Cay S. Horstma ‘

©

n\ rmr

/ Mgy ‘ 2 i “,
J//"! “ /f \\\lh/ /

gl
,/Qf\ % / \\\\\/r., e ‘\\. p
q\\\\ ,/& N ‘4{,.

__ﬁ\'\m 7 MU///
"\‘\\\\Q //W //ﬁ

\\.\\ \

“‘\ e 3
l ’” ’ ‘\\"}.




Core Java® SE 9
for the Impatient

Second Edition



This page intentionally left blank



Core Java° SE 9
for the Impatient

Second Edition

Cay S. Horstmann

vvAddison-Wesley

Boston ¢ Columbus ¢ Indianapolis ® New York e San Francisco ® Amsterdam ¢ Cape Town
Dubai ® London ® Madrid ® Milan ® Munich e Paris ® Montreal ® Toronto ® Delhi « Mexico City
Sao Paulo * Sydney ® Hong Kong ¢ Seoul ¢ Singapore ¢ Taipei ® Tokyo



Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017947587

Copyright © 2018 Pearson Education, Inc.

Screenshots of Eclipse. Published by The Eclipse Foundation.
Screenshots of Java. Published by Oracle.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-469472-6
ISBN-10: 0-13-469472-4

1 17


mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To Chi—the most patient person in my life.



This page intentionally left blank



Preface

Contents

xxi

Acknowledgments xxiii

About the Author XXV

FUNDAMENTAL PROGRAMMING STRUCTURES

1.1

1.2

1.3

Our First Program 2

1.1.1  Dissecting the “Hello, World” Program 2
1.1.2  Compiling and Running a Java Program 3
1.1.3 Method Calls 6

1.1.4  JShell 7

Primitive Types 10

1.21  Signed Integer Types 10

1.2.2  Floating-Point Types 12

1.2.3  The char Type 13

1.2.4  The boolean Type 14

Variables 14

1.3.1  Variable Declarations 14

1.3.2 Names 14



“ Contents

1.4

1.5

1.6

1.7

1.8

1.3.3
1.34

Initialization 15
Constants 15

Arithmetic Operations 17

141
1.4.2
1.4.3
144
1.45
1.4.6
Strings
151
1.5.2
153
154
1.5.5
1.5.6

1.6.1
1.6.2

Assignment 18
Basic Arithmetic 18

Mathematical Methods 19

Number Type Conversions

20

Relational and Logical Operators

Big Numbers 23
24
Concatenation 24
Substrings 25
String Comparison 25

Converting Between Numbers and Strings

The String APl 28

Code Points and Code Units
Input and Output 32

Reading Input 32
Formatted Output 33

Control Flow 36

1.7.1
1.7.2
1.7.3
1.7.4

Branches 36
Loops 38

30

Breaking and Continuing 39

Local Variable Scope 41

Arrays and Array Lists 43

1.8.1
1.8.2
1.8.3
1.8.4
1.8.5
1.8.6
1.8.7
1.8.8
1.8.9

Working with Arrays 43
Array Construction 44
Array Lists 45

22

Wrapper Classes for Primitive Types
The Enhanced for Loop 47
Copying Arrays and Array Lists

Array Algorithms 49

Command-Line Arguments

Multidimensional Arrays

50

49

47

46

27



Contents “

1.9 Functional Decomposition 52
191 Declaring and Calling Static Methods 53
1.9.2  Array Parameters and Return Values 53
1.9.3 Variable Arguments 53

Exercises 54

OBJECT-ORIENTED PROGRAMMING 59
2.1 Working with Objects 60
2.1.1  Accessor and Mutator Methods 62
2.1.2  Object References 63
2.2 Implementing Classes 65
2.2.1 Instance Variables 65
2.2.2  Method Headers 65
2.2.3  Method Bodies 66
2.24  Instance Method Invocations 66
2.2.5 The this Reference 67
2.2.6  Call by Value 68
2.3 Object Construction 69
2.3.1 Implementing Constructors 69
2.3.2  Overloading 70
2.3.3  Calling One Constructor from Another 71
2.3.4  Default Initialization 71
2.3.5  Instance Variable Initialization 72
2.3.6  Final Instance Variables 73
2.3.7  The Constructor with No Arguments 73
2.4 Static Variables and Methods 74
2.4.1  Static Variables 74
2.4.2  Static Constants 75
2.4.3  Static Initialization Blocks 76
2.44  Static Methods 77
2.4.5 Factory Methods 78
2.5 Packages 78
251 Package Declarations 79
2.5.2 The jar Command 80



- Contents

253
254
2.5.5
2.5.6

The Class Path 81
Package Access 83
Importing Classes 83
Static Imports 85

2.6 Nested Classes 85
2.6.1  Static Nested Classes 85
2.6.2 Inner Classes 87
2.6.3  Special Syntax Rules for Inner Classes 89
2.7 Documentation Comments 90
2.7.1  Comment Insertion 90
2.7.2 Class Comments 91
2.7.3  Method Comments 92
2.7.4  Variable Comments 92
2.7.5 General Comments 92
2.7.6  Links 93
2.7.7  Package, Module, and Overview Comments
2.7.8 Comment Extraction 94
Exercises 95
3 INTERFACES AND LAMBDA EXPRESSIONS 99

3.1

3.2

Interfaces 100

3.1.1
3.1.2
3.1.3
3.1.4
3.15
3.1.6
3.1.7

Declaring an Interface 100
Implementing an Interface 101
Converting to an Interface Type 103
Casts and the instanceof Operator 103
Extending Interfaces 104
Implementing Multiple Interfaces 105
Constants 105

Static, Default, and Private Methods 105

3.2.1
3.2.2
3.2.3
3.24

Static Methods 105
Default Methods 106

Resolving Default Method Conflicts 107

Private Methods 109

94



Contents “

3.3 Examples of Interfaces 109
3.3.1 The Comparable Interface 109
3.3.2  The Comparator Interface 111
3.3.3  The Runnable Interface 112
3.3.4  User Interface Callbacks 112
34 Lambda Expressions 113
34.1 The Syntax of Lambda Expressions 114
3.4.2 Functional Interfaces 115
3.5 Method and Constructor References 116
3.5.1 Method References 117
3.5.2  Constructor References 118
3.6 Processing Lambda Expressions 119
3.6.1 Implementing Deferred Execution 119
3.6.2  Choosing a Functional Interface 120
3.6.3 Implementing Your Own Functional Interfaces 123
3.7 Lambda Expressions and Variable Scope 124
3.71  Scope of a Lambda Expression 124
3.7.2  Accessing Variables from the Enclosing Scope 124
3.8 Higher-Order Functions 127
3.8.1 Methods that Return Functions 127
3.8.2  Methods That Modify Functions 128
3.8.3  Comparator Methods 128
3.9 Local and Anonymous Classes 129
3.9.1 Local Classes 129
3.9.2  Anonymous Classes 130
Exercises 131

INHERITANCE AND REFLECTION 135
4.1 Extending a Class 136
4.1.1  Super- and Subclasses 136
4.1.2 Defining and Inheriting Subclass Methods 137
4.1.3 Method Overriding 137
414 Subclass Construction 139



“ Contents

4.2

4.3

4.4

4.5

415  Superclass Assignments 139

41.6 Casts 140

41.7  Final Methods and Classes 141
4.1.8  Abstract Methods and Classes 141
419 Protected Access 142

4.1.10 Anonymous Subclasses 143

4.1.11 Inheritance and Default Methods 144
4.1.12 Method Expressions with super 145
object: The Cosmic Superclass 145

421 The toString Method 146

4.2.2 The equals Method 148

4.2.3  The hashCode Method 150

424  Cloning Objects 151
Enumerations 154

4.3.1 Methods of Enumerations 155
4.3.2  Constructors, Methods, and Fields 156
4.3.3 Bodies of Instances 157

4.3.4  Static Members 157

4.3.5 Switching on an Enumeration 158
Runtime Type Information and Resources 159
441 The Class Class 159

442 Loading Resources 162

443 Class Loaders 163

44.4 The Context Class Loader 164
445 Service Loaders 166

Reflection 168

451 Enumerating Class Members 168
4.5.2 Inspecting Objects 169

453 Invoking Methods 171

454  Constructing Objects 171

455 JavaBeans 172

456  Working with Arrays 174

4.5.7 Proxies 175

Exercises

177



Contents n

5 EXCEPTIONS, ASSERTIONS, AND LOGGING 181

5.1

5.2

5.3

Exception Handling 182

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

Throwing Exceptions 182

The Exception Hierarchy 183

Declaring Checked Exceptions 185

Catching Exceptions 186

The Try-with-Resources Statement 187

The finally Clause 189

Rethrowing and Chaining Exceptions 190
Uncaught Exceptions and the Stack Trace 192
The objects.requireNonNull Method 193

Assertions 193

5.2.1
522

Using Assertions 194
Enabling and Disabling Assertions 194

Logging 195

5.3.1
5.3.2
5.3.3
534
5.3.5
5.3.6
5.3.7

Exercises

6.1
6.2
6.3
6.4

Using Loggers 195

Loggers 196

Logging Levels 197

Other Logging Methods 197

Logging Configuration 199

Log Handlers 200

Filters and Formatters 202
203

GENERIC PROGRAMMING 207

Generic Classes 208

Generic Methods 209

Type Bounds 210

Type Variance and Wildcards 211

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Subtype Wildcards 212

Supertype Wildcards 213
Wildcards with Type Variables 214
Unbounded Wildcards 215
Wildcard Capture 216



“ Contents

6.5 Generics in the Java Virtual Machine 216
6.5.1 Type Erasure 217
6.5.2  Cast Insertion 217
6.5.3  Bridge Methods 218
6.6 Restrictions on Generics 220
6.6.1  No Primitive Type Arguments 220
6.6.2 At Runtime, All Types Are Raw 220
6.6.3  You Cannot Instantiate Type Variables 221

6.6.4  You Cannot Construct Arrays of Parameterized
Types 223

6.6.5  Class Type Variables Are Not Valid in Static
Contexts 224

6.6.6 Methods May Not Clash after Erasure 224
6.6.7  Exceptions and Generics 225

6.7 Reflection and Generics 226
6.7.1  The Class<T> Class 227

6.7.2  Generic Type Information in the Virtual
Machine 227

Exercises 229

7 COLLECTIONS 235
7.1 An Overview of the Collections Framework 236
7.2 Iterators 240
7.3 Sets 242
7.4 Maps 243
7.5 Other Collections 247
7.5.1  Properties 247
7.5.2  Bit Sets 248
7.5.3  Enumeration Sets and Maps 250
7.5.4  Stacks, Queues, Deques, and Priority Queues 250
7.5.5 Weak Hash Maps 251
7.6 Views 252
7.6.1  Small Collections 252
7.6.2 Ranges 253



Contents

7.6.3 Unmodifiable Views 254

Exercises 255

STREAMS 259

8.1 From Iterating to Stream Operations 260

8.2 Stream Creation 261

8.3 The filter, map, and flatMap Methods 263

8.4 Extracting Substreams and Combining Streams 264

8.5 Other Stream Transformations 265

8.6 Simple Reductions 266

8.7 The Optional Type 267
8.71 How to Work with Optional Values 267
8.7.2  How Not to Work with Optional Values 269
8.7.3  Creating Optional Values 269
8.7.4  Composing Optional Value Functions with flatMap 269
8.7.5  Turning an Optional Into a Stream 270

8.8  Collecting Results 271

8.9 Collecting into Maps 273

8.10 Grouping and Partitioning 274

8.11 Downstream Collectors 275

8.12  Reduction Operations 277

8.13  Primitive Type Streams 279

8.14  DParallel Streams 280

Exercises 283

PROCESSING INPUT AND OUTPUT 287

9.1

Input/ Output Streams, Readers, and Writers 288
9.1.1 Obtaining Streams 288

9.1.2 Reading Bytes 289

9.1.3  Writing Bytes 290

9.1.4  Character Encodings 290

915 Text Input 293

9.1.6 Text Output 294

9.1.7 Reading and Writing Binary Data 295



n Contents

9.1.8 Random-Access Files 296
9.1.9 Memory-Mapped Files 297
9.1.10 File Locking 297
9.2 Paths, Files, and Directories 298
9.2.1 Paths 298
9.2.2  Creating Files and Directories 300
9.2.3 Copying, Moving, and Deleting Files 301
9.2.4  Visiting Directory Entries 302
9.2.5  ZIP File Systems 305
9.3 HTTP Connections 306
9.3.1 The URLConnection and HttpURLConnection Classes 306
9.3.2 The HTTP Client API 307
9.4 Regular Expressions 310
941  The Regular Expression Syntax 310
9.4.2 Finding One Match 314
9.43 Finding All Matches 315
944  Groups 316
9.45  Splitting along Delimiters 317
9.4.6  Replacing Matches 317
9.4.7 Flags 318
9.5 Serialization 319
9.5.1 The Serializable Interface 319
9.5.2 Transient Instance Variables 321
9.5.3 The readobject and writeObject Methods 321
9.5.4  The readResolve and writeReplace Methods 322
9.5.5  Versioning 324
Exercises 325

I0 CONCURRENT PROGRAMMING 329
10.1  Concurrent Tasks 330
10.1.1 Running Tasks 330
10.1.2 Futures 333
10.2  Asynchronous Computations 335
10.2.1 Completable Futures 335



Contents

IT

10.3

10.4

10.5

10.6
10.7

10.8

10.9

10.2.2 Composing Completable Futures 337
10.2.3 Long-Running Tasks in User-Interface Callbacks 340
Thread Safety 341

10.3.1 Visibility 342

10.3.2 Race Conditions 344

10.3.3 Strategies for Safe Concurrency 346
10.3.4 Immutable Classes 347

Parallel Algorithms 348

10.4.1 Parallel Streams 348

10.4.2 Parallel Array Operations 349
Threadsafe Data Structures 350

10.5.1 Concurrent Hash Maps 350

10.5.2 Blocking Queues 352

10.5.3 Other Threadsafe Data Structures 354
Atomic Counters and Accumulators 354
Locks and Conditions 357

10.7.1 Locks 357

10.7.2 The synchronized Keyword 358

10.7.3 Waiting on Conditions 360

Threads 362

10.8.1 Starting a Thread 363

10.8.2 Thread Interruption 364

10.8.3 Thread-Local Variables 365

10.8.4 Miscellaneous Thread Properties 366
Processes 366

10.9.1 Building a Process 367

10.9.2 Running a Process 368

10.9.3 Process Handles 370

Exercises 371

ANNOTATIONS 377

111

Using Annotations 378
11.1.1 Annotation Elements 378
11.1.2 Multiple and Repeated Annotations 380



m Contents

11.1.3 Annotating Declarations 380
11.1.4 Annotating Type Uses 381
11.1.5 Making Receivers Explicit 382
11.2  Defining Annotations 383
11.3  Standard Annotations 386
11.3.1 Annotations for Compilation 387
11.3.2 Annotations for Managing Resources 388
11.3.3 Meta-Annotations 389
11.4  Processing Annotations at Runtime 391
11.5 Source-Level Annotation Processing 394
11.5.1 Annotation Processors 394
11.5.2 The Language Model API 395
11.5.3 Using Annotations to Generate Source Code 395
Exercises 398

12 THE DATE AND TIME API 401
12.1 The Time Line 402
12.2  Local Dates 404
12.3  Date Adjusters 407
12.4 Local Time 409
12.5 Zoned Time 410
12.6  Formatting and Parsing 413
12.7  Interoperating with Legacy Code 416
Exercises 417

I3 INTERNATIONALIZATION 421

13.1 Locales 422
13.1.1 Specifying a Locale 423
13.1.2 The Default Locale 426
13.1.3 Display Names 426

13.2  Number Formats 427

13.3  Currencies 428

13.4 Date and Time Formatting 429

13.5 Collation and Normalization 431



Contents n

13.6 Message Formatting 433

13.7 Resource Bundles 435
13.7.1 Organizing Resource Bundles 435
13.7.2 Bundle Classes 437

13.8  Character Encodings 438

13.9 Preferences 439

Exercises 441

COMPILING AND SCRIPTING 443
141 The Compiler API 444
14.1.1 Invoking the Compiler 444
14.1.2 Launching a Compilation Task 444
14.1.3 Reading Source Files from Memory 445
14.1.4 Writing Byte Codes to Memory 446
14.1.5 Capturing Diagnostics 447
14.2  The Scripting API 448
14.2.1 Getting a Scripting Engine 448
14.2.2 Bindings 449
14.2.3 Redirecting Input and Output 449
14.2.4 Calling Scripting Functions and Methods 450
14.2.5 Compiling a Script 452
14.3  The Nashorn Scripting Engine 452
14.3.1 Running Nashorn from the Command Line 452

14.3.2 Invoking Getters, Setters, and Overloaded
Methods 453

14.3.3 Constructing Java Objects 454
14.3.4 Strings in JavaScript and Java 455
14.3.5 Numbers 456

14.3.6 Working with Arrays 457

14.3.7 Lists and Maps 458

14.3.8 Lambdas 458

14.3.9 Extending Java Classes and Implementing Java
Interfaces 459

14.3.10 Exceptions 461



“ Contents

14.4  Shell Scripting with Nashorn 461
14.4.1 Executing Shell Commands 462
14.4.2 String Interpolation 462
14.4.3 Script Inputs 463

Exercises 464

IS5 THE JAVA PLATFORM MODULE SYSTEM 469
151 The Module Concept 470
15.2 Naming Modules 472
15.3 The Modular “Hello, World!” Program 472
154 Requiring Modules 474
15.5 Exporting Packages 476
15.6 Modules and Reflective Access 479
15.7 Modular JARs 482
15.8 Automatic Modules and the Unnamed Module 484
159 Command-Line Flags for Migration 485
15.10 Transitive and Static Requirements 487
1511 Qualified Exporting and Opening 489
15.12 Service Loading 490
15.13 Tools for Working with Modules 491
Exercises 494

Index 497



Preface

Java is now over twenty years old, and the classic book, Core Java, covers, in
meticulous detail, not just the language but all core libraries and a multitude
of changes between versions, spanning two volumes and well over
2,000 pages. However, if you just want to be productive with modern Java,
there is a much faster, easier pathway for learning the language and core li-
braries. In this book, I don't retrace history and don't dwell on features of
past versions. I show you the good parts of Java as it exists today, with Java 9,
so you can put your knowledge to work quickly.

As with my previous “Impatient” books, I quickly cut to the chase, showing
you what you need to know to solve a programming problem without lecturing
about the superiority of one paradigm over another. I also present the infor-
mation in small chunks, organized so that you can quickly retrieve it when
needed.

Assuming you are proficient in some other programming language, such as
C++, JavaScript, Objective C, PHP, or Ruby, with this book you will learn
how to become a competent Java programmer. I cover all aspects of Java that
a developer needs to know, including the powerful concepts of lambda ex-
pressions and streams. I tell you where to find out more about old-fashioned
concepts that you might still see in legacy code, but I don't dwell on them.

A key reason to use Java is to tackle concurrent programming. With parallel
algorithms and threadsafe data structures readily available in the Java library,

xxi



Preface

the way application programmers should handle concurrent programming
has completely changed. I provide fresh coverage, showing you how to use
the powerful library features instead of error-prone low-level constructs.

Traditionally, books on Java have focused on user interface programming—but
nowadays, few developers produce user interfaces on desktop computers.
If you intend to use Java for server-side programming or Android program-
ming, you will be able to use this book effectively without being distracted
by desktop GUI code.

Finally, this book is written for application programmers, not for a college
course and not for systems wizards. The book covers issues that application
programmers need to wrestle with, such as logging and working with files—but
you won't learn how to implement a linked list by hand or how to write a
web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it
will make your work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit
http://horstmann.com/javaimpatient and leave a comment. On that page, you will
also find a link to an archive file containing all code examples from the book.


http://horstmann.com/javaimpatient

Acknowledgments

My thanks go, as always, to my editor Greg Doench, who enthusiastically
supported the vision of a short book that gives a fresh introduction to Java
SE 9. Dmitry Kirsanov and Alina Kirsanova once again turned an XHTML
manuscript into an attractive book with amazing speed and attention to detail.
My special gratitude goes to the excellent team of reviewers for both editions
who spotted many errors and gave thoughtful suggestions for improvement.
They are: Andres Almiray, Gail Anderson, Paul Anderson, Marcus Biel, Brian
Goetz, Marty Hall, Mark Lawrence, Doug Lea, Simon Ritter, Yoshiki Shibata,
and Christian Ullenboom.

Cay Horstmann
San Francisco
July 2017

xxiii



This page intentionally left blank



About the Author

Cay S. Horstmann is the author of Java SE 8 for the Really Impatient and Scala
for the Impatient (both from Addison—Wesley), is principal author of Core ]avaTM,
Volumes I and II, Tenth Edition (Prentice Hall, 2016), and has written a dozen
other books for professional programmers and computer science students.
He is a professor of computer science at San Jose State University and is a
Java Champion.



Fundamental
Programming
Structures

Topics in This Chapter

= 1.1 Our First Program — page 2

= 1.2 Primitive Types — page 10

= 1.3 Variables — page 14

= 1.4 Arithmetic Operations — page 17

= 1.5 Strings — page 24

= 1.6 Input and Output — page 32

= 1.7 Control Flow — page 36

= 1.8 Arrays and Array Lists — page 43

= 1.9 Functional Decomposition — page 52

» Exercises — page 54



Chaprer

In this chapter, you will learn about the basic data types and control structures
of the Java language. I assume that you are an experienced programmer in
some other language and that you are familiar with concepts such as variables,
loops, function calls, and arrays, but perhaps with a different syntax. This
chapter will get you up to speed on the Java way. I will also give you some
tips on the most useful parts of the Java API for manipulating common data

types.
The key points of this chapter are:

1. InJava, all methods are declared in a class. You invoke a nonstatic method
on an object of the class to which the method belongs.

2. Static methods are not invoked on objects. Program execution starts with
the static main method.

3. Java has eight primitive types: four signed integral types, two floating-
point types, char, and boolean.

4. The Java operators and control structures are very similar to those of C
or JavaScript.

The Math class provides common mathematical functions.

String objects are sequences of characters or, more precisely, Unicode
code points in the UTF-16 encoding.



Chapter 1 m Fundamental Programming Structures

7. With the System.out object, you can display output in a terminal window.

A scanner tied to System.in lets you read terminal input.

8. Arrays and collections can be used to collect elements of the same type.

1.1 Our First Program

When learning any new programming language, it is traditional to start with
a program that displays the message “Hello, World!”. That is what we will
do in the following sections.

1.1.1 Dissecting the “Hello, World” Program

Without further ado, here is the “Hello, World” program in Java.

package ch01.sec01;

// Our first Java program

public class HelloWorld {

}

public static void main(String[] args) {
System.out.println("Hello, World!");
}

Let's examine this program:

Java is an object-oriented language. In your program, you manipulate
(mostly) objects by having them do work. Each object that you manipu-
late belongs to a specific class, and we say that the object is an instance
of that class. A class defines what an object’s state can be and and what
it can do. In Java, all code is defined inside classes. We will look at objects
and classes in detail in Chapter 2. This program is made up of a single
class HellowWorld.

main is a method, that is, a function declared inside a class. The main method
is the first method that is called when the program runs. It is declared as
static to indicate that the method does not operate on any objects. (When
main gets called, there are only a handful of predefined objects, and none
of them are instances of the Helloworld class.) The method is declared as
void to indicate that it does not return any value. See Section 1.8.8,
“Command-Line Arguments” (page 49) for the meaning of the parameter
declaration String[] args.

In Java, you can declare many features as public or private, and there are
a couple of other visibility levels as well. Here, we declare the HelloWorld


http://System.in

1.1 ® Our First Program

class and the main method as public, which is the most common arrangement
for classes and methods.

* A package is a set of related classes. It is a good idea to place each class
in a package so you can group related classes together and avoid conflicts
when multiple classes have the same name. In this book, we'll use chapter
and section numbers as package names. The full name of our class is
chol.secol.HelloWorld. Chapter 2 has more to say about packages and package
naming conventions.

e The line starting with // is a comment. All characters between // and the
end of the line are ignored by the compiler and are meant for human
readers only.

* Finally, we come to the body of the main method. In our example, it consists
of a single line with a command to print a message to System.out, an object
representing the “standard output” of the Java program.

As you can see, Java is not a scripting language that can be used to quickly
dash off a few commands. It is squarely intended as a language for larger
programs that benefit from being organized into classes, packages, and
modules. (Modules are introduced in Chapter 15.)

Java is also quite simple and uniform. Some languages have global variables
and functions as well as variables and methods inside classes. In Java, every-
thing is declared inside a class. This uniformity can lead to somewhat verbose
code, but it makes it easy to understand the meaning of a program.

EI NOTE: You have just seen a // comment that extends to the end of
the line. You can also have multiline comments between /+ and »/
delimiters, such as
/
This is the first sample program in Core Java for the Impatient.
The program displays the traditional greeting "Hello, World!".
*/
There is a third comment style, called documentation comment, with /#x
and +/ as delimiters, that you will see in the next chapter.

1.1.2 Compiling and Running a Java Program

To compile and run this program, you need to install the Java Development
Kit (JDK) and, optionally, an integrated development environment (IDE). You
should also download the sample code, which you will find at the companion
website for this book, http://horstmann.com/javaimpatient. Since instructions for


http://horstmann.com/javaimpatient

Chapter 1 m Fundamental Programming Structures

installing software don't make for interesting reading, I put them on the
companion website as well.

Once you have installed the JDK, open a terminal window, change to the
directory containing the che1 directory, and run the commands

javac ch@l/sec@1/HelloWorld. java
java chol.sec01.Helloworld

The familiar greeting will appear in the terminal window (see Figure 1-1).

Note that two steps were involved to execute the program. The javac command
compiles the Java source code into an intermediate machine-independent
representation, called byte codes, and saves them in class files. The java com-
mand launches a virtual machine that loads the class files and executes the
byte codes.

Once compiled, byte codes can run on any Java virtual machine, whether on
your desktop computer or on a device in a galaxy far, far away. The promise
of “write once, run anywhere” was an important design criterion for Java.

~$ cd books/cji/code &
~/books/cji/code$ javac ch@l/sec0l/HelloWorld.java

~/books/cji/code$ Ls ch@l/secBl

Helloworld.class HelloWorld.java MethodDemo.java

~/books/cji/code¥™java chol.secOl.HelloWorld

Hello, World!

~/bookg/cji/code$ |

Class file

Program output

Figure 1-1 Running a Java program in a terminal window



1.1 ® Our First Program

NOTE: The javac compiler is invoked with the name of a file, with slashes
separating the path segments, and an extension .java. The java virtual
machine launcher is invoked with the name of a class, with dots
separating the package segments, and no extension.

To run the program in an IDE, you need to first make a project, as described
in the installation instructions. Then, select the Helloworld class and tell the IDE
to run it. Figure 1-2 shows how this looks in Eclipse. Eclipse is a popular
IDE, but there are many other excellent choices. As you get more comfortable
with Java programming, you should try out a few and pick one that you like.

@ Java - Core Java for the Impatient/ch01/sec01/HelloWorld.java - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help
o - it -0 -Q-iHG M

2 Java EE ig'.’ Java

[# Package Explorer 2 = O [4] Helloworld.java &2 Inte demo.java = A g Outline 8 =R
- 1 package ch8l.secel; 4 R W e W
B . = e
= (& Core Java for the Impatient [ /f our first Java program -
4
- hol.sec0l
%f.ﬂ.ﬁuhﬁ‘,’.ﬂi 5 public class Helloworld { # chOl.sec01
» @ Helloworld.java 6 public static void main(String[] args) { - € Helloworld

System.out.printin(“Hello, World!"); : :
@ ¥ main(String[]}

= @ ch0l.sec02 !
P[] IntegerDemo.java } ¥
B ch0l.sec03 1e

5 ch0l.sec04 =|
B ch01.sec05

5 ch01.sec06

B ch01.sec07

# ch01.sec08

5 ch01.5ec09

I> =\ JRE System Library

= RemoteSystemsTempFiles

-

; Program Output i

n B Console 3

x % B i |[EE - L B

Hello, World! |
=

Figure 1-2 Running a Java program inside the Eclipse IDE

Congratulations! You have just followed the time-honored ritual of running
the “Hello, World!” program in Java. Now we are ready to examine the basics
of the Java language.



Chapter 1 m Fundamental Programming Structures

1.1.3 Method Calls

Let us have a closer look at the single statement of the main method:
System.out.println("Hello, World!");
System.out is an object. It is an instance of a class called PrintStream. The PrintStream

class has methods println, print, and so on. These methods are called instance
methods because they operate on objects, or instances, of the class.

To invoke an instance method on an object, you use the dot notation

object.methodName(arguments)
In this case, there is just one argument, the string "Hello, World!".

Let's try it with another example. Strings such as "Hello, World!" are instances
of the string class. The string class has a method length that returns the length of
a String object. To call the method, you again use the dot notation:

"Hello, World!".length()
The 1ength method is invoked on the object "Hello, World!", and it has no argu-

ments. Unlike the println method, the length method returns a result. One way
of using that result is to print it:

System.out.println("Hello, World!".length());
Give it a try. Make a Java program with this statement and run it to see how
long the string is.

In Java, you need to construct most objects (unlike the System.out and "Hello,
World!" objects, which are already there, ready for you to use). Here is a simple
example.

An object of the Randon class can generate random numbers. You construct a
Random object with the new operator:

new Random()

After the class name is the list of construction arguments, which is empty in
this example.

You can call a method on the constructed object. The call
new Random().nextInt()

yields the next integer that the newly constructed random number generator
has to offer.

If you want to invoke more than one method on an object, store it in a
variable (see Section 1.3, “Variables,” page 14). Here we print two random
numbers:



1.1 ® Our First Program

Random generator = new Random();
System.out.printin(generator.nextInt());
System.out.println(generator.nextInt());

D NOTE: The Random class is declared in the java.util package. To use it
in your program, add an import statement, like this:

package ch0l.sec01;
import java.util.Random;

public class MethodDemo {

}
We will look at packages and the import statement in more detail in
Chapter 2.

1.1.4 JShell

In Section 1.1.2, “Compiling and Running a Java Program” (page 3), you saw
how to compile and run a Java program. Java 9 introduces another way of
working with Java. The JShell program provides a “read-evaluate-print loop”
(REPL) where you type a Java expression, JShell evaluates your input, prints
the result, and waits for your next input. To start JShell, simply type jshell in
a terminal window (Figure 1-3).

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

Now type any Java expression, such as
"Hello, World!".length()

JShell responds with the result and another prompt.
$1 ==> 13

jshell>
Note that you do not type System.out.println. JShell automatically prints the
value of every expression that you enter.

The $1 in the output indicates that the result is available in further calculations.
For example, if you type
3% $1+3



Chapter 1 m Fundamental Programming Structures

E] Terminal

~$ jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell> "Hello, World!".length()
$1 ==> 13

jshell> new Random().nextInt()
$2 ==> -1416186035

jshell> Random generator = new Random(42)
generator ==> java.util.Random@4cf777e8

jshell> generator.nextInt()
$4 ==> -1170105035

jshell> generator.nextInt()
$5 ==> 234785527

jshell> generator.next
nextBoolean() nextBytes ( nextDouble() nextFloat()
nextGaussian() nextInt( nextLong()

jshell> generator.next]]

Figure 1-3 Running JShell

the response is
$2 ==> 42
If you need a variable many times, you can give it a more memorable name.

You have to follow the Java syntax and specify both the type and the
name (see Section 1.3, “Variables,” page 14). For example,

jshell> int answer = 42
answer ==> 42

You can have JShell fill in the type for you. Type an expression and instead
of hitting the Enter key, hit Shift+Tab and then the V key. For example, when
you type

new Random()
followed by Shift+Tab and the V key, you get

jshell> Random = new Random()
with the cursor positioned just before the = symbol. Now type a variable
name and hit Enter:

jshell> Random generator = new Random()
generator ==> java.util.Random@3fee9989



1.1 ® Our First Program

Another useful feature is tab completion. Type

generator.
followed by the Tab key. You get a list of all methods that you can invoke
on the generator variable:

jshell> generator.

doubles( equals( getClass() hashCode()
ints( Tongs( nextBoolean()  nextBytes(
nextDouble() nextFloat() nextGaussian()  nextInt(
nextLong() notify() notifyAll() setSeed(
toString() wait(

Now type ne and hit the Tab key again. The method name is completed to
next, and you get a shorter list:
jshell> generator.next

nextBoolean()  nextBytes( nextDouble() nextFloat()
nextGaussian()  nextInt( nextLong()

Type a D and Tab again, and now the only completion, nextbouble(), is filled
in. Hit Enter to accept it:

jshell> generator.nextDouble()
$8 ==> 0.9560346568377398

NOTE: Note that in the autocompletion list, methods that require an
argument are only followed by a left parenthesis, such as nextInt(, but
methods without arguments have both parentheses, such as nextBoolean().

To repeat a command, hit the T key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the < and — keys,
and add or delete characters. Hit Enter when you are done. For example, hit
T and replace Double with Int, then hit Enter:

jshell> generator.nextInt()
$9 ==> -352355569

By default, JShell imports the following packages:

java.io

java.math

java.net
java.nio.file
java.util
java.util.concurrent
java.util.function
java.util.prefs
java.util.regex
java.util.stream


http://java.io
http://java.net

Chapter 1 m Fundamental Programming Structures

That's why you can use the Randon class in JShell without any import statements.
If you need to import another class, you can type the import statement at
the JShell prompt. Or, more conveniently, you can have JShell search for it,
by typing Shift+Tab and the I key. For example, type Duration followed by
Shift+Tab and the I key. You get a list of potential actions:

jshell> Duration

0: Do nothing

1: import: java.time.Duration

2: import: javafx.util.Duration

3: import: javax.xml.datatype.Duration
Choice:

Type 1, and you receive a confirmation:
Imported: java.time.Duration
followed by
jshell> Duration
so that you can pick up where you left off, but with the import in place.

These commands are enough to get you started with JShell. To get help, type
/help and Enter. To exit, type /exit and Enter, or simply Ctrl+D.

JShell makes it easy and fun to learn about the Java language and library,
without having to launch a heavy-duty development environment, and without
fussing with public static void main.

1.2 Primitive Types

Even though Java is an object-oriented programming language, not all Java
values are objects. Instead, some values belong to primitive types. Four of
these types are signed integer types, two are floating-point number types,
one is the character type char that is used in the encoding for strings, and one
is the boolean type for truth values. We will look at these types in the following
sections.

1.2.1 Signed Integer Types

The signed integer types are for numbers without fractional parts. Negative
values are allowed. Java provides the four signed integer types shown in
Table 1-1.



1.2 W Primitive Types n

Table 1-1 Java Signed Integer Types

Type Storage Range (inclusive)
requirement
byte 1 byte -128 to 127
short 2 bytes -32,768 to 32,767
int 4 bytes -2,147,483,648 to 2,147,483,647 (just over 2 billion)
long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

NOTE: The constants Integer.MIN_VALUE and Integer.MAX_VALUE are the
smallest and largest int values. The Long, Short, and Byte classes also
have MIN_VALUE and MAX_VALUE constants.

In most situations, the int type is the most practical. If you want to represent
the number of inhabitants of our planet, you'll need to resort to a long. The
byte and short types are mainly intended for specialized applications, such as
low-level file handling, or for large arrays when storage space is at a premium.

NOTE: If the long type is not sufficient, use the BigInteger class. See
Section 1.4.6, “Big Numbers” (page 23) for details.

In Java, the ranges of the integer types do not depend on the machine on
which you will be running your program. After all, Java is designed as a
“write once, run anywhere” language. In contrast, the integer types in C and
C++ programs depend on the processor for which a program is compiled.

You write long integer literals with a suffix L (for example, 4000000000L). There
is no syntax for literals of type byte or short. Use the cast notation (see
Section 1.4.4, “Number Type Conversions,” page 20), for example, (byte) 127.

Hexadecimal literals have a prefix ox (for example, 0xCAFEBABE). Binary values
have a prefix ob. For example, 0b1001 is 9.

CAUTION: Octal numbers have a prefix 6. For example, 011 is 9. This
can be confusing, so it seems best to stay away from octal literals and
leading zeroes.




Chapter 1 m Fundamental Programming Structures

You can add wunderscores to number literals, such as 1000 000 (or
0b1111_0100_0010_0100_0000) to denote one million. The underscores are for human
eyes only, the Java compiler simply removes them.

NOTE: If you work with integer values that can never be negative and
you really need an additional bit, you can, with some care, interpret
signed integer values as unsigned. For example, a byte value b represents
the range from -128 to 127. If you want a range from 0 to 255, you
can still store it in a byte. Due to the nature of binary arithmetic, addition,
subtraction, and multiplication will all work, provided they don’t overflow.
For other operations, call Byte.toUnsignedInt(b) to get an int value between
0 and 255, then process the integer value, and cast the result back to
byte. The Integer and Long classes have methods for unsigned division
and remainder.

1.2.2 Floating-Point Types

The floating-point types denote numbers with fractional parts. The two
floating-point types are shown in Table 1-2.

Table 1-2 Floating-Point Types

Type Storage Range
requirement
float 4 bytes Approximately +3.40282347E+38F (6-7 significant decimal
digits)
double 8 bytes Approximately +1.79769313486231570E+308 (15 significant

decimal digits)

Many years ago, when memory was a scarce resource, four-byte floating-point
numbers were in common use. But seven decimal digits don't go very far,
and nowadays, “double precision” numbers are the default. It only makes
sense to use float when you need to store a large number of them.

Numbers of type float have a suffix F (for example, 3.14F). Floating-point literals
without an F suffix (such as 3.14) have type double. You can optionally supply
the b suffix (for example, 3.14D).



1.2 W Primitive Types

D NOTE: You can specify floating-point literals in hexadecimal. For example,

0.0009765625 = 27'° can be written as 0x1.0p-10. In hexadecimal notation,

you use a p, not an e, to denote the exponent. (An e is a hexadecimal

digit.) Note that, even though the digits are written in hexadecimal, the
exponent (that is, the power of 2) is written in decimal.

There are special floating-point values Double.POSITIVE_INFINITY for oo, Double.
NEGATIVE_INFINITY for —oo, and Double.NaN for “not a number.” For example, the
result of computing 1.6 / 0.0 is positive infinity. Computing 0.6 / 0.0 or
the square root of a negative number yields NaN.

CAUTION: All “not a number” values are considered to be distinct from
each other. Therefore, you cannot use the test if (x == Double.NaN) to
check whether x is a NaN. Instead, call if (Double.isNaN(x)). There are
also methods Double.isInfinite to test for +oo, and Double.isFinite to check
that a floating-point number is neither infinite nor a NaN.

Floating-point numbers are not suitable for financial calculations in which
roundoff errors cannot be tolerated. For example, the command System.out.
println(2.6 - 1.1) prints 0.8999999999999999, not 0.9 as you would expect. Such
roundoff errors are caused by the fact that floating-point numbers are repre-
sented in the binary number system. There is no precise binary representation
of the fraction 1/10, just as there is no accurate representation of the fraction
1/3 in the decimal system. If you need precise numerical computations with
arbitrary precision and without roundoff errors, use the Bigbecimal class,
introduced in Section 1.4.6, “Big Numbers” (page 23).

1.2.3 The char Type

The char type describes “code units” in the UTF-16 character encoding used
by Java. The details are rather technical—see Section 1.5, “Strings” (page 24).
You probably won't use the char type very much.

Occasionally, you may encounter character literals, enclosed in single quotes.
For example, '3' is a character literal with value 74 (or hexadecimal 4A), the
code unit for denoting the Unicode character “U+004A Latin Capital Letter
J.” A code unit can be expressed in hexadecimal, with the \u prefix. For ex-
ample, '\u004A’ is the same as 'J'. A more exotic example is '\u263A', the code
unit for ©, “U+263A White Smiling Face.”



Chapter 1 m Fundamental Programming Structures

The special codes '\n', '\r', '\t', "\b' denote a line feed, carriage return, tab,
and backspace.

Use a backslash to escape a single quote '\'' and a backslash '\\'.

1.2.4 The boolean Type

The boolean type has two values, false and true.

In Java, the boolean type is not a number type. There is no relationship between
boolean values and the integers ¢ and 1.

1.3 Variables

In the following sections, you will learn how to declare and initialize variables
and constants.

1.3.1 Variable Declarations

Java is a strongly typed language. Each variable can only hold values of a
specific type. When you declare a variable, you need to specify the type, the
name, and an optional initial value. For example,

int total = 0;
You can declare multiple variables of the same type in a single statement:
int total = 0, count; // count is an uninitialized integer
Most Java programmers prefer to use separate declarations for each variable.
Consider this variable declation:
Random generator = new Random();

Here, the name of the object’s class occurs twice. The first Randon is the type
of the variable generator. The second Random is a part of the new expression for
constructing an object of that class.

1.3.2 Names

The name of a variable (as well as a method or class) must begin with a
letter. It can consist of any letters, digits, and the symbols _ and $. However,
the $ symbol is intended for automatically generated names, and you should
not use it in your names. Finally, the _ by itself is not a valid variable name.



1.3 W Variahles

Here, letters and digits can be from any alphabet, not just the Latin alphabet.
For example, n and élévation are valid variable names. Letter case is significant:
count and Count are different names.

You cannot use spaces or symbols in a name. Finally, you cannot use a
keyword such as double as a name.

By convention, names of variables and methods start with a lowercase letter,
and names of classes start with an uppercase letter. Java programmers like
“camel case,” where uppercase letters are used when names consist of multiple
words, like countOfInvalidInputs.

1.3.3 Initialization

When you declare a variable in a method, you must initialize it before you
can use it. For example, the following code results in a compile-time error:

int count;
count++; // Error—uses an uninitialized variable

The compiler must be able to verify that a variable has been initialized before
it has been used. For example, the following code is also an error:
int count;
if (total == 0) {
count = 0;
} else {
count++; // Error—count might not be initialized
}

You are allowed to declare a variable anywhere within a method. It is consid-
ered good style to declare a variable as late as possible, just before you need
it for the first time. For example,

Scanner in = new Scanner(System.in); // See Section 1.6.1 for reading input
System.out.println("How old are you?");
int age = in.nextInt();

The variable is declared at the point at which its initial value is available.

1.3.4 Constants

The final keyword denotes a value that cannot be changed once it has been
assigned. In other languages, one would call such a value a constant. For
example,

final int DAYS_PER_WEEK = 7;

By convention, uppercase letters are used for names of constants.


http://Scanner(System.in

Chapter 1 m Fundamental Programming Structures

You can also declare a constant outside a method, using the static keyword:
public class Calendar {
public static final int DAYS_PER_WEEK = 7;

}

Then the constant can be used in multiple methods. Inside Calendar, you refer
to the constant as DAYS_PER_WEEK. To use the constant in another class, prepend
the class name: Calendar.DAYS_PER_WEEK.

NOTE: The System class declares a constant

public static final PrintStream out

that you can use anywhere as System.out. This is one of the few examples
of a constant that is not written in uppercase.

It is legal to defer the initialization of a final variable, provided it is initialized
exactly once before it is used for the first time. For example, the following
is legal:
final int DAYS_IN_FEBRUARY;
if (leapYear) {
DAYS_IN_FEBRUARY = 29;

}else {
DAYS_IN_FEBRUARY = 28;
}

That is the reason for calling them “final” variables. Once a value has been
assigned, it is final and can never be changed.

NOTE: Sometimes, you need a set of related constants, such as

public static final int MONDAY = 0;
public static final int TUESDAY = 1;

In this case, you can define an enumerated type like this:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY };

Then, Weekday is a type with values Weekday.MONDAY and so on. Here is how
you declare and initialize a Weekday variable:

Weekday startDay = Weekday.MONDAY;

We will discuss enumerated types in Chapter 4.




1.4 W Arithmetic Operations

1.4 Arithmetic Operations

Java uses the familiar operators of any C-based language (see Table 1-3). We
will review them in the following sections.

Table 1-3 Java Operators

Operators Associativity
[1. () (method call) Left

! ~++ -- + (unary) - (unary) () (cast) new Right
* / % (modulus) Left
+ - Left
<< >> >>»> (arithmetic shift) Left
< > <= >= instanceof Left
== 1= Left
& (bitwise and) Left
" (bitwise exclusive or) Left

| (bitwise or) Left
&6 (logical and) Left
Il (logical or) Left
? : (conditional) Left
= 4z -z k= [z %= <K= >>= >>>= §= "= |= Right

NOTE: In this table, operators are listed by decreasing precedence. For
example, since + has a higher precedence than <<, the value of 3 + 4 << 5
is (3 + 4) << 5. An operator is left-associative when it is grouped

left to right. For example, 3 - 4 - 5 means (3 - 4) - 5. But -= is
right-associative, and i -= j -= k means i -= (j -= k).




Chapter 1 m Fundamental Programming Structures

1.4.1 Assignment

The last row in Table 1-3 shows the assignment operators. The statement
X = expression;

sets x to the value of the right-hand side, replacing the previous value. When
= is preceded by an operator, the operator combines the left- and right-hand
sides and the result is assigned. For example,

amount -= 10;

is the same as

amount = amount - 10;

1.4.2 Basic Arithmetic

Addition, subtraction, multiplication, and division are denoted by + - « /. For
example, 2 + n + 1 means to multiply 2 and n and add 1.

You need to be careful with the / operator. If both operands are integer types,
it denotes integer division, discarding the remainder. For example, 17 / 5 is 3,
whereas 17.0 / 5 is 3.4.

An integer division by zero gives rise to an exception which, if not caught,
will terminate your program. (See Chapter 5 for more information on exception
handling.) A floating-point division by zero yields an infinite value or NaN
(see Section 1.2.2, “Floating-Point Types,” page 12), without causing an
exception.

The % operator yields the remainder. For example, 17 % 5 is 2, the amount that
remains from 17 after subtracting 15 (the largest integer multiple of 5 that
“fits” into 17). If the remainder of a % b is zero, then a is an integer multiple
of b.

A common use is to test whether an integer is even. The expression n % 2
is 0 if n is even. What if n is odd? Then n % 2 is 1 if n is positive or -1 if n is
negative. That handling of negative numbers is unfortunate in practice. Always
be careful using % with potentially negative operands.

Consider this problem. You compute the position of the hour hand of a clock.
An adjustment is applied, and you want to normalize to a number between
0 and 11. That is easy: (position + adjustment) % 12. But what if adjustment makes
the position negative? Then you might get a negative number. So you have
to introduce a branch, or use ((position + adjustment) % 12 + 12) % 12. Either way,
it is a hassle.



1.4 W Arithmetic Operations

TIP: In this case, it is easier to use the Math.floorMod method:
v Math.floorMod(position + adjustment, 12) always yields a value between 0
and 11.

Sadly, floorMod gives negative results for negative divisors, but that
situation doesn’t often occur in practice.

Java has increment and decrement operators:

n++; // Adds one to n
n--; // Subtracts one from n

As in other C-based languages, there is also a prefix form of these operators.
Both n++ and ++n increment the variable n, but they have different values when
they are used inside an expression. The first form yields the value before the
increment, and the second the value after the increment. For example,

String arg = args[n++];
sets arg to args(n], and then increments n. This made sense thirty years ago
when compilers didnt do a good job optimizing code. Nowadays, there

is no performance drawback in using two separate statements, and many
programmers find the explicit form easier to read.

EI NOTE: One of the stated goals of the Java programming language is
portability. A computation should yield the same results no matter which

virtual machine executes it. However, many modern processors use
floating-point registers with more than 64 bit to add precision and reduce
the risk of overflow in intermediate steps of a computation. Java allows
these optimizations, since otherwise floating-point operations would be
slower and less accurate. For the small set of users who care about
this issue, there is a strictfp modifier. When added to a method, all
floating-point operations in the method are strictly portable.

1.4.3 Mathematical Methods

There is no operator for raising numbers to a power. Instead, call the Math.pow
method: Math.pou(x, y) yields x’. To compute the square root of x, call Math.sqrt(x).

These are static methods that dont operate on objects. Like with static
constants, you prepend the name of the class in which they are declared.

Also useful are Math.min and Math.max for computing the minimum and maximum
of two values.



n Chapter 1 m Fundamental Programming Structures

In addition, the Math class provides trigonometric and logarithmic functions
as well as the constants Math.PI and Math.E.

NOTE: The Math class provides several methods to make integer
arithmetic safer. The mathematical operators quietly return wrong results
when a computation overflows. For example, one billion times three
(1000000000 * 3) evaluates to -1294967296 because the largest int value is
just over two billion. If you call Math.multiplyExact(1000000000, 3) instead,
an exception is generated. You can catch that exception or let the
program terminate rather than quietly continue with a wrong result. There
are also methods addExact, subtractExact, incrementExact, decrementExact,
negateExact, all with int and long parameters.

A few mathematical methods are in other classes. For example, there are
methods compareUnsigned, divideUnsigned, and remainderUnsigned in the Integer and Long
classes to work with unsigned values.

As discussed in the preceding section, some users require strictly reproducible
floating-point computations even if they are less efficient. The StrictMath class
provides strict implementations of mathematical methods.

1.4.4 Number Type Conversions

When an operator combines operands of different number types, the numbers
are converted to a common type before they are combined. Conversion occurs
in this order:

1. If either of the operands is of type double, the other one is converted to
double.

2. If either of the operands is of type float, the other one is converted to
float.

3. If either of the operands is of type long, the other one is converted to long.
4. Otherwise, both operands are converted to int.

For example, if you compute 3.14 + 42, the second operand is converted to
42.0, and then the sum is computed, yielding 45.14.

If you compute '3' + 1, the char value '3' is converted to the int value 74, and
the result is the int value 75. Read on to find out how to convert that value
back to a char.



1.4 W Arithmetic Operations

When you assign a value of a numeric type to a variable, or pass it as an

argument to a method, and the types don't match, the value must be
converted.

For example, in the assignment
double x = 42;
the value 42 is converted from int to double.
In Java, conversion is always legal if there is no loss of information:
e From byte to short, int, long, or double
e From short and char to int, long, or double

e From int to long or double

Conversion from an integer type to a floating-point type is always legal.

CAUTION: The following conversions are legal, but they may lose
information:

e From int to float
e From long to float or double
For example, consider the assignment

float f = 123456789;

Because a float only has about seven significant digits, f is actually
1.23456792E8.

To make a conversion that is not among these permitted ones, use a cast
operator: the name of the target type in parentheses. For example,

double x = 3.75;

int n = (int) x;
In this case, the fractional part is discarded, and n is set to 3.
If you want to round to the nearest integer instead, use the Math.round method.
That method returns a long. If you know the answer fits into an int, call

int n = (int) Math.round(x);

In our example, where x is 3.75, n is set to 4.

To convert an integer type to another one with fewer bytes, also use a cast:
int n = 1;
char next = (char)('J' + n); // Converts 75 to 'K’



Chapter 1 m Fundamental Programming Structures

In such a cast, only the last bytes are retained.
int n = (int) 3000000000L; // Sets n to -1294967296

NOTE: If you worry that a cast can silently throw away important parts
of a number, use the Math.toIntExact method instead. When it cannot
convert a long to an int, an exception occurs.

1.4.5 Relational and Logical Operators

The == and != operators test for equality. For example, n != 0 is true when n is
not zero.

There are also the usual < (less than), > (greater than), <= (less than or equal),
and »>= (greater than or equal) operators.

You can combine expressions of type boolean with the 6 (and), || (or), and !
(not) operators. For example,
0 <= n §& n < length

is true if n lies between zero (inclusive) and length (exclusive).

If the first condition is false, the second condition is not evaluated. This “short
circuit” evaluation is useful when the second condition could cause an error.
Consider the condition

n'=065s+ (100 - s) / n<50

If n is zero, then the second condition, which contains a division by n, is
never evaluated, and no error occurs.

Short circuit evaluation is also used for “or” operations, but then the evaluation
stops as soon as an operand is true. For example, the computation of

n==01[s+ (100 -s)/n> 50
yields true if n is zero, again without evaluating the second condition.

Finally, the conditional operator takes three operands: a condition and two
values. The result is the first of the values if the condition is true, the second
otherwise. For example,

time < 12 ? "am" pm

yields the string "an" if time < 12 and the string "pm" otherwise.



1.4 W Arithmetic Operations n

D NOTE: There are bitwise operators & (and), | (or), and * (xor) that are

related to the logical operators. They operate on the bit patterns of
integers. For example, since 0xF has binary digits 0...01111, n & 0xF yields
the lowest four bits in n, n = n | 0xF sets the lowest four bits to 1, and
n =n " 0xF flips them. The analog to the ! operator is ~, which flips all
bits of its argument: ~0xF is 1...10000.

There are also operators which shift a bit pattern to left or right. For
example, 0xF << 2 has binary digits 0...0111100. There are two right shift
operators: >> extends the sign bit into the top bits, and >>> fills the top
bits with zero. If you do bit-fiddling in your programs, you know what
that means. If not, you won’t need these operators.

CAUTION: The right-hand side argument of the shift operators is reduced
modulo 32 if the left hand side is an int, or modulo 64 if the left hand
side is a long. For example, the value of 1 <« 35 is the same as 1 << 3
or 8.

TIP: The & (and) and | (or) operators, when applied to boolean values,
v force evaluation of both operands before combining the results. This
usage is very uncommon. Provided that the right hand side doesn’t have
a side effect, they act just like &6 and ||, except they are less efficient.
If you really need to force evaluation of the second operand, assign it
to a boolean variable so that the flow of execution is plainly visible.

1.4.6 Big Numbers

If the precision of the primitive integer and floating-point types is not suffi-
cient, you can turn to the BigInteger and Bigbecimal classes in the java.math
package. Objects of these classes represent numbers with an arbitrarily long
sequence of digits. The BigInteger class implements arbitrary-precision integer
arithmetic, and Bigbecimal does the same for floating-point numbers.

The static valueof method turns a long into a BigInteger:

BigInteger n = BigInteger.valueOf(876543210123456789L);

You can also construct a BigInteger from a string of digits:
BigInteger k = new BigInteger("9876543210123456789");

There are predefined constants BigInteger.ZERO, BigInteger.ONE, BigInteger.TWo, and
BigInteger.TEN.



Chapter 1 m Fundamental Programming Structures

Java does not permit the use of operators with objects, so you must use
method calls to work with big numbers.

BigInteger r = BigInteger.valueOf(5).multiply(n.add(k)); // r =5 % (n + k)
In Section 1.2.2, “Floating-Point Types” (page 12), you saw that the result of

the floating-point subtraction 2.0 - 1.1 is 0.8999999999999999. The BigDecimal class
can compute the result accurately.

The call Bigbecimal.value0f(n, e) returns a BigDecimal instance with value n x 107"
The result of

BigDecimal.valueOf(2, 0).subtract(BigDecimal.value0f(11, 1))

is exactly 0.9.

1.5 Strings

A string is a sequence of characters. In Java, a string can contain any Unicode
characters. For example, the string "Java™ or "Java\u2122" consists of the five
characters J, a, v, a, and ™ The last character is “U+2122 Trade Mark Sign.”

1.5.1 Concatenation

Use the + operator to concatenate two strings. For example,

String location = "Java";
String greeting = "Hello " + location;

sets greeting to the string "Hello Java'. (Note the space at the end of the first
operand.)

When you concatenate a string with another value, that value is converted
to a string.

int age = 42;
String output = age + " years";

Now output is "42 years"

CAUTION: If you mix concatenation and addition, then you may get
unexpected results. For example,

"Next year, you will be " + age + 1 // Error

first concatenates age and then 1. The result is "Next year, you will be
421". In such cases, use parentheses:

"Next year, you will be " + (age + 1) // OK




1.5 W Strings n

To combine several strings, separated with a delimiter, use the join method:

String names = String.join(", ", "Peter", "Paul", "Mary");
// Sets names to "Peter, Paul, Mary"

The first argument is the separator string, followed by the strings you want
to join. There can be any number of them, or you can supply an array of
strings. (Arrays are covered in Section 1.8, “Arrays and Array Lists,” page 43.)

