

Ещё больше книг по Java в нашем
телеграм канале: https://t.me/javalib

Elegant Objects

Ъу Yegor Bugayenko

ЭЛЕГАНТНЫЕ ОБЪЕКТЫ
Java Edition

Егор Буrаенко

Санкт-Петербург ·Москва· Екатеринбург· Воронеж
Нижний Новгород • Ростов-на-Дону • Самара • Минск

2018

Ещё больше книг по Java в нашем
телеграм канале: https://t.me/javalib

ББК 32.973.2-018.1
УДК 004.43
690

Бугаенко Е.
690 Элегантные объекты. Java Edition. - СПб.: Питер, 2018.

240 с.: - (Серия «Библиотека программиста»).

ISBN 978-5-4461-0801-5
Эта книга всерьез пересматривает суть и принципы объектно-ориентиро­

ванного программирования (ООП) и может быть метафорически названа «ООП

Лобачевского». Автор книги, разработчик с 20-летним стажем, критически

анализирует догмы ООП и предлагает взглянуть на эту парадигму совершенно

по-новому. Так, он клеймит статические методы, геттеры, сеттеры, изменяемые

методы, считая, что это - зло. Для начинаюшего программиста этот томик может

стать просветлением или шоком, а для опытного является обязательным чтением.

16+ (В соответствии с Федеральным законом от 29 декабря 201 О г. № 436-ФЗ.)

ББК 32.973.2-018.1
УДК 004.43

Права на издание попучены по соглашению с Уеgог Bugayenko. Все права защищены. Ни­

какая часть данной книги не может быть воспроизведена в какой бы то ни было форме без
письменного разрешения владельцев авторских прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых из­

дательством как надежные. Тем не менее, имея в виду возможные человеческие или тех­
нические ошибки, издательство не может гарантировать абсолютную точность и полноту
приводимых сведений и не несет ответственности за возможные ошибки, связанные с ис­
пользованием книги. Издательство не несет ответственности за доступность материалов,
ссылки на которые вы можете найти в этой книге. На момент подготовки книги к изданию все
ссылки на интернет-ресурсы были действующими.

ISBN 978-1534908307 англ.
ISBN 978-5-4461-0801-5

© Уеgог Bugayeпko, 2018
© Перевод на русский язык ООО Издательство

«Питер», 2018
© Издание на русском языке, оформление

ООО Издательство «Питер», 2018
©Серия «Библиотека программиста», 2018

Оглавление

Предисловие . 9

Благодарности . 14

Глава 1. Рождение . 16

1.1. Не используйте имена, заканчивающиеся на -er. 17

1.2. Сделайте один конструктор главным . 28

1.3. В конструкторах не должно быть кода . 34

Глава 2. Образование . 43

2.1. Инкапсулируйте как можно меньше . 43

2.2. Инкапсулируйте хотя бы что-нибудь . 47

2.3. Всегда используйте интерфейсы . 50

2.4. Тщательно выбирайте имена методов . 54

Строители - это существительные. 57

Манипуляторы - это глаголы . 59

6 Оглавление

Примеры . 61

Методы, возвращающие логические значения 63

2.5. Не используйте публичные константы 64

Привнесение сцепления 67

Потеря цельности 68

2.6. Делайте классы неизменяемыми 73

Изменяемость идентичности 78

Атомарность отказов 79

Временное сцепление . 81

Отсутствие побочных эффектов . 83

Никаких нулевых (NULL) ссылок 84

Потокобезопасность. 86

Меньшие и более простые объекты . 89

2.7. Пишите тесты, а не документацию 93

2.8. Используйте fаkе-объекты вместо

mосk-объектов 97

2.9. Делайте интерфейсы краткими, используйте

smагt-классы 108

Глава З. Работа 114

3.1. Предоставляйте менее пяти публичных методов 115

3.2. Не используйте статические методы 117

Объектное мышление против компьютерного 119

Декларативный стиль против императивного 122

Оглавление 7

Классы-утилиты . 132

Паттерн <1Синглтон» . 13 3

Функциональное программирование 138

Компонуемые декораторы . 13 9

3.3. Не допускайте аргументов со значением NULL 146

3.4. Будьте лояльным и неизменяемым

либо константным . 15 7

3.5. Никогда не используйте геттеры и сеттеры 17 1

Объекты против структур данных . 172

Благими намерениями вымощена дорога в ад 176

Все дело в префиксах. 178

3.6. Не используйте оператор new вне вторичных

конструкторов . 189

3.7. Избегайте интроспекции и приведения типов 194

Глава 4. Уход на пенсию 20 1

4.1. Никогда не возвращайте NULL . 202

Отказывать как можно скорее или как можно

безопаснее? . 206

Альтернативы NULL . 208

4.2. Бросайте только проверяемые исключения 211

Не ловите исключения без необходимости 214

Стройте цепочки исключений 217

Восстанавливайтесь единожды . 219

8 Оглавление

Используйте аспектно-ориентированное
программирование . 221

Достаточно одного типа исключений 224

4.3. Будьте либо константным, либо абстрактным 230

4.4. Используйте принцип RAII . 236

Эпилог . 239

Предисловие

Об объектно-ориентированном программировании (О О П)
написано много книг. Зачем нужна еще одна? Затем, что мы
в опасности. Мы все дальше уходим от того, что было задума­
но создателями ООП, и у нас все меньше шансов вернуться.
Все существующие О О П-языки предлагают рассматривать
объекты как структуры данных с прикрепленными процеду­
рами, что в корне неверно. Появляются новые языки, но они
делают так же или даже хуже. Объектно-ориентированных
программистов заставляют думать так, как процедурные про­
граммисты думали 40 лет назад. То есть думать не как объекты,
а как компьютеры.

Эта книга представляет собой сборник практических рекомен­
даций, которые, как мне кажется, могут изменить ситуацию
и остановить деградацию ООП. Большинство из них я прочел
в различных источниках, а некоторые просто придумал.

Двадцать три совета сгруппированы в четыре главы: рожде­
ние, школа, трудоустройство и выход на пенсию. Речь пойдет
о мистере Объекте, антропоморфной сущности в объектно­
ориентированном мире. Он родится, пойдет в школу, устроится

10 Предисловие

на какую-нибудь работу, а затем выйдет на пенсию. Посмотрим,
как будут развиваться события, и попробуем узнать что-то новое.
Вместе. Поехали!

Погодите. Знаете, прежде чем опубликовать эту книгу, я отпра­
вил ее десятку рецензентов, и почти все они возмутились из-за
отсутствия введения. Они сказали, что я отправляю читателей
на свидание вслепую с первой темой, не дав им необходимого
контекста. Еще сказали, что мои идеи сложно воспринимать
людям с богатым опытом программирования на С++ /Java. Они
находят, что их понимание ООП расходится с моим. Короче
говоря, все потребовали, чтобы я написал введение. Собствен­
но, вот оно.

Мне кажется, что ООП было разработано для решения проблем
процедурного программирования, особенно на языках вроде С
или COBOL. Процедурный стиль написания кода очень прост
для понимания теми, кто знает, что процессор последовательно
обрабатывает инструкции, манипулирующие данными в памя -
ти. Фрагмент кода на С, также известный как функция, - это
множество операторов, которые должны выполняться в хро­
нологическом порядке, перемещая данные из одного места
в памяти в другое и попутно проделывая над ними некоторые
преобразования. Это работало много лет и работает до сих
пор. Таким образом написана большая часть программного
обеспечения, включая , к примеру, все основные Uniх-подобные
операционные системы.

Такой подход технически работает - код компилируется и за­
пускается. Но при этом существует проблема с сопровождением.
Автор кода более или менее понимает, как тот работает, пока
пишет его. Но если заглянуть в него позже, то будет довольно
трудно выяснить, что имел в виду его создатель. Иными словами,
код написан для компьютеров, а не для людей. Лучший пример
такого императивно-процедурного языка - ассемблер. Он бли-

Предисловие 11

же всего к процессору и очень далек от языка, на котором люди
общаются в жизни. В ассемблере нет клиентов, файлов, прямо­
угольников и цен. Только регистры, байты, биты и указатели - то,
что процессор понимает лучше всего.

Так было много лет назад, когда компьютеры были большими,
медленными и повелевали всем. Мы вынуждены были гово­
рить на их языке, а не наоборот. Так происходило преимуще­
ственно потому, что программное обеспечение должно было
быть быстрым, чтобы стать полезным. Шла борьба за каждую
инструкцию, за каждый байт памяти. Мы больше беспокои­
лись о скорости и использовании памяти, чем о сопровожде­
нии кода. Важно отметить, что программисты тогда были на­
много дешевле компьютеров. Уж простите мое сравнение, но
это правда. Нанять нового программиста было дешевле, чем
купить новый жесткий диск. Иногда даже не представлялось
возможным решить проблему добавлением вычислительных
ресурсов. Более быстрого или объемного аппаратного обе­
спечения попросту не было. Программисты были довольно
дешевы - поищите статистику 20-летней давности по их зар­
платам. Именно поэтому приходилось делать то, что диктова­
ли нам процессоры.

К счастью, некоторое время назад ситуация переменилась и про­
блема сопровождения стала более важна, чем скорость исполне­
ния или расходование памяти. Жизненный цикл программных
продуктов начал расти, и стало очевидно, что ассемблерный код
не сможет пережить смену команды - новые люди предпочтут
переписать код вместо того, чтобы разбираться, как работает
подпрограмма из 5000 строк. Я считаю, что так и появились бо­
лее высокоуровневые парадигмы программирования, такие как
функциональная, логическая и объектно-ориентированная (есть
и другие, но эти три, как мне кажется , наиболее популярны) .
Они перенесли фокус внимания с машин на людей. Они позволили
нам говорить на своем языке, а не на том, к которому привык

12 Предисловие

процессор. Они помогли сделать код более читаемым и, как
следствие, более простым для поддержки. Так было задумано.

Исторически ООП унаследовало многое от процедурного про­
граммирования. Под ООП здесь понимается не парадигма, а се­
мейство популярных языков программирования, которые были
названы объектно-ориентированными. Речь идет в основном
о С++ и Java. Остальные, например Ruby, просто последовали
их примеру. Возможно, поэтому С++ и стал так популярен - он
выглядит как С, соответственно, его проще изучить. Языкjаvа
также разрабатывался с целью упростить переход с С++ - его
синтаксис очень похож на синтаксис С++ и прост для изучения
программистами на С++. Из-за компромиссов в переходе от С
к С++ и от С++ кjava ООП на сегодняшний день сильно напо­
минает процедурный С.

И пускай у нас есть классы и объекты - у нас все еще остались
операторы , инструкции и их последовательное исполнение.
Мы больше не работаем напрямую с указателями, памятью
и регистрами процессора, но основной принцип остается неиз­
менным - мы даем инструкции процессору и манипулируем
данными в памяти. «Что с этим не так?» - можете спросить
вы. Все в порядке, если вы хотите придерживаться процедур­
ного подхода. Так же, как все было в порядке с ассемблером.
Кроме того, что написанный на нем код было практически невоз­
можно поддерживать. Точно такая же проблема сейчас и с про­
граммным обеспечением, написанным нajava/Ruby/Python, -
его невозможно поддерживать, поскольку оно никогда не было
объектно-ориентированным.

В нашем коде есть классы , методы, объекты, наследование
и полиморфизм, но он не совсем объектно-ориентированный.
Что именно с ним не так? Это я и попытаюсь объяснить в дан­
ной книге. Очень сложно уместить то, что я хочу сказать, в пару
разделов. Чтобы понять идею и образ мышления, свойственные
чистому ООП, вы должны прочитать всю книгу.

Предисловие 13

Я старался сделать материал максимально приближенным
к практике и проиллюстрировать освещаемые идеи реалистич­
ными примерами программного кода. Кроме того, в начале по­
чти каждого раздела есть ссылка на статью в блоге, посвященную
той же или очень близкой теме. Не стесняйтесь оставлять там
свои комментарии, я постараюсь на них ответить.

Честно говоря, я не думаю, что прав во всем, о чем говорю. Я сам
многие годы был процедурным программистом. Сложно оста­
вить прошлый опыт позади и начать думать в терминах объектов,
а не инструкций и операторов. Буду рад вашим отзывам. На этом
введение закончено. В нем немного информации, но теперь вы
по крайней мере знаете, чего ожидать от последующих страниц.
Будьте готовы ко множеству противоречий. Наберитесь смело­
сти бросить себе вызов. Приятного прочтения !

Ещё больше книг по Java в нашем
телеграм канале: https://t.me/javalib

Благодарности

Большое спасибо тем, кто рецензировал эту книгу и помог сде­
лать ее лучше и чище. Имена и фамилии этих людей упорядоче­
ны не по алфавиту, а по важности их вклада:

о Танасис Папапанагиоту (Thanasis Papapanagiotou) ;

о Франческа Бьянчи (Fгancesco Bianchi) ;

о Филипп Буук (Philip Buuck) ;

о Константин Комков (Konstantin Komkov) ;

о Андрей Истомин (Andrei Istomin) .

Полный список помощников (в алфавитном порядке) : Алексей
Абашев (Alexey Abashev) , Антон Архипов (Anton Arhipov) , Фа­
брицио Баррас Кабрал (Fabricio Barros Cabral) , Айон Бордиан
(Ion Bordian) , Тамила Бугаенко (Tamila Bugayenko) , Филипп
Буук (Philip Buuck), Франческа Бьянчи (Francesco Bianchi) ,
Андрей Валяев (Andrey Valyaev) , Илья Василевский (I lya
Vassilevsky) , Виктор Гамов (Viktor Gamov) , Артем Гапченко
(Artem Gapchenko) , Куин Гиль (Quinn Gil) , Константин Гукав
(Konstantin Gukov) , Игорь Дмитриев (Igor Dmitriev) , Анеш
Догра (Aneesh Dogra), Андрей Истомин (Andrei I stomin) , Ки­
рилл Коротецкий (Kiryl Korotsetski) , Никос Кекчидис (Nicos
Kekchidis) , Кристиан Кестлин (Christian Kostlin) , Констан-

Благодарности 15

тин Комков (Konstantin Komkov) , Н иколь Кордес (Nicole
Cordes) , Жанез Кухар Qanez Kuhar), Матеуш Ошлишлок (Ma­
teusz OsliSlok) , Сясонr Пан (Xiasong Рап) , Танасис П апапа­
нагиоту (Thanasis Papapanagiotou) , Джон Пейдж Qohn Page) ,
Ефим Пышнограев (Efim Pyshnograev) , Силас Рейнагель (Silas
Reinagel) , Барух Садогурский (Baruch Sadogursky) , М аркос
Дуглас Б. Сантос (Marcos Douglas В. Santos), Оксана Семенкова
(Oksana Semenkova) , Маурицио Тоньери (Mauricio Togneri) ,
Саймон Цай (Simon Tsai) , Антон Черноусов (Anton Chernousov),
Кшиштоф Шафраньски (Krzysztof Szafrariski) , М ихал Швец
(Michal Svec) , Петр Шмелевский (Piotr Chmielowski) .

Хотите увидеть себя в этом списке в следующем издании книги?
Высылайте свои соображения на book@yegor256.com. Я отвечаю
на все письма.

И конечно же, спасибо Андрии Миронюк (Andreea Mironiuc) за
кактус на обложке.

1 Рождение

Начнем с того, что объект - это живой организм. С самой первой
страницы мы приложим максимум усилий для его антропомор­
фирования. Иными словами, будем считать объект человеком.
Поэтому я стану использовать в отношении объекта местоиме­
ние «ОН». Мои дорогие читатели-женщины, пожалуйста, не оби­
жайтесь. Я могу быть груб по отношению к бедному объекту, но
не хочу быть грубым по отношению к женщинам. В этой книге
объект будет мужского рода.

Он живет в своей области видимости, например (я в основном
работаю с языком Jаvа и буду так поступать далее в этой книге;
надеюсь, что он вам понятен) :

if (price < 100) {

}

Cash extra = new Cash (5) ;
price . add (ext ra) ;

Объект ext ra виден только внутри блока i f - это его область
видимости. Почему это важно именно сейчас? Потому что объ­
ект - живой организм. Прежде чем вдохнуть в него жизнь, мы
должны определить его среду обитания. Что находится внутри
него, а что находится снаружи? В данном примере price нахо­
дится снаружи, а число 5 - внутри, верно?

К слову, прежде чем мы продолжим, хочу уверить вас, что все,
что вы прочтете в этой книге, весьма практично и прагматично.

1 . 1 . Не используйте имена, заканчивающиеся на -ег 17

Большая ее часть посвящена практическому приложению объ­
ектно-ориентированного программирования к реальным про­
блемам, а не философствованию. Главная цель, которую я пре­
следую данной книгой, - улучшить сопровождаемостъ вашего
кода. Нашего кода.

Сопровождаемость - важное качество любого программного
обеспечения, оно может быть измерено как время, необходимое
для того, чтобы понять ваш код. Чем больше времени требуется,
тем ниже сопровождаемость и тем хуже код. Я бы даже сказал:
если я вас не понимаю, то виноваты в этом вы. Понимая объекты
и их роль в ООП, вы повысите сопровождаемость своего кода.
Он станет короче, проще для восприятия, модульнее, целостнее
и т. д. Он станет лучше, а в большинстве случаев и дешевле.

Пожалуйста, не удивляйтесь моим, казалось бы, излишне фило­
софским и абстрактным рассуждениям. Они на самом деле весь­
ма практичны.

Теперь вернемся к области видимости. Если я - ext r a , то
price - это моя окружающая среда. Число 5 внутри меня - это
мой внутренний мир. Но это не совсем верно. Пока достаточно
считать, что price находится снаружи, а 5 - внутри. Мы вернем­
ся к этому чуть позже, в разделе 3.4.

1 . 1 . Не испол ьзуйте и мена,
заканч ива ющиеся на -ег

Обсуждение на http ://goo.gi/UyЗwZб.

После того как вы определили область видимости будущего объ­
екта, первостепенной задачей будет придумать ему хорошее имя.

Но отступим от основной линии повествования и обсудим раз­
ницу между объектом и классом. Я уверен, вы ее понимаете.
Класс - это фабрика объектов. Уверяю вас, это важно.

18 Глава 1 • Рождение

Класс создает объекты, обычно говорят - инстанцирует их:

c l a s s Cash {

}

puЫic Cash (int dollars) {
1 1 . . .

}

Cash five = new Cash (S) ;

Инстанцирование отличается от того, что мы называем паттер­
ном Factory, но только потому, что оператор new в J ava не настоль­
ко функционален, насколько мог бы быть. Его можно использо­
вать лишь для создания экземпляра класса - объекта. Если мы
попросим класс Cash создать новый объект, то и получим новый
объект. При этом не проверяется, существуют ли похожие объек­
ты, которые можно применять повторно, нельзя задать параметры,
модифицирующие поведение оператора new, и т. д.

Оператор new - простейший механизм управления фабрикой
объектов. В С++ также есть оператор delete, который позволяет
удалить объект из фабрики. В Java и других «более продвину­
тых» языках мы, к сожалению, не имеем такой возможности.
В С++ можно попросить фабрику создать объект, использовать
его, затем указать той же фабрике его уничтожить:

c l a s s Cash {
puЫic :

puЬlic Ca s h (int dollars) ;

}
Cash five = new Cash (S) ; / / создаем объект
cout « five ;
delete five ; / / уничтожаем его

В Ruby идея класса как фабрики наиболее правильно выража­
ется следующим образом:

c l a s s Cash
def initia lize (dolla rs)

end

end
Cash five Cash . new(S)

1 . 1 . Не используйте имена, заканчивающиеся на -ег 19

new - статический метод класса Cash , когда он вызывается, класс
получает управление и создает объект five. Этот объект инкап­
сулирует число 5 и ведет себя как целое число.

Следовательно, хорошо известный паттерн «Фабрика» является
более функциональной альтернативой оператору new, но идея
у них одна. Класс - это фабрика объектов. Он создает объекты,
следит за ними, при необходимости уничтожает и т. д. Большая
часть этих возможностей в большинстве языков реализована
средствами среды исполнения, а не кодом класса, но это не имеет
особого значения. На поверхности мы видим класс, который дает
нам объекты по запросу. У вас может возникнуть вопрос отно­
сительно классов-утилит, не имеющих объектов. Мы поговорим
о них позже, в разделе 3.2 .

Паттерн проектирования «Фабрика» в Java работает как расши­
рение оператора new. Он делает оператор более гибким и функ­
циональным, присоединяя к нему дополнительную логику,
например:

c l a s s Shapes {

}

puЬlic Shape ma ke (St ring name) {
if (name . equals (" кpyr ")) {

return new Circle () ;

}

}
if (nаmе . еquаls (" прямоу гольн и к ")) {

return new Rectangle () ;

}
th row new I llegalArgumentException ("фиr ypa не найдена ") ;

Это типовой пример фабрики в Java. Она позволяет инстанци­
ровать объекты, используя текстовые наименования их типов.
Но в результате все равно применяется оператор new . Этим
я хочу сказать, что разница между шаблоном «Фабрика» и опе­
ратором new невелика. В идеальном ООП-языке его функцио­
нальность была бы доступна в операторе new. Я хочу, чтобы вы
представляли себе класс как склад объектов, которые можно

20 Глава 1 • Рождение

брать оттуда при необходимости и возвращать, когда потреб­
ность в них исчезает.

Иногда, чтобы объяснить, что такое класс, используют понятие
«шаблон объекта� . Это совершенно неверно, поскольку такое
определение делает класс пассивным безмозглым набором кода,
который куда-то копируется при необходимости . Даже если,
с вашей точки зрения, технически это выглядит именно так,
старайтесь так не думать. Класс - это фабрика объектов, и точ­
ка. Кстати, я не пытаюсь рекламировать паттерн «Фабрика� .
На самом деле я не очень большой его приверженец, хотя его
идея технически верна. Хочу сказать, что мы должны представ­
лять себе класс активным менеджером объектов. Также можем
назвать его хранилищем или складом - местом, откуда мы берем
объекты и куда их возвращаем.

К слову, учитывая, что объект - это живое существо, его класс -
это его мать. Такая метафора будет наиболее точна.

А теперь вернемся к основной теме данного раздела - про­
блеме выбора хорошего имени класса. По сути, существует два
подхода - правильный и неправильный. Неправильный - это
когда мы смотрим, что класс делает, и даем ему имя согласно
функциональности. Приведу пример класса, названного в соот­
ветствии с таким подходом:

c l a s s CashFormatter {

}

private int dollars ;
Cash Formatt e r (int d l r) {

this . dol lars = d l r ;

}
puЫic String format () {

ret u rn String . format (" $ %d " , this . dollars) ;

}

Если у меня есть нечто под названием CashFormatter , то что оно
делает? Оно форматирует сумму в долларах в виде текстовой

1 . 1 . Не используйте имена, заканчивающиеся на -ег 21

строки. И должно называться F o rmatt e r , так ведь? Разве это
не очевидно?

Вы, вероятно, заметили, что я не назвал объект C a s h Formatter

«ОН» . Я так поступил, потому что не могу заставить себя уважать
такой объект. Я не могу его антропоморфировать и обращаться
с ним как с уважаемым гражданином моего кода.

Такой принцип именования совершенно неверен, но весьма
широко распространен. Призываю вас не придерживаться та­
кого образа мышления. Имя класса не должно происходить от
названия функциональности, предоставляемой его объектами!
Напротив, класс должен быть назван на основе того, чем он
является, а не того, что он делает. C a s h F o rmatter необходимо
переименовать в Cash , или USDCash , или Cas hlnUSD и т. п . Метод
format () нужно назвать usd () , например:

c l a s s Cash {

}

private int dol l a r s ;
Cas h (int d l r) {

this . dollars = d l r ;

}
puЫic String u sd () {

return String . format (" $ %d " , this . dollars) ;

}

Иными словами, объекты должны характеризоваться своими
способностями. То, что я есть, выражается в том, что я могу, а не
в моих параметрах вроде роста, веса или цвета кожи.

« Вредный» ингредиент здесь - суффикс -er.

Существует масса примеров классов, названных подобным
образом, и у всех них есть суффикс -er, например: M a n a g e r ,

Cont roller, Helper, Handler , Writer, Reader, Converter , Va l idator

(-or также вреден) , Rout e r , D i s p a t c h e r , O b s e r v e r , L i st e n e r ,

Sorter, E ncoder и Decoder. Все эти имена плохи. Уверен, немало
примеров этого вы и сами видели. Вот несколько контрпримеров:

22 Глава 1 • Рождение

Target , E n codedText, DecodedDat a , Content , Sorted Lines , Va lid ­

Page , Sou rce и т. п .

Но у этого правила есть исключения. Некоторые англоязыч­
ные существительные имеют суффикс -er , который в свое
время (правда, оно давно прошло) указывал, что эти слова обо­
значают исполнителей каких-то действий, например cornputer
или user. Мы больше не называем user что-то, что буквально
пользуется (use) чем-то. Это скорее персона, взаимодейству­
ющая с системой. Мы воспринимаем cornputer не как что-то,
что вычисляет (cornputes) , а как устройство, которое является,
как бы сказать, компьютером. Но таких исключений не так уж
много.

Объект не переходник между внешним миром и своим внутрен­
ним состоянием. Объект не набор процедур, вызываемых для
манипуляции инкапсулированными в нем данными. Ни в коем
случае ! Напротив, объект - это представитель инкапсулирован­
ных в нем данных. Чувствуете разницу?

Переходник не заслуживает уважения, поскольку он просто
передает через себя информацию, не будучи достаточно сильным
или умным, чтобы модифицировать ее или делать что-то само­
стоятельно. Напротив, представитель - самодостаточная сущ­
ность, способная принимать собственные решения и действо­
вать самостоятельно. Объекты должны быть представителями,
а не переходниками.

Имя класса, которое заканчивается на -er, говорит нам о том,
что это создание является не объектом, а лишь набором про­
цедур, которые могут манипулировать некоторыми данными.
Это процедурный стиль мышления, унаследованный многими
объектно-ориентированными разработчиками из С , COBOL,
BASIC и других языков. Сейчас мы используем Jаvа и Ruby, но
все еще думаем в терминах данных и процедур.

1 . 1 . Не используйте имена, заканчивающиеся на -ег 23

И все-таки как правильно называть классы?

Все просто: посмотрите, что инкапсулируют объекты этого
класса, и придумайте для этого название. Пусть у нас есть спи­
сок чисел и алгоритм, который определяет, какие из них яв­
ляются простыми. Если вам нужно вывести только простые
числа из упомянутого списка, не называйте класс Primer , или
PrimeF inder, или PrimeChooser, или PrimeHelper. Лучше назовите
его PrimeNumbe rs (для разнообразия приведем код на Ruby) :

c l a s s PrimeNumbers
def initialize (origi n)

@origin = origin
end
def each

@origin

end

. select { l il prime ? i }

. each { l il yield i }

def prime ? (x)

end
end

Понимаете, о чем я? Класс PrimeNumbe rs ведет себя как список
чисел, но возвращает только те из них, которые являются про­
стыми. Подобную функциональность можно реализовать на С
в чисто процедурном стиле следующим образом:

void find_prime_numbers (int* origin ,
int* prime s , int s i z e) {

}

for (int i = 0 ; i < s i z e ; ++i) {
primes [i] = (int) i s_prime (origin [i]) ;

}

Здесь мы приводим процедуру f i n d_p r ime_n umbe r s , которая
принимает два массива целых чисел, последовательно обходит
первый массив в поисках простых чисел и помечает соответ­
ствующие позиции во втором массиве. Никаких объектов тут

24 Глава 1 • Рождение

нет. Это чисто процедурный подход, и он неверен. Он работает
в процедурных языках, но мы находимся в мире 00 П.

Эта процедура - переходник между двумя наборами данных: ис­
ходным списком чисел и списком простых чисел. Объект - это
нечто иное. Объект не переходник, а представитель других объ­
ектов и их сочетаний. В приведенном ранее примере мы создаем
объект класса PrimeNumbers , который ведет себя как набор чисел,
но видны в нем только простые числа.

Если ваш объект на самом деле является процедурой f i n d_

prime_numbers, то у вас проблема. Объект не должен работать как
набор процедур, хотя и может выглядеть очень похоже. Несмо­
тря на то что класс PrimeNumbe rs инкапсулирует список чисел,
он не позволяет управлять этим списком или искать в нем что­
либо. Вместо этого он заявляет: «Я теперь список! » Если я хочу
что-то сделать со списком, то прошу объект сделать это, а объект
уже решает, как реагировать на мою просьбу. Если он захочет,
то возьмет данные из исходного списка. Если нет - его право.

PrimeNumbers является списком чисел, а не набором методов его
обработки. Он - список!

Обобщим этот раздел. Когда приходит время давать имя ново­
му классу, думайте о том, что он есть, а не о том, что он дела ­

ет. Он - список, и он может выбирать элементы из списка
по индексу. Он - SQL-запись, и он может извлечь отдельную
ячейку как целое число. Он - пиксел, и он может изменить
свой цвет. Он - файл, и он может читать содержимое с диска.
Он - алгоритм кодирования , и он может кодировать. Он -
НТМL-документ, и он может быть отображен.

То, что я делаю, и то, кто я есть, - две разные вещи.

Кроме того, имена, заканчивающиеся на Ut i l или Ut ils , - еще
один пример плохого именования класса. Это так называемые
классы-утилиты, мы поговорим о них в разделе 3 .2 .

1 . 1. Не используйте имена, заканчивающиеся на -er 25

And гiy спросил 1 5 февраля 20 1 7 года :

Ка к б ыть с I Logger?

Егор Бугаенко :

П е р е и м е нуйте е го в I Log.

And гiy:

Но log - это сообще н и е , а logger и меет дел о с сообщен и я м и .
Воз м ожно , подойдет и м я LoggingTool?

Егор Бугаен ко :

Согласно словарю Meггi am-Websteг log определя ется ка к жур­
нал достиже н и й , соб ыти й , п о вседн е в н о й деятел ьности; да н ­
н ы м и , добавл я е м ы м и в log , м о гут б ыть з а м етки или соб ытия.
Жур нал [жур нальная кн и га) - л и ст бумаги , на кото ром з а п и ­
сы вают заметки .

M i khai L G гomov сп росил 1 8 дека б ря 20 1 6 года :

До пусти м , у м е н я е сть ка ко й -то м етод класса , кото р ы й в од­
н о й из стро к дел ает в ы з о в appleSorte r . sort (a pples) . Есл и
a p p l e S o rt e r - колл а б о рато р , о н п е р едается ка к п а р а м етр
ко н структо ра и я м о гу п е р едать ф и кти в н ы й э кз е м пл я р это го
сорти ровщика и протести ровать метод. Но что м н е делать, есл и
нужно выз вать new Sorte r (apples) ?

Е гор Бугаенко :

Не созда ва йте ф и кти в н ы й s o r t e r . П ро сто н е о б о ра ч и ва йте
apples в Sorter .

Losacieгtos сп росил 3 ноября 20 1 6 года :

Ка к насчет паттерна Observer? Ка к его реал изовать в «насто­
я ще м » О О П - м и р е?

26 Глава 1 • Рождение

Е гор Бугаенко :

М н е н р а в ится и м я Ta rget .

Losacieгtos:

То есть вы хотите с казать, что Listener и Observer - нор маль­
ные классы , есл и их наз вать EventTa rget и EventSou rce?

Егор Бугае н ко :

И м е н н о .

Fa bгicio СаЬга L спросил 3 1 мая 20 1 6 года :

Что в ы дума ете насчет классов ил и и нтерфейсов с суффиксом
ABLE, н а п р и м е р SerializaЫe, CloneaЬle, СасhеаЫе?

Егор Бугаенко:

М н е кажетс я , что о н и не луч ш е , чем те , что с суф ф и кс о м - е г.
И м я PrintaЫe оз начает, что меня м ожно напечатать , н о н и ч е ­
г о н е говорит о том , кто я та ко й . Это н е п равильно . Я п о н и м а ю ,
что о н и удо б н ы ч и сто тех н и ч ески , н о н е р е ко м е ндовал б ы их
и с п ол ьзо вать.

JuLiaпo BoeseL Моhг сп росил 1 7 мая 20 1 6 года :

Ка к насчет паперна Builder? В ы бы рекомендовал и е го п р и ­
менять?

Е гор Бугаенко :

Я с ч ита ю , что папе р н B u i ld e r плох , п о с кол ьку о н поощряет
созда н и е круп н ы х объе ктов . Идеал ь н ы й объект н е должен и н ­
ка п сул и ровать более 1-4 свойств. Определенно не бол ьше пяти .
Bu i ld e г с озда н , что б ы п о м о ч ь н а м стр о ить б ол е е круп н ы е
объе кты . Сл едо вател ь н о , е го и с п ол ьз о ва н и е - о ч е н ь плохая
иде я .

1 . 1 . Не используйте имена, заканчивающиеся на -ег 27

pixd i g i t написал 1 0 и ю ня 20 1 5 года :

А есл и я хочу создать класс , кото р ы й и правда является набором
фун кци й ? [Кажется , я знаю ответ, просто хочу п р о в е р ить .)

Е гор Бугаенко :

То гда вам нужно м е н ять образ м ы шл е н и я . В ы хотите создать
не класс , а б и бл и оте ку п ро цедур . В е р н итес ь к п ро цедур ному
п рогра м м и ро ва н и ю на С или COBOL, та м та кие вещи поощря ­
ются.

Riccaгdo Са гd i п написал 1 1 ма рта 20 1 5 года :

М н е кажетс я , н а м нуж н о с ф о р м ул и р о вать н е кото р ы е с о о б ­
раже н и я отн ос ител ьно о бъекто в . Ка к п одска з ы в а ет м о й о п ыт
разра ботч и ка , м ы м ожем раздел ить объе кты на два ти па:

1) объекты , модел и рующие действ ител ьность, а та кже дом е н ы
и операци и , о п р едел е н н ы е на н и х;

2) объ е кты , вза и м оде й ствую щие с п е р в ы м и дл я п о строе н и я
архите ктуры п р иложе н и я , удовлетворя ю ще й п отребностя м
п ол ьзо вател е й .

Объекты , п р и н адл ежа щие п е р вому м ножеству, м огут не сл едо­
вать п р а в илу, объясняемому в статье . Объе кты наподобие ко н ­
троллеров , служб , декораторов и фаб р и к п р и надл ежат второму
м ножеству. Они н е и м е ют отн о ш е н и я к реальному миру, а помо ­
га ют первым вза и м оде й ствовать друг с друго м . М н е кажется ,
что для вто рого м ножества объекто в ваше п р а в ил о «без -е г»
сл и ш ко м строгое и не будет собл юдаться .

Егор Бугаенко :

М ежду « в н е ш н и м и » и « в нутре н н и м и » о бъе кта м и н е должно
б ыть ра з н и ц ы . Кажды й о бъе кт и м е ет с о б ств е н ную о бл а сть

28 Глава 1 • Рождение

в иди м о сти , п о отн о ш е н и ю к кото рой все о стал ь н ы е о бъекты
я вля ются в н е ш н и м и . Связа н ы ли эти объекты с реал ьностью
в нашем п о н и м а н и и , не и м еет з н а ч е н и я . Нам это знать совер ­
шенно не обязател ьно . Все , что м ы знаем об объекте , - это по­
ведение , которое он демонстри рует посредством своих методов .

1 . 2 . Сдела йте оди н конструктор
главны м

Обсуждение на http ://goo.g i/brqhYS.

Конструктор - точка входа нового объекта. Он принимает не­
сколько аргументов и что-то делает с ними, чтобы подготовить
объект к выполнению своих обязанностей:

c l a s s Cash {

}

p rivate int dolla r s ;
Cash (int d l r) {

t h i s . dollars = d l r ;

}

В данном примере есть только один конструктор, и единствен­
ное, что он делает, - инкапсулирует сумму в долларах в при­
ватное целочисленное свойство d o l l a r s . Если вы правильно
проектируете свои классы (в соответствии с рекомендациями
из последующих разделов) , то у них будет много конструкторов
и немного методов. Вы все правильно поняли: конструкторов
в классах должно быть больше, чем методов. Я знаю, что не все
языки поддерживают множественные конструкторы из-за от­
сутствия возможности перегрузки методов . Мы обсудим это
ограничение через минуту.

Итак, 2-3 метода и 5-1 0 конструкторов. Так, по моему мнению,
должен выглядеть идеальный класс. Эти цифры, конечно же,
взяты из головы и не имеют строгого обоснования. Мы обсудим

1 .2 . Сделайте один конструктор главным 29

количество публичных методов в разделе 3. 1 . Этим я хочу ска­
зать, что связный и гибкий класс имеет небольшое количество
методов и сравнительно большое количество конструкторов.

Чем больше в вашем классе конструкторов, тем лучше, тем
удобнее классы для меня - их пользователя. Я хочу иметь воз­
можность создать экземпляр класса C a s h многими способами,
например:

new Cash (30) ;
new Cash (" $29 . 95 ") ;
new Cash (29 . 95d) ;
new Cash (29 . 95f) ;
new Cash (29 . 9 5 , " USD") ;

Все эти операторы должны создавать одинаковые в смысле по­
ведения объекты. Чем больше конструкторов, тем большую гиб­
кость применения ваших классов вы обеспечиваете мне, своему
клиенту. И наоборот, чем больше методов предоставляет ваш
класс, тем сложнее мне его использовать. Большое количество
методов приводит к размыванию фокуса и нарушению принципа
единственности ответственности, который мы обсудим в раз­
деле 3. 1 . Большее количество конструкторов означает большую
гибкость.

Пользуясь классом Cash , я получаю дополнительную гибкость,
поскольку мне не нужно выполнять преобразование классов
или разбор строк, если у меня есть число в текстовом формате.
Класс C a s h делает эту работу за меня. У меня есть строка, для
нее предусмотрен конструктор. У меня есть число с плавающей
точкой, конструктор предусмотрен и для него. Благодаря такой
гибкости я пишу меньше кода и реже создаю повторяющиеся
фрагменты кода. Напротив, иметь большое количество открытых
методов - плохо, поскольку это снижает гибкость.

Основная задача конструктора - инициализировать инкапсу­
лированные свойства, используя переданные ему аргументы.

30 Глава 1 • Рождение

Я рекомендую поместить инициализацию свойств лишь в один
из конструкторов и сделать его основным. Остальные, так на­
зываемые вторичные конструкторы пусть вызывают основной,
например:

c l a s s Cash {

}

private int dolla rs ;
Ca s h (float d l r) {

t h is ((int) d l r) ;

}
Cash (St ring d l r) {

t h i s (Ca s h . parse (d lr)) ;

}
Cash (int d l r) {

this . dollars = d l r ;

}

Я всегда стараюсь поместить основной конструктор последним
в коде, после всех вторичных, как показано в примере. Главным
образом из соображений лучшей сопровождаемости. Когда я от­
крываю код класса с десятью конструкторами, созданный пол­
года назад, я не собираюсь читать его весь в поисках основного
из них. Я просто прокручиваю код до последнего конструктора,
который всегда будет основным.

В приведенном фрагменте один основной конструктор и два
вторичных. Основной конструктор инициализирует свойство
t h i s . d o l l a r s переданным ему целочисленным аргументом.
Вторичные конструкторы готовят целочисленный аргумент для
основного, либо разбирая строку, либо преобразуя его из других
форматов. В одном из конструкторов я ссылаюсь на приватный
статический метод C a s h . p a r s e () , который разбирает строку
и преобразует ее в число. Так было сделано потому, что Java
не позволяет ничего делать перед вызовом this () . В С++ такие
ухищрения не нужны.

1 .2 . Сделайте один конструктор главным 31

Каков смысл принципа «один основной, много вторичных� ?
Он в основном позволяет избежать дублирования кода, сделать
его чище, а значит, улучшить сопровождаемость. Вот как выгля­
дел бы класс, написанный без учета данного принципа:

c l a s s Cash {

}

private iпt dolla r s ;
Ca s h (float d l r) {

this . dol lars = (iпt) d l r ;

}

/ / плохо!

Cash (St riпg d l r) { // плохо!
this . dol lars = Cash . pa r se (d l r) ;

}
Cash (iпt d l r) {

this . dol lars = d l r ;

}

Допустим, мы хотим убедиться, что сумма долларов всегда
положительная . Нам придется поместить код проверки в трех
разных местах, в трех конструкторах. В первом примере за
счет использования одного основного и двух вторичных кон­
структоров код проверки нужно будет добавить только в одном
месте.

К сожалению, не все объектно-ориентированные языки поддер­
живают перегрузку методов - механизм объявления методов
или конструкторы с одинаковыми именами, но разными на­
борами аргументов. Например, Ruby и РНР не поддерживают
перегрузку методов. И они почему-то называются объектно-ори­
ентированными. И я не шучу. Перегрузка методов - фундамен­
тальная и очень важная часть ООП. Она существенно улучшает
читаемость кода, семантически приближая его к языку задачи.
К примеру, код был бы намного чище, если бы в нем были мето­
ды content (F ile) и content (F i le,Charset) , а не content (F i l e)

и contentlnCharset (F ile, Charset) .

32 Глава 1 • Рождение

Тем не менее даже в этих языках необходимо делать конструк­
торы гибкими и многоцелевыми. Первым делом вам следует
задуматься о том, чтобы прекратить пользоваться ими и перей­
ти на Java, С++ или другой подобный язык, который имел бы
достаточно возможностей, чтобы называться ООП-языком. Если
это невозможно (например, вы работаете c JavaScript и у вас нет
лучшей альтернативы) , используйте ассоциативные массивы
(map, dictionary) аргументов. Пример для РНР 5.4:

c l a s s Cash {

}

private $_dollars ;
puЬlic function �construct ($a rgs) {

if (i s_int ($ a rgs)) {
$th i s - >_dol lars = $a rgs ;

}

} else if (a rray_key_exist s ('float', $a rgs)) {
$th i s - >�construct (intva l ($a rgs [' float '])) ;

} else if (a rray_key_exi st s ('iso ' , $args)) {
$th i s - >�construct (

parse_dollars ($a rgs ['iso'))
) j

} else {
th row new Exception (' c a n \'t initialize ') ;

}

new Cash (30) ;
new Cash (['float ' = > 29 . 95)) ;
new Cash ([' i so ' => 'USD 29 . 95 ']) ;

Такой код намного более многословен и намного менее чита­
белен, нежели код на Java. Но, как видите, в нем используется
тот же принцип - инициализировать поля класса необходимо
только в одном месте. Во всех других местах следует просто
подготавливать аргументы и отправлять их в это место. Вызов
метода _co n stru ct - плохой тон в РНР, но в данном случае
такое приемлемо, поскольку у нас нет иного выбора.

В языках, не поддерживающих перегрузку методов, вы, ве­
роятно, можете прибегать и к другим приемам, но основной

1 .2 . Сделайте один конструктор главным 33

принцип остается тем же - инициализация внутренних свойств
происходит только в одном месте. Во всех остальных местах
аргументы подготавливаются, форматируются, разбираются,
преобразуются и т. п.

Как и в случае с другими рекомендациями, приводимыми в дан­
ной книге, основная цель - сопровождаемость. Этот принцип
позволит вам снизить сложность кода и избежать дублирова­
ния - двух злейших врагов сопровождаемости.

Jea п-Pa u L Wепgег сп росил 25 сентября 20 1 7 года :

Есл и совместить п ра в ило «еди н ствен н ы й основной кон струк­
то р» , оп исанное ранее , с п р а в ила м и «в ко н структо ре не долж­
но б ыть кода » и « н е и с п ол ьзуйте о п е рато р new за п редел а м и
вто р и ч н ы х кон структоров» , то гда что ж е делает еди н ствен н ы й
основной кон структо р ? О н п росто п р исваи вает членам класса
з н а ч е н и я а р гументо в . То гда из этих трех п р а в ил сл едует новое
п ра в и л о : « О с н о в н ы е ко н структо р ы н е дел а ют н и ч е го , к р о м е
п р исвоения чле н а м класса значен и й а р гументов» .

Е гор Бугаенко :

Да , именно та к .

Kata написал 25 сентября 20 1 7 года :

Ка к разработч и ки м ы , безусл о в н о , ч а сто стал к и в а е м ся с та ­
кой ситуа цией . Ваш подход называется «телескопи ческие кон ­
структо р ы » . О н достаточно хорош для небольшого кол ичества
параметро в . Есл и сп исок п а р а м етров бол ьш о й [п ять и более]
и н е м ожет быть «телеско п и рован» , неплохо п одо йдет паттерн
«Стро ител ь» в Java , н о он увел и ч и вает раз мер кода и кол и ч е ­
ство классов . Хотелось бы уз нать ваши соображе н и я п о поводу
того , как передавать длинные списки параметров в конструкто р ы .

34 Глава 1 • Рождение

И есть ли ка ко й -то общий способ избежать бол ь ш о го кол иче ­
ства параметров в ко нструкторах?

Егор Бугаенко :

Есл и у вас сл и ш ком м н о го параметров в ко нструкто ре , с ва ш и м
классом что-то н е та к . О н попросту сл и ш ком большой . Разбейте
е го на части . П аттерн « Строител ь» не решает п р о блему, а п ро ­
сто м а с к и рует ее . Я б ы н е реко м е ндовал е го и с п ол ьз о вать .
Л юб о й класс с более ч е м п ятью параметра м и в кон структо ре
с п р оекти рован плохо . Без исключен и я .

1.3. В конструкторах
не должно быть кода

Обсуждение на http://goo.gl/DCMFDY.

У нас есть класс с основным конструктором, который принимает
все необходимые аргументы. Этих аргументов достаточно для
того, чтобы инициализировать состояние нового объекта. Оче­
видно, так ведь? Поскольку этот конструктор - единственная
точка входа в процесс инициализации объекта, предоставляемый
набор аргументов полон - ничто не упущено, ничего лишнего.
Вопрос в том, что мы можем или не можем делать с этим набо­
ром аргументов. Как ими манипулировать?

Эмпирическое правило выглядит следующим образом: « Не тро­
гайте аргументы» . Сначала рассмотрим противоположный при­
мер. Данный код «трогаен свой единственный аргумент во
время инициализации:

c las s Cash {

}

private int dollar s ;
Cas h (St ring d l r) {

t h i s . dol lars = Integer . pa rseint (dl r) ;

}

1 .3 . В конструкторах не должно быть кода 35

Я хочу инкапсулировать целое число, притом что аргументом
конструктора является текстовая строка. Мне нужно перевести
строку в число, и я выполняю это преобразование прямо внутри
конструктора. Все кажется простым и очевидным, не так ли?
Возможно, но это очень плохой подход.

Инициализация объекта не должна содержать код и затраги­
вать аргументы. Вместо этого она должна при необходимости
оборачивать их или инкапсулировать в необработанном виде.
Вот пример того же кода, который не трогает текст:

c l a s s Cash {

}

private Number dol l a r s ;
Cash (St ring d l r) {

t h i s . dollars = new StringAs intege r (d l r) ;

}

c l a s s St ringAs i nteger implement s Number {
private String sou r c e ;
St ringAsi ntege r (String s rc) {

this . source = s r c ;

}
i nt intValue () {

return Intege r . parseint (t h i s . source) ;

}
}

Чувствуете разницу? В первом примере преобразование из
строки в число происходит непосредственно в момент инициа­
лизации объекта. Во втором оно откладывается до момента ис­
пользования объекта класса Cash .

Разумеется, в соответствии с принципом, рассмотренным в пре­
дыдущем разделе, класс Cash должен иметь два конструктора -
один основной и один вторичный:

c l a s s Cash {
private Number dolla r s ;
Cash (String d l r) { / / в торичный

thi s (new StringAs intege r (d l r)) ;

36 Глава 1 • Рождение

}

}
Cash (Number d l r) {

this . dollars = d l r ;

}

11 основной

Внешне создание экземпляра класса Cash выглядит одинаково
в обоих случаях:

Cash five = new Cas h (" S ") ;

Однако в первом примере объект five инкапсулирует число 5 ,
а во втором - экземпляр класса StringAs lnteger, который похож

на Number . Класс St ringAs lntege r я придумал сам. Его не су­
ществует в Java. Как я уже сказал, язык Jаvа не является чисто
объектно-ориентированным, поэтому иногда мне приходится
прибегать к некоторым ухищрениям. Считайте эти примеры
псевдокодом. Но это отнюдь не значит, что мои рекомендации
абстрактны и не годятся для практического применения. Про­
сто не все они подходят для того программного обеспечения,
которое вы сейчас пишете. Наша первоочередная цель в рамках
данной книги - изменить свое мировоззрение и понимание
ООП, вторая - привести практические примеры и применить
новое мировоззрение к написанию программ. К сожалению,
вторая цель не всегда легко достижима.

При истинном объектно-ориентированном подходе инстанци­
рование объекта подразумевает компоновку меньших объектов
в один более крупный. Единственной причиной необходимости
данного процесса является потребность в новой сущности, ко­
торая подчиняется новому контракту.

Взгляните на пример с объектом five типа Cash . Что не так со
строковым объектом " 5 " ? Зачем нужно было создавать экзем­
пляр класса C a s h ? Почему нельзя работать с объектом " 5 " ?
Потому что он не предоставляет необходимых нам методов .
Не работает согласно нужному контракту. Поэтому пришлось

1 . 3 . В конструкторах не должно быть кода 37

создать новый объект другого типа - five класса Cash . Он боль­
ше не работает по контракту класса String, он работает по друго­
му контракту. Например, предоставляет метод cent s () .

М ы создали его, но еще н е попросили работать на себя !

Первый шаг - инстанцировать объект, второй шаг - позволить
ему работать на нас. Они не должны перекрываться. Конструк­
тор не должен просить свои аргументы что-либо делать, так
как его самого еще не просили ничего делать. Иными словами,
в конструкторе не должно быть кода - только операторы при­
сваивания.

В случае с С++ тело конструктора должно быть пустым, например:

c l a s s Cash {
puЬlic :

Ca s h (const string& txt) :

}

dollars (new St ringAs intege r (txt)) {
11 тело конструктора в се гда пустое

private :
int dolla r s ;

}

Существует несколько чисто технических причин для такой ре­
комендации. Во-первых, производительность конструктора без
кода легче оптимизировать, а значит, такие конструкторы уско­
ряют ваш код. Вот пример, который на первый взгляд кажется
медленным, но на самом деле оказывается быстрым:

c l a s s StringAsi nteger implement s Number {

}

private String text ;
puЫic StringAs intege r (String txt) {

t h i s . text = txt ;

}
puЫic int intVa lue () {

return Integer . parseint (t h i s . text) ;

}

38 Глава 1 • Рождение

Похоже, преобразование строки в число будет выполняться при
каждом вызове i ntVa l u e () , верно? И это действительно так.
Такой код будет выполнять разбор дважды:

Number пum = пеw StriпgAs iпteger (" 12 3 ") ;
пum . iпtVa l u e () ;
пum . i пtVa lue () ;

/ / первый разбор
// второй разбор

Как тогда, спросите вы, он может быть более быстрым, чем такой
код:

c l a s s StriпgAs iпteger implemeпt s Number {
private iпt пum;

}

puЫic StriпgAsiпtege r (Striпg txt) {
t h i s . пum = Iпteger . pa rselпt (txt) ;

}
puЫic iпt iпtVa lue () {

returп t h i s . пum;

}

Такой код действительно более эффективен, поскольку он выпол­
няет разбор лишь однажды - во время инициализации объекта.
При каждом последующем вызове i ntVa l u e () объект просто
возвращает инкапсулированное число. И в чем тогда смысл?

