are the prices for the individual

vehicles in the inventory, but for each row, I want to display the rank of the

vehicle’s price.”

TL;DR: Window functions let you combine the summarization

capabilities of group functions while retaining the ability to display the

individual rows that make up the group values.

It’s…not the easiest thing to explain. So, let me show you how a

window function can yield the results I’m interested in. Here’s what the

SQL query looks like:

select vehicle_id,brand,model, year, price, avg(price) as

avg_price, dense_rank() over (partition by brand order by

avg(price) desc) as price_rank

from edens_car.complete_car_listing

group by brand, model,vehicle_id

	 1.	 The preceding query has standard SQL components

and clauses – the AVG group function, the GROUP BY

clause, etc.

Chapter 3 Working with jOOQ

143

	 2.	 The DENSE_RANK function is what gives an ordinal

number to the rows returned from the result. It’s one

in a family of ranking functions; there’s also RANK

and ROW_NUM functions that provide similar features

but with some differences in how they handle ties

between rows.

	 3.	 OVER is what marks the start of a window function. It

stipulates the range over which the window function

needs to be applied. In this case,

	 a.	 The ranking needs to happen based on the prices of

the vehicles.

	 b.	 Optionally, I want the rankings to be further

grouped by brand. This way, the rankings are within

a manufacturer’s vehicle range. Instead of saying

“show me the ranking of all the vehicle prices,” I’m

saying here with PARTITION, “group the rankings into

buckets per vehicle manufacturer.”

All told, I can see

	 1.	 Individual car records and their details

	 2.	 The result of grouping car records together by the

average of their prices

	 3.	 The rank of an individual vehicle’s price relative to

the average of its group

A moment to catch our breath…and then we look at what this would

look like in jOOQ:

context.select(COMPLETE_CAR_LISTING.VEHICLE_ID,

 COMPLETE_CAR_LISTING.BRAND,

 COMPLETE_CAR_LISTING.MODEL,

 COMPLETE_CAR_LISTING.YEAR,

Chapter 3 Working with jOOQ

144

 �avg(COMPLETE_CAR_LISTING.PRICE).

as("avg_price"),

 �rank().over(partitionBy(COMPLETE_

CAR_LISTING.BRAND)

 �.orderBy(avg(COMPLETE_CAR_

LISTING.PRICE).asc()))

 .as("price_rank")

)

 .from(COMPLETE_CAR_LISTING)

 .groupBy(COMPLETE_CAR_LISTING.BRAND,

COMPLETE_CAR_LISTING.MODEL, COMPLETE_CAR_LISTING.VEHICLE_ID);

I know, it seems like a lot of code, but you can read it pretty much as a

one-to-one mapping with the SQL version of the query. The rank function

and everything that follows it are supplied by the one and only DSL class.

Phew! Here’s a cute duckling for sticking with the book thus far.

Rubber Duck Debugging: The live action movie!

Chapter 3 Working with jOOQ

145© Tayo Koleoso 2022
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_4

CHAPTER 4

Integrating with jOOQ
Also known as “eating your cake and having it too.” If you’re starting afresh

with jOOQ in a new project, congratulations and bonne aventure! And if

you have an existing project with other technologies and APIs? jOOQ could

still be of mighty service. To recap, jOOQ does the following specific things

exceedingly well:

•	 Generating highly expressive and typesafe, reusable
SQL so that you can rest assured that your SQL is

always correct.

•	 Generating Java classes from database entities so that

you never have to manually construct another entity,

DTO, or Active Record again.

•	 Smoothly managing database dialects, quirks, and
shortcomings so that you don’t have to get bothered

by the differences between different database vendors.

Superlative portability!

…and of course, staying aligned with the performance and scalability

of interests of your database server. That being said, jOOQ isn’t looking

to be your one and only love. I mean, it would be nice, but if you already

have certain technologies in use, jOOQ is more than happy to share

responsibilities.

https://doi.org/10.1007/978-1-4842-7431-6_4

146

As long as we all understand who’s the real friend of the database in
this alliance

In this chapter, we’re going to take a look at how jOOQ can

supercharge your application implementations by lending its unique

capabilities to existing APIs and libraries.

�Java Persistence API with jOOQ
Java Persistence API (JPA) is the JakartaEE specification that defines how

database objects can be mapped to Java, a.k.a. Object-Relational Mapping

(ORM). It lays out how implementation APIs should handle translating

database components, SQL, and other database stuff into Java classes,

interfaces, and in reverse. It defines the expected behavior of reference

implementations during specific circumstances. It also defines the Java

Chapter 4 Integrating with jOOQ

147

Persistence Query Language (JPQL), a SQL-flavored query syntax that

attempts to replicate the idioms of SQL, but for Java classes. We then look

to vendors like

•	 Redhat/Hibernate

•	 Eclipse/EclipseLink

•	 Oracle/TopLink

•	 OpenJPA

Ultimately, the expectation is that industry vendors will implement

a functional API following the guidance of the specification. Keyword

there is “guidance” – the specification is a guideline, and vendors can and

typically do break rules of the spec. Alternatively, they could implement

some specification-defined functionality, but in a non-standard way. What

this means is that your mileage may vary from JPA implementation to

implementation.

But you probably already knew all this.

We’re not going to explore JPA in any great detail here; just want to

answer one question: what can jOOQ do for you in a JPA world?

�Generate JPA Entities
The fundamental unit of work in JPA is the entity. The JPA entity is a Java

class that you use to represent a database table or rows from that table.

Because this isn’t a JPA textbook, I’m not going to go into too much detail

about JPA entities. Suffice it to say, jOOQ can create some basic JPA entities

for you. All you need to do is ask:

<generate>

 <jpaAnnotations>true</jpaAnnotations>

</generate>

Chapter 4 Integrating with jOOQ

148

It’s really that simple. Flag jpaAnnotations “on” in your jooq code

generator settings and you’ll get something like the following:

/**

 * This class is generated by jOOQ.

 */

@Entity

@Table(

 name = "vehicle",

 schema = "edens_car",

 indexes = {

 �@Index(name = "veh_manufacturer_id_idx", columnList =

"vehicle_manufacturer ASC"),

 �@Index(name = "veh_model_id_idx", columnList =

"vehicle_model_id ASC"),

 �@Index(name = "veh_style_idx", columnList = "vehicle_

style ASC")

 }

)

public class Vehicle implements Serializable {

 private static final long serialVersionUID = 1L;

 private Long vehicleId;

 private Long vehicleManufacturer;

 private BigDecimal vehicleCurrPrice;

 private LocalDate vehicleModelYear;

 private String vehicleStatus;

 private String vehicleColor;

 private Long vehicleModelId;

 private Long vehicleTrim;

 private Long vehicleStyle;

 //more fields

Chapter 4 Integrating with jOOQ

149

 public Vehicle() {}

 //getters, setters, constructors, toString etc

}

The most important annotation here is @Entity. This is what signifies

to the JPA runtime that instances of this class should be managed by the

JPA runtime. This has significant implications for the way instances of this

class are regarded by the JPA runtime. From the moment an instance of this

entity class Vehicle exists, the JPA runtime is paying attention. Any changes

on the entity, any new instances of it, retrievals from the DB, etc. all tracked

by the JPA runtime. When two threads are trying to modify the underlying

table row that backs a specific instance of Vehicle, it’s the JPA runtime’s job

to make sure only one or none of them succeed in making changes.

And now, a word from our sponsors.

No, not you sir!

Chapter 4 Integrating with jOOQ

150

I’m a strong advocate of treating instances of your JPA entities the same

way you would treat the underlying database row data. It’s a very pervasive

but insidious code smell to handle these entities the way you would handle

a “dumb” object like a POJO or a Data Transfer Object (DTO). See, because

entities are live, managed objects, you run the risk of

	 1.	 Accidentally changing the state of the object in the

normal course of process execution.

	 2.	 Inducing a state management exception like

StaleObjectStateException if you hold on to

an instance of the entity for too long in a read-

only operation. This is especially likely to happen

in distributed environments and microservices.

One thread simply wants to read some data,

maybe send it as a web service response. Another

thread concurrently wants to make changes to the

underlying data for the same entity. One of those

threads is going to have a bad time.

	 3.	 Leaking data when you use the same entity class

for database operations, as well as web service

responses, or persisting it to a different format like

JSON. You’re going to indiscriminately transmit

table columns in several directions.

TL;DR: Separate the concerns between your POJO needs and your

ORM needs. They are not the same type of class.

One workaround is to run the code generator twice: once with

jpaAnnotations set to false and another with it set to true. Remember to

change the output packages between both runs.

Chapter 4 Integrating with jOOQ

151

In addition to vanilla JPA annotations, jOOQ can add

•	 The Serializable interface with

<serializablePojos>true</serializablePojos>

•	 JPA support for a specific version with

<jpaVersion>2.2</jpaVersion>

Neato.

�Generate from JPA Entities
Yes, you read that right: jOOQ can get you started with jOOQing, even if

you don’t have an actual database. If you have JPA entities but no database,

jOOQ can still generate code for ya. Considering my rant against reusing

entities as DTOs or POJOs, this comes in super handy. This way, your JPA

entities could be already pre-generated and packaged maybe as a JAR; all

you’d need to do is generate POJOs from those entities and you’d be on

easy street. Observe.

Start by adding the following Maven (or equivalent Gradle, etc.) entries

to your project:

<dependency>

 <groupId>org.jooq.pro-java-11</groupId>

 <artifactId>jooq-meta-extensions-hibernate</artifactId>

 <version>3.15.1</version>

</dependency>

That’ll pull in the jooq hibernate extensions kit. Next up, some

configuration changes to the code generator itself:

<database>

 <name>org.jooq.meta.extensions.jpa.JPADatabase</name> (1)

 <properties>

Chapter 4 Integrating with jOOQ

152

 �<!-- A comma separated list of Java packages, that

contain your entities -->

 <property>

 <key>packages</key>

 �<value>com.apress.samples.jooq.jpa.entity, com.

apress.samples.jooq.ext.jpa</value> (2)

 </property>

<!-- The default schema for unqualified objects:

- public: all unqualified objects are located in the PUBLIC

(upper case) schema

- none: all unqualified objects are located in the default

schema (default)

This configuration can be overridden with the schema mapping

feature -->

 <property>

 <key>unqualifiedSchema</key> (3)

 <value>none</value>

 </property>

 </properties>

</database>

What’s all this then?