It is somewhat inefficient to concatenate a large number of strings if all you
need is the final result. In that case, use a StringBuilder instead:

StringBuilder builder = new StringBuilder();
while (more strings) {

builder.append(next string);
}

String result = builder.toString();

1.5.2 Substrings

To take strings apart, use the substring method. For example,

String greeting = "Hello, World!";
String location = greeting.substring(7, 12); // Sets location to "World"

The first argument of the substring method is the starting position of the
substring to extract. Positions start at o.

The second argument is the first position that should not be included in the
substring. In our example, position 12 of greeting is the !, which we do not
want. It may seem curious to specify an unwanted position, but there is an
advantage: the difference 12 - 7 is the length of the substring.

Sometimes, you want to extract all substrings from a string that are separated
by a delimiter. The split method carries out that task, returning an array of
substrings.

String names = "Peter, Paul, Mary";
String[] result = names.split(", ");
// An array of three strings ["Peter", "Paul", "Mary"]

The separator can be any regular expression (see Chapter 9). For example,
input.split("\\s+") splits input at white space.

1.5.3 String Comparison

To check whether two strings are equal, use the equals method. For example,

location.equals("World")

yields true if location is in fact the string "Wworld".



n Chapter 1 m Fundamental Programming Structures

CAUTION: Never use the == operator to compare strings. The comparison
location == "World" // Don’t do that!
returns true only if location and "world" are the same object in memory.
In the virtual machine, there is only one instance of each literal string,

SO "World" == "World" will be true. But if location was computed, for
example, as

String location = greeting.substring(7, 12);

then the result is placed into a separate String object, and the comparison
location == "World" will return false!

Like any object variable, a String variable can be null, which indicates that the
variable does not refer to any object at all, not even an empty string.

String middleName = null;
To test whether an object is null, you do use the == operator:
if (middleName == null) ...

Note that null is not the same as an empty string "". An empty string is a
string of length zero, whereas null isn't any string at all.

CAUTION: Invoking any method on null causes a “null pointer exception.”
Like all exceptions, it terminates your program if you don’t explicitly
handle it.

TIP: When comparing a string against a literal string, it is a good idea
v to put the literal string first:

if ("World".equals(location)) ...

This test works correctly even when location is null.

To compare two strings without regard to case, use the equalsIgnoreCase method.
For example,

"world".equalsIgnoreCase(location);
returns true if location is "World", "world", "WORLD", and so on.

Sometimes, one needs to put strings in order. The compareTo method tells you
whether one string comes before another in dictionary order. The call

first.compareTo(second)



1.5 W Strings

returns a negative integer (not necessarily -1) if first comes before second, a
positive integer (not necessarily 1) if first comes after second, and o if they are
equal.

The strings are compared a character at a time, until one of them runs out
of characters or a mismatch is found. For example, when comparing "word"
and "world", the first three characters match. Since d has a Unicode value that
is less than that of 1, "word" comes first. The call "word".compareTo("world") returns
-8, the difference between the Unicode values of d and 1.

This comparison can be unintuitive to humans because it depends on the
Unicode values of characters. "blue/green" comes before "bluegreen" because /
happens to have a lower Unicode value than g.

a TIP: When sorting human-readable strings, use a Collator object that
knows about language-specific sorting rules. See Chapter 13 for more
information.

1.5.4 Converting Between Numbers and Strings

To turn an integer into a string, call the static Integer.toString method:

int n = 42;
String str = Integer.toString(n); // Sets str to "42"

A variant of this method has a second parameter, a radix (between 2 and 36):
String str2 = Integer.toString(n, 2); // Sets str2 to "101010"

NOTE: An even simpler way of converting an integer to a string is to
concatenate with the empty string: "" + n. Some people find this ugly,
and it is slightly less efficient.

Conversely, to convert a string containing an integer to the number, use the
Integer.parseInt method:

String str = "101010";
int n = Integer.parseInt(str); // Sets n to 101010

You can also specify a radix:
int n2 = Integer.parselnt(str, 2); // Sets n2 to 42
For floating-point numbers, use Double.toString and Double.parseDouble:

String str = Double.toString(3.14); // Sets str to "3.14"
double x = Double.parseDouble(str); // Sets x to 3.14



Chapter 1 m Fundamental Programming Structures

1.5.5 The String API

As you might expect, the String class has a large number of methods. Some
of the more useful ones are shown in Table 1-4.

Table 1-4 Useful String Methods

Method Purpose

boolean startsWith(String str) Checks whether a string starts with, ends
boolean endsWith(String str) with, or contains a given string.

boolean contains(CharSequence str)

int indexOf(String str) Gets the position of the first or last

int lastIndexOf(String str) occurrence of str, searching the entire
int index0f(String str, int fromIndex) string or the substring starting at

int lastIndex0f(String str, int fromIndex)  fromIndex. Returns -1 if no match is found.

String replace(CharSequence oldString, Returns a string that is obtained by
CharSequence newString) replacing all occurrences of oldString with
newString.
String toUpperCase() Returns a string consisting of all
String toLowerCase() characters of the original string converted

to upper- or lowercase.

String trim() Returns a string obtained by removing
all leading and trailing white space.

Note that in Java, the String class is immutable. That is, none of the String
methods modify the string on which they operate. For example,

greeting.toUpperCase()
returns a new string "HELLO, WORLD!" without changing greeting.

Also note that some methods have parameters of type CharSequence. This is a
common supertype of String, StringBuilder, and other sequences of characters.

For a detailed description of each method, turn to the online Java API docu-
mentation at http://docs.oracle.con/javase/9/docs/api. Type the class name into the
search box and select the matching type (in this case, java.lang.String), as
shown in Figure 1-4.


http://docs.oracle.com/javase/9/docs/api

1.5 W Strings

) Overview (Java Platform SE 9 [build 167]) - Mozilla Firefox

%) ®| download .java.net/java/jdk9/docs/api/index.html?overview-summary.html [SHEE I 1

Java™ Platform Pleasa noie that fons and ather infor ined herein are ot final and are saibject to change. The information i baing mads avallabk to you
Standard Ed. & Salely 1o pUDOkS Of evakaton
DRAFT 8-ea:187

ALL CLASSES ALL PACKAGES "] MODULE PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

Standard Ed. 9
DRAFT 9-ea+167

Modules PREV MEXT  FRAMES NO FRAMES :
search: | String X
java.activation
java.base
java.compiler

java.corba Java™ Platform, Stan¢avalang String

ava. datstransfer avax . print, DocFlavor STRING

e API Specification Javax.print.Dox .

fhva, “-L 0p. com.sun.jdi.connect.Connector. StringArgument
Jjava.instrument

javafx. beans.binding. String Binding

java.nip This document is the API specificati

Java.logging java.lang. StringBuffer

:::2 ":::“\sgﬁf\g:: - java.io.StringBufferInputStream
iaa naming b u java.lang.StringBuilder

_i e T et SR
3 vati java.lang.invoke. StringConcatException
AboutEvent java.activation Defines| g P

Abouthandler Java.lang.invoke. StringConcatFactory

AbsentinformationException java.base Defines| javafx.beans.binding. When. StringConditionBuilder
AbstractAction
P avax.swing.text. StringContent
AbstractAnnetationVahieVisitor§ java.compiler Defines| ! e -
abstractannotationvaluevisitor 7 javafx_util StringConvarter
AbstractAnnotationValueVisitor8 java.corba Defines| javafx.css.converterStringConverter
AbstractAnnetationValua\Visitord P e 3
AbstractBorder java.datatransfer Defines " essien
AbstractBundier org.omg.CORBA. StringHolder
AbstractRtion Jave desiop Defines java.lang. StringindexOutOfBoundsException
AbstractCallEditor aictho; i
Alistratscheanakgy T java.util.Stringdoiner
AbstractCollection javainstrument Defines 18vax.management.monitor. StringMonitor
SsipciCorsthonasPshe) JVM. | javax.management. monitor. StringMonitorMBean
AbstractDocument
AbstractDocument. AttributeCantext oy Defines ©79-0mg-CosNaming NamingContextExtPackage StringNameHelper
AhstractDocument,Content javafx_css.CssParser. ParseError. StringParsingError
AbstractDocument. ElementEdit i i
ava.loggin 3

Fricmii Ji 9ging Defines javafx.beans.property. StringProperty
AbstractElementvisitor7 java.management Defin afx.beans.property. StringPropertyBase

o s A I es
At b0 s
Ah;t;:gt[xg:utnrg;.ﬂm jus T gt v Defines javax.naming. StringRefAddr
AbstractimageBundier Remote com.sun.jdi StringReference
AbstractinterruptibleChannel . ,
AbstractySObject java.naming Defines java.awt.datatransfer StringSelection
Abstractl ayoutCache ] ’ org.omg.CORBA. StringSeqHelper
AbstractLayoutCache.NodeDimensions Java.pre’s Defines org.omg.CORBA StringSeqHolder
AbstractList ¢
AbstractListModel java.rmi Defines, J2vafx.css.StyleConverter. StringStore
AbstractMap = java.util. StringTokenizer
AbstractMap SimpleEntry Java.scripting Defines | javax.management StringvalucExp
AbstractMap. SimpleimmutableEntry
AbstractMarshallerimpl Java.se Défines] °°9-05- CORAA StringunleHelper
AbstractMethodError java.io StringWriter
AbstractMultiResclutionimage java.se.ae Defines

AbstracthiotificationHandler Jgtedburdsnion

AbstractOwnablesynchronizer java.security.jgss Defines 12¥aX.manage ment.BadStringOperationException 19}
AbstractPreferences 2
sor

AbstractProc Jovnsacurity.sas| Defines Java support for the IETF Simple Authentication and Security Layer [~

Figure 1-4 Searching the APl Documentation

You then get a page that documents each method (Figure 1-5). If you happen
to know the name of a method, you can type its name into the search box.

In this book, I do not present the API in minute detail since it is easier to
browse the API documentation. If you are not always connected to the Inter-
net, you can download and unzip the documentation for offline browsing.



Chapter 1 m Fundamental Programming Structures

) String (Java Platform SE 9 [build 167]) - Mozilla Firefox
4 ) ®| download.java.net/java/jdk9/docs/api/index.htmi?overview-summary.html el A B =
Java™ Platform Piease none that the specifications and ther information contained herein are not final and are subject to change, The information i being made avalkbie o you
Standard Ed. 2 aalely 1o purpess of evakiaton
DRAFT 8-e2+167 .
— - Java™ Platform
ALL CLASSES ALL PACKAGES OVERVIEW MODULE PACKAGE USE TREE DEPRECATED INDEX HELP Standard Ed. 9
DRAFT 9-ea+167
Modules PREV CLASS NEXT CLASS FRAMES  NO FRAMES P p— x
searcH: | Search
SUMMARY. NESTED | FIELD | COI FIELD | CONSTR | METHOD
with the specified literal replacement
sequence.
String replaceAlL(String regex, Replaces each substring of this string
String replacement) that matches the given regular
expression with the given replacement.
i~} String replaceFirst(String regex, Replaces the first substring of this
B String replacement) string that matches the given regular
expression with the given replacement
String[] split(String regex) Splits this string around matches of the
given regular expression
String(] split(String regex, int limit) Splits this string around matches of the
given regular expression
boolean startsWith(String prefix) Tests if this string starts with the
specified prefix.
boatean startants(string prefix, Tests if the substring of this string
int toffset) beginning at the specified index starts
with the specified prefix.
Stasrdan =5;U:‘[ o CharSequence subSequence(int beginIndex, Returns a character sequence that isa
e int endIndex) subsequence of this sequence.
String substring(int beginIndex) Returns a string that is a substring of
this string.
string substringlint beginIndex, Returns a string that is a substring of
int endIndex) this string.
charll tochararray() Converts this string to a new character
array.
String tolowerCase() Converts all of the characters in this
l String to lower case using the rules of
the default locale.
String tolowerCase(Locale locale) Converts all of the characters in this
Sstring to lower case using the rules of
the given Locale,
StepReguest = cie ¢ ia
z . 5 s = T S h is already a string!)
download java.net/java/jdk9/docs/api/java/lang/String. html#startsWith-java.lang.String- ! o

Figure 1-5 The string methods in the APl Documentation

1.5.6 Code Points and Code Units

When Java was first created, it proudly embraced the Unicode standard that
had been developed shortly before. The Unicode standard had been developed
to solve a vexing issue of character encodings. Prior to Unicode, there were
many incompatible character encodings. For English, there was near-universal
agreement on the 7-bit ASCII standard that assigned codes between 0 and
127 to all English letters, the decimal digits, and many symbols. In Western
Europe, ASCII was extended to an 8-bit code that contained accented charac-
ters such as & and é. But in Russia, ASCII was extended to hold Cyrillic
characters in the positions 128 to 255. In Japan, a variable-length encoding



1.5 W Strings

was used to encode English and Japanese characters. Every other country did
something similar. Exchanging files with different encodings was a major
problem.

Unicode set out to fix all that by assigning each character in all of the writing
systems ever devised a unique 16-bit code between 0 and 65535. In 1991,
Unicode 1.0 was released, using slightly less than half of the available 65536
code values. Java was designed from the ground up to use 16-bit Unicode
characters, which was a major advance over other programming languages
that used 8-bit characters. But then something awkward happened. There
turned out to be many more characters than previously estimated—mostly
Chinese ideographs. This pushed Unicode well beyond a 16-bit code.

Nowadays, Unicode requires 21 bits. Each valid Unicode value is called a code
point. For example, the code point for the letter A is U+0041, and the mathe-
matical symbol O for the set of octonions (http://math.ucr.edu/home/baez/octonions)
has code point U+1D546.

There is a variable-length backwards-compatible encoding, called UTF-16,
that represents all “classic” Unicode characters with a single 16-bit value and
the ones beyond U+FFFF as pairs of 16-bit values taken from a special region
of the code space called “surrogate characters.” In this encoding, the letter A
is \u0e41 and O is \ud835\udd46.

Java suffers from having been born at the time between the transition from
16 to 21 bits. Instead of having strings that are pristine sequences of Unicode
characters or code points, Java strings are sequences of code units, the 16-bit
quantities of the UTF-16 encoding.

If you don't need to worry about Chinese ideographs and are willing to throw
special characters such as O under the bus, then you can live with the fiction
that a string is a sequence of Unicode characters. In that case, you can get
the ith character as

char ch = str.charAt(i);
and the length of a string as
int length = str.length();
But if you want to handle strings properly, you have to work harder.
To get the ith Unicode code point, call
int codePoint = str.codePointAt(str.offsetByCodePoints(0, 1));
The total number of code points is
int length = str.codePointCount(0, str.length());

This loop extracts the code points sequentially:


http://math.ucr.edu/home/baez/octonions

n Chapter 1 m Fundamental Programming Structures

int i = 0;

while (i < s.length()) {
int j = s.offsetByCodePoints(i, 1);
String codePoint = str.substring(i, j);

i=3;

}

Alternatively, you can use the codePoints method that yields a stream of int
values, one for each code point. We will discuss streams in Chapter 8. You
can turn the stream into an array like this:

int[] codePoints = str.codePoints().toArray();

D NOTE: In the past, strings were always internally represented in the
UTF-16 encoding, as arrays of char values. Nowadays, String objects
use a byte array of ISO-8859-1 characters when possible. A future version
of Java may switch to using UTF-8 internally.

1.6 Input and Output

To make our sample programs more interesting, they should be able to interact
with the user. In the following sections, you will see how to read terminal
input and how to produce formatted output.

1.6.1 Reading Input

When you call System.out.println, output is sent to the “standard output stream”
and shows up in a terminal window. Reading from the “standard input
stream” isn't quite as simple because the corresponding System.in object only
has methods to read individual bytes. To read strings and numbers, construct
a Scanner that is attached to System.in:

Scanner in = new Scanner(System.in);
The nextLine method reads a line of input.

System.out.println("what is your name?");
String name = in.nextLine();

Here, it makes sense to use the nextLine method because the input might
contain spaces. To read a single word (delimited by whitespace), call

String firstName = in.next();

To read an integer, use the nextInt method.


http://System.in
http://System.in
http://Scanner(System.in

1.6 ® Input and OQutput n

System.out.println("How old are you?");
int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point number.

You can use the hasNextLine, hasNext, hasNextInt, and hasNextDouble methods to check
that there is another line, word, integer, or floating-point number available.

if (in.hasNextInt()) {
int age = in.nextInt();

}

The Scanner class is located in the java.util package. In order to use the class,
add the line

import java.util.Scanner

to the top of your program file.

TIP: To read a password, you do not want to use the Scanner class since
j the input is visible in the terminal. Instead, use the Console class:
Console terminal = System.console();

String username = terminal.readLine("User name: ");
char[] passwd = terminal.readPassword("Password: ");

The password is returned in an array of characters. This is marginally
more secure than storing the password in a String because you can
overwrite the array when you are done.

TIP: If you want to read input from a file or write output to a file, you
¥ can use the redirection syntax of your shell:

java mypackage.MainClass < input.txt > output.txt

Now System.in reads from input.txt and System.out writes to output.txt.
You will see in Chapter 9 how to carry out more general file input and
output.

1.6.2 Formatted Output

You have already seen the println method of the System.out object for writing
a line of output. There is also a print method that does not start a new line.
That method is often used for input prompts:

System.out.print("Your age: "); // Not println

int age = in.nextInt();

Then the cursor rests after the prompt instead of the next line.


http://System.in

Chapter 1 m Fundamental Programming Structures

When you print a fractional number with print or printin, all of its digits except
trailing zeroes will be displayed. For example,

System.out.print(1000.0 / 3.0);
prints
333.3333333333333
That is a problem if you want to display, for example, dollars and cents. To
limit the number of digits, use the printf method:
System.out.printf("%8.2f", 1000.0 / 3.0);
The format string "%8.2f" indicates that a floating-point number is printed with

a field width of 8 and 2 digits of precision. That is, the printout contains two
leading spaces and six characters:

333.33
You can supply multiple parameters to printf. For example:
System.out.printf("Hello, %s. Next year, you'll be %d.\n", name, age);
Each of the format specifiers that start with a % character is replaced with the
corresponding argument. The conversion character that ends a format specifier

indicates the type of the value to be formatted: f is a floating-point number,
s a string, and d a decimal integer. Table 1-5 shows all conversion characters.

Table 1-5 Conversion Characters for Formatted Output

Conversion Purpose Example

Character

d Decimal integer 159

X or X Hexadecimal integer 9f or 9F

0 Octal integer 237

f Fixed floating-point 15.9

eort Exponential floating-point 1.59e+01 or 1.59E+01

gorG General floating-point: e/E if the exponent ~ 15.9000 at the default
is greater than the precision or < -4, f/F  precision of 6, 2e+01
otherwise at precision 1

aorA Hexadecimal floating-point 0x1.fccdp3 or 0X1.FCCDP3

sors String Java or JAVA

corcC Character jorl

(Continues)



1.6 ® Input and OQutput

Table 1-5 Conversion Characters for Formatted Output (Continued)

Conversion PUI’IJOSE Example
Character
b or B boolean false or FALSE
h or H Hash code (see Chapter 4) 42628b2 or 4262882
torT Date and time (obsolete; see Chapter 12 —

instead)
% The percent symbol %

The platform-dependent line separator —

In addition, you can specify flags to control the appearance of the formatted
output. Table 1-6 shows all flags. For example, the comma flag adds grouping
separators, and + yields a sign for positive numbers. The statement

System.out.printf("%,+.2f", 100000.0 / 3.0);

prints
+33,333.33

You can use the string.format method to create a formatted string without

printing it:

String message = String.format("Hello, %s. Next year, you'll be %d.\n", name, age);

Table 1-6 Flags for Formatted Output

Flag Purpose Example

+ Prints sign for positive and negative numbers +3333.33
space Adds a space before positive numbers _3333.33

- Left-justifies field 3333.33___
0 Adds leading zeroes 003333.33
( Encloses negative values in parentheses (3333.33)
) Uses group separators 3,333.33
t (for f Always includes a decimal point 3333.
format)

# (for x or o Adds 0x or 0 prefix 0xcafe

format)

(Continues)



Chapter 1 m Fundamental Programming Structures

Table 1-6 Flags for Formatted Output (Continued)

Flag Purpose Example

$ Specifies the index of the argument to be 159 9f
formatted; for example, %1$d %1$x prints the first
argument in decimal and hexadecimal.

< Formats the same value as the previous 159 9f
specification; for example, %d %<x prints the same
number in decimal and hexadecimal.

1.7 Control Flow

In the following sections, you will see how to implement branches and loops.
The Java syntax for control flow statements is very similar to that of other
commonly used languages, in particular C/C++ and JavaScript.

1.7.1 Branches

The if statement has a condition in parentheses, followed by either one
statement or a group of statements enclosed in braces.

if (count > 0) {
double average = sum / count;
System.out.printin(average);

}

You can have an else branch that runs if the condition is not fulfilled.

if (count > 0) {
double average = sum / count;
System.out.println(average);
}else {
System.out.println(0);
}

The statement in the else branch may be another if statement:

if (count > 0) {
double average = sum / count;
System.out.printin(average);

} else if (count == 0) {
System.out.println(0);

} else {
System.out.println("Huh?");

}



1.7 m Control Flow

When you need to test an expression against a finite number of constant
values, use the switch statement.

switch (count) {

case 0:
output = "None";
break;

case 1:
output = "One";
break;

case 2:

case 3:

case 4:

case 5:
output = Integer.toString(count);
break;

default:
output = "Many";
break;

}

Execution starts at the matching case label or, if there is no match, at the
default label (if it is present). All statements are executed until a break or
the end of the switch statement is reached.

CAUTION: It is a common error to forget a break at the end of an
alternative. Then execution “falls through” to the next alternative. You
can direct the compiler to be on the lookout for such bugs with a
command-line option:

javac -Xlint:fallthrough mypackage/MainClass.java

With this option, the compiler will issue a warning message whenever
an alternative does not end with a break or return statement.

If you actually want to use the fallthrough behavior, tag the surrounding
method with the annotation aSuppressWarnings("fallthrough"). Then no
warnings will be generated for that method. (An annotation supplies
information to the compiler or another tool. You will learn all about
annotations in Chapter 11.)

In the preceding example, the case labels were integers. You can use values
of any of the following types:

e A constant expression of type char, byte, short, or int (or their corresponding
wrapper classes Character, Byte, Short, and Integer that will be introduced in
Section 1.8.3, “Array Lists,” page 45)



Chapter 1 m Fundamental Programming Structures

e A string literal

e A value of an enumeration (see Chapter 4)

1.7.2 Loops

The while loop keeps executing its body while more work needs to be done,
as determined by a condition.

For example, consider the task of summing up numbers until the sum has
reached a target. For the source of numbers, we will use a random number
generator, provided by the Random class in the java.util package.

Random generator = new Random();
This call gets a random integer between 0 and 9:

int next = generator.nextInt(10);

Here is the loop for forming the sum:

while (sum < target) {
int next = generator.nextInt(10);
sum += next;
count++;

}

This is a typical use of a while loop. While the sum is less than the target, the
loop keeps executing.

Sometimes, you need to execute the loop body before you can evaluate the
condition. Suppose you want to find out how long it takes to get a particular
value. Before you can test that condition, you need to enter the loop and get
the value. In this case, use a do/uhile loop:
int next;
do {
next = generator.nextInt(10);
count++;
} while (next != target);
The loop body is entered, and next is set. Then the condition is evaluated.
As long as it is fulfilled, the loop body is repeated.

In the preceding examples, the number of loop iterations was not known.
However, in many loops that occur in practice, the number of iterations is
fixed. In those situations, it is best to use the for loop.



1.7 m Control Flow n

This loop computes the sum of a fixed number of random values:

for (int i = 1; 1 <= 20; i++) {
int next = generator.nextInt(10);
sum += next;

}
This loop runs 20 times, with i set to 1, 2, ..., 20 in each loop iteration.

You can rewrite any for loop as a while loop. The loop above is equivalent to

inti=1;

while (i <= 20) {
int next = generator.nextInt(10);
sum += next;
i+4;

}

However, with the while loop, the initialization, test, and update of the variable
i are scattered in different places. With the for loop, they stay neatly together.

The initialization, test, and update can take on arbitrary forms. For example,
you can double a value while it is less than the target:

for (int i = 1; i < target; i *=2) {
System.out.println(i);
}

Instead of declaring a variable in the header of the for loop, you can initialize
an existing variable:

for (1 = 1; i <= target; i++) // Uses existing variable i
You can declare or initialize multiple variables and provide multiple updates,
separated by commas. For example,

for (int 1 =0, j =n-1; 1< j; i++, j--)
If no initialization or update is required, leave them blank. If you omit the
condition, it is deemed to always be true.

for (;;) // An infinite loop

You will see in the next section how you can break out of such a loop.

1.7.3 Breaking and Continuing

If you want to exit a loop in the middle, you can use the break statement. For
example, suppose you want to process words until the user enters the letter
Q. Here is a solution that uses a boolean variable to control the loop:



Chapter 1 m Fundamental Programming Structures

boolean done = false;
while (!done) {
String input = in.next();
if ("Q".equals(input)) {
done = true;
} else {
Process input
}

}

This loop carries out the same task with a break statement:

while (true) {
String input = in.next();
if (input.equals("Q")) break; // Exits loop
Process input

}
// break jumps here

When the break statement is reached, the loop is exited immediately.

The continue statement is similar to break, but instead of jumping to the end
of the loop, it jumps to the end of the current loop iteration. You might use
it to skip unwanted inputs like this:
while (in.hasNextInt()) {
int input = in.nextInt();
if (input < 0) continue; // Jumps to test of in.hasNextInt()
Process input

}

In a for loop, the continue statement jumps to the next update statement:

for (int i = 1; 1 <= target; i++) {
int input = in.nextInt();
if (n < 0) continue; // Jumps to i++
Process input

}

The break statement only breaks out of the immediately enclosing loop or
switch. If you want to jump to the end of another enclosing statement, use a
labeled break statement. Label the statement that should be exited, and provide
the label with the break like this:



1.7 m Control Flow

outer:
while (...) {

while (...) {

if (...) break outer;

}
// Labeled break jumps here

The label can be any name.

CAUTION: You label the top of the statement, but the break statement
jumps to the end.

A regular break can only be used to exit a loop or switch, but a labeled break
can transfer control to the end of any statement, even a block statement:

exit: {

if (...) break exit;

}
// Labeled break jumps here

There is also a labeled continue statement that jumps to the next iteration of
a labeled loop.

TIP: Many programmers find the break and continue statements confusing.
. ese statements are entirely optional—you can always express the
M These statement tirely optional | th
same logic without them. In this book, | never use break or continue.

1.7.4 Local Variable Scope

Now that you have seen examples of nested blocks, it is a good idea to go
over the rules for variable scope. A local variable is any variable that is declared
in a method, including the method’s parameter variables. The scope of a
variable is the part of the program where you can access the variable. The
scope of a local variable extends from the point where it is declared to the end
of the enclosing block.



Chapter 1 m Fundamental Programming Structures

while (...) {
System.out.printin(...);
String input = in.next(); // Scope of input starts here

}}.Scope of input ends here
}

In other words, a new copy of input is created for each loop iteration, and
the variable does not exist outside the loop.
The scope of a parameter variable is the entire method.

public static void main(String[] args) { // Scope of args starts here

}}.Scope of args ends here

Here is a situation where you need to understand scope rules. This loop
counts how many tries it takes to get a particular random digit:
int next;
do {
next = generator.nextInt(10);
count++;
} while (next != target);
The variable next had to be declared outside the loop so it is available in the
condition. Had it been declared inside the loop, its scope would only reach
to the end of the loop body.

When you declare a variable in a for loop, its scope extends to the end of
the loop, including the test and update statements.
for (int i = 0; i < n; i++) { // i is in scope for the test and update

}
// i not defined here

If you need the value of i after the loop, declare the variable outside:
int i;
for (i = 0; !found 66 1 < n; i++) {

}
// i still available

In Java, you cannot have local variables with the same name in overlapping
scopes.
int i = 0;
while (...) {
String i = in.next(); // Error to declare another variable i



1.8 W Arrays and Array Lists n

However, if the scopes do not overlap, you can reuse the same variable name:

for (int 1 =0; i<n/2; i++) { ...}
for (inti=n/2;1<n; i++) { ...} // OK to redefine i

1.8 Arrays and Array Lists

Arrays are a fundamental programming construct for collecting multiple items
of the same type. Java has array types built into the language, and it also
supplies an ArrayList class for arrays that grow and shrink on demand. The
Arraylist class is a part of a larger collections framework that is covered in
Chapter 7.

1.8.1 Working with Arrays

For every type, there is a corresponding array type. An array of integers has
type int[], an array of String objects has type String[], and so on. Here is a
variable that can hold an array of strings:

String[] names;

The variable isn't yet initialized. Let’s initialize it with a new array. For that,
we need the new operator:

names = new String[100];
Of course, you can combine these two statements:
String[] names = new String[100];

Now names refers to an array with 100 elements, which you can access as
names[0] ... names[99]

CAUTION: If you try to access an element that does not exist, such as
names[-1] or names[100], an ArrayIndexOutOfBoundsException occurs.

The length of an array can be obtained as array.length. For example, this loop
fills the array with empty strings:

for (int i = 0; i < names.length; i++) {

}

names[i] = "";



n Chapter 1 m Fundamental Programming Structures

NOTE: It is legal to use the C syntax for declaring an array variable,
with the [] following the variable name:

int numbers[];

However, this syntax is unfortunate since it intertwines the name numbers
and the type int[]. Few Java programmers use it.

1.8.2 Array Construction

When you construct an array with the new operator, it is filled with a default
value.

* Arrays of numeric type (including char) are filled with zeroes.
e Arrays of boolean are filled with false.

* Arrays of objects are filled with null references.

CAUTION: Whenever you construct an array of objects, you need to fill
it with objects. Consider this declaration:

BigInteger[] numbers = new BigInteger[100];
At this point, you do not have any BigInteger objects yet, just an array

of 100 null references. You need to replace them with references to
BigInteger objects:

for (int i = 0; i < 100; i++)
numbers[i] = BigInteger.valueOf(i);

You can fill an array with values by writing a loop, as you saw in the preced-
ing section. However, sometimes you know the values that you want, and
you can just list them inside braces:

int[] primes = { 2, 3, 5, 7, 11, 13 };

You don't use the new operator, and you don't specify the array length. A
trailing comma is allowed, which can be convenient for an array to which
you keep adding values over time:

String[] authors = {
"James Gosling",
"Bill Joy",
"Guy Steele",
// Add more names here and put a comma after each name

b



1.8 W Arrays and Array Lists n

Use a similar initialization syntax if you dont want to give the array a
name—for example, to assign it to an existing array variable:

primes = new int[] { 17, 19, 23, 29, 31 };

NOTE: It is legal to have arrays of length 0. You can construct such an
array as new int[0] or new int[] {}. For example, if a method returns an
array of matches, and there weren’t any for a particular input, return
an array of length 0. Note that this is not the same as null: If a is an
array of length 0, then a.length is 0; if a is null, then a.length causes a
NullPointerException.

1.8.3 Array Lists

When you construct an array, you need to know its length. Once constructed,
the length can never change. That is inconvenient in many practical applica-
tions. A remedy is to use the ArrayList class in the java.util package. An Arraylist
object manages an array internally. When that array becomes too small or is
insufficiently utilized, another internal array is automatically created, and the
elements are moved into it. This process is invisible to the programmer using
the array list.

The syntax for arrays and array lists is completely different. Arrays use a
special syntax—the [] operator for accessing elements, the Type[] syntax for
array types, and the new Type[n] syntax for constructing arrays. In contrast,
array lists are classes, and you use the normal syntax for constructing instances
and invoking methods.

However, unlike the classes that you have seen so far, the ArrayList class is a
generic class—a class with a type parameter. Chapter 6 covers generic classes
in detail.

To declare an array list variable, you use the syntax for generic classes and
specify the type in angle brackets:
ArraylList<String> friends;
As with arrays, this only declares the variable. You now need to construct
an array list:
friends = new Arraylist<>();
// or new Arraylist<String>()

Note the empty <>. The compiler infers the type parameter from the type of
the variable. (This shortcut is called the diamond syntax because the empty
angle brackets have the shape of a diamond.)



Chapter 1 m Fundamental Programming Structures

There are no construction arguments in this call, but it is still necessary to
supply the () at the end.

The result is an array list of size 0. You can add elements to the end with
the add method:

friends.add("Peter");
friends.add("Paul");

Unfortunately, there is no initializer syntax for array lists. The best you can
do is construct an array list like this:

ArraylList<String> friends = new Arraylist<>(List.of("Peter", "Paul"));

The List.of method yields an unmodifiable list of the given elements which
you then use to construct an ArrayList.

You can add and remove elements anywhere in the ArraylList.

friends.remove(1);
friends.add(e, "Paul"); // Adds before index O

To access elements, use method calls, not the [] syntax. The get method reads
an element, and the set method replaces an element with another:

String first = friends.get(0);

friends.set(1, "Mary");
The size method yields the current size of the list. Use the following loop to
traverse all elements:

for (int i = 0; i < friends.size(); i++) {
System.out.println(friends.get(i));
}

1.8.4 Wrapper Classes for Primitive Types

There is one unfortunate limitation of generic classes: You cannot use primitive
types as type parameters. For example, an ArraylList<int> is illegal. The remedy
is to use a wrapper class. For each primitive type, there is a corresponding
wrapper class: Integer, Byte, Short, Long, Character, Float, Double, and Boolean. To
collect integers, use an Arraylist<Integer>:

Arraylist<Integer> numbers = new Arraylist<>();

numbers.add(42);

int first = numbers.get(0);
Conversion between primitive types and their corresponding wrapper types
is automatic. In the call to add, an Integer object holding the value 4 was
automatically constructed in a process called autoboxing.



1.8 W Arrays and Array Lists

In the last line of the code segment, the call to get returned an Integer object.
Before assigning to the int variable, the object was unboxed to yield the int
value inside.

CAUTION: Conversion between primitive types and wrappers is almost
completely transparent to programmers, with one exception. The == and
= operators compare object references, not the contents of objects. A
condition if (numbers.get(i) == numbers.get(j)) does not test whether the
numbers at index i and j are the same. Just like with strings, you need
to remember to call the equals method with wrapper objects.

1.8.5 The Enhanced for Loop

Very often, you want to visit all elements of an array. For example, here is
how you compute the sum of all elements in an array of numbers:
int sum = 0;
for (int i = 0; i < numbers.length; i++) {
sum += numbers[i];
}

As this loop is so common, there is a convenient shortcut, called the enhanced
for loop:
int sum = 0;
for (int n : numbers) {
sum += n;
}

The loop variable of the enhanced for loop traverses the elements of the array,
not the index values. The variable n is assigned to numbers[6], numbers[1], and
SO on.

You can also use the enhanced for loop with array lists. If friends is an array
list of strings, you can print them all with the loop

for (String name : friends) {
System.out.println(name);
}

1.8.6 Copying Arrays and Array Lists

You can copy one array variable into another, but then both variables will
refer to the same array, as shown in Figure 1-6.

int[] numbers = primes;
numbers[5] = 42; // Now primes[5] is also 42



n Chapter 1 m Fundamental Programming Structures

primes =

int[]

numbers =

0 - 2]
mw- 3]
21 - 5]
31 - 7]
(41 - (1]
[51 = [ 42 ]

Figure 1-6 Two variables referencing the same array

If you don't want this sharing, you need to make a copy of the array. Use
the static Arrays.copy0f method.

int[] copiedPrimes = Arrays.copyOf(primes, primes.length);
This method constructs a new array of the desired length and copies the

elements of the original array into it.

Array list references work the same way:

ArraylList<String> people = friends;
people.set(0, "Mary"); // Now friends.get(0) is also "Mary"

To copy an array list, construct a new array list from the existing one:
ArrayList<String> copiedFriends = new Arraylist<>(friends);
That constructor can also be used to copy an array into an array list. Wrap

the array into an immutable list, using the List.of method, and then construct
an Arraylist:

String[] names = ...;
Arraylist<String> friends = new Arraylist<>(List.of(names));

You can also copy an array list into an array. For depressing reasons of
backward compatibility that I will explain in Chapter 6, you must supply an
array of the correct type.

String[] names = friends.toArray(new String[0]);

NOTE: There is no easy way to convert between primitive type arrays
and the corresponding array lists of wrapper classes. For example, to

convert between an int[] and an ArrayList<Integer>, you need an explicit
loop or an IntStream (see Chapter 8).




1.8 W Arrays and Array Lists

1.8.7 Array Algorithms

The Arrays and Collections classes provide implementations of common algo-
rithms for arrays and array lists. Here is how to fill an array or an array list:

Arrays.fill(numbers, 0); // int[] array
Collections.fill(friends, ""); // ArraylList<String>

To sort an array or array list, use the sort method:

Arrays.sort(names);
Collections.sort(friends);

NOTE: For arrays (but not array lists), you can use the parallelSort
method that distributes the work over multiple processors if the array is
large.

The Arrays.toString method yields a string representation of an array. This is
particularly useful to print an array for debugging.

System.out.printin(Arrays.toString(primes));
// Prints [2, 3, 5, 7, 11, 13]

Array lists have a toString method that yields the same representation.

String elements = friends.toString();
// Sets elements to "[Peter, Paul, Mary]"

For printing, you don't even need to call it—the println method takes care
of that.

System.out.println(friends);
// Calls friends.toString() and prints the result

There are a couple of useful algorithms for array lists that have no counterpart
for arrays.

Collections.reverse(names); // Reverses the elements
Collections.shuffle(names); // Randomly shuffles the elements

1.8.8 Command-Line Arguments

As you have already seen, the main method of every Java program has a
parameter that is a string array:

public static void main(String[] args)

When a program is executed, this parameter is set to the arguments specified
on the command line.

For example, consider this program:



n Chapter 1 m Fundamental Programming Structures

public class Greeting {
public static void main(String[] args) {
for (int i = 0; 1 < args.length; i++) {
String arg = args[il;
if (arg.equals("-h")) arg = "Hello";
else if (arg.equals("-g")) arg = "Goodbye";
System.out.println(arg);

}

If the program is called as

java Greeting -g cruel world
then args[0] is "-g", args[1] is "cruel", and args[2] is "world".

Note that neither "java" nor "Greeting" are passed to the main method.

1.8.9 Multidimensional Arrays

Java does not have true multidimensional arrays. They are implemented as
arrays of arrays. For example, here is how you declare and implement a
two-dimensional array of integers:
int[1[] square = {
{16, 3,2 131},
{5, 10, 11, 8 },
{9,6,7, 121}
{ 4, 15, 14, 1}
b

Technically, this is a one-dimensional array of int[] arrays—see Figure 1-7.
To access an element, use two bracket pairs:
int element = square[1][2]; // Sets element to 11

The first index selects the row array square[1]. The second index picks the
element from that row.

You can even sSwap rows:

int[] temp = square[0];
square[0] = square[1];
square[1] = temp;

If you do not provide an initial value, you must use the new operator and
specify the number of rows and columns.

int[][] square = new int[4][4]; // First rows, then columns

Behind the scenes, an array of rows is filled with an array for each row.



1.8 W Arrays and Array Lists n

square = E\.
int[1(]

[0] = —7
m - —H
21 - =

=

[3] =

0 - 7]
(- [
(21 - 1]
(31 - 1]

Figure 1-7 A two-dimensional array

There is no requirement that the row arrays have equal length. For example,
you can store the Pascal triangle:

e e
~w N e
o W

~ -

—

First construct an array of n rows:
int[1[] triangle = new int[n][];

Then construct each row in a loop and fill it.



n Chapter 1 m Fundamental Programming Structures

for (int i = 0; i < nj i++) {
triangle[i] = new int[i + 11;

triangle[i][0] = 1;
triangle[i][i] = 1;
for (int j = 1; j < i j++) {

i ]
triangle[i][j] = triangle[i - 1][j - 1] + triangle[i - 11[j];
}
}

To traverse a two-dimensional array, you need two loops, one for the rows
and one for the columns:
for (int r = 0; r < triangle.length; r++) {

for (int ¢ = 0; ¢ < triangle[r].length; c++) {
System.out.printf("%4d", triangle[rllc]);
}

System.out.println();
}

You can also use two enhanced for loops:

for (int[] row : triangle) {
for (int element : row) {
System.out.printf("%4d", element);
}
System.out.println();
}

These loops work for square arrays as well as arrays with varying row lengths.

TIP: To print out a list of the elements of a two-dimensional array for
v debugging, call

System.out.printlin(Arrays.deepToString(triangle));
// Prints [[1], [1, 11, [1, 2, 11, [1, 3, 3, 11, [1, &, 6, 4, 1], ...]

D NOTE: There are no two-dimensional array lists, but you can declare a
variable of type ArraylList<ArraylList<Integer>> and build up the rows
yourself.

1.9 Functional Decomposition

If your main method gets too long, you can decompose your program into
multiple classes, as you will see in Chapter 2. However, for simple programs,
you can place your program’s code into separate methods in the same class.
For reasons that will become clear in Chapter 2, these methods must be
declared with the static modifier, just as the main method itself.



1.9 m Functional Decomposition

1.9.1 Declaring and Calling Static Methods

When you declare a method, provide the type of the return value (or void if
the method doesn't return anything), the method name, and the types and
names of the parameters in the method header. Then provide the imple-
mentation in the method body. Use a return statement to return the result.
public static double average(double x, double y) {
double sum = x + y;
return sum / 2;

}

Place the method in the same class as the main method. It doesn’t matter if
it's above or below main. Then, call it like this:
public static void main(String[] args) {
double a = ...;
double b = ...;
double result =

}

average(a, b);

1.9.2 Array Parameters and Return Values

You can pass arrays into methods. The method simply receives a reference
to the array, through which it can modify it. This method swaps two elements
in an array:
public static void swap(int[] values, int i, int j) {
int temp = values[il;
values[i] = values[jl;
values[j] = temp;
}
Methods can return arrays. This method returns an array consisting of the
first and last values of a given array (which is not modified):
public static int[] firstLast(int[] values) {
if (values.length == 0) return new int[0];
else return new int[] { values[0], values[values.length - 1] };

}

1.9.3 Variable Arguments

Some methods allow the caller to supply a variable number of arguments.
You have already seen such a method: printf. For example, the calls

System.out.printf("%d", n);



Chapter 1 m Fundamental Programming Structures

and

System.out.printf("%d %s", n, "widgets");

both call the same method, even though one call has two arguments and the
other has three.

Let us define an average method that works the same way, so we can call
average with as many arguments as we like, for example, average(3, 4.5, -5, 0).
Declare a “varargs” parameter with ... after the type:

public static double average(double... values)

The parameter is actually an array of type double. When the method is called,
an array is created and filled with the arguments. In the method body, you
use it as you would any other array.
public static double average(double... values) {
double sum = 0;
for (double v : values) sum += v;
return values.length == 0 ? 0 : sum / values.length;

}

Now you can call
double avg = average(3, 4.5, -5, 0);

If you already have the arguments in an array, you don't have to unpack
them. You can pass the array instead of the list of arguments:

double[] scores = { 3, 4.5, -5, 0 };

double avg = average(scores);
The variable parameter must be the last parameter of the method, but you
can have other parameters before it. For example, this method ensures that
there is at least one argument:

public static double max(double first, double... rest) {

double result = first;

for (double v : rest) result = Math.max(v, result);
return result;

Exercises

1. Write a program that reads an integer and prints it in binary, octal, and
hexadecimal. Print the reciprocal as a hexadecimal floating-point number.

2. Write a program that reads an integer angle (which may be positive or
negative) and normalizes it to a value between 0 and 359 degrees. Try
it first with the % operator, then with floorMod.



Exercises

10.

11.

12.

13.

14.

Using only the conditional operator, write a program that reads three
integers and prints the largest. Repeat with Math.max.

Write a program that prints the smallest and largest positive double values.
Hint: Look up Math.nextUp in the Java APL

What happens when you cast a double to an int that is larger than the
largest possible int value? Try it out.

Write a program that computes the factorial n! =1 x 2 x ... xn, using
BigInteger. Compute the factorial of 1000.

Write a program that reads in two integers between 0 and 4294967295,
stores them in int variables, and computes and displays their unsigned
sum, difference, product, quotient, and remainder. Do not convert them
to long values.

Write a program that reads a string and prints all of its nonempty
substrings.

Section 1.5.3, “String Comparison” (page 25) has an example of two strings
s and t so that s.equals(t) but s != t. Come up with a different example
that doesn't use substring).

Write a program that produces a random string of letters and digits by
generating a random long value and printing it in base 36.

Write a program that reads a line of text and prints all characters that
are not ASCII, together with their Unicode values.

The Java Development Kit includes a file src.zip with the source code of
the Java library. Unzip and, with your favorite text search tool, find usages
of the labeled break and continue sequences. Take one and rewrite it without
a labeled statement.

Write a program that prints a lottery combination, picking six distinct
numbers between 1 and 49. To pick six distinct numbers, start with an
array list filled with 1...49. Pick a random index and remove the element.
Repeat six times. Print the result in sorted order.

Write a program that reads a two-dimensional array of integers and de-
termines whether it is a magic square (that is, whether the sum of all
rows, all columns, and the diagonals is the same). Accept lines of input
that you break up into individual integers, and stop when the user enters
a blank line. For example, with the input



n Chapter 1 m Fundamental Programming Structures

your program should respond affirmatively.

15. Write a program that stores Pascal's triangle up to a given n in an
ArrayList<ArraylList<Integer>>.

16. Improve the average method so that it is called with at least one parameter.



This page intentionally left blank



Object-0Oriented
Programming

Topics in This Chapter

= 21
= 22
= 23
= 24
= 25
= 26
= 27

Working with Objects — page 60
Implementing Classes — page 65
Object Construction — page 69

Static Variables and Methods — page 74
Packages — page 78

Nested Classes — page 85

Documentation Comments — page 90

= Exercises — page 95



Chaprer

In object-oriented programming, work is carried out by collaborating objects
whose behavior is defined by the classes to which they belong. Java was one
of the first mainstream programming languages to fully embrace object-oriented
programming. As you have already seen, in Java every method is declared
in a class and, except for a few primitive types, every value is an object. In
this chapter, you will learn how to implement your own classes and methods.

The key points of this chapter are:

1.
2.
3.

Mutator methods change the state of an object; accessor methods don't.
In Java, variables don’t hold objects; they hold references to objects.

Instance variables and method implementations are declared inside the
class declaration.

An instance method is invoked on an object, which is accessible through
the this reference.

A constructor has the same name as the class. A class can have multiple
(overloaded) constructors.

Static variables don’t belong to any objects. Static methods are not invoked
on objects.

Classes are organized into packages. Use import declarations so that you
don’t have to use the package name in your programs.

59



Chapter 2 m Object-Oriented Programming

Classes can be nested in other classes.

An inner class is a nonstatic nested class. Its instances have a reference
to the object of the enclosing class that constructed it.

10. The javadoc utility processes source files, producing HTML files with
declarations and programmer-supplied comments.

2.1 Working with Objects

In ancient times, before objects were invented, you wrote programs by calling
functions. When you call a function, it returns a result that you use without
worrying how it was computed. Functions have an important benefit: they
allow work to be shared. You can call a function that someone else wrote
without having to know how it does its task.

Objects add another dimension. Each object can have its own state. The state
affects the results that you get from calling a method. For example, if in is a
Scanner object and you call in.next(), the object remembers what was read before
and gives you the next input token.

When you use objects that someone else implemented and invoke methods
on them, you do not need to know what goes on under the hood. This
principle, called encapsulation, is a key concept of object-oriented programming.

At some point, you may want to make your work available for other program-
mers by providing them with objects they can use. In Java, you provide a
class—a mechanism for creating and using objects with the same behavior.

Consider a common task: manipulation of calendar dates. Calendars are
somewhat messy, with varying month lengths and leap years, not to mention
leap seconds. It makes sense to have experts who figure out those messy
details and who provide implementations that other programmers can use.
In this situation, objects arise naturally. A date is an object whose methods
can provide information such as “on what weekday does this date fall” and
“what date is tomorrow.”

In Java, experts who understand date computations provided classes for dates
and other date-related concepts such as weekdays. If you want to do compu-
tations with dates, use one of those classes to create date objects and invoke
methods on them, such as a method that yields the weekday or the next date.

Few of us want to ponder the details of date arithmetic, but you are probably
an expert in some other area. To enable other programmers to leverage your
knowledge, you can provide them with classes. And even if you are not



2.1 m Working with Objects

enabling other programmers, you will find it useful in your own work to use
classes so that your programs are structured in a coherent way.

Before learning how to declare your own classes, let us run through a
nontrivial example of using objects.

The Unix program cal prints a calendar for a given month and year, in a
format similar to the following:

Mon Tue Wed Thu Fri Sat Sun

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

How can you implement such a program? With the standard Java library, you
use the Localbate class to express a date at some unspecified location. We need

an object of that class representing the first of the month. Here is how you
get one:

LocalDate date = LocalDate.of(year, month, 1);
To advance the date, you call date.plusbays(1). The result is a newly constructed

LocalDate object that is one day further. In our application, we simply reassign
the result to the date variable:

date = date.plusDays(1);
You apply methods to obtain information about a date, such as the month

on which it falls. We need that information so that we can keep printing
while we are still in the same month.

while (date.getMonthValue() == month) {
System.out.printf("%4d", date.getDayOfMonth());
date = date.plusDays(1);

}
Another method yields the weekday on which a date falls.
DayOfWeek weekday = date.getDayOfWeek();
You get back an object of another class DayofWeek. In order to compute the

indentation of the first day of the month in the calendar, we need know
the numerical value of the weekday. There is a method for that:
int value = weekday.getValue();
for (int i = 1; i < value; i++)
System.out.print(" ");



Chapter 2 m Object-Oriented Programming

The getvalue method follows the international convention where the weekend
comes at the end of the week, returning 1 for Monday, 2 for Tuesday, and
so on. Sunday has value 7.

NOTE: You can chain method calls, like this:
int value = date.getDayOfWeek().getValue();
The first method call is applied to the date object, and it returns a

DayOfWeek object. The getvalue method is then invoked on the returned
object.

You will find the complete program in the book’s companion code. It was
easy to solve the problem of printing a calendar because the designers of the
LocalDate class provided us with a useful set of methods. In this chapter, you
will learn how to implement methods for your own classes.

2.1.1 Accessor and Mutator Methods

Consider again the method call date.plusbays(1). There are two ways in which
the designers of the Localbate class could have implemented the plusbays method.
They could make it change the state of the date object and return no result.
Or they could leave date unchanged and return a newly constructed LocalDate
object. As you can see, they chose to do the latter.

We say that a method is a mutator if it changes the object on which it was
invoked. It is an accessor if it leaves the object unchanged. The plusbays method
of the Localbate class is an accessor.

In fact, all methods of the LocalbDate class are accessors. This situation is increas-
ingly common because mutation can be risky, particularly if two computations
mutate an object simultaneously. Nowadays, most computers have multiple
processing units, and safe concurrent access is a serious issue. One way to
address this issue is to make objects immutable by providing only accessor
methods.

Still, there are many situations where mutation is desirable. The add method
of the Arraylist class is an example of a mutator. After calling add, the array
list object is changed.
Arraylist<String> friends = new ArrayList<>();
// friends is empty

friends.add("Peter");
// friends has size 1



2.1 m Working with Objects

2.1.2 Object References

In some programming languages (such as C++), a variable can actually hold
the object—that is, the bits that make up the object’s state. In Java, that is
not the case. A variable can only hold a reference to an object. The actual
object is elsewhere, and the reference is some implementation-dependent
way of locating the object (see Figure 2-1).

D NOTE: References behave like pointers in C and C++, except that they
are perfectly safe. In C and C++, you can modify pointers and use them
to overwrite arbitrary memory locations. With a Java reference, you can

only access a specific object.

date =

LocalDate

June 1, 2017

Figure 2-1 An object reference

When you assign a variable holding an object reference to another, you have
two references to the same object.
Arraylist<String> people = friends;
// Now people and friends refer to the same object

If you mutate the shared object, the mutation is observable through both
references. Consider the call

people.add("Paul");

Now the array list people has size 2, and so does friends (see Figure 2-2). (Of
course, it isn't technically true that people or friends “have” size 2. After all,
people and friends are not objects. They are references to an object, namely an
array list with size 2.)

Most of the time, this sharing of objects is efficient and convenient, but you
have to be aware that it is possible to mutate a shared object through any
of its references.



n Chapter 2 m Object-Oriented Programming

friends

people =

ArrayList<String>

[Peter, Paul]

Figure 2-2 Two references to the same object

However, if a class has no mutator methods (such as String or Localbate), you
don't have to worry. Since nobody can change such an object, you can freely
give out references to it.

It is possible for an object variable to refer to no object at all, by setting it
to the special value null.

LocalDate date = null; // Now date doesn't refer to any object

This can be useful if you don't yet have an object for date to refer to, or if
you want to indicate a special situation, such as an unknown date.

CAUTION: Null values can be dangerous when they are not expected.
Invoking a method on null causes a NullPointerException (which should
really have been called a NullReferenceException). For that reason, it is not
recommended to use null for optional values. Use the Optional type
instead (see Chapter 8).

Finally, have another look at the assignments

date
date

LocalDate.of(year, month, 1);
date.plusDays(1);

After the first assignment, date refers to the first day of the month. The call
to plusbays yields a new Localbate object, and after the second assignment, the
date variable refers to the new object. What happens to the first one?

There is no reference to the first object, so it is no longer needed. Eventually,
the garbage collector will recycle the memory and make it available for reuse.
In Java, this process is completely automatic, and programmers never need
to worry about deallocating memory.



2.2 m Implementing Classes

2.2 Implementing Classes

Now let us turn to implementing our own classes. To show the various lan-
guage rules, I use the classic example of an Employee class. An employee has
a name and a salary. In this example, the name can't change, but ever so
often an employee can get a well-deserved raise.

2.2.1 Instance Variables

From the description of employee objects, you can see that the state of such
an object is described by two values: name and salary. In Java, you use instance
variables to describe the state of an object. They are declared in a class
like this:

public class Employee {

private String name;
private double salary;

}
That means that every instance of the Employee class has these two variables.

In Java, instance variables are usually declared as private. That means that
only methods of the same class can access them. There are a couple of reasons
why this protection is desirable: You control which parts of your program
can modify the variables, and you can decide at any point to change the
internal representation. For example, you might store the employees in a
database and only leave the primary key in the object. As long as you reim-
plement the methods so they work the same as before, the users of your
class won't care.

2.2.2 Method Headers

Now let's turn to implementing the methods of the Employee class. When
you declare a method, you provide its name, the types and names of its
parameters, and the return type, like this:

public void raiseSalary(double byPercent)

This method receives a parameter of type double and doesn't return any value,
as indicated by the return type void.

The getName method has a different signature:
public String getName()

The method has no parameters and returns a String.



n Chapter 2 m Object-Oriented Programming

D NOTE: Most methods are declared as public, which means anyone can

call such a method. Sometimes, a helper method is declared as private,
which restricts it to being used only in other methods of the same class.
You should do that for methods that are not relevant to class users,
particularly if they depend on implementation details. You can safely
change or remove private methods if the implementation changes.