А вот в чем. Второй пример, где разбор строки происходит в кон­
структоре, оптимизировать не получится. Разбор будет выпол­
няться всякий раз при создании объекта. Мы не можем этим
управлять. Даже если в отдельных случаях не надо вызывать
intVa l ue () , процессор будет тратить время на разбор строки.
Рассмотрим следующий пример:

Numbe r five = пеw StriпgAsi пteger (" S ") ;
if (/ * что- то не так * /) {

th row пеw Ехсерtiоп (" какая-то проблема ") ;

}
five . iпtValue () ;

Мы сначала разобрали объект " 5 ", а потом увидели, что он нам
не нужен ! И нет способа предотвратить такой случай. Каждый

1 . 3 . В конструкторах не должно быть кода 39

раз, когда мы создаем объект, он немедленно обрабатывает ар­
гументы, которые мы ему передаем. Это происходит без нашего
ведома, причем всегда. Напротив, если мы инкапсулируем аргу­
менты в том виде, в котором они были переданы, и обрабатываем
их позже, по требованию, то даем пользователям свободу выбора
момента, когда это должно произойти.

Когда пользователь хочет предотвратить повторный разбор, он
всегда может создать декоратор, который закэширует результат
разбора после первого вызова:

c l a s s Cac hedNumber implemeпts Number {
private Number origi п ;

}

private Collect ioп < I пtege r > c ached
Arraylist< > (1) ;

puЬlic Cac hedNumbe r (Number пum) {
this . origiп = пum;

}
puЫic iпt iпtVa l ue () {

}

if (t h i s . c ached . i s Empty ()) {
this . cached . add (th i s . origiп . iпtValue ()) ;

}
returп this . cached . get (0) ;

Я использую Arra ylist, чтобы избежать null - злейшего врага
ООП. Мы обсудим это позже, в разделах 3.3 и 4 . 1 .

Эта реализация кэширования весьма примитивна, но, надеюсь,
идею вы поняли. Затем для повышения эффективности объекта
применяется обертывание в кэширующий декоратор:

Number пum = пеw Cac hedNumbe r (
пеw StriпgAsiпtege r (" 123 ")

) ;
пum . iпtVa lue () ;
пum . iпtVa lue () ;

11 первый разбор
11 эдесь разбора не происходит

Красота решения в том, что оно хорошо управляемое и прозрачное.
Инстанцирование объекта не делает ничего, кроме его сборки, -

40 Глава 1 • Рождение

реальная работа выполняется методами объекта. В то же время
можно контролировать все! Мы оптимизируем работу объекта.

Убирая исполняемый код из конструкторов, мы делаем объекты

более управляемыми и прозрачными для конечных пользова­

телей. Мы помогаем лучше понять их и упрощаем повторное

использование. Они работают только тогда, когда их просят об

этом, а до этого момента не делают ничего.

Они очень ленивы - в хорошем смысле.

Могут возникать ситуации, когда совершенно очевидно, что все
манипуляции должны происходить ровно один раз. Почему бы
в таких ситуациях не поместить их в конструктор? Подобным
образом поступать можно, но я бы не рекомендовал так делать
в первую очередь из соображений однородности. Вы не знаете,
что случится с классом в будущем и насколько он изменится по­
сле очередного рефакторинга. Помещая все манипуляции в кон­
структор, мы существенно усложняем рефакторинг. Тот, кто им
займется, вынужден будет вынести все манипуляции в методы
класса. Ведь только тогда он сможет внести реальные изменения.

Я попытался найти вторую техническую причину рекомендации

оставлять конструктор пустым, но у меня не вышло. Похоже,

что та причина, которую я раскрыл ранее, - единственная. Об­

легченные конструкторы упрощают создание объектов, делая их

более настраиваемыми и прозрачными. Вот и все.

Кроме того, если вы заглянете в код качественно спроектирован­

ного объектно-ориентированного ПО, то наверняка увидите там

что-то подобное следующему:

Арр арр = new App (new Data () , new Sc reen ()) ;
арр . run () ;

Это очень абстрактный пример, но, надеюсь, вы меня понимаете.

Сначала мы собираем приложение, затем передаем ему управле­

ние. Пока строим приложение, оно ничего не делает: не подклю-

1 .3 . В конструкторах не должно быть кода 41

чается к базам данных, не открывает порты, не обрабатывает
информацию. Оно просто создает все внутренние объекты и под­
готавливает их к работе. Затем мы вызываем run () , что позволяет
объектам делать свое дело в нужное время и в нужном месте.

При разработке всех ваших объектов , от Арр на верхнем уров­
не до самого низкоуровневого St r i ngAs l nteger , необходимо
держать в голове мысль о том, что их конструкторы не должны
содержать кода.

Fernando сп росил 7 сентября 20 1 7 года :

А есл и объект конструи рует свое внутреннее состояние на осно­
ве J S О N - ответа на АР l - за п рос к веб -службе , раз в е о н н е дол ­
же н бросать и с кл ю ч е н и е ?

Е гор Бугаенко :

Долже н , н о тол ько тогда , когда с ним н а ч и н а ют работать , а не
то гда , ко гда е го собирают.

Ri cca rdo Caгd i n нап исал 9 мая 20 1 5 года :

М н е кажетс я , в н е кото р ы х обстоятел ьствах в а ш п одход «ле­
н и вой и н и циал изации» м ожет дать н е кото р ы е п ре и мущества .
В оз ь м е м , к п р и м е ру, б е с ко н е ч н ы е п ото к и ил и п е р еда ч у п о
ссыл ке в Sca la . Кро м е то го , о н хорош та кже в случаях , ко гда
объе кт весьма тяжел . Воз ь м е м , к п р и м е ру, патте р н « В и ртуал ь­
н ы й п р о кс и » и з кн и ги «ба нды ч еты рех» 1 . Но в б ол ь ш и н стве
случ а е в н е сто ит отклады вать и с п ол н е н и е кода , созда ющего
объект. Делая та к, вы нарушаете п р и н ци п с корейшего отказа -
оди н из о сновных п р и н ци п о в в п ро гра м м и рова н и и .

1 Гамма Э., Хелм Р., Джо1tсо1t Р., Влиссидес Д. Приемы объектно-ори­
ентированного проектирования. Паттерны проектирования. - СПб. :
Питер, 2015 .

42 Глава 1 • Рождение

Егор Бугаенко :

Я п о н и м а ю вашу п оз и ци ю , н о п оз в ол ю себе н е с о гл а с иться
с ней . Мне кажется , что отказ должен п ро исходить не во время
созда ния объекта , а тол ько во время его испол ьзо ва н и я . И н ы м и
слова м и , объе кты и м е ют п р а в о на отказ тол ько то гда , ко гда и х
п росят реал изо вать некото рое поведение .

Fa b гic io СаЬгаL сп росил 9 м а я 20 1 5 года :

То есть , п о - в а ш е му, ко н структо р н и ко гда н е долже н б р о сать
искл ючения? А ка к же базов ы й п р и н ци п О О П , котор ы й гласит :
«Нельзя позволять создание объектов с некорректн ы м состоя ни ­
ем»? К примеру, есл и п рограммист написал new EnglishName (" ")
(и м я н е может быть пустой строко й] , то конструктор EnglishName
не долже н б росать и с кл юч е н и е ? Ка к бы вы поступили в это м
случае?

Егор Бугаенко :

Да , м н е кажетс я , ч то в ко н структо р е не дол ж н а п р о и с х о ­
дить п ро в е р ка в веде н н ы х да н н ы х . Даже есл и в ы п е р едал и
NU L L в кач естве еди н ств е н н о го а р гуме нта ко н структо ра new
E n g l i s hName () , о н н е долже н « возмущатьс я » . Есл и в ы в п о ­
сл едств и и вызовете у н е го м етод first () , т о н е уз наете , что
созда н н ы й объект оказался неполон . Он был хоро ш и м работн и ­
ком для ниче гонеделания , но оказался некомпете нтен в задаче
извлеч ения и м е н и . В идите , к чему я кло н ю ? Есл и в ы не дадите
м н е р а б оту, то н и ко гда не уз н а ете , х о ро ш и й л и я ра б отн и к .
Здесь то же самое .

2 Образование

Разделы данной книги сгруппированы в главы весьма искус­
ственно, но в этом есть некоторая логика. В данной главе мы
обсудим несколько принципов подготовки объекта к взаимодей­
ствию с другими объектами. Мы отправим его в школу и препо­
дадим ему несколько уроков этикета.

Вкратце сформулируем советы, которые мы рассмотрим в после­
дующих разделах. Объект должен быть небольшим. Маленький
объект - это элегантный и хорошо сопровождаемый объект.
В ООП не может быть никакого оправдания классу в 1 000 строк
кода. К сожалению, проще о маленьких объектах говорить,
чем их создавать. Как можно уменьшить объект, если в проекте
столько функциональных требований? Потерпите немного. Да­
лее приведу несколько практических рекомендаций.

2 . 1. И н ка псул и руйте
ка к можно мен ьше

Помните: все делается ради улучшения сопровождаемости. Все,
о чем я пишу в этой книге, напрямую влияет на сложность кода,
которая напрямую влияет на его сопровождаемостъ. Чем выше
сложность, тем хуже сопровождаемость, тем больше потери

44 Глава 2 • Образование

денег и времени и тем меньше удовлетворенных потребителей' .
Уверен, тут вы со мной солидарны.

П оэтому я рекомендую инкапсулировать не более четырех

объектов. Если вам нужно инкапсулировать больше объектов,
значит, с вашим классом что-то не так и он нуждается в рефак­
торинге. Без исключения. Не больше четырех. Я взял это число
из головы, у меня нет никаких научных доказательств. Позже
объясню, почему выбрал именно его.

Набор инкапсулированных объектов называется состоянием

или идентичностью объекта. Например:

c l a s s Cash {

}

private I nteger digit s ;
private I nteger cent s ;
private St ring c u r rency;

Здесь мы инкапсулируем три объекта. Все вместе они иден­
тифицируют объекты класса Cash , то есть любые два объекта,
инкапсулирующие одни и те же значения долларов, центов и на­
звание валюты, равны друг другу. Да, в J ava это чисто технически
неверно, но я считаю это недостатком языка. Вот как, по-моему,
должна быть реализована объектная парадигма в чистом объ­
ектно-ориентированном языке:

Cash х = new Cash (29 , 9 5 , "USD ") ;
Cash у = new Cash (29 , 9 5 , " USD") ;
a s sert x . equals (y) ;
a s sert х == у ;

В Java, как и в С++, идентичность объекта отделена от его состоя­
ния. Два объекта, х и у, имеют одинаковое состояние, но разные

1 У меня нет статистических данных, которые подкрепили бы это
утверждение, но мне оно кажется очень логичным. Если вам из­
вестны исследования на эту тему, пожалуйста, сообщите мне о них,
и я включу их в следующее издание этой книги. - Примеч. авт.

2 . 1 . Инкапсулируйте как можно меньше 45

идентичности. С точки зрения оператора = = они не равны друг
другу, реализация метода equals () по умолчанию также считает,
что они не совпадают.

Это недостаток языкаjаvа, унаследованный им от С++. Насколь­
ко я понимаю, объект в ООП - это агрегат из других объектов,
работающих совместно для получения более высокоуровневого
поведения. Книга - агрегат из страниц, обложки и ISBN, а книж­
ная полка - агрегат из книг и названия. Машина - агрегат из
колес, двигателя и лобового стекла, а гараж - агрегат из машин
и адреса. Работник - агрегат из имени, возраста и зарплаты, а от­
дел - агрегат из сотрудников, названия и начальника. Эти при­
меры весьма примитивны, но они показывают, что объект не су­
ществует, да и не может существовать без инкапсулированных
объектов - он ничто без своих частей.

B Java, однако же, объект может существовать без составных ча­
стей и при этом не быть равным своей точной копии, у которой
тоже нет составных частей. Это противоречит здравому смыслу.
Но в J ava это имеет смысл. В J ava и почти во всех остальных
ООП-языках объект - это всего лишь набор данных с прикре­
пленными к нему методами. Что-то вроде оболочки, где можно
хранить данные. Неважно, есть ли в ней данные или нет, одна
оболочка отличается от другой, даже если содержит дубликаты
объектов:

Object х = new Obj ect () ;
Object у = new Obj ect () ;
a s sert x . equals (y) ; / / не выполняется

Это вполне допустимый фрагмент кода, который показывает,
что эти два объекта - пустые оболочки, не содержащие никаких
данных. Они, конечно же, не равны друг другу, поскольку явля­
ются разными оболочками. Вот так J ava рассматривает объекты.
И это совершенно неправильно. Объект не может существовать
без состояния, и оно должно быть его идентичностью.

46 Глава 2 • Образование

Раз уж мы пришли к мнению, что ин кап су лированные объекты
являются частью идентичности, пора решить, сколько объектов
разумно инкапсулировать. Как я уже говорил, не более четы­
рех - разумное количество. Почему четыре? Вот мое обосно­
вание.

Идентичность объекта - это своего рода его координаты во
Вселенной. Моя идентичность - это имя и дата рождения. Ис­
пользуя эти два свойства, вы можете найти меня во всей Все­
ленной (если, конечно, планета Земля и наше представление
о времени - единственно существующие координатные про­
странства в ней) . У моей машины есть производитель, модель
и год выпуска. Эти три свойства уникально идентифицируют
ее во Вселенной. Я могу привести еще несколько примеров, но
их смысл в том, что наличие более четырех координат противо­
речит здравому смыслу. При существующем уровне понимания
объектов во Вселенной тяжело понять что-то более сложное.
Один из моих рецензентов привел следующий контрпример.
Он сказал, что если у него и у его соседа машины одной и той же
модели, одних и тех же производителя и года выпуска, то они
все же разные. Это правда, но только потому, что в контрпри­
мере машина намного более сложна, чем в моем объектно-ори­
ентированном примере. Если наш объект обозначает реальную
машину из реального мира, то, конечно же, у него должно быть
намного больше координат и атрибутов, чтобы его можно было
идентифицировать уникальным образом. Но эти атрибуты будут
сгруппированы в другие объекты, организованные в виде дерева.
Скажем, машина будет инкапсулировать тип и идентификаци­
онный номер VIN. Тип будет инкапсулировать производителя,
модель и год выпуска. Таким образом, мы получаем небольшое
дерево объектов.

Я , безусловно, видел классы, инкапсулирующие десятки объ­
ектов. Это совершенно неправильно. Не делайте так. Четыре,
не более. Если вам нужно инкапсулировать больше объектов,
разбейте класс на несколько меньших.

2 .2 . Инкапсулируйте хотя бы что-нибудь 47

И, к слову, чтобы устранить упомянутый недостаток Java, со­
ветую вам избегать оператора = = и всегда переопределять метод
equals () 1 •

2 . 2 . И н ка псул и руйте хотя бы
что-н ибудь

Обсуждение на http ://goo.g l/QE9aXg.

Другая крайность - объект, не инкапсулирующий вообще ни­
чего. Например (алгоритм некорректен, но здесь важно не это) :

c l a s s Yea r {
int read (} {

return System . c u r rentTimeMi l l i s ()
/ (1000 * 60 * 60 * 24 * 30 * 1 2 } - 1970 ;

}
}

Экземпляр этого класса ничего не инкапсулирует, то есть с уче­
том сказанного в разделе 2 . 1 все объекты класса Yea r будут
равны друг другу, верно? Такой подход тоже плох. Инкапсули­
ровать слишком много - плохо, но ничего не инкапсулировать
тоже не годится.

Класс без свойств похож на статический метод, а это ужасная
вещь в объектно-ориентированном программировании (см. раз­
дел 3 .2) . У такого класса нет состояния и идентичности, только
поведение. «Что с этим не так?» - спросите вы. Ответ прост.
В чистом О О П без статических методов и со строгим разде­
лением инстанцирования и исполнения (см. раздел 3.6) такое
технически невозможно.

Инстанцирование должно быть отделено от исполнения, что
означает следующее: оператор new разрешен лишь в конструкторах

1 Для упрощения кода я использую @EqualsAndHashCode из проекта
Lombok. - Примеч. авт.

48 Глава 2 • Образование

(подробнее читайте в разделе 3.6). Пока предположим, что в ис­
тинно объектно-ориентированном проектировании использовать
оператор new разрешено только в конструкторе.

Теперь рассмотрим класс, приведенный ранее. Его метод read ()
применяет статический метод из класса-утилиты System. В чи­
стом ООП не может быть статических методов, и такой вызов
сделать невозможно. Вместо этого придется создать экземпляр
некоторого класса, который получит значение системных часов.
Вот как это будет выглядеть:

c l a s s Yea r {

}

private Millis mill i s ;
Yea r (Mi l l i s msec) {

t hi s . millis = msec ;

}
i nt read () {

return t h i s . millis . read ()
/ (1000 * 60 * 60 * 24 * 30 * 1 2) - 1970 ;

}

Мы всегда должны что-то инкапсулировать, за исключением тех
случаев, когда объект ничтожен или близок к таковому. Под ни­
чтожным объектом я понимаю сущность, не имеющую координат
во Вселенной. Только ей будет нечего инкапсулировать, поскольку
она единственна и не нуждается в других сущностях для выжи­
вания и позиционирования. Напротив, любой объект, который
что-либо делает, сосуществует с другими объектами и использу­
ет их. Он должен их инкапсулировать, чтобы идентифицировать
себя. Это может звучать абстрактно и философски. Так и должно
быть. Этому нет практического обоснования. Мы определен­
но можем создать объект, который ничего не инкапсулирует,
и этому есть масса примеров. Но это неверно и с философской,
и с практической точки зрения.

А еще посмотрим на эту проблему под другим углом. Как гово­
рилось в разделе 2. 1 , инкапсулированное состояние - это уни-

2 .2 . Инкапсулируйте хотя бы что-нибудь 49

кальный идентификатор объекта, который позиционирует его во
Вселенной. Если инкапсулированных объектов нет, каковы его
координаты? Они равны всей Вселенной:

c l a s s Universe {

}

Такой класс может существовать, но только единожды, потому
что Вселенная единственная. Я, однако же, не вижу практиче­
ских причин для его существования.

К слову, ранее я упомянул, что такой подход лучше, но он не­
идеален.

Вот как выглядел бы идеально спроектированный в канонах
объектно-ориентированного программирования класс:

c l a s s Yea r {

}

private Number num;
Yea r (final Millis msec) {

t h i s . num = new Min (

) ;

}

new Div (
msec ,
new Mul (1000 , 60, 60 , 24 , 30 , 1 2)

) ,
1970

int read () {
return this . num . intValue () ;

}

Или как-то так:

c l a s s Yea r {
private Number num;
Yea r (final Millis msec) {

}

this . num = msec . div (
1000 . mu l (60) . mu l (60) . mu l (24) . mul (30) . mu l (12)

) . min (1970) ;

int read () {

50 Глава 2 • Образование

return t h i s . num . intVa lue () ;

}
}

Но подробнее об этом позже.

B h a гat Sava n i написал 4 ма рта 2 0 1 6 года :

В о п ро с , н а в е р н о е , глуп ы й , н о хотел ось б ы с п ро с ить вот что .
Ка кая раз н и ца м ежду и н ка п сул я ци е й и сокр ыти е м да н н ы х ?
Я обратил в н и ма н и е , что окружа ющие м е н я л юди с оди наковой
частотой п р и м е н я ют оба этих те р м и н а . Означают л и о н и одн о
и т о же? Поясн ите , пожалуй ста , на п р и мере .

Егор Бугаенко :

Я сч итаю , что сокрытие да н н ы х - это суть РОJО-объектов !P la i n
O l d J ava O bjects) . О н и не и м еют н и ч е го общего с О О П , а п росто
прячут да н н ы е за геттерами и сеттера м и . Суть и н ка п суля ци и -
в дел еги рова н и и ответстве н н ости объекту. Та ки м образом объ­
е кт п олучает п р а в о упра влять сво и м и !и не тол ько) да н н ы м и
удобн ы м для себя способо м .

2 .3. Всегда испол ьзуйте интерфейсы

Обсуждение на http ://goo.gi/vo9F2g.

Теперь поговорим о миссии объекта в том мире, в котором ему
предстоит жить. Как я уже говорил, объект - это живой орга­
низм, который общается с другими организмами и помогает им
делать их работу. Они, в свою очередь, помогают ему делать его
работу.

Объект живет в тесном социальном окружении.

Под этим я понимаю то, что объекты взаимосвязаны, поскольку
они нуждаются друг в друге. В самом начале, когда мы точно
знаем, что каждый объект должен делать и какие услуги предо-

2.3 . Всегда используйте интерфейсы 51

ставлять другим объектам, все просто. Но когда приложение
начинает разрастаться и количество объектов превышает не­
сколько десятков, тесная связь между ними становится серьез­
ной проблемой. И эта проблема влияет на сопровождаемость.
Все сводится к сопровождаемости. Каждый раздел данной книги
должен убедить вас задумываться в первую очередь о сопрово­
ждаемости. Она важнее всего остального, включая производи­
тельность.

Чтобы повысить сопровождаем ость приложения в целом, мы
должны приложить максимум усилий к расцеплению (decoupling)
объектов. Технически это означает возможность модифициро­
вать объект, не модифицируя связанные с ним объекты. Лучший
инструмент для этого - интерфейсы.

Например:

i nterfa ce Cash {
C a s h multiply (float factor) ;

}

Это интерфейс. Иными словами, это контракт, которому дол­
жен подчиняться объект, чтобы общаться с другими объектами.
Вот как это выглядит:

c l a s s DefaultCash implement s Cash {
p rivate int dol l a r s ;
Defau ltCa s h (i nt d l r) {

t h i s . dol l a rs = d l r ;

}
@Override
Cash mu lt i p ly (float facto r) {

return new DefaultCa s h (t h i s . dollars * factor) ;

}
}

Теперь, когда мне понадобится сумма в долларах, я могу рассчи­
тывать на контракт, а не на конкретную его реализацию:

c l a s s Employee {
p r ivate Cash s a l a ry ;

}

52 Глава 2 • Образование

Класс Employee не особо интересует, как реализован интерфейс
Cash . Его не интересует, как работает метод multiply () . Он по­
просту не знает, как тот работает. Это означает, что интерфейс
C a s h помогает нам расцепить классы Employee и Defau l tCa s h .
Теперь я могу поменять класс Defaul t C a s h или даже заменить
его чем-то еще. Классу Employee все равно.

Я уверен, что все это очевидно, но вот вам мой совет: удосто­
верьтесь, что все публичные методы класса реализуют какой-то
интерфейс. Грамотно спроектированный класс не должен содер­
жать публичных методов, которые не реализуют хотя бы один
интерфейс. Иными словами, неприемлем следующий класс:

c l a s s Cash {

}

puЫic int cent s () {
11 какой - то код

}

Метод cents () ничего не переопределяет, а так нельзя. Такой
подход способствует сильному сцеплению класса с его пользо­
вателями (другими классами) . Объекты других классов будут
использовать Cash . cents () напрямую, что в дальнейшем станет
препятствовать замене реализации этого метода на новую.

Небольшое философское замечание: класс существует только
потому, что кому-то нужны его услуги. Эти услуги должны быть
где-то документированы, например в контракте (интерфейсе) .
Кроме того, между поставщиками услуг должна существовать
конкуренция. Именно в этом суть нескольких классов, реализу­
ющих один и тот же интерфейс. Каждый из конкурентов должен
быть легко заменяем другим. В этом и заключается суть слабого

сцепления.

Можно сказать, что, хотя классы больше не сцеплены напрямую,
они сцепляются через интерфейсы. Класс должен реализо­
вывать интерфейс, чтобы его могли понимать и использовать
другие классы. Мы не можем поменять интерфейс, не внося

2 .3 . Всегда используйте интерфейсы 53

непосредственные изменения во все классы, которые реали­
зуют и применяют его. Это действительно так. Сцепление все
равно существует, и избавиться от него невозможно. Вообще
говоря, такого рода сцепление - не такая уж и плохая вещь.
Оно позволяет поддерживать всю систему в стабильном со­
стоянии. Ее не получится сломать случайными изменениями
в одной из частей за счет того, что другая ее часть не знает об
этих изменениях. Интерфейсы, играя роль контрактов между
частями системы, помогают поддерживать организованность
окружения в целом.

Rya n Goodгich сп росил З февраля 20 1 6 года :

В ы го вор ите , что кажд ы й публ и ч н ы й м етод долже н реал изо ­
в ы вать н е кото р ы й и нте р ф е й с . Н о р а з в е это н е м ожет стать
нескол ько избыточ н ы м и ненужн ы м ? М н е кажется , что есл и бы
я делал та к в бол ь ш е й ч а сти с в о е го п ро е кта , то у м е н я ока ­
зал о с ь б ы м н о го и нте р ф е й с о в , кото р ы е и с п ол ьзуются л и ш ь
однажды и за шумл я ют код.

Егор Бугаенко:

Есл и у вас н ет ю н ит-тесто в , то вы де й ствител ь н о будете ис ­
пол ьзовать и нтерфейсы л и ш ь однажды . Однако есл и вы п и ш ете
гра м отн ы е ю н ит-те сты , то дл я созда н и я ф и кти в н ы х объе кто в
и нте рфейсы п о н адобятс я . Следовател ьно , в та ко м случ ае в ы
будете испол ьзо вать и нте рфейсы м и н и мум дважд ы .

Rya n Good гich :

Что в ы думаете о п р и м е н е н и и абстрактн ы х классов вместо и н ­
терфейсов для этих целей? Это вообще уместн о?

Егор Бугаенко :

Я думаю , что на се годн я ш н и й ден ь больше не стоит задей ство­
вать абстра ктн ы е класс ы . Поч ита йте мои неда в н и е статьи на
эту те му.

54 Глава 2 • Образование

asicfг с п росил 22 я н варя 20 1 6 года :

М ожете л и в ы п о я с н ить , п оч е му и с п ол ьзо вать Powe гMock -
плохо?

Егор Бугаенко :

Практи ка моки н га объектов плоха с а м а по себе . Н о PoweгMock
доводит моки н г до край ности . Тесты , созда ваемые в PoweгMock,
н е в о з м ож н о п одд е рж и в ать , и о н и п р е п ятствуют р е ф а кто ­
р и н гу о бъе кто в . Вы , п о сути , созда ете ю н ит-тесты на основе
PoweгMock , а пото м , есл и в тести руемом объе кте что -то м е н я ­
ется , п о п росту их в ы киды ваете .

PoweгMock - неплохой инструмент, н о е го нужно испол ьзовать
оче н ь аккуратно и оче н ь редко . П очти н и ко гда . Есл и вам нужно
е го п р и менять, ваш код плохо н а п и са н . П е ре п и ш ите е го .

2 .4. Тщател ьно выби ра йте
и мена методов

Мы уже обсуждали именование классов в разделе 1 . 1 . Теперь
пора научиться правильно именовать объекты. Я предлагаю сле­
дующее эмпирическое правило: «строителей» называть именами

существительными, «манипуляторов» - глаzолами1 •

Строителями я называю такие методы, которые что-то констру­
ируют и возвращают новый объект.

1 Этот совет очень похож на предложенную Бертраном Мейером
(Bertrand Meyer) в книге « Объектно-ориентированное конструи­

рование программных систем» (« Русская редакция» , 2005) идею,

состоящую в разделении методов объекта на две непересекающиеся
категории - запросы и команды. - Примеч. авт.

2 .4. Тщательно выбирайте имена методов 55

Строители всегда что-то возвращают. Они никогда не возвра­
щают v o i d , и их имена всегда являются существительными,
например:

int pow (int base , int powe r) ;
float s peed () ;
Employee employee (int i d) ;
String parsedCel l (int х , int у) ;

Обратите внимание на последний метод - parsedCel l () . Это
не просто существительное, а существительное с прилагатель­
ным. Принципу это не противоречит, а имя становится более
описательным. Это все еще существительное, но уже с до­
полнительной информацией. Не просто ячейка, а разобран­
ная ячейка. Мы, вероятно, ожидаем, что данный метод вернет
ячейку, содержимое которой было определенным способом
преобразовано.

Манипуляторами я называю такие методы, которые изменяют
сущность реального мира, абстрагируемую объектом. Они все­
гда возвращают void , и их имена всегда являются глаголами,
например:

void save (String content) ;
void put (String key , F loat value) ;
void remove (Employee emp) ;
void q u i c k lyPrint (int id) ;

Обратите внимание на последний метод - q u i c k l yP r i n t () .
Это глагол с наречием. Ключевой элемент здесь - глагол print,
наречие quickly просто уточняет его, дает больше информации
о контексте и назначении метода.

Можете давать методам-строителям и методам-манипулято­
рам любые имена, но старайтесь придерживаться принципа
«строители строят, а манипуляторы манипулируют» . Третьего
не дано. Не должно быть как методов, которые манипулируют
и возвращают что-то, так и методов , которые одновременно

56 Глава 2 • Образование

строят и манипулируют. Позвольте привести несколько плохих
примеров:

11 возвращает количество сохраненных байтов
int save (String content) ;
1 1 возвращает TRU E , если ассоциативный ма с с и в был изменен
boolean put (String key , F loat value) ;
1 1 изменяет с корость и возвращает ее предыдущую величину
float s peed (float val) ;

Метод save () спроектирован плохо, потому что является мани­
пулятором. Он «сохраняет» , но в то же время возвращает int ,
как будто он является строителем. Мы должны либо возвращать
void, либо переименовать его в нечто наподобие bytesSaved () .

Та же проблема и с методом put () , который работает как мани­
пулятор, но возвращает boolean как строитель. Единственное
решение - возвращать void. Но мы хотим знать, изменилось ли
значение данного ключа. В этом случае необходимо полностью
перепроектировать класс и сделать так, чтобы этот метод возвра­
щал, к примеру, экземпляр класса PutOperation . В него входит
манипулятор save () , а статус «успех/отказ» будет возвращаться
методом s u c c e s s () . Метод s peed () сохраняет значение и воз­
вращает предыдущее. Это еще один пример плохого проектиро­
вания, поскольку он одновременно и строитель, и манипулятор.
Исправить его можно аналогично предыдущему примеру, введя
класс SaveSpeed с двумя методами: один сохраняет значение
скорости, а другой возвращает ее предыдущее значение.

Мы обсудим геттеры и сеттеры позже, в разделе 3.5 . Здесь, мне
кажется, очевидно, что использовать имена, начинающиеся на
get, просто неправильно. Хотя бы потому, что get - это глагол,
но геттеры, по сути, являются строителями, поскольку должны
что-то возвращать. Это был мой первый аргумент против мето­
дов-геттеров.

Думаю, теперь я должен объяснить свою мысль. В ее пользу
можно привести несколько аргументов.

2.4. Тщательно выбирайте имена методов 57

Строители - это существительные
Во-первых, некорректно называть метод глаголом, если он что­
то возвращает. Такое название противоречит идее объектного
мышления. Когда я захожу в кафе, я не прошу испечь мне кекс
или сварить чашку кофе. Я говорю: «Я хотел бы кекс» или
«Я хотел бы чашку кофе». Говорить: « Испеките мне» или « Сва­
рите мне» - весьма грубо. Меня не должно интересовать, как
именно испечен этот кекс или как сварена чашка кофе. Как их
готовить - частное дело конкретного кафе. У меня есть спрос на
кекс или чашку кофе. Они могут удовлетворить его. Как именно
это происходит внутри кафе, меня не касается. Вот класс, опи­
сывающий кафе:

c l a s s Bakery {
Food cookBrown i e () ;
Drink b rewCupOfCoffee (String flavor) ;

}

На самом деле эти два метода не являются методами объекта.
Это процедуры. Такой принцип именования говорит о том, что
мы не доверяем кафе как самостоятельной самоуправляемой
сущности и указываем ей, что делать. Это процедурный, а не
объектно-ориентированный подход. На языке С эти процедуры
могли бы быть реализованы, например, так:

Food * cook_brown ie () {
1 1 п ри готовить кекс
11 и вернуть его

}
Drink* b rew_c up_of_coffee (char* flavo r) {

11 с варить чашку кофе
11 и вернуть ее

}

Кафе в этих процедурах не участвует. У нас просто есть два
набора машинных инструкций, записанных на языке С, и мы их
вызываем. В С они называются функциями, но, по сути, являются
процедурами, поскольку к функциональному программированию

58 Глава 2 • Образование

почти не имеют отношения. Мы просим компьютер выполнить
эти инструкции и вернуть нам результат. Мы думаем как ком­
пьютер, а не как объект. Мы не доверяем кафе и говорим: «Иди
уже свари этот чертов кофе» - вместо того, чтобы попросить
чашку кофе определенного вкуса и доверить получение резуль­
тата, неважно какого, заведению.

Я не хочу много философствовать, но проблема именования но­
сит весьма абстрактный и принципиальный характер. Грамотно
названный метод помогает его пользователям понять, для чего
был создан объект, каковы его миссия, цель существования
и смысл жизни. Неграмотно названный метод может разру­
шить представление об объекте и способствовать тому, что его
станут использовать как мешок с данными и набором процедур.
Это типичная ошибка, которую часто делают разработчики
ООП-библиотек, SDK, API и т. п. Объект - это живой организм,

который знает, как выполнять свои обязанности, и хочет, чтобы
его уважали. Он хочет работать по контракту, а не просто следо­
вать инструкциям. В этом и есть его основное отличие. Он прямо
как программист, правда?

Вот почему, когда название метода - глагол, оно, по сути, ука­
зывает объекту, что ему делать. А просить объект построить
что-то невежливо и неуважительно по отношению к нему. Про­
сто сообщите объекту, что должно быть построено, и пусть он
сам решает, как это сделать. Все приведенные далее имена не­
корректны:

I nputStream load (URL u rl) ;
String read (F ile file) ;
int add (int х , int у) ;

Их нужно заменить следующими:

InputStream st ream (UR L u rl) ;
String content (F ile file) ;
int s u m (int х , int у) ;

2.4. Тщательно выбирайте имена методов 59

Обратите внимание на то, что я предлагаю вместо add (x , y) ис­
пользовать sum(x , y) . Это изменение может показаться мелким
и несущественным, но оно создает большую разницу в восприя­
тии. Мы не должны просить объект сложить х и у. Вместо этого
должны просить его создать сумму х и у и вернуть получивший­
ся объект. Действительно ли он найдет сумму? Я не знаю. Может
быть. Все, что я знаю, - то, что результат будет выглядеть как
сумма х и у. Опять же я не указываю объекту, что ему делать,
а просто прошу его породить результат, который подчинялся бы
определенному контракту - был целым числом. В J ava и многих
других языках число не объект, а скаляр . Это их недостаток.
В истинно объектно-ориентированном окружении все является
объектом, особенно строки, числа, логические переменные, биты
и байты.

Это первый аргумент и первый сценарий. Мы получаем нечто
от объекта, или, иными словами, просим его собрать нам что­
нибудь. А теперь обсудим второй аргумент и второй сценарий,
когда мы просим объект выполнить какое-то преобразование.

Манипуляторы - это глаголы

Объект - это представитель некоторой сущности внешнего
мира. Объект класса F ile представляет файл на диске, объект
класса Pixel - точку на экране, объект класса Integer - четыре
байта ОЗУ. (Удивлены? Подробнее об этом - в разделе 3 .4 .)

Если нам нужно манипулировать сущностью внешнего мира, мы
просим объект выполнить эту манипуляцию, например:

c l a s s Pixel {
void paint (Color color) ;

}
Pixel center = new Pixel (50 , 50) ;
center . pa int (new Color (" red ")) ;

60 Глава 2 • Образование

Мы просим объект center нарисовать на экране точку с коор­
динатами (50; 50) . И не рассчитываем на то, что что-то должно
быть построено. Мы хотим, чтобы во внешнем мире произошло
изменение, а объект выступает его представителем. «И в чем же
здесь отличие от процедуры? - спросите вы. - Название мето­
да - глагол, и оно указывает объекту, что необходимо сделатм.
Вопрос справедливый, но ключевое отличие здесь - в возвра­
щаемом результате.

Метод paint () не возвращает результата. В рамках метафоры
кафе можно, к примеру, попросить бармена сделать музыку по­
громче. Сделает ли он громче? Может быть, да. Может быть,
нет. Нашу просьбу могут проигнорировать. Это не будет грубым
или неуважительным, поскольку мы ничего не ожидаем в ответ.
Представьте, как бы это звучало в противном случае: « Сделайте
музыку громче, а как сделаете - сообщите уровень громкости» .
Именно так выглядит манипулятор, который возвращает зна­
чение.

Чертовски неуважительно.

Отличие, стало быть, в возвращаемом значении. Только метод­
строитель может возвращать значения, и его имя должно быть
существительным. Если объект позволяет нам выполнять преоб­
разования, его имя должно быть глаголом и он не должен ничего
возвращать.

Я думаю, можно задействовать другое соглашение об имено­
вании, не упуская из виду основной принцип. К примеру, при
использовании паттерна « СтроителЬ» к именам добавлять при­
ставку wi th :

c l a s s Book {

}

Book withAuthor (String author) ;
Book withTit le (St ring title) ;
Book withPage (Page page) ;

2.4. Тщательно выбирайте имена методов 61

Имя withТitle - сокращение от bookWithTitle. Чтобы избежать
использования префикса book во всех методах, мы можем огра­
ничиться префиксом with . Принцип остается в силе - эти ме­
тоды являются строителями, а их имена можно расценивать как
существительные. Вообще говоря, я противник этого паттерна,
поскольку он способствует созданию крупных объектов, которые
неизбежно более сложны в поддержке и намного слабее связаны,
чем компактные. Паттерн «Строитель� применяется, когда мы
не хотим передавать много параметров в конструктор. В таких
случаях он оказывается полезным. Но большое количество ар­
гументов - это само по себе проблема.

Вместо того чтобы использовать паттерн « Строитель� , стоит
разбить сложные объекты на несколько более простых.

Короче говоря, не применяйте этот паттерн.

Примеры
Обсудим несколько практических примеров рефакторинга.
Допустим, у нас есть метод, который сохраняет содержимое
файла и возвращает количество сохраненных байтов:

c l a s s Document {
int write (I nputSt ream content) ;

}

Метод выглядит корректно, но нарушает только что описанный
принцип. Он должен возвращать void, но нам-то нужно знать,
сколько байтов было фактически сохранено на диск. Что делать?
Переименовать его в bytesWri tten () ? Это неправильно, посколь­
ку этот метод предназначен для записи файла документа на диск,
а не для подсчета байтов.

Принцип именования «строитель/манипулятор� в данном при­
мере говорит о том, что метод wri te () берет на себя слишком
много обязанностей. Он записывает данные и считает количество

62 Глава 2 • Образование

байтов. Это слишком сложно для одного метода. Мы не можем
четко назвать его глаголом или существительным, поскольку
его назначение неоднозначно. Он расплывчат, несфокусирован.

Вот как я рекомендовал бы его переработать:

c l a s s Document {
OutputPipe output () ;

}
c la s s OutputPipe {

}

void write (In putStream content) ;
int bytes () ;
long time () ;

Как видите, метод o u t p u t () - строитель. О н создает новый
объект типа OutputPipe, готовый записывать данные (обратите
внимание на то, что я не назвал его writer) . Данные еще не за­
писаны - мы просто получаем объект, готовый выполнить эту
операцию. Затем вызываем метод wri te () объекта pipe, который
собирает данные о транзакции. Теперь можно получить больше
информации, чем просто количество байтов. Можно получить
время, затраченное на транзакцию, и многое другое.

Разработчики языка Go, на мой взгляд, сделали большую ошиб­
ку. Они позволили возвращать из метода несколько значений.
В Go мы можем объявить метод write () примерно так:

type Document struct { }
func (d Document) write (s Stream) (int , int) { }

Именно так код и становится грязным и неуправляемым, а ведь
весь смысл О О П - в снижении сложности путем изоляции
концептов . Чем меньший концепт изолируется, тем легче его
понимать и сопровождать. В данном случае это концепт «записи
байтов в файл документа� . Выполнив предложенную ранее пере­
работку, я изолирую это понятие в отдельный класс OutputPipe,
а Go побуждает программиста оставаться в контексте класса
Document и еще больше усложнять его метод wri te () .

2 .4. Тщательно выбирайте имена методов 63

Методы, возвращающие логические значения
Погодите, а как насчет методов, возвращающих логические зна­
чения? Возьмем, к примеру, метод isEmpty () из класса St ring.
* Как бы вы его назвали? - спросите вы. - А метод equa l s ()
в классе Obj ect? А метод exist s () в классе F ile? Их полно по­
всюду». Если придерживаться описанных ранее принципов, то
можно сделать вывод, что все эти имена некорректны. Но какова
альтернатива?

Как мне кажется, методы, возвращающие логические значения,
являются исключениями из этих правил. Они тоже строители,
но для лучшей читаемости их имена необходимо сделать при ­

лагательными, например:

boolean empty () ;
boolean readaЬle () ;
boolean negative () ;

Префикс i s избыточен и не должен использоваться явно, но
имеет смысл мысленно ставить его перед именем метода, чтобы
убедиться в том, что оно подобрано грамотно.

Подставьте префикс и прочитайте имя, но применяйте его без
префикса. Такие мысленные упражнения необходимы, чтобы из­
бежать использования глаголов вместо прилагательных. Вот как,
например, будут звучать имена приведенных ранее методов:

boolean empty () ; // i s empty
boolean readaЬle () ; // is readaЬle
boolean negative () ; // i s negative

Однако вызовут проблемы следующие имена методов:

boolean equa l s (Object obj) ;
boolean exists () ;

Названия isEquals и is Exists просто не звучат. Намного лучше
будет использовать equal То и present, поскольку фразы Is equal
to и Is present звучат нормально.

64 Глава 2 • Образование

Почему для методов, возвращающих логические значения,
делается исключение? Потому что Java и большинство других
языков особым образом работают с ними в рамках логических
конструкций. Скажем, у нас есть класс String, имеющий, в свою
очередь, метод-строитель lengt h () . Мы добавляем к нему метод
emptines s () , который возвращает состояние строки - пустая она
или нет. И затем используем его следующим образом:

if (name . empt ines s () = = true) {
/ / что - то сделать

}

Это читается нормально: «Если пустота имени истинна» . Одна­
ко так в Java не делают. Там применяется сокращенная форма
такого сравнения. Часть = = t r u e просто опускается . Поэтому
прилагательное звучит лучше:

if (n ame . empty ()) { // "если имя пустое "
// что - то сделать

}

Позвольте обобщить данный раздел. Во-первых, знайте мис­
сию своего метода. Он либо строитель , либо манипулятор.
И ни в коем случае не может выполнять обе роли. Во-вторых,
называйте строители именами существительными, а манипуля­
торы - именами прилагательными. Единственным исключени­
ем будет строитель, который возвращает логическое значение.
В таком случае применяйте прилагательные.

Вот и все.

2 . 5 . Не испол ьзуйте публ ич н ые
константы

Обсуждение на http ://goo.gi/QIUoru.

Свойства, обозначаемые спецификаторами puЬlic, static, fina/,
также известные как константы - популярный механизм со-

2 .5 . Не используйте публичные константы 65

вместного использования данных объектами. Именно для этого
и нужны константы - для совместного применения данных
или других объектов. И против этого я категорически возра­
жаю. Объекты не должны ничего использовать совместно - они
должны быть самодостаточными и очень закрытыми. Механизм
совместного использования противоречит идее инкапсуляции
и объектно-ориентированному образу мышления в целом. Рас­
смотрим это на примере. Скажем, у меня есть метод, который
записывает структурированные данные в Wri ter и заканчивает
каждую строку символом перевода строки:

c l a s s Records {

}

p rivate stat ic final String EOL = " \ r \n " ;
void writ e (Writer out) {

}

for (Record rec : t h i s . a l l) {
out . write (rec . toSt ring ()) ;
out . writ e (Records . EOL) ;

}

В данном примере статическое константное свойство EOL явля­
ется приватным и используется только внутри класса Records .
Такая ситуация вполне корректна. Мы не хотим каждый раз
прописывать " \ r \ n " в явном виде внутри класса. Допустим,
теперь у нас есть другой класс, который делает что-то похожее,
но с другими объектами:

c l a s s Rows {

}

private static fina l String EOL = " \r \n " ;
void print (P rintStream pnt) {

}

for (Row row : t h i s . fetc h ()) {
pnt . printf (

" { %s }%s " , row, Rows . EOL

) ;
}

66 Глава 2 • Образование

У этого класса иная логика, он работает с совершенно другим
набором объектов . Классы Records и Rows никак не связаны.
У них нет ничего общего. Однако они оба определяют приватную
константу EOL . Это будет дублированием кода? Да, конечно же.
И как нам его предотвратить? Как мы его предотвращали в С?
У нас был макрос #define , который позволял объявить ее одна­
жды и затем применять повсюду:

#define EOL " \ r \ n "

Однако мы не пишем на С. В ООП у нас есть объекты, и реше­
ние проблемы дублирования кода путем использования публич­
ных констант - совершенно некорректный подход. Он очень
процедурен и поэтому неправилен. Вот как можно решить эту
проблему в J ava:

puЫic c l a s s Constants {
puЫic static final String EOL = " \ r \n " ;

}

Чем это отличается от макроса #define в С? Мало чем. И в том
и в другом случае константы находятся в глобальной области
видимости - каждый класс может их использовать. Я бы даже
сказал, что макрос лучше, поскольку он виден не всем. Он ста­
новится видимым, только если включить . h -файл, в котором
объявлен макрос. В Java класс Con stant s публичный, поэтому
с точки зрения загрузчика классов он должен быть виден дру­
гим классам.

Вводя класс Con stants , мы решаем проблему дублирования
кода, поскольку классы R e c o r d s и Rows будут использовать
Constant s . EOL вместо Records . EOL и Rows . EOL соответственно.
Им больше не придется объявлять эту константу локально. Они
будут применять доступную всем константу. Проблема решена,
не так ли? Отнюдь !

Решая одну проблему, мы создали две большие проблемы: при­
внесли сцепление и потеряли цельность.

2 .5 . Не используйте публичные константы 67

Привнесение сцепления
Сначала рассмотрим проблему сцепления. Вот как сейчас вы­
глядит класс Records :

c l a s s Records {

}

void write (Writer out) {

}

for (Record rec : t h i s . a l l) {
out . write (rec . toSt ring ()) ;
out . write (Constants . EOL) ; // эдесь !

}

Класс Rows выглядит так:

c l a s s Rows {

}

void print (PrintSt ream pnt) {

}

for (Row row : t h i s . fetc h ()) {
pnt . printf (

}

" { %s } " , row , Con stants . EOL / / эдесь !
) j

Теперь они оба зависят от одного объекта, и эти зависимости
жестко запрограммированы. Разорвать их непросто. В трех ме­
стах фрагменты кода сцеплены и взаимосвязаны между собой.

Records . wri te () , Rows . print () и Constants . EOL. Если я поменяю
значение Con stant s . EOL , то поведение двух классов изменится
непредсказуемым образом. Почему непредсказуемым? Посколь­
ку, когда я меняю значение Constants . EOL , я понятия не имею,
как оно используется. Может, для перевода строки при печати.
Может, для завершения строки в протоколе НТТР, где поменять
его невозможно из-за требований протокола.

Объект Const a nt s . EOL одинок в глобальной области видимо­
сти, где он применяется без всякой семантики. Мы попросту
не знаем, как задействуется этот объект, в каком контексте и как

68 Глава 2 • Образование

вносимые изменения повлияют на его пользователей. Мы спо­
собствуем сцеплению, что со временем приведет к серьезному
ухудшению сопровождаемости. Помните: все ради сопровожда­
емости ! Если множество объектов использует другой объект
неизвестным образом, то они очень тесно сцеплены с ним.

В случае, когда константа примитивна, как в нашем примере
с EOL, проблема не так уж велика, поскольку семантика конца
строки весьма прозрачна. Но когда константа становится более
сложной, то и серьезность проблемы возрастает.

Потеря цельности
Применяя публичные константы, объекты становятся менее
цельными, иными словами, менее ориентированными на ре­
шение собственных задач. Они должны знать, как обращаться
с константами. И добавлять собственную семантику к глупым
константам. Последние действительно довольно глупы. Что
Con stant s . EOL знает о себе? Ничего. Это просто кусок текста,
не понимающий, зачем он нужен. Он не знает своей миссии,
своего назначения. Если начать философствовать: смысл жизни
этой константы неясен.

Чтобы добавить семантику, мы должны писать дополнительный
код в классах Records и Rows. Нам приходится оборачивать прими­
тивные статические константы в некий код, который уточняет их
назначение. Но не это является целью классов Records и Rows .

Они предназначены для работы с записями и строками, а не
с символами завершения строки. Эти классы были бы более
цельными, если бы могли перепоручать работу: �я обрабатываю
записи, а ты - концы строк» Так было бы разумно, поскольку
это помогло бы классам быть более цельными.

Итак, какова же альтернатива? Вот что я предлагаю для каче­
ственного решения проблемы дублирования кода. Объекты
не должны совместно использовать данные. Вместо этого мы

2 .5 . Не используйте публичные константы 69

должны создавать новые классы, которые помогли бы классам
совместно использовать функциональность. Не данные, а функ­
циональность ! К примеру, мы видим, что в обоих классах не­
обходимо печатать строки, которые заканчиваются переводом
строки. Создадим для этого класс:

c l a s s EOLSt ring {

}

private final String origi n ;
EOLSt r i ng (St ring s rc) {

t h i s . origin = s r c ;
}
@Ove rride
St ring toSt ring () {

return String . format ("%s\r\n " , origin) ;
}

Теперь при необходимости можно использовать их. К примеру,
в классе Records :

class Records {

}

void write (Writer out) {

}

for (Record rec : t h i s . a l l) {
out . write (new EOLSt ring (rec . toSt ring ())) ;

}

А так - в классе Rows:

class Rows {

}

void print (PrintSt ream pnt) {
for (Row row : this . fetc h ()) {

pnt . print (

}
}

new EOLString (
String . format (" { %s } " , row)

)
) j

Теперь функциональность, добавляющая символы в конец стро­
ки, надежно изолирована в классе EOLSt ring . Как конкретно

70 Глава 2 • Образование

суффикс добавляется к строке, теперь его дело . В классах
Records и Rows больше нет этой логики. Мы не знаем, как кон­
кретно строка приобретает необходимый суффикс. Знаем лишь,
что за эту задачу отвечает класс EOLSt ring.