	 1.	 For generating from JPA entity classes, a name

change is necessary. org.jooq.meta.extensions.

jpa.JPADatabase defines the source of data for the

generator. Contrast this with the org.jooq.meta.

mysql.MySQLDatabase I’ve been using up till now,

because my code was being generated from an

actual database.

	 2.	 I specify the packages that jOOQ should scan to be

able to parse JPA entity classes.

Chapter 4 Integrating with jOOQ

153

	 3.	 How should jOOQ handle entities that don’t have

schema data? The unqualifiedSchema property

accepts none, meaning all entities missing schema

info will be put in the default schema. public is

also valid, meaning these entities will be put in the

public schema by default. You could still override all

this with SchemaMapping as well.

For my crusade against abusing entity classes as DTOs, this is another

good workaround especially when you already have legacy JPA entity

classes. Simply generate POJOs from your existing JPA entities and skip the

jpaAnnotations directive in your code generator configuration.

�Generate SQL Queries
Of course, the most obvious use case. jOOQ will always out-SQL anything

JPA could conjure up. So, it stands to reason that when you want to take

your database seriously, you should consider delegating SQL query

generation to jOOQ. JPA provides a number of opportunities to supply

your own SQL. Consider our beloved vehicle select query:

Query jooqQuery = DSL.using(SQLDialect.MYSQL,new Settings()

 .withRenderQuotedNames(RenderQuotedNames.NEVER))

 �.select(VEHICLE.VEHICLE_ID, VEHICLE.VEHICLE_

COLOR, VEHICLE.VEHICLE_CURR_PRICE)

 .from(VEHICLE)

 �.where(VEHICLE.VEHICLE_MANUFACTURER.

eq(param("vehicle_manufacturer", Long.class))).

getQuery();

Chapter 4 Integrating with jOOQ

154

The preceding jOOQ statement

•	 Uses the DSL class to configure the dialect of the soon

to be generated SQL statement. It also specifies that

quotation marks shouldn’t be used in the generated

SQL – this could become important, depending on the

dialect that’s configured for your JPA implementation.

The regular double quotes (“) could cause Hibernate to

choke, for example.

•	 Selects some fields from the vehicle table, but instead

of executing it, I’m obtaining an instance of org.

jooq.Query. This is the parent interface of the jOOQ

representation of all of the SQL statements. Did you

notice how I’m not using the DSLContext here? Instead,

I’m using the DSL class directly to create my select

statement. This means that I don’t need to go about

constructing a DSLContext or a JDBC connection just

so I can build a jOOQ SQL query.

•	 Binds the VEHICLE.MANUFACTURER column as a query

parameter with the param function. What this means is

that I can supply a dynamic value at runtime.

•	 The getQuery method at the end yields a Query

object from which I can then obtain the plaintext SQL

statement, among other things.

How can this help within the JPA world?

JPA has a set of opportunities for you to supply your own SQL query.

Why would you want to do this? Well, the simple fact of the matter is that

for anything more complex than a straightforward SELECT statement from

a couple of tables, JPA isn’t the best option, especially at scale. If you need

to use Common Table Expressions, inline views, window functions, etc.,

you’re going to need to craft your own SQL. Hierarchical queries are not

Chapter 4 Integrating with jOOQ

155

on the JPA menu. As much as JPQL can try, it supports only a subset of the

SQL specification. This is where your Query object comes in.

@PersistenceContext

 EntityManager entityManager; (1)

...

javax.persistence.Query nativeQuery = entityManager.

createNativeQuery(jooqQuery.getSQL()); (2)

int parameterCount = 1; //JDBC parameter values begin their

index at 1, not 0.

 long vehicleStyle = 4;

 for(Parameter parameter: nativeQuery.getParameters()){

 �nativeQuery.setParameter(parameterCount++,

vehicleStyle); (3)

 }

List<Vehicle> resultList = nativeQuery.getResultList(); (4)

logger.info("Results: count: {} \n list: {}",resultList.

size(),resultList.toArray());

Alrighty then; let’s dig into this:

	 1.	 The EntityManager is the gateway into the JPA

runtime, also known as the PersistenceContext.

Did I mention how much I live for the Context

Object pattern? This is one of those. All the database

rows mapped from the database can be obtained

from this object. Pretty much anything you want

to do with JPA can be initiated from this. There are

multiple ways to obtain an instance of this object,

depending on what platform you’re working with

(JakartaEE, Spring Data, Quarkus, etc.); I won’t be

going into that detail here.

Chapter 4 Integrating with jOOQ

156

	 2.	 The EntityManager object provides the

createNativeQuery method that allows me to

supply custom SQL. This is where my org.jooq.

Query object comes to shine. I use the getSQL

method to obtain plaintext SQL generated from my

jOOQ query.

	 3.	 Because I’ve defined a query parameter on the

jOOQ query, the JPA query automatically inherits

the parameter via the plain String SQL I passed to

it. This means that I can dynamically set values for

each available Parameter as recognized by the JPA

Query object. This is a particularly flexible operation

overall, for example: I can refer to my query

parameters by name, in addition to the index value.

	 4.	 Finally, I can execute the SQL statement and retrieve

my query results with the Query#getResultList.

This method can return a list of JPA entity classes or

a list of Objects that I can transparently cast to any

class of my choosing. Here, I’ve chosen to use the

Vehicle POJO class that jOOQ generated for me.

This is a non-attached, unmanaged java object, so

I don’t have to worry about accidentally modifying

underlying database data via the results of this

query.

There are other opportunities to take advantage of reliably sourced,

certified conflict-free and gluten-free SQL in the JPA world. You can pass in

a JPA entity class to the createNativeQueryMethod.

Query nativeQuery = entityManager.createNativeQuery(jooqQuery.

getSQL(), VehicleEntity.class)

Chapter 4 Integrating with jOOQ

157

With this approach, any instances of VehicleEntity that are returned

by EntityManager are managed objects – if you make changes to the state

of those objects, you will affect the data in the underlying db row. This

will map the query results to instances of that class, provided the column

names and other things match.

What about when the database columns don’t line up with your class

declarations? Maybe you’re using a column alias, or you want to return

multiple entity types from one statement? What about when you don’t

want to use a JPA entity class at all? I for one definitely enjoy not worrying

about accidentally modifying table data via an entity. I want disconnected

objects for read-only purposes.

Behold, the three JPA horsemen of SQL result mapping!

“lol what’s a SQL?”

Chapter 4 Integrating with jOOQ

158

Okay, seriously, it’s these three annotations:

	 1.	 @SqlResultSetMapping defines the existence of a

need to map results from a SQL query into a java

object. This annotation can be applied to any JPA

class with the Entity annotation. After defining this

annotation on a class, you can refer to it by name.

Stick with me to see this in action.

	 2.	 @ConstructorResult was introduced with JPA 2.1

so that we can use JPA to construct unmanaged Java

objects/entities. Prior to this, everything had to be a

managed JPA entity. See my previous caveat for why

this can become a bad thing. With this annotation,

even when you provide a class annotated with

@Entity, the JPA runtime will ignore it and not

attempt to manage anything about the results of this

construction.

	 3.	 @ColumnMapping allows you to map the columns in

a SQL query result to the fields of a non-JPA entity,

that is, a POJO. This is how you define the mapping

of column aliases and other non-conforming names

from SQL results to the fields of a Java class. In JPA

lingo, such columns are called scalar columns.

So, how do these work together? Check this out: given that I’ve run

my jOOQ generator and obtained a JPA-annotated POJO com.apress.

jooq.generated.tables.pojos.VehicleModel, I can put the mapping

annotations to work like so:

@SqlResultSetMapping(name="nonJPAManagedVehicleModel", (1)

 classes = {

 �@ConstructorResult(targetClass = com.apress.jooq.

generated.tables.pojos.VehicleModel.class, (2)

Chapter 4 Integrating with jOOQ

159

 columns = { (3)

 �@ColumnResult(name="vehicle_

model_id"),

 �@ColumnResult(name="vehicle_

model_name"),

 �@ColumnResult(name="vehicle_

style_id"),

 �@ColumnResult(name="vehicle_

man_id"),

 @ColumnResult(name="version")

 })

 })

@Entity

public class VehicleModel implements Serializable {

...

}

Okay, buckle up while I explain what’s going on here:

	 1.	 It all starts with @SqlResultSetMapping here, where

I say: “I want to define a custom mapping between

a SQL statement and a POJO. I’ve named the query

nonJPAManagedVehicleModel because that’s how I roll.”

	 2.	 I then define the classes that are involved in this

custom mapping. For this example, I’m interested

only in the POJO VehicleModel. Here’s where things

get a little verbose.

	 a.	 I need to describe a suitable constructor for the

JPA runtime to be able to create instances of my

POJO class with @ConstructorResult. Given this

mapping, JPA knows what to do with the results from

the query.

Chapter 4 Integrating with jOOQ

160

	 b.	 Remember: even though this class is technically

a JPA entity class, when I use it in this context, JPA

will not treat the results of this query as managed

entities, which is pretty rad in my opinion.

	 3.	 @ColumnResult helps me map the name that

is present in the query results to fields in the

VehicleModel POJO class. How does JPA know

which field on the class to map the column to? By

the position of the column in the list of columns.

The JPA runtime will look for a suitable constructor

matching the description here and just pick the

named columns to be passed into the constructor.

At the end of it all, I can then use my named query like so:

entityManager.createNativeQuery(vehicleModelQuery.getSQL(),

"nonJPAManagedVehicleModel");

The JPA runtime will attempt to look my SQL mapping using the name

I’ve supplied. That gives it all the information it needs to execute the query

and build a list of result objects.

