
ЭЛЕГАНТНЫЕ ОБЪЕКТЫ
Java Edition

Ьу Yegor Bugayenko
Erop Буrаенко

Санкт-Петербург • Москва • Екатеринбург • Воронеж
Нижний Новгород • Ростов-на-Дону • Самара • Минск

2018

Оглавл.ение

Предисловие ~ 9

Благодарности 14

Глава 1. Рождение 16

1.1. Не используйте имена, заканчивающиеся на -er 17

1.2. Сделайте один конструктор главным 28

1.3. В конструкторах не должно быть кода 34

Глава 2. Образование . 43

2.1. Инкапсулируйте как можно меньше ·.· .. 43

2.2. Инкапсулируйте хотя бы что-нибудь 47 .·

2.3. Всегда используйте интерфейсы . 50

2.4. Тщательно выбирайте имена методов . 54

Строители - это существительные. 57

Манипуляторы - Это глаголы 59

6 Оглавление Оглавление 7

Примеры 61

Методы, возвращающие логические значения 63

2.5. Не используйте публичные константы . 64

Привнесение сцепления . 67

Потеря цельности . 68

2.6. Делайте классы неизменяемыми 73

Изменяемость идентичности . 78

Атомарность отказов . 79

Временное сцепление . 81

Отсутствие побочных эффектов . 83

Никаких нулевых (NULL) ссылок 84
Потокобезопасность. 86

Меньшие и более простые объекты . 89

2.7. Пишите тесты, а не документацию 93

2.8. Используйте fаkе-объекты вместо
mосk-объектов ~ 97

2.9. Делайте интерфейсы краткими, используйте
smart-клaccы 108

Глава 3. Работа 114

3.1. Предоставляйте менеепяти публичных методов 115

3.2. Не используйте статические методы. 117

Объектное мышление против компьютерного 119

Декларативный стиль против императивного 122

Классы-утилиты ··· 132

Паттерн ~синглтон» 133

Функциональное программирование 138

Компонуемые декораторы . 139

3.3. Не допускайте аргументов со значением NULL 146

3.4. Будьте лояльным и неизменяемым
либо константным ·········· 157

3.5. Никогда не используйте геттеры и сеттеры 171

Объекты против структур данных. 172

Благими намерениями вымощена дорога в ад. 176

Все дело в префиксах 178

3.6. Не используйте оператор new вне вторичных
конструкторов . · .. · · · · · · · · 189

3.7. Избегайте интроспекции и приведения типов 194

Глава 4. Уход на пенсию 201

4.1. Никогда не возвращайте NULL 202

Отказывать как можно скорее или как можно
безопаснее? ·········· 206
Альтернативы NULL 208

4.2. Бросайте :rолько проверяемые исключения 211

Не ловите исключения без необходимости 214

Стройте цепочки исключений 217

Восстанавливайтесь единожды 219

8 Оглавление

Используйте аспектно-ориентированное
программирование 221
Достаточно одного типа исключений 224

4.3. Будьте либо константным, либо абстрактным 230

4.4. Используйте принцип RAII - 236

Эпилог · · · · · · · · · · · · · ~ · · · · · · · · · · · · · · · 239

Предисловие

Об объектно-ориентированном программировании (ООП)
написано много книг. Зачем нужна еще одна? Затем, что мы
в опасности. Мы все дальше уходим от того, что было задума­
но создателями ООП, и у нас все меньше шансов вернуться.
Все существующие ООП-языки предлагают рассматривать
объекты как структуры данных с прикрепленными процеду­
рами, что в корне неверно. Появляются новые языки, но они
делают так же или даже хуже. Объектно-ориентированных
программистов заставляют думать так, как процедурные про­
граммисты думали 40 лет назад. То есть думать не как объекты,
а как компьютеры.
Эта книга представляет собой сборник практических рекомен­
даций, которые, как мне кажется, могут изменить ситуацию
и остановить деградацию ООП. Большинство из них я прочел
в различных источниках, а некоторые просто придумал.

Двадцать три совета сгруппированы в четыре главы: рожде­
ние, школа, трудоустройство и выход на пенсию. Речь пойдет
о мистере Объекте, антропоморфной сущности в объектно­
ориентированном мире. Он родится, пойдет в школу, устроится

10 Предисловие Предисловие 11

на какую-нибудь работу, а затем выйдет на пенсию. Посмотрим,
как будут развиваться события, и попробуем узнать что-то новое.
Вместе. Поехали!

Погодите. Знаете, прежде чем опубликовать эту книгу, я отпра­
вил ее десятку рецензентов, и почти все они возмутились из-за
отсутствия введения. Они сказали, что я отправляю читателей
на свидание вслепую с первой темой, не дав им необходимого
контекста. Еще сказали, что мои идеи сложно воспринимать
людям с богатым опытом программирования на С++/Java. Они
находят, что их понимание ООП расходится смоим. Короче
говоря, все потребовали, чтобы я написал введение. Собствен­
но, вот оно.

Мне кажется, что ООП было разработано для решения проблем
процедурного программирования, особенно на языках вроде С
или COBOL. Процедурный стиль написания кода очень прост
для понимания теми, кто знает, что процессор последовательно
обрабатывает инструкции, манипулирующие данными в памя­
ти. Фрагмент кода на С, также известный как функция, - это
множество операторов, которые должны выполняться в хро­
нологическом порядке, перемещая данные из одного места
в памяти в другое и попутно проделывая над ними некоторые
преобразования. Это работало много лет и работает до сих
пор. Таким образом написана большая часть программного
обеспечения, включая, к примеру, все основные Цшх-подобныо
операционные системы.

Такой подход технически работает - код компилируется и за­
пускается. Но при этом существует проблема с сопровождением.
Автор кода более или менее понимает, как тот работает, пока
пишет его. Но если заглянуть в него позже, то будет довольно
трудно выяснить, что имел в виду его создатель. Иными словами,
код написан для компьютеров, а не для людей. Лучший пример
такого императивно-процедурного языка - ассемблер. Он бли-

же всего к процессору и очень далек от языка, на котором люди
общаются в жизни. В ассемблере нет клиентов, файлов, прямо­
угольников и цен. Только регистры, байты, биты и указатели - то,
что процессор понимает лучше всего.

Так было много лет назад, когда компьютеры были большими,
медленными и повелевали всем. Мы вынуждены были гово­
рить на их языке, а не наоборот. Так происходило преимуще­
ственно потому, что программное обеспечение должно было
быть быстрым, чтобы стать полезным. Шла борьба за каждую
инструкцию, за каждый байт памяти. Мы больше беспокои­
лись о скорости и использовании памяти, чем о сопровожде­
нии кода. Важно отметить, что программисты тогда были на­
много дешевле компьютеров. Уж простите мое сравнение, но
это правда. Нанять нового программиста было дешевле, чем
купить новый жесткий диск. Иногда даже не представлялось
возможным решить проблему добавлением вычислительных
ресурсов. Более быстрого или объемного аппаратного обе­
спечения попросту не было. Программисты были довольно
дешевы - поищите статистику 20-летней давности по их зар­
платам. Именно поэтому приходилось делать то, что диктова­
ли нам процессоры.

К счастью, некоторое время назад ситуация переменилась и про­
блема сопровождения стала более важна, чем скорость исполне­
ния или расходование памяти. Жизненный цикл программных
продуктов начал расти, и стало очевидно, что ассемблерный код
не сможет пережить смену команды - новые люди предпочтут
переписать код вместо того, чтобы разбираться, как работает
подпрограмма из 5000 строк. Я считаю, что так и появились бо­
лее высокоуровневые парадигмы программирования, такие как ·
функциональная, логическая и объектно-ориентированная (есть
и другие, но эти три, как мне кажется, наиболее популярны).
Они перенесли фокус внимания с машин на людей. Они позволили
нам говорить на своем языке, а не на том, к которому привык

12 Предисловие

процессор. Они помогли сделать код более читаемым и, как
следствие, более простым для поддержки. Так было задумано.

Исторически ООП унаследовало многое от процедурного про­
граммирования. Под ООП здесь понимается не парадигма, а се­
мейство популярных языков программирования, которые были
названы объектно-ориентированными. Речь идет в основном
о С++ иjava. Остальные, например Ruby, просто последовали
их примеру. Возможно, поэтому C-t+ и стал так популярен - он
выглядит как С, соответственно, его проще изучить. Языкjаvа
также разрабатывался с целью упростить переход с С++ - его
синтаксис очень похож на синтаксис С++ и прост для изучения
программистами на С++. Из-за компромиссов в переходе от С
к С++ и от С++ кjava ООП на сегодняшний день сильно напо­
минает процедурный С.

И пускай у нас есть классы и объекты - у нас все еще остались
операторы, инструкции и их последовательное исполнение.
Мы больше не работаем напрямую с указателями, памятью
и регистрами процессора, но основной принцип остается неиз­
менным - мы даем инструкции процессору и манипулируем
данными в памяти. «Что с этим не так?» - можете спросить
вы. Все в порядке, если вы хотите придерживаться процедур­
ного подхода. Так же, как все было в порядке с ассемблером.
Кроме того, что написанный на нем код было практически невоз­
можно поддерживать. Точно такая же проблема сейчас и с про­
граммным обеспечением, написанным нajava/Ruby/Python, -
его невозможно поддерживать, поскольку оно никогда не было
объектно-ориентированным.

В нашем коде есть классы, методы, объекты, наследование
и полиморфизм, но он не совсем объектно-ориентированный.
Что именно с ним не так? Это я и попытаюсь объяснить в дан­
ной книге. Очень сложно уместить то, что я хочу сказать, в пару
разделов. Чтобы понять идею и образ мышления, свойственные
чистому ООП, вы должны прочитать всю книгу.

Предисловие 13

Я старался сделать материал максимально приближенным
к практике и проиллюстрировать освещаемые идеи реалистич­
ными примерами программного кода. Кроме того, в начале по­
чти каждого раздела есть ссылка на статью в блоге, посвященную
той же или очень близкой теме. Не стесняйтесь оставлять там
свои комментарии, я постараюсь на них ответить.

Честно говоря, я не думаю, что прав во всем, о чем говорю. Я сам
многие годы был процедурным программистом. Сложно оста­
вить прошлый опыт позади и начать думать в терминах объектов,
а не инструкций и операторов. Буду рад вашим отзывам. На этом
введение закончено. В нем немного информации, но теперь вы
по крайней мере знаете, чего ожидать от последующих страниц.
Будьте готовы ко множеству противоречий. Наберитесь смело­
сти бросить себе вызов. Приятного прочтения!

Благодарности

Большое спасибо тем, кто рецензировал эту книгу и помог сде­
лать ее лучше и чище. Имена и фамилии этих людей упорядоче­
ны не по алфавиту, а по важности их вклада:

О Танасис Папапанагиоту (Thanasis Papapanagiotou);
О Франческа Бьянчи (Francesco Bianchi);
О Филипп Буук (Philip Buuck);
О Константин Комков (Konstantin Komkov);
О Андрей Истомин (Andrei Istomin).

Полный список помощников (в алфавитном порядке): Алексей
Абашев (Alexey Abashev), Антон Архипов (Anton Arhipov), Фа­
брицио Баррос Кабрал (Fabricio Barros Cabral), Айон Бордиан
(Ion Bordian), Тамила Бугаенко (Tamila Bugayenko), Филипп
Буук (Philip Buuck), Франческо Бьянчи (Francesco Bianchi),
Андрей Валяев (Andrey Valyaev), Илья Василевский (Пуа
Vassilevsky), Виктор Гамов (Viktor Gamov), Артем Гапченко
(Artem Gapchenko), Куин Гиль (Quinn Gil), Константин Гуков
(Konstantin Gukov), Игорь Дмитриев (Igor Dmitriev), Анеш
Догра (Aneesh Dogra), Андрей Истомин (Andrei Istomin), Ки­
рилл Коротецкий (Кiryl Korotsetski), Никос Кекчидис (Nicos
Kekchidis), Кристиан Кестлин (Christian K0stlin), Констан-

Благодарности 15

тин Комков (Konstantin Komkov), Николь Кордес (Nicole
Cordes), Жанез Кухар (Гапея Kuhar), Матеуш Ошлишлок (Ма­
teusz Oslislok), Сясонг Пан (Xiasong Рап), Танасис Папапа­
нагиоту (Thanasis Papapanagiotou), Джон Пейдж Uohn Page),
Ефим Пышнограев (Efim Pyshnograev), Силас Рейнагель (Silas
Reinagel), Барух Садогурский (Baruch Sadogursky), Маркос
Дуглас Б. Сантос (Marcos Douglas В. Santos), Оксана Семенкова
(Oksana Semenkova), Маурицио Тоньери (Mauricio Togneri),
Саймон Цай (Simon Tsai), Антон Черноусов (Anton Chernousov),
Кшиштоф Шафраньски (Krzysztof Szafrariski), Михал Швец
(Michal Svec), Петр Шмелевский (Piotr Chmielowski).

Хотите увидеть себя в этом списке в следующем издании книги?
Высылайте свои соображения на book@yegor256.com. Я отвечаю
на все письма.

И конечно же, спасибо Андрии Миронюк (Andreea Mironiuc) за
кактус на обложке.

Рождение

1.1. Не используйте имена, заканчивающиеся на -er 17

Начнем с того, что объект - это живой организм. С самой первой
страницы мы приложим максимум усилий для его аитропомор­
фирования. Иными словами, будем считать объект человеком.
Поэтому я стану использовать в отношении объекта местоиме­
ние «01-t». Мои дорогие читатели-женщины, пожалуйста, не оби­
жайтесь. Я могу быть груб по отношению к бедному объекту, но
не хочу быть грубым по отношению к женщинам. В этой книге
объект будет мужского рода.

Он живет в своей области видимости, например (я в основном
работаю с языкомJаvа и буду так поступать далее в этой книге;
надеюсь, что он вам понятен):
if (price < 100) {

Cash extra = new Cash(S);
price.add(extra);

}

Объект extra виден только внутри блока if - это его область
видимости. Почему это важно именно сейчас? Потому что объ­
ект - живой организм. Прежде чем вдохнуть в него жизнь, мы
должны определить его среду обитания. Что находится внутри
него, а что находится снаружи? В данном примере price нахо­
дится снаружи, а число 5 - внутри, верно?

К слову, прежде чем мы продолжим, хочу уверить вас, что все,
что вы прочтете в этой книге, весьма практично и прагматично.

1 > шьшая ее часть посвящена практическому приложению объ­
ктно-ориентированного программирования к реальным про­
шемам, а не философствованию. Главная цель, которую я пре­

сл едую данной книгой, - улучшить сопровождаемостъ вашего
1 да. Нашего кода.

опровождаемость - важное качество любого программного
обеспечения, оно может быть измерено как время, необходимое
для того, чтобы понять ваш код. Чем больше времени требуется,
т м ниже сопровождаемость и тем хуже код. Я бы даже сказал:
если я вас не понимаю, то виноваты в этом вы. Понимая объекты
и их роль в ООП, вы повысите сопровождаемость своего кода.
Он станет короче, проще для восприятия, модульнее, целостнее
и т. д. Он станет лучше, а в большинстве случаев и дешевле.

ожалуйста, не удивляйтесь моим, казалось бы, излишне фило-
офским и абстрактным рассуждениям. Они на самом деле весь­

ма практичны.

Теперь вернемся к области видимости. Если я - extra, то
price - это моя окружающая среда. Число s внутри меня - это
мой внутренний мир. Но это не совсем верно. Пока достаточно
считать, что price находится снаружи, а 5 - внутри. Мы вернем­
ся к этому чуть позже, в разделе 3.4.

1.1. Не используйте имена,
заканчивающиеся на -ег

Обсуждение на http://goo.gl/Uy3wZ6.

После того как вы определили область видимости будущего объ­
екта, первостепенной задачей будет приду~ать ему хорошее имя.

Но отступим от основной линии повествования и обсудим раз­
ницу между объектом и классом. Я уверен, вы ее понимаете.
Класс - это фабрика объектов. Уверяю вас, это важно.

18 Глава 1 • Рождение 1.1. Не используйте имена, заканчивающиеся на -ег 19

Класс создает объекты, обычно говорят - инстаниириет их:
class Cash {

puЫic Cash(int dollars) {
// ...

}
}
Cash five = new Cash(S);

Инстанцирование отличается от того, что мы называем паттер­
ном Factory, но только потому, что оператор new вJava не настоль­
ко функционален, насколько мог· бы быть. Его можно использо­
вать лишь для создания экземпляра класса - объекта. Если мы
попросим класс Cash создать новый объект, то и получим новый
объект. При этом не проверяется, существуют ли похожие объек­
ты, которые можно применять повторно, нельзя задать параметры,
модифицирующие поведение оператора new, и т. д.

Оператор new - простейший механизм управления фабрикой
объектов. В С++ также есть оператор delete, который позволяет
удалить объект из фабрики. В Java и других «более продвину­
тыхэ языках мы, к сожалению, не имеем такой возможности.
В С++ можно попросить фабрику создать объект, использовать
его, затем указать той же фабрике его уничтожить:
class Cash {
puЫic:

puЫic Cash(int dollars);
}
Cash five = new Cash(S); // создаем объект
cout « five;
delete five; // уничтожаем его

В Ruby идея класса как фабрики наиболее правильно выража­
ется следующим образом:
class Cash

def initialize(dollars)
#

end
end
Cash five Cash.new(S)

new - статический метод класса Cash, когда он вызывается, класс
получает управление и создает объект five. Этот объект инкап­

·улирует число s и ведет себя как целое число.

ледовательно, хорошо известный паттерн «Фабрика» является
более функциональной альтернативой оператору new, но идея
у них одна. Класс - это фабрика объектов. Он создает объекты,
· ледит за ними, при необходимости уничтожает и т. д. Большая
часть этих возможностей в большинстве языков реализована
редствами среды исполнения, а не кодом класса, но это не ~меет
собого значения. На поверхности мы видим класс, которыи дает

нам объекты по запросу. У вас может возникнуть вопрос отно­
сительно классов-утилит, не имеющих объектов. Мы поговорим
о них позже, в разделе 3.2.

Паттерн проектирования «Фабрика> вJava работает как расши­
рение оператора new. Он делает оператор более гибким и функ­
циональным, присоединяя к нему дополнительную логику,
например:
class Shapes {

puЫic Shape make(String name) {
if (name.equals("кpyr")) {

return new Circle();
}
if (nаmе.еquаls("прямоугольник")) {

return new Rectangle();
}
throw new IllegalArgumentException("фиrypa не найдена");

}
}

Это типовой пример фабрики в Java. Она позволяет инстанци­
ровать объекты, используя текстовые наименования их типов.
Но в результате все равно применяется оператор new. Этим
я хочу сказать, что разница между шаблоном «Фабрика- и опе­
ратором new невелика. В идеальном ООП-языке его функцио­
нальность была бы доступна в операторе new. Я хочу, чтобы вы
представляли себе класс как склад объектов, которые можно

20 Глава 1 • Рождение

брать оттуда при необходимости и возвращать, когда потреб­
ность в них исчезает.

Иногда, чтобы объяснить, что такое класс, используют понятие
«шаблон объекта». Это совершенно неверно, поскольку такое
определение делает класс пассивным безмозглым набором кода,
который куда-то копируется при необходимости. Даже если,
с вашей точки зрения, технически это выглядит именно так,
старайтесь так не думать. Класс - это фабрика объектов, и точ­
ка. Кстати, я не пытаюсь рекламировать паттерн «Фабрика».
На самом деле я не очень большой его приверженец, хотя его
идея технически верна. Хочу сказать, что мы должны представ­
лять себе класс активным менеджером объектов. Также можем
назвать его хранилищем или складом - местом, откуда мы берем
объекты и куда их возвращаем.

К слову, учитывая, что объект - это живое существо, его класс -
это его мать. Такая метафора будет наиболее точна.

А теперь вернемся к основной теме данного раздела - про­
блеме выбора хорошего имени класса. По сути, существует два
подхода - правильный и неправильный. Неправильный - это
когда мы смотрим, что класс делает, и даем ему имя согласно
функциональности. Приведу пример класса, названного в соот­
ветствии с таким подходом:
class CashFormatter {

private int dollars;
CashFormatter(int dlr) {

this.dollars = dlr;
}
puЫic String format() {

return String.format("$ %d", this.dollars);
}

}

Если у меня есть нечто под названием CashFormatter, то что оно
делает? Оно форматирует сумму в долларах в виде текстовой

1.1. Не используйте имена, заканчивающиеся на -er 21

строки. и должно называться Formatter, так ведь? Разве это
не очевидно?
Вы, вероятно, заметили, что я не назвал объект CashFormatter
«онэ. я так поступил, потому что не могу заставить себя уважать
такой объект. Я не могу его антропоморфировать и обращаться
с ним как с уважаемым гражданином моего кода.

Такой принцип именования совершенно неверен, но весьма
широко распространен. Призываю вас не придерживаться та­
кого образа мышления. Имя класса не должно происходить от
названия функциональности, предоставляемой его объектами!
Напротив, класс должен быть назван на основе того, чем он
является, а не того, что он делает. CashFormatter необходимо
переименовать в cash, или USDCash, или CashinUSD и т. п. Метод
format() нужно назвать usd(), например:
class Cash {

private int dollars;
Cash(int dlr) {

this.dollars = dlr;
}
puЫic String usd() {

return string.format("$ %d", this.dollars);
}

}

Иными словами, объекты должны характеризоваться своими
способностями. То, что я есть, выражается в том, что я могу, а не
в моих параметрах вроде роста, веса или цвета кожи.

~Вредный» ингредиент здесь - суффикс -er.

Существует масса примеров классов, названных подобным
образом, и у·всех них есть суффикс -er, например: Ma~ager,
controller,Helper,Handler,Writer,Reader,Converter,Val1dator
(-or также вреден), Router, Dispatcher, Observer, Listener,
sorter, Encoder и oecoder. Все эти имена плохи. Уверен, немало
примеров этого вы и сами видели. Вот несколько контрпримеров:

22 Глава 1 • Рождение

Target,fncodedText,DecodedData,Content,SortedLines,Valid­
Page, Source и т. п.

Но у этого правила есть исключения. Некоторые англоязыч­
ные существительные имеют суффикс -er, который в свое
время (правда, оно давно прошло) указывал, что эти слова обо­
значают исполнителей каких-то действий, например computer
или user. Мы больше не называем user что-то, что буквально
пользуется (use) чем-то. Это скорее персона, взаимодейству­
ющая с системой. Мы воспринимаем computer не как что-то,
что вычисляет (computes), а как устройство, которое является,
как бы сказать, компьютером. Но таких исключений не так уж
много.

Объект не переходник между внешним миром и своим внутрен­
ним состоянием. Объект не набор процедур, вызываемых для
манипуляции инкапсулированными в нем данными. Ни в коем
случае! Напротив, объект - это представитель инкапсулирован­
ных в нем данных. Чувствуете разницу?

Переходник не заслуживает уважения, поскольку он просто
передает через себя информацию, не будучи достаточно сильным
или умным, чтобы модифицировать ее или делать что-то само­
стоятельно. Напротив, представитель - самодостаточная сущ­
ность, способная принимать собственные решения и действо­
вать самостоятельно. Объекты должны быть представителями,
а не переходниками.

Имя класса, которое заканчивается на -er, говорит нам о том,
что это создание является не объектом, а лишь набором про­
цедур, которые могут манипулировать некоторыми данными.
Это процедурный стиль мышления, унаследованный многими
объектно-ориентированными разработчиками из С, COBOL,
BASIC и других языков. Сейчас мы используемJаvа и Ruby, но
все еще думаем в терминах данных и процедур.

1.1. Не используйте имена, заканчивающиеся на -er 23

И все-таки как правильно называть классы?

Все просто: посмотрите, что инкапсулируют объекты этого
класса, и придумайте для этого название. Пусть у нас есть спи-
.ок чисел и алгоритм, который определяет, какие из них яв­
ляются простыми. Если вам нужно вывести только простые
числа из упомянутого списка, не называйте класс Primer, или
PrimeFinder, или PrimeChooser, или PrimeHelper. Лучше назовите
го PrimeNumbers (для разнообразия приведем код на Ruby):

class PrimeNumbers
def initialize(origin)

@origin = origin
end
def each

@origin
.select { lil prime? i}
.each { lil yield i}

end
def prime?(x)

#
end

end

Понимаете, о чем я? Класс PrimeNumbers ведет себя как список
чисел, но возвращает только те из них, которые являются про­
стыми. Подобную функциональность можно реализовать на С
в чисто процедурном стиле следующим образом:
void find_prime_numbers(int* origin,

int* primes, int size) {
for (int i = 0; i < size; ++i) {

primes[i] = (int) is_prime(origin[i]);
}

}

Здесь мы приводим процедуру find_prime_numbers, которая
принимает два массива целых чисел, последовательно обходит
первый массив в поисках простых чисел и помечает соответ­
ствующие позиции во втором массиве. Никаких объектов тут

24 Глава 1 • Рождение

нет. Это чисто процедурный подход, и он неверен. Он работает
в процедурных языках, но мы находимся в мире ООП.

Эта процедура - переходник между двумя наборами данных: ис­
ходным списком чисел и списком простых чисел. Объект - это
нечто иное. Объект не переходник, а представитель других объ­
ектов и их сочетаний. В приведенном ранее uримере мы создаем
объект класса PrimeNumbers, который ведет себя как набор чисел,
но видны в нем только простые числа. ·

Если ваш объект на самом деле является процедурой find_
prime_numbers, то у вас проблема. Объект не должен работать как
набор процедур, хотя и может выглядеть очень похоже. Несмо­
тря на то что класс PrimeNumbers инкапсулирует список чисел,
он не позволяет управлять этим списком или искать в нем что­
либо. Вместо этого он заявляет: ~я теперь список!» Если я хочу
что-то сделать со списком, то прошу объект сделать это, а объект
уже решает, как реагировать на мою просьбу. Если он захочет,
то возьмет данные из исходного списка. Если нет - его право.

PrimeNumbers является списком чисел, а не набором методов его
обработки. Он - список!

Обобщим этот раздел. Когда приходит время давать имя ново­
му классу, думайте о том, что он есть, а не о том, что он дела­
ет. Он - список, и он может выбирать элементы из списка
по индексу. Он - SQL-запись, и он может извлечь отдельную
ячейку как целое число. Он - пиксел, и он может изменить
свой цвет. Он - файл, и он может читать содержимое с диска.
Он - алгоритм кодирования, и он может кодировать. Он -
НТМL-документ, и он может быть отображен.

То, что я делаю, и то, кто я есть, - две разные вещи.

Кроме того, имена, заканчивающиеся на Util или Utils, - еще
один пример плохого имен~вания класса. Это так называемые
классы-утилиты, мы поговорим о них в разделе 3.2.

1.1. Не используйте имена, заканчивающиеся на -ег 25

ndriy спросил 15 февраля 2017 года:

Как быть с ILogger?

ор Бугаенко:

Переименуйте его в ILog.

Andriy:
Но tog - это сообщение, а logger имеет дело с сообщениями.
Возможно, подойдет имя LoggingTool?

гор Бугаенко:
Согласно словарю Merriam-Webster tog определяется как жур­
нал достижений, событий, повседневной деятельности; дан­
ными добавляемыми в tog, могут быть заметки или события.
Журнал [журнальная книга) - лист бумаги, на котором запи­
сывают заметки.

MikhaiL Gromov спросил 18 декабря 2016 года:
Допустим, у меня есть какой-то метод класса, который в од­
ной из строк делает вызов appleSorter. sort (apples) · Если
appleSorter - коллаборатор, он передается как параметр
конструктора и я могу передать фиктивный экземпляр этого
сортировщика и протестировать метод. Но что мне делать, если
нужно вызвать new Sorter (apples)?

Егор Бугаенко:
Не создавайте фиктивный sorter. Просто не оборачивайте
apples в Sorter.

Losaciertos спросил З ноября 2016 года:
Как насчет паттерна observer? Как его реализовать в «насто­
ящем» ООП-мире?

26 Глава 1 • Рождение
1.1. Не используйте имена, заканчивающиеся на -ег 27

Егор Бугаенко:

Мне нравится имя Target.

[osaciertos:

То есть вы хотите сказать, что Listener и Observer - нормаль­
ные классы, если их назвать EventTarget и EventSource?

Егор Бугаенко:

Именно.

Fabricio СаЬга[спросил 31 мая 2016 года:

Что вы думаете насчет классов или интерфейсов с суффиксом
ABLE, например SerializaЫe, CloneaЫe, СасhеаЫе?

Егор Бугаенко:

Мне кажется, что они не лучше, чем те, что с суффиксом -ег.
Имя PrintaЫe означает, что меня можно напечатать, но ниче­
го не говорит о том, кто я такой, Это неправильно. Я понимаю,
что они удобны чисто технически, но не рекомендовал бы их
использовать.

Ju[iano Boese[Mohr спросил 17 мая 2016 года:

Как насчет паттерна Builder? Вы бы рекомендовали его при­
менять?

Егор Бугаенко:

Я считаю, что паттерн Builder плох, поскольку он поощряет
создание крупных объектов. Идеальный объект не должен ин­
капсулировать более 1-4 свойств. Определенно не больше пяти.
Builder создан, чтобы помочь нам строить более крупные
объекты. Следовательно, его использование - очень плохая
идея.

pixdigit написал 10 июня 2015 года:

А если я хочу создать класс, который и правда является набором
функций? (Кажется, я знаю ответ, просто хочу проверить.)

гор Бугаенко:

Тогда вам нужно менять образ мышления. Вы хотите создать
не класс, а библиотеку процедур. Вернитесь к процедурному
программированию на С или COBOL, там такие вещи поощря­
ются.

Riccardo Cardin написал 11 марта 2015 года:

Мне кажется, нам нужно сформулировать некоторые сооб­
ражения относительно объектов. Как подсказывает мой опыт
разработчика, мы можем разделить объекты на два типа:

1) объекты, моделирующие действительность, а также домены
и операции, определенные на них;

2) объекты, взаимодействующие с первыми для построения
архитектуры приложения, удовлетворяющей потребностям
пользователей.

Объекты, принадлежащие первому множеству, могут не следо­
вать правилу, объясняемому в статье. Объекты наподобие кон­
троллеров, служб, декораторов и фабрик принадлежат второму
множеству. Они не имеют отношения к реальному миру, а помо­
гают первым взаимодействовать друг с другом. Мне кажется,
что для второго множества объектов ваше правило «без -ег»
слишком строгое и не будет соблюдаться.

Егор Бугаенко:

Между «внешними» и «внутренними» объектами не должно
быть разницы. Каждый объект имеет собственную область

28 Глава 1 • Рождение

видимости, по отношению к которой все остальные объекты
являются внешними. Связаны ли эти объекты с реальностью
в нашем понимании, не имеет значения. Нам это знать совер­
шенно не обязательно. Все, что мы знаем об объекте, - это по­
ведение, которое он демонстрирует посредством своих методов.

1.2. Сделайте один конструктор
главным

Обсуждение на http://goo.gl/brqhYS.

Конструктор - точка входа нового объекта. Он принимает не­
сколько аргументов и что-то делает с ними, чтобы подготовить
объект к выполнению своих обязанностей:
class Cash {

private int dollars;
Cash(int dlr) {

this.dollars = dlr;
}

}

В данном примере есть только один конструктор, и единствен­
ное, что он делает, - инкапсулирует сумму в долларах в при­
ватное целочисленное свойство dollars. Если вы правильно
проектируете свои классы (в соответствии с рекомендациями
из последующих разделов), то у них будет много конструкторов
и немного методов. Вы все правильно поняли: конструкторов
в классах должно быть больше, чем методов. Я знаю, что не все
языки поддерживают множественные конструкторы из-за от­
сутствия возможности перегрузки методов. Мы обсудим это
ограничение через минуту.

Итак, 2-3 метода и 5-1 О конструкторов. Так, по моему мнению,
должен выглядеть идеальный класс. Эти цифры, конечно же,
взяты из головы и не имеют строгого обоснования. Мы обсудим

1.2. Сделайте один конструктор главным 29

1 оличество публичных методов в разделе 3.1. Этим я хочу ска­
: .ать, что связный и гибкий класс имеет небольшое количество
м тодов и сравнительно большое количество конструкторов.

L I м больше в вашем классе конструкторов, тем лучше, тем
удобнее классы для меня - их пользователя. Я хочу иметь воз­
можность создать экземпляр класса Cash многими способами,
например:

new Cash(30);
new Cash("$29.95");
new Cash(29.95d);
new Cash(29.95f);
new Cash(29.95, "USD");

Все эти операторы должны создавать одинаковые в смысле по­
ведения объекты. Чем больше конструкторов, тем большую гиб­
кость применения ваших классов вы обеспечиваете мне, своему
клиенту. И наоборот, чем больше методов предоставляет ваш
класс, тем сложнее мне его использовать. Большое количество
методов приводит к размыванию фокуса и нарушению принципа
динственности ответственности, который мы обсудим в раз­

деле 3.1. Большее количество конструкторов означает большую
гибкость.

Пользуясь классом Cash, я получаю дополнительную гибкость,
поскольку мне не нужно выполнять преобразование классов
или разбор строк, если у меня есть число в текстовом формате.
Класс Cash делает эту работу за меня. У меня есть строка, для
нее предусмотрен конструктор. У меня есть число с плавающей
точкой, конструктор предусмотрен и для него. Благодаря такой
гибкости я пишу меньше кода и реже создаю· повторяющиеся
фрагменты кода. Напротив, иметь большое количество открытых
методов - плохо, поскольку это снижает гибкость.

Основная задача конструктора - инициализировать инкапсу­
лированные свойства, используя переданные ему аргументы.

30 Глава 1 • Рождение 1.2. Сделайте один конструктор главным 31

Я рекомендую поместить инициализацию свойств лишь в один
из конструкторов и сделать его основным. Остальные, так на­
зываемые вторичные конструкторы пусть вызывают основной,
например:
class Cash {

private int dollars;
Cash(float dlr) {

this ((int) dlr);
}
Cash(String dlr) {

this(Cash.parse(dlr));
}
Cash(int dlr) {

this.dollars = dlr;
}

}

Я всегда стараюсь поместить основной конструктор последним
в коде, после всех вторичных, как показано в примере. Главным
образом из соображений лучшей сопровождаемости. Когда я от­
крываю код класса с десятью конструкторами, созданный пол­
года назад, я не собираюсь читать его весь в поисках основного
из них. Я просто прокручиваю код до последнего конструктора,
который всегда будет основным.

В приведенном фрагменте один основной конструктор и два
вторичных. Основной конструктор инициализирует свойство
this. dollars переданным ему целочисленным аргументом.
Вторичные конструкторы готовят целочисленный аргумент для
основного, либо разбирая строку, либо преобразуя его из других
форматов. В одном из конструкторов я ссылаюсь на приватный
статический метод Cash.parse(), который разбирает строку
и преобразует ее в число. Так было сделано потому, что Java
не позволяет ничего делать перед вызовом this (). В С++ такие
ухищрения не нужны.

1 • ков смысл принципа «один основной, много вторичных»?
<)11 в основном позволяет избежать дублирования кода, сделать
< го чище, а значит, улучшить сопровождаемость. Вот как выгля­
/~ л бы класс, написанный без учета данного принципа:

lass Cash {
private int dollars;
Cash(float dlr) { // плохо!

this.dollars = (int) dlr;
}
Cash(String dlr) { // плохо!

this.dollars = Cash.parse(dlr);
}
Cash(int dlr) {

this.dollars dlr;
}

}

Допустим, мы хотим убедиться, что сумма долларов всегда
положительная. Нам придется поместить код проверки в трех
разных местах, в трех конструкторах. В первом примере за
счет использования одного основного и двух вторичных кон­
структоров код проверки нужно будет добавить только в одном
месте.

К сожалению, не все объектно-ориентированные языки поддер­
живают перегрузку методов - механизм объявления методов
или конструкторы с одинаковыми именами, но разными на­
борами аргументов. Например, Ruby и РНР не поддерживают
перегрузку методов. И они почему-то называются объектно-ори­
ентированными. И я не шучу. Перегрузка методов - фундамен­
тальная и очень ;важная часть ООП. Она существенно улучшает
читаемость кода, семантически приближая его к языку задачи.
К примеру, код был бы намного чище, если бы в нем были мето­
ды content(File) и content(File,Charset), а не content(File)
и contentinCharset(File, Charset).

32 Глава 1 • Рождение

Тем не менее даже в этих языках необходимо делать конструк­
торы гибкими и многоцелевыми. Первым делом вам следует
задуматься о том, чтобы прекратить пользоваться ими и перей­
ти нaJava, С++ или другой подобный язык, который имел бы
достаточно возможностей, чтобы называться ООП-языком. Если
это невозможно (например, вы работаете cJav~Script и у вас нет
лучшей альтернативы), используйте ассоциативные массивы
(шар, dictionary) аргументов. Пример для РНР 5.4:
class Cash {

private $_dollars;
puЫic function _construct($args) {

if (is_int($args)) {
$this->_dollars = $args;

} else if (array_key_exists('float', $args)) {
$this->_construct(intval($args['float']));

} else if (array_key_exists('iso', $args)) {
$this->_construct(

parse_dollars($args['iso'])
);

} else {
throw new Exception('can\'t initialize');

}
}

}
new Cash(30);
new Cash(['float' => 29.95]);
new Cash(['iso' => 'USD 29.95']);

Такой код намного более многословен и намного менее чита­
белен, нежели код на Java. Но, как видите, в нем используется
тот же принцип - инициализировать поля класса необходимо
только в одном месте. Во всех других местах следует просто
подготавливать аргументы и отправлять их в это место. Вызов
метода _construct - плохой тон в РНР, но в данном случае
такое приемлемо, поскольку у нас нет иного выбора.

В языках, не поддерживающих перегрузку методов, вы, ве­
роятно, можете прибегать и к другим приемам, но основной

1.2. Сделайте один конструктор главным 33

принпип остается тем же - инициализация внутренних свойств
ироисходит только в одном месте. Во всех остальных местах
,1>1 ументы подготавливаются, форматируются, разбираются,

111> образуются и т. п.
1 ;1к и в случае с другими рекомендациями, приводимыми в дан-
110й книге, основная цель - сопровождаемость. Этот принцип
иозволит вам снизить сложность кода и избежать дублирова-
1111я - двух злейших врагов сопровождаемости.

an-PauL Wenger спросил 25 сентября 2017 года:

Если совместить правило «единственный основной конструк­
тор», описанное ранее, с правилами «в конструкторе не долж­
но быть кода» и «не используйте оператор new за пределами
вторичных конструкторов», тогда что же делает единственный
основной конструктор? Он просто присваивает членам класса
значения аргументов. Тогда из этих трех правил следует новое
правило: «Основные конструкторы не делают ничего, кроме
присвоения членам класса значений аргументов».

гор Бугаенко:

Да, именно так.

Kata написал 25 сентября 2017 года:
Как разработчики мы, безусловно, часто сталкиваемся с та­
кой ситуацией. Ваш подход называется «телескопические кон­
структоры». Он достаточно хорош для небольшого количества
параметров. Если список параметров большой [п~ть и более]
и не может быть «телескопирован», неплохо подоидет паттерн
«Строитель» в Java, но он увеличивает размер кода и количе­
ство классов. Хотелось бы узнать ваши соображения по поводу
того, как передавать длинные списки параметров в конструкторы.

34 Глава 1 • Рождение

И есть ли какой-то общий способ избежать большого количе­
ства параметров в конструкторах?

Егор Бугаенко:

Если у вас слишком много параметров в конструкторе, с вашим
классом что-то не так. Он попросту слишком большой. Разбейте
его на части. Паттерн «Строитель» не решает проблему, а про­
сто маскирует ее. Я бы не рекомендовал его использовать.
Любой класс с более чем пятью параметрами в конструкторе
спроектирован плохо. Без исключения,

1. 3. В конструкторах
не должно быть кода

Обсуждение на http://goo.gl/DCMFDY.

У нас есть класс с основным конструктором, который принимает
все необходимые аргументы. Этих аргументов достаточно для
того, чтобы инициализиро~ать состояние нового объекта. Оче­
видно, так ведь? Поскольку этот конструктор - единственная
точка входа в процесс инициализации объекта, предоставляемый
набор аргументов полон - ничто не упущено, ничего лишнего.
Вопрос в том, что мы можем или не можем делать с этим набо­
ром аргументов. Как ими манипулировать?

Эмпирическое правило выглядит следующим образом: «Не тро­
гайте аргументы». Сначала рассмотрим противоположный при­
мер. Данный код «трогаегэ свой единственный аргумент во
время инициализации:
class Cash {

private int dollars;
Cash(String dlr) {

this.dollars = Integer.parseint(dlr);
}

}

1.3. в конструкторах не должно быть кода 35

1 . очу инкапсулировать целое число, притом что аргументом
, ()11 ·труктора является текстовая строка. Мне нужно перевести

i 1 > эку в число, и я выполняю это преобразование прямо внутр~
, ()11 труктора. Все кажется простым и очевидным, не так ли.
1 < .зможно, но это очень плохой подход.

Ииициализация объекта не должна содержать код и затраги-
1,.,·1 ь аргументы. Вместо этого она должна при необходимости
•) юрачивать их или инкапсулировать в необработанном виде.
l\<>'t пример того же кода, который не трогает текст:

ss Cash {
private Number dollars;
Cash(String dlr) {

this.dollars = new StringAsinteger(dlr);
}

55 stringAsinteger implements Number {
private String source;
StringAsinteger(String src) {

this.source = src;
}
int intValue() {

return Integer.parseint(this.source);
}

}

Чувствуете разницу? в первом примере преобразование из
·траки в число происходит непосредственно в момент инициа­
лизации объекта. Во втором оно откладывается до момента ис-
1 юльзования объекта класса Cash.

Разумеется, в соответствии с принципом, рассмотренным в пре­
дыдущем разделе, класс cash должен иметь два конструктора -
один основной и один вторичный:

class Cash {
private Number dollars;
Cash(String dlr) {

this(new StringAsinteger(dlr));
// вторичный

36 Глава 1 • Рождение

}
Cash(Number dlr) {

this.dollars = dlr;
}

// основной

1.3. В конструкторах не должно быть кода 37

}

Внешне создание экземпляра класса Cash выглядит одинаково
в обоих случаях: ·
Cash five = new Cash('1S11

);

Однако в первом примере объект five инкапсулирует число 5,
а во втором - экземпляр класса StringAsinteger, который похож
на Number. Класс StringAsinteger я придумал сам. Его не су­
ществует вJava. Как я уже сказал, языкJаvа не является чисто
объектно-ориентированным, поэтому иногда мне приходится
прибегать к некоторым ухищрениям. Считайте эти примеры
псевдокодом. Но это отнюдь не значит, что мои рекомендации
абстрактны и не годятся для практического применения. Про­
сто не все они подходят для того программного обеспечения,
которое вы сейчас пишете. Наша первоочередная цель в рамках
данной книги - изменить свое мировоззрение и понимание
ООП, вторая - привести практические примеры и применить
новое мировоззрение к написанию программ. К сожалению,
вторая цель не всегда легко достижима.

При истинном объектно-ориентированном подходе инстанци­
рование объекта подразумевает компоновку меньших объектов
в один более крупный. Единственной причиной необходимости
данного процесса является потребность в новой сущности, ко­
торая подчиняется новому контракту.

Взгляните на пример с объектом five типа Cash. Что не так со
строковым объектом "511? Зачем нужно было создавать экзем­
пляр класса Cash? Почему нельзя работать с объектом "5"?
Потому что он не предоставляет необходимых нам методов.
Не работает согласно нужному контракту. Поэтому пришлось

< 0 дать новый объект другого типа- five класса Cash. Он боль-
111 не работает по контракту класса String, он работает по друго­
му контракту. Например, предоставляет метод cents().

Мы создали его, но еще не попросили работать на себя!

11 рвый шаг - инстанцировать объект, второй шаг - позволить
< му работать на нас. Они не должны перекрываться. Конструк­
,1 р не должен просить свои аргументы что-либо делать, так
1 ак его самого еще не просили ничего делать. Иными словами,
11 конструкторе не должно быть кода - только операторы при­
<.ti ивания.