Вы можете возразить, что сцепление теперь будет с классом
EOLString, что равносильно сцеплению с классом Constants . EOL, но
это не так. Действительно, имеется сцепление с классом EOLSt ring,
но оно не снижает сопровождаемость, поскольку является сце­
плением посредством контракта, а это значит, что классы мож­
но разъединить. В таком сцеплении участвуют два равнозначных
элемента - объект класса Records и объект класса EOLSt ri ng .
Последний из них работает по контракту, семантика которого
инкапсу лирована внутри класса.

Предположим, завтра мы захотим, чтобы поведение класса меня­
лось в зависимости от платформы, на которой он работает. До­
пустим, мы не хотим использовать последовательность " \ r \ n "
при работе под Windows. В такой ситуации нужно бросить ис­
ключение. Контракт (интерфейс) остается неизменным, но по­
ведение меняется:

c l a s s EOLSt ring {

}

private final String or1g1 n ;
EOLSt ring (String s rc) {

this . origin = s r c ;
}

String toString () {

}

if (/ * работаем nод Windows * /) {
th row new I llega lStateException (

}

" Извините, EOL невозможно и спользовать под Windows "
) ;

return String . format ("%s\r\n " , origin) ;

Можно ли было сделать так с помощью публичного статиче­
ского литерала? Нет.

2 . 5 . Не используйте публичные константы 71

Значит ли это, что для каждой публичной константы надо соз­
давать новый класс, инкапсулирующий ее семантику? Да. Зна­
чит ли это, что у нас могут быть ·сотни микроклассов вместо
сотен константных строковых литералов? Да. Сделает ли это
код многословным? Загромоздит ли его избыточными микро­
классами? Нет. Чем больше мелких классов, тем чище код, при
условии, что они не дублируют друг друга. Это утверждение
может показаться вам нелогичным, но задумаемся на секун­
ду - это важно. Я хочу сказать, что чем больше классов в вашем
приложении, тем лучше оно спроектировано и тем легче его со­
провождать. Наилучшей аналогией этому будет язык, на котором
мы говорим. Чем больше слов вы применяете, если, конечно,
это не синонимы, производящие впечатление на читателей,
тем проще становится читать ваш текст. Напротив, когда вы
вкладываете слишком широкий смысл в одно слово и часто его
используете, текст читать труднее.

Вот фраза: «Мой кот любит есть рыбу и пить молоко» .

А вот другая: « Моя вещь любит есть одну вещь и пить дру­
гую вещь» . Здесь мы слишком часто задействуем слово «вещь»
и вкладываем в него слишком большой смысл. Читатель должен
разбираться, что означает «вещь» в первом, втором и третьем
случаях. Слова «кот» , «рыба» , «молоко» позволяют быстрее
уловить семантику написанного. То же происходит с классами,
которые очень велики и имеют слишком много возможностей.
Когда повсюду используешь класс j ava . io . F ile , иногда про­
сто непонятно, что именно он означает. Намного более удобны
Text F ile , J PGFile или TempFile.

Позвольте привести еще один пример. Во всех известных мне
НТТР-клиентах, не только в Java, есть возможность изменить
НТТР-запрос следующим образом:

String body = new HttpRequest ()
. method (" POST ")
. fetc h () ;

72 Глава 2 • Образование

А еще у вас есть набор публичных статических строковых литера­
лов с именами НТТР-методов. В итоге код выглядит примерно так:

String body = new HttpRequest ()
. method (HttpMethod s . POST)
. fet c h () ;

Это противоречит духу ООП. Намного лучше создать несколько
небольших классов, представляющих эти методы:

String body = new PostRequest (new HttpRequest ())
. fetc h () ;

PostRequest знает, как конфигурировать HttpRequest так, чтобы
он делал РОSТ-запрос вместо GЕТ-запроса, выполняемого по
умолчанию. Логика этой конфигурации, семантика литерала
POST теперь инкапсулирована в новом классе Post Req u e s t .
Мы больше н е должны помнить, что значит РОSТ. Нам нужно
выполнить РОSТ-запрос, и нас не касается, как это происходит
на уровне протокола НТТР.

Короче говоря, публичные константы в ООП - чистейшее зло,
они не должны использоваться никогда. Им нет оправдания.
Я понимаю, что современные библиотеки в Java, Ruby, РНР,
Scala и им подобных, к сожалению, полны публичных констант.
Не включайте их в свой код. Не создавайте себе дополнительных
трудностей. Всегда заменяйте их микроклассами. Неважно, на­
сколько малы они будут. Не решайте проблему дублирования
кода публичными константами - применяйте классы.

Кстати, то же самое касается типов enum в Java. Перечисления
ничем не отличаются от публичных констант, и их также не­
обходимо избегать.

M a rt in нап исал 6 и юля 20 1 5 года :

О бъя сн ите , п ожалуй ста , ч е м за в и с и м ость от публ и ч н о го ста ­
ти ч еско го ко н ста нтн о го атри бута отл и ч ается от за в и с и м ости

2.6 . Делайте классы неизменяемыми 73

от публ и ч н о го класса , не сч итая ваших л и ч н ы х п редп очте н и й
относител ьно то го , что вы сч итаете более объектн о-ориенти ро­
ван н ы м . Кстати , а ка кой объект реал ь н о го м и ра п редста вля ет
класс UТ F8String? И е ще , в ы п о н и маете, что в а ш е р е ш е н и е
порождает н о в ы й объе кт п р и каждом в ы п ол н е н и и о п е рато ра
п р и с в а и ва н и я ?

Егор Бугаенко:

В в одя кл асс UTF8St ring , мы решаем п роблему дубл и ро в а н и я
л ите рала UTF - 8 . Н о р е ш а е м м ы ее п р и п о м о щ и н а стоя ще го
объектно-ориентированного подхода - инкапсул и руем фун кцио­
нал ьн ость внутри класса и позволяем остал ь н ы м и н ста н ци ро­
вать и испол ьзо вать е го объекты . Тем са м ы м решаем п роблему
дубл и ро ва н и я фун кциональн ости , а не тол ько дубл и ро ва н и я
да н н ых . И да , я п о н и м а ю , что м о е решение создает н о в ы й объ­
е кт вся кий раз , ко гда п ро и сходит п р и с ва и ва н и е . М н е кажется ,
что п о сра в н е н и ю с сил ь н ы м сцепл е н и е м это небол ьшая про ­
блема . В общем случае я отда ю п редпочтение со про вождаемо­
сти [ч и сто му коду] , а не с корости .

2 . 6 . Делайте классы неизменяем ы м и

Обсуждение на http ://goo.gi/zlXGjO.

Делайте все классы неизменяемыми - это сильно улучшит со­
провождаемость. Как и все остальное, о чем говорится в данной
книге, неизменяемость помогает сделать классы небольши­
ми, цельными, расцепленными и хорошо сопровождаемыми.
Если фрагмент кода легко понять, то его несложно поддержи­
вать. Неизменяемый класс намного проще понять, чем изменя­
емый. Если вы заставите себя думать в терминах неизменяемых
объектов, ваш код станет чище, короче и проще для понимания.

Обсудим, что значит неизменяемость, а затем я покажу вам па­
рочку практических преимуществ, которые она дает.

74 Глава 2 • Образование

Объект называется неизменяемым, если его состояние нельзя
изменить после создания. К примеру, является изменяемым
объект приведенного далее класса:

c l a s s Cash {

}

private int dolla r s ;
puЫic void setDollars (int val) {

t h i s . dollars = val ;
}

Вот похожий класс, объекты которого неизменяемы:

class Cash {

}

private final int dolla r s ;
Ca s h (int va l) {

t h i s . dollars = va l ;
}

Как видите, разница - в наличии у приватного свойства dollars
ключего слова f i n a l . Оно говорит компилятору, что любые
попытки изменить свойство вне конструктора должны приво­
дить к ошибке компиляции. Неизменяемый объект инкапсули­
рует все необходимое и ничего не может поменять в процессе
существования. Если нам необходимо изменить неизменя­
емый объект, то придется создавать новый объект. К примеру,
мы хотим реализовать несложную арифметическую операцию
умножения для денежного класса C a s h . Вот пример изменя­
емого класса:

c l a s s Cash {

}

p rivate i nt dolla r s ;
puЫic void mu l (i nt fa ctor) {

t h i s . dollars * = facto r ;
}

Здесь мы делаем то же, но при помощи неизменяемого класса:

c l a s s Cash {
private final int dolla r s ;

2.6 . Делайте классы неизменяемыми 75

puЫic Cash mu l (int facto r) {
return new Ca s h (t h i s . dol lars * factor) ;

}
}

Разница очевидна. Неизменяемый объект не может никак мо­
дифицировать себя. Он будет пытаться создать другой объект
с желаемыми характеристиками.

Изменяемый объект мы будем использовать следующим об­
разом:

Cash five = new Cash (5) ;
five . mu l (10) ;
System . out . print l n (five) ; // будет выведено "$50"

А так станем работать с неизменяемым классом:

Cash five = new Cash (5) ;
Cash fifty = five . mu l (10) ;
System . out . print l n (fifty) ; / / будет выведено " $50"

Я подвожу к тому, что никогда не стоит делать объекты из­
меняемыми - всегда работайте с неизменяемыми объектами.
Изменяемые объекты - злоупотребление объектно-ориенти­
рованной парадигмой. Последние два фрагмента кода идеально
иллюстрируют эту мысль. Как только был инстанцирован объ­
ект five, он не сможет стать объектом fi fty. Пять - всегда пять
и будет пятью до конца своего жизненного цикла. Если нам
нужно пятьдесят, то мы должны инстанцировать новый объект.
Еще раз взглянем на код:

Cash five = new Cas h (5) ;
five . mu l (10) ;
System . out . println (five) ; // ой , это же $50

Последняя строчка сбивает с толку, не так ли? Мы ожидаем, что
объект five будет вести себя как пять долларов, но он демонстри­
рует поведение как у 50 долларов. Надеюсь, это хорошо показыва­
ет, насколько изменяемость делает код сложным для понимания
и поддержки. Изменяемость привносит беспорядок.

76 Глава 2 • Образование

Бы можете возразить, что если мы назовем переменную money,
то решим эту проблему и код снова станет читаемым.

Cash money = new Cas h (5) ; // вот $5
money . mu l (10) ;
System . out . println (money) ; / / а вот $50

Может быть, но только в таком простом примере, как этот. Причем
в очень ограниченной области. Мы фактически заменили конкрет­
ное имя на более абстрактное. В общем случае такая тактика плоха.
В граничном случае мы должны будем назвать все переменные
var . Не стоит объяснять, почему так не надо делать.

Уясните следующее. Я не говорю, что неизменяемые классы
лучше изменяемых, что они более эффективны в некоторых
ситуациях, могут решать некоторые проблемы более элегантно
или использоваться чаще изменяемых. Совсем нет. Я говорю,
что изменяемые объекты не имеют права на существование.
Их использование должно быть строго запрещено. Их просто
не должно быть в ООП, как это сделано, например, в Haskell.
Все классы должны инстанцировать неизменяемые объекты,
которые никогда не меняют своего состояния вне зависимости от
области применения, будь то игры, пользовательский интерфейс,
мобильные или веб-приложения или даже алгоритмы.

Есть несколько хорошо известных аргументов в пользу неизме­
няемости1 . Кратко просмотрим их и обсудим контраргументы,
которые часто сводятся к тому, что «неизменяемые объекты
хороши, но не в нашем проекте� .

Погодите. Прежде чем перейти к рассмотрению этих аргументов,
обсудим «ленивую� инициализацию, которая технически невоз­
можна при неизменяемых объектах. Как минимум в java, Ruby,
С++ и еще нескольких Известных мне языках. Объект инициа-

1 Brian Goetz et. al. Java Concurrency in Practice. - Addison-Wesley
Professional, 2006.

2.6 . Делайте классы неизменяемыми 77

лизируется «лениво» , если он обновляет инкапсулированные
свойства по требованию, например:

c l a s s Page {

}

p rivate final String u r i ;
private St ring html ;
Page (St ring addres s) {

}

t h i s . u ri = addre s s ;
t h i s . html = n u l l ;

p u Ы i c St ring content () {
if (t h i s . html null) {

t h i s . html = / * з а г рузить из сети * /
}
return t h i s . html ;

}

Так работает «ленивая» инициализация. При создании объекта
в поле this . html ничего нет. Вместо реальных данных оно содер­
жит null . Затем, когда впервые вызывается метод content () , мы
загружаем данные из сети и сохраняем их в упомянутом поле.
При следующем вызове content () обращения к сети не проис­
ходит. Вместо этого мы возвращаем содержимое поля this . html.
Очевидно, что этот класс изменяемый. Можем ли мы сделать его
неизменяемым? Не в J ava. А нужна ли нам вообще «ленивая»
инициализация? Конечно. В основном из соображений про­
изводительности. Мы не хотим загружать страницу много раз,
одного достаточно.

Мне кажется, что сам язык должен предоставлять такую возмож­
ность. Должно быть доступно нечто подобное:

@OnlyOnce
puЫic String content () {

return / * з а г рузить из сети * /
}

Аннотация @On lyOnc e (или что-то похожее по смыслу) долж­
на говорить компилятору, что помеченный ею метод будет

78 Глава 2 • Образование

вызываться в объекте лишь единожды. Все последующие вы­
зовы должны возвращать ранее возвращенное значение. К со­
жалению, на момент написания этих строк ничего подобного
в java не было. Есть несколько обходных путей, которые позво­
ляют сделать объект неизменяемым, но при этом реализовать
«ленивую� загрузку. Все это костыли. И обычно все это, по сути,
разные механизмы кэширования, основанные на фреймворках
или статических ассоциативных массивах. Я затрагивал эту тему
ранее, в разделе 1 .3, где приводил пример механизма кэширова­
ния, который может быть полезен, если вы не стремитесь к чи­
стой неизменяемости.

Изменяемость идентичности
Неизменяемые объекты не имеют проблем с так называемой
изменяемостью идентичности. Если коротко: данная проблема
проявляется, когда мы сравниваем два объекта, которые выгля­
дят равными, но впоследствии один из них меняет состояние.
Они больше не равны, но мы думаем, что они равны. Или наобо­
рот. Например, в java:

Map<Ca s h , St ring> map = new HashMa p< > () ;
Cash five = new Cash (" $ 5 ") ;
Cash ten = new Cash (" $10") ;
map . put (five , "five ") ;
ma p . put (t e n , "ten ") ;
five . mu l (2) ;
System . out . println (map) ; / / { $10= > "five " , $10= > "ten " }

Ассоциативный массив стал некорректным после нашего вме­
шательства. Он содержит два одинаковых ключа. Как это про­
изошло? Сперва мы создали два не равных друг другу объекта
five и ten . Затем поместили их в ассоциативный массив, класс
HashMap которого создал два элемента, поскольку ключи были
не равны. Затем мы изменили состояние одного из них с пяти
на десять, используя модифицирующий метод mul () . Ассоциа­
тивный массив не знал об этом изменении. Мы его никак об

2.6 . Делайте классы неизменяемыми 79

этом не уведомили. И не дали ему возможности сравнить ключи
и удалить дубликаты. В итоге состояние ассоциативного массива
оказалось некорректным.

Кроме того, если мы попытаемся извлечь один из них, то по­
лучим непредсказуемый результат, поскольку ассоциативный
массив теперь испорчен:

map . get (five) ; // может вернуть либо "ten " , либо " five"

Эта проблема известна как изменяемость идентичности. Взгля­
нем на предыдущий пример. Если я уберу все строки, кроме по­
следней, сможете ли вы догадаться, почему метод map . toString ()
возвращает такое странное состояние? Легко ли вам будет по­
нять, почему H a s hM a p содержит дубликаты ключей и как это
получилось? А ведь в примере всего пять строк кода.

Такого не случится с неизменяемым объектом, поскольку после
того, как он попадет в ассоциативный массив, он не сможет ме­
нять состояние. HashMap вычислит хеш-функцию от его состоя­
ния, поместит его во внутреннюю хеш-таблицу и оставит там.
Единственный способ сделать что-либо с элементом ассоциатив­
ного массива - добавить в него новый объект-ключ.

Неизменяемые объекты полностью устраняют проблемы, свя­
занные с изменяемостью идентичности.

Атомарность отказов
Еще одно преимущество неизменяемых объектов - атомарность
отказов. То есть у нас есть либо полный и целостный объект,
либо отказ 1 - и никаких промежуточных состояний.

Рассмотрим пример изменяемого класса Cash :

c l a s s Cash {
private int dol lars ;
private int cent s ;

1 Вlochj. Effective java. 2nd Edition. - Addison-Wesley, 2008.

80 Глава 2 • Образование

}

puЬlic void mu l (int facto r) {
t h i s . dollars * = factor;
if (/ * что - то не так * /) {

t h row new Runt imeException (" oй . . . ") ;
}
t h i s . cents * = facto r ;

}

Когда я вызываю метод mul () и он вызывает исключение, поло­
вина объекта будет изменена (this . dollars) , а другая остается
неизменной (t his . cents). Это может привести к очень серьез­
ным ошибкам, которые опять-таки очень сложно найти. Неиз­
меняемые объекты избавлены от такого недостатка, поскольку
ничего не модифицируют внутри себя.

Вместо этого они инстанцируют новые объекты с новым со­
стоянием:

c l a s s Cash {

}

private final int dolla r s ;
private final i n t cent s ;
puЬlic C a s h mul (int factor) {

}

if (/ * что - то не так * /) {
th row new RuntimeException (" oй . . . ") ;

}
ret u rn new Cash (

t h i s . dollars * factor,
t h i s . cents * factor

) j

Очевидно, что добиться атомарности отказов можно и при ис­
пользовании изменяемых объектов, но придется уделить этому
особое внимание. Работая же с неизменяемыми объектами, мы
получаем атомарность �из коробки:? - нет необходимости забо­
титься об этом, так как все объекты атомарны по определению.
Что не так с обеспечением атомарности отказов в изменяемых
объектах? Сложность объекта сильно увеличивается, и, как след­
ствие, вероятность ошибки также повышается. И конечно же,

2.6 . Делайте классы неизменяемыми 81

сопровождаемость такого объекта серьезно ухудшается. Вот как,
к примеру, может выглядеть изменяемый и способный к атомар­
ным отказам класс Cash :

c l a s s Cash {

}

private int dollars ;
private int cent s ;
puЬlic void mu l (int facto r) {

int before = t h i s . dol lars ;
t h i s . dollars * = factor ;

}

if (/ * что - то не так с центами * /) {
t h i s . dollars = before;
t hrow new RuntimeExcept ion (" oй . . . ") ;

}
t h i s . cents * = factor ;

Мы сохраняем значение поля this . dollars во временную пере­
менную, чтобы иметь возможность восстановить его непосред­
ственно перед вызовом исключения. Для небольших объектов это
не очень важно, но, когда объект начинает увеличиваться в раз­
мерах, легко пропустить свойство, которое надо восстановить.
Даже в таком маленьком объекте код весьма запутан, не находите?

К слову, я перечисляю преимущества по их важности в моем
понимании - от наименее важных к наиболее важным. Поэтому
наиболее важные преимущества впереди.

Временное сцепление
Еще одно преимущество, которое вы получаете в результате
использования неизменяемых объектов, - отсутствие так на­
зываемого временного сцепления. Лучше всего объяснить это
на примере:

Cash price = new Cash () ;
price . setDollars (29) ;
price . setCent s (95) ;
System . out . println (price) ; / / " $ 29 . 95 "

82 Глава 2 • Образование

Этот пример очень прост, но он показывает, как обычно инстан­
цируются и инициализируются изменяемые объекты. Вначале
мы создаем скелет, в котором все внутренние свойства равны
NUL L (инстанцирование). Затем устанавливаем их значения с ис­
пользованием методов-сеттеров (инициализация) . Именно так
JavaBeans, JPA, JAXB и другие стандарты рекомендуют работать
с объектами в Java. Вы наверняка понимаете, что я, мягко гово­
ря, небольшой любитель этих стандартов . Все они - хорошие
инструменты для процедурных программистов, пишущих про­
граммы нa java, но они очень плохи с точки зрения истинного
объектного мышления. Класс Cash - идеальный представитель
JavaBeans - «мешков» с данными и пристегнутыми к ним про­
цедурами. Сперва мы создаем «мешок» , потом внедряем в него
данные, а затем даем команду их обработать. Старайтесь дер­
жаться подальше от этих «стандартов» . . .

В приведенном ранее примере четыре строки. Они идут одна за
другой в строго определенном порядке и связаны друг с другом
в хронологическом порядке. Если я по ошибке переупорядочу
их следующим образом:

Cash price = new Cash () ;
price . setDollars (29) ;
System . out . println (price) ; / / " $29 . 00 " !
price . setCent s (95) ;

логика поломается, но код все же скомпилируется.

Этот пример очень прост, и вы можете возразить, что для такого
переупорядочения нет никакого повода. Так не надо делать, и все
тут. Это может быть действительно так в конкретном примере,
поскольку я в состоянии разобраться в логике кода в течение
пары секунд. Но я все равно должен понимать временное сце­
пление между строками, прежде чем менять их. Компилятор мне
не поможет. Тем не менее переупорядочение строк - корректная
операция. Иными словами, моя задача - запомнить, в каком по­
рядке стоят строки. А если объектов много и мне нужно помнить

2 .6 . Делайте классы неизменяемыми 83

их порядок или порядок манипуляций с ними, то с сопровожда ­
емостъю возникнет большая проблема. Как насчет следующего
фрагмента кода:

Cash price = new Cash () ;
/ / 50 строк кода для вычисления Х
price . setDollars (x) ;
/ / еще 30 строк кода выч исляют У
price . setCents (y) ;
// 25 строк кода делают что - то еще
System . out . println (price) ;

Легко ли понять, что данный конкретный порядок сеттеров должен
быть сохранен и все они должны вызываться перед p r i n t l n () ?
Отнюдь. А так проблема решается при использовании неизме­
няемых классов:

Cash price = new Cash (29 , 95) ;
System . out . println (price) ; / / " $29 . 95 "

Объект всегда инстанцируется единственной строкой кода. М ы по­
просту не можем отделить инстанцировтше от инициализации.
Они всегда должны быть вместе. Я не могу изменить порядок этих
двух строк, поскольку в противном случае код не скомпилирует­
ся. Следовательно, неизменяемость полностью избавляет нас от
временной связи между строками кода. Прежде чем что-то делать
с объектом, я должен его инициализировать. То, что произойдет
потом, не имеет значения. Объект - самодостаточная и целостная
сущность. Больше ничего не нужно инициализировать.

Отсутствие побочных эффектов
Если объект изменяем, практически кто угодно может изменить
его на лету. Допустим, я передаю объект price методу, который
должен вывести его на экран. Но в этот метод закралась ошибка.
Кроме вывода на экран, он также удваивает цену:

void print (C a s h price) {
System . out . print l n (

84 Глава 2 • Образование

}

" Today price i s : " + price
) ;
price . mu l (2) ;
System . out . print l n (

" Купи се годня выгодно ! Завтрашняя цена : " + price
) ;

При вызове данного метода проявляется так называемый по­
бочный эффект:

Cash five = new Cash (S) ;
print (five) ;
System . out . print l n (five) ; / / ой . . . , $10

Чтобы понять, что происходит, потребуется некоторое время.
Мне придется отладить каждую манипуляцию с объектом five,
чтобы найти место, где возникает ошибка. Когда код настолько
прост, отладка займет не больше пары минут. Но если в проекте
несколько тысяч строк кода и несколько сотен классов, придется
потратить несколько дней.

А если мой класс Cash - неизменяемый, никто и нигде не сможет
изменить его объект. И я в этом уверен. Мне не придется просма­
тривать весь код в поисках побочных эффектов. Неизменяемость
класса Cash придает мне уверенность в том, что five означает
пять долларов в любое время в любом месте кода.

Никаких нулевых (NULL) ссылок
В разделах 3 .3 и 4 . 1 мы еще обсудим, почему использование NUL L

в ООП - абсолютное зло, а пока поговорим о неинициализиро­
ванных свойствах объекта. Например:

c l a s s User {
p rivate final int i d ;
private St ring name = n u l l ;
p u Ы i c Use r (int n u m) {

t h i s . id = num;
}

}

2.6 . Делайте классы неизменяемыми 85

puЫic void setName (St ring txt) {
t h i s . name = txt;

}

При создании экземпляра этого класса свойству name присваи­
вается значение NUL L . Оно будет инициализировано позже, при
вызове setName () (при условии, что он вообще произойдет) .
А до тех пор будет равно NULL . «Что с этим не так? - спросите
вы. - Просто проверяйте его на NUL L перед его использовани­
ем - и вы в безопасности» . Да, это верно, но код будет замусорен
проверками i f name ! = null . А если мы где-то забудем выпол­
нить проверку, то получим исключение NullPointerException
или ошибку сегментации в С++. Но это не самые главные про­
блемы. В конце концов, NU L L не особо отличается , скажем, от
пустой строки. Мы можем время от времени делать проверку,
и в этом нет ничего страшного. Так бывает.

Главная же проблема намного серьезнее. И она касается". вы на­
верняка догадались". сопровождаемости. Объект, у которого зна­
чения свойств могут быть равны NULL , а не полезной информации,
намного сложнее сопровождать, поскольку трудно понять, когда
он является объектом, а когда превратился во что-то, что объектом
не является. Позвольте объяснить, что я имею в виду. Но сперва
задам вопрос: «Зачем может понадобиться иметь объект класса
User с неинициализированным именем?» Действительно, когда
и почему у нас может возникнуть такая необходимость?

Мне кажется, я знаю ответ. В большинстве случаев так проис­
ходит потому, что нам на самом деле нужен другой класс, но
мы слишком ленивы, чтобы его ввести . Или не знаем, как его
создать. Или не понимаем, что такое класс в ООП. Причин мо­
жет быть много, но результат всегда один - чрезмерно большой
класс, который является одновременно и пользователем, и по­
купателем, и работником, и записью в базе данных. Если поле
name инициализировано, то это покупатель. Если оно равно NULL ,
то это пользователь, и т. д .

86 Глава 2 • Образование

Мы просто не знаем, как использовать наследование и инкап­
суляцию, чтобы разбить задачу на подзадачи. Поэтому при по­
явлении новых требований задействуем один и тот же класс.
Но, чтобы как-то управлять его разнообразным поведением, нам
приходится применять временно не инициализированные свой­
ства. По состоянию их инициализации (NUL L или нет) мы опре­
деляем, что такое наш объект - пользователь, покупатель или
SQL-запись. Думаю, не стоит говорить, что это ужасный подход.

Само существование константы NUL L подталкивает нас придер­
живаться этого ужасного подхода. Если же вы сделаете все объ­
екты неизменяемыми, внутри них не будет никаких NULL . Иными
словами, вы будете вынуждены создавать небольшие, целостные
и связные, а следовательно, лучше сопровождаемые объекты.

Потокобезопасность
Потокобезопасность - свойство объекта, буквально означающее,
что он может быть использован параллельно из нескольких по­
токов и при этом результаты его работы будут предсказуемыми.
Вот пример класса, инстанцирующего объекты, которые не яв­
ляются потокобезопасными:

c l a s s Cash {

}

private iпt dolla r s ;
private i п t ceпt s ;
puЬlic void mu l (iпt facto r) {

t h i s . dollars * = facto r ;
t h i s . ceпts *= factor ;

}

Этот код выглядит безобидно, но посмотрим, что получится ,
если я запущу его в двух параллельных потоках:

Cash price = пеw Cash (" $15 . 10 ") ;
1 1 следующие две строчки и с полняются в двух потоках
price . mul (2) ;
1 1 ожидается " $ 30 . 20 " и л и "$60 . 40 "
System . out . priпtlп (price) ;

2 .6 . Делайте классы неизменяемыми 87

Попробуйте сами и убедитесь, что при каждом запуске выводят­
ся разные числа. Ожидаются же только два корректных результа­
та. Первый поток выводит $30 . 20, а второй - $60 . 40, это означа­
ет, что первый поток умножил число на два, а второй умножил
его еще раз. Однако иногда будет выводиться значение $60 . 20.
Почему так происходит и что это число означает в действитель­
ности? Как можно умножить $15 . 10 на два и получить $60 . 20?

Очень просто. Один поток умножает количество долларов на два
и количество центов на два, в то время как другой поток тоже
умножает количество долларов на два, но не успевает умножить
количество центов . Он, конечно, умножит их позже, но на не­
сколько микросекунд объект p r i c e окажется в « сломанном»
состоянии - доллары были умножены, а центы - нет.

Найти, отладить и исправить такое поведение - одна из слож­
нейших задач в первую очередь потому, что его очень сложно,
а иногда и невозможно воспроизвести. Необходимо запускать
тесты несколько раз, но при этом нет гарантии, что проблема
проявится.

Неизменяемые объекты полностью решают эту проблему, пред­
отвращая всякие изменения своего состояния во время работы
программы. Не имеет значения, сколько потоков одновременно
работают с объектом, - ни один из них не может изменить его
состояния.

Изменяемый класс также можно сделать потокобезопасным,
используя явную синхронизацию:

c l a s s Cash {

}

private int dolla r s ;
private int cent s ;
puЬlic void mu l (int factor) {

syn c h ronized (t h i s) {
t h i s . dollars *= factor;
t h i s . cents * = fa ctor ;

}
}

88 Глава 2 • Образование

Это сработает, но при таком подходе возникает несколько про­
блем. Во-первых, не так-то просто обеспечить потокобезопас­
ность изменяемого класса. Во-вторых, синхронизация всегда
снижает производительность. Каждый поток должен ждать осво­
бождения объекта, чтобы смочь с ним работать. Каждый поток
устанавливает монопольную блокировку на объект, а остальные
в это время находятся в режиме ожидания. А еще не забывайте
о возможных взаимоблокировках. Темный лес, короче говоря.
Я настоятельно рекомендую держаться от него подальше и ис­
пользовать неизменяемые объекты.

К слову, вот пример кода для эксперимента с классом Cash :

c l a s s Cash {

}

private int dolla r s ;
private i n t cent s ;
Cash (final i n t d l r , final int ct s) {

t h i s . dollars = d l r ;
t h i s . cents cts ;

}
@Override
puЫic String toSt ring () {

return String . format (

}

" $%d . %d " , t h i s . dol l a r s , t h i s . cents
) ;

puЫic void mul (int facto r) {
t h i s . dollars *= factor ;
t h i s . cents * = facto r ;

}

final Cash c a s h = new Cash (15 , 10) ;
final CountDownLatch start = new CountDown latch (l) ;
final CallaЬle<Obj ect> s c ript = new CallaЬle< > () {

@Override
puЫic Obj ect call () th rows Exception {

start . awa it () ; // блокировка здесь
c a s h . mu l (2) ;
System . out . println (ca s h) ;
ret u rn nul l ;

}
} ;

2.6 . Делайте классы неизменяемыми 89

fiпal Exec utorService svc =

Executors . пewCac hedThreadPool () ;
svc . submit (sc ri pt) ; / / первый поток
svc . submit (s c ri pt) ; // второй поток
sta rt . couпtDowп () ;

Запустите его пару раз в своей IDE и посмотрите, что он выведет.
Ради интереса добавьте еще пару строчек svc . submit (script) .

Объект s c r i p t , конечно же, должен в конце вызывать метод
shutdown () у объекта svc . Я опустил эту часть для краткости.

Меньшие и более простые объекты
А теперь мое любимое преимущество неизменяемости - просто­

та. Как вы уже поняли, простота означает более высокую сопро­
вождаемость. Чем проще объекты, тем они более цельные и тем
лучше сопровождаемые. Чем сложнее программное обеспечение,
тем ниже квалификация программиста, его создавшего. Лучшее
П О - простое ПО, простое для понимания, модификации, до­
кументирования, поддержки и рефакторинга.

Сопровождаемость - главная добродетель в современном про­
граммировании.

В большинстве случаев простота означает меньшее количество
строк кода. Чем короче класс, тем проще понять, что он делает,
где у него недостатки, как его переработать. Если класс состоит
из тысяч строк, то очевидно, что даже автор понятия не имеет,
что в нем происходит. Я бы сказал, что в Java максимальный
размер класса не должен превышать 250 строк кода (вместе
с комментариями и пробельными строками) . Все, что превы­
шает эту цифру, сигнализирует о немедленной необходимости
рефакторинга класса. Для Ruby я бы предложил верхнюю гра­
ницу в 1 00 строк кода.

90 Глава 2 • Образование

Конкретное количество строк кода не имеет значения, если оно
небольшое. Я видел классы из 5000 строк. Такое абсолютно не­
допустимо, и этому нет оправдания. Кстати, я видел такое даже
в исходниках OpenJDК. Не говоря уже об Android SDК.

Если у вас получается выдерживать размер классов в пределах
250 строк в рамках всего приложения, то я бы сказал, что вы
хороший разработчик и архитектор ПО. Если получается делать
классы еще меньше, то вы великолепны. Здесь я говорю как
о тестовом, так и о «боевом� коде.

Неизменяемые объекты по своей природе меньше изменямых
хотя бы потому, что тяжело сделать неизменяемый объект слиш­
ком большим - его состояние инициализируется только в кон­
структоре. Вы не станете делать конструктор с десятью аргу­
ментами - он будет выглядеть ужасно, и это станет бросаться
в глаза. Вы начнете с небольшого объекта с парой аргументов
в конструкторе. Затем станете добавлять в него новые возмож­
ности, и по мере роста их количества будет увеличиваться коли­
чество аргументов в конструкторе. Добавляя в него очередную
возможность, вы будете вынуждены сделать конструктор больше
по размеру. Вскоре вы осознаете, что что-то пошло не так, и разо­
бьете класс на несколько более мелких. Вы никогда не напишете
неизменяемый класс размером 2000 строк кода.

Мне кажется, этот аргумент самый сильный из приведенных.
Неизменяемость делает код классов чище и короче. Это самое
важное преимущество, которое вы получаете, делая классы не­
изменяемыми.

В начале этого раздела я обещал обсудить аргументы против
неизменяемости, но не буду делать это здесь. Сделаю это позже,
в разделе 3.4, поскольку ответ на все эти аргументы один и тот
же. Продержитесь еще пару разделов, и мы непременно добе­
ремся до критики неизменяемости классов и моей позиции по
ее поводу.

2.6 . Делайте классы неизменяемыми 91

В обобщение данного подраздела позвольте повторить сказанное
в разделе 2 .6 : я категорически против изменяемых объектов.
В истинно объектно-ориентированном ПО существуют только
неизменяемые объекты. Изменяемость - ужасное наследие
процедурного программирования. Никогда не делайте классы
изменяемыми. Точка.

Ben Gгu nfeLd спросил 1 4 декабря 20 1 7 года :

Ка к неизменя е м ы е объе кты п р едотв раща ют нул е в ы е ссыл ки?
Раз в е н ел ьз я и н и циал и з и р о вать н е и з м е н я е м ы й о бъ е кт ка к
N U L L ? П р и в едите , п ожалуй ста , п р и м е р . П ро стите м о ю н е п о ­
нятл и вость .

Егор Бугаенко :

Я вообще н е испол ьзую нул е в ы е ссыл ки . Я либо и н ста н ци рую
о бъе кт со в с е м и н е о бходи м ы м и а р гу м е нта м и , л и б о б р о с а ю
и с кл юч е н и е . Н а м о й вз гляд , нулевое з н а ч е н и е атр и бута объ­
е ктн о го ти па - идеал ь н ы й п р и м е р пл охо с п роекти рова н н о го
п р иложе н и я .

Jea n-Pa u L Wenger сп росил 1 0 октя б ря 20 1 7 года :

Ка к реал изо вать неизменя емую ди н а м и ч ескую структуру да н ­
н ы х ! н апример , дерево , в котором доч е р н и е узл ы м о гут добав ­
ляться во время в ы п ол н е н и я) ?

Егор Бугаен ко :

Н е и з м е н я е м ы й объект - не з н а ч ит кон ста нтн ы й .

RoLa n d Ku h n написал 2 а в густа 20 1 5 года :

О п и с ы ва е м ы е ва м и преи мущества отн осятся к ссылочной про­
зрачности и в общем сп раведл и в ы и корректн ы , н о в ы , к сожа ­
л е н и ю , упус каете основ ную иде ю объектно -ориентирова н н о го

92 Глава 2 • Образование

проектирова н и я . Из и сто ков О О П понятно , что объекты должн ы
б ыть п ро цесса м и , п р и н и ма ю щи м и и отп равл я ю щ и м и сообще ­
н и я . Работы Алана Кея , основа н н ы е на модел и а кторов , гласят
и м е н н о о б это м . Ко н е ч н о же , существуют о бъе кты , кото р ы е
н и когда не меняют поведения , но п р и этом невоз м ожно постро­
ить п ол ез ную распредел е н ную с и стему, в котор о й все объе кты
[в изначал ьном с м ы сле слова] неизменяе м ы , - та кая с и сте ма
не п оз воляет вы ражать изменение состо я н и я . Обобщая эти два
пун кта , с кажу, что то , о чем вы п и ш ете , я вляется не объектно­
о р и е нти р о ва н н ы м п рогра м м и р о ва н и е м , а п ро е кти р о ва н и е м ,
основа н н ы м н а классах . Объекты , о кото рых в ы говорите , - н а
са м о м дел е с о о б ще н и я , кото р ы м и о б м е н и в а ются реал ь н ы е
объекты , и вот о н и дей ств ител ьно должн ы б ыть неизменяем ы ­
м и , и наче п роблем н е избежать.

Егор Бугаенко :

Я кате го р и ч ес к и н е с о гласен с эти м . Это ч и сто п ро цеду р н а я
точ ка з р е н и я . О бъекты - это Н Е п роцесс ы .

Jack написал 8 июня 20 1 5 года :

Я о братил в н и м а н и е : Егор часто го ворит, что нечто есть плохо
с то ч ки з р е н и я О О П , но не есть пл охо с то ч к и з р е н и я фун к­
ционал ьн о го п одхода . О бъекты с о ко н ч а н и е м - е г, в н едр е н и е
з а в и с и м осте й , классы -утил иты - в с е это ч рез в ы ч а й н о важно
для решения задач с п р и м е н е н и е м фун кционал ьного п одхода .

Егор Бугаенко :

Фун к ц и о н ал ь н о е и о бъ е ктн о - о р и е нти р о в а н н о е п ро гр а м м и ­
рова н и е бл и з к и , н о О О П и м еет бол ь ш и е воз м ожн ости в силу
нал и ч и я насл едова н и я , п ол и м о рфизма и т . п .

Jack:

Наследование легко осуществля ется путем повторного исполь­
з о ва н и я фун кци й . П ол и м о р ф и з м м ожн о з а м е н ить п е реда ч е й
ссылки на другой м етод и т. д .

Е гор Бугаенко :

2.7. Пишите тесты, а не документацию 93

Вы п р а в ы . То гда я бы с казал , что О О П п росто более и нтуити вно
понятно . О н о м одел и рует действ ител ьность луч ш е , ч е м фун к­
ционал ьная па рад и гма , поскол ьку мы в состоя н и и понять, что
та кое объе кт, не и м ея о п ыта п р о гра м м и ро ва н и я . П режде ч е м
м ы с м ожем ле гко о п е р и ро вать фун кци я м и , м ы должн ы изуч ить
их, п р и с п особ иться к н и м .

M atteo Vacca гi написал 2 6 октя бря 20 1 4 года :

М н о ги е п р о бл е м ы м ожно естествен н ы м образом с м одел и ро ­
вать изменя е м ы м и объекта м и . Н а п р и м е р , си мулято р ы , и гр ы " .
Да , все это можно см одел и р о вать с и спол ьзова н и е м фун кцио­
нального п одхода , но в та ком случае вы п ривязы ваетес ь к част­
ному способу м одел и ро ва н и я . Я п редп оч ита ю стил ь , кото р ы й
бл иже к моему и нтуити вному о щуще н и ю п редметно й области .
У меня н ет а р гументо в п роти в неизменяем ости , н о у меня есть
а р гумент за изменяем ость. Я за сокращен и е расстоя н и я м ежду
м ентал ьной м одел ью и п ро гра м м н ы м кодом .

Е гор Бугаенко :

Весо м ы й а р гуме нт, я со гл а с е н . Н о я -то ка к раз и стр е мл ю с ь
измен ить/улуч ш ить вашу ментал ьную модел ь. В ы п р и в ы кли мо­
дел и ро вать в тер м и нах изменяемых объектов . П оэтому вам на­
м н о го удобнее делать та к , ка к в ы делаете . Ка к с и мулято р ы , та к
и и гр ы м ожно стро ить с п р и менением неизменяемых объектов .

2 .7. П ишите тесты, а не документаци ю

Документация - очень важная составляющая сопровождаемо­
сти. Даже скорее не документация, а доступность вспомогатель­
ной информации о конкретном классе или методе. Как читателю
вашего кода, мне могут понадобиться дополнительные подроб­
ности или пояснения. Возможно, я не настолько умен, как вы.

94 Глава 2 • Образование

Я могу не знать, как действует ваш алгоритм сортировки, что
такое MDS, как работает конкретное регулярное выражение или
каково назначение /dev/null . Все это вполне возможно. Из соб­
ственного опыта скажу, что чтение кода, написанного «всезна­
ющим� программистом, вызывает огромное раздражение.

Чтобы сделать свой код лучше читаемым, представьте, что
я начинающий программист, слабо понимающий предметную
область, язык программирования, шаблоны проектирования
и алгоритмы. Представьте, что я намного глупее вас. Так вы
демонстрируете свое уважение ко мне. Не хвастайтесь своими
способностями - пишите простой легко читаемый код. Плохие
программисты пишут сложный код. Хорошие программисты
пишут простой код.

Идеальный код говорит сам за себя и не требует дополнитель­
ной документации, например:

Employee j eff = depa rtment . employee (" J eff") ;
j eff . giveRa i s e (new Cash (" $5 , 000")) ;
if (j eff . performance () < 3 . 5) {

j eff . fire () ;
}

Нужно ли документировать такой код? Мне кажется , он до­
статочно прозрачен сам по себе. А как насчет этого фрагмента:

c l a s s Helper {

}

int saveAndChec k (float х) { . . }
float ext ra ct (St ring text) { . . }
boolean convert (int value , boolean ext ra) { . . }

Ужасное имя класса (см. раздел 1 . 1) , ужасные имена методов
(см. раздел 2 .4) , класс в целом спроектирован отвратительно.
Естественно, для него необходима документация. Я не могу
понять, что он делает, зачем нужны его методы и как их исполь­
зовать. Плохо спроектированные классы вынуждают писать для
них документацию. Соответственно хорошо спроектированные

2 .7. Пишите тесты, а не документацию 95

классы документации не требуют. Их назначение понятно, а код
элегантен, например:

c l a s s WebPage {
String content () { . . }
void u pdate (String content) { . . }

}

Мой вам совет: не документируйте код - делайте его чище.

Под этим я, в частности, понимаю написание юнит-тестов. Хотя
юнит-тестирование стало общепринятой практикой относитель­
но недавно 1 , юнит-тест должен рассматриваться как часть класса
наравне с методами, свойствами, именем и перечнем реализу­
емых интерфейсов. К сожалению, в большинстве языков (воз­
можно, во всех) делается совершенно не так. В J ava, к примеру,
юнит-тест - это файл . j ava , содержащий еще один класс. Если
класс называется C a s h , то соответствующий класс теста будет
по договоренности называться C a s hTest . Этот подход неидеа­
лен, поскольку он позволяет создавать классы без юнит-тестов.
Такого быть не должно.

Юнит-тест - часть класса, а не самостоятельная сущность. Есте­
ственно, концептуально, а не технически. Во всех известных мне
языках юнит-тесты технически реализуются в виде отдельных
файлов.

Создавая чистые и сопровождаемые тесты, вы делаете сами
классы чистыми и улучшаете их сопровождаемость. Поэтому чем
лучше тест, тем меньше документации требует класс. Юнит-тест
и есть документация. Должным образом написанный юнит­
тест очень поможет понять ваш класс. При этом он интерна­
ционален. Чтобы понять юнит-тест нa java, нет необходимости
владеть английским в совершенстве, но чтобы понять текст

1 Beck К. Test -Dri ven Development Ьу Example. - Addison Wesley,
2003.

96 Глава 2 • Образование

Jаvаdос-документации, нужны определенные навыки чтения
по-английски.

По аналогии с тем, что «одна картинка стоит тысячи слов» ,
я б ы сказал, что один юнит-тест стоит страницы документации.
Юнит-тест показывает мне, как использовать класс, в то время
как документация рассказывает историю, которую намного
труднее понять и интерпретировать. Не говорите, а показывайте.
И старайтесь делать демонстрацию занимательной. Если вам
удастся сделать юнит-тест правильно, его будут читать даже
чаще, чем код самого класса.

Лучший совет, как писать хорошие, качественные юнит-тесты:
уделяйте им такое же внимание, как и основному коду. Есть
много других хороших советов по созданию юнит-тестов и обе­
спечению их качества. В частности, хотелось бы выделить книги
« Эффективная работа с унаследованным кодом» 1 и «Чистый
код. Создание, анализ и рефакторинг»2•

Некоторые рецензенты попросили меня привести пример хо­
рошего юнит-теста. Я выполню просьбу, прежде всего чтобы
проиллюстрировать эту главу примером кода. Проблема напи­
сания хороших юнит-тестов выходит за рамки книги. Вот что
я назвал бы хорошим юнит-тестом для класса Cash (тест написан
с использованием JUnit и Hamcrest) :

c l a s s CashTest {
@Test
puЫic void s umma rizes () {

a s s ertтhat (
new Cash (" $ 5 ") . plu s (new Cash (" $ 3 ")) ,
equa lTo (new Cash (" $8 "))

1 Физерс М. Эффективная работа с унаследованным кодом. - Вильяме,
2004.

2 Мартин Р. С. Чистый код. Создание, анализ и рефакторинг. - Питер,
2018.

}

}
@Test

2.8 . Используйте fаkе-объекты вместо mосk-объектов 97

puЫic void deducts () {
a s sertтhat (

new Cash (" $7") . plu s (new Cash (" - $ 1 1 ")) ,
equa lTo (new Cash (" - $4 "))

}
@Test
puЫic void mult iplies () {

a s s e rtтhat (

}

new Cash (" $ 2 ") . mu l (З) ,
equa lTo (new Cash (" $6 "))

Много хороших советов по поводу написания юнит-тестов мож­
но найти в книге Growing Object- Oriented Software, Guided Ьу
Tests1 •

2 . 8 . Испол ьзуйте fа kе-объекты
вместо mосk-объектов

Обсуждение на http ://goo.g i/OFЗCev.

Еще один раздел о юнит-тестировании - и хватит. На этот раз
речь пойдет о мокинге как инструменте оптимизации тестов.
Вот как это работает. Допустим, у нас есть класс Cash , умеющий
конвертировать себя в другую валюту:

c l a s s Cash {
private final Exchange exc hange ;
private final int cent s ;
puЫic Ca s h (Exchange exc h , i n t c nt s) {

t h i s . exchange = exc h ;

1 Freeman S. et al. Growing Object-Oriented Software, Guided Ьу Tests. -
Addison-Wesley Professional , 2009 .

98 Глава 2 • Образование

}

this . cents = cnts ;
}
puЫic Cash i n (String cu rren cy) {

return new Cash (t h i s . exchange ,
this . cents *

t h i s . exchange . rate (
" USD" , cu rrency

) ;
}

Этот класс зависит от класса Excha nge, который знает конкрет­
ный курс конверсии долларов, скажем, в евро. Чтобы использо­
вать класс Cash , мы должны передать в его конструктор экзем­
пляр класса Excha nge:

Cash dollar = new Ca s h (new NYSE (" secret ") , 100) ;
Cash euro = dollar . i n (" EUR ") ;

В данном случае класс NYSE знает, как получить курс обмена евро
на доллары с Нью-Йоркской фондовой биржи с помощью, к при­
меру, НТТР-запроса к ее серверу. Здесь я использую строку
" sec ret " в качестве пароля к рабочему серверу биржи. Так класс
Cash работает в реальном окружении, но мы не хотим, чтобы при
каждом запуске юнит-тестов происходили обращения к рабо­
чему серверу биржи. Мы также не хотим, чтобы программисты
знали реквизиты этого сервера. Нам нужно найти способ про­
тестировать класс Cash , не привлекая к этому сервер биржи.

Традиционный подход называется мокинzом. Вместо того чтобы
использовать сервер биржи NYS E , мы создаем имитацию интер­
фейса Exchange и передаем ее в качестве аргумента конструктору
класса Cash (я применяю Mockito 1) :

Exchange excha nge = Moc kito . moc k (Exchange . c lass) ;
Moc kito . doReturn (l . lS)

. when (exchange)

1 Насколько мне известно, он находится здесь: http://nюckito.org/

2 .8 . Используйте fаkе-объекты вместо mосk-объектов 99

. rate (" USD " , " EU R ") ;
Cash dol l a r = new Ca s h (exchange, 500) ;
Cash euro = dol l a r . in (" EU R ") ;
a s s ert " 5 . 75 " . equals (e u ro . toSt ring ()) ;

Уверен, вы знаете о таком приеме. Но я все равно решил его
объяснить, чтобы было проще понять, почему я считаю его ис­
пользование плохой практикой. Да, я утверждаю, что мокинг -
плохая практика, применять его можно только в самых крайних
случаях. Впрочем, если вы разрабатываете объекты в соответ­
ствии с рекомендациями, приводимыми в данной книге, мокинг
вам не понадобится .

Я рекомендую вместо мокинга задействовать fаkе-объекты. Вот как
интерфейс Excha nge должен поставляться пользователям:

interface Exchange {

}

float rate (String orig i n , St ring ta rget) ;
final c l a s s F a ke implements Exchange {

@Override

}

float rate (St ring origi n , St ring ta rget) {
return 1 . 2345 ;

}

Вложенный fаkе-класс - часть интерфейса и должен постав­
ляться вместе с ним. Это важная часть интерфейса E x c h a nge ,

поскольку он помогает применять его в юнит-тестах. Это еще
не все - подробности рассмотрим позже. Теперь разберем юнит­
тест, который использует fаkе-классы вместо мокинга:

Exchange exchange = new Exchange . Fa ke () ;
Cash dol l a r = new Cash (exchange, 500) ;
Cash euro = dollar . i n (" EU R ") ;
a s s e rt " 6 . 17 " . equals (e u ro . toSt ring ()) ;

Выглядит короче, не правда ли? Вы можете возразить, что тест
стал менее очевидным. К примеру, откуда появилось число 6, 17,
если мы нигде не задаем курс конверсии? Это действительно

100 Глава 2 • Образование

так. Но мы можем наделить fаkе-классы еще большими возмож­
ностями. Можно сделать так, чтобы они возвращали инкапсули­
рованный курс вместо константного. В целом fаkе-классы могут
и должны быть весьма функциональными. Я бы даже сказал, что
иногда они должны быть сложнее настоящих классов. Кроме
того, они могут реализовывать нужную функциональность со­
вершенно иным способом, нежели настоящие классы. Они могут
действовать и реагировать на действия по-другому. Это не будет
большой проблемой до тех пор, пока юнит-тесты не станут слиш­
ком сильно зависеть от их поведения. Не подстраивайте тесты
под fаkе-классы.

