Beginning
j00Q

Learn to Write Efficient and Effective
Java-Based SQL Database Operations

Tayo Koleoso

ApPress’

Beginning jO0Q

Learn to Write Efficient
and Effective Java-Based SQL
Database Operations

Eweé bonblie kKHUr no Java B Hawem Tenerpam
KaHane: https://t.me/javalib

Tayo Koleoso

Apress’

Beginning jOOQ: Learn to Write Efficient and Effective Java-Based SQL
Database Operations

Tayo Koleoso
Silver Spring, MD, USA

ISBN-13 (pbk): 978-1-4842-7430-9 ISBN-13 (electronic): 978-1-4842-7431-6
https://doi.org/10.1007/978-1-4842-7431-6

Copyright © 2022 by Tayo Koleoso

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Josh Rose on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484274309. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7431-6

Table of Contents

About the AUhOFccccmmiemmmssmnmsns s ann s vii
About the Technical REVIEWETccccmsssemmmmssnsmsssnsssssnsssssnsssssnssnssnnsnns ix
Chapter 1: Welcome t0 jO0Q..........ccccmrmmssnmnmmmssssnnnssssssnsnssssssnsnssssssnnsssss 1
Database Operations in Java: The Good Partsccccoevvrvnirinnsnsnennsensensennns 2
Database Operations in Java: The...Not So Good Parts..........cccoevrrveriernnenseriennen 4
You Have Got t0 Be JOOQINGcccceverreiernerinisersse s ses e sesesessenens 9
JOOQ FEALUIE TOUFecveerereeerresertec e se e e se s e as e s se s e se s 10
Database AWArE..........ccoreerrererere e 11

Code GENEratiONcccrvverrrrrer e 11

TYPE SAELY ...veecreerrre s 12
Domain-Specific LANQUAGEccceveverreriereriererserereesessesessessssessessessssessessesas 12
TOOING SUPPOI.....eiverreerierertererre s s s e s e e e s e s saesa s e saesaesas e naesaees 13

JVM LANQUAGES ..c.eeeeereerereeneeseresseessesesesseessessesssssessessessssssessessesssessessenses 14
Chapter 2: Getting Started with jOOQcccecsseemrrssssnnnnessssssnsessssnnnns 15
EAen AUTO Mt ..o 19
Setting Up JOOQceeeerrrrrcesere e se s sn s s sensans 20
Install Dependencies for Commercial-Licensed jOOQ..........cccocevvvrerererennan 22
CRUD With JOOQc.cvreeeereresessssresesssssesessssssesessssssesesssssssesssssssessssssssssssssssesans 24
Your SQL Dialect and YOU.........covierermrerenmssssssesesssssssse e sessssssssssesens 25
Tools of CRUD in JOOQccccvvernerircrirsserssesesesess s sssesesesessssessssesessesessenens 28

iii

TABLE OF CONTENTS

Select StateMeNtS ... ———— 34
Insert StateMeNtS ... s 63
Update Statements.........cccovvvininnnnini s 66
Delete Statements ... 67
Alternative Data ACCESS MOUEScccvvreresmrrnesnnese e snenens 69
TraNSACTIONScucererirreeie s 73
Ly T T O 76
0] 110 T =13 78
Connection Management...........cccovvrvninnnnnnnn e 79
Schema, Catalog, and Multi-tenant Deployment............ccccovvnvnininnninienens 81
Query Management..........ccovvneererenensnesesese e sess s sessssssans 84
Query Lifecycle Integration............cccevrneresnnnnnnsesesssssesesese s 86

Chapter 3: Working with jO0Q.........ccccnssemmmmmssssnnsmmssssssssssssssssssssssnsnens 89

LA L= 11T 00T 89
Tools of j00Q Code GENEration..........ccceeeeeerrieriresernsers e seeaeens 90
Working with Generated COdeccocoerererrecrererereseree e 109
CRUD with Generated COde...........coovrerrnrmrersenerenerrssesessesesssesessesessesessssesenses 109
Advanced Database Operations.........cccocvvrirnnnnnnnnsne e 117
JOINS oo ——————————————— 117
Batch OPerations........cccveevererverieresensersere s sere e sse s s saesessessessessssessessens 128
Advanced QUErY SYNaX.........ccovererinernsesnesess s sens 137
Chapter 4: Integrating with JOOQ..........coecmmrrnssennnmsssssssnessssssssessssnns 145
Java Persistence APl With jOOQcooreerercrmrennesesese e 146
Generate JPA ENtItieSccoveevevenenesernseseseses s 147
Generate from JPA ENtitieS......c.covverninnnennese s 151
Generate SQL QUETIES........ccccvererirminsnesirissssssse s 153

iv

TABLE OF CONTENTS

Spring Boot and jOOQ ... s 162
Configure jOOQ in SPring BOOL..........cccocvrerreccrncerin e 163
Quarkus and jJOOQ........ccoreeeerererreerere s re s se s ee e eesanans 168
Chapter 5: Packaging and Testing jOOQccocccnmmmsssnnnnmssssnnnnssssanns 173
Package Code With JOOQcccceeeeerrrnnesesrrsssese s sessssssenes 174
When You Don’t Need Code Generation..........c.cccvvevenenenssesensesessesessnsenenns 175
When You Don’t Have an Active Database Connection............c.coovveenenenens 177
When Your Schema Needs to Incrementally EVOIVEccccovverierenenseniennens 178
Testing With jOOQ........ccccirirrrrrn e e 185
Tools of the (SQL) Testing Trade........c.ccocvvrvrrrienninsnnse e sessennens 187

Unit Testing With jOOQccoorrneererrrrrssesese e ssenes 191
Integration Testing with Docker and TestContainerscccoevvvereresernnnen 198
INA@X..ueeeiiienisssnnssssnnnssssns s sssssn s s ssn s s sssnnssssnnnsssnnanssnnnnssnnsnssnnnnssnnnnnnns 211

Eweé 6onblwe kHUr no Java B Hawem Tenerpam KaHare:
https://t.me/javalib

About the Author

Tayo Koleoso is the Founder and CEO of
LettuceWork (www. lettucework.io), the
platform dedicated to engineering culture.
He created the Better Managed Development
method for building and sustaining an effective
product engineering culture. He's a lifelong
learner, engineer, and engineering leader
committed to building people and software in
a healthy, sustainable, and effective ecosystem.
Outside of tech, comedy is the only thing he

consumes in large quantity. King of the Hill,
Peep Show and 30 Rock are his comfort telly,
I tell you what.
He got his start in software engineering as a teenage database
programmer with Oracle 8i. The jOOQ platform is therefore a natural fit and
areturn to his roots: his love affair with SQL.

vii

https://www.lettucework.io

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated in 2018
from BITS Pilani, where he studied mechanical
engineering. Currently, he is working at
Mercedes Benz Research and Development
India Pvt. Ltd. as an ADAS Engineer. He has
also co-authored Machine Learning for
OpenCV 4 (Second Edition), The Computer
Vision Workshop, and Data Science for
Marketing Analytics (Second Edition) by Packt.
When he is not writing blogs or working on

projects, he likes to go on long walks or play
his acoustic guitar.

Ewé 6onble KHUr No Java B Hawem Tenerpam kaHarne:
https://t.me/javalib

ix

CHAPTER 1

Welcome to jOOQ

I got my start in software engineering (and really, serious computer business)
at 15 years old, with Oracle 8i SQL. Yes, I've been an old man from a young
age, technologically speaking. Playing with SQL* Plus, trying (and failing) my
first Oracle SQL certification exam, before I even started university, taught me
the value of getting SQL right. Don’t take it from me, take it from this chap:

I was a data access purist: I like my DAOs chilled, my
PreparedStatements prepared, and my SQL handwritten with
the care and tenderness of a lover... The world moved on to
Hibernate, Java Persistence API (JPA), and everything in
between... I still believe in raw SQL - a well-crafted SQL state-
ment will outperform Object-Relational Mapping (ORM).

—A tall, dark, dashing young and cool man, with flowing
locks of jet black hair and piercing brown eyes!

That tall drink of SQL? Probably me; I don’t know. The point is I deeply
appreciate Structured Query Language (SQL) and all it has to offer. The

«“

industry’s been going gaga about NoSQL because it’s “easy to use” and it
“scales quickly,” but the fact of the matter is that SQL is still the undisputed
king of Online Analytical Processing (OLAP). When you want sanity

and integrity in your data, SQL is there. When you want (most of?) the

'Editor’s note: Oh brother. Here we go again.

2] say “most of” here because different Relational Database Management Systems
provide varying degrees of ACID strength.

© Tayo Koleoso 2022 1
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_1

https://doi.org/10.1007/978-1-4842-7431-6_1

CHAPTER 1 WELCOME TO JOOQ

guarantees of reliable transaction handling (a la ACID), you're still going to
need solid SQL in your stack. Not for nothing, database stored procedures
will typically outperform application-layer (e.g., Java, .Net) processing in
many cases. In the words of the late, great Thanos: “SQL is inevitable. It’s in
the interests of your application’s scalability and correctness to get it right.”

Unfortunately, SQL gets very short shrift from devs nowadays. The
database is just another “black box” that we’'re supposed to yell commands
at, so it yields some data and then we move on. It’s not until our queries
progressively degrade due to preventable problems; our schema is an
incoherent mess after two versions of our applications; SQL injection
attacks expose our weaknesses; the application chokes on queries
returning more than a few hundred rows. One of the dark sides of SQL is
that you're not likely to realize that your SQL query is returning incorrect
or incomplete data at first glance. You ran a query, it returned some
queries, and that’s that, right? Yikes.

This book isn’t about the fundamentals of SQL. Or even the joys of
SQL per se (there are many). This book is about taking a different look at
handling SQL work in Java.

Database Operations in Java: The Good
Parts

Your options for handling SQL data in the Java world are fairly
straightforward:

1. JDBC (Java Database Connectivity): JDBC is the
most fundamental API supporting Relational
Database Management System (RDBMS) access. It
provides

o Connection management

e Direct SQL statement control

CHAPTER1 WELCOME TO JOOQ

o Stored procedure and function execution
e Mostly SQL injection safe componentry
o Transaction management

Save for one or two JakartaEE specifications, pretty
much everything else RDBMS related in the Java
ecosystem is based on JDBC. Because of JDBC, we
can then have...

Mapping Frameworks: Yes, I'm talking about
Object-Relational Mapping (ORM) frameworks

like Hibernate, MyBatis, and EclipseLink. These

are tres convenient frameworks, based on the
premise that developers don’t want to spend any
time...developing SQL or other database-related
constructs. Neato. With these mapping frameworks,
you get to define some classes, slap some
annotations on them and the framework:

e Maps your java classes (the object model) to your
database tables (the domain model). This mapping
is used to convert query results into java objects,
known as entities. These entities are managed
objects - like a concierge service - changes to the
entities in memory are tracked and persisted by the
ORM runtime.

o Allows you to declaratively model the relationships
between your tables in your RDBMS, using java
object relationships (is-a, has-a type stuff). An
absolute cornucopia of annotations supports this
feature of ORMs.

CHAPTER 1 WELCOME TO JOOQ

o Completely spares you of any details related to the
SQL involved in all this magic. It just works.

e Provides declarative transaction handling - with

more annotations.

o Provides an additional query language, Hibernate
Query Language (HQL), that introduces an object-
oriented flavor to the mix. This way, you can
abandon SQL altogether (!) and just speak fluent
OOP all the time!

Most ORM providers offer some form of caching of the results of
database queries. The goal here is to save the travel time to the database
for subsequent trips to the database. So that when one user loads some
data once, if they request the same rows, it’s already in memory.

Then we have the Java Persistence API (JPA). This is a JakartaEE
specification that attempts to standardize the usage and behavior of ORMs
in the Java platform. The various providers (Hibernate, etc.) implement
this specification to varying degrees. They each also have implementation-
specific syntactic sugar that isn’t supported by the API. The API still allows
you to write your raw SQL if you like, and the results can still be managed
objects. Pretty neat.

In addition to all this, a framework like Spring offers the JdbcTemplate
as a wrapper around JDBC proper. SQL in the Java system is just one raging
party of convenience. Nice!

Database Operations in Java: The...Not
So Good Parts

Ask yourself this: why aren’t JavaServer Pages (JSP) and JavaServer
Faces (JSF) as wildly popular as, say, React.js or Vue.js, when front-end
development is concerned? A lot of Java-based organizations are happy to

CHAPTER 1 WELCOME TO JOOQ

have Java or Kotlin Spring Boot back ends, but fronted by not Java. Because
when you care about performance and resource efficiency in a domain like
the browser, nothing beats raw JavaScript.

And I say this as someone that’s spent a fair bit of time teaching about
JSF and answering questions on StackOverflow. Don’t get me wrong: JSF
is super convenient. Heck, that’s why I got into the business of JSF in the
first place: a cheap, convenient, and practical way to belch out markup and
scripting into a web page. But when no one’s watching, I know. I know that
raw JavaScript is still where it’s at. If you want to make your browser dance,
deal with the quirks and nuances of individual browsers, you turn to the
language invented for browsers. These hips stylesheets don't lie.

Yet here we are, where many have decided that SQL should take a
backseat when interacting with databases. Park the language built for the
platform in the garage; Java, the language of kings, is preferable. In many
scenarios, it isn’t. Here are some reasons why:

1. JPAisn’t aware of what type of database you're
using, which is a shame, when you consider that
there are specific quirks, features, and limitations of
individual databases, for example:

e MySQL doesn’t support the INTERSECT or EXCEPT
set operations; FULL JOIN is also off the menu. You
wouldn’t know until you tried to use it and your
operation chokes.

e JPA doesn’t know what to do with nulls in the ORDER
BY clause; there’s also no support for the ORDER BY
NULLS FIRST clause from standard SQL.? You're on
your own here.

* Coming soon with Hibernate 6: https://docs.jboss.org/hibernate/orm/6.0/
userguide/html_single/Hibernate User Guide.html#hql-order-by

https://docs.jboss.org/hibernate/orm/6.0/userguide/html_single/Hibernate_User_Guide.html#hql-order-by
https://docs.jboss.org/hibernate/orm/6.0/userguide/html_single/Hibernate_User_Guide.html#hql-order-by

CHAPTER 1

WELCOME TO J0OQ

JPA doesn’t deal well with the IN clause in some
scenarios:

¢ When you want to take advantage of query plan
caching

¢ When there are nulls in the list of parameters
passed to the IN clause

PostgreSQL supports a massive array of data types
that are hyper-specific and hyper-optimized to
some use cases. There’s a wide assortment of data
types you can leverage in this RDBMS that you will
have to do a bunch of extra work to support with
UserTypes in Hibernate.

Many of the mainstream database providers
(Oracle, PostgreSQL, and MySQL at least) provide
document storage and SQL querying - that’s

right, you can save your JSON documents in

these databases, query, and navigate inside the
documents with SQL. Basically combine NoSQL
and SQL in the same box. Some benchmarks have
shown the performance to be comparable to the
likes of MongoDB up to certain scales. These aren’t
your grandmother’s RDBMSes.

“But I want to make my application portable.” Your

enterprise has spent borderline sinful sums of money

on an Oracle license, but you're going to use like 5% of

its capabilities, like a really fancy Excel spreadsheet?

CHAPTER1 WELCOME TO JOOQ

Even with native query capabilities, neither JPA nor
Hibernate will save you from yourself. Your raw SQL
is still open to SQL injection if you make the right
mistakes. Your SQL could still be incorrect, and you
won'’t find out until you try to execute the native
query. Java Persistence Query Language (JPQL)

and Hibernate Query Language (HQL) aren’t going
to save you either. You won't find out your query
syntax is broken or incorrect until you try to run it.
And if you accidentally make changes to a managed
JPA entity, it’s going to be committed to the database
the first chance it gets.

Remember the caching that Hibernate and other
tools will do for you by default? Guess whose RAM
is slowly being devoured? Go on, guess. You might
be surprised to find out that every entity retrieved
and managed by a single hibernate session is
cached - for just that hibernate session - so that in
a large enterprise application with any number of
concurrent users, they’re all liable to hold copies
of exactly the same data in RAM of the application
server. Imagine how thirsty your application will get
at scale!

Can you confidently say you know what’s going

on inside of Hibernate or EclipseLink? Have

you tried to look at the actual queries being
generated by Hibernate? You might be in for a lot of
disappointment. There are many scenarios where
Hibernate is simply wasteful with database trips that

are hidden from view:

CHAPTER 1 WELCOME TO JOOQ

e Batch inserts and updates aren’t enabled by
default, and you're going to do a bit of work to fully
support both.

o Even more specifically, using GenerationType.
IDENTITY with PostgreSQL and some others,
Hibernate will still ignore any batching directives.*

5. The challenges of an ORM really get in your face
when you need to scale. A couple rows, maybe a
couple hundred, and you could skate by. Larger
result sets, on the other hand, are sometimes not
practical (see the previous discussion: loading all
retrieved entities into memory). You could struggle
to handle an increase in query volume. JPA 2.2
introduced support for more efficient streaming
from the database; but again different kinds of
databases handle this feature differently. So that
despite your best efforts, MySQL and PostgreSQL
could still very well retrieve the entire ResultSet,®
ignoring your JPA 2.2 expectations of efficient results
streaming.

6. Fundamentally, ORM as a concept is at odds with
relational data representations. The technical name
for it is the Object-Relational Impedance Mismatch.
Don’t take it from me; ask the nerds at Hibernate
themselves®:

*https://vladmihalcea.com/postgresql-serial-column-hibernate-identity/

*https://vladmihalcea.com/whats-new-in-jpa-2-2-stream-the-result-of-
a-query-execution/

®http://hibernate.org/orm/what-is-an-orm/

https://vladmihalcea.com/postgresql-serial-column-hibernate-identity/
https://vladmihalcea.com/whats-new-in-jpa-2-2-stream-the-result-of-a-query-execution/
https://vladmihalcea.com/whats-new-in-jpa-2-2-stream-the-result-of-a-query-execution/
http://hibernate.org/orm/what-is-an-orm/

CHAPTER1 WELCOME TO JOOQ

The way you access data in Java is fundamentally different
than (sic) the way you do it in a relational database. In Java,
you navigate from one association to another walking the
object network. This is not an efficient way of retrieving data
from a relational database. You typically want to minimize
the number of SQL queries and thus load several entities via
JOINs and select the targeted entities before you start walking
the object network.

Point is that past a certain point, you're either going to be dealing with
a mess of annotations and a hopelessly complex entity class graph, or
you're going to need to roll up your sleeves and get SQL-y.

You can’t avoid writing SQL if you're going to do data access correctly
in Java. This isn’t a dig at the gang over at Hibernate; that framework
is a dang miracle for many use cases. But we're not here to talk about
Hibernate, are we?

You Have Got to Be j00Qing

Yes, I'm here to give you the good news of the jOOQ framework. First
things first: jOOQ is not a complete replacement for Hibernate, JPA, or
anything in that realm. JPA delivers on its goals of standardizing most

of RDBMS access for Java developers. Hibernate is hella powerful and
convenient; particularly for write operations, you can ORM to your heart’s
content and delight. I mean, what can beat the convenience of simply
updating a field of a java object and persist-ing or flush-ing?

For adult-tier, large-scale SQL data wrestling? Where there are a lot of
read operations? You'll need the big guns. jOOQ is as big a gun as you'll
get in this business of ours. Don’t take it from me, take it from an actual
ORM expert:

CHAPTER 1 WELCOME TO JOOQ

How about this chap:

...But while abstracting the SQL write statements is a doable
task, when it comes to reading data, nothing can beat native
SQL...native querying is unavoidable on almost any enterprise
system...While you can fire native queries from JPA, there’s no
support for dynamic native query building. jOOQ allows you to
build typesafe dynamic native queries, strengthening your
application against SQL injection attacks. jOOQ can be inte-
grated with JPA, as I already proven on my blog, and the JPA-
JOOQ combo can provide a solid data access stack.

—Vlad Mihalcea”

Vlad was a contributor to the Hibernate platform and continues to
support his own query performance optimizer, and he’s an authority on
the relationship between Java and relational databases. Cheers to that.

If you think of JPA and its implementations as being foo Object-
Oriented Programming (OOP) friendly, jOOQ seeks to bring a balance to
the force. Providing strong awareness of the nuances of safe, effective, and
efficient SQL handling, all the while maintaining a solid grip on the object-
oriented side of things. So what'’s in the jOOQ box?

jo0Q Feature Tour

Alright, gather round everyone®! Let me sing you the song of mypeopte
jOOQ. Ohhbh, this is a tale of...

"https://blog.jooq.org/2015/04/14/jooq-tuesdays-vlad-mihalcea-gives-
deep-insight-into-sql-and-hibernate/

8Editor’s note: How many people do you think are concurrently reading a single
copy of your book?

10

https://blog.jooq.org/2015/04/14/jooq-tuesdays-vlad-mihalcea-gives-deep-insight-into-sql-and-hibernate/
https://blog.jooq.org/2015/04/14/jooq-tuesdays-vlad-mihalcea-gives-deep-insight-into-sql-and-hibernate/

CHAPTER 1 WELCOME TO JOOQ

Database Aware

jO0Q is unapologetically RDBMS vendor aware.® Unlike those other guys,
jOOQ provides API kits built specifically for a wide range of major database
vendors. This way, when you're using jOOQ tools and APIs, you can be
sure you're idiomatically correct; the syntax and semantics of your code is
transparently optimized and tightly mated with your database of choice.
And the delightful part of this is that it doesn’t translate to a tight coupling
to your Java code. Because jOOQ skews closer to the database, your Java
code can still remain technically database agnostic; your jOOQ library
implementation will quietly handle the finer details and nuances of your
specific database of choice. You can then quite easily flip a configuration in
jO0Q to support another, should you choose to switch databases.

Code Generation

jO0Q is all about convenience when it comes to the developer experience.
Observe.
Starting with any one of the following:

» Existing database schema

e Database table

o Stored procedure or function
o Sequence

o JPA entity

o XML file

Swww. jooq.org/download/support-matrix

11

http://www.jooq.org/download/support-matrix

CHAPTER 1 WELCOME TO JOOQ

o Plaintext file containing SQL
e Liquibase YAML, XML, or JSON file
e Custom data types

jOOQ will generate java classes, JPA-annotated entity classes,
interfaces, or even XML that correctly maps what is represented in the
source material. If you're starting with stored procedures or functions,
jOOQ will generate “routines”: classes that represent that database code,
making it as convenient as physically possible to use what's already
available.

Type Safety

All the entities, data, and fields you’ll be working with are typesafe -
guaranteed correct. The fields from your database tables, bind variables
from your stored procedures and functions, etc. are translated to the
closest match available in Java.

Domain-Specific Language

jOOQ provides a DSL that mirrors the specific SQL dialect that’s
implemented by your choice of database vendor. Even beyond that, the
library integrates the quirks and non-standard features of the supported
database vendors. You know the ones, the bad boy databases (looking at
you, Oracle). This compile-time checking of your SQL syntax means that
you'll have to go out of your way to write broken or otherwise unsupported
SQL. No more waiting till runtime to find out your SQL doesn’t compile!

12

CHAPTER1 WELCOME TO JOOQ

Tooling Support

You also get a robust toolkit to support a lot of developer convenience and

safe usage of the library:

Maven: jOOQ offers configurable Maven plugins and
tools to support a variety of tasks around the code

generation feature.

Command Line: Also supports the powerful code
generation feature of jOOQ. Additionally, there’s a
Schema Diff feature that helps compare two schemata
and output the difference.

Flyway and Liquibase: You can use the two most popular
DML and DDL version control libraries with jOOQ.

Raw SQL Vendor Safety: Should you opt to not use
the SQL DSL, instead choosing raw SQL, you can use
jOOQ’s Parser anywhere in your code to ensure that
the SQL you're writing is correct and valid for the
selected database.

SQL Disabler: The P1ainSQLChecker allows you to
disable support for raw SQL anywhere in your project.
Drop it in your Maven POM.xml and it’ll disallow
compilation of any raw SQL in your project. This way,
you can guarantee that anyone that’s working on your
project or codebase will have to use jOOQ-generated
code and jOOQ’s fluent API; eliminating the probability
of incorrect SQL creeping into the code.

13

CHAPTER 1 WELCOME TO JOOQ

JVM Languages

We get to take the jOOQ box on tour! You can use jOOQ with

¢ Kotlin
e Scala
o Groovy

This has been a 50,000 ft. flyover of jOOQ and what it brings to the
table. I want to stress here that jJOOQ isn’t a replacement for ORM - the
right tool for the right job, etc. Where Hibernate, etc. don’t give you the
coverage you need, that’s where jOOQ swings into action.

So! Whaddya think so far? Pretty neat, huh? I'll just catch my breath for
amoment here, and see you in the next chapter!

14

CHAPTER 2

Getting Started
with jOOQ

Let’s take this thing for spin! But first, you should get to know these classes

and interfaces; they're at the heart of 75% of what you'll be doing in jOOQ:

1. org.jooq.impl.DSL

This is the sturdy, wise grandparent of most of
jOOQ’s functionality. With this class, you can

Manipulate parts of a strongly typed SQL query in a
typesafe manner.

Access database functions (concat, coalesce, etc.)
as if they were java methods.

Specify database dialects. This is for when you need to
perform operations that are unique to your datastore
(Oracle, Amazon Redshift, PostgreSQL, etc.).

Carry out Database Definition Language (DDL)
operations like ALTER, CREATE, DROP, etc., all in a
typesafe manner.

Perform more mundane tasks like
o Constructing plaintext SQL

o Configuring the database connections

© Tayo Koleoso 2022 15
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_2

https://doi.org/10.1007/978-1-4842-7431-6_2

CHAPTER 2 GETTING STARTED WITH J0OQ

Almost all of its functionality are static methods in
the class, so you'll typically just need to perform an
import static org.jooq.impl.DSL.* to useits
features.

2. org.jooq.DSLContext

Where DSL offers almost all its functionality in

static methods without state, DSLContext is more
object oriented. There’s some overlap between

this component and the DSL class, but there’s a
fundamental difference. It’s really in the name DSL:
Domain-Specific Language Context. Keeping state
in a context object provides runtime capabilities that
you're not going to get from DSL - comes in handy
when your SQL operation is a multi-step one or is
part of alonger process. Overall, DSLContext offers

e Fluent programming style
o Stateful components

o Better integration with dependency injection
frameworks like Spring (more on that later)

The fluent programming style of DSLContext is
remarkable. This isn’t your standard builder-pattern
style chain of method calls. This is a true DSL

that will prevent you from accidentally (or even
purposefully) constructing incorrect SQL. Each
method call in the chain is possible only if the
previous method call will correctly support it. Truly,
you’ll need to work super hard to construct incorrect
SQLin jOOQ. Because the DSLContext usage is
mostly stateful, you'll need to be more conscious of
thread safety when using this class.

16

CHAPTER 2 GETTING STARTED WITH J0OQ

3. org.jooq.conf.Settings

The Settings class will let you further customize

your jOOQ context with simple, straightforward

parameters that change the behavior of the API. An

instance of this class can help you control factors like

The kind of JDBC Statement that’s jOOQ uses - a
regular Statement or a PreparedStatement.!

Mapping different schemas in same jOOQ context.

Controlling the logging of SQL statements being
executed by jOOQ.

Disabling support for Java Persistence API (JPA)
annotations, for a slight performance improvement.

Configuring the behavior of jJOOQ’s internal SQL
parser - for example, to set it up for a specific SQL
dialect. This would apply if you're using jOOQ to
process raw SQL strings instead of its typesafe options.

Configuring JDBC-specific options like
queryTimeout and maxRows.

Configuring batch size for batch operations.

4. org.jooq.Configuration

The Configuration class contains the core

configuration items that control how your jOOQ

runtime behaves. Configuration is responsible

''Unlike with standard usage of PreparedStatement vs. Statement, you're at no
greater risk of SQL injection by selecting one or the other in jOOQ. The difference
here is largely performance related, where PreparedStatement queries are
cacheable by the RDBMs.

17

CHAPTER 2 GETTING STARTED WITH J0OQ

for managing your database connection, plugging
into the jOOQ engine to customize its behavior on

a broader scope than just individual SQL queries.
org.jooq.Configuration provides methods that
allow you to plug in custom code that can replace or
support standard jOOQ functionality altogether.

5. org.jooq.meta.jaxb.Configuration

You'll be using this class to control the code
generation feature of jOOQ. It’s a direct analog of
ajOO0Q configuration file named library.xml.
Generating java representations of your database
tables, rows, columns, stored procedures, etc. is a
major feature of the jOOQ platform, and I'm looking
forward to getting to that part of this book! Yes: org.

joog.Configurationvs. org.jooq.meta.jaxb.
Configuration could lead to some awkwardness.

Which import statement is wearing it best? Trick question: it’s Becky.

18

CHAPTER 2 GETTING STARTED WITH J0OQ

Eden Auto Mart

I'm going to use a car dealership as the background for all the examples
that I'll be showing throughout this book. Eden Auto is a car dealer that

sells new and used cars via a web portal so that customers can

Search for cars by many different attributes of the
vehicle itself

Search across brands of vehicle

Search across a price range

On the back end, the staff of Eden Auto can

Upload cars for sale

Update existing prices and other attributes
Remove cars from the inventory

View existing inventory

Search the inventory for cars by many attributes

We're going to use a relatively simplified data model here just for the

purpose of demonstrating specific jOOQ features. Here’s what that looks like.

19

CHAPTER 2

BB vehicle_price_change

1%] price_change_id

125 vehicle_id

123 current_price
123 revised_price
£) last_changed

= complete_car_listing

123 vehicle_id
AEC brand

rec model
ABC trim

123 price

REC color

AEC style

& year

123 featured

GETTING STARTED WITH JOOQ

ER vehicle

1% vehicle_id

123 vehicle_manufacturer
123 vehicle_curr_price

&) vehicle_model_year
anc vehicle_status

ac vehicle_color

133 vehicle_model_id

122 vehicle_trim

123 vehicle_style

123 featured

@ created

P8 vehicle_archive

1% vehicle_id

123 vehicle_manufacturer
123 vehicle_curr_price

&) vehicle_model_year
ABc vehicle_status

At vehicle_color

133 vehicle_model_id

123 vehicle_trim

123 vehicle_style

123 featured

&) created

-

-

-

W
A

e=
.t
wer®

BB vehicle_trim
1% trim_id
ADC trim_name
133 vehicle_manufacturer_id [*~ - < PR vehicle_manufacturer
- : -------------- | 14§ manufacturer_id
Teal .. a4 manufacturer_name
. Tl AoC status
-~ Te . B
o g . £ Re
FB vehicle_model |9 "~ L
1%j vehicle_model_id iy BB vehicle_style
fec vehicle_model_name (o - - . _ |13 vehicle_style_id
. B ’ B o —
133 vehicle_style_id K anc vehicle_style_name
PY b e b J' =4I| moc vehicle_style_status

To help run some of the examples in this book, you can bootstrap with

the database definition that comes with the code sample attached to this

book.

Setting Up jO0Q

To start, you'll need to reckon with the particulars of the RDBMS you're

going to be working with. A lot of the beauty of jOOQ is how it allows you

to use pretty much any database with tons of convenience. Features that

aren’t available in your chosen database can be emulated transparently by
the jOOQ APL. For this book, I'll be doing most of the demonstrations with
MySQL, with some detours into the some other popular databases every

now and then.