1 J лучае с С++ тело конструктора должно быть пустым, например:
ass Cash {

puЫic:
Cash(const string& txt):

dollars(new StringAsinteger(txt)) {
// тело конструктора всегда пустое

}
private:

int dollars;

,1уществует несколько чисто технических причин для такой ре-
1 мендации. Во-первых, производительность конструктора без
1 да легче оптимизировать, а значит, такие конструкторы уско­
ряют ваш код. Вот пример, который на первый взгляд кажется
м дленным, но на самом деле оказывается быстрым:

lass StringAsinteger implements Number {
private String text;
puЬlic StringAsinteger(String tit) {

this.text = txt;
}
puЫic int intValue() {

return Integer.parseint(this.text);
}

}

38 Глава 1 • Рождение

Похоже, преобразование строки в число будет выполняться при
каждом вызове intValue(), верно? И это действительно так.
Такой код будет выполнять разбор дважды:
Number num = new StringAsinteger(··12з");
num.intValue();
num.intValue(); // первый разбор

// второй разбор

Как тогда, спросите вы, он может быть более быстрым, чем такой
код:

class StringAsinteger implements Number {
private int num;
puЫic StringAsinteger(String txt) {

this.num = Integer.parseint(txt);
}
puЫic int intValue() {

return this.num;
}

}

Такой код действительно более эффективен, поскольку он выпол­
няет разбор лишь однажды - во время инициализации объекта.
При каждом последующем вызове intValue() объект просто
возвращает инкапсулированное число. И в чем тогда смысл?

А вот в чем. Второй пример, где разбор строки происходит в кон­
структоре, оптимизировать не получится. Разбор будет выпол­
няться всякий раз при создании объекта. Мы не можем этим
управлять. Даже если в отдельных случаях не надо вызывать
intValue(), процессор будет тратить время на разбор строки.
Рассмотрим следующий пример:

Number five = new StringAsinteger('1S11);

if (/*что-тоне так*/) {
throw new Exception ("какая-то проблема 11);

}
five.intValue();

Мы сначала разобрали объект "5 ", а потом увидели, что он нам
не нужен! И нет способа предотвратить такой случай. Каждый

1.3. В конструкторах не должно быть кода 39

раз, когда мы создаем объект, он немедленно обрабатывает ар-
1 ум нты, которые мы ему передаем. Это происходит без нашего
В(дома, причем всегда. Напротив, если мы инкапсулируем аргу-
н нты в том виде, в котором они были переданы, и обрабатываем

11 • позже, по требованию, то даем пользователям свободу выбора
юмента, когда это должно произойти.

1 <> да пользователь хочет предотвратить повторный разбор, он
1,< гда может создать декоратор, который закэширует результат
разбора после первого вызова:
(1 ss CachedNumber implements Number {

private Number origin;
private Collection<Integer> cached

Arraylist<>(l);
puЫic CachedNumber(Number num) {

this.origin = num;
}
puЫic int intValue() {

if (this.cached.isEmpty()) {
this.cached.add(this.origin.intValue());

}
return this.cached.get(0);

}
}

Я использую Arraylist, чтобы избежать null - злейшего врага
ООП. Мы обсудим это позже, в разделах 3.3 и 4.1.

та реализация кэширования весьма примитивна, но, надеюсь,
идею вы поняли. Затем для повышения эффективности объекта
применяется обертывание в кэширующий декоратор:

Number num = new CachedNumber(
new StringAsI·nteger("123")

) ;
num.intValue();
num. intValue();

// первый разбор
// здесь разбора не происходит

Красота решения в том, что оно хорошо управляемое и прозрачное.
Инстанцирование объекта не делает ничего, кроме его сборки, -

40 Глава 1 • Рождение

реальная работа выполняется методами объекта. В то же время
можно контролировать все! Мы оптимизируем работу объекта.

Убирая исполняемый код из конструкторов, мы делаем объекты
более управляемыми и прозрачными для конечных пользова­
телей. Мы помогаем лучше понять их и упрощаем повторное
использование. Они работают только тогда, когда их просят об
этом, а до этого момента не делают ничего. ·

Они очень ленивы - в хорошем смысле.

Могут возникать ситуации, когда совершенно очевидно, что все
манипуляции должны происходить ровно один раз. Почему бы
в таких ситуациях не поместить их в конструктор? Подобным
образом поступать можно, но я бы не рекомендовал так делать
в первую очередь из соображений однородности. Вы не знаете,
что случится с классом в будущем и насколько он изменится по­
сле очередного рефакторинга. Помещая все манипуляции в кон­
структор, мы существенно усложняем рефакторинг. Тот, кто им
займется, вынужден будет вынести все манипуляции в методы
класса. Ведь-только тогда он сможет внести реальные изменения.

Я попытался найти вторую техническую причину рекомендации
оставлять конструктор пустым, но у меня не вышло. Похоже,
что та причина, которую я раскрыл ранее, - единственная. Об­
легченные конструкторы упрощают создание объектов, делая их
более настраиваемыми и прозрачными. Вот и все.

Кроме того, если вы заглянете в код качественно спроектирован­
ного объектно-ориентированного ПО, то наверняка увидите там
что-то подобное следующему:

Арр арр = new App(new Data(), new Screen());
арр. run();

Это очень абстрактный пример, но, надеюсь, вы меня понимаете.
Сначала мы собираем приложение, затем передаем ему управле­
ние. Пока строим приложение, оно ничего не делает: не подклю-

1.3. В конструкторах не должно быть кода 41

чается к базам данных, не открывает порты, не обрабатывает
информацию. Оно просто создает все внутренние объекты и под-
1 отавливает их к работе. Затем мы вызываем run () , что позволяет
объектам делать свое дело в нужное время и в нужном месте.

При разработке всех ваших объектов, от Арр на верхнем уров­
пе до самого низкоуровневого StringAsinteger, необходимо
держать в голове мысль о том, что их конструкторы не должны
одержать кода.

Fernando спросил 7 сентября 2017 года:

А если объект конструирует свое внутреннее состояние на осно­
ве JSОN-ответа на АРl-запрос к веб-службе, разве он не дол­
жен бросать исключение?

Егор Бугаенко:

Должен, но только тогда, когда с ним начинают работать, а не
тогда, когда его собирают.

Riccardo Cardin написал 9 мая 2015 года:

Мне кажется, в некоторых обстоятельствах ваш подход «ле­
нивой инициализации» может дать некоторые преимущества.
Возьмем, к примеру, бесконечные потоки или передачу по
ссылке в Scala. Кроме того, он хорош также в случаях, когда
объект весьма тяжел. Возьмем, к примеру, паттерн «Виртуаль­
ный прокси» из книги «банды четырех»1• Но в большинстве
случаев не стоит откладывать исполнение кода, создающего
объект. Делая так, вы нарушаете принцип скорейшего отказа -
один из основных принципов в программировании.

1 Гамма Э., Хелм Р., Джонсон Р., Влиссидес Д. Приемы объектно-ори­
ентированного проектирования. Паттерны проектирования. - СПб.:
Питер, 2015.

42 Глава 1 • Рождение

Егор Бугаенко:

Я по..,нимаю вашу позицию, но позволю себе не согласиться
с неи. Мне кажется, что отказ должен происходить не во время
создания объекта, а только во время его использования. Иными
словами, объекты имеют право на отказ только тогда, когда их
просят реализовать некоторое поведение.·

Fabricio Cabral спросил 9 мая 2015 года:

То есть, по-вашему, конструктор никогда не должен бросать
исключения? А как же базовый принцип ООП, который гласит:
«Нельзя позволять создание объектов с некорректным состояни­
ем»? К примеру, если программист написал new EnglishName(1111

)

(имя не может быть пустой строкой), то конструктор EnglishName
не должен бросать исключение? Как бы вы поступили в этом
случае?

Егор Бугаенко:

Да, мне кажется, что в конструкторе не должна происхо­
дить проверка в-веденн_ых данных. Даже если вы передали
NULL _в качестве .единственного аргумента конструктора new
Engl1shName(), он не должен «возмущаться». Если вы впо­
следстви~ вызовете у него метод first (), то не узнаете, что
созданныи объект оказался неполон. Он был хорошим работни­
ком для ничегонеделания, но оказался некомпетентен в задаче
извлечения имени. Видите, к чему я клоню? Если вы не дадите
мне работу, то никогда не узнаете, хороший ли я работник.
Здесь то же самое.

Образование

Ра делы данной книги сгруппированы в главы весьма искус­
ственно, но в этом есть некоторая логика. В данной главе мы
обсудим несколько принципов подготовки объекта к взаимодей­
< твию с другими объектами. Мы отправим его в школу и препо-
дадим ему несколько уроков этикета.

Вкратце сформулируем советы, которые мы рассмотрим в после­
дующих разделах. Объект должен быть небольшим. Маленький
объект - это элегантный и хорошо сопровождаемый объект.

ООП не может быть никакого оправдания классу в 1000 строк
кода. К сожалению, проще о маленьких объектах говорить,
тем их создавать. Как можно уменьшить объект, если в проекте
только функциональных требований? Потерпите немного. Да­

лее приведу несколько практических рекомендаций.

2.1. Инкапсулируйте
как можно меньше

Помните: все делается ради улучшения сопровождаемости. Все,
о чем я пишу в этой книге, напрямую влияет на сложность кода,
которая напрямую влияет на его сопровождаемостъ. Чем выше
сложность, тем хуже сопровождаемость, тем больше потери

44 Глава 2 • Образование 2.1. Инкапсулируйте как можно меньше 45

денег и времени и тем меньше удовлетворенных потребителей1•

Уверен, тут вы со мной солидарны.

Поэтому я рекомендую инкапсулировать не более четырех
объектов. Если вам нужно инкапсулировать больше объектов,
значит, с вашим классом что-то не так и он нуждается в рефак­
торинге. Без исключения. Не больше четырех. Я взял это число
из головы, у меня нет никаких научных доказательств. Позже
объясню, почему выбрал именно его.

Набор инкапсулированных объектов называется состоянием
или идентичностью объекта. Например:
class Cash {

private Integer digits;
private Integer cents;
private String currency;

}

Здесь мы инкапсулируем три объекта. Все вместе они иден­
тифицируют объекты класса Cash, то есть любые два объекта,
инкапсулирующие одни и те же значения долларов, центов и на­
звание валюты, равны друг другу. Да, вJava это чисто технически
неверно, но я считаю это недостатком языка. Вот как, по-моему,
должна быть реализована объектная парадигма в чистом объ­
ектно-ориентированном языке:
Cash х = new Cash(29, 95, ·"USD");
Cash у = new Cash(29, 95, ··uso");
assert x.equals(y);
assert х == у;

ВJava, как и в С++, идентичность объекта отделена от его состоя­
ния. Два объекта, х и у, имеют одинаковое состояние, но разные

1 У меня нет статистических данных, которые подкрепили бы это
утверждение, но мне оно кажется очень логичным. Если вам из­
вестны исследования на эту тему, пожалуйста, сообщите мне о них,
и я включу их в следующее издание этой книги. - Примеч. авт.

1;н нтичности, С точки зрения оператора== они не равны друг
,1 , у, реализация метода equals{) по умолчанию также считает,
11 о 01 и не совпадают.

)·1'<) 11 достаток языкаJаvа, унаследованный им от С++. Насколь-
1) ~, понимаю, объект в ООП - это агрегат из других объектов,
1) ютающих совместно для получения более высокоуровневого
, 1(щ ения. Книга - агрегат из страниц, обложки и ISBN, а книж-
11 ·,н полка - агрегат из книг и названия. Машина - агрегат из
, () 11 с, двигателя и лобового стекла, а гараж - агрегат из машин

1 адреса, Работник - агрегат из имени, возраста и зарплаты, а от­
/ (.11 - агрегат из сотрудников, названия и начальника. Эти при-

< ры весьма примитивны, но они показывают, что объект не су­
щ< твует, да и не может существовать без инкапсулированных
() >ъектов - он ничто без своих частей.

1 Java, однако же, объект может существовать без составных ча­
< т й и при этом не быть равным своей точной копии, у которой
гоже нет составных частей. Это противоречит здравому смыслу.
11 о в Java это имеет смысл. В Java и почти во всех остальных
ООП-языках объект - это всего лишь набор данных с прикре-
1 шенными к нему методами. Что-то вроде оболочки, где можно
ранить данные. Неважно, есть ли в ней данные или нет, одна

< балочка отличается от другой, даже если содержит дубликаты
объектов:
Object х = new Object();
Object у= new Object();
assert x.equals(y); // не выполняется

Это вполне допустимый фрагмент кода, который показывает,
то эти два объекта - пустые оболочки, не содержащие никаких

данных. Они, конечно же, не равны друг другу, поскольку явля­
ются разными оболочками. Вот такJava рассматривает объекты.
И это совершенно неправильно. Объект не может существовать
без состояния, и оно должно быть его идентичностью.

46 Глава 2 • Образование

Раз уж мы пришли к мнению, что инкапсулированные объекты
являются частью идентичности, пора решить, сколько объектов
разумно инкапсулировать. Как я уже говорил, не более четы­
рех - разумное количество. Почему четыре? Вот мое обосно­
вание.

Идентичность объекта - это своего рода его координаты во
Вселенной. Моя идентичность - это имя и дата рождения. Ис­
пользуя эти два свойства, вы можете найти меня во всей Все­
ленной (если, конечно, планета Земля и наше представление
о времени - единственно существующие координатные про­
странства в ней). У моей машины есть производитель, модель
и год выпуска. Эти три свойства уникально идентифицируют
ее во Вселенной. Я могу привести еще несколько примеров, но
их смысл в том, что наличие более четырех координат противо­
речит здравому смыслу. При существующем уровне понимания
объектов во Вселенной тяжело понять что-то более сложное.
Один из моих рецензентов привел следующий контрпример.
Он сказал, что если у него и у ~го соседа машины одной и той же
модели, одних и тех же производителя и года выпуска, то они
все же разные. Это правда, но только потому, что в контрпри­
мере машина намного более сложна, чем в моем объектно-ори­
ентированном примере. Если наш объект обозначает реальную
машину из реального мира, то, конечно же, у него должно быть
намного больше координат и атрибутов, чтобы его можно было
идентифицировать уникальным образом. Но эти атрибуты будут
сгруппированы в другие объекты, организованные в виде дерева.
Скажем, машина будет инкапсулировать тип и идентификаци­
онный номер VIN. Тип будет инкапсулировать производителя,
модель и год выпуска. Таким образом, мы получаем небольшое
дерево объектов.

Я, безусловно, видел классы, инкапсулирующие десятки объ­
ектов. Это совершенно неправильно. Не делайте так. Четыре,
не более. Если вам нужно инкапсулировать больше объектов,
разбейте класс на несколько меньших.

2.2. Инкапсулируйте хотя бы что-нибудь 47

И, к слову, чтобы устранить упомянутый недостаток Java, со­
щ тую вам избегать опера~ора == и всегда переопределять метод
quals()1•

2.2. Инкапсулируйте хотя бы
что-нибудь

<)бсуждение на http://goo.gl/QE9aXg.

/lругая крайность - объект, н~ инкапсулирующий вообще ни-
11 'ГО. Например (алгоритм некорректен, но здесь важно не это):
lass Year {
int read() {

return System.currentTimeMillis()
/ (1000 * 60 * 60 * 24 * 30 * 12) - 1970;

}
}

Экземпляр этого класса ничего не инкапсулирует, то есть с уче­
том сказанного в разделе 2.1 все объекты класса Year будут
равны друг другу, верно? Такой подход тоже плох. Инкапсули­
ровать слишком много - плохо, но ничего не инкапсулироватъ
тоже не годится.

Класс без свойств похож на статический метод, а это ужасная
вещь в объектно-ориентированном программировании (см. раз­
дел 3.2). У такого класса нет состояния и идентичности, только
поведение. «Что с этим не так?» - спросите вы. Ответ прост.
В чистом ООП без статических методов и со строгим разде­
лением инстанцирования и исполнения (см. раздел 3.6) такое
технически невозможно.

Инстанцирование должно быть отделено от исполнения, что
означает следующее: оператор new разрешен лишь в конструкторах

1 Для упрощения кода я использую @EqualsAndHashCode из проекта
Lombok. - Примеч. авт.

48 Глава 2 • Образование

(подробнее читайте в разделе 3.6). Пока предположим, что вис­
тинно объектно-ориентированном проектировании использовать
оператор new разрешено только в конструкторе.

Теперь рассмотрим класс, приведенный ранее. Его метод read ()
применяет статический метод из класса-утилиты System. В чи­
стом 00П не может быть статических методов, и такой вызов
сделать невозможно. Вместо этого придется создать экземпляр
некоторого класса, который получит значение системных часов.
Вот как это будет выглядеть:
class Year {

private Millis millis;
Year(Millis msec) {

this.millis = msec;
}
int read() {

return this.millis.read()
/ (1000 * 60 * 60 * 24 * 30 * 12) - 1970;

}
}

Мы всегда должны что-то инкапсулировать, за исключением тех
случаев, когда объект ничтожен или близок к таковому. Под ни­
чтожным объектом я понимаю сущность, не имеющую координат
во Вселенной. Только ей будет нечего инкапсулировать, поскольку
она единственна и не нуждается в других сущностях для выжи­
вания и позиционирования. Напротив, любой объект, который
что-либо делает, сосуществует с другими объектами и использу­
ет их. Он должен их инкапсулировать, чтобы идентифицировать
себя. Это может звучать абстрактно и философски. Так и должно
быть. Этому нет практического обоснования. Мы определен­
но можем создать объект, который ничего не инкапсулирует,
и этому есть масса примеров. Но это неверно и с философской,
и с практической точки зрения.

А еще посмотрим на эту проблему под другим углом. Как гово­
рилось в разделе 2.1, инкапсулированное состояние - это уни-

2.2. Инкапсулируйте хотя бы что-нибудь 49

111,11ый идентификатор объекта, который позиционирует его во
с ленной. Если инкапсулированных объектов нет, каковы его
ординагы? Они равны всей Вселенной:

Universe {

1 11 <>Й класс может существовать, но только единожды, потому
, 1 с) 1 селенная единственная. Я, однако же, не вижу практиче­

ричин для его существования.

1 < лову, ранее я упомянул, что такой подход лучше, но он не-
пдсален,

1 ()'t как выглядел бы идеально спроектированный в канонах
) >Ъ ктно-ориентированного программирования класс:

s Year {
rivate Number num;

Year(final Millis msec) {
this.num = new Min(

new Div(
msec,
new Mul(1000, 60, 60, 24, 30, 12)

) ,
1970

);
}
int read() {

return this.num.intValue();
}

}

Или как-то так:
lass Year {

private Number num;
Year(final Millis msec) {

this.num = msec.div(
1000.mul(60).mul(60).mul(24).mul(30).mul(12)

).min(1970);
}
int read() {

50 Глава 2 • Образование 2.3. Всегда используйте интерфейсы 51

}
return this.num.intValue();

}

Но подробнее об этом позже.

Bharat Savani написал 4 марта 2016 года:

Вопрос, наверное, глупый, но хотелось бы спросить вот что.
Какая разница между инкапсуляцией и сокрытием данных?
Я обратил внимание, что окружающие меня люди с одинаковой
частотой применяют оба этих термина. Означают ли они одно
и то же? Поясните, пожалуйста, на примере.

Егор Бугаенко:

Я считаю, что сокрытие данных - это суть РОJО-объектов (Ptain
Otd Java Objects). Они не имеют ничего общего с ООП, а просто
прячут данные за геттерами и сеттерами. Суть инкапсуляции -
в делегировании ответственности объекту. Таким образом объ­
ект получает право управлять своими (и не только) данными
удобным для себя способом.

2.3. Всегда используйте интерфейсы
Обсуждение на http://goo.gl/vo9F2g.

Теперь поговорим о миссии объекта в том мире, в котором ему
предстоит жить. Как я уже говорил, объект - это живой орга­
низм, который общается с другими организмами и помогает им
делать их работу. Они, в свою очередь, помогают ему делать его
работу.

Объект живет в тесном социальном окружении.

Под этим я понимаю то, что объекты взаимосвязаны, поскольку
они нуждаются друг в друге. В самом начале, когда мы точно
знаем, что каждый объект должен делать и какие услуги предо-

тавлять другим объектам, все просто. Но когда приложение
начинает разрастаться и количество объектов превышает не-

1 олько десятков, тесная связь между ними становится серьез-
1 юи проблемой. И эта проблема влияет ~а сопровожда:мость.
1 k сводится к сопровождаемости. Каждыи раздел даннои книги
должен убедить вас задумываться в первую очередь о сопрово-

1 даемости. Она важнее всего остального, включая производи­
·,·< JI ность.

, Jтобы повысить сопровождаемость приложения в целом,_мы
;~< шжны приложить максимум усилий красцеплению (decouplшg)
объекгов. Технически это означает возможность модифициро~
пать объект, не модифицируя связанные с ним объекты. Лучшии
1111струмент для этого - интерфейсы.

1 lапример:
nterface Cash {

Cash multiply(float factor);

Это интерфейс. Иными словами, это контракт, которому дол­
жен подчиняться объект, чтобы общаться с другими объектами.
1 от как это выглядит:
lass DefaultCash implements Cash {

private int dollars;
DefaultCash(int dlr) {

this.dollars = dlr;
}
@Override
Cash multiply(float factor) {

return new DefaultCash(this.dollars * factor);
}

}

Теперь, когда мне понадобится сумма в долларах, я могу рассчи­
тывать на контракт, а не на конкретную его реализацию:
class Employee {

private Cash salary;
}

52 Глава 2 • Образование 2.3. Всегда используйте интерфейсы 53

Класс Employee не особо интересует, как реализован интерфейс
Cash. Его не интересует, как работает метод multiply(). Он по­
просту не знает, как тот работает. Это означает, что интерфейс
Cash помогает нам расцепить классы Employee и DefaultCash.
Теперь я могу поменять класс DefaultCash или даже заменить
его чем-то еще. Классу Employee все равно. _

Я уверен, что все это очевидно, но вот вам мой совет: удосто­
верьтесь, что все публичные методы класса реализуют какой-то
интерфейс. Грамотно спроектированный класс не должен содер­
жать публичных методов, которые не реализуют хотя бы один
интерфейс. Иными словами, неприемлем следующий класс:
class Cash {

puЫic int cents() {
// какой-то код

}
}

Метод cents () ничего не переопределяет, а так нельзя. Такой
подход способствует сильному сцеплению класса с его пользо­
вателями (другими классами). Объекты других классов будут
использовать Са sh . с ents () напрямую, что в дальнейшем станет
препятствовать замене реализации этого метода на новую.

Небольшое философское замечание: класс существует только
потому, что кому-то нужны его услуги. Эти услуги должны быть
где-то документированы, например в контракте (интерфейсе).
Кроме того, между поставщиками услуг должна существовать
конкуренция. Именно в этом суть нескольких классов, реализу­
ющих один и тот же интерфейс. Каждый из конкурентов должен
быть легко заменяем другим. В этом и заключается суть слабого
сцепления.

Можно сказать, что, хотя классы больше не сцеплены напрямую,
они сцепляются через интерфейсы. Класс должен реализо­
вывать интерфейс, чтобы его могли понимать и использовать
другие классы. Мы не можем поменять интерфейс, не внося

11 посредственные изменения во все классы, которые реали-
1 ют и применяют его. Это действительно так. Сцепление все
р ииго существует, и избавиться от него невозможно. Вообще
1 ()В ря, такого рода сцепление - не такая уж и плохая вещь.

>iio позволяет поддерживать всю систему в стабильном со­
гоянии, Ее не получится сломать случайными изменениями

1, олной из частей за счет того, что другая ее часть не знает об
» 1 11 изменениях. Интерфейсы, играя роль контрактов между
шстями системы, помогают поддерживать организованность
)1 ружения в целом.

у n Goodrich спросил З февраля 2016 года:
вы говорите, что каждый публичный метод должен реализо­
вывать некоторый интерфейс. Но разве это не может стать
несколько избыточным и ненужным? Мне кажется, что если бы
я делал так в большей части своего проекта, то у меня ока­
залось бы много интерфейсов, которые используются лишь
однажды и зашумляют код.

ор Бугаен_ко:
Если у вас нет юнит-тестов, то вы двйсгвительио будете ис­
пользовать интерфейсы лишь однажды. Однако если вы пишете
грамотные юнит-тесты, то для создания фиктивных объектов
интерфейсы понадобятся. Следовательно, в таком случае вы
будете использовать интерфейсы минимум дважды.

yan Goodrich:
Что вы думаете O примен:нии абстрактных клас~ов вместо ин­
терфейсов для этих целеи? Это вообще уместно.

гор Бугаенко:
я думаю, что на сегодняшний день больше не стоит задейство­
вать абстрактные классы. Почитайте мои недавние статьи на
эту тему.

54 Глава 2 • Образование 2.4. Тщательно выбирайте имена методов 55

asicfr спросил 22 января 2016 года:

Можете ли вы пояснить, почему использовать PowerMock _
плохо?

Егор Бугаенко:

Практика мокинга объектов плоха сама по себе. Но PowerMock
доводит мокинг до крайности. Тесты, создаваемые 8 PowerMock
невозможно поддерживать, и они препятствуют рефакто­
рингу объектов. Вы, по сути, создаете юнит-тесты на основе
PowerMock, а потом, если в тестируемом объекте что-то меня­
ется, попросту их выкидываете.

PowerMock - неплохой инструмент, но его нужно использовать
очень аккуратно и очень редко. Почти никогда. Если вам нужно
его применять, ваш код плохо написан. Перепишите его.

2.4. Тщательно выбирайте
имена методов

Мы уже обсуждали именование классов в разделе 1.1. Теперь
пора научиться правильно именовать объекты. Я предлагаю сле­
дующее эмпирическое правило: «строителейь называть именами
существительными, «манипуляторовь - глаголами'.

Строителями я называю такие методы, которые что-то констру­
ируют и возвращают новый объект.

1 Этот совет очень похож на предложенную Бертраном Мейером
(Bertrand Meyer) в книге «Объектно-ориентированное конструи­
рование программных систем» («Русская редакция», 2005) идею,
состоящую в разделении методов объекта на две непересекающиеся
категории - запросы и команды. - Примеч. авт.

11 ители всегда что-то возвращают. Они никогда не возвра­
щ·11 т void, и их имена всегда являются существительными,
11;,11ример:

pow(int base, int power);
t speed ();

lшployee employee(int id);
r·ng parsedCell(int х, int у);

.рагитс внимание на последний метод - parsedCell(). Это
11(просто существительное, а существительное с прилагатель-
111.1м. Принципу это не противоречит, а имя становится более
описагсльным. Это все еще существительное, но уже с до­
иолпигельной информацией. Не просто ячейка, а разобран­
пня ячейка. Мы, вероятно, ожидаем, что данный метод вернет

1•1 йку, содержимое которой было определенным способом
11 р образовано.

Манипиляторами я называю такие методы, которые изменяют
гущностъ реального мира, абстрагируемую объектом. Они все­
, ;~а возвращают void, и их имена всегда являются глаголами,
например:
void save(String content);
void put(String key, Float value);
void remove(Employee emp);
void quicklyPrint(int id);

Обратите внимание на последний метод - quicklyPrint().
Это глагол с наречием. Ключевой элемент здесь - глагол print,
наречие quickly просто уточняет его, дает больше информации
о контексте и назначении метода.

Можете давать методам-строителям и методам-манипулято­
рам любые имена, но старайтесь придерживаться принципа
строители строят, а манипуляторы манипулируют». Третьего

11е дано. Не должно быть как методов, которые манипулируют
и возвращают что-то, так и методов, которые одновременно

56 Глава 2 • Образование

строят и манипулируют. Позвольте привести несколько плохих
примеров:
// возвращает количество сохраненных байтов
int save(String content);
// возвращает TRUE, если ассоциативный массив был изменен
boolean put(String key, Float value);
// изменяет скорость и возвращает ее предыдущую величину
float speed(float val);

Метод save() спроектирован плохо, потому что является мани­
пулятором. Он «сохраняег», но в то же время возвращает int,
как будто он является строителем. Мы должны либо возвращать
void, либо переименовать его в нечто наподобие bytesSaved ().

Та же проблема и с методом put (), который работает как мани­
пулятор, но возвращает boolean как строитель. Единственное
решение - возвращать void. Но мы хотим знать, изменилось ли
значение данного ключа. В этом случае необходимо полностью
перепроектировать класс и сделать так, чтобы этот метод возвра­
щал, к примеру, экземпляр класса PutOperation. В него входит
манипулятор save(), а статус «услех/отказэ будет возвращаться
методом success(). Метод speed() сохраняет значение и воз­
вращает предыдущее. Это еще один пример плохого проектиро­
вания, поскольку он одновременно и строитель, и манипулятор.
Исправить его можно аналогично предыдущему примеру, введя
класс SaveSpeed с двумя методами: один сохраняет значение
скорости, а другой возвращает ее предыдущее значение.

Мы обсудим геттеры и сеттеры позже, в разделе 3.5. Здесь, мне
кажется, очевидно, что использовать имена, начинающиеся на
get, просто неправильно. Хотя бы потому, что get - это глагол,
но геттеры, по сути, являются строителями, поскольку должны
что-то возвращать. Это был мой первый аргумент против мето­
дов-геттеров.

Думаю, теперь я должен объяснить свою мысль. В ее пользу
можно привести несколько аргументов.

2.4. Тщательно выбирайте имена методов 57

роители - это существительные
Во-первых, некорректно называть метод глаголом, если он что-
1·0 возвращает. Такое название противоречит идее объектного
мышления. Когда я захожу в кафе, я не прошу испечь мне кекс
или сварить чашку кофе. Я говорю: ~я хотел бы кекс» или
}1 хотел бы чашку кофе». Говорить: «Исцеките мне» или «Сва­

~>и е мне» - весьма грубо. Меня не должно интересовать, как
11 м нно испечен этот кекс или как сварена чашка кофе. Как их
готовить - частное дело конкретного кафе. У меня есть спрос на
1 скс или чашку кофе. Они могут удовлетворить его. Как именно
·,т происходит внутри кафе, меня не касается. Вот класс, опи-
(ывающий кафе:

ass Bakery {
Food cookBrownie();
Drink brewCupOfCoffee(String flavor);

1 1 а самом деле эти два метода не являются методами объекта.
:)то процедуры. Такой принцип именования говорит о том, что
мы не доверяем кафе как самостоятельной самоуправляемой
сущности и указываем ей, что делать. Это процедурный, а не
<>бъектно-ориентированный подход. На языке С эти процедуры
могли бы быть реализованы, например, так:

ood* cook_brownie() {
// приготовить кекс
// и вернуть его

}
Drink* brew_cup_of_coffee(char* flavor) {

// сварить чашку кофе
// и вернуть е~

}

Кафе в этих процедурах не участвует. У нас просто есть два
1 габора машинных инструкций, записанных на языке С, и мы их
вызываем. В С они называются функциями, но, по сути, являются
процедурами, поскольку к функциональному программированию

58 Глава 2 • Образование 2.4. Тщательно выбирайте имена методов 59

почти не имеют отношения. Мы просим компьютер выполнить
эти инструкции и вернуть нам результат. Мы думаем как ком­
пьютер, а не как объект. Мы не доверяем кафе и говорим: -«Иди
уже свари этот чертов кофе» - вместо того, чтобы попросить
чашку кофе определенного вкуса и доверить получение резуль­
тата, неважно какого, заведению.

Я не хочу много философствовать, но проблема именования но­
сит весьма абстрактный и принципиальный характер. Грамотно
названный метод помогает его пользователям понять, для чего
был создан объект, каковы его миссия, цель существования
и смысл жизни. Неграмотно названный метод может разру­
шить представление об объекте и способствовать тому, что его
станут использовать как мешок с данными и набором процедур.
Это типичная ошибка, которую часто делают разработчики
ООП-библиотек, SDK, API и т. п. Объект - это живой организм,
который знает, как выполнять свои обязанности, и хочет, чтобы
его уважали. Он хочет работать по контракту, а не просто следо­
вать инструкциям. В этом и есть его основное отличие. Он прямо
как программист, правда?

Бот почему, когда название метода - глагол, оно, по сути, ука­
зывает объекту, что ему делать. А просить объект построить
что-то невежливо и неуважительно по отношению к нему. Про­
сто сообщите объекту, что должно бытьпостроено, и пусть он
сам решает, как это сделать. Все приведенные далее имена не­
корректны:

. InputStream load(URL url);
String read(File file);
int add(int х, int у);

Их нужно заменить следующими:
InputStream stream(URL url);
String content(File file);.
int sum(int х, int у);

Обратите внимание на то, что я предлагаю вместо add(x,y) ис-
11 льзовать sum(x,y). Это изменение может показаться мелким
и несущественным, но оно создает большую разницу в восприя­
тии. Мы не должны просить объект сложить х и у. Вместо этого
должны просить его создать сумму х и у и вернуть получивший­
(я объект. Действительно ли он найдет сумму? Я не знаю. Может
быть. Все, что я знаю, - то, что результат будет выглядеть как
суммах и у. Опять же я не указываю объекту, что ему делать,
·1 просто прошу его породить результат, который подчинялся бы
определенному контракту - был целым числом. В Java и многих
других языках число не объект, а скаляр. Это их недостаток.
13 истинно объектно-ориентированном окружении все является
объектом, особенно строки, числа, логические переменные, биты
11 байты.

Это первый аргумент и первый сценарий. Мы получаем нечто
от объекта, или, иными словами, просим его собрать нам что-
11 ибудь. А теперь обсудим второй аргумент и второй сценарий,
1 огда мы просим объект выполнить какое-то преобразование.

Манипуляторы - это глаголы
бъект - это представитель некоторой сущности внешнего

мира. Объект класса File представляет файл на диске, объект
класса Pixel - точку на экране, объект класса I_nteger - четыре
байта ОЗУ. (Удивлены? Подробнее об этом - в разделе 3.4.)

1-. ели нам нужно манипулировать сущностью внешнего мира, мы
просим объект выполнить эту манипуляцию, например:
class Pixel {

void paint{Color color);
}
Pixel center = new Pixel(S0, 50);
center. paint (new Color ("red ''));

60 Глава 2 • Образование

Мы просим объект center нарисовать на экране точку с коор­
динатами (50; 50). И не рассчитываем на то, что что-то должно
быть построено. Мы хотим, чтобы во внешнем мире произошло
изменение, а объект выступает его представителем. ~и в чем же
здесь отличие от процедуры? - спросите вы. - Название мето­
да - глагол, и оно указывает объекту, что необходимо сделать».
Вопрос справедливый, но ключевое отличие здесь - в возвра­
щаемом результате.

Метод paint() не возвращает результата. В рамках метафоры
кафе можно, к примеру, попросить бармена сделать музыку по­
громче. Сделает ли он громче? Может быть, да. Может быть,
нет. Нашу просьбу могут проигнорировать. Это не будет грубым
или неуважительным, поскольку мы ничего не ожидаем в ответ.
Представьте, как бы это звучало в противном случае: «Сделайте
музыку громче, а как сделаете - сообщите уровень громкости»,
Именно так выглядит манипулятор, который возвращает зна­
чение.

Чертовски неуважительно.

Отличие, стало быть, в возвращаемом значении. Только метод­
строитель может возвращать значения, и его имя должно быть
существительным. Если объект позволяет нам выполнять преоб­
разования, его имя должно быть глаголом и он не должен ничего
возвращать.

Я думаю, можно задействовать другое соглашение об имено­
вании, не упуская из виду основной принцип. К примеру, при
использовании паттерна «Строитель» к именам добавлять при­
ставку with:

class Book {
Book withAuthor(String author);
Book withTitle(String title};
Book withPage(Page page);

}

2.4. Тщательно выбирайте имена методов 61

1 мя withTitle - сокращение от bookWithTitle. Чтобы избежать
11 'Пользования префикса book во всех методах, мы можем огра­
ничитъся префиксом with. Принцип остается в силе - эти ме­
тоды являются строителями, а их имена можно расценивать как
< уществительные. Вообще говоря, я противник этого паттерна,
1 юскольку он способствует созданию крупных объектов, которые
11 избежно более сложны в поддержке и намного слабее связаны,
t(м компактные. Паттерн «Строигелъэ применяется, когда мы

11 хотим передавать много параметров в конструктор. В таких
, лучаях он оказывается полезным. Но большое количество ар-
1·ументов - это само по себе проблема.

Вместо того чтобы использовать паттерн «Строигсльэ, стоит
1 >а бить сложные объекты на несколько более простых.

1 .ороче говоря, не применяйте этот паттерн.

римеры
Обсудим несколько практических примеров рефакторинга.
Допустим, у нас есть метод, который сохраняет содержимое
файла и возвращает количество сохраненных байтов:
(ass Document {

int write(InputStream content);

М тод выглядит корректно, но нарушает только что описанный
принцип. Он должен возвращать void, но нам-то нужно знать,
< • 1 олько байтов было фактически сохранено на диск. Что делать?
11 реименовать его в bytesWritten ()? Это неправильно, посколь-
1 у этот метод предназначен для записи файла документа на диск,
:, не для подсчета байтов.

11 ринцип именования «строитель/манипулягор> в данном при­
н ре говорит о том, что метод write() берет на себя слишком

много обязанностей. Он записывает данные и считает количество

62 Глава 2 • Образование

байтов. Это слишком сложно для одного метода. Мы не можем
четко назвать его глаголом или существительным, поскольку
его назначение неоднозначно. Он расплывчат, несфокусирован.

Вот как я рекомендовал бы его переработать:
class Document {

OutputPipe output();
}
class OutputPipe {

void write(InputStream content);
int bytes();
long time();

}

Как видите, метод output () - строитель. Он создает новый
объект типа OutputPipe, готовый записывать данные (обратите
внимание на то, что я не назвал его writer). Данные еще не за­
писаны - мы просто получаем объект, готовый выполнить эту
операцию. Затем вызываем метод write () объекта pipe, который
собирает данные о транзакции. Теперь можно получить больше
информации, чем просто количество байтов. Можно получить
время, затраченное на транзакцию, и многое другое.

Разработчики языка Go, на мой взгляд, сделали большую ошиб­
ку. Они позволили возвращать из метода несколько значений.
В Go мы можем объявить метод write () примерно так:
type Document struct {}
func (d Document) write(s Stream) (int, int) {}

Именно так код и становится грязным и неуправляемым, а ведь
весь смысл ООП - в снижении сложности путем изоляции
концептов. Чем меньший концепт изолируется, тем легче его
понимать и сопровождать. В данном случае это концепт -езаписи
байтов в файл документа», Выполнив предложенную ранее пере­
работку, я изолирую это понятие в отдельный класс OutputPipe,
а Go побуждает программиста оставаться в контексте класса
Doc ument и еще больше усложнять его метод write ().

2.4. Тщательно выбирайте имена методов 63

Методы, возвращающие логические значения
11 годите, а как насчет методов, возвращающих логические зна-
11 пия? Возьмем, к примеру, метод isEmpty() из класса String.

Как бы вы его назвали? - спросите вы. - А метод equals ()
в классе Object? А метод exists() в классе File? Их полно по­
всюду». Если придерживаться описанных ранее принципов, то

< жно сделать вывод, что все эти имена некорректны. Но какова
;u1 ьтернатива?

1 ·1к мне кажется, методы, возвращающие логические значения,
1 вляются исключениями из этих правил. Они тоже строители,

1ю для лучшей читаемости их имена необходимо сделать при­
югательными, например:
, olean empty ();

lюolean readaЬle ();
lюolean negative();

11 рефикс is избыточен и не должен использоваться явно, но
имеет смысл мысленно ставить его перед именем метода, чтобы
yf> диться в том, что оно подобрано грамотно.

11 одставьте префикс и прочитайте имя, но применяйте его без
111> фикса. Такие мысленные упражнения необходимы, чтобы из-

>< жать использования глаголов вместо прилагательных. Вот как,
иалример, будут звучать имена приведенных ранее методов:
t olean empty(); // is empty
1 olean readaЬle(); // is readaЬle
tJ olean negative(); // is negative

< >;~нако вызову~ проблемы следующие имена методов:
lюolean equals(Object obj);
loolean exists();

1 [азвапия isEquals и isExists просто не звучат. Намного лучше
)удет использовать equalТо и present, поскольку фразы Is equal

t<) и Is present звучат нормально.

64 Глава 2 • Образование

Почему для методов, возвращающих логические значения,
делается исключение? Потому что Java и большинство других
языков особым образом работают с ними в рамках логических
конструкций. Скажем, у нас есть класс String, имеющий, в свою
очередь, метод-строитель length(). Мы добавляем к нему метод
emptiness (),который возвращает сосгояние строки - пустая она
или нет. И затем используем его следующим образом:
if (name.emptiness() true) {

// что-то сделать
}

Это читается нормально: «Если пустота имени истинна». Одна­
ко так в Java не делают. Там применяется сокращенная форма
такого сравнения. Часть ==true просто опускается. Поэтому
прилагательное звучит лучше:
if (паше , empty()) { // "если имя пустое"

// что-то сделать
}

Позвольте обобщить данный раздел. Во-первых, знайте мис­
сию своего метода. Он либо строитель, либо манипулятор.
И ни в коем случае не может выполнять обе роли. Во-вторых,
называйте строители именами существительными, а манипуля­
торы - именами прилагательными. Единственным исключени­
ем будет строитель, который возвращает логическое значение.
В таком случае применяйте прилагательные.

Вот и все.

2.5. Не используйте публичные
константы

Обсуждение на http://goo.gl/QIUoru.

Свойства, обозначаемые спецификаторами puhlic, static, final,
также известные как константы - популярный механизм со-

2.5. Не используйте публичные константы 65

1,м стного использования данных объектами. Именно для этого
1 нужны константы - для совместного применения данных

11.11и других объектов. И против этого я категорически возра-
1 аю. Объекты не должны ничего использовать совместно - они

лолжиы быть самодостаточными и очень закрытыми. Механизм
(овмесгного использования противоречит идее инкапсуляции
11 объектно-ориентированному образу мышления в целом. Рас­
(м трим это на примере. Скажем, у меня есть метод, который
ыписывает структурированные данные в Writer и заканчивает

1 аждую строку символом перевода строки:

L ss Records {
private static final String EOL = "\r\n";
void write(Writer out) {

for (Record rec : this.all) {
out.write(rec.toString());
out.write(Records.EOL);

}
}

В данном примере статическое константное свойство EOL явля­
(·1 ся приватным и используется только внутри класса Records.

1 • кая ситуация вполне корректна. Мы не хотим каждый раз
прописыватъ "\r\n" в явном виде внутри класса. Допустим,
т шерь у нас есть другой класс, который делает что-то похожее,
11 с другими объектами:

lass Rows {
private static final String EOL = ''\r\n";
void print(PrintStream pnt) {

for (Row .row: this.fetch()) {
pnt.printf(

11
{ %s }%s '', row, Rows. EOL

) ;
}

}
}

66 Глава 2 • Образование

У этого класса иная логика, он работает с совершенно другим
набором объектов. Классы Records и Rows никак не связаны.
У них нет ничего общего. Однако они оба определяют приватную
константу EOL. Это будет дублированием кода? Да, конечно же.
И как нам его предотвратить? Как мы его предотвращали в С?
У нас был макрос #define, который позволял объявить ее одна­
жды и затем применять повсюду:
#define EOL "\r\n"

Однако мы не пишем на С. В ООП у нас есть объекты, и реше­
ние проблемы дублирования кода путем использования публич­
ных констант - совершенно некорректный подход. Он очень
процедурен и поэтому неправилен. Вот как можно решить эту
проблему в Java:
puЫic class Constants {

puЫic static final String EOL = 1'\r\n";
}

Чем это отличается от макроса #define в С? Мало чем. И в том
и в другом случае константы находятся в глобальной области
видимости - каждый класс может их использовать. Я бы даже
сказал, что макрос лучше, поскольку он виден не всем. Он ста­
новится видимым, только если включить . h-файл, в котором
объявлен макрос. В Java класс Constants публичный, поэтому
с точки зрения загрузчика классов он должен быть виден дру­
гим классам.

Вводя класс Constants, мы решаем проблему дублирования
кода, поскольку классы Records и Rows будут использовать
Constants. EOL вместо Records. EOL и Rows. EOL соответственно.
Им больше не придется объявлять эту константу локально. Они
будут применять доступную всем константу. Проблема решена,
не так ли? Отнюдь!

Решая одну проблему, мы создали две большие проблемы: при­
внесли сцепление и потеряли иельность.

2.5. Не используйте публичные константы 67

Привнесение сцепления
.начала рассмотрим проблему сцепления. Вот как сейчас вы­

глядит класс Records:
lass Records {

void write(Writer out) {
for (Record rec : this.all) {

out.write(rec.toString());
out.write(Constahts.EOL); // здесь!