2.2.3 Method Bodies

Following the method header, you provide the body:

public void raiseSalary(double byPercent) {
double raise = salary * byPercent / 100;
salary += raise;

}

Use the return keyword if the method yields a value:

public String getName() {
return name;
}

Place the method declarations inside the class declaration:

public class Employee {
private String name;
private double salary;

public void raiseSalary(double byPercent) {
double raise = salary * byPercent / 100;
salary += raise;

}

public String getName() {
return name;

}
_—

2.2.4 Instance Method Invocations

Consider this example of a method call:

fred.raiseSalary(5);

In this call, the argument 5 is used to initialize the parameter variable byPercent,
equivalent to the assignment

double byPercent = 5;



2.2 m Implementing Classes

Then the following actions occur:

double raise = fred.salary * byPercent / 100;

fred.salary += raise;
Note that the salary instance variable is applied to the instance on which the
method is invoked.

Unlike the methods that you have seen at the end of the preceding chapter,
a method such as raiseSalary operates on an instance of a class. Therefore,
such a method is called an instance method. In Java, all methods that are not
declared as static are instance methods.

As you can see, two values are passed to the raisesalary method: a reference
to the object on which the method is invoked, and the argument of the call.
Technically, both of these are parameters of the method, but in Java, as in
other object-oriented languages, the first one takes on a special role. It is
sometimes called the receiver of the method call.

2.2.5 The this Reference

When a method is called on an object, this is set to that object. If you like,
you can use the this reference in the implementation:
public void raiseSalary(double byPercent) {
double raise = this.salary * byPercent / 100;
this.salary += raise;

}
Some programmers prefer that style because it clearly distinguishes between

local and instance variables—it is now obvious that raise is a local variable
and salary is an instance variable.

It is very common to use the this reference when you don't want to come
up with different names for parameter variables. For example,

public void setSalary(double salary) {
this.salary = salary;
}

When an instance variable and a local variable have the same name, the
unqualified name (such as salary) denotes the local variable, and this.salary is
the instance variable.

NOTE: In some programming languages, instance variables are decorated
in some way, for example _name and _salary. This is legal in Java but is
not commonly done.




Chapter 2 m Object-Oriented Programming

EI NOTE: If you like, you can even declare this as a parameter of a method
(but not a constructor):

public void setSalary(Employee this, double salary) {
this.salary = salary;
}

However, this syntax is very rarely used. It exists so that you can
annotate the receiver of the method—see Chapter 11.

2.2.6 Call hy Value

When you pass an object to a method, the method obtains a copy of the
object reference. Through this reference, it can access or mutate the parameter
object. For example,

public class EvilManager {
private Random generator;

public void giveRandomRaise(Employee e) {
double percentage = 10 * generator.nextGaussian();
e.raiseSalary(percentage);

}
Consider the call
boss.giveRandomRaise(fred);

The reference fred is copied into the parameter variable e (see Figure 2-3).
The method mutates the object that is shared by the two references.

EmpTloyee
fred = name =

salary =[95000

e =

Figure 2-3 A parameter variable holding a copy of an object reference

In Java, you can never write a method that updates primitive type parameters.
A method that tries to increase a double value won't work:



2.3 m Object Construction

public void increaseRandomly(double x) { // Won't work
double amount = x * generator.nextDouble();
X += amount;

}
If you call
boss.increaseRandomly(sales);

then sales is copied into x. Then x is increased, but that doesn’t change sates.
The parameter variable then goes out of scope, and the increase leaves no
useful effect.

For the same reason, it is not possible to write a method that changes an
object reference to something different. For example, this method does not
work as presumably intended:

public class EvilManager {

public void replaceWithZombie(Employee e) {
e = new Employee("", 0);
}

}
In the call
boss.replaceWithZombie(fred);

the reference fred is copied into the variable e which is then set to a different
reference. When the method exits, e goes out of scope. At no point was fred
changed.

D NOTE: Some people say that Java uses “call by reference” for objects.
As you can see from the second example, that is not true. In a language
that supports call by reference, a method can replace the contents of
variables passed to it. In Java, all parameters—object references as well
as primitive type values—are passed by value.

2.3 Object Construction

One step remains to complete the Employee class: We need to provide a
constructor, as detailed in the following sections.

2.3.1 Implementing Constructors

Declaring a constructor is similar to declaring a method. However, the name
of the constructor is the same as the class name, and there is no return type.



Chapter 2 m Object-Oriented Programming

public Employee(String name, double salary) {
this.name = name;
this.salary = salary;

D NOTE: This constructor is public. It can also be useful to have private
constructors. For example, the LocalDate class has no public constructors.
Instead, users of the class obtain objects from “factory methods” such

as now and of. These methods call a private constructor.

CAUTION: If you accidentally specify a return type, such as
public void Employee(String name, double salary)

then you declare a method named Employee, not a constructor!

A constructor executes when you use the new operator. For example, the
expression

new Employee("James Bond", 500000)

allocates an object of the Employee class and invokes the constructor body,
which sets the instance variables to the arguments supplied in the constructor.

The new operator returns a reference to the constructed object. You will
normally want to save that reference in a variable:

Employee james = new Employee("James Bond", 500000);

or pass it to a method:

ArrayList<Employee> staff = new ArraylList<>();
staff.add(new Employee("James Bond", 500000));

2.3.2 Overloading

You can supply more than one version of a constructor. For example, if you
want to make it easy to model nameless worker bees, supply a second
constructor that only accepts a salary.

public Employee(double salary) {

this.name = "";
this.salary = salary;

}

Now the Employee class has two constructors. Which one is called depends on
the arguments.



2.3 m Object Construction

Employee james = new Employee("James Bond", 500000);
// calls Employee(String, double) constructor
Employee anonymous = new Employee(40000);
// calls Employee(double) constructor

In this case, we say that the constructor is overloaded.

D NOTE: A method is overloaded if there are multiple versions with the
same name but different parameters. For example, there are overloaded
versions of the println method with parameters int, double, String, and
so on. Since you have no choice how to name a constructor, it is
common to overload constructors.

2.3.3 Calling One Constructor from Another

When there are multiple constructors, they usually have some work in com-
mon, and it is best not to duplicate that code. It is often possible to put that
common initialization into one constructor.

You can call one constructor from another, but only as the first statement of
the constructor body. Somewhat surprisingly, you don't use the name of the
constructor for the call but the keyword this:

public Employee(double salary) {

this("", salary); // Calls Employee(String, double)
// Other statements can follow

NOTE: Here, this is not a reference to the object that is being
constructed. Instead, it is a special syntax that is only used for invoking
another constructor of the same class.

2.3.4 Default Initialization

If you don't set an instance variable explicitly in a constructor, it is automati-
cally set to a default value: numbers to 6, boolean values to false, and object
references to null.

For example, you could supply a constructor for unpaid interns.

public Employee(String name) {
// salary automatically set to zero
this.name = name;



Chapter 2 m Object-Oriented Programming

NOTE: In this regard, instance variables are very different from local
variables. Recall that you must always explicitly initialize local variables.

For numbers, the initialization with zero is often convenient. But for object
references, it is a common source of errors. Suppose we didn't set the name
variable to the empty string in the Employee(double) constructor:
public Employee(double salary) {
// name automatically set to null
this.salary = salary;

}

If anyone called the getName method, they would get a null reference that they
probably don't expect. A condition such as

if (e.getName().equals("James Bond"))

would then cause a null pointer exception.

2.3.5 Instance Variable Initialization

You can specify an initial value for any instance variables, like this:

public class Employee {
private String name =

}

This initialization occurs after the object has been allocated and before a
constructor runs. Therefore, the initial value is present in all constructors. Of
course, some of them may choose to overwrite it.

In addition to initializing an instance variable when you declare it, you can
include arbitrary initialization blocks in the class declaration.

public class Employee() {
private String name = "";
private int id;
private double salary;

{ // An initialization block

Random generator = new Random();

id = 1 + generator.nextInt(1_000_000);
}

public Employee(String name, double salary) {

}



2.3 m Object Construction

D NOTE: This is not a commonly used feature. Most programmers place
lengthy initialization code into a helper method and invoke that method
from the constructors.

Instance variable initializations and initialization blocks are executed in the
order in which they appear in the class declaration, and before the body of
the constructor.

2.3.6 Final Instance Variables

You can declare an instance variable as final. Such a variable must be initial-
ized by the end of every constructor. Afterwards, the variable may not
be modified again. For example, the name variable of the Employee class may be
declared as final because it never changes after the object is constructed—there
is no setName method.

public class Employee {
private final String name;

NOTE: When used with a reference to a mutable object, the final
modifier merely states that the reference will never change. It is perfectly
legal to mutate the object.

public class Person {

private final ArraylList<Person> friends = new ArraylList<>();
// OK to add elements to this array list

}

Methods may mutate the array list to which friends refers, but they can
never replace it with another. In particular, it can never become null.

2.3.7 The Constructor with No Arguments

Many classes contain a constructor with no arguments that creates an object
whose state is set to an appropriate default. For example, here is a constructor
with no arguments for the Employee class:

public Employee() {

name = "";
salary = 0;



Chapter 2 m Object-Oriented Programming

Just like an indigent defendant is provided with a public defender, a class
with no constructors is automatically given a constructor with no arguments
that does nothing at all. All instance variables stay at their default values
(zero, false, or null) unless they have been explicitly initialized.

Thus, every class has at least one constructor.

EI NOTE: If a class already has a constructor, it does not automatically
get another constructor with no arguments. If you supply a constructor
and also want a no-argument constructor, you have to write it yourself.

D NOTE: In the preceding sections, you saw what happens when an object
is constructed. In some programming languages, notably C++, it is
common to specify what happens when an object is destroyed. Java
does have a mechanism for “finalizing” an object when it is reclaimed
by the garbage collector. But this happens at unpredictable times, so
you should not use it. However, as you will see in Chapter 5, there is
a mechanism for closing resources such as files.

2.4 Static Variahles and Methods

In all sample programs that you have seen, the main method is tagged with
the static modifier. In the following sections, you will learn what this modifier
means.

2.4.1 Static Variahles

If you declare a variable in a class as static, then there is only one such
variable per class. In contrast, each object has its own copy of an instance
variable. For example, suppose we want to give each employee a distinct ID
number. Then we can share the last ID that was given out.

public class Employee {

private static int lastId = 0;
private int id;

public Employee() {
lastId++;
id = lastId;



2.4 W Static Variahles and Methods

Every Employee object has its own instance variable id, but there is only one
lastId variable that belongs to the class, not to any particular instance of the
class.

When a new Employee object is constructed, the shared lastld variable is incre-
mented and the id instance variable is set to that value. Thus, every employee
gets a distinct id value.

CAUTION: This code will not work if Employee objects can be constructed
concurrently in multiple threads. Chapter 10 shows how to remedy that
problem.

NOTE: You may wonder why a variable that belongs to the class, and

D not to individual instances, is named “static.” The term is a meaningless
holdover from C++ which borrowed the keyword from an unrelated use
in the C language instead of coming up with something more appropriate.
A more descriptive term is “class variable.”

2.4.2 Static Constants

Mutable static variables are rare, but static constants (that is, static final
variables) are quite common. For example, the Math class declares a static
constant:

public class Math {
public static final double PI = 3.14159265358979323846;

}
You can access this constant in your programs as Math.PI.

Without the static keyword, PI would have been an instance variable of the
Math class. That is, you would need an object of the class to access PI, and
every Math object would have its own copy of PI.

Here is an example of a static final variable that is an object, not a number.
It is both wasteful and insecure to construct a new random number generator
each time you want a random number. You are better off sharing a single
generator among all instances of a class.



Chapter 2 m Object-Oriented Programming

public class Employee {
private static final Random generator = new Random();
private int id;

public Employee() {
id = 1 + generator.nextInt(1_000_000);
}

}

Another example of a static constant is System.out. It is declared in the System
class like this:

public class System {
public static final PrintStream out;

CAUTION: Even though out is declared as final in the System class,
there is a method setOut that sets System.out to a different stream. This
method is a “native” method, not implemented in Java, which can bypass
the access control mechanisms of the Java language. This is a very
unusual situation from the early days of Java, and not something you
are likely to encounter elsewhere.

2.4.3 Static Initialization Blocks

In the preceding sections, static variables were initialized as they were de-
clared. Sometimes, you need to do additional initialization work. You can put
it into a static initialization block.
public class CreditCardForm {
private static final Arraylist<Integer> expirationYear = new ArraylList<>();
static {
// Add the next twenty years to the array list
int year = LocalDate.now().getYear();
for (int i = year; i <= year + 20; i++) {
expirationYear.add(i);

}

}

Static initialization occurs when the class is first loaded. Like instance variables,
static variables are 6, false, or null unless you explicitly set them to another
value. All static variable initializations and static initialization blocks are
executed in the order in which they occur in the class declaration.



2.4 W Static Variahles and Methods

2.4.4 Static Methods

Static methods are methods that do not operate on objects. For example, the
pow method of the Math class is a static method. The expression

Math.pow(x, a)
computes the power x’. It does not use any Math object to carry out its task.

As you have already seen in Chapter 1, a static method is declared with the
static modifier:

public class Math {
public static double pow(double base, double exponent) {

}
}

Why not make pow into an instance method? It can’'t be an instance method
of double since, in Java, primitive types are not classes. One could make it an
instance method of the Math class, but then you would need to construct a
Math object in order to call it.

Another common reason for static methods is to provide added functionality
to classes that you don't own. For example, wouldn't it be nice to have a
method that yields a random integer in a given range? You can’t add a method
to the Random class in the standard library. But you can provide a static method:
public class RandomNumbers {
public static int nextInt(Random generator, int low, int high) {
return low + generator.nextInt(high - low + 1);

}
}

Call this method as

int dieToss = RandomNumbers.nextInt(gen, 1, 6);

EI NOTE: It is legal to invoke a static method on an object. For example,
instead of calling LocalDate.now() to get today’s date, you can call
date.now() on an object date of the LocalDate class. But that does not
make a lot of sense. The now method doesn’t look at the date object to
compute the result. Most Java programmers would consider this poor
style.

Since static methods don't operate on objects, you cannot access instance
variables from a static method. However, static methods can access the
static variables in their class. For example, in the RandomNumbers.nextInt method,
we can make the random number generator into a static variable:



Chapter 2 m Object-Oriented Programming

public class RandomNumbers {
private static Random generator = new Random();
public static int nextInt(int low, int high) {
return low + generator.nextInt(high - low + 1);
// OK to access the static generator variable

}
2.4.5 Factory Methods

A common use for static methods is a factory method, a static method that
returns new instances of the class. For example, the Numberformat class uses
factory methods that yield formatter objects for various styles.

NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();

NumberFormat percentFormatter = NumberFormat.getPercentInstance();

double x = 0.1;

System.out.println(currencyFormatter.format(x)); // Prints $0.10
System.out.println(percentFormatter.format(x)); // Prints 10%

Why not use a constructor instead? The only way to distinguish two construc-
tors is by their parameter types. You cannot have two constructors with no
arguments.

Moreover, a constructor new Numberformat(...) yields a Numberformat. A factory
method can return an object of a subclass. In fact, these factory methods return
instances of the DecimalFormat class. (See Chapter 4 for more information about
subclasses.)

A factory method can also return a shared object, instead of unnecessarily
constructing new ones. For example, the call Collections.emptyList() returns a
shared immutable empty list.

2.5 Packages

In Java, you place related classes into a package. Packages are convenient for
organizing your work and for separating it from code libraries provided by
others. As you have seen, the standard Java library is distributed over a
number of packages, including java.lang, java.util, java.math, and so on.

One reason for using packages is to guarantee the uniqueness of class names.
Suppose two programmers come up with the bright idea of supplying an
Element class. (In fact, at least five developers had that bright idea in the Java



2.5 m Packages

API alone.) As long as all of them place their classes into different packages,
there is no conflict.

In the following sections, you will learn how to work with packages.

2.5.1 Package Declarations

A package name is a dot-separated list of identifiers such as java.util.regex.

To guarantee unique package names, it is a good idea to use an Internet
domain name (which is known to be unique) written in reverse. For example,
I own the domain name horstmann.con. For my projects, I use package names
such as com.horstmann.corejava. A major exception to this rule is the standard
Java library whose package names start with java or javax.

NOTE: In Java, packages do not nest. For example, the packages
java.util and java.util.regex have nothing to do with each other. Each
is its own independent collection of classes.

To place a class in a package, you add a package statement as the first statement
of the source file:

package com.horstmann.corejava;
public class Employee {

}

Now the Employee class is in the com.horstmann.corejava package, and its fully qualified
name is com.horstmann.corejava.Employee.

There is also a default package with no name that you can use for simple
programs. To add a class to the default package, don't provide a package
statement. However, the use of the default package is not recommended.

When class files are read from a file system, the path name needs to match
the package name. For example, the file Employee.class must be in a subdirectory
com/horstmann/corejava.

If you arrange the source files in the same way and compile from the direc-
tory that contains the initial package names, then the class files are automat-
ically put in the correct place. Suppose the EmployeeDemo class makes use of
Employee objects, and you compile it as

javac com/horstmann/corejava/EmployeeDemo. java


http://horstmann.com

Chapter 2 m Object-Oriented Programming

The compiler generates class files com/horstmann/corejava/EmployeeDemo.class and

com/horstmann/corejava/Employee.class. You run the program by specifying the fully
qualified class name:

java com.horstmann.corejava.EmployeeDemo

CAUTION: If a source file is not in a subdirectory that matches its
package name, the javac compiler will not complain and will generate a
class file, but you will need to put the class file in the right place. This
can be quite confusing—see Exercise 12.

TIP: It is a good idea to run javac with the -d option. Then the class
v files are generated in a separate directory, without cluttering up the
source tree, and they have the correct subdirectory structure.

2.5.2 The jar Command

Instead of storing class files in the file system, you can place them into one
or more archive files called JAR files. You can make such an archive with
the jar utility that is a part of the JDK. Its command-line options are similar
to those of the Unix tar program.

jar --create --verbose --file library.jar com/mycompany/*.class
or, with short options,

jar -c -v -f library.jar com/mycompany/+.class
or, with tar-style options,

jar cvf library.jar com/mycompany/x.class

JAR files are commonly used to package libraries.

a TIP: You can use JAR files to package a program, not just a library.
Generate the JAR file with

jar -c -f program.jar -e com.mycompany.MainClass com/mycompany/*.class
Then run the program as

java -jar program.jar




2.5 m Packages

CAUTION: The options of commands in the Java development kit have
traditionally used single dashes followed by multi-letter option names,
such as java -jar. The exception was the jar command, which followed
the classic option format of the tar command without dashes. Java 9
is moving towards the more common option format where multi-letter
option names are preceded by double dashes, such as --create, with
single-letter shortcuts for common options, such as -c.

This has created a muddle that will hopefully get cleaned up over time.
Right now, java -jar works as always, but java --jar doesn’t. You can
combine some single-letter options but not others. For example, jar -cvf
filename works, but jar -cv -f filename doesn’t. Long argument options
can follow a space or =, and short argument options can follow with
or without a space. However, this is not fully implemented: jar -c
--file=filename works, but jar -c -ffilename doesn’t.

2.5.3 The Class Path

When you use library JAR files in a project, you need to tell the compiler
and the virtual machine where these files are by specifying the class path. A
class path can contain

* Directories containing class files (in subdirectories that match their package
names)

¢ JAR files
e Directories containing JAR files

The javac and java programs have an option -cp (with a verbose version
--class-path or, for backwards compatibility, -classpath). For example,

java -cp .:../libs/libl.jar:../1ibs/1ib2.jar com.mycompany.MainClass

This class path has three elements: the current directory (.) and two JAR files
in the directory ../libs.

NOTE: In Windows, use semicolons instead of colons to separate the
path elements:

java -cp .;..\libs\lib1.jar;..\libs\lib2.jar com.mycompany.MainClass

If you have many JAR files, put them all in a directory and use a wildcard
to include them all:

java -cp .:../libs/\x com.mycompany.MainClass



n Chapter 2 m Object-Oriented Programming

D NOTE: In Unix, the * must be escaped to prevent shell expansion.

CAUTION: The javac compiler always looks for files in the current
directory, but the java program only looks into the current directory if
the “.” directory is on the class path. If you have no class path set, this
is not a problem—the default class path consists of the “.” directory.
But if you have set the class path and forgot to include the “.” directory,
your programs will compile without error but won’t run.

CAUTION: The wildcard option for the class path is convenient, but it
only works reliably if the JAR files are well structured. It is possible (but
not a good idea) to have two versions of the same class in different
JAR files. In such a situation, the first encountered class wins. The
wildcard syntax does not guarantee the ordering in which the JAR files
are processed, and you should not use it if you require a particular
ordering of the JAR files. (Such “JAR file hell” is a problem that the
Java platform module system aims to prevent—see Chapter 15.)

Using the -cp option is the preferred approach for setting the class path. An
alternate approach is the CLASSPATH environment variable. The details depend
on your shell. If you use bash, use a command such as

export CLASSPATH=.:/home/username/project/libs/\*
In Windows, it is
SET CLASSPATH=.;C:\Users\username\project\libs\«

CAUTION: You can set the CLASSPATH environment variable globally (for
example, in .bashrc or the Windows control panel). However, many
programmers have regretted this when they forgot the global setting and
were surprised that their classes were not found.

D NOTE: As you will see in Chapter 15, you can group packages together

into modules. Modules provide strong encapsulation, hiding all packages

except those that you make visible. You will see in Chapter 15 how to

use the module path to specify the locations of the modules that your
programs use.




2.5 m Packages

2.5.4 Package Access

You have already encountered the access modifiers public and private. Features
tagged as public can be used by any class. Private features can be used only
by the class that declares them. If you don't specify either public or private,
the feature (that is, the class, method, or variable) can be accessed by all
methods in the same package.

Package access is useful for utility classes and methods that are needed by
the methods of a package but are not of interest to the users of the package.
Another common use case is for testing. You can place test classes in the
same package, and then they can access internals of the classes being tested.

NOTE: A source file can contain multiple classes, but at most one of
them can be declared public. If a source file has a public class, its name
must match the class name.

For variables, it is unfortunate that package access is the default. It is a
common mistake to forget the private modifier and accidentally make an in-
stance variable accessible to the entire package. Here is an example from the
Window class in the java.awt package:

public class Window extends Container {
String warningString;

}

Since the warningString variable is not private, the methods of all classes in the
java.awt package can access it. Actually, no method other than those of
the window class itself does that, so it seems likely that the programmer simply
forgot the private modifier.

This can be a security issue because packages are open ended. Any class can
add itself to a package by providing the appropriate package statement.

If you are concerned about this openness of packages, you are not alone. A
remedy is to place your package into a module—see Chapter 15. When a
package is in a module, it is not possible to add classes to the package. All
packages in the Java library are grouped into modules, so you cannot access
the Window.warningString variable simply by crafting a class in the java.awt package.

2.5.5 Importing Classes

The import statement lets you use classes without the fully qualified name.
For example, when you use



n Chapter 2 m Object-Oriented Programming

import java.util.Random;

then you can write Random instead of java.util.Random in your code.

NOTE: Import declarations are a convenience, not a necessity. You
could drop all import declarations and use fully qualified class names
everywhere.

java.util.Random generator = new java.util.Random();

Place import statements above the first class declaration in the source file, but
below the package statement.

You can import all classes from a package with a wildcard:

import java.util.s;
The wildcard can only import classes, not packages. You cannot use import
java.*; to obtain all packages whose name starts with java.

When you import multiple packages, it is possible to have a name conflict.
For example, the packages java.util and java.sql both contain a Date class.
Suppose you import both packages:

import java.util.s;

import java.sql.=*;
If your program doesn’t use the pate class, this is not a problem. But if you
refer to Date, without the package name, the compiler complains.

In that case, you can import the specific class that you want:

import java.util.x;

import java.sql.*;

import java.sql.Date;
If you really need both classes, you must use the fully qualified name for at
least one of them.

D NOTE: The import statement is a convenience for programmers. Inside
class files, all class names are fully qualified.

D NOTE: The import statement is very different from the #include directive
in C and C++. That directive includes header files for compilation. Imports
do not cause files to be recompiled. They just shorten names, like the

C++ using statement.




2.6 m Nested Classes

2.5.6 Static Imports

A form of the import statement permits the importing of static methods and
variables. For example, if you add the directive

import static java.lang.Math.=*;

to the top of your source file, you can use the static methods and static
variables of the Math class without the class name prefix:

r = sqrt(pow(x, 2) + pow(y, 2)); // i.e., Math.sqrt, Math.pow
You can also import a specific static method or variable:

import static java.lang.Math.sqrt;
import static java.lang.Math.PI;

NOTE: As you will see in Chapters 3 and 8, it is common to use static
import declarations with java.util.Comparator and java.util.stream.Collectors,
which provide a large number of static methods.

2.6 Nested Classes

In the preceding section, you have seen how to organize classes into packages.
Alternatively, you can place a class inside another class. Such a class is called
a nested class. This can be useful to restrict visibility, or to avoid cluttering
up a package with generic names such as Element, Node, or Item. Java has two
kinds of nested classes, with somewhat different behavior. Let us examine
both in the following sections.

2.6.1 Static Nested Classes

Consider an Invoice class that bills for items, each of which has a description,
quantity, and unit price. We can make Item into a nested class:

public class Invoice {
private static class Item { // Item is nested inside Invoice
String description;
int quantity;
double unitPrice;

double price() { return quantity * unitPrice; }

}

private ArraylList<Item> items = new ArraylList<>();



Chapter 2 m Object-Oriented Programming

It won't be clear until the next section why this inner class is declared static.
For now, just accept it.

There is nothing special about the Item class, except for access control. The
class is private in Invoice, so only Invoice methods can access it. For that reason,
I did not bother making the instance variables of the inner class private.

Here is an example of a method that constructs an object of the inner class:

public class Invoice {

public void addItem(String description, int quantity, double unitPrice) {
Item newItem = new Item();
newItem.description = description;
newItem.quantity = quantity;
newItem.unitPrice = unitPrice;
items.add(newItem);

}

A class can make a nested class public. In that case, one would want to use
the usual encapsulation mechanism.
public class Invoice {
public static class Item { // A public nested class
private String description;
private int quantity;
private double unitPrice;

public Item(String description, int quantity, double unitPrice) {
this.description = description;
this.quantity = quantity;
this.unitPrice = unitPrice;

}

public double price() { return quantity = unitPrice; }

}
private ArraylList<Item> items = new ArraylList<>();
public void add(Item item) { items.add(item); }

}

Now anyone can construct Iten objects by using the qualified name Invoice.Iten:
Invoice.Item newItem = new Invoice.Item("Blackwell Toaster", 2, 19.95);
myInvoice.add(newItem);

There is essentially no difference between this Invoice.Item class and a class
InvoiceItem declared outside any other class. Nesting the class just makes it
obvious that the Item class represents items in an invoice.



2.6 m Nested Classes

2.6.2 Inner Classes

In the preceding section, you saw a nested class that was declared as static.
In this section, you will see what happens if you drop the static modifier.
Such classes are called inner classes.

Consider a social network in which each member has friends that are also
members.

public class Network {
public class Member { // Member is an inner class of Network
private String name;
private ArraylList<Member> friends;

public Member(String name) {
this.name = name;
friends = new Arraylist<>();

}

private ArraylList<Member> members = new ArraylList<>();

}

With the static modifier dropped, there is an essential difference. A Member
object knows to which network it belongs. Let's see how this works.

First, here is a method to add a member to the network:
public class Network {
public Member enroll(String name) {
Member newMember = new Member(name);

members.add(newMember);
return newMember;

}

So far, nothing much seems to be happening. We can add a member and
get a reference to it.

Network myFace = new Network();
Network.Member fred = myFace.enroll("Fred");

Now let's assume Fred feels this isn't the hottest social network anymore, so
he wants to deactivate his membership.

fred.deactivate();

Here is the implementation of the deactivate method:



Chapter 2 m Object-Oriented Programming

public class Network {
public class Member {

public void deactivate() {
members.remove(this);
}
}

private ArrayList<Member> members;

}

As you can see, a method of an inner class can access instance variables of
its outer class. In this case, they are the instance variables of the outer class
object that created it, the unpopular myFace network.

This is what makes an inner class different from a static nested class. Each
inner class object has a reference to an object of the enclosing class. For
example, the method

members.remove(this);

actually means

outer.members.remove(this);
where I use outer to denote the hidden reference to the enclosing class.

A static nested class does not have such a reference (just like a static method
does not have the this reference). Use a static nested class when the instances
of the nested class don't need to know to which instance of the enclosing
class they belong. Use an inner class only if this information is important.

An inner class can also invoke methods of the outer class through its outer
class instance. For example, suppose the outer class had a method to unenroll
a member. Then the deactivate method can call it:

public class Network {
public class Member {

public void deactivate() {
unenroll(this);
}
}

private ArrayList<Member> members;

public Member enroll(String name) { ... }
public void unenroll(Member m) { ... }



2.6 m Nested Classes

In this case,
unenroll(this);
actually means

outer.unenroll(this);

2.6.3 Special Syntax Rules for Inner Classes

In the preceding section, I explained the outer class reference of an inner
class object by calling it outer. The actual syntax for the outer reference is a
bit more complex. The expression

OuterClass.this
denotes the outer class reference. For example, you can write the deactivate
method of the Member inner class as

public void deactivate() {
Network.this.members.remove(this);
}

In this case, the Network.this syntax was not necessary. Simply referring to
members implicitly uses the outer class reference. But sometimes, you need the
outer class reference explicitly. Here is a method to check whether a Member
object belongs to a particular network:

public class Network {
public class Member {

public boolean belongsTo(Network n) {
return Network.this == n;
}

}

When you construct an inner class object, it remembers the enclosing class
object that constructed it. In the preceding section, a new member was created
by this method:

public class Network {

Member enroll(String name) {
Member newMember = new Member(name);

}

That is a shortcut for

Member newMember = this.new Member(name);



n Chapter 2 m Object-Oriented Programming

You can invoke an inner class constructor on any instance of an outer class:

Network.Member wilma = myFace.new Member("wilma");

EI NOTE: Inner classes cannot declare static members other than
compile-time constants. There would be an ambiguity about the meaning
of “static.” Does it mean there is only one instance in the virtual
machine? Or only one instance per outer object? The language designers
decided not to tackle this issue.

EI NOTE: By historical accident, inner classes were added to the Java
language at a time when the virtual machine specification was considered
complete, so they are translated into regular classes with a hidden
instance variable referring to the enclosing instance. Exercise 14 invites
you to explore this translation.

NOTE: Local classes are another variant of inner classes that we will
discuss in Chapter 3.

2.7 Documentation Comments

The JDK contains a very useful tool, called javadoc, that generates HTML
documentation from your source files. In fact, the online API documentation
that we described in Chapter 1 is simply the result of running javadoc on the
source code of the standard Java library.

If you add comments that start with the special delimiter /+x to your source
code, you too can easily produce professional-looking documentation. This
is a very nice approach because it lets you keep your code and documentation
in one place. In the bad old days, programmers often put their documentation
into a separate file, and it was just a question of time for the code and the
comments to diverge. When documentation comments are in the same file
as the source code, it is an easy matter to update both and run javadoc again.

2.7.1 Comment Insertion

The javadoc utility extracts information for the following items:
* Public classes and interfaces

e Public and protected constructors and methods



2.7 W Documentation Comments

e Public and protected variables
e Packages and modules
Interfaces are introduced in Chapter 3 and protected features in Chapter 4.

You can (and should) supply a comment for each of these features. Each
comment is placed immediately above the feature it describes. A comment
starts with /++ and ends with /.

Each /#+ ... »/ documentation comment contains free-form text followed by
tags. A tag starts with an 4, such as @author or @param.

The first sentence of the free-form text should be a summary statement. The
javadoc utility automatically generates summary pages that extract these
sentences.

In the free-form text, you can use HTML modifiers such as <em>...</em> for
emphasis, <code>...</code> for a monospaced “typewriter” font, <strong>...</strong>
for boldface, and even <ing ...> to include an image. You should, however,
stay away from headings <hn> or rules <hr> because they can interfere with
the formatting of the documentation.

NOTE: If your comments contain links to other files such as images (for
example, diagrams or images of user interface components), place those
files into a subdirectory of the directory containing the source file, named
doc-files. The javadoc utility will copy the doc-files directories and their
contents from the source directory to the documentation directory. You
need to specify the doc-files directory in your link, for example <img
src="doc-files/uml.png" alt="UML diagram"/>.

2.7.2 Class Comments

The class comment must be placed directly before the class declaration. You
may want to document the author and version of a class with the @author and
dversion tags. There can be multiple authors.

Here is an example of a class comment:
[xx

* An <code>Invoice</code> object represents an invoice with
* line items for each part of the order.

* gauthor Fred Flintstone

* gauthor Barney Rubble

* gversion 1.1

*/



Chapter 2 m Object-Oriented Programming

public class Invoice {

}

D NOTE: There is no need to put a  in front of every line. However, most
IDEs supply the asterisks automatically, and some even rearrange them
when the line breaks change.

2.7.3 Method Comments

Place each method comment immediately before its method. Document the
following features:

e Each parameter, with a comment aparan variable description
e The return value, if not void: areturn description

e Any thrown exceptions (see Chapter 5): athrows ExceptionClass description

Here is an example of a method comment:
/%%
* Raises the salary of an employee.
* Qparam byPercent the percentage by which to raise the salary (e.g., 10 means 10%)
* greturn the amount of the raise
*/
public double raiseSalary(double byPercent) {
double raise = salary * byPercent / 100;
salary += raise;
return raise;

}

2.7.4 Variable Comments

You only need to document public variables—generally that means static
constants. For example:

[x%

* The number of days per year on Earth (excepting leap years)
*/
public static final int DAYS_PER_YEAR = 365;

2.7.5 General Comments

In all documentation comments, you can use the @since tag to describe the
version in which this feature became available:

@since version 1.7.1



2.7 W Documentation Comments

The adeprecated tag adds a comment that the class, method, or variable should
no longer be used. The text should suggest a replacement. For example,

ddeprecated Use <code>setVisible(true)</code> instead

NOTE: There is also a @beprecated annotation that compilers use to issue
warnings when deprecated items are used—see Chapter 11. The
annotation does not have a mechanism for suggesting a replacement,
so you should supply both the annotation and the Javadoc comment
for deprecated items.

2.7.6 Links

You can add hyperlinks to other relevant parts of the javadoc documentation
or to external documents with the @see and alink tags.

The tag dsee reference adds a hyperlink in the “see also” section. It can be used
with both classes and methods. Here, reference can be one of the following:

® package.Class#feature label
® <a href="...">label</a>
e ‘text"

The first case is the most useful. You supply the name of a class, method, or
variable, and javadoc inserts a hyperlink to its documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee
class. You can omit the name of the package, or both the package and class
name. Then, the feature will be located in the current package or class.

Note that you must use a #, not a period, to separate the class from the
method or variable name. The Java compiler itself is highly skilled in guessing
the various meanings of the period character as a separator between packages,
subpackages, classes, inner classes, and their methods and variables. But the
javadoc utility isn’t quite as clever, so you have to help it along.

If the @see tag is followed by a < character, you're specifying a hyperlink. You
can link to any URL you like. For example: @see <a href="http://en.wikipedia.org/
wiki/Leap_year">Leap years</a>

In each of these cases, you can specify an optional label that will appear as
the link anchor. If you omit the label, the user will see the target code name
or URL as the anchor.


http://en.wikipedia.org/wiki/Leap_year">Leap
http://en.wikipedia.org/wiki/Leap_year">Leap

Chapter 2 m Object-Oriented Programming

If the @see tag is followed by a " character, the text in quotes is displayed in
the “see also” section. For example:

osee "Core Java for the Impatient”

You can add multiple asee tags for one feature but you must keep them all
together.

If you like, you can place hyperlinks to other classes or methods anywhere
in any of your documentation comments. Insert a tag of the form

{alink package.classtfeature label}

anywhere in a comment. The feature description follows the same rules as
for the asee tag.

2.7.7 Package, Module, and Overview Comments

The class, method, and variable comments are placed directly into the Java
source files, delimited by /++ ... /. However, to generate package comments,
you need to add a separate file in each package directory.

Supply a Java file named package-info.java. The file must contain an initial
javadoc comment, delimited with /++ and +/, followed by a package statement.
It should contain no further code or comments.

To document a module, place your comments into module-info.java. You can
include the amoduleGraph directive to include a module dependency graph. (See
Chapter 15 about modules and the module-info. java file.)

You can also supply an overview comment for all source files. Place it in a
file called overview.html, located in the parent directory that contains all the
source files. All text between the tags <body>...</body> is extracted. This comment
is displayed when the user selects “Overview” from the navigation bar.

2.7.8 Comment Extraction

Here, docDirectory is the name of the directory where you want the HTML
files to go. Follow these steps:

1. Change to the directory that contains the source files you want to
document. If you have nested packages to document, such as
com.horstmann.corejava, you must be working in the directory that contains
the subdirectory com. (This is the directory that contains the overview.html
file, if you supplied one.)

2. Run the command

javadoc -d docDirectory packagel package2 ...


http://overview.html
http://overview.html

Exercises

If you omit the -d docDirectory option, the HTML files are extracted to the
current directory. That can get messy, so I don't recommend it.

The javadoc program can be fine-tuned by numerous command-line options.
For example, you can use the -author and -version options to include the dauthor
and aversion tags in the documentation. (By default, they are omitted.)

Another useful option is -link to include hyperlinks to standard classes. For
example, if you run the command

javadoc -link http://docs.oracle.com/javase/9/docs/api *.java

all standard library classes are automatically linked to the documentation on
the Oracle website.

If you use the -linksource option, each source file is converted to HTML, and
each class and method name turns into a hyperlink to the source.

Exercises

1. Change the calendar printing program so it starts the week on a Sunday.
Also make it print a newline at the end (but only one).

2. Consider the nextInt method of the Scanner class. Is it an accessor or
mutator? Why? What about the nextInt method of the Random class?

3. Can you ever have a mutator method return something other than void?
Can you ever have an accessor method return void? Give examples when
possible.

4. Why can't you implement a Java method that swaps the contents of
two int variables? Instead, write a method that swaps the contents of two
IntHolder objects. (Look up this rather obscure class in the API
documentation.) Can you swap the contents of two Integer objects?

5. Implement an immutable class Point that describes a point in the plane.
Provide a constructor to set it to a specific point, a no-arg constructor to
set it to the origin, and methods getX, gety, translate, and scale. The translate
method moves the point by a given amount in x- and y-direction. The
scale method scales both coordinates by a given factor. Implement these
methods so that they return new points with the results. For example,

Point p = new Point(3, 4).translate(1, 3).scale(0.5);
should set p to a point with coordinates (2, 3.5).

6. Repeat the preceding exercise, but now make translate and scale into
mutators.


http://docs.oracle.com/javase/9/docs/api

Chapter 2 m Object-Oriented Programming

10.

11.

12.

13.

14.

Add javadoc comments to both versions of the Point class from the preceding
exercises.

In the preceding exercises, providing the constructors and getter methods
of the Point class was rather repetitive. Most IDEs have shortcuts for
writing the boilerplate code. What does your IDE offer?

Implement a class Car that models a car traveling along the x-axis, con-
suming gas as it moves. Provide methods to drive by a given number of
miles, to add a given number of gallons to the gas tank, and to get the
current distance from the origin and fuel level. Specify the fuel efficiency
(in miles/gallons) in the constructor. Should this be an immutable class?
Why or why not?

In the RandomNumbers class, provide two static methods randomElement that get
a random element from an array or array list of integers. (Return zero if
the array or array list is empty.) Why couldn’t you make these methods
into instance methods of int[] or ArraylList<Integer>?

Rewrite the cal class to use static imports for the System and Localbate
classes.

Make a file HelloWorld.java that declares a class HelloWorld in a package
chel.secol. Put it into some directory, but not in a cho1/seco1 subdirectory.
From that directory, run javac HelloWorld. java. Do you get a class file? Where?
Then run java HelloWorld. What happens? Why? (Hint: Run javap HelloWorld
and study the warning message.) Finally, try javac -d . HelloWorld.java. Why
is that better?

Download the JAR file for OpenCSV from http://opencsv.sourceforge.net. Write
a class with a main method that reads a CSV file of your choice and prints
some of the content. There is sample code on the OpenCSV website. You
haven't yet learned to deal with exceptions. Just use the following header
for the main method:

public static void main(String[] args) throws Exception
The point of this exercise is not to do anything useful with CSV files, but
to practice using a library that is delivered as a JAR file.

Compile the Network class. Note that the inner class file is named
Network$Member.class. Use the javap program to spy on the generated code.
The command

javap -private Classname


http://opencsv.sourceforge.net

Exercises

15.

16.

17.

displays the methods and instance variables. Where do you see the refer-
ence to the enclosing class? (In Linux/Mac OS, you need to put a \ before
the § symbol when running javap.)

Fully implement the Invoice class in Section 2.6.1, “Static Nested Classes”
(page 85). Provide a method that prints the invoice and a demo program
that constructs and prints a sample invoice.

Implement a class Queue, an unbounded queue of strings. Provide methods
add, adding at the tail, and remove, removing at the head of the queue.
Store elements as a linked list of nodes. Make Node a nested class. Should
it be static or not?

Provide an iterator—an object that yields the elements of the queue in
turn—for the queue of the preceding class. Make Iterator a nested class
with methods next and hasNext. Provide a method iterator() of the Queue
class that yields a Queue.Iterator. Should Iterator be static or not?



Interfaces and
Lambda Expressions

Topics in This Chapter

= 3.1 Interfaces — page 100

= 3.2 Static, Default, and Private Methods — page 105

= 3.3 Examples of Interfaces — page 109

» 3.4 Lambda Expressions — page 113

= 3.5 Method and Constructor References — page 116

= 3.6 Processing Lambda Expressions — page 119

» 3.7 Lambda Expressions and Variable Scope — page 124
= 3.8 Higher-Order Functions — page 127

* 3.9 Local and Anonymous Classes — page 129

= Exercises — page 131



Chaprer

Java was designed as an object-oriented programming language in the 1990s
when object-oriented programming was the principal paradigm for software
development. Interfaces are a key feature of object-oriented programming:
They let you specify what should be done, without having to provide an
implementation.

Long before there was object-oriented programming, there were functional
programming languages, such as Lisp, in which functions and not objects are
the primary structuring mechanism. Recently, functional programming has
risen in importance because it is well suited for concurrent and event-driven
(or “reactive”) programming. Java supports function expressions that provide
a convenient bridge between object-oriented and functional programming. In
this chapter, you will learn about interfaces and lambda expressions.

The key points of this chapter are:

1. An interface specifies a set of methods that an implementing class must
provide.

2. An interface is a supertype of any class that implements it. Therefore,
one can assign instances of the class to variables of the interface type.

3. An interface can contain static methods. All variables of an interface are
automatically public, static, and final.

929



Chapter 3 m Interfaces and Lambda Expressions

4. An interface can contain default methods that an implementing class can
inherit or override.

5. An interface can contain private methods that cannot be called or
overridden by implementing classes.

The Comparable and Comparator interfaces are used for comparing objects.
A functional interface is an interface with a single abstract method.

A lambda expression denotes a block of code that can be executed at a
later point in time.

9. Lambda expressions are converted to functional interfaces.

10. Method and constructor references refer to methods or constructors
without invoking them.

11. Lambda expressions and local classes can access effectively final variables
from the enclosing scope.

3.1 Interfaces

An interface is a mechanism for spelling out a contract between two parties:
the supplier of a service and the classes that want their objects to be usable
with the service. In the following sections, you will see how to define and
use interfaces in Java.

3.1.1 Declaring an Interface
Consider a service that works on sequences of integers, reporting the average
of the first n values:
public static double average(IntSequence seq, int n)
Such sequences can take many forms. Here are some examples:
* A sequence of integers supplied by a user
* A sequence of random integers
e The sequence of prime numbers
* The sequence of elements in an integer array
* The sequence of code points in a string
* The sequence of digits in a number

We want to implement a single mechanism for dealing with all these kinds of
sequences.



3.1 m Interfaces

First, let us spell out what is common between integer sequences. At a
minimum, one needs two methods for working with a sequence:

e Test whether there is a next element
e Get the next element

To declare an interface, you provide the method headers, like this:

public interface IntSequence {
boolean hasNext();
int next();

}

You need not implement these methods, but you can provide default imple-
mentations if you like—see Section 3.2.2, “Default Methods” (page 106). If no
implementation is provided, we say that the method is abstract.

NOTE: All methods of an interface are automatically public. Therefore,
it is not necessary to declare hasNext and next as public. Some
programmers do it anyway for greater clarity.

The methods in the interface suffice to implement the average method:

public static double average(IntSequence seq, int n) {
int count = 0;
double sum = 0;
while (seq.hasNext() && count < n) {
count++;
sum += seq.next();
}

return count == 0 ? 0 : sum / count;

}

3.1.2 Implementing an Interface

Now let’s look at the other side of the coin: the classes that want to be usable
with the average method. They need to implement the IntSequence interface. Here
is such a class:

public class SquareSequence implements IntSequence {
private int i;

public boolean hasNext() {
return true;
}



m Chapter 3 m Interfaces and Lambda Expressions

public int next() {
i+4;

return i  i;

}

There are infinitely many squares, and an object of this class delivers them all,
one at a time. (To keep the example simple, we ignore integer overflow—see
Exercise 6.)

The implements keyword indicates that the SquareSequence class intends to conform
to the IntSequence interface.

CAUTION: The implementing class must declare the methods of the
interface as public. Otherwise, they would default to package access.
Since the interface requires public access, the compiler would report an
errof.

This code gets the average of the first 100 squares:

SquareSequence squares = new SquareSequence();
double avg = average(squares, 100);

There are many classes that can implement the IntSequence interface. For exam-
ple, this class yields a finite sequence, namely the digits of a positive integer
starting with the least significant one:

public class DigitSequence implements IntSequence {
private int number;

public DigitSequence(int n) {
number = n;

}

public boolean hasNext() {
return number != 0;

}

public int next() {
int result = number % 10;
number /= 10;
return result;

}

public int rest() {
return number;
}



3.1 m Interfaces

An object new DigitSequence(1729) delivers the digits 9 2 7 1 before hasNext returns
false.

EI NOTE: The SquareSequence and DigitSequence classes implement all methods
of the IntSequence interface. If a class only implements some of the
methods, then it must be declared with the abstract modifier. See
Chapter 4 for more information on abstract classes.

3.1.3 Converting to an Interface Type

This code fragment computes the average of the digit sequence values:

IntSequence digits = new DigitSequence(1729);
double avg = average(digits, 100);
// Will only look at the first four sequence values
Look at the digits variable. Its type is IntSequence, not DigitSequence. A variable
of type IntSequence refers to an object of some class that implements the
IntSequence interface. You can always assign an object to a variable whose type
is an implemented interface, or pass it to a method expecting such an interface.

Here is a bit of useful terminology. A type S is a supertype of the type T (the
subtype) when any value of the subtype can be assigned to a variable of
the supertype without a conversion. For example, the IntSequence interface is
a supertype of the DigitSequence class.

NOTE: Even though it is possible to declare variables of an interface
type, you can never have an object whose type is an interface. All objects
are instances of classes.

3.1.4 Casts and the instanceof Operator

Occasionally, you need the opposite conversion—from a supertype to a sub-
type. Then you use a cast. For example, if you happen to know that the object
stored in an IntSequence is actually a DigitSequence, you can convert the type
like this:

IntSequence sequence = ...;

DigitSequence digits = (DigitSequence) sequence;

System.out.printin(digits.rest());
In this scenario, the cast was necessary because rest is a method of digitSequence
but not IntSequence.



Chapter 3 m Interfaces and Lambda Expressions

See Exercise 2 for a more compelling example.
You can only cast an object to its actual class or one of its supertypes. If you
are wrong, a compile-time error or class cast exception will occur:

String digitString = (String) sequence;

// Cannot possibly work—IntSequence is not a supertype of String
RandomSequence randoms = (RandomSequence) sequence;

// Could work, throws a class cast exception if not

To avoid the exception, you can first test whether the object is of the desired
type, using the instanceof operator. The expression

object instanceof Type

returns true if object is an instance of a class that has Type as a supertype. It
is a good idea to make this check before using a cast.

if (sequence instanceof DigitSequence) {
DigitSequence digits = (DigitSequence) sequence;

NOTE: The instanceof operator is null-safe: The expression obj instanceof
Type is false if obj is null. After all, null cannot possibly be a reference
to an object of any given type.

3.1.5 Extending Interfaces

An interface can extend another, requiring or providing additional methods
on top of the original ones. For example, Closeable is an interface with a single
method:

public interface Closeable {
void close();

}

As you will see in Chapter 5, this is an important interface for closing
resources when an exception occurs.

The channel interface extends this interface:

public interface Channel extends Closeable {
boolean isOpen();
}

A class that implements the Channel interface must provide both methods, and
its objects can be converted to both interface types.



3.2 W Static, Default, and Private Methods

3.1.6 Implementing Multiple Interfaces

A class can implement any number of interfaces. For example, a FileSequence
class that reads integers from a file can implement the Closeable interface in
addition to IntSequence:

public class FileSequence implements IntSequence, Closeable {

}
Then the FileSequence class has both IntSequence and Closeable as supertypes.

3.1.7 Constants

Any variable defined in an interface is automatically public static final.

For example, the SwingConstants interface defines constants for compass
directions:
public interface SwingConstants {
int NORTH = 1;
int NORTH_EAST = 2;
int EAST = 3;

}

You can refer to them by their qualified name, SwingConstants.NORTH. If your class
chooses to implement the SwingConstants interface, you can drop the SwingConstants
qualifier and simply write NORTH. However, this is not a common idiom. It is
far better to use enumerations for a set of constants; see Chapter 4.

NOTE: You cannot have instance variables in an interface. An interface
specifies behavior, not object state.

3.2 Static, Default, and Private Methods

In earlier versions of Java, all methods of an interface had to be abstract—that
is, without a body. Nowadays you can add three kinds of methods with a
concrete implementation: static, default, and private methods. The following
sections describe these methods.

3.2.1 Static Methods

There was never a technical reason why an interface could not have static
methods, but they did not fit into the view of interfaces as abstract



Chapter 3 m Interfaces and Lambda Expressions

specifications. That thinking has now evolved. In particular, factory methods
make a lot of sense in interfaces. For example, the IntSequence interface can
have a static method digitsof that generates a sequence of digits of a given
integer:

IntSequence digits = IntSequence.digits0f(1729);
The method yields an instance of some class implementing the IntSequence
interface, but the caller need not care which one it is.

public interface IntSequence {

static IntSequence digitsOf(int n) {
return new DigitSequence(n);
}

NOTE: In the past, it had been common to place static methods in a
companion class. You find pairs of interfaces and utility classes, such
as Collection/Collections or Path/Paths, in the Java API. This split is no
longer necessary.

3.2.2 Default Methods

You can supply a default implementation for any interface method. You must
tag such a method with the default modifier.
public interface IntSequence {
default boolean hasNext() { return true; }
// By default, sequences are infinite
int next();
}
A class implementing this interface can choose to override the hasNext method
or to inherit the default implementation.

D NOTE: Default methods put an end to the classic pattern of providing
an interface and a companion class that implements most or all of
its methods, such as Collection/AbstractCollection or WindowListener/
WindowAdapter in the Java API. Nowadays you should just implement the
methods in the interface.

An important use for default methods is interface evolution. Consider for exam-
ple the Collection interface that has been a part of Java for many years. Suppose
that way back when, you provided a class



3.2 W Static, Default, and Private Methods

public class Bag implements Collection
Later, in Java 8, a stream method was added to the interface.

Suppose the strean method was not a default method. Then the Bag class no
longer compiles since it doesn’t implement the new method. Adding a
nondefault method to an interface is not source-compatible.

But suppose you don't recompile the class and simply use an old JAR file
containing it. The class will still load, even with the missing method. Programs
can still construct Bag instances, and nothing bad will happen. (Adding a
method to an interface is binary-compatible.) However, if a program calls the
strean method on a Bag instance, an AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will

again compile. And if the class is loaded without being recompiled and the
stream method is invoked on a Bag instance, the Collection.stream method is called.

3.2.3 Resolving Default Method Conflicts

If a class implements two interfaces, one of which has a default method and
the other a method (default or not) with the same name and parameter
types, then you must resolve the conflict. This doesn’t happen very often,
and it is usually easy to deal with the situation.

Let's look at an example. Suppose we have an interface Person with a getId
method:

public interface Person {

String getName();

default int getId() { return 0; }
}

And suppose there is an interface Identified, also with such a method.

public interface Identified {
default int getId() { return Math.abs(hashCode()); }
}

You will see what the hashCode method does in Chapter 4. For now, all that
matters is that it returns some integer that is derived from the object.

What happens if you form a class that implements both of them?

public class Employee implements Person, Identified {

}

The class inherits two getId methods provided by the Person and Identified in-
terfaces. There is no way for the Java compiler to choose one over the other.
The compiler reports an error and leaves it up to you to resolve the ambiguity.

107



m Chapter 3 m Interfaces and Lambda Expressions

Provide a getld method in the Employee class and either implement your own
ID scheme, or delegate to one of the conflicting methods, like this:

public class Employee implements Person, Identified {
public int getId() { return Identified.super.getId(); }

D NOTE: The super keyword lets you call a supertype method. In this case,

we need to specify which supertype we want. The syntax may seem a
bit odd, but it is consistent with the syntax for invoking a superclass
method that you will see in Chapter 4.

Now assume that the Identified interface does not provide a default
implementation for getId:

interface Identified {
int getId();

Can the Employee class inherit the default method from the Person interface? At
first glance, this might seem reasonable. But how does the compiler know
whether the Person.getIld method actually does what Identified.getId is expected
to do? After all, it might return the level of the person’s Freudian id, not an
ID number.

The Java designers decided in favor of safety and uniformity. It doesn’t matter
how two interfaces conflict; if at least one interface provides an implementa-
tion, the compiler reports an error, and it is up to the programmer to resolve
the ambiguity.

NOTE: If neither interface provides a default for a shared method, then
there is no conflict. An implementing class has two choices: implement
the method, or leave it unimplemented and declare the class as abstract.

NOTE: If a class extends a superclass (see Chapter 4) and implements

EI an interface, inheriting the same method from both, the rules are easier.
In that case, only the superclass method matters, and any default method
from the interface is simply ignored. This is actually a more common
case than conflicting interfaces. See Chapter 4 for the details.




3.3 m Examples of Interfaces

3.2.4 Private Methods

As of Java 9, methods in an interface can be private. A private method can
be static or an instance method, but it cannot be a default method since that
can be overridden. As private methods can only be used in the methods of
the interface itself, their use is limited to being helper methods for the other
methods of the interface.

For example, suppose the IntSequence class provides methods

static of(int a)
static of(int a, int b)
static of(int a, int b, int c)

Then each of these methods could call a helper method

private static IntSequence makeFiniteSequence(int... values) { ... }

3.3 Examples of Interfaces

At first glance, interfaces don't seem to do very much. An interface is just a
set of methods that a class promises to implement. To make the importance
of interfaces more tangible, the following sections show you four examples
of commonly used interfaces from the Java APIL

3.3.1 The Comparable Interface

Suppose you want to sort an array of objects. A sorting algorithm repeatedly
compares elements and rearranges them if they are out of order. Of course,
the rules for doing the comparison are different for each class, and the sorting
algorithm should just call a method supplied by the class. As long as all
classes can agree on what that method is called, the sorting algorithm can
do its job. That is where interfaces come in.

If a class wants to enable sorting for its objects, it should implement the
Comparable interface. There is a technical point about this interface. We want
to compare strings against strings, employees against employees, and so on.
For that reason, the Comparable interface has a type parameter.

public interface Comparable<T> {
int compareTo(T other);
}

For example, the String class implements Comparable<String> so that its compareTo
method has the signature

int compareTo(String other)



Chapter 3 m Interfaces and Lambda Expressions

NOTE: A type with a type parameter such as Comparable or Arraylist is
a generic type. You will learn all about generic types in Chapter 6.