20

CHAPTER 2 GETTING STARTED WITH J0OQ

I'll need MySQL's Connector/J database driver as a dependency:

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql-driver-version}</version>
</dependency>

On to the actual setup of jOOQ, where things get a little...interesting.
See, jOOQ is offered as both free and commercial software - a dual
licensing model. The license model determines (among other things)

e The SQL dialects you can use in your application
e The way you set jOOQ up in your project

For the free version of jOOQ, it’s a straightforward maven entry,
because it’s publicly available in the global Maven repo:

<dependency>
<groupld>org.jooq</groupId>
<artifactId>jooq</artifactId>
<version>3.15.1</version>

</dependency>

<dependency>
<groupld>org.jooq</groupld>
<artifactId>jooq-meta</artifactId>
<version>3.15.1</version>

</dependency>

<dependency>
<groupIld>org.jooq</groupld>
<artifactId>jooq-codegen</artifactId>
<version>3.15.1</version>

</dependency>

21

CHAPTER 2 GETTING STARTED WITH J0OQ

Simple enough, yes? Bueno. When you've paid for the commercial
version however, things get a bit more manual. Here’s how.

Install Dependencies for Commercial-Licensed
jo0Q

The dependencies for the commercial® version of jOOQ aren’t available in
public repositories because, well, they’re not free and thus not available
for public download. To get the commercial version (or a trial), visit www.
jooq.org/download/versions to download the version that matches your
version of Java.

<screenshot of versions page>

Once you've plugged in your particulars, you'll be prompted to
download a zip file containing

e Sources
o Compiled JARs
e Helper scripts
There are two helper scripts in the zip file:
e maven-deploy
e maven-install

Both helpers do the same thing with different targets: build and install
the jOOQ jars into repositories. maven-deploy will set up the jOOQ JARs
in a remote repository, so reach for that to set up the JAR in a central

2Commercial = Express, Professional, and Enterprise licenses

22

http://www.jooq.org/download/versions
http://www.jooq.org/download/versions

CHAPTER 2 GETTING STARTED WITH J0OQ

Artifactory or similar dependency repository. For a local maven repository,
reach for the maven-install script and you're sorted. After all this scriptin’
action, you can then add commercial jOOQ to your project like so:

<dependency>
<groupld>org.jooq.pro</groupld>
<artifactld>jooq</artifactld>
<version>3.15.1</version>

</dependency>

<dependency>
<groupId>org.jooq.pro</groupld>
<artifactId>jooq-meta</artifactld>
<version>3.15.1</version>

</dependency>

<dependency>
<groupld>org.jooq.pro</groupld>
<artifactld>jooq-codegen</artifactId>
<version>3.15.1</version>

</dependency>

It’s the same artifactId as the free version, but with a different
groupId:org.jooq.pro. You can use a trial license for the commercial
version of jOOQ by using org. jooq.trial for the groupId. The open
source version is just as functional for many use cases, but with limited
database vendor support and fewer features.? Also noteworthy that jOOQ’s
JDK support starts from JDK 6, all the way up to the latest (17, as at the
time of this writing). The older JDK versions are supported only with the
paid version.

*www. jooq.org/download/#feature-comparison

23

https://www.jooq.org/download/#feature-comparison

CHAPTER 2 GETTING STARTED WITH J0OQ

Tip The trial version of the commercial j00Q distribution will print
a message indicating that yes, you are indeed on a trial version of
the commercial jO0Q distribution. But rejoice, oh ye trial version
users, for jOOQ is effective as it is generous: set the org. jooq.
no-logo=true JVM property to disable the trial license warning
message.

And that’s it! jOOQ is set up in your project. Now to do stuff with it...

CRUD with jOOQ

With your jOOQ JARs in place, database driver configured, we now should
start using this bad boy. We're going to need to acquire connections, load
the driver, etc. If you haven’t done database work in Java before now, I'm
going to show you how the least cool way to do it in Java:

try(Connection connection = DriverManager.
getConnection("jdbc:mysql://localhost/test?user=testuserd
password=thisisaterriblepassword")){

//more to come
}catch(SQLException sqlex){

}

The goal of the preceding snippet is to acquire a database connection;
jOOQ can take care of everything following that. jOOQ on its own isn’t
too particular about how you acquire the connection if you follow some
established commonsense principles. This isn’t a particularly great way
to do connection acquisition in a modern application. You should be
using the javax.sql.Datasource class and connection pools instead of
manually wrangling connection drivers. But more on that later. For now,
we have a database connection, and thus it’s time to start jOOQin’

24

CHAPTER 2 GETTING STARTED WITH J0OQ

Remember DSL and DSLContext are the primary entry points into
the jOOQ ecosystem.

Fundamentally, most jOOQ operations will begin with some variation
of the following:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);

In the preceding sample

e Isupply the JDBC connection object (how I obtained

the connection isn’t important for now).

e AndIsupply adialect from the SQLDialect enum to
pass to the DSLContext.

According to the manufacturer, DSLContext isn’t always guaranteed to
be thread safe - it is a context object after all. However, if you personally
take sensible precautions, you could enjoy thread safety with this class.
Having provided DSLContext with a valid JDBC connection, you can now
get into the nitty-gritty of Create, Read, Update, and Delete (CRUD). But
first, a word from our sponsors...

Your SQL Dialect and You

While it’s not mandatory to set a SQL dialect on your DSLContext, it’s ideal
you do. See, RDBMSes have many different quirks as I've already covered.
Some of them are glaring and easily detectable. Other more trivial ones
can trip you up unexpectedly. Take my choice of MySQL database, for
example:

o Identifier Style: You might already be aware that
different databases use different quote styles for
identifiers. Because of this, standard SQL will have

25

CHAPTER 2

GETTING STARTED WITH JOOQ

select "e"."first name", "e"."last name" from

"employees" "e
but MySQL has*

select e . first name™, “e’ . last name™ from
“employees™ e’

Backticks, instead of double quotes. This isn’t to say
that you'll be denied a lot of functionality without
specifying a dialect. Au contraire, jOOQ will routinely
go out of its way to emulate features that are supported
natively by one or two databases but not by others, for
example:

Returning Keys: A SQL INSERT... RETURNING in
PostgreSQL will return with the generated keys of the
rows that have been inserted, and it’s immediately
available because of the insert operation. This is
provided for by the SQL standard but isn’t uniformly
supported by databases. Among those that do, the
implementation details vary. jOOQ can emulate this
feature for you, regardless of the kind of database
you're using. Fair warning here: depending on the kind
of support your database has for it, jOOQ may be forced
to silently initiate a second SELECT trip to the database
to retrieve the generated keys.

*You can control this behavior by configuring the ANSI_QUOTES option
for MySQL (https://dev.mysql.com/doc/refman/8.0/en/sql-mode.
html#sqlmode _ansi_quotes).

26

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes

CHAPTER 2 GETTING STARTED WITH J0OQ

e Dummy Tables: Different SQL databases allow you to
select from dummy tables in different ways. Oracle has
the famous DUAL table, for example. Sometimes, you
just want to run some functions, but then your RDBMS
requires you to specify a FROM clause - without offering
a dummy table. jOOQ supports select statements
without from clauses so you can do whatever sorcery
you like, with or without a dummy table.

If you don’t specify any dialect, you'll get the default SQLDialect.
DEFAULT and then via con Dios!

Caution For your own peace of mind, go ahead and configure the
org.jooq.conf.Settings.backslashEscaping property on
your Settings object. MySQL and some versions of PostgreSQL
support non-standard escape characters that can cause you a lot of
grief when you least expect it. This property lets j00Q properly handle
this “feature” from MySQL.

5Lukas: If you provide DSL . using(connection), then jOOQ will try to “guess”
the appropriate SQLDialect from the JDBC DatabaseMetaData - https://docs.
oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html

27

https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html

CHAPTER 2 GETTING STARTED WITH J0OQ

And that has been the word from our sponsors!

Thank you for reading!

Okay, let’'s now get into...

Tools of CRUD in jOOQ

jOOQ offers a lot of fine-grained control of the entirety of a SQL
statement - really, an insane amount of control at your fingertips.
Starting from a pretty high level, I'm going to go over some of the key
components that you're going to need to get familiar with if you're going
to CRUD with jOOQ:

1. org.jooq.Query

This is the fundamental unit of a SQL query in
jOOQ-land. It extends org. jooq.Statement along
with the jOOQ representations of other executable

28

CHAPTER 2 GETTING STARTED WITH J0OQ

database units of work like stored procedures and
functions. You can use it to execute

o Plaintext SQL that you pass in as an argument

e Strongly typed SQL fragments constructed using
the jOOQ API

It can help you convert a manually derived plaintext
SQL to ajOOQ DSL-typed SQL object and vice versa.
It's the quintessential representation of a SQL query;
use it to execute SQL statements when you don’t
need a return value from the operation (like Data
Manipulation Language operations).

2. org.jooq.ResultQuery

This class is basically org. jooq.Query, but you can
obtain return values from it, like query results. Some
notable qualities of this class:

o It’s efficient in that it doesn’t need an active
database connection to provide access to its
results - once the query has been successfully
executed, the connection can be discharged, and
you can interrogate your instance of this class for
all the query results.® This is useful when you are
resource conscious and want to protect against
long-running transactions. Compare this feature to
detached hibernate entities.

Lukas: It's time to deprecate that ancient feature of the mutable ResultQuery!
This won't be available in the future anymore. In the future, only
ResultQuery: : fetch and similar methods should be used.

29

CHAPTER 2

30

GETTING STARTED WITH JOOQ

o It provides typed or untyped result fetching,
comparable to what you get with the Spring
JdbcTemplate.

e It maps to custom Plain Old Java Objects (POJOs).

o Itsupports lazy fetching of query results using an
underlying database cursor. If you go this route,
be mindful that it depends on maintaining the live
database connection.

o Itsupports reactive programming.

o Itsupports streams via the java.util.stream.
Stream interface.

All told, it provides a very flexible interface for
wrangling query results. It’s as powerful as anything
you'll get with Hibernate or JPA, with much less
verbosity than what JDBC would put you through for

the same outcomes.
org.jooq.QueryPart

On its own, not too powerful. But it’s the parent type

of a large suite of classes that help you construct
complex queries dynamically. Compare this class to
the CriteriaBuilder in JPA or the Specification from
Spring Data JPA. To be clear, this API is exorbitantly
richer than either of what JPA or Spring Data provide.
Pretty much every fragment of the SQL standard
specification can be represented as variant of org.
jooq.QueryPart, for example:

o Fieldtorepresenta field that can be used
anywhere, in any kind of SQL statement

o Condition to represent predicates like WHERE, HAVING

CHAPTER 2 GETTING STARTED WITH J0OQ

o SOL to represent a whole SQL statement or fragment

e Table to represent a whole table, wherever a table is
needed in your query

e Row to represent tuples (or in layman’s terms,
something like a row of a table)

e Fieldtorepresent...yes, a column

e Constraint to represent a database constraint, as
part of a DDL operation

e Schema to represent the schema part of any SQL
query
This is a small sampling of the level of granularity
that QueryPart can get to. Heck, there are even more
specialized versions of each of these that offer specific
advantages. If you've ever dreamed of being able to
support a powerful dynamic filter as part of a search
function, but without concatenating strings of ugly
plaintext SQL all over the place, this is where you
want to be.

You get powerful and reusable components to
construct any kind of SQL use case you can dream of.
When you use jOOQ’s code generation feature, the
artifacts that are generated inherit from this family as
well. Incredibly powerful stuff.

org.jooq.Record

This is the parent class for representations of a row
of data from a table. This is in addition to jOOQ’s
capability to work with your custom POJOs and
Data Transfer Object (DTOs). You get the following
specializations of this class, among others:

31

CHAPTER 2 GETTING STARTED WITH J0OQ

e org.jooq.UpdatableRecord

Compare this to a hibernate entity: it’s a live
object that remains bound to the underlying
database row for its lifetime. This way, you can
modify the refresh, modify, or delete an instance
of UpdatableRecord, and it can reflect the
change in the underlying table.

When you use jOOQ’s generated artifacts, you'll
get classes that extend this one by default. This
applies only to tables with primary keys - without
primary keys, you'll get a different generated
artifact. Additionally, you'll be able to navigate to
related entities of an updatable record using its
foreign key references. Just like JPA! But better!
UpdatableRecords isn’t cached, so you can be
guaranteed you're always working with up-to-
date, live data. It’s also easier on RAM.

e org.jooq.TableRecord

This is what you get instead of an
UpdatableRecord when the underlying table
doesn’t use a primary key. So, you won’t be able
to refresh or update parts of these records; you'll
still be able to insert rows with this class, however.

e org.jooq.RecordMapper

Use this class for finer-grained control over the
translation of your query results. Compare this
to Spring’s RowMapper class.

32

CHAPTER 2 GETTING STARTED WITH J0OQ

5. org.jooq.Result

This is a container class to hold query results. In practice,
your Record objects or lists of Record objects will be
wrapped by an instance of Result. It's a Collection,
Iterable, List, and Serializable - so you can do

a lot with it (functional, reactive, and JDK Stream
programming). It’s interoperable with JDBC'’s ResultSet
as well. It has the added advantage that it doesn’t hang
on to the open database connection like the ResultSet.

Do you feel the power?

Do you?

I hope so because we're about to use this power for...

33

CHAPTER 2 GETTING STARTED WITH J0OQ

Select Statements

Let’s say hello to our old friend, DSLContext:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);
//hullo!

For starters, we need to be able to run a vanilla SQL query. Here’s
what that looks like. Given a custom CompleteVehicleRecord POJO thatI
manually created:

public class CompleteVehicleRecord {
Long id;
String brand;
String model;
String trim;
BigDecimal price;
String color;
//getters, setters, toString and hashCode;

}

This class encapsulates an individual vehicle for sale in the database.
I'm interested in selecting all available vehicles in the database. In SQL
terms, it would look something like this:

SELECT * FROM edens car.complete car listing;

34

CHAPTER 2 GETTING STARTED WITH JOOQ
Here’s how it looks in terms of jOOQ:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);
ResultQuery resultQuery = context.
resultQuery("SELECT * FROM edens_car.complete_
car_listing"); (1)

List<CompleteVehicleRecoxrd> allVehicles =
resultQuery.fetchInto(CompleteVehicleRecord.
class); (2)
logger.info(allVehicles.toString());

Nothing fancy, just your vanilla select statement.” Here:

1. Ipassin my plaintext SQL to the
DSLContext#resultQuery method to retrieve all
available cars. I choose to obtain a ResultQuery
from the execution because I want to get the results
from it. If this were a query that I didn’t want results
from (say, a delete or insert statement), I would have
just used the Query class instead.

2. Onthe ResultQuery, I call the fetchInto method to
automatically map each row from the results by

e Mapping each row returned into an instance of
CompleteVehicleRecord

e Putting all the mapped rows into a list of
CompleteVehicleRecord

jO0Q is able to infer the mappings between the
fields of my POJO and the columns returned in the
jOOQ select statement. As you've probably guessed,

"This isn’t the best type of select statement - you want to be specific about the
columns you want in a query. However, the focus of this book is on working the
best way with jOOQ, not necessarily SQL.

35

CHAPTER 2 GETTING STARTED WITH J0OQ

the names of the class variables and the columns in
the SQL query need to match. There are other ways
to deliberately establish this mapping; we'll check
them out later in the book.

Alternatively, I could use the fetchMany method so I can take more
control of mapping each row:

resultQuery.fetchMany().forEach(results -> {
//container for all the results
results.forEach(record -> {
logger.info("New result row");
logger.info("Brand: {}",record.getValue("brand"));
logger.info("Model: {}",record.getValue("model"));
logger.info("Trim: {}",record.getValue("trim"));
logger.info("Color: {}",record.getValue("color"));
logger.info("Price: {}",record.getValue("price"));

};
};

The fetchMany method is guaranteed to never return a null, so don’t base
any logic around null checking. If I were expecting just one result, I'd have
used the fetch method instead. You can also use this method to execute
multiple SQL statements in the same execution - this is an understated but
very powerful method. Keep reading for more uses of this method.

I could also supply query parameters to my SQL statement like so:

ResultQuery resultQuery2 = context.resultQuery("SELECT * FROM
edens_car.complete car listing where color = ?","BLUE");

Query bindings - the bit where I say “BLUE” - are how you provide
parameters to your SQL statements. This approach to binding query
parameters offers some SQL injection protection when combined with the
PreparedStatement configuration on the underlying DSLContext APIL.

36

CHAPTER 2 GETTING STARTED WITH J0OQ

Remember jOOQ can use the JDBC PreparedStatement
component by default if you configure it to, so your parameters can
still benefit from the inbuilt SQL injection safety in that component.
You can also cache the underlying PreparedStatement by calling
the keepStatement method on the Query object; this gives a
performance boost for frequently used, stable queries.

Let’s look at some much cooler, purpose-driven uses of the jOOQ
library.

The SELECT DSL

jO0Q offers to protect you from malformed SQL, SQL injection,

missing parameters, and overly restrictive and ugly code. It does this in
incrementally powerful ways, so you can move at your own pace. Let’s
revisit the DSLContext in the context (hehe) of the SELECT statement again:

SELECT * FROM edens_car.complete_car listing
I can rewrite the preceding plaintext SELECT * like so:

DSLContext context = DSL.using(connection,SQLDialect.MYSQL);
List<CompleteVehicleRecord> allVehicles =
context.select().from(table("complete car listing")).
fetchInto(CompleteVehicleRecord.class);

Both statements are functionally identical and will return the same
results:

1. select() isjOOQ shorthand for SELECT *.jO0OQ
is chock full of shorthand like this that helps to cut
down on verbosity.

37

CHAPTER 2 GETTING STARTED WITH J0OQ

2. tableis afunction from the DSL class, imported
statically. It helps me convert the plaintext SQL
name of the table to an instance of org. jooq.
Table. The effect of this is that jOOQ can treat my
statement almost like a typesafe version.

What I have here is still partially in the plain SQL realm, and as a result,
I must use helper functions in the DSL class to sort of translate my plain
SQL into something like the typesafe API of jOOQ. Think about it this way:
if I'm still using plain strings in key parts of my select statement, jOOQ still
can’t 100% guarantee correctness in many aspects. This DSL makes sure
that my queries are syntactically correct, but it can’t make guarantees as to
the semantic correctness - I'm still allowed to make typographical errors in
the names of tables, columns, etc.

Now, the SELECT * is a tad wasteful, so I would typically prefer to use
SQL projections to be more succinct about which columns I'm interested in:

List<CompleteVehicleRecord> allVehicles = context.select(field(

name("brand")),field("model"),field("price"))
.from(table("complete car listing"))
.fetchInto(CompleteVehicleRecord.class);

Like the table function, field comes from org.jooq.impl.DSL, and
I'm using it here just to bridge the gap between my hand-crafted, gluten-
free, artisanal SQL and jOOQ’s strongly typed, DSL-centric world. The
field function converts my raw SQL field name into an instance of org.
jooq.Field, table will convert my table name to an org.jooq.Table, and
name will create an instance of org. jooq.Name. All of them are QueryParts,
and they form the basis of being able to construct powerful and complex
queries.

38

CHAPTER 2 GETTING STARTED WITH J0OQ

Another way I can construct a select statement is by setting up the
relevant fields individually:

Field<?» brandField = field("brand"); (1)

Field<?> modelField = field("model",String.class);
Field<BigDecimaly priceField = field("price", BigDecimal.
class); (2)

List<Field» fieldList = Arrays.asList(brandField,modelField,
priceField); (3)

List<CompleteVehicleRecord> allVehicles = context.select(fieldList)
.from(table("complete car listing"))
.fetchInto(CompleteVehicleRecord.class);

logger.info(allVehicles.toString());

In the preceding snippet

1. Imanually construct an instance of org.jooq.Field
from plaintext “SQL.” Note the wildcard syntax I'm
using here, Field<?>. It's purposeful: jOOQ is all
about type safety, so at many turns it would like
something resembling type information. Get used
to specifying the types of Field, and when you can’t
provide it, use the wildcard.

2. Even better, I can supply type information on both
sides of the variable declaration. Field can be
typesafe, and the field function can be provided
with type safety info. Because I'm not quite using
jOOQ’s typesafe-generated code, any additional
information I can provide along with my hand-
carved SQL can be used by jOOQ to protect the
integrity and reliability of my SQL statements.

39

CHAPTER 2 GETTING STARTED WITH J0OQ

3. Icanthen stash all the necessary fields into a
standard java List.

4. The list can then be used by any part of ajOOQ
query.
It’s really powerful stuff, this mechanism. I can gain a lot of reusability
and flexibility in my code with this approach, even when I'm not
generating code with jOOQ. I'll be showing you more scenarios of this sort

of reusability as we go - this is the power of the QueryParts components in
the jOOQ library.

Tip Use the DSL#name function to handle your raw SQL identifiers
in a schema-safe format. It can also provide SQL injection protection
when quoting is enabled for the DSLContext.

Other options with select include
e Runninga SELECT DISTINCT with selectDistinct.

o Selecting from dummy tables (like DUAL for Oracle, or
nothing for PostgreSQL) by running selectOne().fetch.
This feature depends on a correctly set SQLDialect
parameter in the DSLContext.

e Combining individually constructed SELECT
statements; more on this later in the book.

What if I want a query within a query? You know it! It’s time to dig into
SELECTing...

40

CHAPTER 2 GETTING STARTED WITH J0OQ

With the WHERE DSL

Having decided on which columns I'm interested in from my vehicle
table, I want to be more restrictive about which rows come back - enter the
almighty WHERE clause. Here’s what could look like:

List<CompleteVehicleRecord> allVehicles = context.select(

field("brand"),field("model"),field("price"))
.from(table("complete car listing"))
.where(condition("color = 'BLUE'"))
.fetchInto(CompleteVehicleRecord.class);

I'm technically using the DSL here, though not to great effect. This is
still very much a plaintext SQL where clause, and I should be ashamed of
myself - which I am. So, I'll try again with bind variables like so:

context.select(field(name("brand")),field("model"),field("price"))
.from(table("complete car listing"))
.where(condition("coloxr = ?","BLUE"))
.fetchInto(CompleteVehicleRecord.class);

This is a bit safer from a SQL injection perspective. I'm still responsible
for making sure that the syntax of the preceding snippet is correct and
will come out properly when the whole thing’s stitched together. Overall,
this still reads better and more fluently. One of the things I love about the
jOOQ DSL is that it’s devoted to making sure one doesn’t make mistakes
in constructing SQL. For example, it'll be impossible for me to use the
where node anywhere but after a from clause. So even if I choose to keep
using plain SQL at specific intervals, I still get some protection from the
fact that my SQL is syntactically correct. Additionally, I'm benefitting
from the resource-efficient approach that jOOQ uses with handling JDBC
connections.

41

CHAPTER 2 GETTING STARTED WITH J0OQ

Pop Quiz: What'’s the difference between the org.jooq.impl.
Settings and the org.jooq.impl.Configuration classes?

Answer: The Settings class will allow you to change predefined
behavior of the j00Q runtime by simply changing a setting. The
Configuration class provides access to extension points in jOOQ,
for you to supply custom code that will replace or alter the behavior
of the jO0OQ runtime.

Now, for one of my favorite components of the jOOQ APL...

Conditions

The arguments you supply to the from node of the select DSL are in
reality instances of org.jooq.Condition. The Condition is a powerful
class that lets you compose simple or complex predicate components.
You can then attach to almost anywhere in the SQL structure that accepts
conditional logic. So, I can write a Condition like this:

Condition colourCondition = condition("color = ?","BLUE");

...and then pass that into my constructed {select} execution:

context.select(fieldList)
.from(table("complete car listing"))
.where(colourCondition)
.fetchInto(CompleteVehicleRecord.class);

Being able to dynamically construct parts of a whole SQL query is
fundamental to the way jOOQ works.? You'll see different flavors of this
statement as you go through this book, but every section of your SQL
statement can be constructed independently of the rest. Your SELECT,

8wmww.jooq.org/doc/latest/manual/sql-building/dynamic-sql

42

https://www.jooq.org/doc/latest/manual/sql-building/dynamic-sql

CHAPTER 2 GETTING STARTED WITH J0OQ

WHERE, or HAVING clauses, etc? You can build them independently and later
stitch them together.

Things can get even more flexible with some of the convenience utilities
that jOOQ offers with Condition. For example, I can construct a jOOQ query
with an optional WHERE clause like so. Consider the following jOOQ query
that I use to select car details from the complete car listing table:

List<CompleteVehicleRecord> allVehicles = context.select(field(

name("brand")),field("model"),field("price"))
.from(table("complete car listing"))
.where(colourCondition)
.fetchInto(CompleteVehicleRecord.class);

So, this looks like the same jOOQ query that you've been seeing so far,
yes? How can I make this query work with an optional WHERE clause? This
way, I can reuse the same query whether the website user selects filter
criteria or not. So, consider a hypothetical user interface like this:

Basics

Location »
Newj/used >
Make »
Model >
Year >
Price >
Deal Rating »
Mileage >

The filter criteria selection box for the Eden Auto website

43

CHAPTER 2 GETTING STARTED WITH J0OQ

There are multiple options to filter search results by. You need to be
able to use the same jOOQ statement, whether the user selects any of the
filter criteria or not. Here’s what that jOOQ query looks like:

public static void selectWithOptionalCondition(boolean
hasFilter, Map<?,0bject> filterValues) throws SQLException{

Condition conditionChain = DSL.noCondition(); (1)
if (hasFilter) {
for(String key: filterValues.keySet()){
conditionChainStub = conditionChainStub.
and(field(key).eq(filterValues.get(key))); (2)

}

List<CompleteVehicleRecord> allVehicles = context.select

(field(name("brand")),field("model"),field("price"))
.from(table("complete car listing"))
.where(conditionChain)
.fetchInto(CompleteVehicleRecord.class);
logger.info(allVehicles.toString());

}

Here's the breakdown:

1. To get maximum flexibility with the Condition}
class, jOOQ provides the DSL#noCondition()
method. This generates a condition stub that I
can optionally chain other conditions to. There
are others like DSL.trueCondition and DSL.
falseCondition that generate conditions that are
set to true and false, respectively.

44

CHAPTER 2 GETTING STARTED WITH J0OQ

2. Condition provides the and operator. Using this
facility, I can combine the filter conditions that are
passed in from the web tier, if they exist. If no filter
parameters are passed in (i.e., hasFilter is false), no
WHERE condition will be applied to the eventual SQL
statement that’s executed. Otherwise, the constructed
Conditions will be applied.

As you can probably tell, the Condition class provides all the
boolean operators you'd need: or, not, exists, as well as all the useful
permutations of all of them. Let’s not forget the comparison operators on
the Field class:

Condition condition = field(name("price")).
greaterOrEqual(BigDecimal.value0f(360000));

That’s right: the Field class itself can yield conditions by virtue of the
many, many comparison operators available on the class itself.

For even more flexibility in constructing your conditions, check out the
CustomCondition class:

CustomCondition customCondition = CustomCondition.of(
conditionChain ->{
conditionChain.sql("color ='BLUE'")
.sql(" AND price < 35000");
1;

CustomCondition provides the opportunity to perform complex
logic in the process of building the condition. By providing a functional
interface that accepts a lambda, you can take even more control of the
process. It still yields an object that you can combine with any other flavor
of condition you have.

Flexibility!

45

CHAPTER 2 GETTING STARTED WITH J0OQ

ProTip The Field class offers the isNull and isNotNull for
all your null comparison needs. Stay safe; use the appropriate null
comparison methods. Note that these are offered in addition to the
database functions dedicated to handling nulls (e.g., COALESCE,
NVL, etc.).

Subqueries

As an example, I want to search for vehicles of a specific manufacturer that
have had recent price reductions - because I'm thinking price reductions
means that nobody’s buying the car, and the dealer might be willing to give
me a bargain.® Here’s what the plain SQL query would look like:

SELECT * (1)
FROM complete_car listing ccl
WHERE (ccl.vehicle_id , ccl.price) IN (1a)
(SELECT vpc.vehicle_id, vpc.revised price (2)
FROM vehicle price change vpc
WHERE vpc.revised price < vpc.current price
AND (vpc.vehicle id , vpc.last changed) IN
(SELECT vc.vehicle_id, MAX(vc.last_changed) (2a)
FROM vehicle price change vc
GROUP BY vc.vehicle id))

9Editor’s note: smh.

46

CHAPTER 2 GETTING STARTED WITH J0OQ

This query (technically one main query and two subqueries) will

1. Retrieve all the details of cars that are in the
inventory

a) Imatch the rows of the top-level query by using
the SQL row value expression mechanism to
compare against the results of the subquery.

2. Find cars that have a price that has been revised
downward

a) And of that subset, make sure that the most
recent price revision was a reduction.

Caution “jO0AQ is all about type safety” — me, a couple of pages
ago. This is still true, but you’ll see me skip some type safety
convention in subsequent code samples, for example, using
field("price") instead of field("price",BigDecimal.
class). This is largely to cut out a bunch of boilerplate code; the
fundamental truth of type safety remains intact. Using plaintext SQL
is still an inferior option compared to generating typesafe code
with jO0Q. As you continue your jOOQ journey, plaintext SQL will start
yielding issues and weirdness as a direct consequence of not having
type safety. Please bear this in mind as you proceed.

To be clear, there are other, probably better ways of achieving the same
results: joins, window functions (more on those later), and others. This is a
contrived example to demonstrate some specifics of subqueries in jOOQ.
If you run this query against the schema that accompanies this book, you
should get results that look something like the following:

'3', 'Lexus', 'ES 350', 'BASE', '36000.0000', 'BLUE', 'Car', 2018
'4', 'Acura', 'MDX', 'SPORT', '50000.0000', 'BLUE', 'Car', 2018

47

CHAPTER 2 GETTING STARTED WITH J0OQ

What would this look like in jOOQ? To begin, I'm going to declare a
couple of fields and tables for easier reuse in the queries I'm going to be
constructing:

Field<Long> vehicleId = field(name("vehicle id"),Long.class);
Field<BigDecimal> vehicleRevisedPrice = field(name("revised
price"),BigDecimal.class);

Field<BigDecimal> vehicleCurrentPrice = field(name("current_
price"),BigDecimal.class);

Field<BigDecimal> price = field(name("price"),BigDecimal.class);
Table vehiclePriceChange = table(name("vehicle price change"));
Field<LocalDateTime> lastPriceUpdate = field(name("last_
changed"),LocalDateTime.class);

These being set up, I can go about setting up the actual queries:

final SelectCorrelatedSubqueryStep<Record2<Long,
LocalDateTime>> mostRecentPriceChange = context.
select(vehicleId, max(lastPriceUpdate)).
from(vehiclePriceChange).groupBy(vehicleId); (1)

final SelectConditionStep<Record2<Long, BigDecimaly»
mostRecentPriceReduction = context.select(vehicleId,vehicle
RevisedPrice)

+from(vehiclePriceChange)
-where(vehicleRevisedPrice.lessThan(vehicleCurrentPrice))
.and(row(vehicleId, lastPriceUpdate).
in(mostRecentPriceChange)); (2)

Here's what I'm up to with these queries:

1. Iconstruct the query that will provide the most
recent price change per vehicle ID. The max method
comes from the trusty DSL class.

48

CHAPTER 2 GETTING STARTED WITH J0OQ

2. Next, [use the query from (1) to construct the
query that gets the vehicles that have had only price
reductions recently. The row method is also from the
DSL class to enable tuple comparisons against the
subquery.