This is fairly verbose, so don’t worry if it doesn’t sink in all at once – go

over it as many times as you can. The simpler description of what’s going

on is to tell JPA

	 1.	 What POJO or entity classes you want to map to

	 2.	 Which column names should be used from the SQL

result set

	 3.	 Which constructor to use on your POJO class

	 4.	 Which columns should be used in the constructor of

the POJO class

Chapter 4 Integrating with jOOQ

161

All told, these facilities allow you to package your SQL queries in

very portable and flexible deployment units; take database dialects into

account as well as guarantee the effectiveness of your queries.

Caution A s at the time of this writing, jOOQ has a bug1 that makes
it require the @Column annotation on JPA entities. This won’t be
an issue with jOOQ-generated entity classes; but if you’re bringing
your own JPA entities to the jOOQ party, be sure to add @Column to
the fields on that entity. Some weird stuff happens otherwise (e.g.,
column values not being mapped to result objects).

Now, we say goodbye to the horsemen of result set mapping.

Aww! Chin up, lads!

1 https://github.com/jOOQ/jOOQ/issues/4586

Chapter 4 Integrating with jOOQ

https://github.com/jOOQ/jOOQ/issues/4586

162

�Spring Boot and jOOQ
Spring Boot is the current king of the enterprise Java development hill.

Current. There’s almost nothing you can’t do with the Spring platform and

I’m not even going to attempt broaching its many features here. Let’s see

how jOOQ can spruce up your Spring Boot application. But first, some

configuration:

spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

spring.datasource.url=jdbc:mysql://localhost/edens_car

spring.datasource.username=username

spring.datasource.password=thisisaterriblepassword

spring.jpa.show-sql=true

This sets up my Spring Boot application with connection properties to

my MySQL database. These properties go in the standard application.

properties file. There’s the programmatic equivalent as well.

Spring supports SQL data access via the following components:

•	 Spring Data JDBC for vanilla JDBC access

•	 Spring Data JPA for that sweet Hibernate + JPA combo

•	 Spring Data R2DBC for reactive data access

Because of just how sprawling the Spring Boot platform is, I’m going

to try to keep things nice and tight with this section. Also note that pretty

much everything we’ve covered in the previous section, as well as this one,

all apply to Hibernate. Hibernate is the JPA implementation that powers a

lot of Spring framework’s data access powers.

First thing to know is that you can wholesale install jOOQ as your

entire data access component with Spring Boot. It goes a little something

like this.

Chapter 4 Integrating with jOOQ

163

�Configure jOOQ in Spring Boot
Let’s make jOOQ available everywhere in the Spring application context

with a programmatic configuration setup:

@Configuration (1)

@EnableTransactionManagement

public class JdbcConfig extends AbstractJdbcConfiguration {

 @Autowired

 private DataSource dataSource; (2)

 @Bean

 DataSourceConnectionProvider connectionProvider() {

 �return new DataSourceConnectionProvider(new

TransactionAwareDataSourceProxy(dataSource));

 }

 @Bean

 DSLContext dsl() {

 return new DefaultDSLContext(dslConfig()); (3)

 }

 private org.jooq.Configuration dslConfig() {

 �DefaultConfiguration defaultConfiguration = new

DefaultConfiguration();

 defaultConfiguration.set(dataSource)

 .set(SQLDialect.MYSQL)

 �.set(DefaultExecuteListenerProvider.

providers(new QueryRuntimeListener()));

 return defaultConfiguration;

 }

}

Chapter 4 Integrating with jOOQ

164

There’s a fair bit of Spring framework boilerplate going on here, but I’ll

be focusing on the jOOQ-relevant bits:

	 1.	 I set up my Spring configuration bean with

the @Configuration annotation and other

standard Spring framework componentry

like @EnableTransactionManagement to let

Spring manage my database transactions;

AbstractJdbcConfiguration so my config class

can inherit even more boilerplate. It’s boilerplate

smorgasbord.

	 2.	 I use Spring’s dependency injection to obtain a

DataSource instance. DataSource is a more mature,

scalable, and robust representation of my database

connection and pool, managed by the Spring Boot

runtime. This will be supplied here because I’ve

already configured my database properties in the

standard application.properties file.

	 3.	 I define a method that can construct an instance

of DSLContext on demand. Adding the @Bean

annotation marks this as a factory method for Spring

Boot. This means I can obtain a fresh instance of

DSLContext anywhere inside my Spring application.

With this setup, I can obtain a DSLContext anywhere in the application:

@Autowired

DSLContext context;

public void selectWithJooq(){

 context.selectOne();

}

Chapter 4 Integrating with jOOQ

165

And then I can jOOQ away to my heart’s content. The preceding

snippet can be extended to produce a new DSLContext instance per

request, support multi-tenancy, and so much more. If you can dream it,

jOOQ could probably make a best effort attempt at making it happen. Not

to mention the DAOs that jOOQ can generate for you. Nice.

How about custom SQL queries?

�With Custom SQL

If there’s custom SQL that needs writin’, jOOQ’s gonna be a-generatin’. To

use custom queries with Spring Data JPA, I start by creating a Repository:

public interface VehicleModelJooqRepository extends

CrudRepository<VehicleModel, Long> { (1)

 @Query(nativeQuery = true, name="CustomDynamicSQL")

 List<VehicleModel> findVehicleModelByVehicleManId(long id);

}

Allow me to explain:

	 1.	 I extend CrudRepository as part of the contract

for using Spring Data JPA’s repository feature.

Specifying Vehicle and Long as the types for

this interface, I’m informing the Spring Data

runtime that this interface will be used to retrieve

VehicleModel from the vehicle_model table.

	 2.	 I define a findVehicleModelByVehicleManId that

accepts a long parameter corresponding to the

vehicle_man_id to filter results by

	 a.	 Crucially, I’m using the @org.springframework.

data.jpa.repository.Query annotation. Spring

Data JPA allows me to specify a plaintext SQL query

in this annotation; alternatively, I can define the

Chapter 4 Integrating with jOOQ

166

query elsewhere, and with some Spring magic, it’ll

be picked up. Stay tuned to see how. So far, this

JPA repository is expecting to find a native query

named “CustomDynamicSQL” somewhere in the

PersistenceContext.

	 b.	 Each argument I pass to the query method

findVehicleModelByVehicleManId will in turn be fed as

query parameters to the native query that this method will

execute. This is important because you either have to match

the positions of the method arguments to the positions of

the query parameter in the plain SQL; alternatively, you can

use the @Param annotation to name-match your parameters

against their SQL equivalent.

Now, I need to wire up my custom SQL query, sponsored by jOOQ. To

actually plug my SQL query into the JPA runtime, I turn back to our old

friend, EntityManager:

javax.persistence.Query nativeQuery = entityManager.

createNativeQuery(jooqQuery.getSQL());

entityManager.getEntityManagerFactory().addNamedQuery("CustomDy

namicSQL",nativeQuery);

Having obtained an instance of javax.persistence.Query from my

org.jooq.Query:

	 1.	 I obtain an EntityManagerFactory from the

EntityManager.

	 2.	 The addNamedQuery method was added to JPA 2.1 to

allow dynamic construction of named queries. With

this, I need to supply

Chapter 4 Integrating with jOOQ

167

	 a.	 A name for the query by which Spring Data JPA can

look it up. Note how I’m using the fully qualified

name of the method I defined in my Repository

interface from earlier. This is how Spring Data JPA

will attempt to look up the named query based

on the @Query annotation I added to my custom

Repository method.

	 b.	 The actual SQL query to be executed.

Spring Boot takes care of the rest from here. I can just inject my custom

repository and use it as I want:

@Autowired

VehicleModelJooqRepository vehicleModelRepository;

...

List<VehicleModel> modelByVehicleManId =

vehicleModelRepository.getVehicleModelByVehicleManId(vehicleMan

ufacturer);

…aaand that’s it! This dynamic SQL feature is in addition to the

standard JPA features we’ve already explored – Spring supports those too.

�jOOQ Spring Boot Starter

Spring Boot supposedly offers a starter that helps you bootstrap your Boot

project with jOOQ.

Chapter 4 Integrating with jOOQ

168

start.spring.io

In practice, I tried to bootstrap with this, including the Spring Data JPA

and JDBC modules. It doesn’t look to be very effective to me because

•	 The starter doesn’t (currently) include any jOOQ

dependencies.

•	 The code stubs it generates don’t even include any

references to jOOQ (see the previous discussion).

So, maybe hold off on this one for a bit.

�Quarkus and jOOQ
Quarkus2 is the premier cloud-native, container, and Kubernetes-first

microservices platform. It supports pretty much anything you’d want to do

with a Java web service platform. You can integrate your existing JakartaEE

or Spring beans and use the same programming components to get

2 https://quarkus.io

Chapter 4 Integrating with jOOQ

https://quarkus.io

169

•	 Blazing fast startup times

•	 Low memory footprint

•	 Tight integration with features and components of

major cloud providers like AWS, Google Cloud, and

Azure

•	 Lightweight deployment packages

•	 Reactive-first programming style

•	 Kotlin and Scala compatibility

Quarkus is truly heaven’s gift to software engineering. And I say that as

a totally independent and unbiased observer.

Yup. Totally unbiased

Chapter 4 Integrating with jOOQ

170

So, what can jOOQ do for you in Quarkus? Just like with Spring Boot,

jOOQ could be all the SQL data access you need. It can also work with

existing APIs in Quarkus like

•	 JPA

•	 Hibernate

•	 Reactive SQL

•	 SQL ResultSet streaming

The only thing that you can’t do as of this writing is use the @Query

annotation in native mode. Quarkus supports most of Spring Data JPA,

except this bit. So, how does one get jOOQ into Quarkus?