When calling x.compareTo(y), the compareTo method returns an integer value to
indicate whether x or y should come first. A positive return value (not neces-
sarily 1) indicates that x should come after y. A negative integer (not necessar-
ily -1) is returned when x should come before y. If x and y are considered
equal, the returned value is o.

Note that the return value can be any integer. That flexibility is useful because
it allows you to return a difference of integers. That is handy, provided the
difference cannot produce integer overflow.

public class Employee implements Comparable<Employee> {

public int compareTo(Employee other) {
return getId() - other.getId(); // Ok if IDs always > O
}

CAUTION: Returning a difference of integers does not always work. The
difference can overflow for large operands of opposite sign. In that case,
use the Integer.compare method that works correctly for all integers.
However, if you know that the integers are non-negative, or their absolute
value is less than Integer.MAX_VALUE / 2, then the difference works fine.

When comparing floating-point values, you cannot just return the difference.
Instead, use the static Double.compare method. It does the right thing, even for
+oo and NaN.

Here is how the Employee class can implement the Comparable interface, ordering
employees by salary:
public class Employee implements Comparable<Employee> {

public int compareTo(Employee other) {
return Double.compare(salary, other.salary);
}

EI NOTE: It is perfectly legal for the compare method to access other.salary.
In Java, a method can access private features of any object of its class.




3.3 m Examples of Interfaces

The string class, as well as over a hundred other classes in the Java library,
implements the Comparable interface. You can use the Arrays.sort method to sort
an array of Comparable objects:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends); // friends is now ["Mary", "Paul", "Peter"]

EI NOTE: Strangely, the Arrays.sort method does not check at compile time
whether the argument is an array of Comparable objects. Instead, it throws
an exception if it encounters an element of a class that doesn’t implement

the Comparable interface.

3.3.2 The Comparator Interface

Now suppose we want to sort strings by increasing length, not in dictionary
order. We can't have the String class implement the compareTo method in two
ways—and at any rate, the String class isn't ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method
whose parameters are an array and a comparator—an instance of a class that
implements the Comparator interface.
public interface Comparator<T> {
int compare(T first, T second);

}

To compare strings by length, define a class that implements Comparator<string>:

class LengthComparator implements Comparator<String> {
public int compare(String first, String second) {
return first.length() - second.length();
}
}

To actually do the comparison, you need to make an instance:

Comparator<String> comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) ...

Contrast this call with words[i].compareTo(words[j]). The compare method is called
on the comparator object, not the string itself.

NOTE: Even though the LengthComparator object has no state, you still
need to make an instance of it. You need the instance to call the compare
method—it is not a static method.




Chapter 3 m Interfaces and Lambda Expressions

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul’, "Peter"].

You will see in Section 3.4.2, “Functional Interfaces” (page 115) how to use a
Comparator much more easily, using a lambda expression.

3.3.3 The Runnable Interface

At a time when just about every processor has multiple cores, you want to
keep those cores busy. You may want to run certain tasks in a separate thread,
or give them to a thread pool for execution. To define the task, you implement
the Runnable interface. This interface has just one method.
class HelloTask implements Runnable {
public void run() {
for (int i = 0; i < 1000; i++) {
} System.out.printlin("Hello, World!");

}

If you want to execute this task in a new thread, create the thread from the
Runnable and start it.
Runnable task

Thread thread
thread.start();

new HelloTask();
new Thread(task);

Now the run method executes in a separate thread, and the current thread
can proceed with other work.

D NOTE: In Chapter 10, you will see other ways of executing a Runnable.

NOTE: There is also a Callable<T> interface for tasks that return a result
of type T.

3.3.4 User Interface Callbacks

In a graphical user interface, you have to specify actions to be carried out
when the user clicks a button, selects a menu option, drags a slider, and so
on. These actions are often called callbacks because some code gets called
back when a user action occurs.



3.4 m Lamhda Expressions

In Java-based GUI libraries, interfaces are used for callbacks. For example, in
JavaFX, the following interface is used for reporting events:

public interface EventHandler<T> {
void handle(T event);
}

This too is a generic interface where T is the type of event that is being
reported, such as an Actiontvent for a button click.

To specify the action, implement the interface:

class CancelAction implements EventHandler<ActionEvent> {
public void handle(ActionEvent event) {
System.out.println("0h noes!");
}

}
Then, make an object of that class and add it to the button:

Button cancelButton = new Button("Cancel");
cancelButton.setOnAction(new CancelAction());

NOTE: Since Oracle positions JavaFX as the successor to the Swing
GUI toolkit, | use JavaFX in these examples. (Don’t worry—you need
not know any more about JavaFX than the couple of statements you
just saw.) The details don’t matter; in every user interface toolkit, be it
Swing, JavaFX, or Android, you give a button some code that you want
to run when the button is clicked.

Of course, this way of defining a button action is rather tedious. In other
languages, you just give the button a function to execute, without going
through the detour of making a class and instantiating it. The next section
shows how you can do the same in Java.

3.4 Lambda Expressions

A lambda expression is a block of code that you can pass around so it can be
executed later, once or multiple times. In the preceding sections, you have
seen many situations where it is useful to specify such a block of code:

e To pass a comparison method to Arrays.sort
e To run a task in a separate thread

* To specify an action that should happen when a button is clicked



Chapter 3 m Interfaces and Lambda Expressions

However, Java is an object-oriented language where (just about) everything
is an object. There are no function types in Java. Instead, functions are ex-
pressed as objects, instances of classes that implement a particular interface.
Lambda expressions give you a convenient syntax for creating such instances.

3.4.1 The Syntax of Lambda Expressions

Consider again the sorting example from Section 3.3.2,“The Comparator Interface”
(page 111). We pass code that checks whether one string is shorter than
another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed
language, and we must specify that as well:

(String first, String second) -> first.length() - second.length()

You have just seen your first lambda expression. Such an expression is simply
a block of code, together with the specification of any variables that must be
passed to the code.

Why the name? Many years ago, before there were any computers, the logician
Alonzo Church wanted to formalize what it means for a mathematical function
to be effectively computable. (Curiously, there are functions that are known to
exist, but nobody knows how to compute their values.) He used the Greek
letter lambda (L) to mark parameters, somewhat like

Afirst. Asecond. first.length() - second.length()

NOTE: Why the letter A? Did Church run out of letters of the
alphabet? Actually, the venerable Principia Mathematica (see
http://plato.stanford.edu/entries/principia-mathematica) used the A accent
to denote function parameters, which inspired Church to use an
uppercase lambda A. But in the end, he switched to the lowercase
version. Ever since, an expression with parameter variables has been
called a lambda expression.

If the body of a lambda expression carries out a computation that doesn't fit
in a single expression, write it exactly like you would have written a method:
enclosed in {} and with explicit return statements. For example,


http://plato.stanford.edu/entries/principia-mathematica

3.4 m Lamhda Expressions n

(String first, String second) -> {
int difference = first.length() < second.length();
if (difference < 0) return -1;
else if (difference > 0) return 1;
else return 0;

}

If a lambda expression has no parameters, supply empty parentheses, just as
with a parameterless method:

Runnable task = () -> { for (int 1 = 0; 1 < 1000; i++) doWork(); }

If the parameter types of a lambda expression can be inferred, you can omit
them. For example,
Comparator<String> comp

= (first, second) -> first.length() - second.length();
// Same as (String first, String second)

Here, the compiler can deduce that first and second must be strings because
the lambda expression is assigned to a string comparator. (We will have a
closer look at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the
parentheses:
EventHandler<ActionEvent> listener = event ->
System.out.println("0h noes!");
// Instead of (event) -> or (ActionEvent event) ->

You never specify the result type of a lambda expression. However, the
compiler infers it from the body and checks that it matches the expected type.
For example, the expression

(String first, String second) -> first.length() - second.length()

can be used in a context where a result of type int is expected (or a
compatible type such as Integer, long, or double).

3.4.2 Functional Interfaces

As you already saw, there are many interfaces in Java that express actions,
such as Runnable or Comparator. Lambda expressions are compatible with these
interfaces.

You can supply a lambda expression whenever an object of an interface with
a single abstract method is expected. Such an interface is called a functional
interface.



Chapter 3 m Interfaces and Lambda Expressions

To demonstrate the conversion to a functional interface, consider the Arrays.sort
method. Its second parameter requires an instance of Comparator, an interface
with a single method. Simply supply a lambda:
Arrays.sort(words,

(first, second) -> first.length() - second.length());
Behind the scenes, the second parameter variable of the Arrays.sort
method receives an object of some class that implements Comparator<String>.
Invoking the compare method on that object executes the body of the lambda
expression. The management of these objects and classes is completely
implementation-dependent and highly optimized.

In most programming languages that support function literals, you can declare
function types such as (String, String) -> int, declare variables of those types,
put functions into those variables, and invoke them. In Java, there is only one
thing you can do with a lambda expression: put it in a variable whose type
is a functional interface, so that it is converted to an instance of that interface.

NOTE: You cannot assign a lambda expression to a variable of type
Object, the common supertype of all classes in Java (see Chapter 4).
Object is a class, not a functional interface.

The Java API provides a large number of functional interfaces (see
Section 3.6.2, “Choosing a Functional Interface,” page 120). One of them is
public interface Predicate<T> {
boolean test(T t);

// Additional default and static methods
}

The ArrayList class has a removeIf method whose parameter is a Predicate. It is
specifically designed for receiving a lambda expression. For example, the
following statement removes all null values from an array list:

list.removeIf(e -> e == null);

3.5 Method and Constructor References

Sometimes, there is already a method that carries out exactly the action that
you'd like to pass on to some other code. There is special syntax for a method
reference that is even shorter than a lambda expression calling the method. A
similar shortcut exists for constructors. You will see both in the following
sections.



3.5 m Method and Constructor References

3.5.1 Method References

Suppose you want to sort strings regardless of letter case. You could call
Arrays.sort(strings, (x, y) -> x.compareToIgnoreCase(y));

Instead, you can pass this method expression:
Arrays.sort(strings, String::compareToIgnoreCase);

The expression String::compareToIgnoreCase is a method reference that is equivalent
to the lambda expression (x, y) -> x.compareToIgnoreCase(y).

Here is another example. The Objects class defines a method ishull. The call
Objects.isNull(x) simply returns the value of x == null. It seems hardly worth
having a method for this case, but it was designed to be passed as a method
expression. The call

list.removeIf(Objects::isNull);
removes all null values from a list.

As another example, suppose you want to print all elements of a list. The
Arraylist class has a method fortach that applies a function to each element.
You could call

list.forEach(x -> System.out.println(x));

It would be nicer, however, if you could just pass the println method to the
fortach method. Here is how to do that:

list.forEach(System.out::println);

As you can see from these examples, the :: operator separates the method
name from the name of a class or object. There are three variations:

1. Class::instanceMethod
2. Class::staticMethod
3. object: :instanceMethod

In the first case, the first parameter becomes the receiver of the method,
and any other parameters are passed to the method. For example,
String::compareToIgnoreCase is the same as (x, y) -> x.compareToIgnoreCase(y).

In the second case, all parameters are passed to the static method. The method
expression Objects::isNull is equivalent to x -> Objects.isNull(x).

In the third case, the method is invoked on the given object, and the
parameters are passed to the instance method. Therefore, System.out::println is
equivalent to x -> System.out.println(x).

117



m Chapter 3 m Interfaces and Lambda Expressions

D NOTE: When there are multiple overloaded methods with the same
name, the compiler will try to find from the context which one you mean.
For example, there are multiple versions of the println method. When
passed to the forfach method of an ArrayList<String>, the println(String)
method is picked.

You can capture the this parameter in a method reference. For example,
this::equals is the same as x -> this.equals(x).

NOTE: In an inner class, you can capture the this reference of an
enclosing class as EnclosingClass.this::method. You can also capture
super—see Chapter 4.

3.5.2 Constructor References

Constructor references are just like method references, except that the name
of the method is new. For example, Employee::new is a reference to an Employee
constructor. If the class has more than one constructor, then it depends on
the context which constructor is chosen.

Here is an example for using such a constructor reference. Suppose you have
a list of strings

List<String> names = ...;

You want a list of employees, one for each name. As you will see in
Chapter 8, you can use streams to do this without a loop: Turn the list into
a stream, and then call the map method. It applies a function and collects all
results.

Stream<Employee> stream = names.stream().map(Employee: :new);

Since names.strean() contains String objects, the compiler knows that Employee: :new
refers to the constructor Employee(String).

You can form constructor references with array types. For example, int[]::new
is a constructor reference with one parameter: the length of the array. It is
equivalent to the lambda expression n -> new int[n].

Array constructor references are useful to overcome a limitation of Java: It is
not possible to construct an array of a generic type. (See Chapter 6 for details.)
For that reason, methods such as Stream.toArray return an Object array, not an
array of the element type:

Object[] employees = stream.toArray();



3.6 W Processing Lambda Expressions

But that is unsatisfactory. The user wants an array of employees, not objects.
To solve this problem, another version of toArray accepts a constructor
reference:

Employee[] buttons = stream.toArray(Employee[]::new);

The toArray method invokes this constructor to obtain an array of the correct
type. Then it fills and returns the array.

3.6 Processing Lambda Expressions

Up to now, you have seen how to produce lambda expressions and pass
them to a method that expects a functional interface. In the following sections,
you will see how to write your own methods that can consume lambda
expressions.

3.6.1 Implementing Deferred Execution

The point of using lambdas is deferred execution. After all, if you wanted to
execute some code right now, you'd do that, without wrapping it inside a
lambda. There are many reasons for executing code later, such as:

* Running the code in a separate thread
¢ Running the code multiple times

* Running the code at the right point in an algorithm (for example, the
comparison operation in sorting)

* Running the code when something happens (a button was clicked, data
has arrived, and so on)

* Running the code only when necessary

Let’s look at a simple example. Suppose you want to repeat an action n times.
The action and the count are passed to a repeat method:

repeat(10, () -> System.out.println("Hello, World!"));
To accept the lambda, we need to pick (or, in rare cases, provide) a functional
interface. In this case, we can just use Runnable:

public static void repeat(int n, Runnable action) {
for (int i = 0; i < n; i++) action.run();
}

Note that the body of the lambda expression is executed when action.run() is
called.



Chapter 3 m Interfaces and Lambda Expressions

Now let's make this example a bit more sophisticated. We want to tell the
action in which iteration it occurs. For that, we need to pick a functional in-
terface that has a method with an int parameter and a void return. Instead of
rolling your own, I strongly recommend that you use one of the standard
ones described in the next section. The standard interface for processing int
values is

public interface IntConsumer {
void accept(int value);
}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action) {
for (int i = 0; 1 < n; i++) action.accept(i);
}

And here is how you call it:

repeat(10, i -> System.out.println("Countdown: " + (9 - 1)));

3.6.2 Choosing a Functional Interface

In most functional programming languages, function types are structural. To
specify a function that maps two strings to an integer, you use a type that
looks something like Function2<String, String, Integer> or (String, String) -> int. In
Java, you instead declare the intent of the function using a functional interface
such as Comparator<String>. In the theory of programming languages this is called
nominal typing.

Of course, there are many situations where you want to accept “any function”
without particular semantics. There are a number of generic function types
for that purpose (see Table 3-1), and it's a very good idea to use one of them
when you can.

For example, suppose you write a method to process files that match a
certain criterion. Should you use the descriptive java.io.FileFilter class or a
Predicate<File>? I strongly recommend that you use the standard Predicate<File>.
The only reason not to do so would be if you already have many useful
methods producing FileFilter instances.


http://java.io

3.6 W Processing Lambda Expressions n

Table 3-1 Common Functional Interfaces

Functional Parameter Return Abstract Description Other
Interface types type method methods
name
Runnable none void run Runs an action
without

arguments or
return value

Supplier<T> none T get Supplies a value
of type T
Consumer<T> T void accept Consumes a andThen

value of type T

BiConsumer<T, U> T, U void accept Consumes values andThen
of types T and U

Function<T, R> T R apply A function with compose,
argument of andThen,
type T identity

BiFunction<T, U, R> T, U R apply A function with andThen
arguments of
types T and U

UnaryOperator<T> T T apply A unary operator compose,
on the type T andThen,

identity

BinaryOperator<T> T, T T apply A binary operator andThen,
on the type T maxBy,

minBy

Predicate<T> T boolean test A boolean-valued and, or,
function negate,

isEqual

BiPredicate<T, U> T, U boolean test A boolean-valued and, or,

function with two negate
arguments




m Chapter 3 m Interfaces and Lambda Expressions

NOTE: Most of the standard functional interfaces have nonabstract
methods for producing or combining functions. For example,
Predicate.isEqual(a) is the same as a::equals, but it also works if a is null.
There are default methods and, or, negate for combining predicates. For

example,

Predicate.isEqual(a).or(Predicate.isEqual(b))

is the same as

x -> a.equals(x) || b.equals(x)

Table 3-2 lists the 34 available specializations for primitive types int, long, and
double. It is a good idea to use these specializations to reduce autoboxing. For
that reason, I used an IntConsumer instead of a Consumer<Integer> in the example

of the preceding section.

Table 3-2 Functional Interfaces for Primitive Types

p, q is int, long, double; P, Q is Int, Long, Double

Functional Interface Parameter Return type Abstract method name
types
BooleanSupplier none boolean getAsBoolean
PSupplier none 4 getAsP
PConsumer p void accept
ObjPConsumer<T> T p void accept
PFunction<T> p T apply
PToQFunction 4 q applyAsQ
ToPFunction<T> T 4 applyAsP
ToPBiFunction<T, U> T, U 4 applyAsP
PUnaryOperator 4 4 applyAsP
PBinaryOperator vy 4 applyAsP
PpPredicate P boolean test




3.6 W Processing Lambda Expressions

3.6.3 Implementing Your Own Functional Interfaces

Ever so often, you will be in a situation where none of the standard functional
interfaces work for you. Then you need to roll your own.

Suppose you want to fill an image with color patterns, where the user supplies
a function yielding the color for each pixel. There is no standard type for a
mapping (int, int) -> Color. You could use BiFunction<Integer, Integer, Color>, but
that involves autoboxing.

In this case, it makes sense to define a new interface

@Functionallnterface
public interface PixelFunction {
Color apply(int x, int y);

NOTE: It is a good idea to tag functional interfaces with the
@FunctionalInterface annotation. This has two advantages. First, the
compiler checks that the annotated entity is an interface with a single
abstract method. Second, the javadoc page includes a statement that
your interface is a functional interface.

Now you are ready to implement a method:

BufferedImage createImage(int width, int height, PixelFunction f) {
BufferedImage image = new BufferedImage(width, height,
BufferedImage.TYPE_INT_RGB);

for (int x = 0; x < width; x++)
for (int y = 0; y < height; y++) {
Color color = f.apply(x, y);
image.setRGB(x, y, color.getRGB());
}
return image;

}

To call it, supply a lambda expression that yields a color value for two
integers:

BufferedImage frenchFlag = createImage(150, 100,
(x, y) -> x <50 ? Color.BLUE : x < 100 ? Color.WHITE : Color.RED);



Chapter 3 m Interfaces and Lambda Expressions

3.7 Lambda Expressions and Variable Scope

In the following sections, you will learn how variables work inside lambda
expressions. This information is somewhat technical but essential for working
with lambda expressions.

3.7.1 Scope of a Lamhda Expression

The body of a lambda expression has the same scope as a nested block. The
same rules for name conflicts and shadowing apply. It is illegal to declare a
parameter or a local variable in the lambda that has the same name as a local
variable.
int first = 0;
Comparator<String> comp = (first, second) -> first.length() - second.length();
// Error: Variable first already defined

Inside a method, you can't have two local variables with the same name,
therefore you can't introduce such variables in a lambda expression either.

As another consequence of the “same scope” rule, the this keyword in a
lambda expression denotes the this parameter of the method that creates
the lambda. For example, consider

public class Application() {

public void doWork() {
Runnable runner = () -> { ...; System.out.println(this.toString()); ... };

}

The expression this.toString() calls the tostring method of the Application object,
not the Runnable instance. There is nothing special about the use of this in a
lambda expression. The scope of the lambda expression is nested inside the
doWork method, and this has the same meaning anywhere in that method.

3.7.2 Accessing Variables from the Enclosing Scope

Often, you want to access variables from an enclosing method or class in a
lambda expression. Consider this example:

public static void repeatMessage(String text, int count) {
Runnable r = () -> {
for (int i = 0; 1 < count; i++) {
System.out.printin(text);
}

b
new Thread(r).start();

}



3.7 m Lambda Expressions and Variahle Scope

Note that the lambda expression accesses the parameter variables defined in
the enclosing scope, not in the lambda expression itself.

Consider a call

repeatMessage("Hello", 1000); // Prints Hello 1000 times in a separate thread

Now look at the variables count and text inside the lambda expression. If you
think about it, something nonobvious is going on here. The code of the
lambda expression may run long after the call to repeatMessage has returned
and the parameter variables are gone. How do the text and count variables
stay around when the lambda expression is ready to execute?

To understand what is happening, we need to refine our understanding of a
lambda expression. A lambda expression has three ingredients:

1. A block of code
2. Parameters

3. Values for the free variables—that is, the variables that are not parameters
and not defined inside the code

In our example, the lambda expression has two free variables, text and count.
The data structure representing the lambda expression must store the values
for these variables—in our case, "Hello" and 1000. We say that these values
have been captured by the lambda expression. (It's an implementation detail
how that is done. For example, one can translate a lambda expression into
an object with a single method, so that the values of the free variables are
copied into instance variables of that object.)

NOTE: The technical term for a block of code together with the values
of free variables is a closure. In Java, lambda expressions are closures.

As you have seen, a lambda expression can capture the value of a variable
in the enclosing scope. To ensure that the captured value is well defined,
there is an important restriction. In a lambda expression, you can only refer-
ence variables whose value doesn’t change. This is sometimes described by
saying that lambda expressions capture values, not variables. For example,
the following is a compile-time error:
for (int i = 0; 1 < nj i++) {
new Thread(() -> System.out.println(i)).start();
// Error—cannot capture i

}

The lambda expression tries to capture i, but this is not legal because i
changes. There is no single value to capture. The rule is that a lambda



Chapter 3 m Interfaces and Lambda Expressions

expression can only access local variables from an enclosing scope that are
effectively final. An effectively final variable is never modified—it either is or
could be declared as final.

NOTE: The same rule applies to variables captured by local classes (see
Section 3.9, “Local and Anonymous Classes,” page 129). In the past, the
rule was more draconian and required captured variables to actually be
declared final. This is no longer the case.

D NOTE: The variable of an enhanced for loop is effectively final since its
scope is a single iteration. The following is perfectly legal:
for (String arg : args) {
new Thread(() -> System.out.println(arg)).start();

// OK to capture arg
}

A new variable arg is created in each iteration and assigned the next
value from the args array. In contrast, the scope of the variable i in the
preceding example was the entire loop.

As a consequence of the “effectively final” rule, a lambda expression cannot
mutate any captured variables. For example,

public static void repeatMessage(String text, int count, int threads) {
Runnable r = () -> {
while (count > 0) {
count--; // Error: Can’t mutate captured variable
System.out.printin(text);
}
H
for (int i = 0; i < threads; i++) new Thread(r).start();

}

This is actually a good thing. As you will see in Chapter 10, if two threads
update count at the same time, its value is undefined.

D NOTE: Don’t count on the compiler to catch all concurrent access errors.

The prohibition against mutation only holds for local variables. If count
is an instance variable or static variable of an enclosing class, then no
error is reported even though the result is just as undefined.




3.8 W Higher-Order Functions

CAUTION: One can circumvent the check for inappropriate mutations
by using an array of length 1:

int[] counter = new int[1];
button.setOnAction(event -> counter[0]++);

The counter variable is effectively final—it is never changed since it always
refers to the same array, so you can access it in the lambda expression.

Of course, code like this is not threadsafe. Except possibly for a callback
in a single-threaded UI, this is a terrible idea. You will see how to
implement a threadsafe shared counter in Chapter 10.

3.8 Higher-Order Functions

In a functional programming language, functions are first-class citizens. Just
like you can pass numbers to methods and have methods that produce
numbers, you can have arguments and return values that are functions.
Functions that process or return functions are called higher-order functions. This
sounds abstract, but it is very useful in practice. Java is not quite a functional
language because it uses functional interfaces, but the principle is the same.
In the following sections, we will look at some examples and examine the
higher-order functions in the Comparator interface.

3.8.1 Methods that Return Functions

Suppose sometimes we want to sort an array of strings in ascending order
and other times in descending order. We can make a method that produces
the correct comparator:

public static Comparator<String> compareInDirecton(int direction) {
return (x, y) -> direction * x.compareTo(y);
}

The call compareIndirection(1) yields an ascending comparator, and the call
compareInDirection(-1) a descending comparator.

The result can be passed to another method (such as Arrays.sort) that expects
such an interface.

Arrays.sort(friends, compareInDirection(-1));
In general, don't be shy to write methods that produce functions (or, techni-
cally, instances of classes that implement a functional interface). This is useful

to generate custom functions that you pass to methods with functional
interfaces.

127



Chapter 3 m Interfaces and Lambda Expressions

3.8.2 Methods That Modify Functions

In the preceding section, you saw a method that yields an increasing or de-
creasing string comparator. We can generalize this idea by reversing any
comparator:

public static Comparator<String> reverse(Comparator<String> comp) {
return (x, y) -> comp.compare(y, x);
}

This method operates on functions. It receives a function and returns a
modified function. To get case-insensitive descending order, use

reverse(String::compareToIgnoreCase)

NOTE: The Comparator interface has a default method reversed that
produces the reverse of a given comparator in just this way.

3.8.3 Comparator Methods

The Comparator interface has a number of useful static methods that are
higher-order functions generating comparators.

The comparing method takes a “key extractor” function that maps a type T to a
comparable type (such as string). The function is applied to the objects to
be compared, and the comparison is then made on the returned keys. For
example, suppose a Person class has a method getLastName. Then you can sort
an array of Person objects by last name like this:

Arrays.sort(people, Comparator.comparing(Person::getLastName));

You can chain comparators with the thenComparing method to break ties. For
example, sort an array of people by last name, then use the first name
for people with the same last name:
Arrays.sort(people, Comparator
.comparing(Person: :getLastName)
.thenComparing(Person: :getFirstName));
There are a few variations of these methods. You can specify a comparator
to be used for the keys that the comparing and thenComparing methods extract. For
example, here we sort people by the length of their names:
Arrays.sort(people, Comparator.comparing(Person::getlLastName,
(s, t) -> s.length() - t.length()));
Moreover, both the comparing and thenComparing methods have variants that avoid
boxing of int, long, or double values. An easier way of sorting by name length
would be



3.9 m Local and Anonymous Classes

Arrays.sort(people, Comparator.comparingInt(p -> p.getLastName().length()));

If your key function can return null, you will like the nullsFirst and nullsLast
adapters. These static methods take an existing comparator and modify it so
that it doesn’t throw an exception when encountering null values but ranks
them as smaller or larger than regular values. For example, suppose getMiddleName
returns a null when a person has no middle name. Then you can use
Comparator.comparing(Person: :getMiddleName(), Comparator.nullsFirst(...)).

The nullsFirst method needs a comparator—in this case, one that compares
two strings. The naturalorder method makes a comparator for any class imple-
menting Comparable. Here is the complete call for sorting by potentially null
middle names. I use a static import of java.util.Comparator.» to make the
expression more legible. Note that the type for naturalOrder is inferred.

Arrays.sort(people, comparing(Person::getMiddleName,
nullsFirst(naturalOrder())));

The static reverseorder method gives the reverse of the natural order.

3.9 Local and Anonymous Classes

Long before there were lambda expressions, Java had a mechanism for con-
cisely defining classes that implement an interface (functional or not). For
functional interfaces, you should definitely use lambda expressions, but once
in a while, you may want a concise form for an interface that isn't functional.
You will also encounter the classic constructs in legacy code.

3.9.1 Local Classes

You can define a class inside a method. Such a class is called a local class.
You would do this for classes that are just tactical. This occurs often when
a class implements an interface and the caller of the method only cares about
the interface, not the class.

For example, consider a method

public static IntSequence randomInts(int low, int high)
that generates an infinite sequence of random integers with the given bounds.

Since IntSequence is an interface, the method must return an object of some
class implementing that interface. The caller doesn’t care about the class, so
it can be declared inside the method:



m Chapter 3 m Interfaces and Lambda Expressions

private static Random generator = new Random();

public static IntSequence randomInts(int low, int high) {
class RandomSequence implements IntSequence {
public int next() { return low + generator.nextInt(high - low + 1); }
public boolean hasNext() { return true; }

}

return new RandomSequence();

NOTE: A local class is not declared as public or private since it is never
accessible outside the method.

There are two advantages of making a class local. First, its name is hidden
in the scope of the method. Second, the methods of the class can access
variables from the enclosing scope, just like the variables of a lambda
expression.

In our example, the next method captures three variables: low, high, and generator.
If you turned RandomInt into a nested class, you would have to provide an ex-
plicit constructor that receives these values and stores them in instance
variables (see Exercise 16).

3.9.2 Anonymous Classes

In the example of the preceding section, the name RandomSequence was used
exactly once: to construct the return value. In this case, you can make the
class anonymous:

public static IntSequence randomInts(int low, int high) {
return new IntSequence() {
public int next() { return low + generator.nextInt(high - low + 1); }
public boolean hasNext() { return true; }

}
The expression
new Interface() { methods }

means: Define a class implementing the interface that has the given methods,
and construct one object of that class.

NOTE: As always, the () in the new expression indicate the construction
arguments. A default constructor of the anonymous class is invoked.




Exercises

Before Java had lambda expressions, anonymous inner classes were the most
concise syntax available for providing runnables, comparators, and other
functional objects. You will often see them in legacy code.

Nowadays, they are only necessary when you need to provide two or more
methods, as in the preceding example. If the IntSequence interface has a default
hasNext method, as in Exercise 16, you can simply use a lambda expression:

public static IntSequence randomInts(int low, int high) {
return () -> low + generator.nextInt(high - low + 1);
}

Exercises

1. Provide an interface Measurable with a method double getMeasure() that mea-
sures an object in some way. Make Employee implement Measurable. Provide
a method double average(Measurable[] objects) that computes the average
measure. Use it to compute the average salary of an array of employees.

2. Continue with the preceding exercise and provide a method Measurable
largest(Measurable[] objects). Use it to find the name of the employee with
the largest salary. Why do you need a cast?

3. What are all the supertypes of string? Of Scanner? Of ImageOutputStrean? Note
that each type is its own supertype. A class or interface without declared
supertype has supertype Object.

4. Implement a static of method of the IntSequence class that yields a sequence
with the arguments. For example, IntSequence.of(3, 1, 4, 1, 5, 9) yields a
sequence with six values. Extra credit if you return an instance of an
anonymous inner class.

5. Add a static method with the name constant of the IntSequence class that
yields an infinite constant sequence. For example, IntSequence.constant(1)
yields values 1 1 1..., ad infinitum. Extra credit if you do this with a
lambda expression.

6. The squareSequence class doesn't actually deliver an infinite sequence of
squares due to integer overflow. Specifically, how does it behave? Fix the
problem by defining a Sequence<T> interface and a SquareSequence class that
implements Sequence<BigInteger>.

7. In this exercise, you will try out what happens when a method is added
to an interface. In Java 7, implement a class DigitSequence that implements
Iterator<Integer>, not IntSequence. Provide methods hasNext, next, and a do-
nothing remove. Write a program that prints the elements of an instance.



m Chapter 3 m Interfaces and Lambda Expressions

10.

11.

12.

13.

14.

15.

16.

In Java 8, the Iterator class gained another method, fortachRemaining. Does
your code still compile when you switch to Java 8? If you put your Java 7
class in a JAR file and don't recompile, does it work in Java 8? What if
you call the fortachRemaining method? Also, the remove method has become
a default method in Java 8, throwing an UnsupportedoperationException. What
happens when remove is called on an instance of your class?

Implement the method void luckySort(ArrayList<String> strings, Comparator<String>
comp) that keeps calling Collections.shuffle on the array list until the elements
are in increasing order, as determined by the comparator.

Implement a class Greeter that implements Runnable and whose run method
prints n copies of "Hello, " + target, where n and target are set in the con-
structor. Construct two instances with different messages and execute
them concurrently in two threads.

Implement methods

public static void runTogether(Runnable... tasks)
public static void runInOrder(Runnable... tasks)

The first method should run each task in a separate thread and then re-
turn. The second method should run all methods in the current thread
and return when the last one has completed.

Using the listFiles(FileFilter) and isDirectory methods of the java.io.File
class, write a method that returns all subdirectories of a given directory.
Use a lambda expression instead of a FileFilter object. Repeat with a
method expression and an anonymous inner class.

Using the list(FilenameFilter) method of the java.io.File class, write a method
that returns all files in a given directory with a given extension. Use a
lambda expression, not a FilenameFilter. Which variable from the enclosing
scope does it capture?

Given an array of File objects, sort it so that directories come before files,
and within each group, elements are sorted by path name. Use a lambda
expression to specify the Comparator.

Write a method that takes an array of Runnable instances and returns a
Runnable whose run method executes them in order. Return a lambda
expression.

Write a call to Arrays.sort that sorts employees by salary, breaking ties by
name. Use Comparator.thenComparing. Then do this in reverse order.

Implement the RandomSequence in Section 3.9.1, “Local Classes” (page 129) as
a nested class, outside the randomInts method.


http://java.io
http://java.io

This page intentionally left blank



Inheritance and
Reflection

Topics in This Chapter

* 41 Extending a Class — page 136

= 4.2 Object: The Cosmic Superclass — page 145

= 4.3 Enumerations — page 154

= 4.4 Runtime Type Information and Resources — page 159
= 4.5 Reflection — page 168

= Exercises — page 177



Chaprer

The preceding chapters introduced you to classes and interfaces. In this
chapter, you will learn about another fundamental concept of object-oriented
programming: inheritance. Inheritance is the process of creating new classes
that are built on existing classes. When you inherit from an existing class,
you reuse (or inherit) its methods, and you can add new methods and fields.

% NOTE: Instance variables and static variables are collectively called
fields. The fields, methods, and nested classes/interfaces inside a class
are collectively called its members.

This chapter also covers reflection, the ability to find out more about classes
and their members in a running program. Reflection is a powerful feature,
but it is undeniably complex. Since reflection is of greater interest to tool
builders than to application programmers, you can probably glance over that
part of the chapter upon first reading and come back to it later.

The key points of this chapter are:

1. A subclass can inherit or override methods from the superclass, provided
they are not private.

Use the super keyword to invoke a superclass method or constructor.

A final method cannot be overridden; a final class cannot be extended.

135



Chapter 4 m Inheritance and Reflection

10.

11.

12.

13.

An abstract method has no implementation; an abstract class cannot be
instantiated.

A protected member of a superclass is accessible in a subclass method, but
only when applied to objects of the same subclass. It is also accessible
in its package.

Every class is a subclass of 0bject which provides the toString, equals, hashCode,
and clone methods.

Each enumerated type is a subclass of Enum which provides instance
methods toString and compareTo, and a static value0f method.

The Class class provides information about a Java type, which can be a
class, array, interface, primitive type, or void.

You can use a Class object to load resources that are placed alongside
class files.

You can load classes from locations other than the class path by using a
class loader.

The Serviceloader class provides a mechanism for locating and selecting
service implementations.

The reflection library enables programs to discover members of objects,
access variables, and invoke methods.

Proxy objects dynamically implement arbitrary interfaces, routing all
method invocations to a handler.

4.1 Extending a Class

Let's return to the Employee class that we discussed in Chapter 2. Suppose (alas)
you work for a company at which managers are treated differently from other
employees. Managers are, of course, just like employees in many respects.
Both employees and managers are paid a salary. However, while employees
are expected to complete their assigned tasks in return for their salary, man-
agers get bonuses if they actually achieve what they are supposed to do. This
is the kind of situation that can be modeled with inheritance.

4.1.1 Super- and Subclasses

Let's define a new class, Manager, retaining some functionality of the Employee
class but specifying how managers are different.



4.1 m Extending a Class

public class Manager extends Employee {
added fields
added or overriding methods

}

The keyword extends indicates that you are making a new class that derives
from an existing class. The existing class is called the superclass and the new
class is called the subclass. In our example, the Employee class is the superclass
and the Manager class is the subclass. Note that the superclass is not “superior”
to its subclass. The opposite is true: Subclasses have more functionality than
their superclasses. The super/sub terminology comes from set theory. The
set of managers is a subset of the set of employees.

4.1.2 Defining and Inheriting Subclass Methods

Our Manager class has a new instance variable to store the bonus and a new
method to set it:

public class Manager extends Employee {
private double bonus;

public void setBonus(double bonus) {
this.bonus = bonus;
}

}

When you have a Manager object, you can of course apply the setBonus method,
as well as nonprivate methods from the Employee class. Those methods are
inherited.

Manager boss = new Manager(...);

boss.setBonus(10000); // Defined in subclass
boss.raiseSalary(5); // Inherited from superclass

4.1.3 Method Overriding

Sometimes, a superclass method needs to be modified in a subclass. For ex-
ample, suppose that the getsalary method is expected to report the total salary
of an employee. Then the inherited method is not sufficient for the Manager
class. Instead, you need to override the method so that it returns the sum of
the base salary and the bonus.

public class Manager extends Employee {

public double getSalary() { // Overrides superclass method
return super.getSalary() + bonus;
}

137



Chapter 4 m Inheritance and Reflection

This method invokes the superclass method, which retrieves the base salary,
and adds the bonus. Note that a subclass method cannot access the private
instance variables of the superclass directly. That is why the Manager.getsalary
method calls the public Employee.getSalary method. The super keyword is used
for invoking a superclass method.

NOTE: Unlike this, super is not a reference to an object, but a directive
to bypass dynamic method lookup (see Section 4.1.5, “Superclass
Assignments,” page 139) and invoke a specific method instead.

It is not required to call the superclass method when overriding a method,
but it is common to do so.

When you override a method, you must be careful to match the parameter
types exactly. For example, suppose that the Employee class has a method

public boolean worksFor(Employee supervisor)
If you override this method in the Manager class, you cannot change the param-

eter type, even though surely no manager would report to a mere employee.
Suppose you defined a method

public class Manager extends Employee {
public boolean worksFor(Manager supervisor) {

}
}

This is simply a new method, and now Manager has two separate worksFor
methods. You can protect yourself against this type of error by tagging
methods that are intended to override superclass methods with the @override
annotation:

@0verride public boolean worksFor(Employee supervisor)

If you made a mistake and are defining a new method, the compiler reports
an error.

You can change the return type to a subtype when overriding a method. (In
technical terms, covariant return types are permitted.) For example, if the Employee
class has a method

public Employee getSupervisor()
then the Manager class can override it with the method

@0verride public Manager getSupervisor()



4.1 m Extending a Class

CAUTION: When you override a method, the subclass method must be
at least as accessible as the superclass method. In particular, if the
superclass method is public, then the subclass method must also be
declared public. It is a common error to accidentally omit the public
modifier for the subclass method. The compiler then complains about
the weaker access privilege.

4.1.4 Subclass Construction

Let us supply a constructor for the Manager class. Since the Manager constructor
cannot access the private instance variables of the Employee class, it must
initialize them through a superclass constructor.
public Manager(String name, double salary) {
super(name, salary);
bonus = 0;
}
Here, the keyword super indicates a call to the constructor of the Employee
superclass with name and salary as arguments. The superclass constructor call
must be the first statement in the constructor for the subclass.

If the subclass does not explicitly call any superclass constructor, the superclass
must have a no-argument constructor which is implicitly called.

4.1.5 Superclass Assignments

It is legal to assign an object from a subclass to a variable whose type is a
superclass, for example:

Manager boss = new Manager(...);
Employee empl = boss; // OK to assign to superclass variable

Now consider what happens when one invokes a method on the superclass
variable.

double salary = empl.getSalary();

Even though the type of empl is Employee, the Manager.getSalary method is invoked.
When invoking a method, the virtual machine looks at the actual class of the
object and locates its version of the method. This process is called dynamic
method lookup.

Why would you want to assign a Manager object to an Employee variable? It allows
you to write code that works for all employees, be they managers or janitors
or instances of another Employee subclass.



m Chapter 4 m Inheritance and Reflection

Employee[] staff = new Employee[...];

staff[0] = new Employee(...);

staff[1] = new Manager(...); // OK to assign to superclass variable
staff[2] = new Janitor(...);

double sum = 0;
for (Employee empl : staff)
sum += empl.getSalary();

Thanks to dynamic method lookup, the call empl.getSalary() invokes the
getSalary method belonging to the object to which empl refers, which may be
Employee.getSalary, Manager.getSalary, and so on.

CAUTION: In Java, superclass assignment also works for arrays: You
can assign a Manager[] array to an Employee[] variable. (The technical
term is that Java arrays are covariant.) This is convenient, but it is also
unsound—that is, a possible cause of type errors. Consider this example:

Manager[] bosses = new Manager[10];

Employee[] empls = bosses; // Legal in Java
empls[0] = new Employee(...); // Runtime error

The compiler accepts the last statement since it is generally legal to
store an Employee in an Employee[] array. However, here empls and bosses
reference the same Manager[] array, which cannot hold a lowly Employee.
This mistake is only caught at runtime, when the virtual machine throws
an ArrayStoreException.

4.1.6 Casts

In the preceding section, you saw how a variable empl of type Employee can refer
to objects whose class is Employee, Manager, or another subclass of Employee. That
is useful for code that deals with objects from multiple classes. There is just
one drawback. You can only invoke methods that belong to the superclass.
Consider, for example,

Employee empl = new Manager(...);
empl.setBonus(10000); // Compile-time error

Even though this call could succeed at runtime, it is a compile-time error.
The compiler checks that you only invoke methods that exist for the receiver
type. Here, empl is of type Employee and that class has no setBonus method.

As with interfaces, you can use the instanceof operator and a cast to turn a
superclass reference to a subclass.



4.1 m Extending a Class n

if (empl instanceof Manager) {
Manager mgr = (Manager) empl;
mgr.setBonus(10000);

}

4.1.7 Final Methods and Classes

When you declare a method as final, no subclass can override it.

public class Employee {

public final String getName() {
return name;
}
}

A good example of a final method in the Java API is the getClass method of
the object class that you will see in Section 4.4.1, “The Class Class” (page 159).
It does not seem wise to allow objects to lie about the class to which they
belong, so this method can never be changed.

Some programmers believe that the final keyword is good for efficiency. This
may have been true in the early days of Java, but it no longer is. Modern
virtual machines will speculatively “inline” simple methods, such as the getName
method above, even if they are not declared final. In the rare case when a
subclass is loaded that overrides such a method, the inlining is undone.

Some programmers believe that most methods of a class should be declared
final, and only methods specifically designed to be overridden should not be.
Others find this too draconian since it prevents even harmless overriding, for
example for logging or debugging purposes.

Occasionally, you may want to prevent someone from forming a subclass
from one of your classes. Use the final modifier in the class definition to in-
dicate this. For example, here is how to prevent others from subclassing the
Executive class:

public final class Executive extends Manager {

}

There is a good number of final classes in the Java API, such as String, LocalTime,
and URL.

4.1.8 Abstract Methods and Classes

A class can define a method without an implementation, forcing subclasses
to implement it. Such a method, and the class containing it, are called abstract



m Chapter 4 m Inheritance and Reflection

and must be tagged with the abstract modifier. This is commonly done for
very general classes, for example:

public abstract class Person {
private String name;

public Person(String name) { this.name = name; }
public final String getName() { return name; }

public abstract int getId();
}

Any class extending Person must either supply an implementation of the getId
method or be itself declared as abstract.

Note that an abstract class can have nonabstract methods, such as the getName
method in the preceding example.

NOTE: Unlike an interface, an abstract class can have instance variables
and constructors.

It is not possible to construct an instance of an abstract class. For example,
the call

Person p = new Person("Fred"); // Error
would be a compile-time error.

However, you can have a variable whose type is an abstract class, provided
it contains a reference to an object of a concrete subclass. Suppose the class
Student is declared as
public class Student extends Person {
private int id;

public Student(String name, int id) { super(name); this.id = id; }
public int getId() { return id; }
}

Then you can construct a Student and assign it to a Person variable.

Person p = new Student("Fred", 1729); // OK, a concrete subclass

4.1.9 Protected Access

There are times when you want to restrict a method to subclasses only or,
less commonly, to allow subclass methods to access an instance variable of
a superclass. For that, declare a class feature as protected.



4.1 m Extending a Class

For example, suppose the superclass Employee declares the instance variable
salary as protected instead of private.

package com.horstmann.employees;

public class Employee {
protected double salary;

}

All classes in the same package as Employee can access this field. Now consider
a subclass from a different package:

package com.horstmann.managers;
import com.horstmann.employees.Employee;
public class Manager extends Employee {

public double getSalary() {
return salary + bonus; // OK to access protected salary variable
}

}

The Manager class methods can peek inside the salary variable of Manager objects
only, not of other Employee objects. This restriction is made so that you can't
abuse the protected mechanism by forming subclasses just to gain access to
protected features.

Of course, protected fields should be used with caution. Once provided, you
cannot take them away without breaking classes that are using them.

Protected methods and constructors are more common. For example, the clone
method of the object class is protected since it is somewhat tricky to use (see
Section 4.2.4, “Cloning Objects,” page 151).

CAUTION: In Java, protected grants package-level access, and it only
protects access from other packages.

4.1.10 Anonymous Suhclasses

Just as you can have an anonymous class that implements an interface, you
can have an anonymous class that extends a superclass. This can be handy
for debugging:



m Chapter 4 m Inheritance and Reflection

Arraylist<String> names = new Arraylist<String>(100) {
public void add(int index, String element) {
super.add(index, element);
System.out.printf("Adding %s at %d\n", element, index);

}
b
The arguments in the parentheses following the superclass name are passed
to the superclass constructor. Here, we construct an anonymous subclass of
ArrayList<String> that overrides the add method. The instance is constructed with
an initial capacity of 100.

A trick called double brace initialization uses the inner class syntax in a rather
bizarre way. Suppose you want to construct an array list and pass it to a
method:

ArraylList<String> friends = new ArraylList<>();
friends.add("Harry");

friends.add("Sally");

invite(friends);

If you won't ever need the array list again, it would be nice to make it

anonymous. But then, how can you add the elements? Here is how:
invite(new ArrayList<String>() {{ add("Harry"); add("Sally"); }});

Note the double braces. The outer braces make an anonymous subclass of

Arraylist<String>. The inner braces are an initialization block (see Chapter 2).

I am not recommending that you use this trick outside of Java trivia contests.
There are several drawbacks beyond the confusing syntax. It is inefficient,
and the constructed object can behave strangely in equality tests, depending
on how the equals method is implemented.

4.1.11 Inheritance and Default Methods

Suppose a class extends a class and implements an interface, both of which
happen to have a method of the same name.

public interface Named {

default String getName() { return ""; }
}
public class Person {

public String getName() { return name; }

}

public class Student extends Person implements Named {

}



4.2 W Object: The Cosmic Superclass

In this situation, the superclass implementation always wins over the interface
implementation. There is no need for the subclass to resolve the conflict.

In contrast, as you saw in Chapter 3, you must resolve a conflict when the
same default method is inherited from two interfaces.

The “classes win” rule ensures compatibility with Java 7. If you add default
methods to an interface, it has no effect on code that worked before there
were default methods.

4.1.12 Method Expressions with super

Recall from Chapter 3 that a method expression can have the form
object: :instanceMethod. It is also valid to use super instead of an object reference.
The method expression

super: :instanceMethod

uses this as the target and invokes the superclass version of the given method.
Here is an artificial example that shows the mechanics:

public class Worker {
public void work() {
for (int i = 0; 1 < 100; i++) System.out.println("Working");
}

}

public class ConcurrentWorker extends Worker {
public void work() {
Thread t = new Thread(super::work);
t.start();
}
}

The thread is constructed with a Runnable whose run method calls the work
method of the superclass.

4.2 Object: The Cosmic Superclass

Every class in Java directly or indirectly extends the class object. When a class
has no explicit superclass, it implicitly extends oObject. For example,

public class Employee { ... }
is equivalent to

public class Employee extends Object { ... }



Chapter 4 m Inheritance and Reflection

The object class defines methods that are applicable to any Java object (see
Table 4-1). We will examine several of these methods in detail in the following
sections.

NOTE: Arrays are classes. Therefore, it is legal to convert an array, even
a primitive type array, to a reference of type 0Object.

Table 4-1 The Methods of the java.lang.Object Class

Method Description

String toString() Yields a string representation of this object, by default
the name of the class and the hash code.

boolean equals(Object other) Returns true if this object should be considered equal
to other, false if other is null or different from other.
By default, two objects are equal if they are identical.
Instead of obj.equals(other), consider the null-safe
alternative Objects.equals(obj, other).

int hashCode() Yields a hash code for this object. Equal objects must
have the same hash code. Unless overridden, the
hash code is assigned in some way by the virtual

machine.

Class<?> getClass() Yields the Class object describing the class to which
this object belongs.

protected Object clone() Makes a copy of this object. By default, the copy is
shallow.

protected void finalize() This method is called when this object is reclaimed

by the garbage collector. Don't override it.

wait, notify, notifyAll See Chapter 10.

4.2.1 The toString Method

An important method in the Object class is the tostring method that returns a
string description of an object. For example, the tostring method of the Point
class returns a string like this:

java.awt.Point[x=10,y=20]
Many tostring methods follow this format: the name of the class, followed

by the instance variables enclosed in square brackets. Here is such an
implementation of the toString method of the Employee class:



4.2 W Object: The Cosmic Superclass

public String toString() {
return getClass().getName() + "[name=" + name
+ ",salary=" + salary + "]";
}
By calling getClass().getName() instead of hardwiring the string "Employee’, this
method does the right thing for subclasses as well.

In a subclass, call super.toString() and add the instance variables of the subclass,
in a separate pair of brackets:
public class Manager extends Employee {

public String toString() {
return super.toString() + "[bonus=" + bonus + "1";
}

}

Whenever an object is concatenated with a string, the Java compiler
automatically invokes the tostring method on the object. For example:
Point p = new Point(10, 20);

String message = "The current position is
// Concatenates with p.toString()

* Py

TIP: Instead of writing x.toString(), you can write "" + x. This expression
even works if x is null or a primitive type value.

The object class defines the tostring method to print the class name and the
hash code (see Section 4.2.3, “The hashCode Method,” page 150). For example,
the call

System.out.println(System.out)

produces an output that looks like java.io.PrintStream@2f6684 since the implementor
of the pPrintStream class didn't bother to override the toString method.

CAUTION: Arrays inherit the toString method from Object, with the added
twist that the array type is printed in an archaic format. For example, if
you have the array

int[] primes = { 2, 3, 5, 7, 11, 13 };
then primes.toString() yields a string such as "[Idla46e30". The prefix [I
denotes an array of integers.

The remedy is to call Arrays.toString(primes) instead, which yields the
string "[2, 3, 5, 7, 11, 13]". To correctly print multidimensional arrays
(that is, arrays of arrays), use Arrays.deepToString.

147


http://java.io

Chapter 4 m Inheritance and Reflection

4.2.2 The equals Method

The equals method tests whether one object is considered equal to another.
The equals method, as implemented in the oObject class, determines whether
two object references are identical. This is a pretty reasonable default—if two
objects are identical, they should certainly be equal. For quite a few classes,
nothing else is required. For example, it makes little sense to compare two
Scamner objects for equality.

Override the equals method only for state-based equality testing, in which two
objects are considered equal when they have the same contents. For example,
the string class overrides equals to check whether two strings consist of the
same characters.

CAUTION: Whenever you override the equals method, you must provide
a compatible hashCode method as well—see Section 4.2.3, “The hashCode
Method” (page 150).

Suppose we want to consider two objects of a class Item equal if their descrip-
tions and prices match. Here is how you can implement the equals method:

public class Item {
private String description;
private double price;

public boolean equals(Object otherObject) {
// A quick test to see if the objects are identical
if (this == otherObject) return true;

// Must return false if the parameter is null
if (otherObject == null) return false;
// Check that otherObject is an Item
if (getClass() != otherObject.getClass()) return false;
// Test whether the instance variables have identical values
Item other = (Item) otherObject;
return Objects.equals(description, other.description)
&6 price == other.price;

}

public int hashCode() { ... } // See Section 4.2.3
}

There are a number of routine steps that you need to go through in an equals
method:

1. It is common for equal objects to be identical, and that test is very
inexpensive.



4.2 W Object: The Cosmic Superclass

Every equals method is required to return false when comparing against null.

Since the equals method overrides Object.equals, its parameter is of type
Object, and you need to cast it to the actual type so you can look at its
instance variables. Before doing that, make a type check, either with the
getClass method or with the instanceof operator.

4. Finally, compare the instance variables. Use == for primitive types. How-
ever, for double values, if you are concerned about te or NaN, use
Double.equals. For objects, use Objects.equals, a null-safe version of the equals
method. The call Objects.equals(x, y) returns false if x is null, whereas
x.equals(y) would throw an exception.

a TIP: If you have instance variables that are arrays, use the static
Arrays.equals method to check that the arrays have equal length and
the corresponding array elements are equal.

When you define the equals method for a subclass, first call equals on the su-
perclass. If that test doesn't pass, the objects can't be equal. If the instance
variables of the superclass are equal, then you are ready to compare the
instance variables of the subclass.

public class DiscountedItem extends Item {
private double discount;

public boolean equals(Object otherObject) {
if (!super.equals(otherObject)) return false;
DiscountedItem other = (DiscountedItem) otherObject;
return discount == other.discount;

}

public int hashCode() { ... }
}
Note that the getClass test in the superclass fails if otherObject is not a
DiscountedItem.

How should the equals method behave when comparing values that belong
to different classes? This has been an area of some controversy. In the pre-
ceding example, the equals method returns false if the classes don’'t match
exactly. But many programmers use an instanceof test instead:

if (!(otherObject instanceof Item)) return false;

This leaves open the possibility that otherObject can belong to a subclass. For
example, you can compare an Item with a DiscountedItem.



Chapter 4 m Inheritance and Reflection

However, that kind of comparison doesn’t usually work. One of the require-
ments of the equals method is that it is symmetric: For non-null x and y, the
calls x.equals(y) and y.equals(x) need to return the same value.

Now suppose x is an Item and y a DiscountedItem. Since x.equals(y) doesn’t consider
discounts, neither can y.equals(x).

D NOTE: The Java API contains over 150 implementations of equals

methods, with a mixture of instanceof tests, calling getClass, catching a
ClassCastException, or doing nothing at all. Check out the documentation
of the java.sql.Timestamp class, where the implementors note with some
embarrassment that the Timestamp class inherits from java.util.Date, whose
equals method uses an instanceof test, and it is therefore impossible to
override equals to be both symmetric and accurate.

There is one situation where the instanceof test makes sense: if the notion of
equality is fixed in the superclass and never varies in a subclass. For example,
this is the case if we compare employees by ID. In that case, make an instanceof
test and declare the equals method as final.

public class Employee {
private int id;

public final boolean equals(Object otherObject) {
if (this == otherObject) return true;
if (!(otherObject instanceof Employee)) return false;
Employee other = (Employee) otherObject;
return id == other.id;

}

public int hashCode() { ... }
}

4.2.3 The hashCode Method

A hash code is an integer that is derived from an object. Hash codes should
be scrambled—if x and y are two unequal objects, there should be a high
probability that x.hashCode() and y.hashCode() are different. For example,
"Mary".hashCode() is 2390779, and "Myra".hashCode() is 2413819.

The string class uses the following algorithm to compute the hash code:

int hash = 0;
for (int i = 0; 1 < length(); i++)
hash = 31 * hash + charAt(i);



4.2 W Object: The Cosmic Superclass

The hashCode and equals methods must be compatible: If x.equals(y), then it must
be the case that x.hashCode() == y.hashCode(). As you can see, this is the case for
the string class since strings with equal characters produce the same hash code.