What'’s happened is that I've separately constructed jOOQ SQL
queries to facilitate reuse. Now, a word from our sponsors: “jOOQ doesn’t
officially recommend this approach for reusing queries, in part because
of mutability concerns.” If the readability wouldn’t be too poor, you're
safer inlining the subquery into the main query. For the purposes of this
demonstration, I've broken the subqueries out and made them final.

Right, subqueries constructed, let’s crack on with using them:

SelectConditionStep<Record> potentialDealsQuery = context.

select().from(table(name("complete car listing")))
.where(row(vehicleld,price)
.in(mostRecentPriceReduction));

String sql = potentialDealsQuery.getSQL();

logger.info(sql);

The potentialDealsQuery uses the mostRecentPriceReduction
subquery to get the cars that have had recent price reductions. To
see what the generated query looks like, I can get the SQL off the
potentialDealsQuery with the getSQL method. Here’s the result:

select * from “complete car listing™ where (“vehicle id",
“price’) in (select “vehicle id™, “revised price” from
“vehicle price change™ where ("revised price’ < “current price’
and (“vehicle id", “last changed™) in (select “vehicle id",

max (" last changed™) from “vehicle price change™ group by
“vehicle id*)))

49

CHAPTER 2 GETTING STARTED WITH J0OQ

Largely a faithful translation of the raw SQL intent, yeah? As usual, I'll
fetch the results:

List<CompleteVehicleRecord> potentialDeals =
potentialDealsQuery.fetchInto(CompleteVehicleRecord.class);

That was a lot huh? You've bought the book; please feel free to go
over this section again if it didn’t land the first go around. I've introduced
multiple concepts here at once that will be helpful overall in jOOQ. It’s
completely understandable if it doesn’t all click at first read through

Pop Quiz: How would you safely refer to fields when working with
your plaintext SQL in j00Q?

a) Field myField = field("myField")
b) Field <?> myField = field("myField")
c) Field<Integer> myField = field("myField", Integer.class)

Answer: (b) and (c) are the recommended approaches; (c) more
preferably!

Conditional Logic in Queries

If you'd like to get fancy, you could have some sophisticated conditional
logic in your SQL. In case I didn’t make it clear before now: I'm firmly in
the camp of “Let the database do the things the database is very good at,
with maintainability in mind.” To that end, my soul frowns when I see
code that

o Firstretrieves query results into the application layer

e Then performs complex analysis that the database is
otherwise exceedingly good at

50

CHAPTER 2 GETTING STARTED WITH J0OQ

So, we've established I'm a cheapskate and I'm always looking for a
good deal on a car - these two are mutually exclusive. We've seen how to
find cars with price reductions, and therefore might probably offer good
deals. How good of a deal are we talking about here? I'd say

e 5% reduction, “Okay”
e 10% reduction, “Good”
e Above 10%? “Great!”

How would a SQL query present this? With the CASE function:

SELECT vpc.vehicle id 'vehicle', vpc.current price 'old price’,
vpc.revised price 'new price', max(last_changed) 'last price
update',
case when ((vpc.current price - vpc.revised price)/vpc.current_
price)*100 <=5 then 'OK'
when ((vpc.current price - vpc.revised price)/
vpc.current price)*100 BETWEEN 5 AND 10 then 'GOOD'
when ((vpc.current price - vpc.revised price)/
vpc.current price)*100 > 10 then 'GREAT'

else ‘NO DEAL

end as 'deal’
FROM vehicle price change vpc
WHERE vpc.revised price < vpc.current price
GROUP BY vpc.vehicle id, vpc.current price, vpc.revised price

For results that look like this:

vehicle old price new price deal

2 48000.0000 47380.00 0K
3 37565.0000 36000.00 0K
4 55342.0000 50000.00 GOOoD

51

CHAPTER 2 GETTING STARTED WITH J0OQ

You probably know where this is going: how to represent this in jOOQ?
Hang on to your keyboard:

context.select(vehicleId, vehicleCurrentPrice,
vehicleRevisedPrice, max(field("last changed")),
when((vehicleCurrentPrice.subtract(vehicle
RevisedPrice))
.divide(vehicleCurrentPrice)
-multiply(100)
.lessOrEqual(BigDecimal.
value0f(5)), "OK") (1)
.when(condition("((current_price -
revised_price)/current_price)*100
BETWEEN 5 AND 10"), "GOOD") (2)
.when(condition("((current price -
revised price)/current price)*100 >
10"), "GREAT")
.otherwise("NO DEAL") (3)
.as("deal")) (4)
.from(table("vehicle price change"))
.where(vehicleRevisedPrice.lessThan(vehicleCurrentPrice))
.groupBy(vehicleId)
.fetch()
.forkach(result -> {
logger.info("Vehicle Id: {} | Revised
Price: {} | Former Price: {}| Deal
Rating: {}", result.get(vehicleld),
result.get(vehicleRevisedPrice), result.
get(vehicleCurrentPrice), result.get("deal"));

};

52

CHAPTER 2 GETTING STARTED WITH J0OQ

Let’s break this down:

1.

4.

Skipping past the other fields in the SELECT
statement: I start with the when method, into which I
use various methods of the Field class to construct
the arithmetic that constitutes a deal. I do the
arithmetic and then pass “OK” as the outcome of
this when condition. Note how this doesn’t actually
feature the case keyword/method.

e Alternatively, if you're looking to use the form
of CASE (column), you'd begin with the choose
method instead of when.

I use the plain SQL option for this when to
demonstrate the utter flexibility that’s available.
You'll notice that I'm using the condition method
here, because that’s essentially what the when
method needs: ajOOQ Condition. This means that
you can construct and reuse Conditions before you
need them in a select statement.

The otherwise method gives me the ELSE clause for
my CASE - the catch-all.

as gives me an alias for the whole case statement.

All of this gives me the following output:

Vehicle Id: 2 | Revised Price: 47380.0000 | Former Price:
48000.0000| Deal Rating: OK

Vehicle Id: 3 | Revised Price: 36000.0000 | Former Price:
37565.0000| Deal Rating: OK

Vehicle Id: 4 | Revised Price: 50000.0000 | Former Price:
55342.0000| Deal Rating: GOOD

This is one of my favorite demonstrations in this book, because it

shows just how flexible jOOQ gets.

53

CHAPTER 2 GETTING STARTED WITH J0OQ

Everything fits everywhere, and you can compose SQL statements from
any level of granularity; and this isn’t even a complicated example of that
power.

jO0Q supports some of the more vendor-specific conditional
functions like

o DECODE

e COALESCE
e NVL

e NVL2

e IIFandIF
e NULLIF

All of these are available as functions in...you guessed it: the DSL class!

With the... WITH Clause

If Twere interested in calculating the median price of all the vehicles in the
database, I would have to get a little creative. See, it’s not a standard SQL
function (yet). PostgreSQL supports it somewhat natively,'° but for most other
databases, it’s going to take some tinkering. In my experience, “tinkering” in
SQL tends to require fairly unsightly SQL; SQL that I'd really want to be able
to reuse elsewhere in my SQL query. Here’s what it looks like when I use SQL
window functions (more on those later) to calculate the median price of all
the vehicles in the inventory:

WITH median_cte as(SELECT ROUND(AVG(price)) median
FROM (select price, ROW _NUMBER() OVER (ORDER
BY price ASC) AS rowpos, COUNT(*) OVER () AS
total cars from complete car listing) price mod

www.postgresql.org/docs/current/functions-aggregate. html#FUNCTIONS-
ORDEREDSET-TABLE

54

http://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE
http://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

CHAPTER 2 GETTING STARTED WITH J0OQ

WHERE rowpos BETWEEN total cars / 2.0 AND
total cars / 2.0 + 1)
select brand, model, trim, price, CONCAT((ROUND((price -
median cte.median)/price,2) * 100),'%') 'relative to median’
from complete car listing, median_cte

In MySQL, the WITH clause runs the median query once, stashing
the result in a temporary “table”!' I can then refer to the result in the
subsequent SELECT statement using the name I specified, {median_cte},
almost like a table. This is what’s known “in the biz” as a Common Table
Expression (CTE) - which you may already know. What does that look
like in jOOQ?

Field<BigDecimal> price = field("price",BigDecimal.class);
//define field and table for reuse
Table completeCarListing = table("complete car listing");
CommonTableExpression<Recordi<BigDecimal>> medianCte =
name("median_cte") (1)
.as(context.select(round(avg(price)).as("median")) (2)
.from(select(price, rowNumber().
over (orderBy(price.asc())).
as(name("rowpos")),
count().over().as("total
cars"))
.from(completeCarListing))
.where("rowpos BETWEEN
(total cars / 2.0) AND
(total cars / 2.0 + 1)")

)5

'The mechanism for the WITH clause varies from database to database, but the
outcomes are identical.

55

CHAPTER 2 GETTING STARTED WITH J0OQ

What voodoo is happening here? I'll tell you:

1. Iconstruct an instance of CommonTableExpression,
avariant of org. jooq.Table. This means that I can
treat this object a lot like a standard SQL table in
many instances. The logic in this block is a window
function to calculate the median price of vehicles
in the database. I cover window functions in a later
section of this book; you can disregard it for now.
What’s most important is that I've encapsulated the
query in here and named it median_cte.

2. The median calculation I perform here is aliased as
a field named median.

With the CTE object wired and ready to go, I can use it in the actual
jOOQ query like so:

context.with(medianCte) (1)
.select(field("brand"), field("model™),
field("trim"),field("price"),
concat(round((price.subtract(medianCte.field("median"))).
divide(2),2).multiply(100),field("'%"'"))
.as("relative to median price"))
.from(completeCarListing, medianCte) (2)
.fetchMany();

It gives me a much less cumbersome main query:
1. Tjustdrop in my CTE into the with method on DSLContext.

o Take note of my usage of medianCte.field("median").
For all intents and purposes, the CTE will be treated
almost like a table after the WITH clause. As a result, I
can refer to (or “dereference”) the columns available in
my CTE just like I would any SQL table or subquery.

2. ThenI can use the CTE like any old table.
56

CHAPTER 2 GETTING STARTED WITH J0OQ

Pop Quiz: What is the jO0Q parent class of all the clauses and
smaller bits that can be composed into a full SQL statement ?

a) {Query}
b) {QueryPart}
c) {Field}

Answer: {QueryPart} is the parent class that can be used to
represent every part of your SQL statement. You can compose any
kind of SQL statement with all the children of {Query Part}

With the GROUP BY DSL

Grouping query results in jOOQ is as straightforward as anything else
you've seen so far. I've also been quietly using the groupBy clause without
introducing you two. No more! I'd now like to retrieve

o All Sedans
e Grouped by brand
e The grand total of all the Sedans regardless of brand
In MySQL, the query for this would look something like the following:

select brand, count(*) "# of units"
from complete car listing

where brand = 'Sedan’

group by brand with rollup

Oracle uses the GROUP BY ROLLUP (...) syntax. Translating that to
jO0Q is the same syntax:

57

CHAPTER 2 GETTING STARTED WITH J0OQ

Result<Record2<Object, Integer>> results = context.
select(field("brand"),count().as("units"))
.from(table("complete car listing"))
.groupBy(rollup(field("brand")))
.fetch()

The trusty old org. jooq.DSL supplies all the grouping functions I'll
need to pull this query off - the count and rollup functions come from
there. The other grouping functions (cube, groupingSets) are also on the
menu. Bon appétit!

With the HAVING DSL

With or without the GROUP BY clause, you can have the HAVING clause to
restrict groups - in SQL and in jOOQ. To restrict my list of vehicle counts
to brands with an average price higher than $20,000, I would have a jOOQ
query that looks like this:

Result<Record2<Object, Integer>> results = context.
select(field("brand"),count().as("units"))
.from(table("complete car listing"))
.groupBy(rollup(field("brand")))
-having(avg(field("price",BigDecimal.
class)).gt(BigDecimal.valueOf(20000L)))
.fetch()

That's it. Nothing fancy to it.

With the ORDER BY DSL

Ordering query results with jOOQ is also as straightforward as you can
imagine. I've used it a fair bit already in many queries up to this point to
order my car search results; I simply add the orderBy clause to the fluent
chain I've constructed:

58

CHAPTER 2 GETTING STARTED WITH J0OQ

List<CompleteVehicleRecord> allVehicles = context.select()
.from(table("complete car listing"))
.orderBy(field("year").desc() ,two())
.fetchInto(CompleteVehicleRecord.class);

Like I've been doing, I convert my plain SQL year column into an instance
of Field. Ithen call the desc method on the Field instance to convert it to an
OrderField - a Field type dedicated to ordering query results. Additionally,

T use the two method to pass the literal “2” to the ORDER BY clause. This will
additionally order the query results by the second column in the result set.
Also note that you can supply a list of sort fields to the orderBy method.

ORDER BY CASE

One underrated approach to ordering is being able to conditionally
order query results. If you think of “pinned” posts on forums like

Reddit or “sticky” articles on blogs, this is one way to achieve that. This

is a mechanism that will ensure that specific rows of result set will be
positioned within the results based on specific criteria. For Eden’s car
shop, I want to be able to permanently list “featured” vehicles that will be
at the top of every search result page. With SQL, that could look like

SELECT *
FROM edens car.complete car listing
ORDER BY CASE featured
WHEN true then 0
ELSE 1 END ASC

Representing this in jOOQ will look something like

List<CompleteVehicleRecord> allVehicles = context
.select(field(name("brand")),
field("model"), field("price"))
.from(table("complete car listing"))

59

CHAPTER 2 GETTING STARTED WITH J0OQ

.orderBy(
case_(field("featured"))
-when(true,0)
.otherwise(1))

.fetchInto(CompleteVehicleRecord.class);
What I've done here is to

1. Specify that I want vehicles with weight set to -1
listed first.

2. Then Iwant any other arbitrary sort criteria passed
in dynamically applied.

This will guarantee that vehicles that are flagged as “featured” always
show up at the top of any search results. Another approach to exerting
more control over ordering is to use a map of my sort criteria to manually
determine the positioning of specific rows in the overall query result:

HashMap<String, Integer> sortMap = new HashMap<>();
sortMap.put("Toyota",Integer.value0f(0));
sortMap.put("Acura",Integer.value0Of(5));

The preceding map indicates Toyotas should come first in the list
of results; Acuras should start from position 6 in the list; rows weighted
2 should show up around the 4th row. I can then pass the map to the
orderBy clause like so:

.select(field(name("brand")), field("model"), field("price"))
.from(table("complete car listing"))
.orderBy(field(name("brand"),String.class).
sort(sortMap))
.fetchInto(CompleteVehicleRecord.class);

Alternatively, I could use the...

60

CHAPTER 2 GETTING STARTED WITH J0OQ

ORDER BY NULL

The behavior of the ORDER BY clause varies from database to database.
Oracle and PostgreSQL will treat nulls as larger than others, so that when
you ORDER BY weight ASC, rows with nulls show up last. MySQL, SQL
Server, and SQLite treat nulls the opposite way: those rows will show up first
when you ORDER BY ASC. Being specific about the direction in which you
want nulls sorted is exactly the sort of deliberate coding you'll want to do if
you like consistent results across RDBMSes. So, consider this SQL query:

SELECT *
FROM edens_car.complete_car listing
ORDER BY color NULLS FIRST

Now, MySQL doesn’t support this syntax; PostgreSQL and a couple others
do. For MySQL however, nulls are considered to weigh the least. So, nulls
will show up first when you sort in ascending order. jOOQ will transparently
emulate this function so it’s available regardless of the underlying server. To
represent the same results in jOOQ with the orderBy DSL, I'll have

List<CompleteVehicleRecord> allVehicles = context
.select(field(name("brand")),
field("model"), field("price"))
.from(table("complete car listing"))
.orderBy(field(name("trim"),String.class).
asc().nullsLast())
.fetchInto(CompleteVehicleRecord.class);

Easy peasy. On to the next!

Paginate Query Results

There’s the standard SQL OFFSET. . .FETCH clause to restrict the number
of items returned from a query and to paginate results. MySQL's

dialect provides the LIMIT...OFFSET clause that performs largely

the same function. MySQL, H2, PostgreSQL, SQLite, and HSQLDB

61

CHAPTER 2 GETTING STARTED WITH J0OQ

all support LIMIT keyword. Oracle and a couple other databases are

in the OFFSET. ..FETCH camp. jOOQ’s going to make the difference
between the two syntaxes irrelevant. A query to retrieve the top 10 most
expensive vehicles in MySQL will look like the following:

SELECT *

FROM complete vehicle listing
ORDER BY price DESC

LIMIT 10

The same query will be written in Oracle like this:

SELECT *

FROM complete vehicle listing
ORDER BY price DESC

FETCH NEXT 10 ROWS ONLY;

Either database will seamlessly get the correct SQL interpretation in
jOOQ with the following snippet:

context.select()
.from(table("complete car listing"))
.orderBy(field("price").desc())
.limit(10)
.fetchInto(CompleteVehicleRecord.class);

The 1imit method is all Ineed. I can add the WITH TIES SQL clause to
ensure that within with my top-N query, rows that have the same value for the
ORDER BY column (i.e., tied) will be featured in the results. What this means
is that when I query for the top 10 most expensive vehicles in the database, if
vehicle #11 is tied with #10 for price, it will be included in the query results,
regardless of exceeding the limit clause. Here’s what that looks like in jOOQ:

context.select(fieldList)
.from(table("complete car listing"))
.orderBy(field("price").desc())

62

CHAPTER 2 GETTING STARTED WITH J0OQ

.limit(10)

.withTies()

.fetchInto(CompleteVehicleRecord.

class);
logger.info(allVehicles.toString());

To get a sorted list of vehicles in descending order of price and to
support pagination, I'll introduce the offset clause in my jOOQ DSL.:

<jooq offset>

This query will retrieve a page of value results, with an offset starting
point. Note that you'll use the 1imit function regardless of the type of
RDBMS you're using - jOOQ handles the translation.

Pop Quiz: Which jO0Q class lets you construct conditional WHERE
clauses?

Answer: The DSL class, with the DSL#noCondition() function.

Insert Statements

The veritable “C” in CRUD. Inserting one new vehicle into the database
with jOOQ looks like this:

context.insertInto(

table("vehicle"),
field("vehicle_manufacturer"),field("vehicle curr_
price"),field("vehicle model year"),field(
"vehicle status"),field("vehicle color"),
field("vehicle model id"),field("vehicle trim"),
field("vehicle style"),field("featured"))

63

CHAPTER 2 GETTING STARTED WITH J0OQ

.values(4,BigDecimal.value0f(46350.00), LocalDate.
parse("2021-01-01").getYear(), "ACTIVE", "BLUE",
13,2,1,1)

.execute();

The insertInto node provides the fluent API to deliver on the features
that we've come to expect from jOOQ. For all incarnations of the insert
API, the first argument is a Table; after that, you can optionally provide the
individual fields to insert as is the standard SQL INSERT statement.

In addition to the standard INSERT. . .VALUES syntax, jOOQ offers some
other flavors, such as...

With Multiple Rows

I can insert multiple vehicles into the database like so:

context.insertInto(table("vehicle"),field("vehicle manufacturer"),
field("vehicle curr price"),field("vehicle model year"),
field("vehicle status"),field("vehicle color"),field("vehicle
model id"),field("vehicle trim"),field("vehicle style"),
field("featured"))
.values(4,BigDecimal.value0f(46350.00),
LocalDate.parse("2021-01-01").getYear(),
"ACTIVE","BLUE",13,2,1,1)
.values(9,BigDecimal.value0f(83000.00),
LocalDate.parse("2021-01-01").getYear(),
"ACTIVE","GREY",20,9,1,1)
.values(9,BigDecimal.value0f(77000.00),
LocalDate.parse("2016-01-01").getYear(),
"ACTIVE","WHITE",20,9,1,1)
.execute();

64

CHAPTER 2 GETTING STARTED WITH J0OQ

Caution While the multi-values insert is part of the ANSI standard
SQL specification, it’s not uniformly supported by all databases. j00Q
will emulate this for noncompliant databases. Even then, you might
still hit a wall as a result of the maximum packet size that’s allowed
by the database server. For MySQL, this is the max_allowed
packet server parameter.

With Sequences

While MySQL provides the AUTO_INCREMENT function to autogenerated
indices, you can still get a hold of custom sequences and trigger a
generation this way:

BigInteger nextVehicleManufacturerId = context.nextval
("vehicle manuf seq");

Sequences are a lot more fun to use when generated for you by jOOQ
though, so stay tuned!

With Select

I can use the INSERT. ..SELECT standard SQL syntax to copy rows from one
table into another. For my use case, I'll use this syntax to archive vehicles
that have been sitting in the inventory for a long time. Using the age of the
row as the filter condition, I've determined I want to copy vehicles from
vehicles to vehicle_archive. The way this will look in jOOQ:

context.insertInto(table("vehicle archive"))
.select(DSL.selectFrom("vehicle").where
("datediff(date(now()),created) < 365"))
.execute();

...and that’s it. Moving on!

65

CHAPTER 2 GETTING STARTED WITH J0OQ

Update Statements

Yes, I too have accidentally done an UPDATE. . . SET without the WHERE clause.
I'd rather not talk about how much destruction I wrought as a result.

.

And lady, if you tell anyone who set the status column to the same for
all 500k rows...

Here’s what it'll look like when I want to update the price of an existing
vehicle in the inventory:

context.update(table("vehicle"))
.set(field("featured"),false)
.where(field("vehicle_id").eq(7))
.execute();

Also very straightforward. Now, jOOQ can protect you (i.e.,
me) from accidental UPDATE. . .without a where clause with the
setExecuteUpdateWithoutiWhere method on the Settings class.

//Non! Disallow updates without a where clause by throwing an
exception

new Settings().setExecuteUpdateWithoutWhere(ExecuteWithout
Where.THROW) ;

66

CHAPTER 2 GETTING STARTED WITH J0OQ

Together with the ExecuteUpdateWithoutWhere enum, you can
configure whether to

o Ignore the condition with IGNORE

e Logawarning with WARN

e Log at debug with DEBUG

o Log at info level with INFO

o Fail all attempts to do this with THROW

No more messes to clean up!

Delete Statements

It really is time to move on. I've archived the vehicles I couldn’t sell. Now’s
the time to get rid of them from the inventory altogether.

One of you will cease to exist shortly. Say your goodbyes

67

CHAPTER 2 GETTING STARTED WITH J0OQ
Pretty straightforward, the delete DSL (because, of course it is):

context.deleteFrom(table("vehicle archive"))
.where(field("vehicle id").eq(7))
.execute();

Simple, yes? Great. Now let’s try...

Tuple Syntax

I can get a little bit fancier with my delete statement. As you may have
noticed already, jOOQ supports the tuple syntax (a.k.a. row value

expressions) where we can do whole row comparisons:

UPDATE vehicle_archive
SET (vehicle status,featured) = ("ARCHIVE",0)
WHERE (vehicle status,featured) = ("ACTIVE",1)

It’s basically hard coding, but for SQL. With this query, I'm asking the
query to delete all vehicles, except the specific rows or tuples that match
the specific combination of columns that I've specified. This way, [update
everything except these specific rows or tuples.

MySQL doesn’t support this. Yes, I could have also written this as
separate clauses in the WHERE condition, but where’s the fun in that?

To replicate this in jOOQ terms, I'll have

context.update(table("vehicle archive"))
.set(row(field("featured"), field("vehicle
status")),
row(1, "UNARCHIVED"))
.where(row(field("vehicle status"),
field("featured")).eq(row("ACTIVE",0)))
.execute();

68

CHAPTER 2 GETTING STARTED WITH J0OQ

Goodbye to those vehicles (except the ones I've chosen to save for
some reason)!

Alternative Data Access Modes

I've shown only synchronous data access operations so far:
e Auserrequest initiates the CRUD.

o The calling thread waits for the data to return from the
database.

o There’s some transformation work done in the same
calling thread.

o Then the data is returned to the caller.

All of this happens in one thread. The org. jooq.Result class, the
fundamental unit of handling database query results, contains all the
results returned from the query. This has the benefit of not needing an
open database connection to access all your results. The downside is that
for large query results, you'll be using up a lot of memory. There’s also the
added disadvantage of single threading the processing of large results.'

<glutton image>

But there are other ways - the ways of the lazy, the streamer, and the
reactive. Let’s first talk about streaming.

12 Careful here: there’s a point of diminishing returns when multithreading over
data. I talk about this in my concurrent data access course on LinkedIn:
www.linkedin.com/learning/java-concurrency-troubleshooting-data-
access-and-consistency/java-streams-and-lambda-concurrency-issues

69

http://www.linkedin.com/learning/java-concurrency-troubleshooting-data-access-and-consistency/java-streams-and-lambda-concurrency-issues
http://www.linkedin.com/learning/java-concurrency-troubleshooting-data-access-and-consistency/java-streams-and-lambda-concurrency-issues

CHAPTER 2 GETTING STARTED WITH J0OQ

Streaming Access

jO0Q offers a couple of conveniences for streaming data from the

database, in every sense of the word “stream”:

o Theorg.jooq.Result class extends java.util.List.
Therefore, you have access to all the features that java.
util.Stream affords you simply by opening a stream
on your instance of Result after a query.

¢ You can call the fetchStream method on the Result

class as a convenience for the same purpose.

Before we go any further, I should be clear: using the stream-centric
jO0Q functionality changes the operating model somewhat. Where
org.jooq.Result will load all your results into memory and disconnect
from the open database connection, fetchStream will sustain the open
database connection. What this means is that you will now need to
remember to close the connection when you're done processing. So, what
does stream code in jOOQ look like? Remember how I like deals on cars?

DSLContext context = DSL.using(connection,

SQLDialect.MYSQL);

try(final Stream<Record> records = context.

select().from(table("complete_car_listing"))
.fetchSize(100) (1)
.fetchStream()){ (2)

records.parallel().forEach(recordList -> {
//deal with records

1

70

CHAPTER 2 GETTING STARTED WITH J0OQ

In a change from how I ran this same query earlier, 'm now running

itinside a try...with resources block. This means that all associated

underlying resources will be closed automatically after I exit the block.

Under the hood, jOOQ uses an org. jooq.Cursor to efficiently process the

results in chunks from the database.

1.

Iuse fetchSize setting to hint Connector/]J

(the MySQL driver) that I want my query results
streamed row by row instead of loading it all into
memory at. Yes, this is in addition to jOOQ’s own
best effort attempts to do the same. I'm highlighting
this specifically because at this point, different
databases will give you different behaviors when you
attempt to stream with Cursors.

e Because I'm using MySQL, I must finish consuming
all the results associated with this query,” on the
instance of the JDBC connection that I'm using
to serve the results. Failing to do so will render
the connection useless for any other thread in the
same application - which is asking for trouble in a
connection pool scenario.

e Anylocks associated with the rows in the result will
be held until all the rows are read.

o Asaresult of all this, I want to get through the query
results as quickly as reasonably possible.

Then I parallelize the stream so that I can use a
couple of threads to run through the results faster.

Bhttps://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-
implementation-notes.html

71

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html

CHAPTER 2 GETTING STARTED WITH J0OQ

Note Standard Java stream rules still apply. For example, once |
exit the try block, the stream is no longer accessible; neither can
you scroll backward in a stream — once an item is consumed, it’s
done.

This is one way to handle data, but it’s still fairly synchronous. What
else is there?

Lazy Access

If it starts with “lazy,” I'm already halfway there. jOOQ provides the
fetchLazy method as the One True Way to properly fetch data in
manageable chunks. It’s usable for when you don’t need the conversion of
org.jooq.Result to a stream. This time, I'll need to handle the org. jooq.
Cursor myself:

DSLContext context = DSL.using(connection, SQLDialect.MYSQL);
try(final Cursor<Record> records = context.
select().from(table("complete_car_listing")).
fetchSize(100).fetchLazy()){ (1)

while(records.hasNext()){ (2)
CompleteVehicleRecord
completeVehicleRecord = records.fetch
NextInto(CompleteVehicleRecord.class);

1. A cursor is a resource, so I'm still opening itin a
try-with-resources block.

2. Twork through the items as normal.

72

CHAPTER 2 GETTING STARTED WITH J0OQ

The same caveats apply as in fetchlLazy stream: the Cursor maintains

an open JDBC connection and PreparedStatement, so don’t keep it

around longer than it needs to be. This and fetchStream are the best bet

for running large queries.

Transactions

They are the fundamental unit of every SQL operation carried out in the

database. Yes, transactions are happening in the database whether you

explicitly do anything to define them or not. This section is about being

deliberate about transaction settings when operating in jOOQ. I'm going to

show you how to use jOOQ to deliver on the ACID guarantee. ACID stands for

Atomicity: When you designate a block of code as being
transactional, any failure in execution or exception
thrown within that block will cause the reversal of

all the Database Manipulation Language (DML)
executions within that block. This means all inserts,
updates, or deletes.

Consistency: Means that any transactional code

block that executes DML changes is guaranteed to
adhere to any integrity rules defined in the underlying
datasource. So that uniqueness, constraints, foreign-
primary key relations will be respected by any attempts
to modify the data.

Isolation: Database transactions can be configured

to protect the data being operated on from
multithreading-related corruption. Some of the issues
to protect against include

o Dirty Reads: Where one thread can read uncommitted
data being written by a different thread

73

CHAPTER 2 GETTING STARTED WITH J0OQ

o Non-repeatable Reads: Where one thread reading
from the same row within a time window will get
different results each time

o Phantom Reads: Where data essentially disappears
during successive reads by the same transaction

o Lost Updates: Where two transactions (threads)
executing updates against the same row corrupt the
data, each without knowledge of the other’s actions

e Durability: The warranty that changes that have been
written to the database and acknowledged by the
RDBMS are guaranteed to be persisted and retrievable.

So, that’s ACID. How does this work in jOOQ? Plain jOOQ, without
Spring, JTA, or any other framework with dedicated transaction
management, will defer to standard JDBC semantics. This means manually
defining the transaction boundaries like so:

context.transaction(configuration -» { (1)
updateVehiclePrice(configuration);
insertPriceChange(configuration); (2)
configuration.dsl().transaction(innerConfig ->{

//more work
D;
//profit?? ()
D;

1. Thisline marks the start of a transaction boundary. Here:

e jOOQ sets AUTO_COMMIT off for the underlying JDBC
driver.

o Itsupplies an instance of org. jooq.
TransactionalRunnable (no, not that Runnable
from java.lang.Runnable). This is my handle to
begin executing in my transaction boundary.

74

CHAPTER 2 GETTING STARTED WITH J0OQ

2. My insert and update execute as normal, but
without being committed. This way, if either of them
fail for any reason, the entire code block is unwound
with the exception that caused the failure.

o Note how I'm passing the Configuration object
into the nested methods. This is necessary to
ensure the database operations in those methods
participate in the same transaction boundary.

3. Additionally, I can nest transactions so that

o This transaction block inherits from the outer
transaction block.

e A failure within this block will roll the operation
back to the last save point before this block. This
way, the rest of the operation can continue if that’s
what I choose.

4. If everything proceeds without choking on an
exception up till this point, another transaction
boundary is defined. This then marks the whole

transaction as complete.

This is the way of the default jOOQ transaction provider. You have the
option of supplying a custom transaction provider in the way of the Spring
framework or others; that comes later in this book.