Start with the Quarkus jOOQ extension:

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>io.quarkus</groupId>

 <artifactId>quarkus-bom</artifactId>

 <version>${quarkus.platform.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

<dependency>

 <groupId>io.quarkiverse.jooq</groupId>

 <artifactId>quarkus-jooq</artifactId>

 <version>0.2.2</version>

</dependency>

Chapter 4 Integrating with jOOQ

171

The preceding snippet is an excerpt of what you’ll need to add to

your Maven POM (or the Gradle equivalent) to add the jOOQ extension

to your Quarkus, in addition to standard jOOQ dependencies. This is not

necessarily the best way to add extensions to quarkus. Ideally, you would

use the Quarkus maven plugin like so:

mvn quarkus:add-extension -Dextension=quarkus-jooq

That’s the canonical way of installing Quarkus extensions. It doesn’t

work for the jOOQ extension because it’s not (yet) in the registry of

Quarkus extensions. The jOOQ extension is not an “official” Quarkus

extension in that it’s not built and maintained by the Quarkus core

team. It’s part of what they call the Quarkiverse,3 an extended extension

ecosystem that gives ownership to the developer community. The

Quarkus-jOOQ extension is the hard work4 of individuals outside the

Quarkus team, backed by popular demand. Shout out to the gang!

Next up, install the appropriate JDBC extension for your database of

choice:

mvn quarkus:add-extension -Dextension=jdbc-mysql

With the Quarkus extensions installed, you then configure your

datasource settings in the application.properties file of your Quarkus

app:

quarkus.datasource.db-kind=mysql

quarkus.datasource.username=dbuser

quarkus.datasource.password=thisisaterriblepassword

quarkus.datasource.jdbc.url= jdbc:mysql://localhost/edens_car

quarkus.jooq.dialect=mysql

3 https://github.com/quarkiverse/quarkiverse/wiki
4 https://github.com/quarkiverse/quarkus-jooq

Chapter 4 Integrating with jOOQ

https://github.com/quarkiverse/quarkiverse/wiki
https://github.com/quarkiverse/quarkus-jooq

172

Configuring the dialect is mandatory for any of this to work at all.

With this basic config in place, you can get a DSLContext anywhere in the

application:

@Inject

DSLContext dslContext;

The @Inject annotation is the Context and Dependency Injection

(CDI) equivalent of the @Autowired annotation from the Spring

framework. Quarkus supports both for the same purpose. The quarkus-

jooq extension ships only with the community edition of jOOQ. You can

override the community edition with the pro version if you have it inside

your POM.xml.

Now, let’s talk about packaging and testing all this stuff.

Chapter 4 Integrating with jOOQ

173© Tayo Koleoso 2022
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_5

CHAPTER 5

Packaging and
Testing jOOQ
Home stretch! Let’s wrap the jOOQ roadshow up by talking about how

jOOQ can fit into “modern” software development motifs like Continuous

Integration/Continuous Development (CI/CD), containers (Docker,

Podman, etc.), etc.

But first, let’s level-set a little bit before we get into the meat (or

vegetables if you like) of things:

•	 jOOQ allows you to Bring-Your-Own-SQL (BYOS).

•	 jOOQ will generate code for you, code that you most

likely need at compile time.

•	 Your generated code becomes part of your business

logic to do…stuff.

In today’s world, you’ll need to

•	 Be able to validate that your custom SQL works –

either SQL you wrote yourself or packaged by another

developer or team and handed to you.

•	 Be able to manage incremental changes made to your

data model – changes originated either by yourself

or another part of your organization. How would you

support a new table or column added to the data model?

https://doi.org/10.1007/978-1-4842-7431-6_5

174

•	 Make practical and effective decisions about how and

where your generated code lives. It’s not uncommon

(and maybe even preferred) that your entities and

DTOs are packaged in a separate JAR file and included

as a dependency in multiple software projects.

•	 Run integration tests without needing a whole

standalone database server available at the point

of testing. Take a Jenkins build server, for example:

it’s ideal that your build job doesn’t need a standing

MySQL server for your integration tests to run.

So, what are your options when you need to…

�Package Code with jOOQ
This is going to be Maven-centric, sorry.

We’ve seen how to generate jOOQ code using the jOOQ Maven plugin,

programmatically and from the command line. What we haven’t talked

about is where to put the generated code.

From the Maven standpoint, src/target/generated-sources is the

recommended home for generated code, whether it’s by jOOQ or

anything else. Assuming you have the jooq-codegen plugin configured in

your POM.xml like I demonstrated in Chapter 3, running mvn

package -DskipTests=true will

•	 Connect to the database as configured in jooq-

configuration.xml

•	 Generate the necessary code

•	 Compile the entire kit

•	 Skip running the tests

•	 Generate a JAR file in the target directory

Chapter 5 Packaging and Testing jOOQ

175

Let’s consider a couple of scenarios where you might want to deviate

from this path a little.

�When You Don’t Need Code Generation
Code generation is all fine and dandy, but sometimes, you just want to

build your kit and skip the code generation bit. Maybe you’ve already

generated the code once, and nothing has changed; or you have a large

schema you’d rather not deal with right now; or you’re running the build in

an environment that won’t support the code generator. Configure a Maven

profile like so:

<profiles>

 <profile>

 <id>no-jooqing</id> (1)

 <build>

 <plugins>

 <plugin>

 <groupId>org.jooq</groupId>

 �<artifactId>jooq-codegen-maven

</artifactId>

 <version>3.15.1</version>

 <executions>

 <execution>

 <id>jooq-codegen</id>

 <phase>none</phase> (2)

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 </profile>

 </profiles>

Chapter 5 Packaging and Testing jOOQ

176

This is a standard Maven profile configuration you can add in at any

point in your POM as a top-level element. What I’ve done here is

	 1.	 Configure a profile named no-jooqing. Inside this

profile, I’ve defined the basics of the jOOQ code

generator plugin. This configuration snippet mirrors

the configuration of the same plugin in the build

section of the POM. The idea here is for this profile-

bound definition to override the other main plugin

definition.

	 2.	 I set its phase execution to none, meaning that this

plugin should not kick in at any point.

With this setup, I can then run a maven build thus:

mvn package -DskipTests=true -P no-jooqing

The -P flag activates my profile by the name of no-jooqing, thereby

suppressing the code generator plugin. Arguably, there are simpler ways

to achieve this effect, but profiles provide the most comprehensive way

to selectively execute plugins. For example, you could choose to run a

different jOOQ generator configuration based on, say, the JDK that’s

installed in the build environment:

<profile>

 <activation>

 <jdk>14</jdk>

 </activation>

 ...

 </profile>

With the preceding snippet, I’ve configured my profile to kick in

only when the build is running on JDK 14 – the first version of the JDK to

provide official support for the Records API (which jOOQ can generate

Chapter 5 Packaging and Testing jOOQ

177

as POJOs). You can have profiles activated based on operating system

environment variables and other conditions. It’s truly the most powerful

option. Pretty cool huh?

�When You Don’t Have an Active Database
Connection
It happens: you want to generate jOOQ code, but you don’t have access to

the underlying database server to connect to at build time. But thankfully,

you have the Data Definition Language (DDL) that describes the schema.

jOOQ provides the org.jooq.meta.extensions.ddl.DDLDatabase

generator component, so you can generate code straight from a .sql

script. Check it out:

<generator>

 <database>

 <name>org.jooq.meta.extensions.ddl.DDLDatabase</name>

 <properties>

 <property>

 <key>scripts</key>

 <value>src/main/resources/db-dump.sql</value>

 </property>

 ...

 <database>

<generator>

The scripts property accepts a path to the DDL script that will be

loaded for code generation. This way, you’re not shackled to a database

server at build time. I should mention that this feature isn’t restricted to

just packaging usage – you can use this in any scenario it fits in.

Chapter 5 Packaging and Testing jOOQ

178

Pro Tip  Use -- [jooq ignore start] and -- [jooq ignore
stop] to wrap SQL that should be ignored in your DDL script. What
this means is that if your DDL contains -- [jooq ignore start]
CREATE TABLE ignore_me_please ... -- [jooq ignore
stop] CREATE TABLE business_as_usual ..., CREATE
TABLE ignore_me_please will be ignored by DDLDatabase.

�When Your Schema Needs to Incrementally
Evolve
Have you heard of the evolutionary database pattern?1 Its fundamental

thesis is this: make incremental changes to your database schema, just

like you already do with code. Whether you’re starting with a fresh, empty

database or you have an existing schema, you’ll typically have a tool that

•	 Is able to apply new changes to a data model (DDL) or

raw data (DML)

•	 Keeps a history of changes that have been applied,

providing room to roll back incompatible or breaking

changes

•	 Supports versioning of changes applied to a database

•	 Helps your code stay aligned with the database that it

depends on

The two biggest players in this space right now are

•	 Flyway (www.flywaydb.org)

•	 Liquibase (www.liquibase.com)

1 https://en.wikipedia.org/wiki/Evolutionary_database_design

Chapter 5 Packaging and Testing jOOQ

http://www.flywaydb.org
http://www.liquibase.com
https://en.wikipedia.org/wiki/Evolutionary_database_design

179

They both operate on the same fundamental premise:

	 1.	 Provide your database changes in an agreeable file

format, along with relevant versioning information.

	 2.	 They will apply your database changes to whichever

database you point them.

How does jOOQ factor into all of this? Well, more so than your

Hibernates and JPAs, jOOQ is fairly tightly coupled to the state of your

data schema vis-à-vis code generation. The last thing you want is for your

generated code to be referring to a trigger or function that no longer exists.

jOOQ has native support for Liquibase by way of the org.jooq.

meta.extensions.liquibase.LiquibaseDatabase and the jooq-meta-

extensions-liquibase Maven artifact. I’m a Flyway man myself, largely

because Flyway doesn’t require a specialized configuration syntax or DSL;

and also, I’m a strategically lazy person.