The oObject.hashCode method derives the hash code in some implementation-
dependent way. It can be derived from the object's memory location, or
a number (sequential or pseudorandom) that is cached with the object, or a
combination of both. Since Object.equals tests for identical objects, the only
thing that matters is that identical objects have the same hash code.

If you redefine the equals method, you will also need to redefine the hashCode
method to be compatible with equals. If you don’t, and users of your class
insert objects into a hash set or hash map, they might get lost!

In your hashCode method, simply combine the hash codes of the instance
variables. For example, here is a hashCode method for the Item class:

class Item {

public int hashCode() {
return Objects.hash(description, price);
}

}

The oObjects.hash varargs method computes the hash codes of its arguments
and combines them. The method is null-safe.

If your class has instance variables that are arrays, compute their hash codes
first with the static Arrays.hashCode method, which computes a hash code com-
posed of the hash codes of the array elements. Pass the result to Objects.hash.

CAUTION: In an interface, you can never make a default method that
redefines one of the methods in the Object class. In particular, an interface
can’t define a default method for toString, equals, or hashCode. As a
consequence of the “classes win” rule (see Section 4.1.11, “Inheritance
and Default Methods,” page 144), such a method could never win against
Object.toString, Object.equals, or Object.hashCode.

4.2.4 Cloning Objects

You have just seen the “big three” methods of the object class that are com-
monly overridden: toString, equals, and hashCode. In this section, you will learn
how to override the clone method. As you will see, this is complex, and it is
also rarely necessary. Don't override clone unless you have a good reason to
do so. Less than five percent of the classes in the standard Java library
implement clone.



Chapter 4 W Inheritance and Reflection

The purpose of the clone method is to make a “clone” of an object—a distinct
object with the same state of the original. If you mutate one of the objects,
the other stays unchanged.

Employee cloneOfFred = fred.clone();
cloneOfFred.raiseSalary(10); // fred unchanged

The clone method is declared as protected in the Object class, so you must
override it if you want users of your class to clone instances.

The object.clone method makes a shallow copy. It simply copies all instance
variables from the original to the cloned object. That is fine if the variables
are primitive or immutable. But if they aren’t, then the original and the clone
share mutable state, which can be a problem.

Consider a class for email messages that has a list of recipients.

public final class Message {
private String sender;
private ArraylList<String> recipients;
private String text;

public void addRecipient(String recipient) { ... };

}

If you make a shallow copy of a Message object, both the original and the clone
share the recipients list (see Figure 4-1):

Message specialOffer = ...;
Message cloneOfSpecialOffer = specialOffer.clone();

Message
specialOffer = M
sender = E]
cloneOfSpecialOffer = recipients = [ ———_|
text = [~ ] ArrayList<String>
Message
sender = El
recipients = ==
text = [ ]

Figure 4-1 A shallow copy of an object



4.2 W Object: The Cosmic Superclass

If either object changes the recipient list, the change is reflected in the other.
Therefore, the Message class needs to override the clone method to make a
deep copy.

It may also be that cloning is impossible or not worth the trouble. For
example, it would be very challenging to clone a Scanner object.

In general, when you implement a class, you need to decide whether
1. You do not want to provide a clone method, or

2. The inherited clone method is acceptable, or

3. The clone method should make a deep copy.

For the first option, simply do nothing. Your class will inherit the clone method,
but no user of your class will be able to call it since it is protected.

To choose the second option, your class must implement the Cloneable interface.
This is an interface without any methods, called a tagging or marker interface.
(Recall that the clone method is defined in the Object class.) The Object.clone
method checks that this interface is implemented before making a shallow
copy, and throws a CloneNotSupportedException otherwise.

You will also want to raise the scope of clone from protected to public, and
change the return type.

Finally, you need to deal with the CloneNotSupportedexception. This is a checked
exception, and as you will see in Chapter 5, you must either declare or catch
it. If your class is final, you can catch it. Otherwise, declare the exception
since it is possible that a subclass might again want to throw it.

public class Employee implements Cloneable {

public Employee clone() throws CloneNotSupportedException {
return (Employee) super.clone();
}

}
The cast (Employee) is necessary since the return type of Object.clone is Object.

The third option for implementing the clone method, in which a class needs
to make a deep copy, is the most complex case. You don't need to use the
Object.clone method at all. Here is a simple implementation of Message.clone:
public Message clone() {
Message cloned = new Message(sender, text);

cloned.recipients = new ArraylList<>(recipients);
return cloned;



Chapter 4 m Inheritance and Reflection

Alternatively, you can call clone on the superclass and the mutable instance
variables.

The ArrayList class implements the clone method, yielding a shallow copy. That
is, the original and cloned list share the element references. That is fine in
our case since the elements are strings. If not, we would have had to clone
each element as well.

However, for historical reasons, the ArraylList.clone method has return type
Object. You need to use a cast.

cloned.recipients = (ArraylList<String>) recipients.clone(); // Warning

Unhappily, as you will see in Chapter 6, that cast cannot be fully checked at
runtime, and you will get a warning. You can suppress the warning with an
annotation, but that annotation can only be attached to a declaration (see
Chapter 12). Here is the complete method implementation:

public Message clone() {

try {
Message cloned = (Message) super.clone();
aSuppressWarnings("unchecked") ArraylList<String> clonedRecipients

= (ArraylList<String>) recipients.clone();

cloned.recipients = clonedRecipients;
return cloned;

} catch (CloneNotSupportedException ex) {
return null; // Can't happen

}

}

In this case, the CloneNotSupportedException cannot happen since the Message class
is Cloneable and final, and ArrayList.clone does not throw the exception.

NOTE: Arrays have a public clone method whose return type is the same
as the type of the array. For example, if recipients had been an array,
not an array list, you could have cloned it as

cloned.recipients = recipients.clone(); // No cast required

4.3 Enumerations

You saw in Chapter 1 how to define enumerated types. Here is a typical
example, defining a type with exactly four instances:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

In the following sections, you will see how to work with enumerations.



4.3 ®m Enumerations

4.3.1 Methods of Enumerations

Since each instance of an enumerated type is unique, you never need to use
the equals method for values of enumerated types. Simply use == to compare
them. (You can, if you like, call equals which makes the == test.)

You also don't need to provide a toString method. It is automatically provided
to yield the name of the enumerated object—in our example, "SMALL", "MEDIUM",
and so on.

The converse of toString is the static valueof method that is synthesized for
each enumerated type. For example, the statement

Size notMySize = Size.valueOf("SMALL");

sets notMySize to Size.SMALL. The valueof method throws an exception if there is
no instance with the given name.

Each enumerated type has a static values method that returns an array of all

instances of the enumeration, in the order in which they were declared.
The call

Size[] allvalues = Size.values();

returns the array with elements Size.SMALL, Size.MEDIUM, and so on.

TIP: Use this method to traverse all instances of an enumerated type
in an enhanced for loop:

for (Size s : Size.values()) { System.out.printin(s); }

The ordinal method yields the position of an instance in the enum declaration,
counting from zero. For example, Size.MEDIUM.ordinal() returns 1. Of course, you
need to be careful with this method. The values shift if new constants are
inserted.

Every enumerated type E automatically implements Comparable<t>, allowing
comparisons only against its own objects. The comparison is by ordinal values.

NOTE: Technically, an enumerated type E extends the class Enum<E> from
which it inherits the compareTo method as well as the other methods
described in this section. Table 4-2 shows the methods of the Enum class.




Chapter 4 m Inheritance and Reflection

Table 4-2 Methods of the java.lang.Enum<E> Class

Method

Description

String toString()
String name()

The name of this instance, as provided in the enum
declaration. The name method is final.

int ordinal()

The position of this instance in the enum declaration.

int compareTo(Enum<E> other)

Compares this instance against other by ordinal
value.

static T valueOf(Class<T>
type, String name)

Returns the instance for a given name. Consider
using the synthesized value0f or values method of
the enumeration type instead.

Class<E> getDeclaringClass()

Gets the class in which this instance was defined.

(This differs from getClass() if the instance has a
body.)

int hashCode()
protected void finalize()

These methods call the corresponding Object methods
and are final.

protected Object clone() Throws a CloneNotSupportedException.

4.3.2 Constructors, Methods, and Fields

You can, if you like, add constructors, methods, and fields to an enumerated
type. Here is an example:

public enum Size {
SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

private String abbreviation;
Size(String abbreviation) {

this.abbreviation = abbreviation;
}

public String getAbbreviation() { return abbreviation; }

}

Each instance of the enumeration is guaranteed to be constructed exactly once.



4.3 ®m Enumerations

NOTE: The constructor of an enumeration is always private. You can
omit the private modifier, as in the preceding example. It is a syntax
error to declare an enum constructor as public or protected.

4.3.3 Bodies of Instances

You can add methods to each individual enun instance, but they have to
override methods defined in the enumeration. For example, to implement a
calculator, you might do this:

public enum Operation {

ADD {

public int eval(int argl, int arg2) { return argl + arg2; }
h
SUBTRACT {

public int eval(int argl, int arg2) { return argl - arg2; }
h
MULTIPLY {

public int eval(int argl, int arg2) { return argl » arg2; }
h
DIVIDE {

public int eval(int argl, int arg2) { return argl / arg2; }
b

public abstract int eval(int argl, int arg2);

}

In the loop of a calculator program, one would set a variable to one of these
values, depending on user input, and then invoke eval:

Operation op = ...;
int result = op.eval(first, second);

NOTE: Technically, each of these constants belongs to an anonymous
subclass of Operation. Anything that you could place into an anonymous
subclass body you can also add into the body of a member.

4.3.4 Static Members

It is legal for an enumeration to have static members. However, you have to
be careful with construction order. The enumerated constants are constructed
before the static members, so you cannot refer to any static members in an
enumeration constructor. For example, the following would be illegal:

157



Chapter 4 m Inheritance and Reflection

public enum Modifier {
PUBLIC, PRIVATE, PROTECTED, STATIC, FINAL, ABSTRACT;
private static int maskBit = 1;
private int mask;
Modifier() {
mask = maskBit; // Error—cannot access static variable in constructor
maskBit *= 2;

}

The remedy is to do the initialization in a static initializer:

public enum Modifier {
PUBLIC, PRIVATE, PROTECTED, STATIC, FINAL, ABSTRACT;
private int mask;

static {
int maskBit = 1;
for (Modifier m : Modifier.values()) {
m.mask = maskBit;
maskBit = 2;

}

Once the constants have been constructed, static variable initializations and
static initializers run in the usual top-to-bottom fashion.

NOTE: Enumerated types can be nested inside classes. Such nested
enumerations are implicitly static nested classes—that is, their methods
cannot reference instance variables of the enclosing class.

4.3.5 Switching on an Enumeration

You can use enumeration constants in a switch statement.
enum Operation { ADD, SUBTRACT, MULTIPLY, DIVIDE };

public static int eval(Operation op, int argl, int arg2) {
int result = 0;
switch (op) {
case ADD: result = argl + arg2; break;
case SUBTRACT: result = argl - arg2; break;
case MULTIPLY: result = argl * arg2; break;
case DIVIDE: result = argl / arg2; break;
}

return result;



4.4 m Runtime Type Information and Resources

You use ADD, not Operation.ADD, inside the switch statement—the type is inferred
from the type of the expression on which the switch is computed.

=

NOTE: According to the language specification, compilers are encouraged
to give a warning if a switch on an enumeration is not exhaustive—that
is, if there aren’t cases for all constants and no default clause. The
Oracle compiler does not produce such a warning.

TIP: If you want to refer to the instances of an enumeration by their
simple name outside a switch, use a static import declaration. For
example, with the declaration

import static com.horstmann.corejava.Size.x;

you can use SMALL instead of Size.SMALL.

4.4 Runtime Type Information and Resources

In Java, you can find out at runtime to which class a given object belongs.
This is sometimes useful, for example in the implementation of the equals and
tostring methods. Moreover, you can find out how the class was loaded
and load its associated data, called resources.

4.4.1 The Class Class

Suppose you have a variable of type object, filled with some object reference,
and you want to know more about the object, such as to which class it

belongs.

The getClass method yields an object of a class called, not surprisingly, Class.

Object obj = ...;
Class<?> cl = obj.getClass();

=

NOTE: See Chapter 6 for an explanation of the <?> suffix. For now, just
ignore it. But don’t omit it. If you do, not only does your IDE give you
an unsightly warning, but you also turn off useful type checks in
expressions involving the variable.

Once you have a Class object, you can find out the class name:

System.out.println("This object is an instance of " + cl.getName());



m Chapter 4 m Inheritance and Reflection

Alternatively, you can get a Class object by using the static Class.forNane method:

String className = "java.util.Scanner";
Class<?> cl = Class.forName(className);
// An object describing the java.util.Scanner class

CAUTION: The (lass.forName method, as well as many other methods
used with reflection, throws checked exceptions when something goes
wrong (for example, when there is no class with the given name). For
now, tag the calling method with throws ReflectiveOperationException. You
will see in Chapter 5 how to handle the exception.

The Class.forName method is intended for constructing Class objects for classes
that may not be known at compile time. If you know in advance which class
you want, use a class literal instead:

Class<?> cl = java.util.Scanner.class;

The .class suffix can be used to get information about other types as well:

Class<?> cl2 = String[].class; // Describes the array type String[]
Class<?> c13 = Runnable.class; // Describes the Runnable interface
Class<?> cl4 = int.class; // Describes the int type

Class<?> cl5 = void.class; // Describes the void type

Arrays are classes in Java, but interfaces, primitive types, and void are not.
The name Class is a bit unfortunate—Type would have been more accurate.

CAUTION: The getName method returns strange names for array types:
e String[].class.getName() returns "[Ljava.lang.String;"
e int[].class.getName() returns "[I"

This notation has been used since archaic times in the virtual machine.
Use getCanonicalName instead to get names such as "java.lang.String[]"
and "int[]". You need to use the archaic notation with the Class.forName
method if you want to generate Class objects for arrays.

The virtual machine manages a unique Class object for each type. Therefore,
you can use the == operator to compare class objects. For example:

if (other.getClass() == Employee.class) ...

You have already seen this use of class objects in Section 4.2.2, “The equals
Method” (page 148).

In the following sections, you will see what you can do with Class objects.
See Table 4-3 for a summary of useful methods.



4.4 m Runtime Type Information and Resources

Table 4-3 Useful Methods of the java.lang.Class<T> Class

Method

Description

static Class<?> forName(String className)

Gets the Class object describing
className.

String getCanonicalName()
String getSimpleName()
String getTypeName()
String getName()

String toString()

String toGenericString()

Gets the name of this class, with
various idiosyncrasies for arrays, inner
classes, generic classes, and modifiers
(see Exercise 8).

Class<? super T> getSuperclass()
Class<?>[] getInterfaces()
Package getPackage()

int getModifiers()

Gets the superclass, the implemented
interfaces, package, and modifiers of
this class. Table 4-4 shows how to
analyze the value returned by
getModifiers.

boolean isPrimitive()
boolean isArray()

boolean isEnum()

boolean isAnnotation()
boolean isMemberClass()
boolean isLocalClass()
boolean isAnonymousClass()
boolean isSynthetic()

Tests whether the represented type is
primitive or void, an array, an
enumeration, an annotation (see
Chapter 12), nested in another class,
local to a method or constructor,
anonymous, or synthetic (see

Section 4.5.7).

Class<?> getComponentType()
Class<?> getDeclaringClass()
Class<?> getEnclosingClass()
Constructor getEnclosingConstructor()
Method getEnclosingMethod()

Gets the component type of an array,
the class declaring a nested class, the
class and constructor or method in
which a local class is declared.

boolean isAssignableFrom(Class<?> cls)
boolean isInstance(Object obj)

Tests whether the type cls or the class
of obj is a subtype of this type.

String getPackageName()

Gets the fully qualified package name
of this class or, if it is not a top-level
class, its enclosing class.

ClassLoader getClassLoader()

Gets the class loader that loaded this
class (see Section 4.4.3).

InputStream getResourceAsStream(String path)
URL getResource(String path)

Loads the requested resource from the
same location from which this class
was loaded.

(Continues)



m Chapter 4 m Inheritance and Reflection

Table 4-3 Useful Methods of the java.lang.Class<T> Class (Continued)

Method Description

Field[] getFields() Gets all public fields or methods, or
Method[] getMethods() the specified field or method, from this
Field getField(String name) class or a superclass.

Method getMethod(String name,
Class<?>... parameterTypes)

Field[] getDeclaredFields() Gets all fields or methods, or the
Method[] getDeclaredMethods() specified field or method, from this
Field getDeclaredField(String name) class.

Method getDeclaredMethod(String name,
Class<?>... parameterTypes)

Constructor[] getConstructors() Gets all public constructors, or all
Constructor[] getDeclaredConstructors() constructors, or the specified public
Constructor getConstructor(Class<?>... constructor, or the specified constructor,
parameterTypes) for this class.
Constructor getDeclaredConstructor(Class<?>...
parameterTypes)

Table 4-4 Methods of the java.lang.reflect.Modifier Class

Method Description

static String toString(int modifiers) Returns a string with the modifiers
that correspond to the bits set in
modifiers.

static boolean is(Abstract|Interface|Native| Tests the bit in the modifiers

Private|Protected|Public|Static|Strict| argument that corresponds to the

Synchronized|Volatile)(int modifiers) modifier in the method name.

4.4.2 Loading Resources

One useful service of the Class class is to locate resources that your program
may need, such as configuration files or images. If you place a resource into
the same directory as the class file, you can open an input stream to the file
like this:

InputStream stream = MyClass.class.getResourceAsStream("config.txt");
Scanner in = new Scanner(stream);



4.4 m Runtime Type Information and Resources m

NOTE: Some legacy methods such as Applet.getAudioClip and the
javax.swing.ImageIcon constructor read data from a URL object. In that case,
you can use the getResource method which returns a URL to the resource.

Resources can have subdirectories which can be relative or absolute. For ex-
ample, MyClass.class.getResourceAsStream("/config/menus.txt") locates config/menus.txt in
the directory that contains the root of the package to which MyClass belongs.

If you package classes into JAR files, zip up the resources together with the
class files, and they will be located as well.

4.4.3 Class Loaders

Virtual machine instructions are stored in class files. Each class file contains
the instructions for a single class or interface. A class file can be located on
a file system, in a JAR file, at a remote location, or it can even be dynamically
constructed in memory. A class loader is responsible for loading the bytes and
turning them into a class or interface in the virtual machine.

The virtual machine loads class files on demand, starting with the class whose
main method is to be invoked. That class will depend on other classes, such
as java.lang.System and java.util.Scanner, which will be loaded together with the
classes that they depend on.

When executing a Java program, at least three class loaders are involved.

The bootstrap class loader loads the most fundamental Java library classes. It
is a part of the virtual machine.

The platform class loader loads other library classes. Unlike the classes loaded
with the bootstrap class loader, platform class permissions can be configured
with a security policy.

The system class loader loads the application classes. It locates classes in the
directories and JAR files on the class path and module path.

CAUTION: In previous releases of the Oracle JDK, the platform and
system class loaders were instances of the URLClassLoader class. This
is no longer the case. Some programmers used the getURLs method
of the URLClassLoader to find the class path. Use System.getProperty(
"java.class.path") instead.




Chapter 4 m Inheritance and Reflection

You can load classes from a directory or JAR file that is not already on the
class path, by creating your own URLClassLoader instance. This is commonly
done to load plugins.

URL[] urls = {
new URL("file:///path/to/directory/"),
new URL("file:///path/to/jarfile.jar")
H
String className = "com.mycompany.plugins.Entry";
try (URLClassLoader loader = new URLClassLoader(urls)) {
Class<?> cl = Class.forName(className, true, loader);
// Now construct an instance of cl—see Section 4.5.4

CAUTION: The second parameter in the call Class.forName(className, true,
loader) ensures that the static initialization of the class happens after
loading. You definitely want that to happen.

Do not use the ClassLoader.loadClass method. It does not run the static
initializers.

NOTE: The URLClassLoader loads classes from the file system. If you want
to load a class from somewhere else, you need to write your own class
loader. The only method you need to implement is findClass, like this:

public class MyClassLoader extends ClassLoader {
@0verride public Class<?> findClass(String name)
throws ClassNotFoundException {

byte[] bytes = the bytes of the class file
return defineClass(name, bytes, 0, bytes.length);

}

See Chapter 14 for an example in which classes are compiled into
memory and then loaded.

4.4.4 The Context Class Loader

Most of the time you don't have to worry about the class loading process.
Classes are transparently loaded as they are required by other classes. How-
ever, if a method loads classes dynamically, and that method is called from



4.4 m Runtime Type Information and Resources m

a class that itself was loaded with another class loader, then problems can
arise. Here is a specific example.

1. You provide a utility class that is loaded by the system class loader, and
it has a method
public class Util {

Object createInstance(String className) {
Class<?> cl = Class.forName(className);

}

2. You load a plugin with another class loader that reads classes from a
plugin JAR.

3. The plugin calls Util.createInstance("con.mycompany.plugins.MyClass") to instantiate
a class in the plugin JAR.

The author of the plugin expects that class to be loaded. However,
Util.createInstance uses its own class loader to execute Class.forName, and that
class loader won't look into the plugin JAR. This phenomenon is called
classloader inversion.

One remedy is to pass the class loader to the utility method and then to the
forName method.
public class Util {

public Object createInstance(String className, ClassLoader loader) {
Class<?> cl = Class.forName(className, true, loader);

}

Another strategy is to use the context class loader of the current thread. The
main thread’s context class loader is the system class loader. When a new
thread is created, its context class loader is set to the creating thread’s context
class loader. Thus, if you dont do anything, all threads will have their
context class loaders set to the system class loader. However, you can set
any class loader by calling

Thread t = Thread.currentThread();
t.setContextClassLoader(loader);



m Chapter 4 m Inheritance and Reflection

The utility method can then retrieve the context class loader:

public class Util {
public Object createInstance(String className) {
Thread t = Thread.currentThread();
ClassLoader loader = t.getContextClassLoader();
Class<?> cl = Class.forName(className, true, loader);

}

When invoking a method of a plugin class, the application should set the
context class loader to the plugin class loader. Afterwards, it should restore
the previous setting.

TIP: If you write a method that loads a class by name, don’t simply
¥ use the class loader of the method’s class. It is a good idea to offer
the caller the choice between passing an explicit class loader and
using the context class loader.

4.4.5 Service Loaders

Certain services need to be configurable when a program is assembled or
deployed. One way to do this is to make different implementations of a service
available, and have the program choose the most appropriate one among
them. The Serviceloader class makes it easy to load service implementations
that conform to a common interface.

Define an interface (or, if you prefer, a superclass) with the methods that
each instance of the service should provide. For example, suppose your service
provides encryption.

package com.corejava.crypt;

public interface Cipher {
byte[] encrypt(byte[] source, byte[] key);
byte[] decrypt(byte[] source, byte[] key);
int strength();

}

The service provider supplies one or more classes that implement this service,
for example



4.4 m Runtime Type Information and Resources

package com.corejava.crypt.impl;

public class CaesarCipher implements Cipher {
public byte[] encrypt(byte[] source, byte[] key) {
byte[] result = new byte[source.lengthl;
for (int i = 0; 1 < source.length; i++)
result[i] = (byte)(source[i] + key[0]);
return result;

}
public byte[] decrypt(byte[] source, byte[] key) {

return encrypt(source, new byte[] { (byte) -key[0] });
}

public int strength() { return 1; }

}

The implementing classes can be in any package, not necessarily the same
package as the service interface. Each of them must have a no-argument
constructor.

Now add the names of the provider classes to a UTF-8 encoded text file in
a META-INF/services directory that a class loader can find. In our example, the
file META-INF/services/com.corejava.crypt.Cipher would contain the line

com.corejava.crypt.impl.CaesarCipher

With this preparation done, the program initializes a service loader as follows:

public static ServicelLoader<Cipher> cipherLoader = Serviceloader.load(Cipher.class);
This should be done just once in the program.

The iterator method of the service loader provides an iterator through all
provided implementations of the service. (See Chapter 7 for more information
about iterators.) It is easiest to use an enhanced for loop to traverse them.
In the loop, pick an appropriate object to carry out the service.
public static Cipher getCipher(int minStrength) {
for (Cipher cipher : cipherLoader) // Implicitly calls iterator
if (cipher.strength() >= minStrength) return cipher;
return null;

}

Alternatively, you can use streams (see Chapter 8) to locate the desired service.
The strean method yields a stream of Serviceloader.Provider instances. That inter-
face has methods type and get for getting the provider class and the provider
instance. If you select a provider by type, then you just call type and no service
instances are unnecessarily instantiated. In our example, we need to get the
providers since we filter the stream for ciphers that have the required strength:

167



m Chapter 4 m Inheritance and Reflection

public static Optional<Cipher> getCipher2(int minStrength) {
return cipherLoader.stream()
.map(ServiceLoader.Provider: :get)
.filter(c -> c.strength() >= minStrength)
findFirst();

}

If you are willing to take any implementation, simply call findFirst:

Optional<Cipher> cipher = cipherLoader.findFirst();

The optional class is explained in Chapter 8.

4.5 Reflection

Reflection allows a program to inspect the contents of objects at runtime and
to invoke arbitrary methods on them. This capability is useful for implementing
tools such as object-relational mappers or GUI builders.

Since reflection is of interest mainly to tool builders, application programmers
can safely skip this section and return to it as needed.

4.5.1 Enumerating Class Members

The three classes Field, Method, and Constructor in the java.lang.reflect package
describe the fields, methods, and constructors of a class. All three classes
have a method called getName that returns the name of the member. The Field
class has a method getType that returns an object, again of type Class, that de-
scribes the field type. The Method and Constructor classes have methods to report
the types of the parameters, and the Method class also reports the return type.

All three of these classes also have a method called getModifiers that returns
an integer, with various bits turned on and off, that describes the modifiers
used (such as public or static). You can use static methods such as
Modifier.isPublic and Modifier.isStatic to analyze the integer that getModifiers
returns. The Modifier.toString returns a string of all modifiers.

The getFields, getMethods, and getConstructors methods of the Class class return
arrays of the public fields, methods, and constructors that the class supports;
this includes public inherited members. The getDeclaredFields, getDeclaredMethods,
and getDeclaredConstructors methods return arrays consisting of all fields,
methods, and constructors that are declared in the class. This includes private,
package, and protected members, but not members of superclasses.



4.5 W Reflection

The getParameters method of the Executable class, the common superclass of Method
and Constructor, returns an array of Parameter objects describing the method
parameters.

NOTE: The names of the parameters are only available at runtime if the
class has been compiled with the -parameters flag.

For example, here is how you can print all methods of a class:

Class<?> cl = Class.forName(className);
while (cl != null) {
for (Method m : cl.getDeclaredMethods()) {
System.out.printin(

Modifier.toString(m.getModifiers()) + " " +
m.getReturnType().getCanonicalName() + " " +
m.getName() +
Arrays.toString(m.getParameters()));

cl = cl.getSuperclass();

}

What is remarkable about this code is that it can analyze any class that the
Java virtual machine can load—not just the classes that were available when
the program was compiled.

CAUTION: As you will see in Chapter 15, the Java platform module
system imposes significant restrictions on reflective access. By default,
only classes in the same module can be analyzed through reflection. If
you don’t declare modules, all your classes belong to a single module,
and they can all be accessed through reflection. However, the Java
library classes belong to different modules, and reflective access to their
non-public members is restricted.

4.5.2 Inspecting Objects

As you saw in the preceding section, you can get Field objects that describe
the types and names of an object’s fields. These Field objects can do more:
They can access field values in objects that have the given field.



170

Chapter 4 m Inheritance and Reflection

For example, here is how to enumerate the contents of all fields of an object:

Object obj = ...;
for (Field f : obj.getClass().getDeclaredFields()) {
f.setAccessible(true);
Object value = f.get(obj);
System.out.println(f.getName() +

}

The key is the get method that reads the field value. If the field value is a
primitive type value, a wrapper object is returned; in that case you can also
call one of the methods getInt, getDouble, and so on.

+ value);

D NOTE: You must make private Field and Method objects “accessible”

before you can use them. Calling setAccessible(true) “unlocks” the field
or method for reflection. However, the module system or a security
manager can block the request and protect objects from being accessed
in this way. In that case, the setAccessible method throws an
InaccessibleObjectException or SecurityException. Alternatively, you can call
the trySetAccessible method which simply returns false if the field or
method is not accessible.

CAUTION: As you will see in Chapter 15, the Java platform packages
are contained in modules and their classes are protected from reflection.
For example, if you call

Field f = String.class.getDeclaredField("value");
f.setAccessible(true);

an InaccessibleObjectException is thrown.

Once a field is accessible, you can also set it. This code will give a raise to
obj, no matter to which class it belongs, provided that it has an accessible
salary field of type double or Double.

Field f = obj.getClass().getDeclaredField("salary");

f.setAccessible(true);

double value = f.getDouble(obj);
f.setDouble(obj, value * 1.1);



4.5 W Reflection

4.5.3 Invoking Methods

Just like a Field object can be used to read and write fields of an object, a
Method object can invoke the given method on an object.

Method m = ...;
Object result = m.invoke(obj, argl, arg2, ...);

If the method is static, supply null for the initial argument.

To obtain a method, you can search through the array returned by getMethods
or getDeclaredMethods that you saw in Section 4.5.1, “Enumerating Class Members”
(page 168). Or you can call getMethod and supply the parameter types. For
example, to get the setName(String) method on a Person object:

Person p =

Method m = p.getClass().getMethod("setName", String.class);
m.invoke(obj, "sexxxxxx");

CAUTION: Even though clone is a public method of all array types, it
is not reported by getMethod when invoked on a Class object describing
an array.

4.5.4 Constructing Objects

To construct an object, first find the Constructor object and then call its newInstance
method. For example, suppose you know that a class has a public constructor
whose parameter is an int. Then you can construct a new instance like this:

Constructor constr = cl.getConstructor(int.class);
Object obj = constr.newInstance(42);

CAUTION: The (lass class has a newInstance method to construct an
object of the given class with the no-argument constructor. That method
is now deprecated because it has a curious flaw. If the no-argument
constructor throws a checked exception, the newInstance method rethrows
it even though it isn’t declared, thereby completely defeating the
compile-time checking of checked exceptions. Instead, you should call
cl.getConstructor().newInstance(). Then any exception is wrapped inside
an InvocationTargetException.

Table 4-5 summarizes the most important methods for working with Field,
Method, and Constructor objects.

171



172

Chapter 4 m Inheritance and Reflection

Table 4-5 Useful Classes and Methods in the java.lang.reflect Package

Class Method Notes
AccessibleObject void setAccessible(boolean flag) AccessibleObject is a superclass
static void setAccessible( of Field, Method, and Constructor.
AccessibleObject[] The methods set the
array, boolean flag) accessibility of this member,
or the given members.
Field String getName() There is a get and set method
int getModifiers() for each primitive type p.
Object get(Object obj)
p getP(0Object obj)
void set(Object obj, Object
newValue)
void setP(Object obj, p newvalue)
Method Object invoke(Object obj, Invokes the method described
Object... args) by this object, passing the
given arguments and returning
the value that the method
returns. For static methods,
pass null for obj. Primitive type
arguments and return values
are wrapped.

Constructor Object newInstance(Object... args) Invokes the constructor
described by this object,
passing the given arguments
and returning the constructed
object.

Executable String getName() Executable is the superclass of

int getModifiers() Method and Constructor.
Parameters[] getParameters()
Parameter boolean isNamePresent() The getName method gets the

String getName()
Class<?> getType()

name or a synthesized name
such as arg0 if the name is not
present.

4.5.5 JavaBeans

Many object-oriented programming languages support properties, mapping the
expression object.propertyName to a call of a getter or setter method, depending



4.5 W Reflection

on whether the property is read or written. Java does not have this syntax,
but it has a convention in which properties correspond to getter/setter pairs.
A JavaBean is a class with a no-argument constructor, getter/setter pairs, and
any number of other methods.
The getters and setters must follow the specific pattern

public Type getProperty()

public void setProperty(Type newvalue)

It is possible to have read-only and write-only properties by omitting the
setter or getter.

The name of the property is the decapitalized form of the suffix after get/set.
For example, a getSalary/setSalary pair gives rise to a property named salary.
However, if the first two letters of the suffix are uppercase, then it is taken
verbatim. For example, getURL yields a read-only property named URL.

NOTE: For Boolean properties, you may use either getProperty or
isProperty for the getter, and the latter is preferred.

JavaBeans have their origin in GUI builders, and the JavaBeans specification
has arcane rules that deal with property editors, property change events, and
custom property discovery. These features are rarely used nowadays.

It is a good idea to use the standard classes for JavaBeans support whenever
you need to work with arbitrary properties. Given a class, obtain a BeanInfo
object like this:

Class<?> cl = ...;

BeanInfo info = Introspector.getBeanInfo(cl);
PropertyDescriptor[] props = info.getPropertyDescriptors();

For a given PropertyDescriptor, call getName and getPropertyType to get the name and
type of the property. The getReadMethod and getWriteMethod yield Method objects for
the getter and setter.

Unfortunately, there is no method to get the descriptor for a given property
name, so you'll have to traverse the array of descriptors:

String propertyName = ...;
Object propertyValue = null;
for (PropertyDescriptor prop : props) {
if (prop.getName().equals(propertyName))
propertyValue = prop.getReadMethod().invoke(obj);

173



174

Chapter 4 m Inheritance and Reflection

4.5.6 Working with Arrays

The isArray method checks whether a given Class object represents an array.
If so, the getComponentType method yields the Class describing the type of the
array elements. For further analysis, or to create arrays dynamically, use
the Array class in the java.lang.reflect package. Table 4-6 shows its methods.

Table 4-6 Methods of the java.lang.reflect.Array Class

Method Description

static Object get(Object array, int index) Gets or sets an element of

static p getP(Object array, int index) the array at the given

static void set(Object array, int index, Object newValue) index, where p is a

static void setP(Object array, int index, p newvValue) primitive type.

static int getlength(Object array) Gets the length of the

given array.

static Object newInstance(Class<?> componentType, Returns a new array of the
int length) given component type

static Object newInstance(Class<?> componentType, with the given dimensions.

int[] lengths)

As an exercise, let us implement the copyof method in the Arrays class. Recall
how this method can be used to grow an array that has become full.

Person[] friends = new Person[100];

// Array is full
friends = Arrays.copyOf(friends, 2 = friends.length);

How can one write such a generic method? Here is a first attempt:

public static Object[] badCopyOf(Object[] array, int newLength) { // Not useful
Object[] newArray = new Object[newLength];
for (int i = 0; i < Math.min(array.length, newLength); i++)
newArray[i] = array[i];
return newArray;

}

However, there is a problem with actually using the resulting array. The type
of array that this method returns is Object[]. An array of objects cannot be
cast to a Person[] array. The point is, as we mentioned earlier, that a Java array
remembers the type of its elements—that is, the type used in the new expression
that created it. It is legal to cast a Person[] array temporarily to an oObject[] array
and then cast it back, but an array that started its life as an Object[] array can
never be cast into a Person[] array.



4.5 W Reflection

In order to make a new array of the same type as the original array, you
need the newInstance method of the Array class. Supply the component type and
the desired length:
public static Object goodCopyOf(Object array, int newLength) {

Class<?> cl = array.getClass();

if (!cl.isArray()) return null;

Class<?> componentType = cl.getComponentType();

int length = Array.getlength(array);

Object newArray = Array.newInstance(componentType, newlLength);

for (int i = 0; i < Math.min(length, newlLength); i++)

Array.set(newArray, i, Array.get(array, 1i));
return newArray;

}

Note that this copyof method can be used to grow arrays of any type, not just
arrays of objects.

int[] primes = { 2, 3, 5, 7, 11 };

primes = (int[]) goodCopyOf(primes, 10);
The parameter type of goodCopy0f is Object, not Object[]. An int[] is an Object but
not an array of objects.

4.5.7 Proxies

The Proxy class can create, at runtime, new classes that implement a given
interface or set of interfaces. Such proxies are only necessary when you don't
yet know at compile time which interfaces you need to implement.

A proxy class has all methods required by the specified interfaces, and all
methods defined in the object class (toString, equals, and so on). However, since
you cannot define new code for these methods at runtime, you supply an
invocation handler, an object of a class that implements the InvocationHandler
interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the
invocation handler gets called, with the Method object and parameters of
the original call. The invocation handler must then figure out how to handle
the call. There are many possible actions an invocation handler might take,
such as routing calls to remote servers or tracing calls for debugging purposes.

To create a proxy object, use the newproxyInstance method of the Proxy class. The
method has three parameters:

e A class loader (see Section 4.4.3, “Class Loaders,” page 163), ornull to use
the default class loader

175



176

Chapter 4 m Inheritance and Reflection

* An array of Class objects, one for each interface to be implemented
¢ The invocation handler

To show the mechanics of proxies, here is an example where an array is
populated with proxies for Integer objects, forwarding calls to the original
objects after printing trace messages:

Object[] values = new Object[1000];

for (int i = 0; i < values.length; i++) {
Object value = new Integer(i);
values[i] = Proxy.newProxyInstance(
null,
value.getClass().getInterfaces(),
// Lambda expression for invocation handler
(Object proxy, Method m, Object[] margs) -> {
System.out.println(value + "." + m.getName() + Arrays.toString(margs));
return m.invoke(value, margs);
b;
}

When calling

Arrays.binarySearch(values, new Integer(500));

the following output is produced:

500]
500]
500]
500]
500]
500]
]
]
]

499, compareTo
749.compareTo
624 . compareTo
561.compareTo
530.compareTo
514.compareTo
506.compareTo[ 500
502.compareTo[500
500.compareTo[500

— e e e

You can see how the binary search algorithm homes in on the key by cutting
the search interval in half in every step.

The point is that the compareTo method is invoked through the proxy, even
though this was not explicitly mentioned in the code. All methods in any
interfaces implemented by Integer are proxied.

CAUTION: When the invocation handler is called with a method call
that has no parameters, the argument array is null, not an Object[] array
of length 0. That is utterly reprehensible and not something you should
do in your own code.




Exercises

Exercises

1.

10.

Define a class Point with a constructor public Point(double x, double y) and
accessor methods getX, gety. Define a subclass LabeledPoint with a constructor
public LabeledPoint(String label, double x, double y) and an accessor method
getlabel.

Define tostring, equals, and hashCode methods for the classes of the preceding
exercise.

Make the instance variables x and y of the Point class in Exercise 1 protected.
Show that the LabeledPoint class can access these variables only in LabeledPoint
instances.

Define an abstract class Shape with an instance variable of class pPoint, a
constructor, a concrete method public void moveBy(double dx, double dy) that
moves the point by the given amount, and an abstract method public Point
getCenter(). Provide concrete subclasses Circle, Rectangle, Line with constructors
public Circle(Point center, double radius), public Rectangle(Point topLeft, double width,
double height), and public Line(Point from, Point to).

Define clone methods for the classes of the preceding exercise.

Suppose that in Section 4.2.2, “The equals Method” (page 148), the
Item.equals method uses an instanceof test. Implement DiscountedItem.equals soO
that it compares only the superclass if otherObject is an Item, but also in-
cludes the discount if it is a DiscountedItem. Show that this method preserves
symmetry but fails to be transitive—that is, find a combination of items
and discounted items so that x.equals(y) and y.equals(z), but not x.equals(z).

Define an enumeration type for the eight combinations of primary colors
BLACK, RED, BLUE, GREEN, CYAN, MAGENTA, YELLOW, WHITE with methods getRed, getGreen,
and getBlue.

The class class has six methods that yield a string representation of the
type represented by the Class object. How do they differ when applied to
arrays, generic types, inner classes, and primitive types?

Write a “universal” toString method that uses reflection to yield a string
with all instance variables of an object. Extra credit if you can handle
cyclic references.

Use the MethodPrinter program in Section 4.5.1,”"Enumerating Class Members”
(page 168) to enumerate all methods of the int[] class. Extra credit if you
can identify the one method (discussed in this chapter) that is wrongly
described.

177



178

Chapter 4 m Inheritance and Reflection

11. Write the “Hello, World” program, using reflection to look up the out field
of java.lang.System and using invoke to call the println method.

12. Measure the performance difference between a regular method call and
a method call via reflection.

13. Write a method that prints a table of values for any Method representing a
static method with a parameter of type double or Double. Besides the Method
object, accept a lower bound, upper bound, and step size. Demonstrate
your method by printing tables for Math.sqrt and Double.toHexString. Repeat,
using a DoubleFunction<Object> instead of a Method (see Section 3.6.2, “Choosing
a Functional Interface,” page 120). Contrast the safety, efficiency, and
convenience of both approaches.



This page intentionally left blank



Exceptions, Assertions,
and Logging

Topics in This Chapter

= 5.1 Exception Handling — page 182
= 5.2 Assertions — page 193

» 5.3 Logging — page 195

= Exercises — page 203



Chaprer

In many programs, dealing with the unexpected can be more complex than
implementing the “happy day” scenarios. Like most modern programming
languages, Java has a robust exception-handling mechanism for transferring
control from the point of failure to a competent handler. In addition, the
assert statement provides a structured and efficient way of expressing internal
assumptions. Finally, you will see how to use the logging API to keep a record
of the various events, be they routine or suspicious, in the execution of your
programs.

The key points of this chapter are:

1. When you throw an exception, control is transferred to the nearest handler
of the exception.

In Java, checked exceptions are tracked by the compiler.
Use the try/catch construct to handle exceptions.

The try-with-resources statement automatically closes resources after
normal execution or when an exception occurred.

5. Use the try/finally construct to deal with other actions that must occur
whether or not execution proceeded normally.

You can catch and rethrow an exception, or chain it to another exception.

A stack trace describes all method calls that are pending at a point of
execution.

181



Chapter 5 m Exceptions, Assertions, and Logging

8. An assertion checks a condition, provided that assertion checking is en-
abled for the class, and throws an error if the condition is not fulfilled.

9. Loggers are arranged in a hierarchy, and they can receive logging messages
with levels ranging from SEVERE to FINEST.

10. Log handlers can send logging messages to alternate destinations, and
formatters control the message format.

11. You can control logging properties with a log configuration file.

5.1 Exception Handling

What should a method do when it encounters a situation in which it cannot
fulfill its contract? The traditional answer was that the method should return
some error code. But that is cumbersome for the programmer calling the
method. The caller is obliged to check for errors, and if it can’t handle them,
return an error code to its own caller. Not unsurprisingly, programmers didnt
always check and propagate return codes, and errors went undetected, causing
havoc later.

Instead of having error codes bubble up the chain of method calls, Java sup-
ports exception handling where a method can signal a serious problem by
“throwing” an exception. One of the methods in the call chain, but not nec-
essarily the direct caller, is responsible for handling the exception by “catching”
it. The fundamental advantage of exception handling is that it decouples the
processes of detecting and handling errors. In the following sections, you will
see how to work with exceptions in Java.

5.1.1 Throwing Exceptions

A method may find itself in a situation where it cannot carry out the task at
hand. Perhaps a required resource is missing, or it was supplied with
inconsistent parameters. In such a case, it is best to throw an exception.

Suppose you implement a method that yields a random integer between two
bounds:

public static int randInt(int low, int high) {
return low + (int) (Math.random() * (high - low + 1));
}

What should happen if someone calls randint(10, 5)? Trying to fix this is
probably not a good idea because the caller might have been confused in
more than one way. Instead, throw an appropriate exception:



5.1 m Exception Handling

if (low > high)
throw new IllegalArgumentException(
String.format("low should be <= high but low is %d and high is %d",
low, high));
As you can see, the throw statement is used to “throw” an object of a
class—here, IllegalArgumentException. The object is constructed with a debugging
message. You will see in the next section how to pick an appropriate exception
class.

When a throw statement executes, the normal flow of execution is interrupted
immediately. The randInt method stops executing and does not return a value
to its caller. Instead, control is transferred to a handler, as you will see in
Section 5.1.4, “Catching Exceptions” (page 186).

5.1.2 The Exception Hierarchy

Figure 5-1 shows the hierarchy of exceptions in Java. All exceptions are sub-
classes of the class Throwable. Subclasses of Error are exceptions that are thrown
when something exceptional happens that the program cannot be expected
to handle, such as memory exhaustion. There is not much you can do about
errors other than giving a message to the user that things have gone very
wrong.

Programmer-reported exceptions are subclasses of the class Exception. These
exceptions fall into two categories:

*  Unchecked exceptions are subclasses of RuntimeException.
e All other exceptions are checked exceptions.

As you will see in the next section, programmers must either catch checked
exceptions or declare them in the method header. The compiler checks that
these exceptions are handled properly.

NOTE: The name RuntimeException is unfortunate. Of course, all exceptions
occur at runtime. However, the exceptions that are subclasses of
RuntimeException are not checked during compilation.

Checked exceptions are used in situations where failure should be anticipated.
One common reason for failure is input and output. Files may be damaged,
and network connections may fail. A number of exception classes extend
I0Exception, and you should use an appropriate one to report any errors that
you encounter. For example, when a file that should be there turns out not
be, throw a FileNotFoundException.



m Chapter 5 m Exceptions, Assertions, and Logging

Throwable

A

Error Exception

’—9 ¢
\
\
\

Runtime

Exception k!
Subclasses
are checked
exceptions

Subclasses
are unchecked
exceptions

Figure 5-1 The exception hierarchy

Unchecked exceptions indicate logic errors caused by programmers, not by
unavoidable external risks. For example, a NullPointerException is not checked.
Just about any method might throw one, and programmers shouldn't spend
time on catching them. Instead, they should make sure that no nulls are
dereferenced in the first place.

Sometimes, implementors need to use their judgment to make a
distinction between checked and unchecked exceptions. Consider the call
Integer.parselnt(str). It throws an unchecked NumberFormatException when str doesn’t
contain a valid integer. On the other hand, Class.forName(str) throws a checked
ClassNotFoundException when str doesn't contain a valid class name.

Why the difference? The reason is that it is possible to check whether a string
is a valid integer before calling Integer.parseInt, but it is not possible to know
whether a class can be loaded until you actually try to load it.

The Java API provides many exception classes, such as I0Exception,
IllegalArgumentException, and so on. You should use these when appropriate.
However, if none of the standard exception classes is suitable for your purpose,
you can create your own by extending Exception, RuntimeException, or another
existing exception class.



5.1 m Exception Handling

When you do so, it is a good idea to supply both a no-argument constructor
and a constructor with a message string. For example,
public class FileFormatException extends IOException {
public FileFormatException() {}

public FileFormatException(String message) {
super(message);
}

// Also add constructors for chained exceptions—see Section 5.1.7

}

5.1.3 Declaring Checked Exceptions

Any method that might give rise to a checked exception must declare it in
the method header with a throws clause:

public void write(Object obj, String filename)
throws IOException, ReflectiveOperationException

List the exceptions that the method might throw, either because of a throw
statement or because it calls another method with a throws clause.

In the throws clause, you can combine exceptions into a common superclass.
Whether or not that is a good idea depends on the exceptions. For example,
if a method can throw multiple subclasses of I0Exception, it makes sense to
cover them all in a clause throws I0Exception. But if the exceptions are unrelated,
don't combine them into throws Exception—that would defeat the purpose of
exception checking.

TIP: Some programmers think it is shameful to admit that a method
¥ might throw an exception. Wouldn't it be better to handle it instead?
Actually, the opposite is true. You should allow each exception to find
its way to a competent handler. The golden rule of exceptions is, “Throw
early, catch late.”

When you override a method, it cannot throw more checked exceptions than
those declared by the superclass method. For example, if you extend the write
method from the beginning of this section, the overriding method can throw
fewer exceptions:

public void write(Object obj, String filename)
throws FileNotFoundException

But if the method tried to throw an unrelated checked exception, such as an
InterruptedException, it would not compile.



Chapter 5 m Exceptions, Assertions, and Logging

CAUTION: If the superclass method has no throws clause, then no
overriding method can throw a checked exception.

You can use the javadoc athrows tag to document when a method throws a
(checked or unchecked) exception. Most programmers only do this when
there is something meaningful to document. For example, there is little value
in telling users that an IOException is thrown when there is a problem with
input/ output. But comments such as the following can be meaningful:

athrows NullPointerException if filename is null
athrows FileNotFoundException if there is no file with name filename

NOTE: You never specify the exception type of a lambda expression.
However, if a lambda expression can throw a checked exception, you
can only pass it to a functional interface whose method declares that
exception. For example, the call

list.forEach(obj -> write(obj, "output.dat"));
is an error. The parameter of the foreach method is the functional interface

public interface Consumer<T> {
void accept(T t);
}

The accept method is declared not to throw any checked exception.

5.1.4 Catching Exceptions

To catch an exception, set up a try block. In its simplest form, it looks like this:

try {
statements

} catch (ExceptionClass ex) {
handler

}

If an exception of the given class occurs as the statements in the try block
are executed, control transfers to the handler. The exception variable (ex in
our example) refers to the exception object which the handler can inspect if
desired.

There are two modifications that you can make to this basic structure. You
can have multiple handlers for different exception classes:



5.1 m Exception Handling

try {
statements

} catch (ExceptionClass; ex) {
handler;

} catch (ExceptionClass, ex) {
handler,

} catch (ExceptionClassz ex) {
handlers

}

The catch clauses are matched top to bottom, so the most specific exception
classes must come first.

Alternatively, you can share one handler among multiple exception classes:

try {
statements

} catch (ExceptionClassy | ExceptionClass, | ExceptionClassy ex) {
handler

}

In that case, the handler can only call those methods on the exception variable
that belong to all exception classes.

5.1.5 The Try-with-Resources Statement

One problem with exception handling is resource management. Suppose you
write to a file and close it when you are done:

ArraylList<String> lines = ...;

PrintWriter out = new PrintWriter("output.txt");

for (String line : lines) {
out.println(line.toLowerCase());

out.close();

This code has a hidden danger. If any method throws an exception, the call
to out.close() never happens. That is bad. Output could be lost, or if the
exception is triggered many times, the system could run out of file handles.

A special form of the try statement can solve this issue. You can specify
resources in the header of the try statement. A resource must belong to a class
implementing the AutoCloseable interface. You can declare variables in the try
block header:

ArraylList<String> lines = ...;

try (PrintWriter out = new PrintWriter("output.txt")) { // Variable declaration

for (String line : lines)
out.println(line.toLowerCase());

187



Chapter 5 m Exceptions, Assertions, and Logging

Alternatively, you can provide previously declared effectively final variables
in the header:

PrintWriter out = new PrintWriter("output.txt");
try (out) { // Effectively final variable
for (String line : lines)
out.println(line.toLowerCase());
}

The AutoCloseable interface has a single method

public void close() throws Exception

NOTE: There is also a Closeable interface. It is a subinterface of
AutoCloseable, also with a single close method. However, that method is
declared to throw an I0Exception.

When the try block exits, either because its end is reached normally or because
an exception is thrown, the close methods of the resource objects are invoked.
For example:
try (PrintWriter out = new PrintWriter("output.txt")) {
for (String line : lines) {
out.println(line.toLowerCase());

}
} // out.close() called here

You can declare multiple resources, separated by semicolons. Here is an
example with two resource declarations:
try (Scanner in = new Scanner(Paths.get("/usr/share/dict/words"));
PrintWriter out = new PrintWriter("output.txt")) {

while (in.hasNext())
out.println(in.next().toLowerCase());
}

The resources are closed in reverse order of their initialization—that is,
out.close() is called before in.close().

Suppose that the Printiiriter constructor throws an exception. Now in is already
initialized but out is not. The try statement does the right thing: calls in.close()
and propagates the exception.

Some close methods can throw exceptions. If that happens when the try block
completed normally, the exception is thrown to the caller. However, if another
exception had been thrown, causing the close methods of the resources to be
called, and one of them throws an exception, that exception is likely to be of
lesser importance than the original one.



5.1 m Exception Handling

In this situation, the original exception gets rethrown, and the exceptions
from calling close are caught and attached as “suppressed” exceptions. This is
a very useful mechanism that would be tedious to implement by hand (see
Exercise 5). When you catch the primary exception, you can retrieve the
secondary exceptions by calling the getSuppressed method:

try {

} catch (IOException ex) {
Throwable[] secondaryExceptions = ex.getSuppressed();

}

If you want to implement such a mechanism yourself in a (hopefully
rare) situation when you can’t use the try-with-resources statement, call
ex.addSuppressed(secondaryException).

A try-with-resources statement can optionally have catch clauses that catch
any exceptions in the statement.

5.1.6 The finally Clause

As you have seen, the try-with-resources statement automatically closes re-
sources whether or not an exception occurs. Sometimes, you need to clean
up something that isn't an AutoCloseable. In that case, use the finally clause:
try {
Do work
} finally {
Clean up

The finally clause is executed when the try block comes to an end, either
normally or due to an exception.

This pattern occurs whenever you need to acquire and release a lock, or in-
crement and decrement a counter, or push something on a stack and pop it
off when you are done. You want to make sure that these actions happen
regardless of what exceptions might be thrown.

You should avoid throwing an exception in the finally clause. If the body of
the try block was terminated due to an exception, it is masked by an exception
in the finally clause. The suppression mechanism that you saw in the preceding
section only works for try-with-resources statements.

Similarly, a finally clause should not contain a return statement. If the body
of the try block also has a return statement, the one in the finally clause
replaces the return value.



Chapter 5 m Exceptions, Assertions, and Logging

It is possible to form try statements with catch clauses followed by a finally
clause. But you have to be careful with exceptions in the finally clause. For
example, have a look at this try block adapted from an online tutorial:

BufferedReader in = null;

try {
in = Files.newBufferedReader(path, StandardCharsets.UTF_8);
Read from in

} catch (IOException ex) {
System.err.println("Caught IOException:
} finally {
if (in != null) {
in.close(); // Caution—might throw an exception
}

+ ex.getMessage());

}

The programmer clearly thought about the case when the Files.newBufferedReader
method throws an exception. It appears as if this code would catch and print
all I/O exceptions, but it actually misses one: the one that might be thrown
by in.close(). It is often better to rewrite a complex try/catch/finally statement
as a try-with-resources statement or by nesting a try/finally inside a try/catch
statement—see Exercise 6.

5.1.7 Rethrowing and Chaining Exceptions

When an exception occurs, you may not know what to do about it, but you
may want to log the failure. In that case, rethrow the exception so that a
competent handler can deal with it:

try {
Do work
}

catch (Exception ex) {
logger.log(level, message, ex);
throw ex;

D NOTE: Something subtle is going on when this code is inside a method
that may throw a checked exception. Suppose the enclosing method is
declared as

public void read(String filename) throws IOException

At first glance, it looks as if one would need to change the throws clause
to throws Exception. However, the Java compiler carefully tracks the flow
and realizes that ex could only have been an exception thrown by one
of the statements in the try block, not an arbitrary Exception.




5.1 m Exception Handling

Sometimes, you want to change the class of a thrown exception. For example,
you may need to report a failure of a subsystem with an exception class that
makes sense to the user of the subsystem. Suppose you encounter a database
error in a servlet. The code that executes the servlet may not want to know
in detail what went wrong, but it definitely wants to know that the servlet
is at fault. In this case, catch the original exception and chain it to a
higher-level one:
try {
Access the database

}
catch (SQLException ex) {
throw new ServletException("database error", ex);

}

When the ServietException is caught, the original exception can be retrieved as
follows:

Throwable cause = ex.getCause();

The servietException class has a constructor that takes as a parameter the cause
of the exception. Not all exception classes do that. In that case, you have to
call the initCause method, like this:

try {
Access the database
}
catch (SQLexception ex) {
Throwable ex2 = new CruftyOldException("database error");
ex2.initCause(ex);
throw ex2;

}

If you provide your own exception class, you should provide, in addition to
the two constructors described in Section 5.1.2, “The Exception Hierarchy”
(page 183), the following constructors:

public class FileFormatException extends IOException {

public FileFormatException(Throwable cause) { initCause(cause); }
public FileFormatException(String message, Throwable cause) {
super(message);
initCause(cause);

TIP: The chaining technique is also useful if a checked exception occurs
in a method that is not allowed to throw a checked exception. You can
catch the checked exception and chain it to an unchecked one.