Caution This approach to transaction handling delivers on only the
Atomicity component of the ACID guarantee. Most RDBMSes will offer
Consistency and Durability out of the box, perhaps with some tuning. To
protect against lost updates and other Isolation-related problems, you'll
need to do a little bit more work — still within the jO0OQ framework.

75

CHAPTER 2 GETTING STARTED WITH J0OQ

With Locking

Locking is how you get the Isolation part of the ACID guarantee.
Specifically, you're able to

e Support concurrent reads of table rows

o Prevent Isolation-related failures by causing concurrent
updates and deletes to fail

What this means in jOOQ is that you can be sure that when two
transactions (or threads) are trying to modify a row concurrently, only
one of them will succeed. The other will get an org. jooq.exception.
DataChangedException when it tries to commit its changes.

There are different approaches to supporting locking:

e SELECT FOR UPDATE is a SQL standard query that locks
rows in preparation for an update or a delete operation.
jO0Q will transparently run this query before executing
the actual DML. This is what’s known as pessimistic
locking.

e Using Multi-Version Concurrency Control (MVCC),
a form of what’s known as optimistic locking. This
approach is supplied by jOOQ only when you use
jOOQ-generated code; more on this approach later in
the book.

The MVCC approach is available only with jOOQ-generated code. For
plain SQL, you can have the pessimistic locking like so:

context.select(field("vehicle curr price"))
.from(table("vehicle")
.where(field("vehicle id").eq(11))
.forUpdate()
.fetch();

76

CHAPTER 2 GETTING STARTED WITH J0OQ

The forUpdate call in the preceding snippet will obtain an exclusive

lock to the affected row in the underlying table. This means that no other

database transaction (or application thread) can perform DML on that

row. With MySQL, you could even achieve blocking any other thread from

reading the same row. The underlying mechanism that supports this varies

from database to database.

Now, locking is all well and good in happy path scenarios. This kind

of power could become problematic when a lock doesn’t get released

due to application error or bad weather on a given day. Like any locking

mechanism in software engineering, you typically want some form of a

failsafe. I have a couple of options:

1.

The wait method lets me specify a timeout for either
attempting to acquire a row lock or holding on to

an existing lock. This way, I don’t inadvertently wait
forever to acquire a lock:

context.select(field("vehicle curr price"))
.from(table("vehicle")
.where(field("vehicle id").eq(11))
.forUpdate() .wait(3000)
.fetch();

It accepts the timeout in milliseconds. This syntax
is supported by MySQL, Postgres, Oracle, and
MSSQL. The default behavior is to not wait at all for
alock.

MySQL™" and Postgres offer a forShare clause as an
enhancement that supports shareable locks. This
way, other threads can still read the same row, while
the thread that owns the lock can commit changes:

4Only the InnoDB engine in MySQL provides locking.

77

CHAPTER 2 GETTING STARTED WITH J0OQ

context.select(field("vehicle curr price"))
.from(table("vehicle")
.where(field("vehicle id").eq(11))
.forShare() .wait(3000)
.fetch();

forShare also supports the wait flag.

3. jOOQ also supports the SKIP LOCKED option with...
skipLocked:

context.select(field("vehicle curr price"))
.from(table("vehicle")
.where(field("vehicle id").eq(11))
.forShare().skipLocked().wait(3000)
.fetch();

skipLocked will make the transaction ignore rows
or tables that have already been locked by another
transaction. The safety valve wait is available here
as well.

Overall, you want to be cautious with pessimistic locking. If your
transaction isn’t committed, your calling thread hangs on to the lock and
we're all going to have a bad time.

Configuration

Let’s try for some more advanced control of the jOOQ runtime. There are
a couple of interesting attachments you can plug into the runtime to gain
more control over how jOOQ works. Check these out.

78

CHAPTER 2 GETTING STARTED WITH J0OQ

Connection Management

I've been using a solitary JDBC connection for my examples thus far:

try (Connection connection = DriverManager.
getConnection("jdbc:mysql://localhost/edens car?user=test8pass
word=thisisabadpassword")) {

//business things

In a production-grade deployment, you need something
more...production-y. jOOQ provides an org.jooq.impl.
DefaultConnectionProvider to handle the default usage of jOOQ - a
single connection that you supply to the context like I show in the
preceding snippet. In a production strength application, you're more than
likely going to be dealing with a connection pool and an instance of javax.
sql.DataSource. What to do?

Enter the org. jooq.ConnectionProvider interface. This is an extension
point you can implement to take more responsibility for how connections to
your database are handled. ConnectionProvider offers two methods:

public class CustomConnectionProvider implements
ConnectionProvider {
DataSource dataSource;

@verride
public Connection acquire() throws DataAccessException {

try {
return dataSource.getConnection();
} catch (SQLException e) {
e.printStackTrace();

}

return null;

79

CHAPTER 2 GETTING STARTED WITH J0OQ

@verride
public void release(Connection connection) throws
DataAccessException {
try {
connection.close();
} catch (SQLException e) {
e.printStackTrace();

The jOOQ runtime will call acquire to obtain the JDBC connection for
statement execution. It will then call release to dispose of the connection
when execution is done. Here, I'm interested in tracking the interval
between connection acquisition and disposal. This is a crude way to
keep an eye on how long my query is executing. The disposal mechanism
depends on what the underlying configuration stipulates. When you're
working with a connection pool, the connection won't actually be closed;
it’'ll be returned to the pool for subsequent reuse.

jOOQ also offers the DataSourceConnectionProvider as direct support
for javax.sql.DataSource. So, in a Spring Boot application, for example,
this is probably what you'll be using. To use my connection provider:

Configuration config = new DefaultConfiguration();
CustomConnectionProvider customConnectionProvider = new
CustomConnectionProvider();

//set it directly on the Configuration
config.set(customConnectionProvider);

//Alternative: pass it to the DSLContext

DSLContext context = DSL.using(new CustomConnectionProvider(),
SOLDialect.MYSQL,settings);

80

CHAPTER 2 GETTING STARTED WITH J0OQ

It's that simple: pass it to an instance of Configuration which
in turn goes into the DSLContext; alternatively, pass it directly to
the DSLContext. Unless you do something you're not supposed to,
the DataSourceConnectionProvider should be thread safe. What
this means is that you could design your app to reuse the same
DataSourceConnectionProvider across the app, plugged in to the same
connection pool. You can also pass the datasource directly to your
configuration and skip all the other hassle.

Caution When you implement a custom ConnectionProvider,
you’ll lose access to a few convenience methods that the default
jO0Q implementation provides. For example, commit and rollback
are off the table. You’re tacitly taking a few matters into your own
hands with this feature.

Schema, Catalog, and Multi-tenant Deployment

Databases support some combinations of the following:

e Schema: A collection of related tables, views, stored
procedures, and functions. It’s the bag for all the “stuft”
you create in the database. Not all databases see it this
way - for example, MySQL considers the database and
everything inside as the schema. Oracle and SQL Server
consider the schema as separate from other contents of
the database server.

81

CHAPTER 2 GETTING STARTED WITH J0OQ

e Catalog®: The catalog is a higher level of abstraction of
the schema. So, a catalog can contain multiple schemas
(or schemata if you're fancy). MySQL thinks exclusively
in terms of catalogs so that there’s no schema - the
catalog is the collection of related tables, etc.

These two mechanisms can be used to support multiple separate
instances of a single application on the same database server instance.
This means that for different clients of your application, they can share the
same database server instance(s) with their tables walled off and separate.
This is what’s known by the nerds as multi-tenancy.

Given that I'm using a MySQL database for my online car sales website,
I have to use the catalog as the discriminator to support multi-tenancy.
When you're using jOOQ-generated code, jOOQ by default will qualify
all components (tables, sequences, views, etc.) with the schema/catalog
name to be sure we're routing all queries to the correct schema. You can
disable that with the following setting:

new Settings()
.withRenderCatalog(false)
.withRenderSchema(false);

This way, you can control the schema or catalog used at runtime by
simply prefixing the elements of your SQL query with the correct catalog.

What if you need to do this at runtime? You have a “master” or “dev”
schema that you're working on at development time. At deployment time,
you would want “master” or “dev” translated to a production schema or
even a dynamic schema specified at runtime. What does that look like in
jOOQ terms?

5 As 0of jOOQ 3.15, catalogs are available only for Sybase ASE and SQL Server.

82

CHAPTER 2 GETTING STARTED WITH J0OQ

Settings settings = new Settings()

.withRenderMapping(new RenderMapping()
.withDefaultSchema(“default_schema”)
.withDefaultCatalog(“default_catalog)
.withSchemata(new MappedSchema().

withInput("master").withOutput(schemaInEffect))

.withCatalogs(new MappedCatalog().
withInput("master").
withOutput(schemaInEffect)));

DefaultConfiguration configuration = new
DefaultConfiguration();
configuration.setSQLDialect(SQLDialect.MYSQL);
configuration.setConnection(connection)
configuration.setSettings(settings);
DSLContext context = DSL.using(configuration);

This Settings snippet demonstrates the usage of the MappedSchema

and MappedCatalog classes.

With these two classes, I can instruct the jOOQ runtime
to translate an input schema (master in this case) to a
different runtime schema.

The withDefaultSchema and withDefaultCatalog
methods let me set up a default schema for all queries.
These schemas will not be used as prefixes for any
query components - it’s the default, so there’s no need
to specify them in every query.

I then feed the enclosing Settings instance into a
Configuration instance. The configuration can then
be fed to the DSLContext. This means that my query
components (tables, sequences, stored procedures,

83

CHAPTER 2 GETTING STARTED WITH J0OQ

etc.) will be prefixed with an org.jooq.Catalog or
org.jooq.Schema class that specifies which catalog or
schema I want to deal with at runtime.

Another approach to dynamically configuring the schema is to set it on
the DSLContext itself with

context.setSchema(selectedSchema).execute();
//or
context.setCatalog(selectedCatalog).execute();

where selectedCatalog or selectedSchema could be an org. jooq.
Name, a plain string, or instances of org.jooq.Catalog and org.jooq.
Schema, respectively. For objects in your query that don’t already have a
schema prefix, this sets the active schema or catalog at runtime.

Query parts for the win!

Query Management

There are more than a few facilities to control how SQL statements are
handled by the jOOQ runtime. Feast your eyes.

e Pretty print SQL with withRenderFormatted:
new Settings().setRenderFormatted(true);

e Control how identifiers are rendered. Different
databases provide some perks depending on whether
the identifier is quoted or not.

.withRenderQuotedNames (RenderQuotedNames.ALWAYS);

The RenderQuotedNames enum provides a few
options to control this behavior:

84

CHAPTER 2 GETTING STARTED WITH J0OQ

Optimize the performance of SQL statements that use
the IN comparison parameter. Because of the way most
databases cache PreparedStatements, it’s important
that IN comparisons use a constant-sized list of items.
What this means is that this statement

SELECT * from complete vehicle listing where vehicle
manufacturer in (?)

and this statement

SELECT * from complete_vehicle listing where vehicle_
manufacturer in (?,?,?,?

will be treated as different statements by the
database, even though the only difference is that
the number of parameters in the IN list is different.
In a high traffic RDBMS, this can yield shockingly
poor performance. jOOQ’s solution is called “IN list
padding.” With this feature, jOOQ will pad the query
parameter with a constant multiplier. This will help
increase the rate at which the database can cache
PreparedStatements, yielding better performance.
It’s a simple Settings operation:

new Settings().withInListPadding(true) //defaults to
false
.withInListPadBase(4) //starting count to
pad with

Set JDBC parameters, for example, queryTimeout and
maxRows:

Settings settings = new Settings().withQueryTimeout(5)
//in seconds
.withMaxRows (1000)

85

CHAPTER 2 GETTING STARTED WITH J0OQ

Check out the Settings javadoc for more interesting parameters you
can tweak.

Query Lifecycle Integration

I'll use jOOQ’s org.jooq.ExecutelListener to key into the query execution
by the jOOQ runtime. It provides the opportunity to intercept the process
during up to 20 events. jOOQ ships with these two listeners, among others:

e org.jooq.tools.StopWatchListener is a listener that
will help you track the execution times around key
events in the query execution process.

e org.jooq.tools.LoggerlListener prints log statements
during key events of the statement execution lifecycle.

Executelisteners are ideal for introducing cross-cutting functions
like logging (like you've already seen), exception handling, or even security
features.

public class QueryIntrospectionlListener extends
DefaultExecutelistener { (1)

final Logger logger = LoggerFactory.getlLogger(Query
IntrospectionListener.class);

@0verride

public void fetchStart(ExecuteContext ctx) { (2)
logger.info("Executing: {}",ctx.sql()); (a)
logger.info("Query type: {}",ctx.type()); (b)
//ctx.query().getBindValues() to retrieve bind
parameters for the query

86

CHAPTER 2 GETTING STARTED WITH J0OQ

@verride
public void exception(ExecuteContext ctx) { (3)
if(Objects.nonNull(ctx.sqlException())){
//handle exception

First off, I should mention that I'm a big fan of the context object'®
pattern, and all my favorite frameworks lean into it, hard. Here’s what'’s
going on with the preceding snippet:

1. Extendingorg.jooq.impl.DefaultExecutelistener
is the recommended approach to getting your own
listener going. That class contains many lifecycle
methods that you can override. Overriding these
methods provides privileged access to the jOOQ
runtime, so you can inject your own logic and
designs into the overall query execution process.

2. T've chosen to override the fetchStart method.
This means that I can step in before the execution of
the fetch operation of the jOOQ API. This method
(and all the others in DefaultExecutelistener)
is supplied with an instance of org. jooq.
ExecuteContext. This beautiful context object
contains all the contextual information you'll need
about the currently executing query. I have access to

https://stackoverflow.com/questions/986865/can-you-explain-the-
context-design-pattern/

87

https://stackoverflow.com/questions/986865/can-you-explain-the-context-design-pattern/
https://stackoverflow.com/questions/986865/can-you-explain-the-context-design-pattern/

CHAPTER 2 GETTING STARTED WITH J0OQ

a. Theraw SQL being executed with
b. The type of query being executed:

c. The actual Query object and inspect the

parameters.

3. Inmy overridden exception method, I can geta
hold of any exceptions that occur during query
processing and do...whatever I want with it.

With my custom listener defined, here’s how I plug it into the
DSLContext:

Configuration configuration = new DefaultConfiguration();
configuration.set(connection)
.set(SQLDialect.MYSQL)
.set(new QueryIntrospectionListener());
DSLContext context = DSL.using(configuration);

To be able to use my custom ExecutionlListener

1. Tllusethe set method to supply an instance of that
listener to my instance of org. jooq.Configuration.

2. Tthen use that configuration to obtain a DSLContext

and voila!

Being able to interweave custom logic into the execution of
queries and the richness of context presents so many opportunities for
customization.

Man, I love context objects.

88

CHAPTER 3

Working with jOOQ

And now for my next demonstration, we’re going to take a much deeper
dive into the jOOQ toolbox. There’s a lot of convenience in the jOOQ
toolbox - heck, jOOQ is all about convenience when you think about it.
All of the hand-rolled SQL I was doing in the last chapter, the hand-made
entity classes and parsing of query results; it can get significantly easier
and more importantly typesafe. And that’s the second key to enjoying
jO0Q: type safety. Put together, this chapter is a saunter through jOOQ’s
features that offer convenience and type safety. First, let’s look at jOOQ’s
code generation capabilities.

Generating Code

This is approximately half the point of jOOQ as a concept: being able to
typesafely refer to columns, tables, sequences, really, any part of a SQL
query. Among other advantages, you'll find that

e Incorrect SQL will no longer be a thing to worry about
when the SQL is derived directly from what is in your
database; zero guesswork required.

o Alotofboilerplate code will be automatically taken
care of. I can tell you from experience that it’s nice to
not have to type out yet another entity class or Data
Access Object (DAO) by hand.

© Tayo Koleoso 2022 89
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_3

https://doi.org/10.1007/978-1-4842-7431-6_3

CHAPTER 3 WORKING WITH J0OQ

Your IDE experience is markedly improved by the
fact that you can take advantage of things like code
completion, hints, and “find usages” while working
with database components.

Your data-driven unit and integration tests become
much more of a guarantee of the behavior and quality
of your code. In a packaging model where your data
access components (schemas, entities, etc.) are
managed separately from the business logic, you can
structure your application to independently validate
any updates that have been made to the schema
without going through a full deployment cycle. More on
this technique later.

All told, typesafe generated database artifacts is where it’s at, so let’s go

there!

Tools of j00Q Code Generation

What we're interested in at this point is a way to use jOOQ to generate Java

classes to represent the content of Eden Auto Mart database. There are

three ways we can go about this:

1.

90

Programmatically: jOOQ offers a simple API that
you can use to generate classes from your database
schema.

Command Line: You can also generate artifacts
using a command-line interface.

CHAPTER 3 WORKING WITH J0OQ

3. Build Tools: jOOQ ships with Maven and Gradle
tooling' that you can use to run the code generation
operation.

The results from the preceding three methods are identical: java
classes in packages, representing your database catalog or schema.
They also share common configuration elements. Foundationally, the
configuration for the code generator is represented as an XML document.
The three modes of generating jOOQ code invariably wind up as this
XML entity at some point in the lifecycle, mostly as a JAXB-annotated
class. Therefore, it makes sense to start by looking at what that XML
configuration document might look like.

Configure j00Q for Code Generation

So, what does configuration look like? Hang tight: it’s a fair bit of XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>
<!-- Configure the database connection here -->
¢jdbc>
<driverscom.mysql.cj.jdbc.Driver</drivery
<url>jdbc:mysql://localhost/edens_car</urls
<useryeden_admin</usery
<passwordy_*thisisabadpassword*_</password»
</jdbc>
<generator>
<name>org.jooq.codegen.JavaGenerator</name>
<database>
<name>org.jooq.meta.mysql.MySQLDatabase</name>

'https://github.com/etiennestuder/gradle-jooq-plugin

91

https://github.com/etiennestuder/gradle-jooq-plugin

CHAPTER 3 WORKING WITH J0OQ

<inputSchema>edens car</inputSchema>
<includeTables>true</includeTables>
<includes>.*</includes>
</database>
<generate>
<javaTimeTypes>true</javaTimeTypes>
<daos>true</daos>
<pojos>true</pojos>
<pojosAsJavaRecordClasses>true</pojosAsJavaRecord
Classes>
<pojosEqualsAndHashCode>true</pojosEqualsAnd
HashCode>
<pojosToString>true</pojosToString>
</generate>
<target>
<packageName>com.apress.jooq.generated
</packageName>
<directory>C:\Users\SIGINT-X\eclipse-workspace\
joog-demo\src\main\java</directory>
</target>
</generator>
</configuration>

Okay, you don’t need to take it all in right now. Feel free to copy paste
what’s in here as is. Let me talk you through the most salient bits. After the
top-level <configuration> tag (and its associated schema document link),
there’s a mix of optional and mandatory elements that control the behavior
of jOOQ’s code generation:

92

CHAPTER 3 WORKING WITH J0OQ

Database Connection: The <jdbc/> element defines
how the code generator will have access to the
database to begin with. Can’t generate classes from
a database you can'’t get access to.

Generator Semantics: The <generator/> element
is where I provide additional context to the code
generator. This node is a container for some other
higher-level concerns. Here, I've defined

a) The style of code I'm interested in generating -
Java. Other options include Scala and Kotlin.
The <name/> element controls the type of code
generation that will occur.

b) The database dialect I'm interested in with
<database/>.

¢) The schema in the database that contains the
artifacts from which I want to generate my classes.
I also have the option to supply multiple schemas
by nesting a <schemata> element here containing
each <schema/> I want to generate from.

d) The <includeXXX/> tags allow me to specify what
types of components [want to generate from
the database. Without this, you're more than
likely going to wind up with a bunch of system
components and other cruft you don’t really need.

i. <includes/> lets me specify by name what
artifacts I want to include in the generation.
This is the difference between saying “I want to
include all tables in the generated code” with
<includeTables/> vs. saying “I want to include
these specific tables for code generation” with
<includes>.
93

CHAPTER 3 WORKING WITH J0OQ

e) Iprefer the use of the newer time classes in
the java.time package. This way, I can use
LocalDateTime and others instead of java.sql.
Time, etc.

f) With <dao>true</dao>, jOOQ will generate Data
Access Objects? (DAO) for each table. This means
I have yet another convenient component to run

typesafe queries for whole objects.

g) For actual transmission of entities in my web
application, I don’t want to send actual jOOQ
records or Tables - that’s not neat code. No, what I
want is a POJO - a Plain Old Java Object devoid of
any framework code - jOOQ’s or otherwise. Enter
the <pojo/> configuration to generate POJOs.

h) target helps me set the location and package
structure I want my generated classes to be stored.

There’s a lot more power and flexibility to configuring the jOOQ code
generator; I highly recommend you check out the official manual for
advanced options. For now, let’s press on!

Given my preceding configuration, I should be able to use one of the
available generator options to generate code from my existing database
schema. What are my options?

Generate Code with Maven

jOOQ provides the joog-codegen-maven Maven plugin to carry out your
code generation business. The groupId of the plugin you use will depend
on the distribution of jOOQ you’re working with (commercial or open
source), as well as the version of Java you're running:

*www.oracle.com/java/technologies/data-access-object.html

94

http://www.oracle.com/java/technologies/data-access-object.html

CHAPTER 3 WORKING WITH J0OQ

Open Source Edition - org. jooq

Commercial Edition - org. jooq.pro; org.jooq.pro-
java-8 for Java 8 support

Free trial of the commercial version - org.jooq.trial

Because I'm just too cool for school and doing well for myself,* I'm

going to pop in my commercial Maven plugin config like so:

<maven demo>

Here’s what I've wrought in the preceding snippet:

1.

I'm defining the use of the jOOQ plugin per
standard Maven plugin usage.

I specify that I want the plugin to kick in during
the generate-sources phase of the Maven build
lifecycle.

I then declare a generate goal. This is the Maven
goal I'll use to trigger the code generation process
for the jOOQ plugin.

Providing the skip.jooq.generation property
allows me to dynamically enable or disable the code
generation at build time.

configurationFile points to the location of my
XML config file for code generation as seen earlier.
I also have the option to wholesale include the
entire content of that config file in my Maven
POM.xml (Maven’s Project Object Model) file. It’s
possible, but you probably shouldn’t do it because

3 Also, Lukas hooked me up with a commercial license, gratis.

95

CHAPTER 3 WORKING WITH J0OQ

a. The code generation config file will likely see more
change than the POM. Therefore, it’s probably best
that you cleanly separate the two to minimize the
churn in the POM as a whole.

b. Separating the code generation config from your
POM opens up the opportunity to version the
config file.

c. Itkeepsyour POM file shorter and therefore more
readable.

d. TItsupports reusability. Think about it: when you
have a standalone XML config file for your code
generation, you can refer to that file from Maven,
the command line, or even programmatically. And
if you change your build system to Gradle, you
don’t need to rewrite a bunch of config!

With all of this in place, I can then run the following Maven command
to generate the source files that I'm interested in:

mvn package

96

CHAPTER 3 WORKING WITH J0OQ

I can see all the new classes and packages in my IDE.

v [Iajoog-demo
v 131 com.apress.jooq
> I3 connectionprovider
3 generated
v [tables
> [records
€ CompleteCarListing
€ Vehicle
€ VehicleArchive
€ VehicleManufacturer
€ VehicleModel
€ VehiclePriceChange
€ VehicleStyle
€ VehicleTrim
€ DefaultCatalog
€ EdensCar
€ Indexes
€ Keys
€ Tables

Pictured: Success

Generate Code from the Command Line

If Maven or another build tool isn’t your thing, you could straight up run
the generator from a terminal or command-line interface. Given the same
XML configuration file, I can execute the following command from a

terminal window:

java =cp joog-3.15.1.jar;jooq-meta-3.15.1.jar;jooq-codegen--
3.15.1.jar;reactive-streams-1.0.2.jar;mysql-connector-
java-8.0.24.jar;jaxb-api-2.3.1.jar ;r2dbc-spi-0.9.0.M1.jar;
org.jooq.codegen.GenerationTool jooq-configuration.xml

97

CHAPTER 3 WORKING WITH J0OQ

Yes, it’s exactly what you're probably thinking. I'm running the code
generator like it were vanilla java code.” Using the java tool that’s bundled
standard with the JDK, I run the org. jooq.codegen.GenerationTool class
that ships with jOOQ. Additionally:

1. Tuse the -cp flag to configure my classpath. This flag
then allows me to supply the JAR dependencies for
the GenerationTool needs to do its business.

a. Note the inclusion of the JAXB dependency jaxb-
api-2.3.1.jar. This is necessary for JDK 11 and
up environments. Since Java went all fancy with
modularity, excluding JAXB dependencies by
default, we now need to be explicit about including
it whenever it's needed. Without this additional
JAR, you're probably going to get some variety
of ClassNotFoundException while running code
generation from the command line. Fun.

2. Talso supply the location of the XML configuration
file.

I also have the option to configure the core requirements of the code

generator with these fine environment variables; enjoy:

o -Djoogq.codegen.configurationFile to define the
location of the XML configuration file

e -Djooq.codegen.jdbc.driver to configure the driver
class that will be used to connect to the database

e -Djooqg.codegen.jdbc.url to configure the URL for
connecting to the database

“,n

*I'm using the semicolon (“;”) separator here from a Windows environment; for
Unix environments, go full colon (“:”).

98

CHAPTER 3 WORKING WITH J0OQ

o -Djooq.codegen.jdbc.username and -Djooq.codegen.
jdbc.password to define the username and password,
respectively, for the database connection

o -Djooq.codegen.logging to set the logging level for the
code generation process; standard logging levels like
DEBUG, WARN, INFO, etc. apply

o -Djooq.codegen.skip to disable code generation
altogether

The environment variable options are a great way to set defaults for
your jOOQ project. They can be overridden by what'’s defined in the XML
file, Maven, or even in the programmatic code generation option.

Generate Code Programmatically

The most powerful option of them all [thunderclap/lightning strike]! You
can programmatically generate code with the API provided by jOOQ. It
goes a little something like this:

org.jooq.meta.jaxb.Configuration generatorConfiguration =

JAXB.unmarshal(new File("src/main/resources/jooq-

configuration.xml"), org.jooq.meta.jaxb.Configuration.class);
GenerationTool.generate(generatorConfiguration);

Here, I'm simply reusing the XML configuration I previously defined,
this time wrapped as an instance of org. jooq.meta. jaxb.Configuration.
Vanilla JDK'’s JAXB API loads the XML file and unmarshals it to a
Configuration object. I then use the GenerationTool#fgenerate static
method to run the generator.

99

CHAPTER 3 WORKING WITH J0OQ

Note The JAXB module has been separated from the JDK core;
you’ll need to manually include it as a dependency in your POM to be
able to run the preceding sample.

For more fine-grained control, I could just do away with the XML file
altogether like so:

org.jooq.meta.jaxb.Configuration generatorConfiguration = new
org.jooq.meta.jaxb.Configuration()

.withJdbc(new Jdbc()
.withDriver("com.mysql.cj.jdbc.Driver")
.withUrl("jdbc:mysql://localhost/
edens_car")
.withUsername("root").withPassword
("admin™))

.withGenerator(new Generator()
.withName("org.jooq.codegen.
JavaGenerator")

.withDatabase(new Database()
.withName("org.jooq.meta.mysql.
MySQLDatabase")
.withInputSchema("edens car")
.withIncludeTables(true)
.withIncludes(".*"))

.withGenerate(new Generate()
.withJavaTimeTypes(true)
.withJavaBeansGettersAnd
Setters(true)

.withDaos(true)

.withPojos(true)
.withPojosEqualsAndH
ashCode(true)

100

CHAPTER 3 WORKING WITH J0OQ

.withPojosToString(true))
.withTarget(new Target()
.withClean(true)
.withDirectory("src/main/java")
.withEncoding(StandardCharsets.
UTF_8.toString())
.withPackageName("com.apress.
jooq.generated")
))
.withLogging(Logging.DEBUG)
.withOnError(OnError.LOG);
GenerationTool.generate(generatorConfiguration);

This is simply a faithful duplication of the contents of the XML file
for greater flexibility and more horsepower - the result is the same.

You could combine the two approaches where some values could be
preset in the XML file; then some values can be supplied dynamically
programmatically.

Programmatic code generation is a wonderful opportunity to leverage
jOOQ in scenarios where an XML file or command-line parameters won’t
cut it, like integration tests (more on those later). Another opportunity is
to use jOOQ in slightly unconventional scenarios like when the database
connection is dynamically generated.

Pop Quiz: Which element of the jO0Q configuration schema lets you
configure which type of code (Java, Scala, etc.) should be generated?

Answer: The name element defines the output type of j00Q code
generation. Use org. jooq.codegen.JavaGenerator to generate
Java code.

101

CHAPTER 3 WORKING WITH J0OQ

Results of Code Generation

Whichever method of code generation you choose, the results would

largely be identical. Check ‘em out:

Tables

Each table in your schema or catalog will largely result in the following:

102

Classes that extend org.jooq.impl.TableImpl,
itself an implementation of org. jooq.Table. It'll
look a little something like this for my Eden Auto
database:

public class Vehicle extends TableImpl<VehicleRecord> {

private static final long serialVersionUID = 1L;
/**
* The reference instance of <code>edens car.
vehicle</code>
*/
public static final Vehicle VEHICLE = new Vehicle();
/**
* The class holding records for this type
*/
@0verride

public Class<VehicleRecord> getRecordType() {
return VehicleRecord.class;

}

/**

* The column <code>edens car.vehicle.vehicle id
</code>.

*/

CHAPTER 3 WORKING WITH J0OQ

public final TableField<VehicleRecord, Long>
VEHICLE ID = createField(DSL.name("vehicle id"),
SQLDataType.BIGINT.nullable(false).identity(true),
this, "");

}

It’s these classes that you can use to construct typesafe SQL queries;
this is instead of using the DSL#table function that I was previously using
to convert raw SQL to jOOQ types. There’s no possibility of error with these
classes.

2. Classes that extend org.jooq.impl.*RecordImpl,
itself an implementation of org. jooq.Record.
Sound familiar? Record is what you get back from
your database queries. There are two general flavors
of these that could be generated:

a. UpdatableRecordImpl is what you get when the
underlying table has a primary key and jOOQ has
access to the primary key during code generation.

b. TableRecordImpl is what you'll get when the
underlying table doesn’t have a primary key, jOOQ
doesn’t have access to the primary key data, or it
isn’t even a real table - a database view, for example.

So, use your *RecordImpl to iterate through
results of your queries; UpdatableRecordImpl
specifically to perform DML operations against a
table.

103

CHAPTER 3 WORKING WITH J0OQ

3. Plain Old Java Objects (POJOs) also come out of the
box automatically, also representing rows in your
database tables. Typically, a generated POJO class
will extend Serializable. Here’s what one looks
like for Eden Auto:

public class Vehicle implements Serializable {

private static final long serialVersionUID = 1L;

private Long vehicleld;

private Long vehicleManufacturer;
private BigDecimal vehicleCurrPrice;
private LocalDate vehicleModelYear;
private String vehicleStatus;
private String vehicleColor;
private Long vehicleModelld;
private Long vehicleTrim;

private Long vehicleStyle;
private Byte featured;

private LocalDateTime created;

public Vehicle() {}

}

Like I mentioned earlier, these come in handy as Data
Transfer Objects (DTO) or value objects that you can
use for shifting data around and into your application.
It gets even better: you can have Bean Validation®
specifications like @NotNull and @Size generated from
information from the columns of the table. Pretty neat!