For basic Flyway usage, simply provide your .sql file with a version

format similar to the following:

V1__Your_Descriptive_File_Name_Here.SQL

The V1 part of the filename is key. Subsequent updates to the schema

should increment the version number to support the incremental change

mechanism with Flyway. Keep all the SQL files in /src/main/resources/

db/migration and you’re ready to roll. At this point, you should add the

Flyway dependency to your POM.xml:

<dependency>

 <groupId>org.flywaydb</groupId>

 <artifactId>flyway-core</artifactId>

 <version>7.14.0</version>

 </dependency>

Chapter 5 Packaging and Testing jOOQ

180

With that in place, you’re ready to run Flyway. You have the option of a

command-line approach, a containerized approach (more on that later),

or programmatic one. Let’s have a look at the programmatic approach:

Flyway flyway = Flyway.configure().dataSource(jdbcUrl,dbUser ,

dbPassword).load();

flyway.migrate();

It’s really that simple. Flyway will look for the latest versioned SQL

script in /db/migration and apply the changes to the database you point it

to. It also takes the previous versions of your schema into account, so that

when you have up to a V10__my_schema_update.sql, the changes up till

that point are taken into account. It supports baselining your migrations so

you could choose to baseline your schema at, say, V7__new_db_baseline.

sql, and that’ll be where it starts considering migrations from.

Everything I’ve spoken about Flyway up till this point is super

configurable by the way; I’m sticking with the defaults here for the purpose

of demonstration. Because Flyway isn’t necessarily the point of this

section. No, here, I want us to consider how an evolutionary database

model can support the goals of jOOQ to help generate and package the

most current code based on an up-to-date but evolving schema. It gets

even trickier when one is considering running this in a CI/CD, DevOps-

heavy environment. You can’t count on always having a standing database

server connected to your Jenkins host, for Flyway or jOOQ to run against.

The ideal setup is a self-contained software project that can run its own

code generation inside of itself at any point in the project lifecycle. Be it on

the developer’s machine, during a pre-merge step in the code repository,

or as part of a build pipeline. No need to make sure some database server

is up. No need to be worried about ruining the schema or database for

another developer making concurrent changes to the same database.

Yeah, that would be pretty sweet, wouldn’t it?

Chapter 5 Packaging and Testing jOOQ

181

Blissful

One way to achieve this nirvana of self-sufficiency in your code is with

a toolkit called TestContainers. I talk about TestContainers in more detail

a little later in this chapter. For now, suffice it to say that TestContainers is

arguably the best way to always have a full-strength database available and

bundled with your application.

�Recipe for a Self-Sufficient Database Project

Disclaimer: this is a hack. In the absence of, say, a dedicated

TestContainers maven plugin, you’ll need to get creative to be able to run a

TestContainers-supported project outside of the testing phase.

Chapter 5 Packaging and Testing jOOQ

182

But before we see how TestContainers can deliver a truly

self-sustaining application, we should look at how I can package my

project to support my ambitions. Consider the following class:

public class PreflightOperations {

 �final static Logger logger = LoggerFactory.

getLogger(PreflightOperations.class);

 public static void main(String[] args){

 logger.info("Running preflight operations");

 GenericContainer container = startDatabaseContainer(); (1)

 runFlywayMigrations(container); (2)

 generateJooqCode(container); (3)

 }

}

This is almost a vanilla Java class that will do three things:

	 1.	 Start a TestContainers database (I’ll show how

this works later in this chapter). From the started

database container, I’ll be able to obtain a database

connection.

	 2.	 Using the obtainer database connection, I should be

able to run my Flyway migrations immediately after.

	 3.	 Once my schema updates have been applied to my

database container, I can then run the jOOQ code

generator programmatically.

Pretty straightforward right? The question now is: how can I have this

custom code run as part of a build process? Maven? Maven:

<plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.8.1</version>

Chapter 5 Packaging and Testing jOOQ

183

 <executions>

 <execution>

 <id>pre-compile</id>

 <phase>generate-sources</phase> (1)

 <goals>

 <goal>compile</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>exec-maven-plugin</artifactId>

 <version>3.0.0</version>

 <executions>

 <execution>

 <phase>process-sources</phase> (2)

 <goals>

 <goal>java</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <executable>java</executable>

 �<mainClass>com.apress.jooq.generator.

PreflightOperations</mainClass> (2a)

 �<cleanupDaemonThreads>false

</cleanupDaemonThreads>

 </configuration>

 </plugin>

Chapter 5 Packaging and Testing jOOQ

184

The capability to run java code as part of the build process rests on two

Maven plugins:

•	 maven-compiler

This plugin will compile source code. Because my

PreflightOperations class is still raw source code, I

need to compile it before I’m able to run it as part of

the build process.

•	 maven-exec

This plugin will run any arbitrary executable.

Choosing java for the executable parameter

preps the plugin to execute a Java class with a main

method.

Together, these plugins sing beautiful music:

	 1.	 maven-compiler starts by compiling my source

code in the generate-sources phase of the Maven

build process. This is going to ensure that I have a

compiled PreflightOperations class to run with…

	 2.	 maven-exec, the plugin that allows me to run

arbitrary executables. I’ve chosen to run this plugin

in the process-sources phase, which comes

immediately after the generate-sources phase. It’s

at this point that the database will start, my Flyway

migration will execute, and then jOOQ gets to

generate any necessary new source code.

	 a.	 I provide the fully qualified class name (FQCN) to

my class that does the execution.

Chapter 5 Packaging and Testing jOOQ

185

	 b.	 Because TestContainers does a lot of background

processing on daemon threads, there’s the risk that

it won’t be ready to quit by the time the maven-exec

plugin is ready to move on. cleanupDaemonThreads

allows the build process to proceed, while

TestContainers does its thing.

Easy peasy. I want to reiterate: this is a hack. The gold standard should

be sans custom code and configuration only. Additionally, the generated

code/entities in general could benefit from a lot more modularity.

The only thing missing from this recipe is the actual dynamically

instantiated database itself. We’ll learn about that when we talk about…

�Testing with jOOQ
Also known as: sleep well at night. I’m an absolute nutter for automated

testing, especially integration testing.

Uh oh. I just used a buzzword: “integration testing.” Integration testing

tends to be conflated with a bunch of other things that (in my layman’s

opinion) don’t qualify. Allow me to pontificate.

I believe the industry has settled on the scope of unit testing, that

is, validating the behavior of standalone units of code, for example, a

function or a method. You’re not concerned about how these functional

units interact together to deliver a business scenario. You’re likely going to

mock out every single dependency that the method under test has, to focus

solely on what’s within the curly braces.

Then we have “end-to-end” testing, where you’re crossing multiple

system boundaries – front-end to back-end integration tier, etc. This is

what some folks call “QA” testing – making sure everything works together

to satisfy the user’s needs.

Chapter 5 Packaging and Testing jOOQ

186

Somewhere in the middle of unit and end-to-end testing is where you

find integration testing and the sometimes testy debate around what it

actually means.

Pictured: Integration testing. Probably.

For the purposes of this section, integration testing is how you make

sure that carefully selected slices of your code work well together. In a

typical integration test, you’d want to string a handful of components

together and see if they all behave the way you expect. Ideally, your

integration tests are closely aligned with use cases that the business/users

expect.2

This is not to say jOOQ doesn’t have tooling to support unit testing –

far from it. I’m just personally more invested in integration tests that

give me confidence about the product I’m putting out (vs. vanity metrics

2 www.agilealliance.org/glossary/bdd/

Chapter 5 Packaging and Testing jOOQ

http://www.agilealliance.org/glossary/bdd/

187

around testing). Just ask Kent Beck3 how he feels about writing tests for

tests’ own sake.

Based on the features that jOOQ provides, what is there to test anyway?

•	 The syntactic correctness of plaintext SQL statements

that you bring to jOOQ. jOOQ’s own SQL is highly

unlikely to be incorrect.

•	 The semantic correctness of both yours and jOOQ’s

own SQL. jOOQ protects you from writing syntactically

incorrect SQL. It’s still a solid idea to validate the

semantic correctness of the SQL, generated or

otherwise.

•	 The accurate reflection of your generated code vis-à-vis

the database schema. You’re not going to have a good

time if your generated code is even a little bit out of

sync with the underlying schema for whatever reason.

�Tools of the (SQL) Testing Trade
Let’s see what’s at our disposal for testing SQL. To be clear, these are not

solely for SQL testing, but y’know, this is a SQL-in-Java book, sooo…

	 1.	 JUnit (www.junit.org)

The premier testing in Java – all the others are

posers.4 JUnit 5 (codename Jupiter) is your one-stop

shop for all your testing needs. The latest version

supports pretty much every testing paradigm you

could imagine: Behavior-Driven Development

(BDD), Acceptance Test-Driven Development

3 https://stackoverflow.com/a/153565/1530938
4 Editor’s note: Hot take!

Chapter 5 Packaging and Testing jOOQ

http://www.junit.org
https://stackoverflow.com/a/153565/1530938

188

(ATDD), unit and integration tests, etc. It ships with

a suite of annotations that provide all manner of

convenience for testing your Java code at varying

levels of granularity. But you probably have already

heard of it.

	 2.	 Mocking Frameworks

A mocking framework (e.g., Mockito, PowerMock)

will help you stub out different parts of your code –

hardly a new concept, I know. Stubbing or mocking

selected sections of your code while testing allows

you to laser-focus your tests to only what matters to

you. Where things could possibly get spicy is having

to work with some of jOOQ’s static methods. Hang

tight while we dig into those a bit more.

	 3.	 Embedded Databases

In the course of testing, you’ll eventually need to be

able to dynamically

•	 Load a schema into a database on demand

•	 Load/destroy data in a database on demand

•	 Sequentially run test methods that depend on

shared state as part of a test scenario

All of these scenarios require that your software

project have a database ready quickly and

flexibly. That’s where the embedded or “in-

memory” databases come in. They’re databases

that are designed for dynamic and flexible usage

in lightweight scenarios, for example, testing.

Examples of these include

Chapter 5 Packaging and Testing jOOQ

189

•	 H2 (https://h2database.com/html/main.html)

•	 HSQLDB (http://hsqldb.org/)

•	 Derby (https://db.apache.org/derby/)

Yes, they’re all written in Java. With these, you can

have a database “server” available at any point in

your development lifecycle without needing an

actual DB server deployed anywhere.

Now because they’re lightweight, their capabilities

are limited. So, you’ll typically be missing some

fundamental features. Things like check constraints,

triggers, even the LIMIT SQL keyword may not be

supported depending on which vendor you choose.