Убедитесь, что fаkе-классы должным образом соответствуют
вашим тестам.

Fаkе-классы сокращают размер тестов, что серьезно улучшает
их сопровождаемость, тогда как мокинг делает тесты чересчур
многословными и сложными для отладки и рефакторинга. Для
простого интерфейса, такого как Exchange, это неочевидно, но мы
тем не менее смогли сократить тест на одну строку. Когда тест
включает пять объектов разных классов, у каждого из которых
есть по нескольку методов, то спустя пару месяцев нагромож­
дение вызовов Mockito перестанет быть понятным даже автору
тестов.

Но проблема не только в объеме тестов . Она намного шире.
Мокинг усложняет сопровождение тестов, поскольку превра ­

щает предположения в факты. Позвольте объяснить, что я имею
в виду. Взгляните еще раз на эти строки:

Exchange exchange = Moc kito . mo c k (Exchange . c las s) ;
Moc kito . doReturn (l . 15)

. when (exchange)

. rate (" USD " , " EU R ") ;

Что конкретно мы хотим ими сказать? М ы буквально говорим:
« Предположим, что класс C a s h вызывает E x c h a nge . r a t e () » .

2.8 . Используйте fаkе-объекты вместо mосk-объектов 101

Весь юнит-тест построен на этом предположении. Мы не знаем
этого наверняка, поскольку с точки зрения юнит-теста класс
Cash - черный ящик. Мы не знаем, как именно реализован метод
Cash . in () и как именно он использует экземпляр Exchange. Воз­
можно, не использует его вообще. Мы не знаем этого, но делаем
предположение и строим вокруг него весь тест. Мы превращаем
предположения в факты. Говорим: « Вот как должен работать
класс Ca s h ! »

Это плохо. Очень плохо. Почему? Потому что противоречит
общей цели юнит-тестирования - подстраховать процесс ре­
факторинга.

Юнит-тест помогает рефакторингу класса, поскольку дает нега­
тивный результат, когда что-то в поведении класса изменилось
(истинное срабатывание). Но в то же время он не дает негатив­
ного результата, если я не менял поведение (ложное срабаты­
вание) . Это чрезвычайно важная вторая половина принципа
в целом: тест не должен давать отрицательный результат, если
видимое поведение класса не изменилось. Он не должен давать
ложных срабатываний.

Однако наш тест может быть провален без всяких на то причин.
И вот как. Допустим, мы хотим изменить интерфейс Exchange
так, чтобы он выглядел следующим образом:

i nterface Exchange {
float rate (String ta rget) ;
float rate (String origi n , St ring ta rget) ;

}

Первый метод (с одним аргументом) возвращает курс конверсии
из долларов в целевую валюту, а второй (с двумя аргументами)
позволяет указать исходную и целевую валюты.

Затем мы укажем классу Cash , что нужно использовать новый
метод с одним аргументом, когда исходная валюта - доллары.
Что произойдет с нашим юнит-тестом? Правильно, он покажет

102 Глава 2 • Образование

ложное срабатывание. И укажет мне на сбой, которого на самом
деле нет. Класс Cash по-прежнему работает и конвертирует ва­
люты. Все в полном порядке, но тест показывает ошибку.

Это чертовски раздражает и полностью подрывает веру в полез­
ность собственных юнит-тестов. И является одной из ключевых
причин того, что очень многие программисты не любят и не при­
меняют их. Они слишком хрупки и нестабильны, в основном из-за
мокинга. Посмотрим, что произойдет в точно такой же ситуации,
но при использовании fаkе-класса Exchange . Fake вместо мокинга.

При изменении интерфейса Exchange мы автоматически меняем
реализацию класса Exchange . Fake, и теперь она выглядит следу­
ющим образом.

interface Exchange {

}

float rate (St ring ta rget) ;
float rate (String origin , String ta rget) ;
final c l a s s F a ke implements Excha nge {

}

@Override
float rat e (St ring ta rget) {

return t h i s . rate (" USD " , ta rget) ;
}
@Ove rride
float rate (String origi n , String ta rget) {

return 1 . 234 5 ;
}

Нужно ли изменять юнит-тест? Нет. Ломается ли он? Нет.
Мы не поменяли поведение класса Cash , а юнит-тест не дал лож­
ного срабатывания. Это хороший юнит-тест, я могу ему дове­
рять.

Суть в том, что мокинг - изначально плохой подход. Его изобре­
ли, чтобы помочь с юнит-тестированием, но эта помощь сомни­
тельна. Он привязывает тесты к внутренним деталям реализации
класса. Мы делаем предположения, жестко фиксируем их в коде
и на этом закругляемся. Когда приходит время рефакторинга,

2 .8 . Используйте fаkе-объекты вместо mосk-объектов 103

нам приходится удалять свои тесты, поскольку они связаны
с уже несуществующими деталями реализации.

Напротив, fаkе-классы делают тесты полностью сопровождаемы­
ми, поскольку нас не заботит то, как класс Cash взаимодействует
с реализацией интерфейса Exchange. Взаимодействие этих двух
классов не должно касаться юнит-теста класса C a s h . Это лич­
ное дело класса Cash . Он может взаимодействовать с Exchange,
а может и не взаимодействовать. Он может использовать метод
с одним аргументом, а может - с двумя. Решать классу C a s h .
Мы н е имеем нрава делать предположения о его личных реше­
ниях. Все, что нас интересует, - это то, как Cash взаимодействует
с нами, а не то, как он взаимодействует с другими классами.

Вы можете возразить, что раз мы передаем C a s h экземпляр
Exchange, то имеем право знать, как он его применяет. Нет, не име­
ем. Мы не имеем права знать, как реализован объект. Привязка
тестов к внутренним деталям реализации делает тест хрупким
и несопровождаемым.

Мокинг - источник проблемы.

Повторюсь: мокинг - ужасный подход к юнит-тестированию.

Кроме того, большинство mосk-фреймворков дает нам возмож­
ность узнать, осуществилось ли заданное взаимодействие с mосk­
объектом и сколько раз это произошло. На первый взгляд это
удобная возможность, но по той же причине очень вредная .
Ставя тесты в зависимость от взаимодействия классов, мы де­
лаем рефакторинг болезненным, а иногда и невозможным. Мы
не должны проверять, как объект работает со своими зависимо­
стями. Эта информация инкапсулируется объектом. Иными
словами, она спрятана от наших глаз. Секрет.

Но что делать, если с интерфейсом не поставляется fаkе-объект?
Конечно, было бы идеально иметь fаkе-классы для всех интер­
фейсов, но в реальности это не так, правда? Да, именно. Действи­
тельность в общем случае намного менее элегантна, чем приемы,

104 Глава 2 • Образование

описанные в данной книге. Но мы можем ее изменить (действи­
тельность, а не книгу) . Начните со своих интерфейсов - осна­
стите их fаkе-классами. Убедитесь в том, что каждый создава­
емый вами класс не имеет методов, не реализующих интерфейс
(см. раздел 2.3) . Предусмотрите fаkе-классы для всех написан­
ных вами интерфейсов. Так вы начнете изменять мир. Пользо­
ватели ваших классов станут писать более качественные тесты,
а количество мокинга в мире будет уменьшаться.

У fаkе-классов есть еще одно важное преимущество, которое
я обещал описать, - они помогают лучше продумать и спроек­
тировать интерфейс. Работая с интерфейсом и создавая для него
fаkе-класс, вы неизбежно вынуждены думать как пользователь
интерфейса, а не только как его разработчик. Посмотрите на него
под другим углом и попытайтесь реализовать ту же функцио­
нальность, используя тестовые ресурсы.

Возьмем, к примеру, интерфейс WebPage . Его реализация по
умолчанию должна делать НТТР GЕТ-запрос для загрузки
страницы и НТТР РUТ-запрос для ее обновления. Но как реа­
лизовать для нее fаkе-класс? Где будет храниться содержимое
страницы? Как обеспечить потокобезопасность операций чтения
и обновления? Как работать с разными кодировками? Вопросов
будет много. Суть в том, что, отвечая на них и находя оптималь­
ное решение, вы непременно улучшаете интерфейс.

Поэтому держитесь подальше от мокинга и всегда создавайте
fаkе-классы для своих интерфейсов.

Еще я могу привести несколько практических примеров боль­
ших fаkе-классов, которые мы применяем в своих проектах.
Не просто классов, а пакетов классов и даже пакетов пакетов
классов. Однажды, например, мы писали RЕSТful-клиент к API
Github. Сам API весьма обширен - в нем порядка 1 50 точек
входа. Для организации юнит-тестирования клиента мы создали
полную копию API в виде fаkе-классов. Чтобы сохранять данные

2.8 . Используйте fаkе-объекты вместо mосk-объектов 105

и полностью имитировать GitHub, использовали ХМL-файл.
Более 1 50 fаkе-классов обновляли это ХМL-хранилище, и ни
один из них не подозревал, что взаимодействовал с поддель­
ным GitHub, а не с настоящим сервером. Реализация библиоте­
ки fаkе-классов заняла некоторое время, но оказалась ценным
вложением, поскольку благодаря ей юнит-тесты упростились
и уменьшились в размерах1 .

В другом случае уровень персистентности был реализован
в С УБД AWS DynamoDB , а уровень модели реализован на­
бором интерфейсов. Еще у нас были классы, реализующие эти
интерфейсы путем реального взаимодействия с NoSQL-бaзoй
данных. Кроме того, в тестовых целях мы вложили в каждый
интерфейс fаkе-класс, имитирующий персистентность с исполь­
зованием текстовых файлов. Такой набор fаkе-классов сделал
юнит-тесты намного короче и чище2•

Dev Danke написал 1 3 февраля 20 1 5 года :

Я не согласен с это й статье й . Я не согласе н , что м н о ги е дума ют,
будто моки н г - зло и испол ьзо вать е го плохо . Хотя н е кото р ы е
разработч и ки п одде рживают это м н е н и е , пода вл я ющее бол ь­
ш и нство сч итает м о ки н г отл и ч н ы м реш е н и е м . Е ще я н е согла­
сен с те м , что созда ние собственного набора тесто вых объекто в
луч ш е , ч е м п р и м е н е н и е л юбого из п о пул я р н ы х ф р е й м ворков
для м о ки н га . М о ки н г и ю н ит-тести рова н и е я вля ются п е р едо­
в ы м и п ра кти ка м и . М о ки н г и юн ит-тести рова н и е ш и роко п р и ­
м е н я ются п ра ктически во всех средн их и круп н ы х ко м п а н и я х
и о р га н и з а ц и я х . И с п ол ьз о в а н и е ф р е й м в о р ко в дл я м о ки н га
суще ств е н н о р а с ш и р я етс я . Тол ь ко в з гл я н ите н а стати сти ку
за груз о к п о пул я р н ы х ф р е й м в о рков дл я м о ки н га , н а п р и м е р
Mock i to . Их при менение растет экспоненциально ! П опулярность

1 http://github.com/jcabl/jcabl-github.
2 http://github.com/yegor256/rultor.

106 Глава 2 • Образование

фрейм ворков для моки н га увел и ч и вается , поскол ьку разработ­
ч и ки осознают, что тем са м ы м о н и э кон омят время и получа ют
воз м ожность б ы стро п и сать более ка чествен н ы е ю н ит-тесты .
Юн ит-тесты , кото р ы е о н и п и шут, п р о ще дл я п о н и м а н и я и под­
держки други м и разра ботч и ка м и . Испол ьзова н и е са модел ьных
тесто в ы х о бъе кто в дл я ю н ит-те сти р о в а н и я - а нти п атте р н .
Л ю б о й , кто та к дел а ет, на с а м о м дел е созда ет собств е н н ы й
ф р е й м в о р к для м о ки н га . Почти н а в е р н я ка о н будет п р едста в ­
лять собой жал кую, плохо докум енти рован ную и м ита цию [есл и
о н а в о о б ще будет до кум е нти р о ва н а) . Других р а з р а б отч и ко в
вряд л и обрадует п р и менение причудливых са модел ьных тесто­
вых объектов вместо обще п р и нятых ста нда ртн ых ф р е й м в о р ков
для м о ки н га . И не забы ва йте, что время , затраченное на созда ­
ние и документи рование са модел ьных тестовых объектов , могло
б ыть и з р а сходо в а н о на усо в е р ш е н ство в а н и е п ро гра м м н о го
обес п е ч е н и я вашей ко м п а н и и .

Jacob нап исал 7 февраля 20 1 5 года :

Н е существует решения для юн ит-тести рова н и я , кото рое п одо­
шло б ы для л юбого п роекта , но вот нескол ько а р гументо в .

1 . М е н я н е о ч е н ь убежда ет ваш а р гумент о с о п р о в ожда е м о ­
сти . П р и и спол ьзова н и и и н струмента вроде S p o c k вам все­
го л и ш ь п о н адоб ится о бъя в ить три поля и н а п и сать одну
стро ч ку в каждой сп ецифика ц и и вза и м одейств и я с колла ­
бо рато р о м . П охоже , что в а ш е р е ш е н и е ста н ет п о р ождать
м ал о п р и ятн ы е тесто в ы е кла сс ы , ко гда п о я в ится н е обхо ­
д и м о сть тести ро вать всевоз м ожн ы е сцена р и и , требующие
собстве н н о й реал из а ц и и [к п р и м е ру, п ро в е р ка обработки
исключ ител ьных ситуаций) . Фрей м ворки для моки н га позво­
л я ют созда вать управл я е м ы е заглуш ки дл я коллабо раторов
с м и н и мальн ы м и н а кладн ы м и ра схода м и .

2 . Возможно , я что -то упустил , н о то , что в ы п р едл а гаете , -
н е совсем ю н ит-тести р о ва н и е , а не что п охожее на з а глу-

2 .8 . Используйте fаkе-объекты вместо mосk-объектов 107

шечное и нте гра ционное тести рова н и е . Одна из важнейших
часте й и спол ьзова н и я ф р е й м в о р ков дл я м о ки н га - созда ­
н и е mосk-объекто в , кото р ы е з а п и с ы ва ют и п одтве ржда ют
вза имодействие объектов в ра м ках управляемых сцена риев .

l nvisible Arrow сп росил 1 3 декабря 20 1 4 года :

Н е п р и ведет л и включение mосk-объектов в тот же модул ь к не­
п редна мерен ному и спол ьзова н и ю их в рабочем коде? Я п ред­
почел б ы , чтобы о н и находил ись в отдел ьном модуле , кото р ы й
я м о г б ы п р и м е н ять в те сто в о й области с б о р к и з а в и с и м о го
модул я .

Е го р Бугаенко :

И м е н н о та к я и дел ал н е кото р о е в р е м я назад - с озда вал
допол н ител ь н ы й м одул ь , и с п ол ьзуе м ы й в тесто в о й о бла сти .
О кол о года то му назад я понял , что та ко й п одход сложнее , ч е м
п росто распол ожить fа kе - классы рядом с н а стоя щи м и . Я п о ­
нял ваш довод - и о н сов е р ш е н н о верен : fа kе-объекты м о гут
б ыть п р и м е н е н ы в рабочем коде п о о ш и б ке . Н а это у м е н я н ет
ответа . В оз м ожн о , п ото м я на йду ка кие -то доводы и н а п и шу
здесь о н и х .

l nvisible Аггоw нап исал 1 3 декабря 2 0 1 4 года :

В случ а е п р и м е н е н и я н е кото р ы х сто р о н н и х б и бл и оте к , ко ­
то р ы е н е п о ста вля ются с m о с k - о бъ е кта м и , м о ки н г, в е р о ят­
н о , о кажется б ы стрее созда н и я fа kе-класса . Н а п р и м е р , класс
Se rvletContext , и м е ю щ и й бол е е 30 м етодо в , о бъя вл е н н ы х
в и нте р ф е й с е . Тот л и это случ а й , ко гда п р едпо чтител ьно и с ­
п ол ьзо вать моки н г вм есто fа kе - классов?

Егор Бугаенко :

ServletContext - и в п ра вду хоро ш и й п р и м е р , п о с кол ьку это
м о н строобраз н ы й и нте р ф е й с и п о это му п отребует созда н и я

108 Глава 2 • Образование

м о н строо б р а з н о го fа k е - кл а с с а . Та ко го м о н стра н е о бходи м о
создать однажды , и сделать это должны разработч и ки Servlet
API . Та кой класс , ка к FakeServletContext, должен поста вляться
вместе с ServletContext. Это сделало б ы жиз н ь н а м н о го п ро ­
ще. К сожал е н и ю , они та к не дела ют. Есл и mосk - реал изация
ко нте кста сер влета вам нужна во м н о гих местах в п р иложе н и и ,
созда ва йте fа kе- класс . Есл и тол ько однажды - заде й ствуйте
Mock i t o .

2 .9 . Дела йте и нтерфейсы кратки м и,
испол ьзуйте smагt-классы

Обсуждение на http ://goo.gi/1Zos9r.

Я уже упоминал в разделе 1 .2 , что качественно спроектирован­
ный целостный класс должен иметь всего несколько публичных
методов. Мы обсудим это еще подробнее в разделе 3. 1 , но уве­
рен, что вы уже понимаете важность поддержания небольших
размеров классов. Еще важнее делать небольшими интерфейсы.
Почему это приоритетнее? Потому что класс может реализовы­
вать несколько интерфейсов. Если каждый из двух интерфейсов
реализуют по пять методов, то класс, реализующий оба интер­
фейса, должен иметь десять методов. Такой класс элегантным
не назовешь. Помните интерфейс E x c h a nge из предыдущего
раздела? Вот этот:

interface Exchange {
float rate (String ta rget) ;
float rate (String sou rce , String ta rget) ;

}

Он хорош как объект обсуждения того раздела, но спроекти­
рован отвратительно, поскольку требует слишком многого.
Интерфейс - это контракт, который должен соблюдать реа­
лизующий его класс. Этот интерфейс возлагает слишком мно-

2 .9 . Делайте интерфейсы краткими, используйте smart-клaccы 109

го обязанностей на реализующий его класс. Такой контракт
способствует нарушению известного принципа единственной
ответственности, иными словами, созданию рыхлых классов.
Контракт требует от обменника вычислять курс и подставлять
валюту по умолчанию, если она не была указана. Это две раз­
ные функции, хотя и очень близкие друг другу. Я веду к тому,
что метода rate () с одним аргументом в этом интерфейсе быть
не должно.

Должны ли мы определить для него еще один интерфейс? Нет.
Мы должны создать smart-клacc прямо внутри интерфейса:

i nterf ace Excha nge {

}

float rate (String sou rce, String ta rget) ;
final c l a s s Smart {

}

private final Exchange orig i n ;
p u Ь l i c float toUsd (St ring sou r c e) {

return this . origi n . rate (source , " USD") ;
}

В этом smart-клacce может быть намного больше методов, дела­
ющих нечто очевидное и очень общее. Данный smart-клacc не зна­
ет, как реализован обменник и как вычисляется курс, но он реали­
зует поверх этого некоторую функциональность. Эти возможности
можно сделать общими для разных реализаций Exchange.

Вот еще одна причина создавать smart-клaccы и поставлять их
вместе с интерфейсами : не хотелось бы, чтобы разные реали­
зации интерфейса снова и снова переписывали одну и ту же
функциональность. Загрузка обменных курсов с Нью-Йоркской
фондовой биржи - уникальная функция класса NYSE , который
реализует интерфейс Exchange. Но функционал, подставляющий
валюту «доллар США1> в случае, когда она не была указана,
с легкостью может быть использован совместно несколькими
классами.

110 Глава 2 • Образование

Вот как будет применяться вложенный класс E x c h a nge . Smart
в сочетании с классом NYSE :

float rate = new Exchange . Smart (new NYSE ())
. toUsd (" EUR ") ;

Скажем, мы хотим добавить функциональности классу NYS E
и в то же время другим реализациям интерфейса Exchange. До­
пустим, мы часто выполняем преобразование из долларов в евро
и хотим избежать дублирования кода. И не хотим повсюду ис­
пользовать строковый литерал " EUR " . Нам нужен метод напо­
добие e u rToU s d () . Мы не будем добавлять его к интерфейсу
Exchange. Вместо этого поместим его в srnart-клacc. Теперь в нем
два метода:

interf ace Exchange {

}

float rat e (String source , St ring ta rget) ;
final c l a s s Smart {

}

private final Exchange origin ;
puЫic float toUsd (St ring sou rce) {

return t h i s . origin . rate (source, " USD") ;
}
puЫic float eu rToUsd () {

return t h i s . toUsd (" EUR ") ;
}

Мы можем получить курс конверсии евро в доллары следующим
образом:

float rate = new Excha nge . Sma rt (new NYSE ())
. eu rToUsd () ;

Srnart-клacc увеличивается в размерах, а интерфейс E x c h a nge
остается небольшим и целостным. В нем есть всего один метод,
который реализован классами NYSE , ХЕ , Yahoo и другими источ­
никами информации о курсах обмена валюты. Функциональ­
ность srnart-клacca не специфична для конкретного обменника.
Она является общей для всех обменников. Нет необходимости

2 .9 . Делайте интерфейсы краткими, используйте smart-клaccы 111

требовать ее реализации от каждого обменника. Не нужно делать
интерфейс Exchange слишком требовательным.

Вот почему заголовок и тема данного раздела - «делайте ин­
терфейсы краткими» . Интерфейсы - контракты между нами,
пользователями обменника, и программистами, реализующими
класс NYSE . Чем больше интерфейс, тем более он требователен
и тем больше проблем создаст тому, кто будет реализовывать
класс NYS E . И не только потому, что его реализация потребует
больших усилий. Дело в серьезной потере цельности и надеж­
ности класса. Предполагается, что класс NYSE будет выполнять
некие сетевые вызовы к Нью- Йоркской фондовой бирже, и на
этом все. Все остальные возможности - знать о валюте евро
и конвертации в нее - могут быть реализованы кем-то другим.
Этот кто-то - smart-клacc - не должен ничего знать о сетевых
вызовах. Мы, по сути, извлекаем общую функциональность
и избегаем дублирования кода, делая интерфейсы краткими
и поставляя с ними smart-клaccы.

Этот подход очень похож на компонуемые декораторы, рассма­
триваемые в разделе 3.2 . Разница между декоратором и smart­
клaccoм в том, что smart-клacc увеличивает количество методов
объекта, а декоратор усиливает существующие методы. Рассмо­
трим следующий пример:

interface Exchange {
float rat e (String origin , String ta rget) ;
final c l a s s F a st implement s Exchange {

private final Exchange origi n ;
@Override
puЫic float rate (St ring source, St ring ta rget) {

final float rat e ;
if (source . equals (t a rget)) {

rate 1 . 0f ;
} else {

rate t h i s . origin . rate (source, ta rget) ;
}
return rate ;

112 Глава 2 • Образование

}
}

}
puЫic float toUsd (St ring sou r c e) {

return thi s . origi n . rate (source, " USD") ;
}

Вложенный класс Excha nge . F a st одновременно является и де­
коратором, и smart-клaccoм. Во-первых, он переопределяет
метод rate () , тем самым усиливая его. Он пропустит обращение
к сервису обмена валют, если валюты совпадают. Во-вторых, он
добавляет новый метод toUsd () , который упрощает конверсию
в доллары.

BassspieLer нап исал 9 февраля 20 1 8 года :

П о п о в оду и с п ол ьз о в а н и я s m а гt - кл а с с о в : да н н ы е п р и м е р ы
не соответствуют эл ега нтному п р и н ци пу « н е должно существо­
вать публ и ч н ы х методов без а н н ота ции @Override» . Я п о н и м а ю
стоящие за эти м п р и ч и н ы . Н о , может б ыть, есть сп особ улуч ­
ш ить их? Или м ы вы нужде н ы с м и р иться с эти м ? Я раз р ы ва юсь
между теоретически м и и п р а ктически м и довода м и .

Егор Бугаенко :

Да , вы правы , эти smагt - классы - н еидеал ь н ы е объекты . С ко­
рее они я вля ются до п ол н ител ь н ы м и и н струм е нта м и , п о м о гаю­
щи м и созда вать хоро ш и е объе кты . Поэто му да н н ы й п р и н ц и п
к н и м н е п р и м е н и м .

Yev the dev написал 3 0 мая 20 1 6 года :

П оч е му б ы в м е сто и с п ол ьзо в а н и я s m а гt - кла ссов н е о п р еде­
л ить до пол н ител ь н ы е методы ка к методы по умол ч а н и ю , кото ­
р ы е п р и м еняли б ы настоящие и нте рфе й с н ы е м етоды . Да , это
проти вореч и вая возможность, но она решает проблему откры­
тости и , в отл и ч и е от smагt - классов , позвол я ет п рогра м м и сту
в ы п ол н ить собствен ную реал изацию допол н ител ьных м етодо в .

2.9 . Делайте интерфейсы краткими, используйте smart-клaccы 113

Е го р Бугаенко :

М етоды п о умол ч а н и ю - хорошая воз м ожность , н о я дума ю ,
что s m а гt - классы луч ш е . В о сновном п ото му, что у н а с м ожет
быть нескол ько smагt - классов , а методы по умол ч а н и ю должн ы
оста ваться в ра м ках одного и нте рфейса . Ги б кость с н ижа ется .

David Raab написал 2 мая 20 1 6 года :

Хотел б ы я п о с м отр еть н а в а ш е л и цо в тот де н ь в будуще м ,
ко гда в ы осознаете , что все ва ш и класс ы/интерфейсы с одн и м
м етод о м н а с а м о м дел е я вл я ются стати ч е с ки м и м етода м и !
Жду н е дождусь !

Е гор Бугаенко :

Надеюсь , что в будущем стати ческие методы исчез нут.

з Работа

Главное различие между ООП и его процедурными предками
в том, кто стоит у руля. В процедурном программировании за­
правлять будет код с операторами и инструкциями. Инструкции
управляют и манипулируют данными, модифицируют и читают
их. Данные - пассивный компонент, который спокойно си­
дит, ожидая, когда код считает или запишет его. Подпрограммы
и структуры данных - два основных инструмента декомпози­
ции задачи на подзадачи.

ООП переворачивает все с ног на голову. В ООП управляют
объекты - умные представители данных. Инструкции и опера­
торы больше не у дел. По-хорошему, в идеально чистом ООП­
языке их вообще не должно существовать. В нем не должно быть
операторов - только классы и их экземпляры. В ООП мы ком­
понуем меньшие объекты в больший, размером с приложение,
объект и передаем ему управление.

Я понимаю, что все это может звучать очень абстрактно и тео­
ретически, но уверяю вас, что это предельно практично. В не­
скольких последующих разделах я объясню и покажу на приме­
рах, что я имею в виду. Короче говоря, данная глава посвящена
аргументам против крупных объектов, статических объектов,
NU L L-ccылoк, геттеров, сеттеров и оператора new.

3 . 1 . Предоставляйте менее пяти публичных методов 115

3 . 1 . П редоста вля йте менее
пяти публ ичн ых методов

Маленький объект - наиболее элегантный, сопровождаемый,
цельный и верифицируемый объект. В разделе 2 .6 я уже предло­
жил ограничивать размер класса 250 строками, но это не самый
важный показатель. У нас может быть класс из 50 строк и 20 ме­
тодов. Это маленький класс? На самом деле нет. Как насчет
другого примера: класс с одним публичным и 20 приватными
методами? Это маленький класс? Не сказал бы, что он очень
большой.

Поэтому в качестве главного показателя размера класса пред­
лагаю использовать количество публичных (и защищенных)
методов . Чем больше публичных методов , тем больше класс.
Чем больше класс, тем слабее его сопровождаемость. На уме
у меня число пять. Если в классе меньше пяти публичных ме­
тодов, то это приемлемо. Если их больше, класс нуждается в ре­
факторинге. С ним что-то не так.

Обратите внимание на то, что я говорю о публичных методах,
а не о конструкторах и приватных методах. Защищенные методы
также попадают в эту категорию.

Тогда почему пять? Нет никакой особой причины - мне просто
так кажется. Можем ли мы определить правильное количество?
Не думаю. Должны ли принять число пять как абсолютную и не­
поколебимую константу? Нет. Это число нужно, чтобы помочь
вам осознать, что есть верхняя граница количества методов ,
и она невелика. И это не десять, не двадцать, даже не семь мето­
дов. Оно очень невелико. Объявите несколько методов - и вот
вы уже близки к пяти. Остановитесь и подумайте. Вы все еще
пишете цельный, целостный класс, имеющий единственную об­
ласть ответственности? Возможно, пришло время разделить его

116 Глава 3 • Работа

на части. Я хочу, чтобы в промежутке между написанием четвер­
того метода и объявлением пятого вы остановились и подумали.

Что мы получим от того, что сделаем классы небольшими?
Отвечаю: элегантность, сопровождаемость, целостность и вери­
фицируемость.

Меньшие по размеру классы более элегантны просто потому, что
в этом случае меньше вероятность сделать ошибку. Три метода
согласовать между собой проще, чем десять. Они будут лучше
сочетаться.

Меньшие классы лучше сопровождаются, потому что они . . .
меньше по размеру. В них меньше кода, меньше методов, проще
найти ошибку, их проще модифицировать. Проще изолировать
проблему, когда в объекте минимум точек входа, при этом каж­
дый метод есть точка входа в объект.

Меньшие классы более целъные, то есть их методы и свойства на­
ходятся, так сказать, ближе друг к другу. Проще говоря, каждый
метод использует все свойства - вот суть цельности. Если одно
свойство применяется только в двух методах, а другое -- в трех
других, мы можем с уверенностью сказать, что класс состоит из
двух частей, едва связанных друг с другом. Цельность такого клас­
са низкая. Если класс невелик, то повышается вероятность того, что
все его методы будут взаимодействовать со всеми свойствами.

Меньшие классы более верифицируемы, так как проще воспро­
извести все их сценарии использования. Прежде всего потому,
что сценариев не так уж и много. Если у класса есть только один
публичный метод, мы можем с легкостью написать все необхо­
димые для них тесты. Если у класса десять методов, тесты либо
будут слишком велики, либо вообще никогда не будут написаны.

Мне больше нечего сказать. Следите за количеством методов
в классе и не позволяйте ему превысить число пять. Вот и все.

3 .2 . Не используйте статические методы 117

3 . 2 . Не испол ьзуйте
статические методы

Обсуждение на http ://goo.g i/8ql2ov.

Ах, статические методы . . . Одна из моих любимых тем. Мне по­
надобилось несколько лет, чтобы осознать, насколько важна
эта проблема. Теперь я сожалею обо всем том времени, которое
потратил на написание процедурного, а не объектно-ориенти­
рованного программного обеспечения. Я был слеп, но теперь
прозрел. Статические методы - настолько же большая, если
не еще большая проблема в ООП, чем наличие константы NULL .
Статических методов в принципе не должно было быть в Java,
да и в других объектно-ориентированных языках, но, увы, они
там есть. Мы не должны знать о таких вещах, как ключевое
слово static в Java, но, увы, вынуждены. Я не знаю, кто именно
привнес их в Java, но они - чистейшее зло. Статические методы,
а не авторы этой возможности. Я надеюсь.

Посмотрим, что такое статические методы и почему мы до сих
пор создаем их. Скажем, мне нужна функциональность загруз­
ки веб-страницы посредством НТТР-запросов. Я создаю такой
«КЛаССi> :

c l a s s WebPage {

}

puЫic static St ring read (String u r i) {
/ / выполнить НТТР - з а nрос
/ / и конвертировать ответ в UТF 8 - с троку

}

Пользоваться им очень удобно:

St ring html = WebPage . read (" http : //www . j ava . com") ;

Метод read () относится к тому классу методов, против кото­
рого я выступаю. Предлагаю вместо этого использовать объект

118 Глава 3 • Работа

(также я поменял имя метода в соответствии с рекомендациями

из раздела 2 .4) :

c l a s s WebPage {

}

private final St ring u r i ;
p u Ы i c St ring content () {

/ / выполнить НТТР - з апрос
/ / и конвертировать ответ в UТF 8 - строку

}

Вот как им пользоваться:

St ring html = new WebPage (" http : //www . j ava . com")
. content () ;

В ы можете сказать, что между ними нет особой разницы. Стати­
ческие методы работают даже быстрее, потому что нам нет
необходимости создавать новый объект каждый раз , когда
нужно скачать веб-страницу. Просто вызовите статический
метод, он сделает дело, вы получите результат и будете рабо­
тать дальше. Нет необходимости возиться с объектами и сбор­
щиком мусора. Кроме того , мы можем сгруппировать несколь­
ко статических методов в класс-утилиту и назвать его , скажем ,
WebUt i l s .

Эти методы помогут загружать веб-страницы, получать стати­
стическую информацию, определять время отклика и т. п . В них
будет много методов, а использовать их просто и интуитивно
понятно. Кроме того, как применять статические методы, тоже
интуитивно понятно. Все понимают, как они работают. Просто
напишите WebPage . read () , и - вы догадались ! - будет прочитана
страница. Мы дали компьютеру инструкцию, и он ее выполняет.
Просто и понятно, так ведь? А вот и нет !

Статические методы в любом контексте - безошибочный ин­
дикатор плохого программиста, понятия не имеющего об ООП.
Для применения статических методов нет ни единого оправда-

3 .2 . Не используйте статические методы 119

ния ни в одной ситуации. Забота о производительности не счи­
тается . Статические методы - издевательство над объектно­
ориентированной парадигмой. Они существуют в Java, Ruby,
С++, РНР и других языках. К несчастью. Мы не можем их оттуда
выбросить, не можем переписать все библиотеки с открытым
исходным кодом, полные статических методов, но можем пре­
кратить использовать их в своем коде.

Мы должны прекратить применять статические методы.

Теперь посмотрим на них с нескольких разных позиций и обсу­
дим их практические недостатки. Я могу заранее обобщить их
для вас: статические методы ухудшают сопровождаемость про­
граммного обеспечения. Это не должно вас удивлять. Все сво­
дится к сопровождаемости.

Объектное мышление
против компьютерного
Изначально я назвал этот подраздел «Объектное мышление
против процедурного» , но потом переименовал. « Процедур­
ное мышление» означает почти то же самое, но словосочета­
ние «мыслить как компьютер» лучше описывает проблему.
Мы унаследовали этот образ мышления из ранних языков про­
граммирования , таких как AssemЬly, С , COBOL, Basic, Pascal,
и многих других. Основа парадигмы в том, что компьютер ра­
ботает на нас, а мы указываем ему, что делать, давая ему явные
инструкции, например:

СМР АХ, ВХ
J NAE greater
MOV СХ, ВХ
RET

greate r :
MOV СХ, АХ
RET

120 Глава 3 • Работа

Это ассемблерная «подпрограмма» для процессора Intel 8086.
Она находит и возвращает большее из двух чисел. Мы помеща­
ем их в регистры АХ и ВХ соответственно, а результат попадает
в регистр СХ. Вот точно такой же код на языке С:

int max (int а , int Ь) {

}

if (а > Ь) {
return а ;

}
return Ь ;

«Что же с этим настолько не так?» - спросите вы . Н ичего.
Все с этим кодом в порядке - он работает, как и положено.
Именно так работают все компьютеры. Они ожидают, что мы да­
дим им инструкции, которые они будут исполнять одну за другой.
Многие годы мы писали программы именно так. Преимущество
данного подхода в том, что мы остаемся вблизи процессора,
направляя его дальнейшее движение. Мы у руля, а компьютер
следует нашим инструкциям. Мы указываем компьютеру, как
найти большее из двух чисел. Мы принимаем решения, он им
следует. Поток исполнения всегда последователен, от начала
сценария до его конца.

Такой линейный тип мышления называется «думать как компью­
тер» . Компьютер в какой-то момент начнет исполнять инструк­
ции и в какой-то момент закончит делать это. При написании
кода на языке С мы вынуждены думать таким образом. Опера­
торы, разделенные точками с запятыми, идут сверху вниз. Такой
стиль унаследован из ассемблера.

Хотя языки более высокого уровня, чем ассемблер, имеют про­
цедуры, подпрограммы и другие механизмы абстракции, они
не устраняют последовательный образ мышления. Программа
все равно проходится сверху вниз. В таком подходе нет ничего
зазорного при написании небольших программ, но в более круп­
ных масштабах так мыслить трудно.

3 .2 . Не используйте статические методы 121

Взглянем на тот же код, записанный на функциональном языке
программирования Lisp:

(defun max (а Ь)
(if (> а Ь) а Ь))

Можете ли вы сказать, где начинается и заканчивается исполне­
ние этого кода? Нет. Мы не знаем, ни каким образом процессор
получит результат, ни то, как конкретно будет работать функ­
ция i f . Мы очень отстранены от процессора. Мы мыслим как
функция, а не как компьютер. Когда нам нужна новая вещь, мы
определяем ее:

(def х (max 5 9))

Мы определяем, а не даем инструкции процессору. Этой строч­
кой мы привязываем х к (ma x 5 9) . Мы не просим компьютер
вычислить большее из двух чисел. Мы просто говорим, что х есть
большее из двух чисел. Мы не управляем тем, как и когда это бу­
дет вычислено. Обратите внимание, это важно: х есть большее из
чисел. Отношение «есть» («быть», «являться») - то, чем отлича­
ется функциональная, логическая и объектно-ориентированная
парадигма программирования от процедурной.

При компьютерном образе мышления мы находимся у руля
и контролируем поток исполнения инструкций. При объектно­
ориентированном образе мышления мы просто определяем,
кто есть кто, и пусть они взаимодействуют, когда это им пона­
добится . Вот как вычисление большего из двух чисел должно
выглядеть в ООП:

c l a s s М а х implements Number {
private final Number а ;
private final Number Ь ;

}

puЬlic Max (Number left , Number right) {
t h i s . a left ;
t h i s . b = right ;

}

122 Глава 3 • Работа

А так я буду его использовать:

Number х = new Max (S , 9) ;

Смотрите, я не вычисляю большее из двух чисел. Я определяю,
что х есть большее из двух чисел. Меня не особо беспокоит, что
находится внутри объекта класса Мах и как именно он реализует
интерфейс Number. Я не даю процессору инструкции относитель­
но этого вычисления. Я просто инстанцирую объект. Это очень
похоже на def в Lisp. В этом смысле ООП очень похоже на функ­
циональное программирование.

Напротив, статические методы в ООП - то же самое, что под­
программы в С или ассемблере. Они не имеют отношения к ООП
и заставляют нас писать процедурный код в объектно-ориенти -
рованном синтаксисе. Вот код нa java:

int х = Math . max (S , 9) ;

Это совершенно неправильно и не должно использоваться в на­
стоящем объектно-ориентированном проектировании.

Декларативный стиль
против императивного
Императивное программирование «описывает вычисления
в терминах операторов, изменяющих состояние программы� .
Декларативное программирование, с другой стороны, «выра­
жает логику вычисления, не описывая поток его выполнения�
(я цитирую «Википедию�) . Об этом мы, по сути, говорили на
протяжении нескольких предыдущих страниц. Императивное
программирование похоже на то, что делают компьютеры, - по­
следовательное выполнение инструкций . Декларативное про­
граммирование ближе к естественному образу мышления, в ко­
тором у нас есть сущности и отношения между ними. Очевидно,
что декларативное программирование - более мощный подход,
но императивный подход понятнее процедурным программи-

3 . 2 . Не используйте статические методы 123

стам. Почему декларативный ПО/(ХОд более мощный? Не пере­
ключайтесь, и чере:з несколько страниц мы доберемся до сути.

Какое отношение все это имеет к статическим методам? Неваж­
но, статический это метод или объект, мы все еще должны где-то
написать if (а > Ь) , так ведь? Да, именно так. Как статический
метод, так и объект - всего лишь обертка над оператором i f,
который выполняет задачу сравнения а с Ь . Разница в том, как
эта функциональность испол ьауется другими классами , объ­
ектами и методам и . И это существенная разница. Рассмотрим
ее на примере.

Скажем, у меня есть интервал, ограниченный двумя целыми
ч ислами, и целое число, которое должно в него попадать. Я дол­
жен убедиться, что это так. Вот что мне придется сделать, если
метод max () - статический:

puЬlic static int between (int 1, int r , int х) {
ret u rn Math . mi n (Math . max (l , х) , r) ;

}

Нужно создать еще один статический метод, between () , который
использует два 1 1меющихся статических метода, Ma t h . m i n ()
и Math . max () . Есть только один способ это сделать - императив­
ный 1юдход, поскол ьку значение вычисляется сразу же. Когда
я делаю вызов, я немедленно получаю результат:

int у = Math . between (S , 9, 1 3) ; // возвращает 9

Я получаю число 9 сразу же после вызова between () . Когда будет
сделан вызов, мой процессор тут же начнет работать над этим
вычислением. Это императивный подход. А как тогда выглядит
декларативный нодход?

Вот, взгляните:

c l a s s Between implements Number {
private final Number num;
Between (Number left , Number right , Number х) {

this . num = new Min (new Max (left , х) , right) ;

124 Глава 3 • Работа

}

}
@Override
puЫic int intValue () {

return t h i s . num . i ntVa lue () ;
}

Вот как я его буду использовать:

Number у = new Between (S , 9, 1 3) ; // еще не выч и сляется !

Чувствуете разницу? Она чрезвычайно важна. Такой стиль будет
де'КЛаративным, поскольку я не указываю процессору, что вы­
числения нужно выполнить сразу. Я просто определил, что это
такое, и оставил на усмотрение пользователя решение о том,
когда (и нужно ли вообще) вычислять переменную у методом
intValue () . Может, она никогда не будет вычислена и мой про­
цессор никогда не узнает, что это число 9. Все, что я сделал, -
объявил, что такое у . Просто объявил. Я еще не дал никакой
работы процессору. Как указано в определении, выразил логику,
не описывая процесс.

Я уже слышу: «О'кей, понял вас. Есть два подхода - декларатив­
ный и процедурный, но почему первый лучше второго?» Ранее
я упомянул, что очевидно, что декларативный подход более
мощный, но не объяснил почему. Теперь, когда мы рассмотрели
оба подхода на примерах, обсудим преимущества декларатив­
ного подхода.

Во-первых, он быстрее. На первый взгляд он может показаться
более медленным. Но если присмотреться внимательнее, станет
видно, что на деле он быстрее, поскольку оптимизация произво­
дительности полностью в наших руках. Действительно, на соз­
дание экземпляра класса Between потребуется больше времени,
чем на вызов статического метода between () , по крайней мере
в большинстве языков программирования, доступных на момент
написания этой книги. Я очень надеюсь на то, что в ближайшем
будущем у нас появится язык, в котором инстанцирование объ-

3 .2 . Не используйте статические методы 125

екта будет столь же быстрым, как и вызов метода. Но мы еще
не пришли к нему. Вот почему декларативный подход медлен­
нее". когда путь исполнения прост и прямолинеен.

Если речь идет о простом вызове статического метода, то он,
безусловно, будет быстрее, нежели создание экземпляра объекта
и вызов его методов. Но если у нас много статических методов,
они будут последовательно вызываться при решении задачи ,
а не только для того, чтобы работать над действительно нужны­
ми нам результатами. Как насчет этого:

puЬlic void doit () {

}

int х = Mat h . between (S , 9 , 13) ;
if (/ * Надо л и ? * /) {

System . out . println (" x= " + х) ;
}

В данном примере мы вычисляем х вне зависимости от того,
нужно нам его значение или нет. Процессор в обоих случаях
найдет значение 9. Будет ли следующий метод, использующий
декларативный подход, работать так же быстро, как предыду­
щий?

puЫic void doit () {

}

I nteger х = new Between (S , 9 , 13) ;
if (/ * Надо л и ? * /) {

System . out . println (" x= " + х) ;
}

Я думаю, что декларативный код окажется быстрее. Он лучше
оптимизирован. И не указывает процессору, что ему делать.
Напротив, он позволяет процессору решить, когда и где действи­
тельно понадобится результат, - вычисления выполняются по
требованию.

Суть в том, что декларативный подход быстрее, поскольку он оп­
тшшлен. Это первый аргумент в пользу декларативного подхода
по сравнению с императивным в объектно-ориентированном

126 Глава 3 • Работа

программировании. Императивному стилю однозначно не место
в ООП, и первая причина этого - оптимизация производитель­
ности . Не стоит говорить о том, что чем больше вы контролиру­
ете оптимизацию кода, тем более он сопровождаемый. Вместо
того чтобы оставить оптимизацию процесса вычисления на
откуп компилятору, виртуальной машине или процессору, мы
делаем ее самостоятельно.

Второй аргумент - полиморфизм. Если говорить просто, то по­
лиморфизм - это возможность разрывать зависимости между
блоками кода. Допустим, я хочу поменять алгоритм определения
того, попадает ли число в определенный интервал. Он довольно
примитивен сам по себе, но я хочу его изменить. Я не хочу ис­
пользовать классы Мах и Min . А хочу, чтобы он выполнял срав­
нение с применением операторов if-then - else . Вот как сделать
это декларативно:

c l a s s Between implements Number {
private final Number num ;

}

Between (int left , int right , int х) {
t h i s (new Min (new Max (left , х) , right)) ;

}
Between (Number numbe r) {

t h i s . num = numbe r ;
}

Это тот же класс Between , что и в предыдущем примере, но с до­
полнительным конструктором. Теперь я могу использовать его
с другим алгоритмом:

I nteger х = new Between (
new IntegerWithMyOwnAlgorithm (S , 9 , 13)

) ;

Это, наверное, не лучший пример, поскольку класс Between очень
примитивен, но, надеюсь, вы понимаете, о чем я. Класс Between

очень просто отделить от классов М а х и Min , поскольку они явля ­
ются классами. В объектно-ориентированном программирова-

3 .2 . Не используйте статические методы 127

нии объект является полноправным гражданином, а статический
метод - нет. Мы можем передать объект в качестве аргумента
конструктору, но не можем сделать то же самое со статиче­
ским методом1 . В ООП объекты связаны с объектами, общаются
с объектами, обмениваются с ними данными. Чтобы полностью
отвязать объект от остальных объектов, мы должны убедиться,
что он не использует оператор пеw ни в одном из своих методов
(см. раздел 3 .6) , а также в главном конструкторе.

Позвольте повторить: чтобы полностью отвязать объект от дру­
гих объектов , вы всего лишь должны убедиться, что оператор
пеw не применяется ни в одном из его методов, включая главный
конструктор.

Можете ли вы проделать такую же отвязку и рефакторинг с им­
перативным фрагментом кода?

int у = Mat h . between (S , 9, 13) ;

Нет, не можете. Статический метод between () использует два
статических метода, min () и max () , и вы ничего не сможете сде­
лать, пока не перепишете его полностью. А как вы сможете его
переписать? Передадите четвертым параметром новый стати­
ческий метод?

Насколько уродливо это будет выглядеть? Думаю, весьма.

Вот мой второй аргумент в пользу декларативного стиля про­
граммирования - он снижает сцепленность объектов и делает
это очень элегантно. Не говоря уже о том, что меньшая сцеплен­
ность означает большую сопровождаемость.

1 Мы, конечно, можем сделать это на разных языках, включая jаvа8,
Ruby, РНР и Python, но такая возможность не имеет ничего общего
с объектно-ориентированным программированием. Это суррогат
процедурного и функционального программирования , который
существует во всех популярных языках в силу его <�удобства>,> . На са­

мом деле это только запутывает ситуацию. - Примеч. авт.

128 Глава 3 • Работа

Третий довод в пользу превосходства декларативного подхода
над императивным - декларативный подход говорит о результа­
тах, а императивный объясняет единственный способ их полу­
чения. Второй подход намного менее интуитивно понятен, чем
первый. Я должен сперва «выполнить» код в голове, чтобы по­
нять, какого результата ожидать. Вот императивный подход:

Collection< I ntege r > evens = new LinkedList< > () ;
for (int number : numbers) {

}

if (n umber % 2 == 0) {
even s . add (number) ;

}

Чтобы понять, что делает данный код, я должен пройти по нему,
визуализировать этот цикл. По сути, я должен сделать то, что
делает процессор, - пройтись по всему массиву чисел и поме­
стить четные в новый список. Вот этот же алгоритм, записанный
в декларативном стиле:

Collect ion< I nteger> evens = new F i ltered (
numbe r s ,

) ;

new Predicate< I nteger > () {
@Override

}

puЬlic boolean s u itaЫe (Integer numbe r) {
ret u rn number % 2 == 0 ;

}

Этот фрагмент кода намного ближе к английскому языку, чем
предыдущий. Он читается следующим образом: «eve n s - это

фильтрованная коллекция, включающая только те элементы, ко­
торые являются четными». Я не знаю, как именно класс Filtered
создает коллекцию - использует ли он оператор for или что-то
еще. Все, что я должен знать, читая этот код, - то, что коллекция
была отфильтрована. Детали реализации скрыты, а поведение
выражено.

3 .2 . Не используйте статические методы 129

Я осознаю, что некоторым читателям данной книги проще
было воспринять первый фрагмент. Он немного короче и очень
похож на то, что вы ежедневно видите в коде, с которым имеете
дело. Я уверяю вас, что это дело привычки. Это обманчивое
ощущение. Начните думать в терминах объектов и их поведе­

ния, а не алгоритмов и их исполнения, и вы приобретете истин­
ное восприятие. Декларативный стиль непосредственно каса­
ется объектов и их поведения, а императивный - алгоритмов

и их исполнения.

Если вы считаете этот код уродливым, попробуйте, например,

Groovy:

def evens new F i ltered (
numbers ,

) ;
{ Integer number - > number % 2 0 }

Четвертый довод - цельность кода. Взгляните еще раз на преды­
дущие два фрагмента. Обратите внимание на то, что во втором

фрагменте мы объявляем eve n s одним оператором - evens =

F i lt e r e d (".) . Это значит, что все строки кода, ответственные
за вычисление данной коллекции, находятся рядом друг с дру­
гом и не могут быть по ошибке разделены. Напротив, в первом
фрагменте нет очевидной «склейки» строк. Можно с легкостью
поменять их порядок по ошибке, и алгоритм сломается.

В таком простом фрагменте кода это небольшая проблема, по­

скольку алгоритм очевиден. Но если фрагмент императивного
кода более крупный - скажем, 50 строк, может оказаться трудно
понять, какие строки кода связаны друг с другом. Мы обсудили
проблему темпорального сцепления чуть раньше - во время
обсуждения неизменяемых объектов. Декларативный стиль
программирования также помогает устранить это сцепление,
благодаря чему улучшается сопровождаемость.