*https://en.wikipedia.org/wiki/Bean Validation

104

https://en.wikipedia.org/wiki/Bean_Validation

CHAPTER 3 WORKING WITH J0OQ

4. Data Access Objects (DAOs) are analogous to
Spring’s various Repository methods. They do what
they sound like: help you access strongly typed data
from your tables. DAOs will help you query their
respective tables to retrieve the desired records.
DAOs are generated only for tables with primary
keys by default. This means that a view won’t
automatically generate DAOs.

jOOQ allows you a great deal of control over table primary keys as part
of the code generation process. If you want to add primary key information
along with something like a database view, use this feature to manually
inform jOOQ:

<database>
<name>org.jooq.meta.mysql.MySQLDatabase</name>
<syntheticPrimaryKeys>edens_car.complete_car_
listing.vehicle id</syntheticPrimaryKeys>
</database>

Because a view isn’t really a table, most databases won’t provide the
same primary key information they offer for actual tables. As a result, I've
had to configure the path to the key column for the database view that
I'm interested. This feature is known as a synthetic primary key. With this
configuration, complete_car_listinginside the database will produce a
DAO. The downside here is that it requires some combination of

e Hard coding the name of a column
» Consistent naming conventions of primary key columns

e Aregular expression that you will need to validate
against the names of your primary key columns

But wait; there’s more:

105

CHAPTER 3 WORKING WITH J0OQ

Global Artifacts

More convenience incoming: jOOQ can also generate most cross-cutting
components as high-level “global” classes. These will be generated as
static members of the following class definitions:

1. Keys.java will contain static fields referencing all
primary, foreign, and unique keys defined on a per
table basis. These will come in handy when you
need to build typesafe queries with SQL joins.

2. Sequences.java will give you all the sequences
defined in your database schema. You can reach for
these when you want to manually generate a key

value for some reason.

3. Tables.java will contain all the tables defined in
your schema, useful for when you're constructing

queries and such.

There are other statically generated components coming out of the
jOOQ code generation process, some of which are out of the scope of this
book. I highly recommend checking out the official documentation for

more of the good stuff.

Pop Quiz: What j00Q methods will produce a SQL {CASE} clause?
a) {choose}
b) {when}

c) {case}

Answer: {choose} and {when} are the valid ways to start a {CASE}
statement with j00Q

106

CHAPTER 3 WORKING WITH J0OQ

Add Custom Code to Generated Code

If you're fancy (like me), you may be interested in adding hand-woven
code blocks to all (or some) of the generated code. For example, some
corporate environments could be interested in adding trademark and
copyright information to all their code. To pull this off, you'll need an
implementation of JavaGenerator. Here’s what it would look like to add a
header comment to all class files:

import org.jooq.codegen.JavaGenerator;
import org.jooq.codegen.JavalWriter;
import org.jooq.meta.TableDefinition;

public class CopyrightGenerator extends JavaGenerator {

protected void printClasslavadoc(Javaliriter out, String
comment) { (1)
out.println("/** This is proprietary code of Initech co
¥1");
}
protected void generateRecordClassFooter(TableDefinition
table, JavaWriter out){ (2)
out.println();
out.tab(1).println("public static String
getInitTechWarning(){");
out.tab(2).println("return \"This is proprietary code
of Initech co\";");
out.tab(1).println("}");
out.println();

107

CHAPTER 3 WORKING WITH J0OQ

I told you I'm fancy

This is an uber-trivial use of this class - there’s almost nothing you
can’t rewrite or add to generated code using the JavaGenerator facility.

1. printClassJavadoc allows me to prepend any
arbitrary Javadoc content to the top of a class
declaration (after imports).

2. generateRecordClassFooter lets me append arbitrary
code to the end of a Record class - basically any table
or view. You may recognize the risk here: this facility
deals with plain type-unsafe strings (ironic, I know),
but there are trivial ways to make sure you never
accidentally include snippets that won’t compile.

The default JavaGenerator provides an impressive array of methods
available to override and change any part of the generated code. Go ahead
and have fun with it!

108

CHAPTER 3 WORKING WITH J0OQ

Working with Generated Code

When you have code that’s directly woven from your database schema,
type safety is a benefit in and of itself. But it doesn’t stop there. See, when
jO0Q is the source of your data access code, there are unique benefits that

accrue.

CRUD with Generated Code

Things work better with generated code for vanilla CRUD operations. I can
retrieve from the vehicle table with strong typing guarantees like so:

import static com.apress.jooq.generated.EdensCar.EDENS_CAR;
import static com.apress.jooq.generated.Tables.VEHICLE; (1)

public static void selectWithGeneratedCode() throws
SQLException {

DSLContext context = DSL.using(connection, SQLDialect.MYSQL);
List<Vehicle> vehicles = context.select(EDENS_CAR.
VEHICLE.VEHICLE_ID, EDENS_CAR.VEHICLE.VEHICLE_COLOR,
EDENS_CAR.VEHICLE .VEHICLE_CURR_PRICE) (2)
from(VEHICLE) (3)
«where(VEHICLE.VEHICLE_MANUFACTURER.
eq(val(2L))) (4)
.orderBy(VEHICLE.VEHICLE MODEL YEAR)
.fetchInto(Vehicle.class); (5)
logger.info(vehicles.toString());

109

CHAPTER 3 WORKING WITH J0OQ

I've purposefully blended a couple of styles and concepts into the
preceding snippet to illustrate the flexibility you get with generated
artifacts.

Using the generated artifacts:

1. Static imports of the generated schema (EDENS_CAR)
and a generated table (VEHICLE) classes mean that
I can use their respective contents wherever I need
them later.

2. Ican use the fully qualified path to columns in the
select statement - Schema.Table.Column.

3. Icandrop the schema altogether and use just the
plain generated table reference provided by the
generated com.apress.jooq.generated.Tables
class.

4. Supplying parameters for filter expressions is a
breeze because

a. I don’t have to deal with placeholders like “?” or
remember the order of the parameters. I can directly
specify parameters on the fields that need them.

b. Using the val function binds the parameter value
to the correct column during the execution of the
jO0Q statement; the SQL injection protection I get is
a nice bonus. This isn’t always necessary however -
jOOQ does this under the hood in most cases.

5. Finally, I can fetch the query results into the POJO
generated from the Vehicle table.

110

CHAPTER 3 WORKING WITH J0OQ

So far so good. I could also just do the fetch directly into the
UpdatableRecord implementation for the vehicle table:

Result<VehicleRecord> vehicle = context.fetch(VEHICLE, VEHICLE.
VEHICLE_MANUFACTURER.eq(val(2, Long.TYPE)));

This is the concise kind of code I live for.° I've done away with a lot
of the boilerplate; I simply provide the table class and my filter criteria.
In addition to the conciseness, there’s a navigation benefit to this type of
fetching, and I'll be covering it shortly.

For an insert into the vehicle table, I can immediately retrieve the
primary key associated with the insert with the returningResult method:

long execute = context.insertInto(VEHICLE, VEHICLE.VEHICLE_
MANUFACTURER, VEHICLE.VEHICLE CURR_PRICE, VEHICLE.VEHICLE
MODEL_YEAR, VEHICLE.VEHICLE_ STATUS, VEHICLE.VEHICLE_COLOR,
VEHICLE.VEHICLE MODEL ID, VEHICLE.VEHICLE TRIM, VEHICLE.
VEHICLE_STYLE)
.values (4L, BigDecimal.valueOf(46350.00),
LocalDate.parse("2021-01-01"), "ACTIVE",
"BLUE", 13L, 2L, 1L)
.returningResult(VEHICLE.VEHICLE ID)
.execute();

The returningResult method allows you to return fields from the
newly inserted row as part of the response from an insert. The ideal usage
is to return the primary key generated for the insert as supported by the
underlying database. For other non-key fields, jOOQ might perform a
second SQL execution to retrieve the requested data if the underlying
database doesn’t natively support INSERT. . .RETURNING.

6This isn’t a feature for just generated code; you can do this with plain SQL. It just
looks cooler here. ©

111

CHAPTER 3 WORKING WITH J0OQ

All told, the risk of getting the names of tables or columns wrong is
eliminated. Combined with the fluent jOOQ DSL that makes sure that
your SQL is always going to be syntactically correct: you have bulletproof
database queries.

Enhancements from UpdatableRecord

With generated UpdatableRecords, you gain some powerful advantages
with CRUD operations. One of my favorite bits of this component is how I
can navigate the relationships of a record:’

DSLContext context = DSL.using(connection, SQLDialect.MYSQL);
VehicleRecord vehicleRecord = context.
fetchOne(VEHICLE, VEHICLE.VEHICLE ID.eq(7L));
VehicleManufacturerRecord vehicleManufacturerRecord
vehicleRecord.fetchParent(Keys.VEH_MANUFACTURER_
ID); (1)

VehicleModelRecord vehicleModelRecord =
vehicleRecord.fetchParent(Keys.VEH_MODEL_ID); (1a)
logger.info("Vehicle Manufacturer:
{}",vehicleManufacturerRecord.
getManufacturerName());

logger.info("Vehicle Model Record:
{}",vehicleModelRecord.getVehicleModelName());
Result<VehicleModelRecordy» vehicleModelRecords =
vehicleManufacturerRecord.fetchChildren(Keys.
MANUFACTURER_ID); (2)

"You do run the risk of the N+1 query issue: https://stackoverflow.com/
questions/97197/what-is-the-n1-selects-problem-in-orm-object-
relational-mapping

112

https://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem-in-orm-object-relational-mapping
https://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem-in-orm-object-relational-mapping
https://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem-in-orm-object-relational-mapping

CHAPTER 3 WORKING WITH J0OQ

vehicleModelRecords.forEach(vmr ->{
logger.info("{} {}",vehicleManufacturerRecord.
getManufacturerName(),vmr.
getVehicleModelName());

)

After retrieving a specific vehicle, I can

1. Retrieve the manufacturer record by using the
foreign key relationship between vehicle and
vehicle manufacturer. This works by using
the appropriate generated foreign key from the
(also generated) Keys class. Pass that into the
fetchParent method and I'm sorted.

a. I use the same mechanism to retrieve the vehicle
model record associated by foreign key to the
vehicle table.

2. Icanwalk down the family tree instead with
fetchChildren, passing in the foreign key that ties
vehicle manufacturer and vehicle model id.

What about DML? Each UpdatableRecordImpl is an Active Record -
this means that you don’t need any additional components to perform
data manipulation on retrieved records:

VehicleModelRecord vehicleModelRecord = context.

newRecoxrd (VEHICLE_MODEL); (1)
vehicleModelRecord.setVehicleManId(2L);
vehicleModelRecord.setVehicleModelName(“Tacoma”);
vehicleModelRecord.setVehicleStyleId(3L);
vehicleModelRecord.store(); (2) //record saved

Long vehicleModelId = vehicleModelRecord.getVehicleManId(); (3)

113

CHAPTER 3 WORKING WITH J0OQ

vehicleModelRecord. setVehicleModelName(“Tacoma XD”);
vehicleModelRecord.store(); (4)
vehicleModelRecord.refresh(); (5)
vehicleModelRecord.delete(); (6)

1. Ican create an empty VehicleModelRecord object
from the DSLContext. No record has been created in
the database yet.

2. After setting necessary, I can use the store method
on the object to then persist the record.

3. Icanretrieve the id of the newly inserted record
immediately.

4. Ican continue calling store at my convenience on
the same record.

5. T'll use the refresh method to get the latest copy of
the record I'm working on.

6. And when I'm done with, I can just call the delete
method to get remove the record.

Tip My UpdatableRecordImpl is attachedto a database
connection, but lazily. What this means is that my instance of
VehicleRecord contains a reference to the Configuration
object, which has a reference to the underlying JDBC connection
pool. Therefore, VehicleRecord isn’t thread safe. The good news is
that | don’t have to worry as much about starving the connection pool
of connection objects.

114

CHAPTER 3 WORKING WITH J0OQ

Formatting

The Result class provides format* methods that allow you to convert
query results to different formats like

o CSV

o HTML
o XML

e JSON

So that given a Result of retrieved VehicleModelRecord, I can generate
formatted output like so:

Result<VehicleModelRecord> vehicleModelRecords =
vehicleManufacturerRecord.fetchChildren(Keys.MANUFACTURER ID);
vehicleModelRecords.formatIJSON();

Pretty sweet huh? I should note that this is not a feature for just
generated code; you can get the good stuff out of plain SQL jOOQ
executions as well. The Record class offers this feature as well, so that you
can print whole result sets or individual Records.

Optimistic Locking

To enable jOOQ’s optimistic locking mechanism, I configure my
DSLContext like so:

Settings settings = new

Settings() .withExecuteWithOptimisticLocking(true);
DSLContext context = DSL.using(connection, SQLDialect.MYSQL,
settings);

Generating code with jOOQ opens up this new, for supporting
optimistic locking for transaction management. With “manual” SQL, jOOQ
needs to use the SELECT...FOR UPDATE statement to protect concurrent

115

CHAPTER 3 WORKING WITH J0OQ

access to rows - this means two trips to the database. With generated
code, jOOQ can use the recordVersionFields or recordTimestampFields
configuration properties instead:

</database>

<recordVersionFields>edens_car\.*\.version
</recordVersionFields»

</database>
Or programmatically

.withGenerator(new Generator()
.withDatabase(new Database()
.withName("org.jooq.meta.mysql.MySQLDatabase")
.withRecordVersionFields("edens_car\\.*
\\.version"

Using a regular expression, I've stipulated that every table in the
edens_car schema that has a version column should be eligible for
optimistic locking. It’s achievable both programmatically and in XML
config. Both of them have the same effect: when two or more transactions
are trying to work on the same row, jOOQ will look for the configured
column (version) on the affected row. Of course, this means you need to
add a version or timestamp column to your table in support of this facility.
Whichever transaction has the latest value in recordVersionFields or
recordTimestampFields in its copy of that row “wins.” The transaction
with an older copy of the row will get an org. jooq.exception.
DataChangedException when it tries to store, update, or delete its data. If
you’ve worked with Hibernate/Spring Data JPA, you're likely familiar with
this mechanism.

116

CHAPTER 3 WORKING WITH J0OQ

Advanced Database Operations

Now that we’ve had a look at the might of generated code with the jOOQ
(lightning and thunder effects!), let’s push the envelope a little bit. Now
join me, as we look at...

Joins

I'm interested in constructing a query that will render a listing of vehicles
that gives me a Ul representation like so.

Basics

Exterior color Cadmium Orange

Interior color Black

Drivetrain All-wheel Drive

MPG 22-28

Fuel type Gasoline

Transmission 6-Speed Automatic

Engine 2.0L 14 16V PDI DOHC Turbo

Per vehicle, I want to display
e Vehicle manufacturer name
e Vehicle model
e Model trim
e Current price
e Vehicle color

e Vehicle model year

117

CHAPTER 3 WORKING WITH J0OQ

All this information will need to come from different tables. What does
such a query look like?

SELECT
“v . vehicle id” AS “vehicle id",
“v_man . manufacturer name™ AS “brand’,
“v_mod . vehicle model name™ AS “model’,
“v_trim® . trim name® AS “trim’,
“v . vehicle curr price’ AS “price’,
“v . vehicle _color™ AS “color’,
“v_style”. vehicle style name™ AS “style’,
“v' . vehicle model year® AS “year’,
“v'. featured” AS "featured”

FROM (((("vehicle™ “v°
JOIN “vehicle manufacturer™ “v_man™ ON ((v . vehicle
manufacturer™ = “v_man”. manufacturer id")))
JOIN “vehicle model™ v mod™ ON ((v _mod . vehicle
model id™ = “v' . vehicle model id")))
JOIN “vehicle_trim™ “v_trim® ON ((v_trim . trim id"> =
“v . vehicle trim’)))
JOIN “vehicle style® “v style® ON ((v_style’. vehicle
style id” = “v . vehicle style’)))

In this query, I've joined the following tables:
o vehicle
e vehicle manufacturer
o vehicle model
o vehicle trim

o vehicle style

118

CHAPTER 3 WORKING WITH J0OQ

What does this look like in jOOQ? First, 'm going to compose the
columns that I need as a portable bundle:

List<Field<?>> fields = Arrays.asList(
VEHICLE.VEHICLE_ID,
VEHICLE_MANUFACTURER.MANUFACTURER NAME
.as("brand"),
VEHICLE MODEL.VEHICLE MODEL
NAME .as("model"),
VEHICLE_TRIM.TRIM NAME.as("trim"),
VEHICLE.VEHICLE_CURR_PRICE.as("price"),
VEHICLE.VEHICLE COLOR.as("color"),
VEHICLE STYLE.VEHICLE STYLE NAME.as("style"),
VEHICLE.VEHICLE_MODEL_YEAR.as("year"),
VEHICLE.FEATURED);

I've put all my desired fields into a neat bundle mostly for the
readability advantage. There is a downside here however, because I
sacrifice type information by using Field<?>. In some scenarios, jOOQ
might frown at this because it can’t provide the type safety guarantees it
would prefer. Note the use of the as method to set aliases on the columns.
Next comes the actual query. jOOQ offers support for all the major joins,
as well as flexibility for how you express the joins. Here, I'm looking to
construct an inner join. Here’s one way to pull this oft:

Result<Record> results = context.select(fields).from(VEHICLE)
«join(VEHICLE MANUFACTURER).on(VEHICLE.VEHICLE MANUFACTURER.
eq(VEHICLE MANUFACTURER.MANUFACTURER ID)) (1)
.join(VEHICLE MODEL).on(VEHICLE.VEHICLE
MODEL_ID.eq(VEHICLE MODEL.VEHICLE MODEL
ID))
«join(VEHICLE_TRIM).onKey() (2)

119

CHAPTER 3 WORKING WITH J0OQ

.join(VEHICLE_STYLE).on(VEHICLE.VEHICLE STYLE.eq(VEHICLE STYLE.
VEHICLE_STYLE_ID))
.fetch();

So, joining vehicle, vehicle manufacturer, vehicle model, and
vehicle_trim gives me all the information I want. Here’s what’s new:

1. Starting with my first table, I use the join method
to connect to the next table. The on method helps
me define the key on which I want to construct the
relation.

2. onKey is another variation of on. onKey is a jOOQ-
only enhancement that allows me to skip the part
where I have to type in the key column for the
relationship. jOOQ will transparently generate an on
SQL clause by locating a nonambiguous foreign
key-primary key relationship between the tables.

o The onKey feature is available only on generated
code - jOOQ needs to be sure of the structure of the
underlying tables. Your manual SQL poetry won’t
do, unfortunately.

o There’s a variant available where you can specify
the column to use: onKey (VEHICLE.VEHICLE_TRIM).

This yields the standard inner join: a relationship between two or more
tables, where the key value is present in all the tables referenced. If you're
a stickler for clarity like T am, you may want to explicitly specify that it’s an

inner join like so:

context.select(fields).from(VEHICLE).innexJoin(VEHICLE
MANUFACTURER) .on(VEHICLE.VEHICLE MANUFACTURER.eq(VEHICLE
MANUFACTURER . MANUFACTURER ID))

120

CHAPTER 3 WORKING WITH JOOQ
jO0Q supports this join along with
1. Cross-Join with crossJoin
2. LeftJoin with leftJoin
3. RightJoin with rightJoin
4. FullJoin with fullJoin
5. Partitioned Outer Join partitionBy - Oracle only

...and other combinations of joins.

Caution There’s a j00Q bug® where non-distinct columns

will cause an InvalidResultException to be thrown when
performing joins with ON or USING in some scenarios. One scenario
is when the same column name occurs in more than one table in the
Join. To get around this, use SQL aliases for columns associated with
a Join. Alternatively, you could use the fully qualified (schema.table.
column) naming style for your join columns.

Non-SQL Grouping

Consider this scenario: I want to pull the same results as a previous section
(vehicle name, model, manufacturer, trim, color, etc.), but grouping the
results by manufacturer, so that I can wind up with a Map that looks like the

following:

Map<String, List<VehicleRecord>> vendorMapping

8https://github.com/j000/j00Q/issues/2808

121

https://github.com/jOOQ/jOOQ/issues/2808

CHAPTER 3 WORKING WITH JOOQ
Here’s what the SQL query might look like:

SELECT
"v . vehicle id” AS “vehicle id",
“v_man . manufacturer name™ AS “brand’,
“v_mod" . vehicle model name™ AS “model”,
“v_trim’ . trim name® AS “trim’,
“v . vehicle curr price’ AS “price’,
“v' . vehicle color™ AS “color’,
“v_style”. vehicle style name™ AS “style’,
“v' . vehicle model year® AS “year’,
“v . featured” AS "featured

FROM (((("vehicle™ “v°
JOIN “vehicle manufacturer™ “v_man™ ON ((v' . vehicle
manufacturer™ = “v_man”. manufacturer id")))
JOIN “vehicle model™ “v_mod™ ON ((v_mod". vehicle_
model id” = “v' . vehicle model id")))
JOIN “vehicle trim™ “v_trim® ON (("v_trim™ . trim id" =
“v'. vehicle trim’)))

<picture confused look caption: huh?>

What's that? That’s exactly the same query from the section on Joins?
There’s no GROUP BY statement anywhere in there? Why am I asking you
questions when technically I'm talking to myself? Well, friend, this is where
the magic of the fetchGroups family of methods comes in.

Map<String, Result<Record>> vehiclesGroupedByBrand = context.

select(fields).from(VEHICLE)

.join(VEHICLE MANUFACTURER).on(VEHICLE.VEHICLE MANUFACTURER.

eq(VEHICLE_MANUFACTURER.MANUFACTURER_ID))
.join(VEHICLE_MODEL).on(VEHICLE.VEHICLE MODEL_ID.eq
(VEHICLE _MODEL.VEHICLE MODEL_ID))

.join(VEHICLE_TRIM).onKey()

122

CHAPTER 3 WORKING WITH J0OQ

.join(VEHICLE_STYLE).on(VEHICLE.VEHICLE STYLE.eq(VEHICLE STYLE.

VEHICLE STYLE_ID))

.fetchGroups (VEHICLE_MANUFACTURER .MANUFACTURER_NAME.

as("brand"));

vehiclesGroupedByBrand. forEach((manufacturer,vehicles) ->{
logger.info("Available {} vehicles: \n {}",
manufacturer,vehicles);

};

I can still construct my join query as normal, but using fetchGroups,
I can have my results grouped and collected by the alias of a column in
the select statement. This is another one of my favorite conveniences with
jOOQ. Without this facility, I would have to pick between complex SQL
statements or manual composition of the query output to get the same
results.

There are many versions of fetchGroups that provide superb control
over the mapping. For example, I can group the results by POJO:

Map<VehicleManufacturer, List<CompleteCarListing>>
vehiclesGroupedByBrand = context

.select(VEHICLE_MANUFACTURER.fields())

.select(fields) (1)

.from(VEHICLE)
.join(VEHICLE_MANUFACTURER).on(VEHICLE.VEHICLE MANUFACTURER.
eq(VEHICLE MANUFACTURER.MANUFACTURER_ID))

.join(VEHICLE MODEL).on(VEHICLE.VEHICLE MODEL
ID.eq(VEHICLE MODEL.VEHICLE MODEL _ID))
.join(VEHICLE_TRIM).onKey()
.join(VEHICLE STYLE).on(VEHICLE.VEHICLE STYLE.eq(VEHICLE STYLE.
VEHICLE STYLE ID))
.fetchGroups(keyRecord -» { (2)

123

CHAPTER 3 WORKING WITH J0OQ

return keyRecord.into(VEHICLE_MANUFACTURER).
into(VehicleManufacturer.class); (a)
}» valueRecord -» {
return valueRecord.into(COMPLETE_CAR_
LISTING).into(CompleteCarListing.
class); (b)
D

logger.info("{}",vehiclesGroupedByBrand);

124

It’s largely the same join query with some special sauce added:

1.

I stack two jOOQ select clauses so that the fields
in the two statements are available for my purposes
later in the query. I call the fields method on the
VEHICLE MANUFACTURER table to easily load all the
fields available in that table. The fields variable is
the same hand-crafted list of org. jooq.Field that
I've been using through this section of the book.

a. The rest of the query contains the same joins as I've
been using to demonstrate up till this point.

By the time I get to the fetchGroups clause, of my
jO0Q query, the context has all the fields I need to
do the mapping of the query results to POJOs. Note
that these are the same POJOs jOOQ generated.
This variation of fetchGroups allows me to supply
instances of org. jooq.RecordMapper to construct

a. The key for the map by correlating the first record
into the VEHICLE_MANUFACTURER table, and that in
turn into the corresponding VehicleManufacturer
record.

CHAPTER 3 WORKING WITH J0OQ

b. The value for the map by correlating the second
supplied record into the COMPLETE_CAR_LISTING
“table” (it’s actually a view); that in turn is mapped
to the appropriate POJO.

What does the SQL query generated by this jOOQ query look like?

select

“vehicle_manufacturer . manufacturer_id",
“vehicle_manufacturer’ . manufacturer_name’,

. vehicle_manufacturer” . status”,
“vehicle_manufacturer™ . version,

“vehicle” . vehicle_id",

“vehicle manufacturer”. manufacturer name™ as “brand”,
“vehicle model™. vehicle model name™ as “model”,
“vehicle trim™. trim name™ as “trim’,
“vehicle™. vehicle curr price’ as “price’,
“vehicle . vehicle color™ as “color’,

“vehicle style™. vehicle style name™ as “style’,
“vehicle™. vehicle model year™ as “year’,

“vehicle™. featured”

from “vehicle’

join “vehicle manufacturer™ on “vehicle . vehicle manufacturer”
= “vehicle_manufacturer’ . manufacturer id"

join “vehicle model™ on “vehicle™. vehicle model id" =
“vehicle model” . vehicle model id"

join “vehicle trim® on “vehicle trim’. vehicle manufacturer id’

= “vehicle manufacturer” . manufacturer id"

join “vehicle style” on “vehicle™. vehicle style™ = “vehicle

style” . vehicle style id"

125

CHAPTER 3 WORKING WITH J0OQ

Asyou can see, stacking my selects simply adds all the available
columns to the final SELECT statement. There’s also no GROUP BY clause,
implicit or otherwise. The grouping is done in memory after the rows have
been returned from the database. What does the result look like?

VehicleManufacturer (1, Lexus, ACTIVE,
null)=[CompleteCarListing (1, Lexus, ES 350, BASE, 35000.0000,
RED, Car, 2010-01-01, 0), CompleteCarListing (2, Lexus, ES 350,
BASE, 49000.0000, GREY, Car, 2017-01-01, 0)],
VehicleManufacturer (4, Acura, ACTIVE,
null)=[CompleteCarListing (4, Acura, MDX, SPORT, 50000.0000,
BLUE, Car, 2018-01-01, 0), CompleteCarListing (4, Acura, MDX,
BASE, 50000.0000, BLUE, Car, 2018-01-01, 0)

Fun fact: fetchGroups, fetchMap, and intoGroup - the three non-SQL
grouping functions - will preserve the order of the results as supplied
by the query. So if you orderBy, the ordering is preserved across the
groupings.

Note Don’t forget to generate the equals and hashCode methods
on the POJOs (or implement them yourself if they’re not generated).
The Map data structure needs both hashCode and equals to be
able to uniquely identify each of its elements.

When you need to do this kind of grouping in bulk over a large result
set, you'll need to revert to the fetchStream. This way, you can take
advantage of JDK streaming and parallelization functionality like so:

Map<VehicleManufacturer, List<CompleteCarListing>>
vehiclesGroupedByBrand = context
.select(VEHICLE MANUFACTURER.fields())
.select(fields) (1)

126

CHAPTER 3 WORKING WITH J0OQ

.from(VEHICLE)

.join(VEHICLE_STYLE).on(VEHICLE.
VEHICLE STYLE.eq(VEHICLE STYLE.
VEHICLE STYLE ID))

.fetchSize(100) (1)

.fetchLazy() (2)

.collect((3)

Collectors.groupingBy((3a)
record -» record.into
(VehicleManufacturer.class),

(i) (Collectors.
mapping(record -»
record.into(CompleteCar
Listing.class),Collectors.
toList())) (ii)

)3

Breaking out the chain of operation into the fetchSize method signals
the beginning of lazy business:

1. fetchSize sets the maximum number of rows I
want the cursor to retrieve in one go. Not setting this
might result in the entire result set being loaded into

memory.

2. fetchlazy officially begins the use of an org. jooq.
Cursor to efficiently (lazily) stream results.

3. When I go lazy fetching, fetchGroups is no longer
on the menu. I'll have to take the grouping into my
own hands. The collect method accepts a java.
util.stream.Collectors. From this point, you
could also go parallel because we're in the JDK
Streams API territory now.

127

CHAPTER 3 WORKING WITH J0OQ

a. Collectors.groupingBy® will accept functions that
help

i. Generate the key object.

ii. Generate the value object and collect the
group into a data structure. The handy-dandy
Collectors.tolList() function helps me achieve
this.

Altogether, I can now group a large dataset in memory without sacrificing
performance. Yes, yes, this goes slightly against the “SQL knows best”
mantra,'® but in the interest of readability, this is a happy medium between
complicated window functions and grossly inefficient manual processing.

Batch Operations

Ineed to insert and/or export one thousand vehicles from the Eden Auto
database. What are my options in jOOQ? Well, to start, I can make better
use of my database connection:

DSLContext context = DSL.using(connection, SQLDialect.MYSQL);
context.batched(batchedConnectionConfig -> {
insertVehicle(batchedConnectionConfig);
insertVehicleModel (batchedConnectionConfig);
updateVehiclePrice(batchedConnectionConfig):
//other inserts

1

*https://docs.oracle.com/en/java/javase/11/docs/api/java.base/
java/util/stream/Collectors.html#tgroupingBy(java.util.function.
Function,java.util.function.Supplier,java.util.stream.Collector)

19Lukas: For a pure SQL approach, consider the MULTISET_AGG function that
yields the same results with even better performance: www. jooq.org/doc/

latest/manual/sql-building/column-expressions/aggregate-functions/
multiset-agg-function/

128

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Collectors.html#groupingBy(java.util.function.Function,java.util.function.Supplier,java.util.stream.Collector)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Collectors.html#groupingBy(java.util.function.Function,java.util.function.Supplier,java.util.stream.Collector)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Collectors.html#groupingBy(java.util.function.Function,java.util.function.Supplier,java.util.stream.Collector)
http://www.jooq.org/doc/latest/manual/sql-building/column-expressions/aggregate-functions/multiset-agg-function/
http://www.jooq.org/doc/latest/manual/sql-building/column-expressions/aggregate-functions/multiset-agg-function/
http://www.jooq.org/doc/latest/manual/sql-building/column-expressions/aggregate-functions/multiset-agg-function/

CHAPTER 3 WORKING WITH J0OQ

In the preceding snippet, I've combined multiple dynamically

generated insert statements to execute in one shot:

The batched method on DSLContext will add the
identical statements to a queue. These statements are
being teed up for the JDBC batching mechanism to
execute in one trip to the database.

Note that I'm passing the batchedConnectionConfig
into the query execution methods. The DML methods
will need to use this config instead of the original
DSLContext object.