They’re lightweight for good reason: fast, highly

efficient database operations without “frills.” If you

prefer a full-strength and portable database for your

testing, you should turn to…

	 4.	 Containerized Databases

You can get most full-strength databases like

MySQL, PostgreSQL, and Oracle in a containerized

format compatible with Docker, Podman, and other

container runtimes. What are containers? I’ll get into

more detail when we get to that point, but for now

suffice it to say this: containers are portable versions

of your favorite software packaged in what’s known

as images. These portable packages will typically

contain complete operating system installations

with all the trimmings; your desired software can

then be bundled with these complete OSes and

delivered via a centralized registry. Containerized

Chapter 5 Packaging and Testing jOOQ

https://h2database.com/html/main.html
http://hsqldb.org/
https://db.apache.org/derby/

190

databases (mostly) deliver the full strength of

your preferred database server while keeping

them portable enough to start up an instance

programmatically/dynamically. This way, you can

have full-strength databases available whenever you

want them, for example, as part of a pipeline, a build

script, or a JUnit integration test. No half-assing it.

	 5.	 jOOQ’s Testing Kit

There are a few components in the jOOQ toolkit that

support your testing and validation needs. Check it

out:

–– org.jooq.tools.jdbc.MockConnection, org.jooq.

tools.jdbc.MockDataProvider, and a couple of

related Mock* components help to mock out different

parts of the query operations in jOOQ.

–– org.jooq.Parser can be used to validate your SQL

queries by attempting to produce jOOQ artifacts out

of your plaintext SQL.

Different combinations of the preceding tools will give you the peace

of mind you need while programming with jOOQ. Not to mention the

various testing facilities offered by ecosystems like the Spring framework

and Quarkus – there’s a bunch of powerful testing techniques in both of

them.5 Ultimately, what I would want in my project is a self-contained, self-

sufficient kit that can run its own tests anywhere, without too much of a

dependence on its operating environment. This portability becomes more

crucial when you’re operating in a CI/CD environment. Let’s see how all of

these play together.

5 I’m particularly fond of the powerful QuarkusUnitTest class that isn’t publicly
documented (but it’s in my book). Highly recommend for integration tests.

Chapter 5 Packaging and Testing jOOQ

191

�Unit Testing with jOOQ
Consider the following jOOQ query method:

public static void selectWithOptionalCondition(boole

an hasFilter, Map<String, Object> filterValues) throws

SQLException {

 �try (Connection connection = DriverManager.

getConnection("jdbc:mysql://localhost/edens_

car?user=root&password=admin")) {

 �DSLContext context = DSL.using(connection,

SQLDialect.MYSQL);

 Condition conditionChainStub = DSL.noCondition();

 if (hasFilter) {

 for(String key: filterValues.keySet()){

 �conditionChainStub = conditionChainStub.

and(field(key).eq(filterValues.get(key)));

 }

 }

 �List<CompleteVehicleRecord> allVehicles =

context.select().from(table("complete_

car_listing")).where(conditionChainStub).

fetchInto(CompleteVehicleRecord.class);

 logger.info(allVehicles.toString());

 }

 }

I’m doing some fancy construction for the WHERE clause of the jOOQ

query, dynamically constructing the Conditions that would be translated

into that clause. Beside the database query that ultimately needs to

happen, how can I validate that my condition chaining is going to result in

the WHERE clause I expect? That’s where a unit test comes in.

Chapter 5 Packaging and Testing jOOQ

192

�Using Mockito

Mockito is a pretty popular mocking framework like I mentioned earlier

that allows you to stub out parts of your code that don’t need to be invoked

during testing. It also allows you to substitute parts of your code with

something else to facilitate specific testing scenarios. For my use case,

I want to validate that the condition chaining in my query is working

correctly – I don’t need query results for that. I’m going to start by adding

Mockito as a dependency to my project:

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-inline</artifactId>

 <version>3.12.1</version>

 </dependency>

 <dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-junit-jupiter</artifactId>

 <version>3.12.1</version>

 </dependency>

These Maven dependencies will furnish my project with the necessary

libraries to use Mockito. The Mockito-inline artifact is especially crucial

because it provides the support for mocking static methods. The need for

that feature will become apparent shortly. The mockito-junit-jupiter

artifact is prescribed for the latest version of JUnit; for older versions of

JUnit, use mockito-core instead. On to the code!

@ExtendWith(MockitoExtension.class) (1)

@TestInstance(TestInstance.Lifecycle.PER_CLASS) (2)

@DisplayNameGeneration(DisplayNameGenerator.ReplaceUnderscores.

class) (3)

class JooqUnitTests {

Chapter 5 Packaging and Testing jOOQ

193

 static MockedStatic mockedDriver; (4)

 �final Logger logger = LoggerFactory.getLogger

(JooqUnitTests.class);

 @BeforeAll (5)

 public static void prepare(){

 mockedDriver = mockStatic(DriverManager.class); (5b)

 }

 //more to come

}

The preceding snippet demonstrates the setup of some test fixtures I’m

going to need shortly:

	 1.	 @ExtendWith is a JUnit component that allows

one to plug in to the runtime with custom code.

Different vendors can then supply a class that’ll

fulfill the contract and be usable here. In this case,

I’m using Mockito’s MockitoExtension class. That

introduces Mockito’s features into this test unit.

	 2.	 @TestInstance is a JUnit component that configures

the lifecycle of the test class. With Lifecycle.PER_

CLASS, I’ve specified that I want a single instance of

JooqUnitTests to be reused for any number of test

methods inside the class. This way, the test methods

can share state across multiple invocations.

	 3.	 @DisplayNameGeneration determines how the test

cases will be displayed in reports, your IDE, and

elsewhere. With ReplaceUnderscores, I can use

underscores in my test method names and they’ll

be replaced with spaces during display. This way,

Chapter 5 Packaging and Testing jOOQ

194

the method names can be user-friendly sentences

that even non-engineers (e.g., Product Owners) can

understand and consume.

	 4.	 MockedStatic is another Mockito test fixture that

allows me to mock static methods and interfaces.

I’m going to be using it to stub the DriverManager.

getConnection interaction from JDBC.

	 5.	 @BeforeAll stipulates that the annotated method –

prepare – be run once before any test methods are

run…

	 a.	 So that I can customize the behavior of the

DriverManager class to suit my needs

With the prep work out of the way, let’s crack on with the unit test

proper. Hang on to your seat, it’s a lot of typin’:

@ParameterizedTest (1)

@CsvSource({ (1a)

 "BLUE,2020",

 "SILVER,2020"

})

void test_dynamic_condition_api(String color,String year)

throws SQLException {

 MockDataProvider mockJooqProvider = context -> { (2)

 �MockResult[] results = new

MockResult[1];

 String sql = ctx.sql();

 �logger.info(()->"Binding 1: "+ctx.

bindings()[0]);

 assertAll(()->{

Chapter 5 Packaging and Testing jOOQ

195

 �assertTrue(ctx.bindings().

length == 2); // validate two

parameters are bound;

 �assertEquals(ctx.bindings()

[0],color);

 �assertEquals(ctx.bindings()

[1],year);

 });

 �CompleteCarListingRecord

completeCarListing = new

CompleteCarListingRecord();

 �results[0] = new MockResult(completeCar

Listing);

 return new MockResult[0];

 }

 };

 �MockConnection mockConnection = new MockConnection(

mockJooqProvider); (3)

 �mockedDriver.when(()-> DriverManager.

getConnection(anyString())).

thenReturn(mockConnection); (4)

 �JooqApplication.selectWithOptionalCondition(true,Map.of

("color",color,"year",year));

 }

The primary goal of this test is to make sure that filter parameters

are processed correctly. As a secondary goal, I don’t want or need an

actual execution of the query against a database. So I need to substitute

Chapter 5 Packaging and Testing jOOQ

196

the JDBC Connection usage for something else. That’s where jOOQ’s

MockConnection and MockDataProvider come in:

	 1.	 JUnit provides @ParameterizedTest allowing us to

feed data into a test method from multiple sources.

	 a.	 Here, I’m using the @CsvSource option to simulate

CSV data being passed in. For every row I provide,

JUnit will parse the columns and feed them to the

test method as method arguments.

	 2.	 To provide a MockConnection from jOOQ that will

replace a legit JDBC connection, I need to build out

a MockDataProvider.

	 a.	 Inside my implementation of MockDataProvider,

I have access to some pretty nice test fixtures like

a MockExecutionContext, the SQL that’s going to

be executed and crucially: the parameter bindings

supplied to the query. These I then validate to

ensure they’re present and the right count. There’s

a lot of flexibility in here to allow many testing use

cases.

	 b.	 The contract for the MockDataProvider#execute

requires me to return an array of MockResults. Since

I don’t really care about the result in this scenario,

I just construct an empty Record from a generated

class and move on.

	 3.	 Having implemented my MockDataProvider, I can

go ahead and construct a MockConnection.

	 4.	 Remember earlier when I mocked out

DriverManager with MockedStatic? Well now’s its

time to shine! Having stubbed out DriverManager,

Chapter 5 Packaging and Testing jOOQ

197

I can stipulate that when any string is passed to the

getConnection method, my MockConnection should

be returned instead of an actual JDBC connection.

With all that setup, I can then execute my business logic and see how

things shape out. No data will be retrieved; it’s all isolated to that one

method.

�With SQL Parsing

jOOQ ships with some à la carte SQL parsing capabilities that don’t

necessarily have anything to do with SQL execution. You can use the

Parser class to generate jOOQ components from plaintext SQL; in the

process, it’ll let you know whether your SQL’s legit or not. Observe:

@Test

void validate_my_dodgy_sql(){

 assertThrows(ParserException.class, ()->

 DSL.using(SQLDialect.MYSQL)

 .parser()

 �.parse("selecet * from table group by

1 where having max (column) > 10"));

}

That SQL ain’t right,6 I’m sure you’ll agree. With assertThrows from

JUnit, I’ve specified that I expect this attempt to parse the plaintext SQL

should fail with a ParserException. Via con Dios!