130 Глава 3 • Работа

Вероятно, есть еще доводы, но я привел самые важные, с моей
точки зрения, из относящихся к ООП. Надеюсь, я смог убедить
вас в том, что декларативный стиль - это то, что надо. Некото­
рые из вас могут сказать: «да, я понимаю, о чем вы. Я буду со­
вмещать декларативный и императивный подходы там, где это
уместно. Я буду использовать объекты там, где это имеет смысл,
а статические методы - тогда, когда мне надо быстро сделать
что-то несложное вроде вычисления большего из двух чисел» .
«Нет, вы неправы ! » - отвечу вам я . Вы не должны их совмещать.
Н икогда не применяйте императивный стиль. Это не догма.
У этого есть вполне прагматичное объяснение.

Императивный стиль нельзя совместить с декларативным чисто
технически. Когда вы начинаете использовать императивный
подход, вы обречены - постепенно весь ваш код станет импе­
ративным.

Допустим, у нас есть два статических метода - max () и min () .
Они выполняют небольшие быстрые вычисления, поэтому мы
делаем их статическими. Теперь нам нужно создать больший
алгоритм, чтобы определить, принадлежит ли число интервалу.
На сей раз мы хотим пойти декларативным путем - создать
класс Betwe e n , а не статический метод betwe e n () . Можем ли
мы так сделать? Наверное, да, но суррогатным способом, а не
так, как положено. Мы не можем использовать конструкторы
и инкапсуляцию. И вынуждены делать непосредственные, яв­
ные вызовы статических методов прямо внутри класса Between .

Иными словами, мы не сможем написать чисто объектно-ори­
ентированный код, если повторно применяемые компоненты
представляют собой статические методы.

Статические методы напоминают раковую болезнь объектно­
ориентированного ПО: однажды позволив им поселиться в коде,
мы не сможем избавиться от них - их колония будет только
расти. Просто обходите их стороной в принципе.

3 .2 . Не используйте статические методы 131

«Но они у меня повсюду ! - воскликнете вы. - Что же делать?»
Что я могу сказать" . у вас проблемы, как и у всех нас. Суще­
ствуют тысячи объектно-ориентированных библиотек, прак­
тически полностью состоящих из классов-утилит (мы обсу­
дим их в следующем разделе). Здесь, как и с опухолью, лучшее
средство - нож. Не используйте такие программы, если мо­
жете это себе позволить. Однако в большинстве случаев вы
не сможете позволить себе воспользоваться ножом, поскольку
эти библиотеки весьма популярны и предоставляют полезную
функциональность. В данном случае лучшее, что вы можете
сделать, - изолировать опухоль, создав собственные классы,
которые оборачивают статические методы так, чтобы ваш код
работал исключительно с объектами. К примеру, в библиотеке
Apache Commons есть статический метод FileUtils . read Lines () ,
который считывает все строки из текстового файла. Вот как мы
можем превратить его в объект:

c la s s F i lelines implements IteraЬle <String> {
private final F i le file ;

}

puЫic Iterator<String> iterator () {
return Arrays . a s l i s t (

F i leUt i l s . read Lines (t h i s . file)
) . i terator () ;

}

Теперь, чтобы прочесть все строки из текстового файла, наше
приложение должно будет сделать следующее:

IteraЬle<String> lines = new Filelines (f) ;

Вызов статического метода произойдет только внутри класса
F i lelines , и со временем мы сможем от него избавиться. Либо
этого не произойдет никогда. Но суть в том, что в нашем коде
статические методы не будут вызываться нигде, за исключением
одного места - класса F i le l ines . Так мы изолируем усопших,
что позволяет нам разбираться с ними постепенно.

132 Глава 3 • Работа

Классы-утилиты
Так называемые классы-утилиты на самом деле являются не клас­
сами, а лишь набором статических методов, используемых дру­
гими классами для удобства (они известны также как методы­
помощники). К примеру, класс j ava . lang . Math - классический
образец класса-утилиты. Такие порождения очень популярны
в J ava, Ruby и, к сожалению, почти во всех современных языках
программирования. Почему они не являются классами? Потому
что из них нельзя инстанцировать объекты. В разделе 1 . 1 мы
обсудили разницу между объектом и классом и пришли к тому,
что класс - это фабрика объектов. Класс-утилита не является
фабрикой, например:

c l a s s Math {

}

private Math () {
1 1 намеренно пустой

}

puЫic static int max (int а , int Ь } {
if (а < Ь } {

return Ь ;
}

return а ;
}

Хорошей практикой для тех, кто использует классы-утилиты,
является создание приватного конструктора, как в примере, во
избежание создания экземпляра класса. Поскольку конструк­
тор приватный, никто, кроме методов класса, не может создать
экземпляр класса.

Классы-утилиты - триумф процедурных программистов в об­
ласти объектно-ориентированного программирования. Класс­
утилита - не просто ужасная вещь вроде статического мето­
да - это скопище ужасных вещей. Все плохие слова, сказанные
о статических методах, могут быть повторены с многократным

3 .2 . Не используйте статические методы 133

усилением. Классы-утилиты - ужасный антипаттерн в ООП.
Держитесь от них подальше.

Патrерн «Синглтон»
Паттерн « Синглтон� - популярный прием, претендующий на
то, чтобы стать заменой статических методов. Действительно,
в классе будет только один статический метод, а синглтон при
этом будет выглядеть почти как настоящий объект. Однако он
им не является:

c l a s s Math {

}

private static Math INSTANCE = new Math () ;
private Math () { }
puЬlic static Math get i n stance () {

return Math . INSTANCE ;
}
puЬlic int max (int а , int Ь) {

if (а < Ь) {
return Ь ;

}
return а ;

}

Выше приведен типичный пример синглтона. Существует
единственный экземпляр класса Mat h , который называется
I NSTANC E . Каждый может получить к нему доступ, просто вы­
звав get I n s t а n с е () . Конструктор сделан приватным, чтобы
предотвратить прямое инстанцирование объектов данного клас­
са. Единственный способ получить доступ к INSTANCE - вызвать
getinstance () .

«Синглтон� известен как паттерн проектирования, но в действи­
тельности это ужасный а11типаттер11. Есть масса причин того,
почему это плохой прием программирования. Я приведу лишь
некоторые из них, касающиеся статических методов. Было бы,
конечно, проще, если бы мы сначала обсудили то, чем синглтон

134 Глава 3 • Работа

отличается от класса-утилиты, о котором мы только что говори­
ли. Вот как выглядел бы класс-утилита Math , который делает то
же, что и приведенный ранее синглтон:

c l a s s Math {

}

private Math () { }
puЫic stat ic int max (int а , int Ь) {

if (а < Ь) {
return Ь ;

}
return а ;

}

Вот так будет использоваться метод max () :

Math . max (S , 9) ; // кла с с - утилита
Mat h . get i n stance () . max (S , 9) ; // с и н глтон

В чем разница? Выглядит, будто вторая строка просто длиннее,
а делает то же самое. Зачем было изобретать синглтон, если у нас
уже были статические методы и классы-утилиты? Я часто задаю
этот вопрос на собеседованиях с jаvа-программистами. Первое,
что я обычно слышу в ответ: «Синглтон позволяет инкапсули­
ровать состояние» . Например:

c l a s s User {

}

private stat ic User INSTANCE new User () ;
private String name;
private User () { }
puЬlic static User get!nstance () {

ret u rn User . INSTANCE ;
}
puЬlic String getName () {

return this . name ;
}
puЬlic String setName (St ring txt) {

t h i s . name = txt ;
}

Это ужасный фрагмент кода, но я вынужден привести его в каче­
стве иллюстрации к своим доводам. Этот синглтон значит бук-

3 .2 . Не используйте статические методы 135

вально «пользователь, в данный момент применяющий систе­
му». Этот подход очень популярен во многих веб-фреймворках,
где существуют синглтоны пользователей, веб-сессий и т . п .
Итак, типичный ответ на мой вопрос о разнице между синглто­
ном и классом-утилитой: «Синглтон инкапсулирует состояние».
Но это неверный ответ. Цель синглтона не в хранении состояния.
Вот класс-утилита, который делает то же, что и упомянутый
ранее синглтон:

c la s s User {

}

private stat ic St ring name ;
private User () { }
p u Ы i c stat ic St ring getName () {

return Use r . name ;
}
puЫic stat ic String setName (String txt) {

Use r . name = txt ;
}

Этот класс-утилита хранит состояние, и между ним и упомяну­
тым синглтоном нет никакой разницы. Итак, в чем же пробле­
ма? И каков же правильный ответ? Единственно верный ответ
состоит в том, что синглтон - это зависимость, которую можно
разорвать, а класс-утилита - жестко запрограммированная
тесная связь, которую разорвать невозможно. Иными словами,
преимущество синглтонов в том, что в них можно добавить
метод set i n stanc e () наряду с getinstance () . Этот ответ верен,
хотя я слышу его нечасто. Допустим , я использую синглтон
следующим образом:

Mat h . get ! n stance () . max (S , 9) ;

Мой код сцеплен с классом Math . Иными словами, класс Math -

зависимость, на которую я полагаюсь. Без этого класса код
не будет работать, и для его тестирования мне придется остав­
лять класс Math доступным, чтобы иметь возможность выпол­
нять запросы. В случае с данным конкретным классом эта про­
блема невелика, поскольку он весьма примитивен. Однако

136 Глава 3 • Работа

если синглтон большой, то мне, возможно, придется применять
мокинг или заменять его чем-то, что лучше подходит для те­
стирования. Проще говоря, я не хочу, чтобы метод Math . max ()
выполнялся во время работы юнит-теста. Как мне это сделать?
А вот как:

Math math = new F a keMath () ;
Math . set i n st an ce (math) ;

Паттерн «Синглтон» обеспечивает возможность заменить инкап­
сулированный статический объект, что позволяет тестировать
объект. Правда в следующем: синглтон намного лучше класса­
утилиты только потому, что позволяет заменить инкапсулируе­
мый объект. В классе-утилите нет объекта - мы не можем ничего
изменить. Класс-утилита - неразрывная жестко запрограмми­
рованная зависимость - чистейшее зло в ООП.

Итак, о чем я? Синглтон лучше класса-утилиты, но все же явля­
ется антипаттерном, причем довольно плохим. Почему? Потому,
что логически и технически синглтон - vюбальная переменная,
ни больше, ни меньше. А в ООП нет глобальной области види ­
мости. Поэтому глобальным переменным здесь не место . Вот
программа на С, в которой переменная объявлена в глобальной
области видимости:

#include < stdio>
int line = 0 ;
void echo (char* text) {

printf (" [%d] %s\n " , ++line , text) ;
}

Всякий раз когда мы вызываем echo () , инкрементируется гло­
бальная переменная l i n e . Чисто технически переменная l i n e
видна и з каждой функции и каждой строки кода в * . с -файле.
Она видна глобально. Хвала разработчикам Java за то, что они
не скопировали эту возможность из языка С. B Java, как и в Ruby
и во многих других недо-ООП-языках, глобальные переменные
запрещены. Почему? Потому что они не имеют никакого отно­
шения к ООП. Это чисто процедурная возможность. Глобальные

3 .2 . Не используйте статические методы 137

переменные однозначно нарушают принцип инкапсуляции. Они
просто ужасны. Надеюсь, мне больше не придется объяснять это
в данной книге. Мне кажется очевидным, что глобальные пере­
менные настолько же плохи, насколько плох оператор GOTO.

Однако, несмотря на все доводы против глобальных переменных,
кто-то 1 нашел способ привнести их в J ava, создав тем самым
паттерн «Синглтон». Это попросту издевательство над принци­
пами объектно-ориентированного проектирования, ставшее воз­
можным благодаря наличию статических методов. Эти методы
технически позволяют такое жульничество.

Никогда не используйте синглтоны. Даже не думайте.

«Чем их заменить? - спросите вы. - Если нам нужно, чтобы
нечто было доступно многим классам в рамках всего программ­
ного продукта, что мы можем сделать?» Скажем, нам очень надо,
чтобы большинство классов знало о том, какой пользователь
в данный момент вошел в систему. У нас нет классов-утилит
и синглтонов. Что у нас есть? Инкапсуляция !

Просто инкапсулируйте пользователя во все объекты, в которых
он может пригодиться.

Все, что нужно вашему классу для работы, должно быть переда­
но посредством конструктора и инкапсулировано внутри класса.
Вот и все. Без исключения. Объект не должен затрагивать ниче­
го, кроме своих инкапсулированных свойств. Вы можете сказать,
что придется инкапсулировать слишком много: подключения
к базам данных, вошедшего в систему пользователя, аргументы
командной строки и т. п. Да, действительно, всего этого может
оказаться слишком много, если класс чересчур большой и недо­
статочно цельный. Если вам нужно инкапсулировать слишком

1 Я не знаю, чьих это рук дело, но синглтон описан в книге «Паттерны
проектирования» «банды четырех» как паттерн проектирования.

Я бы рекомендовал вам прочесть эту книгу, но со здоровой долей
скептицизма.

138 Глава 3 • Работа

много, переработайте класс - уменьшите его, о чем говорилось
в разделе 2 . 1 .

Н о никогда н е применяйте синглтон. Для этого правила нет ис­
ключений.

Функциональное программирование
Я часто слышу такой довод: если объекты небольшие и неизменя­
емые и при этом не задействуются статические методы, то поче­
му бы не использовать функциональное программирование (Ф П)?
Действительно, если объекты элегантны настолько, насколько
рекомендуется в данной книге, то они весьма похожи на функции.
Итак, зачем нам нужны объекты? Почему бы просто не исполь­
зовать Lisp, Clojure или Haskell вместо jаvа или С++?

Вот класс, представляющий алгоритм определения большего из
двух чисел:

c l a s s Мах implements Number {
private final int а ;
private final int Ь ;

}

puЫic Max (int left , int right) {
t h i s . a left ;
this . b = right ;

}
@Override
puЬlic int intVa lue () {

}
return t h i s . a > this . b this . a this . b ;

Вот как мы должны его применять:

Number х = new Max (S , 9) ;

А вот как мы задали бы в Lisp функцию, которая делала бы то же
самое:

(defn max
(а Ь)
(if (> а Ь) а Ь))

3 .2 . Не используйте статические методы 139

Итак, зачем же использовать объекты? Код на Usp намного короче.

О О П более выразительно и имеет большие возможности, по­
скольку оперирует объектами и методами, тогда как Ф П - лишь
функциями. В некоторых ФП-языках тоже есть объекты, но
я бы назвал их ООП-языками с ФП-возможностями, а не на­
оборот. Я также считаю, что лямбда-выражения в Java, будучи
подвижкой в сторону Ф П, делают J ava более рыхлым, сбивая
нас с истинного ООП-пути. ФП - отличная парадигма, но ООП
лучше. Особенно при правильном применении.

Мне кажется, в идеальном ООП-языке у нас были бы классы
с функциями внутри. Не методы-микропроцедуры, как сейчас
в Java, а настоящие (в смысле функциональной парадигмы)
функции, имеющие единственную точку выхода. Это было бы
идеально.

Компонуемые декораторы
Кажется, этот термин я придумал . Компонуемые декораторы -
просто объекты-обертки над другими объектами. Они являются
декораторами - известным паттерном объектно-ориентирован­
ного проектирования, - но становятся компонуемыми, когда мы
объединяем их в многослойные структуры, к примеру:

names = new Sorted (

) ;

new Unique (
new Capitali zed (

new Replaced (
new F ileName s (

new Directory (
" /var/users/ * . xml "

)
) ,
" ([л .] +) \ \ . xml " ,
" $1 "

140 Глава 3 • Работа

Такой код, с моей точки зрения, выглядит очень чисто и объектно­
ориентированно. Он исключительно декларативен, как объ­
яснялось в разделе 3 .2 . Он ничего не делает, а лишь объявляет
объект names , который является отсортированной коллекцией
уникальных строк верхнего регистра, представляющих имена
файлов в каталоге, измененных определенным регулярным вы­
ражением. Я просто объяснил, чем является этот объект, не говоря
ни слова о том, как он устроен. Я просто объявш его.

Считаете ли вы этот код чистым и простым для понимания?
Надеюсь, что да, с учетом всего того, о чем мы с вами говорили
ранее.

Это то, что я называю компонуемыми декораторами. Классы
Directory, F i leNames , Replaced , Capitalized , Unique и Sorted -
декораторы, поскольку их поведение полностью обусловлено
инкапсулируемыми ими объектами. Они добавляют некоторое
поведение инкапсулированным объектам. Их состояние совпа­
дает с состоянием инкапсулированных объектов.

Иногда они предоставляют тот же интерфейс, что и инкапсу­
лируемые ими объекты (но это не обязательно) . К примеру,
Unique - это IteraЬle< St ring> , также инкапсулирующий ите­
ратор по строкам. Однако FileNames - это итератор по строкам,
инкапсулирующий итератор по файлам.

Большая часть кода в чистом объектно-ориентированном П О
должна быть похожа н а приведенный ранее. Мы должны ком­
позировать декораторы друг в друга, и даже чуть более того.
В какой-то момент мы вызываем а р р . r u n () , и вся пирамида
объектов начинает реагировать. В коде совсем не должно быть
процедурных операторов вроде i f, for, swi tch и while . Звучит
как утопия, но это не утопия.

Оператор i f предоставляется языком J ava и используется нами
в процедурном ключе, оператор за оператором. Почему бы

3 .2 . Не используйте статические методы 141

не создать на замену J ava язык, в котором был бы класс I f? Тогда
вместо следующего процедурного кода:

float rat e ;
if (c l ient . age () > 65) {

rate = 2 . 5 ;
}
else {

rate = 3 . 0 ;
}

мы бы писали такой объектно-ориентированный код:

float rate = new If (
c lient . age () > 6 5 ,
2 . 5 , 3 . 0

) ;

А как насчет такого?

float rate = new If (

) ;

new G reate r (c l ient . age () , 65) ,
2 . 5 , 3 . 0

И наконец, последнее улучшение:

float rate = new If (
new GreaterTh a n (

n e w AgeOf (c lient) ,
65

) ,
2 . 5 , 3 . 0

) ;

Так выглядит чистый объектно-ориентированный и декларатив­
ный код. Он не делает ничего - просто объявляет, чем является
rate .

С моей точки зрения, в чистом ООП не нужны операторы, уна­
следованные из процедурных языков вроде С. Не нужны i f ,

for , switch и while . Нам нужны классы If , For , Switc h и While.

Чувствуете разницу?

142 Глава 3 • Работа

Мы еще не дошли до таких языков, но рано или поздно обяза­
тельно дойдем. Я в этом уверен. А пока что старайтесь держаться
подальше от длинных методов и сложных процедур. Проекти­
руйте микроклассы так, чтобы они были компонуемыми. Убе­
дитесь, что они могут повторно использоваться как элементы
композиции в более крупных объектах.

Я бы сказал, что объектно-ориентированное программирова­
ние - это сборка крупных объектов из более мелких.

Какое отношение это имеет к статическим методам? Я уверен,
вы уже поняли: статические методы не могут быть скомпонова­
ны никоим образом. Они делают невозможным все то, о чем
я говорил и что показывал ранее. Мы не можем собирать круп­
ные объекты из более мелких с применением статических мето­
дов. Эти методы противоречат идее компоновки. Вот вам еще
одна причина того, что статические методы - чистое зло.

В заключение: нигде и никогда не задействуйте в своем коде
ключевое слово static - этим вы окажете себе и тем, кто будет
использовать ваш код, большую услугу.

Matan PeгeLmuteг нап исал 1 9 дека б ря 20 1 7 года :

Все это о ч е н ь удобно , ко гда вы одна кома нда , работа ющая над
одн и м п роекто м . Но что , есл и , к п р и м е ру, в ы разра баты ваете
б и бл и оте ку дл я ра боты со стро ка м и , кото рая должна п р и м е ­
н яться в н е с кол ьких п ро е ктах ? Други м разработч и ка м будет
н а м н о го п р о ще и с п ол ьзо вать API одн о го класса StringUt i l s ,
для кото рого есть а втодо п ол н е н и е и всплы вающая докум ента ­
ц и я , п одде ржа н ная средой разработки , ч ем изучать в с е стро ­
ков ы е классы . Даже есл и все о н и будут в одн о м п а кете , то все
равно теряется удобство а втодопол н е н и я . Воз ь м е м , к п р и м е ру,
б и бл и оте ку cactoos . М н е кажется , разработч и ку н а м н о го п р о ­
ще и зуч ить и м п е р ати в н ы е б и бл и оте к и н а п одо б и е A p a c h e

3 .2 . Не используйте статические методы 143

C o m m o n s ил и G u ava . Ка к б ы в ы реко м е ндо вал и публ и ковать
п рогра м м н ы е и нте рфейсы б и бл и оте к?

Е гор Бугаенко:

В ы п р а в ы , совре м е н н ы е среды разработки заточены п од клас­
с ы -утил иты , а н е п од объе кты . Н е м о гу п о р е ко м е ндо вать н и ­
ка ко й ал ьтернати в ы . Воз м ожн о , н а м сто ит ч а ще и с п ол ьзо вать
объекты и реже - стати ческие методы , а та м уже и средства
разра ботки подтя нутся .

Zack МасоmЬег написал 26 ав густа 20 1 6 года :

В объектно-ориенти рованном м и ре нет да нных - тол ько объек­
ты и их поведение ! В Apa che F i leUtils нет да н н ы х [я не нашел
н и одн ого нестати ческо го поля в классе) . Все , что делает этот
кл асс , - отв ечает на зап росы кл и е нто в и п р и это м не хра н ит
состо я н и я . М н е кажетс я , это п одходит п од о п и с а н и е кл асса ,
предоста вляющего тол ько поведение [фун кци и) . Ка ким образом
испол ьзова н и е опе ратора new луч ше нал и ч и я публ и ч н ых стати ­
ческих м етодо в? О п е рато р new доба вля ет накладн ы е ра сходы
на созда н и е объе кто в .

Егор Бугаенко :

Сл овосочета н и е « н ет да н н ых» и м еет в да н н о м случае диа ме ­
трал ьно проти воположное значе н и е ! В F ileUtils вы постоянно
работаете с да н н ы м и . В ы отвечаете за то , чтобы п редоста влять
и п олучать да н н ы е . О н и в се гда в в а ш и х руках . П р и нал и ч и и
н а сто я щ и х о бъекто в ситуа ция ста н о в ится п р я м о п р оти в о п о ­
л ожн о й . В ы н е трогаете да н н ы е - вы п росто общаетесь с объ­
е кта м и . Поэто му-то и н ет да н н ы х .

Тог Dja rv написал 1 июня 20 1 6 года :

Это, наверное , самое дурацкое при менение ООП , которое я только
видел . Сл ы шал и ли вы когда-нибудь старую поговорку « Каждому

144 Глава 3 • Работа

делу - свой и н струм е нт»? В ы , по сути , раста щили в п ол н е по ­
нятн ы й код на набор классов ! скорее всего , по раз н ы м файл а м] ,
что в ито ге тол ько доба вляет сл ожности и делает п ростой код
сл ожн ы м для п о н и м а н и я , да еще и м едл е н н ы м - за счет соз­
да н и я одноразовых объе кто в . О бъектная ориента ция за н и м а ет
свое место в м и ре п р о гра м м и рова н и я , но есл и в ы испол ьзуете
ее тол ько ради то го , чтобы она была , то вы - плохой п р о гра м ­
м и ст.

Bruno M a rt ins написал 2 декабря 20 1 4 года :

Его р , в а ш и статьи - восхитител ьное чти во , я чувствую вашу
п р и ве рже н ность ООП . Что касается тем ы : я п о н и м а ю , о ч ем вы ,
н о пурита н с к и й взгляд на О О П затум а н и вает взгляд на други е
важн ы е аспекты . Есть п р и ч и н ы то го , что эта и другие п робл е м ы ,
о кото р ы х в ы п и ш ете [п о чему плохо и с п ол ьзо вать NU L L , объ­
е кты должн ы б ыть н е и з м е н я е м ы м и] , существуют и н е и м е ют
одноз н а ч н о го р е ш е н и я . Раз работч и ки с кл о н н ы уделять м н о го
в н и м а н и я ч ита бел ьн ости и паттернам п роектирова н и я , и из-за
это го растет раз р ы в в п о н и м а н и и раз н и цы между ч итабел ьно­
стью кода человеком и машиной . Ч и стое О О П уверяет вас в том ,
что созда н и е объектов для р е ш е н и я л юбых п робл е м - это хо­
рошо . Это можно п о нять, п ото му что та ко й код луч ш е ч итается
человеко м . Н о п р и это м м ы упус ка е м из виду то, что у та ко го
подхода существуют далеко идущие последствия [относител ьно
п а мяти и п роиз водител ьности] . Это та кже м ожет выз вать п р о ­
бле м ы , когда разработч и ку вдруг п ридется вза и м одействовать
с платфо р м е н но -за в и с и м ы м кодом [и л и даже кодо м с других
платфор м] , н а п р и м е р через J N I . Мне кажется , это долже н уч и ­
ты вать каждый систе м н ы й архитектор . И м еть кра с и в ы й , ч и сты й
код, безусловно , хо рошо , н о п ол ьзо вател я м в ко н е ч н о м ито ге
нужны надежные и эффекти в н ы е с и сте м ы . А это требует более
глубоких раз м ы шл е н и й , нежел и испол ьзова н и е луч ш и х паттер­
н о в для созда н и я са мого ч итаемого кода .

Его р Бугаенко :

3 .2 . Не используйте статические методы 145

С п а с и б о за п рочте н и е . Я п о н и м а ю в а ш и доводы , но п оз в ол ю
себе н е соrласиться . М н е кажется , что сейчас заботиться о па ­
мяти и п роцессо рном времени н а м н о го менее важно , ч ем о ч и ­
таемости и сопро вождае мости . П о ч е му? П ото му что ком п ьюте­
ры де шевле про гра м м истов . Час моего времен и , п отрач е н н о го
на разбор кода 2000-строч ного класса , сто ит больше , чем новая
ка рта памяти для сервера . Поэто му м ы должн ы задум ы ваться
о п роизводител ьности тол ько то гда , ко гда код стал п о н ятн ы м
и ч и сты м . П о н и маете , о ч е м я ?

Bruno M a rt ins:

Действ ител ьно , п рогра м м и сты довол ьно часто п р и водят та кие
до воды . Н о код, н а п и са н н ы й в соответств и и с современ н ы м и
ста нда рта м и п р о гра м м и ро ва н и я , н е сл и ш ко м сложен дл я по ­
н и м а н ия и сопровожде н и я . Факти чески л юбой с р едн и й Jаvа ­
програ м м и ст пони мает п роверки на NULL , классы -утил иты и из ­
м е н я е м ы е объе кты , раз уж в ы о н и х п и ш ете . У всех н и х есть
свои недостатки , но все в ито ге сводится к конте ксту, с кото р ы м
и м еет дел о п р о г ра м м и ст. О н и существуют п ото му, что О О П ­
я з ы ки созда вал ись , чтобы обеспечить н а и бол ьшую ги б кость .
Кро м е то го , ко м п е н с и ровать н и з кую п роизводител ьн ость п ро­
гра м м б ол е е в ы сокой п р о и з водител ь н о стью м а ш и н , на м о й
вз гляд , нескол ько н едосто й н о ! го в о р ю ка к и нже нер , а не ка к
уп равленец] . В ы н а в е р н я ка ре гул я р н о стал киваетесь с н и з ко й
п р о и з водител ь н о стью и н е разум н ы м у п р а вл е н и е м п а м ятью
в современных програ м м н ы х продуктах . И да , а ппа ратная часть
сегодня все де шевле и все луч ше , но и требования к п рогра м м ­
н о му обеспеч е н и ю тоже п о в ы ш а ются . А ка к насчет п ро гра м м
и с и сте м , в кото рых ч р ез в ы ч а й н о важно эффекти вно и спол ь­
зо вать ресурс ы , - п р о ш и во к дл я п е р и ф е р и й н ы х и носи м ы х
устройств , мобил ьных телефонов , и гр , экспертн ых систем ? Есл и
в се , что в а м нуж н о , - п росты е ч и стые п р ил оже н и я , а в а ш и
ресурсы неогра н и ч е н н ы , то та ко й подход м н е п о н яте н . Н о п р и

146 Глава 3 • Работа

реал изации решен и й , требующих производител ьности и надеж­
ности , необходи мо пони мать, что то , что вы пишете в коде, имеет
глубокое вл ияние на то , что сгенери рует ком п илятор , и то , что по
фа кту будет делать п ро цессо р . Безусловно , важно уч ить л юдей
проектирова н и ю и реал изации систем , уч иты вающих все эти со­
ображения вне зависимости от то го , можно ли им п роде шевить,
а та кже написа н и ю макси мально ч итаемых , хорошо сп роекти ро­
ва н н ы х програ м м . Н о это не самое важное . Я восхи щен вашей
п р и верженностью воп росам п роектирования и архитектуры П О .
Со многи м и ва ш и м и статья м и я согласен . Н о в некоторых случа­
ях , мне кажется , вы упускаете из виду и нженерию в п р и кладном
и практическом аспекте , а не тол ько в аспекте нап иса н и я ч ита ­
емого , красивого кода с п р и менением [анти] паттернов .

3 . 3 . Не допуска йте а ргументов
со значен ием N U LL

Обсуждение на http ://goo.g i/TzrYbz.

NULL (также известный как null в java, nil в Ruby, NUL L в С++, None

в Python и т. п.) - еще одна большая проблема в объектно-ори­
ентированном мире наряду со статическими методами (см. раз­
дел 3.2) и изменяемостью (см. раздел 2 .6) . По сути, вы делаете
большую ошибку, если где-либо в своем коде используете кон­
станту NULL. Где бы то ни было - я серьезно. Здесь же поговорим
о NULL как об аргументе метода. Затем в разделе 4. 1 рассмотрим
NULL как возвращаемый результат.

Посмотрим на следующий метод:

puЫic IteraЬle < F i l e > find (St ring ma s k) {
1 1 Обойти каталог

}

11 и найти все файлы, которые соответствуют
11 некоторой маске , нап ример " * . txt " .
11 Если маска == NU L L , вернуть все файлы .

3 .3 . Не допускайте аргументов со значением NULL 147

Весьма распространенный подход - разрешать пользователям
передавать NULL как способ сказать: «У меня нет объекта, так что
считайте, что он отсутствуен. Действительно, он представляет
собой удобную альтернативу этим двум методам:

puЫic IteraЬle < F i le > findAll () ;
puЬlic IteraЬle< F i l e > find (St ring ma s k) ;

Один метод выглядит более компактным и простым для запо­
минания пользователем, так ведь? Не нужно помнить, что, если
я хочу отфильтровать файлы по маске, то надо вызывать find () ,

а если мне нужны все файлы, то findAl l () . Если метода всего
два, то их не так уж сложно запомнить. Но что, если у метода три
аргумента, причем каждый из них может быть равен NULL? Мне
придется создавать девять разных методов. Использование NUL L

кажется более удобным и компактным.

Звучит логично, но это противоречит объектно-ориентирован­
ной парадигме, где каждый объект полностью отвечает за свое
поведение.

Чтобы реализовать метод find () , принимающий NU LL в качестве
аргумента, нам придется сделать что-то подобное следующему:

puЬlic IteraЬle< F i l e > find (String mas k) {

}

if (mask == n u l l) {
11 найти все файлы

} else {
11 найти фа йлы no ма с ке

}

Дурным тоном здесь является сравнение mask==NULL . Вместо того
чтобы поговорить с объектом ma sk , мы проходим мимо, игнори­
руя его. Мы спрашиваем его в лоб: «Стоит ли с тобой общаться?»
Или даже: «Стоит ли с ним общаться?» Мы даже не обращаемся
к объекту. Мы спрашиваем кого-то, кто должен знать, достоин
объект общения или нет. Так общаться не очень-то вежливо,
не правда ли?

148 Глава 3 • Работа

Если мы уважаем объект, мы сделаем что-то вроде:

puЫic IteraЬle< F i l e > find (Mask ma s k) {
if (ma s k . empty ()) {

/ / найти все файлы
} else {

/ / найти файлы по маске
}

}

А еще лучше вот так:

puЫic IteraЬle < F ile> find (Mask mas k) {
Collection < F i l e > files = new Linked list< > () ;
for (F ile file : / * все файлы * /)

if (mask . matches (file)) {
files . add (file) ;

}
}
ret u rn file s ;

}

Если бы мы уважали объект mask , то позволили бы ему решить,
есть ли у него для нас что-нибудь или же он пуст. Мы не должны
судить о нем по его внешности. Не должны говорить, что если
кто-то NU L L , то он ненастоящий объект и мы не станем его ис­
пользовать, а вот если он настоящий, тогда поговорим.

То, что мы принимаем NULL в качестве корректного аргумента,
неизбежно вынуждает нас применять сравнение m a s k = = n u l l .

М ы просто н е можем поступить иначе. Всякий раз перед исполь­
зованием объекта мы должны проверять его на <шастоящесть� .
Выполняя такую проверку, мы снимаем с объекта значитель­
ную долю ответственности. Превращаем его в тупую структуру
данных, которая неспособна позаботиться о себе и ожидает, что
кто-то в нее что-то положит или из нее достанет.

В мире процедурного программирования, где подпрограммы

манипулируют данными, факт существования N U L L плох, но

3 .3 . Не допускайте аргументов со значением NULL 149

по крайней мере хоть чем-то обусловлен. Я даю вам какие-то
данные и не ожидаю, что вы будете с нИми общаться. Они не­
достаточно умны, чтобы поддерживать разговор. Они просто
биты и байты. Чисто технически, когда я даю вам данные, я на

самом деле даю адрес, по которому вы можете их найти. Такой

адрес, например 0x89f4a328 , называется указателем. Все байты

в памяти пронумерованы, а это число является номером ячейки

памяти, в которой содержится первый байт передаваемой струк­
туры данных:

#include < stdio . h >
void foo (char* р) {

р rintf (" Пятый байт равен : %х " , * (р + 5)) ;
}

Подпрограмма foo () попросит процессор обратиться к этому
адресу в памяти и прочитать пятый байт. Но мы можем догово­

риться, что, когда я передаю вам число 0х00000000 в качестве адре­

са, вы не будете просить процессор обратиться по нему. Просто
потому, что маловероятно, что там окажется моя структура данных.

Впрочем, в современных компьютерных архитектурах она там
не окажется никогда. Вот почему программисты много лет назад

договорились, что, если указатель равен нулю, мы называем его
NUL L и никогда не используем как адрес в памяти. Мы не можем

попросить процессор прочитать что-либо по этому адресу:

#include < stdio . h >
void foo (c h a r * р) {

if (р == 0) {

}

printf (" NU L L - данных нет . ") ;
} else {

р rintf (" Пятый байт равен : %х " , * (р + 5)) ;
}

Помните, что это всего лишь договоренность. Чисто технически
нет никакой разницы между настоящим указателем 0x89f4a 328

150 Глава 3 • Работа

и не очень настоящим 0х00000000, который мы договорились
называть NU LL .

Что случится, если я забуду о давней договоренности и попро­
шу процессор считать данные по адресу 0х00000000? В языке С
результат непредсказуем1 , но в большинстве случаев процессор
меня остановит и завершит выполнение процесса с сообщением
«Ошибка сегментации» . Так это работает в мире императивного
процедурного программирования. Попробуйте сами:

#include < stdio . h >
int mai n (int a rgc , c h a r * * a rgv) {

char* р = 0 ;

}

printf (" Бaйт по адресу 0 равен : %х " , * р) ;
1 1 здесь программа упадет

К сожалению, объектно-ориентированный мир унаследовал эту
«идею» , даже притом что большинство современных языков
не имеют указателей. В J ava нет указателей, и нам нет необхо­
димости их разыменовыватъ. Так называется конструкция *р

из приведенного ранее примера. Указатель - всего лишь число,
положение нужных мне данных в памяти. Чтобы сказать компи­
лятору, что я хочу работать с данными, а не с адресом, я должен
разыменовать указатель.

Хотя указатели считаются одной из болевых точек языка С,
прежде всего из-за своей контринтуитивности, работать с ними
проще, чем кажется. Довольно легко представить, что объекты
разыменовываются автоматически, а не являются структурами
данных, размещенными где-то в памяти. Если у нас есть объек­
ты, но нет указателей, то зачем нам в java нужен null? Честно
говоря, не знаю. Кроме того, я думаю, что это болъшая ошибка

1 Я не большой специалист в этом, но некоторые рецензенты говорили

мне, что результат вполне предсказуем - исполнение программы
остановится. - Примеч. авт.

3 .3 . Не допускайте аргументов со значением NULL 151

разработчиков языка jаvа, как и Ruby, JavaScript и даже самых
современных объектно-ориентированных языков.

«Что же делать, если нам нечего передавать в качестве аргумента
метода find () ? - спросите вы. - Что, если маски имени файла
нет и мы просто хотим передать "ничего"? Почему бы не ис­
пользовать n u l l 7»

В ООП проблема отсутствующего аргумента должна решаться
с применением так называемого нулевого объекта. Вам нечего
мне дать? Дайте мне объект, который ведет себя так, будто он
пустой. Не перекладывайте проблему на мои плечи, не застав­
ляйте меня проверять, дали вы мне объект или N U L L . Вместо
этого всегда передавайте мне объект, а в некоторых случаях -
такой, который откажется со мной говорить, если я захочу от
него слишком многого.

Скажем, у нас есть интерфейс Ma s k, который мы должны пере­
давать методу find () , чтобы сообщить ему, какие файлы соот­
ветствуют маске, а какие - нет:

interface Ma s k {
boolean mat ches (F ile file) ;

}

Надлежащая реализация такого интерфейса должна инка­
псулировать glоЬ-шаблон (например, " * . txt ") и сопоставлять
с ним имена файлов. Напротив, нулевой объект будет выглядеть
следующим образом:

c l a s s AnyF ile implements Ma sk {
@Override

}

boolean mat c he s (F i le file) {
return true ;

}

Это граничный случай маски, не имеющий никакой логики.
Он просто возвращает true, какое бы имя файла ему ни передали.

152 Глава З • Работа

Теперь вместо того, чтобы передавать null как аргумент метода
find () , мы просто создаем экземпляр класса Any F i le, и на этом
все. Метод find () не будет иметь понятия о том, что происходит.
Он все еще будет полагать, что ему передали корректную маску.

Договоримся о том, чтобы наши методы никогда не принимали
N U L L . Но что, если пользователи все равно передают N U L L , не­
смотря на соглашение и документацию, гласящую: « Пожалуйста,
не передавайте NULL»? Как реагировать на такое издевательское
поведение? Есть два способа - оборонительный и игнориру­
ющий. При оборонительном подходе мы проверяем аргумент на
равенство NU L L и бросаем исключение, если это так:

puЬlic IteraЬle< F i l e > fiпd (Mask ma s k) {

}

if (mask == п u l l) {

}

t h row пеw I l lega lArgumeпt Exceptioп (

) j

"Маска не может быть равна NUL L , пожалуйста ,
переда йте объект "

1 1 Найти файлы по маске и вернуть резул ьтат

Второй подход подразумевает игнорирование, и я склоняюсь
к его использованию. Не делайте ничего, исходя из предполо­
жения, что аргумент не равен NULL . Рано или поздно, когда вы
начнете манипулировать аргументом, будет выброшено исклю­
чение N u l l PointerExc eption и вызывающая сторона осознает
свою ошибку.

Не засоряйте код лишними проверками. NullPointerException -
нормальный показатель того, что в качестве аргумента было не­
корректно передано значение NU LL . Нет необходимости делать
его более умным или более информативным. В качественно
спроектированном ПО все равно не должно быть нулевых ссы­
лок. Не защищайтесь, просто игнорируйте их - оставьте подоб­
ные ситуации на откуп JVМ.

3 .3 . Не допускайте аргументов со значением NULL 153

Вывод: никогда не принимайте NULL в качестве аргумента ме­
тода. Никаких исключений.

Никогда.

Kevi n Rutheгfoгd написал 26 а в густа 20 1 7 года :

С моей точ ки з р е н и я , NULL плох , поскол ьку о н создает сцепле­
н и е . Фун кция [О О П , Ф П и л и л юбая друга я) , воз в р а ща я NU L L ,
в ы нужда ет ко го -то в ы ш е п о сте ку п ро в е рять существ о ва н и е
объе кта . Та кое сцепл е н и е связы вает все объекты в сте ке в ы ­
зовов д о тех п о р , п ока кто-то не п роверит возвращаемое зна ­
ч е н и е . Это го ворит о за в и с и м ости по согла ш е н и ю [все должны
оди наково п о н и мать сема нти ку NULL в ко нкретн о м конте ксте) ,
а ч а сто е ще и о з а в и с и м ости п о алго р итму [в се должн ы воз­
вра щать NULL в оди наковых случаях) . Поэто му м ежду частя м и
п р о гра м м ы п о я вл я ется допол н ител ьная за в и с и м ость . А е ще
есть накладн ы е расходы , связа н н ы е по меньшей мере с одн и м
усл о в н ы м ветвл е н и е м . Это п р и б а вляет работы тести ровщикам
и те м л юдя м , кото р ы е будут ч итать этот код. В ы работа в п р и ­
в ы ч ку не воз вра щать NU L L , вы сэконом ите себе уйму в р е м е н и
в п осл едств и и .

l g o г сп росил 1 З октя бря 20 1 6 года :

М ожете л и в ы п ридумать сцена р и й , где испол ьзо вать Opt iona l
было б ы луч ше , ч ем NULL или искл ю ч е н и я ?

Е гор Бугаенко :

Н е дума ю .

Madmenyo написал 8 а п реля 20 1 6 года :

В ы го вор ите , что испол ьзова н и е NUL L засоряет код изл и ш н и м и
условными операторами проверки. Но реализация вашим методом

154 Глава 3 • Работа

п р и ведет к засо р е н и ю кода л и б о изл и ш н и м и стр о ка м и в ида
employee . i s Nobody () , л и б о бл о ка м и t ry / c at c h . Я с о гласен
с тем , что нужно п р и клады вать усил ия к обеспечению ч итаемо­
сти кода .

Егор Бугаенко :

П роверки на NU L L де й ств ител ьно засоря ют код, поскол ьку они
семантически не согласова н ы с остал ь н ы м те кстом програ м м ы .
Бл оки t ry/ catch и м етод i sNobody [хотя н е дум а ю , что я п р ед­
л а гал та кое] семантически более бл изки к о сновной п робл е м ­
н о й обла сти .

M a гt in написал 1 5 октя бря 20 1 4 года :

В некоторых я зыках есть третья и , пожалуй , луч шая альтернати ­
ва и спол ьзова н и ю искл ю ч е н и й ил и нулевых ссылок - п атте р н
O pt i o n a l . В ста нда ртн о й б и бл и оте ке Java н еда в н о п о я в ил с я
параметрический класс Optional ти па т , созда н н ы й по моти вам
ти па Opt i ona l в Sca la [которы й , в свою очередь , был созда н по
подобию МауЬе-ти па из Haskel l l . Ор t i оnа l-ти п ы луч ше нулевых
с сылок н е тол ько те м , что я в н о коди руют в с и сте м е ти пов , что
фун кция м ожет не вер нуть з н а ч е н и е , но и те м , что позвол я ют
отложить в ы ч и сл е н и е з н а ч е н и я .

Егор Бугае н ко :

Хотя ти п Optional в ы глядит удобн ы м с точ ки зрения ко м п ью­
те р н о го м ы шл е н и я , о н н е и м еет с м ы сла с точ ки з р е н ия объ­
е ктн о - о р и е нти ро в а н н о го м ы шл е н и я . Ка к и в п р и м е р е р а н е е ,
ко гда я з в о н ю и с п ра ш и ва ю Джефри , я не хочу го вор ить с « н е ­
о б язател ь н ы м » Дже ф р и . Это контр и нтуити в н о . Я хочу п о го ­
в о р ить с те м , кто м н е м ожет п о м о ч ь , - л и бо с Джеф р и , л и б о
с ке м -то , кто п р едста вится Джефри [нулевой объе кт] . Я н е хочу
спраши вать у того , кого усл ы шал, есть л и у него внутри Джефри .
М ы сл ите ка к объе кт, а не ка к п рогра м м и ст, м а н и пул и рующий
бита м и и байта м и в ком п ьютере .

M a гt i n :

3 .3 . Не допускайте аргументов со значением NULL 155

М н е кажется , что это наиболее и нтуити в н ы й Opt ion (без шуток] .
В ы спраши ваете Джефри , но н ет га ра нти и , что вам е го позовут.
Го воря в те р м и нах ти п о в да н н ы х , в ам нужно что-то , что отл и ­
ч а ет усп е ш н ы й вызов м етода от н еуда ч н о го . Есл и в ы возвра­
щаете нулевой объект, то фактически воз в ра щаете пустую обо­
л о ч ку о бъе кта E m p loyee - в ы сч ита ете е го Дже ф р и , хотя о н
та ко в ы м н е я вл я ется . Тол ь ко ко гда в ы обследуете е го , т о об ­
н а ружите , что о н н е тот, о ком в ы просил и , - с и сте ма ти п о в
н е п оз вол я ет вам сделать та кой в ы в од. П ол ьзовател ь долже н
знать , на что посмотреть, - в да н н о м случа е на равенство е го
нул ю . Ти п воз в р а ща е м о го з н а ч е н и я Optional< Employee > да ет
з н ать в сем п ол ьзо вател я м AP I , что о н и м о гут и не п олуч ить
э кзе мпляр класса Employee, даже н е глядя в и сходн ы й код ил и
с а м о п и с ную докум ента ц и ю . Эта идея сильна сама п о себе , н о
н е кото р ы е я з ы ки п родв и га ют е е н а ш а г в п е р ед (п о с кол ь ку

я п р и в ы к к реал изации Optional в Sca la , п р и м е р будет осно ­
ван на н е й , н о реал изация в Java н е должна сильно отл и чать­
ся] . В Sca la вы будете б ез о п а с н о р а ботать с э кз е м п л я р о м
Opt ion a l , н е з н а я , в е р нул в ы з о в существующи й э кз е м п л я р
Employee или н ет. Делать i f - п роверки свойств О рt i о n - классов
н е п р и н ято - п росто работа йте с н и м и ка к с особ ы м и сп и с ка ­
м и из одно го или нуля элементов . И тол ько ко гда вам дей стви­
тел ьно нуже н э кз е м п л я р Employee, в ы материализуете объект
в ы з о в о м optiona lEmployee . getOrElse (new Employee (" Patrick
Batema n ")) . Есл и искл ючения вам больше по душе , ч е м пусты е
п ол ьз о вател и , м ожно п р и м е н ить что -то в р оде o pt i o n a l E m ­
ployee . getOrTh row (new EmployeeNotFoundException (" No s u ch
employee found ")) . Заметьте , что в се в руках п ол ьзователя AP I .
Он , а не п роекти ровщик решает, нужно л и материализовать или
отбросить э кземпляр Employee. Та кже невозможно п реувел и ­
ч ить з н а ч е н и е то го , что п ол ьзо вател ю н е требуется з а р а н е е
знать AP I , чтобы корректно п олуч ить доступ к объекту, та к ка к
состояние е го существова н и я п е решло в систему ти пов .

156 Глава 3 • Работа

Егор Бугаенко :

П о н и м а ю ва ш и до воды - в н и х есть см ы сл . П оз вол ьте все же
е ще раз поп ытаться убедить вас . Все , о чем вы говорил и , весь­
м а эффекти в н о с точ ки з р е н и я п ро гра м м и ста , кото р ы й хочет
оста влять за собой управл е н и е возвращаем ы м ему объекто м .
М н е кажется , что п р и объектно -ори енти ро в а н н о м п ро гра м м и ­
рова н и и м ы должн ы стрем иться к чему-то п роти в о п оложному.
М ы должн ы избавить код, с кото р ы м ра бота е м , от ка ких б ы то
н и б ы л о з а в и с и м о сте й н а стол ько , н а с кол ь ко это воз м ожн о .
Это го м ожно добиться п р и помощи абстра гирова н и я .

M a rt i n :

Н о вы же явно п росите Джефр и . Не и меет смысла з вать первого
попавшегося работн и ка ил и самозва н ца . Есл и метод га ра нти ру­
ет получение корректного объекта , нет нужды п р и м е нять O pt i on .
В своем последнем п р и мере вы на самом деле н е испол ьзуете
паттерн « Нулевой объект», поскол ьку п росто предполагаете , что
объект корректен , и на основе этого делаете о нем в ы воды . Вер­
нет л и метод a reYouHappy t rue\fa lse для нулевого объекта ил и
бросит исключение? Почему в первом случае недоступность со­
трудн и ка и нтерпрети руется ка к его удо влетворенность/неудов­
летворенность жизнью? С другой стороны , бросая и с ключение
из это го м етода в нулевом объекте, в ы фа ктически маски руе­
те и с кл ю ч е н и е N u l l R e f e r e n c e E x c e p t i o n [N u l l O b j e c t E m ­
ployeeDoes ntHaveFeelings Exception] . Оба этих н еудо влетво­
р ител ьных с це н а р и я отпада ют п р и испол ьзова н и и Op t i o n . Это
принуждает пользователя быть не стол ько ответственным , с кол ь­
ко честны м и явно указы вать то , что значение может отсутствовать.
Если значение не может отсутствовать или если есть осм ысленное
значение по умолчанию , не возвраща йте Opt ion , п одобно тому,
ка к в ы в да н н о м случае н е воз вращал и б ы нулевой объе кт.

RoLand Bouman написал 25 сентября 20 1 4 года :

М н е н е о ч е н ь понятн о , ка к патте р н «Нулевой объект» решает
ка кие-либо пробл е м ы в этом отношен и и . П о кра й н е й мере м н е

3 .4. Будьте лояльным и неизменяемым либо константным 157

не уда ется п р идум ать п р а кти ч е с к и й п р и м е р то го , что м ожно
было б ы п р одолжать работать обы ч н ы м образом в случае , ко­
гда воз вра ща ется осо б ы й нулевой объе кт. « П р е и муществ о м »
будет то , что н е с м о гут п о я в иться нул е в ы е указател и , н о п р и
это м п ро гра м ма в ы нуждена будет делать бесс м ы сл е н н ы е о п е ­
р а ц и и [хотя , скорее , корректн ы е опера ци и н а д бесс м ы слен н ы м
объекто м] . Ко н е ч н о же , можно я в н о п рове рять, воз в р а ще н л и
нулевой объе кт, н о я не п о н и м а ю , поч ему это луч ше , ч ем п ро ­
верка на равенство NULL . М н е и нтересно , см ожет л и кто -то при ­
вести реал и сти ч н ы й п р и м е р , демонстри рующий п р е и мущества
и с п ол ьзова н и я паттерна «Нулевой объект».