They're still executed as independent DML statements,
so that each statement yields its own independent
INSERT, UPDATE, or DELETE. The advantage comes when
jOO0Q will delay the execution of these statements for as
long as possible before sending them over to the DBMS
for execution. This is what’s known as the batched
connection in the jOOQ APL.

Note

The batching connection does not kick in when you try to

retrieve results from the inserts, for example, generated keys. So,
if you have Settings# returnIdentityOnUpdatableRecord
enabled, calls to store on your UpdatableRecords will execute
immediately instead of waiting for the batch.

I can configure the batch size with the following Settings snippet:

new Settings().setBatchSize(20);

129

CHAPTER 3 WORKING WITH J0OQ

This limits the size of the data sent to my database server in one
go: minimizing the risk of overwhelming the network connection or
the database itself; you'll need to tune this configuration to match your
operational needs.

Explicit Batching

In addition to the batched connection I demonstrated earlier, jOOQ
provides convenience batch methods for the operations you'd expect:

e batch

e batchInsert
e batchUpdate
e batchDelete
e batchStore
o batchMerge

With these, I can gain more control over the batching semantics
instead of waiting for the BatchConnection to do it implicitly. Here’s
batchStore in action:

List<VehicleRecord> vehicleRecords = new Arraylist<>();
//populate list of records to insert
context.batchStore(vehicleRecords).execute();

Using any of the other batchXXX methods is just as straightforward."
You can supply plain SQL, jOOQ DSL statements, or whole entities.

""Well, almost. More on this shortly.

130

CHAPTER 3 WORKING WITH J0OQ

There’s also the batch mode that yields the same effect:

context.batch(

context.insertInto(VEHICLE, VEHICLE.
VEHICLE_MANUFACTURER, VEHICLE.VEHICLE CURR_
PRICE, VEHICLE.VEHICLE MODEL_YEAR, VEHICLE.
VEHICLE_STATUS, VEHICLE.VEHICLE COLOR,
VEHICLE.VEHICLE MODEL ID, VEHICLE.VEHICLE
TRIM, VEHICLE.VEHICLE STYLE, VEHICLE.
FEATURED)
.values((Long) null, (BigDecimal)
null, null, null, null, (Long)
null, (Long) null, (Long) null,
(Byte) null))
.bind(4L, BigDecimal.value0f(46350.00),
null, "ACTIVE", "BLUE", 13L, 2L, 1L, Byte.
value0Of("0"))
.bind(9L, BigDecimal.
valueOf(83000.00),null, "ACTIVE", "GREY",
oL, 7L, 1L, Byte.valueOf("0"))
.bind(9L, BigDecimal.valueOf(77000.00),
null, "ACTIVE", null, 9L, 7L, 1L, Byte.
valueOf("0"))
.execute();

131

CHAPTER 3 WORKING WITH J0OQ

The batch method allows me to execute my insert statements in
bulk by way of value binding. See, instead of separate individual INSERT
statements, I can use a multi-value insert to execute the batch. The only
stipulations are

o To have a stub values statement that serves as the
“default” values provider. Here, I've used nulls in all
available slots.

e Twill then use the bind method to set up the actual
values I want to insert.

Following this, jOOQ will execute the inserts in one shot to the
database without the delay that batchedConnection uses.

The batchInsert and batchUpdate methods will generally do what
you want them to do as well. They both work with TableRecord and
UpdatableRecord, but there’s a catch. The batchUpdate method will batch
only SQL statements that are identical. So when you have these three
VehicleRecords being prepped for a batchInsert, the results might not be
what you expect:

context.newRecord(VEHICLE);
VehicleRecord vehicleRecord2 = context.newRecord(VEHICLE);
VehicleRecord vehicleRecord3 = context.newRecord(VEHICLE);
vehicleRecordi.setVehicleColor(null);
vehicleRecord2.setVehicleColor("GREY");
vehicleRecord3.setOptions(3L);
context.batchInsert(Arrays.asList(vehicleRecordi,vehicleRecord2,
vehicleRecord3)).execute();

VehicleRecord vehicleRecordil

132

CHAPTER 3 WORKING WITH J0OQ

There are varying combinations of nulls and actual values for different
columns of the same entity Vehicle in the preceding snippet. The effect of
this is that the resulting SQL from a call to batchInsert or batchStore will
generate functionally separate INSERT statements. As a result, jOOQ will
not batch this update. Instead, it would execute each one individually. In
a true batch scenario where you've queued up hundreds or thousands of
updates with varying combinations of missing/null fields, you're going to
get an unpleasant surprise:

<unpleasant surprise image>

To be clear, this isn’t a jOOQ issue. For a handful of reasons that are
outside the scope of this book, most database servers (and JDBC) don’t
handle null values in INSERT and UPDATE statements the way you'd expect.
To ensure that jOOQ consistently handles my batch inserts and updates
the way I'd expect, I will set the changed value like so:

vehicleRecordl.changed(true);

The changed flag is an attribute available only with UpdatableRecord.
It signals to the jOOQ runtime that some fields on this specific entity have
been changed. As a result, jOOQ is able to optimize the generated INSERT
or UPDATE statement per batch item.

Tip UpdatableRecord provides the previous value of a modified
instance. Call the original method on the object to get the
immediate previous value before a modification.

133

CHAPTER 3 WORKING WITH J0OQ

Batch Import

Yes, you can just inhale or exhale a bunch of data from your database.

Famous batch importer

What does that look like? Let’s say I have a CSV that contains rows like
the following:

vehicle_brand,vehicle_price,model_year,status,color,model_
id,vehicle_trim, style, featured
1,35000.0000,2010-01-01,ACTIVE,RED,1,1,1,0,2021-07-05
13:22:12.0,"","", """
1,49000.0000,2017-01-01,ACTIVE,GREY,1,1,1,0,2021-07-05
13:22:11.0,"", """
1,36000.0000,2018-01-01,ACTIVE,BLUE,1,1,1,0,2021-07-05
13:22:11.0,"","", """
4,50000.0000,2018-01-01,ACTIVE,BLUE,13,2,1,0,2021-07-05
13:22:11.0,"", """, "

134

CHAPTER 3 WORKING WITH J0OQ

How do I get, say, 5000 such CSV rows into my database?
Easy: with the jOOQ Loader API. Observe:

context.transaction(txn -» { (1)
context.loadInto(VEHICLE) (2)

.bulkAfter(50) (3)
.batchAfter(10) (8)
.commitAfter(2) (5)

.loadCSV(csvString) (6)
.fields(VEHICLE.fields())
.ignoreRows (1)
.separator(',")
.nullString("")
.execute();

)5
Here’s the breakdown:

1. Ineed to execute the bulk load in a transaction
block, which disables autocommit.

2. Specify the table that I want to import the CSV data
into, using the Loader object.

3. bulkAfter will configure the size of number of line
items contained in inserts sent to the database.
Here, I'm asking for each payload to contain 50
INSERT...VALUES statements.

a. bulkAll is also an option to send the whole CSV to the
database at once. Use with caution and tuning on the
database server.

135

CHAPTER 3 WORKING WITH J0OQ

136

4.,

batchAfter configures the number of individual
INSERT statements sent at once over the network to
the database. Here, I'm asking that ten statements
be sent at once. Combined with bulkAfter, the
configuration could be read as “Add 50 VALUES
statements to a single INSERT. . .VALUES statement;
then send 10 INSERT. . .VALUES statements at once
to the server” So in total, a batch execution with
these instructions will contain at most 50 rows x 10
statements = 500 rows total.

a. batchNone will execute each INSERT individually.

commitAfter will commit my inserts only after the
set number of batches has been reached.

a. commitAll is also an option. On the database server
side, all the insert statements sent over the wire will

be committed in one large transaction. Be sure your

database can support the transaction block size.

loadCsV tells jOOQ that I want to load the CSV
format - JSON is another option.

a. I define the mapping of the columns in the CSV file

to the columns in the database table.

b. With ignoreRow I make jOOQ skip the first row in my

CSV, because that’s the header row.

c. The separator symbol for the “columns” in my CSV is

set with separator.

d. How I mark a CSV column as null. On encountering
this value, jOOQ will substitute NULL for any inserts

of a “blank” CSV column.

CHAPTER 3 WORKING WITH J0OQ

...and then execute!

At the time of this writing, CSV and JSON are the only supported file
formats for the Loader API. In addition to flat-file formats, I can straight up
load my data from memory with the loadArray or loadRecords methods
in the Loader API - loading arrays or jOOQ Record respectively. Neato!

Advanced Query Syntax

Even without the gift of jOOQ-generated code and type safety, there
are a bunch of powerful and handy SQL features that you can jOOQify.
Observe...

Merge and Upsert

How can I conditionally insert or update data in a table depending on
whether my insert conflicts with existing data?

Enter the fancy insert twins: Merge and Upsert. Both help you
combine inserts and updates into one SQL statement. No, “upsert” isn’t
areal word, just a portmanteau of update+insert. The MERGE statement
is a standard part of SQL, supported by Oracle, SQL Server, DB2, and
Sybase, among others. MySQL does not support MERGE functionality, but
it does provide an alternative. Known as the INSERT...ON DUPLICATE KEY
statement, it works just like the merge to support

o Inserting rows into a table.

o Ifthe row already exists in the table (and a duplicate
key error occurs as a result), the existing record is
updated.

137

CHAPTER 3 WORKING WITH J0OQ
In MySQL, my upsert would look like the following:

INSERT INTO vehicle model(vehicle model name, vehicle style id,
vehicle man_id)

VALUES('ES 350", 2, 1)

ON DUPLICATE KEY UPDATE vehicle style id = 2, vehicle man_id = 1

In jOOQ, I can write the same query thus:

context.insertInto(VEHICLE MODEL,VEHICLE MODEL.VEHICLE MODEL

NAME,VEHICLE MODEL.VEHICLE MAN_ID, VEHICLE MODEL.VEHICLE STYLE ID)
.values("ES 350",2L, 1L)
.onDuplicateKeyUpdate()
.set(VEHICLE_MODEL.VEHICLE_STYLE_ID,2L)
.set(VEHICLE_MODEL.VEHICLE_MAN_ID,1L)
.execute();

The onDuplicateKeyUpdate method allows me to define columns to
update for any insert attempt that fails due to the data already existing. I
still have the option to just straight up ignore any duplicate vehicles for
the insertion attempt with onDuplicateKeyIgnore. The SQL equivalent of
this directive is the INSERT. . .IGNORE SQL command,'? which is exclusive
to MySQL. For PostgreSQL, jOOQ supports the newer INSERT. . .ON
CONFLICT statement to achieve the same effects.

So, what if you're not running a MySQL database? Well, you're in luck
friend - MERGE is going to save you. jOOQ will transparently translate any
usage of onDuplicateKeyUpdate and onDuplicateKeyIgnore to a MERGE
statement, where the backing database is not MySQL:

2With some caveats: https://github.com/j000/j000/issues/5211

138

https://github.com/jOOQ/jOOQ/issues/5211

CHAPTER 3 WORKING WITH J0OQ

context.mergeInto(VEHICLE_MODEL) (1)

.using(selectOne()) (2)
-on(VEHICLE_MODEL.VEHICLE_MODEL_NAME.
eq("ES 350")) (3)
-whenMatchedThenUpdate() (a)
.set(VEHICLE _MODEL.VEHICLE STYLE ID,3L)
.set(VEHICLE MODEL.VEHICLE MAN_ID,1L)
.whenNotMatchedThenInsert(VEHICL
E _MODEL.VEHICLE MODEL NAME,VEHICLE MODEL.
VEHICLE_MAN_ID,VEHICLE MODEL.VEHICLE STYLE_

ID) (5)
.values("ES 350",2L, 1L)
.execute();

It's a one-to-one translation where

1.

2.

It starts with the mergeInto node in the fluent chain.

The standard MERGE syntax requires source and
destination tables for the data. In this snippet,

my data is manually built and not coming from
another database table. Therefore, I won't have a
source table to provide. That’s why I'm using the
selectOne() method on DSLContext. This is a
convenience feature (one of many) that generates a
query from a pseudo table (like Oracle’s DUAL table).
For any other scenario, you would supply an actual
table in this position.

a. You can use Records and subqueries in the using
clause as well. They just need to be converted to
tables. The table function will convert almost
anything into a table for the purposes of ajOOQ
query, for example:

CHAPTER 3 WORKING WITH J0OQ

List<VehicleModelRecord> vehicleModelRecords = ...

context.mergeInto(VEHICLE MODEL)
.using(table(vehicleModelRecords))

3. Ithen define the condition that I want to use to
determine whether a row is a duplicate or not.

4. Thatbeing set, whenMatchedThenUpdate does what it
says: rows that match the condition will be updated
with the following set data.

5. whenNotMatchedThenInsert will kick in if no
matches are found; a new row will be inserted.

Tip onDuplicateKeyIgnore and onDuplicateKeyUpdate are
all available for the Loader API as well. onDuplicateKeyError is
available for the Loader API only. This means that you can apply even
more flexible upsert semantics to bulk loading of data.

MERGE is definitely more powerful than the INSERT...ON DUPLICATE
KEY or INSERT. . .IGNORE statements. For example, in some database
dialects (Oracle, DB2, Sybase), you can DELETE rows that fail the matching

condition.

Window Functions

I'd previously used window functions in the previous chapter to construct
a Common Table Expression (CTE) to calculate the median car price in the
inventory. I didn’t go into any detail, so here we are again.

140

CHAPTER 3 WORKING WITH J0OQ

While this isn’t a SQL textbook,'® window functions are an enigmatic
and enormously powerful toolkit that warrant some explanation. Here’s a
look at the vehicles in my inventory:

|| vehcess brand model _um prce clor st e feawred

b1 Lexus ES 350 BASE 35000.0000 RED Car 2010 0
2 Lexus ES 350 BASE 45000.0000 GREY Car 2017 0
3 Lewus ES 350 . 5 35000.0000 BLUE Car 018 0
4 Acura DX SPOR 50000.0000 BLUE Car 2018 0
5 Aaxra MOX SPORT 55020,0000 WHITE Car 2017 0
L] Aowra DX SPORT 45000.0000 WHITE Car 2013 0
7 Toyota Corolla CE 18550.0000 BLUE Car 2020 1
] Toyota Corolla CE 24000.0000 RED Car 2019 0
9 Toyota Camry XE 30000.0000 BLUE Car 2021 1
0 Aoxra DX SPORT 45350.0000 BLUE Car 2021 1
11 Mercedes-Benz 5500 BASE 83000.0000 GREY Car 2021 1
12 Mercedes-Benz 5500 BASE T7000,0000 WHITE Car 2016 1
13 Aasra MOX SPORT 45350.0000 BLUE Car 2014 0
16 Aqura MDX SPORT 45350.0000 BLUE Car 2019 0

Nothing special, just a SELECT * of the vehicles from the complete
car_listing table. I'm interested in getting a report that looks a little
something like this from that table:

vehide_id brand model year price price_rank
R Acura MDX 2017 55020.0000 1
4 Acura MDX 2018 50000.0000 2
10 Acura MDX .aooa 3
13 Acura MDX 2013 46350.0000 3
16 Acura MDX 2019 46350.0000 3
6 Acura MDX 2013 45000.0000 4
19 Acura MDX 2015 42450.0000 5
2 Lexus ES 350 2017 48000.0000 1
Lexus ES 350 2018 36000.0000 2
1 Lexus ES 350 2010 35000.0000 3
11 Mercedes-Benz 5500 2021 83000.0000 1
12 Mercedes-Benz $500 2016 77000.0000 2
9 Toyota Camry 2021 30000.0000 1
8 Toyota Corolla 2019 24000.0000 2
7 Toyota Corolla 2020 18550.0000 3

1BEditor’s note: That could come later. ©

141

CHAPTER 3 WORKING WITH J0OQ

In the screenshot above, I have a report that shows me the individual
vehicles in the inventory and their prices, among other things. Here are the
key fields:

o vehicle_id obviously refers to a specific vehicle. I also
have some individual vehicle details like model, year,
and price.

o The price column is the individual vehicle’s price

o ThenIhaveaprice rank column that shows me how
the individual vehicle price ranks against the prices of
similar vehicles of the same brand.

A regular group function like AVG or MAX will collapse all the data into
a single value like “here’s the max price of any Toyota in the inventory.”
Using window functions, I can say “here are the prices for the individual
vehicles in the inventory, but for each row, I want to display the rank of the
vehicle’s price.

TL;DR: Window functions let you combine the summarization
capabilities of group functions while retaining the ability to display the
individual rows that make up the group values.

It’s...not the easiest thing to explain. So, let me show you how a
window function can yield the results I'm interested in. Here’s what the
SQL query looks like:

select vehicle id,brand,model, year, price, avg(price) as
avg price, dense_rank() over (partition by brand order by
avg(price) desc) as price rank

from edens_car.complete car listing

group by brand, model,vehicle_id

1. The preceding query has standard SQL components
and clauses - the AVG group function, the GROUP BY

clause, etc.

142

CHAPTER 3 WORKING WITH J0OQ

2. The DENSE_RANK function is what gives an ordinal
number to the rows returned from the result. It’s one
in a family of ranking functions; there’s also RANK
and ROW_NUM functions that provide similar features
but with some differences in how they handle ties
between rows.

3. OVERis what marks the start of a window function. It
stipulates the range over which the window function
needs to be applied. In this case,

a. The ranking needs to happen based on the prices of
the vehicles.

b. Optionally, I want the rankings to be further
grouped by brand. This way, the rankings are within
a manufacturer’s vehicle range. Instead of saying
“show me the ranking of all the vehicle prices,” I'm
saying here with PARTITION, “group the rankings into

buckets per vehicle manufacturer”
All told, I can see
1. Individual car records and their details

2. The result of grouping car records together by the
average of their prices

3. The rank of an individual vehicle’s price relative to
the average of its group

A moment to catch our breath...and then we look at what this would
look like in jOOQ:

context.select (COMPLETE_CAR_LISTING.VEHICLE ID,
COMPLETE_CAR_LISTING.BRAND,
COMPLETE_CAR_LISTING.MODEL,
COMPLETE_CAR_LISTING.YEAR,

143

CHAPTER 3 WORKING WITH J0OQ

avg(COMPLETE_CAR_LISTING.PRICE).
as("avg price"),
rank() .over(partitionBy(COMPLETE_
CAR_LISTING.BRAND)
.orderBy(avg(COMPLETE_CAR_
LISTING.PRICE).asc()))
.as("price_rank")
)
.from(COMPLETE_CAR_LISTING)
.groupBy (COMPLETE_CAR_LISTING.BRAND,
COMPLETE_CAR_LISTING.MODEL, COMPLETE CAR LISTING.VEHICLE ID);

I know, it seems like a lot of code, but you can read it pretty much as a
one-to-one mapping with the SQL version of the query. The rank function
and everything that follows it are supplied by the one and only DSL class.

Phew! Here’s a cute duckling for sticking with the book thus far.

Rubber Duck Debugging: The live action movie!
144

CHAPTER 4

Integrating with jOOQ

Also known as “eating your cake and having it too.” If you're starting afresh
with jOOQ in a new project, congratulations and bonne aventure! And if
you have an existing project with other technologies and APIs? jOOQ could
still be of mighty service. To recap, jOOQ does the following specific things
exceedingly well:

¢ Generating highly expressive and typesafe, reusable
SQL so that you can rest assured that your SQL is
always correct.

e Generating Java classes from database entities so that
you never have to manually construct another entity,
DTO, or Active Record again.

¢ Smoothly managing database dialects, quirks, and
shortcomings so that you don’t have to get bothered
by the differences between different database vendors.
Superlative portability!

...and of course, staying aligned with the performance and scalability
of interests of your database server. That being said, jOOQ isn’t looking
to be your one and only love. mean, it would be nice, but if you already
have certain technologies in use, jOOQ is more than happy to share
responsibilities.

© Tayo Koleoso 2022 145
T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_4

https://doi.org/10.1007/978-1-4842-7431-6_4

CHAPTER 4 INTEGRATING WITH J0OQ

As long as we all understand who’s the real friend of the database in
this alliance

In this chapter, we're going to take a look at how jOOQ can
supercharge your application implementations by lending its unique
capabilities to existing APIs and libraries.

Java Persistence APl with j00Q

Java Persistence API (JPA) is the JakartaEE specification that defines how
database objects can be mapped to Java, a.k.a. Object-Relational Mapping
(ORM). It lays out how implementation APIs should handle translating
database components, SQL, and other database stuff into Java classes,
interfaces, and in reverse. It defines the expected behavior of reference
implementations during specific circumstances. It also defines the Java

146

CHAPTER 4 INTEGRATING WITH J0OQ

Persistence Query Language (JPQL), a SQL-flavored query syntax that
attempts to replicate the idioms of SQL, but for Java classes. We then look
to vendors like

e Redhat/Hibernate

o Eclipse/EclipseLink
e Oracle/TopLink

e OpenJPA

Ultimately, the expectation is that industry vendors will implement
a functional API following the guidance of the specification. Keyword
there is “guidance” - the specification is a guideline, and vendors can and
typically do break rules of the spec. Alternatively, they could implement
some specification-defined functionality, but in a non-standard way. What
this means is that your mileage may vary from JPA implementation to
implementation.

But you probably already knew all this.

We're not going to explore JPA in any great detail here; just want to
answer one question: what can jOOQ do for you in a JPA world?

Generate JPA Entities

The fundamental unit of work in JPA is the entity. The JPA entity is a Java
class that you use to represent a database table or rows from that table.
Because this isn’t a JPA textbook, I'm not going to go into too much detail
about JPA entities. Suffice it to say, jOOQ can create some basic JPA entities
for you. All you need to do is ask:

<generate>
<jpaAnnotations>true</jpaAnnotations>
</generate>

147

CHAPTER 4 INTEGRATING WITH JOOQ

It’s really that simple. Flag jpaAnnotations “on” in your jooq code
generator settings and you'll get something like the following:
/**

* This class is generated by j00Q.

*/
@Entity
@Table(
name = "vehicle",
schema = "edens_car",
indexes = {
@Index(name = "veh manufacturer id idx", columnList =
"vehicle manufacturer ASC"),
@Index(name = "veh model id idx", columnList =
"vehicle model id ASC"),
@Index(name = "veh_style idx", columnList = "vehicle_
style ASC")
}
)

public class Vehicle implements Serializable {
private static final long serialVersionUID = 1L;

private Long vehicleld;

private Long vehicleManufacturer;
private BigDecimal vehicleCurrPrice;
private LocalDate vehicleModelYear;
private String vehicleStatus;
private String vehicleColor;
private Long vehicleModelld;
private Long vehicleTrim;

private Long vehicleStyle;

//more fields

148

CHAPTER 4 INTEGRATING WITH J0OQ

public Vehicle() {}
//getters, setters, constructors, toString etc

The most important annotation here is @Entity. This is what signifies
to the JPA runtime that instances of this class should be managed by the
JPA runtime. This has significant implications for the way instances of this
class are regarded by the JPA runtime. From the moment an instance of this
entity class Vehicle exists, the JPA runtime is paying attention. Any changes
on the entity, any new instances of it, retrievals from the DB, etc. all tracked
by the JPA runtime. When two threads are trying to modify the underlying
table row that backs a specific instance of Vehicle, it’s the JPA runtime’s job
to make sure only one or none of them succeed in making changes.

And now, a word from our sponsors.

No, not you sir!

149

CHAPTER 4 INTEGRATING WITH J0OQ

I'm a strong advocate of treating instances of your JPA entities the same
way you would treat the underlying database row data. It’s a very pervasive
but insidious code smell to handle these entities the way you would handle
a “dumb” object like a POJO or a Data Transfer Object (DTO). See, because
entities are live, managed objects, you run the risk of

1. Accidentally changing the state of the object in the
normal course of process execution.

2. Inducing a state management exception like
StaleObjectStateException if you hold on to
an instance of the entity for too long in a read-
only operation. This is especially likely to happen
in distributed environments and microservices.
One thread simply wants to read some data,
maybe send it as a web service response. Another
thread concurrently wants to make changes to the
underlying data for the same entity. One of those
threads is going to have a bad time.

3. Leaking data when you use the same entity class
for database operations, as well as web service
responses, or persisting it to a different format like
JSON. You're going to indiscriminately transmit
table columns in several directions.

TL;DR: Separate the concerns between your POJO needs and your
ORM needs. They are not the same type of class.

One workaround is to run the code generator twice: once with
jpaAnnotations set to false and another with it set to true. Remember to
change the output packages between both runs.

150

CHAPTER 4 INTEGRATING WITH J0OQ

In addition to vanilla JPA annotations, jOOQ can add

e The Serializable interface with
<serializablePojos>true</serializablePojos>

o JPA support for a specific version with
<jpaVersion>2.2</jpaVersion>

Neato.

Generate from JPA Entities

Yes, you read that right: jOOQ can get you started with jOOQing, even if
you don’t have an actual database. If you have JPA entities but no database,
jOOQ can still generate code for ya. Considering my rant against reusing
entities as DTOs or POJOs, this comes in super handy. This way, your JPA
entities could be already pre-generated and packaged maybe as a JAR; all
you’d need to do is generate POJOs from those entities and you'd be on
easy street. Observe.

Start by adding the following Maven (or equivalent Gradle, etc.) entries
to your project:

<dependency>
<groupIld>org.jooq.pro-java-11</groupld>
<artifactId>jooq-meta-extensions-hibernate</artifactId>
<version>3.15.1</version>

</dependency>

That'll pull in the jooq hibernate extensions kit. Next up, some
configuration changes to the code generator itself:

<database>
<nameyorg.jooq.meta.extensions.jpa.IPADatabase</namey (1)
<properties>

151

CHAPTER 4 INTEGRATING WITH J0OQ

<!-- A comma separated list of Java packages, that
contain your entities -->
<property>
<key>packages</key>
<value»com.apress.samples.jooq.jpa.entity, com.
apress.samples.jooq.ext.jpa</valuey (2)
</property>
<!-- The default schema for unqualified objects:
- public: all unqualified objects are located in the PUBLIC
(upper case) schema
- none: all unqualified objects are located in the default
schema (default)
This configuration can be overridden with the schema mapping
feature -->
<property>
<key>unqualifiedSchema</key> (3)
<valuesnone</value»
</property>
</properties>
</database>

What's all this then?

1. For generating from JPA entity classes, a name
change is necessary. org.jooq.meta.extensions.
jpa.JPADatabase defines the source of data for the
generator. Contrast this with the org. jooq.meta.
mysql.MySQLDatabase I've been using up till now,
because my code was being generated from an
actual database.

2. Ispecify the packages that jOOQ should scan to be
able to parse JPA entity classes.

152

CHAPTER 4 INTEGRATING WITH J0OQ

3. How should jOOQ handle entities that don’t have
schema data? The unqualifiedSchema property
accepts none, meaning all entities missing schema
info will be put in the default schema. public is
also valid, meaning these entities will be putin the
public schema by default. You could still override all
this with SchemaMapping as well.

For my crusade against abusing entity classes as DTOs, this is another
good workaround especially when you already have legacy JPA entity
classes. Simply generate POJOs from your existing JPA entities and skip the
jpaAnnotations directive in your code generator configuration.

Generate SQL Queries

Of course, the most obvious use case. jOOQ will always out-SQL anything
JPA could conjure up. So, it stands to reason that when you want to take
your database seriously, you should consider delegating SQL query
generation to jOOQ. JPA provides a number of opportunities to supply
your own SQL. Consider our beloved vehicle select query:

Query jooqQuery = DSL.using(SQLDialect.MYSQL,new Settings()
.withRenderQuotedNames(RenderQuotedNames.NEVER))
.select(VEHICLE.VEHICLE ID, VEHICLE.VEHICLE
COLOR, VEHICLE.VEHICLE CURR_PRICE)
.from(VEHICLE)

.where(VEHICLE.VEHICLE MANUFACTURER.
eq(param("vehicle manufacturer”, Long.class))).
getQuery();

153

CHAPTER 4 INTEGRATING WITH J0OQ

The preceding jOOQ statement

e Uses the DSL class to configure the dialect of the soon
to be generated SQL statement. It also specifies that
quotation marks shouldn’t be used in the generated
SQL - this could become important, depending on the
dialect that’s configured for your JPA implementation.
The regular double quotes (“) could cause Hibernate to
choke, for example.

¢ Selects some fields from the vehicle table, but instead
of executing it, I'm obtaining an instance of org.
jooq.Query. This is the parent interface of the jOOQ
representation of all of the SQL statements. Did you
notice how I'm not using the DSLContext here? Instead,
I'm using the DSL class directly to create my select
statement. This means that I don’t need to go about
constructing a DSLContext or a JDBC connection just
so I can build ajOOQ SQL query.

e Binds the VEHICLE.MANUFACTURER column as a query
parameter with the param function. What this means is
that I can supply a dynamic value at runtime.

o The getQuery method at the end yields a Query
object from which I can then obtain the plaintext SQL
statement, among other things.

How can this help within the JPA world?

JPA has a set of opportunities for you to supply your own SQL query.
Why would you want to do this? Well, the simple fact of the matter is that
for anything more complex than a straightforward SELECT statement from
a couple of tables, JPA isn’t the best option, especially at scale. If you need
to use Common Table Expressions, inline views, window functions, etc.,
you're going to need to craft your own SQL. Hierarchical queries are not

154

CHAPTER 4 INTEGRATING WITH J0OQ

on the JPA menu. As much as JPQL can try, it supports only a subset of the
SQL specification. This is where your Query object comes in.

@PersistenceContext
EntityManager entityManager; (1)

javax.persistence.Query nativeQuery = entityManager.
createNativeQuery(jooqQuery.getSOL()); (2)
int parameterCount = 1; //IDBC parameter values begin their
index at 1, not o.
long vehicleStyle = 4;
for(Parameter parameter: nativeQuery.getParameters()){
nativeQuery.setParameter(parameterCount++,
vehicleStyle); (3)
}
List<Vehicle> resultlList = nativeQuery.getResultList(); (4)
logger.info("Results: count: {} \n list: {}",resultlist.
size(),resultList.toArray());

Alrighty then; let’s dig into this:

1. The EntityManager is the gateway into the JPA
runtime, also known as the PersistenceContext.
Did I mention how much I live for the Context
Object pattern? This is one of those. All the database
rows mapped from the database can be obtained
from this object. Pretty much anything you want
to do with JPA can be initiated from this. There are
multiple ways to obtain an instance of this object,
depending on what platform you're working with
(JakartaEE, Spring Data, Quarkus, etc.); Iwon’t be
going into that detail here.

155

CHAPTER 4

2.

INTEGRATING WITH JOOQ

The EntityManager object provides the
createNativeQuery method that allows me to
supply custom SQL. This is where my org. jooq.
Query object comes to shine. I use the getSQL
method to obtain plaintext SQL generated from my
jOOQ query.

Because I've defined a query parameter on the
jOOQ query, the JPA query automatically inherits
the parameter via the plain String SQL I passed to

it. This means that I can dynamically set values for
each available Parameter as recognized by the JPA
Query object. This is a particularly flexible operation
overall, for example: I can refer to my query
parameters by name, in addition to the index value.

Finally, I can execute the SQL statement and retrieve
my query results with the Query#getResultList.
This method can return a list of JPA entity classes or
alist of Objects that I can transparently cast to any
class of my choosing. Here, I've chosen to use the
Vehicle POJO class that jOOQ generated for me.
This is a non-attached, unmanaged java object, so

I don’t have to worry about accidentally modifying
underlying database data via the results of this

query.