}
}

}

Класс Rows выглядит так:
class Rows {

void print(PrintStream pnt) {
for (Row row: this.fetch()) {

pnt.printf(
'
1
{ %s у, row, Constants. EOL // здесь!

);
}

}
}

Теперь они оба зависят от одного объекта, и эти зависимости
жестко запрограммированы. Разорвать их непросто. В трех ме­
стах фрагменты кода сцеплены и взаимосвязаны между собой.

Records. write(), Rows. print() и Constants. EOL. Если я поменяю
значение Constants. EOL, то поведение двух классов изменится
непредсказуемым образом. Почему непредсказуемым? Посколь­
ку, когда я меняю значение Constants. EOL, я понятия не имею,
как оно используется. Может, для перевода строки при печати.
Может, для завершения строки в протоколе НТТР, где поменять
его невозможно из-за требований протокола.

Объект Constants. EOL одинок в глобальной области видимо­
сти, где он применяется без всякой семантики. Мы попросту
не знаем, как задействуется этот объект, в каком контексте и как

68 Глава 2 • Образование 2.5. Не используйте публичные константы 69

вносимые изменения повлияют на его пользователей. Мы спо­
собствуем сцеплению, что со временем приведет к серьезному
ухудшению сопровождаемости. Помните: все ради сопровожда­
емости! Если множество объектов использует другой объект
неизвестным образом, то они очень тесно сцеплены с ним.

В случае, когда константа примитивна, как в нашем примере
с EOL, проблема не так уж велика, поскольку семантика конца
строки весьма прозрачна. Но когда константа становится более
сложной, то и серьезность проблемы возрастает.

Потеря цельности
Применяя публичные константы, объекты становятся менее
цельными, иными словами, менее ориентированными на ре­
шение собственных задач. Они должны знать, как обращаться
с константами. И добавлять собственную семантику к глупым
константам. Последние действительно довольно глупы. Что
Constants. EOL знает о себе? Ничего. Это просто кусок текста,
не понимающий, зачем он нужен. Он не знает своей миссии,
своего назначения. Если начать философствовать: смысл жизни
этой константы неясен.

Чтобы добавить семантику, мы должны писать дополнительный
код в классах Records и Rows. Нам приходится оборачивать прими­
тивные статические константы в некий код, который уточняет их
назначение. Но не это является целью классов Records и Rows.

Они предназначены для работы с записями и строками, а не
с символами завершения строки. Эти классы были бы более
цельными, если бы могли перепоручать работу: «Я обрабатываю
записи, а ты - концы строк» Так было бы разумно, поскольку
это помогло бы классам быть более цельными.

Итак, какова же альтернати:ва? Вот что я предлагаю для каче­
ственного решения проблемы дублирования кода. Объекты
не должны совместно использовать данные. Вместо этого мы

должны создавать новые классы, которые помогли бы классам
овместно использовать функциональность. Не данные, а функ-

1 гиоиальностъ! К примеру, мы видим, что в обоих классах не­
() > одимо печатать строки, которые заканчиваются переводом
(·1 1 аки. Создадим для этого класс:

1 55 EOLString {
private final String origin;

OLString(String 5rc) {
this.origin = src;

}
@Override

tring toString() {
return String.format("%s\r\n", origin);

}

1 t перь при необходимости можно использовать их. К примеру,
в классе Records:

55 Records {
void write(Writer out) {

for (Record rec : this.all) {
out.write(new EOLString(rec.toString()));

}
}

А так - в классе Rows:

ass Rows {
void print(PrintStream pnt) {

for (Row row: this.fetch()) {
pnt.print(

new EOLString(
St ring. +огшат (" { %s }", row)

)
);

}
}

'1 перь функциональность, добавляющая символы в конец стро-
1 и, надежно изолирована в классе EOLString. Как конкретно

70 Глава 2 • Образование

суффикс добавляется к строке, теперь его дело. В классах
Records и Rows больше нет этой логики. Мы не знаем, как кон­
кретно строка приобретает необходимый суффикс. Знаем лишь,
что за эту задачу отвечает класс EOLString.

Вы можете возразить, что сцепление теперь будет с классом
EOLString, что равносильно сцеплению с классом Constants. EOL, но
это не так. Действительно, имеется сцепление с классом EOLString,
но оно не снижает сопровождаемость, поскольку является сце­
плением посредством контракта, а это значит, что классы мож­
но разъединить. В таком сцеплении участвуют два равнозначных
элемента - объект класса Records и объект класса EOLString
Последний из них работает по контракту, семантика которого
инкапсулирована внутри класса.

Предположим, завтра мы захотим, чтобы поведение класса меня­
лось в зависимости от платформы, на которой он работает. До­
пустим, мы не хотим использовать последовательность "\r\n"
при работе под Windows. В такой ситуации нужно бросить ис­
ключение. Контракт (интерфейс) остается неизменным, но по­
ведение меняется:
class EOLString {

private final String origin;
EOLString{String src) {

this.origin = src;
}

String toString() {
if {/* работаем под Windows*/) {

throw new IllegalStateException(
"Извините, EOL невозможно использовать под Windows"

);
}
return String.format("%s\r\n", origin);

}
}

Можно ли было сделать так с помощью публичного статиче­
ского литерала? Нет.

2.5. Не используйте публичные константы 71

Зпачит ли это, что для каждой публичной константы надо соз­
давать новый класс, инкапсулируюший ее семантику? Да. Зна-
1111т ли это, что у нас могут быть сотни микроклассов вместо
< отен константных строковых литералов? Да. Сделает ли это
, <)Д многословным? Загромоздит ли его избыточными микро­
, пассами? Нет. Чем больше мелких классов, тем чище код, при
условии, что они не дублируют друг друга. Это утверждение
южет показаться вам нелогичным, но задумаемся на секун­

;~у - это важно. Я хочу сказать, что чем больше классов в вашем
11 риложении, тем лучше оно спроектировано и тем легче его со-
111 ювождать. Наилучшей аналогией этому будет язык, на котором
мы говорим. Чем больше слов вы применяете, если, конечно,
это не синонимы, производящие впечатление на читателей,
·1 ,м проще становится читать ваш текст. Напротив, когда вы
икладываете слишком широкий смысл в одно слово и часто его
11 ·пользуете, текст читать труднее.

1~ т фраза: «Мой кот любит есть рыбу и пить молоко».

А вот другая: «Моя вещь любит есть одну вещь и пить дру­
гую вещь». Здесь мы слишком часто задействуем слово «вещьэ
11 вкладываем в него слишком большой смысл. Читатель должен
1> збираться, что означает «вещь> в первом, втором и третьем
< лучаях. Слова «кот», «рыба», «молоко» позволяют быстрее
уловить семантику написанного. То же происходит с классами,
которые очень велики и имеют слишком много возможностей.
Когда повсюду используешь класс j ava. io. F ile, иногда про­
сто непонятно, что именно он означает. Намного более удобны
extFile, JPGFile или TempFile.

1 Iозвольте привести еще один пример. Во всех известных мне
Н'Г'[Р'-клиеитах, не только вJava, есть возможность изменить
1 IТТР-запрос следующим образом:
tring body = new HttpRequest()

.method{"POST")

. fetch();

72 Глава 2 • Образование

А еще У вас есть набор публичных статических строковых литера­
лов с именами НТТР-методов. В итоге код выглядит примерно так:
String body = new HttpRequest()

.method(HttpMethods.POST)

.fetch();

Это противоречит духу 00П. Намного лучше создать несколько
небольших классов, представляющих эти методы:
String body = new PostRequest(new HttpRequest())

.fetch(); ·

PostRequest знает, как конфигурировать HttpRequest так, чтобы
он делал РОSТ-запрос вместо СЕТ-запроса, выполняемого по
умолчанию. Логика этой конфигурации, семантика литерала
P0ST теперь инкапсулирована в новом классе PostRequest.
Мы больше не должны помнить, что значит P0ST. Нам нужно
выполнить P0ST-запрос, и нас не касается, как это происходит
на уровне протокола НТТР.

Короче говоря, публичные константы в ООП - чистейшее зло
'они не должны использоваться никогда. Им нет оправдания.

Я понимаю, что современные библиотеки в Java, Ruby, РНР,
Scala и им подобных, к сожалению, полны публичных констант.
Не включайте их в свой код. Не создавайте себе дополнительных
трудностей. Всегда заменяйте их микроклассами. Неважно, на­
сколько малы они будут. Не решайте проблему дублирования
кода публичными константами - применяйте классы.

Кстати, то же самое касается типов enum в Java. Перечисления
ничем не отличаются от публичных констант, и их также не­
обходимо избегать.

Martin написал 6 июля 2015 года:

Объясните, пожалуйста, чем зависимость от публичного ста­
тического константного атрибута отличается от зависимости

2.6. Делайте классы неизменяемыми 73

от публичного класса, не считая ваших личных предпочтений
относительно того, что вы считаете более объектно-ориентиро­
ванным. Кстати, а какой объект реального мира представляет
класс UTF8String? И еще, вы понимаете, что ваше решение
порождает новый объект при каждом выполнении оператора
присваивания?

гор Бугаенко:
Вводя класс UTF8String, мы решаем проблему дублирования
литерала UТF-8. Но решаем мы ее при помощи настоящего
объектно-ориентированного подхода - инкапсулируем функцио­
нальность внутри класса и позволяем остальным инстанциро­
вать и использовать его объекты. Тем самым решаем проблему
дублирования функциональности, а не только дублирования
данных. И да, я понимаю, что мое решение создает новый объ­
ект всякий раз, когда происходит присваивание. Мне кажется,
что по сравнению с сильным сцеплением это небольшая про­
блема. В общем случае я отдаю предпочтение сопровождаемо­
сти (чистому коду), а не скорости.

.6. Делайте классы неизменяемыми
()бсуждение на http://goo.gl/z1XGjO.

/t лайте все классы неизменяемыми - это сильно улучшит со-
11 ровождаемость. Как и все остальное, о чем говорится в данной
1 пиге, неизменяемость помогает сделать классы небольши­
м и, цельными, расцепленными и хорошо сопровождаемыми.
Если фрагмент кода легко понять, то его несложно поддержи­
иать. Неизменяемый класс намного проще понять, чем изменя­
< мый. Если вы заставите себя думать в терминах неизменяемых
объектов, ваш код станет чище, короче и проще для понимания.

Обсудим, что значит неизменяемость, а затем я покажу вам па­
рочку практических преимуществ, которые она дает.

74 Глава 2 • Образование

Объект называется неизменяемым, если его состояние нельзя
изменить после создания. К примеру, является изменяемым
объект приведенного далее класса:
class Cash {

private int dollars;
puЫic void setDollars(int val) {

this.dollars = val;
}

}

Вот похожий класс, объекты которого неизменяемы:
class Cash {

private final int dollars;
Cash(int val) {

this.dollars = val;
}

}

Как видите, разница - в наличии у приватного свойства dollars
ключего слова final. Оно говорит компилятору, что любые
попытки изменить свойство вне конструктора должны приво­
дить к ошибке компиляции. Неизменяемый объект инкапсули­
рует все необходимое и ничего не может поменять в процессе
существования. Если нам необходимо изменить неизменя­
емый объект, то придется создавать новый объект. К примеру,
мы хотим реализовать несложную арифметическую операцию
умножения для денежного класса Cash. Вот пример изменя­
емого класса:
class Cash {

private int dollars;
puЫic void mul{int factor) {

this.dollars *= factor;
}

}

Здесь мы делаем то же, но при помощи неизменяемого класса:
class Cash {

private final int dollars;

2.6. Делайте классы неизменяемыми 75

puЫic Cash mul{int factor) {
return new Cash{this.dollars * factor);

}

1 'аэница очевидна. Неизменяемый объект не может никак мо­
/t11 фицировать себя. Он будет пытаться создать другой объект
с ">1 елаемыми характеристиками.

1 [зменяемый объект мы будем использовать следующим об­
разом:

. h five = new Cash{5);
1 ve.mul{10);
у tem.out.println{five); // будет выведено "$50"

так станем работать с неизменяемым классом:

<, h five = new Cash{5);
f I h fifty = five.mul(10);

, tem.out.println{fifty); // будет выведено "$50"

~1 подвожу к тому, что никогда не стоит делать объекты из-
, 11Яемыми - всегда работайте с неизменяемыми объектами.

1 [зменяемьте объекты - злоупотребление объектно-ориенти­
ронанной парадигмой. Последние два фрагмента кода идеально
иллюстрируют эту мысль. Как только был инстанцирован объ-

·1т five, он не сможет стать объектом fifty. Пять - всегда пять
11 будет пятью до конца своего жизненного цикла. Если нам
нужно пятьдесят, то мы должны инстанцировать новый объект.
1~ 11~ раз взглянем на код:

., h five = new Cash{5);
1 v .mul{10);
y·tem.out.println(five); // ой, это же $50

l lo ·ледняя строчка сбивает с толку, не так ли? Мы ожидаем, что
)'1, кт five будет вести себя как пять долларов, но он демонстри-

1 •у \,,~ поведение как у 50 долларов. Надеюсь, это хорошо показыва­
с • 1· 11асколько изменяемость делает код сложным для понимания
11 :юддержки. Изменяемость привносит беспорядок.

76 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 77

Вы можете возразить, что если мы назовем переменную money,
то решим эту проблему и код снова станет читаемым.
Cash money = new Cash{5); // вот $5
money.mul{10);
System.out.println(money); // а вот $50

Может быть, но только в таком простом примере, как этот. Причем
в очень ограниченной области. Мы фактически заменили конкрет­
ное имя на более абстрактное. В общем случае такая тактика плоха.
В граничном случае мы должны будем назвать все переменные
var. Не стоит объяснять, почему так не надо делать.

Уясните следующее. Я не говорю, что неизменяемые классы
лучше изменяемых, что они более эффективны в некоторых
ситуациях, могут решать некоторые проблемы более элегантно
или использоваться чаще изменяемых. Совсем нет. Я говорю,
что изменяемые объекты не имеют права на существование.
Их использование должно быть строго запрещено. Их просто
не должно быть в ООП, как это сделано, например, в Haskell.
Все классы должны инстанцировать неизменяемые объекты,
которые никогда не меняют своего состояния вне зависимости от
области применения, будь то игры, пользовательский интерфейс,
мобильные или веб-приложения или даже алгоритмы.

Есть несколько хорошо известных аргументов в пользу неизме­
няемости 1. Кратко просмотрим их и обсудим контраргументы,
которые часто сводятся к тому, что «неизменяемые объекты
хороши, но не в нашем проекте».

Погодите. Прежде чем перейти к рассмотрению этих аргументов,
обсудим «ленивую» инициализацию, которая технически невоз­
можна при неизменяемых объектах. Как минимум в Java, Ruby,
С++ и еще нескольких известных мне языках. Объект инициа-

1 Впап Goetz et. al. Java Concurrency in Practice. - Addison-Wesley
Professional, 2006.

111 ируется «лениво», если он обновляет инкапсулированные
н йства по требованию, например:

1 ss Page {
private final String uri;
private String html;
Page(String address) {

this.uri = address;
this.html = null;

}
puЫic String content() {

if (this.html null) {
this.html =/*загрузить из сети*/

}
return this.html;

}

1 .,к работает «ленивая» инициализация. При создании объекта
,, поле this. html ничего нет. Вместо реальных данных оно содер-

1 11т null. Затем, когда впервые вызывается метод content (), мы
шгружаем данные из сети и сохраняем их в упомянутом поле.
11 ри следующем вызове content () обращения к сети не проис-

< щит. Вместо этого мы возвращаем содержимое поля this. html.
•1(видно, что этот класс изменяемый. Можем ли мы сделать его

11 нзменяемым? Не в Java. А нужна ли нам вообще «ленивая»
111111 циализация? Конечно. В основном из соображений про­
илиодителъности. Мы не хотим загружать страницу много раз,

111 кажется, что сам язык должен предоставлять такую возмож-
11t .сгь, Должно быть доступно нечто подобное:

" н1 lyOnce
1111 с String content() {

1 turn /* загрузить из сети*/

пнотация @OnlyOnce (или что-то похожее по смыслу) долж-
1, говорить компилятору, что помеченный ею метод будет

78 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 79

вызываться в объекте лишь единожды. Все последующие вы­
зовы должны возвращать ранее возвращенное значение. К со­
жалению, на момент написания этих строк ничего подобного
в Java не было. Есть несколько обходных путей, которые позво­
ляют сделать объект неизменяемым, но при этом реализовать
«ленивую» загрузку. Все это костыли. И обычно все это, по сути,
разные механизмы кэширования, основанные на фреймворках
или статических ассоциативных массивах. Я затрагивал эту тему
ранее, в разделе 1.3, где приводил пример механизма кэширова­
ния, который может быть полезен, если вы не стремитесь к чи­
стой неизменяемости.

Изменяемость идентичности
Неизменяемые объекты не имеют проблем с так называемой
изменяемостью идентичности. Если коротко: данная проблема
проявляется, когда мы сравниваем два объекта, которые выгля­
дят равными, но впоследствии один из них меняет состояние.
Они больше не равны, но мы думаем, что они равны. Или наобо­
рот. Например, вJava:
Map<Cash, String> map = new HashMap<>();
Cash five = new Cash("$5");
Cash ten = new Cash(8'$10");
map.put(five, "five");
map.put(ten, "ten");
five.mul(2);
System.out.println(map); // {$10=>"five", $10=>"ten"}

Ассоциативный массив стал некорректным после нашего вме­
шательства. Он содержит два одинаковых ключа. Как это про­
изошло? Сперва мы создали два не равных друг другу объекта
five и ten. Затем поместили их в ассоциативный массив, класс
HashMap которого создал два элемента, поскольку ключи были
не равны. Затем мы изменили состояние одного из них с пяти
на десять, используя модифицирующий метод mu 1 () . Ассоциа­
тивный массив не знал об этом изменении. Мы его никак об

, гом не уведомили. И не дали ему возможности сравнить ключи
11 удалить дубликаты. В итоге состояние ассоциативного массива

с ,1 азалось некорректным.

1· роме того, если мы попытаемся извлечь один из них, то по-
1 чим непредсказуемый результат, поскольку ассоциативный
гассив теперь испорчен:

111. p.get(five); // может вернуть либо "ten", либо "five"
)та проблема известна как изменяемость идентичности. Взгля-

11(м на предыдущий пример. Если я уберу все строки, кроме по-
JJ(дней, сможете ли вы догадаться, почему метод map. toString() ·

позвращает такое странное состояние? Легко ли вам будет по­
пять, почему HashMap содержит дубликаты ключей и как это
получилось? А ведь в примере всего пять строк кода.

1 лкого не случится с неизменяемым объектом, поскольку после
1<)1 , как он попадет в ассоциативный массив, он не сможет ме-

11·1·1ь состояние. HashMap вычислит хеш-функцию от его состоя-
1111я, поместит его во внутреннюю хеш-таблицу и оставит там.
l\динственный способ сделать что-либо с элементом ассоциатив-
1101·0 массива - добавить в него новый объект-ключ.

1 [еиэмсняемые объекты полностью устраняют проблемы, свя­
,:,1111ые с изменяемостью идентичности.

омарность отказов
1~,1~ одно преимущество неизменяемых объектов - атомарность
отказов. То есть у нас есть либо полный и целостный объект,
111160 отказ1

- и никаких промежуточных состояний.

l 'ассмотрим пример изменяемого класса Cash:
, 1 1ss Cash {

private int dollars;
private int cents;

1 Вlochj. EffectiveJava. 2nd Edition. - Addison-Wesley, 2008.

80 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 81

puЫic void mul(int factor) {
this.dollars *= factor;
if {/*что-тоне так*/) {

throw new RuntimeException("oй ... ");
}
this.cents *= factor;

}
}

Когда я вызываю метод mul () и он вызывает исключение, поло­
вина объекта будет изменена (t~is.ddllars), а другая остается
неизменной (this. cents). Это может привести к очень серьез­
ным ошибкам, которые опять-таки очень сложно найти. Неиз­
меняемые объекты избавлены от такого недостатка, поскольку
ничего не модифицируют внутри себя.

Вместо этого они инстанцируют новые объекты с новым со­
стоянием:
class Cash {

private final int dollars;
private final int cents;
puЫic Cash mul(int factor) {

if {/*что-тоне так*/) {
throw new RuntimeException("oй ... ");

}
return new Cash(

this.dollars * factor,
this.cents * factor

);

ы сохраняем значение поля this. dollars во временную пере-
1<'1 rную, чтобы иметь возможность восстановить его непосред­

ственно перед вызовом исключения. Для небольших объектов это
11< очень важно, но, когда объект начинает увеличиваться в раз-
к-рах, легко пропустить свойство, которое надо восстановить.

)t;,же в таком маленьком объекте код весьма запутан, не находите?

1 • лову, я перечисляю преимущества по их важности в моем
1 н пгимании - от наименее важных к наиболее важным. Поэтому
паиболее важные преимущества впереди.

}
}

Очевидно, что добиться атомарности отказов можно и при ис­
пользовании изменяемых объектов, но придется уделить этому
особое внимание. Работая же с неизменяемыми объектами, мы
получаем атомарность ~из коробки» - нет необходимости забо­
титься об этом, так как все объекты атомарны по определению.
Что не так с обеспечением атомарности отказов в изменяемых
объектах? Сложность объекта сильно увеличивается, и, как след­
ствие, вероятность ошибки также повышается. И конечно же,

, н I ровождаемость такого объекта серьезно ухудшается. Вот как,
, 11 римеру, может выглядеть изменяемый и способный к атомар-
111.1 м отказам класс Cash:

1 t s Cash {
private int dollars;
private int cents;
puЫic void mul(int factor) {

int before = this.dollars;
this.dollars *= factor;
if (/*что-тоне так с центами*/) {

this.dollars = before;
throw new RuntimeException("oй ... ");

}
this.cents *= factor;

}

ременное сцепление
lj ще одно преимущество, которое вы получаете в результате
исполъзования неизменяемых объектов, - отсутствие так на­
·11~ваемого временного сцепления. Лучше всего объяснить это
11а примере:
(1sh price = new Cash();
price.setDollars(29);
price.setCents(95);
ystem.out.println(price); // "$29.9s··

82 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 83

Этот пример очень прост, но он показывает, как обычно инстан­
цируются и инициализируются изменяемые объекты. Вначале
мы создаем скелет, в котором все внутренние свойства равны
NULL (инстанцирование). Затем устанавливаем их значения с ис­
пользованием методов-сеттеров (инициализация). Именно так
JavaBeans, JPА, JАХВ и другие стандарты рекомендуют работать
с объектами в Java. Вы наверняка понимаете, что я, мягко гово­
ря, небольшой любитель этих стандартов. Все они - хорошие
инструменты для процедурных программистов, пишущих про­
граммы на Java, но они очень плохи с точки зрения истинного
объектного мышления. Класс Cash - идеальный представитель
JavaBeans - «мешковэ с данными и пристегнутыми к ним про­
цедурами. Сперва мы создаем «мепюк», потом внедряем в него
данные, а затем даем команду их обработать. Старайтесь дер­
жаться подальше от этих «сгандарговэ ...

В приведенном ранее примере четыре строки. Они идут одна за
другой в строго определенном порядке и связаны друг с другом
в хронологическом порядке. Если я по ошибке переупорядочу
их следующим образом:
Cash price = new Cash();
price.setDollars(29);
System.out.println(price); // 11$29.0011!
price.setCents(95);

логика поломается, но код все же скомпилируется.

Этот пример очень прост, и вы можете возразить, что для такого
переупорядочения нет никакого повода. Так не надо делать, и все
тут. Это может быть действительно так в конкретном примере,
поскольку я в состоянии разобраться в логике кода в течение
пары секунд. Но я все равно должен понимать временное сце­
пление между строками, прежде чем менять их. Компилятор мне
не поможет. Тем не менее переупорядочение строк - корректная
операция. Иными словами, моя задача - запомнить, в каком по­
рядке стоят строки. А если объектов много и мне нужно помнить

их порядок или порядок манипуляций с ними, то с сопровожда­
емостью возникнет большая проблема. Как насчет следующего
фрагмента кода:
Cash price = new Cash();
// 50 строк кода для вычисления Х
price.setDollars(x);
// еще 30 строк кода вычисляют У
price.setCents(y);
// 25 строк кода делают что-то еще
System.out.println(price);

Легко ли понять, что данный конкретный порядок сеттеров должен
быть сохранен и все они должны вызываться перед println ()?
Отнюдь. А так проблема решается при использовании неизме­
няемых классов:
Cash price = new Cash(29, 95);
System.out.println(price); // 11$29.95"

Объект всегда инстанцируется единственной строкой кода. Мы по­
просту не можем отделить инстаниироеание от инициализации.
Они всегда должны быть вместе. Я не могу изменить порядок этих
двух строк, поскольку в противном случае код не скомпилирует­
ся. Следовательно, неизменяемость полностью избавляет нас от
временной связи между строками кода. Прежде чем что-то делать
с объектом, я должен его инициализировать. То, что произойдет
потом, не имеет значения. Объект - самодостаточная и целостная
сущность. Больше ничего не нужно инициализировать.

Отсутствие побочных эффектов
Если объект изменяем, практически кто угодно может изменить
его на лету. Допустим, я передаю объект price методу, который
должен вывести его на экран. Но в этот метод закралась ошибка.
Кроме вывода на экран, он также удваивает цену:
void print(Cash price) {

System.out.println(

84 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 85

"Today price is: "+ price
);
price.mul(2);
System.out.println(

"Купи сегодня выгодно' 3) ; , · автрашняя цена: " + ргл св

}

При вызове данного ме .бочный эффект: тода проявляется так называемый по-

Ca s h five = new Cash(S)·
print(five); '
System.out.println(five); // ой ... , $10

Чтобы понять что пМ , роисходит, потребуется некоторое время
не придется отладить каж .чтобы найти дую манипуляцию с объектом five,

место, где возникает ошибка К
прост, отладка займет не больше пары ми~уто~а код настолько
несколько тысяч строк кода и несколько сотен о если в проекте
потратить несколько дней. классов, придется

::~н:~::г:о~~е~~~- неизменяемый, никто и нигде не сможет
. я в этом уверен Мне не пр

тривать весь код в поисках побочных эффектов. н::::::~~~::~
класса Cash придает мне уверенность в том что f8
пять долларов в любое время в любом месте 'кода. ive означает

Никаких нулевых (NULL) ссылок
В разделах 3.3 и 4 1 мы еще обв ООП - б . судим, почему использование NULL

а салютное зло, а пока погово и
ванных свойствах объекта. Например: р м о неинициализиро-

с lа s s User {
private final int id·. ,
pr1vate String name = null·
puЫic User(int num) { ,

this.id = num·} ,

puЫic void setName(String txt) {
this.name = txt;

}

11 ри создании экземпляра этого класса свойству name присваи­
па тся значение NULL. Оно будет инициализировано позже, при
вызове setName () (при условии, что он вообще произойдет).
Л до тех пор будет равно NULL. «Что с этим не так? - спросите
вы. _:_ Просто проверяйте его на NULL перед его использовани­
ем - и вы в безопасности». Да, это верно, но код будет замусорен
1 lроверками if n ame ! = nu 11. А если мы где-то забудем выпол­
нить проверку, то получим исключение NullPointerException
или ошибку сегментации в С++. Но это не самые главные про­
блемы. В конце концов, NULL не особо отличается, скажем, от
пустой строки. Мы можем время от времени делать проверку,
и в этом нет ничего страшного. Так бывает.

Главная же проблема намного серьезнее. И она касается... вы на­
верняка догадались... сопровождаемости. Объект, у которого зна­
чения свойств могут быть равны NULL, а не полезной информации,
намного сложнее сопровождать, поскольку трудно понять, когда
он является объектом, а когда превратился во что-то, что объектом
не является. Позвольте объяснить, что я имею в виду. Но сперва
задам вопрос: «Зачем может понадобиться иметь объект класса
User с неинициализированным именем?» Действительно, когда
и почему у нас может возникнуть такая необходимость?

Мне кажется, я знаю ответ. В большинстве случаев так проис­
ходит потому, что-нам на самом деле нужен другой класс, но
мы слишком ленивы, чтобы его ввести. Или не знаем, как его
создать. Или не понимаем, что такое класс в ООП. Причин мо­
жет быть много, но результат всегда один - чрезмерно большой
класс, который является одновременно и пользователем, и по­
купателем, и работником, и записью в базе данных. Если поле
name инициализировано, то это покупатель. Если оно равно NULL,

то это пользователь, и т. д.

86 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 87

Мы просто не знаем, как использовать наследование и инкап­
суляцию, чтобы разбить задачу на подзадачи. Поэтому при по­
явлении новых требований задействуем один и тот же класс.
Но, чтобы как-то управлять его разнообразным поведением, нам
приходится применять временно не инициализированные свой­
ства. По состоянию их инициализации (NULL или нет) мы опре­
деляем, что такое наш объект - пользователь, покупатель или
SQL-запись. Думаю, не стоит говорить, что это ужасный подход.
Само существование константы NULL цодталкивает нас придер­
живаться этого ужасного подхода. Если же вы сделаете все объ­
екты неизменяемыми, внутри них не будет никаких NULL. Иными
словами, вы будете выниждены создавать небольшие, целостные
и связные, а следовательно, лучше сопровождаемые объекты.

Потокобезопасность
Потокобезопасность - свойство объекта, буквально означающее,
что он может быть использован параллельно из нескольких по­
токов и при этом результаты его работы будут предсказуемыми.
Вот пример класса, инстанцирующего объекты, которые не яв­
ляются потокобезопасными:
class Cash {

private int dollars;
private int cents;
puЫic void mul(int factor) {

this.dollars *= factor;
this.cents *= factor;

}
}

Этот код выглядит безобидно, но посмотрим, что получится,
если я запущу его в двух параллельных потоках:
Cash price = new Cash("$15.10");
// следующие две строчки исполняются в двух потоках
price.mul(2);
// ожидается "$30.20" или "$60.40"
System.out.println(price);

Попробуйте сами и убедитесь, что при каждом запуске выводят­
ся разные числа. Ожидаются же только два корректных результа­
та. Первый поток выводит $30. 20, а второй - $60. 40, это означа­
ет, что первый поток умножил число на два, а второй умножил
его еще раз. Однако иногда будет выводиться значение $60. 20.
Почему так происходит и что это число означает в действитель­
ности? Как можно умножить $15 .10 на два и получить $60. 20?
Очень просто. Один поток умножает количество долларов на два
и количество центов на два, в то время как другой поток тоже
умножает количество долларов на два, но не успевает умножить
количество центов. Он, конечно, умножит их позже, но на не­
сколько микросекунд объект price окажется в «сломанномэ
состоянии - доллары были умножены, а центы - нет.

Найти, отладить и исправить такое поведение - одна из слож­
нейших задач в первую очередь потому, что его очень сложно,
а иногда и невозможно воспроизвести. Необходимо запускать
тесты несколько раз, но при этом нет гарантии, что проблема
проявится.

Неизменяемые объекты полностью решают эту проблему, пред­
отвращая всякие изменения своего состояния во время работы
программы. Не имеет значения, сколько потоков одновременно
работают с объектом, - ни один из них не может изменить его
состояния.

Изменяемый класс также можно сделать потокобезопасным,
используя явную синхронизацию:
class Cash {

private int dollars;
private int cents;
puЫic void mul(int factor) {

synchronized (this) { ·
this.dollars *= factor;
this.cents *= factor;

}
}

}

88 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 89

Это сработает, но при таком подходе возникает несколько про­
блем. Во-первых, не так-то просто обеспечить потокобезопас­
ность изменяемого класса. Во-вторых, синхронизация всегда
снижает производительность. Каждый поток должен ждать осво­
бождения объекта, чтобы смочь с ним работать. Каждый поток
устанавливает монопольную блокировку на объект, а остальные
в это время находятся в режиме ожидания. А еще не забывайте
о возможных взаимоблокировках. Темный лес, короче говоря.
Я настоятельно рекомендую держаться от него подальше и ис­
пользовать неизменяемые объекты.

К слову, вот пример кода для эксперимента с классом Cash:

class Cash {
private int dollars;
private int cents;
Cash(final int dlr, final int cts) {

this.dollars = dlr;
this.cents cts;

}
@Override
puЫic String toString() {

return String.format(
''$%d.%d", this.dollars, this.cents

);
}
puЫic void mul(int factor) {

this.dollars *= factor;
this.cents *= factor;

}
}
final Cash cash = new Cash(lS, 10);
final CountDownLatch start = new CountDownLatch(l);
final CallaЬle<Object> script = new CallaЬle<>() {

@Override
puЫic Object call() throws Exception {

start.await(); // блокировка здесь
cash.mul(2);
System.out.println(cash);
return null;

}
};
final ExecutorService svc =

Executors.newCachedThreadPool();
svc.submit(script); // первый поток
svc.submit(script); // второй поток
start.countDown();

Запустите его пару раз в своей IDE и посмотрите, что он выведет.
Ради интереса добавьте еще пару строчек svc. submit(script).

Объект script, конечно же, должен в конце вызывать метод
shutdown() у объекта svc. Я опустил эту часть для краткости.

Меньшие и более простые объекты
А теперь мое любимое преимущество неизменяемости - просто­
та. Как вы уже поняли, простота означает более высокую сопро­
вождаемость. Чем проще объекты, тем они более цельные и тем
лучше сопровождаемые. Чем сложнее программное обеспечение,
тем ниже квалификация программиста, его создавшего. Лучшее
ПО - простое ПО, простое для пониманиямодификации, до­
кументирования, поддержки и рефакторинга.

Сопровождаемость - главная добродетель в современном про­
граммировании. t

В большинстве случаев простота означает меньшее количество
строк кода. Чем короче класс, тем проще понять, что он делает,
где у него недостатки, как его переработать. Если класс состоит
из тысяч строк, то очевидно, что даже автор понятия не имеет,
что в нем происходит. Я бы сказал, что в Java максимальный
размер класса не должен превышать 250 строк кода (вместе
с комментариями и пробельными строками). Все, что превы­
шает эту цифру, сигнализирует о немедленной необходимости
рефакторинга класса. Для Ruby я бы предложил верхнюю гра­
ницу в 100 строк кода.

90 Глава 2 • Образование 2.6. Делайте классы неизменяемыми 91

Конкретное количество строк кода не имеет значения, если оно
небольшое. Я видел классы из 5000 строк. Такое абсолютно не­
допустимо, и этому нет оправдания. Кстати, я видел такое даже
в исходниках OpenJDК. Не говоря уже об Android SDК.

Если у вас получается выдерживать размер классов в пределах
250 строк в рамках всего приложения, то я бы сказал, что вы
хороший разработчик и архитектор ПО. Если получается делать
классы еще меньше, то вы великолепны. Здесь я говорю как
о тестовом, так и о «боевомэ коде.

Неизменяемые объекты по своей природе меньше изменямых
хотя бы потому, что тяжело сделать неизменяемый объект слиш­
ком большим - его состояние инициализируется только в кон-
структоре. Вы не станете делать конструктор с десятью аргу­
ментами - он будет выглядеть ужасно, и это станет бросаться
в глаза. Вы начнете с небольшого объекта с парой аргументов
в конструкторе. Затем станете добавлять в него новые возмож­
ности, и по мере роста их количества будет увеличиваться коли­
чество аргументов в конструкторе. Добавляя в него очередную
возможность, вы будете вынуждены сделать конструктор больше
по размеру. Вскоре вы осознаете, что что-то пошло не так, и разо­
бьете класс на несколько более мелких. Вы никогда не напишете
неизменяемый класс размером 2000 строк кода.

Мне кажется, этот аргумент самый сильный из приведенных.
Неизменяемость делает код классов чище и короче. Это самое
важное преимущество, которое вы получаете, делая классы не­
изменяемыми.

В начале этого раздела я обещал обсудить аргументы против
неизменяемости, но не буду делать это здесь. Сделаю это позже,
в разделе 3.4, поскольку ответ на все эти аргументы один и тот
же. Продержитесь еще пару разделов, и мы непременно добе­
ремся до критики неизменяемости классов и моей позиции по
ее поводу.

В обобщение данного подраздела позвольте повторить сказанное
в разделе 2.6: я категорически против изменяемых объектов.
В истинно объектно-ориентированном ПО существуют только
неизменяемые объекты. Изменяемость - ужасное наследие
процедурного программирования. Никогда не делайте классы
изменяемыми. Точка.

Ben GrunfeLd спросил 11+ декабря 2017 года:

Как неизменяемые объекты предотвращают нулевые ссылки?
Разве нельзя инициализировать неизменяемый объект как
NULL? Приведите, пожалуйста, пример. Простите мою непо­
нятливость.

Егор Бугаенко:

Я вообще не использую нулевые ссылки. Я либо инстанцирую
объект со всеми необходимыми аргументами, либо бросаю
исключение. На мой взгляд, нулевое значение атрибута объ­
ектного типа - идеальный пример плохо спроектированного
приложения.

Jean-PauL Wenger спросил 10 октября 2017 года:

Как реализовать неизменяемую динамическую структуру дан­
ных (например, дерево, в котором дочерние узлы могут добав­
ляться во время выполнения)?

Егор Бугаенко:

Неизменяемый объект - не значит константный.

RoLand Kuhn написал 2 августа 2015 года:

Описываемые вами преимущества относятся к ссылочной про­
зрачности и в общем справедливы и корректны, но вы, к сожа­
лению, упускаете основную идею объектно-ориентированного

92 Глава 2 • Образование 2.7. Пишите тесты, а не документацию 93

проектирования. Из истоков ООП понятно, что объекты должны
быть процессами, принимающими и отправляющими сообще­
ния. Работы Алана Кея, основанные на модели акторов, гласят
именно об этом. Конечно же, существуют объекты, которые
никогда не меняют поведения, но при этом невозможно постро­
ить полезную распределенную систему, в которой все объекты
(в изначальном смысле слова) неизменяемы, - такая система
не позволяет выражать изменение состояния. Обобщая эти два
пункта, скажу, что то, о чем вы пишете, является не объектно­
ориентированным программированием, а проектированием,
основанным на классах. Объекты, о которых вы говорите, - на
самом деле сообщения, которыми обмениваются реальные
объекты, и вот они действительно должны быть неизменяемы­
ми, иначе проблем не избежать.

Егор Бугаенко:
Я категорически не согласен с этим. Это чисто процедурная
точка зрения. Объекты - это НЕ процессы.

Jack написал 8 июня 2015 года:
Я обратил внимание: Егор часто говорит, что нечто есть плохо
с точки зрения ООП, но не есть плохо с точки зрения функ­
ционального подхода. Объекты с окончанием -er, внедрение
зависимостей, классы-утилиты - все это чрезвычайно важно
для решения задач с применением функционального подхода.

Егор Бугаенко:
Функциональное и объектно-ориентированное программи­
рование близки, но ООП имеет большие возможности в силу
наличия наследования, полиморфизма и т. п.

Jack:
Наследование легко осуществляется путем повторного исполь­
зования функций. Полиморфизм можно заменить передачей
ссылки на другой метод и т. д.

Егор Бугаенко:

Вы правы. Тогда я бы сказал, что ООП просто более интуитивно
понятно. Оно моделирует действительность лучше, чем функ­
циональная парадигма, поскольку мы в состоянии понять, что
такое объект, не имея опыта программирования. Прежде чем
мы сможем легко оперировать функциями, мы должны изучить
их, приспособиться к ним.

Matteo Vaccari написал 26 октября 2014 года:

Многие проблемы можно естественным обра~ом смоделиро­
вать изменяемыми объектами. Например, симуляторы, игры ...
Да, все это можно смоделировать с использованием функцио­
нального подхода, но в таком случае вы привязываетесь к част­
ному способу моделирования. Я предпочитаю стиль, который
ближе к моему интуитивному ощущению предметной области.
У меня нет аргументов против неизменяемости, но у меня есть
аргумент за изменяемость. Я за сокращение расстояния между
ментальной моделью и программным кодом.

Егор Бугаенко:

Весомый аргумент, я согласен. Но я-то как раз и стремлюсь
изменить/улучшить вашу ментальную модель. Вы привыкли мо­
делировать в терминах изменяемых объектов. Поэтому вам на­
много удобнее делать так, как вы делаете. Как симуляторы, так
и игры можно строить с применением неизменяемых объектов.

2.7. Пишите тесты, а не документацию
Документация - очень важная составляющая сопровождаемо­
сти. Даже скорее не документация, а доступность вспомогатель­
ной информации о конкретном классе или методе. Как читателю
вашего кода, мне могут понадобиться дополнительные подроб­
ности или пояснения. Возможно, я не настолько умен, как вы.

94 Глава 2 • Образование 2.7. Пишите тесты, а не документацию 95

Я могу не знать, как действует ваш алгоритм сортировки, что
такое MDS, как работает конкретное регулярное выражение или
каково назначение /dev/null. Все это вполне возможно. Из соб­
ственного опытаскажу, что чтение кода, написанного «вссэна­
ющим» программистом, вызывает огромное раздражение.

Чтобы сделать свой код лучше читаемым, представьте, что
я начинающий программист, слабо понимающий предметную
область, язык программирования, шаблоны проектирования
и алгоритмы. Представьте, что я намного глупее вас. Так вы
демонстрируете свое уважение ко ·мне. Не хвастайтесь своими
способностями - пишите простой легко читаемый код. Плохие
программисты пишут сложный код. Хорошие программисты
пишут простой код.

Идеальный код говорит сам за себя и не требует дополнитель­
ной документации, например:
Employee jeff = department.employee("Jeff");
jeff.giveRaise(new Cash("$5,000"));
if (jeff.performance() < 3.5) {

jeff.fire();
}

Нужно ли документировать такой код? Мне кажется, он .до­
статочно прозрачен сам по себе. А как насчет этого фрагмента:

·class Helper {
int saveAndCheck(float х) { .. }
float extract(String text) { .. }
boolean convert(int value, boolean extra) { .. }

}

Ужасное имя класса (см. раздел 1.1), ужасные имена методов
(см. раздел 2.4), класс в целом спроектирован отвратительно.
Естественно, для него необходима документация. Я не могу
понять, что он делает, зачем нужны его методы и как их исполь­
зовать. Плохо спроектированные классы вынуждают писать для
них документацию. Соответственно хорошо спроектированные

классы документации не требуют. Их назначение понятно, а код
элегантен, например:
class WebPage {

String content() { .. }
void update(String content) { .. }

}

Мой вам совет: не документируйте код - делайте его чище.

Под этим я, в частности, понимаю написание юнит-тестов. Хотя
юнит-тестирование стало общепринятой практикой относитель-

1но недавно , юнит-тест должен рассматриваться как часть класса
наравне с методами, свойствами, именем и перечнем реализу­
емых интерфейсов. К сожалению, в большинстве языков (воз­
можно, во всех) делается совершенно не так. В Java, к примеру,
юнит-тест - это файл .java, содержащий еще один класс. Если
класс называется Cash, то соответствующий класс теста будет
по договоренности называться CashTest. Этот подход неидеа­
лен, поскольку он позволяет создавать классы без юнит-тестов.
Такого быть не должно.

Юнит-тест - часть класса, а не самостоятельная сущность. Есте­
ственно, концептуально, а не технически. Во всех известных мне
языках юнит-тесты технически реализуются в виде отдельных
файлов.

Создавая чистые и сопровождаемые тесты, вы делаете сами
классы чистыми и улучшаете их сопровождаемость. Поэтому чем
лучше тест, тем меньше документации требует класс. Юнит-тест
и есть документация. Должным образом написанный юнит­
т ст очень поможет понять ваш класс. При этом он интерна­
, гионален, Чтобы понять юнит-тест на Java, нет необходимости
владеть английским в совершенстве, но чтобы понять текст

1 Beck К. Test-Driven Development Ьу Example. - Addison Wesley,
2003.

96 Глава 2 • Образование 2.8. Используйте fаkе-объекты вместо mосk-объектов

Jаvаdос-документации, нужны определенные навыки чтения
по-английски.

По аналогии с тем, что «одна картинка стоит тысячи слов»,
я бы сказал, что один юнит-тест стоит страницы документации.
Юнит-тест показывает мне, как использовать класс, в то время
как документация рассказывает историю, которую намного
труднее понять и интерпретировать. Не говорите, а показывайте.
И старайтесь делать демонстрацию занимательной. Если вам
удастся сделать юнит-тест правильно, его будут читать даже
чаще, чем код самого класса.