Его р Бугаенко :

Нулевые объекты не обязател ьно бросают исключения при каж­
дом обращен и и к н и м . Это м ожет б ыть объе кт, кото р ы й что-то
м ожет, а что -то не может. М н е не всегда нужно п р и м е нять всю
фун кциональн ость объе кта .

3 .4 . Будьте лоял ьн ым и неизменяем ы м
л ибо константн ы м

Обсуждение на http ://goo.gi/2UKLds.

Я уже исписал более десятка страниц на тему неизменяемости
объектов в разделе 2 .6 , но пришло время вернуться к этой теме,
прежде всего потому что существует связанное с ней большое
заблуждение, которое надо попытаться развеять. Часто озвучи­
ваемый довод против неизменяемости состоит в том, что мир
по своей сути изменяем, и поэтому его невозможно представить
с помощью только неизменяемых объектов . Действительно,
у нас есть сущности, отвечающие за ввод-вывод, - файлы, по­
токи, веб-страницы, буферы и т. п. Все они, по сути, изменяемы,
и ожидаемая их реализация также изменяема.

В сказанном есть изрядная доля здравого смысла, но я с этим
не соглашусь. Да, мир, в котором мы живем, изменяем, но это

158 Глава З • Работа

не значит, что мы не можем смоделировать его неизменяемыми
объектами . Запутывает нас непонимание разницы между со ­

стоянием и данными - двумя разными вещами. Как обычно,
начнем с примера:

class WebPage {

}

private final URI u r i ;
WebPage (URI path) {

t h i s . u ri = pat h ;
}
puЫic String content () {

}

1 1 Делает НТТР GET- зanpoc , за г ружает веб - страницу
1 1 и конвертирует ее содержимое в UTF - 8

Как вы думаете, этот объект изменяемый или нет?

Вам он кажется изменяемым? Если да, то подумайте еще раз.
Хотя метод content () может, по идее, возвращать разные значе­
ния при каждом вызове, сам объект неизменяемый. Он не меняет
своего состояния в течение жизни, поэтому не имеет значения,
как он себя ведет и что возвращают его методы. И это наверняка
запутывает большинство из вас.

Интуитивно мы ожидаем, что неизменяемый объект будет ве­
сти себя как константа, возвращая одни и те же данные всякий
раз, когда мы к нему обращаемся. Мы думаем, что если объект
неизменяем, то он должен вести себя как строковый или чис­
ловой литерал . Действительно, большинство неизменяемых
классов в J ava и других языках в едут себя как константы.
St ring, URI или DouЫe, к примеру. Как только вы инстанциро­
вали один из этих классов, объект будет предсказуем на 1 00 %
и все его методы всегда станут возвращать одинаковые значе­
ния. Этого мы ждем от неизменяемых объектов , но ожидания
не оправдываются. Не то чтобы совсем, но они формируют
неполную картину. Это всего лишь граничный случай неиз­
меняемости.

3 .4. Будьте лояльным и неизменяемым либо консrантным 159

Неизменяемый объект подразумевает гораздо большее. Класс
WebPage также неизменяем, хотя его метод content () всякий
раз возвращает разные результаты. Мы не знаем, чего от него
ожидать, поскольку он общается с сущностью реального мира -
веб-страницей. То, что мы получим посредством НТТР-запроса,
предсказанию не поддается. Вот почему класс WebPage не похож
на класс St ring, хотя тоже является неизменяемым. Его поведе­
ние непредсказуемо, но объект все равно неизменяемый. Пускай
объект не является константным, но он неизменяем, поскольку
«верен» сущности, которую представляет.

Достаточно ли я вас запутал? Чтобы прояснить ситуацию, на­
чнем сначала и определим, что такое состояние, а что такое объ­
ект. Потерпите немного. В этот раз я попробую изъясняться
понятнее.

Объект - это представитель сущности реального мира, напри­
мер файла на диске, веб-страницы, ассоциативного массива либо
календаря на текущий месяц. Под реальным миром мы понима­
ем все то, что лежит за пределами области видимости объекта.
К примеру, объект f представляет файл на диске:

puЬlic void echo () {

}

F i le f = new F i le (" /tmp/test . txt ") ;
System . out . println (" Paзмep фа йла : %d " , file . lengt h ()) ;

Область видимости в данном случае определяется границами
метода echo () . Чтобы пообщаться с файлом на диске и спросить,
каков его размер, мы должны коммуницировать с объектом f

посредством метода length () . Объект f - представитель файла
/tmp/test . txt . Он представляет его интересы при взаимодей­
ствии с нами. Настолько, насколько это нас касается, в рамках
метода echo () он является файлом.

Чтобы коммуницировать с файлом на диске, объект должен
знать его координаты. Они еще называются состоянием объекта.

160 Глава З • Работа

К примеру, состоянием объекта класса WebPage будет U RI стра­
ницы. Чтобы загрузить его содержимое, объект свяжется с внеш­
ним миром посредством протокола НТТР, используя U RI в ка­
честве координат НТТР-службы. Состоянием класса F i l e

будет полный путь к файлу в файловой системе, например /tmp/

test . txt.

У каждого объекта, по сути, есть три элемента: идентичность,
состояние и поведение. Идентичность - то, что отличает f от
других объектов, состояние - то, что f знает о файле на диске,
а поведение - то, что f может сделать по нашему запросу. Основ­
ное различие между изменяемыми и неизменяемыми объектами
состоит в том, что неизменяемые объекты не имеют идентично­
сти и их состояние никогда не изменяется. Точнее, идентичность
неизменяемого объекта совпадает с его состоянием.

Взгляните на класс WebPage еще раз . Если я инстанцирую два
экземпляра с одним и тем же uri , будут ли они отличаться друг
от друга? Будут ли они демонстрировать разное поведение?
Нет. Они будут идентичны, поскольку их инкапсулированные
состояния равны друг другу. Они оба представляют одну и ту же
веб-страницу реального мира. Вот почему не будет никакой
разницы в том, с которым из объектов я буду общаться, - они
будут коммуницировать с той же веб-страницей. Координаты
веб-страницы одинаковы, и поэтому объекты будут идентичны­
ми, хотя инстанцировались раздельно. Идеальная реализация
класса как фабрики объектов (см. раздел 1 . 1) должна понимать
это и избегать дублирующихся экземпляров, инкапсулирующих
одинаковое состояние.

Однако в большинстве ООП-языков, включая Java, это не так.
По умолчанию каждый объект имеет уникальную идентичность,
которая может быть переопределена. К примеру, для класса
WebPage я могу определить ее следующим образом (здесь при-

3 .4. Будьте лояльным и неизменяемым либо константным 161

водится псевдореализация - настоящая реализация метода
eq uals () несколько сложнее) :

class WebPage {

}

private final URI u r i ;
WebPage (URI pat h) {

t h i s . u ri = pat h ;
}
@Override
puЬlic void equa l s (Object obj) {

return t h i s . u ri . equals (
WebPage . cla s s . cast (obj) . u ri

) ;
}
@Override
puЬlic int has hCode () {

return t h i s . u ri . hashCode () ;
}

Как видите, и метод equals () , и метод hashCode () рассчитывают
на инкапсулированное свойство uri , что делает объекты класса
WebPage прозрачными - они больше не имеют собственной иден­
тичности. Они представляют веб-страницу, и единственное их
состояние - координаты страницы в форме URI .

Но изменяемые объекты - совсем другая история. Они позволя­
ют модифицировать свое состояние, что требует идентичности,
отдельной от состояния. В настоящем объектно-ориентирован­
ном мире у нас были бы только неизменяемые объекты и нам
не понадобились бы методы equals () и hashCode() . Они были бы
одинаковыми во всех классах. Не было бы необходимости опре­
делять или переопределять их. В неизменяемом классе все объ­
екты идентифицируются инкапсулированным ими состоянием.
Состояние объекта является необходимым и достаточным для
идентификации неизменяемого объекта.

Неизменяемый объект знает, где находится объект реального
мира и как его использовать. Вот и все. Он знает координаты,

162 Глава З • Работа

которые мы называем состоянием. Надеюсь, это логично, по
крайней мере с точки зрения приведенного примера. Когда речь
идет о веб-странице или файле, все просто, поскольку реальный
мир вправду реален. Его сущности находятся за пределами наше­
го программного обеспечения. Вот почему несложно разделить
сущность и ее представителя.

Иными словами, неизменяемый объект верен сущности реаль­
ного мира, которую он представляет. Он никогда не меняет ее
координаты. Он всегда работает с одной и той же сущностью,
несмотря ни на что. Вот почему я говорю, что он верен. В то же
время изменяемый объект может менять координаты сущности,
с которой работает. Вот почему он неверен.

Что нам делать, если мы работаем с набором чисел? Задача три­
виальна: нужен набор целых чисел, из которого можно удалять
элементы, добавлять их, перебирать существующие элементы,
пересчитывать и т. п . Как я могу реализовать все это, используя
только неизменяемые объекты? Есть два возможных варианта:
константный список либо неизменяемый список. Вот пример
константного списка:

c l a s s Constant list<T> {
private final Т [] a r ray ;
Constant l i st () {

this (new Т [0]) ;

) ;

}
private Con stant list (T [] numbers) {

this . a rray = numbers ;
}
Constantlist with (T numbe r) {

}

Т [] nums = new T [th i s . a rray . length + 1] ;
System . a rraycopy (

t h i s . array, 0 , nums ,
0 , t h i s . a r ray . length

nums [t h i s . a rray . lengt h] = number ;
ret u rn new Con stant list (nums) ;

}

3 .4. Будьте лояльным и неизменяемым либо константным 163

IteraЬle<T> iterate () {
return Arrays . a s l i s t (t h i s . a rray) ;

}

Вот как я буду его использовать:

Constant list l i st = new Con stant list ()
. with (l) // новый объект
. with (1 5) // еще объект
. with (S) ; // и еще один объект

Надеюсь, вы поняли, как это работает. При каждой попытке
изменить список или добавить к нему новый элемент будет соз­
даваться новый список, куда станут копироваться все элементы
существующего.

Это классический неизменяемый объект, но я предлагаю на­
зывать его константным, потому что это всего лишь граничный
случай неизменяемости, при котором его состояние равно сущ­
ности реального мира. Именно так, состояние t h i s . a r ray со ­
впадает с сущностью, которую представляет объект l ist. Объ­
ект представляет массив, а его состояние является массивом.
Сравните этот класс с классом WebPage, приведенным нескольки­
ми страницами ранее. В его случае this . uri - всего лишь коор­
дината сущности реального мира - веб-страницы. В то же время
в Constant List представляемая нами сущность и есть состояние.

Повторяю, это всего лишь граничный случай.

Вот как я бы делал список неизменяемым:

c l a s s ImmutaЬleList<T> {

}

private final List<T> items = Linked list<T> () ;
void add (T numbe r) {

t h i s . items . add (numbe r) ;
}
IteraЬle<T> iterate () {

return Collection s . unmodifia ЬleList (t h i s . items) ;
}

164 Глава З • Работа

Похож ли он, по-вашему, на неизменяемый? Похоже, что объ­
екты данного класса можно модифицировать, поэтому они яв­
ляются неизменяемыми? Нет, не совсем так. Попробуем проана­
лизировать ситуацию. Модифицировать-то мы можем, правда,
не сам объект. Взглянем на класс WebPage еще раз: вот что будет,
если к нему добавить новый метод:

c l a s s WebPage {

}

private final URI u r i ;
WebPage (URI pat h) {

t h i s . u ri : pat h ;
}
puЬlic void modify (St ring content) {

}

/ / Выполняет НТТР PUT - эanpoc и модифицирует
// содержимое веб - страницы .

Сделали л и м ы его тем самым изменяемым? Определенно нет.
Что происходит, когда мы используем его следующим образом?

WebPage page : new WebPage (" http : // loc alhost : 8080") ;
page . mod ify (" < html/ > ") ;

Изменяем ли мы состояние объекта page? Нет. Объект все еще
неизменяемый? Несомненно. Неизменяема ли неб-страница,
которую он представляет? Мы не знаем, но, скорее всего, нет.

Этот случай очень похож на то, что наблюдается в ImmutaЫeList,
но есть небольшое отличие - сущность реального мира нахо­
дится в памяти, а не во Всемирной паутине. Если бы язык jаvа
был спроектирован по-другому, мы бы никогда не увидели этой
разницы. Если бы в java был класс Memory, мы бы запрограмми­
ровали класс ImmutaЬleList следующим образом:

c l a s s ImmutaЬle l i s t < I ntege r > {
private final Memory total :

new Memory (2) ; / / 2 байта в куче
private final Memory items :

new Memory (100) ; / / 100 байт в куче
void add (Integer numbe r) {

int pos : t h i s . tota l . read () ;

}
}

3 .4. Будьте лояльным и неизменяемым либо константным 165

t h i s . items . store (po s , number) ;
t h i s . tota l . store (pos + 1) ;

Данный пример весьма примитивен, но, надеюсь, вы понимаете,
что в нем происходит.

Что скажете теперь? Похож ли он на W e b P a g e ? Думаю, да.
Инкапсулированные объекты this . total и this . items являют­
ся состоянием. Они представляют собой координаты несколь­
ких байтов в памяти для счетчика элементов списка и еще
какого-то количества байтов для хранения собственно элемен­
тов . По идее, и память, и диск, и Сеть для нас одинаковы.
Наши объекты представляют их , и ничего более. Это очень по­
хоже на указатель в С/С++. Вот как неизменяемый список вы­
глядел бы в С++:

#include < st d l i b . h >
c l a s s ImmutaЬleList {
puЬlic :

ImmutaЬlelist () :
tota l ((int*) calloc (l , s i zeof (int))) ,
items ((int*) ma l loc (100)) { }

-ImmutaЬle L i st () {
free (tota l) ;
free (items) ;

}
void add (int numbe r) {

int pos = *tot a l ;
items [pos] numbe r ;

*total = p o s + 1 ;
}

private :
int* const tot a l ;
i n t * const items ;

} ;

Обратите внимание н а то, что указатели total и items являются
константными. Они инициализируются в конструкторе путем
выделения участков памяти и освобождаются, когда освобо­
ждаются соответствующие участки памяти.

166 Глава 3 • Работа

Я считаю, что память должна рассматриваться нами так же, как
диск, сеть или любое другое внешнее хранилище. Язык должен
предоставлять встроенные инструменты для работы с памятью,
но они должны быть намного более гибкими и функциональны­
ми, чем указатели в С/С++. Проблема указателей в том, что они
чересчур просты. Они просто перенаправляют нас на некоторый
участок памяти, а выделение памяти - наша проблема и забота.
Как видно из приведенного примера, мы должны выделить с по­
мощью функции malloc () фиксированное количество байтов.
Что делать, когда весь выделенный блок заполнится элемента­
ми? Нужно увеличить емкость блока, но у нас это не получится.
Мы должны выделить функцией ma l loc () новый блок памяти,
скопировать туда содержимое существующего, а затем освобо­
дить его функцией free () .

Такая трехшаговая процедура должна быть реализована во
встроенном классе Memo ry. К сожалению, такого класса в Java
нет.

Блок памяти для нас - такой же внешний ресурс, как и файл на
диске. С точки зрения архитектуры программы между ними нет
абсолютно никакой разницы. Учитывая этот принцип, мы можем
использовать неизменяемые объекты где угодно. Некоторые из
них будут константными, некоторые - неизменяемыми, пред­
ставляющими фрагменты памяти.

Очевидно, что лучше использовать константные объекты, по­
скольку они проще для проектирования, поддержки и пони­
мания. Почти все, что говорилось о неизменяемых объектах
в разделе 2.6, относилось к константным объектам, являющимся
частными случаями неизменяемых.

Таким образом, любая система, независимо от ее производствен­
ной и технической области применения, включая игры, настоль­
ные приложения, мобильные приложения, веб-приложения,
корпоративные системы и т. п . , может и должна быть реализо­
вана целиком из неизменяемых объектов.

3 .4. Будьте лояльным и неизменяемым либо константным 167

Ja cob Z im meгmaп написал 1 8 ма рта 20 1 7 года :

В ы п р а в ы во всем , но я п о н и м а ю , почему л юди го ворят то , что
го ворят о неизменности резул ьтато в , возвращаем ы х метода м и .
О н и п р и р а в н и ва ют неизменяемость к идеала м фун кционал ьно­
го п р о гра м м и ро ва н и я , в кл ючая иде м п отентн ость - п р и н ци п ,
с о гл а с н о кото рому в ы з о в ы м етода с одн и м и и те м и ж е а р гу­
мента м и должн ы возвращать оди нако в ы е резул ьтаты . К это му
идеалу нуж н о п о воз м ожн ости стр е м итьс я , но , ко гда о бъ е кт
п р едста вл я ет нечто вроде файла , это , о чевидно , н е воз м ожно .

Е гор Бугаенко :

Вот и м е н н о �

Веп NadeL написал t. июня 20 1 6 года :

Я сейчас ч ита ю «Элегантн ые объекты », в частности раздел о не­
и з м е н я е м ы х да н н ых , и у меня , ка к и у м н о гих , п о я вляется мас­
са воп росов и непонятн ых моментов . И мея опыт веб-разработки ,
я ча сто дума ю в тер м и н ах объе ктн о й м одел и докуме нта [Docu­
meпt O bject Model , D O M] и обрабаты ваю события в DOM по мере
то го , ка к они п одн и м а ются вверх п о дереву эл е м е нто в . Дл я
вза и м оде й ств и я с D O M объект события и м е ет м етоды , и зме ­
н я ющие е го [событи я] п о в еде н и е , event . stopP ropagation ()
и event . p reventDefa u lt () . И нте ресно , п роти в о р е ч ит л и н а ­
п и са н ное в ы ш е п р и н ци пу неизменяем ости ? Ка к с каза н о в по ­
сте : « О бъ е кт я вл я ется н е и з м е н я е м ы м то гда и тол ь ко то гда ,
ко гда о н не м е н я ет коорди наты сущн ости реал ьного м и р а , ко­
то рую он предста вляет». Из это го я понял , что есл и ти п события
[н а п р и мер , mousemove] и е го цел ь [н а п р и м ер , E lement] не ме ­
н я ются , т о не меняется и иде нти ч н ость событи я . Тот фа кт, что
другие особ е н н ости р а с п ростра н е н и я и п о в еде н и я с о б ытия
м е н я ются , ка к та ко вой н е делает класс и з м е ня е м ы м . И н ы м и
сл ова м и , м о гу л и я с уч етом сказа н н о го сч итать объект события
неизменяем ы м ?

168 Глава 3 • Работа

Егор Бугаенко :

Хоро ш и й вопрос ! спасибо , кстати , что куп ил и и ч итаете кн и гу] .
Де йствител ьно , объе кт соб ытия я вляется неизменяем ы м до тех
пор , п о ка не меняет свою идентичность. Кро м е то го , я думаю ,
что а рхите ктура О О М в цел ом не я вляется объектно -ориенти­
рова н н о й . Они на дел е я вл я ются не объе кта м и , а структура м и
да н н ы х , сцепл е н н ы м и друг с друго м . Фун кци о н ал ь н ость от­
делена от н и х и вызы вается посредство м меха н изма событи й .
Н а стоя ща я объектн ая м одел ь должна в ы глядеть по -друго му.
Н и каких событи й б ыть н е должно .

Ben NadeL:

Я все е ще п ытаюсь разоб раться в это м всем , н о н е м о гу п ред­
ста вить себе веб-разра ботку без и спол ьзова н и я событи й .

Егор Бугаенко :

В ы хотите с казать : JаvаSсгi р t -разра ботку?

Ben NadeL:

Да , и м е н н о . Но опять же я с уверенностью отношу себя к « п ро­
цедурно му» л а ге р ю . Поэто му и куп ил вашу к н и гу.

Е гор Бугаенко :

Да , О О М в цел ом п роектиро вался с уч ето м п р о цедурного под­
хода . У нас есть набор объекто в [структур да н н ы х] , сцепл е н н ы х
друг с друго м и встрое н н ы х друг в друга . Е щ е есть н е кото р ы й
и нте р п р етато р (б рауз е р] , с вяза н н ы й с м ы ш ь ю и кл а в и атурой
и и м е ю щ и й п ол н ы й доступ к эти м структура м да н н ы х . А е ще
е сть н а п и са н н ы е на JavaScг i p t п р о цеду р ы , кото р ы е п о м е р е
необходи мости в ы з ы в а ются и нте р п ретато ром и и м еют доступ
ко в с е м у де р е ву да н н ы х . О ч е в ид н о , что О О П н е должно та к
работать . Я н е в состоя н и и с ходу с казать, ка ка я а рхите ктура
была б ы корректн о й , н о и нте р п ретатор и JavaSc ri pt- п poцeдypы
н е должны находиться отдел ьно от де рева .

3 .4. Будьте лояльным и неизменяемым либо константным 169

Ма гiо Т. La nza написал 4 июня 20 1 6 года :

В ы назы ваете н е и з м е н я е м ы м объе кт, ч ья в н е ш н я я обол о ч ка
н е и з м е н я е м а , но оди н из важн е й ш и х меха н и з м о в н е и з м е н я ­
емости - то , ка ким образом объект работает с чисты ми фун кция­
ми . Есл и я пе реда ю оди н из неизменяемых объекто в в ч и стую
фун кци ю , кото рая дает некото р ы й резул ьтат, я ожида ю это го же
резул ьтата п р и каждом вызове . То же верно и для методо в . Од­
н а ко , поскол ьку неизмен я е м ы й объект может м а н и пул и р о вать
состо я н и е м , где бы оно ни находилось , мы не може м ожидать
это го . П оте ря это й га ра нти и кра й н е существ е н н а . Я не дума ю ,
что л юди воз ража ют п о поводу то го , что в ы н е п о н и маете , что
п о сле то го , ка к кл асс п о м е ч е н f i п a l , у в ас п о я в л я ется н е и з ­
меня емая оболоч ка . Я дум аю , о н и и м еют в в иду, что назы вать
н е и з м е н я е мую обол о ч ку н е и з м е н я е м ы м о бъ е кто м - з н а ч ит
руш ить доводы в тех обсужде н иях , где неизменяем ость связана
с оп ределен н ы м и га ра нти я м и . Ваши посты часто вел и кол е п н ы ,
ваши идеи досто й н ы распростра нения , но , и м ея о п ыт фун кцио­
нал ьного п рогра м м и ро в а н и я , я н е вижу це нности в н е и з м е н я ­
е м о м объекте , ч ье в иди мое п о веде н и е н е связа н о н а п ря мую
с н е кото р ы м неизм е н н ы м состоя н и е м .

Е го р Бугаенко :

В общем-то в ы п р а в ы , но я п редл а га ю переосм ы сл ить тради­
ц и о н ную и нте р п рета ц и ю н е и з м е н я е м ости в О О П . О н а м ожет
в ы глядеть п р оти во р е ч и в о , но я сч ита ю , что она осм ы сл е н н а .
Ка к м и н и мум с м о е й точ ки з р е н и я .

M a гt i n написал 22 декабря 2 0 1 4 года :

В ы по -п режнему не п р а в ы . «Это живой о р га н и з м , п р едста вля ­
ющий сущность реал ьного м и ра в не которой о кружа ющей сре­
де (ко м п ьюте р н о й п рогра м ме] » . Ка к же это жи в ы е ор га н и з м ы

170 Глава 3 • Работа

неизменяем ы ? П роблема не в том , что люди вас н е п о н и м а ют.
С неизменяем остью все в порядке . М ы все п о н и м а е м . П робле­
ма в то м , что в ы утве ржда ете , что все объе кты всегда должны
быть неизменяем ы м и . Все . Всегда . Точ ка . А тот, кто не согласен ,
п росто не понял вас . Ваше утве ржден и е о том , что объе кты есть
сущн ости реального м и р а , н а п р я мую п р оти вореч ит утве ржде­
нию о то м , что они не и зменяются . Почему? П ото му что сущно­
сти реального м и ра постоя н н о м е н я ются . Возможн о , в ы хотел и
сказать, что объе кт я вляется предста влением сущн ости реал ь­
ного м и ра , что бл иже к исти не . Но, согласно та ко му о п редел е­
н и ю , объект м ожет и долже н м е н ятьс я . Воз м ожн о , в ы и м ел и
в виду, что объект я вляется п редставлением состоя ния сущности
реал ьного м и ра в да н н ы й ко н кретн ы й момент в р е м е н и . А вот
это уже закры вает п роблему с неизменяем остью . О н е и з м е н я ­
емом объекте и м еет с м ы сл говорить то гда и тол ько то гда , ко гда
он предста вля ет собой нечто неизменяемое (н а п р и м е р , состоя­
ние объе кта в п ро шло м , ка к и м б ы н едал е к и м оно н и б ыл о) .
Н едостато к в а ш е го п р и м е р а с кл ассом F i l e (ка к и п р и м е ра
с соба ко й , и с п ол ьзуе м о го в других п о ста х) в то м , что о бъект
кла сса F i l e н е я вл я ется п р едста в ител ем собств е н н о фа йл а .
О н п редста вля ет ссыл ку на файл (она , в свою о ч е редь, может
быть и зменяемой , но дл я да н н о го обсужде н и я п р едста в и м , что
не может) . Есл и он действител ьно был п р едста вител ем файла ,
а не ссылки на него , то его состоянием было бы не имя файла -
это были бы ба йты , находя щиеся в файловой с и сте м е , п р а в а
доступа , дата созда н и я , дата и з м е н е н и я , и нформация об ауди­
те и все то , что м ы сч ита е м относя щи м ся к фа йлу. П оз в ол ьте
в ы разиться п о -друго му. В Java у вас может быть два объе кта
класса F ile , ссылающихся на оди н и тот же файл в фа йл овой
с и стеме . Н о это п роблема с реал изаци е й . Разработч и к кл асса
File говор ит, что объекты класса п р едста вл я ют собой ссылки
на файл ы в файловой системе . В объектно-ориенти рованной ар­
хитектуре у вас вполне могли бы быть объект класса Act u a l F i le
и нескол ько объе кто в класса F ile , в ы ступа ю щих ссыл ка м и на
н е го . Act u a l F ile м ожет и н а в е р н я ка долже н б ыть н е и з м е н я ­
е м ы м . В ы можете доба влять соде ржимое в ActualFile, не соз-

3 .5 . Никогда не используйте геттеры и сеттеры 171

да вая нового э кземпляра . Очевидно , что изменение ActualFile,
н а кото р ы й ссыла ются н е с кол ь ко э кзе м пл я р о в кл асса F ile ,
н и ко и м о б р а з о м н е м е н я ет и х внутр е н н е го состоя н и я . То , что
вы м ожете з а п р о гра м м и р о вать кла с с Act u a l F i le ка к н е и з ­
м е н я е м ы й , с ове р ш е н н о н е з н а ч ит, что в ы должн ы та к делать.
Есть раз н и ца м ежду о бъектн о - о р и е нти рова н н ы м п ро гра м м и ­
р о ва н и е м и а рх ите ктуро й . В ра м ках о бъ е ктн о - о р и е нти рова н ­
н о й а рхите ктур ы в ы м ожете и должны и м еть н е и з м е н я е м ы е

объекты .

Егор Бугаенко :

П оз вол ьте о бъя с н ить . В о - п е р в ы х , я с ч ита ю , что о бъ е кт дей­
ствител ьно я вляется ж и в ы м организмом , жи вущи м в некоторой
среде обита н и я , н а п р и м е р в м етоде . Во -вто рых , о н п р едста в­
л я ет сущн ость реал ь н о го м и ра , которая находится где-то вне
е го среды обита н и я - н е важно , в другом л и м етоде , на диске ,
ил и в Буэ н ос-Ай ресе . В -третьих , н еизменяем ы й объект - бес­
кор ы стн ы й предста в ител ь сущности реал ьного м и ра , у не го н ет
н и ка ких л и ч н ы х вещей . Все , что у не го есть, - набор коо рдинат
той сущности , которую он предста вляет. И наконец, бескорыстие
объекта н е оз начает е го глупость - он п р е красно м ожет пере ­
да вать н а ш и запросы сущности реального м и ра , а ее ответы -
н а м . Н о себе о н н и ч е го н е оста вля ет, хотя все п р оходит ч ерез
е го руки . Он н е жадн ы й .

3 . 5 . Н и когда не испол ьзуйте геттеры
и сеттеры

Обсуждение на http ://goo.gl/LSyvo9.

Геттеры и сеттеры. Я не знаю, паттерн это или просто договорен­
ность. Я думаю, вы знаете, о чем я, но все же позвольте напом­
нить. Вот как они выглядят:

c l a s s Cash {
private int dolla r s ;
p u Ы i c i n t getDollars () {

172 Глава 3 • Работа

}

return t h i s . dollars ;
}
puЫic void setDollars (int value) {

t h i s . dollars = value ;
}

Итак, что у нас здесь? Изменяемый класс с единственным при­
ватным свойством, доступным через геттер getDollars () и изме­
няемым с помощью сеттера setDollars () . В разделе 2.6 мы уже
говорили, что все классы должны быть неизменяемыми. Этот же -
изменяемый. Кроме того, в разделе 2.4 мы обсуждали, как должны
называться методы. В этом классе два метода названы некоррект­
но. А еще у него нет ни одного конструктора, что противоречит
принципам, озвученным в разделе 2 . 1 . Я к тому, что этот класс
уже противоречит советам, приведенным в данной книге.

Но это еще не все. Изменяемость, названия методов и полное
отсутствие конструкторов - лишь малые прегрешения по срав­
нению с намного большим грехом, в котором повинен этот класс.
Это не класс, а структура данных. И этот грех не может быть
прощен. Аминь.

Объекты против структур данных

Какая разница между объектом и структурой данных? Почему
быть структурой данных - грех в ООП.

Сначала обсудим их разницу. Вот структура данных, описанная
на С:

struct Cash {
i nt dolla r s ;

}

А вот похожая вещь - объект, описанный на С++:

#include < string>
c l a s s Cash {

puЫic :

3 . 5 . Никогда не используйте геттеры и сеттеры 173

Cash (int v) : dollars (v) { } ;
std : : string print () const ;

private :
int dolla r s ;

} ;

В чем разница? Давайте взглянем. Так мы используем структуру
данных c a s h в языке С:

printf ("Cash value i s %d " , cash . dollars) ;

А так делаем нечто подобное с объектом класса Cash в С++:

printf (" Cash value i s %s " , c a s h . print ()) ;

Чувствуете разницу? Работая со структурой, мы получаем до­
ступ к ее полю dol l a r s и работаем с ним как с целым числом.
С самой же структурой ничего не делаем. Не общаемся с ней.
Мы напрямую получаем доступ к какому-то ее полю. Структу­
ра для нас всего лишь мешок с данными, не имеющий никакой
индивидуальности.

Класс - это нечто другое. Он не позволяет получать доступ
к своим полям . Кроме того, он их нам даже не показывает.
Мы даже не знаем, что внутри него есть поле dollars . Все, о чем
мы можем его попросить, - вывести себя на экран. Мы понятия
не имеем, как это происходит. Будут ли как-то использоваться
инкапсулированные поля? Неизвестно. Это называется инка ­

псуляцией, и в этом суть ООП.

Структуры данных прозрачны, а объекты - нет. Структуры дан­
ных - прозрачные ящики, а объекты - черные ящики. Струк­
туры данных пассивны, объекты активны. Структуры данных
мертвы, а объекты живы. Хорошие слоганы, не так ли? Здесь
я хотел бы остановиться и продолжить разговор о геттерах
и сеттерах в предположении, что объекты лучше структур дан­
ных. Этот факт очевиден всем. Однако я взял паузу и задумался
о том, что не так со структурами данных. Почему мы не можем

174 Глава З • Работа

сочетать объекты и структуры данных? Да, пускай объекты
лучше, но почему только они? Ведь иногда нам нужны старые
добрые структуры данных с парочкой полей. Зачем строить
объект с поведением, состоянием и идентичностью? Мы же
не ООП-фанатики, правда?

Нет, конечно, но хотелось бы работать только с объектами, а не
со структурами данных, чему есть весьма рациональное и прак­
тичное объяснение.

Как обычно, все упирается в сопровождаемость. Главная цель
любой парадигмы программирования, какой бы она ни была -
процедурной, функциональной или объектно-ориентирован­
ной, - упрощатъ вещи, сужая область видимости. Чем меньше
область, которую вам надо понимать в каждый конкретный
момент времени, тем проще понимать, модифицировать и со­
провождать программное обеспечение.

Когда в процедурном и императивном программировании код
манипулирует данными, лучший способ упростить вещи - ис­
пользовать подпрограммы и агрегацию данных. Вместо того
чтобы продираться сквозь тысячи операторов, мы откладываем
некоторые из них в сторонку и называем их подпрограммой.
Вместо того чтобы управлять сотнями байт, мы группируем их
в массивы и структуры данных и ссылаемся на них с помощью
единственного указателя.

Группа находящихся рядом байтов удобна тем, что, когда мы
хотим адресовать ее элемент, мы добавляем его смещение от­
носительно начала группы к адресу этого начала. Такую группу
проще передать в качестве аргумента к подпрограмме. Вместо
того чтобы передавать десять аргументов структуры, мы пере­
даем указатель на нее, а подпрограмма с легкостью находит нуж­
ные ей байты.

Движущими силами в данном случае являются код, подпро­
граммы и инструкции процессора. Они манипулируют данными,

3 . 5 . Никогда не используйте геттеры и сеттеры 175

а данные просто сидят и ждут, пока их кто-нибудь не изменит
или не прочитает.

В разделе 3 . 2 мы обсуждали разницу между процедурным
и объектно-ориентированным программированием и пришли
к выводу, что О О П было изобретено в первую очередь для
того, чтобы упростить вещи по сравнению с процедурным ми­
ром. Объекты перевернули все с ног на голову. Код стал пас­
сивным, а данные - активными. Если я правильно понимаю
О О П , то в этом его суть. Данные больше не сидят и ничего
не ждут. Теперь они инкапсулированы внутрь живых объектов.
Они связаны друг с другом и , когда приходит время что-либо
сделать, инициируют исполнение посредством сообщений, из­
вестных также как вызовы методов. В ООП код не преобладает
над данными. Вместо этого объекты инициируют исполнение
кода при необходимости. Звучит слишком абстрактно, но луч­
ш е я объяснить не смогу. Важно понимать фундаментальное
различие между процедурным и объектно-ориентированным
стилями программирования. Код больше не рулит. В О О П
код вторичен. Объекты - полноправные граждане кода, а про­
граммное обеспечение есть их инициализация посредством
конструкторов.

Ни операторы, ни выражения - конструкторы.

Каждый раз, когда мы пытаемся применить в ООП что-то слож­
нее, чем байт, мы делаем шаг назад к процедурному программи­
рованию. Когда мы группируем несколько байтов в структуру
данных и начинаем использовать ее для коммуникации между
объектами, мы серьезно подрываем объектную модель прило­
жения, и назад дороги (почти) нет. Мы начинаем думать в тер­
минах выражений и операторов, а не объектов и конструкторов.
В разделе 3 .2 мы уже обсудили разницу между императивным
и декларативным стилями. Пришло время к ней вернуться.
Когда данные становятся сложнее одного байта, мы возвраща­
емся к императивному программированию. Мы просто должны

176 Глава З • Работа

писать инструкции и операторы, которые будут манипулировать
байтами, - сами манипуляции неизбежно окажутся императив­
ными.

Чтобы оставаться декларативными и объектно-ориентирован­
ными, мы должны прятать данные в объектах и никогда не вы­
ставлять их наружу. Только объект должен знать, что именно ин­
капсулировано и насколько сложна структура данных. Я бы даже
сказал, что мы не должны оставлять данные голыми. Мы всегда
должны их как следует одевать.

Никто не должен видеть их голыми или трогать их.

Голые данные склоняют нас к применению процедурного стиля
программирования, которого в ООП следует избегать любой
ценой, - таково прагматическое обоснование использования
объектов вместо структур данных.

Благими намерениями
вымощена дорога в ад
Геттеры и сеттеры были созданы, чтобы нарушать принцип
инкапсуляции, хотя обычно декларируется обратное.

В J ava они были введены, чтобы превращать классы в структуры
данных, поскольку там структур данных не создано умышленно.
В С++ есть структуры, поэтому геттеры и сеттеры в нем не тре­
буются. В J ava они нужны, чтобы создавать объекты, которые
выглядят как объекты, но на деле являются пассивными струк­
турами данных, подобно struct в С++.

Мы можем превратить класс в структуру данных, сделав его
поля публичными (puЬlic в java) :

class Cash {
puЬlic int dolla r s ;

}

3 .5 . Никогда не используйте геттеры и сеттеры 177

Однако это нарушает базовые правила программирования на
J ava так сильно, что любой скажет вам, что вы понятия не имеете
об ООП. Так вот, чтобы избежать такого публичного унижения,
мы договорились делать поля приватными и прикреплять к ним
геттеры и сеттеры. В каждой современной среде разработки есть
возможность генерировать геттеры и сеттеры к существующим
приватным полям. Вы просто ставите курсор на поле класса,
нажимаете кнопку и получаете два новых метода: один с пре­
фиксом get, другой - с префиксом set.

В Ruby есть встроенная возможность автоматически создавать
геттеры и сеттеры. Они называются аксессорами и мутатора­
ми. О том, что они нам нужны, говорят два ключевых слова -
att r _reader и att r _wri ter :

class Cash
att r_reader : dollars
attr_writer : dollars

end

Это всего лишь удобная замена следующей развернутой кон­
струкции:

c l a s s Cash
def dollars

@dollars
end
def dollars= (va l u e)

@dollars = value
end

end

Те, кто проектирует языки и среды разработки, подталкивают
нас к обертыванию приватных полей в геттеры и сеттеры.

Я считаю, что геттеры и сеттеры - удобный инструмент на­
рушения приниципа инкапсуляции в ООП. Они выглядят как
методы, но в действительности маскируют тот неприятный факт,
что мы получаем прямой доступ к данным. Данные обнажены.

178 Глава 3 • Работа

Вы можете возразить, что данные скрыты, поскольку геттеры
и сеттеры являются методами. Можно добавлять в них допол­
нительную логику, проверять данные на корректность и даже
изменять способ хранения и считывания данных, но все это
не имеет значения. С точки зрения пользователя объекта геттеры
и сеттеры выглядят точно так же, как точки доступа к данным.
Объект выглядит как структура данных с битами и байтами .
Независимо от способа реализации геттеры и сеттеры являются
данными и представляют данные, а не поведение.

Все дело в префиксах
Важно упомянуть, что порочной составляющей в антипаттерне
« Геттер - сеттер� являются префиксы get и s e t . Они четко
дают нам знать, что объект на самом деле не объект, а структура
данных, не ожидающая к себе никакого уважения. Она ожидает,
что мы будем обращаться с ней как с набором байтов, голыми
данными. Она не хочет, чтобы с ней общались. А хочет, чтобы
мы ввели в нее или получили из нее какие-то данные.

Вполне нормально иметь метод, возвращающий некоторые дан­
ные, например:

c l a s s cash {

}

private final int value;
puЬlic int dollars () {

ret u rn t h i s . va l u e ;
}

Но такое имя недопустимо:

c l a s s Cash {

}

private final int value ;
puЬlic int getDollars () {

return t h i s . value ;
}

3 .5 . Никогда не используйте геттеры и сеттеры 179

Не слишком ли я зациклился на именовании? Вовсе нет. Раз­
ница существенна и очень важна. Вызывая getDo l l a r s () , мы
говорим: « Залезь в свои данные, найди там поле dollars и вер­
ни его значение» . Вызывая же d o l l a r s () , мы спрашиваем:
« Сколько у вас долларов?» Чувствуете разницу? Во втором
случае я не рассматриваю объект как хранилище данных .
Я уважаю его. Мне нужно знать, сколько долларов есть у объ­
екта, но я не рассчитываю на то, что их количество хранится
в приватном поле. Я не делаю предположений о его внутрен­
ней организации и уж точно не думаю о нем как о структуре
данных.

В первом случае данные скрыты, во втором - нет. Они выстав­
лены напоказ - любой пользователь класса видит их.

Вывод здесь один: геттеры и сеттеры - ужасный антипаттерн
ооп.

Никогда не называйте так свои методы.

Dog нап исал 21 а п реля 20 1 7 года :

« В насто я ще м объе ктно -ор иенти рованном п ро гра м м и рова н и и
объекты - та кие же живые существа , ка к в ы и Я » . Я е ще м о гу
п р едста вить себе та кое в Егlа п g , но уж точ н о н и в ка ком другом
я з ы ке . З нать о то м , что объе кты соде ржат слоты и vta Ыe [или
ка к о н и та м у вас в я з ы ке наз ы в а ются) , жизненно важно , что­
бы их ко рректн о и с п ол ьзо вать. Вам та кже необходи м о з нать,
ка к о н и управл я ют п а м ятью, ка к вза и м одействуют с потока м и
и мно го других технических заморочек. В отл и ч и е от соба ки они
бол ьш е й частью за собой следить не будут. Есл и б ы мне да ва­
л и долла р вся кий раз , ко гда я п ытался испол ьзовать класс из
стандартной библиотеки в потоке , отличном от главного , а он при
это м об руш и вал п ро гра м му, у меня было б ы н а м н о го б ол ь ш е
де н е г. Б ы л о б ы замечател ьно , есл и б ы объе кты были жи в ы м и

180 Глава 3 • Работа

существа м и и я м о г бы до ве рять и м следить за собо й . Однаж­
ды это может сб ыться , но сегодня это совсем не та к . Это тупая
свал ка байто в , с кото рой надо работать стро го о п р еделен н ы м
образом , и наче о н а ун ичтожит Вселенную. Собака ест, ко гда е й
хочется , и ходит в туалет, когда е й хочется , даже есл и е й о б этом
н е го вор ить. Есл и в ы дол го будете и гнорировать свою соба ку,
она может съесть ваш обед и на гадить на ковер , но не сове р ш ит
са моуб и й ство , не н а ч н ет рожать тысячу ще н ков в секунду и н е
сожжет ваш до м .

Е го р Бугаенко :

В ы п ра в ы . Java и други е н едо- О О П -яз ы ки не сч ита ют объе кты
жи в ы м и существа м и . Да , мы должны следить за н и м и , и н а ч е
о н и сожгут наше жил и ще . Н о кто создал эти язы ки? М ы , п ро­
гра м м и сты , н е п о н и м а ю щи е , кто та кие объекты . Одна и з ос ­
новных цел ей да н н о й заметки , помимо п рочего , состо ит в то м ,
что б ы п о м е нять м и р о в озз р е н и е тех са м ы х л юде й , кото р ы е
п роекти руют я з ы к и , б и бл и оте ки и т. п .

lva n Р . написал 2 2 ноября 20 1 6 года :

В реал ьном м и ре не все будет объекто м , а тол ько то , что и м еет
п о веде н и е . Стол , к п р и м е ру, н е и м е ет собств е н н о го п о веде ­
н и я . Сл едо вател ьно , е го н е сто ит о п и с ы вать ка к объект. Ка ко й
и м е н н о - ОТО-объект1 ил и ка кой -то еще, - не и м еет значен и я .
О п и с ы вать сущ н о сти б е з п о в еде н и я ка к о бъ е кты - з н а ч ит
усл ожнять код.

Егор Бугаенко :

У ч е го нет поведе н и я , та к это у да н н ых .

1 Data Transfer Object (объект для передачи данных) - паттерн проек­

тирования, используемый при передаче данных между подсистемами
приложения или уровнями архитектуры (уровень бизнес-логики,
хранения данных и т. п .) . - Примеч. пер.

3 . 5 . Никогда не используйте геттеры и сеттеры 181

Lewis CowLes написал 1 7 сентя б ря 20 1 6 года :

Что и нте р е с н о , р е ч ь с ко р е е о то м , что AP I о бъе кто в должно
и м еть бол е е естеств е н н ы й с и нта кс и с , а н е о п атте р н е « Гет­
тер - сеттер» ка к та ко в о м . Я могу п р и нять та ко й ход м ы сл е й ,
и м н е кажется , что это заста в ит более р а ц и о н а л ь н о м ы сл ить
о п робле м н о й области , н о беспокоит то , что это будет сл ожнее
объя с н ить и п о н ять , особе н н о в мул ьти кул ьту р н ы х ко м а ндах ,
в частн ости , те м , кто « п е ресекает верти кал ьную л и н ию» 1 •

ALexKu blca l l нап исал 27 и юля 20 1 6 года :

Здра вствуйте , Егор . А ка к насчет предста вл е н и я да н н ы х в виде
форм с м н ожеством п ол е й , н е и м еющих объектн о го поведе н и я
ка к та ко вого ? С помощью этих полей я долже н и м еть воз м ож­
ность сохра нять, реда кти ро вать и фильтровать да н н ы е . Та кое ,
м н е кажется , трудно сделать без геттеров и сетте ров .

Егор Бугаенко :

П охоже , в ы и с п ол ьзуете ОТО-объекты . Н е дела йте это го . Есть
м н о го других альтернати в .

lva n Stan kov написал 1 2 и юля 20 1 6 года :

Допусти м , у нас есть п роект со всеми эти м и правил ь н ы м и соба­
ка м и и п р оч и м . П роект находится в разработке уже более года ,

1 Завуалированная ссылка на азиатов, в частности китайцев. Здесь,
вероятно, подразумеваются региональные различия в написании
арабской цифры 4. В европейских языках обычно не имеет значения,
пересекать ли вертикальную линию при написании цифры 4 , но

в китайском языке есть похожий по написанию иероглиф � . поэтому
китайцы всегда пересекают вертикальную линию при написании
цифры 4 , см . https://en.wikipcdia.org/wiki/Regional_handwriting_
variation#AraЬic_numerals. - Примеч. пер.

182 Глава З • Работа

и в ы наняли нового п рогра м м и ста . О н п олуч ает зада чу поды ­
с кать ка кой -то се м ье п са . Разработч и ку нужно создать н о вую
соба ку. Он и щет фаб р и ку собак, ген ератор соба к и т . д . и т . п . ,
н о н и ч е го п охожего н е на ходит. Ч е рез н е кото р о е в р е м я е м у
го ворят, что есть классы вроде DogShelter , ZooShop и другие
п одходя щие для решения зада ч и . Итак , DogShelter . getDog -
н ет та ко го , c reateDog - нет та ко го , coпstructDog - нет та кого,
пewDog - н ет та кого, да боже м о й , может, get F lyweightDog -
кон е ч н о же , и е го н ет. Ага , в ито ге он находит метод adoptDog.
В этом и есть суть заметки ?

Егор Бугаенко :

Да , и м е н н о ! Существующие на сегодня соглашения (н а п р и м е р ,
геттеры - сеттеры] плохи , та к ка к бази руются на н е п равильных
п р и н ци пах . Да , о н и весьма попул я р н ы и позвол я ют програ м м и ­
ста м б ы стрее делать работу. Н о в бол ь ш и н стве случ аев из -за
этого страдает качество работы . Я п ыта юсь изменить п р и н ци п ы .
Н е избежно м н е п р иходится менять согла ш е н и я .

Sag iг i написал 2 3 ма рта 20 1 6 года :

Для п р и м ера с классом Dog н е существует ко н цептуал ьно ко р ­
ректно го варианта гетте ра . Ta ke н е подойдет, п ото му что , ко гда
я б е ру что-то у ко го -то , у н е го это го ч е го -то бол ь ш е н ет. Это
п роти воречит то му, что ba l l не м ожет б ыть равен NULL (п редп о ­
л ожител ьно , п ото му, что у каждой собаки есть м я ч] . н е го в о р я
уже о то м , что класс Dog долже н б ыть н е и з м е н я е м ы м . М ожет
быть , м ожно набл юдать за м я ч о м ил и а н ал и з и р о вать е го , н о
то гда воз н и ка ет е ще бол ь ш а я пута н и ца , п о с кол ь ку набл юде­
н и е и а н ализ - более а кти в н ы е де й ств и я , чем то , что п ро и с ­
ходит на с а м о м дел е . С о с н о в н о й иде е й , в п р о ч е м , я с о гл а се н .
Есл и м ы сл ить в те р м и н ах о бъекто в , то м ы н е уста н а вл и ва е м
и м я или раз м е р - м ы п е р е и м е н о в ы ва е м или м е н я е м раз м е р
ч е го-л и б о .

3 .5 . Никогда не используйте геттеры и сеттеры 183

Scott Pa Lmeг написал 1 З ноября 2 0 1 5 года :

Эта заметка - практи ч ески п ол ная бесс м ы сл и ца . Она н а ч и н а ­
ется с того , что предла гает п р итвориться , будто структур да н н ы х
н е существует, а опуда катится вниз п о н а кл о н н о й .

Егор Бугаенко :

В объе ктно -ориентирова н н о м п рогра м м и ро ва н и и нет структур
да н н ых . М ы оста в ил и их п озади 20 лет назад в я з ы ке С . Идите
в н о гу со времене м !

Scott Pa Lmeг:

Ко гда в рука х м ол ото к , все в о к руг кажется гв оздя м и . О бъ ­
е ктн о - о р и е нти рова н н о е п рогра м м и ро ва н и е н е озна ч а ет, что
нужн о заб ыть все , что есть, и п одго н ять все п одряд , без раз­
б о ру п од объе ктную па ради гму. Это глуп о . Для каждо й зада ч и
нужно и с п ол ьзо вать п одходя щи й и н струме нт. И н о гда все , что
в а м нужно , - п роста я структура да н н ы х . Ка к бы то ни б ы л о ,
в з а м етке м а сса других п р о бл е м . И д е я о то м , ч т о сл ова ge t
и set вол ш е б н ы м образом п о рочат имена м етодо в , а бсурдна .
«Собака - неизменяем ы й жи вой о р га н и з м , кото р ы й не позво­
л я ет н и кому и з в н е м е н ять ее вес , рост, кл и ч ку и т . п .» - оче­
видная л ожь . Я м о гу п о м е н ять кл и ч ку соба к и . И мой п ито м е ц
н е и м еет п рава гол оса п о это му в о п р о су. Есл и у м е н я есть с о ­
бака , то я м о гу п о м е н ять ее кл и ч ку та к : dog . setName (" Spot ")
ил и dog . n ame (" F ido ") , и , откровен н о го в о р я , в а р и а нт с п ре­
ф и ксом set более о ч е в иде н . Н е нужно мне указы вать, что я не
могу поменять кл и ч ку соба ки , н е заводя новую [неизменя е м ы е
соба к и , в ы это с е р ьез н о ?] .

Егор Бугаенко :

Менять кл и ч ку собаки и устанавл и вать ее - раз н ы е вещи . В за ­
м етке речь об это м . Кл и ч ку можно поменять, но уста н а вл и вать
ее не сто ит.