Chapter 5 m Exceptions, Assertions, and Logging

5.1.8 Uncaught Exceptions and the Stack Trace

If an exception is not caught anywhere, a stack trace is displayed—a listing of
all pending method calls at the point where the exception was thrown. The
stack trace is sent to System.err, the stream for error messages.

If you want to save the exception somewhere else, perhaps for inspection by
your tech support staff, set the default uncaught exception handler:
Thread.setDefaultUncaughtExceptionHandler((thread, ex) -> {
Record the exception

b;

D NOTE: An uncaught exception terminates the thread in which it occurred.
If your application only has one thread (which is the case for the
programs that you have seen so far), the program exits after invoking
the uncaught exception handler.

Sometimes, you are forced to catch an exception and don't really know what
to do with it. For example, the Class.forNane method throws a checked exception
that you need to handle. Instead of ignoring the exception, at least print the
stack trace:

try {
Class<?> cl = Class.forName(className);

} catch (ClassNotFoundException ex) {
ex.printStackTrace();

}

If you want to store the stack trace of an exception, you can put it into a
string as follows:
ByteArrayOutputStream out = new ByteArrayOutputStream();

ex.printStackTrace(new PrintWriter(out));
String description = out.toString();

NOTE: If you need to process the stack trace in more detail, use the
Stackwalker class. For example, the following prints all stack frames:

StackWalker walker = StackWalker.getInstance();
walker.forEach(frame -> System.err.println("Frame:

+ frame));

You can also analyze the StackWalker.StackFrame instances in detail. See
the APl documentation for details.




5.2 W Assertions

5.1.9 The Objects.requireNonNull Method

The objects class has a method for convenient null checks of parameters. Here
is a sample usage:

public void process(String direction) {
this.direction = Objects.requireNonNull(direction);

}

If direction is null, a NullPointerException is thrown—which doesn’t seem like a
huge improvement at first. But consider working back from a stack trace.
When you see a call to requireNonNull as the culprit, you know right away what
you did wrong.

You can also supply a message string for the exception:
this.direction = Objects.requireNonNull(direction, "direction must not be null");

A variant of this method allows you to supply an alternate value instead of
throwing an exception:

this.direction = Objects.requireNonNullElse(direction, "North");

If the default is costly to compute, use yet another variant:

this.direction = Objects.requireNonNullElseGet(direction,
() -> System.getProperty("com.horstmann.direction.default"));

The lambda expression is only evaluated if direction is null.

5.2 Assertions

Assertions are a commonly used idiom of defensive programming. Suppose
you are convinced that a particular property is fulfilled, and you rely on that
property in your code. For example, you may be computing

double y = Math.sqrt(x);
You are certain that x is not negative. Still, you want to double-check rather

than have “not a number” floating-point values creep into your computation.
You could, of course, throw an exception:

if (x < 0) throw new IllegalStateException(x + " < 0");
But this condition stays in the program, even after testing is complete, slowing

it down. The assertion mechanism allows you to put in checks during testing
and to have them automatically removed in the production code.



m Chapter 5 m Exceptions, Assertions, and Logging

D NOTE: In Java, assertions are intended as a debugging aid for validating
internal assumptions, not as a mechanism for enforcing contracts. For
example, if you want to report an inappropriate parameter of a public
method, don’t use an assertion but throw an IllegalArgumentException.

5.2.1 Using Assertions

There are two forms of the assertion statement in Java:

assert condition;
assert condition : expression;

The assert statement evaluates the condition and throws an AssertionError if it
is false. In the second form, the expression is turned into a string that becomes
the message of the error object.

NOTE: If the expression is a Throwable, it is also set as the cause of the
assertion error (see Section 5.1.7, “Rethrowing and Chaining Exceptions,”
page 190).

For example, to assert that x is non-negative, you can simply use the statement
assert x >= 0;

Or you can pass the actual value of x into the AssertionError object so it gets

displayed later:

assert x >= 0 : x;

5.2.2 Enabling and Disabling Assertions

By default, assertions are disabled. Enable them by running the program with
the -enableassertions or -ea option:

java -ea MainClass

You do not have to recompile your program because enabling or disabling
assertions is handled by the class loader. When assertions are disabled, the
class loader strips out the assertion code so that it won't slow execution. You
can even enable assertions in specific classes or in entire packages, for
example:

java -ea:MyClass -ea:com.mycompany.mylib... MainClass
This command turns on assertions for the class MyClass and all classes in the

com.mycompany.mylib package and its subpackages. The option -ea... turns on
assertions in all classes of the default package.



5.3 m Logging

You can also disable assertions in certain classes and packages with the
-disableassertions or -da option:

java -ea:... -da:MyClass MainClass
When you use the -ea and -da switches to enable or disable all assertions (and
not just specific classes or packages), they do not apply to the “system classes”

that are loaded without class loaders. Use the -enablesystemassertions/-esa switch
to enable assertions in system classes.

It is also possible to programmatically control the assertion status of class
loaders with the following methods:

void ClassLoader.setDefaultAssertionStatus(boolean enabled);
void ClassLoader.setClassAssertionStatus(String className, boolean enabled);
void ClassLoader.setPackageAssertionStatus(String packageName, boolean enabled);

As with the -enableassertions command-line option, the setPackageAssertionStatus
method sets the assertion status for the given package and its subpackages.

5.3 Logging

Every Java programmer is familiar with the process of inserting System.out.println
calls into troublesome code to gain insight into program behavior. Of course,
once you have figured out the cause of trouble, you remove the print
statements—only to put them back in when the next problem surfaces. The
logging API is designed to overcome this problem.

5.3.1 Using Loggers

Let's get started with the simplest possible case. The logging system manages
a default logger that you get by calling Logger.getGlobal(). Use the info method
to log an information message:

Logger.getGlobal().info("Opening file " + filename);

The record is printed like this:
Aug 04, 2014 09:53:34 AM com.mycompany.MyClass read INFO: Opening file data.txt

Note that the time and the names of the calling class and method are
automatically included.

However, if you call
Logger.getGlobal().setLevel(Level.OFF);

then calls to info have no effect.


http://).info(

m Chapter 5 m Exceptions, Assertions, and Logging

NOTE: In the above example, the message "Opening file " + filename is
created even if logging is disabled. If you are concerned about the cost
of creating the message, you can use a lambda expression instead:

Logger.getGlobal().info(() -> "Opening file " + filename);

5.3.2 Loggers

In a professional application, you wouldn't want to log all records to a single

global logger. Instead, you can define your own loggers.

When you request a logger with a given name for the first time, it is created.
Logger logger = Logger.getLogger("com.mycompany.myapp");

Subsequent calls to the same name yield the same logger object.

Similar to package names, logger names are hierarchical. In fact, they are
more hierarchical than packages. There is no semantic relationship between
a package and its parent, but logger parents and children share certain
properties. For example, if you turn off messages to the logger "com.mycompany",
then the child loggers are also deactivated.

NOTE: In this section, we introduce the java.util.logging framework that
is a part of the JDK. This framework is not universally loved, and there
are alternatives with better performance and more flexibility. Many projects
use a logging fagade such as SLF4J (https://www.s1f4j.org) that lets users
plug in the logging framework of their choice. Nevertheless,
java.util.logging is fine for many use cases, and learning how it works
will help you understand the alternatives.

D NOTE: Even the JVM doesn’t love java.util.logging, but for an entirely

different reason. In order to have a minimal footprint, the most basic
JVM modules don’t want to depend on the java.logging module that
contains the java.util.logging package. There is a lightweight System.Logger
interface that some JVM modules use for logging. On a full JVM, these
logs are redirected to java.util.logging, but they can also be redirected
elsewhere. This is not a facility that is intended for application
programmers, so you should use java.util.logging or a logging facade.



http://).info(
https://www.slf4j.org

5.3 m Logging

5.3.3 Logging Levels

There are seven logging levels: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST.
By default, the top three levels are actually logged. You can set a different
threshold, for example:

logger.setLevel(Level.FINE);
Now FINE and all levels above it are logged.

You can also use Level.ALL to turn on logging for all levels or Level.0FF to turn
all logging off.

There are logging methods corresponding to each level, such as

logger.warning(message);
logger.fine(message);

and so on. Alternatively, if the level is variable, you can use the log method
and supply the level:

Level level = ...;
logger.log(level, message);

TIP: The default logging configuration logs all records with the level of
~/ INFO or higher. Therefore, you should use the levels CONFIG, FINE, FINER,
and FINEST for debugging messages that are useful for diagnostics but
meaningless to the user.

CAUTION: If you set the logging level to a value finer than INFO, you
also need to change the log handler configuration. The default log handler
suppresses messages below INFO. See Section 5.3.6, “Log Handlers”
(page 200) for details.

5.3.4 Other Logging Methods

There are convenience methods for tracing execution flow:

void entering(String className, String methodName)

void entering(String className, String methodName, Object param)
void entering(String className, String methodName, Object[] params)
void exiting(String className, String methodName)

void exiting(String className, String methodName, Object result)

For example:

197



m Chapter 5 m Exceptions, Assertions, and Logging

public int read(String file, String pattern) {
logger.entering("com.mycompany.mylib.Reader", "read",
new Object[] { file, pattern });

logger.exiting("com.mycompany.mylib.Reader", "read", count);
return count;

}

These calls generate log records of level FINER that start with the strings ENTRY
and RETURN.

NOTE: Oddly enough, these methods have never been turned into
methods with variable arguments.

A common use for logging is to log unexpected exceptions. Two convenience
methods include a description of the exception in the log record.

void log(Level 1, String message, Throwable t)
void throwing(String className, String methodName, Throwable t)

Typical uses are
try {

}
catch (IOException ex) {
logger.log(Level.SEVERE, "Cannot read configuration", ex);

and

if (...){
I0Exception ex = new IOException("Cannot read configuration");
logger.throwing("com.mycompany.mylib.Reader", "read", ex);
throw ex;

}

The throwing call logs a record with level FINER and a message that starts with
THROW.

NOTE: The default log record shows the name of the class and method
that contain the logging call, as inferred from the call stack. However,
if the virtual machine optimizes execution, accurate call information may
not be available. You can use the logp method to give the precise
location of the calling class and method. The method signature is

void logp(Level 1, String className, String methodName, String message)




5.3 m Logging

NOTE: If you want the logging messages to be understood by users in
multiple languages, you can localize them with the methods
void logrb(Level level, ResourceBundle bundle,
String msg, Object... params)

void logrb(Level level, ResourceBundle bundle,
String msg, Throwable thrown)

Resource bundles are described in Chapter 13.

5.3.5 Logging Configuration

You can change various properties of the logging system by editing a
configuration file. The default configuration file is located at jre/lib/
logging.properties. To use another file, set the java.util.logging.config.file property
to the file location by starting your application with

java -Djava.util.logging.config.file=configFile MainClass

CAUTION: Calling System.setProperty("java.util.logging.config.file",
configFile) in main has no effect because the log manager is initialized
during VM startup, before main executes.

To change the default logging level, edit the configuration file and modify
the line

.level=INFO

You can specify the logging levels for your own loggers by adding lines
such as

com.mycompany.myapp.level=FINE
That is, append the .level suffix to the logger name.

As you will see in the next section, loggers don't actually send the messages
to the console—that is the job of the handlers. Handlers also have levels. To
see FINE messages on the console, you also need to set

java.util.logging.ConsoleHandler.level=FINE

CAUTION: The settings in the log manager configuration are not system
properties. Starting a program with -Dcom.mycompany.myapp.level=FINE does
not have any effect on the logger.




Chapter 5 m Exceptions, Assertions, and Logging

It is also possible to change logging levels in a running program by
using the jconsole program. For details, see www.oracle.com/technetwork/articles/java/
jconsole-1564139.html#LoggingControl for details.

9.3.6 Log Handlers

By default, loggers send records to a ConsoleHandler that prints them to the
System.err stream. Specifically, the logger sends the record to the parent handler,
and the ultimate ancestor (with name "") has a ConsoleHandler.

Like loggers, handlers have a logging level. For a record to be logged, its
logging level must be above the threshold of both the logger and the handler.
The log manager configuration file sets the logging level of the default console
handler as

java.util.logging.ConsoleHandler.level=INFO

To log records with level FINE, change both the default logger level and
the handler level in the configuration. Alternatively, you can bypass the
configuration file altogether and install your own handler.

Logger logger = Logger.getLogger("com.mycompany.myapp");

logger.setLevel(Level.FINE);

logger.setUseParentHandlers(false);

Handler handler = new ConsoleHandler();

handler.setLevel(Level.FINE);
logger.addHandler(handler);

By default, a logger sends records both to its own handlers and the handlers
of the parent. Our logger is a descendant of the ultimate ancestor " that
sends all records with level INFO and above to the console. We don’t want
to see those records twice, however, so we set the useParentHandlers property
to false.

To send log records elsewhere, add another handler. The logging API provides
two handlers for this purpose: a FileHandler and a SocketHandler. The SocketHandler
sends records to a specified host and port. Of greater interest is the FileHandler
that collects records in a file.

You can simply send records to a default file handler, like this:

FileHandler handler = new FileHandler();
logger.addHandler(handler);

The records are sent to a file javan.log in the user’s home directory, where n
is a number to make the file unique. By default, the records are formatted
in XML. A typical log record has the form


http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html#LoggingControl
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html#LoggingControl

5.3 m Logging

<record>
<date>2014-08-04T09:53:34</date>
<millis>1407146014072</millis>
<sequence>1</sequence>
<logger>com.mycompany.myapp</logger>
<level>INFO</level>
<class>com.horstmann.corejava.Employee</class>
<method>read</method>
<thread>10</thread>
<message>Opening file staff.txt</message>
</record>

You can modify the default behavior of the file handler by setting various
parameters in the log manager configuration (see Table 5-1) or by using one
of the following constructors:

FileHandler(String pattern)

FileHandler(String pattern, boolean append)

FileHandler(String pattern, int limit, int count)
FileHandler(String pattern, int limit, int count, boolean append)

See Table 5-1 for the meaning of the construction parameters.

You probably don’t want to use the default log file name. Use a pattern such
as %h/myapp.log (see Table 5-2 for an explanation of the pattern variables.)

If multiple applications (or multiple copies of the same application) use the
same log file, you should turn the append flag on. Alternatively, use %u in the
file name pattern so that each application creates a unique copy of the log.

It is also a good idea to turn file rotation on. Log files are kept in a rotation
sequence, such as myapp.log.0, myapp.log.1, myapp.log.2, and so on. Whenever a
file exceeds the size limit, the oldest log is deleted, the other files are renamed,
and a new file with generation number 0 is created.

Tahble 5-1 File Handler Configuration Parameters

Configuration Property Description Default
java.util.logging.FileHandler.level The handler level Level.ALL
java.util.logging.FileHandler.append When true, log false

records are appended
to an existing file;
otherwise, a new file
is opened for each
program run.

(Continues)



m Chapter 5 m Exceptions, Assertions, and Logging

Table 5-1 File Handler Configuration Parameters (Continued)

Configuration Property

Description

Default

java.util.logging.FileHandler.limit The approximate 0 in the FileHandler
maximum number of class, 50000 in the
bytes to write in a file  default log
before opening manager
another (6 = no limit). configuration
java.util.logging.FileHandler.pattern The file name pattern  %h/java%u.log
(see Table 5-2)
java.util.logging.FileHandler.count The number of logs 1 (no rotation)
in a rotation sequence
java.util.logging.FileHandler.filter The filter for filtering No filtering
log records (see
Section 5.3.7)
java.util.logging.FileHandler.encoding  The character The platform
encoding character encoding
java.util.logging.FileHandler.formatter —The formatter for each java.util.logging.
log record XMLFormatter
Table 5-2 Log File Pattern Variables
Variahle Description
%h The user’s home directory (the user.home property)
%t The system’s temporary directory
%u A unique number
%g The generation number for rotated logs (a .%g suffix is used if
rotation is specified and the pattern doesn't contain %g)
%% The percent character

5.3.7 Filters and Formatters

Besides filtering by logging levels, each logger and handler can have an addi-
tional filter that implements the Filter interface, a functional interface with a
method

boolean isLoggable(LogRecord record)



Exercises

To install a filter into a logger or handler, call the setFilter method. Note that
you can have at most one filter at a time.

The ConsoleHandler and FileHandler classes emit the log records in text and XML
formats. However, you can define your own formats as well. Extend the
Formatter class and override the method

String format(LogRecord record)

Format the record in any way you like and return the resulting string. In
your format method, you may want to call the method

String formatMessage(LogRecord record)

That method formats the message part of the record, substituting parameters
and applying localization.

Many file formats (such as XML) require head and tail parts that surround
the formatted records. To achieve this, override the methods

String getHead(Handler h)
String getTail(Handler h)

Finally, call the setFormatter method to install the formatter into the handler.

Exercises

1. Write a method public ArraylList<Double> readvalues(String filename) throws ... that
reads a file containing floating-point numbers. Throw appropriate excep-
tions if the file could not be opened or if some of the inputs are not
floating-point numbers.

2. Write a method public double sumOfvalues(String filename) throws ... that calls
the preceding method and returns the sum of the values in the file.
Propagate any exceptions to the caller.

3. Write a program that calls the preceding method and prints the result.
Catch the exceptions and provide feedback to the user about any error
conditions.

4. Repeat the preceding exercise, but don't use exceptions. Instead, have
readvalues and sumOfValues return error codes of some kind.

5. Implement a method that contains the code with a Scanner and a Printwriter
in Section 5.1.5, “The Try-with-Resources Statement” (page 187). But don't
use the try-with-resources statement. Instead, just use catch clauses. Be
sure to close both objects, provided they have been properly constructed.
You need to consider the following conditions:



m Chapter 5 m Exceptions, Assertions, and Logging

10.

e The Scanner constructor throws an exception.

e The PrintWriter constructor throws an exception.
® hasNext, next, or println throw an exception.

* out.close() throws an exception.

* in.close() throws an exception.

Section 5.1.6, “The finally Clause” (page 189) has an example of a broken
try statement with catch and finally clauses. Fix the code with (a) catching
the exception in the finally clause, (b) a try/catch statement containing a
try/finally statement, and (c) a try-with-resources statement with a catch
clause.

Explain why

try (Scanner in = new Scanner(Paths.get("/usr/share/dict/words"));
PrintWriter out = new PrintWriter(outputFile)) {
while (in.hasNext())
out.println(in.next().toLowerCase());

}
is better than

Scanner in = new Scanner(Paths.get("/usr/share/dict/words"));
PrintWriter out = new PrintWriter(outputFile);
try (in; out) {
while (in.hasNext())
out.println(in.next().toLowerCase());

}

For this exercise, you'll need to read through the source code of the
java.util.Scanner class. If input fails when using a Scanner, the Scanner class
catches the input exception and closes the resource from which it con-
sumes input. What happens if closing the resource throws an exception?
How does this implementation interact with the handling of suppressed
exceptions in the try-with-resources statement?

Design a helper method so that one can use a ReentrantLock in a try-with-
resources statement. Call lock and return an AutoCloseable whose close method
calls unlock and throws no exceptions.

The methods of the Scanmner and Printuriter classes do not throw checked
exceptions to make them easier to use for beginning programmers. How
do you find out whether errors occurred during reading or writing? Note
that the constructors can throw checked exceptions. Why does that defeat
the goal of making the classes easier to use for beginners?



Exercises

11.

12.

13.

14.

15.

Write a recursive factorial method in which you print all stack frames
before you return the value. Construct (but don't throw) an exception
object of any kind and get its stack trace, as described in Section 5.1.8,
“Uncaught Exceptions and the Stack Trace” (page 192).

Compare the use of Objects.requireNonNull(obj) and assert obj != null. Give a
compelling use for each.

Write a method int min(int[] values) that, just before returning the smallest
value, asserts that it is indeed < all values in the array. Use a private
helper method or, if you already peeked into Chapter 8, Stream.allMatch.
Call the method repeatedly on a large array and measure the runtime
with assertions enabled, disabled, and removed.

Implement and test a log record filter that filters out log records containing
bad words such as sex, drugs, and C++.

Implement and test a log record formatter that produces an HTML file.



Generic Programming

Topics in This Chapter

= 6.1 Generic Classes — page 208

= 6.2 Generic Methods — page 209

= 6.3 Type Bounds — page 210

» 6.4 Type Variance and Wildcards — page 211

= 6.5 Generics in the Java Virtual Machine — page 216
= 6.6 Restrictions on Generics — page 220

= 6.7 Reflection and Generics — page 226

= Exercises — page 229



Chaprer

You often need to implement classes and methods that work with multiple
types. For example, an ArrayList<T> stores elements of an arbitrary class 7. We
say that the Arraylist class is generic, and T is a type parameter. The basic idea
is very simple and incredibly useful. The first two sections of this chapter
cover the simple part.

In any programming language with generic types, the details get tricky when
you restrict or vary type parameters. For example, suppose you want to sort
elements. Then you must specify that T provides an ordering. Furthermore,
if the type parameter varies, what does that mean for the generic type? For
example, what should be the relationship between ArrayList<String> to a method
that expects an Arraylist<object>? Sections 6.3, “Type Bounds” (page 210) and
6.4, “Type Variance and Wildcards” (page 211) show you how Java deals with
these issues.

In Java, generic programming is more complex than it perhaps should be,
because generics were added when Java had been around for a while, and
they were designed to be backward-compatible. As a consequence, there are
a number of unfortunate restrictions, some of which affect every Java program-
mer. Others are only of interest to implementors of generic classes. See
Sections 6.5, “Generics in the Java Virtual Machine” (page 216) and 6.6, “Re-
strictions on Generics” (page 220) for the details. The final section covers
generics and reflection, and you can safely skip it if you are not using
reflection in your own programs.

207



Chapter 6 W Generic Programming

The key points of this chapter are:

1.

2
3.
4

A generic class is a class with one or more type parameters.
A generic method is a method with type parameters.
You can require a type parameter to be a subtype of one or more types.

Generic types are invariant: When S is a subtype of T, there is no
relationship between 6<s> and 6<T>.

By using wildcards G<? extends T> or G<? super T>, you can specify that a
method can accept an instantiation of a generic type with a subclass or
superclass argument.

Type parameters are erased when generic classes and methods are
compiled.

Erasure puts many restrictions on generic types. In particular, you can't
instantiate generic classes or arrays, cast to a generic type, or throw an
object of a generic type.

The Class<T> class is generic, which is useful because methods such as cast
are declared to produce a value of type T.

Even though generic classes and methods are erased in the virtual
machine, you can find out at runtime how they were declared.

6.1 Generic Classes

A generic class is a class with one or more type parameters. As a simple example,
consider this class for storing key/value pairs:

public class Entry<K, V> {

private K key;
private V value;

public Entry(K key, V value) {
this.key = key;
this.value = value;

}

public K getKey() { return key; }
public V getvalue() { return value; }



6.2 W Generic Methods

As you can see, the type parameters kK and V are specified inside angle
brackets after the name of the class. In the definitions of class members, they
are used as types for instance variables, method parameters, and return values.

You instantiate the generic class by substituting types for the type variables.
For example, Entry<String, Integer> is an ordinary class with methods String
getkey() and Integer getValue().

CAUTION: Type parameters cannot be instantiated with primitive types.
For example, Entry<String, int> is not valid in Java.

When you construct an object of a generic class, you can omit the type
parameters from the constructor. For example,

Entry<String, Integer> entry = new Entry<>("Fred", 42);
// Same as new Entry<String, Integer>("Fred", 42)

Note that you still provide an empty pair of angle brackets before the con-
struction arguments. Some people call this empty bracket pair a diamond.
When you use the diamond syntax, the type parameters for the constructor
are inferred.

6.2 Generic Methods

Just like a generic class is a class with type parameters, a generic method is a
method with type parameters. A generic method can be a method of a regular
class or a generic class. Here is an example of a generic method in a class
that is not generic:

public class Arrays {
public static <T> void swap(T[] array, int i, int j) {

T temp = array[il;
array[i] = array[j];
array[j] = temp;

}

This swap method can be used to swap elements in an arbitrary array, as long
as the array element type is not a primitive type.

String[] friends = ...;
Arrays.swap(friends, 0, 1);



Chapter 6 W Generic Programming

When you declare a generic method, the type parameter is placed after the
modifiers (such as public and static) and before the return type:

public static <T> void swap(T[] array, int i, int j)

When calling a generic method, you do not need to specify the type parameter.
It is inferred from the method parameter and return types. For example, in
the call Arrays.swap(friends, 0, 1), the type of friends is String[], and the compiler
can infer that T should be String.

You can, if you like, supply the type explicitly, before the method name,
like this:

Arrays.<String>swap(friends, 0, 1);

One reason why you might want to do this is to get better error messages
when something goes wrong—see Exercise 5.

Before plunging into the morass of technical details in the sections that follow,
it is worth contemplating the examples of the Entry class and the swap method
and to admire how useful and natural generic types are. With the Entry class,
the key and value types can be arbitrary. With the swap method, the array
type can be arbitrary. That is plainly expressed with type variables.

6.3 Type Bounds

Sometimes, the type parameters of a generic class or method need to fulfill
certain requirements. You can specify a type bound to require that the type
extends certain classes or implements certain interfaces.

Suppose, for example, you have an ArrayList of objects of a class that
implements the AutoCloseable interface, and you want to close them all:
public static <T extends AutoCloseable> void closeAll(ArrayList<T> elems)
throws Exception {
for (T elem : elems) elem.close();

}

The type bound extends AutoCloseable ensures that the element type is a subtype
of AutoCloseable. Therefore, the call elem.close() is valid. You can pass an
ArrayList<PrintStream> to this method, but not an ArraylList<String>. Note that the
extends keyword in a type bound actually means “subtype’—the Java designers
just used the existing extends keyword instead of coming up with another
keyword or symbol.

Exercise 14 has a more interesting variant of this method.



6.4 m Type Variance and Wildcards

EI NOTE: In this example, we need a type bound because the parameter
is of type ArraylList. If the method accepted an array, you wouldn’t need
a generic method. You could simply use a regular method

public static void closeAll(AutoCloseable[] elems) throws Exception

This works because an array type such as PrintStream[] is a subtype of
AutoCloseable[]. However, as you will see in the following section, an
Arraylist<PrintStream> is not a subtype of ArraylList<AutoCloseable>. Using
a bounded type parameter solves this problem.

A type parameter can have multiple bounds, such as
T extends Runnable & AutoCloseable

This syntax is similar to that for catching multiple exceptions, the only differ-
ence being that the types are combined with an “and” operator, whereas
multiple exceptions are combined with an “or” operator.

You can have as many interface bounds as you like, but at most one of the
bounds can be a class. If you have a class as a bound, it must be the first
one in the bounds list.

6.4 Type Variance and Wildcards

Suppose you need to implement a method that processes an array of objects
that are subclasses of the class Employee. You simply declare the parameter to
have type Employee[]:

public static void process(Employee[] staff) { ... }

If Manager is a subclass of Employee, you can pass a Manager[] array to the method
since Manager[] is a subtype of Employee[]. This behavior is called covariance. Arrays
vary in the same way as the element types.

Now, suppose you want to process an array list instead. However, there is a
problem: The type ArrayList<Manager> is not a subtype of ArrayList<Employee>.

There is a reason for this restriction. If it were legal to assign an
Arraylist<Manager> to a variable of type ArrayList<Employee>, you could corrupt the
array list by storing nonmanagerial employees:

ArraylList<Manager> bosses = new ArraylList<>();

ArrayList<Employee> empls = bosses; // Not legal, but suppose it is . . .
empls.add(new Employee(...)); // A nonmanager in bosses!

Since conversion from Arraylist<Manager> to ArrayList<Employee> is disallowed, this
error cannot occur.



m Chapter 6 W Generic Programming

D NOTE: Can you generate the same error with arrays, where the

conversion from Manager[] to Employee[] is permitted? Sure you can, as
you saw in Chapter 4. Java arrays are covariant, which is convenient
but unsound. When you store a mere Employee in a Manager[] array, an
ArrayStoreException is thrown. In contrast, all generic types in Java are
invariant.

In Java, you use wildcards to specify how method parameter and return types
should be allowed to vary. This mechanism is sometimes called use-site variance.
You will see the details in the following sections.

6.4.1 Subtype Wildcards

In many situations it is perfectly safe to convert between different array lists.
Suppose a method never writes to the array list, so it cannot corrupt its
argument. Use a wildcard to express this fact:
public static void printNames(ArrayList<? extends Employee> staff) {
for (int i = 0; i < staff.size(); i++) {
Employee e = staff.get(i);
System.out.printin(e.getName());

}
}

The wildcard type ? extends Employee indicates some unknown subtype of Employee.

You can call this method with an ArrayList<Employee> or an array list of a subtype,
such as ArraylList<Manager>.

The get method of the class ArrayList<? extends Employee> has return type ? extends
Employee. The statement

Employee e = staff.get(i);

is perfectly legal. Whatever type ? denotes, it is a subtype of Employee, and the
result of staff.get(i) can be assigned to the Employee variable e. (I didn't use an
enhanced for loop in this example to show exactly how the elements are
fetched from the array list.)

What happens if you try to store an element into an ArrayList<? extends Employee>?
That would not work. Consider a call

staff.add(x);

The add method has parameter type ? extends Employee, and there is no object
that you can pass to this method. If you pass, say, a Manager object, the com-
piler will refuse. After all, ? could refer to any subclass, perhaps Janitor, and
you can't add a Manager to an ArrayList<Janitor>.



6.4 m Type Variance and Wildcards

D NOTE: You can, of course, pass null, but that’s not an object.

In summary, you can convert from ? extends Employee to Employee, but you can
never convert anything to ? extends Employee. This explains why you can read
from an Arraylist<? extends Employee> but cannot write to it.

6.4.2 Supertype Wildcards

The wildcard type ? extends Employee denotes an arbitrary subtype of Employee.
The converse is the wildcard type ? super Employee which denotes a supertype
of Employee. These wildcards are often useful as parameters in functional objects.
Here is a typical example. The Predicate interface has a method for testing
whether an object of type T has a particular property:

public interface Predicate<T> {
boolean test(T arg);

}

This method prints the names of all employees with a given property:

public static void printAll(Employee[] staff, Predicate<Employee> filter) {
for (Employee e : staff)
if (filter.test(e))
System.out.println(e.getName());
}

You can call this method with an object of type Predicate<Employee>. Since that
is a functional interface, you can also pass a lambda expression:

printAll(employees, e -> e.getSalary() > 100000);

Now suppose you want to use a Predicate<Object> instead, for example

Predicate<Object> evenlLength = e -> e.toString().length() % 2 == 0;
printAll(employees, evenlength);

This should not be a problem. After all, every Employee is an Object with a
tostring method. However, like all generic types, the Predicate interface is
invariant, and there is no relationship between Predicate<Employee> and
Predicate<Object>

The remedy is to allow any Predicate<? super Employee>:

public static void printAll(Employee[] staff, Predicate<? super Employee> filter) {
for (Employee e : staff)
if (filter.test(e))
System.out.println(e.getName());



Chapter 6 W Generic Programming

Have a close look at the call filter.test(e). Since the parameter of test has a
type that is some supertype of Employee, it is safe to pass an Employee object.

This situation is typical. Functions are naturally contravariant in their parameter
types. For example, when a function is expected that can process employees,
it is OK to give one that is willing to process arbitrary objects.

In general, when you specify a generic functional interface as a method
parameter, you should use a super wildcard.

D NOTE: Some programmers like the “PECS” mnemonic for wildcards:

producer extends, consumer super. An ArrayList from which you read
values is a producer, so you use an extends wildcard. A Predicate to
which you give values for testing is a consumer, and you use super.

6.4.3 Wildcards with Type Variahles

Consider a generalization of the method of the preceding section that prints
arbitrary elements fulfilling a condition:
public static <T> void printAlLl(T[] elements, Predicate<T> filter) {
for (T e : elements)

if (filter.test(e))
System.out.println(e.toString());

}
This is a generic method that works for arrays of any type. The type param-
eter is the type of the array that is being passed. However, it suffers from
the limitation that you saw in the preceding section. The type parameter of
Predicate must exactly match the type parameter of the method.

The solution is the same that you already saw—but this time, the bound of
the wildcard is a type variable:

public static <T> void printAlL1(T[] elements, Predicate<? super T> filter)
This method takes a filter for elements of type T or any supertype of T.

Here is another example. The Collection<t> interface, which you will see in
detail in the following chapter, describes a collection of elements of type E.
It has a method

public boolean addAll(Collection<? extends E> c)
You can add all elements from another collection whose element type is also

E or some subtype. With this method, you can add a collection of managers
to a collection of employees, but not the other way around.



6.4 m Type Variance and Wildcards

To see how complex type declarations can get, consider the definition of the
Collections.sort method:

public static <T extends Comparable<? super T>> void sort(List<T> list)

The List interface, covered in detail in the next chapter, describes a sequence
of elements, such as a linked list or ArrayList. The sort method is willing to
sort any List<T>, provided T is a subtype of Comparable. But the Comparable interface
is again generic:

public interface Comparable<T> {

} int compareTo(T other);

Its type parameter specifies the argument type of the compareTo method. So, it
would seem that Collections.sort could be declared as

public static <T extends Comparable<T>> void sort(List<T> list)

But that is too restrictive. Suppose that the Employee class implements
Comparable<Employee>, comparing employees by salary. And suppose that the Manager
class extends Employee. Note that it implements Comparable<Employee>, and not
Comparable<Manager>. Therefore, Manager is not a subtype of Comparable<Manager>, but it
is a Subtype of Comparable<? super Manager>.

D NOTE: In some programming languages (such as C# and Scala), you
can declare type parameters to be covariant or contravariant. For
example, by declaring the type parameter of Comparable to be contravariant,
one doesn’t have to use a wildcard for each Comparable parameter. This
“declaration-site variance” is convenient, but it is less powerful than the
“use-site variance” of Java wildcards.

6.4.4 Unbounded Wildcards

It is possible to have unbounded wildcards for situations where you only do
very generic operations. For example, here is a method to check whether an
Arraylist has any null elements:

public static boolean hasNulls(ArraylList<?> elements) {

for (Object e : elements) {
if (e == null) return true;
}

return false;

}

Since the type parameter of the ArrayList doesn’'t matter, it makes sense to
use an Arraylist<?>. One could equally well have made hasNulls into a generic
method:



Chapter 6 W Generic Programming

public static <T> boolean hasNulls(ArraylList<T> elements)

But the wildcard is easy to understand, so that's the preferred approach.

6.4.5 Wildcard Capture

Let's try to define a swap method using wildcards:

public static void swap(ArraylList<?> elements, int i, int j) {
? temp = elements.get(i); // Won't work
elements.set(i, elements.get(j));
elements.set(j, temp);

}
That won't work. You can use ? as a type argument, but not as a type.
However, there is a workaround. Add a helper method, like this:

public static void swap(ArrayList<?> elements, int i, int j) {
swapHelper(elements, i, j);

private static <T> void swapHelper(ArraylList<T> elements, int i, int j) {
T temp = elements.get(i);
elements.set(i, elements.get(j))
elements.set(j, temp);
}
The call to swapHelper is valid because of a special rule called wildcard capture.
The compiler doesn’'t know what ? is, but it stands for some type, so it is OK
to call a generic method. The type parameter T of swapHelper “captures” the
wildcard type. Since swapHelper is a generic method, not a method with wild-
cards in parameters, it can make use of the type variable T to declare variables.

What have we gained? The user of the API sees an easy-to-understand
ArrayList<?> instead of a generic method.

6.5 Generics in the Java Virtual Machine

When generic types and methods were added to Java, the Java designers
wanted the generic forms of classes to be compatible with their preexisting
versions. For example, it should be possible to pass an Arraylist<String> to a
method from pre-generic days that accepted the ArraylList class, which collects
elements of type object. The language designers decided on an implementation
that “erases” the types in the virtual machine. This was very popular at the
time since it enabled Java users to gradually migrate to using generics. As
you can imagine, there are drawbacks to this scheme, and, as so often happens



6.5 W Generics in the Java Virtual Machine

with compromises made in the interest of compatibility, the drawbacks remain
long after the migration has successfully completed.

In this section, you will see what goes on in the virtual machine, and the
next section examines the consequences.

6.5.1 Type Erasure

When you define a generic type, it is compiled into a raw type. For example,
the Entry<k, V> class of Section 6.1, “Generic Classes” (page 208) turns into
public class Entry {

private Object key;
private Object value;

public Entry(Object key, Object value) {
this.key = key;
this.value = value;

}

public Object getKey() { return key; }
public Object getValue() { return value; }
}

Every kK and Vv is replaced by Object.

If a type variable has bounds, it is replaced with the first bound. Suppose we
declare the Entry class as

public class Entry<K extends Comparable<? super K> & Serializable,
V extends Serializable>

Then it is erased to a class

public class Entry {
private Comparable key;
private Serializable value;

}
6.5.2 Cast Insertion

Erasure sounds somehow dangerous, but it is actually perfectly safe. Suppose
for example, you used an Entry<String, Integer> object. When you construct the
object, you must provide a key that is a String and a value that is an Integer
or is converted to one. Otherwise, your program does not even compile. You
are therefore guaranteed that the getkey method returns a String.

217



Chapter 6 W Generic Programming

However, suppose your program compiled with “unchecked” warnings, perhaps
because you used casts or mixed generic and raw Entry types. Then it is
possible for an Entry<string, Integer> to have a key of a different type.

Therefore, it is also necessary to have safety checks at runtime. The compiler
inserts a cast whenever one reads from an expression with erased type.
Consider, for example,

Entry<String, Integer> entry = ...;

String key = entry.getKey();
Since the erased getkey method returns an Object, the compiler generates code
equivalent to

String key = (String) entry.getKey();

6.5.3 Bridge Methods

In the preceding sections, you have seen the basics of what erasure does. It
is simple and safe. Well, almost simple. When erasing method parameter and
return types, it is sometimes necessary for the compiler to synthesize bridge
methods. This is an implementation detail, and you don’t need to know about
it unless you want to know why such a method shows up in a stack trace,
or you want an explanation for one of the more obscure limitations on Java
generics (see Section 6.6.6, "Methods May Not Clash after Erasure,” page 224).

Consider this example:

public class WordlList extends ArraylList<String> {
public boolean add(String e) {
return isBadWord(e) ? false : super.add(e);

}
_—

Now consider this code fragment:

WordList words = ...;
ArraylList<String> strings = words; // OK—conversion to superclass
strings.add("C++");
The last method call invokes the (erased) add(object) method of the ArraylList
class.

One would reasonably expect dynamic method lookup to work in this case
so that the add method of WordList, not the add method of ArrayList, is called
when add is invoked on a WordList object.



6.5 W Generics in the Java Virtual Machine

To make this work, the compiler synthesizes a bridge method in the WordList
class:

public boolean add(Object e) {
return add((String) e);
}

In the call strings.add("C++"), the add(Object) method is called, and it calls the
add(String) method of the WordList class.

Bridge methods can also be called when the return type varies. Consider this
method:
public class WordlList extends ArraylList<String> {
public String get(int i) {
return super.get(i).toLowerCase();

}
_—

In the wordList class, there are two get methods:

String get(int) // Defined in WordList

Object get(int) // Overrides the method defined in Arraylist
The second method is synthesized by the compiler, and it calls the first. This
is again done to make dynamic method lookup work.

These methods have the same parameter types but different return types. In
the Java language, you cannot implement such a pair of methods. But in the
virtual machine, a method is specified by its name, the parameter types, and
the return type, which allows the compiler to generate this method pair.

NOTE: Bridge methods are not only used for generic types. They are
also used to implement covariant return types. For example, in Chapter
4, you saw how you should declare a clone method with the appropriate
return type:

public class Employee implements Cloneable {
public Employee clone() throws CloneNotSupportedException { ... }

In this case, the Employee class has two clone methods:

Employee clone() // Defined above
Object clone() // Synthesized bridge method

The bridge method, again generated to make dynamic method lookup
work, calls the first method.




Chapter 6 W Generic Programming

6.6 Restrictions on Generics

There are several restrictions when using generic types and methods in
Java—some merely surprising and others genuinely inconvenient. Most of
them are consequences of type erasure. The following sections show you
those that you will most likely encounter in practice.

6.6.1 No Primitive Type Arguments

A type parameter can never be a primitive type. For example, you cannot
form an Arraylist<int>. As you have seen, in the virtual machine there is only
one type, the raw ArrayList that stores elements of type Object. An int is not
an object.

When generics were first introduced, this was not considered a big deal. After
all, one can form an ArraylList<Integer> and rely on autoboxing. Now that
generics are more commonly used, however, the pain is increasing. There is
a profusion of functional interfaces such as IntFunction, LongFunction, DoubleFunction,
ToIntFunction, TolongFunction, ToDoubleFunction—and that only takes care of unary
functions and three of the eight primitive types.

6.6.2 At Runtime, AU Types Are Raw

In the virtual machine, there are only raw types. For example, you cannot
inquire at runtime whether an Arraylist contains String objects. A condition
such as

if (a instanceof ArraylList<String>)
is a compile-time error since no such check could ever be executed.
A cast to an instantiation of a generic type is equally ineffective, but it is legal.

Object result = ...;
Arraylist<String> list = (Arraylist<String>) result;
// Warning—this only checks whether result is a raw ArrayList

Such a cast is allowed because there is sometimes no way to avoid it. If result
is the outcome of a very general process (such as calling a method through
reflection, see Chapter 4) and its exact type is not known to the compiler,
the programmer must use a cast. A cast to Arraylist or Arraylist<?> would not
suffice.

To make the warning go away, annotate the variable like this:

@SuppressWarnings("unchecked") Arraylist<String> list
= (ArraylList<String>) result;



6.6 W Restrictions on Generics m

CAUTION: Abusing the a@SuppressWarnings annotation can lead to heap
pollution—objects that should belong to a particular generic type
instantiation but actually belong to a different one. For example, you can
assign an ArraylList<Employee> to an ArraylList<String> reference. The
consequence is a ClassCastException when an element of the wrong type
is retrieved.

TIP: The trouble with heap pollution is that the reported runtime error
v is far from the source of the problem—the insertion of a wrong element.
If you need to debug such a problem, you can use a “checked view.”
Where you constructed, say, an ArrayList<String>, instead use

List<String> strings
= Collections.checkedList(new ArrayList<>(), String.class);

The view monitors all insertions into the list and throws an exception
when an object of the wrong type is added.

The getClass method always returns a raw type. For example, if list is an
Arraylist<String>, then list.getClass() returns Arraylist.class. In fact, there is no
Arraylist<String>.class—such a class literal is a syntax error.

Also, you cannot have type variables in class literals. There is no T.class,
T[].class, or ArraylList<T>.class.

6.6.3 You Cannot Instantiate Type Variables

You cannot use type variables in expressions such as new T(...) or new T[...].
These forms are outlawed because they would not do what the programmer
intends when T is erased.

If you want to create a generic instance or array, you have to work harder.
Suppose you want to provide a repeat method so that Arrays.repeat(n, obj) makes
an array containing n copies of obj. Of course, you'd like the element type of
the array to be the same as the type of obj. This attempt does not work:
public static <T> T[] repeat(int n, T obj) {

T[] result = new T[n]; // Error—cannot construct an array new T[...]

for (int i = 0; i < n; i++) result[i] = obj;

return result;

}

To solve this problem, ask the caller to provide the array constructor as a
method reference:

String[] greetings = Arrays.repeat(10, "Hi", String[]::new);



Chapter 6 W Generic Programming

Here is the implementation of the method:

public static <T> T[] repeat(int n, T obj, IntFunction<T[]> constr) {
T[] result = constr.apply(n);
for (int i = 0; 1 < n; i++) result[i] = obj;
return result;

}

Alternatively, you can ask the user to supply a class object, and use reflection.

public static <T> T[] repeat(int n, T obj, Class<T> cl) {
aSuppressWarnings("unchecked") T[] result
= (T[1) java.lang.reflect.Array.newInstance(cl, n);
for (int i = 0; i < n; i++) result[i] = obj;
return result;

}

This method is called as follows:
String[] greetings = Arrays.repeat(10, "Hi", String.class);

Another option is to ask the caller to allocate the array. Usually, the caller is
allowed to supply an array of any length, even zero. If the supplied array
is too short, the method makes a new one, using reflection.

public static <T> T[] repeat(int n, T obj, T[] array) {
T[] result;
if (array.length >= n)
result = array;
else {
aSuppressWarnings("unchecked") T[] newArray
= (T[1) java.lang.reflect.Array.newInstance(
array.getClass().getComponentType(), n);
result = newArray;
}
for (int i = 0; 1 < n; i++) result[i] = obj;
return result;

0 TIP: You can instantiate an ArrayList with a type variable. For example,
the following is entirely legal:
public static <T> Arraylist<T> repeat(int n, T obj) {
ArrayList<T> result = new Arraylist<>(); // OK
for (int i = 0; i < n; i++) result.add(obj);
return result;

}

This is much simpler than the workarounds you just saw, and |
recommend it whenever you don’t have a compelling reason for producing
an array.




6.6 W Restrictions on Generics

NOTE: If a generic class needs a generic array that is a private part of
the implementation, you can get away with just constructing an Object[]
array. This is what the ArraylList class does:

public class ArrayList<E> {
private Object[] elementData;

public E get(int index) {
return (E) elementData[index];

}

6.6.4 You Cannot Construct Arrays of Parameterized Types

Suppose you want to create an array of Entry objects:

Entry<String, Integer>[] entries = new Entry<String, Integer>[100];
// Error—cannot construct an array with generic component type

This is a syntax error. The construction is outlawed because, after erasure,
the array constructor would create a raw Entry array. It would then be possible
to add Entry objects of any type (such as Entry<tmployee, Manager>) without an
ArrayStoreException.

Note that the type Entry<string, Integer>[] is perfectly legal. You can declare a
variable of that type. If you really want to initialize it, you can, like this:

aSuppressWarnings("unchecked") Entry<String, Integer>[] entries
= (Entry<String, Integer>[]) new Entry<?, ?>[100];

But it is simpler to use an array list:

Arraylist<Entry<String, Integer>> entries = new ArraylList<>(100);

Recall that a varargs parameter is an array in disguise. If such a parameter
is generic, you can bypass the restriction against generic array creation.
Consider this method:

public static <T> ArraylList<T> asList(T... elements) {
ArrayList<T> result = new ArraylList<>();
for (T e : elements) result.add(e);
return result;

}

Now consider this call:

Entry<String, Integer> entryl = ...;
Entry<String, Integer> entry2 = ...;
Arraylist<Entry<String, Integer>> entries = Lists.asList(entryl, entry2);



Chapter 6 W Generic Programming

The inferred type for T is the generic type Entry<String, Integer>, and therefore
elements is an array of type Entry<String, Integer>. That is just the kind of array
creation that you cannot do yourself!

In this case, the compiler reports a warning, not an error. If your method
only reads elements from the parameter array, it should use the asafevarargs
annotation to suppress the warning:

@SafeVarargs public static <T> Arraylist<T> asList(T... elements)

This annotation can be applied to methods that are static, final, or private, or
to constructors. Any other methods might be overridden and are not eligible
for the annotation.

6.6.5 Class Type Variahles Are Not Valid in Static Contexts

Consider a generic class with type variables, such as Entry<k, V>. You cannot
use the type variables K and v with static variables or methods. For example,
the following does not work:
public class Entry<K, V> {
private static V defaultValue;
// Error—V in static context

public static void setDefault(V value) { defaultValue = value; }
// Error—V in static context

}

After all, type erasure means there is only one such variable or method in
the erased Entry class, and not one for each K and V.

6.6.6 Methods May Not Clash after Erasure

You may not declare methods that would cause clashes after erasure. For
example, the following would be an error:
public interface Ordered<T> extends Comparable<T> {
public default boolean equals(T value) {

// Error—erasure clashes with Object.equals
return compareTo(value) == 0;

}

The equals(T value) method erases to equals(Object value), which clashes with the
same method from Object.



6.6 W Restrictions on Generics m

Sometimes the cause for a clash is more subtle. Here is a nasty situation:

public class Employee implements Comparable<Employee> {

public int compareTo(Employee other) {
return name.compareTo(other.name);
}

}

public class Manager extends Employee implements Comparable<Manager> {
// Error—cannot have two instantiations of Comparable as supertypes

public int compareTo(Manager other) {
return Double.compare(salary, other.salary);
}

}

The class Manager extends Employee and therefore picks up the supertype
Comparable<Employee>. Naturally, managers want to compare each other by salary,
not by name. And why not? There is no erasure. Just two methods

public int compareTo(Employee other)
public int compareTo(Manager other)

The problem is that the bridge methods clash. Recall from Section 6.5.3, “Bridge
Methods” (page 218) that both of these methods yield a bridge method

public int compareTo(Object other)

6.6.7 Exceptions and Generics

You cannot throw or catch objects of a generic class. In fact, you cannot even
form a generic subclass of Throwable:

public class Problem<T> extends Exception
// Error—a generic class can’t be a subtype of Throwable

You cannot use a type variable in a catch clause:

public static <T extends Throwable> void doWork(Runnable r, Class<T> cl) {

try {
r.run();

} catch (T ex) { // Error—can't catch type variable
Logger.getGlobal().log(..., ..., ex);

}

}

However, you can have a type variable in the throws declaration:



Chapter 6 W Generic Programming

public static <V, T extends Throwable> V doWork(Callable<V> ¢, T ex) throws T {
try {
return c.call();
} catch (Throwable realEx) {
ex.initCause(realEx);
throw ex;

CAUTION: You can use generics to remove the distinction between
checked and unchecked exceptions. The key ingredient is this pair of
methods:

public class Exceptions {
@SuppressWarnings("unchecked")
private static <T extends Throwable>
void throwAs(Throwable e) throws T {
throw (T) e; // The cast is erased to (Throwable) e

t
public static <V> V doWork(Callable<v> c) {

try {
return c.call();

} catch (Throwable ex) {
Exceptions.<RuntimeException>throwAs(ex);
return null;

}

I

}

Now consider this method:

public static String readAll(Path path) {
return dowork(() -> new String(Files.readAllBytes(path)));
}

Even though Files.readAllBytes throws a checked exception when the
path is not found, that exception is neither declared nor caught in
the readAll method!

6.7 Reflection and Generics

In the following sections, you will see what you can do with the generic
classes in the reflection package and how you can find out the small amount
of generic type information in the virtual machine that survives the erasure
process.



6.7 W Reflection and Generics

6.7.1 The Class<T> Class

The Class class has a type parameter, namely the class that the Class object
describes. Huh? Let’s do this slowly.

Consider the string class. In the virtual machine, there is a Class object for
this class, which you can obtain as "Fred".getClass() or, more directly, as the
class literal String.class. You can use that object to find out what methods
the class has, or to construct an instance.

The type parameter helps write typesafe code. Consider for example the
getConstructor method of Class<T>. It is declared to return a Constructor<T>. And
the newInstance method of Constructor<T> is declared to returns an object of type
7. That's why String.class has type Class<String>: Its getConstructor method yields
a Constructor<String>, whose newInstance method returns a String.

That information can save you a cast. Consider this method:

public static <T> ArraylList<T> repeat(int n, Class<T> cl)
throws ReflectiveOperationException {
ArrayList<T> result = new Arraylist<>();
for (int i = 0; i < n; i++)
result.add(cl.getConstructor().newInstance());
return result;

}

The method compiles since cl.getConstructor().newInstance() returns a result of

type T.

Suppose you call this method as repeat(10, Employee.class). Then T is inferred to
be the type Employee since Employee.class has type Class<Employee>. Therefore, the
return type is ArrayList<Employee>.

In addition to the getConstructor method, there are several other methods of
the Class class that use the type parameter. They are:

Class<? super T> getSuperclass()

<U> Class<? extends U> asSubclass(Class<U> clazz)

T cast(Object obj)

Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
T[] getEnumConstants()

As you have seen in Chapter 4, there are many situations where you know
nothing about the class that a Class object describes. Then, you can simply
use the wildcard type Class<?>.

6.7.2 Generic Type Information in the Virtual Machine

Erasure only affects instantiated type parameters. Complete information about
the declaration of generic classes and methods is available at runtime.

227



Chapter 6 W Generic Programming

For example, suppose a call obj.getClass() yields ArraylList.class. You cannot tell
whether obj was constructed as an Arraylist<String> or ArraylList<Employee>. But
you can tell that the class Arraylist is a generic class with a type parameter E
that has no bounds.

Similarly, consider the method

static <T extends Comparable<? super T>> void sort(List<T> list)
of the Collections class. As you saw in Chapter 4, you can get the corresponding
Method object as

Method m = Collections.class.getMethod("sort", List.class);
From this Method object, you can recover the entire method signature.

The interface Type in the java.lang.reflect package represents generic type
declarations. The interface has the following subtypes:

1. The class class, describing concrete types

2. The Typevariable interface, describing type variables (such as T extends
Comparable<? super T>)

The wildcardType interface, describing wildcards (such as ? super T)

The ParameterizedType interface, describing generic class or interface types
(such as Comparable<? super T>)

5. The GenericArrayType interface, describing generic arrays (such as T[])

Note that the last four subtypes are interfaces—the virtual machine instantiates
suitable classes that implement these interfaces.

Both classes and methods can have type variables. Technically speaking,
constructors are not methods, and they are represented by a separate class
in the reflection library. They too can be generic. To find out whether a
Class, Method, or Constructor object comes from a generic declaration, call the
getTypeParameters method. You get an array of Typevariable instances, one for each
type variable in the declaration, or an array of length 0 if the declaration was
not generic.

The Typevariable<d> interface is generic. The type parameter is Class<T>, Method,
or Constructor<T>, depending on where the type variable was declared. For
example, here is how you get the type variable of the ArrayList class:

TypeVariable<Class<ArrayList>>[] vars = Arraylist.class.getTypeParameters();
String name = vars[0].getName(); // "E"



Exercises

And here is the type variable of the Collections.sort method:

Method m = Collections.class.getMethod("sort", List.class);
TypeVariable<Method>[] vars = m.getTypeParameters();
String name = vars[0].getName(); // "T"

The latter variable has a bound, which you can process like this:

Type[] bounds = vars[0].getBounds();

if (bounds[0] instanceof ParameterizedType) { // Comparable<? super T>
ParameterizedType p = (ParameterizedType) bounds[0];
Typel[] typeArguments = p.getActualTypeArguments();
if (typeArguments[0] instanceof WildcardType) { // ? super T
WildcardType t = (WildCardType) typeArguments[0];
Type[] upper = t.getUpperBounds(); // ? extends ... & ...
Type[] lower = t.getLowerBounds(); // ? super ... & ...
if (lower.length > 0) {
String description = lower[0].getTypeName(); // "T"

}

This gives you a flavor of how you can analyze generic declarations. I won't
dwell on the details since this is not something that commonly comes up in
practice. The key point is that the declarations of generic classes and methods
are not erased and you have access to them through reflection.

Exercises

1. Implement a class Stack<e> that manages an array list of elements of type
E. Provide methods push, pop, and isEmpty.

2. Reimplement the Stack<t> class, using an array to hold the elements. If
necessary, grow the array in the push method. Provide two solutions, one
with an E[] array and one with an Object[] array. Both solutions should
compile without warnings. Which do you prefer, and why?

3. Implement a class Table<k, V> that manages an array list of Entry<k, V> ele-
ments. Supply methods to get the value associated with a key, to put a
value for a key, and to remove a key.

4. In the previous exercise, make Entry into a nested class. Should that class
be generic?

5. Consider this variant of the swap method where the array can be supplied

with varargs:



m Chapter 6 W Generic Programming

10.