Лучший совет, как писать хорошие, качественные юнит-тесты:
уделяйте им такое же внимание, как и основному коду. Есть
много других хороших советов по созданию юнит-тестов и обе­
спечению их качества. В частности, хотелось бы выделить книги
«Эффективная работа с унаследованным кодом» ' и «Чисгый
код. Создание, анализ и рефакторингэ",

Некоторые рецензенты попросили меня привести пример хо­
рошего юнит-теста. Я выполню просьбу, прежде всего чтобы
проиллюстрировать эту главу примером кода. Проблема напи­
сания хороших юнит-тестов выходит за рамки книги. Вот что
я назвал бы хорошим юнит-тестом для класса Cash (тест написан
с использованиемJUnit и Hamcrest):
class CashTest {

@Test
puЫic void summarizes() {

assertтhat(
new Cash(11$S11).plus(new Cash(11$З11

)),

equalTo(new Cash{11$811
))

1 Фиэерс М. Эффективная работа с унаследованным кодом. - Вильяме,
2004.

2 Мартин Р. С. Чистый код. Создание, анализ и рефакторинг. - Питер,
2018.

}
@Test
puЫic void deducts() {

assertтhat(
new Cash("$7").plus(new Cash("-$11")),
equalТo(new Cash("-$4"))

}
@Test
puЫic void multiplies() {

assertThat(
new Cash{"$2").mul(З),
equalТo(new Cash("$6"))

97

}
}

Много хороших советов по поводу написания юнит-тестов мож­
но найти в книге Growing Object-Oriented Software, Guided Ьу
Tests1•

2.8. Используйте fаkе-объекты
вместо mосk-объектов

Обсуждение на http://goo.gl/OF3Cev.

Еще один раздел о юнит-тестировании - и хватит. На этот раз
речь пойдет о мокинге как инструменте оптимизации тестов.
Вот как это работает. Допустим, у нас есть класс Cash, умеющий
конвертировать себя в другую валюту:
class Cash {

private final Exchange exchange;
private final int cents;
puЫic Cash{Exchange exch, int cnts) {

this.exchange = exch;

1 Freeman S. et al. Growing Object-Oriented Software, Guided Ьу Tests. -
Addison-Wesley Professional, 2009.

98 Глава 2 • Образование
2.8. Используйте fаkе-объекты вместо mосk-объектов 99

this.cents = cnts;
}
puЫic Cash in(String currency) {

return new Cash(this.exchange,
this.cents *
this.exchange.rate(

"USD", currency
)

);
}

}

Этот класс зависит от класса Exchange, который знает конкрет­
ный курс конверсии долларов, скажем, в евро. Чтобы использо­
вать класс Cash, мы должны передать в его конструктор экзем­
пляр класса Exchange:

Cash dollar = new Cash(new NYSE("secret"), 100);
Cash euro = dollar.in("EUR");

В данном случае класс NYSE знает, как получить курс обмена евро
на доллары с Нью-Йоркской фондовой биржи с помощью, к при­
меру, НТТР-запроса к ее серверу. Здесь я использую строку
"secret" в качестве пароля к рабочему серверу биржи. Так класс

, Cash работает в реальном окружении, но мы не хотим, чтобы при
каждом запуске юнит-тестов происходили обращения к рабо­
чему серверу биржи. Мы также не хотим, чтобы программисты
знали реквизиты этого сервера. Нам нужно найти способ про­
тестировать класс Cash, не привлекая к этому сервер биржи.

Традиционный подход называется мокингом. Вместо того чтобы
использовать сервер биржи NYSE, мы создаем имитацию интер- ..
фейса Exchange и передаем ее в качестве аргумента конструктору
класса Cash (я применяю Mockito1):

Exchange exchange = Mockito.mock(Exchange.class);
Mockito.doReturn(l.15)

.when(exchange)

1 Насколько мне известно, он находится здесь: http://mockito.org/

.rate("USD", "EUR");
Cash dollar = new Cash(exchange, 500);
Cash euro = dollar.in("EUR");
assert •• 5. 75". equals (euro. toString());

Уверен, вы знаете о таком приеме. Но я все равно решил его
объяснить, чтобы было проще понять, почему я считаю его ис­
пользование плохой практикой. Да, я утверждаю, что мокинг -
плохая практика, применять его можно только в самых крайних
случаях. Впрочем, если вы разрабатываете объекты в соответ­
ствии с рекомендациями, приводимыми в данной книге, мокинг
вам не понадобится.

Я рекомендую вместо мокинга задействовать fаkе-объекты. Вот как
интерфейс Exchange должен поставляться пользователям:
interface Exchange {

float rate(String origin, String target);
final class Fake implements Exchange {

@Override
float rate(String origin, String target) {

return 1.2345;
}

}
}

Вложенный fаkе-класс - часть интерфейса и должен постав­
ляться вместе с ним. Это важная часть интерфейса Exchange,
поскольку он помогает применять его в юнит-тестах. Это еще
не все - подробности рассмотрим позже. Теперь разберем юнит­
тест, который использует fаkе-классы вместо мокинга:
Exchange exchange = new Exchange.Fake();
Cash dollar = new Cash(exchange, 500);
Cash euro = dollar.in("EUR");
assert "6 .17". equals (euro. toString());

Выглядит короче, не правда ли? Вы можете возразить, что тест
стал менее очевидным. К примеру, откуда появилось число 6, 17,
если мы нигде не задаем курс конверсии? Это действительно

100 Глава 2 • Образование

так. Но мы можем наделить fаkе-классы еще большими возмож­
ностями. Можно сделать так, чтобы они возвращали инкапсули­
рованный курс вместо константного. В целом fаkе-классы могут
и должны быть весьма функциональными. Я бы даже сказал, что
иногда они должны быть сложнее настоящих классов. Кроме
того, они могут реализовывать нужную функциональность со­
вершенно иным способом, нежели настоящие классы. Они могут
действовать и реагировать на действия по-другому. Это не будет
большой проблемой до тех пор, пока юнит-тесты не станут слиш­
ком сильно зависеть от их поведения. Не подстраивайте тесты
под fаkе-классы.

Убедитесь, что fаkе-классы должным образом соответствуют
вашим тестам.

Fаkе-классы сокращают размер тестов, что серьезно улучшает
их сопровождаемость, тогда как мокинг делает тесты чересчур
многословными и сложными для отладки и рефакторинга. Для
простого интерфейса, такого как Exchange, это неочевидно, но мы
тем не менее смогли сократить тест на одну строку. Когда тест
включает пять объектов разных классов, у каждого из которых
есть по нескольку методов, то спустя пару месяцев нагромож­
дение вызовов Mockito перестанет быть понятным даже автору
тестов.

Но проблема не только в объеме тестов. Она намного шире.
Мокинг усложняет сопровождение тестов, поскольку превра­
щает предположения в факты. Позвольте объяснить, что я имею
в виду. Взгляните еще раз на эти строки:
Exchange exchange = Mockito.mock(Exchange.class);
Mockito.doReturn(l.15)

.when(exchange)

. rate("USD11
,

11 EUR 11
);

Что конкретно мы хотим ими сказать? Мы буквально говорим:
«Предположим, что класс Cash вызывает Exchange.rate()~.

2.8. Используйте fаkе-объекты вместо mосk-объектов 101

Весь юнит-тест построен на этом предположении. Мы не знаем
этого наверняка, поскольку с точки зрения юнит-теста класс
Cash - черный ящик. Мы не знаем, как именно реализован метод
Cash. in () и как именно он использует экземпляр Exchange. Воз­
можно, не использует его вообще. Мы не знаем этого, но делаем
предположение и строим вокруг него весь тест. Мы превращаем
предположения в факты. Говорим: «Вот как должен работать
класс Cash!~

Это плохо. Очень плохо. Почему? Потому что противоречит
общей цели юнит-тестирования - подстраховать процесс ре­
факторинга.

Юнит-тест помогает рефакторингу класса, поскольку дает нега­
тивный результат, когда что-то в поведении класса изменилось
(истинное срабатывание). Но в то же время он не дает негатив­
ного результата, если я не менял поведение (ложное срабаты­
вание). Это чрезвычайно важная вторая половина принципа
в целом: тест не должен давать отрицательный результат, если
видимое поведение класса не изменилось. Он не должен давать
ложных срабатываний.

Однако наш тест может быть провален без всяких на то причин.
И вот как. Допустим, мы хотим изменить интерфейс Exchange
так, чтобы он выглядел следующим образом:
interface Exchange {

float rate(String target);
float rate(String origin, String target);

}

Первый метод (с одним аргументом) возвращает курс конверсии
из долларов в целевую валюту, а второй (с двумя аргументами)
позволяет указать исходную и целевую валюты.

Затем мы укажем классу Cash, что нужно использовать новый
метод с одним аргументом, когда исходная валюта - доллары.
Что произойдет с нашим юнит-тестом? Правильно, он покажет

102 Глава 2 • Образование

ложное срабатывание. И укажет мне на сбой, которого на самом
деле нет. Класс Cash по-прежнему работает и конвертирует ва­
люты. Все в полном порядке, но тест показывает ошибку.

Это чертовски раздражает и полностью подрывает веру в полез­
ность собственных юнит-тестов. И является одной из ключевых
причин того, что очень многие программисты не любят и не при­
меняют их. Они слишком хрупки и нестабильны, в основном из-за
мокинга. Посмотрим, что произойдет в точно такой же ситуации,
но при использовании fаkе-класса Exchange. Fake вместо мокинга.

При изменении интерфейса Exchange мы автоматически меняем
реализацию класса Exchange. Fake, и теперь она выглядит следу­
ющим образом.
interface Exchange {

float rate(String target);
float rate(String origin, String target);
final class Fake implements Exchange {

@Override
float rate(String target) {

return this.rate("USD", target);

2.8. Используйте fаkе-объекты вместо mосk-объектов 103

}
@Override
float rate(String origin, String target) {

return 1.2345;
}

}
}

Нужно ли .измепятъ юнит-тест? Нет. Ломается ли он? Нет.
Мы не поменяли поведение класса Cash, а юнит-тест не дал лож­
ного срабатывания. Это хороший юнит-тест, я могу ему дове­
рять.

Суть в том, что мокинг - изначально плохой подход. Его изобре­
ли, чтобы помочь с юнит-тестированием, но эта помощь сомни­
тельна. Он привязывает тесты к внутренним деталям реализации
класса. Мы делаем предположения, жестко фиксируем их в коде
и на этом закругляемся. Когда приходит время рефакторинга,

нам приходится удалять свои тесты, поскольку они связаны
с уже несуществующими деталями реализации.

Напротив, fаkе-классы делают тесты полностью сопровождаемы­
ми, поскольку нас не заботит то, как класс Cash взаимодействует
с реализацией интерфейса Exchange. Взаимодействие этих двух
классов не должно касаться юнит-теста класса Cash. Это лич­
ное дело класса Cash. Он может взаимодействовать с Exchange,
а может и не взаимодействовать. Он может использовать метод
с одним аргументом, а может - с двумя. Решать классу Cash.
Мы не имеем права делать предположения о его личных реше­
ниях. Все, что нас интересует, - это то, как Cash взаимодействует
с нами, а не то, как он взаимодействует с другими классами.

Вы можете возразить, что раз мы передаем Cash экземпляр
Exchange, то имеем право знать, как он его применяет. Нет, не име­
ем. Мы не имеем права знать, как реализован объект. Привязка
тестов к внутренним деталям реализации делает тест хрупким
и несопровождаемым.

Мокинг - источник проблемы.

Повторюсь: мокинг - ужасный подход к юнит-тестированию.

Кроме того, большинство mосk-фреймворков дает нам возмож­
ность узнать, осуществилось ли заданное взаимодействие с mосk­
объектом и сколько раз это произошло. На первый взгляд это
удобная возможность, но по той же причине очень вредная.
Ставя тесты в зависимость от взаимодействия классов, мы де­
лаем рефакторинг болезненным, а иногда и невозможным. Мы
не должны проверять, как объект работает со своими зависимо­
стями. Эта информация инкапсулируется объектом. Иными
словами, она спрятана от наших глаз. Секрет.

Но что делать, если с интерфейсом не поставляется fаkе-объект?
Конечно, было бы идеально иметь fаkе-классы для всех интер­
фейсов, но в реальности это не так, правда? Да, именно. Действи­
тельность в общем случае намного менее элегантна, чем приемы,

104 Глава 2 • Образование

описанные в данной книге. Но мы можем ее изменить (действи­
тельность, а не книгу). Начните со своих интерфейсов - осна­
стите их fаkе-классами. Убедитесь в том, что каждый создава­
емый вами класс не имеет методов, не реализующих интерфейс
(см. раздел 2.3). Предусмотрите fаkе-классы для всех написан­
ных вами интерфейсов. Так вы начнете из~енять мир. Пользо­
ватели ваших классов станут писать более качественные тесты,
а количество мокинга в мире будет уменьшаться.

У fаkе-классов есть еще одно 'важное преимущество, которое
я обещал описать, - они помогают лучше продумать и спроек­
тировать интерфейс. Работая с интерфейсом и создавая для него
fаkе-класс, вы неизбежно вынуждены думать как пользователь
интерфейса, а не только как его разработчик. Посмотрите на него
под другим углом и попытайтесь реализовать ту же функцио­
нальность, используя тестовые ресурсы.

Возьмем, к примеру, интерфейс WebPage. Его реализация по
умолчанию должна делать НТТР GЕТ-запрос для загрузки
страницы и НТТР РUТ-запрос для ее обновления. Но как реа­
лизовать для нее fаkе-класс? Где будет храниться содержимое
страницы? Как обеспечить потокобезопасность операций чтения
и обновления? Как работать с разными кодировками? Вопросов
будет много. Суть в том, что, отвечая на них и находя оптималь­
ное решение, вы непременно улучшаете интерфейс.

Поэтому держитесь подальше от мокинга и всегда создавайте
fаkе-классы для своих интерфейсов.

Еще я могу привести несколько практических примеров боль­
ших fаkе-классов, которые мы применяем в своих проектах.
Не просто классов, а пакетов классов и даже пакетов пакетов
классов. Однажды, например, мы писали RЕSТful-клиент к API
Github. Сам API весьма обширен - в нем порядка 150 точек
входа. Для организации юнит-тестирования клиента мы создали
полную копию API в виде fаkе-классов. Чтобы сохранять данные

2.8. Используйте fаkе-объекты вместо mосk-объектов 105

и полностью имитировать GitHub, использовали ХМL-файл.
Более 150 fаkе-классов обновляли это ХМL-хранилище, и ни
один из них не подозревал, что взаимодействовал с поддель­
ным GitHub, а не с настоящим сервером. Реализация библиоте­
ки fake-классов заняла некоторое время, но оказалась ценным
вложением, поскольку благодаря ей юнит-тесты упростились
и уменьшились в размерах1•

В другом случае уровень персистентности был реализован
в СУБД АWS DynamoDB, а уровень модели реализован на­
бором интерфейсов. Еще у нас были классы, реализующие эти
интерфейсы путем реального взаимодействия с NoSQL-бaзoй
данных. Кроме того, в тестовых целях мы вложили в каждый
интерфейс fаkе-класс, имитирующий персистентность с исполь­
зованием текстовых файлов. Такой набор fаkе-классов сделал
юнит-тесты намного короче и чище2•

Dev Danke написал 13 февраля 2015 года:

Я не согласен с этой статьей. Я не согласен, что многие думают,
будто мокинг - зло и использовать его плохо. Хотя некоторые
разработчики поддерживают это мнение, подавляющее боль­
шинство считает мокинг отличным решением. Еще я не согла­
сен с тем, что создание собственного набора тестовых объектов
лучше, чем применение любого из популярных фреймворков
для мокинга. Мокинг и юнит-тестирование являются передо­
выми практиками. Мокинг и юнит-тестирование широко при­
меняются практически во всех средних и крупных компаниях
и организациях. Использование фреймворков для мокинга
существенно расширяется. Только взгляните на статистику
загрузок популярных фреймворков для мокинга, например
Mockito. Их применение растет экспоненциально! Популярность

1 http:j/github.com/jcabl/jcabl-github.
2 http://github.com/yegor2S6/rultor.

106 Глава 2 • Образование 2.8. Используйте fаkе-объекты вместо mосk-объектов 107

фреймворков для мокинга увеличивается, поскольку разработ­
чики осознают, что тем самым они экономят время и получают
возможность быстро писать более качественные юнит-тесты.
Юнит-тесты, которые они пишут, проще для понимания и под­
держки другими разработчиками. Использование самодельных
тестовых объектов для юнит-тестирования - антипаттерн.
Любой, кто так делает, на самом деле создает собственный
фреймворк для мокинга. Почти наверняка он будет представ­
лять собой жалкую, плохо документированную имитацию (если
она вообще будет документирована). Других разработчиков
вряд ли обрадует применение причудливых самодельных тесто­
вых объектов вместо общепринятых стандартных фреймворков
для мокинга. И не забывайте, что время, затраченное на созда­
ние и документирование самодельных тестовых объектов, могло
быть израсходовано на усовершенствование программного
обеспечения вашей компании.

Jacob написал 7 февраля 2015 года:

Не существует решения для юнит-тестирования, которое подо­
шло бы для любого проекта, но вот несколько аргументов.

1. Меня не очень убеждает ваш аргумент о сопровождаемо­
сти. При использовании инструмента вроде Spock вам все­
го лишь понадобится объявить три поля и написать одну
строчку в каждой спецификации взаимодействия с колла­
боратором. Похоже, что ваше решение станет порождать
малоприятные тестовые классы, когда появится необхо­
димость тестировать всевозможные сценарии, требующие
собственной реализации (к примеру, проверка обработки
исключительных ситуаций). Фреймворки для мокинга позво­
ляют создавать управляемые заглушки для коллабораторов
с минимальными накладными расходами.

2. Возможно, я что-то упустил, но то, что вы предлагаете, -
не совсем юнит-тестирование, а нечто похожее на заглу-

шечное интеграционное тестирование. Одна из важнейших
частей использования фреймворков для мокинга - созда­
ние mосk-объектов, которые записывают и подтверждают
взаимодействие объектов в рамках управляемых сценариев.

lnvisible Arrow спросил 13 декабря 2011+ года;

Не приведет ли включение mосk-объектов вт-от же модуль к не­
преднамеренному использованию их в рабочем коде? Я пред­
почел бы, чтобы они находились в отдельном модуле, который
я мог бы применять в тестовой области сборки зависимого
модуля.

Егор Бугаенко:

Именно так я и делал некоторое время назад - создавал
дополнительный модуль, используемый в тестовой области.
Около года тому назад я понял, что такой подход сложнее, чем
просто расположить fаkе-классы рядом с настоящими. Я по­
нял ваш довод - и он совершенно верен: fаkе-объекты могут
быть применены в рабочем коде по ошибке. На это у меня нет
ответа. Возможно, потом я найду какие-то доводы и напишу
здесь о них.

lnvisible Arrow написал 13 декабря 2011+ года:

В случае применения некоторых сторонних библиотек, ко­
торые не поставляются с mосk-объектами, мокинг, вероят­
но, окажется быстрее создания fаkе-класса. Например, класс
ServletContext, имеющий более 30 методов, объявленных
в интерфейсе. Тот ли это случай, когда предпочтительно ис­
пользовать мокинг вместо fаkе-классов?

Егор Бугаенко:

servletContext - и вправду хороший пример, поскольку это
монстрообразный интерфейс и поэтому потребует создания

108 Глава 2 • Образование

монстрообразного fаkе-класса. Такого монстра необходимо
создать однажды, и сделать это должны разработчики Servtet
API. Такой класс, как FakeServletContext, должен поставляться
вместе с ServletContext. Это сделало бы жизнь намного про­
ще. К сожалению, они так не делают. Если mосk-реализация
контекста сервлета вам нужна во многих местах в приложении,
создавайте fаkе-класс. Если только однажды - задействуйте
Mockito.

2.9. Делайте интерфейсы краткими, используйте smart-клaccы 109

2.9. Делайте интерфейсы краткими,
используйте smart-клaccы

Обсуждение на http://goo.gl/1Zos9r.

Я уже упоминал в разделе 1.2, что качественно спроектирован­
ный целостный класс должен иметь всего несколько публичных
методов. Мы обсудим это еще подробнее в разделе 3.1, но уве­
рен, что вы уже понимаете важность поддержания небольших
размеров классов. Еще важнее делать небольшими интерфейсы.
Почему это приоритетнее? Потому что класс может реализовы­
вать несколько интерфейсов. Если каждый из двух интерфейсов ·
реализуют по пять методов, то класс, реализующий оба интер­
фейса, должен иметь десять методов. Такой класс элегантным
не назовешь. Помните интерфейс Exchange из предыдущего
раздела? Вот этот:

interface Exchange {
float rate{String target);
float rate{String source, String target);

}

Он хорош как объект обсуждения того раздела, но спроекти­
рован отвратительно, поскольку требует слишком многого.
Интерфейс - это контракт, который должен соблюдать реа­
лизующий его класс. Этот интерфейс возлагает слишком мно-

го обязанностей на реализующий его класс. Такой контракт
способствует нарушению известного принципа единственной
ответственности, иными словами, созданию рыхлых классов.
Контракт требует от обменника вычислять курс и подставлять
валюту по умолчанию, если она не была указана. Это две раз­
ные функции, хотя и очень близкие друг другу. Я веду к тому,
что метода rate () с одним аргументом в этом интерфейсе быть
не должно.

Должны ли мы определить для него еще один интерфейс? Нет.
Мы должны создать smart-клacc прямо внутри интерфейса:

interface Exchange {
float rate{String source, String target);
final class Smart {

private final Exchange origin;
puЫic float toUsd{String source) {

return this. origin. rate(source, ··uso");
}

}
. }

В этом smart-клacce может быть намного больше методов, дела­
ющих нечто очевидное и очень общее. Данный smart-клacc не зна­
ет, как реализован обменник и как вычисляется курс, но он реали­
зует поверх этого некоторую функциональность. Эти возможности
можно сделать общими для разных реализаций Exchange.

Вот еще одна причина создавать smart-клaccы и поставлять их
вместе с интерфейсами: не хотелось бы, чтобы разные реали­
зации интерфейса снова и снова переписывали одну и ту же
фупкциональностъ. Загрузка обменных курсов с Нью-Йоркской
фондовой биржи - уникальная функция класса NYSE, который
реализует интерфейс Exchange. Но функционал, подставляющий
валюту «доллар США» в случае, когда она не была указана,
с легкостью может быть использован совместно несколькими
классами.

110 Глава 2 • Образование

Вот как будет применяться вложенный класс Exchange. Smart
в сочетании с классом NYSE:

float rate = new Exchange.Smart(new NYSE())
.t0Usd("EUR11

);

Скажем, мы хотим добавить функциональности классу NYS Е
и в то же время другим реализациям интерфейса Exchange. До­
пустим, мы часто выполняем преобразование из долларов в евро
и хотим избежать дублирования кода. И не хотим повсюду ис­
пользовать строковый литерал "EUR 11

• Нам нужен метод напо­
добие eurToUsd(). Мы не будем добавлятьего к интерфейсу
Exchange. Вместо этого поместим его в smart-клacc. Теперь в нем
два метода:
interface Exchange {

float rate(String source, String target);
final class Smart {

private final Exchange origin;
puЫic float toUsd(String source) {

return this. origin. rate(source, 11USD11
);

}
puЫic float eurToUsd() {

return this. toUsd (11 EUR 11
);

}
}

}

Мы можем получить курс конверсии евро в доллары следующим
образом:
float rate = new Exchange.Smart(new NYSE())

.eurToUsd();

Smart-клacc увеличивается в размерах, а интерфейс Exchange
остается небольшим и целостным. В нем есть всего один метод,
который реализован классами NYSE, ХЕ, Yahoo и другими источ­
никами информации о курсах обмена валюты. Функциональ­
ность smart-клacca не специфична для конкретного обменника.
Она является общей для всех обменников. Нет необходимости

2.9. Делайте интерфейсы краткими, используйте smart-клaccы 111

требовать ее реализации от каждого обменника. Не нужно делать
интерфейс Exchange слишком требовательным.

Вот почему заголовок и тема данного раздела - «Делайте ин­
терфейсы краткими». Интерфейсы - контракты между нами,
пользователями обменника, и программистами, реализующими
класс NYSE. Чем больше интерфейс, тем более он требователен
и тем больше проблем создаст тому, кто будет реализовывать
класс NYSE. И не только потому, что его реализация потребует
больших усилий. Дело в серьезной потере цельности и надеж­
ности класса. Предполагается, что класс NYSE будет выполнять
некие сетевые вызовы к Нью-Йоркской фондовой бирже, и на
этом все. Все остальные возможности - знать о валюте евро
и конвертации в нее - могут быть реализованы кем-то другим.
Этот кто-то - smart-клacc - не должен ничего знать о сетевых
вызовах. Мы, по сути, извлекаем общую функциональность
и избегаем дублирования кода, делая интерфейсы краткими
и поставляя с ними smart-клaccы.

Этот подход очень похож на компонуемые декораторы, рассма­
триваемые в разделе 3.2. Разница между декоратором и smart­
классом в том, что smart-клacc увеличивает количество методов
объекта, а декоратор усиливает существующие методы. Рассмо­
трим следующий пример:
interface Exchange {

float rate(String origin, String target);
final class Fast implements Exchange {

private final Exchange origin;
@Override
puЬlic float rate(String source, String target) {

final float rate;
if (source.equals(target)) {

rate 1.0f;
} else {

rate this.origin.rate(source, target);
}
return rate;

112 Глава 2 • Образование

}
puЫic float toUsd(String source) {

return this.origin.rate(source, "USD");
}

}
}

Вложенный класс Exchange.Fast одновременно является и де­
коратором, и srnart-клaccoм. Во-первых, он переопределяет
метод rate(), тем самым усиливая его. Он пропустит обращение
к сервису обмена валют, если валюты совпадают. Во-вторых, он
добавляет новый метод toUsd (), который упрощает конверсию
в доллары.

2.9. Делайте интерфейсы краткими, используйте smart-клaccы 113

BassspieLer написал 9 февраля 2018 года:

По поводу использования smагt-классов: данные примеры
не соответствуют элегантному принципу «не должно существо-·
вать публичных методов без аннотации @Override». Я понимаю
стоящие за этим причины. Но, может быть, есть способ улуч­
шить их? Или мы вынуждены смириться с этим? Я разрываюсь
между теоретическими и практическими доводами.

Егор Бугаенко:

Да, вы-правы, эти smагt-классы - неидеальные объекты. Ско­
рее они являются дополнительными инструментами, помогаю­
щими создавать хорошие объекты. Поэтому данный принцип
к ним неприменим.

Егор Бугаенко:

Методы по умолчанию - хорошая возможность, но я думаю,
что smагt-классы лучше. В основном потому, что у нас может
быть несколько smагt-классов, а методы по умолчанию должны
оставаться в рамках одного интерфейса. Гибкость снижается.

David Raab написал 2 мая 2016 года:

Хотел бы я посмотреть на ваше лицо в тот день в будущем,
когда вы осознаете, что все ваши классы/интерфейсы с одним
методом на самом деле являются статическими методами!
Жду не дождусь!

Егор Бугаенко:

Надеюсь, что в будущем статические методы исчезнут.

Yev the dev написал 30 мая 2016 года:

Почему бы вместо использования smагt-классов не опреде­
лить дополнительные методы как методы по умолчанию, кото­
рые применяли бы настоящие интерфейсные методы. Да, это
противоречивая возможность, но она решает проблему откры­
тости и, в отличие от smагt-классов, позволяет программисту
выполнить собственную реализацию дополнительных методов.

3.1. Предоставляйте менее пяти публичных методов 115

Работа
3.1. Предоставляйте менее

пяти публичных методов

Главное различие между ООП и его процедурными предками
в том, кто стоит у руля. В процедурном программировании за­
правлять будет код с операторами и инструкциями. Инструкции
управляют и манипулируют данными, модифицируют и читают
их. Данные - пассивный компонент, который спокойно си­
дит, ожидая, когда код считает или запишет его. Подпрограммы
и структуры данных - два основных инструмента декомпози­
ции задачи на подзадачи.

ООП переворачивает все с ног на голову. В ООП управляют
объекты - умные представители данных. Инструкции и опера­
торы больше не у дел. По-хорошему, в идеально чистом ООП­
языке их вообще не должно существовать. В нем не должно быть
операторов - только классы и их экземпляры. В ООП мы ком­
понуем меньшие объекты в больший, размером с приложение,
объект и передаем ему управление.

Я понимаю, что все это может звучать очень абстрактно и тео­
ретически, но уверяю вас, что это предельно практично. В не­
скольких последующих разделах я объясню и покажу на приме­
рах, что я имею в виду. Короче говоря, данная глава посвящена
аргументам против крупных объектов, статических объектов,
NULL-ccылoк, геттеров, сеттеров и оператора new.

Маленький объект - наиболее элегантный, сопровождаемый,
цельный и верифицируемый объект. В разделе 2.6 я уже предло­
жил ограничивать размер класса 250 строками, но это не самый
важный показатель. У нас может быть класс из 50 строк и 20 ме­
тодов. Это маленький класс? На самом деле нет. Как насчет
другого примера: класс с одним публичным и 20 приватными
методами? Это маленький класс? Не сказал бы, что он очень
большой.

Поэтому в качестве главного показателя размера класса пред­
лагаю использовать количество публичных (и защищенных)
методов. Чем больше публичных методов, тем больше класс.
Чем больше класс, тем слабее его сопровождаемость. На уме
у меня число пять. Если в классе меньше пяти публичных ме­
тодов, то это приемлемо. Если их больше, класс нуждается в ре­
факторинге. С ним что-то не так.

Обратите внимание на то, что я говорю о публичных методах,
а не о конструкторах и приватных методах. Защищенные методы
также попадают в эту категорию.

Тогда почему пять? Нет никакой особой причины - мне просто
так кажется. Можем ли мы определить правильное количество?
Не думаю. Должны ли принять число пять как абсолютную и не­
поколебимую константу? Нет. Это число нужно, чтобы помочь
вам осознать, что есть верхняя граница количества методов,
и она невелика. И это не десять, не двадцать, даже не семь мето­
дов. Оно очень невелико. Объявите несколько методов - и вот
вы уже близки к пяти. Остановитесь и подумайте. Вы все еще
пишете цельный, целостный класс, имеющий единственную об­
ласть ответственности? Возможно, пришло время разделить его

116 Глава 3 • Работа

на части. Я хочу, чтобы в промежутке между написанием четвер­
того метода и объявлением пятого вы остановились и подумали.

Что мы получим от того, что сделаем классы небольшими?
Отвечаю: элегантность, сопровождаемость, целостность и вери­
фицируемость.

Меньшие по размеру классы более элегантны просто потому, что
в этом случае меньше вероятность сделать ошибку. Три метода
согласовать между собой проще, чем десять. Они будут лучше
сочетаться.

Меньшие классы лучше сопровождаются, потому что они ...
меньше по размеру. В них меньше кода, меньше методов, проще
найти ошибку, их проще модифицировать. Проще изолировать
проблему, когда в объекте минимум точек входа, при этом каж­
дый метод есть точка входа в объект.

Меньшие классы более цельные, то есть их методы и свойства на­
ходятся, так сказать, ближе друг к другу. Проще говоря, каждый
метод использует все свойства - вот суть цельности. Если одно
свойство применяется только в двух методах, а другое -- в трех
других, мы можем с уверенностью сказать, что класс состоит из
двух частей, едва связанных друг с другом. Цельность такого клас­
са низкая. Если класс невелик, то повышается вероятность того, что
все его методы будут взаимодействовать со всеми свойствами.

Меньшие классы более верифицируемы, так как проще воспро­
извести все их сценарии использования. Прежде всего потому,
что сценариев не так уж и много. Если у класса есть только один
публичный метод, мы можем с легкостью написать все необхо­
димые для них тесты. Если у класса десять методов, тесты либо
будут слишком велики, либо вообще никогда не будут написаны.

Мне больше нечего сказать. Следите за количеством методов
в классе и не позволяйте ему превысить число пять. Вот и все.

3.2. Не используйте статические методы 117

3.2. Не используйте
статические методы

Обсуждение на http://goo.gl/8ql2ov.

Ах, статические методы ... Одна из моих любимых тем. Мне по­
надобилось несколько лет, чтобы осознать, насколько важна
эта проблема. Теперь я сожалею обо всем том времени, которое
потратил на написание процедурного, а не объектно-ориенти­
рованного программного обеспечения. Я был слеп, но теперь
прозрел. Статические методы - настолько же большая, если
не еще большая проблема в ООП, чем наличие константы NULL.
Статических методов в принципе не должно было быть в Java,
да и в других объектно-ориентированных языках, но, увы, они
там есть. Мы не должны знать о таких вещах, как ключевое
слово static вJava, но, увы, вынуждены. Я не знаю, кто именно
привнес их в Java, но они - чистейшее зло. Статические методы,
а не авторы этой возможности. Я надеюсь.

Посмотрим, что такое статические методы и почему мы до сих
пор создаем их. Скажем, мне нужна функциональность загруз­
ки веб-страницы посредством НТТР-запросов. Я создаю такой
«класс»:

class WebPage {
puЬlic static String read(String uri) {

// выполнить НТТР-запрос
// и конвертировать ответ в UТF8-строку

}
}

Пользоваться им очень удобно:

String html = WebPage.read("http://www.java.com");

Метод read () относится к тому классу методов, против кото­
рого я выступаю. Предлагаю вместо этого использовать объект

118 Глава 3 • Работа 3.2. Не используйте статические методы 119

(также я поменял имя метода в соответствии с рекомендациями
из раздела 2.4):
class WebPage {

private final String uri;
puЫic String content() {

// выполнить НТТР-запрос
// и конвертировать ответ в UТF8-строку.

}
}

Вот как им пользоваться:
String html = new WebPage("http://www.java.com")

.content();

Вы можете сказать, что между ними нет особой разницы. Стати­
ческие методы работают даже быстрее, потому что нам нет
необходимости создавать новый объект каждый раз, когда
нужно скачать веб-страницу. Просто вызщште статический
метод, он сделает дело, вы получите результат и будете рабо­
тать дальше. Нет необходимости возиться с объектами и сбор­
щиком мусора. Кроме того, мы можем сгруппировать несколь­
ко статических методов в класс-утилиту и назвать его, скажем,
WebUtils.

Эти методы помогут загружать веб-страницы, получать стати­
стическую информацию, определять время отклика и т. п. В них
будет много методов, а использовать их просто и интуитивно
понятно. Кроме того, как применять статические методы, тоже
интуитивно понятно. Все понимают, как они работают. Просто
напишите WebPage. read(), и - вы догадались! - будет прочитана
страница. Мы дали компьютеру инструкцию, и он ее выполняет.
Просто и понятно, так ведь? А вот и нет!

Статические методы в любом контексте - безошибочный ин­
дикатор плохого программиста, понятия не имеющего об ООП.
Для применения статических методов нет ни единого оправда-

ния ни в одной ситуации. Забота о производительности не счи­
тается. Статические методы - издевательство над объектно­
ориентированной парадигмой. Онисуществуют в Java, Ruby,
С++, РНР и других языках. К несчастью. Мы не можем их оттуда
выбросить, не можем переписать все библиотеки с открытым
исходным кодом, полные статических методов, но можем пре­
кратить использовать ~х в своем коде.

Мы должны прекратить применять статические методы.

Теперь посмотрим на них с нескольких разных позиций и обсу­
дим их практические недостатки. Я могу заранее обобщить их
для вас: статические методы ухудшают сопровождаемость про­
граммного обеспечения. Это не должно вас удивлять. Все сво­
дится к сопровождаемости.

Объектное мышление
против компьютерного
Изначально я назвал этот подраздел ~объектное мышление
против процедурного», но потом переименовал. «Процедур­
ное мышление» означает почти то же самое, но словосочета­
ние «мыслигь как компьютер» лучше описывает проблему.
Мы унаследовали этот образ мышления из ранних языков про­
граммирования, таких как AssernЬly, С, COBOL, Basic, Pascal,
и многих других. Основа пара~игмы в том, что компьютер ра­
ботает на нас, а мы указываем ему, что делать, давая ему явные
инструкции, например:

СМР АХ, ВХ
JNAE greater
MOV СХ, ВХ
RET

greater:
MOV СХ, АХ
RET

120 Глава З • Работа

Это ассемблерная «подпротраммаэ для процессора Intel 8086.
Она находит и возвращает большее из двух чисел. Мы помеща­
ем их в регистры АХ и вх соответственно, а результат попадает
в регистр сх. Вот точно такой же код на языке С:
int max(int а, int Ь) {

if (а > Ь) {
return а;

}
return Ь;

}

«Что же с этим настолько не так?» - спросите вы. Ничего.
Все с этим кодом в порядке - он работает, как и положено.
Именно так работают все компьютеры. Они ожидают, что мы да­
дим им инструкции, которые они будут исполнять одну за другой.
Многие годы мы писали программы именно так. Преимущество
данного подхода в том, что мы остаемся вблизи процессора,
направляя его дальнейшее движение. Мы у руля, а компьютер
следует нашим инструкциям. Мы указываем компьютеру, как
найти большее из двух чисел. Мы принимаем решения, он им
следует. Поток исполнения всегда последователен, от начала
сценария до его конца.

Такой линейный тип мышления называется «думать как компью­
тер». Компьютер в какой-то момент начнет исполнять инструк­
ции и в какой-то момент закончит делать это. При написании
кода на языке С мы вынуждены думать таким образом. Опера­
торы, разделенные точками с запятыми, идут сверху вниз. Такой
стиль унаследован из ассемблера.

Хотя языки более высокого уровня, чем ассемблер, имеют про­
цедуры, подпрограммы и другие механизмы абстракции, они
не устраняют последовательный образ мышления. Программа
все равно проходится сверху вниз. В таком подходе нет ничего
зазорного при написании небольших программ, но в более круп­
ных масштабах так мыслить трудно.

3.2. Не используйте статические методы 121

Взглянем на тот же код, записанный на функциональном языке
программирования Lisp:
(defun max (а Ь)

(if (> а Ь) а Ь))

Можете ли вы сказать, где начинается и заканчивается исполне­
ние этого кода? Нет. Мы не знаем, ни каким образом процессор
получит результат, ни то, как конкретно будет работать функ­
ция if. Мы очень отстранены от процессора. Мы мыслим как
функция, а не как компьютер. Когда нам нужна новая вещь, мы
определяем ее:
(def х (max 5 9))

Мы определяем, а не даем инструкции процессору. Этой строч­
кой мы привязываем х к (max 5 9). Мы не просим компьютер
вычислить большее из двух чисел. Мы просто говорим, что х есть
большее из двух чисел. Мы не управляем тем, как и когда это бу­
дет вычислено. Обратите внимание, это важно: х есть большее из
чисел. Отношение «есгьэ («бьпъэ, «являтъсяэ) - то, чем отлича­
ется функциональная, логическая и объектно-ориентированная
парадигма программирования от процедурной.

При компьютерном образе мышления мы находимся у руля
и контролируем поток исполнения инструкций. При объектно­
ориентированном образе мышления мы просто определяем,
кто есть кто, и пусть они взаимодействуют, когда это им пона­
добится. Вот как вычисление большего из двух чисел должно
выглядеть в ООП:
class Мах implements Number {

private final Number а;
private final Number Ь;
puЬlic Max(Number left, Number right) {

this.a = left;
this.b = right;

}
}

122 Глава 3 • Работа

А так я буду его использовать:
Number х = new Max{S, 9);

Смотрите, я не вычисляю большее из двух чисел. Я определяю,
что х есть большее из двух чисел. Меня не особо беспокоит, что
находится внутри объекта класса Мах и как именно он реализует
интерфейс Number. Я не даю процессору инструкции относитель­
но этого вычисления. Я просто инстанцирую объект. Это очень
похоже на def в Lisp. В этом смысле ООП очень похоже на функ­
циональное программирование.

Напротив, статические методы в ООП - то же самое, что под­
программы в С или ассемблере. Они не имеют отношения к ООП
и заставляют нас писать процедурный код в объектно-ориенти­
рованном синтаксисе. Вот код наJava:
int х = Math.max(S, 9);

Это совершенно неправильно и не должно использоваться в на­
стоящем объектно-ориентированном проектировании.

3.2. Не используйте статические методы 123

Декларативный стиль
против императивного
Императивное программирование «описывает вычисления
в терминах операторов, изменяющих состояние программы».
Декларативное программирование, с другой стороны, «выра­
жает логику вычисления, не описывая поток его выполнения»
(я цитирую «Викиледиюэ). Об этом мы, по сути, говорили на
протяжении нескольких предыдущих страниц. Императивное
программирование похоже на то, что делают компьютеры, - по­
следовательное выполнение инструкций. Декларативное про­
граммирование ближе к естественному образу мышления, в ко­
тором у нас есть сущности и отношения между ними. Очевидно,
что декларативное программирование - более мощный подход,
но императивный подход понятнее процедурным программи-

стам. Почему декларативный подход более мощный? Не пере­
ключайтесь, и через несколько страниц мы доберемся до сути.

Какое отношение все это имеет к статическим методам? Неваж­
но, статический это метод или объект, мы все еще должны где-то
написать if (а > Ь), так ведь? Да, именно так. Как статический
метод, так и объект - всего лишь обертка над оператором i f,
который выполняет задачу сравнения а с Ь. Разница в том, как
эта функциональность используется другими классами, объ­
ектами и методами. И это существенная разница. Рассмотрим
ее на примере.

Скажем, у меня есть интервал, ограниченный двумя целыми
числами, и целое число, которое должно в него попадать. Я дол­
жен убедиться, что это так. Вот что мне придется сделать, если
метод max () - статический:
puЫic static int between(int 1, int r, int х) {

return Math.min(Math.max(l, х), r);
}

Нужно создать еще один статический метод, between (), который
использует два имеющихся статических метода, Math. mi n ()
и Math. max(). Есть только один способ это сделать - императив­
ный подход, поскольку значение вычисляется сразу же. Когда
я делаю вызов, я немедленно получаю результат:
int у= Math.between(S, 9, 13); // возвращает 9

Я получаю число 9 сразу же после вызова between () . Когда будет
сделан вызов, мой процессор тут же начнет работать над этим
вычислением. Это императивный подход. А как тогда выглядит
декларативный подход?

Вот, взгляните:
ciass Between implements Number {

private final Number num;
Between(Number left, Number right, Number х) {

this.num ~ new Min(new Max(left, х), right);

124 Глава 3 • Работа 3.2. Не используйте статические методы 125

}
@Override
puЫic int intValue() {

return this.num.intValue();
}

}

Вот как я его буду использовать:
Number у= new Between(S, 9, 13); // еще не вычисляется!

Чувствуете разницу? Она чрезвычайно важна. Такой стиль будет
декларативным, поскольку я не указываю процессору, что вы­
числения нужно выполнить сразу. Я просто определил, что это
такое, и оставил на усмотрение пользователя решение о том,
когда (и нужно ли вообще) вычислять переменную у методом
intValue (). Может, она никогда не будет вычислена и мой про­
цессор никогда не узнает, что это число 9. Все, что я сделал, -
объявил, что такое у. Просто объявил. Я еще не дал никакой
работы процессору. Как указано в определении, выразил логику,
не описывая процесс.

Я уже слышу: «О'кей, понял вас. Есть два подхода - декларатив­
ный и процедурный, но почему первый лучше второго?» Ранее
я упомянул, что очевидно, что декларативный подход более
мощный, но не объяснил почему. Теперь, когда мы рассмотрели
оба подхода на примерах, обсудим преимущества декларатив­
ного подхода.

Во-первых, он быстрее. На первый взгляд он может показаться
более медленным. Но если присмотреться внимательнее, станет
видно, что на деле он быстрее, поскольку оптимизация произво­
дительности полностью в наших руках. Действительно, на соз­
дание экземпляра класса Between потребуется больше времени,
чем на вызов статического метода between (), по крайней мере
в большинстве языков программирования, доступных на момент
написания этой книги. Я очень надеюсь на то, что в ближайшем
будущем у нас появится язык, в котором инстанцирование объ-

екта будет столь же быстрым, как и вызов метода. Но мы еще
не пришли к нему. Вот почему декларативный подход медлен­
нее... когда путь исполнения прост и прямолинеен.