184 Глава 3 • Работа

bed obl нап исал 1 6 а вгуста 20 1 5 года :

М н е н р а в ится ваш бл аг, но м н е кажется , что п е р е и м е н о ва н и ­
е м м етодов м н о го го н е доб итьс я . Н еза в и с и м о о т н а з ва н и й ,
о сновной п роблемой оста ется и н ка п суля ция и то , ка к она п од­
тал ки вает разра ботч и ко в отн ос иться к объе кта м ка к к туп ы м
мешка м да нных и тем са м ы м испол ьзовать процедурн ы й подход
в м есто объектно -ориенти рова н н о го . В м есто то го чтобы просто
переименовы вать методы , можно и нужно полностью зап ретить
возможность изменения объе кто в , в частности , с п омощью sеt­
м етодо в . Gеt- м етоды должн ы п р едоста вляться тол ько п р и не­
обходимости и возвращать тол ько неизмен я е м ы е коп и и своих
з н а ч е н и й , кото р ы е бросают и с кл ю ч е н и я п р и любых п о п ытках
их и з м е н ить.

Егор Бугаенко :

Действител ьно , в идеале нам необходимо избав иться от сетте­
ров и сделать объе кты неизменя е м ы м и .

Esteban нап исал 2 1 июня 20 1 5 года :

Допусти м , у меня есть графическое п р иложе н и е . С п ра ва у не го
панел ь и н струм ентов , позволяющая менять свойства объекто в .
Допусти м , м ы выбрали объект ки сти , испол ьзуе м ы й в трех изо­
б раже н и я х цы плят на ферме . На п а н ел и с п рава п ол ьзо вател ь
может поменять з начения красного , зеленого , с и н е го и ал ьфа ­
ка налов с п о м ощью ч еты рех п олзун ко в . Когда п ол ьзовател ь
перемещает оди н из ползун ков , цвет п е р ьев долже н меняться
у всех цы плят одн о в р е м е н н о . Та к должно быть, п ото му что все
три р и су н ка в нутр и с с ы л а ются на этот о бъект к и сти . Ка к в ы
реал изуете объе кт кисти , н е доба вляя в класс сетте р ы и гетте ­
р ы , и з м е н я ю щи е з н а ч е н и я красно го , зел е н о го , с и н е го и аль­
фа - ка н ал о в ? Эти с в о й ства м о гут б ыть н еза в и с и м о и з м е н е н ы
п ол ьзо вателе м с помощью эл ементо в управле н и я .

3 . 5 . Никогда не используйте геттеры и сеттеры 185

Е гор Бугаенко :

Есть н е с кол ько воз м ож н ы х р е ш е н и й . П е р в ы й и са м ы й п р о ­
сто й - создать кл асс B r u s h e s , в оз в р а ща ю щ и й к и сть п о е е
иденти ф и като ру. Все изоб раже н и я будут з н ать тол ько иде н ­
тифи като р кисти и ссылаться н а кл асс Brushes . П олучать не ­
обходи мую кисть о н и смо гут по требова н и ю .

Gгeg Воп пеу написал 2 1 и юля 20 1 5 года :

П р и ятно видеть, что не оди н я дум аю , что « Гетте р - сеттер» -
это а нти патте р н . К сожал е н и ю , он настол ько уко р е н ился в AP I
Java и других похожих я зыков , что его практически невозможно
избежать.

Matt нап исал 9 и юля 2 0 1 5 года :

М ожет б ыть , я что -то упус ка ю , н о п о бол ь ш е й ч а сти да н н ы е
п р и меры все та к же испол ьзуют гетте р ы и сетте р ы , но да ют и м
неочевидн ы е и м е н а . dog . weight () - метод, н и ч е м не отл и ч а ­
ющийся о т dog . getWeight () . Для тех, кто не осил ил 1 : геттер ы
и сеттеры - всего л и ш ь соглашение об и м енова н и и , их не име ­
ет с м ы сла назы вать а нти патте р н о м и н е корректн о утве рждать,
что это плохая практи ка п ро гра м м и ро в а н и я .

hasufeH написал 2 7 мая 2 0 1 5 года :

В е с ь м а и нте р е с н ы й вз гляд . М н е кажетс я , что в ы н а в е р н о м
пути и что с в а м и п р и ятно работать ка к с 0 0 - п р о гра м м и сто м ,

1 В оригинале TL; D R (too long;didn't read) - таким сокращением
в интернет-сленге обозначают упрощенное изложение длинной

статьи или комментария. В русскоязычном сегменте Интернета
с похожей целью используется фраза <iHe осилил - много букв» . -

Примеч. пер .

186 Глава 3 • Работа

но п осле п рочте н и я я подумал , что в ы упустил и и з в иду ч и сто
фун кцио нал ьное п рогра м м и рова н и е . М н огое из то го , о ч ем в ы
го ворите , уже в кл ючено п о умол ч а н и ю в я з ы ки вроде Haskel l
[н е и з м е н я е м о сть , п р я м ол и н е й н ы й код , и н ка п сул я ци и , отсут­
ств и е нул е в ы х ссыл о к) . Есть даже допол н ител ь н ы е п р е и му­
щества в виде отсутствия побоч н ы х эффекто в . В та ких язы ках
н е п олуч ится м ы сл ить п о - ста рому, и м п е рати в н ы м с п особо м .
Ко н е ч н о , от О О П тоже есть отл и ч и я , н о с уч етом п р и веде н н ы х
п ожел а н и й п о улуч ш е н и ю с о в р е м е н н о го о б р а з а м ы шл е н и я
сл едую щ и м л о ги ч н ы м ш а го м будет, ка к м н е ка жетс я , ч и сто
фун кционал ьное п р о гра м м и рова н и е .

Егор Бугаенко :

Де й ств ител ь н о , фун кцио нал ь н о е п рогра м м и р о в а н и е в е с ь м а
бл и з ко п о духу п ра в ил ь н о реал изова н н ому О О П . Н о я все же
сч ита ю , что о н и разл и ч а ются и что О О П мощнее .

N i koLa Boгicic спросил , , февраля 20 1 5 года :

Ка к н а с ч ет с це н а р и я , ко гда р е сур с ы о гра н и ч е н ы , а п р о и з ­
в одител ь н о сть к р ити ч н а ? К п р и м е ру, в м о б ил ь н ы х Ап d го i d ­
п р ил ожениях объекты Li stView н е будут н е и з м е н яе м ы м и , по ­
с кол ьку дл и н н ы е сп иски ста нут при водить к отказу п р иложе н и й .
Вместо это го есть пара объектов , которые п р и п ро крутке списка
испол ьзуются повторно . Считаете л и в ы это плохо й практи ко й ?
Ка к б ы в ы работал и с та ким случ а е м , н е п р и м е н я я м етоды- му­
тато р ы 1 ?

Егор Бугаенко :

Я б ы п о - п р ежнему испол ьзовал неизменяем ы е объе кты , н о на
основе и зменяемого хра н ил и ща в памяти .

1 Mutators (англ.) - обобщенное название геттеров и сеттеров. - При ­
м еч . пер.

3 .5 . Никогда не используйте геттеры и сеттеры 187

Hans-Peter Stoгr написал 2 я нваря 20 1 5 года :

М е н я нескол ько смущает то , что в ы говорите о неизменяемых
живых ор га н измах . Я понимаю , что живой орга н и з м будет удач­
ной м ета ф о р о й , н а п р и м е р , а кто р о в в Sca la . Но е сл и « о н о »
н е изменяется , т о н е будет л и «оно» статуей соба ки , а н е самой
соба кой? Ил и фотографией собаки , притом что действия порож­
да ют н о в ы е фотограф и и ? Я нескол ько затрудняюсь п ридумать
хоро шую м етафору для неизменяемости .

Егор Бугаенко :

Н еизменяе м ы й - н е значит туп о й или безжизн е н н ы й .

oddpa rity написал 1 ноя б ря 20 1 4 года :

Н ет, п р о гра м м и р о в а н и е н е р ел и ги я , ка к в ы п и ш ете н иже .
И ваша заметка , м н е кажется , п одде ржи ва ет эту м ы сль . П ро ­
гра м м и рование - п ро цесс созда н и я и н струме нта . И н струмент
долже н работать , долже н быть с о п р о в ожда е м ы м , ра с ш и ря ­
е м ы м , отлажи в а е м ы м , в е р и ф и ц и руе м ы м . О н будет работать
и с гетте ра м и , и с сеттера м и .

Его р Бугаенко :

Да , о н будет ра ботать с гетте ра м и , сетте ра м и , с и н глто н а м и ,
стати ч е с к и м и м етода м и , без ю н ит-тесто в , с божеств е н н ы м и
объекта м и , с па гетти - кодо м и без вся ко й докум ента ци и . Будем
честн ы м и : большая часть кода , с кото р ы м м ы стал киваемся , ра­
ботая в этой и ндустр и и , делается и м е н н о та к. Н ра в ится ли н а м
это? Хоти м л и м ы это улуч ш ить? Л ю б и м л и м ы свою п рофесси ю
или работа е м з а еду? Я дума ю , что п р о гра м м и ро в а н и е - это
образ жизн и , рел и гия , и скусство , но н и ка к не процесс созда н и я
и н струм ента . В ы проводите 1 % жиз н и на с вида н иях , а 8 0 % -
за ко м п ьютером . П очему м ы должны встречаться с крас и в ы м и

188 Глава 3 • Работа

мужч и н а м и/женщина м и , но п р и этом не беспоко и м ся о красоте
собств е н н о го кода ?

oddpa гity:

Мне тоже нравится красивый код. Но переименование getBall ()
в giveBa l l () м н о го п робл е м н е реш ит. К то му же я н е особо
л ю бл ю с ю р п р и з ы . Н е кото р ы е и з моих колл е г м о гут реал изо ­
вать м етод s p it B a l l () , н е кото р ы е даже get B a l l () [те , что
всегда го во рят : « П р и н еси м н е м я ч »] . Хотел ось бы ка к м ожно
б ы стрее находить метод, воз в ра щающий м я ч , а поэтому я п р и ­
держи вался бы обще п р и н ятых согла ш е н и й о б и м енова н и и , ка к
это делают остал ь н ы е . Я с корее хотел б ы , чтобы мои коллеги
вносили больше креати ва в хо рошо с п роекти р о ва н н ы е клас ­
с ы [уч иты вающие , к п р и м е ру, в а ш и реко м е нда ц и и п о други м
те м а м] и хорошее м и кроп рогра м м и р ова н и е . Кроме то го , м о и
объе кты н е ц и ф р о в ы е воплоще н и я ж и в ы х суще ств , а з а п р о ­
гра м м и рова н н ы е п рое кци и фа йл о в , п а п о к и их содержи м о го .
Бум а га и то , что на н е й н а п и с а н о , н е облада ют и нтелл е кто м ,
а п р о цесс , работающий н а н е й , - да . М н е н ра вятся иде и м и ­
сте ра Фаулера 1 , н о я , п охоже , п редпоч ита ю «безжиз н е н н ы й »
взгляд на п роекти рова н и е .

Bгuno S kvo гc нап исал 3 1 октя бря 20 1 4 года :

Это все п р иди р ки ради сла вы и де нег. Дела йте ка чествен н ы е
п р иложе н и я и называйте методы ка к угодно .

Егор Бугаенко :

Да , будь хоро ш и м мал ьч и ко м , слуша й маму - и все будет хо­
рошо . Для дете й это подо йдет, н о в серьез н о й разра ботке П О
нужны п ра в ила , п р и н ци п ы , дисци пл и н а . О О П да ет н а м дисци­
пли ну, есл и м ы ее п ра в ил ьн о п о н и м а е м .

1 Мартин Фаулер (Martin Fowler) - автор ряда книг, посвященных
архитектуре приложений. - Примеч. пер.

3 .6 . Не используйте оператор пеw вне вторичных конструкторов 189

3 . 6 . Не испол ьзуйте оператор new

вне вторич н ых конструкторов

Обсуждение на http ://goo.gi/U8F8пq.

П оговорим о внедрении зависимостей. Честно говоря , мне
нравятся это название и шумиха вокруг него. Знаете, не бу­
дем об этом. Поговорим о чистом, дисциплинированном ООП.
Мы не избежим разговора о внедрении зависимостей, инверсии
управления и других паттернах проектирования, имеющих от­
ношение к зависимостям.

В небольших и молодых приложениях проблема не слишком
очевидна, но она становится важна, иногда даже жизненно важ­
на, в крупных системах. Например:

c l a s s Cash {

}

private final int dolla r s ;
puЬlic i n t euro () {

}

return new Exchange () . rate (" USD" , " EUR ")
* t h i s . dolla r s ;

Вот так выглядят проблемы. М ы создаем экземпляр класса
Excha nge, используя оператор new прямо внутри метода euro () .
Почему это вызывает проблемы? Не обязательно вызывает (при
условии, что классы небольшие, простые и не задействуют до­
рогих ресурсов вроде сети, диска, базы данных и т. п .) .

Проблемы вызывает нечто, называющееся жестко запрограм­
мированной зависимостью. Действительно, класс C a s h связан
с классом Exchange, в результате чего мы не можем ликвидиро­
вать такую зависимость, не редактируя код внутри класса Cash .

Представьте себе ситуацию, когда исходник класса C a s h недо­
ступен, а класс все равно приходится использовать. Или код
доступен, но его нельзя изменять. У нас просто есть библиотека

190 Глава 3 • Работа

в двоичном формате, и мы ее обязаны применять. Код может
выглядеть так:

Cash five = new Cash (" S . 00 ") ;
print (" $5 соответствует %d " , five . euro ()) ;

Я проверяю метод print () и не хочу, чтобы класс при каждом за­
пуске юнит-теста обращался в Нью-Йоркскую фондовую биржу.
Меня не волнует, как работает метод five . euro() . Все, что мне
нужно, - результат. Я не хочу тестировать класс C a s h . Я хочу
тестировать собственный код и чтобы класс Cash создавал как
можно меньше шума. Если каждый раз при запуске тестов он
будет подключаться к NYSE по НТТР, это станет сильно раз­
дражать и моим первым вопросом к разработчику этого класса
будет: « Как мне настроить класс C a s h так, чтобы он перестал
обращаться к бирже?�

В текущем варианте реализации класса Cash такое абсолютно
невозможно. Связь между классами Cash и Exchange нерушима.

Чтобы их расцепить, придется изменять исходный текст класса
C a s h . Эта проблема незначительна тогда и только тогда, когда
класс невелик, но в более глобальном масштабе жестко запро­
граммированные зависимости мешают тестированию и сопро­
вождению ПО.

Корень зла - оператор new.

Поскольку мы позволяем объектам инстанцировать другие объ­
екты где и когда им удобно, то почему жалуемся, когда они дела­
ют это где хотят? Cash может порождать экземпляры Exchange -

вот в чем проблема. Представьте ситуацию, когда оператор new
запрещен внутри методов. Объекты не смогут порождать новые
объекты. Они смогут только принимать их в качестве аргументов
конструктора и инкапсулировать в приватных полях. Класс Cash
будет выглядеть примерно так:

c l a s s Cash {
private final int dol l a r s ;
p rivate f i n a l Exchange exchange;

3 .6 . Не используйте оператор пеw вне вторичных конструкторов 191

}

Cash (int value , Exchange exc h) {
t h i s . dollars = value ;
t h i s . exchange = exc h ;

}
puЬlic int euro () {

}

return t h i s . exchange . rate (" USD" , " EU R ")
* t h i s . dolla rs ;

Проблема решена. Вот как должен будет выглядеть наш код:

Cash five = new Cash (S , new FakeExchange ()) ;
print (" $5 соответствует %d " , five . eu ro ()) ;

Мы должны передавать экземпляр Excha nge в качестве второго
аргумента конструктора. Класс C a s h не может инстанцировать
его самостоятельно. Он работает только с тем обменником,
который ему предоставят. Он больше не зависит от E x c h a nge.
Вообще, конечно, зависит, но теперь зависимость контролируем
мы, а не он. Он не решает, где ему взять курс обмена долларов на
евро. Он полагается на наше решение и работает с тем объектом,
который мы ему дадим.

Иными словами, вместо того, чтобы позволять объекту создавать
зависимость по своему усмотрению, мы внедряем ее посредством
конструктора.

Такое внедрение - хорошая практика. Класс C a s h разработан
таким образом, что его конструктор ожидает все необходимые
зависимости, и такое поведение - образец для подражания.
Так нужно разрабатывать все объекты. Для удобства мы можем
добавить несколько вторичных конструкторов, как описано
в разделе 1 .2 :

c l a s s Cash {
private final int dolla r s ;
private f i n a l Exchange exchange;
Cash () { // вторичный

t h i s (0) ;
}
Ca s h (int va l u e) { / / вторичный

192 Глава 3 • Работа

}

t h i s (value , new NYSE ()) ;
}
Ca s h (int value, Exchange exc h) { / / ос новной

t h i s . dollars = value ;
t hi s . exchange = exc h ;

}
puЫic int euro () {

}

return t h i s . exchange . rate (" USD" , " EUR ")
* this . dolla r s ;

Одноаргументный конструктор внедряет экземпляр класса NYSE.
Но это вторичный конструктор. Первичный конструктор позво­
ляет нам полностью контролировать то, с какими зависимостями
работает объект.

Я предлагаю простое правило, обеспечивающее высокое каче­
ство всех ваших объектов: не используйте оператор new нигде,
кроме вторичных конструкторов. Взгляните на приведенный
ранее код еще раз. Как видите, оператор new применяется только
во вторичном конструкторе и нигде больше. Если вы запретите
использование оператора new где-либо еще, ваши объекты будут
полностью расцеплены и их верифицируемость и сопровожда­
емость повысятся.

Вы можете спросить, что делать, если объект должен инстанци­
ровать другие объекты. Допустим, у нас есть объект, который
представляет поток запросов, скажем, от сетевого сокета:

c l a s s Request s {

}

private final Soc ket soc ket ;
puЫic Request s (Soc ket s kt) {

t h i s . soc ket = s kt ;
}
puЫic Request next () {

return new SimpleRequest (

}

/ * прочесть данные из сокета * /
) j

3 .6 . Не используйте оператор new вне вторичных конструкторов 193

Каждый вызов метода n e xt () должен создавать объект типа
Request и возвращать его. Действительно, здесь нам нужен опе­
ратор new, и это не конструктор. Да, этот код нарушает правило,
о котором идет речь в данном разделе. Вот как мы решаем эту
проблему:

c l a s s Requests {

}

private final Soc ket soc ket ;
private final Ma pping<String, Request > mapping;
puЬlic Request s (Soc ket s kt) {

}

t h i s (
s kt ,

) ;

new Mapping<String, Request > () {
@Override

}

puЬlic Request map (St ring dat a) {
return new SimpleRequest (data) ;

}

puЬlic Request s (Soc ket s kt ,
Mapping<St ring, Request > mpg) {
this . soc ket = skt ;
t h i s . mapping = mpg;

}
puЬlic Request next () {

return t h i s . mapping . ma p (

}

/ * прочесть данные из сокета * /
) ;

Мы инкапсулируем экземпляр класса Mapping , который отве­
чает за конвертирование текстовых данных в экземпляр класса
Request. Как видите, оператор new используется только во вторич­
ном конструкторе. В методе next () его больше нет. Такой подход
делает класс Requests конфигурируемым и избавляет его от жест­
ко запрограммированных зависимостей. В коде больше нет жестко
прописанных зависимостей. Мы можем внедрить собственную
реализацию класса Mapping, который не применяет SimpleRequest,

но возвращает, к примеру, что-то пригодное для тестирования.

194 Глава З • Работа

Было бы хорошо, если бы такое правило было встроено в язык
и строго соблюдалось, но это вопрос завтрашнего дня. А пока
что имейте в виду: всякий раз, когда вы используете оператор
new в методах или основных конструкторах, вы делаете что-то
не так. Единственное законное место оператора new - вторичные
конструкторы.

Думаю, это все, что вам нужно знать о внедрении зависимостей
и инверсии управления. Это простое правило в совокупности
с неизменяемыми объектами сделает ваш код чистым и подго­
товит его к внедрению зависимостей.

Baгtosz М iега нап исал 8 я н варя 20 1 8 года :

Я сч ита ю , что основная п роблема с оператором new () состо ит
в то м , что о н за кадром испол ьзует с и н глто н (!] , кото р ы й почти
все сч ита ют всел е н с к и м зл о м . Будем ч е стн ы м и : куча (h ea p] ,
о каз ы ва ется , я вляется с и н глто н о м , та к ка к о н а доступна гл о ­
бал ь н о и существует в каждом п р ил оже н и и в еди н ств е н н о м
э кз е м пл я р е . Разум н о п р и м е н ять о п е рато р n ew дл я созда н и я
объекто в тол ь ко на верхнем уро в н е кода . О стал ь н ы е объе кты
нужно порождать посредством других объекто в , та ких ка к фа­
б р и ки и т . п .

3 .7. Избегайте и нтроспекци и
и п ри веден ия типов

Обсуждение на http ://goo.gl/BoQ2iq.

Время от времени весьма соблазнительно использовать ин­
троспекцию и приведение типов, однако держитесь от них по­
дальше, чего бы это ни стоило. С технической точки зрения
речь идет об операторе instanceof и методе Class . cast () в java
или их аналогах в других языках. Задействуя этот оператор, мы

3 .7. Избегайте интроспекции и приведения типов 195

можем проверять тип объекта во время исполнения программы,
например:

puЬlic <Т> int size (IteraЬle<T> items) {
if (items instanceof Collect ion) {

return Collection . c lass . cast (items) . s i ze () ;
}
int size = 0 ;
for (Т item items) {

++s i z e ;
}
return s i z e ;

}

И нтроспекция - один из приемов, известных под общим на­
званием «рефлексия ». Рефлексия тоже зло, но зло, не имеющее
1 1рямого отношения к ООП. Вот почему мы не будем его по­
дробно обсуждать. Используя рефлексию, вы можете изменять
методы, инструкции, выражения, классы, объекты, типы и т. п.
во время исполнения. Вы модифицируете код прежде, чем его
достигнет про1{ессор. Это очень мощный и в то же время очень
грязный прием, который сводит на нет сопровождаемость кода.
Думаю, очевидно, что трудно читать код, когда нужно держать
u голове, что он может быть модифицирован другим кодом во
время исполнения. Чтение такого кода превращается в кошмар.
Короче говоря , рефлексия - хороший инструмент для плохих
нрограммистов.

Приведенный ранее Jаvа-метод вычисляет размер итерируемо­
го объекта. Прежде чем перебрать и пересчитать элементы, он
проверяет, относится ли объект i tems к типу Collection , в ко­
тором уже есть метод s i z e () . Это явная оптимизация, верно?
Нет нужды перебирать элементы, если есть короткий путь. Мы
проверяем тип во время исполнения и действуем соответству­
ющим образом.

Этот подход кажется удобным и оптимальным, но на деле он
отвратителен.

196 Глава З • Работа

Этот подход серьезно нарушает принципы ООП путем дискри ­
минации объектов по типу. Действительно, мы взаимодействуем
с объектом i tems по-разному в зависимости от его типа. Вместо
того чтобы позволить объекту решать, как выполнить то, что от
него требуется, мы принимаем решение без его участия, сегре­
гируя тем самым объекты на плохие и хорошие. С философской
точки зрения это категорически неправильно. Это выглядит
агрессивно и неуважительно. И напоминает расовую, гендер­
ную, этническую, возрастную и любую другую дискриминацию
в мире людей. Когда вы принимаете человека на работу, то не об­
ращаете внимания на его пол. Вы говорите ему или ей, что необ­
ходимо сделать, и ожидаете, что результат будет удовлетворять
заявленным вами требованиям. Не будет ли странным, если ин­
струкции для мужчин и женщин будут различаться? То же самое
применимо и к объектам. Мы должны избегать дискриминации
объектов и позволять им делать свою работу без оглядки на то,
кем они являются.

С технической точки зрения интроспекция типов во время ис­
полнения - тоже плохой прием, поскольку он усиливает сце­
пленность классов. Взгляните на приведенный ранее пример
еще раз. Наш метод зависит от двух интерфейсов - IteraЫe
и Collection , а не просто от IteraЫe. Большее число зависимо­
стей означает более тесную связь и худшую сопровождаемость.
Что особенно плохо - эти зависимости скрыты. Мы не знаем,
что метод использует интроспекцию. Зависимость между мето­
дом и классом Collection скрыта.

Кроме того, чтобы эффективно применять этот метод, мы долж­
ны знать , как он устроен. Мы должны будем заглянуть в ис­
ходный код, чтобы убедиться, что он действительно ведет себя
по-другому, если ему передать экземпляр класса C o l l e c t i o n .
Намного лучше будет сделать так:

puЫic < Т > int size (Col lection < T > items) {
return items . s ize () ;

}

3 .7. Избегайте интроспекции и приведения типов 197

puЫic < Т > int s i z e (IteraЬle<T> items) {
int size = 0 ;
f o r (Т item : items) {

++ s i z e ;
}
return s i z e ;

}

Этот прием известен как перегрузка метода и доступен не во
всех языках. В Ruby, например, он не поддерживается, но есть
возможность создать два метода с разными именами:

def sizeOfiteraЫ e (items)

end
def sizeOfCollect ion (items)

end

Теперь пользователь класса вынужден решать, какой метод ис­
пользовать. В Java решение принимает компилятор, в Ruby это надо
делать вручную, имея на руках информацию о типе объекта.

То же справедливо и в отношении преобразования l(Jlaccoв, когда
мы принуждаем объект подчиняться контракту, под выполнени­
ем которого он не подписывался:

return Collect ion . c la s s . c a st (items) . s i ze () ;

Эта строка может выглядеть следующим образом:

return ((Collection) items) . s i ze () ;

С технической точки зрения строки практически идентичны.
Конечный результат - то, что объект i tems становится типа
Collection . Это как если бы вы вызвали сантехника и сказали:
«Я полагаю, что вы еще и компьютерщик, - почините мне прин­
тер� . Погодите, вот более подробный пример:

if (items instanceof Collect ion) {
return ((Col lect ion) items) . s i z e () ;

}

198 Глава 3 • Работа

Это звучит как « Если вы еще и компьютерщик, то почините мне
принтер» . Это уже намного лучше, чем делать необоснованное
предположение, на основе которого просить сантехника отре­
монтировать принтер. Тем не менее это все равно плохо, прежде

всего из-за скрытого сцепления. В следующий раз , прежде чем
отправлять к вам сантехника, фирма будет пытаться подобрать
того, кто по совместительству является компьютерщиком, по­
скольку они помнят, что в прошлый раз вы заплатили еще и за
наладку принтера. Контракт между вами и фирмой будет офи­
циально включать починку стока, как и раньше, однако будет
подразумевать еще и ремонт принтера.

Если вы завтра решите сменить фирму по ремонту сантехники,

вам снова придется искать сантехника-компьютерщика. Но эта
информация в контракте не записана. Та же проблема возник­

нет, если теперешняя фирма решит поменять сотрудников. Ска­

жем, парня, который с вами работал, уволили, а вам прислали
нового. В вашем контракте прописана починка стока. Вам предо­
ставят хорошего сантехника, но вы останетесь недовольны , по­
скольку хотите сантехника с дополнительной квалификацией,
которая в контракте не указана.

Иными словами , вы выражаете свои ожидания относител ьно
объектов, явно не документируя их. Некоторые клиенты за ­

помнят ваши потребности и будут предоставлять вам более
подходящие объекты, а некоторые - нет. Такие непрозрачные,

скрытые отношения, основанные на неписаных соглашениях,
серьезно влияют на сопровождаемость вашего продукта.

В общем, необходимо избегать любого использования оператора
i n s t a n c eof или приведения типов. Они не приносят никакой

пользы вашему ПО, несмотря на то что их предоставляют почти
все ООП-языки в рамках механизма рефлексии . Они только
усугубляют беспорядок.

3 .7. Избегайте интроспекции и приведения типов 199

LiLy сп росил 8 я н ва ря 20 1 8 года :

Сч ита ете л и в ы , что п р и водить к более ч а стн ому типу в J ava
плохо?

Егор Бугаенко :

Да , безусловно .

And гiy сп росил 1 2 и юля 2 0 1 7 года :

Будет л и а нтипаттерном п р и веде н и е O bject к и нтерфейсу?

Егор Бугаенко :

О п редел е н н о да .

Ross WiШam D гew написал 3 ап реля 2 0 1 5 года :

Есл и у в а с е сть C o l l e c t i o n , кото р ы й р а с с м атр и ва етс я ка к
I t e r a Ы e и в та ко м в иде п е р еда ется м етоду, то то гда м етод
и нте рфейса IteraЬle ста н ет в ы п ол н ять л и ш н и е действ и я над
Collection , сч итая е го IteraЬle . Следуя вашей а налоги и , ко­
торую я нахожу нескол ько п р и м ити в н о й , вы все равно сегреги­
руете , но в ито ге у вас негры делают то , что делают белые . Я бы
зде с ь п о с о в ето вал р е ш е н и е , состоя щее в то м , что I t e r a Ь l e
[и л и Iterator) долже н и м еть м етод s i ze () , что б ы его можно
было с п росить о кол ичестве эл ементов , а не п одсч иты вать и х
кол и чество и з в н е .

Егор Бугаенко :

В ы п р а в ы , н о это тол ько п одтве ржда ет м о ю м ы сл ь . Ре ш е н и е
о том , ка к вы будете обращаться с объекто м , п риходя щим в м е ­
тод, должно быть отражен о в си гнатуре м етода и н и где бол ь­
ше . Есл и я объя вля ю j ava . ut il . List ка к j ava . lang . IteraЫe
и переда ю ее методу, ожида ющему List ил и IteraЫe, то я хочу,

200 Глава 3 • Работа

что б ы в ы с ч итал и м е н я I t e r a Ы e и н е о б р а щал и с ь к м етоду
s i ze () . Это мое решение , не ваше .

Ross WiLL iam Drew:

М ожет быть, но ваше решение подвержено риску ошибок в то м
с м ы сле , что п ол ьзо вател ь м етода/класса не долже н забы вать
п р и в одить п е реда в а е м ы е колл е к ц и и к б ол е е о б ще м у ти пу,
и н а ч е испол н е н и е п ро гра м м ы зам едл ится ил и вовсе п роизой ­
дет отказ . Есл и в н и х есть эл ементы , п р и веде н н ы е к частн ы м
ти п а м , кото р ы е , в свою очередь, должн ы б ыть переда н ы клас ­
су/м етоду, то ваше р е ш е н и е п р осто сдв и га ет в ы б о р ти па на
основе i n stanceof вверх п о сте ку вызовов . Мое п редл оже н и е
состоит в сл едую ще м : идеал ь н ы м р е ш е н и е м будет п р и н и мать
тол ько о бъекты , обер нутые в и нте рфейс , п оведе н и е кото р о го
еди н о о б р а з н о во всех реал и з а ц и я х ! н а п р и м е р , нал и ч и е ме ­
тода s i z e () 1 . П ол ьз о вател ь в та ко м случ а е будет в ы нужден
п исать хорош и й с точ ки з рения О О П код - у него н е воз н и кнет
жел а н и я кажд ы й раз делать i n s t a n c eof п р и и с п ол ьзова н и и
ваших классов . Всегда п и ш ите код та к, будто тот, кто его будет
ч итать, - а грессивный психопат, который знает, где вы жи вете1 •
Я б ы посовето вал п и сать и нтерфейсы точ н о та к же.

1 Перифраз известного высказывания, оригинал см. : https//groups.go­
ogle.com/forum/#!msg/comp.lang.c++ /гYCOSyn4lX w /oIТtSkZOto U J. -

При.меч. пер.

4 Уход на пенсию

Жизненный цикл объекта начинается с оператора new и закан­
чивается тогда, когда он больше никому не нужен. Обычно объ­
екты делают свое дело и мы на них не жалуемся. Хотя иногда
они выбрасывают исключения, когда им не нравится то, что они

видят. Исключения - хороший ООП-прием, не имеющий, од­
нако, никакой связи с объектной парадигмой, при этом они
здорово помогают в обработке ошибок и оптимизации кода.

Благодаря исключениям у нас нет необходимости решать про­
блемы в каждом методе по отдельности. Мы просто можем пере­

дать их на уровень выше.

Позже мы обсудим, что с ними делать после этого.

Однако исключения легко использовать не по назначению.
Совсем не по назначению. Нет ничего хуже для сопровожда­
емости, чем некорректная обработка исключений.

Глава посвящена возврату NU L L из методов, обработке исклю­
чений и получению ресурсов. Этот материал на данный момент
весьма спорный. На данный момент - значит, в существующей
реализации объектно-ориентированных языков. Я очень наде­
юсь, что в ближайшем будущем некоторые из озвученных в этой
главе идей будут реализованы в ООП-языках.

202 Глава 4 • Уход на пенсию

4. 1 . Н икогда не возвращайте N U LL

Обсуждение на http ://goo.g i/TzrYbz.

Использовать NUL L в качестве аргумента метода - плохо, как мы
уже обсуждали в разделах 2 .6 и 3 .3 . Очень плохо. Не знаю, как
насчет других парадигм программирования, но в объектно-ори­
ентированном и процедурном - точно. Теперь обсудим, почему
возвращать NU L L - тоже плохо. Как обычно, начнем с примера
нa java:

puЬlic St ring title () {

}

if (/ * нет за головка * /) {
return n u l l ;

}
return " Элегантные объекты " ;

Э т о настолько отвратительно , но п р и этом настолько рас­
пространено, что я даже не знаю, с чего начать. Начнем с того,
почему это отвратительно, а затем проанализируем, почему этот
прием получил такое широкое распространение в мире ООП.

Во-первых, такой подход заставляет нас делать то , против чего
агитирует раздел 3.3, - считать объекты существами с ограни­
ченными возможностями . Мы попросту не можем доверять
объекту, который был возвращен из метода title () . Не можем
доверять его способностям. Он инвалид. Он нуждается в особом
к себе обращении:

String title = x . title () ;
print (t itle . length ()) ;

М ы не можем вызвать t i t l e . l e n g t h () , не боясь получить
N u l l P o i n t e r E x c e pt i o n . П роблема не в самом исключении .
И сключение - всего лишь техническое неудобство. Истин­
ная проблема крупнее. Проблема в потере нашего доверия.

4. 1 . Никогда не возвращайте NULL 203

М ы не можем утверждать , что наши объекты самодостаточны,
целостны , уважаемы, ум н ы и т. п . Они не являются таковыми .
М ы нс можем попросить их сделать что-то и надеяться на ре­
:�ультат. Мы должны проверить, является ли объект объектом
в пршщинс.

Такие проверки - ужасное нарушение объектно-ориентирован­
ной парадигмы:

String title = x . title () ;
if (t itle = = nu l l) {

print (" He могу вывес ти - не название . ") ;
retu r n ;

}
print (t itle . length ()) ;

Суть объекта в том, что это сущность, которой мы доверяем .

Это не фрагмент данных, который нс знает о наших намерениях
и просто предоставляет участок памяти с удобн ы м доступом
и набором поднрограмм. Это нс маркер, который мы передаем
между у:злами системы. Это не конверт для данных. Нет и еще
раз нет.

Объект - живой организм со своими собственными жизненным
циклом, поведением и состоянием. Он либо существует и жив,
л ибо нс существует и мертв. Третьего не дано. Переменная -
лишь псевдоним объекта:

String t = x . title () ;

В данном случае t - л и ш ь пссв;�оним объекта, возвращаемого
методом t it l e {) . Мы доверяем объекту и надеемся, что пере­
менная означает то же, что и объект. Под доверием я понимаю
то, что объект несет полную ответстве11ность за свои действия
и мы никоим обра:юм нс должны ему мешать. Он работает так,
как вздумается. Если 011 хочет вывести имя, мы не возражаем.
Если хоч,ет выбросить исключение, так тому и быть. Но мы

204 Глава 4 • Уход на пенсию

не должны выбрасывать исключение, даже не поговорив с ним!
Это неправильно и неуважительно:

if (t itle == n u l l) {

}

print (" He мо гу вывести - не название . ") ;
ret u r n ;

Такая проверка - верный признак недоверия в приложении.
Я не доверяю методу t i t l e () , соответственно, кто-то другой
не станет впоследствии доверять мне. Использование NULL при­
ведет к крупной потере доверия во всем приложении и превратит
его в неподдерживаемый бардак. Да, это тоже имеет отношение
к сопровождаемости. Нехватка доверия приводит к серьезному
ухудшению сопровождаемости просто потому, что, когда я чи­
таю код, мне приходится затрачивать больше времени на то,
чтобы понять, какому из вызываемых методов я могу доверять,
а какой может вернуть NU L L . Мне также приходится дважды
проверять результат, прежде чем использовать его и общаться
с возвращенным объектом.

Все это очень похоже на рабочие отношения в команде. Если
мне каждый раз приходится проверять составленные коллегой
документы, то работа серьезно замедляется. Не поймите меня
неправильно - я только за контроль качества. Мы должны про­
верять корректность результатов, при необходимости дважды,
но за это должен отвечать кто-то другой, а не я - тот, кто полу­
чает документ от своего коллеги. Я должен иметь возможность
работать с документом, как только получу его. Я должен иметь
основания доверять своему коллеге. Это касается не личных от­
ношений, а скорости работы всей команды. Нам нужно доверие,
но NU L L у нас его отнимает.

Если мои коллеги могут схитрить и вернуть NU L L , моя рабо­
та существенно замедлится. Мне придется проверять их всех,
в результате код станет намного более многословным. Рано или
поздно я забуду проверить действия одного из них. Я не смогу

4. 1 . Никогда не возвращайте NULL 205

чувствовать себя в безопасности в собственной команде, в соб­
ственном ПО.

Короче говоря, это плохо и неприлично. Метод, возвращающий
NULL , ведет себя неуважительно. Он не уважает меня как своего
пользователя, поскольку может схитрить и вернуть мне недей­
ствительный документ.

Почему же этот прием так популярен и так часто применяется?
Взгляните на метод listFiles () в классе F i les из jаvа 1 .2 . Ему
нужно перебрать все файлы в папке и вернуть их массив. Он
не выбрасывает исключения при отсутствии каталога, а вместо
этого возвращает NULL . Вот как я должен его использовать:

void list (F i le d i r) {

}

F i le [] files = d i r . l i st F i les () ;
if (files = = n u l l) {

th row new IOException (" Directory i s absent . ") ;
}
for (F ile file : files) {

System . out . print l n (file . getName ()) ;
}

А вот как я должен был бы его применять, если бы он бросал
исключения вместо того, чтобы возвращать NU L L :

void list (F ile d i r) {

}

for (F ile file : d i r . listFiles ()) {
System . out . println (file . getName ()) ;

}

Думаю, очевидно, что второй фрагмент короче, чище, лучше
сопровождается и в целом более качественный. Почему раз­
работчики Java решили возвращать NU L L , вместо того чтобы
выбрасывать IOException? Похоже, во время разработки J D K
о н и не слышали о принципе скорейшего отказа . О н и думали,
что лучше молча возвращать NULL и давать возможность бросать
исключение пользователю класса, вместо того чтобы бросать

206 Глава 4 • Уход на пенсию

исключение сразу же после обнаружен и я того, что каталога
не существует. Они пытались угоди1ъ нам, но у н и х не полу­
чилось.

Отказывать как можно скорее
или как можно безопаснее?

По сути, есть два противоноложных 110;1хода к отка:юустойчиво­
сти ПО - отказывать как можно скорее или как .можно беэопас-
11ее. Я ярый сторонник нервого подхо;\а и пропшш1 к второго.

Стратегия безопасных отка:юв побуждает нас делать все воз­
можное, чтобы приложение продолжало работать , даже если
мы столкнулись с логической ошибкой , ошибкой ввода/вывода,
переполнением памяти и т. п . Что бы ни случилось, r rриложение
должно выжить. Возвращать NULL - 11рием выживания. К приме­
ру, если мы выяснили , что каталог, файл ы внутри которого нас
попросили перечислить, отсутствует, можем ли мы вывести их?
Не можем. Запрос, очевидно, некорректен . Его автор не прове­
рил наличие каталога, нрежде чем п01 rросить вывести с11 исок его
файлов. Это его или ее проблема, но мы попробуем выровнять
ситуацию. Не станем бросать IOExcept ion , вместо этого вернем
NULL , чтобы кто-то другой решил проблему. Надеемся , что никто
не станет перебирать элементы вознра rценного массива и мы
не получим NullPointerExcept ion . Надеемся.

Противоположный подход состоит в том, чтобы отказы вать как
можно скорее. Он мотивирует нас остановить исrюлнение и вы­
бросить исключение , как только м ы столкнемся с проблемой
(любой !) . Нас не должны волновать 1 юследствия. Приложение
должно быть настолько хру11ким, насколько возможно, но при
этом полностью покрыто юнит-тестами . Если приложение хруп­
кое и может отказать в любой контролыюй точке, то юнит-тесты
могут с легкостью воспроизвести эти ситуации, а мы исправим

4. 1 . Никогда не возвращайте NULL 207

их. Если приложение откажет в режиме эксплуатации, мы легко
можем добавить тест, учитывающий сложившуюся ситуацию,
просто потому, что все точки отказа очевидно и хорошо доку­
ментированы. Мы выпячиваем их, вместо того чтобы црятать.
Делаем их заметными и легко отслеживаемыми. Мы бросаем
исключение IOException в тот же момент, когда выясняем, что
каталога не существует. Мы не будем выравнивать ситуацию,
наоборот, сделаем ее как можно более вопиющей. Если нам пере­
дали некорректный каталог, пусть разбираются с этим сами. Им
придется исправить свою ошибку и быть более аккуратными
в следующий раз.

Какой подход лучше? Как я уже говорил, я ярый сторонник
скорейшего отказа. Я считаю, что можно добиться стабильности
и устойчивости приложения, только если немедленно сообщать
о выявленных ошибках. Чем раньше мы обнаружим проблему
и вызовем отказ , тем лучше со временем станет приложение.
Напротив, чем дольше мы скрываем проблему, тем большими
в итоге окажутся неприятности.

Это может показаться контринтуитивным, поскольку мы не хо­
тим останавливать приложение. И не хотим, чтобы оно падало.
Мы не хотим видеть трассировок стека. В этом-то и подвох. Мы
не хотим признавать, что в приложении есть логические ошибки
и их полным-полно. Некоторые из них очевидны и легко обна­
руживаются, другие же хорошо спрятаны. Но они есть. Пряча
голову в песок, мы оказываем себе медвежью услугу. Вместо
того чтобы обнаружить рану и залечить ее, мы прячем ее и го­
ворим пациенту, что все будет хорошо. Чем раньше мы увидим
проблему, тем быстрее ее исправим. Чем раньше она проявится,
тем быстрее должна быть наша реакция. Каждая исправленная
ошибка делает продукт стабильнее и устойчивее.

Почему же так много Jаvа-методов возвращают NULL , а не бросают
исключение? Скорее всего, так происходит из-за приверженности

208 Глава 4 • Уход на пенсию

их разработчиков философии безопасных отказов . Я к ним
не отношусь. И всячески рекомендую держаться от нее по­
дальше. Вызывайте отказ как можно скорее, если вы беспокои­
тесь о качестве не только отдельного метода, но и приложения
в целом.

Альтернативы NULL

Какие существуют альтернативы возврату NU L L ? Иногда за­
манчиво возвращать NUL L , если искомый объект не может быть
найден, например:

puЬlic User user (String name) {

}

if { / * имя не найдено в базе данных*/) {
return n u l l ;

}
return / * запись из базы данных * / ;

Мой о п ы т говорит о т о м , что именно в таких случаях раз­
работчики чаще всего возвращают NU L L вместо настоящих
объектов. Мы не находим способа лучше, чем этот, чтобы со­
общить клиенту, что объект, который он ищет, недоступен.
Мы не бросаем исключение, так как не считаем такую ситуацию
исключительной. Клиент ищет имя в базе данных, но такого
пользователя там нет. Мы не хотим, чтобы приложение из-за
этого падало, правда? Это вполне стандартная , даже рутинная
ситуация. Если пользователь не найден, мы возвращаем NU L L
и движемся дальше.

Как вы понимаете, такой ход мыслей очень близок к филосо­
фии безопасных отказов, рассмотренной ранее. Не делайте так.
Я предлагаю несколько альтернатив использованию NUL L .

Первый вариант - разбить метод на два. Первый метод будет
проверять существование объекта, а второй - возвращать его.

4. 1 . Никогда не возвращайте NULL 209

Второй метод должен бросить исключение, если пользователь
не найден:

puЬlic boolean exist s (String name) {

}

if (/ * имя не найдено в базе данных* /) {
return fa lse ;

}
return true ;

puЬlic User user (St ring name) {
return / * запись из базы да нных * / ;

}

П роблема с этим подходом следующая : он неэффективен .
Мы обращаемся к базе данных два раза: сперва проверяем суще­
ствование записи в базе данных, затем обращаемся к ней, чтобы,
собственно, получить ее.

Вот почему я предлагаю второй вариант. Вместо того чтобы
возвращать NU L L или бросать исключение, мы можем вернуть
коллекцию объектов, например:

puЫic Collection < U s e r > users (St ring name) {
if (/ * имя не найдено в базе данных * /) {

return new Array L i st < > (0) ;

}

}
return Collection s . s i ngleton (

/ * из базы данных */
) ;

Если ничего не найдено, коллекция будет пуста. Затем клиент
работает с коллекцией, чтобы получить из нее объекты. Чисто тех­
нически это незначительно отличается от использования NUL L, но
при этом выглядит несколько чище. Обратите внимание на то, что
я переименовал метод. Теперь он называется users () , а не user() .

Еще одним вариантом будет применение generic-клacca j ava . util .
Optional из jаvа 8 либо аналогичного. Он похож на коллекцию,
но может содержать только один элемент. Я считаю, что это

210 Глава 4 • Уход на пенсию

решение противоречит принципам ООП, и не рекомендую ис­
пользовать его, так как оно семантически некорректно. Метод
по-прежнему называется user() , но то, что он станет возвращать,
будет не пользователем, а чем-то вроде конверта для пользова­
теля. Это сбивает с толку и не соответствует духу объектно-ори­
ентированного мышления. К тому же смахивает на NUL L-ссылки.
Не используйте этот вариант.

Последнее, что я могу вам предложить, - паттерн « Пустой объ­
ектi> . В случае, когда искомый объект не найден, возвращается
объект, похожий на настоящий, но ведущий себя по-другому.
Он может делать что-то одно, но не делать что-то другое. К при­
меру, если мы ищем пользователя по имени Джефф и не находим
его, то возвращаем объект, имеющий такое же имя и возвраща­
ющий его при вызове name () . На все другие запросы он бросает
исключения. Такой подход вполне в духе объектного мышления,
но имеет ограниченное применение. Обратите внимание на то,
что тип возвращаемого объекта остается неизменным. К при­
меру, экземпляр NullUser - объект того же типа, что и SqlUser .
Оба они реализуют интерфейс User . К примеру, NullUser может
выглядеть следующим образом:

c l a s s NullUser implemeпt s User {

}

private fiпal Striпg labe l ;
NullUse r (Striпg паmе) {

this . label = паmе ;
}
@Override
puЬlic St riпg паmе () {

returп th i s . labe l ;
}
@Override
puЬlic void ra ise (Ca s h s a l a ry) {

t h row пеw I llega lStateExcept ioп (
" Пользовател ь - з а глушка - невозможно повыс ить за рплату "

) ;
}

4.2 . Бросайте только проверяемые исключения 211

Короче говоря, никогда не возвращайте NUL L . Даже не думайте.
Нет никакого оправдания существованию NUL L в ООП-языках.
В Java и других языках это ключевое слово токсично. Просто
держитесь от него подальше. Если вам нужно вернуть что-то,
что не было найдено, то либо бросьте исключение, либо верните
коллекцию или пустой объект.

Вот три возможные альтернативы.

4. 2 . Броса йте тол ько п роверяемые
искл ючен ия

Обсуждение на http ://goo.g i/StGDEc.

Пришло время поговорить о проверяемых и непроверяемых
исключениях. Хотя многие объектно-ориентированные языки
поддерживают только непроверяемые исключения, Java под­
держивает оба типа. Обобщу этот раздел сразу: непроверяемые
исключения - недостаток языка, все исключения должны быть
проверяемыми. Иметь несколько типов исключений тоже плохо.

Это очень абстрактный и непрактичный подход, поскольку он
сильно противоречит реальному состоянию большинства плат­
форм разработки. Основная часть из них, включая Ruby, С# ,
Python, Scala и многие другие, поддерживает только непроверя­
емые исключения. В них попросту нет проверяемых исключе­
ний. Вот почему почти все, о чем я говорю в этом разделе, может
лишь помочь вам поменять образ мышления, но не даст никаких
реальных, применимых на практике рекомендаций, если только
вы не пишете на J ava или не собираетесь создать собственный
объектно-ориентированный язык.

Я, однако же, надеюсь, что будущие ООП-языки будут более
строгими, чем существующие, и станут уделять больше внима­
ния обработке ошибок с помощью исключений. В дальнейшем

212 Глава 4 • Уход на пенсию

я хотел бы предложить то, что считаю правильным способом
обработки исключений. Он более логичен и чист. И сейчас я его
продемонстрирую.

Вначале посмотрим, в чем различие между проверяемыми и не­
проверяемыми исключениями и для чего вообще нужны разные
типы исключений. Вот как выглядит использование проверя­
емого исключения в java:

puЫic byte [) coпteпt (F ile file) th rows IOExceptioп {
byte [) a r ray = пеw byt e [1000) ;
пеw F ileiпputStream (fi le) . read (a rray) ;
returп a rray ;

}

Обратите внимание на сигнатуру этого простого метода - она
оканчивается на th rows IOException . Это значит, что, если я вы­
зываю content () , я должен во что бы то ни стало ловить данное
исключение:

puЫic iпt leпgth (F ile file) {
t ry {

returп coпteпt (file) . leпgth () ;
} catch (IOExcept ioп ех) {

11 Нужно что - то сделать с этим
11 и с ключен ием - либо разрешить
11 прямо сейчас , либо передать
11 на уровень выше .

}
}

его

Я не могу вызвать метод content () , не неся полной ответствен­
ности за ту проблему, которую он может вызвать. Под проблемой
я имею в виду IOException . Этот метод небезопасен, поскольку
может создать проблему. Я снова говорю об IOException. Он мо­
жет отказать из-за некоторой проблемы в подсистеме ввода/
вывода. Я полагаю, что отказ будет иметь отношение к файловой
системе. Говоря throws IOException , метод, по сути, переклады­
вает ответственностъ на мои плечи. Он заставляет меня при­
нимать решение в случае, когда с файлом что-то не так.

4.2 . Бросайте только проверяемые исключения 213

Я могу сделать то же и переложить ответственность на своих
клиентов, также объявив себя небезопасным:

puЬlic int lengt h (F i le file) th rows IOException {
return content (fi le) . length () ;

}

В данном примере я больше не ловлю исключение . Я поз­
воляю ему всплыть. Я выполняю эскалацию проблемы, как
в управлении проектом или предприятием. С проблемой раз­
берутся те, кто находится выше в стеке вызовов, а не я. Я просто
говорю, что не знаю, что делать в такой ситуации, и прошу по­
мощи.