There are other opportunities to take advantage of reliably sourced,

certified conflict-free and gluten-free SQL in the JPA world. You can pass in
a JPA entity class to the createNativeQueryMethod.

Query nativeQuery = entityManager.createNativeQuery(jooqQuery.
getSQL(), VehicleEntity.class)

156

CHAPTER 4 INTEGRATING WITH J0OQ

With this approach, any instances of VehicleEntity that are returned
by EntityManager are managed objects - if you make changes to the state
of those objects, you will affect the data in the underlying db row. This
will map the query results to instances of that class, provided the column
names and other things match.

What about when the database columns don’t line up with your class
declarations? Maybe you're using a column alias, or you want to return
multiple entity types from one statement? What about when you don'’t
want to use a JPA entity class at all? I for one definitely enjoy not worrying
about accidentally moditying table data via an entity. I want disconnected
objects for read-only purposes.

Behold, the three JPA horsemen of SQL result mapping!

“lol what’s a SQL?”

157

CHAPTER 4 INTEGRATING WITH J0OQ

Okay, seriously, it’s these three annotations:

1. @SqlResultSetMapping defines the existence of a
need to map results from a SQL query into a java
object. This annotation can be applied to any JPA
class with the Entity annotation. After defining this
annotation on a class, you can refer to it by name.
Stick with me to see this in action.

2. @ConstructorResult was introduced with JPA 2.1
so that we can use JPA to construct unmanaged Java
objects/entities. Prior to this, everything had to be a
managed JPA entity. See my previous caveat for why
this can become a bad thing. With this annotation,
even when you provide a class annotated with
@Entity, the JPA runtime will ignore it and not
attempt to manage anything about the results of this
construction.

3. @ColumnMapping allows you to map the columns in
a SQL query result to the fields of a non-JPA entity,
that is, a POJO. This is how you define the mapping
of column aliases and other non-conforming names
from SQL results to the fields of a Java class. In JPA
lingo, such columns are called scalar columns.

So, how do these work together? Check this out: given that I've run
my jOOQ generator and obtained a JPA-annotated POJO com. apress.
jooq.generated.tables.pojos.VehicleModel, I can put the mapping
annotations to work like so:

@SqlResultSetMapping(name="nonJPAManagedVehicleModel", (1)
classes = {
@ConstructorResult(targetClass = com.apress.jooq.
generated.tables.pojos.VehicleModel.class, (2)

158

CHAPTER 4 INTEGRATING WITH J0OQ

columns = { (3)
@ColumnResult(name="vehicle_
model_id"),
@ColumnResult(name="vehicle_
model_name"),
@ColumnResult(name="vehicle_
style_id"),
@ColumnResult(name="vehicle_
man_id"),
@ColumnResult(name="version"

)

1)
@Entity
public class VehicleModel implements Serializable {

Okay, buckle up while I explain what’s going on here:

1. TItall starts with @qlResultSetMapping here, where
I'say: “I want to define a custom mapping between
a SQL statement and a POJO. I've named the query
nonJPAManagedVehicleModel because that’s how I roll”

2. Ithen define the classes that are involved in this
custom mapping. For this example, I'm interested
only in the POJO VehicleModel. Here’s where things
get a little verbose.

a. Ineed to describe a suitable constructor for the
JPA runtime to be able to create instances of my
PO]JO class with @ConstructorResult. Given this
mapping, JPA knows what to do with the results from
the query.

159

CHAPTER 4 INTEGRATING WITH J0OQ

b. Remember: even though this class is technically
a JPA entity class, when I use it in this context, JPA
will not treat the results of this query as managed
entities, which is pretty rad in my opinion.

3. @ColumnResult helps me map the name that
is present in the query results to fields in the
VehicleModel POJO class. How does JPA know
which field on the class to map the column to? By
the position of the column in the list of columns.
The JPA runtime will look for a suitable constructor
matching the description here and just pick the
named columns to be passed into the constructor.

At the end of it all, I can then use my named query like so:

entityManager.createNativeQuery(vehicleModelQuery.getSQL(),
"nonJPAManagedVehicleModel");

The JPA runtime will attempt to look my SQL mapping using the name
I've supplied. That gives it all the information it needs to execute the query
and build a list of result objects.

This is fairly verbose, so don’t worry if it doesn’t sink in all at once - go
over it as many times as you can. The simpler description of what’s going
on is to tell JPA

1. What POJO or entity classes you want to map to

2. Which column names should be used from the SQL
result set

3. Which constructor to use on your POJO class

4. Which columns should be used in the constructor of
the POJO class

160

CHAPTER 4 INTEGRATING WITH J0OQ

All told, these facilities allow you to package your SQL queries in
very portable and flexible deployment units; take database dialects into
account as well as guarantee the effectiveness of your queries.

Caution As at the time of this writing, j00Q has a bug' that makes
it require the @Column annotation on JPA entities. This won’t be

an issue with j00Q-generated entity classes; but if you’re bringing
your own JPA entities to the jOOQ party, be sure to add @Column to
the fields on that entity. Some weird stuff happens otherwise (e.qg.,
column values not being mapped to result objects).

Now, we say goodbye to the horsemen of result set mapping.

Aww! Chin up, lads!

'https://github.com/j00Q/j000/issues/4586

161

https://github.com/jOOQ/jOOQ/issues/4586

CHAPTER 4 INTEGRATING WITH J0OQ

Spring Boot and jO0Q

Spring Boot is the current king of the enterprise Java development hill.
Current. There’s almost nothing you can’t do with the Spring platform and
I'm not even going to attempt broaching its many features here. Let’s see
how jOOQ can spruce up your Spring Boot application. But first, some
configuration:

spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost/edens car
spring.datasource.username=username
spring.datasource.password=thisisaterriblepassword
spring.jpa.show-sql=true

This sets up my Spring Boot application with connection properties to
my MySQL database. These properties go in the standard application.
properties file. There’s the programmatic equivalent as well.

Spring supports SQL data access via the following components:

o Spring Data JDBC for vanilla JDBC access
e Spring Data JPA for that sweet Hibernate + JPA combo
e Spring Data R2DBC for reactive data access

Because of just how sprawling the Spring Boot platform is, I'm going
to try to keep things nice and tight with this section. Also note that pretty
much everything we’ve covered in the previous section, as well as this one,
all apply to Hibernate. Hibernate is the JPA implementation that powers a
lot of Spring framework’s data access powers.

First thing to know is that you can wholesale install jOOQ as your
entire data access component with Spring Boot. It goes a little something
like this.

162

CHAPTER 4 INTEGRATING WITH J0OQ

Configure jOOQ in Spring Boot

Let’s make jOOQ available everywhere in the Spring application context
with a programmatic configuration setup:

@Configuration (1)
@EnableTransactionManagement
public class JdbcConfig extends AbstractldbcConfiguration {
@Autowired
private DataSource dataSource; (2)

@Bean

DataSourceConnectionProvider connectionProvider() {
return new DataSourceConnectionProvider(new
TransactionAwareDataSourceProxy(dataSource));

}

@®Bean
DSLContext dsl() {
return new DefaultDSLContext(dslConfig()); (3)

}

private org.jooq.Configuration dslConfig() {
DefaultConfiguration defaultConfiguration = new
DefaultConfiguration();
defaultConfiguration.set(dataSource)
.set(SQLDialect.MYSQL)
.set(DefaultExecutelListenerProvider.
providers(new QueryRuntimelistener()));
return defaultConfiguration;

163

CHAPTER 4 INTEGRATING WITH J0OQ

There’s a fair bit of Spring framework boilerplate going on here, but I'll
be focusing on the jOOQ-relevant bits:

1. Isetup my Spring configuration bean with
the @Configuration annotation and other
standard Spring framework componentry
like @EnableTransactionManagement to let
Spring manage my database transactions;
AbstractJdbcConfiguration so my config class
can inherit even more boilerplate. It’s boilerplate
smorgasbord.

2. Tuse Spring’s dependency injection to obtain a
DataSource instance. DataSource is a more mature,
scalable, and robust representation of my database
connection and pool, managed by the Spring Boot
runtime. This will be supplied here because I've
already configured my database properties in the
standard application.properties file.

3. Idefine a method that can construct an instance
of DSLContext on demand. Adding the @Bean
annotation marks this as a factory method for Spring
Boot. This means I can obtain a fresh instance of
DSLContext anywhere inside my Spring application.

With this setup, I can obtain a DSLContext anywhere in the application:

@Autowired
DSLContext context;

public void selectWithJooq(){
context.selectOne();

164

CHAPTER 4 INTEGRATING WITH J0OQ

And then I can jOOQ away to my heart’s content. The preceding
snippet can be extended to produce a new DSLContext instance per
request, support multi-tenancy, and so much more. If you can dream it,
jOOQ could probably make a best effort attempt at making it happen. Not
to mention the DAOs that jOOQ can generate for you. Nice.

How about custom SQL queries?

With Custom SQL

If there’s custom SQL that needs writin, jOOQ’s gonna be a-generatin’ To
use custom queries with Spring Data JPA, I start by creating a Repository:

public interface VehicleModelJoogRepository extends
CrudRepository<VehicleModel, Long> { (1)
@Query(nativeQuery = true, name="CustomDynamicSQL")
List<VehicleModel> findVehicleModelByVehicleManId(long id);

Allow me to explain:

1. Textend CrudRepository as part of the contract
for using Spring Data JPA’s repository feature.
Specifying Vehicle and Long as the types for
this interface, I'm informing the Spring Data
runtime that this interface will be used to retrieve
VehicleModel from the vehicle model table.

2. Idefine a findVehicleModelByVehicleManId that
accepts a long parameter corresponding to the
vehicle man_id to filter results by

a. Crucially, I'm using the @org.springframework.
data.jpa.repository.Query annotation. Spring
Data JPA allows me to specify a plaintext SQL query
in this annotation; alternatively, I can define the

165

CHAPTER 4 INTEGRATING WITH J0OQ

query elsewhere, and with some Spring magic, it'll
be picked up. Stay tuned to see how. So far, this
JPA repository is expecting to find a native query
named “CustomDynamicSQL’ somewhere in the
PersistenceContext.

b. Each argument I pass to the query method
findVehicleModelByVehicleManId will in turn be fed as
query parameters to the native query that this method will
execute. This is important because you either have to match
the positions of the method arguments to the positions of
the query parameter in the plain SQL; alternatively, you can
use the @Param annotation to name-match your parameters
against their SQL equivalent.

Now, I need to wire up my custom SQL query, sponsored by jOOQ. To
actually plug my SQL query into the JPA runtime, I turn back to our old
friend, EntityManager:

javax.persistence.Query nativeQuery = entityManager.
createNativeQuery(jooqQuery.getSOL());
entityManager.getEntityManagerFactory().addNamedQuery (" CustomDy
namicSQL",nativeQuery);

Having obtained an instance of javax.persistence.Query from my
org.jooq.Query:

1. Iobtainan EntityManagerFactory from the
EntityManager.

2. The addNamedQuery method was added to JPA 2.1 to
allow dynamic construction of named queries. With
this, I need to supply

166

CHAPTER 4 INTEGRATING WITH J0OQ

a. Aname for the query by which Spring Data JPA can
look it up. Note how I'm using the fully qualified
name of the method I defined in my Repository
interface from earlier. This is how Spring Data JPA
will attempt to look up the named query based
on the @Query annotation I added to my custom
Repository method.

b. The actual SQL query to be executed.

Spring Boot takes care of the rest from here. I can just inject my custom
repository and use it as I want:

@Autowired

VehicleModelJoogRepository vehicleModelRepository;

List<VehicleModel> modelByVehicleManld =
vehicleModelRepository.getVehicleModelByVehicleManId(vehicleMan
ufacturer);

...aaand that’s it! This dynamic SQL feature is in addition to the
standard JPA features we've already explored - Spring supports those too.

j00Q Spring Boot Starter

Spring Boot supposedly offers a starter that helps you bootstrap your Boot
project with jOOQ.

167

CHAPTER 4 INTEGRATING WITH J0OQ

€ Q@ 0§ sunsprngio * 08 G
jood Preas Cirl fer mutiple adds

JOOG Access Layer |24 o
Genrate: Java code from your databiaso and busd typo safo SGL quorics through a fuont AP

start.spring.io
In practice, I tried to bootstrap with this, including the Spring Data JPA
and JDBC modules. It doesn’t look to be very effective to me because

e The starter doesn’t (currently) include any jOOQ
dependencies.

e The code stubs it generates don’t even include any
references to jOOQ (see the previous discussion).

So, maybe hold off on this one for a bit.

Quarkus and jO0OQ

Quarkus? is the premier cloud-native, container, and Kubernetes-first
microservices platform. It supports pretty much anything you'd want to do
with a Java web service platform. You can integrate your existing JakartaEE
or Spring beans and use the same programming components to get

2https://quarkus.io

168

https://quarkus.io

CHAPTER 4 INTEGRATING WITH J0OQ

o Blazing fast startup times
e Low memory footprint

o Tight integration with features and components of
major cloud providers like AWS, Google Cloud, and
Azure

o Lightweight deployment packages
o Reactive-first programming style
e Kotlin and Scala compatibility

Quarkus is truly heaven'’s gift to software engineering. And I say that as
a totally independent and unbiased observer.

Beginning

Quarkus
Framework

Build Cloud-Native Enterprise
Java A ions and Microservices

Yup. Totally unbiased

169

CHAPTER 4 INTEGRATING WITH J0OQ

So, what can jOOQ do for you in Quarkus? Just like with Spring Boot,
jOOQ could be all the SQL data access you need. It can also work with
existing APIs in Quarkus like

e JPA

o Hibernate

¢ Reactive SQL

e SQL ResultSet streaming

The only thing that you can’t do as of this writing is use the @Query
annotation in native mode. Quarkus supports most of Spring Data JPA,
except this bit. So, how does one get jOOQ into Quarkus?

Start with the Quarkus jOOQ extension:

<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-bom</artifactId>
<version>${quarkus.platform.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependency>
<groupIld>io.quarkiverse.jooq</groupld>
<artifactId>quarkus-jooq</artifactId>
<version>0.2.2</version>
</dependency>

170

CHAPTER 4 INTEGRATING WITH J0OQ

The preceding snippet is an excerpt of what you'll need to add to
your Maven POM (or the Gradle equivalent) to add the jOOQ extension
to your Quarkus, in addition to standard jOOQ dependencies. This is not
necessarily the best way to add extensions to quarkus. Ideally, you would
use the Quarkus maven plugin like so:

mvn quarkus:add-extension -Dextension=quarkus-jooq

That’s the canonical way of installing Quarkus extensions. It doesn’t
work for the jOOQ extension because it’s not (yet) in the registry of
Quarkus extensions. The jOOQ extension is not an “official” Quarkus
extension in that it’s not built and maintained by the Quarkus core
team. It’s part of what they call the Quarkiverse,* an extended extension
ecosystem that gives ownership to the developer community. The
Quarkus-jOOQ extension is the hard work® of individuals outside the
Quarkus team, backed by popular demand. Shout out to the gang!

Next up, install the appropriate JDBC extension for your database of
choice:

mvn quarkus:add-extension -Dextension=jdbc-mysql

With the Quarkus extensions installed, you then configure your
datasource settings in the application.properties file of your Quarkus

app:

quarkus.datasource.db-kind=mysql
quarkus.datasource.username=dbuser
quarkus.datasource.password=thisisaterriblepassword
quarkus.datasource.jdbc.url= jdbc:mysql://localhost/edens_car
quarkus.jooq.dialect=mysql

*https://github.com/quarkiverse/quarkiverse/wiki
*https://github.com/quarkiverse/quarkus-jooq

171

https://github.com/quarkiverse/quarkiverse/wiki
https://github.com/quarkiverse/quarkus-jooq

CHAPTER 4 INTEGRATING WITH J0OQ

Configuring the dialect is mandatory for any of this to work at all.
With this basic config in place, you can get a DSLContext anywhere in the
application:

@Inject
DSLContext dslContext;

The @Inject annotation is the Context and Dependency Injection
(CDI) equivalent of the @Autowired annotation from the Spring
framework. Quarkus supports both for the same purpose. The quarkus-
jooq extension ships only with the community edition of jOOQ. You can
override the community edition with the pro version if you have it inside
your POM.xml.

Now, let’s talk about packaging and testing all this stuff.

172

CHAPTER 5

Packaging and
Testing jOOQ

Home stretch! Let’s wrap the jOOQ roadshow up by talking about how

jO0Q can fit into “modern” software development motifs like Continuous

Integration/Continuous Development (CI/CD), containers (Docker,

Podman, etc.), etc.

But first, let’s level-set a little bit before we get into the meat (or

vegetables if you like) of things:

jOOQ allows you to Bring-Your-Own-SQL (BYOS).

jOOQ will generate code for you, code that you most
likely need at compile time.

Your generated code becomes part of your business
logic to do...stuff.

In today’s world, you'll need to

© Tayo Koleoso 2022

Be able to validate that your custom SQL works -
either SQL you wrote yourself or packaged by another
developer or team and handed to you.

Be able to manage incremental changes made to your
data model - changes originated either by yourself

or another part of your organization. How would you
support a new table or column added to the data model?

173

T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6_5

https://doi.org/10.1007/978-1-4842-7431-6_5

CHAPTER 5 PACKAGING AND TESTING J0OQ

o Make practical and effective decisions about how and
where your generated code lives. It’s not uncommon
(and maybe even preferred) that your entities and
DTOs are packaged in a separate JAR file and included
as a dependency in multiple software projects.

¢ Run integration tests without needing a whole
standalone database server available at the point
of testing. Take a Jenkins build server, for example:
it’s ideal that your build job doesn’t need a standing
MySQL server for your integration tests to run.

So, what are your options when you need to...

Package Code with j00Q

This is going to be Maven-centric, sorry.

We've seen how to generate jOOQ code using the jOOQ Maven plugin,
programmatically and from the command line. What we haven’t talked
about is where to put the generated code.

From the Maven standpoint, src/target/generated-sources is the
recommended home for generated code, whether it’s by jOOQ or
anything else. Assuming you have the jooq-codegen plugin configured in
your POM.xml like I demonstrated in Chapter 3, running mvn
package -DskipTests=true will

o Connect to the database as configured in jooq-
configuration.xml

o Generate the necessary code
¢ Compile the entire kit
o Skip running the tests

e Generate a JAR file in the target directory

174

CHAPTER 5 PACKAGING AND TESTING J00Q

Let’s consider a couple of scenarios where you might want to deviate
from this path a little.

When You Don’t Need Code Generation

Code generation is all fine and dandy, but sometimes, you just want to
build your kit and skip the code generation bit. Maybe you've already
generated the code once, and nothing has changed; or you have a large
schema you’d rather not deal with right now; or you're running the build in
an environment that won’t support the code generator. Configure a Maven
profile like so:

<profiles>
<profile»
<idyno-jooqing</id> (1)
<build>
<plugins>
<plugin>
<groupId>org.jooq</groupld>
<artifactId>jooq-codegen-maven
</artifactId>
<version>3.15.1</version>
<executions>
<execution>
<id>jooq-codegen</id>
<phase>none</phase> (2)
</execution>
</executions>
</plugin>
</plugins>
</build»
</profile>
</profiles>

175

CHAPTER 5 PACKAGING AND TESTING J0OQ

This is a standard Maven profile configuration you can add in at any
point in your POM as a top-level element. What I've done here is

1. Configure a profile named no-jooqing. Inside this
profile, I've defined the basics of the jOOQ code
generator plugin. This configuration snippet mirrors
the configuration of the same plugin in the build
section of the POM. The idea here is for this profile-
bound definition to override the other main plugin
definition.

2. Isetits phase execution to none, meaning that this
plugin should not kick in at any point.

With this setup, I can then run a maven build thus:
mvn package -DskipTests=true -P no-jooqing

The -P flag activates my profile by the name of no-jooqing, thereby
suppressing the code generator plugin. Arguably, there are simpler ways
to achieve this effect, but profiles provide the most comprehensive way
to selectively execute plugins. For example, you could choose to run a
different jOOQ generator configuration based on, say, the JDK that’s

installed in the build environment:

<profile>
<activation>
<jdk>14</jdk>
</activation>

</profile>
With the preceding snippet, I've configured my profile to kick in

only when the build is running on JDK 14 - the first version of the JDK to
provide official support for the Records API (which jOOQ can generate

176

CHAPTER 5 PACKAGING AND TESTING J00Q

as POJOs). You can have profiles activated based on operating system
environment variables and other conditions. It’s truly the most powerful
option. Pretty cool huh?

When You Don’t Have an Active Database
Connection

It happens: you want to generate jOOQ code, but you don’t have access to
the underlying database server to connect to at build time. But thankfully,
you have the Data Definition Language (DDL) that describes the schema.
jOOQ provides the org. jooq.meta.extensions.ddl.DDLDatabase
generator component, so you can generate code straight from a .sql
script. Check it out:

<generator>
<database>

<name>org.jooq.meta.extensions.ddl.DDLDatabase</name>

<properties>
<property>
<keys>scripts</key>
<valueysrc/main/resources/db-dump.sql</values

</property>

<database>
<generator>

The scripts property accepts a path to the DDL script that will be
loaded for code generation. This way, you're not shackled to a database

server at build time. I should mention that this feature isn’t restricted to
just packaging usage - you can use this in any scenario it fits in.

177

CHAPTER 5 PACKAGING AND TESTING J0OQ

ProTip Use-- [jooq ignore start]and-- [jooq ignore
stop] to wrap SQL that should be ignored in your DDL script. What
this means is that if your DDL contains -- [jooq ignore start]
CREATE TABLE ignore me please ... -- [jooq ignore
stop] CREATE TABLE business as usual ..., CREATE
TABLE ignore me_please will be ignored by DDLDatabase

When Your Schema Needs to Incrementally
Evolve

Have you heard of the evolutionary database pattern?' Its fundamental
thesis is this: make incremental changes to your database schema, just
like you already do with code. Whether you're starting with a fresh, empty
database or you have an existing schema, you'll typically have a tool that

e Isable to apply new changes to a data model (DDL) or
raw data (DML)

o Keeps a history of changes that have been applied,
providing room to roll back incompatible or breaking
changes

e Supports versioning of changes applied to a database

o Helpsyour code stay aligned with the database that it
depends on

The two biggest players in this space right now are
o Flyway (www.flywaydb.org)

e Liquibase (www.liquibase.com)

'https://en.wikipedia.org/wiki/Evolutionary_ database design

178

http://www.flywaydb.org
http://www.liquibase.com
https://en.wikipedia.org/wiki/Evolutionary_database_design

CHAPTER 5 PACKAGING AND TESTING J00Q

They both operate on the same fundamental premise:

1. Provide your database changes in an agreeable file
format, along with relevant versioning information.

2. They will apply your database changes to whichever
database you point them.

How does jOOQ factor into all of this? Well, more so than your
Hibernates and JPAs, jOOQ is fairly tightly coupled to the state of your
data schema vis-a-vis code generation. The last thing you want is for your
generated code to be referring to a trigger or function that no longer exists.

jOOQ has native support for Liquibase by way of the org. jooq.
meta.extensions.liquibase.LiquibaseDatabase and the jooq-meta-
extensions-liquibase Maven artifact. 'm a Flyway man myself, largely
because Flyway doesn’t require a specialized configuration syntax or DSL;
and also, I'm a strategically lazy person.

For basic Flyway usage, simply provide your . sql file with a version
format similar to the following:

V1i_ Your Descriptive_File_Name_Here.SOL

The V1 part of the filename is key. Subsequent updates to the schema
should increment the version number to support the incremental change
mechanism with Flyway. Keep all the SQL files in /src/main/resources/
db/migration and you're ready to roll. At this point, you should add the
Flyway dependency to your POM.xml:

<dependency>
<groupId>org.flywaydb</groupId>
<artifactId>flyway-core</artifactId>
<version>7.14.0</version>
</dependency>

179

CHAPTER 5 PACKAGING AND TESTING J0OQ

With that in place, you're ready to run Flyway. You have the option of a
command-line approach, a containerized approach (more on that later),
or programmatic one. Let’s have a look at the programmatic approach:

Flyway flyway = Flyway.configure().dataSource(jdbcUrl,dbUser ,
dbPassword).load();
flyway.migrate();

It's really that simple. Flyway will look for the latest versioned SQL
scriptin /db/migration and apply the changes to the database you point it
to. It also takes the previous versions of your schema into account, so that
when you have up toaV10__my _schema_update.sql, the changes up till
that point are taken into account. It supports baselining your migrations so
you could choose to baseline your schema at, say, V7__new_db_baseline.
sql, and that’ll be where it starts considering migrations from.

Everything I've spoken about Flyway up till this point is super
configurable by the way; I'm sticking with the defaults here for the purpose
of demonstration. Because Flyway isn’t necessarily the point of this
section. No, here, I want us to consider how an evolutionary database
model can support the goals of jOOQ to help generate and package the
most current code based on an up-to-date but evolving schema. It gets
even trickier when one is considering running this in a CI/CD, DevOps-
heavy environment. You can’t count on always having a standing database
server connected to your Jenkins host, for Flyway or jOOQ to run against.

The ideal setup is a self-contained software project that can run its own
code generation inside of itself at any point in the project lifecycle. Be it on
the developer’s machine, during a pre-merge step in the code repository,
or as part of a build pipeline. No need to make sure some database server
is up. No need to be worried about ruining the schema or database for
another developer making concurrent changes to the same database.
Yeah, that would be pretty sweet, wouldn’t it?

180

CHAPTER 5 PACKAGING AND TESTING J00Q

Blissful

One way to achieve this nirvana of self-sufficiency in your code is with
a toolkit called TestContainers. I talk about TestContainers in more detail
a little later in this chapter. For now, suffice it to say that TestContainers is
arguably the best way to always have a full-strength database available and
bundled with your application.

Recipe for a Self-Sufficient Database Project

Disclaimer: this is a hack. In the absence of, say, a dedicated
TestContainers maven plugin, you'll need to get creative to be able to run a
TestContainers-supported project outside of the testing phase.

181

CHAPTER 5 PACKAGING AND TESTING J0OQ

But before we see how TestContainers can deliver a truly
self-sustaining application, we should look at how I can package my
project to support my ambitions. Consider the following class:

public class PreflightOperations {
final static Logger logger = LoggerFactory.
getlLogger (PreflightOperations.class);

public static void main(String[] args){
logger.info("Running preflight operations");
GenericContainer container = startDatabaseContainer(); (1)
runFlywayMigrations(container); (2)
generatelooqCode(container); (3)

This is almost a vanilla Java class that will do three things:

1. Start a TestContainers database (I'll show how
this works later in this chapter). From the started
database container, I'll be able to obtain a database
connection.

2. Using the obtainer database connection, I should be
able to run my Flyway migrations immediately after.

3. Once my schema updates have been applied to my
database container, I can then run the jOOQ code

generator programmatically.

Pretty straightforward right? The question now is: how can I have this
custom code run as part of a build process? Maven? Maven:

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>

182

CHAPTER 5 PACKAGING AND TESTING J00Q

<executions>
<execution>
<id>pre-compile</id>
<phasesgenerate-sources</phases (1)
<goals>
<goal>compile</goals
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupIld>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phaseyprocess-sources</phasey (2)
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<executable>java</executable>
<mainClass>com.apress.jooq.generator.
PreflightOperations</mainClass> (2a)
<cleanupDaemonThreadssfalse
</cleanupDaemonThreads>
</configuration>
</plugin>

183

CHAPTER 5 PACKAGING AND TESTING J0OQ

The capability to run java code as part of the build process rests on two
Maven plugins:

e maven-compiler

This plugin will compile source code. Because my
PreflightOperations class is still raw source code, I
need to compile it before I'm able to run it as part of
the build process.

e Inaven-exec

This plugin will run any arbitrary executable.
Choosing java for the executable parameter
preps the plugin to execute a Java class with amain
method.

Together, these plugins sing beautiful music:

1. maven-compiler starts by compiling my source
code in the generate-sources phase of the Maven
build process. This is going to ensure that I have a
compiled PreflightOperations class to run with...

2. maven-exec, the plugin that allows me to run
arbitrary executables. I've chosen to run this plugin
in the process-sources phase, which comes
immediately after the generate-sources phase. It’s
at this point that the database will start, my Flyway
migration will execute, and then jOOQ gets to
generate any necessary new source code.

a. I provide the fully qualified class name (FQCN) to
my class that does the execution.

184

CHAPTER 5 PACKAGING AND TESTING J00Q

b. Because TestContainers does a lot of background
processing on daemon threads, there’s the risk that
it won'’t be ready to quit by the time the maven-exec
plugin is ready to move on. cleanupDaemonThreads
allows the build process to proceed, while
TestContainers does its thing.

Easy peasy. I want to reiterate: this is a hack. The gold standard should
be sans custom code and configuration only. Additionally, the generated
code/entities in general could benefit from a lot more modularity.

The only thing missing from this recipe is the actual dynamically
instantiated database itself. We’ll learn about that when we talk about...

Testing with jO0Q

Also known as: sleep well at night. I'm an absolute nutter for automated
testing, especially integration testing.

Uh oh. Ijust used a buzzword: “integration testing.” Integration testing
tends to be conflated with a bunch of other things that (in my layman’s
opinion) don’t qualify. Allow me to pontificate.

I believe the industry has settled on the scope of unit testing, that
is, validating the behavior of standalone units of code, for example, a
function or a method. You're not concerned about how these functional
units interact together to deliver a business scenario. You're likely going to
mock out every single dependency that the method under test has, to focus
solely on what'’s within the curly braces.

Then we have “end-to-end” testing, where you're crossing multiple
system boundaries - front-end to back-end integration tier, etc. This is
what some folks call “QA” testing - making sure everything works together
to satisfy the user’s needs.

185

CHAPTER 5 PACKAGING AND TESTING J0OQ

Somewhere in the middle of unit and end-to-end testing is where you
find integration testing and the sometimes festy debate around what it
actually means.

Pictured: Integration testing. Probably.

For the purposes of this section, integration testing is how you make
sure that carefully selected slices of your code work well together. In a
typical integration test, you'd want to string a handful of components
together and see if they all behave the way you expect. Ideally, your
integration tests are closely aligned with use cases that the business/users
expect.?

This is not to say jOOQ doesn’t have tooling to support unit testing -
far from it. I'm just personally more invested in integration tests that
give me confidence about the product I'm putting out (vs. vanity metrics

>www.agilealliance.org/glossary/bdd/

186

http://www.agilealliance.org/glossary/bdd/

CHAPTER 5 PACKAGING AND TESTING J00Q

around testing). Just ask Kent Beck® how he feels about writing tests for

tests’ own sake.

Based on the features that jOOQ provides, what is there to test anyway?

The syntactic correctness of plaintext SQL statements
that you bring to jOOQ. jOOQ’s own SQL is highly
unlikely to be incorrect.

The semantic correctness of both yours and jOOQ’s
own SQL. jOOQ protects you from writing syntactically
incorrect SQL. It’s still a solid idea to validate the
semantic correctness of the SQL, generated or
otherwise.

The accurate reflection of your generated code vis-a-vis
the database schema. You're not going to have a good
time if your generated code is even a little bit out of
sync with the underlying schema for whatever reason.

Tools of the (SQL) Testing Trade

Let’s see what’s at our disposal for testing SQL. To be clear, these are not

solely for SQL testing, but y’know, this is a SQL-in-Java book, sooo...