Если речь идет о простом вызове статического метода, то он,
безусловно, будет быстрее, нежели создание экземпляра объекта
и вызов его методов. Но если у нас много статических методов,
они будут последовательно вызываться при решении задачи,
а не только для того, чтобы работать над действительно нужны­
ми нам результатами. Как насчет этого:
puЬlic void doit() {

int х = Math.between(S, 9, 13);
if (/* Надо ли?*/) {

System.out.println("x=" + х);
}

}

В данном примере мы вычисляем х вне зависимости от того,
нужно нам его значение или нет. Процессор в обоих случаях
найдет значение 9. Будет ли следующий метод, использующий
декларативный подход, работать так же быстро, как предыду­
щий?
puЫic void doit() {

Integer х = new Between(S, 9, 13);
if (/* Надо ли?*/) {

System.out.println("x=" + х);
}

}

Я думаю, что декларативный код окажется быстрее. Он лучше
оптимизирован. И не указывает процессору, что ему делать.
Напротив, он позволяет процессору решить, когда и где действи­
тельно понадобится результат, - вычисления выполняются по
требованию.

Суть в том, что декларативный подход быстрее, поскольку он оп­
тимален. Это первый аргумент в пользу декларативного подхода
по сравнению с императивным в объектно-ориентированном

126 Глава 3 • Работа

программировании. Императивному стилю однозначно не место
в ООП, и первая причина этого - оптимизация производитель­
ности. Не стоит говорить о том, что чем больше вы контролиру­
ете оптимизацию кода, тем более он сопровождаемый. Вместо
того чтобы оставить оптимизацию процесса вычисления на
откуп компилятору, виртуальной машине или процессору, мы
делаем ее самостоятельно.

Второй аргумент - полиморфизм. Если говорить просто, то по­
лиморфизм - это возможность разрывать зависимости между
блоками кода. Допустим, я хочу поменять алгоритм определения
того, попадает ли число в определенный интервал. Он довольно
примитивен сам по себе, но я хочу его изменить. Я не хочу ис­
пользовать классы Мах и Min. А хочу, чтобы он выполнял срав­
нение с применением операторов if-then-else. Вот как сделать
это декларативно:
class Between implements Number {

private final Number num;
Between(int left, int right, int х) {

this(new Min(new Max(left, х), right));
}
Between(Number number) {

this.num = number;
}

}

Это тот же класс Between, что и в предыдущем примере, но с до­
полнительным конструктором. Теперь я могу использовать его
с другим алгоритмом:
Integer х = new Between(

new IntegerWithMyOwnAlgorithm(S, 9, 13)
) ;

Это, наверное, не лучший пример, поскольку класс Between очень
примитивен, но, надеюсь, вы понимаете, о чем я. Класс Between
очень просто отделить от классов Мах и Min, поскольку они явля­
ются классами. В объектно-ориентированном программирова-

3.2. Не используйте статические методы · 127

нии объект является полноправным гражданином, а статический
метод - нет. Мы можем передать объект в качестве аргумента
конструктору, но не можем сделать то же самое со статиче­
ским методом1

• В ООП объекты связаны с объектами, общаются
с объектами, обмениваются с ними данными. Чтобы полностью
отвязать объект от остальных объектов, мы должны убедиться,
что он не использует оператор new ни в одном из своих методов
(см. раздел 3.6), а также в главном конструкторе.

Позвольте повторить: чтобы полностью отвязать объект от дру­
гих объектов, вы всего лишь должны убедиться, что оператор
new не применяется ни в одном из его методов, включая главный
конструктор.

Можете ли вы проделать такую же отвязку и рефакторинг с им­
перативным фрагментом кода?
int у= Math.between(S, 9, 13);

Нет, не можете. Статический метод between() использует два
статических метода, min() и max(), и вы ничего не сможете сде­
лать, пока не перепишете его полностью. А как вы сможете его
переписать? Передадите четвертым параметром новый стати­
ческий метод?

Насколько уродливо это будет выглядеть? Думаю, весьма.

Вот мой второй аргумент в пользу декларативного стиля про­
граммирования - он снижает сцепленность объектов и делает
это очень элегантно. Не говоря уже о том, что меньшая сцеплен­
ность означает большую сопровождаемость.

1 Мы, конечно, можем сделать это на разных языках, включая Java8,
Ruby, РНР и Рутлоп, но такая возможность не имеет ничего общего
с объектно-ориентированным программированием. Это суррогат

- процедурного и функционального программирования, который
существует во всех популярных языках в силу его «удобсгва», На са­
мом деле это только запутывает ситуацию. - Примеч. авт.

128 Глава 3 • Работа

Третий довод в пользу превосходства декларативного подхода
над императивным - декларативный подход говорит о результа­
тах, а императивный объясняет единственный способ их полу­
чения. Второй подход намного менее интуитивно понятен, чем
первый. Я должен сперва ~выполнить~ код в голове, чтобы по­
нять, какого результата ожидать. Вот императивный подход:
Collection<Integer> evens = new Linkedlist<>();
for (int number: numbers) {

if (number % 2 == 0) {
evens.add(number);

}
}

Чтобы понять, что делает данный код, я должен пройти по нему,
визуализировать этот цикл. По сути, я должен сделать то, что
делает процессор, - пройтись по всему массиву чисел и поме­
стить четные в новый список. Вот этот же алгоритм, записанный
в декларативном стиле:
Collection<Integer> evens = new Filtered(

numbers,
new Predicate<Integer>() {

@Override
puЫic boolean suitaЫe(Integer number) {

return number % 2 == 0;
}

}
);

Этот фрагмент кода намного ближе к английскому языку, чем
предыдущий. Он читается следующим образом: ~evens - это
фильтрованная коллекция, включающая только те элементы, ко­
торые являются четными». Я не знаю, как именно класс Filtered
создает коллекцию - использует ли он оператор for или что-то
еще. Все, что я должен знать, читая этот код, - то, что коллекция
была отфильтрована. Детали реализации скрыты, а поведение
выражено.

3.2. Не используйте статические методы 129

Я осознаю, что некоторым читателям данной книги проще
было воспринять первый фрагмент. Он немного короче и очень
похож на то, что вы ежедневно видите в коде, с которым имеете
дело. Я уверяю вас, что это дело привычки. Это обманчивое
ощущение. Начните думать в терминах объектов и их поведе­
ния, а не алгоритмов и их исполнения, и вы приобретете истин­
ное восприятие. Декларативный стиль непосредственно каса­
ется объектов и их поведения, а императивный - алгоритмов
и их исполнения.

Если вы считаете этот код уродливым, попробуйте, например,
Groovy:

def evens new Filtered(
numbers,
{ Integer number -> number % 2 0}

) ;

Четвертый довод - цельность кода. Взгляните еще раз на преды­
дущие два фрагмента. Обратите внимание на то, что во втором
фрагменте мы объявляем evens одним оператором - evens =
Filtered(...). Это значит, что все строки кода, ответственные
за вычисление данной коллекции, находятся рядом друг с дру­
гом и не могут быть по ошибке разделены. Напротив, в первом
фрагменте нет очевидной «склейкиэ строк. Можно с легкостью
поменять их порядок по ошибке, и алгоритм сломается.

В таком простом фрагменте кода это небольшая проблема, по­
скольку алгоритм очевиден. Но если фрагмент императивного
кола более крупный - скажем, 50 строк, может оказаться трудно
понять, какие строки кода связаны друг с другом. Мы обсудили
проблему темпорального сцепления чуть раньше - во время
обсуждения неизменяемых объектов. Декларативный стиль
программирования также помогает устранить это сцепление,
благодаря чему улучшается сопровождаемость.

130 Глава 3 • Работа

Вероятно, есть еще доводы, но я привел самые важные, с моей
точки зрения, из относящихся к ООП. Надеюсь, я смог убедить
вас в том, что декларативный стиль - это то, что надо. Некото­
рые из вас могут сказать: «Да, я понимаю, о чем вы. Я буду со­
вмещать декларативный и императивный подходы там, где это
уместно. Я буду использовать объекты там, где это имеет смысл,
а статические методы - тогда, когда мне надо быстро сделать
что-то несложное вроде вычисления большего из двух чисел».
«Нег, вы неправы!» - отвечу вам я. Вы не должны их совмещать.
Никогда не применяйте императивный стиль. Это не догма.
У этого есть вполне прагматичное объяснение.

Императивный стиль нельзя совместить с декларативным чисто
технически. Когда вы начинаете использовать императивный
подход, вы обречены - постепенно весь ваш код станет импе­
ративным.

Допустим, у нас есть два статических метода - max () и min ().
Они выполняют небольшие быстрые вычисления, поэтому мы
делаем их статическими. Теперь нам нужно создать больший
алгоритм, чтобы определить, принадлежит ли число интервалу.
На сей раз мы хотим пойти декларативным путем - создать
класс Between, а не статический метод between (). Можем ли
мы так сделать? Наверное, да, но суррогатным способом, а не
так, как положено. Мы не можем использовать конструкторы
и инкапсуляцию. И вынуждены делать непосредственные, яв­
ные вызовы статических методов прямо внутри класса Between.
Иными словами, мы не сможем написать чисто объектно-ори­
ентированный код, если повторно применяемые компоненты
представляют собой статические методы.

Статические методы напоминают раковую болезнь объектно­
ориентированного ПО: однажды позволив им поселиться в коде,
мы не сможем избавиться от них - их колония будет только
расти. Просто обходите их стороной в принципе.

3.2. Не используйте статические методы 131

«Но они у меня повсюду! - воскликнете вы. - Что же делать?»
Что я могу сказать ... у вас проблемы, как и у всех нас. Суще­
ствуют тысячи объектно-ориентированных библиотек, прак­
тически полностью состоящих из классов-утилит (мы обсу­
дим их в следующем разделе). Здесь, как и с опухолью, лучшее
средство - нож. Не используйте такие программы, если мо­
жете это себе позволить. Однако в большинстве случаев вы
не сможете позволить себе воспользоваться ножом, поскольку
эти библиотеки весьма популярны и предоставляют полезную
функциональность. В данном случае лучшее, что вы можете
сделать, - изолировать опухоль, создав собственные классы,
которые оборачивают статические методы так, чтобы ваш код
работал исключительно с объектами. К примеру, в библиотеке
Apache Commons есть статический метод FileUtils. readLines (),
который считывает все строки из текстового файла. Вот как мы
можем превратить его в объект:

class Filelines implements IteraЬle<String> {
private final File file;
puЫic Iterator<String> iterator() {

return Arrays.aslist(
FileUtils.readLines(this.file)

).iterator();
}

}

Теперь, чтобы прочесть все строки из текстового файла, наше
приложение должно будет сделать следующее:

IteraЬle<String> lines =·new Filelines(f);

Вызов статического метода произойдет только внутри класса
FileLines, ~ со временем мы сможем от него избавиться. Либо
этого не произойдет никогда. Но суть в том, что в нашем коде
статические методы не будут вызываться нигде, за исключением
одного места - класса FileLines. Так мы изолируем усопших,
что позволяет нам разбираться с ними постепенно.

132 Глава 3 • Работа

Классы-утилиты
Так называемые классы-утилиты на самом деле являются не клас­
сами, а лишь набором статических методов, используемых дру­
гими классами для удобства (они известны также как методы­
помощники). К примеру, класс java. lang.Math - классический
образец класса-утилиты. Такие порождения очень популярны
вJava, Ruby и, к сожалению, почти во всех современных языках
программирования. Почему они не являются классами? Потому
что из них нельзя инстанцировать объекты. В разделе 1.1 мы
обсудили разницу между объектом и классом и пришли к тому,
что класс - это фабрика объектов. Класс-утилита не является
фабрикой, например:
class Math {

private Math{) {
// намеренно пустой

}

puЫic static int max(int а, int Ь) {
if (а< Ь) {

return Ь;
}

return а;
}

}

Хорошей практикой для тех, кто использует классы-утилиты,
является создание приватного конструктора, как в примере, во
избежание создания экземпляра класса. Поскольку конструк­
тор приватный, никто, кроме методов класса, не может создать
экземпляр класса.

Классы-утилиты - триумф процедурных программистов в об­
ласти объектно-ориентированного программирования. Класс­
утилита - не просто ужасная вещь вроде статического мето­
да - это скопище ужасных вещей. Все плохие слова, сказанные
о статических методах, могут быть повторены с многократным

3.2. Не используйте статические методы 133

усилением. Классы-утилиты - ужасный антипаттерн в ООП.
Держитесь от них подальше.

Паперн «Синглтон»
Паттерн «Синглгопэ - популярный прием, претендующий на
то, чтобы стать заменой статических методов. Действительно,
в классе будет только один статический метод, а синглтон при
этом будет выглядеть почти как настоящий объект. Однако он
им не является:
class Math {

private static Math INSTANCE = new Math{);
private Math{) {}
puЫic static Math getinstance() {

return Math.INSTANCE;
}
puЫic int max(int а, int Ь) {

if (а< Ь) {
return Ь;

}
return а;

}
}

Выше приведен типичный пример синглтона. Существует
единственный экземпляр класса Math, который называется
INSTANCE. Каждый может получить к нему доступ, просто вы­
звав getinstance (). Конструктор сделан приватным, чтобы
предотвратить прямое инстанцирование объектов данного клас­
са. Единственный способ получить доступ к INSTANCE - вызвать
getinstance ().

«Синглтонэ известен как паттерн проектирования, но в действи­
тельности это ужасный антипаттерн. Есть масса причин того,
почему это плохой прием программирования. Я приведу лишь
некоторые из них, касающиеся статических методов. Было бы,
конечно, проще, если бы мы сначала обсудили то, чем синглтон

134 Глава 3 • Работа 3.2. Не используйте статические методы 135

отличается от класса-утилиты, о котором мы только что говори­
ли. Вот как выглядел бы класс-утилита Math, который делает то
же, что и приведенный ранее синглтон:
class Math {

private Math() {}
puЫic static int max(int а, int Ь) {

if (а< Ь) {
return Ь;

}
return а;

}
}

Вот так будет использоваться метод max ():
Math.max(S, 9); // класс-утилита
Math.getinstance().max(S, 9); // синглтон

В чем разница? Выглядит, будто вторая строка просто длиннее,
а делает то же самое. Зачем было изобретать синглтон, если у нас
уже были статические методы и классы-утилиты? Я часто задаю
этот вопрос на собеседованиях сJаvа-программистами. Первое,
что я обычно слышу в ответ: «Синглгон позволяет инкапсули­
ровать состояние». Например:
class User {

private static User INSTANCE new User();
private String name;
private User() {}
puЫic static User getinstance() {

return User.INSTANCE;
}
puЫic String getName() {

return this.name;
}
puЫic String setName(String txt) {

this.name = txt;
}

}

Это ужасный фрагмент кода, но я вынужден привести его в каче­
стве иллюстрации к своим доводам. Этот синглтон значит бук-

вально «пользователь, в данный момент применяющий систе­
му». Этот подход очень популярен во многих веб-фреймворках,
где существуют синглтоны пользователей, веб-сессий и т. п.
Итак, типичный ответ на мой вопрос о разнице между синглто­
ном и классом-утилитой: «Синглгон инкапсулирует состояние».
Но это неверный ответ. Цель синглтона не в хранении состояния.
Вот класс-утилита, который делает то же, что и упомянутый
ранее синглтон:
class User {

private static String name;
private User() {}
puЬlic static String getName() {

return User.name;
}
puЬlic static String setName(String txt) {

User.name = txt;
}

}

Этот класс-утилита хранит состояние, и между ним и упомяну­
тым синглтоном нет никакой разницы. Итак, в чем же пробле­
ма? И каков же правильный ответ? Единственно верный ответ
состоит в том, что синглтон - это зависимость, которую можно
разорвать, а класс-утилита - жестко запрограммированная
тесная связь, которую разорвать невозможно. Иными словами,
преимущество синглтонов в том, что в них можно добавить
метод setinstance() наряду с getinstance(). Этот ответ верен,
хотя я слышу его нечасто. Допустим, я использую синглтон
следующим образом:
Math.getinstance().max{S, 9);

Мой код сцеплен с классом Math. Иными словами, класс Math -
зависимость, на которую я полагаюсь. Без этого класса код
не будет работать, и для его тестирования мне придется остав­
лять класс Math доступным, чтобы иметь возможность выпол­
нять запросы. В случае с данным конкретным классом эта про­
блема невелика, поскольку он весьма примитивен. Однако

136 Глава З • Работа

если синглтон большой, то мне, возможно, придется применять
мокинг или заменять его чем-то, что лучше подходит для те­
стирования. Проще говоря, я не хочу, чтобы метод Math.max()
выполнялся во время работы юнит-теста. Как мне это сделать?
А вот как:
Math math = new FakeMath();
Math.setinstance(math);

Паттерн «Синглтоие обеспечивает возможность заменить инкап­
сулированный статический объект, что позволяет тестировать
объект. Правда в следующем: синглтон намного лучше класса­
утилиты только потому, что позволяет заменить инкапсулируе­
мый объект. В классе-утилите нет объекта - мы не можем ничего
изменить. Класс-утилита - неразрывная жестко запрограмми­
рованная зависимость - чистейшее зло в ООП.

Итак, о чем я? Синглтон лучше класса-утилиты, но все же явля­
ется антипаттерном, причем довольно плохим. Почему? Потому,
что логически и технически синглтон - глобальная переменная,
ни больше, ни меньше. А в ООП нет глобальной области види­
мости. Поэтому глобальным переменным здесь не место. Вот
программа на С, в которой переменная объявлена в глобальной
области видимости:
#include <stdio>
int line = 0;
void echo(char* text) {

printf(11 [%d] %s\n11
, ++line, text);

}

Всякий раз когда мы вызываем echo(), инкрементируется гло­
бальная переменная line. Чисто технически переменная line
видна из каждой функции и каждой строки кода в *. с-файле.
Она видна глобально. Хвала разработчикам Java за то, что они
не скопировали эту возможность из языка С. В Java, как и в Ruby
и во многих других недо-ООП-языках, глобальные переменные
запрещены. Почему? Потому что они не имеют никакого отно­
шения к ООП. Это чисто процедурная возможность. Глобальные

3.2. Не используйте статические методы 137

переменные однозначно нарушают принцип инкапсуляции. Они
просто ужасны. Надеюсь, мне больше не придется объяснять это
в данной книге. Мне кажется очевидным, что глобальные пере­
менные настолько же плохи, насколько плох оператор GOTO.

Однако, несмотря на все доводы против глобальных переменных,
кто-то1 нашел способ привнести их в Java, создав тем самым
паттерн «Сипглгон». Это попросту издевательство над принци­
пами объектно-ориентированного проектирования, ставшее воз­
можным благодаря наличию статических методов. Эти методы
технически позволяют такое жульничество.

Никогда не используйте синглтоны. Даже не думайте.

«Чем их заменить? - спросите вы. - Если нам нужно, чтобы
нечто было доступно многим классам в рамках всего программ­
ного продукта, что мы можем сделать?» Скажем, нам очень надо,
чтобы большинство классов знало о том, какой пользователь
в данный момент вошел в систему. У нас нет классов-утилит
и синглтонов. Что у нас есть? Инкапсуляция!

Просто инкапсулируйте пользователя во все объекты, в которых
он может пригодиться.

Все, что нужно вашему классу для работы, должно быть переда­
но посредством конструктора и инкапсулировано внутри класса.
Вот и все. Без исключения. Объект не должен затрагивать ниче­
го, кроме своих инкапсулированных свойств. Вы можете сказать,
что придется инкапсулировать с~ишком много: подключения
к базам данных, вошедшего в систему пользователя, аргументы
командной строки и т. п. Да, действительно, всего этого может
оказаться слишком много, если класс чересчур большой и недо­
статочно цельный. Если вам нужно инкапсулировать слишком

1 Я не знаю, чьих это рук дело, но синглтон описан в книге «Паттерны
проектирования» «банды четырех» как паттерн проектирования.
Я бы рекомендовал вам прочесть эту книгу, но со здоровой долей
скептицизма.

138 Глава 3 • Работа

много, переработайте класс - уменьшите его, о чем говорилось
в разделе 2.1.

Но никогда не применяйте синглтон. Для этого правила нет ис­
ключений.

Функциональное программирование

3.2. Не используйте статические методы 139

Я часто слышу такой довод: если объекты небольшие и неизменя­
емые и при этом не задействуются статические методы, то поче­
му бы не использовать функциональное программирование (ФП)?
Действительно, если объекты элегантны настолько, насколько
рекомендуется в данной книге, то они весьма похожи на функции.
Итак, зачем нам нужны объекты? Почему бы просто не исполь­
зовать Lisp, Clojure или Haskell вместоjаvа или С++?

Вот класс, представляющий алгоритм определения большего из
двух чисел:
class Мах implements Number {

private final int а;
private final int Ь;
puЫic Max(int left, int right) {

this.a left;
this.b = right;

}
@Override
puЬlic int intValue() {

return this.a > this.b? this.a this.b;
}

}

Вот как мы должны его применять:
Number х = new Max(S, 9);

А вот как мы задали бы в Lisp функцию, которая делала бы то же
самое:
(defn max

(а Ь)
(if (> а Ь) а Ь))

Итак, зачем же использовать объекты? Код на Lisp намного короче.

ООП более выразительно и имеет большие возможности, по­
скольку оперирует объектами и методами, тогда как ФП - лишь
функциями. В некоторых ФП-языках тоже есть объекты, но
я бы назвал их ООП-языками с ФП-возможностями, а не на­
оборот. Я также считаю, что лямбда-выражения в Java, будучи
подвижкой в сторону ФП, делают Java более рыхлым, сбивая
нас с истинного ООП-пути. ФП - отличная парадигма, но ООП
лучше. Особенно при правильном применении.
Мне кажется, в идеальном ООП-языке у нас были бы классы
с функциями внутри. Не методы-микропроцедуры, как сейчас
в Java, а настоящие (в смысле функциональной парадигмы)
функции, имеющие единственную точку выхода. Это было бы
идеально.

Компонуемые декораторы
Кажется, этот термин я придумал. Компонуемые декораторы -
просто объекты-обертки над другими объектами. Они являются
декораторами - известным паттерном объектно-ориентирован­
ного проектирования, - но становятся компонуемыми, когда мы
объединяем их в многослойные структуры, к примеру:
names = new Sorted{

new Unique(
new Capitalized{

new Replaced{
new F ileNames (

new Directory(
"/var/users/*.xml"

)
) ·,
"([л.]+)\\.xml",
"$1··

)
) ;

140 Глава 3 • Работа

Такой код, с моей точки зрения, выглядит очень чисто и объектно­
ориентированно. Он исключительно декларативен, как объ­
яснялось в разделе 3.2. Он ничего не делает, а лишь объявляет
объект names, который является отсортированной коллекцией
уникальных строк верхнего регистра, представляющих имена
файлов в каталоге, измененных определенным регулярным вы­
ражением. Я просто объяснил, чем является этот объект, не говоря
ни слова о том, как он устроен. Я просто объявил его.

Считаете ли вы этот код чистым и простым для понимания?
Надеюсь, что да, с учетом всего того, о чем мы с вами говорили
ранее.

Это то, что я называю компонуемыми декораторами. Классы
Directory, FileNames, Replaced,Capitalized, UniqueиSorted -
декораторы, поскольку их поведение полностью обусловлено
инкапсулируемыми ими объектами. Они добавляют некоторое
поведение инкапсулированным объектам. Их состояние совпа­
дает с состоянием инкапсулированных объектов.

Иногда они предоставляют тот же интерфейс, что и инкапсу­
лируемые ими объекты (но это не обязательно). К примеру,
Unique - это IteraЬle<String>, также инкапсулирующий ите­
ратор по строкам. Однако FileNames - это итератор по строкам,
инкапсулирующий итератор по файлам.

Большая часть кода в чистом объектно-ориентированном ПО
должна быть похожа на приведенный ранее. Мы должны ком­
позировать декораторы друг в друга, и даже чуть более того.
В какой-то момент мы вызываем app.run(), и вся пирамида
объектов начинает реагировать. В коде совсем не должно быть
процедурных операторов вроде if, for, switch и while. Звучит
как утопия, но это не утопия.

Оператор if предоставляется языком Java и используется нами
в процедурном ключе, оператор за оператором. Почему бы

3.2. Не используйте статические методы 141

не создать на заменуJava язык, в котором был бы класс If? Тогда
вместо следующего процедурного кода:
float rate;
if (client.age() > 65){

rate = 2.5;
}
else {

rate = 3.0;
}

мы бы писали такой объектно-ориентированный код:
float rate = new If(

client.age() > 65,
2.5, 3.0

) ;

А как насчет такого?
float rate = new If(

new Greater(client.age(), 65),
2.5, 3.0

);

И наконец, последнее улучшение:
float rate = new If(

new GreaterThan(
new AgeOf(client),
65

),
2.5, 3.0

) ;

Так выглядит чистый объектно-ориентированный и декларатив­
ный код. Он не делает ничего - просто объявляет, чем является
rate.

С моей точки зрения, в чистом ООП не нужны операторы, уна­
следованные из процедурных языков вроде С. Не нужны if,
for, switch и while. Нам нужны классы If, For, Switch и While.
Чувствуете разницу?

142 Глава 3 • Работа 3.2. Не используйте статические методы 143

Мы еще не дошли до таких языков, но рано или поздно обяза­
тельно дойдем. Я в этом уверен. А пока что старайтесь держатьса
подальше от длинных методов и сложных процедур. Проекти­
руйте микроклассы так, чтобы они были компонуемыми. Убе­
дитесь; что они могут повторно использоваться как элементы
композиции в более крупных объектах.

Я бы сказал, что объектно-ориентированное программирова­
ние - это сборка крупных объектов из более мелких.

Какое отношение это имеет к статическим методам? Я уверен,
вы уже поняли: статические методы не могут быть скомпонова­
ны никоим образом. Они делают невозможным все то, о чем
я говорил и что показывал ранее. Мы не можем собирать круп­
ные объекты из более мелких с применением статических мето­
дов. Эти методы противоречат идее компоновки. Вот вам еще
одна причина того, что статические методы - чистое зло.

В заключение: нигде и никогда не задействуйте в своем коде
ключевое слово static - этим вы окажете себе и тем, кто будет
использовать ваш код, большую услугу.

Matan PereLmuter написал 19 декабря 2017 года:

Все это очень удобно, когда вы одна команда, работающая над
одним проектом. Но что, если, к примеру, вы разрабатываете
библиотеку для работы со строками, которая должна приме­
няться в нескольких проектах? Другим разработчикам будет
намного проще использовать API одного класса StringUtils,
для которого есть автодополнение и всплывающая документа­
ция, поддержанная средой разработки, чем изучать все стро­
ковые классы. Даже если все они будут в одном пакете, то все
равно теряется удобство автодополнения. Возьмем, к примеру,
библиотеку cactoos. Мне кажется, разработчику намного про­
ще изучить императивные библиотеки наподобие Apache

Commons или Guava. Как бы вы рекомендовали публиковать
программные интерфейсы библиотек?

Егор Бугаенко:

Вы правы, современные среды разработки заточены под клас­
сы-утилиты, а не под объекты. Не могу порекомендовать ни­
какой альтернативы. Возможно, нам стоит чаще использовать
объекты и реже - статические методы, а там уже и средства
разработки подтянутся.

Zack Macomber написал 26 августа 2016 года:

В объектно-ориентированном мире нет данных - только объек­
ты и их поведение! В Apache FileUtils нет данных (я не нашел
ни одного нестатического поля в классе]. Все, что делает этот
класс, - отвечает на запросы клиентов и при этом не хранит
состояния. Мне кажется, это подходит под описание класса,
предоставляющего только поведение (функции]. Каким образом
использование оператора new лучше наличия публичных стати­
ческих методов? Оператор new добавляет накладные расходы
на создание объектов.

Егор Бугаенко:

Словосочетание «нет данных» имеет в данном случае диаме­
трально противоположное значение! В FileUtils вы постоянно
работаете с данными. Вы отвечаете за то, чтобы предоставлять
и получать данные. Они всегда в ваших руках. При наличии
настоящих объектов ситуация становится прямо противопо­
ложной. Вы не трогаете данные - вы просто общаетесь с объ­
ектами ..Поэтому-то и нет данных.

Тог Djarv написал 1 июня 2016 года:

Это, наверное, самое дурацкое применение ООП, которое я только
видел. Слышали ли вы когда-нибудь старую поговорку «Каждому

144 Глава З • Работа 3.2. Не используйте статические методы 145

делу - свой инструмент»? Вы, по сути, растащили вполне по­
нятный код на набор классов (скорее всего, по разным файлам),
что в итоге только добавляет сложности и делает простой код
сложным для понимания, да еще и медленным - за счет соз­
дания одноразовых объектов. Объектная ориентация занимает
свое место в мире программирования, но если вы используете
ее только ради того, чтобы она была, то вы - плохой програм­
мист.

Bruno Martins написал 2 декабря _2014 года:

Егор, ваши статьи - восхитительное чтиво, я чувствую вашу
приверженность ООП. Что касается темы: я понимаю, о чем вы,
но пуританский взгляд на ООП затуманивает взгляд на другие
важные аспекты. Есть причины того, что эта и другие проблемы,
о которых вы пишете (почему плохо использовать NULL, объ­
екты должны быть неизменяемыми), существуют и не имеют
однозначного решения. Разработчики склонны уделять много
внимания читабельности и паттернам проектирования, и из-за
этого растет разрыв в понимании разницы между читабельно­
стью кода человеком и машиной. Чистое ООП уверяет вас в том,
что создание объектов для решения любых проблем - это хо­
рошо. Это можно понять, потому что такой код лучше читается
человеком. Но при этом мы упускаем из виду то, что у такого
подхода существуют далеко идущие последствия (относительно
памяти и производительности). Это также может вызвать про­
блемы, когда разработчику вдруг придется взаимодействовать
с платформенно-зависимым кодом (или даже кодом с других
платформ), например через JNI. Мне кажется, это должен учи­
тывать каждый системный архитектор. Иметь красивый, чистый
код, безусловно, хорошо, но пользователям в конечном итоге
нужны надежные и эффективные системы. А это требует более
глубоких размышлений, нежели использование лучших паттер­
нов для создания самого читаемого кода.

Егор Бугаенко:

Спасибо за прочтение. Я понимаю ваши доводы, но позволю
себе не согласиться. Мне кажется, что сейчас заботиться о па­
мяти и процессорном времени намного менее важно, чем очи­
таемости и сопровождаемости. Почему? Потому что компьюте­
ры дешевле программистов. Час моего времени, потраченного
на разбор кода 2000-строчного класса, стоит больше, чем новая
карта памяти для сервера. Поэтому мы должны задумываться
о производительности только тогда, когда код стал понятным
и чистым. Понимаете, о чем я?

Bruno Martins:

Действительно, программисты довольно часто приводят такие
доводы. Но код, написанный в соответствии с современными
стандартами программирования, не слишком сложен для по­
нимания и сопровождения. Фактически любой средний Jаvа­
программист понимает проверки на NULL, классы-утилиты и из­
меняемые объекты, раз уж вы о них пишете. У всех них есть
свои недостатки, но все в итоге сводится к контексту, с которым
имеет дело программист. Они существуют потому, что ООП­
языки создавались, чтобы обеспечить наибольшую гибкость.
Кроме того, компенсировать низкую производительность про­
грамм более высокой производительностью машин, на мой
взгляд, несколько недостойно (говорю как инженер, а не как
управленец). Вы наверняка регулярно сталкиваетесь с низкой
производительностью и неразумным управлением памятью
в современных программных продуктах. И да, аппаратная часть
сегодня все дешевле и все лучше, но и требования к программ­
ному обеспечению тоже повышаются. А как насчет программ
и систем, в которых чрезвычайно важно эффективно исполь­
зовать ресурсы, - прошивок для периферийных и носимых
устройств, мобильных телефонов, игр, экспертных систем? Если
все, что вам нужно, - простые чистые приложения, а ваши
ресурсы неограниченны, то такой подход мне понятен. Но при

146 Глава 3 • Работа 3.3. Не допускайте аргументов со значением NULL 147

реализации решений, требующих производительности и надеж­
ности, необходимо понимать, что то, что вы пишете в коде, имеет
глубокое влияние на то, что сгенерирует компилятор, и то, что по
факту будет делать процессор. Безусловно, важно учить людей
проектированию и реализации систем, учитывающих все эти со­
ображения вне зависимости от того, можно ли им продешевить,
а также написанию максимально читаемых, хорошо спроектиро­
ванных программ. Но это не самое важное. Я восхищен вашей
приверженностью вопросам проектирования и архитектуры ПО.
Со многими вашими статьями я согласен. Но в некоторых случа­
ях, мне кажется, вы упускаете из виду инженерию в прикладном
и практическом аспекте, а не только в аспекте написания чита­
емого, красивого кода с применением (анти)паттернов.

3.3. Не допускайте аргументов
со значением NULL

Обсуждение на http://goo.gl/TzrYbz.

NULL (также известный как null вJava, nil в Ruby, NULL в С++, None
в Python и т. п.) - еще одна большая проблема в объектно-ори­
ентированном мире наряду со статическими методами (см. раз­
дел 3.2) и изменяемостью (см. раздел 2.6). По сути, вы делаете
большую ошибку, если где-либо в своем коде используете кон­
станту NULL. Где бы то ни было - я серьезно. Здесь же поговорим
о NULL как об аргументе метода. Затем в разделе 4.1 рассмотрим
NULL как возвращаемый результат.

Посмотрим на следующий метод:

puЬlic IteraЬle<File> find(String mask) {
// Обойти каталог
// и найти все файлы, которые соответствуют
// некоторой маске, например "*.txt".
// Если маска== NULL, вернуть все файлы.

}

Весьма распространенный подход - разрешать пользователям
передавать NULL как способ сказать: «У меня нет объекта, так что·
считайте, что он отсутствует». Действительно, он представляет
собой удобную альтернативу этим двум методам:
puЫic IteraЬle<File> findAll();
puЫic IteraЬle<File> find(String mask);

Один метод выглядит более компактным и простым для запо­
минания пользователем, так ведь? Не нужно помнить, что, если
я хочу отфильтровать файлы по маске, то надо вызывать find (),
а если мне нужны все файлы, то findдll{). Если метода всего
два, то их не так уж сложно запомнить. Но что, если у метода три
аргумента, причем каждый из них может быть равен NULL? Мне
придется создавать девять разных методов. Использование NULL
кажется более удобным и компактным.

Звучит логично, но это противоречит объектно-ориентирован­
ной парадигме, где каждый объект полностью отвечает за свое
поведение.

Чтобы реализовать метод find{), принимающий NULL в качестве
аргумента, нам придется сделать что-то подобное следующему:
puЫic IteraЬle<File> find(String mask) {

if (mask == null) {
// найти все файлы

} else {
// найти файлы по маске

}
}

Дурным тоном здесь является сравнение mask==NULL. Вместо того
чтобы поговорить с объектом mask, мы проходим мимо, игнори­
руя его. Мы спрашиваем его в лоб: «Стоит ли с тобой общаться?»
Или даже: «Стоит ли с ним общаться?» Мы даже не обращаемся
к объекту. Мы спрашиваем кого-то, кто должен знать, достоин
объект общения или нет. Так общаться не очень-то вежливо,
не правда ли?

148 Глава 3 • Работа

Если мы уважаем объект, мы сделаем что-то вроде:
puЬlic IteraЬle<File> find(Mask mask) {

if (mask.empty()) {
// найти все файлы

} else {
// найти файлы по маске

}
}

А еще лучше вот так:
puЫic IteraЬle<File> find(Mask mask) {

Collection<File> files = new Linkedlist<>();
for (File file : /* все файлы*/)

if (mask.matches(file)) {
files.add(file);

}
}
return files;

}

Если бы мы уважали объект mask, то позволили бы ему решить,
есть ли у него для нас что-нибудь или же он пуст. Мы не должны
судить о нем по его внешности. Не должны говорить, что если
кто-то NULL, то он ненастоящий объект и мы не станем его ис­
пользовать, а вот если он настоящий, тогда поговорим.

То, что мы принимаем NULL в качестве корректного аргумента,
неизбежно вынуждает нас применять сравнение mask==null.
Мы просто не можем поступить иначе. Всякий раз перед исполь­
зованием объекта мы должны проверять его на ~настоящесть~.
Выполняя такую проверку, мы снимаем с объекта значитель­
ную долю ответственности. Превращаем его в тупую структуру
данных, которая неспособна позаботиться о себе и ожидает, что
кто-то в нее что-то положит или из нее достанет.

В мире процедурного программирования, где подпрограммы
манипулируют данными, факт существования NULL плох, но

3.3. Не допускайте аргументов со значением NULL 149

по крайней мере хоть чем-то обусловлен. Я даю вам какие-то
данные и не ожидаю, что вы будете с ними общаться. Они не­
достаточно умны, чтобы поддерживать разговор. Они просто
биты и байты. Чисто технически, когда я даю вам данные, я на
самом деле даю адрес, по которому вы можете их найти. Такой
адрес, например 0x89f4a328, называется указателем. Все байты
в памяти пронумерованы, а это число является номером ячейки
памяти, в которой содержится первый байт передаваемой струк­
туры данных:
#include <stdio.h>
void foo(char* р) {

рrintf("Пятый байт равен: %х", *(р + 5));
}

Подпрограмма foo () попросит процессор обратиться к этому
адресу в памяти и прочитать пятый байт. Но мы можем догово­
риться, что, когда я передаю вам число 0х00000000 в качестве адре­
са, вы не будете просить процессор обратиться по нему. Просто
пот~му, что маловероятно, что там окажется моя структураданных.
Впрочем, в современных компьютерных архитектурах она там
не окажется никогда. Вот почему программисты много лет назад
договорились, что, если указатель равен нулю, мы называем его
NULL и никогда не используем как адрес в памяти. Мы не можем
попросить процессор прочитать что-либо по этому адресу:
#include <stdio.h>
void foo(char* р) {

if (р == 0) {
printf("NULL - данных нет.");

} else {
рrintf('1Пятый байт равен: %х11

, *(р + 5));
}

}

Помните, что это всего лишь договоренность. Чисто технически
нет никакой разницы между настоящим указателем 0x89f4a328

150 Глава 3 • Работа

и не очень настоящим 0х00000000, который мы договорились
называть NULL.

Что случится, если я забуду о давней договоренности и попро­
шу процессор считать данные по адресу 0х00000000? В языке С
результат непредсказуем', но в большинстве случаев процессор
меня остановит и завершит выполнение процесса с сообщением
«Ошибка сегментации». Так это работает в мире императивного
процедурного программирования. Попробуйте сами:
#include <stdio.h>
int main(int argc, char** argv) {

char* р = 0;
printf("Бaйт по адресу 0 равен: %х", *р);
// здесь программа упадет

}

К сожалению, объектно-ориентированный мир унаследовал эту
«идею», даже притом что большинство современных языков
не имеют указателей. В Java нет указателей, и нам нет необхо­
димости их разыменовывать. Так называется конструкция *р
из приведенного ранее примера. Указатель - всего лишь число,
положение нужных мне данных в памяти. Чтобы сказать компи­
лятору, что я хочу работать с данными, а не с адресом, я должен
разыменовать указатель.

Хотя указатели считаются одной из болевых точек языка С,
прежде всего из-за своей контринтуитивности, работать с ними
проще, чем кажется. Довольно легко представить, что объекты
разыменовываются автоматически, а не являются структурами
данных, размещенными где-то в памяти. Если у нас есть объек­
ты, но нет указателей, то зачем нам в Java нужен null? Честно
говоря, не знаю. Кроме того, я думаю, что это большая ошибка

3.3. Не допускайте аргументов со значением NULL 151

1 Я не большой специалист в этом, но некоторые рецензенты говорили
мне, что результат вполне предсказуем - исполнение программы
остановится. - Примеч. авт.

разработчиков языкаJаvа, как и Ruby,JavaScript и даже самых
современных объектно-ориентированных языков.

«Что же делать, если нам нечего передавать в качестве аргумента
метода find()? - спросите вы. - Что, если маски имени файла
нет и мы просто хотим передать "ничего"? Почему бы не ис­
пользовать null?~

В ООП проблема отсутствующего аргумента должна решаться
с применением так называемого нулевого объекта. Вам нечего
мне дать? Дайте мне объект, который ведет себя так, будто он
пустой. Не перекладывайте проблему на мои плечи, не застав­
ляйте меня проверять, дали вы мне объект или NULL. Вместо
этого всегда передавайте мне объект, а в некоторых случаях -
такой, который откажется со мной говорить, если я захочу от
него слишком многого.

Скажем, у нас есть интерфейс Mask, который мы должны пере­
давать мeтoдy'find(), чтобы сообщить ему, какие файлы соот­
ветствуют маске, а какие - нет:
interface Mask {

boolean matches(File file);
}

Надлежащая реализация такого интерфейса должна инка­
псулировать glоЬ-шаблон (например, "*. txt") и сопоставлять
с ним имена файлов. Напротив, нулевой объект будет выглядеть
следующим образом:
class AnyFile implements Mask {

@Override
boolean matches(File file) {

return true;
}

}

Это граничный случай маски, не имеющий никакой логики.
Он просто возвращает true, какое бы имя файла ему ни передали.

152 Глава 3 • Работа 3.3. Не допускайте аргументов со значением NULL 153

Теперь вместо того, чтобы передавать null как аргумент метода
find(), мы просто создаем экземпляр класса AnyFile, и на этом
все. Метод find() не будет иметь понятия о том, что происходит.
Он все еще будет полагать, что ему передали корректную маску.

Договоримся о том, чтобы наши методы никогда не принимали
NULL. Но что, если пользователи все равно передают NULL, не­
смотря на соглашение и документацию, гласящую: «Пожалуйста,
не передавайте NULL~? Как реагировать на такое издевательское
поведение? Есть два способа - оборонительный и игнориру­
ющий. При оборонительном подходе мы проверяем аргумент на
равенство NULL и бросаем исключение, если это так:
puЫic IteraЬle<File> find{Mask mask) {

if (mask == null) {
throw new IllegalArgumentException(

"Маска не может быть равна NULL, пожалуйста,
передайте объект"

);
}
// Найти файлы по маске и вернуть результат

}

Второй подход подразумевает игнорирование, и я склоняюсь
к его использованию. Не делайте ничего, исходя из предполо­
жения, что аргумент не равен NULL. Рано или поздно, когда вы
начнете манипулировать аргументом, будет выброшено исклю­
чение NullPointerException и вызывающая сторона осознает
свою ошибку.

Не засоряйте код лишними проверками. NullPointerException -
нормальный показатель того, что в качестве аргумента было не­
корректно передано значение NULL. Нет необходимости делать
его более умным или более информативным. В качественно
спроектированном ПО все равно не должно быть нулевых ссы­
лок. Не защищайтесь, просто игнорируйте их - оставьте подоб­
ные ситуации на откупJVM.

Вывод: никогда не принимайте NULL в качестве аргумента ме­
тода. Никаких исключений.

Никогда.

Kevin Rutherford написал 26 августа 2017 года:

С моей точки зрения, NULL плох, поскольку он создает сцепле­
ние. Функция (ООП, ФП или любая другая), возвращая NULL,
вынуждает кого-то выше по стеку проверять существование
объекта. Такое сцепление связывает все объекты в стеке вы­
зовов до тех пор, пока кто-то не проверит возвращаемое зна­
чение. Это говорит о зависимости по соглашению (все должны
одинаково понимать семантику NULL в конкретном контексте),
а часто еще и о зависимости по алгоритму (все должны воз­
вращать NULL в одинаковых случаях). Поэтому между частями
программы появляется дополнительная зависимость. А еще
есть накладные расходы, связанные по меньшей мере с одним
условным ветвлением. Это прибавляет работы тестировщикам
и тем людям, которые будут читать этот код. Выработав при­
вычку не возвращать NULL, вы сэкономите себе уйму времени
впоследствии.

lgor спросил 13 октября 2016 года:

Можете ли вы придумать сценарий, где использовать Optional
было бы лучше, чем NULL или исключения?

Егор Бугаенко:

Не думаю.·

Madmenyo написал 8 апреля 2016 года:

Вы говорите, что использование NULL засоряет код излишними
условными операторами проверки. Но реализация вашим методом

154 Глава 3 • Работа 3.3. Не допускайте аргументов со значением NULL 155

приведет к засорению кода либо излишними строками вида
employee. isNobody(), либо блоками try/catch. Я согласен
с тем, что нужно прикладывать усилия к обеспечению читаемо­
сти кода.

Егор Бугаенко:

Проверки на NULL действительно засоряют код, поскольку они
семантически не согласованы с остальным текстом программы.
Блоки try/catch и метод isNobody (хотя не думаю, что я пред­
лагал такое) семантически более близки к основной проблем­
ной области.