6 Yes, I’m a huuuge King of the Hill nerd. You should be too.

Chapter 5 Packaging and Testing jOOQ

198

Yawwwwwn

Trust me, guys: BDD is where it’s at. When you’re working with data,

you really want to get your hands dirty with actual executions of SQL

statements; see real results. Are you with me? I hope so. Because we’re

about to get to the fun part!

�Integration Testing with Docker
and TestContainers
Docker, like I mentioned a couple of pages ago, is a runtime for containers.

If you’re unfamiliar with the concept, think of Docker like a virtual

machine – a JVM if you will. Just like you can download any kind of

JAR that’s packaged by a third party, and run inside your JVM, Docker

functions similarly. Different vendors publish images to Docker Hub;7

7 https://hub.docker.com/

Chapter 5 Packaging and Testing jOOQ

https://hub.docker.com/

199

you can then pull these images down and run containers based on the

image. In a sense, Docker Hub is the Maven Central of the container world.

You can get almost any major piece of software as an image and, thus, a

container. This gives you a ton of flexibility and portability, allowing you

to run previously bulky and overhead-intensive software in a portable

and mostly lightweight format, so that you can run entire operating

systems, CI/CD servers and tools, critical infrastructure software, and, yes,

databases, in a dynamic and flexible form factor.

TestContainers is a Java library that helps you take the portability of

containers further. It gives you the power to run any containerized software

from within Java code.

www.testcontainers.org

We shall now use TestContainers to start up a MySQL database server

as part of our JUnit tests, as well as load it up with real tables and data.

Then, we can run actual code against it – none of that mocking business

here. Well, maybe just a little. Let’s go!

Chapter 5 Packaging and Testing jOOQ

http://www.testcontainers.org

200

First, download/install Docker for your operating system – www.

docker.com is a good place to start for most users. TestContainers depends

on the Docker runtime to do its magic. Can’t run a JAR file without a JVM,

can you?

As usual, the Maven dependencies come first:

<dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>testcontainers</artifactId>

 <version>1.16.0</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>junit-jupiter</artifactId>

 <version>1.16.0</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>mysql</artifactId>

 <version>1.16.0</version>

 <scope>test</scope>

 </dependency>

Like with Mockito, please pay attention to the artifacts. For each

database version it supports (and there are many), TestContainers has a

dedicated Maven dependency. For my use of MySQL, I’ve added the mysql

artifact; choose correctly for your database container of choice.

Now, for my next demonstration, a little bit of test prep:

Chapter 5 Packaging and Testing jOOQ

http://www.docker.com
http://www.docker.com

201

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

@DisplayNameGeneration(DisplayNameGenerator.ReplaceUnderscores.

class)

@Testcontainers (1)

@TestMethodOrder(MethodOrderer.OrderAnnotation.class)

public class JooqIntegrationTests {

 static MockedStatic mockedDriver;

 final static String DATABASE_NAME = "edens_car";

 final static String USERNAME = "auserhasnoname";

 final static String PW = "anawfulpassword";

 @Container (2)

 �static GenericContainer mySqlContainer = new

MySQLContainer(DockerImageName.parse("mysql:latest")) (3)

 .withDatabaseName(DATABASE_NAME)

 .withInitScript("schema_with_data.sql")

 .withUsername(USERNAME)

 .withPassword(PW)

 .withEnv("TESTCONTAINERS_CHECKS_DISABLE","true")

 .withExposedPorts(3306);

 @BeforeAll

 public static void setup(){

 mockedDriver = mockStatic(DriverManager.class); (4)

 }

}

Now remember, this is all just prep inside a test class; the actual test

methods will follow shortly:

	 1.	 @TestContainers is a JUnit extension provided by

the TestContainers library. It’s really a façade for the

ExtendWith annotation we saw earlier with Mockito.

Chapter 5 Packaging and Testing jOOQ

202

	 2.	 @Container is also supplied by TestContainers.

With this annotation, TestContainers can hook into

the lifecycle of the JUnit runtime and prepare the

container instance ahead of time.

	 3.	 The GenericContainer class is a…generic class that

wraps most of TestContainers’ container-based

functionality.

	 a.	 Just like we’ve had to do with Maven and any other

dependency management system, I have to supply

named coordinates to the appropriate Docker image

in the hub. The format is “name”:“tag”. Here, I’m

saying I want the “mysql” image with the “latest” tag

or version.

	 b.	 withDatabaseName allows me to set a name for my

yet to be created database.

	 c.	 withInitScript defines the name of a SQL script

file that will be loaded immediately after the

container has completed initialization. This allows

me to populate my database with DDL and DML in

advance of any actual test execution.

	 d.	 I seed the database container with credential info

withUsername and withPassword.

	 e.	 I can also deliver random environment variables

to my container with withEnv. Here, I’m supplying

a TestContainers command-line parameter that

allows it to skip some startup checks, thereby getting

the database container ready, faster.

	 f.	 Finally, I define the port on which MySQL should

be listening. Note that this is still internal to the

Chapter 5 Packaging and Testing jOOQ

203

container. A separate, random port will be published

by TestContainers for me to be able to connect to

the MySQL container. This process is called port

mapping in the container world.

	 4.	 Finally, like we did before, I prepare to mock out

the DriverManager because I want to provide a

dynamically generated Connection – but a real one

this time to a real MySQL database.

Now that I’ve set up all my test fixtures, I can go ahead and write the

actual test:

@Test

 public void test_containerized _connection() throws

SQLException {

 �JdbcDatabaseContainer container =

(JdbcDatabaseContainer) mySqlContainer; (1)

 �Connection connection =container.

createConnection(""); (2)

 �mockedDriver.when(()-> DriverManager.

getConnection(anyString())).thenReturn(connection); (3)

 JooqDemoApplication.insertVehicle();

 }

In the preceding snippet

	 1.	 I cast the GenericContainer to a more specialized

form, the JdbcDatabaseContainer.

	 2.	 This now allows me to directly obtain an instance of

a JDBC Connection right off the container.

	 3.	 I can then substitute my own Connection into the

DriverManager.

Chapter 5 Packaging and Testing jOOQ

204

Following all that, I can then directly execute my test logic code.

This is a proper test. It contains actual data, actual database fixtures

and trimmings, all inside a real database. Delightful.

Here’s another nifty thing JUnit allows: test method ordering. With test

method ordering, you can have tests that depend on each other or at the

very least must run in a specific order. Check it out:

 @Test

 @Order(1)

 �public void test_containerized_connection() throws

SQLException {

 ...

 }

@Test

@Order(2)

public void test_valid_db_insert() throws SQLException {

 if(!mySqlContainer.isRunning()){

 mySqlContainer.start();

 }

 �JdbcDatabaseContainer container =

(JdbcDatabaseContainer) mySqlContainer;

 container.getJdbcUrl();

 Connection connection =container.createConnection("");

 �DSLContext context = DSL.using(connection, SQLDialect.

MYSQL);

 �List<CompleteVehicleRecord> allVehicles = context.

select(field(name("brand")), field("model"),

field("price")).from(table("complete_car_

Chapter 5 Packaging and Testing jOOQ

205

listing")).orderBy(field("year").asc(), two()).

fetchInto(CompleteVehicleRecord.class);

 assertTrue(allVehicles.size() == 1);

 }

The @Order annotation allows me to stipulate that test_valid_

db_insert should execute immediately after test_containerized_

connection. Here’s where things get a tad wonky.

See, TestContainers is wired to shut down a container immediately

after the test method is done executing. The container isn’t actually

destroyed, but it’s not running. This is what makes it necessary to take

some precautions when reusing a container instance across test methods.

In this scenario, I’ve inserted data with test_containerized_connection;

I then want to validate the insert in test_valid_db_insert. I must check

that the container is still up with isRunning; otherwise, the test fails. If the

container isn’t running, I can restart it with start. This is a pretty crude

mechanism to support container reuse; you can get a lot fancier and

maintainable with it.

Pro Tip T estContainers provides the ScriptUtils.
runInitScript utility that helps execute arbitrary SQL scripts
against a database container. This way, even after an initial load
into the database, you can execute custom SQL at any point in your
testing.

This is all well and good in a “legacy is cute” sort of way. If you’re using

containers in your code, you’re likely not dealing with DriverManager.

You’re likely a framework sort of person. How about we try this on…

Chapter 5 Packaging and Testing jOOQ

206

�With Spring Boot

Spring Boot is, well, Spring Boot. It provides a whole arsenal of test fixtures

and componentry that could make one dizzy. We’re not going to dig into

all of that. We’re just here for the jOOQy goodness. Check it out:

@SpringBootTest (1)

@Testcontainers

public class JooqSpringBootTests {

 @Autowired

 JooqBean jooqBean; (2)

 ...

 @Container

 �static GenericContainer mySqlContainer = new

MySQLContainer(DockerImageName.parse("mysql:latest"))

 ...

 @DynamicPropertySource (3)

 �static void postgresqlProperties(DynamicPropertyRegistry

registry) {

 �JdbcDatabaseContainer container =

(JdbcDatabaseContainer) mySqlContainer;

 �registry.add("spring.datasource.url",

container::getJdbcUrl);

 �registry.add("spring.datasource.password",

container::getPassword);

 �registry.add("spring.datasource.username",

container::getUsername);

 }

 @Test

 @Sql("/schema_with_data.sql") (3)

 public void test_springboot_loading(){

Chapter 5 Packaging and Testing jOOQ

207

 List<Vehicle> vehicles = jooqBean.runSql();

 assertTrue(vehicles.size() >= 1);

 }

}

I’ve slimmed down this snippet to exclude old stuff you’ve seen up till

now. We’re here for the new and just the new:

	 1.	 With @SpringBootTest, Spring will take notice and

make its facilities available.

	 2.	 This is how I can now inject my JooqBean containing

all manner of jOOQ queries.

	 3.	 New with v2.2.6, Spring Boot provides the

@DynamicPropertySource annotation which allows

me to dynamically override any framework properties

I choose. This comes particularly in handy when one

is dynamically spinning up database containers of

unknown port, username, and password.