1.

JUnit (www. junit.org)

The premier testing in Java - all the others are
posers.? JUnit 5 (codename Jupiter) is your one-stop
shop for all your testing needs. The latest version
supports pretty much every testing paradigm you
could imagine: Behavior-Driven Development
(BDD), Acceptance Test-Driven Development

*https://stackoverflow.com/a/153565/1530938
*Editor’s note: Hot take!

187

http://www.junit.org
https://stackoverflow.com/a/153565/1530938

CHAPTER 5

188

PACKAGING AND TESTING JOOQ

(ATDD), unit and integration tests, etc. It ships with
a suite of annotations that provide all manner of
convenience for testing your Java code at varying
levels of granularity. But you probably have already
heard of it.

Mocking Frameworks

A mocking framework (e.g., Mockito, PowerMock)
will help you stub out different parts of your code -
hardly a new concept, I know. Stubbing or mocking
selected sections of your code while testing allows
you to laser-focus your tests to only what matters to
you. Where things could possibly get spicy is having
to work with some of jOOQ’s static methods. Hang
tight while we dig into those a bit more.

Embedded Databases

In the course of testing, you'll eventually need to be
able to dynamically

e Load aschema into a database on demand
o Load/destroy data in a database on demand

e Sequentially run test methods that depend on
shared state as part of a test scenario

All of these scenarios require that your software
project have a database ready quickly and
flexibly. That’s where the embedded or “in-
memory” databases come in. They're databases
that are designed for dynamic and flexible usage
in lightweight scenarios, for example, testing.
Examples of these include

CHAPTER 5 PACKAGING AND TESTING J00Q

e H2(https://h2database.com/html/main.html)
e HSQLDB (http://hsqldb.org/)
o Derby (https://db.apache.org/derby/)

Yes, they're all written in Java. With these, you can
have a database “server” available at any point in
your development lifecycle without needing an
actual DB server deployed anywhere.

Now because they're lightweight, their capabilities
are limited. So, you'll typically be missing some
fundamental features. Things like check constraints,
triggers, even the LIMIT SQL keyword may not be
supported depending on which vendor you choose.
They’re lightweight for good reason: fast, highly
efficient database operations without “frills.” If you
prefer a full-strength and portable database for your
testing, you should turn to...

Containerized Databases

You can get most full-strength databases like
MySQL, PostgreSQL, and Oracle in a containerized
format compatible with Docker, Podman, and other
container runtimes. What are containers? I'll get into
more detail when we get to that point, but for now
suffice it to say this: containers are portable versions
of your favorite software packaged in what’s known
as images. These portable packages will typically
contain complete operating system installations
with all the trimmings; your desired software can
then be bundled with these complete OSes and
delivered via a centralized registry. Containerized

189

https://h2database.com/html/main.html
http://hsqldb.org/
https://db.apache.org/derby/

CHAPTER 5 PACKAGING AND TESTING J0OQ

databases (mostly) deliver the full strength of

your preferred database server while keeping

them portable enough to start up an instance
programmatically/dynamically. This way, you can
have full-strength databases available whenever you
want them, for example, as part of a pipeline, a build
script, or a JUnit integration test. No half-assing it.

5. jOOQ’s Testing Kit

There are a few components in the jOOQ toolkit that
support your testing and validation needs. Check it
out:

— org.jooq.tools.jdbc.MockConnection, org.jooq.
tools.jdbc.MockDataProvider, and a couple of
related Mock* components help to mock out different
parts of the query operations in jOOQ.

— org.jooq.Parser can be used to validate your SQL
queries by attempting to produce jOOQ artifacts out
of your plaintext SQL.

Different combinations of the preceding tools will give you the peace
of mind you need while programming with jOOQ. Not to mention the
various testing facilities offered by ecosystems like the Spring framework
and Quarkus - there’s a bunch of powerful testing techniques in both of
them.® Ultimately, what I would want in my project is a self-contained, self-
sufficient kit that can run its own tests anywhere, without too much of a
dependence on its operating environment. This portability becomes more
crucial when you're operating in a CI/CD environment. Let’s see how all of
these play together.

°I'm particularly fond of the powerful QuarkusUnitTest class that isn’t publicly
documented (but it’s in my book). Highly recommend for integration tests.

190

CHAPTER 5 PACKAGING AND TESTING J00Q

Unit Testing with jO0Q

Consider the following jOOQ query method:

public static void selectWithOptionalCondition(boole
an hasFilter, Map<String, Object> filterValues) throws
SQLException {
try (Connection connection = DriverManager.
getConnection("jdbc:mysql://localhost/edens
car?user=root8password=admin")) {
DSLContext context = DSL.using(connection,
SQLDialect.MYSQL);
Condition conditionChainStub = DSL.noCondition();
if (hasFilter) {
for(String key: filterValues.keySet()){
conditionChainStub = conditionChainStub.
and(field(key).eq(filterValues.get(key)));

}

List<CompleteVehicleRecord> allVehicles =
context.select().from(table("complete
car_listing")).where(conditionChainStub).
fetchInto(CompleteVehicleRecord.class);
logger.info(allVehicles.toString());

}

I'm doing some fancy construction for the WHERE clause of the jOOQ
query, dynamically constructing the Conditions that would be translated
into that clause. Beside the database query that ultimately needs to
happen, how can I validate that my condition chaining is going to result in
the WHERE clause I expect? That’s where a unit test comes in.

191

CHAPTER 5 PACKAGING AND TESTING J0OQ

Using Mockito

Mockito is a pretty popular mocking framework like I mentioned earlier
that allows you to stub out parts of your code that don’t need to be invoked
during testing. It also allows you to substitute parts of your code with
something else to facilitate specific testing scenarios. For my use case,

I want to validate that the condition chaining in my query is working
correctly - I don’t need query results for that. I'm going to start by adding
Mockito as a dependency to my project:

<dependency>
<groupId>org.mockito</groupIld>
<artifactId>mockito-inline</artifactId>
<version>3.12.1</version>
</dependency>
<dependency>

<groupId>org.mockito</groupId>

<artifactId>mockito-junit-jupiter</artifactId>

<version>3.12.1</version>

</dependency>

These Maven dependencies will furnish my project with the necessary
libraries to use Mockito. The Mockito-inline artifact is especially crucial
because it provides the support for mocking static methods. The need for
that feature will become apparent shortly. The mockito-junit-jupiter
artifact is prescribed for the latest version of JUnit; for older versions of
JUnit, use mockito-core instead. On to the code!

@ExtendWith(MockitoExtension.class) (1)
@TestInstance(TestInstance.Lifecycle.PER_CLASS) (2)
@DisplayNameGeneration(DisplayNameGenerator.ReplaceUnderscores.

class) (3)
class JooqUnitTests {

192

//mor

}

CHAPTER 5 PACKAGING AND TESTING J00Q

static MockedStatic mockedDriver; (4)
final Logger logger = LoggerFactory.getlogger
(JoogUnitTests.class);

@BeforeAll (5)
public static void prepare(){
mockedDriver = mockStatic(DriverManager.class); (5b)

}

e to come

The preceding snippet demonstrates the setup of some test fixtures I'm
going to need shortly:

1.

@ExtendWith is a JUnit component that allows
one to plug in to the runtime with custom code.
Different vendors can then supply a class that'll
fulfill the contract and be usable here. In this case,
I'm using Mockito’s MockitoExtension class. That
introduces Mockito’s features into this test unit.

2. @TestInstance isaJUnit component that configures

the lifecycle of the test class. With Lifecycle.PER_
CLASS, I've specified that I want a single instance of
JooqUnitTests to be reused for any number of test
methods inside the class. This way, the test methods
can share state across multiple invocations.

@DisplayNameGeneration determines how the test
cases will be displayed in reports, your IDE, and
elsewhere. With ReplaceUnderscores, I can use
underscores in my test method names and they’ll
be replaced with spaces during display. This way,

193

CHAPTER 5 PACKAGING AND TESTING J0OQ

the method names can be user-friendly sentences
that even non-engineers (e.g., Product Owners) can
understand and consume.

4. MockedStatic is another Mockito test fixture that
allows me to mock static methods and interfaces.
I'm going to be using it to stub the DriverManager.
getConnection interaction from JDBC.

5. @BeforeAll stipulates that the annotated method -
prepare - be run once before any test methods are
run...

a. So thatI can customize the behavior of the
DriverManager class to suit my needs

With the prep work out of the way, let’s crack on with the unit test
proper. Hang on to your seat, it’s a lot of typin’:

@ParameterizedTest (1)

@CsvSource({ (1a)
"BLUE,2020",
"SILVER,2020"

}

void test_dynamic_condition_api(String color,String year)
throws SQLException {
MockDataProvider mockJooqProvider = context -» { (2)

MockResult[] results = new
MockResult[1];
String sql = ctx.sql();
logger.info(()->"Binding 1: "+ctx.
bindings()[0]);
assertAll(()->{

194

CHAPTER 5 PACKAGING AND TESTING J00Q

assertTrue(ctx.bindings().
length == 2); // validate two
parameters are bound;
assertEquals(ctx.bindings()
[0],color);
assertEquals(ctx.bindings()
[1],year);

s

CompleteCarListingRecord
completeCarListing = new
CompleteCarListingRecord();

results[0] = new MockResult(completeCar
Listing);

return new MockResult[0];

};

MockConnection mockConnection = new MockConnection(

mockJooqProvider); (3)

mockedDriver.when(()-» DriverManager.

getConnection(anyString())).

thenReturn(mockConnection); (4)
JoogApplication.selectWithOptionalCondition(true,Map.of
("color",color, "year",year));

}

The primary goal of this test is to make sure that filter parameters
are processed correctly. As a secondary goal, I don’t want or need an
actual execution of the query against a database. So I need to substitute

195

CHAPTER 5 PACKAGING AND TESTING J0OQ

the JDBC Connection usage for something else. That’s where jOOQ’s
MockConnection and MockDataProvider come in:

1. JUnit provides @ParameterizedTest allowing us to
feed data into a test method from multiple sources.

a. Here, I'm using the @CsvSource option to simulate
CSV data being passed in. For every row I provide,
JUnit will parse the columns and feed them to the
test method as method arguments.

2. To provide a MockConnection from jOOQ that will
replace a legit JDBC connection, I need to build out
aMockDataProvider.

a. Inside my implementation of MockDataProvider,
I have access to some pretty nice test fixtures like
aMockExecutionContext, the SQL that’s going to
be executed and crucially: the parameter bindings
supplied to the query. These I then validate to
ensure they’re present and the right count. There’s
a lot of flexibility in here to allow many testing use

cases.

b. The contract for the MockDataProvider#execute
requires me to return an array of MockResults. Since
I don’t really care about the result in this scenario,
I just construct an empty Record from a generated
class and move on.

3. Having implemented my MockDataProvider, I can
go ahead and construct a MockConnection.

4. Remember earlier when I mocked out
DriverManager with MockedStatic? Well now’s its
time to shine! Having stubbed out DriverManager,

196

CHAPTER 5 PACKAGING AND TESTING J00Q

I can stipulate that when any string is passed to the
getConnection method, my MockConnection should
be returned instead of an actual JDBC connection.

With all that setup, I can then execute my business logic and see how
things shape out. No data will be retrieved; it’s all isolated to that one
method.

With SQL Parsing

jOOQ ships with some a la carte SQL parsing capabilities that don’t
necessarily have anything to do with SQL execution. You can use the
Parser class to generate jOOQ components from plaintext SQL; in the
process, it'll let you know whether your SQL's legit or not. Observe:

@Test
void validate my dodgy sql(){
assertThrows (ParserException.class, ()->
DSL.using(SQLDialect.MYSQL)
.parser()
.parse("selecet * from table group by
1 where having max (column) > 10"));

That SQL ain’t right,® I'm sure you'll agree. With assertThrows from
JUnit, I've specified that I expect this attempt to parse the plaintext SQL
should fail with a ParserException. Via con Dios!

®Yes, I'm a huuuge King of the Hill nerd. You should be too.

197

CHAPTER 5 PACKAGING AND TESTING J0OQ

Yawwwwwn

Trust me, guys: BDD is where it’s at. When you're working with data,
you really want to get your hands dirty with actual executions of SQL
statements; see real results. Are you with me? I hope so. Because we're
about to get to the fun part!

Integration Testing with Docker
and TestContainers

Docker, like I mentioned a couple of pages ago, is a runtime for containers.
If you're unfamiliar with the concept, think of Docker like a virtual
machine - a JVM if you will. Just like you can download any kind of

JAR that’s packaged by a third party, and run inside your JVM, Docker
functions similarly. Different vendors publish images to Docker Hub;’

"https://hub.docker.com/

198

https://hub.docker.com/

CHAPTER 5 PACKAGING AND TESTING J00Q

you can then pull these images down and run containers based on the
image. In a sense, Docker Hub is the Maven Central of the container world.
You can get almost any major piece of software as an image and, thus, a
container. This gives you a ton of flexibility and portability, allowing you
to run previously bulky and overhead-intensive software in a portable
and mostly lightweight format, so that you can run entire operating
systems, CI/CD servers and tools, critical infrastructure software, and, yes,
databases, in a dynamic and flexible form factor.

TestContainers is a Java library that helps you take the portability of
containers further. It gives you the power to run any containerized software
from within Java code.

Testcontainers /

www. testcontainers.org

We shall now use TestContainers to start up a MySQL database server
as part of our JUnit tests, as well as load it up with real tables and data.
Then, we can run actual code against it - none of that mocking business
here. Well, maybe just a little. Let’s go!

199

http://www.testcontainers.org

CHAPTER 5 PACKAGING AND TESTING J0OQ

First, download/install Docker for your operating system - www.
docker.comis a good place to start for most users. TestContainers depends
on the Docker runtime to do its magic. Can’t run a JAR file without a JVM,
canyou?

As usual, the Maven dependencies come first:

<dependency>

<groupld>org.testcontainers</groupId>
<artifactId>testcontainers</artifactId>
<version>1.16.0</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.testcontainers</groupId>
<artifactId>junit-jupitexr</artifactId>
<version>1.16.0</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.testcontainers</groupId>
<artifactId>mysql</artifactId>
<version>1.16.0</version>
<scope>test</scope>

</dependency>

Like with Mockito, please pay attention to the artifacts. For each
database version it supports (and there are many), TestContainers has a
dedicated Maven dependency. For my use of MySQL, I've added the mysql
artifact; choose correctly for your database container of choice.

Now, for my next demonstration, a little bit of test prep:

200

http://www.docker.com
http://www.docker.com

CHAPTER 5 PACKAGING AND TESTING J00Q

@TestInstance(TestInstance.Lifecycle.PER_CLASS)
@isplayNameGeneration(DisplayNameGenerator.ReplaceUnderscores.
class)

@Testcontainers (1)

@TestMethodOrder (MethodOrderer.OrderAnnotation.class)

public class JoogIntegrationTests {

static MockedStatic mockedDriver;

final static String DATABASE_NAME = "edens car";
final static String USERNAME = "auserhasnoname";
final static String PW = "anawfulpassword";

@Container (2)

static GenericContainer mySqlContainer = new

MySQLContainer (DockerImageName.parse("mysql:latest")) (3)
.withDatabaseName (DATABASE NAME)
.withInitScript("schema with data.sql")
.withUsername (USERNAME)
.withPassword(PW)
.withEnv("TESTCONTAINERS CHECKS DISABLE","true")
.withExposedPorts(3306);

@BeforeAll
public static void setup(){
mockedDriver = mockStatic(DriverManager.class); (4)

Now remember, this is all just prep inside a test class; the actual test
methods will follow shortly:

1. @TestContainers isaJUnit extension provided by
the TestContainers library. It’s really a facade for the
ExtendWith annotation we saw earlier with Mockito.

201

CHAPTER 5

202

PACKAGING AND TESTING JOOQ

2. @Container is also supplied by TestContainers.

With this annotation, TestContainers can hook into

the lifecycle of the JUnit runtime and prepare the

container instance ahead of time.

3. The GenericContainer class is a...generic class that

wraps most of TestContainers’ container-based

functionality.

a.

Just like we’ve had to do with Maven and any other
dependency management system, I have to supply
named coordinates to the appropriate Docker image
in the hub. The format is “name”:“tag” Here, I'm
saying I want the “mysql” image with the “latest” tag

or version.

withDatabaseName allows me to set a name for my
yet to be created database.

withInitScript defines the name of a SQL script
file that will be loaded immediately after the
container has completed initialization. This allows
me to populate my database with DDL and DML in
advance of any actual test execution.

I seed the database container with credential info
withUsername and withPassword.

I can also deliver random environment variables

to my container with withEnv. Here, I'm supplying

a TestContainers command-line parameter that
allows it to skip some startup checks, thereby getting
the database container ready, faster.

Finally, I define the port on which MySQL should
be listening. Note that this is still internal to the

CHAPTER 5 PACKAGING AND TESTING J00Q

container. A separate, random port will be published
by TestContainers for me to be able to connect to
the MySQL container. This process is called port

mapping in the container world.

4. Finally, like we did before, I prepare to mock out

the DriverManager because I want to provide a
dynamically generated Connection - but a real one
this time to a real MySQL database.

Now that I've set up all my test fixtures, I can go ahead and write the

actual test:

@Test

public void test containerized connection() throws
SQLException {

}

JdbcDatabaseContainer container =
(JdbcDatabaseContainer) mySqlContainer; (1)

Connection connection =container.

createConnection(""); (2)

mockedDriver.when(()-> DriverManager.
getConnection(anyString())).thenRetuxrn(connection); (3)
JoogDemoApplication.insertVehicle();

In the preceding snippet

1.

I cast the GenericContainer to a more specialized
form, the JdbcDatabaseContainer.

This now allows me to directly obtain an instance of
a JDBC Connection right off the container.

I can then substitute my own Connection into the
DriverManager.

203

CHAPTER 5 PACKAGING AND TESTING J0OQ

Following all that, I can then directly execute my test logic code.

This is a proper test. It contains actual data, actual database fixtures
and trimmings, all inside a real database. Delightful.

Here’s another nifty thing JUnit allows: test method ordering. With test
method ordering, you can have tests that depend on each other or at the
very least must run in a specific order. Check it out:

@Test

@0rder(1)

public void test containerized connection() throws
SQLException {

}

@Test

@0rder(2)

public void test valid db _insert() throws SQLException {

if(!mySqlContainer.isRunning()){
mySqlContainer.start();

}
JdbcDatabaseContainer container =
(JdbcDatabaseContainer) mySqlContainer;
container.getJdbcUrl();
Connection connection =container.createConnection("");
DSLContext context = DSL.using(connection, SQLDialect.
MYSOL);
List<CompleteVehicleRecord> allVehicles = context.
select(field(name("brand")), field("model"),
field("price")).from(table("complete car_

204

CHAPTER 5 PACKAGING AND TESTING J00Q

listing")).orderBy(field("year").asc(), two()).
fetchInto(CompleteVehicleRecord.class);
assertTrue(allVehicles.size() == 1);

}

The @0rder annotation allows me to stipulate that test_valid_
db_insert should execute immediately after test containerized
connection. Here’s where things get a tad wonky.

See, TestContainers is wired to shut down a container immediately
after the test method is done executing. The container isn’t actually
destroyed, but it’s not running. This is what makes it necessary to take
some precautions when reusing a container instance across test methods.
In this scenario, I've inserted data with test_containerized connection;
I then want to validate the insertin test_valid db_insert.Imust check
that the container is still up with isRunning; otherwise, the test fails. If the
container isn’t running, I can restart it with start. This is a pretty crude
mechanism to support container reuse; you can get a lot fancier and
maintainable with it.

Pro Tip TestContainers provides the ScriptUtils.
runInitScript utility that helps execute arbitrary SQL scripts
against a database container. This way, even after an initial load
into the database, you can execute custom SQL at any point in your
testing.

This is all well and good in a “legacy is cute” sort of way. If you're using
containers in your code, you're likely not dealing with DriverManager.
You're likely a framework sort of person. How about we try this on...

205

CHAPTER 5 PACKAGING AND TESTING J0OQ

With Spring Boot

Spring Boot is, well, Spring Boot. It provides a whole arsenal of test fixtures
and componentry that could make one dizzy. We're not going to dig into
all of that. We're just here for the jOOQy goodness. Check it out:

@SpringBootTest (1)
@Testcontainers
public class JooqSpringBootTests {

@Autowired
JooqBean jooqBean; (2)

@Container
static GenericContainer mySqlContainer = new
MySQLContainer (DockerImageName.parse("mysql:latest"))

@DynamicPropertySource (3)

static void postgresqlProperties(DynamicPropertyRegistry

registry) {
JdbcDatabaseContainer container =
(JdbcDatabaseContainer) mySqlContainer;
registry.add("spring.datasource.url”,
container::getldbcUrl);
registry.add("spring.datasource.password",
container: :getPassword);
registry.add("spring.datasource.username",
container: :getUsername);

}

@Test
@Sql("/schema_with_data.sql") (3)
public void test springboot loading(){

206

CHAPTER 5 PACKAGING AND TESTING J00Q

List<Vehicle> vehicles = joogBean.runSql();
assertTrue(vehicles.size() >= 1);

I've slimmed down this snippet to exclude old stuff you've seen up till

now. We're here for the new and just the new:

1.

With @SpringBootTest, Spring will take notice and
make its facilities available.

This is how I can now inject my JoogBean containing
all manner of jOOQ queries.

New with v2.2.6, Spring Boot provides the
@ynamicPropertySource annotation which allows
me to dynamically override any framework properties
I choose. This comes particularly in handy when one
is dynamically spinning up database containers of
unknown port, username, and password.

Finally, on the test method itself, I deploy the

@Sql component, also from Spring. This annotation
will execute the SQL statements in the supplied
script file. The default behavior is to execute the
script before the test method is run, but that can be
changed. Additionally, I can supply any number of
scripts here for different purposes. Pretty neat.

Now that you've gotten yourself somewhat familiar with

TestContainers, let’s revisit our packaging dilemma: how can we apply

changes to our schema, generate updated jOOQ classes, as well as run our

tests all without needing an external database server? I've demonstrated

some of the prep that needs to happen in support of this goal. Now let’s see
the code that’ll back it up.

207

CHAPTER 5 PACKAGING AND TESTING J0OQ

public static GenericContainer startDatabaseContainer() throws
SQLException {
mySql = new MySQLContainer(DockerImageName.
parse("mysql:latest"))
.withDatabaseName (DATABASE NAME)
.withUsername (USERNAME)
.withPassword(PW)
.withEnv("TESTCONTAINERS CHECKS
DISABLE","true")
.withExposedPorts(3306);
mySql.start();
return container;

}

The preceding snippet isn’t too different from the code I've shown
in the business of testing. The main difference here is that I'm explicitly
starting the database container with the start method. Yes, there’s a
stop method as well for when you're done. After starting a containerized
MySQL, I can then execute my migration with Flyway.

//run the migration with a connection to the database container

public static void runMigrations(GenericContainer container){
JdbcDatabaseContainer container =
(JdbcDatabaseContainer) container;
Flyway flyway = Flyway.configure().
dataSource(container.getJdbcUrl(),container.
getUsername(),container.getPassword()).load();
flyway.migrate();

208

CHAPTER 5 PACKAGING AND TESTING JOOQ
And then tying everything together:

public static void main(String[] args) throws SQLException {
logger.info("Running preflight operations");
GenericContainer mySql = startDatabaseContainer();
runMigrations(mySql);
generateJooqCode(mySql);
connection.close();
mySql.close();

}

Thus, we can have a completely self-sufficient project, at least from
the database perspective. This can be run on a developer machine or on a
build server.

All told, you want a self-contained and self-sustaining software project
kit that can

1. Portably evolve with a changing database schema

2. Runits tests wherever it lives - on a developer’s
machine, in a build pipeline, before a pull request
merge, etc.

3. Validate your assumptions against production-like
software and infrastructure without the associated
overhead

4. Give you warranties as to the syntactical correctness
of your database-related code

Because after all, this is what modern software development is all
about.
Good luck, and thanks for reading!

209

Index

A

Acceptance Test-Driven
Development (ATDD), 187
AUTO_INCREMENT function, 65

B

Behavior-Driven Development
(BDD), 187
Bring-Your-Own-SQL (BYOS), 173

C

case keyword/method, 51, 53
Common Table Expression (CTE),
55, 140, 154
Continuous Integration/
Continuous Development
(C1/CD), 173
createNativeQuery
method, 156
Create, Read, Update, and Delete
(CRUD), 25
data access modes, 69-73
delete statements, 67, 68
insert statements, 63, 64
select statements, 34
SQL dialect, 25-27

© Tayo Koleoso 2022

tools, 28-33
update statements, 66, 67

D

Data Access Objects (DAOs), 94, 105
Database operations, Java
HQL, 4
JDBC, 2
JPA, 4,5,7
ORM, 3, 8
RAM, 7
Data Definition
Language (DDL), 177
Data Transfer Object (DTO), 31,
104, 150
DSLContext#resultQuery method, 35
DSL#noCondition() method, 44

E

Eden Auto Mart, 19, 20
exception method, 88

F,G
fetchInto method, 35

fetchLazy method, 72
fetchMany method, 36

211

T. Koleoso, Beginning jOOQ, https://doi.org/10.1007/978-1-4842-7431-6

https://doi.org/10.1007/978-1-4842-7431-6

INDEX

fetchSize method, 127

fetchStart method, 87

Fully qualified class name
(FQCN), 184

H

Hibernate Query
Language (HQL), 4, 7

Integration testing, 185, 186, 198

J, KL
Java Database Connectivity
(JDBC), 2
Java Persistence API (JPA), 4, 17
definition, 146
entities, 147-150, 152
POJOs, 151
SQL queries, 153-156, 158, 160
Java Persistence Query Language
(JPQL), 7, 146
JavaServer Faces (JSF), 4
JavaServer Pages (JSP), 4
jO0Q
classes/interfaces, 15, 16, 18
code generation, 11, 12
configuration
catalog, 82
JDBC connection, 79-81
query lifecycle integration,
86-88

212

query management, 84, 85
schema, 81, 82, 84
database, 11
definition, 11
DSL, 12
JVM language, 14
locking, 76-78
setting up, 20-23
tooling support, 13
transactions, 73-75
typesafe, 12
jO0Q toolbox, 89
batch operations, 128
batch import, 134, 135, 137
explicit batching, 130,
132,133
database operations
joins, 117-120
non-SQL grouping, 121,
123-126, 128
generating code, 89, 90
command line, 97, 98
configuration, 91, 92, 94
custom code, 107, 108
DAO, 105
global artifacts, 106
Maven, 94, 96
programmatically, 99-101
result, 102
tables, 102, 103, 105
query syntax
merge/upsert, 137-140
Windows function, 140,
142-144

working
CRUD, 109, 110
formatting, 115
optimistic locking, 115
UpdatableRecords, 112, 113

M, N
Mockito, 188, 192, 193, 200, 201

Multi-Version Concurrency Control
(MVCC), 76

O

Object-Relational
Mapping (ORM), 3, 146

onDuplicateKeyUpdate
method, 138

Online Analytical Processing
(OLAP), 1

otherwise method, 53

P

Package code
code generation, 175, 176
database connection, 177
POM.xml, 174
schema, 178-180
self-sufficient database
project, 181-184
Plain Old Java Objects (POJOs), 30,
94,104

INDEX

PostgreSQL, 6, 15, 18, 26, 27, 61,
138, 189

Q

Quarkus
APIs, 170
definition, 168
JDBC extension, 171
programming components, 168
Spring Data JPA, 170

R

Relational Database Management
System (RDBMS), 2
returningResult method, 111

S

Select statements

CompleteVehicleRecord
POJO, 34

conditional logic, 50, 52-54
DSL, 37-40
groupBy clause, 57
HAVING DSL, 58
ORDER BY CASE, 59, 60
ORDER BY DSL, 58
ORDER BY NULL, 61
paginate query results, 61, 62
PreparedStatement, 36
subqueries, 46-50

213

INDEX

Select statements (cont.)
WHERE DSL, 41-43, 45
WITH clause, 54, 56

Spring Boot
application.properties, 162
configuration setup, 163
custom SQL, 165-167
definition, 162
DSLContext, 165
jOOQ starter, 168

Structured Query

Language (SQL), 1

T,U,V
table function, 38
TestContainers, 181, 182

214

Testing
integration, 185
SQL, 187-189
unit
Docker Hub, 198
Mockito, 192-195, 197
query method, 191
Spring Boot, 206-209
SQL parsing, 197, 198
TestContainers, 199-203, 205
unit testing, 186
Tuple syntax, 68

W XY,Z
wait method, 77
when method, 53

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Welcome to jOOQ
	Database Operations in Java: The Good Parts
	Database Operations in Java: The…Not So Good Parts
	You Have Got to Be jOOQing

	jOOQ Feature Tour
	Database Aware
	Code Generation
	Type Safety
	Domain-Specific Language
	Tooling Support
	JVM Languages

	Chapter 2: Getting Started with jOOQ
	Eden Auto Mart
	Setting Up jOOQ
	Install Dependencies for Commercial-Licensed jOOQ

	CRUD with jOOQ
	Your SQL Dialect and You
	Tools of CRUD in jOOQ
	Select Statements
	The SELECT DSL
	With the WHERE DSL
	Conditions

	Subqueries
	Conditional Logic in Queries
	With the… WITH Clause
	With the GROUP BY DSL
	With the HAVING DSL

	With the ORDER BY DSL
	ORDER BY CASE

	ORDER BY NULL
	Paginate Query Results

	Insert Statements
	With Multiple Rows
	With Sequences
	With Select

	Update Statements
	Delete Statements
	Tuple Syntax

	Alternative Data Access Modes
	Streaming Access
	Lazy Access

	Transactions
	With Locking

	Configuration
	Connection Management
	Schema, Catalog, and Multi-tenant Deployment
	Query Management
	Query Lifecycle Integration

	Chapter 3: Working with jOOQ
	Generating Code
	Tools of jOOQ Code Generation
	Configure jOOQ for Code Generation
	Generate Code with Maven
	Generate Code from the Command Line
	Generate Code Programmatically
	Results of Code Generation
	Tables
	Global Artifacts

	Add Custom Code to Generated Code

	Working with Generated Code
	CRUD with Generated Code
	Enhancements from UpdatableRecord
	Formatting

	Optimistic Locking

	Advanced Database Operations
	Joins
	Non-SQL Grouping

	Batch Operations
	Explicit Batching
	Batch Import

	Advanced Query Syntax
	Merge and Upsert
	Window Functions

	Chapter 4: Integrating with jOOQ
	Java Persistence API with jOOQ
	Generate JPA Entities
	Generate from JPA Entities
	Generate SQL Queries

	Spring Boot and jOOQ
	Configure jOOQ in Spring Boot
	With Custom SQL
	jOOQ Spring Boot Starter

	Quarkus and jOOQ

	Chapter 5: Packaging and Testing jOOQ
	Package Code with jOOQ
	When You Don’t Need Code Generation
	When You Don’t Have an Active Database Connection
	When Your Schema Needs to Incrementally Evolve
	Recipe for a Self-Sufficient Database Project

	Testing with jOOQ
	Tools of the (SQL) Testing Trade
	Unit Testing with jOOQ
	Using Mockito
	With SQL Parsing

	Integration Testing with Docker and TestContainers
	With Spring Boot

	Index