Martin написал 15 октября 2014 года:

В некоторых языках есть третья и, пожалуй, лучшая альтернати­
ва использованию исключений или нулевых ссылок - паттерн
Optional. В стандартной библиотеке Java недавно появился
параметрический класс Optional типа т, созданный по мотивам
типа Optional в Scala (который, в свою очередь, был создан по
подобию МауЬе-типа из Haskell). Optional-тиnы лучше нулевых
ссылок не только тем, что явно кодируют в системе типов, что
функция может не вернуть значение, но и тем, что позволяют
отложить вычисление значения.

Егор Бугаенко:

Хотя тип Optional выглядит удобным с точки зрения компью­
терного мышления, он не имеет смысла с точки зрения объ­
ектно-ориентированного мышления. Как и в примере ранее,
когда я звоню и спрашиваю Джефри, я не хочу говорить с «не­
обязательным» Джефри. Это контринтуитивно. Я хочу пого­
ворить с тем, кто мне может помочь, - либо с Джефри, либо
с кем-то, кто представится Джефри (нулевой объект). Я не хочу
спрашивать у того, кого услышал, есть ли у него внутри Джефри.
Мыслите как объект, а не как программист, манипулирующий
битами и байтами в компьютере.

Martin:

Мне кажется, что это наиболее интуитивный Option (без шуток).
Вы спрашиваете Джефри, но нет гарантии, что вам его позовут.
Говоря в терминах типов данных, вам нужно что-то, что отли­
чает успешный вызов метода от неудачного. Если вы возвра­
щаете нулевой объект, то фактически возвращаете пустую обо­
лочку объекта Employee - вы считаете его Джефри, хотя он
таковым не является. Только когда вы обследуете его, то об­
наружите, что он не тот, о ком вы просили, - система типов
не позволяет вам сделать такой вывод. Пользователь должен
знать, на что посмотреть, - в данном случае на равенство его
нулю. Тип возвращаемого значения Optional<Employee> дает
знать всем пользователям API, что они могут и не получить
экземпляр класса Employee, даже не глядя в исходный код или
самописную документацию. Эта идея сильна сама по себе, но
некоторые языки продвигают ее на шаг вперед (поскольку

. я привык к реализации Optional в Scala, пример будет осно­
ван на ней, но реализация в Java не должна сильно отличать­
ся). В Scala вы будете безопасно работать с экземпляром
Optional, не зная, вернул вызов существующий экземпляр
Employee или нет. Делать if-проверки свойств Орtiоn-классов
не принято - просто работайте с ними как с особыми списка­
ми из одного или нуля элементов. И только когда вам действи­
тельно нужен экземпляр Employee, вы материализуете объект
вызовом optionalEmployee. getOrElse(new Employee("Patrick
Bateman")). Если исключения вамбольше по душе, чем пустые
пользователи, можно применить что-то вроде optionalEm- .·
ployee. getOrThrow(new EmployeeNotFoundException ("но such
employee +оцпо")). Заметьте, что все в руках пользователя API.
Он, а не проектировщик решает, нужно ли материализовать или
отбросить экземпляр Employee. Также невозможно преувели­
чить значение того, что пользователю не требуется заранее
знать API, чтобы корректно получить доступ к объекту, так как
состояние его существования перешло в систему типов.

156 Глава 3 • Работа

Егор Бугаенко:

Понимаю ваши доводы - в них есть смысл. Позвольте все же
еще раз попытаться убедить вас. Все, о чем вы говорили, весь­
ма эффективно с точки зрения программиста, который хочет
оставлять за собой управление возвращаемым ему объектом.
Мне кажется, что при объектно-ориентированном программи­
ровании мы должны стремиться к чему-то противоположному.
Мы должны избавить код, с которым работаем, от каких бы то
ни было зависимостей настолько, насколько это возможно.
Этого можно добиться при помощи абстрагирования.

Martin:

Но вы же явно просите Джефри. Не имеет смысла звать первого
попавшегося работника или самозванца. Если метод гарантиру­
ет получение корректного объекта, нет нужды применять Option.
В своем последнем примере вы на самом деле не используете
паттерн «Нулевой объект», поскольку просто предполагаете, что
объект корректен, и на основе этого делаете о нем выводы. Вер­
нет ли метод areYouHappy true\false для нулевого объекта или
бросит исключение? Почему в первом случае недоступность со­
трудника интерпретируется как его удовлетворенность/неудов­
летворенность жизнью? С другой стороны, бросая исключение
из этого метода в нулевом объекте, вы фактически маскируе­
те исключение NullReferenceException (NullObjectEm­
ployeeDoesntHaveFeelingsException). Оба этих неудовлетво­
рительных сценария отпадают при использовании Option. Это
принуждает пользователя быть не столько ответственным, сколь­
ко честным и явно указывать то, что значение может отсутствовать.
Если значение не может отсутствовать или если есть осмысленное
значение по умолчанию, не возвращайте Option, подобно тому,
как вы в данном случае не возвращали бы нулевой объект.

3.4. Будьте лояльным и неизменяемым либо константным 157

RoLand Bouman написал 25 сентября 2011+ года:
Мне не очень понятно, как паттерн «Нулевой объект» решает
какие-либо проблемы в этом отношении. По крайней мере мне

не удается придумать практический пример того, что можно
было бы продолжать работать обычным образом в случае, ко­
гда возвращается особый нулевой объект. «Преимуществом»
будет то, что не смогут появиться нулевые указатели, но при
этом программа вынуждена будет делать бессмысленные опе­
рации (хотя, скорее, корректные операции над бессмысленным
объектом). Конечно же, можно явно проверять, возвращен ли
нулевой объект, но я не понимаю, почему это лучше, чем про­
верка на равенство NULL. Мне интересно, сможет ли кто-то при­
вести реалистичный пример, демонстрирующий преимущества
использования паттерна «Нулевой объект».

Егор Бугаенко:

Нулевые объекты не обязательно бросают исключения при каж­
дом обращении к ним. Это может быть объект, который что-то
может, а что-то не может. Мне не всегда нужно применять всю
функциональность объекта.

3.4. Будьте лояльным и неизменяемым
либо константным

Обсуждение на http://goo.gl/2UKLds.

Я уже исписал более десятка страниц на тему неизменяемости
объектов в разделе 2.6, но пришло время вернуться к этой теме,
прежде всего потому что существует связанное с ней большое
заблуждение, которое надо попытаться развеять. Часто озвучи­
ваемый довод против неизменяемости состоит в том, что мир
по своей сути изменяем, и поэтому его невозможно представить
с помощьI<? только неизменяемых объектов. Действительно,
у нас есть сущности, отвечающие за ввод-вывод, - файлы, по­
токи, веб-страницы, буферы и т. п. Все они, по сути, изменяемы,
и ожидаемая их реализация также изменяема.

В сказанном есть изрядная доля здравого смысла, но я с этим
не соглашусь. Да, мир, в котором мы живем, изменяем, но это

158 Глава 3 • Работа 3.4. Будьте лояльным и неизменяемым либо константным 159

не значит, что мы не можем смоделировать его неизменяемыми
объектами. Запутывает нас непонимание разницы между со­
стоянием и данными - двумя разными вещами. Как обычно,
начнем с примера:
class WebPage {

private final URI uri;
WebPage(URI path) {

this.uri = path;
}
puЫic String content() {

// Делает НТТР GЕТ-запрос, загружает веб-страницу
// и конвертирует ее содержимое в UTF-8

}
}

Как вы думаете, этот объект изменяемый или нет?

Вам он кажется изменяемым? Если да, то подумайте еще раз.
Хотя метод content () может, по идее, возвращать разные значе­
ния при каждом вызове, сам объект неизменяемый. Он не меняет
своего состояния в течение жизни, поэтому не имеет значения,
как он себя ведет и что возвращают его методы. И это наверняка
запутывает большинство из вас.

Интуитивно мы ожидаем, что неизменяемый объект будет ве­
сти себя как константа, возвращая одни и те же данные всякий
раз, когда мы к нему обращаемся. Мы думаем, что если объект
неизменяем, то он должен вести себя как строковый или чис­
ловой литерал. Действительно, большинство неизменяемых
классов в Java и других языках ведут себя как константы.
String, URI или DouЫe, к примеру. Как только вы инстанциро­
вали один из этих классов, объект будет предсказуем на 100 %
и все его методы всегда станут возвращать одинаковые значе­
ния. Этого мы ждем от неизменяемых объектов, но ожидания
не оправдываются. Не то чтобы совсем, но они формируют
неполную картину. Это всего лишь граничный случай неиз­
меняемости.

Неизменяемый объект подразумевает гораздо большее. Класс
WebPage также неизменяем, хотя его метод content () всякий
раз возвращает разные результаты. Мы не знаем, чего от него
ожидать, поскольку он общается с сущностью реального мира -
неб-страницей. То, что мы получим посредством НТТР-запроса,
предсказанию не поддается. Вот почему класс WebPage не похож
на класс String, хотя тоже является неизменяемым. Его поведе­
ние непредсказуемо, но объект все равно неизменяемый. Пускай
объект не является константным, но он неизменяем, поскольку
«версн» сущности, которую представляет.

Достаточно ли я вас запутал? Чтобы прояснить ситуацию, на­
чнем сначала и определим, что такое состояние, а что такое объ­
ект. Потерпите немного. В этот раз я попробую изъясняться
понятнее.

Объект - это представитель сущности реального мира, напри­
мер файла на диске, веб-страницы, ассоциативного массива либо
календаря на текущий месяц. Под реальным миром мы понима­
ем все то, что лежит за пределами области видимости объекта.
К примеру, объект f представляет файл на диске:
puЫic void echo() {

File f = new File("/tmp/test.txt");
System.out.println("Paзмep файла: %d", file.length());

}

Область видимости в данном случае определяется границами
метода echo(). Чтобы пообщаться с файлом на диске и спросить,
каков его размер, мы должны коммуницировать с объектом f
посредством метода length (). Объект f - представитель файла
/tmp/test. txt. Он представляет его интересы при взаимодей­
ствии с нами. Настолько, насколько это нас касается, в рамках
метода echo() он является файлом.

Чтобы коммуницировать с файлом на диске, объект должен
знать его координаты. Они еще называются состоянием объекта.

160 Глава З • Работа

К примеру, состоянием объекта класса WebPage будет URI стра­
ницы. Чтобы загрузить его содержимое, объект свяжется с внеш­
ним миром посредством протокола НТТР, используя URI в ка­
честве координат НТТР-службы. Состоянием класса File
будет полный путь к файлу в файловой системе, например /tmp/
test. txt.

У каждого объекта, по сути, есть три элемента: идентичность,
состояние и поведение. Идентичность - то, что отличает f от
других объектов, состояние - то, что f знает о файле на диске,
а поведение - то, что f может сделать по нашему запросу. Основ­
ное различие между изменяемыми и неизменяемыми объектами
состоит в том, что неизменяемые объекты не имеют идентично­
сти и их состояние никогда не изменяется. Точнее, идентичность
неизменяемого объекта совпадает с его состоянием.

Взгляните на класс WebPage еще раз. Если я инстанцирую два
экземпляра с одним и тем же uri, будут ли они отличаться друг
от друга? Будут ли они демонстрировать разное поведение?
Нет. Они будут идентичны, поскольку их инкапсулированные
состояния равны друг другу. Они оба представляют одну и ту же
веб-страницу реального мира. Вот почему не будет никакой
разницы в том, с которым из объектов я буду общаться, - они
будут коммуницировать с той же веб-страницей. Координаты
веб-страницы одинаковы, и поэтому объекты будут идентичны­
ми, хотя инстанцировались раздельно. Идеальная реализация
класса как фабрики объектов (см. раздел 1.1) должна понимать
это и избегать дублирующихся экземпляров, инкапсулирующих
одинаковое состояние.

Однако в большинстве ООП-языков, включаяjаvа, это не так.
По умолчанию каждый объект имеет уникальную идентичность,
которая может быть переопределена. К примеру, для класса
WebPage я могу определить ее следующим образом (здесь при-

3.4. Будьте лояльным и неизменяемым либо константным 161

водится псевдореализация - настоящая реализация метода
equals () несколько сложнее):
class WebPage {

private final URI uri;
WebPage (URI path) {

this.uri = path;
}
@Override
puЫic void equals(Object obj) {

return this.uri.equals(
WebPage.class.cast(obj).uri

) ;
}
@Override
puЬlic int hashCode() {

return this.uri.hashCode();
}

}

Как видите, и метод equals (), и метод hashCode() рассчитывают
на инкапсулированное свойство uri, что делает объекты класса
WebPage прозрачными - они больше не имеют собственной иден­
тичности. Они представляют веб-страницу, и единственное их
состояние - координаты страницы в форме URI.

Но изменяемые объекты - совсем другая история. Они позволя­
ют модифицировать свое состояние, что требует идентичности,
отдельной от состояния. В настоящем объектно-ориентирован­
ном мире у нас были бы только неизменяемые объекты и нам
не понадобились бы методы equals() и hashCode(). Они были бы
одинаковыми во всех классах. Не было бы необходимости опре­
делять или переопределять их. В неизменяемом классе все объ­
екты идентифицируются инкапсулированным ими состоянием.
Состояние объекта является необходимым и достаточным для

- идентификации неизменяемого объекта.

Неизменяемый объект знает, где находится объект реального
мира и как его использовать. Вот и все. Он знает координаты,

162 Глава 3 • Работа 3.4. Будьте лояльным и неизменяемым либо константным 163

которые мы называем состоянием. Надеюсь, это логично, по
крайней мере с точки зрения приведенного примера. Когда реч~
идет о веб-странице или файле, все просто, поскольку реальным
мир вправду реален. Его сущности находятся за пределами наше­
го программного обеспечения. Вот почему несложно разделить
сущность и ее представителя.

Иными словами, неизменяемый объект верен сущности реаль­
ного мира, которую он представляет. Он никогда не меняет ее
координаты. Он всегда работает с одной и той же сущностью,
несмотря ни на что. Вот почему я говорю, что он верен. В то же
время изменяемый объект может менять координаты сущности,
с которой работает. Вот почему он неверен.

Что нам делать, если мы работаем с набором чисел? Задача три­
виальна: нужен набор целых чисел, из которого можно удалять
элементы, добавлять их, перебирать существующие элементы,
пересчитывать и т. п. Как я могу реализовать все это, используя
только неизменяемые объекты? Есть два возможных варианта:
константный список либо неизменяемый список. Вот пример
константного списка:
class Constantlist<T> {

private final Т[] array;
Constantlist() {

this(new Т[0]);
}
private Constantlist(T[] numbers) {

this.array = numbers;
}
Constantlist with(T number) {

Т[] nums = new T[this.array.length + 1];
System.arraycopy(

this.array, 0, nums,
0, this.array.length

);
nums[this.array.length] = number;
return new Constantlist(nums);

}

IteraЬle<T> iterate() {
return Arrays.aslist(this.array);

}
}

Вот как я буду его использовать:
Constantlist list = new Constantlist()

.with(l) // новый объект

.with(lS) // еще объект

.with(S); // и еще один объект

Надеюсь, вы поняли, как это работает. При каждой попытке
изменить список или добавить к нему новый элемент будет соз­
даваться новый список, куда станут копироваться все элементы
существующего.

Это классический неизменяемый объект, но я предлагаю на­
зывагь его константным, потому что это всего лишь граничный
случай неизменяемости, при котором его состояние равно сущ­
пости реального мира. Именно так, состояние this. array со­
впадает с сущностью, которую представляет объект list. Объ­
ект представляет массив, а его состояние является массивом.

равните этот класс с классом WebPage, приведенным нескольки­
ми страницами ранее. В его случае this. uri - всего лишь коор­
дината сущности реального мира - веб-страницы. В то же время
в ConstantList представляемая нами сущность и есть состояние.

1 Iовторяю, это всего лишь граничный случай.

Вот как я бы делал список неизменяемым:
class ImmutaЬleList<T> {

private final List<T> items = Linkedlist<T>();
void add(T number) {

this.items.add(number);
}
IteraЬle<T> iterate() {

return Collections.unmodifiaЬlelist(this.items);
}

}

164 Глава З • Работа

Похож ли он, по-вашему, на неизменяемый? Похоже, что объ­
екты данного класса можно модифицировать, поэтому они яв­
ляются неизменяемыми? Нет, не совсем так. Попробуем проана­
лизировать ситуацию. Модифицировать-то мы можем, правда,
не сам объект. Взглянем на класс WebPage еще раз: вот что будет,
если к нему добавить новый метод:
class WebPage {

private final URI uri;
WebPage(URI path) {

this.uri = path;
}
puЬlic void modify(String content) {

// Выполняет НТТР РUТ-запрос и модифицирует
// содержимое веб-страницы.

}
}

Сделали ли мы его тем самым изменяемым? Определенно нет.
Что происходит, когда мы используем его следующим образом?
WebPage page = new WebPage("http://localhost:8080");
page. modify ('' <html/ >");

Изменяем ли мы состояние объекта page? Нет. Объект все еще
неизменяемый? Несомненно. Неизменяема ли веб-страница,
которую он представляет? Мы не знаем, но, скорее всего, нет.

Этот случай очень похож на то, что наблюдается в ImmutaЬleList,
но есть небольшое отличие - сущность реального мира нахо­
дится в памяти, а не во Всемирной паутине. Если бы языкJаvа
был спроектирован по-другому, мы бы никогда не увидели этой
разницы. Если бы вJava был класс Memory, мы бы запрограмми­
ровали класс ImmutaЬleList следующим образом:
class ImmutaЬleList<Integer> {

private final Memory total =
new Memory(2); // 2 байта в куче

private final Memory items =
new Memory(100); // 100 байт в куче

void add(Integer number) {
int pos = this.total.read();

3.4. Будьте лояльным и неизменяемым либо константным 165

this.items.store(pos, number);
this.total.store(pos + 1);

}
}

Данный пример весьма примитивен, но, надеюсь, вы понимаете,
что в нем происходит.

Что скажете теперь? Похож ли он на WebPage? Думаю, да.
Инкапсулированные объекты this. total и this. items являют­
·я состоянием. Они представляют собой координаты несколь-
ких байтов в памяти для счетчика элементов списка и еще
какого-то количества байтов для хранения собственно элемен­
тов. По идее, и память, и диск, и Сеть для нас одинаковы.

1 Iаши объекты представляют их, и ничего более. Это очень по-
оже на указатель в С/С++. Вот как неизменяемый список вы­

глядел бы в С++:
Uinclude <stdlib.h>
class ImmutaЬleList {
puЫic:

ImmutaЬleList() :
total((int*) calloc(l, sizeof(int))),
items((int*) malloc(100)) {}

-ImmutaЬleList() {
free(total);
free(items);

}
void add(int number) {

int pos = *total;
items[pos] number;

*total = pos + 1;
}

private:
int* const total;
int* const items;

};

Обратите внимание на то, что указатели total и items являются
константными. Они инициализируются в конструкторе путем
выделения участков памяти и освобождаются, когда освобо­
ждаются соответствующие участки памяти.

166 Глава 3 • Работа 3.4. Будьте лояльным и неизменяемым либо константным 167

·Я считаю, что память должна рассматриваться нами так же, как
диск, сеть или любое другое внешнее хранилище. Язык должен
предоставлять встроенные инструменты для работы с памятью,
но они должны быть намного более гибкими и функциональны­
ми, чем указатели в С/С++. Проблема указателей в том, что они
чересчур просты. Они просто перенаправляют нас на некоторый
участок памяти, а выделение памяти - наша проблема и забота.
Как видно из приведенного примера, мы должны выделить с по­
мощью функции ma l loc () фиксированное количество байтов.
Что делать, когда весь выделенный блок заполнится элемента­
ми? Нужно увеличить емкость блока, но у нас это не получится.
Мы должны выделить функцией malloc () новый блок памяти,
скопировать туда содержимое существующего, а затем освобо­
дить его функцией free ().

- Такая трехшаговая процедура должна быть реализована во
встроенном классе Memory. К сожалению, такого класса в Java
нет.

Блок памяти для нас - такой же внешний ресурс, как и файл на
диске. С точки зрения архитектуры программы между ними нет
абсолютно никакой разницы. Учитывая этот принцип, мы можем
использовать неизменяемые объекты где угодно. Некоторые из
них будут константными, некоторые - неизменяемыми, пред­
ставляющими фрагменты памяти.

Очевидно, что лучше использовать константные объекты, по­
скольку они проще для проектирования, поддержки и пони­
мания. Почти все, что говорилось о неизменяемых объектах
в разделе 2.6, относилось к константным объектам, являющимся
частными случаями неизменяемых.

Таким образом, любая система, независимо от ее производствен­
ной и технической области применения, включая игры, настоль­
ные приложения, мобильные приложения, веб-приложения,
корпоративные системы и т. п., может и должна быть реализо­
вана целиком из неизменяемых объектов.

Jacob Zimmerman написал 18 марта 2017 года:

Вы правы во всем, но я понимаю, почему люди говорят то, что
говорят о неизменности результатов, возвращаемых методами.
Они приравнивают неизменяемость к идеалам функционально­
го программирования, включая идемпотентность - принцип,
согласно которому вызовы метода с одними и теми же аргу­
ментами должны возвращать одинаковые результаты. К этому
идеалу нужно по возможности стремиться, но, когда объект
представляет нечто вроде файла, это, очевидно, невозможно.

Егор Бугаенко:

Вот именно!

Ben NadeL написал l+ июня 2016 года:

Я сейчас читаю «Элегантные объекты», в частности раздел о не­
изменяемых данных, и у меня, как и у многих, появляется мас­
са вопросов и непонятных моментов. Имея опыт веб-разработки,
я часто думаю в терминах объектной модели документа (Docu­
ment Object Model, DOM) и обрабатываю события в DOM по мере
того, как они поднимаются вверх по дереву элементов. Для
взаимодействия с DOM объект события имеет методы, изме­
няющие его (события) поведение, event. stopPropagation()
и event.preventDefault(). Интересно, противоречит ли на­
писанное выше принципу неизменяемости? Как сказано в по­
сте: «Объект является неизменяемым тогда и только тогда,
когда он не меняет координаты сущности реального мира, ко­
торую он представляет». Из этого я понял, что если тип события
(например, mousemove) и его цель (например, Element) не ме­
няются, то не меняется и идентичность события. Тот факт, что
другие особенности распространения и поведения события
меняются, как таковой не делает класс изменяемым. Иными
словами, могу ли я с учетом сказанного считать объект события

-неизменяемым?

168 Глава 3 • Работа 3.4. Будьте лояльным и неизменяемым либо константным 169

Егор Бугаенко:

Хороший вопрос (спасибо, кстати, что купили и читаете книгу).
Действительно, объект события является неизменяемым до тех
пор, пока не меняет свою идентичность. Кроме того, я думаю,
что архитектура DOM в целом не является объектно-ориенти­
рованной. Они на деле являются не объектами, а структурами
данных, сцепленными друг с другом. Функциональность от­
делена от них и вызывается посредством механизма событий.
Настоящая объектная· модель должна выглядеть по-другому.
Никаких событий быть не должно.

Ben NadeL:

Я все еще пытаюсь разобраться в этом всем, но не могу пред­
ставить себе веб-разработку без использования событий.

Егор Бугаенко:

Вы хотите сказать: JavaScript-paзpaбoткy?

Ben NadeL:

Да, именно. Но опять же я с уверенностью отношу себя к «про­
цедурному» лагерю. Поэтому и купил вашу книгу.

Егор Бугаенко:

Да, DOM в целом проектировался с учетом процедурного под­
хода. У нас есть набор объектов (структур данных), сцепленных
друг с другом и встроенных друг в друга. Еще есть некоторый
интерпретатор (браузер), связанный с мышью и клавиатурой
и имеющий полный доступ к этим структурам данных. А еще
есть написанные на JavaScript процедуры, которые по мере
необходимости вызываются интерпретатором и имеют доступ
ко всему дереву данных. Очевидно, что ООП не должно так
работать. Я не в состоянии с ходу сказать, какая· архитектура
была бы корректной, но интерпретатор и JavaScript-npoцeдypы
не должны находиться отдельно от дерева.

Mario Т. Lanza написал/+ июня 2016 года:

Вы называете неизменяемым объект, чья внешняя оболочка
неизменяема, но один из важнейших механизмов неизменя­
емости - то, каким образом объект работает с чистыми функция­
ми. Если я передаю один из неизменяемых объектов в чистую
функцию, которая дает некоторый результат, я ожидаю этого же
результата при каждом вызове. То же верно и для методов. Од­
нако, поскольку неизменяемый объект может манипулировать
состоянием, где бы оно ни находилось, мы не можем ожидать
этого. Потеря этой гарантии крайне существенна. Я не думаю,
что люди возражают по поводу того, что вы не понимаете, что
после того, как класс помечен final, у вас появляется неиз­
меняемая оболочка. Я думаю, они имеют в виду, что называть
неизменяемую оболочку неизменяемым объектом - значит
рушить доводы в тех обсуждениях, где неизменяемость связана
с определенными гарантиями. Ваши посты часто великолепны,
ваши идеи достойны распространения, но, имея опыт функцио­
нального программирования, я не вижу ценности в неизменя­
емом объекте, чье видимое поведение не связано напрямую
с некоторым неизменным состоянием.

Егор Бугаенко:

В общем-то вы правы, но я предлагаю переосмыслить тради­
ционную интерпретацию неизменяемости в ООП. Она может
выглядеть противоречиво, но я считаю, что она осмысленна.
Как минимум с моей точки зрения.

Martin написал 22 декабря 2011+ года:

Вы по-прежнему не правы. «Это живой организм, представля­
ющий сущность реального мира в некоторой окружающей сре­
де (компьютерной программе)». Как же это живые организмы

170 Глава 3 • Работа 3.5. Никогда не используйте геттеры и сеттеры 171

неизменяемы? Проблема не в том, что люди вас не понимают.
С неизменяемостью все в порядке. Мы все понимаем. Пробле­
ма в том, что вы утверждаете, что все объекты всегда должны
быть неизменяемыми. Все. Всегда. Точка. А тот, кто не согласен,
просто не понял вас. Ваше утверждение о том, что объекты есть
сущности реального мира, напрямую противоречит утвержде­
нию о том, что они не изменяются. Почему? Потому что сущно­
сти реального мира постоянно меняются. Возможно, вы хотели
сказать, что объект является представлением сущности реаль­
ного мира, что ближе к истине. Но, согласно такому определе­
нию, объект может и должен меняться. Возможно, вы имели
в виду, что объект является представлением состояния сущности
реального мира в данный конкретный момент времени. А вот
это уже закрывает проблему с неизменяемостью. О неизменя­
емом объекте имеет смысл говорить тогда и только тогда, когда
он представляет собой нечто неизменяемое (например, состоя­
ние объекта в прошлом, каким бы недалеким оно ни было).
Недостаток вашего примера с классом File (как и примера
с собакой, используемого в других постах) в том, что объект
класса File не является представителем собственно файла.
Он представляет ссылку на файл (она, в свою очередь, может
быть изменяемой, но для данного обсуждения представим, что
не может). Если он действительно был представителем файла,
а не ссылки на него, то его состоянием было бы не имя файла -
это были бы байты, находящиеся в файловой системе, права
доступа, дата создания, дата изменения, информация об ауди­
те и все то, что мы считаем относящимся к файлу. Позвольте
выразиться по-другому. В Java у вас может быть два объекта
класса File, ссылающихся на один и тот же файл в файловой
системе. Но это проблема с реализацией. Разработчик класса
File говорит, что объекты класса представляют собой ссылки
на файлы в файловой системе. В объектно-ориентированной ар­
хитектуре у вас вполне могли бы быть объект класса ActualFile
и несколько объектов класса File, выступающих ссылками на
него. ActualFile может и наверняка должен быть неизменя­
емым. Вы можете добавлять содержимое в ActualFile, не соз-

давая нового экземпляра. Очевидно, что изменение ActualFile,
на который ссылаются несколько экземпляров класса File,
никоим образом не меняет их внутреннего состояния. То, что
вы можете запрограммировать класс ActualFile как неиз­
меняемый, совершенно не значит, что вы должны так делать.
Есть разница между объектно-ориентированным программи­
рованием и архитектурой. В рамках объектно-ориентирован­
ной архитектуры вы можете и должны иметь неизменяемые
объекты.

Егор Бугаенко:

Позвольте объяснить. Во-первых, я считаю, что объект дей­
ствительно является живым организмом, живущим в некоторой
среде обитания, например в методе. Во-вторых, он представ­
ляет сущность реального мира, которая находится где-то вне
его среды обитания - неважно, в другом ли методе, на диске,
или в Буэнос-Айресе. В-третьих. неизменяемый объект - бес­
корыстный представитель сущности реального мира. у него нет
никаких личных вещей. Все. что у него есть. - набор координат
той сущности. которую он представляет. И наконец. бескорыстие
объекта не означает его глупость - он прекрасно может пере­
давать наши запросы сущности реального мира. а ее ответы -
нам. Но себе он ничего не оставляет, хотя все проходит через
его руки. Он не жадный.

3.5. Никогда не используйте геттеры
и сеттеры

Обсуждение на http://goo.gl/LSyvo9.

Геттеры и сеттеры, Я не знаю, паттерн это или просто договорен­
ность. Я думаю, вы знаете, о чем я, но все же позвольте напом-

- нить. Вот как они выглядят:
class Cash {

private int dollars;
puЫic int getDollars() {

172 Глава 3 • Работа 3.5. Никогда не используйте геттеры и сеттеры 173

return this.dollars;
}
puЫic void setDollars(int value) {

this.dollars = value;
}

}

Итак, что у нас здесь? Изменяемый класс с единственным при­
ватным свойством, доступным через геттер getDollars () и изме­
няемым с помощью сеттера set~ollars(). В разделе 2.6 мы уже
говорили, что все классы должны быть неизменяемыми. Этот же -
изменяемый. Кроме того, в разделе 2.4 мы обсуждали, как должны
называться методы. В этом классе два метода названы некоррект­
но. А еще у него нет ни одного конструктора, что противоречит
принципам, озвученным в разделе 2.1. Я к тому, что этот класс
у~е противоречит советам, приведенным в данной книге.

Но это еще не все. Изменяемость, названия методов и полное
отсутствие конструкторов - лишь малые прегрешения по срав­
нению с намного большим грехом, в котором повинен этот класс.
Это не класс, а структура данных. И этот грех не может быть
прощен. Аминь.

Объекты против структур данных
Какая разница между объектом и структурой данных? Почему
быть структурой данных - грех в ООП.

Сначала обсудим их разницу. Вот структура данных, описанная
на С:
struct Cash {

int dollars;
}

А вот похожая вещь - объект, описанный на С++:
#include <string>
class Cash {

puЫic:
Cash(int v): dollars(v) {};
std::string print() const;

private:
int dollars;

};

В чем разница? Давайте взглянем. Так мы используем структуру
данных cash в языке С:
printf("Cash value is %d", cash.dollars);

А так делаем нечто подобное с объектом класса Cash в С++:
printf("Cash value is %s", cash.print());

Чувствуете разницу? Работая со структурой, мы получаем до­
ступ к ее полю dollars и работаем с ним как с целым числом.
С самой же структурой ничего не делаем. Не общаемся с ней.
Мы напрямую получаем доступ к какому-то ее полю. Структу­
ра для нас всего лишь мешок с данными, не имеющий никакой
индивидуальности.

Класс - это нечто другое. Он не позволяет получать доступ
к своим полям. Кроме того, он их нам даже не показывает.
Мы даже не знаем, что внутри него есть поле dollars. Все, о чем
мы можем его попросить, - вывести себя на экран. Мы понятия
не имеем, как это происходит. Будут ли как-то использоваться
инкапсулированные поля? Неизвестно. Это называется инка­
псуляцией, и в этом суть ООП.

Структуры данных прозрачны, а объекты - нет. Структуры дан­
ных ~ прозрачные ящики, а объекты - черные ящики. Струк­
туры данных пассивны, объекты активны. Структуры данных
мертвы, а объекты живы. Хорошие слоганы, не так ли? Здесь
я хотел бы остановиться и продолжить разговор о геттерах
и сеттерах в предположении, что объекты лучше структур дан­
ных. Этот факт очевиден всем. Однако я взял паузу и задумался
о том, что не так со структурами данных. Почему мы не можем

174 Глава 3 • Работа 3.5. Никогда не используйте геттеры и сеттеры 175

сочетать объекты и структуры данных? Да, пускай объекты
лучше, но почему только они? Ведь иногда нам нужны старые
добрые структуры данных с парочкой полей. Зачем строить
объект с поведением, состоянием и идентичностью? Мы же
не ООП-фанатики, правда?

Нет, конечно, но хотелось бы работать только с объектами, а не
со структурами данных, чему есть весьма рациональное и прак­
тичное объяснение.

Как обычно, все упирается ·в сопровождаемость. Главная цель
любой парадигмы программирования, какой бы она ни была -
процедурной, функциональной или объектно-ориентирован­
ной, - упрощать вещи, сужая область видимости. Чем меньше
область, которую вам надо понимать в каждый конкретный
момент времени, тем проще понимать, модифицировать и со­
провождать программное обеспечение.

Когда в процедурном и императивном программировании код
манипулирует данными, лучший способ упростить вещи - ис­
пользовать подпрограммы и агрегацию данных. Вместо того
чтобы продираться сквозь тысячи операторов, мы откладываем
некоторые из них в сторонку и называем их подпрограммой.
Вместо того чтобы управлять сотнями байт, мы группируем их
в массивы и структуры данных и ссылаемся на них с помощью
единственного указателя.

Группа находящихся рядом байтов удобна тем, что, когда мы
хотим адресовать ее элемент, мы добавляем его смещение от­
носительно начала группы к адресу этого начала. Такую группу
проще передать в качестве аргумента к подпрограмме. Вместо
того чтобы передавать десять аргументов структуры, мы пере­
даем указатель на нее, а подпрограмма с легкостью находит нуж­
ные ей байты.

Движущими силами в данном случае являются код, подпро­
граммы и инструкции процессора. Они манипулируют данными,

а данные просто сидят и ждут, пока их кто-нибудь не изменит
или не прочитает.

В разделе 3.2 мы обсуждали разницу между процедурным
и объектно-ориентированным программированием и пришли
к выводу, что ООП было изобретено в первую очередь для
того, чтобы упростить вещи по сравнению с процедурным ми-.
ром. Объекты перевернули все с ног на голову. Код стал пас­
сивным, а данные - активными. Если я правильно понимаю
ООП, то в этом его суть. Данные больше не сидят и ничего
1re ждут. Теперь они инкапсулированы внутрь живых объектов.
Они связаны друг с другом и, когда приходит время что-либо
сделать, инициируют исполнение посредством сообщений, из­
вестных также как вызовы методов. В ООП код не преобладает
1 rад данными. Вместо этого объекты инициируют исполнение
кода при необходимости. Звучит слишком абстрактно, но луч­
ше я объяснить не смогу. Важно понимать фундаментальное
различие между процедурным и объектно-ориентированным
стилями программирования. Код больше не рулит. В ООП
код вторичен. Объекты - полноправные граждане кода, а про­
граммное обеспечение есть их инициализация посредством
конструкторов.

Ни операторы, ни выражения - конструкторы.

Каждый раз, когда мы пытаемся применить в ООП что-то слож­
нее, чем байт, мы делаем шаг назад к процедурному программи­
рованию. Когда мы группируем несколько байтов в структуру
данных и начинаем использовать ее для коммуникации между
объектами, мы серьезно подрываем объектную модель прило­
жения, и назад дороги (почти) нет. Мы начинаем думать в тер­
минах выражений и операторов, а не объектов и конструкторов.

_ В разделе 3.2 мы уже обсудили разницу между императивным
11 декларативным стилями. Пришло время к ней вернуться.
Когда данные становятся сложнее одного байта, мы возвраща­
<'МСЯ к императивному программированию. Мы просто должны

176 Глава 3 • Работа 3.5. Никогда не используйте геттеры и сеттеры 177

писать инструкции и операторы, которые будут манипулировать
байтами, - сами манипуляции неизбежно окажутся императив­
ными.

Чтобы оставаться декларативными и объектно-ориентирован­
ными, мы должны прятать данные в объектах и никогда не вы­
ставлять их наружу. Только объект должен знать, что именно ин­
капсулировано и насколько сложна структура данных. Я бы даже
сказал, что мы не должны оставлять данные голыми. Мы всегда
должны их как следует одевать.

Никто не должен видеть их голыми или трогать их.

Голые данные склоняют нас к применению процедурного стиля
программирования, которого в ООП следует избегать любой
ценой, - таково прагматическое обоснование использования
объектов вместо структур данных.

Благими намерениями
вымощена дорога в ад
Геттеры и сеттеры были созданы, чтобы наришатъ принцип
инкапсуляции, хотя обычно декларируется обратное.

ВJava они были введены, чтобы превращать классы в структуры
данных, поскольку там структур данных не создано умышленно.
В С++ есть структуры, поэтому геттеры и сеттеры в нем не тре­
буются. В Java они нужны, чтобы создавать объекты, которые
выглядят как объекты, но на деле являются пассивными струк­
турами данных, подобно struct в С++.

Мы можем превратить класс в структуру данных, сделав его
поля публичными (public вJava):
class Cash {

puЫic int dollars;
}

Однако это нарушает базовые правила программирования на
Java так сильно, что любой скажет вам, что вы понятия не имеете
об ООП. Так вот, чтобы избежать такого публичного унижения,
мы договорились делать поля приватными и прикреплять к ним
геттеры и сеттеры. В каждой современной среде разработки есть
возможность генерировать геттеры и сеттеры к существующим
приватным полям. Вы просто ставите курсор на поле класса,
нажимаете кнопку и получаете два новых метода: один с пре­
фиксом get, другой - с префиксом set.

В Ruby есть встроенная возможность автоматически создавать
геттеры и сеттеры. Они называются аксессорами и мутатора­
ми. О том, что они нам нужны, говорят два ключевых слова -
attr_reader и attr_writer:
class Cash

attr_reader :dollars
attr_writer :dollars

end

Это всего лишь удобная замена следующей развернутой кон­
струкции:
class Cash

def dollars
@dollars

end
def dollars=(value)

@dollars = value
end

end

Те, кто проектирует языки и среды разработки, подталкивают
нас к обертыванию приватных полей в геттеры и сеттеры.

Я считаю, что геттеры и сеттеры - удобный инструмент на­
рушения приниципа инкапсуляции в ООП. Они выглядят как
методы, но в действительности маскируют тот неприятный факт,
что мы получаем прямой доступ к данным. Данные обнажены.

178 Глава 3 • Работа

Вы можете возразить, что данные скрыты, поскольку геттеры
и сеттеры являются методами. Можно добавлять в них допол­
нительную логику, проверять данные на корректность и даже
изменять способ хранения и считывания данных, но все это
не имеет значения. С точки зрения пользователя объекта геттеры
и сеттеры выглядят точно так же, как точки доступа к данным.
Объект выглядит как структура данных с битами и байтами.
Независимо от способа реализации геттеры и сеттеры являются
данными и представляют данные, а не поведение.

3.5. Никогда не используйте геттеры и сеттеры 179

Все дело в префиксах
Важно упомянуть, что порочной составляющей в антипаттерне
«Геттер - сеттер» являются префиксы get и set. Они четко
дают нам знать, что объект на самом деле не объект, а структура
данных, не ожидающая к себе никакого уважения. Она ожидает,
что мы будем обращаться с ней как с набором байтов, голыми
данными. Она не хочет, чтобы с ней общались. А хочет, чтобы
мы ввели в нее или получили из нее какие-то данные.

Вполне нормально иметь метод, возвращающий некоторые дан­
ные, например:
class Cash {

private final int value;
puЫic int dollars() {

return this.value;
}

}

Но такое имя недопустимо:
class Cash {

private final int value;
puЫic int getDollars() {

return this.value;
}

}

Не слишком ли я зациклился на именовании? Вовсе нет. Раз­
ница существенна и очень важна. Вызывая getDollars(), мы
говорим: «Залезь в свои данные, найди там поле dollars и вер­
ни его аначение». Вызывая же dollars (), мы спрашиваем:
«Сколько у вас долларов?» Чувствуете разницу? Во втором
.лучае я не рассматриваю объект как хранилище данных.
Я уважаю его. Мне нужно знать, сколько долларов есть у объ-
зкта, но я не рассчитываю на то, что их количество хранится
в приватном поле. Я не делаю предположений о его внутрен-
1 гей организации и уж точно не думаю о нем как о структуре
/(аННЫХ.

В первом случае данные скрыты, во втором - нет. Они выстав­
лены напоказ - любой пользователь класса видит их.

Вывод здесь один: геттеры и сеттеры - ужасный антипаттерн
ООП.

1 Iикогда не называйте так свои методы.

Dog написал 21 апреля 2017 года:

«В настоящем объектно-ориентированном программировании
объекты - такие же живые существа, как вы и я». Я еще могу
представить себе такое в Erlang, но уж точно ни в каком другом
языке. Знать о том, что объекты содержат слоты и vtable (или
как они там у вас в языке называются), жизненно важно, что­
бы их корректно использовать. Вам также необходимо знать,
как они управляют памятью, как взаимодействуют с потоками
и много других технических заморочек. В отличие от собаки они
большей частью за собой следить не будут. Если бы мне дава­
ли доллар всякий раз, когда я пытался использовать класс из
стандартной библиотеки в потоке, отличном от главного, а он при
этом обрушивал программу, у меня было бы намного больше
денег. Было бы замечательно, если бы объекты были живыми

180 Глава 3 • Работа 3.5. Никогда не используйте геттеры и сеттеры 181

существами и я мог бы доверять им следить за собой. Однаж­
ды это может сбыться, но сегодня это совсем не так. Это тупая
свалка байтов, с которой надо работать строго определенным
образом, иначе она уничтожит Вселенную. Собака ест, когда ей
хочется, и ходит в туалет, когда ей хочется, даже если ей об этом
не говорить. Если вы долго будете игнорировать свою собаку,
она может съесть ваш обед и нагадить на ковер, но не совершит
самоубийство, не начнет рожать тысячу щенков в секунду и не
сожжет ваш дом.

Егор Бугаенко:

Вы правы. Java и другие недо-ООП-языки не считают объекты
живыми существами. Да, мы должны следить за ними, иначе
они сожгут наше жилище. Но кто создал эти языки? Мы, про­
граммисты, не понимающие, кто такие объекты. Одна из ос­
новных целей данной заметки, помимо прочего, состоит в том,
чтобы поменять мировоззрение тех самых людей, которые
проектируют языки, библиотеки и т. п.

lvan Р. написал 22 ноября 2016 года:

В реальном мире не все будет объектом, а только то, что имеет
поведение. Стол, к примеру, не имеет собственного поведе­
ния. Следовательно, его не стоит описывать как объект. Какой
именно - ОТО-объект1 или какой-то еще, - не имеет значения.
Описывать сущности без поведения как объекты - значит
усложнять код.

Егор Бугаенко:

У чего нет поведения, так это у данных.

1 Data Transfer Object (объект для передачи данных) - паттерн проек­
тирования, используемый при передаче данных между подсистемами
приложения или уровнями архитектуры (уровень бизнес-логики,
хранения данных и т. п.). - Примеч. пер.

Lewis CowLes написал 17 сентября 2016 года:
Что интересно, речь скорее о том, что API объектов должно
иметь более естественный синтаксис, а не о паттерне «Гет­
тер - сеттер» как таковом. Я могу принять такой ход мыслей,
и мне кажется, что это заставит более рационально мыслить
о проблемной области, но беспокоит то, что это будет сложнее
объяснить и понять, особенно в мультикультурных командах,
в частности, тем, кто «пересекает вертикальную линию»1•

ALexKublcalL написал 27 июля 2016 года:

Здравствуйте, Егор. А как насчет представления данных в виде
форм с множеством полей, не имеющих объектного поведения
как такового? С помощью этих полей я должен иметь возмож­
ность сохранять, редактировать и фильтровать данные. Такое,
мне кажется, трудно сделать без геттеров и сеттеров.