	 4.	 Finally, on the test method itself, I deploy the

@Sql component, also from Spring. This annotation

will execute the SQL statements in the supplied

script file. The default behavior is to execute the

script before the test method is run, but that can be

changed. Additionally, I can supply any number of

scripts here for different purposes. Pretty neat.

Now that you’ve gotten yourself somewhat familiar with

TestContainers, let’s revisit our packaging dilemma: how can we apply

changes to our schema, generate updated jOOQ classes, as well as run our

tests all without needing an external database server? I’ve demonstrated

some of the prep that needs to happen in support of this goal. Now let’s see

the code that’ll back it up.

Chapter 5 Packaging and Testing jOOQ

208

public static GenericContainer startDatabaseContainer() throws

SQLException {

 �mySql = new MySQLContainer(DockerImageName.

parse("mysql:latest"))

 .withDatabaseName(DATABASE_NAME)

 .withUsername(USERNAME)

 .withPassword(PW)

 �.withEnv("TESTCONTAINERS_CHECKS_

DISABLE","true")

 .withExposedPorts(3306);

 mySql.start();

 return container;

 }

The preceding snippet isn’t too different from the code I’ve shown

in the business of testing. The main difference here is that I’m explicitly

starting the database container with the start method. Yes, there’s a

stop method as well for when you’re done. After starting a containerized

MySQL, I can then execute my migration with Flyway.

//run the migration with a connection to the database container

public static void runMigrations(GenericContainer container){

 �JdbcDatabaseContainer container =

(JdbcDatabaseContainer) container;

 �Flyway flyway = Flyway.configure().

dataSource(container.getJdbcUrl(),container.

getUsername(),container.getPassword()).load();

 flyway.migrate();

 }

Chapter 5 Packaging and Testing jOOQ

209

And then tying everything together:

public static void main(String[] args) throws SQLException {

 logger.info("Running preflight operations");

 GenericContainer mySql = startDatabaseContainer();

 runMigrations(mySql);

 generateJooqCode(mySql);

 connection.close();

 mySql.close();

 }

Thus, we can have a completely self-sufficient project, at least from

the database perspective. This can be run on a developer machine or on a

build server.

All told, you want a self-contained and self-sustaining software project

kit that can

	 1.	 Portably evolve with a changing database schema

	 2.	 Run its tests wherever it lives – on a developer’s

machine, in a build pipeline, before a pull request

merge, etc.

	 3.	 Validate your assumptions against production-like

software and infrastructure without the associated

overhead

	 4.	 Give you warranties as to the syntactical correctness

of your database-related code

Because after all, this is what modern software development is all

about.

Good luck, and thanks for reading!

Chapter 5 Packaging and Testing jOOQ

211© Tayo Koleoso 2022
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6

Index
A
Acceptance Test-Driven

Development (ATDD), 187
AUTO_INCREMENT function, 65

B
Behavior-Driven Development

(BDD), 187
Bring-Your-Own-SQL (BYOS), 173

C
case keyword/method, 51, 53
Common Table Expression (CTE),

55, 140, 154
Continuous Integration/

Continuous Development
(CI/CD), 173

createNativeQuery
method, 156

Create, Read, Update, and Delete
(CRUD), 25

data access modes, 69–73
delete statements, 67, 68
insert statements, 63, 64
select statements, 34
SQL dialect, 25–27

tools, 28–33
update statements, 66, 67

D
Data Access Objects (DAOs), 94, 105
Database operations, Java

HQL, 4
JDBC, 2
JPA, 4, 5, 7
ORM, 3, 8
RAM, 7

Data Definition
Language (DDL), 177

Data Transfer Object (DTO), 31,
104, 150

DSLContext#resultQuery method, 35
DSL#noCondition() method, 44

E
Eden Auto Mart, 19, 20
exception method, 88

F, G
fetchInto method, 35
fetchLazy method, 72
fetchMany method, 36

https://doi.org/10.1007/978-1-4842-7431-6

212

fetchSize method, 127
fetchStart method, 87
Fully qualified class name

(FQCN), 184

H
Hibernate Query

Language (HQL), 4, 7

I
Integration testing, 185, 186, 198

J, K, L
Java Database Connectivity

(JDBC), 2
Java Persistence API (JPA), 4, 17

definition, 146
entities, 147–150, 152
POJOs, 151
SQL queries, 153–156, 158, 160

Java Persistence Query Language
(JPQL), 7, 146

JavaServer Faces (JSF), 4
JavaServer Pages (JSP), 4
jOOQ

classes/interfaces, 15, 16, 18
code generation, 11, 12
configuration

catalog, 82
JDBC connection, 79–81
query lifecycle integration,

86–88

query management, 84, 85
schema, 81, 82, 84

database, 11
definition, 11
DSL, 12
JVM language, 14
locking, 76–78
setting up, 20–23
tooling support, 13
transactions, 73–75
typesafe, 12

jOOQ toolbox, 89
batch operations, 128

batch import, 134, 135, 137
explicit batching, 130,

132, 133
database operations

joins, 117–120
non-SQL grouping, 121,

123–126, 128
generating code, 89, 90

command line, 97, 98
configuration, 91, 92, 94
custom code, 107, 108
DAO, 105
global artifacts, 106
Maven, 94, 96
programmatically, 99–101
result, 102
tables, 102, 103, 105

query syntax
merge/upsert, 137–140
Windows function, 140,

142–144

INDEX

213

working
CRUD, 109, 110
formatting, 115
optimistic locking, 115
UpdatableRecords, 112, 113

M, N
Mockito, 188, 192, 193, 200, 201
Multi-Version Concurrency Control

(MVCC), 76

O
Object-Relational

Mapping (ORM), 3, 146
onDuplicateKeyUpdate

method, 138
Online Analytical Processing

(OLAP), 1
otherwise method, 53

P
Package code

code generation, 175, 176
database connection, 177
POM.xml, 174
schema, 178–180
self-sufficient database

project, 181–184
Plain Old Java Objects (POJOs), 30,

94, 104

PostgreSQL, 6, 15, 18, 26, 27, 61,
138, 189

Q
Quarkus

APIs, 170
definition, 168
JDBC extension, 171
programming components, 168
Spring Data JPA, 170

R
Relational Database Management

System (RDBMS), 2
returningResult method, 111

S
Select statements

CompleteVehicleRecord
POJO, 34

conditional logic, 50, 52–54
DSL, 37–40
groupBy clause, 57
HAVING DSL, 58
ORDER BY CASE, 59, 60
ORDER BY DSL, 58
ORDER BY NULL, 61
paginate query results, 61, 62
PreparedStatement, 36
subqueries, 46–50

INDEX

214

WHERE DSL, 41–43, 45
WITH clause, 54, 56

Spring Boot
application.properties, 162
configuration setup, 163
custom SQL, 165–167
definition, 162
DSLContext, 165
jOOQ starter, 168

Structured Query
Language (SQL), 1

T, U, V
table function, 38
TestContainers, 181, 182

Testing
integration, 185
SQL, 187–189
unit

Docker Hub, 198
Mockito, 192–195, 197
query method, 191
Spring Boot, 206–209
SQL parsing, 197, 198
TestContainers, 199–203, 205

unit testing, 186
Tuple syntax, 68

W, X, Y, Z
wait method, 77
when method, 53

Select statements (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Welcome to jOOQ
	Database Operations in Java: The Good Parts
	Database Operations in Java: The…Not So Good Parts
	You Have Got to Be jOOQing

	jOOQ Feature Tour
	Database Aware
	Code Generation
	Type Safety
	Domain-Specific Language
	Tooling Support
	JVM Languages

	Chapter 2: Getting Started with jOOQ
	Eden Auto Mart
	Setting Up jOOQ
	Install Dependencies for Commercial-Licensed jOOQ

	CRUD with jOOQ
	Your SQL Dialect and You
	Tools of CRUD in jOOQ
	Select Statements
	The SELECT DSL
	With the WHERE DSL
	Conditions

	Subqueries
	Conditional Logic in Queries
	With the… WITH Clause
	With the GROUP BY DSL
	With the HAVING DSL

	With the ORDER BY DSL
	ORDER BY CASE

	ORDER BY NULL
	Paginate Query Results

	Insert Statements
	With Multiple Rows
	With Sequences
	With Select

	Update Statements
	Delete Statements
	Tuple Syntax

	Alternative Data Access Modes
	Streaming Access
	Lazy Access

	Transactions
	With Locking

	Configuration
	Connection Management
	Schema, Catalog, and Multi-tenant Deployment
	Query Management
	Query Lifecycle Integration

	Chapter 3: Working with jOOQ
	Generating Code
	Tools of jOOQ Code Generation
	Configure jOOQ for Code Generation
	Generate Code with Maven
	Generate Code from the Command Line
	Generate Code Programmatically
	Results of Code Generation
	Tables
	Global Artifacts

	Add Custom Code to Generated Code

	Working with Generated Code
	CRUD with Generated Code
	Enhancements from UpdatableRecord
	Formatting

	Optimistic Locking

	Advanced Database Operations
	Joins
	Non-SQL Grouping

	Batch Operations
	Explicit Batching
	Batch Import

	Advanced Query Syntax
	Merge and Upsert
	Window Functions

	Chapter 4: Integrating with jOOQ
	Java Persistence API with jOOQ
	Generate JPA Entities
	Generate from JPA Entities
	Generate SQL Queries

	Spring Boot and jOOQ
	Configure jOOQ in Spring Boot
	With Custom SQL
	jOOQ Spring Boot Starter

	Quarkus and jOOQ

	Chapter 5: Packaging and Testing jOOQ
	Package Code with jOOQ
	When You Don’t Need Code Generation
	When You Don’t Have an Active Database Connection
	When Your Schema Needs to Incrementally Evolve
	Recipe for a Self-Sufficient Database Project

	Testing with jOOQ
	Tools of the (SQL) Testing Trade
	Unit Testing with jOOQ
	Using Mockito
	With SQL Parsing

	Integration Testing with Docker and TestContainers
	With Spring Boot

	Index