11.

12.

public static <T> T[] swap(int i, int j, T... values) {
T temp = values[il;
values[i] = values[jl;
values[j] = temp;
return values;

}
Now have a look at the call
Double[] result = Arrays.swap(0, 1, 1.5, 2, 3);
What error message do you get? Now call
Double[] result = Arrays.<Double>swap(0, 1, 1.5, 2, 3);
Has the error message improved? What do you do to fix the problem?

Implement a generic method that appends all elements from one array
list to another. Use a wildcard for one of the type arguments. Provide
two equivalent solutions, one with a ? extends E wildcard and one with
? super E.

Implement a class Pair<e> that stores a pair of elements of type E. Provide
accessors to get the first and second element.

Modify the class of the preceding exercise by adding methods max and min,
getting the larger or smaller of the two elements. Supply an appropriate
type bound for E.

In a utility class Arrays, supply a method
public static <E> Pair<E> firstlast(ArraylList<___> a)

that returns a pair consisting of the first and last element of a. Supply an
appropriate type argument.

Provide generic methods min and max in an Arrays utility class that yield the
smallest and largest element in an array.

Continue the preceding exercise and provide a method minMax that yields
a Pair with the minimum and maximum.

Implement the following method that stores the smallest and largest
element in elements in the result list:
public static <T> void minmax(List<T> elements,
Comparator<? super T> comp, List<? super T> result)

Note the wildcard in the last parameter—any supertype of T will do to
hold the result.



Exercises m

13. Given the method from the preceding exercise, consider this method:

public static <T> void maxmin(List<T> elements,
Comparator<? super T> comp, List<? super T> result) {
minmax(elements, comp, result);
Lists.swapHelper(result, 0, 1);
}
Why would this method not compile without wildcard capture? Hint: Try

to supply an explicit type Lists.<___>swapHelper(result, 0, 1).

14. Implement an improved version of the closeAll method in Section 6.3,
“Type Bounds” (page 210). Close all elements even if some of them throw
an exception. In that case, throw an exception afterwards. If two or more
calls throw an exception, chain them together.

15. Implement a method map that receives an array list and a Function<T, R>
object (see Chapter 3), and that returns an array list consisting of the
results of applying the function to the given elements.

16. What is the erasure of the following methods in the Collection class?

public static <T extends Comparable<? super T>>
void sort(List<T> list)

public static <T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

17. Define a class Employee that implements Comparable<Employee>. Using the javap
utility, demonstrate that a bridge method has been synthesized. What
does it do?

18. Consider the method
public static <T> T[] repeat(int n, T obj, IntFunction<T[]> constr)
in Section 6.6.3, “You Cannot Instantiate Type Variables” (page 221). The

call Arrays.repeat(10, 42, int[]::new) will fail. Why? How can you fix that?
What do you need to do for the other primitive types?

19. Consider the method
public static <T> Arraylist<T> repeat(int n, T obj)
in Section 6.6.3, “You Cannot Instantiate Type Variables” (page 221). This
method had no trouble constructing an ArrayList<T> which contains an array

of T values. Can you produce a T[] array from that array list without using
a Class value or a constructor reference? If not, why not?



Chapter 6 W Generic Programming

20.

21.

22.

23.

24.

25.

Implement the method

@SafeVarargs public static final <T> T[] repeat(int n, T... objs)

Return an array with n copies of the given objects. Note that no Class
value or constructor reference is required since you can reflectively
increase objs.

Using the @safevarargs annotation, write a method that can construct arrays
of generic types. For example,

List<String>[] result = Arrays.<List<String>>construct(10);
// Sets result to a List<String>[] of size 10

Improve the method public static <V, T extends Throwable> V doWork(Callable<V> c,
T ex) throws T of Section 6.6.7, “Exceptions and Generics” (page 225) so that
one doesn't have to pass an exception object, which may never get used.
Instead, accept a constructor reference for the exception class.

In the cautionary note at the end of Section 6.6.7, “Exceptions and
Generics” (page 225), the throwAs helper method is used to “cast” ex into a
RuntimeException and rethrow it. Why can’t you use a regular cast, i.e. throw
(RuntimeException) ex?

Which methods can you call on a variable of type Class<?> without using
casts?

Write a method public static String genericDeclaration(Method m) that returns
the declaration of the method nm listing the type parameters with their
bounds and the types of the method parameters, including their type
arguments if they are generic types.



This page intentionally left blank



Collections

Topics in This Chapter

= 7.1 An Overview of the Collections Framework — page 236
= 7.2 Tterators — page 240

= 7.3 Sets — page 242

= 7.4 Maps — page 243

= 7.5 Other Collections — page 247

= 7.6 Views — page 252

= Exercises — page 255



Chaprer

Many data structures have been developed so programmers can store and
retrieve values efficiently. The Java API provides implementations of common
data structures and algorithms, as well as a framework to organize them. In
this chapter, you will learn how to work with lists, sets, maps, and other
collections.

The key points of this chapter are:

1.

The Collection interface provides common methods for all collections, except
for maps which are described by the Map interface.

A list is a sequential collection in which each element has an integer
index.

A set is optimized for efficient containment testing. Java provides HashSet
and TreeSet implementations.

For maps, you have the choice between HashMap and TreeMap implementations.
A LinkedHashMap retains insertion order.

The collection interface and Collections class provide many useful algorithms:
set operations, searching, sorting, shuffling, and more.

Views provide access to data stored elsewhere using the standard
collection interfaces.

235



Chapter 7 m Collections

7.1 An Overview of the Collections Framework

The Java collections framework provides implementations of common data
structures. To make it easy to write code that is independent of the choice
of data structures, the collections framework provides a number of common
interfaces, shown in Figure 7-1. The fundamental interface is Collection whose

methods are shown in Table 7-1.

«interface»
RandomAccess

«interface»
Iterable

«interface»

Collection

«interface» «interface»
List Set

«interface»
SortedSet

T

«interface»
NavigableSet

«interface» «interface»
Iterator Map
«interface» «interface»
ListIterator SortedMap
«interface»
NavigableMap

«interface»
Queue

T

«interface»
Deque

Figure 7-1 Interfaces in the Java collections framework

Table 7-1 The Methods of the Collection<E> Interface

Method

Description

boolean add(E e)
boolean addAl1(Collection<? extends E> c)

Adds e, or the elements in c. Returns
true if the collection changed.

boolean remove(Object o)

boolean removeAll(Collection<?> c)

boolean retainAll(Collection<?> c)

boolean removeIf(Predicate<? super E> filter)
void clear()

Removes o, or the elements in ¢, or the
elements not in ¢, or matching
elements, or all elements. The first four
methods return true if the collection
changed.

(Continues)



7.1 ®m An Overview of the Collections Framework

Table 7-1 The Methods of the Collection<E> Interface (Continued)

Method Description

int size() Returns the number of elements in this
collection.

boolean isEmpty() Returns true if this collection is empty,

boolean contains(Object o) or contains o, or contains all elements

boolean containsAll(Collection<?> ¢) in c.

Iterator<E> iterator() Yields an iterator, or a stream, or a

Stream<E> stream() possibly parallel stream, or a spliterator

Stream<E> parallelStream() for visiting the elements of this

Spliterator<E> spliterator() collection. See Section 7.2 for iterators

and Chapter 8 for streams. Spliterators
are only of interest to implementors of

streams.
Object[] toArray() Returns an array with the elements of
T[] toArray(T[] a) this collection. The second method

returns a if it has sufficient length.

A Llist is a sequential collection: Elements have position 0, 1, 2, and so on.
Table 7-2 shows the methods of that interface.

The List interface is implemented both by the ArrayList class, which you have
seen throughout this book, and the LinkedList class. If you took a course on
data structures, you probably remember a linked list—a sequence of linked
nodes, each carrying an element. Insertion in the middle of a linked list is
speedy—you just splice in a node. But to get to the middle, you have to follow
all the links from the beginning, which is slow. There are applications for
linked lists, but most application programmers will probably stick with array
lists when they need a sequential collection. Still, the List interface is useful.
For example, the method Collections.nCopies(n, o) returns a List object with n
copies of the object 0. That object “cheats” in that it doesn't actually store
n copies but, when you ask about any one of them, returns o.

CAUTION: The List interface provides methods to access the nth element
of a list, even though such an access may not be efficient. To indicate
that it is, a collection class should implement the RandomAccess interface.
This is a tagging interface without methods. For example, ArrayList
implements List and RandomAccess, but LinkedList implements only the List
interface.

237



m Chapter 7 m Collections

Table 7-2 The List Interface

Method

Description

boolean add(int index, E e)
boolean addAll(int index,
Collection<? extends E> c)
boolean add(E e)
boolean addAl1(Collection<? extends E> c)

Adds e, or the elements in ¢, before
index or to the end. Returns true if the
list changed.

E get(int index)
E set(int index, E element)
E remove(int index)

Gets, sets, or removes the element at
the given index. The last two methods
return the element at the index before
the call.

int index0f(Object o)
int lastIndex0f(Object o)

Returns the index of the first or last
element equal to o, or -1 if there is no
match.

ListIterator<E> listIterator()
ListIterator<E> listIterator(int index)

Yields a list iterator for all elements or
the elements starting at index.

void replaceAll(UnaryOperator<E> operator)

Replaces each element with the result
of applying the operator to it.

void sort(Comparator<? super E> c)

Sorts this list, using the ordering given
by c.

static List<E> of(E... elements)

Yields an unmodifiable list containing
the given elements.

List<E> subList(int fromIndex, int toIndex)

Yields a view (Section 7.6) of the sublist
starting at fromIndex and ending before
toIndex.

In a set, elements are not inserted at a particular position, and duplicate ele-
ments are not allowed. A SortedSet allows iteration in sort order, and a
NavigableSet has methods for finding neighbors of elements. You will learn
more about sets in Section 7.3, “Sets” (page 242).

A Queue retains insertion order, but you can only insert elements at the tail
and remove them from the head (just like a queue of people). A Deque is a
double-ended queue with insertion and removal at both ends.

All collection interfaces are generic, with a type parameter for the element
type (Collection<E>, List<E>, and so on). The Map<k, V> interface has a type
parameter K for the key type and v for the value type.



7.1 ®m An Overview of the Collections Framework

You are encouraged to use the interfaces as much as possible in your code.
For example, after constructing an ArrayList, store the reference in a variable
of type List:

List<String> words = new ArraylList<>();

Whenever you implement a method that processes a collection, use the least
restrictive interface as parameter type. Usually, a Collection, List, or Map will
suffice.

One advantage of a collections framework is that you don’t have to reinvent
the wheel when it comes to common algorithms. Some basic algorithms (such
as addAll and removeIf) are methods of the Collection interface. The Collections
utility class contains many additional algorithms that operate on various kinds
of collections. You can sort, shuffle, rotate, and reverse lists, find the maximum
or minimum, or the position of an arbitrary element in a collection, and
generate collections with no elements, one element, or n copies of the same
element. Table 7-3 provides a summary.

Table 7-3 Useful Methods of the Collections Class

Method (all are static) Description

boolean disjoint(Collection<?> c1, Collection<?> c2) Returns true if the collections
have no elements in common.

boolean addAl1(Collection<? super T> ¢, T... elements) Adds all elements to c.

void copy(List<? super T> dest, List<? extends T> src) Copies all elements from src
to the same indexes in dest
(which must be at least as
long as src).

boolean replaceAll(List<T> list, T oldval, T newval) Replaces all oldval elements
with newVal, either of which
may be null. Returns true if at
least one match was found.

void fill(List<? super T> list, T obj) Sets all elements of the list
to obj.
List<T> nCopies(int n, T o) Yields an immutable list with

n copies of o.

int frequency(Collection<?> ¢, Object o) Returns the number of
elements in ¢ equal to o.

(Continues)



m Chapter 7 m Collections

Tahble 7-3 Useful Methods of the Collections Class (Continued)

Method (all are static) Description

int index0OfSubList(List<?> source, List<?> target) Returns the start of the first or
int lastIndexOfSubList(List<?> source, List<?> target) last occurrence of the target

list within the source list, or
-1 if there is none.

int binarySearch(List<? extends
Comparable<? super T>> list, T key)

int binarySearch(List<? extends T> list, T key,
Comparator<? super T> ¢)

Returns the position of the
key, assuming that the list is
sorted by the natural element
order or c. If the key is not
present, returns -i - 1 where
i is the location at which the
key should be inserted.

sort(List<T> list)
sort(List<T> list, Comparator<? super T> )

Sorts the list, using the natural
element order or c.

void swap(List<?> list, int i, int j)

Swaps the elements at the
given position.

void rotate(List<?> list, int distance)

Rotates the list, moving the
element with index i to
(i + distance) % list.size().

void reverse(List<?> list)
void shuffle(List<?> list)
void shuffle(List<?> list, Random rnd)

Reverses or randomly shuffles
the list.

synchronized(Collection|List|Set|SortedSet|
NavigableSet [Map|SortedMap|NavigableMap)()

Yields a synchronized view
(see Section 7.6).

unmodifiable(Collection|List|Set|SortedSet|
NavigableSet|Map|SortedMap|NavigableMap)()

Yields an unmodifiable view
(see Section 7.6).

checked(Collection|List|Set|SortedSet|

NavigableSet|Map|SortedMap|NavigableMap |Queue)()

Yields a checked view (see
Section 7.6).

7.2 lterators

Each collection provides a way to iterate through its elements in some order.
The Iterable<T> superinterface of Collection defines a method

Iterator<T> iterator()

It yields an iterator that you can use to visit all elements.



7.2 W Iterators

Collection<String> coll = ...;
Tterator<String> iter = coll.iterator();
while (iter.hasNext()) {
String element = iter.next();
Process element

}

In this case, you can simply use the enhanced for loop:

for (String element : coll) {
Process element
}

NOTE: For any object ¢ of a class that implements the Iterable<E>
interface, the enhanced for loop is translated to the preceding form.

The Iterator interface also has a remove method which removes the previously
visited element. This loop removes all elements that fulfill a condition:
while (iter.hasNext()) {
String element = iter.next();
if (element fulfills the condition)
iter.remove();

}
However, it is easier to use the removeIf method:
coll.removeIf(e -> e fulfills the condition);

CAUTION: The remove method removes the last element that the iterator
has returned, not the element to which the iterator points. You can’t call
remove twice without an intervening call to next or previous.

The ListIterator interface is a subinterface of Iterator with methods for adding
an element before the iterator, setting the visited element to a different value,
and for navigating backwards. It is mainly useful for working with linked lists.

List<String> friends = new LinkedList<>();
ListIterator<String> iter = friends.listIterator();
iter.add("Fred"); // Fred |

iter.add("wilma"); // Fred Wilma |

iter.previous(); // Fred | Wilma
iter.set("Barney"); // Fred | Barney

CAUTION: If you have multiple iterators visiting a data structure and
one of them mutates it, the other ones can become invalid. An invalid
iterator may throw a ConcurrentModificationException if you continue using it.




Chapter 7 m Collections

7.3 Sets

A set can efficiently test whether a value is an element, but it gives up
something in return: It doesn't remember in which order elements were
added. Sets are useful whenever the order doesn't matter. For example, if
you want to disallow a set of bad words as usernames, their order doesn't
matter. You just want to know whether a proposed username is in the set
or not.

The set interface is implemented by the HashSet and TreeSet classes. Internally,
these classes use very different implementations. If you have taken a course
in data structures, you may know how to implement hash tables and binary
trees—but you can use these classes without knowing their internals.

Generally, hash sets are a bit more efficient, provided you have a good hash
function for your elements. Library classes such as String or Path have good
hash functions. You learned how to write hash function for your own classes
in Chapter 4.

For example, that set of bad words can be implemented simply as

Set<String> badWords = new HashSet<>();

badWords.add("sex");

badWords.add("drugs");

badWords.add("c++");

if (badWords.contains(username.toLowerCase()))
System.out.printin("Please choose a different user name");

You use a TreeSet if you want to traverse the set in sorted order. One reason
you might want to do this is to present users a sorted list of choices.

The element type of the set must implement the Comparable interface, or you
need to supply a Comparator in the constructor.

TreeSet<String> countries = new TreeSet<>(); // Visits added countries in sorted order
countries = new TreeSet<>((u, v) ->

u.equals(v) ? 0

: u.equals("USA") ? -1

: v.equals("USA") ? 1

: u.compareTo(v));

// USA always comes first

The Treeset class implements the SortedSet and NavigableSet interfaces, whose
methods are shown in Tables 7-4 and 7-5.



7.4 W Maps

Table 7-4 sortedSet<E> Methods

Method Description

E first() The first and last element in

E last() this set.

SortedSet<E> headSet(E toFlement) Returns a view of the elements
SortedSet<E> subSet(E fromElement, E toElement) starting at fromElement and ending
SortedSet<E> tailSet(E fromElement) before toElement.

Table 7-5 nNavigableSet<E> Methods

Method

Description

E higher(E e)
E ceiling(E e)
E floor(E e)
E lower(E e)

Returns the closest
element >|>|<|< e.

E pollFirst()
E polllast()

Removes and returns
the first or last element,

or returns null if the set
is empty.

NavigableSet<E> headSet(E toElement, boolean inclusive) Returns a view of the
NavigableSet<E> subSet(E fromElement, boolean fromInclusive, elements from

E toElement, boolean toExclusive) fromElement to toElement
NavigableSet<E> tailSet(E fromElement, boolean inclusive) (inclusive or exclusive).

7.4 Maps

Maps store associations between keys and values. Call put to add a new
association, or change the value of an existing key:

Map<String, Integer> counts = new HashMap<>();
counts.put("Alice", 1); // Adds the key/value pair to the map
counts.put("Alice", 2); // Updates the value for the key

This example uses a hash map which, as for sets, is usually the better choice
if you don't need to visit the keys in sorted order. If you do, use a TreeMap
instead.

Here is how you can get the value associated with a key:

int count = counts.get("Alice");



Chapter 7 m Collections

If the key isn't present, the get method returns null. In this example, that
would cause a NullPointerException when the value is unboxed. A better
alternative is

int count = counts.getOrDefault("Alice", 0);
Then a count of 0 is returned if the key isn’t present.

When you update a counter in a map, you first need to check whether the
counter is present, and if so, add 1 to the existing value. The merge method
simplifies that common operation. The call

counts.merge(word, 1, Integer::sum);

associates word with 1 if the key wasn't previously present, and otherwise
combines the previous value and 1, using the Integer::sun function.

Table 7-6 summarizes the map operations.

You can get views of the keys, values, and entries of a map by calling these
methods:
Set<K> keySet()

Set<Map.Entry<K, V>> entrySet()
Collection<V> values()

The collections that are returned are not copies of the map data, but they
are connected to the map. If you remove a key or entry from the view, then
the entry is also removed from the underlying map.

To iterate through all keys and values of a map, you can iterate over the set
returned by the entrySet method:

for (Map.Entry<String, Integer> entry : counts.entrySet()) {
String k = entry.getKey();
Integer v = entry.getValue();
Process k, v

}
Or simply use the forfach method:

counts.forkach((k, v) -> {
Process k, v

b

CAUTION: Some map implementations (for example, ConcurrentHashMap)
disallow null for keys or values. And with those that allow it (such as
HashMap), you need to be very careful if you do use null values. A number
of map methods interpret a null value as an indication that an entry is
absent, or should be removed.




Table 7-6 wmap<k, v> Methods

Method

Description

V get(Object key)
V getOrDefault(Object key,
V defaultvalue)

If key is associated with a non-null value v,
returns v. Otherwise, returns null or
defaultVvalue.

V put(K key, V value)

If key is associated with a non-null value v,
associates key with value and returns v.
Otherwise, adds entry and returns null.

V putIfAbsent(K key, V value)

If key is associated with a non-null value v,
ignores value and returns v. Otherwise, adds
entry and returns null.

V merge(K key, V value, BiFunction<
? super V,? super V,? extends V>
remappingFunction)

If key is associated with a non-null value v,
applies the function to v and value and
either associates key with the result or, if
the result is null, removes the key.
Otherwise, associates key with value. Returns
get(key).

V compute(K key, BiFunction<
? super K,? super V,? extends V>
remappingFunction)

Applies the function to key and get(key).
Either associates key with the result or, if
the result is null, removes the key. Returns
get(key).

V computeIfPresent(K key, BiFunction<
? super K,? super V,? extends V>
remappingFunction)

If key is associated with a non-null value v,
applies the function to key and v and either
associates key with the result or, if the result
is null, removes the key. Returns get(key).

V computeIfAbsent(K key, Function<
? super K,? extends V>
mappingFunction)

Applies the function to key unless key is
associated with a non-null value. Either
associates key with the result or, if the result
is null, removes the key. Returns get(key).

void putAll(Map<? extends K,
? extends V> m)

Adds all entries from m.

V remove(Object key)
V replace(K key, V newvalue)

Removes the key and its associated value,
or replaces the old value. Returns the old
value, or null if none existed.

(Continues)



m Chapter 7 m Collections

Table 7-6 map<k, v> Methods (Continued)

Method

Description

boolean remove(Object key,
Object value)

boolean replace(K key, V value,
V newValue)

Provided that key was associated with value,
removes the entry or replaces the old value
and returns true. Otherwise, does nothing
and returns false. These methods are mainly
of interest when the map is accessed
concurrently.

int size()

Returns the number of entries.

boolean isEmpty()

Checks if this map is empty.

void clear()

Removes all entries.

void forEach(BiConsumer<? super K,
? super V> action)

Applies the action to all entries.

void replaceAll(BiFunction<? super K,
? super V,? extends V> function)

Calls the function on all entries. Associates
keys with non-null results and removes keys
with null results.

boolean containsKey(Object key)
boolean containsValue(Object value)

Checks whether the map contains the given
key or value.

Set<k> keySet()
Collection<V> values()
Set<Map.Entry<K, V>> entrySet()

Returns views of the keys, values, and
entries.

static Map<k, V> of()

static Map<K, V> of(K k1, V v1)

static Map<K, V> of(K k1, V vi,
K k2, V v2)

Yields an unmodifiable map containing up
to ten keys and values.

TIP: Sometimes, you need to present map keys in an order that is
j different from the sort order. For example, in the JavaServer Faces
framework, you specify labels and values of a selection box with a map.
Users would be surprised if the choices were sorted alphabetically (Friday,
Monday, Saturday, Sunday, Thursday, Tuesday, Wednesday) or in the
hash code order. In that case, use a LinkedHashMap that remembers
the order in which entries were added and iterates through them in that

order.




7.5 W Other Collections

7.5 Other Collections

In the following sections, I briefly discuss some collection classes that you
may find useful in practice.

7.5.1 Properties

The Properties class implements a map that can be easily saved and loaded
using a plain text format. Such maps are commonly used for storing
configuration options for programs. For example:

Properties settings = new Properties();

settings.put("width", "200");

settings.put("title", "Hello, World!");

try (OutputStream out = Files.newOutputStream(path)) {
settings.store(out, "Program Properties");

}

The result is the following file:

#Program Properties

#Mon Nov 03 20:52:33 CET 2014
width=200

title=Hello, World\!

D NOTE: As of Java 9, property files are encoded in UTF-8. (Previously,
they were encoded in ASCII, with characters greater than '\u07e' written
as Unicode escapes \unnnn.) Comments start with # or !. A newline in
a key or value is written as \n. The characters \, #, ! are escaped as
\\, \#, \L.

To load properties from a file, call

try (InputStream in = Files.newInputStream(path)) {
settings.load(in);
}

Then use the getProperty method to get a value for a key. You can specify a
default value used when the key isn't present:

String title = settings.getProperty("title", "New Document");

NOTE: For historical reasons, the Properties class implements Map<Object,
Object> even though the values are always strings. Therefore, don’t use
the get method—it returns the value as an Object.

247



Chapter 7 m Collections

The system.getProperties method yields a Properties object with system properties.
Table 7-7 describes the most useful ones.

Table 7-7 Useful System Properties

Property Key

Description

user.dir The “current working directory” of this virtual machine
user.home The user’s home directory
user.name The user’s account name

java.version

The Java runtime version of this virtual machine

java.home

The home directory of the Java installation

java.class.path

The class path with which this VM was launched

java.io.tmpdir

A directory suitable for temporary files (such as /tmp)

0s.name The name of the operating system (such as Linux)
o0s.arch The architecture of the operating system (such as amd64)
0s.version The version of the operating system (such as 3.13.0-34-generic)

file.separator

The file separator (/ on Unix, \ on Windows)

path.separator

The path separator (: on Unix, ; on Windows)

line.separator

The newline separator (\n on Unix, \r\n on Windows)

7.5.2 Bit Sets

The Bitset class stores a sequence of bits. A bit set packs bits into an array
of long values, so it is more efficient to use a bit set than an array of boolean
values. Bit sets are useful for sequences of flag bits or to represent sets of
non-negative integers, where the ith bit is 1 to indicate that i is contained in
the set.

The Bitset class gives you convenient methods for getting and setting individ-
ual bits. This is much simpler than the bit-fiddling necessary to store bits in
int or long variables. There are also methods that operate on all bits together
for set operations, such as union and intersection. See Table 7-8 for a complete
list. Note that the BitSet class is not a collection class—it does not implement
Collection<Integer>.


http://java.io.tmpdir

7.5 W Other Collections m

Table 7-8 Methods of the BitSet Class

Method

Description

BitSet()
BitSet(int nbits)

Constructs a bit set that can initially hold
64, or nbits, bits.

void set(int bitIndex)

void set(int fromIndex, int toIndex)

void set(int bitIndex, boolean value)

void set(int fromIndex, int toIndex,
boolean value)

Sets the bit at the given index, or from
fromIndex (inclusive) to toIndex (exclusive),
to 1 or to the given value.

void clear(int bitIndex)
void clear(int fromIndex, int toIndex)
void clear()

Sets the bit at the given index, or from
fromIndex (inclusive) to toIndex (exclusive),
or all bits to o.

void flip(int bitIndex)
void flip(int fromIndex, int toIndex)

Flips the bit at the given index, or from
fromIndex (inclusive) to toIndex (exclusive).

boolean get(int bitIndex)
BitSet get(int fromIndex, int toIndex)

Gets the bit at the given index, or from
fromIndex (inclusive) to toIndex (exclusive).

int nextSetBit(int fromIndex)

int previousSetBit(int fromIndex)
int nextClearBit(int fromIndex)
int previousClearBit(int fromIndex)

Returns the index of the next/previous 1/0
bit, or -1 if none exists.

void and(BitSet set)
void andNot(BitSet set)
void or(BitSet set)
void xor(BitSet set)

Forms the
intersection | difference | union | symmetric
difference with set.

int cardinality()

Returns the number of 1 bits in this bit set.
Caution: The size method returns the
current size of the bit vector, not the size
of the set.

byte[] toByteArray[]
long[] tolongArray[]

Packs the bits of this bit set into an array.

IntStream stream()
String toString()

Returns a stream or string of the integers
(that is, indexes of 1 bits) in this bit set.

static BitSet valueOf(byte[] bytes)
static BitSet valueOf(long[] longs)
static BitSet valueOf(ByteBuffer bb)
static BitSet valueOf(LongBuffer 1b)

Yields a bit set containing the supplied bits.

boolean isEmpty()
boolean intersects(BitSet set)

Checks whether this bit set is empty, or
has an element in common with set.




Chapter 7 m Collections

7.5.3 Enumeration Sets and Maps

If you collect sets of enumerated values, use the EnunSet class instead of BitSet.
The Enunset class has no public constructors. Use a static factory method to
construct the set:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY };

Set<Weekday> always = EnumSet.all0f(Weekday.class);

Set<Weekday> never = EnumSet.noneOf(Weekday.class);

Set<Weekday> workday = EnumSet.range(Weekday.MONDAY, Weekday.FRIDAY);
Set<Weekday> mwf = EnumSet.of(Weekday.MONDAY, Weekday.WEDNESDAY, Weekday.FRIDAY);

You can use the methods of the Set interface to work with an EnumSet.

An EnunMap is a map with keys that belong to an enumerated type. It is imple-
mented as an array of values. You specify the key type in the constructor:

EnumMap<Weekday, String> personInCharge = new EnumMap<>(Weekday.class);
personInCharge.put(Weekday.MONDAY, "Fred");

7.5.4 Stacks, Queues, Deques, and Priority Queues

A stack is a data structure for adding and removing elements at one end (the
“top” of the stack). A queue lets you efficiently add elements at one end
(the “tail”) and remove them from the other end (the “head”). A double-ended
queue, or deque, supports insertion and removal at both ends. With all these
data structures, adding elements in the middle is not supported.

The Queue and Deque interfaces define the methods for these data structures.
There is no Stack interface in the Java collections framework, just a legacy
Stack class from the earliest days of Java that you should avoid. If you need
a stack, queue, or deque and are not concerned about thread safety, use an
ArrayDeque.

With a stack, use the push and pop methods.

ArrayDeque<String> stack = new ArrayDeque<>();

stack.push("Peter");

stack.push("Paul");

stack.push("Mary");

while (!stack.isEmpty())
System.out.println(stack.pop());

With a queue, use add and remove.

Queue<String> queue = new ArrayDeque<>();

queue.add("Peter");

queue.add("Paul");

queue.add("Mary");

while (!queue.isEmpty())
System.out.printin(queue.remove());



7.5 W Other Collections

Threadsafe queues are commonly used in concurrent programs. You will find
more information about them in Chapter 10.

A priority queue retrieves elements in sorted order after they were inserted in
arbitrary order. That is, whenever you call the remove method, you get the
smallest element currently in the priority queue.

A typical use for a priority queue is job scheduling. Each job has a priority.
Jobs are added in random order. Whenever a new job can be started, the
highest priority job is removed from the queue. (Since it is traditional for
priority 1 to be the “highest” priority, the remove operation yields the minimum
element.)

public class Job implements Comparable<Job> { ... }

PriorityQueue<Job> jobs = new PriorityQueue<>();
jobs.add(new Job(4, "Collect garbage"));
jobs.add(new Job(9, "Match braces"));
jobs.add(new Job(1, "Fix memory leak"));

while (jobs.size() > 0) {
Job job = jobs.remove(); // The most urgent jobs are removed first
execute(job);

}

Just like a TreeSet, a priority queue can hold elements of a class that implements
the Comparable interface, or you can supply a Comparator in the constructor.
However, unlike a TreeSet, iterating over the elements does not necessarily
yield them in sorted order. The priority queue uses algorithms for adding
and removing elements that cause the smallest element to gravitate to the
root, without wasting time on sorting all elements.

7.5.5 Weak Hash Maps

The WeakHashMap class was designed to solve an interesting problem. What
happens with a value whose key is no longer used anywhere in your program?
If the last reference to a key has gone away, there is no longer any way to
refer to the value object so it should be removed by the garbage collector.

It isn’t quite so simple. The garbage collector traces live objects. As long as
the map object is live, all entries in it are live and won't be reclaimed—and
neither will be the values that are referenced by the entries.

This is the problem that the WeakHashMap class solves. This data structure coop-
erates with the garbage collector to remove key/value pairs when the only
reference to the key is the one from the hash table entry.



Chapter 7 m Collections

Technically, the WeakHashMap uses weak references to hold keys. A WeakReference
object holds a reference to another object—in our case, a hash table key.
Objects of this type are treated in a special way by the garbage collector. If
an object is reachable only by a weak reference, the garbage collector reclaims
the object and places the weak reference into a queue associated with the
WeakReference object. Whenever a method is invoked on it, a WeakHashMap checks
its queue of weak references for new arrivals and removes the associated
entries.

7.6 Views

A collection view is a lightweight object that implements a collection interface,
but doesn't store elements. For example, the keySet and values methods of a
map yield views into the map.

In the following sections, you will see some views that are provided by the
Java collections framework.

7.6.1 Small Collections

The List, Set, and Map interfaces provide static methods yielding a set or list
with given elements, and a map with given key/value pairs.

For example,
List<String> names = List.of("Peter", "Paul", "Mary");
Set<Integer> numbers = Set.of(2, 3, 5);

yield a list and a set with three elements. For a map, specify the keys and
values like this:

Map<String, Integer> scores = Map.of("Peter", 2, "Paul", 3, "Mary", 5);
The elements, keys, or values may not be null.

The List and Set interfaces have 11 of methods with zero to ten arguments,
and an of method with a variable number of arguments. The specializations
are provided for efficiency.

For the Map interface, it is not possible to provide a version with variable ar-
guments since the argument types alternate between the key and value types.
There is a static method ofentries that accepts an arbitrary number of
Map.Entry<K, V> objects, which you can create with the static entry method. For
example,



7.6 W Views

import static java.util.Map.*;

Map<String, Integer> scores = ofEntries(
entry("Peter", 2),
entry("Paul", 3),
entry("Mary", 5));
The of and oftntries methods produce objects of classes that have an instance
variable for each element, or that are backed by an array.

These collection objects are unmodifiable. Any attempt to change their contents
results in an UnsupportedOperationException

If you want a mutable collection, you can pass the unmodifiable collection
to the constructor:

List<String> names = new ArraylList<>(List.of("Peter", "Paul", "Mary"));

NOTE: There is also a static Arrays.asList method that is similar to
List.of. It returns a mutable list that is not resizable. That is, you can
call set but not add or remove on the list.

7.6.2 Ranges

You can form a sublist view of a list. For example,

List<String> sentence = ...;
List<String> nextFive = sentence.subList(5, 10);

This view accesses the elements with index 5 through 9. Any mutations of
the sublist (such as setting, adding, or removing elements) affect the original.

For sorted sets and maps, you specify a range by the lower and upper bound:

TreeSet<String> words = ...;
SortedSet<String> asOnly = words.subSet("a", "b");

As with subList, the first bound is inclusive, and the second exclusive.

The headset and tailset methods yield a subrange with no lower or upper
bound.

NavigableSet<String> nAndBeyond = words.tailSet("n");

With the NavigableSet interface, you can choose for each bound whether it
should be inclusive or exclusive—see Table 7-5.

For a sorted map, there are equivalent methods subMap, headMap, and tailMap.



Chapter 7 m Collections

7.6.3 Unmodifiahle Views

Sometimes, you want to share the contents of a collection but you don't want
it to be modified. Of course, you could copy the values into a new collection,
but that is potentially expensive. An unmodifiable view is a better choice.
Here is a typical situation. A Person object maintains a list of friends. If the
getFriends gave out a reference to that list, a caller could mutate it. But it is
safe to provide an unmodifiable list view:

public class Person {
private ArraylList<Person> friends;

public List<Person> getFriends() {
return Collections.unmodifiableList(friends);

}
_—

All mutator methods throw an exception when they are invoked on an
unmodifiable view.

As you can see from Table 7-3, you can get unmodifiable views as collections,
lists, sets, sorted sets, navigable sets, maps, sorted maps, and navigable maps.

NOTE: In Chapter 6, you saw how it is possible to smuggle the wrong
kind of elements into a generic collection (a phenomenon called “heap
pollution”), and that a runtime error is reported when the inappropriate
element is retrieved, not when it is inserted. If you need to debug such
a problem, use a checked view. Where you constructed, say, an
Arraylist<String>, instead use

List<String> strings
= Collections.checkedList(new ArrayList<>(), String.class);

The view monitors all insertions into the list and throws an exception
when an object of the wrong type is added.

D NOTE: The Collections class produces synchronized views that ensure
safe concurrent access to data structures. In practice, these views are
not as useful as the data structures in the java.util.concurrent package
that were explicitly designed for concurrent access. | suggest you use

those classes and stay away from synchronized views.




Exercises

Exercises

1.

10.

Implement the “Sieve of Erathostenes” algorithm to determine all prime
numbers < n. Add all numbers from 2 to n to a set. Then repeatedly find
the smallest element s in the set, and remove s>, s - (s + 1), s - (s + 2),
and so on. You are done when s > n. Do this with both a HashSet<Integer>
and a BitSet.

In an array list of strings, make each string uppercase. Do this with (a)
an iterator, (b) a loop over the index values, and (c) the replaceAll method.

How do you compute the union, intersection, and difference of two sets,
using just the methods of the set interface and without using loops?

Produce a situation that yields a ConcurrentModificationException. What can
you do to avoid it?

Implement a method public static void swap(List<?> list, int i, int j) that
swaps elements in the usual way when the type of list implements the
RandomAccess interface, and that minimizes the cost of visiting the positions
at index i and j if it is not.

I encouraged you to use interfaces instead of concrete data structures—for
example, a Map instead of a TreeMap. Unfortunately, that advice goes only
so far. Suppose you have a method parameter of type Map<String,
Set<Integer>>, and someone calls your method with a HashMap<String,
HashSet<Integer>>. What happens? What parameter type can you use instead?

Write a program that reads all words in a file and prints out how often
each word occurred. Use a TreeMap<String, Integer>.

Write a program that reads all words in a file and prints out on which
line(s) each of them occurred. Use a map from strings to sets.

You can update the counter in a map of counters as

counts.merge(word, 1, Integer::sum);

Do the same without the merge method, (a) by using contains, (b) by using
get and a null check, (c) by using getordefault, (d) by using putIfAbsent.

Implement Dijkstra’s algorithm to find the shortest paths in a network of
cities, some of which are connected by roads. (For a description, check
out your favorite book on algorithms or the Wikipedia article.) Use a
helper class Neighbor that stores the name of a neighboring city and the
distance. Represent the graph as a map from cities to sets of neighbors.
Use a PriorityQueue<Neighbor> in the algorithm.



Chapter 7 m Collections

11.

12.

13.

14.

15.

16.

17.

18.

Write a program that reads a sentence into an array list. Then, using
Collections.shuffle, shuffle all but the first and last word, without copying
the words into another collection.

Using Collections.shuffle, write a program that reads a sentence, shuffles
the words, and prints the result. Fix the capitalization of the initial word
and the punctuation of the last word (before and after the shuffle). Hint:
Don't shuffle the words.

The LinkedHashMap calls the method removeEldestEntry whenever a new element
is inserted. Implement a subclass Cache that limits the map to a given size
provided in the constructor.

Write a method that produces an immutable list view of the numbers
from 0 to n, without actually storing the numbers.

Generalize the preceding exercise to an arbitrary IntFunction. Note that the
result is an infinite collection, so certain methods (such as size and toArray)
should throw an UnsupportedOperationException.

Improve the implementation of the preceding exercise by caching the last
100 computed function values.

Demonstrate how a checked view can give an accurate error report for
a cause of heap pollution.

The Collections class has static variables EMPTY_LIST, EMPTY _MAP, and EMPTY_SET.
Why are they not as useful as the emptyList, emptyMap, and emptySet methods?



This page intentionally left blank



Streams

Topics in This Chapter

= 8.1 From Iterating to Stream Operations — page 260
= 8.2 Stream Creation — page 261

= 8.3 The filter, map, and flatMap Methods — page 263
= 8.4 Extracting Substreams and Combining Streams — page 264
= 8.5 Other Stream Transformations — page 265

= 8.6 Simple Reductions — page 266

= 8.7 The Optional Type — page 267

= 8.8 Collecting Results — page 271

= 8.9 Collecting into Maps — page 273

= 8.10 Grouping and Partitioning — page 274

= 8.11 Downstream Collectors — page 275

= 8.12 Reduction Operations — page 277

= 8.13 Primitive Type Streams — page 279

= 8.14 Parallel Streams — page 280

= Exercises — page 283



Chaprer

Streams provide a view of data that lets you specify computations at a higher
conceptual level than with collections. With a stream, you specify what you
want to have done, not how to do it. You leave the scheduling of operations
to the implementation. For example, suppose you want to compute the average
of a certain property. You specify the source of data and the property, and
the stream library can then optimize the computation, for example by using
multiple threads for computing sums and counts and combining the results.

The key points of this chapter are:

1.

AR N

Iterators imply a specific traversal strategy and prohibit efficient concurrent
execution.

You can create streams from collections, arrays, generators, or iterators.
Use filter to select elements and map to transform elements.
Other operations for transforming streams include limit, distinct, and sorted.

To obtain a result from a stream, use a reduction operator such as count,
max, min, findFirst, or findAny. Some of these methods return an Optional value.

The optional type is intended as a safe alternative to working with null
values. To use it safely, take advantage of the ifPresent and ortlse methods.

You can collect stream results in collections, arrays, strings, or maps.

259



Chapter 8 m Streams

8. The groupingBy and partitioningdy methods of the Collectors class allow you
to split the contents of a stream into groups, and to obtain a result for
each group.

9. There are specialized streams for the primitive types int, long, and double.

10. Parallel streams automatically parallelize stream operations.

8.1 From Iterating to Stream Operations

When you process a collection, you usually iterate over its elements and do
some work with each of them. For example, suppose we want to count all
long words in a book. First, let's put them into a list:
String contents = new String(Files.readAl1Bytes(
Paths.get("alice.txt")), StandardCharsets.UTF_8); // Read file into string

List<String> words = List.of(contents.split("\\PL+"));
// Split into words; nonletters are delimiters

Now we are ready to iterate:

int count = 0;
for (String w : words) {

if (w.length() > 12) count++;
}

With streams, the same operation looks like this:

long count = words.stream()

filter(w -> w.length() > 12)

.count();
Now you don’t have to scan the loop for evidence of filtering and counting.
The method names tell you right away what the code intends to do. Moreover,
where the loop prescribes the order of operations in complete detail, a stream
is able to schedule the operations any way it wants, as long as the result is
correct.

Simply changing stream into parallelStream allows the stream library to do the
filtering and counting in parallel.
long count = words.parallelStream()

filter(w -> w.length() > 12)

.count();
Streams follow the “what, not how” principle. In our stream example, we
describe what needs to be done: get the long words and count them. We
don't specify in which order, or in which thread, this should happen. In



8.2 W Stream Creation

contrast, the loop at the beginning of this section specifies exactly how the
computation should work, and thereby forgoes any chances of optimization.

A stream seems superficially similar to a collection, allowing you to transform
and retrieve data. But there are significant differences:

1. A stream does not store its elements. They may be stored in an underlying
collection or generated on demand.

2. Stream operations don’'t mutate their source. For example, the filter
method does not remove elements from a stream, but it yields a new
stream in which they are not present.

3. Stream operations are lazy when possible. This means they are not exe-
cuted until their result is needed. For example, if you only ask for the
first five long words instead of all, the filter method will stop filtering
after the fifth match. As a consequence, you can even have infinite
streams!

Let us have another look at the example. The stream and parallelStrean methods
yield a stream for the words list. The filter method returns another stream that
contains only the words of length greater than twelve. The count method
reduces that stream to a result.

This workflow is typical when you work with streams. You set up a pipeline
of operations in three stages:

1. Create a stream.

2. Specity intermediate operations for transforming the initial stream into
others, possibly in multiple steps.

3. Apply a terminal operation to produce a result. This operation forces the
execution of the lazy operations that precede it. Afterwards, the stream
can no longer be used.

In our example, the stream was created with the stream or parallelStrean method.
The filter method transformed it, and count was the terminal operation.

In the next section, you will see how to create a stream. The subsequent
three sections deal with stream transformations. They are followed by five
sections on terminal operations.

8.2 Stream Creation

You have already seen that you can turn any collection into a stream with
the strean method of the Collection interface. If you have an array, use the
static Stream.of method instead.



Chapter 8 m Streams

Stream<String> words = Stream.of(contents.split("\\PL+"));
// split returns a String[] array
The of method has a varargs parameter, so you can construct a stream from
any number of arguments:

Stream<String> song = Stream.of("gently", "down", "the", "stream");
Use Arrays.stream(array, from, to) to make a stream from a part of an array.

To make a stream with no elements, use the static Stream.empty method:

Stream<String> silence = Stream.empty();
// Generic type <String> is inferred; same as Stream.<String>empty()
The strean interface has two static methods for making infinite streams. The
generate method takes a function with no arguments (or, technically, an object
of the Supplier<T> interface—see Section 3.6.2, “Choosing a Functional Interface,”
page 120). Whenever a stream value is needed, that function is called to
produce a value. You can get a stream of constant values as

Stream<String> echos = Stream.generate(() -> "Echo");

or a stream of random numbers as

Stream<Double> randoms = Stream.generate(Math::random);

To produce sequences such as 0 1 2 3 ..., use the iterate method instead. It
takes a “seed” value and a function (technically, a UnaryOperator<T>) and
repeatedly applies the function to the previous result. For example,
Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.ONE))

The first element in the sequence is the seed BigInteger.zER0. The second ele-
ment is f(seed), or 1 (as a big integer). The next element is f(f(seed)), or 2, and
SO on.

To produce a finite stream instead, add a predicate that specifies when the
iteration should finish:

BigInteger limit = new BigInteger("10000000");
Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERO,
n -> n.compareTo(limit) < @,
n -> n.add(BigInteger.ONE));

As soon as the predicate rejects an iteratively generated value, the stream ends.



8.3 m The filter, map, and flatMap Methods

D NOTE: A number of methods in the Java API yield streams. For example,

the Pattern class has a method splitAsStream that splits a CharSequence by
a regular expression. You can use the following statement to split a
string into words:

Stream<String> words = Pattern.compile("\\PL+").splitAsStream(contents);

The Scanner.tokens method yields a stream of tokens of a scanner. Another
way to get a stream of words from a string is

Stream<String> words = new Scanner(contents).tokens();
The static Files.lines method returns a Stream of all lines in a file:

try (Stream<String> lines = Files.lines(path)) {
Process lines
t

8.3 The filter, map, and flatMap Methods

A stream transformation produces a stream whose elements are derived from
those of another stream. You have already seen the filter transformation that
yields a new stream with those elements that match a certain condition. Here,
we transform a stream of strings into another stream containing only long
words:

List<String> words = ...;
Stream<String> longWords = words.stream().filter(w -> w.length() > 12);

The argument of filter is a Predicate<T>—that is, a function from T to boolean.

Often, you want to transform the values in a stream in some way. Use the
map method and pass the function that carries out the transformation. For
example, you can transform all words to lowercase like this:

Stream<String> lowercaseWords = words.stream().map(String::toLowerCase);
Here, we used map with a method reference. Often, you will use a lambda
expression instead:

Stream<String> firstletters = words.stream().map(s -> s.substring(0, 1));
The resulting stream contains the first letter of each word.

When you use map, a function is applied to each element, and the result is a
new stream with the results. Now, suppose you have a function that returns
not just one value but a stream of values. Here is an example—a method that
turns a string into a stream of strings, namely the individual code points:



m Chapter 8 m Streams

public static Stream<String> codePoints(String s) {
List<String> result = new ArraylList<>();
int i = 0;
while (i < s.length()) {
int j = s.offsetByCodePoints(i, 1);
result.add(s.substring(i, j))
i=7j;

}

return result.stream();

}
This method correctly handles Unicode characters that require two char values
because that’s the right thing to do. But you don’t have to dwell on that.
For example, codePoints("boat") is the stream ['b", "o", "a", "t"].
Now let's map the codePoints method on a stream of strings:
Stream<Stream<String>> result = words.stream().map(w -> codePoints(w));
You will get a stream of streams, like [... ["y", "o", "u", "r"], ["b", "0", "a",

"t"], ...]. To flatten it out to a single stream [... "y", "o", "u", "r", "b", "o", "a",
"t", ...], use the flatMap method instead of map:

Stream<String> flatResult = words.stream().flatMap(w -> codePoints(w))
// Calls codePoints on each word and flattens the results

NOTE: You will find a flatMap method in classes other than streams. It
is a general concept in computer science. Suppose you have a generic
type G (such as Stream) and functions f from some type T to G<U> and g
from U to G<v>. Then you can compose them—that is, first apply f and
then g, by using flatMap. This is a key idea in the theory of monads. But
don’t worry—you can use flatMap without knowing anything about monads.

8.4 Extracting Substreams and Combining Streams

The call stream.linit(n) returns a new stream that ends after n elements (or
when the original stream ends if it is shorter). This method is particularly
useful for cutting infinite streams down to size. For example,

Stream<Double> randoms = Stream.generate(Math::random).limit(100);
yields a stream with 100 random numbers.

The call stream.skip(n) does the exact opposite. It discards the first n elements.
This is handy in our book reading example where, due to the way the split
method works, the first element is an unwanted empty string. We can make
it go away by calling skip:



8.5 W Other Stream Transformations

Stream<String> words = Stream.of(contents.split("\\PL+")).skip(1);

The stream.takeWhile(predicate) call takes all elements from the stream while the
predicate is true, and then stops.

For example, suppose we use the codePoints method of the preceding section
to split a string into characters, and we want to collect all initial digits. The
takewhile method can do this:

Stream<String> initialDigits = codePoints(str).takeWhile(
s -> "0123456789".contains(s));

The dropwhile method does the opposite, dropping elements while a condition
is true and yielding a stream of all elements starting with the first one for
which the condition was false. For example,
Stream<String> withoutInitialWhiteSpace = codePoints(str).dropWhile(
s -> s.trim().length() == 0);
You can concatenate two streams with the static concat method of the Stream
class:
Stream<String> combined = Stream.concat(
codePoints("Hello"), codePoints("World"));
// Yields the stream [IIHII, IIeII, II'LII, II'LII, IIOII, IlwlI, IIOII, IIrII, II'LII, Ildll]
Of course, the first stream should not be infinite—otherwise the second
wouldn't ever get a chance.

8.5 Other Stream Transformations

The distinct method returns a stream that yields elements from the original
stream, in the same order, except that duplicates are suppressed. The
duplicates need not be adjacent.

Stream<String> uniqueWords

= Stream.of ("merrily", "merrily", "merrily", "gently").distinct();
// Only one "merrily" is retained

For sorting a stream, there are several variations of the sorted method. One
works for streams of Comparable elements, and another accepts a Comparator. Here,
we sort strings so that the longest ones come first:

Stream<String> longestFirst
= words.stream().sorted(Comparator.comparing(String::length).reversed());

As with all stream transformations, the sorted method yields a new stream
whose elements are the elements of the original stream in sorted order.

Of course, you can sort a collection without using streams. The sorted method
is useful when the sorting process is part of a stream pipeline.



Chapter 8 m Streams

Finally, the peek method yields another stream with the same elements as the
original, but a function is invoked every time an element is retrieved. That
is handy for debugging:
Object[] powers = Stream.iterate(1.0, p -> p * 2)

.peek(e -> System.out.println("Fetching " + e))

.1imit(20).toArray();
When an element is actually accessed, a message is printed. This way you
can verify that the infinite stream returned by iterate is processed lazily.

TIP: When you use a debugger to debug a stream computation, you
~/ can set a breakpoint in a method that is called from one of the
transformations. With most IDEs, you can also set breakpoints in lambda
expressions. If you just want to know what happens at a particular point
in the stream pipeline, add

.peek(x -> {
return; })

and set a breakpoint on the second line.

8.6 Simple Reductions

Now that you have seen how to create and transform streams, we will finally
get to the most important point—getting answers from the stream data. The
methods that we cover in this section are called reductions. Reductions are
terminal operations. They reduce the stream to a nonstream value that can
be used in your program.

You have already seen a simple reduction: the count method that returns the
number of elements of a stream.

Other simple reductions are max and min that return the largest or smallest
value. There is a twist—these methods return an Optional<T> value that either
wraps the answer or indicates that there is none (because the stream happened
to be empty). In the olden days, it was common to return null in such a situ-
ation. But that can lead to null pointer exceptions when it happens in an in-
completely tested program. The Optional type is a better way of indicating a
missing return value. We discuss the Optional type in detail in the next section.
Here is how you can get the maximum of a stream:

Optional<String> largest = words.max(String::compareToIgnoreCase);
System.out.println("largest: " + largest.orElse(""));



8.7 W The Optional Type

The findFirst returns the first value in a nonempty collection. It is often useful
when combined with filter. For example, here we find the first word that
starts with the letter Q, if it exists:
Optional<String> startswWithQ
= words.filter(s -> s.startswith("Q")).findFirst();
If you are OK with any match, not just the first one, use the findAny method.
This is effective when you parallelize the stream, since the stream can report
any match that it finds instead of being constrained to the first one.
Optional<String> startswWithQ
= words.parallel().filter(s -> s.startswith("Q")).findAny();
If you just want to know if there is a match, use anyMatch. That method takes
a predicate argument, so you won't need to use filter.

boolean aWordStartswWithQ
= words.parallel().anyMatch(s -> s.startsWith("Q"));

There are methods allMatch and noneMatch that return true if all or no elements
match a predicate. These methods also benefit from being run in parallel.

8.7 The Optional Type

An Optional<T> object is a wrapper for either an object of type T or no object.
In the former case, we say that the value is present. The Optional<T> type is in-
tended as a safer alternative for a reference of type T that either refers to an
object or is null. But it is only safer if you use it right. The next section shows
you how.

8.7.1 How to Work with Optional Values

The key to using optional effectively is to use a method that either produces
an alternative if the value is not present, or consumes the value only if it is
present.

Let us look at the first strategy. Often, there is a default that you want to use
when there was no match, perhaps the empty string:

String result = optionalString.orElse("");
// The wrapped string, or "" if none

You can also invoke code to compute the default:

String result = optionalString.orElseGet(() -> System.getProperty("myapp.default"));
// The function is only called when needed

Or you can throw an exception if there is no value:

267



Chapter 8 m Streams

String result = optionalString.orElseThrow(IllegalStateException::new);
// Supply a method that yields an exception object

The orklseGet method assumes that the alternative computation always succeeds.
If that computation can fail, use the or method:

Optional«String> result = optionalString.or(() ->
Optional.ofNullable(System.getProperty("myapp.default")));

If optionalString has a value, then result is optionalString. If not, and System.
getProperty("myapp.default") returns a non-null value, then that value, wrapped in
an Optional, becomes the result. Otherwise, the result is empty.

You have just seen how to produce an alternative if no value is present. The
other strategy for working with optional values is to consume the value only
if it is present.

The ifpresent method accepts a function. If the optional value exists, it is
passed to that function. Otherwise, nothing happens.
optionalValue.ifPresent(v -> Process v);
For example, if you want to add the value to a set if it is present, call
optionalValue.ifPresent(v -> results.add(v));
or simply
optionalValue.ifPresent(results::add);

If you want to take one action if the Optional has a value and another action
if it doesn’t, use ifPresentOrElse:

optionalValue.ifPresentOrElse(
v -> Process v,
() -> Do something else);

When using ifPresent to pass an optional value to a function, the function re-
turn value is lost. If you want to process the function result, use map instead:

Optional<Boolean> added = optionalValue.map(results::add);

Now added has one of three values: true or false wrapped into an oOptional, if
optionalvalue was present, or an empty Optional otherwise.

NOTE: This map method is the analog of the map method of the Stream
interface that you have seen in Section 8.3, “The filter, map, and flatMap
Methods” (page 263). Simply imagine an optional value as a stream of
size zero or one. The result again has size zero or one, and in the latter
case, the function has been applied.




8.7 W The Optional Type

8.7.2 How Not to Work with Optional Values

If you don't use Optional values correctly, you have no benefit over the
“something or null” approach of the past.

The get method gets the wrapped element of an Optional value if it exists, or
throws a NoSuchElementException if it doesn't. Therefore,

Optional<T> optionalValue = ...;
optionalValue.get().someMethod()

is no safer than

T value = ...;
value.someMethod();

The isPresent method reports whether an Optional<T> object has a value. But
if (optionalvalue.isPresent()) optionalValue.get().someMethod();
is no easier than

if (value != null) value.someMethod();

8.7.3 Creating Optional Values

So far, we have discussed how to consume an Optional object someone else
created. If you want to write a method that creates an optional object, there
are several static methods for that purpose, including optional.of(result) and
Optional.empty(). For example,

public static Optional<Double> inverse(Double x) {
return x == 0 ? Optional.empty() : Optional.of(1 / x);
}

The ofNullable method is intended as a bridge from possibly null values to
optional values. Optional.ofNullable(obj) returns Optional.of(obj) if obj is not null
and Optional.empty() otherwise.