Егор Бугаенко:
Похоже, вы используете ОТО-объекты. Не делайте этого. Есть
много других альтернатив.

lvan Stankov написал 12 июля 2016 года:

Допустим, у нас есть проект со всеми этими правильными соба­
ками и прочим. Проект находится в разработке уже более года,

1 Завуалированная ссылка на азиатов, в частности китайцев. Здесь,
вероятно, подразумеваются региональные различия в написании
арабской цифры 4. В европейских языках обычно не имеет значения,
пересекать ли вертикальную линию при написании цифры 4, но
в китайском языке есть похожий по написанию иероглиф ~, поэтому
китайцы всегда пересекают вертикальную линию при написании
цифры 4, см. https://en.wikipedia.org/wiki/Regional_handwriting_
variation#Arablc_numerals. - Примеч. пер.

182 Глава 3 • Работа 3.5. Никогда не используйте геттеры и сеттеры 183

и вы наняли нового программиста. Он получает задачу поды­
скать какой-то семье пса. Разработчику нужно создать новую
собаку. Он ищет фабрику собак, генератор собак и т. д. и т. п.,
но ничего похожего не находит. Через некоторое время ему
говорят, что есть классы вроде DogShelter, ZooShop и другие
подходящие для решения задачи . Итак, DogShelter. getDog -
нет такого, createDog - нет такого, constructDog - нет такого,
newDog - нет такого, да боже мой, может, getFlyweightDog -
конечно же, и его нет.·Ага, в итоге он находит метод adoptDog.
В этом и есть суть заметки?

Егор Бугаенко:

Да, именно! Существующие на сегодня соглашения (например,
геттеры - сеттеры) плохи, так как базируются на неправильных
принципах. Да, они весьма популярны и позволяют программи­
стам быстрее делать работу. Но в большинстве случаев из-за
этого страдает качество работы. Я пытаюсь изменить принципы.
Неизбежно мне приходится менять соглашения.

Sagiri написал 23 марта 2016 года:

Для примера с классом Dog не существует концептуально кор­
ректного варианта геттера. Take не подойдет, потому что, когда
я беру что-то у кого-то, у него этого чего-то больше нет. Это
противоречит тому, что batt не может быть равен NULL (предпо­
ложительно, потому, что у каждой собаки есть мяч), не говоря
уже о том, что класс Dog должен быть неизменяемым. Может
быть, можно наблюдать за мячом или анализировать его, но
тогда возникает еще большая путаница, поскольку наблюде­
ние и анализ - более активные действия, чем то, что проис­
ходит на самом деле. С основной идеей, впрочем, я согласен.
Если мыслить в терминах объектов, то мы не устанавливаем
имя или размер - мы переименовываем или меняем размер
чего-либо.

Scott PaLmeг написал 13 ноября 2015 года:

Эта заметка - практически полная бессмыслица. Она начина­
ется с того, что предлагает притвориться, будто структур данных
не существует, а оттуда катится вниз по наклонной.

Егор Бугаенко:

В объектно-ориентированном программировании нет структур
данных. Мы оставили их позади 20 лет назад в языке С. Идите
в ногу со временем!

Scott PaLmer:

Когда в руках молоток, все вокруг кажется гвоздями. Объ­
ектно-ориентированное программирование не означает, что
нужно забыть все, что есть, и подгонять все подряд, без раз­
бору под объектную парадигму. Это глупо. Для каждой задачи
нужно использовать подходящий инструмент. Иногда все, что
вам нужно, - простая структура данных. Как бы то ни было,
в заметке масса других проблем. Идея о том, что слова get
и set волшебным образом порочат имена методов, абсурдна.
«Собака - неизменяемый живой организм, который не позво­
ляет никому извне менять ее вес, рост, кличку и т. п.» - оче­
видная ложь. Я могу поменять кличку собаки. И мой питомец
не имеет права голоса по этому вопросу. Если у меня есть со­
бака, то я могу поменять ее кличку так: dog. setName("Spot")
или dog.name("Fido"), и, откровенно говоря, вариант с пре­
фиксом set более очевиден. Не нужно мне указывать, что я не
могу поменять кличку собаки, не заводя новую (неизменяемые
собаки, 'вы это серьезно?).

Егор Бугаенко:

Менять кличку собаки и устанавливать ее - разные вещи. В за­
метке речь об этом. Кличку можно поменять, но устанавливать
ее не стоит.

184 Глава З • Работа 3.5. Никогда не используйте геттеры и сеттеры 185

bedobl написал 16 августа 2015 года:

Мне нравится ваш благ, но мне кажется, что переименовани­
ем методов многого не добиться. Независимо от названий,
основной проблемой остается инкапсуляция и то, как она под­
талкивает разработчиков относиться к объектам как к тупым
мешкам данных и тем самым ис_пользовать процедурный подход
вместо объектно-ориентированного. Вместо того чтобы просто
переименовывать методы, можно и нужно полностью запретить
возможность изменения объектов, в частности, с помощью sеt­
методов. Gеt-методы должны предоставляться только при не­
обходимости и возвращать только неизменяемые копии своих
значений, которые бросают исключения при любых попытках
их изменить.

Егор Бугаенко:

Действительно, в идеале нам необходимо избавиться от сетте­
ров и сделать объекты неизменяемыми.

Esteban написал 21 июня 2015 года:

Допустим, у меня есть графическое приложение. Справа у него
панель инструментов, позволяющая менять свойства объектов.
Допустим, мы выбрали объект кисти, используемый в трех изо­
бражениях цыплят на ферме. На панели справа пользователь
может поменять значения красного, зеленого, синего и альфа­
каналов с помощью четырех ползунков. Когда пользователь
перемещает один из ползунков, цвет перьев должен меняться
у всех цыплят одновременно. Так должно быть, потому что все
три рисунка внутри ссылаются на этот объект кисти. Как вы
реализуете объект кисти, не добавляя в класс сеттеры и гетте­
ры, изменяющие значения красного, зеленого, синего и аль­
фа-каналов? Эти свойства могут быть независимо изменены
пользователем с помощью элементов управления.

Егор Бугаенко:

Есть несколько возможных решений. Первый и самый про­
стой - создать класс Brushes, возвращающий кисть по ее
идентификатору. Все изображения будут знать только иден­
тификатор кисти и ссылаться на класс Brushes. Получать не­
обходимую кисть они смогут по требованию.

Greg Bonney написал 21 июля 2015 года:

Приятно видеть, что не один я думаю, что «Геттер - сеттер» -
это антипаттерн. К сожалению, он настолько укоренился в API
Java и других похожих языков, что его практически невозможно
избежать.

Matt написал 9 июля 2015 года:

Может быть, я что-то упускаю, но по большей части данные
примеры все так же используют геттеры и сеттеры, но дают им
неочевидные имена. dog.weight() - метод, ничем не отлича­
ющийся от dog.getWeight(). Для тех, кто не осилил1: геттеры
и сеттеры - всего лишь соглашение об именовании, их не име­
ет смысла назь~вать антипаттерном и некорректно утверждать,
что это плохая практика программирования.

hasufeLL написал 27 мая 2015 года:

Весьма интересный взгляд. Мне кажется, что вы на верном
пути и что с вами приятно работать как с 00-программистом,

1 В оригинале TL;DR (too long;didn't read) - таким сокращением
в интернет-сленге обозначают упрощенное изложение длинной
статьи или комментария. В русскоязычном сегменте Интернета
с похожей целью используется фраза ~не осилил - много букв». -
Примеч. пер.

186 Глава З • Работа 3.5. Никогда не используйте геттеры и сеттеры 187

но после прочтения я подумал, что вы упустили из виду чисто
функциональное программирование. Многое из того, о чем вы
говорите, уже включено по умолчанию в языки вроде Haskett
(неизменяемость, прямолинейный код, инкапсуляции, отсут­
ствие нулевых ссылок). Есть даже дополнительные преиму­
щества в виде отсутствия побочных эффектов. В таких языках
не получится мыслить по-старому, императивным способом.
Конечно, от ООП тоже есть отличия, но с учетом приведенных
пожеланий по улучшению современного образа мышления
следующим логичным шагом будет, как мне кажется, чисто
функциональное программирование.

Егор Бугаенко:

Действительно, функциональное программирование весьма
близко по духу правильно реализованному ООП. Но я все же
считаю, что они различаются и что ООП мощнее.

NikoLa Boricic спросил 14 февраля 2015 года:

Как насчет сценария, когда ресурсы ограничены, а произ­
водительность критична? К примеру, в мобильных Аndгоid­
приложениях объекты ListView не будут неизменяемыми, по­
скольку длинные списки станут приводить к отказу приложений.
Вместо этого есть пара объектов, которые при прокрутке списка
используются повторно. Считаете ли вы это плохой практикой?
Как бы вы работали с таким случаем, не применяя методы-му­
таторы'?

Егор Бугаенко:

Я бы по-прежнему использовал неизменяемые объекты, но на
основе изменяемого хранилища в памяти.

1 Mutators (англ.) - обобщенное название геттеров и сеттеров. -При­
меч. пер.

Hans-Peter Storr написал 2 января 2015 года:

Меня несколько смущает то, что вы говорите о неизменяемых
живых организмах. Я понимаю, что живой организм будет удач­
ной метафорой, например, акторов в Scata. Но если «оно»
не изменяется, то не будет ли «оно» статуей собаки, а не самой
собакой? Или фотографией собаки, притом что действия порож­
дают новые фотографии? Я несколько затрудняюсь придумать
хорошую метафору для неизменяемости.

Егор Бугаенко:

Неизменяемый - не значит тупой или безжизненный.

oddparity написал 1 ноября 2014 года:

Нет, программирование не религия, как вы пишете ниже.
И ваша заметка, мне кажется, поддерживает эту мысль. Про­
граммирование - процесс создания инструмента. Инструмент
должен работать, должен быть сопровождаемым, расширя­
емым, отлаживаемым, верифицируемым. Он будет работать
и с геттерами, и с сеттерами.

Егор Бугаенко:

Да, он будет работать с геттерами, сеттерами, синглтонами,
статическими методами, без юнит-тестов, с божественными
объектами, спагетти-кодом и без всякой документации. Будем
честными: большая часть кода, с которым мы сталкиваемся, ра­
ботая в этой индустрии, делается именно так. Нравится ли нам
это? Хотим ли мы это улучшить? Любим ли мы свою профессию
или работаем за еду? Я думаю, что программирование - это
образ жизни, религия, искусство, но никак не процесс создания
инструмента. Вы проводите 1 % жизни на свиданиях, а 80 % -
за компьютером. Почему мы должны встречаться с красивыми

188 Глава 3 • Работа 3.6. Не используйте оператор new вне вторичных конструкторов 189

мужчинами/женщинами, но при этом не беспокоимся о красоте
собственного кода?

oddparity:

Мне тоже нравится красивый код. Но переименование getBall()
в giveBall() много проблем не решит. К тому же я не особо
люблю сюрпризы. Некоторые из моих коллег могут реализо­
вать метод spitBall(), некоторые даже getBall() [те, что
всегда говорят: «Принеси мне мяч»). Хотелось бы как можно
быстрее находить метод, возвращающий мяч, а поэтому я при­
держивался бы общепринятых соглашений об именовании, как
это делают остальные. Я скорее хотел бы, чтобы мои коллеги
вносили больше креатива в хорошо спроектированные клас­
сы [учитывающие, к примеру, ваши рекомендации по другим
темам) и хорошее микропрограммирование. Кроме того, мои
объекты не цифровые воплощения живых существ, а запро­
граммированные проекции файлов, папок и их содержимого.
Бумага и то, что на ней написано, не обладают интеллектом,
а процесс, работающий на ней, - да. Мне нравятся идеи ми­
стера Фаулера', но я, похоже, предпочитаю «безжизненный»
взгляд на проектирование.

Bruno Skvorc написал 31 октября 201, года:

Это все придирки ради славы и денег. Делайте качественные
приложения и называйте методы как угодно.

Егор Бугаенко:

Да, будь хорошим мальчиком, слушай маму - и все будет хо­
рошо. Для детей это подойдет, но в серьезной разработке ПО
нужны правила, принципы, дисциплина. ООП дает нам дисци­
плину, если мы ее правильно понимаем.

1 Мартин Фаулер (Martin Fowler) - автор ряда книг, посвященных
архитектуре приложений. - Примеч. пер.

3.6. Не используйте оператор new
вне вторичных конструкторов
Обсуждение на http://goo.gl/U8F8nq.

Поговорим о внедрении зависимостей. Честно говоря, мне
нравятся это название и шумиха вокруг него. Знаете, не бу­
дем об этом. Поговорим о чистом, дисциплинированном ООП.
Мы не избежим разговора о внедрении зависимостей, инверсии
управления и других паттернах проектирования, имеющих от­
ношение к зависимостям.

В небольших и молодых приложениях проблема не слишком
очевидна, но она становится важна, иногда даже жизненно важ­
на, в крупных системах. Например:
class Cash {

private final int dollars;
puЫic int euro() {

return new Exchange().rate("USD", "EUR")
* this.dollars;

}
}

Вот так выглядят проблемы. Мы создаем экземпляр класса
Exchange, используя оператор new прямо внутри метода euro().
Почему это вызывает проблемы? Не обязательно вызывает (при
условии, что классы небольшие, простые и не задействуют до­
рогих ресурсов вроде сети, диска, базы данных и т. п.).

Проблемы вызывает нечто, называющееся жестко запрограм­
мированной зависимостью. Действительно, класс Cash связан
с классом Exc'hange, в результате чего мы не можем ликвидиро­
вать такую зависимость, не редактируя код внутри класса Cash.

Представьте себе ситуацию, когда исходник класса Cash недо­
ступен, а класс все равно приходится использовать. Или код
доступен, но его нельзя изменять. У нас просто есть библиотека

190 Глава 3 • Работа 3.6. Не используйте оператор new вне вторичных конструкторов 191

в двоичном формате, и мы ее обязаны применять. Код может
выглядеть так:
Cash five = new Cash("S.00");
print("$5 соответствует %d11

, five.euro());

Я проверяю метод print() и не хочу, чтобы класс при каждом за­
пуске юнит-теста обращался в Нью-Йоркскую фондовую биржу.
Меня не волнует, как работает метод five.euro(). Все, что мне
нужно, - результат. Я не хочу тестировать класс Cash. Я хочу
тестировать собственный код и чтобы класс Cash создавал как
можно меньше шума. Если каждый раз при запуске тестов он
будет подключаться к NYSE по НТТР, это станет сильно раз­
дражать и моим первым вопросом к разработчику этого класса
будет: «Как мне настроить класс Cash так, чтобы он перестал
обращаться к бирже?»

В текущем варианте реализации класса Cash такое абсолютно
невозможно. Связь между классами Cash и Exchange нерушима.
Чтобы их расцепить, придется изменять исходный текст класса
Cash. Эта проблема незначительна тогда и только тогда, когда
класс невелик, но в более глобальном масштабе жестко запро­
граммированные зависимости мешают тестированию и сопро­
вождению ПО.

Корень зла ~ оператор new.

Поскольку мы позволяем объектам инстанцировать другие объ­
екты где и когда им удобно, то почему жалуемся, когда они дела­
ют это где хотят? Cash может порождать экземпляры Exchange -
вот в чем проблема. Представьте ситуацию, когда оператор new
запрещен внутри методов. Объекты не смогут порождать новые
объекты. Они смогут только принимать их в качестве аргументов
конструктора и инкапсулировать в приватных полях. Класс Cash
будет выглядеть примерно так:
class Cash {

private final int dollars;
private final Exchange exchange;

Cash(int value, Exchange exch) {
this.dollars = value;
this.exchange = exch;

}
puЫic int euro() {

return this.exchange.rate("USD", 11EUR1
')

* this.dollars;
}

}

Проблема решена. Вот как должен будет выглядеть наш код:
Cash five = new Cash(S, new FakeExchange());
print('1$S соответствует %d1

', five.euro());

Мы должны передавать экземпляр Exchange в качестве второго
аргумента конструктора. Класс Cash не может инстанцировать
его самостоятельно. Он работает только с тем обменником,
который ему предоставят. Он больше не зависит от Exchange.
Вообще, конечно, зависит, но теперь зависимость контролируем
мы, а не он. Он не решает, где ему взять курс обмена долларов на
евро. Он полагается на наше решение и работает с тем объектом,
который мы ему дадим.

Иными словами, вместо того, чтобы позволять объекту создавать
зависимость по своему усмотрению, мы внедряем ее посредством
конструктора.

Такое внедрение - хорошая практика. Класс Cash разработан
таким образом, что его конструктор ожидает все необходимые
зависимости, и такое поведение - образец для подражания.
Так нужно разрабатывать все объекты. Для удобства мы можем
добавить несколько вторичных конструкторов, как описано
в разделе 1.2~
class Cash {

private final int dollars;
private final Exchange exchange;
Cash() {//вторичный

this(0);
}
Cash(int value) {//вторичный

192 Глава 3 • Работа 3.6. Не используйте оператор new вне вторичных конструкторов 193

this(value, new NYSE());
}
Cash(int value, Exchange exch) {//основной

this.dollars = value;
this.exchange = exch;

}
puЫic int euro() {

return this. exchange. rate("USD'', "EUR")
* this.dollars;

}
}

Одноаргументный конструктор внедряет экземпляр класса NYSE.
Но это вторичный конструктор. Первичный конструктор позво­
ляет нам полностью контролировать то, с какими зависимостями
работает объект.

Я предлагаю простое правило, обеспечивающее высокое каче­
ство всех ваших объектов: не используйте оператор new нигде,
кроме вторичных конструкторов. Взгляните на приведенный
ранее код еще раз. Как видите, оператор new применяется только
во вторичном конструкторе и нигде больше. Если вы запретите
использование оператора new где-либо еще, ваши объекты будут
полностью расцеплены и их верифицируемость и сопровожда­
емость повысятся.

Вы можете спросить, что делать, если объект должен инстанци­
ровать другие объекты. Допустим, у нас есть объект, который
представляет поток запросов, скажем, от сетевого сокета:
class Requests {

private final Socket socket;
puЫic Requests(Socket skt) {

this.socket = skt;
}
puЫic Request next() {

return new SimpleRequest(
/* прочесть данные из сокета */

) ;
}

}

Каждый вызов метода next () должен создавать объект типа
Request и возвращать его. Действительно, здесь нам нужен опе­
ратор new, и это не конструктор. Да, этот код нарушает правило,
о котором идет речь в данном разделе. Вот как мы решаем эту
проблему:
class Requests {

private final Socket socket;
private final Mapping<String, Request> mapping;
puЫic Requests{Socket skt) {

this(
skt,
new Mapping<String, Request>() {

@Override
puЫic Request map{String data) {

return new SimpleRequest{data);
}

}
) ;,

}
puЫic Requests(Socket skt,

Mapping<String, Request> mpg) {
this.socket = skt;
this.mapping = mpg;

}
puЫic Request next() {

return this.mapping.map(
/* прочесть данные из сокета */

) ;
}

}

Мы инкапсулируем экземпляр класса Mapping, который отве­
чает за конвертирование текстовых данных в экземпляр класса
Request. Как видите, оператор new используется только во вторич­
ном конструкторе. В методе next () его больше нет. Такой подход
делает класс Requests конфигурируемым и избавляет его от жест-

- ко запрограммированных зависимостей. В коде больше нет жестко
прописанных зависимостей. Мы можем внедрить собственную
реализацию класса Mapping, который не применяет SimpleRequest,
но возвращает, к примеру, что-то пригодное для тестирования.

194 Глава 3 • Работа 3.7. Избегайте интроспекции и приведения типов 195

Было бы хорошо, если бы такое правило было встроено в язык
и строго соблюдалось, но это вопрос завтрашнего дня. А пока
что имейте в виду: всякий раз, когда вы используете оператор
new в методах или основных конструкторах, вы делаете что-то
не так. Единственное законное место оператора new - вторичные
конструкторы.

Думаю, это все, что вам нужно знать о внедрении зависимостей
и инверсии управления. Это простое правило в совокупности
с неизменяемыми объектами сделает ваш код чистым и подго­
товит его к внедрению зависимостей.

Bartosz Miera написал 8 января 2018 года:

Я считаю, что основная проблема с оператором new() состоит
в том, что он за кадром использует синглтон (!), который почти
все считают вселенским злом. Будем честными: куча (heap),
оказывается, является синглтоном, так как она доступна гло­
бально и существует в каждом приложении в единственном
экземпляре. Разумно применять оператор new для создания
объектов только на верхнем уровне кода. Остальные объекты
нужно порождать посредством других объектов, таких как фа­
брики и т. п.

3.7. Избегайте интроспекции
и приведения типов

Обсуждение на http://goo.gl/BoQ2iq.

Бремя от времени весьма соблазнительно использовать ин­
троспекцию и приведение типов, однако держитесь от них по­
дальше, чего бы это ни стоило. С технической точки зрения
речь идет об операторе instanceof и методе Class. cast() вJava
или их аналогах в других языках. Задействуя этот оператор, мы

можем проверять тип объекта во время исполнения программы,
например:

puЬlic <Т> int size(IteraЬle<T> items) {
if (items instanceof Collection) {

return Collection.class.cast(items).size();
}
int size = 0;
for (Т item items) {

++size;
}
return size;

}

Интроспекция - один из приемов, известных под общим на­
званием «рефлексия». Рефлексия тоже зло, но зло, не имеющее
прямого отношения к ООП. Вот почему мы не будем его по­
дробно обсуждать. Используя рефлексию, вы можете изменять
методы, инструкции, выражения, классы, объекты, типы и т. п.
во время исполнения. Вы модифицируете код прежде, чем его
досгигнег процессор. Это очень мощный и в то же время очень
грязный прием, который сводит на нет сопровождаемость кода.
Думаю, очевидно, что трудно читать код, когда нужно держать
в голове, что он может быть модифицирован другим кодом во
время исполнения. Чтение такого кода превращается в кошмар.
Короче говоря, рефлексия - хороший инструмент для плохих
11рограммистов.

1 Iриведенный ранее Jаvа-метод вычисляет размер итерируемо-
1·0 объекта. Прежде чем перебрать и пересчитать элементы, он
проверяег, относится ли объект items к типу Collection, в ко­
тором уже есть метод s i z е () . Это явная оптимизация, верно?

1 1 ет нужды перебирать элементы, если есть короткий путь. Мы
ироверяем тип во время исполнения и действуем соответству­
ющим образом.

:)тот подход кажется удобным и оптимальным, но на деле он
(пвратителен.

196 Глава 3 • Работа 3.7. Избегайте интроспекции и приведения типов 197

Этот подход серьезно нарушает принципы ООП путем дискри­
минаиии объектов по типу. Действительно, мы взаимодействуем
с объектом items по-разному в зависимости от его типа. Вместо
того чтобы позволить объекту решать, как выполнить то, что от
него требуется, мы принимаем решение без его участия, сегре­
гируя тем самым объекты на плохие и хорошие. С философской
точки зрения это категорически неправильно. Это выглядит
агрессивно и неуважительно. И напоминает расовую, гендер­
ную, этническую, возрастную и любую другую дискриминацию
в мире людей. Когда вы принимаете человека на работу, то не об­
ращаете внимания на его пол. Вы говорите ему или ей, что необ­
ходимо сделать, и ожидаете, что результат будет удовлетворять
заявленным вами требованиям. Не будет ли странным, если ин­
струкции для мужчин и женщин будут различаться? То же самое
применимо и к объектам. Мы должны избегать дискриминации
объектов и позволять им делать свою работу без оглядки на то,
кем они являются.

С технической точки зрения интроспекция типов во время ис­
полнения - тоже плохой прием, поскольку он усиливает сце­
пленность классов. Взгляните на приведенный ранее пример
еще раз. Наш метод зависит от двух интерфейсов - IteraЬle
и Collection, а не просто от IteraЫe. Большее число зависимо­
стей означает более тесную связь и худшую сопровождаемость.
Что особенно плохо - эти зависимости скрыты. Мы не знаем,
что метод использует интроспекцию. Зависимость между мето­
дом и классом Collection скрыта.

Кроме того, чтобы эффективно применять этот метод, мы долж­
ны знать, как он устроен. Мы должны будем заглянуть вис­
ходный код, чтобы убедиться, что он действительно ведет себя
по-другому, если ему передать экземпляр класса Collection.
Намного лучше будет сделать так:
puЫic <Т> int size(Collection<T> items) {

return items.size();

}
pu~lic <Т> int size(IteraЬle<T> items) {

int size = 0;
for (Т item: items) {

++size;
}
return size;

}

Этот прием известен как перегрузка метода и доступен не во
всех языках. В Ruby, например, он не поддерживается, но есть
возможность создать два метода с разными именами:
def sizeOfiteraЬle(items)

#
end
def sizeOfCollection(items)

#
end

Теперь пользователь класса вынужден решать, какой метод ис­
пользовать. ВJava решение принимает компилятор, в Ruby это надо
делать вручную, имея на руках информацию о типе объекта.

То же справедливо и в отношении преобразования классов, когда
мы принуждаем объект подчиняться контракту, под выполнени­
ем которого он не подписывался:
return Collection.class.~ast(items).size();

Эта строка может выглядеть следующим образом:
return ((Collection) items).size();

С технической точки зрения строки практически идентичны.
Конечный результат - то, что объект items становится типа
Collection. Это как если бы вы вызвали сантехника и сказали:
~я полагаю, что вы еще и компьютерщик, - почините мне прин-

- тер». Погодите, вот более подробный пример:
if (items instanceof Collection) {

return ((Collection) items).size();
}

198 Глава З • Работа 3.7. Избегайте интроспекции и приведения типов 199

Это звучит как «Если вы еще и компьютерщик, то почините мне
прингерэ. Это уже намного лучше, чем делать необоснованное
предположение, на основе которого просить сантехника отре­
монтировать принтер. Тем не менее это все равно плохо, прежде
всего из-за скрытого сцепления. В следующий раз, прежде чем
отправлять к вам сантехника, фирма будет пытаться подобрать
того, кто по совместительству является компьютерщиком, по­
скольку они помнят, что в прошлый раз вы заплатили еще и за
наладку принтера. Контракт между вами и фирмой будет офи­
циально включать починку стока, как и раньше, однако будет
подразумевать еще и ремонт принтера.

Если вы завтра решите сменить фирму по ремонту сантехники,
вам снова придется искать сантехника-компьютерщика. Но эта
информация в контракте не записана. Та же проблема возник­
нет, если теперешняя фирма решит поменять сотрудников. Ска­
жем, парня, который с вами работал, уволили, а вам прислали
нового. В вашем контракте прописана починка стока. Вам предо­
ставят хорошего сантехника, но вы останетесь недовольны, по­
скольку хотите сантехника с дополнительной квалификацией,
которая в контракте не указана.

Иными словами, вы выражаете свои ожидания относительно
объектов, явно не документируя их. Некоторые клиенты за­
помнят ваши потребности и будут предоставлять вам более
подходящие объекты, а некоторые - нет. Такие непрозрачные,
скрытые отношения, основанные на неписаных соглашениях,
серьезно влияют на сопровождаемость вашего продукта.

В общем, необходимо избегать любого использования оператора
instanceof или приведения типов. Они не приносят никакой
пользы вашему ПО, несмотря на то что их предоставляют почти
все ООП-языки в рамках механизма рефлексии. Они только
усугубляют беспорядок.

LiLy спросил 8 января 2018 года:

Считаете ли вы, что приводить к более частному типу в Java
плохо?

Егор Бугаенко:

Да, безусловно.

Andriy спросил 12 июля 2017 года:

Будет ли антипаттерном приведение Object к интерфейсу?

Егор Бугаенко:

Определенно да.

Ross WiШam Drew написал З апреля 2015 года:

Если у вас есть Collection, который рассматривается как
IteraЫe и в таком виде передается методу, то тогда метод
интерфейса IteraЫe станет выполнять лишние действия над
Collection, считая его IteraЫe. Следуя вашей аналогии, ко­
торую я нахожу несколько примитивной, вы все равно сегреги­
руете, но в итоге у вас негры делают то, что делают белые. Я бы
здесь посоветовал решение, состоящее в том, что IteraЬle
(или Iterator) должен иметь метод size(), чтобы его можно
было спросить о количестве элементов, а не подсчитывать их
количество извне.

Егор Бугаенк~:

Вы правы, но это только подтверждает мою мысль. Решение
о том, как вы будете обращаться с объектом, приходящим в ме­
тод, должно быть отражено в сигнатуре метода и нигде боль­
ше. Если я объявляю java. util. List как java. lang. IteraЫe
и передаю ее методу, ожидающему List или IteraЬle, то я хочу,

200 Глава 3 • Работа

чтобы вы считали меня IteraЫe и не обращались к методу
size(). Это мое решение, не ваше.

Ross WiШam Drew:

Может быть, но ваше решение подвержено риску ошибок в том
смысле, что пользователь метода/класса не должен забывать
приводить передаваемые коллекции к более общему типу,
иначе исполнение программы замедлится или вовсе произой­
дет отказ. Если в них есть элементы, приведенные к частным
типам, которые, в свою очередь, должны быть переданы клас­
су/методу, то ваше решение просто сдвигает выбор типа на
основе instanceof вверх по стеку вызовов. Мое предложение
состоит в следующем: идеальным решением будет принимать
только объекты, обернутые в интерфейс, поведение которого
единообразно во всех реализациях (например, наличие ме­
тода size()). Пользователь в таком случае будет вынужден
писать хороший с точки зрения ООП код - у него не возникнет
желания каждый раз делать instanceof при использовании
ваших классов. Всегда пишите код так, будто тот, кто его будет
читать, - агрессивный психопат, который знает, где вы живете1•

Я бы посоветовал писать интерфейсы точно так же.

1 Перифраз известного высказывания, оригинал см.: https://groups.go­
ogle.com/forum/#!msg/comp.lang.c++/rYCOSyn41Xw/oIТtSkZOtoUJ. -
Примеч. пер.

Уход на пенсию

Жизненный цикл объекта начинается с оператора new и закан­
чивается тогда, когда он больше никому не нужен. Обычно объ­
екты делают свое дело и мы на них не жалуемся. Хотя иногда
они выбрасывают исключения, когда им не нравится то, что они
видят. Исключения - хороший ООП-прием, не имеющий, од­
нако, никакой связи с объектной парадигмой, при этом они
здорово помогают в обработке ошибок и оптимизации кода.
Благодаря исключениям у нас нет необходимости решать про­
блемы в каждом методе по отдельности. Мы просто можем пере­
дать их на уровень выше.

Позже мы обсудим, что с ними делать после этого.

Однако исключения легко использовать не по назначению.
Совсем не по назначению. Нет ничего хуже для сопровожда­
емости, чем некорректная обработка исключений.

Глава посвящена возврату NULL из методов, обработке исклю­
чений и получению ресурсов. Этот материал на данный момент

- весьма спорный. На данный момент - значит, в существующей
реализации объектно-ориентированных языков. Я очень наде­
юсь, что в ближайшем будущем некоторые из озвученных в этой
главе идей будут реализованы в ООП-языках.

202 Глава 4 • Уход на пенсию 4.1. Никогда не возвращайте NULL 203

4.1. Никогда не возвращайте NULL
Обсуждение на http://goo.gl/TzrYbz.

Использовать NULL в качестве аргумента метода - плохо, как мы
уже обсуждали в разделах 2.6 и 3.3. Очень плохо. Не знаю, как
насчет других парадигм программирования, но в объектно-ори­
ентированном и процедурном - точно. Теперь обсудим, почему
возвращать NULL - тоже плохо. Как обычно, начнем с примера
нaJava:
puЫic String title() {

if (/* нет заголовка*/) {
return null;

}
return "Элегантные объекты";

}

Это настолько отвратительно, но при этом настолько рас­
пространено, что я даже не знаю, с чего начать. Начнем с того,
почему это отвратительно, а затем проанализируем, почему этот
прием получил такое широкое распространение в мире ООП.

Во-первых, такой подход заставляет нас делать то, против чего
агитирует раздел 3.3, - считать объекты существами с ограни­
ченными возможностями. Мы попросту не можем доверять
объекту, который был возвращен из метода title(). Не можем
доверять его способностям. Он инвалид. Он нуждается в особом
к себе обращении:
String title = x.title();
print(title.length());

Мы не можем вызвать title. length (), не боясь получить
NullPointerException. Проблема не в самом исключении.
Исключение - всего лишь техническое неудобство. Истин­
ная проблема крупнее. Проблема в потере нашего доверия.

Мы не можем утверждать, что наши объекты самодостаточны,
целостны, уважаемы, умны и т. п. Они не являются таковыми.
Мы не можем попросить их сделать что-то и надеяться на ре­
зультат. Мы должны проверить, является ли объект объектом
в принципе.

Такие проверки - ужасное нарушение объектно-ориентирован­
ной парадигмы:
String title = x.title();
if (title == null) {

print("He могу вывести - не название.");
return;

}
print(title.length());

Суть объекта в том, что это сущность, которой мы доверяем.
Это не фрагмент данных, который не знает о наших намерениях
и просто предоставляет участок памяти с удобным доступом
и набором подпрограмм. Это не маркер, который мы передаем
между узлами системы. Это не конверт для данных. Нет и еще
раз нет.

Объект - живой организм со своими собственными жизненным
циклом, поведением и состоянием. Он либо существует и жив,
либо не существует и мертв. Третьего не дано. Переменная -
лишь псевдоним объекта:
String t = x.title();

В данном случае t - лишь псевдоним объекта, возвращаемого
методом title(). Мы доверяем объекту и надеемся, что пере­
менная означает то же, что и объект. Под доверием я понимаю
то, что объект несет полную ответственность за свои действия
и мы никоим образом не должны ему мешать. Он работает так,
как вздумается. Если он хочет вывести имя, мы не возражаем.
Если хочет выбросить исключение, так тому и быть. Но мы

204 Глава 4 • Уход на пенсию 4.1. Никогда не возвращайте NULL 205

не должны выбрасывать исключение, даже не поговорив с ним!
Это неправильно и неиважительно:
if (title == null) {

print("He могу вывести - не название.");
return;

}

Такая проверка - верный признак недоверия в приложении.
Я не доверяю методу title (), соответственно, кто-то другой
не станет впоследствии доверять мне. Использование NULL при­
ведет к крупной потере доверия во всем приложении и превратит
его в неподдерживаемый бардак. Да, это тоже имеет отношение
к сопровождаемости. Нехватка доверия приводит к серьезному
ухудшению сопровождаемости просто потому, что, когда я чи­
таю код, мне приходится затрачивать больше времени на то,
чтобы понять, какому из вызываемых методов я могу доверять,
а какой может вернуть NULL. Мне также приходится дважды
проверять результат, прежде чем использовать его и общаться
с возвращенным объектом.

Все это очень похоже на рабочие отношения в команде. Если
мне каждый раз приходится проверять составленные коллегой
документы, то работа серьезно замедляется. Не поймите меня
неправильно - я только за контроль качества. Мы должны про­
верять корректность результатов, при необходимости дважды,
но за это должен отвечать кто-то другой, а не я - тот, кто полу­
чает документ от своего коллеги. Я должен иметь возможность
работать с документом, как только получу его. Я должен иметь
основания доверять своему коллеге. Это касается не личных от­
ношений, а скорости работы всей команды. Нам нужно доверие,
но NULL у нас его отнимает.

Если мои коллеги могут схитрить и вернуть NULL, моя рабо­
та существенно замедлится. Мне придется проверять их всех,
в результате код станет намного более многословным. Рано или
поздно я забуду проверить действия одного из них. Я не смогу

чувствовать себя в безопасности в собственной команде, в соб­
ственном ПО.

Короче говоря, это плохо и неприлично. Метод, возвращающий
NULL, ведет себя неуважительно. Он не уважает меня как своего
пользователя, поскольку может схитрить и вернуть мне недей­
ствительный документ.

Почему же этот прием так популярен и так часто применяется?
Взгляните на метод listFiles() в классе Files изJаvа 1.2. Ему
нужно перебрать все файлы в папке и вернуть их массив. Он
не выбрасывает исключения при отсутствии каталога, а вместо
этого возвращает NULL. Вот как я должен его использовать:
void list(File dir) {

File[] files = dir.listFiles();
if (files == null) {

throw new IOException("Directory is absent.");
}
for (File file : files) {

System.out.println(file.getName());
}

}

А вот как я должен был бы его применять, если бы он бросал
исключения вместо того, чтобы возвращать NULL:

void list(File dir) {
for (File file : dir.listFiles()) {

System.out.println(file.getName());
}

}

Думаю, очевидно, что второй фрагмент короче, чище, лучше
сопровождается и в целом более качественный. Почему раз­
работчики Java решили возвращать NULL, вместо того чтобы

_выбрасывать IOException? Похоже, во время разработки JDK
они не слышали о принципе скорейшего отказа. Они думали,
что лучше молча возвращать NULL и давать возможность бросать
исключение пользователю класса, вместо того чтобы бросать

206 Глава 4 • Уход на пенсию 4.1. Никогда не возвращайте NULL 207

исключение сразу же после обнаружения того, что каталога
не существует. Они пытались угодить нам, но у них не полу­
чилось.

Отказывать как можно скорее
или как можно безопаснее?
По сути, есть два противоположных подхода к отказоустойчиво­
сти ПО - отказывать как можно скорее или как можно безопас­
нее. Я ярый сторонник первого подхода и противник второго.

Стратегия безопасных отказов побуждает нас делать все воз­
можное, чтобы приложение продолжало работать, даже если
мы столкнулись с логической ошибкой, ошибкой ввода/вывода,
переполнением памяти и т. п. Что бы ни случилось, приложение
должно выжить. Возвращать NULL - прием выживания. К приме­
ру, если мы выяснили, что каталог, файлы внутри которого нас
попросили перечислить, отсутствует, можем ли мы вывести их?
Не можем. Запрос, очевидно, некорректен. Его автор не прове­
рил наличие каталога, прежде чем попросить вывести список его
файлов. Это его или ее проблема, но мы попробуем выровнять
ситуацию. Не станем бросать IOException, вместо этого вернем
NULL, чтобы кто-то другой решил проблему. Надеемся, что никто
не станет перебирать элементы возвращенного массива и мы
не получим NullPointerException. Надеемся.

Противоположный подход состоит в том, чтобы отказывать как
можно скорее. Он мотивирует нас остановить исполнение и вы­
бросить исключение, как только мы столкнемся с проблемой
(любой!). Нас не должны волновать последствия. Приложение
должно быть настолько хрупким, насколько возможно, но при
этом полностью покрыто юнит-тестами. Если приложение хруп­
кое и может отказать в любой контрольной точке, то юнит-тесты
могут с легкостью воспроизвести эти ситуации, а мы исправим

их. Если приложение откажет в режиме эксплуатации, мы легко
можем добавить тест, учитывающий сложившуюся ситуацию,
просто потому, что все точки отказа очевидно и хорошо доку­
ментированы. Мы выпячиваем их, вместо того чтобы прятать.
Делаем их заметными и легко отслеживаемыми. Мы бросаем
исключение IOException в тот же момент, когда выясняем, что
каталога не существует. Мы не будем выравнивать ситуацию,
наоборот, сделаем ее как можно более вопиющей. Если нам пере­
дали некорректный каталог, пусть разбираются с этим сами. Им
придется исправить свою ошибку и быть более аккуратными
в следующий раз.

Какой подход лучше? Как я уже говорил, я ярый сторонник
скорейшего отказа. Я считаю, что можно добиться стабильности
и устойчивости приложения, только если немедленно сообщать
о выявленных ошибках. Чем раньше мы обнаружим проблему
и вызовем отказ, тем лучше со временем станет приложение.
Напротив, чем дольше мы скрываем проблему, тем большими
в итоге окажутся неприятности.

Это может показаться контринтуитивным, поскольку мы не хо­
тим останавливать приложение. И не хотим, чтобы оно падало.
Мы не хотим видеть трассировок стека. В этом-то и подвох. Мы
не хотим признавать, что в приложении есть логические ошибки
и их полным-полно. Некоторые из них очевидны и легко обна­
руживаются, другие же хорошо спрятаны. Но они есть. Пряча
голову в песок, мы оказываем себе медвежью услугу. Вместо
того чтобы обнаружить рану и залечить ее, мы прячем ее и го­
ворим пациенту, что все будет хорошо. Чем раньше мы увидим
проблему, тем· быстрее ее исправим. Чем раньше она проявится,
тем быстрее должна быть наша реакция. Каждая исправленная

- ошибка делает продукт стабильнее и устойчивее.

Почему же так многоjаvа-методов возвращают NULL, а не бросают
исключение? Скорее всего, так происходит из-за приверженности

208 Глава 4 • Уход на пенсию 4.1. Никогда не возвращайте NULL 209

их разработчиков философии безопасных отказов. Я к ним
не отношусь. И всячески рекомендую держаться от нее по­
дальше. Вызывайте отказ как можно скорее, если вы беспокои­
тесь о качестве не только отдельного метода, но и приложения
в целом.

Альтернативы NULL
Какие существуют альтернативы возврату NULL? Иногда за­
манчиво возвращать NULL, если искомый объект не может быть
найден, например:

puЫic User user(String name) {
if (/* имя не найдено в базе данных*/) {

return null;
}
return /* запись из базы данных*/;

}

Мой опыт говорит о том, что именно в таких случаях раз­
работчики чаще всего возвращают NULL вместо настоящих
объектов. Мы не находим способа лучше, чем этот, чтобы со­
общить клиенту, что объект, который он ищет, недоступен.
Мы не бросаем исключение, так как не считаем такую ситуацию
исключительной. Клиент ищет имя в базе данных, но такого
пользователя там нет. Мы не хотим, чтобы приложение из-за
этого падало, правда? Это вполне стандартная, даже рутинная
ситуация. Если пользователь не найден, мы возвращаем NULL
и движемся дальше.

Как вы понимаете, такой ход мыслей очень близок к филосо­
фии безопасных отказов, рассмотренной ранее. Не делайте так.
Я предлагаю несколько альтернатив использованию NULL.

Первый вариант - разбить метод на два. Первый метод будет
проверять существование объекта, а второй - возвращать его.

Второй метод должен бросить исключение, если пользователь
не найден:

puЫic boolean exists(String name) {
if (/* имя не найдено в базе данных*/) {

return false;
}
return true;

}
puЫic User user(String name) {

return /* запись из базы данных*/;
}

Проблема с этим подходом следующая: он неэффективен.
Мы обращаемся к базе данных два раза: сперва проверяем суще­
ствование записи в базе данных, затем обращаемся к ней, чтобы,
собственно, получить ее.

Вот почему я предлагаю второй вариант. Вместо того чтобы
возвращать NULL или бросать исключение, мы можем вернуть
коллекцию объектов, например:

puЫic Collection<User> users(String name) {
if (/* имя не найдено в базе данных*/) {

return new Arraylist<>(0);
}
return Collections.singleton(

/* из базы данных*/
) ;

}

Если ничего не найдено, коллекция будет пуста. Затем клиент
работает с коллекцией, чтобы получить из нее объекты. Чисто тех­
нически это незначительно отличается от использования NULL, но
при этом выглядит несколько чище. Обратите внимание на то, что
я переименовал метод. Теперь он называется users(), а не user().

Еще одним вариантом будет применение generic-клacca java. util.
Optional изJаvа 8 либо аналогичного. Он похож на коллекцию,
но может содержать только один элемент. Я считаю, что это

210 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 211

решение противоречит принципам ООП, и не рекомендую ис­
пользовать 'его, так как оно семантически некорректно. Метод
по-прежнему называется user(), но то, что он станет возвращать,
будет не пользователем, а чем-то вроде конверта для пользова­
теля. Это сбивает с толку и не соответствует духу объектно-ори­
ентированного мышления. К тому же смахивает на NULL-ссылки.
Не используйте этот вариант.

Последнее, что я могу вам предложить, - паттерн ~Пустой объ­
ектэ. В случае, когда искомый объект не найден, возвращается
объект, похожий на настоящий, но ведущий себя по-другому.
Он может делать что-то одно, но не делать что-то другое. К при­
меру, если мы ищем пользователя по имени Джефф и не находим
его, то возвращаем объект, имеющий такое же имя и возвраща­
ющий его при вызове name (). На все другие запросы он бросает
исключения. Такой подход вполне в духе объектного мышления,
но имеет ограниченное применение. Обратите внимание на то,
что тип возвращаемого объекта остается неизменным. К при­
меру, экземпляр NullUser - объект того же типа, что и SqlUser.
Оба они реализуют интерфейс User. К примеру, NullUser может
выглядеть следующим образом:
class NullUser implements User {

private final String label;
NullUser(String name) {

this.label = name;
}
@Override
puЬlic String name() {

return this.label;
}
@Override
puЫic void raise(Cash salary) {

throw new IllegalStateException(
"Пользователь-заглушка - невозможно повысить зарплату"

) ;
}

}

Короче говоря, никогда не возвращайте NULL. Даже не думайте.
Нет никакого оправдания существованию NULL в ООП-языка .
В Java и других языках это ключевое слово токсично. Просто
держитесь от него подальше. Если вам нужно вернуть что-то,
что не было найдено, то либо бросьте исключение, либо верните
коллекцию или пустой объект.