Исключение IOException - проверяемое, поскольку его необхо­
димо ловить. Мы не можем проигнорировать его существование
в методе length () . И должны либо ловить его, либо обозначить
себя t hrows IOException . Вот почему проверяемые исключения
всегда на виду. Работая с методом lengt h () , мы должны пом­
нить, что работаем с токсичным и небезопасным методом под
названием content () . Мы должны либо обозначить себя как
небезопасный метод, либо снять токсичность, разрешив исклю­
чительную ситуацию.

Напротив, непроверяемые исключения можно проигнорировать
и не ловить вовсе. Возникнув, они автоматически всплыва­
ют до тех пор, пока их кто-нибудь не перехватит. Язык не за­
ставляет нас что-либо с ними делать. К примеру, исключение
I l legalArgument Except ion - непроверяемое:

puЫic int lengt h (F i l e f i l e) th rows IOException {

}

if (! file . exists ()) {

}

th row new I l legalArgumentException (

) ;

" Невозможно вычислить размер файла , так как е го
не существует "

return content (file) . length () ;

214 Глава 4 • Уход на пенсию

В данном примере сигнатура метода никак не упоминает ис­
ключение I llegalArgumentException. Когда кто-либо вызывает
метод l e n gt h () , то не знает, чего ожидать. И нформация об
I l legalArgument Except ion скрыта. Именно это я имел в виду,
когда говорил о том, что проверяемые исключения всегда

на виду.

Не ловите исключения
без необходимости

При разработке метода мы рано или поздно сталкиваемся с вы­
бором: ловить все исключения, чтобы метод был безопасным для
пользователей, или осуществлять эскалацию проблемы. Я пред­

почитаю второй вариант. Передавайте исключения как можно
выше по стеку вызовов. Для существования каждого блока catch
должна быть веская причина. Иными словами, не ловите исклю­

чения без особой необходимости, делайте это, только если у вас
нет другого выбора.

Идеальным будет приложение, в котором на каждую точку
входа есть единственный блок catch . К примеру, если речь идет
о мобильном приложении, которое взаимодействует с поль­
зователем через экран смартфона, то у него одна точка входа
и, соответственно, должен быть единственный блок catch на все

приложение. К сожалению, это почти невозможно, поскольку
сам язык и многие фреймворки для него разработаны по другим
принципам.

Мы уже обсуждали разницу между быстрыми и безопасными
отказами в разделе 4. 1 . То же почти дословно применимо и здесь.
Философия, заключающаяся в том, что приложение можно
сделать устойчивым, любой ценой решая проблемы в том же
месте, где они происходят, делает приложение нестабильным

4.2 . Бросайте только проверяемые исключения 215

и сложным для сопровождения. Вот что мы можем сделать
в своем методе:

puЬlic int lengt h (F i l e file) {
t ry {

}

return content (file) . length () ;

} catch (IOException ех) {
return 0 ;

}

Метод length () теперь совершенно безопасен. Что бы ни произо­
шло с файловой системой, в нем не случится отказ. Он вернет
целое число, и приложение продолжит работу. Это типичный
пример подхода «безопасный отказ» . Мы видим проблему, но
не хотим расстраивать клиента. Хотим, чтобы приложение вы­
глядело привлекательно и никогда не ломалось. Мы хотим вы­
глядеть надежно, поэтому возвращаем нуль, даже когда в дей­
ствительности в файловой системе, к примеру, заканчиваются
доступные дескрипторы файлов. Файловая система не может
получить длину файла, даже если он существует. Она сигналит
нам, она кричит и плачет, но мы ее игнорируем. Что бы ни слу­
чилось, мы все прячем. Просто возвращаем нуль.

К тому же, пряча проблему, мы оказываем медвежью услугу всем,

в том числе клиенту, вызывающему метод lengt h () . Да, при­

ложение не упадет сразу, поскольку получит нуль и продолжит
что-то делать. Но со временем оно упадет, так как нуль - не­
корректный размер файла. Оно упадет вдали от вызова lengt h () ,
в результате чего невозможно будет понять, что вызвало отказ.
Часы отладки понадобятся на то, чтобы выяснить, что число,
которое вернул метод length () , было лишь показателем ошибки

в файловой системе.

Этот подход известен также как «использование исключений для
управления потоком исполнения» . Действительно, в приведенном

216 Глава 4 • Уход на пенсию

ранее примере мы применяем уведомление об исключительной
ситуации для ветвления программы. Мы делаем нечто подобное,
только при помощи исключений:

puЬlic int lengt h (F i le file) {

}

if (/ * Проблема с файловой системой . * /)
return 0 ;

} else {
return content (file) . lengt h () ;

}

Такое ветвление допустимо, но исключения - инструмент для
другой работы. Исключения сделаны не для того, чтобы заме­
нять условные операторы. Напротив, они должны обозначать
критическую ситуацию, не допускающую восстановления, в ре­
зультате возникновения которой прекращается нормальное ис­
полнение программы и нужно принимать чрезвычайные меры.
Подробнее о восстановлении поговорим через пару минут.

Некоторые из вас могут возразить, что вместо того, чтобы воз­
вращать нулевой размер файла, можно вернуть - 1 или NU L L .
В разделе 4 . 1 м ы уже говорили о том, почему возвращать NULL -
плохая идея. Возврат - 1 немногим от нее отличается, поскольку
это не пустой объект, а скалярное значение, семантически близ­
кое к NU L L . Практически идентичное. Полностью идентичное,
раз уж на то пошло. Возвращая - 1 , мы вынуждаем наших кли­
ентов не доверять возвращаемому результату и всегда пере­
проверять его:

int length = lengt h (new F i l e ("test . txt ")) ;
if (length = = - 1) {

print (" Xм . . . что - то не так . ") ;
} else {

print (" Paзмep файла разен %d " + length) ;
}

Проблемой здесь является сравнение с использованием опера­
тора == . Это признак недоверия объекту length , как говорилось
в разделе 4 . 1 . Мы ожидаем размер файла, но получаем что-то

4.2 . Бросайте только проверяемые исключения 217

иное. Это не размер файла, а сигнал о том, что не следует считать
полученный результат числом. Мы должны помнить, что по­
добное предательство может случиться, и быть готовыми к нему.
Если забудем выполнить сравнение оператором == , то можем
оказаться в серьезной беде. К примеру, мы решим прочитать
length байт из файла, а значение length равно - 1 . Последствия
этого непредсказуемы.

И что еще важнее, будет очень трудно обнаружить причину
проблемы .

Суть моих слов в том, что поимка исключения и спасение си­
туации - серьезные действия, которые должны иметь под со­
бой вескую причину. Каждый раз, когда вы спасаете ситуацию,
не перебрасывая исключение, вы используете подход безопас­
ного отказа.

Стоит ли говорить, что подход «ловить и записывать в жур­
нал» - ужасный антипаттерн. Думаю, это уже очевидно.

Стройте цепочки исключений
Стойте, мы же еще не поговорили о том, что такое перебрасы­
вание исключений . Вот как это выглядит, и это совершенно
корректный прием:

puЫic int length (F i le file) th rows Exception {
t ry {

}

return content (file) . length () ;

} catch (IOException ех) {
th row new Exception (

) ;

}

" Невозможно определить размер файла . " ,
ех

Я ловлю исключение, 110 тут же бросаю новое. Использование
цепочек исключений, как продемонстрировано ранее, - хорошая

218 Глава 4 • Уход на пенсию

практика. Заменяя одну проблему другой, я не игнорирую факт
существования первой. Напротив, я оборачиваю исходную про­
блему в новую и вместе бросаю их на уровень выше.

Если так сделать несколько раз, то всплывшее исключение будет
выглядеть как мыльный пузырь с мыльным пузырем внутри.
Внутри того тоже будет пузырь и т. д. Будет много слоев. Блок
catch , который решит что-то сделать с этой проблемой и спа­
сти ситуацию, проткнет пузырь и достанет из него остальные.
Что именно будет делать блок catch для разрешения ситуации
и уведомления о проблеме, не имеет значения. Что важно - мы
поднимаем источник проблемы с нижнего уровня на уровень
приложения в целом.

Однако приведенный далее код плох, поскольку он игнорирует
источник проблемы:

puЬlic int lengt h (F i le file) th rows Exception {
t ry {

}

return content (file) . length () ;
} catch (IOExcept ion ех) {

}

1 1 Здес ь я и г норирую проблему ' ех ' и создаю
11 новую, нового т и п а , с новым
11 сообщением :
th row new Except ion ("He мо гу вычи слить размер ") ;

В самом деле ужасная практика. М ы теряем важную инфор­
мацию об источнике проблемной ситуации с вводом/выводом.
В1:1утри у объекта е х наверняка было сообщение наподобие
" Сл ишком много открытых фа йлов (24) " . Мы его игнорируем и соз­
даем новое исключение, которое гласит: " Не мо гу выч и сл ить раз ­

мер " . Новое исключение начнет всплывать и со временем будет
поймано блоком catch на уровне объекта приложения. Ценная
низкоуровневая информация окажется потеряна. Потребуются
часы или даже дни, чтобы определить, почему не удалось вы­
числить размер файла.

4.2 . Бросайте только проверяемые исключения 219

Уверен, это очевидно, но повторю еще раз: делайте цепочки ис­
ключений и никогда не игнорируйте исходную проблему.

Вы можете спросить: «Зачем нам вообще нужны исключения?
Почему бы не сделать так, чтобы методы были небезопасны­
ми, а исключения просто всплывали наверх? Зачем в приве­
денном примере ловить IOException и бросать его снова, обер­
нув в E x c e pt i o n ? Что не так с уже существующим классом
IOException?» Ответ очевиден: построение цепочек исключений
семантически обогащает контекст проблемной ситуации. Ины­
ми словами, получить сообщение " Тоо ma ny open f i l e s (24) "

недостаточно . Оно слишком низкоуровневое. Вместо этого
хотелось бы видеть цепочку исключений, где исходное исклю­
чение касалось бы количества открытых файлов, в следующем
говорилось бы о невозможности вычислить размер файла,
в третьем - о том, что файл изображения не может быть про­
читан, и т. д. Если пользователь не может открыть фото в своем
профиле, то сообщения « Слишком много открытых файлов»
недостаточно.

В идеале каждый метод должен ловить все возможные исклю­
чения и перебрасывать их, формируя тем самым цепочки ис­
ключений. Повторюсь: ловите все , объединяйте в цепочки и не­
медленно перебрасывайте.

Это лучший подход к обработке исключений.

Восстанавливайтесь единожды
Есть довольно популярный прием восстановления после сбоя,
который стоит обсудить. Вообще говоря, чуть раньше мы о нем
уже говорили . Речь все о том же конфликте между скорей­
шим и безопасным отказом, но уже под другим углом. Если
мы придерживаемся принципа скорейшего отказа, то не мо­
жем восстановиться после исключения. Проще говоря , речь

220 Глава 4 • Уход на пенсию

о восстановлении идти не может. Это лишь другое название
уже известного антипаттерна « Использование исключений для
управления потоком исполнения� . В данном коде вы, возможно,
узнаете прием восстановления после сбоя:

iпt age ;
t ry {

age = I пtege r . parselпt (text) ;

} catch (Number Format Exceptioп ех) {

}

1 1 здесь мы восстанавливаемся после с боя
age = - 1 ;

Насколько этот пример отличается о т рассмотренных ранее?
Разницы никакой. Это антипаттерн , похожий на возврат NU L L ,
который рассматривался в разделе 4 . 1 .

Но я н е совсем прав . Мы все же должны восстановиться , но
только единожды. Всем методам должно быть разрешено пере­
брасывать исключения, не обрабатывая их, как обсуждалось
в предыдущем разделе. Тогда все исключения будут всплывать
на верхний уровень приложения. Точнее говоря, к точкам входа
в приложение. К тем точкам, через которые пользователь обща­
ется с приложением. К примеру, если речь идет о приложении
командной строки, которое пользователь запускает с терминала,
то соответствующий код может выглядеть следующим образом:

puЫic c l a s s Арр {

}

puЬlic static void maiп (St riпg . . . args) {
t ry {

}

System . out . priпtlп (пew App () . ru п ()) ;

} catch (Exceptioп е х) {
System . err . priпtlп (

) ;

}

"Извините, возн и кла п роблема : "
+ ex . get Loc a l izedMes sage ()

4.2 . Бросайте только проверяемые исключения 221

Как видите, внутри блока catch я ничего не перебрасываю. Я ре­
шаю проблему здесь и сейчас - просто говорю пользователю
о проблеме, и все. Статический метод main нетоксичен. Он без­
опасен. Он никогда не падает, поскольку это верхний уровень
приложения. Выше него ничего нет.

Если я не поймаю проблему там, то она поднимется в среду ис­
полнения. Если это произойдет, то пользователь также увидит
сообщение, но оно будет совсем не дружелюбным. Пользователю
будет показано системное сообщение с полной трассировкой
стека. Я не хочу, чтобы так произошло. Вместо этого мне нужно
восстановиться.

Верхний уровень приложения - единственное законное место
восстановления.

То же должно происходить в каждой точке входа в приложение.
Их не так уж много даже в сложных системах. Я к тому, что
количество законных мест для восстановления в приложениях
обычно невелико. Во всех прочих местах мы должны либо ло­
вить и перебрасывать исключения, либо не ловить их вообще.
Первый вариант предпочтительнее. Ловите, стройте цепочку
и перебрасывайте.

Восстанавливайтесь только на верхнем уровне. Вот и все.

Используйте аспектно-ориентирован ное
программирование

Иногда может возникнуть необходимость повторить неудачно
выполненную операцию.

Скажем, мы пытаемся загрузить веб-страницу посредством
НТТР-запроса. Вполне возможно, что подключение иногда
будет сбоить. Было бы некрасиво показывать пользователю

222 Глава 4 • Уход на пенсию

сообщение об ошибке и заставлять его перезапускать приложе­
ние. Мы можем повторить запрос, правда?

Но чтобы повторить запрос, придется ловить исключение и вос­

станавливаться:

puЬlic String content () th rows IOException {
int attempt = 0 ;

}

while (t rue) {

}

t ry {
return http () ;

} catch (IOException е х) {
if (attempt >= 2) {

t h row ех;

}
}

Прежде чем выбросить исключение IOException, метод сделает
не более трех попыток подключения. Такой метод небезопасен,
но не сразу. Он предпринимает несколько попыток, прежде чем
эскалировать проблему. Хотя этот подход весьма удобен, он

противоречит всему сказанному ранее в текущем разделе, так
как метод восстанавливается раньше, чем исключение попадает

на уровень приложения. Это плохая практика? Да. Есть ли луч -
шее решение? Нет.

Вообще говоря, одно решение есть - аспектно-ориентирован­
ное программирование (АОП) . Это очень простая и сильная
парадигма программирования, которая хорошо сочетается с объ­

ектно-ориентированной. Точнее, не совсем парадигма - скорее
базовый прием, который может существенно упростить типовые
операции и снизить многословность ООП-кода. Взглянем на
приведенный фрагмент кода еще раз. Он довольно многословен.
Повторный вызов метода - это десять строк кода. И он еще
довольно примитивен. Надлежащая реализация будет намного

4.2 . Бросайте только проверяемые исключения 223

объемнее. В соответствующим образом реализованном меха­

низме повторного вызова метода исключение не игнорируется,
а некоторым образом записывается в журнал . Мы также доба­

вим интервал между попытками, который будет алгоритмически
увеличиваться. А еще добавим возможность настраивать коли­
чество попыток, не ограничиваясь жестко запрограммированной
константой з . Используя АОП в java 6, мы поступим следующим

образом:

@Ret ryOn F a i l u re (attempts = З)
puЫic St ring content () th rows IOException {

return http () ;

}

Эта аннотация @RetryOnFailure будет подхвачена во время ис­
полнения и обернет метод content () в блок кода «повторить

при ошибке» 1 • Данный блок кода называется аспектом. С тех­
нической точки зрения он является объектом, который получает
управление и решает, как и когда вызывается метод content () .
Это своего рода адаптер метода content () . Красота аспектно­

ориентированного программирования в том, что мы избегаем
дублирования кода, вынося вспомогательные механизмы и при­
емы из основных классов. Настоятельно рекомендую подробнее

изучить тему АОП и использовать его в своих проектах, неза­
висимо от языка.

АОП упомянуто здесь, чтобы показать, что в ООП досрочное
восстановление после сбоя - плохая практика, которую можно
(и нужно) заменить другими приемами. Повторный вызов мето­
да при ошибке - один из примеров, где АОП помогает поддер­

жать чистоту ООП, будучи при этом удобным и позволяющим

достичь цели приемом.

1 Вы можете найти эту аннотацию и увидеть в действии ее АОП­

аспект на сайте http://aspects.jcaЬi.com/.

224 Глава 4 • Уход на пенсию

Достаточно одного типа исключений
Если вы согласны с принципами формирования цепочек исклю­
чений и отказа от немедленного восстановления после сбоя, то
поймете, почему типизация исключений избыточна. Действи­
тельно, если мы восстанавливаемся лишь единожды, то у нас
будет объект исключения, который содержит все остальные ис­
ключения. Если они правильно выстроены в цепочку, то зачем
знать их тип?

Кроме того, мы не применяем исключения для управления по­
током исполнения программы, правда? И никогда не ловим
исключения, чтобы решить, что делать дальше. Мы ловим их
только для того, чтобы перебросить, так? Если это действитель­
но так, то нас мало интересует тип исключения. Мы все равно
перебросим его. Эта информация нам не нужна, потому что она
никогда не используется. Мы не ловим исключения по мере их
продвижения наверх. Даже если и делаем это, то с единственной
целью - добавить их в цепочку и перебросить.

Timofey SoLo n i n спросил 1 1 ноября 20 1 7 года :

Н е м о гл и б ы в ы уточ н ить , что з н а ч ит « н ел ьзя восста н а вл и ­
ваться п о сл е с б о е в » ? В одн о й и з вето к ко м м е н та р и е в н иже
вы п р и в одите отл и ч н ы й п р и м е р то го , ка к и збежать р а н н е го
в о з в рата , - п р е о б р а з о в ы вать о ш и б ку в р е а к ц и ю с и сте м ы .
З н а ч ит л и это , что в ы во сста н а в л и ваетесь? В ко н це ко н цо в ,
в осста н о в иться где -то п р идетс я , п о с кол ь ку и н а ч е п р ил оже ­
н и е падал о б ы п р и в ы брасы ва н и и л юбого и с кл юч е н и я . П р и ­
е м п е р ебра с ы в а н и я и в ы стра и в а н и я це почки о ш ибок вместо
ра н н е го возв рата м н е н р а в ится , но ко гда о ш и бка подн и м ется
в оди н из и нтерфейсных объе кто в , нам п р идется ее отобраз ить.
Это знач ит, что п р идется пе рех ватить эту о ш и б ку и отобразить
ее в в иде объе кта пользовател ьского и нте рфе й с а . Ка к бы м ы
это н и тол ковал и , м ы восстановились посл е сбоя . Та к надо л и

4.2 . Бросайте только проверяемые исключения 225

н а м р е ш ать , в ка ко м ко нте ксте уместно восста н а вл и ваться ?
Ка к н а м определ ить та кой ко нте кст? Возможно , я что -то понял
совсем н е та к .

Егор Бугаенко :

Я б ы все же советовал не восста н а вл и ваться - пусть о ш и б ка
вспл ы вет на п о в е рхн ость, где п ол ьзо вател ь сможет ее ув идеть
и сооб щить разра ботч и ка м . И н о гда , одна ко , м ожет о казаться
необходимо п е рехватить ошибку раньше . Мы должны избегать
та ких мест и ситуа ци й .

Ka p гa Lov Seгg ey нап исал 7 сентября 20 1 7 года :

М н е н ра в ится в а ш а а р гу м е н та ц и я . Даже о ч е н ь . О н а н а п о ­
м и нает м н е я з ы ки вроде Haske l l , где есл и фун кци и надо бро ­
с ить и с кл ю ч е н и е , то это н еобход и м о отраз ить в ее ко нтра кте
! с и гнатуре] . Одн а ко ко гда я п ыта юсь п р и м е н ить это на п ра к­
ти ке в Java , то стал ки в а ю с ь с одн о й п робл е м о й , кото рая все
л о м а ет. И нте рфе й с ы . Есл и вы утве ржда ете , что н е безо п а с н ы е
м етоды должн ы я в н о бро сать п роверя е м ы е и с кл ю ч е н и я , з н а ­
ч ит, этот факт необходи м о отражать и в и нте рфейсах . Н о и н ­
те рфейс - всего л и ш ь ко нтра кт, и в ы н е м ожете з н ать н а в е р ­
н я ка , ка ко го п одхода будут п р ид е ржи в аться и с п ол н ител и
контра кта - безо п а с н о го и л и н е безо п а с н о го . Это и х дел о .
За п и с ы ва я t h rows E xception в ко нтр а кте м етода , в ы да ете
р а з ре ш е н и е и с п ол н ител я м и с п ол ьз о вать н е б ез о п а с н ы е и н ­
струкци и , о пуская же это требова н и е , в ы заста вля ете и х п р и ­
м е н ять л и ш ь безо п а с н ы е ко нструкци и . С а м о п о себе это хоро­
ш о [з а ста влять и с п ол ьзо вать б ез о п а с н ы е ко н струкци и] , но
н е дл я Java , где все , п о сути , н ебезо п а с н о . J ava н е да ет м н о го
га ра нти й во в р е м я ко м п ил я ц и и , та к ка к е го с и сте ма ти п о в н е ­
достато ч н о стр о га , что б ы одноз н а ч н о рассматри вать ка ко й ­
л и б о ф р а гм е нт кода ка к б е з о п а с н ы й . C l a s s C a s t E xc e pt i o n
м ожет воз н и кнуть в л ю б о м коде , и с п ол ьзую ще м обобще н н ы е
кл ассы и сти ра н и е ти п о в - п а р а м етр о в . Долже н л и я с ч итать

226 Глава 4 • Уход на пенсию

код, бросающий та кие искл ючения , небезопасным? От безысход­
н о сти м н е с н о в а п р и шл о с ь в е р нуться к н е п р о в е ря е м ы м и с ­
кл ю ч е н и я м .

Ada m Spofford написал 1 2 декабря 20 1 6 года :

У меня есть возраже н и я по это й части . Ка к п роверяе м ы м , та к
и н е п ро в е ря е м ы м и с кл ю ч е н и я м есть м е сто в я з ы ке . В ы го­
ворите , что ни одн о и с кл ю ч е н и е н е должно быть п р о гра м м н о
важнее других , но суть не в важности . Реч ь о том , что вы можете
контрол и ро вать. Есл и у меня есть ч исловой класс и я в нем в ы ­
з ы ва ю м етод divide , т о этот метод будет бросать и с кл ю ч е н и е
п р и дел е н и и на О . Н о он н е ста н о в ится о т это го небезопасн ы м .
П ередаешь О в качестве дел ителя - сам дура к . Сбой фа йловой
операци и , однако же , может п роизойти по нескол ьким п р и ч и ­
н а м . И с кл ю ч е н и е , вызы ваемое п р и пе редаче логическо го зна ­
ч е н и я вместо пути файла , должно быть н е п роверя е м ы м - сам
в и н о ват. Н о ко гда фа йл был ка ким -то образом изменен во вре ­
мя операции за п и с и , это уже проверяемое и с кл юч е н и е . Та кую
ситуа цию я м о гу обработать, но не м о гу б ыть ее в и н о в н и ко м .
В оз в ра щаясь к дел е н и ю на О . Ко гда кто -то п р и в ел п одоб н ы й
а р гумент, вы сказал и , что искл ю ч е н и ю надо позвол ить вспл ыть
н а в е рх . Но то гда ваш метод тоже п р идется п о м етить ка к н е ­
безопасн ы й , несмотря на т о что это вызвано в п ол н е безопас­
н о й операцией - вызов divide (2) п ро гра м м н о небезо пасен ,
хотя безопасен логически . М етод долже н быть помечен ка к не ­
безопа с н ы й , хотя в нем н и ко гда н е п роизойдет о ш ибки . А есл и
в ы хотите пом етить е го ка к безопасн ы й , вам п р идется л о в ить
и с ключение вся кий раз п р и вызове м етода divide . Теорети че ­
ски это з нач ит, что раз в объектно -ориентирова н н о м подходе
не должно б ыть особых случаев , то п р и каждом испол ьзова н и и
о п ератора деления та кже п ридется ловить искл ю ч е н и е . Что ка ­
сается ти пов и с ключен и й : допусти м , я делаю G U l - п р иложе н и е
и хочу, чтобы п ол ьзо вател ь в в ел ч и сло . П ол ьзо вател ь в в одит
«двадцать» , я пыта юс ь ! неуда ч н о] п реобразо вать стро ку в ч и с ­
ло . Есл и и с кл юч е н и я н е ти п из и ро ва н ы , в с е , что я мо гу с казать :

4.2 . Бросайте только проверяемые исключения 227

« О ш и бка» . Ти п из и р о ва н н ы е и с кл ю ч е н и я позвол я ют м н е с ка ­
зать : « Это не ч и сло» или « Ч и сл о сл и ш ко м вел и ко» . Что каса­
ется восстановл е н и я : есл и п ол ьзовател ь оста в ил п оле пусты м ,
м н е п р идется в ы б и рать, ка к обработать та кую ситуа цию . Есл и
пол ьзо вател ь н и ч е го не ввел , я могу подста в ить ч и сло 20 . Есл и
в веде н о н е ко р р е ктное з н а ч е н и е , я та кже м о гу п одста в ить 20 .
Та ким образо м , и с кл ю ч е н и я м п ридется дикто вать по рядо к ис­
п ол н е н и я п рогра м м ы . Эту с итуа цию м ожно р е ш ить раз н ы м и
с п особа м и , н о факт оста ется фа кто м .

And гej Zi гko написал 2 8 мая 20 1 6 года :

Наскол ько я п о н и м а ю , ста нда рт я з ы ка Java оп ределяет то , ка к
м ожно п о м етить м етод ка к н ебезопа с н ы й , - кл ю ч евое сл ово
t h rows . Я тоже п р иде ржи ваюсь та ко го п одхода . Бол ь ш и н ство
разработч и ко в о п ределя ют, что метод н ебезопасн ы й , гл ядя на
е го с и гнатуру. Та кую и нформацию о б ы ч н о н е и щут в Javadoc .
Чтобы н е п е р е гружать с и гнатуры м етодов м н о го ч и слен н ы м и
ти пами искл ю ч е н и й , я обора ч и ва ю исключение одного оп реде­
л е н н о го ти п а , п р ежде чем п е ребрасы вать их. Я, одн а ко , не ис ­
пол ьзую базо в ы й класс Exception , ка к предла гается в заметке .
Для каждого п р иложе н и я ил и б и бл и отеки я дел а ю оди н класс
п р о в е р я е м ы х и с кл ю ч е н и й . Та ки м образом я обеспеч и ва ю то ,
что м н е н е п о н адоб ится м е н ять с и гнатуру м етода , есл и в п о ­
следстви и в нем будут воз н и кать другие исключения . П р и необ­
ходимости я м о гу доба вить до пол н ител ьную информацию в ис­
кл ючение . И я не требую , чтобы пользовател и моей библиотеки
ловили исключение класса Exception. Я считаю , что бросать ис­
кл ючения , производн ы е от Exception, - значит сби вать с тол ку
бол ь ш и н ство разра ботч и ков , пол ьзующихся моей б и бл и отекой
ил и п р иложе н и е м .

Егор Бугаенко :

В ы все делаете п равильно . Я бы тоже н е рекомендовал б росать
ил и ловить исключения ти па Exception. Определя йте собствен­
ный ти п .

228 Глава 4 • Уход на пенсию

Robert D i Fa Lco нап исал 1 5 сентября 20 1 5 года :

Кажется , я запутался в вашем посте . Есл и , п о - ваше му, каждое
исключение должно быть ти па Exceptioп и каждое и с кл ючение
должно б ыть п роверяем ы м , то н е п р и водит л и это нас обратн о
к то му, что и с кл ю ч е н и я должн ы быть н е п р о в е ря е м ы м и ? Есл и
о н и все равно вспл ы вают на верх и н и где н е обрабаты ваются ,
то гда з а ч е м о бъя влять и х в м етода х? К п р и м е ру, у м е н я есть
код, кото р ы й , ка к я дум а ю , н и ко гда не в ы з о в ет и с кл ю ч е н и е .
Зате м я реал изую е го та к, что он испол ьзует нечто , что бросает
исключение . Есл и это невосстанови мое исключение , то я пере­
брасываю его . Теперь мне п ридется поменять с и гнатуру метода ,
доба в и в туда throws Exception . Есл и вы объя вляете все методы
ка к бросающие Exception [ти п везде оди н а ко в] , то в ч е м то гда
цен н ость та кого изменения? Возможно , я упустил важную часть
вашего бло га .

Егор Бугаенко :

Что ж , у н а с должно б ыть два ти п а м етод о в - безо п а с н ы е
и н ебезо п а с н ы е . Безо п а с н ы е м етоды н е б р о с а ют и с кл ю ч е ­
н и й . Н ебезо п а с н ы е м о гут в ы б рос ить и с кл ю ч е н и е . В от и в с е .
П о нятно?

Robeгt D i Fa Lco :

Безо п а с н ы х м етодов н е бы вает. Это илл юз и я . В от поч ему в ы
не должн ы бояться то го , что в с е и с кл ю ч е н и я будут н е п роверя ­
е м ы м и . А е ще , есл и исключение неп роверяемое , то оно с бол ь­
шей вероятн остью вспл ы в ет. Не это го ли вы хотите?

Егор Бугаенко :

Согл а се н , без о п а с н ы х м етодов н ет. В Java . Н о , м ожет, в это м
и п роблема? На верное , должн ы быть безопасные м етоды вроде
а+Ь ил и string . format () . Я п о н и ма ю , что OutOfMemory м ожет
случ иться в с юду, н о , в оз м ож н о , та к и е и с кл ю ч е н и я должн ы
иметь друго й статус/вид/ти п ? Я думаю" . Ч естн о го воря , на да н -

4.2 . Бросайте только проверяемые исключения 229

н ы й м о м ент я с ва м и почти согласе н . Те м не менее я все е ще
п ыта юсь на йти а р гументы в свою за щиту.

Aгnaud написал 1 а вгуста 20 1 5 года :

М ожно поспорить, что безопасных методов не существует и по ­
это му в с€ м етоды должн ы б р осать и с кл ю ч е н и е E x c e p t i o n .
Н о есл и все м етоды бросают и с кл ю ч е н и е Except ion , то зачем
е го о бъя влять в п р и н ци п е ? Мне кажется , это не п роти воречит
вашей позиции о том , что п роверя е м ы е исключения о ш и боч н ы ,
и в а ш е й точ ке з р е н и я о дихото м и и safe/u nsafe .

Е г о р Бугаенко :

И м е н н о это я и п р едл а га ю . Должн ы б ыть безо п а с н ы е и н е ­
безо п а с н ы е методы . Вот и все .

Aгna u d :

Мне кажется , в ы не понял и , в ч е м раз н о гласие . Авто р утвер ­
ждает, что без о п а с н ы х м етодов н е б ы вает и что п о чти л юбой
с кол ь ко - н и будь п о л ез н ы й код м ожет б р о с ить ка кое - н и будь
и с кл ю ч е н и е . Есл и та к и есть, то ваше п р едл оже н и е помечать
участо к кода кл юче в ы м и слова м и th rows E xception - н и ч е го
не значащи й , бесс м ы сл е н н ы й шум .

Stefa no Masieгo написал ЗО и юля 2 0 1 5 года :

Этот спор весьма за пута н . П ровокационная заметка Егора п р и ­
з ы вает освободить разум , заци кл е н н ы й на обще п р и н ятом м не­
н и и . П о ч е му в Java есть п о н ятие п р о в е р я е м о го и с кл ю ч е н и я ?
М н е кажется , это п о п ытка заста в ить разра ботч и ка посто я н н о
и м еть в в иду обработку о ш и бо к, п о п ытка избежать человече­
с кого фа ктора . Но , ка к и л юбое п ра в ило , навяз ы ваемое я з ы ко м ,
оно ста нов ится обременител ьн ы м для хорош и х п рогра м м и сто в
[о н и всегда думают об обработке о ш и бо к н еза в и с и м о от то го ,
п роверяются искл ю ч е н и я или н ет) .

230 Глава 4 • Уход на пенсию

Da rren H offman нап исал 29 и юля 2 0 1 5 года :

Л юд и , п ожалуй ста , п о й м ите , что н е п р о в е р я е м ы е и с кл ю ч е ­
н и я - это н е я в н о объя вл е н н ы е и с кл ю ч е н и я . В с е м етоды н е ­
я в н о п о м е ч е н ы t h rows Runt imeException . Дело н е в то м , что
вы не должн ы л о в ить «скрыты е» и с кл ю ч е н и я , - вы должн ы
л о в ить и с кл ю ч е н и я , объя вл е н н ы е в с и гнатуре м етода . В коде
о н и я в н о не п р о п и с ы ва ются , п ото му что в этом нет с м ы сла . Н ет
воз м ожности с казать, что м етод может бросать неп роверя е м ы е
и с кл ю ч е н и я . М н е кажется , л юдей вводит в за блужден и е сл ово
« н е п роверяемое» . Вам сто ит подумать над его з н а ч е н и е м . Не ­
п роверяемое - н е з н а ч ит скр ытое . Это знач ит, что ко м п илятор
ожидает, что оно м ожет б ыть брошено в л юбом месте кода . Н ет
с м ы сла объя влять его в с и гнатуре метода . В ы м ожете лов ить
е го , есл и вам та к хочется , н о тол ько дл я диа гностических или
и нформаци о н н ы х цел е й .

4. 3 . Будьте л ибо конста нтн ы м,
л ибо абстра ктн ы м

Обсуждение на http ://goo.g i/vo9F2g.

Я еще ничего не сказал о наследовании. Пришло время погово­
рить об этом очень мощном и зачастую неправильно использу­
емом механизме ООП. Я часто слышу, что наследование - зло
и его необходимо избегать. Говорят, что инкапсуляция пред­
почтительна в большинстве случаев. Мне кажется , я с ними
согласен , но давайте проанализируем , почему наследование
создает проблемы и что можно сделать для их предотвращения.
Действительно, нет смысла избавляться от наследования, но его
надо применять умело.

Самый сильный аргумент против наследования - то, что оно
делает отношения между объектами слишком запутанными.

4.3 . Будьте либо константным, либо абстрактным 231

Очень сложно понять иерархию классов, наследующих друг
друга, когда ее глубина превышает, скажем, пять уровней. В этом
есть смысл, но наследование не является источником проблемы.
Проблемы бывают вызваны виртуальными методами. Взглянем
на следующий пример:

c l a s s Document {

}

puЫic int lengt h () {
ret u rn t h i s . content () . length () ;

}
puЬlic byte [] content () {

}

11 За г ружает необработанное содержимое
11 документа как мас с и в ба йтов

Не лучший способ абстрагирования документа, но такого при­
мера достаточно, чтобы продемонстрировать, как наследование
затрудняет чтение кода. Попробуем расширить этот класс воз­
можностью загрузки зашифрованного документа:

c l a s s Enc ryptedDoc ument extends Document {

}

@Override
puЬlic byte [] content () {

}

11 За г ружает документ, расшифровывает его на лету
1 1 и возвращает расшифрованное содержимое

Выглядит корректно, правда? Метод content () класса E n c ryp ­
tedDocument загружает содержимое и расшифровывает его на
лету. Но поведение метода lengt h () , унаследованного классом
Enc ryptedDocument от класса Document, поменялось. Он больше
не возвращает размер документа на диске. Он возвращает размер
расшифрованного содержимого. Этого ли мы от него ожидаем?
Не факт. Вероятно, мы ожидаем, что он вернет размер хранили­
ща, занятого документом, так же, как и в классе Document.

Легко ли понять, что не так с методом length () в дочернем клас­
се E n c ryptedDoc ument? Это займет какое-то время. Мы должны

232 Глава 4 • Уход на пенсию

помнить, что он вызывает метод content () , который был пере­
определен . Мы будем просматривать исходный код класса
Doc ument, в котором определяется метод length () , имея в виду,
что некоторые из вызываемых им методов находятся в дочерних
классах. Такое мышление контринтуитивно. Наследование ин­
туитивно представляется направленным сверху вниз - дочерние
классы наследуют код родительских классов. Переопределение
методов дает возможность родительскому классу получать до­
ступ к методам дочернего класса. Скажем так, такое «переверну­
тое�,. мышление противоречит здравому смыслу.

Вот где наследование из удобного инструмента О О П превра­
щается в источник проблем с сопровождаемостью. Сложность
растет, и код становится тяжело читать и понимать. Но решение
есть. Проста делайте свои классы и методы либо константньtм,и,

либо абстрактными - и любая возможность возникновения
проблемы растворится. Действительно, если бы класс Document
был константным, мы бы в принципе не смогли от него наследо­
вать. В то же время, если бы его метод content () был абстракт­
ным, мы не смогли бы реализовать его в Doc ument и с методом
length () не возникло бы путаницы.

У класса, по сути, может быть три статуса: константный, аб­
страктный или другой. Константный класс - черный ящик для
его пользователей. Он не может быть изменен наследованием.
Он цельный и самодостаточный. Он знает, как работать, ему
не нужна помощь. Мы не можем переопределить методы в кон­
стантном классе чисто технически. Они навсегда константны.

Абстрактный класс - как незавершенный прозрачный ящик.
Он не может работать самостоятельно, ему нужна помощь, часть
его компонентов отсутствует. Он еще не класс с технической
точки зрения. Он - полуфабрикат для создания настоящего
класса. Формально в абстрактном классе можно переопределить
некоторые методы, остальные будут константными.

4.3 . Будьте либо константным, либо абстрактным 233

Третье состояние - когда класс не является ни абстрактным,
ни константным. Я категорически против него, поскольку оно
не является ни черным, ни прозрачным ящиком. Довольно за­
путанная ситуация, поскольку класс может стать либо тем, либо
другим. Мы можем переопределить некоторые методы, и тогда
он станет прозрачным ящиком, но в то же время будет считать
себя черным ящиком. Класс станет предполагать, что он цель­
ный, самодостаточный и устойчивый, в то время как другим
будет позволено, вразрез с этим предположением, заменять не­
которые его элементы посредством виртуальных методов.

Вот как выглядел бы класс Doc ument, если бы Java не позволял
создавать классы, не являющиеся ни абстрактными, ни кон­
стантными:

final c l a s s Document {

}

puЬlic int length () { / * тот же */ }
puЫic byte [] content () { / * тот же * / }

Обратите внимание на модификатор f i n a l . Он указывает на
то, что ни один из методов класса не может быть переопре­
делен дочерними классами. Теперь нам нужно создать класс
Enc ryptedDocument. Он должен наследоваться от Document, но мы
не можем наследовать от него. Таким образом, придется ввести
интерфейс, что, как обсуждалось в разделе 2.3, является хорошей
практикой:

interface Doc ument {

}

int length () ;
byte [] content () ;

Затем нужно переименовать класс D o c u m e n t в нечто вроде
Defau ltDocument и сделать так, чтобы он реализовал интерфейс
Doc ument:

final c l a s s Defau ltDocument implements Document {
@Override

234 Глава 4 • Уход на пенсию

}

puЫic int lengt h () { / * тот же */ }
@Override
puЫic byte [) content () { / * тот же */ }

А теперь последний шаг: нужно создать Enc ryptedDocument, ис­
пользующий функционал Defaul tDocument. Мы применим ин­
капсуляцию вместо наследования, поскольку для константного
класса оно невозможно:

final c l a s s E n c ryptedDocument implements Document {
private final Document plai n ;
E n c ryptedDoc ument (Document doc) {

}

t h i s . plain = doc ;

}
@Override
puЬlic int lengt h () {

return t h i s . plain . lengt h () ;

}
@Override
puЫic byte [] content () {

}

byte [) raw = t h i s . plain . content () ;
return / * Ра сшифрованное содержимое . */ ;

Обратите внимание на то, что как Defau ltDocument, так и Encryp­
tedDocument являются константными и от них нельзя наследовать.

Данный пример показывает, что при обязательном использова­
нии ключевых слов final и abstract наследование в большин­
стве случаев станет невозможным. Если все классы констант­
ные, доступна только инкапсуляция.

Если вы придерживаетесь этого принципа и помечаете все клас­
сы либо final , либо abstract , то вам почти не придется исполь­
зовать наследование. Тогда, когда это будет осмысленно, вы
сможете им воспользоваться. <!: Когда имеет смысл пользоваться
наследованием?� - спросите вы. Тогда, когда нужно уточнить

поведение класса. Не расширить, а уточнить. Разница есть. Рас-

4.3 . Будьте либо константным, либо абстрактным 235

ширение означает, что существующее поведение дополняется
новым. Уточнение означает, что не полностью определенное
поведение становится полностью определенным.

Мы не должны ничего расширять в ООП, поскольку данный
процесс, как показано ранее, рассматривает объекты как про­
зрачные ящики, что нежелательно. Объекты задуманы как чер­
ные ящики и не терпят вторжения и нарушения их личного
пространства. Расширение класса есть вторжение.

Вместо этого мы должны уточнять абстрактные классы, что
ожидаемо. К примеру, у нас есть неполный класс Doc ument, ко­
торый знает, как вычислить свой размер:

abst ract c l a s s Document {

}

puЫic abstract byte [] content () ;
puЫic final int length () {

return t h i s . content () . lengt h ;

}

Затем нужно уточнить его, введя новый класс DefaultDocument,
который знает, как загрузить содержимое, скажем, с диска:

final c l a s s Defau ltDocument extends Document {
@Override
puЫic byte [] content () {

1 1 За г ружает содержимое с дис ка

}
}

Затем мы создаем класс E n c ryptedDocument, который уточняет
класс Doc ument по-другому:

final c l a s s Enc ryptedDocument extends Document {
@Override
puЫic byte [] content () {

11 За гружает содержимое с дис ка ,
1 1 расшифровывает и возвращает его

}
}

236 Глава 4 • Уход на пенсию

Вы можете возразить, что в таком случае возникнет аналогичная
проблема - метод length () вернет размер расшифрованного до­
кумента, а не файла на диске. Да, это так, но сделано уже созна­
тельно. Оба класса уточняют абстрактный класс. Теперь четко
видно, что метод length () применяет методы соответствующих
классов. Вот почему уточнение - более чистый подход, чем рас­
ширение.

Подведем итог: возможность создавать классы, отличные от
константных и абстрактных, - недостаток языка jаvа и многих
других языков. Мы должны явно выражать свои намерения -
метод либо разработан правильно, либо не разработан вообще.
Третьего не дано.

4.4. Используйте п рин ци п RAII

Обсуждение на http ://goo.gi/ULUJ8o.

Принцип «Выделение ресурсов есть инициализация� (Resource
Acquisition Is Initialization (RAII)) - последнее, о чем я хотел бы
упомянуть, прежде чем закончить книгу. Это очень мощный при­
ем, существующий в С++, но отсутствующий в java в силу того,
что объекты в нем уничтожаются посредством сборки мусора.
Вот почему в нем нет деструкторов. Мы, конечно, можем ими­
тировать RAII в Java, но С++ реализует его гораздо элегантнее.
Взглянем, как это работает в С++. Представим, что у нас есть
абстракция текстового файла:

#include < stdio . h >
#include < string>
class Text {
puЫic :

Text (const c h a r * name) {
t h i s - >f = fopen (name , " r ") ;

}
-техt () {

fclose (t h i s - >f) ;

}

4.4. Используйте принцип RAII 237

const std : : string& content () {
// Считывает содержимое файла
// и возвращает е го как UТF8 - строку

}
private :

F I L E * f ;

} ;

Вот как мы использовали бы данный класс:

int main () {

}

Text t (" /tmp/test . txt ") ;
t - > content () ;

Вначале мы создаем t - объект класса Text путем вызова его
конструктора Text () . Затем вызываем метод content () , чтобы
прочесть файл. Потом покидаем область видимости объекта t ,
в результате чего вызывается его деструктор -техt () . Он за­
крывает файл.

Фокус в том, что ресурс захвачен на время жизни объекта. В дан­
ном примере дескриптор файла f будет захвачен до вызова де­
структора. Отсюда прием и получил свое название - выделение
(захват) ресурсов есть инициализация. Мы захватываем ресурс
при инициализации объекта и освобождаем его, когда объект
больше не нужен и будет уничтожен. Этот прием очень удобен.
Рекомендую использовать его при любой возможности.

В J ava и во многих других языках прием RAII применить нельзя,
поскольку в них нет деструкторов. В Java, к примеру, объекты
уничтожаются в фоновом режиме, когда в них больше нет не­
обходимости.

Этот процесс называется сборкой мусора. Формально в J ava
объект t будет все еще жив после окончания выполнения мето­
да main () . Нужен ли он нам после завершения метода main () ?

238 Глава 4 • Уход на пенсию

Нет, но Java не уничтожает его автоматически . Вместо этого
он долго находится в памяти, после чего объявляется мусором.
Сборщик мусора удаляет объект лишь тогда, когда для новых
объектов оказывается недостаточно памяти.

Вот почему в java нет деструкторов. К несчастью.

Однако в java 7 появилась возможность, похожая на RAII . Теперь
мы можем использовать блок t ry со связанным ресурсом:

int main () {

}

t ry (Text t = new Text (" /tmp/test . txt ")) {
t . content () ;

}

Объект t не будет уничтожен по завершении блока try, но будет
вызван его метод c lo s e () , близкий по смыслу к деструктору
в С++ . Нам всего лишь нужно сделать так, чтобы класс Text
реализовывал интерфейс AutoCloseaЫe.

Я настоятельно рекомендую использовать RAI I всюду, где при­
ходится работать с настоящими ресурсами - файлами, потока­
ми, подключениями к БД и т. п. В С++ применяйте деструкторы,
в J ava - интерфейс AutoCloseaЬle .

Эпилог

Я свято верю, что объектно-ориентированное программирование
ожидает светлое будущее. Jаvа, С#, С++, Ruby, Python и другие
псевдо-ООП-языки будут заменены более строгими, чистыми
и элегантными языками. Я не знаю, когда это произойдет, но это
непременно случится.

Проблема даже не в отсутствии хороших языков . Проблема
в нас, нашем образе мышления, понимании ООП, в том, как мы
продумываем и проектируем программное обеспечение, в на­
шем менталитете и наших принципах. Мы должны изменить
подход к написанию кода, и программы ответят нам взаимно­
стью. Языки начнут меняться, когда мы станем по-другому их
использовать.

Я хочу, чтобы мы поменяли свой образ мышления. Вот почему
написал эту книгу.

Конец.

Калифорния, Мальта, Украина
2015-20 1 7

Егор Бугаенко
Элегантные объекты. Java Edition

Перевел с английского К. Русецкий

Заведующая редакцией

Руководитель nроекта

Ведущий редактор

Литературный редактор

Художественный редактор

Корректоры

Верстка

Ю. Сергиенко
О. Сивченко
Н Гринчик
Н Рощина

С Заматевская
Е. Павлович, Т Радецкая

Г Блинов

Изготовлено в России. Изготовитель: ООО «Прогресс книга».

Место нахождения и фактический адрес: 1 94044, Россия, г. Санкт-Петербург,

Б. Сампсониевский пр" д. 29А, пом. 52. Тел. : +78 1 2703 7373.

Дата изготовления: 06.20 1 8 . Наименование: книжная продукция.

Срок годности: не ограничен.

Налоговая льгота - общероссийский классификатор продукции ОК 034-2 0 1 4, 5 8 . 1 1 . 1 2 -
Книги печатные nрофессиональные, технические и научные.

Импортер в Беларусь: ООО «ПИТЕР М», 220020, РБ, г. Минск, ул. Тимирязева,

д. 1 2 1 /3, к. 2 1 4, тел./факс: 208 80 0 1 .

Подписано в печать 20.06. 1 8. Формат 6Ох9О/ 1 6. Бумага офсетная. Усл. n . л . 1 5 ,000.

Тираж 1 ООО. Заказ № ВЗК-02843- 1 8 .

Отпечатано в АО «Первая Образцовая типография», филиал «Дом печати - ВЯТКА»
в полном соответствии с качеством предоставленных материалов

6 1 0033, г. Киров, ул. Московская, 1 22 . Факс: (8332) 53-53-80, 62- 1 0-36

http://www.gipp.kirov.ru; e-mai l : order@gipp.kirov.ru

01

	Предисловие
	Благодарности
	Глава 1. Рождение
	1.1. Не используйте имена, заканчивающиеся на -er
	1.2. Сделайте один конструктор главным
	1.3. В конструкторах не должно быть кода

	Глава 2. Образование
	2.1. Инкапсулируйте как можно меньше
	2.2. Инкапсулируйте хотя бы что-нибудь
	2.3. Всегда используйте интерфейсы
	2.4. Тщательно выбирайте имена методов
	Строители — это существительные
	Манипуляторы — это глаголы
	Примеры
	Методы, возвращающие логические значения

	2.5. Не используйте публичные константы
	Привнесение сцепления
	Потеря цельности

	2.6. Делайте классы неизменяемыми
	Изменяемость идентичности
	Атомарность отказов
	Временное сцепление
	Отсутствие побочных эффектов
	Никаких нулевых (NULL) ссылок
	Потокобезопасность
	Меньшие и более простые объекты

	2.7. Пишите тесты, а не документацию
	2.8. Используйте fake-объекты вместо mock-объектов
	2.9. Делайте интерфейсы краткими, используйте smart-классы

	Глава 3. Работа
	3.1. Предоставляйте менее пяти публичных методов
	3.2. Не используйте статические методы
	Объектное мышление против компьютерного
	Декларативный стиль против императивного
	Классы-утилиты
	Паттерн «Синглтон»
	Функциональное программирование
	Компонуемые декораторы

	3.3. Не допускайте аргументов со значением NULL
	3.4. Будьте лояльным и неизменяемым либо константным
	3.5. Никогда не используйте геттеры и сеттеры
	Объекты против структур данных
	Благими намерениями вымощена дорога в ад
	Все дело в префиксах

	3.6. Не используйте оператор new вне вторичных конструкторов
	3.7. Избегайте интроспекции и приведения типов

	Глава 4. Уход на пенсию
	4.1. Никогда не возвращайте NULL
	Отказывать как можно скорее или как можно безопаснее?
	Альтернативы NULL

	4.2. Бросайте только проверяемые исключения
	Не ловите исключения без необходимости
	Стройте цепочки исключений
	Восстанавливайтесь единожды
	Используйте аспектно-ориентированное программирование
	Достаточно одного типа исключений

	4.3. Будьте либо константным, либо абстрактным
	4.4. Используйте принцип RAII

	Эпилог