Вот три возможные альтернативы.

4.2. Бросайте только проверяемые
исключения

Обсуждение на http://goo.gl/StGDEc.

Пришло время поговорить о проверяемых и непроверяемых
исключениях. Хотя многие объектно-ориентированные языки
поддерживают только непроверяемые исключения, Java под­
держивает оба типа. Обобщу этот раздел сразу: непроверяемые
исключения - недостаток языка, все исключения должны быть
проверяемыми. Иметь несколько типов исключений тоже плохо.

Это очень-абстрактный и непрактичный подход, поскольку он
сильно противоречит реальному состоянию большинства плат­
форм разработки. Основная часть из них, включая Ruby, С#,
Python, Scala и многие другие, поддерживает только непроверя­
емые исключения. В них попросту нет проверяемых исключе­
ний. Вот почему почти все, о чем я говорю в этом разделе, может
лишь помочь вам поменять образ мышления, но не даст никаких
реальных, применимых на практике рекомендаций, если только
вы не пишете на Java или не собираетесь создать собственный
объектно-ориентированный язык.

Я, однако же, надеюсь, что будущие ООП-языки будут более
строгими, чем существующие, и станут уделять больше внима­
ния обработке ошибок с помощью исключений. В дальнейшем

212 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 213

я хотел бы предложить то, что считаю правильным способом
обработки исключений. Он более логичен и чист. И сейчас я его
продемонстрирую.

Вначале посмотрим, в чем различие между проверяемыми и не­
проверяемыми исключениями и для чего вообще нужны разные
типы исключений. Вот как выглядит использование проверя­
емого исключения в Java:
puЫic byte[] content{File file) throws IOException {

byte[] array = new byte[1000];
new FileinputStream{file).read{array);
return array;

}

Обратите внимание на сигнатуру этого простого метода - она
оканчивается на throws IOException. Это значит, что, если я вы­
зываю content (), я должен во что бы то ни стало ловить данное
исключение:
puЫic int length{File file) {

try {
return content(file).length{);

} catch {IOException ех) {
// Нужно что-то сделать с этим
// исключением - либо разрешить его
// прямо сейчас, либо передать
// на уровень выше.

}
}

Я не могу вызвать метод content (), не неся полной ответствен­
ности за ту проблему, которую он может вызвать. Под проблемой
я имею в виду IOException. Этот метод небезопасен, поскольку
может создать проблему. Я снова говорю об IOException. Он мо­
жет отказать из-за некоторой проблемы в подсистеме ввода/
вывода. Я полагаю, что отказ будет иметь отношение к файловой
системе. Говоря throws IOException, метод, по сути, переклады­
вает ответственность на мои плечи. Он заставляет меня при­
нимать решение в случае, когда с файлом что-то не так.

Я могу сделать то же и переложить ответственность на своих
клиентов, также объявив себя небезопасным:
puЫic int length{File file) throws IOException {

return content(file).length{);
}

В данном примере я больше не ловлю исключение. Я поз­
воляю ему всплыть. Я выполняю эскалацию проблемы, как
в управлении проектом или предприятием. С проблемой раз­
берутся те, кто находится выше в стеке вызовов, а не я. Я просто
говорю, что не знаю, что делать в такой ситуации, и прошу по­
мощи.

Исключение IOException - проверяемое, поскольку его необхо­
димо ловить. Мы не можем проигнорировать его существование
в методе length (). И должны либо ловить его, либо обозначить
себя throws IOException. Вот почему проверяемые исключения
всегда на виду. Работая с методом length(), мы должны пом­
нить, что работаем с токсичным и небезопасным методом под
названием content (). Мы должны либо обозначить себя как
небезопасный метод, либо снять токсичность, разрешив исклю­
чительную ситуацию.

Напротив, непроверяемые исключения можно проигнорировать
и не ловить вовсе. Возникнув, они автоматически всплыва­
ют до тех пор, пока их кто-нибудь не перехватит. Язык не за­
ставляет нас что-либо с ними делать. К примеру, исключение
IllegalArgumentException - непроверяемое:
puЬlic int length(File file) throws IOException {

if {lfile.exists()) {
throw new IllegalArgumentException(

"Невозможно вычислить размер файла, так как его
не· существует"

);
}
return content{file).length{);

}

214 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 215

В данном примере сигнатура метода никак не упоминает ис­
ключение IllegalArgumentException. Когда кто-либо вызывает
метод length (), то не знает, чего ожидать. Информация об
IllegalArgumentException скрыта. Именно это я имел в виду,
когда говорил о том, что проверяемые исключения всегда
на виду.

Не ловите исключения
без необходимости ·
При разработке метода мы рано или поздно сталкиваемся с вы­
бором: ловить все исключения, чтобы метод был безопасным для
пользователей, или осуществлять эскалацию проблемы. Я пред­
почитаю второй вариант. Передавайте исключения как можно
выше по стеку вызовов. Для существования каждого блока catch
должна быть веская причина. Иными словами, не ловите исклю­
чения без особой необходимости, делайте это, только если у вас
нет другого выбора.

Идеальным будет приложение, в котором на каждую точку
входа есть единственный блок catch. К примеру, если речь идет
о мобильном приложении, которое взаимодействует с поль­
зователем через экран смартфона, то у него одна точка входа
и, соответственно, должен быть единственный блок catch на все
приложение. К сожалению, это почти невозможно, поскольку
сам язык и многие фреймворки для него разработаны по другим
принципам.

Мы уже обсуждали разницу между быстрыми и безопасными
отказами в разделе 4.1. То же почти дословно применимо и здесь.
Философия, заключающаяся в том, что приложение можно
сделать устойчивым, любой ценой решая проблемы в том же
месте, где они происходят, делает приложение нестабильным

и сложным для сопровождения. Вот что мы можем сделать
в своем методе:

puЫic int length{File file) {
try {

return content{file).length{);
} catch {IOException ех) {

return 0;
}

}

Метод length () теперь совершенно безопасен. Что бы ни произо­
шло с файловой системой, в нем не случится отказ. Он вернет
целое число, и приложение продолжит работу. Это типичный
пример подхода «беэопасный огкаэ». Мы видим проблему, но
не хотим расстраивать клиента. Хотим, чтобы приложение вы­
глядело привлекательно и никогда не ломалось. Мы хотим вы­
глядеть надежно, поэтому возвращаем нуль, даже когда в дей­
ствительности в файловой системе, к примеру, заканчиваются
доступные дескрипторы файлов. Файловая система не может
получить длину файла, даже если он существует. Она сигналит
нам, она кричит и плачет, но мы ее игнорируем. Что бы ни слу­
чилось, мы все прячем. Просто возвращаем нуль.

К тому же, пряча проблему, мы оказываем медвежью услугу всем,
в том числе клиенту, вызывающему метод length(). Да, при­
ложение не упадет сразу, поскольку получит нуль и продолжит
что-то делать. Но со временем оно упадет, так как нуль - не­
корректный размер файла. Оно упадет вдали от вызова length(),
в результате чего невозможно будет понять, что вызвало отказ.
Часы отладки понадобятся на то, чтобы выяснить, что число,
которое вернул метод length{), было лишь показателем ошибки
в файловой системе.

Этот подход известен также как «испольаование исключений для
управления потоком исцолнения». Действительно, в приведенном

216 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 217

ранее примере мы применяем уведомление об исключительной
ситуации для ветвления программы. Мы делаем нечто подобное,
только при помощи исключений:
puЫic int length(File file) {

if (/* Проблема с файловой системой. */)
return 0;

} else {
return content(file).length();

}
}

Такое ветвление допустимо, но исключения - инструмент для
другой работы. Исключения сделаны не для того, чтобы заме­
нять условные операторы. Напротив, они должны обозначать
критическую ситуацию, не· допускающую восстановления, в ре­
зультате возникновения которой прекращается нормальное ис­
полнение программы и нужно принимать чрезвычайные меры.
Подробнее о восстановлении поговорим через пару минут.

Некоторые из вас могут возразить, что вместо того, чтобы воз­
вращать нулевой размер файла, можно вернуть -1 или NULL.
В разделе 4.1 мы уже говорили о том, почему возвращать NULL -
плохая идея. Возврат -1 немногим от нее отличается, поскольку
это не пустой объект, а скалярное значение, семантически близ­
кое к NULL. Практически идентичное. Полностью идентичное,
раз уж на то пошло. Возвращая -1, мы вынуждаем наших кли­
ентов не доверять возвращаемому результату и всегда пере­
проверять его:
int length = length(new File("test.txt"));
if (length == -1) {

print("Xм ... что-то не так.");
} else {

print("Paзмep файла равен %d" + length);
}

Проблемой здесь является сравнение с использованием опера­
тора ==. Это признак недоверия объекту length, как говорилось
в разделе 4.1. Мы ожидаем размер файла, но получаем что-то

иное. Это не размер файла, а сигнал о том, что не следует считать
полученный результат числом. Мы должны помнить, что по­
добное предательство может случиться, и быть готовыми к нему.
Если забудем выполнить сравнение оператором ==, то можем
оказаться в серьезной беде. К примеру, мы решим прочитать
length байт из файла, а значение length равно -1. Последствия
этого непредсказуемы.

И что еще важнее, будет очень трудно обнаружить причину
проблемы.

Суть моих слов в том, что поимка исключения и спасение си­
туации - серьезные действия, которые должны иметь под со­
бой вескую причину. Каждый раз, когда вы спасаете ситуацию,
не перебрасывая исключение, вы используете подход безопас­
ного отказа.

Стоит ли говорить, что подход -еловитъ и записывать в жур­
наль - ужасный антипаттерн. Думаю, это уже очевидно.

Стройте цепочки исключений
Стойте, мы же еще не поговорили о том, что такое перебрасы­
вание исключений. Вот как это выглядит, и это совершенно
корректный прием:
puЫic int length(File file) throws Exception {

try {
return content(file).length();

} catch (IOException ех) {
throw new Exception(

"Невозможно определить размер файла.",
ех

) ;
}

}

Я ловлю исключение, но тут же бросаю новое. Использование
цепочек исключений, как продемонстрировано ранее, - хорошая

218 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 219

практика. Заменяя одну проблему другой, я не игнорирую факт
существования первой. Напротив, я оборачиваю исходную про­
блему в новую и вместе бросаю их на уровень выше.

Если так сделать несколько раз, то всплывшее исключение будет
выглядеть как мыльный пузырь с мыльным пузырем внутри.
Внутри того тоже будет пузырь и т. д. Будет много слоев. Блок
catch, который решит что-то сделать с этой проблемой и спа­
сти ситуацию, проткнет пузырь и достанет из него остальные.
Что именно будет делать блок catch для разрешения ситуации
и уведомления о проблеме, не имеет значения. Что важно - мы
поднимаем источник проблемы с нижнего уровня на уровень
приложения в целом.

Однако приведенный далее код плох, поскольку он игнорирует
источник проблемы:
puЫic int length(File file) throws Exception {

try {
return content(file).length();

} catch (IOException ех) {
// здесь я игнорирую проблему 'ех' и создаю
// новую, нового типа, с новым
// сообщением:
throw new Exception(11He могу вычислить размер ..);

}
}

В самом деле ужасная практика. Мы теряем важную инфор­
мацию об источнике проблемной ситуации с вводом/выводом.
Внутри у объекта ех наверняка было сообщение наподобие
"Слишком много открытых файлов(24) ". Мы его игнорируем и соз­
даем новое исключение, которое гласит: "Не могу вычислить раз­
мер". Новое исключение начнет всплывать и со временем будет
поймано блоком catch на уровне объекта приложения. Ценная
низкоуровневая информация окажется потеряна. Потребуются
часы или даже дни, чтобы определить, почему не удалось вы-
числить размер файла.

Уверен, это очевидно, но повторю еще раз: делайте цепочки ис­
ключений и никогда не игнорируйте исходную проблему.

Вы можете спросить: «Зачем нам вообще нужны исключения?
Почему бы не сделать так, чтобы методы были небезопасны­
ми, а исключения просто всплывали наверх? Зачем в приве­
денном примере ловить IOException и бросать его снова, обер­
нув в Exception? Что не так с уже существующим классом
IOException?~ Ответ очевиден: построение цепочек исключений
семантически обогащает контекст проблемной ситуации. Ины­
ми словами, получить сообщение "Тоо many open files (24)"
недостаточно. Оно слишком низкоуровневое. Вместо этого
хотелось бы видеть цепочку исключений, где исходное исклю­
чение касалось бы количества открытых файлов, в следующем
говорилось бы о невозможности вычислить размер файла,
в третьем - о том, что файл изображения не может быть про­
читан, и т. д. Если пользователь не может открыть фото в своем
профиле, то сообщения «Слишком много открытых файлов»
недостаточно.

В идеале каждый метод должен ловить все возможные исклю­
чения и перебрасывать их, формируя тем самым цепочки ис­
ключений. Повторюсь: ловите все, объединяйте в цепочки и не­
медленно перебрасывайте.

Это лучший подход к обработке исключений.

Восстанавливайтесь единожды
Есть довольно популярный прием восстановления после сбоя,
который стоит обсудить. Вообще говоря, чуть раньше мы о нем
уже говорили. Речь все о том же конфликте между скорей­
шим и безопасным отказом, но уже под другим углом. Если
мы придерживаемся принципа скорейшего отказа, то не мо­
жем восстановиться после исключения. Проще говоря, речь

220 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 221

о восстановлении идти не может. Это лишь другое название
уже известного антипаттерна ~использование исключений для
управления потоком исполнения», В данном коде вы, возможно,
узнаете прием восстановления после сбоя:
int age;
try {

age = Integer.parseint(text);
} catch (NumberFormatException ех) {

// здесь мы восстанавливаемся после сбоя
age = -1;

}

Насколько этот пример отличается от рассмотренных ранее?
Разницы никакой. Это антипаттерн, похожий на возврат NULL,
который рассматривался в разделе 4.1.

Но я не совсем прав. Мы все же должны восстановиться, но
только единожды. Всем методам должно быть разрешено пере­
брасывать исключения, не обрабатывая их, как обсуждалось
в предыдущем разделе. Тогда все исключения будут всплывать
на верхний уровень приложения. Точнее говоря, к точкам входа
в приложение. К тем точкам, через которые пользователь обща­
ется с приложением. К примеру, если речь идет о приложении
командной строки, которое пользователь запускает с терминала,
то соответствующий код может выглядеть следующим образом:
puЫic class Арр {

puЫic static void main(String ... args) {
try {

System.out.println(new App().run());
} catch (Exception ех) {

System.err.println(
"Извините, возникла проблема:"
+ ex.getLocalizedMessage()

) ;
}

}
}

Ка~ видите, внутри блока catch я ничего не перебрасываю. Я ре­
шаю проблему здесь и сейчас - просто говорю пользователю
о проблеме, и все. Статический метод main нетоксичен. Он без­
опасен. Он никогда не падает, поскольку это верхний уровень
приложения. Выше него ничего нет.

Если я не поймаю проблему там, то она поднимется в среду ис­
полнения. Если это произойдет, то пользователь также увидит
сообщение, но оно будет совсем не дружелюбным. Пользователю
будет показано системное сообщение с полной трассировкой
стека. Я не хочу, чтобы так произошло. Вместо этого мне нужно
восстановиться.

Верхний уровень приложения - единственное законное место
восстановления.

То же должно происходить в каждой точке входа в приложение.
Их не так уж много даже в сложных системах. Я к тому, что
количество законных мест для восстановления в приложениях
обычно невелико. Во всех прочих местах мы должны либо ло­
вить и перебрасывать исключения, либо не ловить их вообще.
Первый вариант предпочтительнее. Ловите, стройте цепочку
и перебрасывайте.

Восстанавливайтесь только на верхнем уровне. Вот и все.

Используйте аспектно-ориентированное
программирование
Иногда может возникнуть необходимость повторить неудачно
выполненную операцию.

Скажем, мы пытаемся загрузить веб-страницу посредством
НТТР-запроса. Вполне возможно, что подключение иногда
будет сбоить. Было бы некрасиво показывать пользователю

222 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 223

сообщение об ошибке и заставлять его перезапускать приложе­
ние. Мы можем повторить запрос, правда?

Но чтобы повторить запрос, придется ловить исключение и вос­
станавливаться:
puЫic String content() throws IOException {

int attempt = 0;
while (true) {

try {
return http();

} catch (IOException ех) {
if (attempt >= 2) {

throw ех;
}

}
}

}

Прежде чем выбросить исключение IOException, метод сделает
не более трех попыток подключения. Такой метод небезопасен,
но не сразу. Он предпринимает несколько попыток, прежде чем
эскалировать проблему. Хотя этот подход весьма удобен, он
противоречит всему сказанному ранее в текущем разделе, так
как метод восстанавливается раньше, чем исключение попадает
на уровень приложения. Это плохая практика? Да. Есть ли луч-
шее решение? Нет.

Вообще говоря, одно решение есть - аспектно-ориентирован­
ное программирование (АОП). Это очень простая и сильная
парадигма программирования, которая хорошо сочетается с объ­
ектно-ориентированной. Точнее, не совсем парадигма - скорее
базовый прием, который может существенно упростить типовые
операции и снизить многословность ООП-кода. Взглянем на
приведенный фрагмент кода еще раз. Он довольно многословен.
Повторный вызов метода - это десять строк кода. И он еще
довольно примитивен. Надлежащая реализация будет намного

объемнее. В соответствующим образом реализованном меха­
низме повторного вызова метода исключение не игнорируется,
а некоторым образом записывается в журнал. Мы также доба­
вим интервал между попытками, который будет алгоритмически
увеличиваться. А еще добавим возможность настраивать коли­
чество попыток, не ограничиваясь жестко запрограммированной
константой з. Используя АОП вJava 6, мы поступим следующим
образом:

@RetryOnFailure(attempts = З)
puЫic String content() throws IOException {

return http();
}

Эта аннотация @RetryOnFailure будет подхвачена во время ис­
полнения и обернет метод content () в блок кода «повторитъ
при ошибкеэ '. Данный блок кода называется аспектом. С тех­
нической точки зрения он является объектом, который получает
управление ц решает, как и когда вызывается метод content().
Это своего рода адаптер метода content (). Красота аспектно­
ориентированного программирования в том, что мы избегаем
дублирования кода, вынося вспомогательные механизмы и при­
емы из основных классов. Настоятельно рекомендую подробнее
изучить тему АОП и использовать его в своих проектах, неза­
висимо от языка.

АОП упомянуто здесь, чтобы показать, что в ООП досрочное
восстановление после сбоя - пл~хая практика, которую можно
(и нужно) ·заменить другими приемами. Повторный вызов мето­
да ~ри ошибке - один из примеров, где АОП помогает поддер­
жать чистоту ООП, будучи при этом удобным и позволяющим
достичь цели приемом.

1 в Vы можете наити эту аннотацию и увидеть в действии ее АОП-
аспект на сайте http://aspects.jcaЬi.com/

224 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 225

Достаточно одного типа исключений
Если вы согласны с принципами формирования цепочек исклю­
чений и отказа от немедленного восстановления после сбоя, то
поймете, почему типизация исключений избыточна. Действи­
тельно, если мы восстанавливаемся лишь единожды, то у нас
будет объект исключения, который содержит все остальные ис­
ключения. Если они правильно выстроены в цепочку, то зачем
знать их тип?

Кроме того, мы не применяем исключения для управления по­
током исполнения программы, правда? И никогда не ловим
исключения, чтобы решить, что делать дальше. Мы ловим их
только для того, чтобы перебросить, так? Если это действитель­
но так, то нас мало интересует тип исключения. Мы все равно
перебросим его. Эта информация нам не нужна, потому что она
никогда не используется. Мы не ловим исключения по мере их
продвижения наверх. Даже если и делаем это, то с единственной
целью - добавить их в цепочку и перебросить.

Timofey SoLonin спросил 11 ноября 2017 года:

Не могли бы вы уточнить, что значит «нельзя восстанавли­
ваться после сбоев»? В одной из веток комментариев ниже
вы приводите отличный пример того, как избежать раннего
возврата, - преобразовывать ошибку в реакцию системы.
Значит ли это, что вы восстанавливаетесь? В конце концов,
восстановиться где-то придется, поскольку иначе приложе­
ние падало бы при выбрасывании любого исключения. При­
ем перебрасывания и выстраивания цепочки ошибок вместо
раннего возврата мне нравится, но когда ошибка поднимется
в один из интерфейсных объектов, нам придется ее отобразить.
Это значит, что придется перехватить эту ошибку и отобразить
ее в виде объекта пользовательского интерфейса. Как бы мы
это ни толковали, мы восстановились после сбоя. Так надо ли

нам решать, в каком контексте уместно восстанавливаться?
Как нам определить такой контекст? Возможно, я что-то понял
совсем не так.

Егор Бугаенко:

Я бы все же советовал не восстанавливаться - пусть ошибка
всплывет на поверхность, где пользователь сможет ее увидеть
и сообщить разработчикам. Иногда, однако, может оказаться
необходимо перехватить ошибку раньше. Мы должны избегать
таких мест и ситуаций.

KapraLov Sergey написал 7 сентября 2017 года:

Мне нравится ваша аргументация. Даже очень. Она напо­
минает мне языки вроде Hasketl, где если функции надо бро­
сить исключение, то это необходимо отразить в ее контракте
/сигнатуре). Однако когда я пытаюсь применить это на прак­
тике в Java, то сталкиваюсь с одной проблемой, которая все
ломает. Интерфейсы. Если вы утверждаете, что небезопасные
методы должны явно бросать проверяемые исключения, зна­
чит, этот факт необходимо отражать и в интерфейсах. Но ин­
терфейс - всего лишь контракт, и вы не можете знать навер­
няка, какого подхода будут придерживаться исполнители
контракта - безопасного или небезопасного. Это их дело.
Записывая throws Exception в контракте метода, вы даете
разрешение исполнителям использовать небезопасные ин­
струкции, опуская же это требование, вы заставляете их при­
менять лишь безопасные конструкции. Само по себе это хоро­
шо (заставлять использовать безопасные конструкции), но
не для Java·, где все, по сути, небезопасно. Java не дает много
гарантий во время компиляции, так как его система типов не­
достаточно строга, чтобы однозначно рассматривать какой­
либо фрагмент кода как безопасный. ClassCastException
может возникнуть в любом коде, использующем обобщенные
классы и стирание типов-параметров. Должен ли я считать

226 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 227

код, бросающий такие исключения, небезопасным? От безысход­
ности мне снова пришлось вернуться к непроверяемым ис­
ключениям.

Adam Spofford написал 12 декабря 2016 года:.
У меня есть возражения по этой части. Как проверя~мым, так
и непроверяемым исключениям есть место в языке. Вы го­
ворите, что ни одно исключение не должно быть программно
важнее других, но суть не в важности. Речь о том, что вы можете
контролировать. Если у меня есть числовой класс и я в нем вы­
зываю метод divide, то этот метод будет бросать исключение
при делении на О. Но он не становится от этого небезопасным.
Передаешь О в качестве делителя - сам дурак. Сбой файловой
операции, однако же, может произойти по нескольким причи­
нам. Исключение, вызываемое при передаче логического зна­
чения вместо пути файла, должно быть непроверяемым - сам
виноват. Но когда файл был каким-то образом изменен во вре­
мя операции записи, это уже проверяемое исключение. Такую
ситуацию я могу обработать, но не могу быть ее виновником.
Возвращаясь к делению на О. Когда кто-то привел подобный
аргумент, вы сказали, что исключению надо позволить всплыть
наверх. Но тогда ваш метод тоже придется пометить как не­
безопасный, несмотря на то что это вызвано вполне безопас­
ной операцией - вызов divide(2) программно небезопасен,
хотя безопасен логически. Метод должен быть помечен как не­
безопасный, хотя в нем никогда не произойдет ошибки. А если
вы хотите пометить его как безопасный, вам придется ловить
исключение всякий раз при вызове метода divide. Теоретиче­
ски это значит, что раз в объектно-ориентированном подходе
не должно быть особых случаев, то при каждом использовании
оператора деления также придется ловить исключение. Что ка­
сается типов исключений: допустим, я делаю GUl-приложение
и хочу, чтобы пользователь ввел число. Пользователь вводит
«двадцать», я пытаюсь (неудачно) преобразовать строку в чис­
ло. Если исключения не типизированы, все, что я могу сказать:

«Ошибка». Типизированные исключения позволяют мне ска­
зать: «Это не число» или «Число слишком велико». Что каса­
ется восстановления: если пользователь оставил поле пустым,
мне придется выбирать, как обработать такую ситуацию. Если
пользователь ничего не ввел, я могу подставить число 20. Если
введено некорректное значение, я также могу подставить 20.
Таким образом, исключениям придется диктовать порядок ис­
полнения программы. Эту ситуацию можно решить разными
способами, но факт остается фактом.

Andrej Zirko написал 28 мая 2016 года:

Насколько я понимаю, стандарт языка Java определяет то, как
можно пометить метод как небезопасный, - ключевое слово
throws. Я тоже придерживаюсь такого подхода. Большинство
разработчиков определяют, что метод небезопасный, глядя на
его сигнатуру. Такую информацию обычно не ищут в Javadoc.
Чтобы не перегружать сигнатуры методов многочисленными
типами исключений, я оборачиваю исключение одного опреде­
ленного типа, прежде чем перебрасывать их. Я, однако, не ис­
пользую базовый класс Exception, как предлагается в заметке.
Для каждого приложения или библиотеки я делаю один класс
проверяемых исключений. Таким образом я обеспечиваю то,
что мне не понадобится менять сигнатуру метода, если впо­
следствии в нем будут возникать другие исключения. При необ­
ходимости я могу добавить дополнительную информацию в ис­
ключение. И я не требую, чтобы пользователи моей библиотеки
ловили исключение класса Exception. Я считаю, что бросать ис­
ключения, производные от Exception, - значит сбивать с толку
большинство·разработчиков, пользующихся моей библиотекой
или приложением.

Егор Бугаенко:

Вы все делаете правильно. Я бы тоже не рекомендовал бросать
или ловить исключения типа Exception. Определяйте собствен­
ный тип.

228 Глава 4 • Уход на пенсию 4.2. Бросайте только проверяемые исключения 229

Robert DiFaLco написал 15 сентября 2015 года:
Кажется, я запутался в вашем посте. Если, по-вашему, каждое
исключение должно быть типа Exception и каждое исключение
должно быть проверяемым, то не приводит ли это нас обратно
к тому, что исключения должны быть непроверяемыми? Если
они все равно всплывают наверх и нигде не· обрабатываются,
тогда зачем объявлять их в методах? К примеру, у меня есть
код, который, как я думаю, никогда не вызовет исключение.
Затем я реализую его так, что он использует нечто, что бросает
исключение. Если это невосстановимое исключение, то я пере­
брасываю его. Теперь мне придется поменять сигнатуру метода,
добавив туда throws Exception. Если вы объявляете все методы
как бросающие Exception (тип везде одинаков), то в чем тогда
ценность такого изменения? Возможно, я упустил важную часть
вашего блага.

Егор Бугаенко:
Что ж, у нас должно быть два типа методов - безопасные
и небезопасные. Безопасные методы не бросают исключе­
ний. Небезопасные могут выбросить исключение. Вот и все.
Понятно?

Robert DiFaLco:
Безопасных методов не бывает. Это иллюзия. Вот почему вы
не должны бояться того, что все исключения будут непроверя­
емыми. А еще, если исключение непроверяемое, то оно с боль­
шей вероятностью всплывет. Не этого ли вы хотите?

Егор Бугаенко:
Согласен, безопасных методов нет. В Java. Но, может, в этом
и проблема? Наверное, должны быть безопасные методы вроде
а+Ь или string.format(). Я понимаю, что OutOfMemory может
случиться всюду, но, возможно, такие исключения должны
иметь другой статус/вид/тип? Я думаю ... Честно говоря, на дан-

ный момент я с вами почти согласен. Тем не менее я все еще
пытаюсь найти аргументы в свою защиту.

Arnaud написал 1 августа 2015 года:

Можно поспорить, что безопасных методов не существует и по­
этому все методы должны бросать исключение Exception.
Но если все методы бросают исключение Exception, то зачем
его объявлять в принципе? Мне кажется, это не противоречит
вашей позиции о том, что проверяемые исключения ошибочны,
и вашей точке зрения о дихотомии safe/unsafe.

Егор Бугаенко:

Именно это я и предлагаю. Должны быть безопасные и не­
безопасные методы. Вот и все.

Arnaud:

Мне кажется, вы не поняли, в чем разногласие. Автор утвер­
ждает, что безопасных методов не бывает и что почти любой
сколько-нибудь полезный код может бросить какое-нибудь
исключение. Если так и есть, то ваше предложение помечать
участок кода ключевыми словами throws Exception - ничего

...не значащий, бессмысленный шум.

Stefano Masiero написал 30 июля 2015 года:

Этот спор весьма запутан. Провокационная заметка Егора при­
зывает освободить разум, зацикленный на общепринятом мне­
нии. Почему в Java есть понятие проверяемого исключения?
Мне кажется, это попытка заставить разработчика постоянно
иметь в виду обработку ошибок, попытка избежать человече­
ского фактора. Но, как и любое правило, навязываемое языком,
оно становится обременительным для хороших программистов
(они всегда думают об обработке ошибок независимо от того,
проверяются исключения или нет).

230 Глава 4 • Уход на пенсию 4.3. Будьте либо константным, либо абстрактным 231

Darren Hoffman написал 29 июля 2015 года:

Люди, пожалуйста, поймите, что непроверяемые исключе­
ния - это неявно объявленные исключения. Все методы не­
явно помечены throws RuntimeException. Дело не в том, что
вы не должны ловить «скрытые» исключения, - вы должны
ловить исключения, объявленные в сигнатуре метода. В коде
они явно не прописываются, потому что в этом нет смысла. Нет
возможности сказать, что метод может бросать непроверяемые
исключения. Мне кажется, людей вводит в заблуждение слово
«непроверяемое». Вам стоит подумать над его значением. Не­
проверяемое - не значит скрытое. Это значит, что компилятор
ожидает, что оно может быть брошено в любом месте кода. Нет
смысла объявлять его в сигнатуре метода. Вы можете ловить
его, если вам так хочется, но только для диагностических или
информационных целей.

4.3. Будьте либо константным,
либо абстрактным
Обсуждение на http://goo.gl/vo9F2g.

Я еще ничего не сказал о наследовании. Пришло время погово­
рить об этом очень мощном и зачастую неправильно использу­
емом механизме ООП. Я часто слышу, что наследование - зло
и его необходимо избегать. Говорят, что инкапсуляция пред­
почтительна в большинстве случаев. Мне кажется, я с ними
согласен, но давайте проанализируем, почему наследование
создает проблемы и что можно сделать для их предотвращения.
Действительно, нет смысла избавляться от наследования, но его
надо применять умело.

Самый сильный аргумент против наследования - то, что оно
делает отношения между объектами слишком запутанными.

Очень сложно понять иерархию классов, наследующих друг
друга, когда ее глубина превышает, скажем, пять уровней. В этом
есть смысл, но наследование не является источником проблемы.
Проблемы бывают вызваны виртиальными методами. Взглянем
на следующий пример:
class Document {

puЫic int length() {
return this.content().length();

}
puЫic byte[] content() {

// Загружает необработанное содержимое
// документа как массив байтов

}
}

Не лучший способ абстрагирования документа, но такого при­
мера достаточно, чтобы продемонстрировать, как наследование
затрудняет чтение кода. Попробуем расширить этот класс воз­
можностью загрузки зашифрованного документа:
class EncryptedDocument extends Document {

@Override
puЫic byte[] content() {

// Загружает документ, расшифровывает его на лету
// и возвращает расшифрованное содержимое

}
}

Выглядит корректно, правда? Метод content() класса Encryp­
tedDocument загружает содержимое и расшифровывает его на
лету. Но поведение метода length (), унаследованного классом
EncryptedD?cument от класса Document, поменялось. Он больше
не возвращает размер документа на диске. Он возвращает размер
расшифрованного содержимого. Этого ли мы от него ожидаем?
Не факт. Вероятно, мы ожидаем, что он вернет размер хранили­
ща, занятого документом, так же, как и в классе Document.

Легко ли понять, что не так с методом length () в дочернем клас­
се EncryptedDocument? Это займет какое-то время. Мы должны

232 Глава 4 • Уход на пенсию 4.3. Будьте либо константным, либо абстрактным 233

помнить, что он вызывает метод content (), который был пере­
определен. Мы будем просматривать исходный код класса
Document, в котором определяется метод length(), имея в виду,
что некоторые из вызываемых им методов находятся в дочерних
классах. Такое мышление контринтуитивно. Наследование ин­
туитивно представляется направленным сверху вниз - дочерние
классы наследуют код родительских классов. Переопределение
методов дает возможность родительскому классу получать до­
ступ к методам дочернего класса. Скажем так, такое «цереверну­
тоеэ мышление противоречит здравому смыслу.

Вот где наследование из удобного инструмента ООП превра­
щается в источник проблем с сопровождаемостью. Сложность
растет, и код становится тяжело читать и понимать. Но решение
есть. Просто делайте свои классы и методы либо константными,
либо абстрактными - и любая возможность возникновения
проблемы растворится. Действительно, если бы класс Document
был константным, мы бы в принципе не смогли от него наследо­
вать. В то же время, если бы его метод content () был абстракт­
ным, мы не смогли бы реализовать его в Document и с методом
length () не возникло бы путаницы.

У класса, по сути, может быть три статуса: константный, аб­
страктный или другой. Константный класс - черный ящик для
его пользователей. Он не может быть изменен наследованием.
Он цельный и самодостаточный. Он знает, как работать, ему
не нужна помощь. Мы не можем переопределить методы в кон­
стантном классе чисто технически. Они навсегда константны.

Абстрактный класс - как незавершенный прозрачный ящик.
Он не может работать самостоятельно, ему нужна помощь, часть
его компонентов отсутствует. Он еще не класс с технической
точки зрения. Он - полуфабрикат для создания настоящего
класса. Формально в абстрактном классе можно переопределить
некоторые методы, остальные будут константными.

Третье состояние - когда класс не является ни абстрактным,
ни константным. Я категорически против него, поскольку оно
не является ни черным, ни прозрачным ящиком. Довольно за­
путанная ситуация, поскольку класс может стать либо тем, либо
другим. Мы можем переопределить некоторые методы, и тогда
он станет прозрачным ящиком, но в то же время будет считать
себя черным ящиком. Класс станет предполагать, что он цель­
ный, самодостаточный и устойчивый, в то время как другим
будет позволено, вразрез с этим предположением, заменять не­
которые его элементы посредством виртуальных методов.

Вот как выглядел бы класс Document, если быJаvа не позволял
создавать классы, не являющиеся ни абстрактными, ни кон­
стантными:

final class Document {
puЫic int length() {/*тот же*/}
puЫic byte[] content() {/*тот же*/}

}

Обратите внимание на модификатор final. Он указывает на
то, что ни один из методов класса не может быть переопре­
делен дочерними классами. Теперь нам нужно создать класс
EncryptedDocument. Он должен наследоваться от Document, но мы
не можем наследовать от него. Таким образом, придется ввести
интерфейс, что, как обсуждалось в разделе 2.3, является хорошей
практикой:
interface Document {

int length ();
byte[] content();

}

Затем нужно переименовать класс Document в нечто вроде
DefaultDocument и сделать так, чтобы он реализовал интерфейс
Document:

final class DefaultDocument implements Document {
@Override

234 Глава 4 • Уход на пенсию 4.3. Будьте либо константным, либо абстрактным 235

puЫic int length() {/*тот же*/}
@Override
puЬlic byte[] content() {/*тот же*/}

}

А теперь последний шаг: нужно создать EncryptedDocument, ис­
пользующий функционал DefaultDocument. Мы применим ин­
капсуляцию вместо наследования, поскольку для константного
класса оно невозможно:

final class EncryptedDocument implements Document {
private final Document plain;
EncryptedDocument(Document doc) {

this.plain = doc;
}
@Override
puЫic int length() {

return this.plain.length();
}
@Override
puЫic byte[] content() {

byte[] raw = this.plain.content();
return /* Расшифрованное содержимое. */;

}
}

Обратите внимание на то, что как DefaultDocument, так и Encryp­
tedDocument являются константными и от них нельзя наследовать.

Данный пример показывает, что при обязательном использова­
нии ключевых слов final и abstract наследование в большин­
стве случаев станет невозможным. Если все классы констант­
ные, доступна только инкапсуляция.

Если вы придерживаетесь этого принципа и помечаете все клас­
сы либо final, либо abstract, то вам почти не придется исполь­
зовать наследование. Тогда, когда это будет осмысленно, вы­
сможете им воспользоваться. «Когда имеет смысл пользоваться
наследованием?» - спросите вы. Тогда, когда нужно уточнить
поведение класса. Не расширить, а уточнить. Разница есть. Рас-

ширение означает, что существующее поведение дополняется
новым. Уточнение означает, что не полностью определенное
поведение становится полностью определенным.

Мы не должны ничего расширять в ООП, поскольку данный
процесс, как показано ранее, рассматривает объекты как про­
зрачные ящики, что нежелательно. Объекты задуманы как чер­
ные ящики и не терпят вторжения и нарушения их личного
пространства. Расширение класса есть вторжение.

Вместо этого мы должны уточнять абстрактные классы, что
ожидаемо. К примеру, у нас есть неполный класс Document, ко­
торый знает, как вычислить свой размер:
abstract class Document {

puЫic abstract byte[] content();
puЫic final int length() {

return this.content().length;
}

}

Затем нужно уточнить его, введя новый класс DefaultDocument,
который знает, как загрузить содержимое, скажем, с диска:
final class DefaultDocument extends Document {

@Override
puЫic byte[] content() {

// Загружает содержимое с диска
}

}

Затем мы создаем класс EncryptedDocument, который уточняет
класс Docum~nt по-другому:

final class EncryptedDocument extends Document {
@Override
puЫic byte[] content() {

// Загружает содержимое с диска,
// расшифровывает и возвращает его

}
}

236 Глава 4 • Уход на пенсию 4.4. Используйте принцип RAII 237

Вы можете возразить, что в таком случае возникнет аналогичная
проблема - метод length () вернет размер расшифрованного до­
кумента, а не файла на диске. Да, это так, но сделано уже созна­
тельно. Оба класса уточняют абстрактный класс. Теперь четко
видно, что метод length () применяет методы соответствующих
классов. Вот почему уточнение - более чистый подход, чем рас-
ширение.
Подведем итог: возможность создавать классы, отличные от
константных и абстрактных, - недостаток языкаJаvа и многих
других языков. Мы должны явно выражать свои намерения -
метод либо разработан правильно, либо не разработан вообще.
Третьего не дано.

4.4. Используйте принцип RAII
Обсуждение на http://goo.gl/ULUJ8o.

Принцип «выделение ресурсов есть инициализацияэ (Resource
Acquisition Is Initialization (RAII)) - последнее, о чем я хотел бы
упомянуть, прежде чем закончить книгу. Это очень мощный при­
ем, существующий в С++, но отсутствующий вJava в силу того,
что объекты в нем уничтожаются посредством сборки мусора.
Вот почему в нем нет деструкторов. Мы, конечно, можем ими­
тировать RAII вJava, но С++ реализует его гораздо элегантнее.
Взглянем, как это работает в С++. Представим, что у нас есть
абстракция текстового файла:
#include <stdio.h>
#include <string>
class Text {
puЫic:

Text(const char* name) {
this->f = fopen(name, "r");

}
-техt() {

fclose(this->f);
}
const std::string& content() {

// Считывает содержимое файла
// и возвращает его как UТF8-строку

}
private:

FILE* f;
};

Вот как мы использовали бы данный класс:
int main() {

Text t("/tmp/test.txt");
t->content();

}

Вначале мы создаем t - объект класса Text путем вызова его
конструктора Text(). Затем вызываем метод content(), чтобы
прочесть файл. Потом покидаем область видимости объекта t,
в результате чего вызывается его деструктор -техt(). Он за­
крывает файл.

Фокус в том, что ресурс захвачен на время жизни объекта. В дан­
ном примере дескриптор файла f будет захвачен до вызова де­
структора. Отсюда прием и получил свое название - выделение
(захват) ресурсов есть инициализация. Мы захватываем ресурс
при инициализации объекта и освобождаем его, когда объект
больше не нужен и будет уничтожен. Этот прием очень удобен.
Рекомендую использовать его при любой возможности.

В Java и во многих других языках прием RAII применить нельзя,
поскольку в них нет деструкторов. В Java, к примеру, объекты
уничтожаются в фоновом режиме, когда в них больше нет не­
обходимости.

тот процесс называется сборкой мусора. Формально в Java
объект t будет все еще жив после окончания выполнения мето­
;~а main(). Нужен ли он нам после завершения метода main()?

238 Глава 4 • Уход на пенсию

Нет, но Java не уничтожает его автоматически. Вместо этого
он долго находится в памяти, после чего объявляется мусором.
Сборщик мусора удаляет объект лишь тогда, когда для новых
объектов оказывается недостаточно памяти.

Вот почему вJava нет деструкторов. К несчастью.

Однако вJava 7 появилась возможность, похожая на RAII. Теперь
мы можем использовать блок try со связанным ресурсом:
int main() {

try (Text t = new Text("/tmp/test.txt")) {
t.content();

}
}

Объект t не будет уничтожен по завершении блока try, но будет
вызван его метод close(), близкий по смыслу к деструктору
в С++. Нам всего лишь нужно сделать так, чтобы класс Text
реализовывал интерфейс AutoCloseaЬle.

Я настоятельно рекомендую использовать RAII всюду, где при­
ходится работать с настоящими ресурсами - файлами, потока­
ми, подключениями к БД и т. п. В С++ применяйте деструкторы,
вJava - интерфейс AutoCloseaЬle.

Эпилог

Я свято верю, что объектно-ориентированное программирование
ожидает светлое будущее.Jаvа, С#, С++, Ruby, Python и другие
псевдо-ООП-языки будут заменены более строгими, чистыми
и элегантными языками. Я не знаю, когда это произойдет, но это
непременно случится.

Проблема даже не в отсутствии хороших языков. Проблема
в нас, нашем образе мышления, понимании 00П, в том, как мы
продумываем и проектируем программное обеспечение, в на­
шем менталитете и наших принципах. Мы должны изменить
подход к написанию кода, и программы ответят нам взаимно­
стью. Языки начнут меняться, когда мы станем по-другому их
использовать.
Я хочу, чтобы мы поменяли свой образ мышления. Вот почему
написал эту книгу.

Конец.
Калифорния, Мальта, Украина

2015-2017

Егор Бугаенко
Элегантные объекты. Java Edition

Перевел с английского К. Русецкий

Заведующая редакцией
Руководитель проекта
Ведущий редактор
Литературный редактор
Художественный редактор
Корректоры
Верстка

Ю. Сергиенко
О. Сивченко
Н. Гринчик
Н. Рощина

С. Заматевская
Е. Павлович, Т. Радецкая

Г.Блинов

Изготовлено в России. Изготовитель: ООО «Прогресс книга».
Место нахождения и фактический адрес: 194044, Россия, r. Санкт-Петербург,

Б. Сампсониевский пр., д. 29А, пом. 52. Тел.: +78127037373.

Дата изготовления: 06.2018. Наименование: книжная продукция.
Срок годности: не ограничен.

Налоговая льгота- общероссийский классификатор продукции ОК 034-2014, 58.11.12 -
Книги печатные профессиональные, технические и научные.

Импортер в Беларусь: ООО «ПИТЕР М», 220020, РБ, r. Минск, ул. Тимирязева,
д. 121/3, к. 214, тел./факс: 208 80 01.

Подписано в печать 20.06.18. Формат 6Ох90/16. Бумага офсетная. Усл. п. л. 15,000.
Тираж 1000. Заказ № ВЗК-02843-18.

Отпечатано в АО «Первая Образцовая типография», филиал «Дом печати-ВЯТКА»
в полном соответствии с качеством предоставленных материалов

610033, r. Киров, ул. Московская, 122. Факс: (8332) 53-53-80, 62-10-36
http://www.gipp.kirov.ru; e-mail: order@gipp.kirov.ru