8.7.4 Composing Optional Value Functions with flatMap

Suppose you have a method f yielding an optional<T>, and the target type T
has a method g yielding an optional<U>. If they were normal methods, you could
compose them by calling s.f().g(). But that composition doesn't work since
s.f() has type Optional<T>, not T. Instead, call

Optional<U> result = s.f().flatMap(T::g);

If s.f() is present, then g is applied to it. Otherwise, an empty Optional<l> is
returned.



270

Chapter 8 m Streams

Clearly, you can repeat that process if you have more methods or lambdas
that yield optional values. You can then build a pipeline of steps, simply by
chaining calls to flatMap, that will succeed only when all parts do.

For example, consider the safe inverse method of the preceding section.
Suppose we also have a safe square root:

public static Optional<Double> squareRoot(Double x) {
return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
}

Then you can compute the square root of the inverse as
Optional<Double> result = inverse(x).flatMap(MyMath::squareRoot);
or, if you prefer,

Optional<Double> result
= Optional.of(-4.0).flatMap(Demo::inverse).flatMap(Demo: :squareRoot);

If either the inverse method or the squareRoot returns Optional.empty(), the result
is empty.

D NOTE: You have already seen a flatMap method in the Stream interface

(see Section 8.3, “The filter, map, and flatMap Methods,” page 263). That
method was used to compose two methods that yield streams, by
flattening out the resulting stream of streams. The Optional.flatMap method
works in the same way if you interpret an optional value as having zero
or one elements.

8.7.5 Turning an Optional Into a Stream

The strean method turns an Optional<T> into a Stream<T> with zero or one elements.
Sure, why not, but why would you ever want that?

This becomes useful with methods that return an Optional result. Suppose you
have a stream of user IDs and a method

Optional<User> lookup(String id)
How do you get a stream of users, skipping those IDs that are invalid?
Of course, you can filter out the invalid IDs and then apply get to the
remaining ones:

Stream<String> ids = ...;

Stream<User> users = ids.map(Users::lookup)
.filter(Optional::isPresent)
.map(Optional::get);



8.8 W Collecting Results

But that uses the isPresent and get methods that we warned about. It is more
elegant to call

Stream<User> users = ids.map(Users::lookup)
.flatMap(Optional::stream);

Each call to stream returns a stream with 0 or 1 elements. The flatMap method
combines them all. That means the nonexistent users are simply dropped.

NOTE: In this section, we consider the happy scenario in which we have

EI a method that returns an Optional value. These days, many methods
return null when there is no valid result. Suppose Users.classicLookup(id)
returns a User object or null, not an Optional<User>. Then you can of
course filter out the null values:

Stream<User> users = ids.map(Users::classicLookup)
.filter(Objects::nonNull);

But if you prefer the flatMap approach, you can use

Stream<User> users = ids.flatMap(
id -> Stream.ofNullable(Users.classicLookup(id)));

or

Stream<User> users = ids.map(Users::classicLookup)
.flatMap(Stream::ofNullable);

The call Stream.ofNullable(obj) yields an empty stream if obj is null or a
stream just containing obj otherwise.

8.8 Collecting Results

When you are done with a stream, you will often want to look at the results.
You can call the iterator method, which yields an old-fashioned iterator that
you can use to visit the elements.

Alternatively, you can call the fortach method to apply a function to each
element:

stream.forEach(System.out: :println);
On a parallel stream, the fortach method traverses elements in arbitrary order.

If you want to process them in stream order, call forfachOrdered instead. Of
course, you might then give up some or all of the benefits of parallelism.

But more often than not, you will want to collect the result in a data structure.
You can call toArray and get an array of the stream elements.

271



272

Chapter 8 m Streams

Since it is not possible to create a generic array at runtime, the expression
stream.toArray() returns an Object[] array. If you want an array of the correct
type, pass in the array constructor:

String[] result = stream.toArray(String[]::new);
// stream.toArray() has type Object[]

For collecting stream elements to another target, there is a convenient collect
method that takes an instance of the Collector interface. The Collectors class
provides a large number of factory methods for common collectors. To collect
a stream into a list or set, simply call

List<String> result = stream.collect(Collectors.tolList());
or

Set<String> result = stream.collect(Collectors.toSet());

If you want to control which kind of set you get, use the following call instead:

TreeSet<String> result = stream.collect(Collectors.toCollection(TreeSet::new));
Suppose you want to collect all strings in a stream by concatenating them.
You can call

String result = stream.collect(Collectors.joining());

If you want a delimiter between elements, pass it to the joining method:

String result = stream.collect(Collectors.joining(", "));

If your stream contains objects other than strings, you need to first convert
them to strings, like this:

String result = stream.map(Object::toString).collect(Collectors.joining(", "));

If you want to reduce the stream results to a sum, count, average, maximum,
or minimum, use one of the summarizing(Int|Long|Double) methods. These methods
take a function that maps the stream objects to numbers and yield a result
of type (Int|Long|Double)SummaryStatistics, simultaneously computing the sum,
count, average, maximum, and minimum.
IntSummaryStatistics summary = stream.collect(
Collectors.summarizingInt(String::length));

double averageWordLength = summary.getAverage();
double maxWordLength = summary.getMax();



8.9 m Collecting into Maps

8.9 Collecting into Maps

Suppose you have a Stream<Person> and want to collect the elements into a map
so that later you can look up people by their ID. The Collectors.toMap method
has two function arguments that produce the map’s keys and values. For
example,

Map<Integer, String> idToName = people.collect(
Collectors.toMap(Person::getId, Person::getName));

In the common case when the values should be the actual elements, use
Function.identity() for the second function.

Map<Integer, Person> idToPerson = people.collect(
Collectors.toMap(Person::getId, Function.identity()));

If there is more than one element with the same key, there is a conflict, and
the collector will throw an IllegalStateException. You can override that behavior
by supplying a third function argument that resolves the conflict and deter-
mines the value for the key, given the existing and the new value. Your
function could return the existing value, the new value, or a combination
of them.

Here, we construct a map that contains, for each language in the available
locales, as key its name in your default locale (such as "German"), and as value
its localized name (such as "Deutsch").
Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());
Map<String, String> languageNames = locales.collect(
Collectors.toMap(
Locale::getDisplayLanguage,
loc -> loc.getDisplaylanguage(loc),
(existingValue, newValue) -> existingValue));
We don't care that the same language might occur twice (for example, German
in Germany and in Switzerland), so we just keep the first entry.

NOTE: In this chapter, | use the Locale class as a source of an interesting
data set. See Chapter 13 for more information about working with locales.

Now suppose we want to know all languages in a given country. Then we
need a Map<String, Set<String>>. For example, the value for "Switzerland" is the set
[French, German, Italian]. At first, we store a singleton set for each language.
Whenever a new language is found for a given country, we form the union
of the existing and the new set.

273



274

Chapter 8 m Streams

Map<String, Set<String>> countrylanguageSets = locales.collect(
Collectors.toMap(

Locale::getDisplayCountry,

1 -> Collections.singleton(1.getDisplayLanguage()),

(a, b) -> { // Union of a and b
Set<String> union = new HashSet<>(a);
union.addAll(b);
return union; }));

You will see a simpler way of obtaining this map in the next section.

If you want a TreeMap, supply the constructor as the fourth argument. You must
provide a merge function. Here is one of the examples from the beginning
of the section, now yielding a TreeMap:

Map<Integer, Person> idToPerson = people.collect(
Collectors.toMap(
Person::getId,
Function.identity(),
(existingValue, newvalue) -> { throw new IllegalStateException(); },
TreeMap: :new));

D NOTE: For each of the toMap methods, there is an equivalent
toConcurrentMap method that yields a concurrent map. A single concurrent
map is used in the parallel collection process. When used with a parallel
stream, a shared map is more efficient than merging maps. Note that
elements are no longer collected in stream order, but that doesn’t usually
make a difference.

8.10 Grouping and Partitioning

In the preceding section, you saw how to collect all languages in a given
country. But the process was a bit tedious. You had to generate a singleton
set for each map value and then specify how to merge the existing and new
values. Forming groups of values with the same characteristic is very common,
and the groupingdy method supports it directly.

Let’s look at the problem of grouping locales by country. First, form this map:

Map<String, List<Locale>> countryTolocales = locales.collect(
Collectors.groupingBy(Locale::getCountry));

The function Locale::getCountry is the classifier function of the grouping. You can
now look up all locales for a given country code, for example

List<Locale> swissLocales = countryTolocales.get("CH");
// Yields locales [it_CH, de_CH, fr_CH]



8.11 m Downstream Collectors

D NOTE: A quick refresher on locales: Each locale has a language code

(such as en for English) and a country code (such as US for the United
States). The locale en_US describes English in the United States, and en_IE
is English in Ireland. Some countries have multiple locales. For example,
ga_IE is Gaelic in Ireland, and, as the preceding example shows, my JVM
knows three locales in Switzerland.

When the classifier function is a predicate function (that is, a function return-
ing a boolean value), the stream elements are partitioned into two lists: those
where the function returns true and the complement. In this case, it is more
efficient to use partitioningBy instead of groupingBy. For example, here we split
all locales into those that use English and all others:

Map<Boolean, List<Locale>> englishAndOtherLocales = locales.collect(

Collectors.partitioningBy(1l -> 1.getlLanguage().equals("en")));
List<Locale> englishLocales = englishAndOtherLocales.get(true);

NOTE: If you call the groupingByConcurrent method, you get a concurrent
map that, when used with a parallel stream, is concurrently populated.
This is entirely analogous to the toConcurrentMap method.

8.11 Downstream Collectors

The groupingBy method yields a map whose values are lists. If you want to
process those lists in some way, supply a downstream collector. For example,
if you want sets instead of lists, you can use the Collectors.toSet collector that
you saw in the preceding section:

Map<String, Set<Locale>> countryToLocaleSet = locales.collect(
groupingBy(Locale::getCountry, toSet()));

D NOTE: In this example, as well as the remaining examples of this section,
| assume a static import of java.util.stream.Collectors.* to make the
expressions easier to read.

Several collectors are provided for reducing grouped elements to numbers:

* counting produces a count of the collected elements. For example,

Map<String, Long> countryToLocaleCounts = locales.collect(
groupingBy(Locale::getCountry, counting()));

counts how many locales there are for each country.

275



276

Chapter 8 m Streams

summing(Int|Long|Double) takes a function argument, applies the function to
the downstream elements, and produces their sum. For example,

Map<String, Integer> stateToCityPopulation = cities.collect(
groupingBy(City::getState, summingInt(City::getPopulation)));

computes the sum of populations per state in a stream of cities.

e maxBy and minBy take a comparator and produce maximum and minimum
of the downstream elements. For example,
Map<String, Optional<City>> stateTolargestCity = cities.collect(
groupingBy(City::getState,
maxBy (Comparator.comparing(City::getPopulation))));

produces the largest city per state.

The mapping collector applies a function to downstream results, and it requires
yet another collector for processing its results. For example,
Map<String, Optional<String>> stateTolLongestCityName = cities.collect(
groupingBy(City::getState,
mapping(City::getName,
maxBy(Comparator.comparing(String::length)))));
Here, we group cities by state. Within each state, we produce the names of
the cities and reduce by maximum length.

The mapping method also yields a nicer solution to a problem from the preceding
section—gathering a set of all languages in a country.

Map<String, Set<String>> countryTolLanguages = locales.collect(

groupingBy(Locale::getDisplayCountry,
mapping(Locale::getDisplayLanguage,
toSet())));

There is a flatMapping method as well, for use with functions that return streams
(see Exercise 8).

In the preceding section, I used toMap instead of groupingdy. In this form, you
don't need to worry about combining the individual sets.

If the grouping or mapping function has return type int, long, or double, you
can collect elements into a summary statistics object, as discussed in
Section 8.8, “Collecting Results” (page 271). For example,

Map<String, IntSummaryStatistics> stateToCityPopulationSummary = cities.collect(

groupingBy(City::getState,
summarizingInt(City::getPopulation)));



8.12 m Reduction Operations

Then you can get the sum, count, average, minimum, and maximum of the
function values from the summary statistics objects of each group.

The filtering collector applies a filter to each group, for example:

Map<String, Set<City>> largeCitiesByState
= cities.collect(
groupingBy(City::getState,
filtering(c -> c.getPopulation() > 500000,
toSet()))); // States without large cities have empty sets

NOTE: There are also three versions of a reducing method that apply
general reductions, as described in the next section.

Composing collectors is powerful, but it can also lead to very convoluted
expressions. The best use is with groupingBy or partitioningBy to process the
“downstream” map values. Otherwise, simply apply methods such as map, reduce,
count, max, or min directly on streams.

8.12 Reduction Operations

The reduce method is a general mechanism for computing a value from
a stream. The simplest form takes a binary function and keeps applying it,
starting with the first two elements. It's easy to explain this if the function is
the sum:

List<Integer> values = ...;

Optional<Integer> sum = values.stream().reduce((x, y) -> x + y);
In this case, the reduce method computes vy + v; + v, + ..., where the v;
are the stream elements. The method returns an Optional because there is no
valid result if the stream is empty.

NOTE: In this case, you can write reduce(Integer::sum) instead of
reduce((x, y) -> x + y).

More generally, you can use any operation that combines a partial result x
with the next value y to yield a new partial result.

Here is another way of looking at reductions. Given a reduction operation
op, the reduction yields vy op v; op v, 0p ..., where v; op v; , 1 denotes the
function call op(v;, v; , 1). There are many operations that might be useful in

277



278

Chapter 8 m Streams

practice, such as sum, product, string concatenation, maximum and minimum,
set union and intersection.

If you want to use reduction with parallel streams, the operation must be
associative: It shouldn't matter in which order you combine the elements. In
math notation, (x op y) op z must be equal to x op (y op z). An example of
an operation that is not associative is subtraction. For example, (6 - 3) - 2
#6 - (3-2).

Often, there is an identity e such that e op x = x, and you can use that element
as the start of the computation. For example, 0 is the identity for addition.
Then call the second form of reduce:

List<Integer> values = ...;

Integer sum = values.stream().reduce(®, (x, y) -> x +y)
// Computes 0 + vy + v1 + U +

The identity value is returned if the stream is empty, and you no longer need
to deal with the optional class.

Now suppose you have a stream of objects and want to form the sum of
some property, such as all lengths in a stream of strings. You can't use the
simple form of reduce. It requires a function (T, T) -> T, with the same types
for the arguments and the result. But in this situation, you have two types:
The stream elements have type String, and the accumulated result is an integer.
There is a form of reduce that can deal with this situation.

First, you supply an “accumulator” function (total, word) -> total + word.length().
That function is called repeatedly, forming the cumulative total. But when
the computation is parallelized, there will be multiple computations of this
kind, and you need to combine their results. You supply a second function
for that purpose. The complete call is

int result = words.reduce(®,

(total, word) -> total + word.length(),
(totall, total2) -> totall + total2);

D NOTE: In practice, you probably won’t use the reduce method a lot. It
is usually easier to map to a stream of numbers and use one of its
methods to compute sum, max, or min. (We discuss streams of numbers
in Section 8.13, “Primitive Type Streams,” page 279.) In this particular
example, you could have called words.mapToInt(String::length).sum(), which
is both simpler and more efficient since it doesn’t involve boxing.




8.13 W Primitive Type Streams

D NOTE: There are times when reduce is not general enough. For example,

suppose you want to collect the results in a BitSet. If the collection is
parallelized, you can’t put the elements directly into a single BitSet
because a BitSet object is not threadsafe. For that reason, you can’t
use reduce. Each segment needs to start out with its own empty set,
and reduce only lets you supply one identity value. Instead, use collect.
It takes three arguments:

1. A supplier to make new instances of the target object, for example
a constructor for a hash set

2. An accumulator that adds an element to the target, such as an add
method

3. A combiner that merges two objects into one, such as addAll
Here is how the collect method works for a bit set:
BitSet result = stream.collect(BitSet::new, BitSet::set, BitSet::or);

8.13 Primitive Type Streams

So far, we have collected integers in a StreamcInteger>, even though it is clearly
inefficient to wrap each integer into a wrapper object. The same is true for
the other primitive types double, float, long, short, char, byte, and boolean. The
stream library has specialized types IntStream, LongStream, and DoubleStream that
store primitive values directly, without using wrappers. If you want to store
short, char, byte, and boolean, use an IntStream, and for float, use a DoubleStream.

To create an IntStream, call the IntStream.of and Arrays.stream methods:

IntStream stream = IntStream.of(1, 1, 2, 3, 5);

stream = Arrays.stream(values, from, to); // values is an int[] array
As with object streams, you can also use the static generate and iterate methods.
In addition, IntStream and LongStream have static methods range and rangeClosed
that generate integer ranges with step size one:

IntStream zeroToNinetyNine = IntStream.range(®, 100); // Upper bound is excluded
IntStream zeroToHundred = IntStream.rangeClosed(0, 100); // Upper bound is included
The charSequence interface has methods codePoints and chars that yield an IntStream
of the Unicode codes of the characters or of the code units in the UTF-16

encoding. (See Chapter 1 for the sordid details.)

279



m Chapter 8 m Streams

String sentence = "\uD835\uDD46 is the set of octonions.";
// \uD835\ubD46 is the UTF-16 encoding of the letter O, unicode U+1D546

IntStream codes = sentence.codePoints();
// The stream with hex values 1D546 20 69 73 20

When you have a stream of objects, you can transform it to a primitive
type stream with the mapToInt, mapToLong, or mapToDouble methods. For example,
if you have a stream of strings and want to process their lengths as integers,
you might as well do it in an IntStream:

Stream<String> words = ...;
IntStream lengths = words.mapToInt(String::length);

To convert a primitive type stream to an object stream, use the boxed method:

Stream<Integer> integers = IntStream.range(®, 100).boxed();

Generally, the methods on primitive type streams are analogous to those on
object streams. Here are the most notable differences:

e The toArray methods return primitive type arrays.

* Methods that yield an optional result return an Optionallnt, Optionallong, or
OptionalDouble. These classes are analogous to the Optional class, but they
have methods getAsInt, getAsLong, and getAsDouble instead of the get method.

* There are methods sum, average, max, and min that return the sum, average,
maximum, and minimum. These methods are not defined for object
streams.

* The summaryStatistics method yields an object of type IntSummaryStatistics,
LongSummaryStatistics, or DoubleSummaryStatistics that can simultaneously report
the sum, count, average, maximum, and minimum of the stream.

NOTE: The Random class has methods ints, longs, and doubles that return
primitive type streams of random numbers.

8.14 Parallel Streams

Streams make it easy to parallelize bulk operations. The process is mostly
automatic, but you need to follow a few rules. First of all, you must have a
parallel stream. You can get a parallel stream from any collection with the
Collection.parallelStream() method:



8.14 m Parallel Streams

Stream<String> parallelWords = words.parallelStream();

Moreover, the parallel method converts any sequential stream into a
parallel one.

Stream<String> parallelWords = Stream.of(wordArray).parallel();

As long as the stream is in parallel mode when the terminal method executes,
all intermediate stream operations will be parallelized.

When stream operations run in parallel, the intent is that the same result is
returned as if they had run serially. It is important that the operations are
stateless and can be executed in an arbitrary order.

Here is an example of something you cannot do. Suppose you want to count
all short words in a stream of strings:
int[] shortWords = new int[12];
words.parallelStream().forEach(
s -> { if (s.length() < 12) shortWords[s.length()]++; });
// Error—race condition!
System.out.println(Arrays.toString(shortWords));

This is very, very bad code. The function passed to forfach runs concurrently
in multiple threads, each updating a shared array. As you will see in
Chapter 10, that's a classic race condition. If you run this program multiple
times, you are quite likely to get a different sequence of counts in each
run—each of them wrong.

It is your responsibility to ensure that any functions you pass to parallel
stream operations are safe to execute in parallel. The best way to do that is
to stay away from mutable state. In this example, you can safely parallelize
the computation if you group strings by length and count them.
Map<Integer, Long> shortWordCounts
= words.parallelStream()
filter(s -> s.length() < 12)
.collect(groupingBy(
String::length,
counting()));
By default, streams that arise from ordered collections (arrays and lists), from
ranges, generators, and iterators, or from calling Stream.sorted, are ordered. Results
are accumulated in the order of the original elements, and are entirely pre-
dictable. If you run the same operations twice, you will get exactly the same
results.



Chapter 8 m Streams

Ordering does not preclude efficient parallelization. For example, when
computing stream.map(fun), the stream can be partitioned into n segments, each
of which is concurrently processed. Then the results are reassembled in order.

Some operations can be more effectively parallelized when the ordering re-
quirement is dropped. By calling the Stream.unordered method, you indicate that
you are not interested in ordering. One operation that can benefit from this
is Stream.distinct. On an ordered stream, distinct retains the first of all equal
elements. That impedes parallelization—the thread processing a segment can't
know which elements to discard until the preceding segment has been pro-
cessed. If it is acceptable to retain any of the unique elements, all segments
can be processed concurrently (using a shared set to track duplicates).

You can also speed up the limit method by dropping ordering. If you just
want any n elements from a stream and you don't care which ones you
get, call

Stream<String> sample = words.parallelStream().unordered().limit(n);

As discussed in Section 8.9, “Collecting into Maps” (page 273), merging maps
is expensive. For that reason, the Collectors.groupingByConcurrent method uses a
shared concurrent map. To benefit from parallelism, the order of the map
values will not be the same as the stream order.

Map<Integer, List<String>> result = words.parallelStream().collect(

Collectors.groupingByConcurrent(String::length))
// Values aren't collected in stream order

Of course, you won't care if you use a downstream collector that is
independent of the ordering, such as

Map<Integer, Long> wordCounts
= words.parallelStream()
.collect(
groupingByConcurrent(
String::length,
counting()))

NOTE: Don’t turn all your streams into parallel streams with the hope
of speeding up their operations. There is a substantial overhead to
parallelization that will only pay off for very large data sets. Moreover,
the thread pool that is used by parallel streams may perform poorly for
blocking operations such as file I/O or network operations. Parallel
streams work best with huge in-memory collections of data and
computationally intensive processing.




Exercises m

CAUTION: It is very important that you don’t modify the collection that
is backing a stream while carrying out a stream operation (even if the
modification is threadsafe). Remember that streams don’t collect their
data—that data is always in a separate collection. If you were to modify
that collection, the outcome of the stream operations would be undefined.
The JDK documentation refers to this requirement as noninterference. It
applies both to sequential and parallel streams.

To be exact, since intermediate stream operations are lazy, it is possible
to mutate the collection up to the point when the terminal operation
executes. For example, the following, while certainly not recommended,
will work:

List<String> wordList = ...;

Stream<String> words = wordList.stream();

wordList.add("END");
long n = words.distinct().count();

But this code is wrong:

Stream<String> words = wordlList.stream();
words.forEach(s -> if (s.length() < 12) wordList.remove(s));
// Error—interference

Exercises

1. Verify that asking for the first five long words does not call the filter
method once the fifth long word has been found. Simply log each
method call.

2. Measure the difference when counting long words with a parallelStrean
instead of a stream. Call System.currentTimeMillis before and after the call and
print the difference. Switch to a larger document (such as War and Peace)
if you have a fast computer.

3. Suppose you have an array int[] values = { 1, 4, 9, 16 }. What is
Stream.of(values)? How do you get a stream of int instead?

4. Using Stream.iterate, make an infinite stream of random numbers—not by
calling Math.randon but by directly implementing a linear congruential generator.
In such a generator, you start with x = seed and then produce x, , ; = (a
x, + ¢) % m, for appropriate values of g, ¢, and m. You should implement
a method with parameters a, ¢, m, and seed that yields a Stream<Long>. Try
out a = 25214903917, ¢ = 11, and m = 2%,

5. The codePoints method in Section 8.3, “The filter, map, and flatMap Methods”
(page 263) was a bit clumsy, first filling an array list and then turning



Chapter 8 m Streams

10.
11.
12.

13.

14.

15.

16.

17.

18.

it into a stream. Write a stream-based version instead, using the
IntStream.iterate method to construct a finite stream of offsets, then extract
the substrings.

Use the String.codePoints method to implement a method that tests whether
a string is a word, consisting only of letters. (Hint: Character.isAlphabetic.)
Using the same approach, implement a method that tests whether a string
is a valid Java identifier.

Turning a file into a stream of tokens, list the first 100 tokens that are
words in the sense of the preceding exercise. Read the file again and list
the 10 most frequent words, ignoring letter case.

Find a realistic use for the Collectors.flatMapping method. Consider some
class with a method yielding an 0Optional. Then group by some characteristic
and, for each group, collect the nonempty optional values by using
flatMapping and Optional.stream.

Read the words from /usr/share/dict/words (or a similar word list) into a
stream and produce an array of all words containing five distinct vowels.

Given a finite stream of strings, find the average string length.
Given a finite stream of strings, find all strings of maximum length.

Your manager asks you to write a method public static <T> boolean
isFinite(Stream<T> stream). Why isn't that such a good idea? Go ahead and
write it anyway.

Write a method public static <T> Stream<T> zip(Stream<T> first, Stream<T> second)
that alternates elements from the streams first and second (or null if the
stream whose turn it is runs out of elements).

Join all elements in a Stream<Arraylist<T>> to one ArraylList<T>. Show how to
do this with each of the three forms of reduce.

Write a call to reduce that can be used to compute the average of a
Stream<Double>. Why can’t you simply compute the sum and divide by count()?

Find 500 prime numbers with 50 decimal digits, using a parallel stream
of BigInteger and the BigInter.isProbablePrime method. Is it any faster than
using a serial stream?

Find the 500 longest strings in War and Peace with a parallel stream. Is it
any faster than using a serial stream?

How can you eliminate adjacent duplicates from a stream? Would your
method work if the stream was parallel?



This page intentionally left blank



Processing
Input and Output

Topics in This Chapter

= 9.1 Input/Output Streams, Readers, and Writers — page 288
= 9.2 Paths, Files, and Directories — page 298

= 93 HTTP Connections — page 306

» 9.4 Regular Expressions — page 310

= 9.5 Serialization — page 319

= Exercises — page 325



Chaprer

In this chapter, you will learn how to work with files, directories, and web
pages, and how to read and write data in binary and text format. You will
also find a discussion of regular expressions, which can be useful for process-
ing input. (I couldn't think of a better place to handle that topic, and appar-
ently neither could the Java developers—when the regular expression API
specification was proposed, it was attached to the specification request for
“new 1/O” features.) Finally, this chapter shows you the object serialization
mechanism that lets you store objects as easily as you can store text or
numeric data.

The key points of this chapter are:

1. An InputStream is a source of bytes, and an OutputStrean is a destination for
bytes.

2. A Reader reads characters, and a Writer writes them. Be sure to specify a
character encoding.

3. The Files class has convenience methods for reading all bytes or lines of
a file.

4. The pataInput and DataOutput interfaces have methods for writing numbers
in binary format.

5. Use a RandomAccessFile or a memory-mapped file for random access.

287



Chapter 9 m Processing Input and Output

6. A rpath is an absolute or relative sequence of path components in a file
system. Paths can be combined (or “resolved”).

7. Use the methods of the Files class to copy, move, or delete files and to
recursively walk through a directory tree.

To read or update a ZIP file, use a ZIP file system.

You can read the contents of a web page with the URL class. To read
metadata or write data, use the URLConnection class.

10. With the pattern and Matcher classes, you can find all matches of a regular
expression in a string, as well as the captured groups for each match.

11. The serialization mechanism can save and restore any object implementing
the serializable interface, provided its instance variables are also serializable.

9.1 Input/Output Streams, Readers, and Writers

In the Java API, a source from which one can read bytes is called an input
stream. The bytes can come from a file, a network connection, or an array in
memory. (These streams are unrelated to the streams of Chapter 8.) Similarly,
a destination for bytes is an output stream. In contrast, readers and writers
consume and produce sequences of characters. In the following sections, you
will learn how to read and write bytes and characters.

9.1.1 Obtaining Streams

The easiest way to obtain a stream from a file is with the static methods

InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);

Here, path is an instance of the Path class that is covered in Section 9.2.1,
“Paths” (page 298). It describes a path in a file system.

If you have a URL, you can read its contents from the input stream returned
by the openstream method of the URL class:

URL url = new URL("http://horstmann.com/index.html");
InputStream in = url.openStream();

Section 9.3, “HTTP Connections” (page 306) shows how to send data to a
web server.
The ByteArrayInputStream class lets you read from an array of bytes.

byte[] bytes = ...;
InputStream in = new ByteArrayInputStream(bytes);


http://horstmann.com/index.html"

9.1 m Input/Output Streams, Readers, and Writers

Conversely, to send output to a byte array, use a ByteArrayOutputStrean:

ByteArrayOutputStream out = new ByteArrayOutputStream();
Write to out
byte[] bytes = out.toByteArray();

9.1.2 Reading Bytes

The InputStrean class has a method to read a single byte:

InputStream in = ...;
int b = in.read();

This method either returns the byte as an integer between ¢ and 255, or returns
-1 if the end of input has been reached.

CAUTION: The Java byte type has values between -128 and 127. You
can cast the returned value into a byte after you have checked that it
is not -1.

More commonly, you will want to read the bytes in bulk. The most convenient
method is the readAl1Bytes method that simply reads all bytes from the stream
into a byte array:

byte[] bytes = in.readAllBytes();

a TIP: If you want to read all bytes from a file, call the convenience
method

byte[] bytes = Files.readAl1Bytes(path);

If you want to read some, but not all bytes, provide a byte array and call the
read\Bytes method:

byte[] bytes = new byte[len];

int bytesRead = in.readNBytes(bytes, offset, n);
The method reads until either n bytes are read or no further input is available,
and returns the actual number of bytes read. If no input was available at all,
the methods return -1.

NOTE: There is also a read(byte[], int, int) method whose description
seems exactly like read\Bytes. The difference is that the read method only
attempts to read the bytes and returns immediately with a lower count
if it fails. The read\Bytes method keeps calling read until all requested
bytes have been obtained or read returns -1.




Chapter 9 m Processing Input and Output

9.1.3 Writing Bytes

The write methods of an outputStrean can write individual bytes and byte arrays.
OutputStream out = ...;
intbh=...;
out.write(b);
byte[] bytes = ...;
out.write(bytes);
out.write(bytes, start, length);

When you are done writing a stream, you must close it in order to commit
any buffered output. This is best done with a try-with-resources statement:

try (OutputStream out = ...) {
out.write(bytes);
}

If you need to copy an input stream to an output stream, use the
InputStream.transferTo method:

try (InputStream in = ...; OutputStream out = ...) {
in.transferTo(out);
}

Both streams need to be closed after the call to transferTo. It is best to use a
try-with-resources statement, as in the code example.
To write a file to an OutputStream, call

Files.copy(path, out);

Conversely, to save an InputStrean to a file, call
Files.copy(in, path, StandardCopyOption.REPLACE_EXISTING);

9.1.4 Character Encodings

Input and output streams are for sequences of bytes, but in many cases you
will work with text—that, is, sequences of characters. It then matters how
characters are encoded into bytes.

Java uses the Unicode standard for characters. Each character or “code point”
has a 21-bit integer number. There are different character encodings—methods
for packaging those 21-bit numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code
point into a sequence of one to four bytes (see Table 9-1). UTF-8 has the
advantage that the characters of the traditional ASCII character set, which
contains all characters used in English, only take up one byte each.



9.1 m Input/Output Streams, Readers, and Writers

Table 9-1 UTF-8 Encoding

Character Range Encoding

0...7F Oagasagazaragag

80...7FF 110a;pagagazag 10asazazaraqag

800...FFFF 1110a15a14813812 10a17a10393gazag 10asazazajaiag

10000...10FFFF 1111020219318 10a1731¢a15314213812 10a17a7pdgagayag 10asagazaraqag

Another common encoding is UTF-16, which encodes each Unicode code
point into one or two 16-bit values (see Table 9-2). This is the encoding used
in Java strings. Actually, there are two forms of UTF-16, called “big-endian”
and “little-endian.” Consider the 16-bit value 0x2122. In big-endian format, the
more significant byte comes first: 0x21 followed by 0x22. In little-endian format,
it is the other way around: 0x22 0x21. To indicate which of the two is used, a
file can start with the “byte order mark,” the 16-bit quantity oxFEFF. A reader
can use this value to determine the byte order and discard it.

Table 9-2 UTF-16 Encoding

Character Range Encoding
0...FFFF dq5d14d13d12d11d10d9dgdydgdsdgdzdndidy
10000...10FFFF 110110b19b18b17b16315al4a1331231]a]O ].10lllagaga7a6a5a4a3azalao

where bygbighizbie = ayparoaigaizare — 1

CAUTION: Some programs, including Microsoft Notepad, add a byte
order mark at the beginning of UTF-8 encoded files. Clearly, this is
unnecessary since there are no byte ordering issues in UTF-8. But the
Unicode standard allows it, and even suggests that it’s a pretty good
idea since it leaves little doubt about the encoding. It is supposed to
be removed when reading a UTF-8 encoded file. Sadly, Java does not
do that, and bug reports against this issue are closed as “will not fix.”
Your best bet is to strip out any leading \uFEFF that you find in your
input.

In addition to the UTF encodings, there are partial encodings that cover a
character range suitable for a given user population. For example, ISO 8859-1
is a one-byte code that includes accented characters used in Western European



Chapter 9 m Processing Input and Output

languages. Shift_JIS is a variable-length code for Japanese characters. A large
number of these encodings are still in widespread use.

There is no reliable way to automatically detect the character encoding from
a stream of bytes. Some API methods let you use the “default charset’—the
character encoding that is preferred by the operating system of the computer.
Is that the same encoding that is used by your source of bytes? These bytes
may well originate from a different part of the world. Therefore, you should
always explicitly specify the encoding. For example, when reading a web
page, check the Content-Type header.

NOTE: The platform encoding is returned by the static method

D Charset.defaultCharset. The static method Charset.availableCharsets returns
all available Charset instances, as a map from canonical names to Charset
objects.

CAUTION: The Oracle implementation has a system property file.encoding
for overriding the platform default. This is not an officially supported
property, and it is not consistently followed by all parts of Oracle’s
implementation of the Java library. You should not set it.

The standardCharsets class has static variables of type Charset for the character
encodings that every Java virtual machine must support:

StandardCharsets.UTF_8

StandardCharsets.UTF_16

StandardCharsets.UTF_16BE

StandardCharsets.UTF_16LE

StandardCharsets.IS0_8859_1

StandardCharsets.US_ASCII

To obtain the charset for another encoding, use the static forName method:
Charset shiftJIS = Charset.forName("Shift_JIS");

Use the charset object when reading or writing text. For example, you can
turn an array of bytes into a string as

String str = new String(bytes, StandardCharsets.UTF_8);

a TIP: Some methods allow you to specify a character encoding with a
Charset object or a string. Choose the StandardCharsets constants, so
you don’t have to worry about the correct spelling. For example, new
String(bytes, "UTF 8") is not acceptable and will cause a runtime error.




9.1 m Input/Output Streams, Readers, and Writers

CAUTION: Some methods (such as the String(byte[]) constructor) use
the default platform encoding if you don’t specify any; others (such as
Files.readAllLines) use UTF-8.

9.1.5 Text Input
To read text input, use a Reader. You can obtain a Reader from any input stream
with the InputStreamReader adapter:

InputStream inStream = ...;
Reader in = new InputStreamReader(inStream, charset);

If you want to process the input one UTF-16 code unit at a time, you can
call the read method:

int ch = in.read();
The method returns a code unit between 0 and 65536, or -1 at the end of input.
That is not very convenient. Here are several alternatives.

With a short text file, you can read it into a string like this:
String content = new String(Files.readAllBytes(path), charset);

But if you want the file as a sequence of lines, call
List<String> lines = Files.readAlllLines(path, charset);
Or better, process them lazily as a Stream:

try (Stream<String> lines = Files.lines(path, charset)) {

}

D NOTE: If an I0Exception occurs as the stream fetches the lines, that

exception is wrapped into an UncheckedIOException which is thrown out of
the stream operation. (This subterfuge is necessary because stream
operations are not declared to throw any checked exceptions.)

To read numbers or words from a file, use a Scanner, as you have seen in
Chapter 1. For example,
Scanner in = new Scanner(path, "UTF-8");

while (in.hasNextDouble()) {
double value = in.nextDouble();



m Chapter 9 m Processing Input and Output

TIP: To read alphabetic words, set the scanner’s delimiter to a regular
expression that is the complement of what you want to accept as a
token. For example, after calling

in.useDelimiter("\\PL+");

the scanner reads in letters since any sequence of nonletters is a
delimiter. See Section 9.4.1, “The Regular Expression Syntax” (page 310)
for the regular expression syntax.

You can then obtain a stream of all words as

Stream<String> words = in.tokens();

If your input does not come from a file, wrap the InputStream into a BufferedReader:

try (BufferedReader reader
= new BufferedReader(new InputStreamReader(url.openStream()))) {
Stream<String> lines = reader.lines();

}

A BufferedReader reads input in chunks for efficiency. (Oddly, this is not an
option for basic readers.) It has methods readLine to read a single line and
lines to yield a stream of lines.

If a method asks for a Reader and you want it to read from a file, call
Files.newBufferedReader(path, charset).

9.1.6 Text Output

To write text, use a Writer. With the write method, you can write strings. You
can turn any output stream into a Writer:

OutputStream outStream = ...;
Writer out = new OutputStreamWriter(outStream, charset);
out.write(str);

To get a writer for a file, use
Writer out = Files.newBufferedWriter(path, charset);

It is more convenient to use a PrintWriter, which has the print, println, and
printf that you have always used with System.out. Using those methods, you
can print numbers and use formatted output.

If you write to a file, construct a Printuriter like this:

PrintWriter out = new PrintWriter(Files.newBufferedWriter(path, charset));



9.1 m Input/Output Streams, Readers, and Writers

If you write to another stream, use

PrintWriter out = new PrintWriter(
new OutputStreamWriter(outStream, charset));

D NOTE: System.out is an instance of PrintStream, not PrintWriter. This is a
relic from the earliest days of Java. However, the print, println, and
printf methods work the same way for the PrintStream and PrintWriter
classes, using a character encoding for turning characters into bytes.

If you already have the text to write in a string, call

String content = ...;
Files.write(path, content.getBytes(charset));

or
Files.write(path, lines, charset);

Here, lines can be a Collection<String>, or even more generally, an Iterable<?
extends CharSequence>
To append to a file, use

Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);
Files.write(path, lines, charset, StandardOpenOption.APPEND);

CAUTION: When writing text with a partial character set such as
ISO 8859-1, any unmappable characters are silently changed to a
“replacement” —in most cases, either the ? character or the Unicode
replacement character U+FFFD.

Sometimes, a library method wants a Writer to write output. If you want to
capture that output in a string, hand it a StringWriter. Or, if it wants a Printwriter,
wrap the stringiriter like this:

StringWriter writer = new StringWriter();

throwable.printStackTrace(new PrintWriter(writer));
String stackTrace = writer.toString();

9.1.7 Reading and Writing Binary Data

The pataInput interface declares the following methods for reading a number,
a character, a boolean value, or a string in binary format:



m Chapter 9 m Processing Input and Output

byte readByte()

int readUnsignedByte()
char readChar()

short readShort()

int readUnsignedShort()
int readInt()

long readLong()

float readFloat()

double readDouble()

void readfFully(byte[] b)

The pataoutput interface declares corresponding write methods.

D NOTE: These methods read and write numbers in big-endian format.

CAUTION: There are also readUTF/writeUTF methods that use a “modified
UTF-8” format. These methods are not compatible with regular UTF-8,
and are only useful for JVM internals.

The advantage of binary I/O is that it is fixed width and efficient. For example,
writeInt always writes an integer as a big-endian 4-byte binary quantity regard-
less of the number of digits. The space needed is the same for each value of
a given type, which speeds up random access. Also, reading binary data is
faster than parsing text. The main drawback is that the resulting files cannot
be easily inspected in a text editor.

You can use the DataInputStream and DataOutputStream adapters with any stream.
For example,

DataInput in = new DataInputStream(Files.newInputStream(path))
DataOutput out = new DataOutputStream(Files.newOutputStream(path));

9.1.8 Random-Access Files

The RandomAccessFile class lets you read or write data anywhere in a file. You
can open a random-access file either for reading only or for both reading and
writing; specify the option by using the string "r" (for read access) or "rw" (for
read/write access) as the second argument in the constructor. For example,

RandomAccessFile file = new RandomAccessFile(path.toString(), "rw"
A random-access file has a file pointer that indicates the position of the next

byte to be read or written. The seek method sets the file pointer to an arbitrary
byte position within the file. The argument to seek is a long integer between



9.1 m Input/Output Streams, Readers, and Writers

zero and the length of the file (which you can obtain with the length method).
The getFilePointer method returns the current position of the file pointer.

The RandomAccessFile class implements both the DataInput and Dataoutput interfaces.
To read and write numbers from a random-access file, use methods such as
readInt/writeInt that you saw in the preceding section. For example,

int value = file.readInt();

file.seek(file.getFilePointer() - 4);
file.writeInt(value + 1);

9.1.9 Memory-Mapped Files

Memory-mapped files provide another, very efficient approach for random
access that works well for very large files. However, the API for data access
is completely different from that of input/output streams. First, get a channel
to the file:

FileChannel channel = FileChannel.open(path,
StandardOpenOption.READ, StandardOpenOption.WRITE)

Then, map an area of the file (or, if it is not too large, the entire file) into
memory:
ByteBuffer buffer = channel.map(FileChannel.MapMode.READ_WRITE,
0, channel.size());

Use methods get, getInt, getDouble, and so on to read values, and the equivalent
put methods to write values.

int offset = ...;
int value = buffer.getInt(offset);
buffer.put(offset, value + 1);

At some point, and certainly when the channel is closed, these changes are
written back to the file.

NOTE: By default, the methods for reading and writing numbers use
big-endian byte order. You can change the byte order with the command

buffer.order(ByteOrder.LITTLE_ENDIAN);

9.1.10 File Locking

When multiple simultaneously executing programs modify the same file, they
need to communicate in some way, or the file can easily become damaged.
File locks can solve this problem.

297



Chapter 9 m Processing Input and Output

Suppose your application saves a configuration file with user preferences. If
a user invokes two instances of the application, it could happen that both of
them want to write the configuration file at the same time. In that situation,
the first instance should lock the file. When the second instance finds the
file locked, it can decide to wait until the file is unlocked or simply skip
the writing process. To lock a file, call either the lock or trylock methods of the
FileChannel class.

FileChannel channel = FileChannel.open(path);
FilelLock lock = channel.lock();

or
FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns
immediately, either with the lock or with null if the lock is not available.
The file remains locked until the lock or the channel is closed. It is best to
use a try-with-resources statement:

try (FileLock lock = channel.lock()) {

}

9.2 Paths, Files, and Directories

You have already seen Path objects for specifying file paths. In the following
sections, you will see how to manipulate these objects and how to work with
files and directories.

9.2.1 Paths

A Path is a sequence of directory names, optionally followed by a file name.
The first component of a path may be a root component, such as / or C:\.
The permissible root components depend on the file system. A path that
starts with a root component is absolute. Otherwise, it is relative. For example,
here we construct an absolute and a relative path. For the absolute path, we
assume we are running on a Unix-like file system.

Path absolute
Path relative

Paths.get("/", "home", "cay");
Paths.get("myapp", "conf", "user.properties");

The static Paths.get method receives one or more strings, which it joins with
the path separator of the default file system (/ for a Unix-like file system, \
for Windows). It then parses the result, throwing an InvalidPathException if the
result is not a valid path in the given file system. The result is a Path object.



9.2 W Paths, Files, and Directories

You can also provide a string with separators to the Paths.get method:

Path homeDirectory = Paths.get("/home/cay");

EI NOTE: A Path object does not have to correspond to a file that actually

exists. It is merely an abstract sequence of names. To create a file, first

make a path, then call a method to create the corresponding file—see
Section 9.2.2, “Creating Files and Directories” (page 300).

It is very common to combine or “resolve” paths. The call p.resolve(q) returns
a path according to these rules:

e If q is absolute, then the result is g.
* Otherwise, the result is “p then g,” according to the rules of the file system.

For example, suppose your application needs to find its configuration file
relative to the home directory. Here is how you can combine the paths:
Path workPath = homeDirectory.resolve("myapp/work");
// Same as homeDirectory.resolve(Paths.get("myapp/work"));
There is a convenience method resolvesibling that resolves against a path’s
parent, yielding a sibling path. For example, if workpath is /home/cay/myapp/work,
the call

Path tempPath = workPath.resolveSibling("temp");
yields /home/cay/myapp/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path g
which, when resolved with p, yields r. For example,

Paths.get("/home/cay").relativize(Paths.get("/home/fred/myapp"))

yields ../fred/myapp, assuming we have a file system that uses .. to denote the
parent directory.

The normalize method removes any redundant . and .. components (or what-
ever the file system may deem redundant). For example, normalizing the path
/home/cay/../fred/./myapp yields /home/fred/myapp.

The toAbsolutePath method yields the absolute path of a given path. If the path
is not already absolute, it is resolved against the “user directory”—that is, the
directory from which the JVM was invoked. For example, if you launched
a program from /home/cay/myapp, then Paths.get("config").toAbsolutePath() returns
/home/cay/myapp/config.

The path interface has methods for taking paths apart and combining them
with other paths. This code sample shows some of the most useful ones:



m Chapter 9 m Processing Input and Output

Path p = Paths.get("/home", "cay", "myapp.properties");
Path parent = p.getParent(); // The path /home/cay
Path file = p.getFileName(); // The last element, myapp.properties
Path root = p.getRoot(); // The initial segment / (null for a relative path)
Path first = p.getName(0); // The first element
Path dir = p.subpath(1, p.getNameCount());
// All but the first element, cay/myapp.properties

The Path interface extends the Iterable<Path> element, so you can iterate over
the name components of a pPath with an enhanced for loop:

for (Path component : path) {

}

NOTE: Occasionally, you may need to interoperate with legacy APIs that
use the File class instead of the Path interface. The Path interface has a
toFile method, and the File class has a toPath method.

9.2.2 Creating Files and Directories

To create a new directory, call

Files.createDirectory(path);
All but the last component in the path must already exist. To create
intermediate directories as well, use

Files.createDirectories(path);

You can create an empty file with

Files.createFile(path);

The call throws an exception if the file already exists. The checks for existence
and the creation are atomic. If the file doesn't exist, it is created before anyone
else has a chance to do the same.

The call Files.exists(path) checks whether the given file or directory exists. To
test whether it is a directory or a “regular” file (that is, with data in it, not
something like a directory or symbolic link), call the static methods isbirectory
and isRegularFile of the Files class.

There are convenience methods for creating a temporary file or directory in
a given or system-specific location.



9.2 W Paths, Files, and Directories m

Path tempFile = Files.createTempFile(dir, prefix, suffix);
Path tempFile = Files.createTempFile(prefix, suffix);
Path tempDir = Files.createTempDirectory(dir, prefix);
Path tempDir = Files.createTempDirectory(prefix);

Here, dir is a Path, and prefix/suffix are strings which may be null. For
example, the call Files.createTempFile(null, ".txt") might return a path such as
/tmp/1234405522364837194. txt.

9.2.3 Copying, Moving, and Deleting Files

To copy a file from one location to another, simply call
Files.copy(fromPath, toPath);

To move a file (that is, copy and delete the original), call
Files.move(fromPath, toPath);

You can also use this command to move an empty directory.

The copy or move will fail if the target exists. If you want to overwrite an
existing target, use the REPLACE_EXISTING option. If you want to copy all file
attributes, use the COPY_ATTRIBUTES option. You can supply both like this:

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
StandardCopyOption.COPY_ATTRIBUTES);

You can specify that a move should be atomic. Then you are assured that
either the move completed successfully, or the source continues to be present.
Use the ATOMIC_MOVE option:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

See Table 9-3 for a summary of the options that are available for file
operations.

Finally, to delete a file, simply call
Files.delete(path);

This method throws an exception if the file doesn't exist, so instead you may
want to use

boolean deleted = Files.deleteIfExists(path);

The deletion methods can also be used to remove an empty directory.



m Chapter 9 m Processing Input and Output

Table 9-3 Standard Options for File Operations

Option Description

StandardOpenOption; use with newBufferedWriter, newInputStream, newOutputStream, write

READ Open for reading

WRITE Open for writing

APPEND If opened for writing, append to the end of the file
TRUNCATE_EXISTING If opened for writing, remove existing contents

CREATE_NEW Create a new file and fail if it exists

CREATE Atomically create a new file if it doesn't exist
DELETE_ON_CLOSE Make a “best effort” to delete the file when it is closed
SPARSE A hint to the file system that this file will be sparse

DSYNC | SYNC Requires that each update to the file dataldata and metadata

be written synchronously to the storage device

StandardCopyOption; use with copy, move

ATOMIC_MOVE Move the file atomically
COPY_ATTRIBUTES Copy the file attributes
REPLACE_EXISTING Replace the target if it exists

LinkOption; use with all of the above methods and exists, isDirectory, isRegularFile

NOFOLLOW_LINKS Do not follow symbolic links

FileVisitOption; use with find, walk, walkFileTree

FOLLOW_LINKS Follow symbolic links

9.2.4 Visiting Directory Entries

The static Files.list method returns a StreamcPath> that reads the entries of a
directory. The directory is read lazily, making it possible to efficiently process
directories with huge numbers of entries.

Since reading a directory involves a system resource that needs to be closed,
you should use a try-with-resources block:

try (Stream<Path> entries = Files.list(pathToDirectory)) {

}



9.2 W Paths, Files, and Directories

The list method does not enter subdirectories. To process all descendants of
a directory, use the Files.walk method instead.

try (Stream<Path> entries = Files.walk(pathToRoot)) {
// Contains all descendants, visited in depth-first order
}

Here is a sample traversal of the unzipped src.zip tree:

java

java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL. java
java/nio/MappedByteBuffer.java

java/nio/ByteBufferAsDoubleBufferB. java
java/nio/charset
java/nio/charset/CoderMalfunctionError. java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
java/nio/charset/StandardCharsets.java
java/nio/charset/Charset.java

java/nio/charset/CoderResult.java
java/nio/HeapFloatBufferR.java

As you can see, whenever the traversal yields a directory, it is entered before
continuing with its siblings.

You can limit the depth of the tree that you want to visit by calling
Files.walk(pathToRoot, depth). Both walk methods have a varargs parameter of type
FilevisitOption..., but there is only one option you can supply: FOLLOW_LINKS to
follow symbolic links.

D NOTE: If you filter the paths returned by walk and your filter criterion
involves the file attributes stored with a directory, such as size, creation
time, or type (file, directory, symbolic link), then use the find method
instead of walk. Call that method with a predicate function that accepts
a path and a BasicFileAttributes object. The only advantage is efficiency.
Since the directory is being read anyway, the attributes are readily
available.




m Chapter 9 m Processing Input and Output

This code fragment uses the Files.walk method to copy one directory to another:

Files.walk(source).forEach(p -> {
try {
Path q = target.resolve(source.relativize(p));
if (Files.isDirectory(p))
Files.createDirectory(q);
else

Files.copy(p, q);
} catch (IOException ex) {
throw new UncheckedIOException(ex);
}

b

Unfortunately, you cannot easily use the Files.walk method to delete a tree of
directories since you need to first visit the children before deleting the parent.
In that case, use the walkFileTree method. It requires an instance of the Filevisitor
interface. Here is when the file visitor gets notified:

1. Before a directory is processed:
FileVisitResult preVisitDirectory(T dir, IOException ex)
2. When a file is encountered:
FileVisitResult visitFile(T path, BasicFileAttributes attrs)
3. When an exception occurs in the visitFile method:
FileVisitResult visitFileFailed(T path, IOException ex)
4. After a directory is processed:

FileVisitResult postVisitDirectory(T dir, IOException ex)
In each case, the notification method returns one of the following results:

e Continue visiting the next file: FilevisitResult.CONTINUE

* Continue the walk, but without visiting the entries in this directory:
FileVisitResult.SKIP_SUBTREE

* Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP_SIBLINGS

e Terminate the walk: FileVisitResult.TERMINATE

If any of the methods throws an exception, the walk is also terminated, and
that exception is thrown from the walkFileTree method.

The simpleFilevisitor class implements this interface, continuing the iteration
at each point and rethrowing any exceptions.

Here is how you can delete a directory tree:



9.2 W Paths, Files, and Directories

Files.walkFileTree(root, new SimpleFileVisitor<Path>() {
public FileVisitResult visitFile(Path file,
BasicFileAttributes attrs) throws IOException {
Files.delete(file);
return FileVisitResult.CONTINUE;

}
public FileVisitResult postVisitDirectory(Path dir,
IOException ex) throws IOException {
if (ex != null) throw ex;
Files.delete(dir);
return FileVisitResult.CONTINUE;

}
b

9.2.5 ZIP File Systems

The paths class looks up paths in the default file system—the files on the user’s
local disk. You can have other file systems. One of the more useful ones is
a ZIP file system. If zipname is the name of a ZIP file, then the call

FileSystem zipfs = FileSystems.newFileSystem(Paths.get(zipname), null);

establishes a file system that contains all files in the ZIP archive. It's an easy
matter to copy a file out of that archive if you know its name:

Files.copy(zipfs.getPath(sourceName), targetPath);
Here, zipfs.getPath is the analog of Paths.get for an arbitrary file system.
To list all files in a ZIP archive, walk the file tree:

Files.walk(zipfs.getPath("/")).forEach(p -> {
Process p

b;

You have to work a bit harder to create a new ZIP file. Here is the magic
incantation:

Path zipPath = Paths.get("myfile.zip");
URI uri = new URI("jar", zipPath.toUri().toString(), null);
// Constructs the URI jar:file://myfile.zip
try (FileSystem zipfs = FileSystems.newFileSystem(uri,
Collections.singletonMap("create", "true"))) {
// To add files, copy them into the ZIP file system
Files.copy(sourcePath, zipfs.getPath("/").resolve(targetPath))

NOTE: There is an older API for working with ZIP archives, with classes
ZipInputStream and ZipOutputStream, but it’'s not as easy to use as the one
described in this section.




Chapter 9 m Processing Input and Output

9.3 HTTP Connections

You can read from a URL by using the input stream returned from
URL.getInputStrean method. However, if you want additional information about
a web resource, or if you want to write data, you need more control over
the process than the URL class provides. The URLConnection class was designed
before HTTP was the universal protocol of the Web. It provides support for
a number of protocols, but its HTTP support is somewhat cumbersome. When
the decision was made to support HTTP/2, it became clear that it would be
best to provide a modern client interface instead of reworking the existing
APL In Java 9, the HttpClient provides a more convenient API and HTTP/2
support. The API classes are located in the jdk.incubator.http package, to indicate
that its API is likely to evolve as a result of user feedback before it is finalized
in Java 10.

In the following sections, I provide a cookbook for using the HttpURLConnection
class, and then give an overview of the API in the incubator.

9.3.1 The URLConnection and HttpURLConnection Classes

To use the URLConnection class, follow these steps:
1. Get an URLConnection object:
URLConnection connection = url.openConnection();

For an HTTP URL, the returned object is actually an instance of
HttpURLConnection.
2. [If desired, set request properties:
connection.setRequestProperty("Accept-Charset", "UTF-8, IS0-8859-1");
If a key has multiple values, separate them by commas.

3. To send data to the server, call

connection.setDoOutput(true);

try (OutputStream out = connection.getOutputStream()) {
// Write to out

}

4. If you want to read the response headers and you haven't called
getOutputStream, call

connection.connect();



9.3 W HTTP Connections

Then query the header information:

Map<String, List<String>> headers = connection.getHeaderFields();

For each key, you get a list of values since there may be multiple header
fields with the same key.

5. Read the response:

try (InputStream in = connection.getInputStream()) {
// Read from in

A common use case is to post form data. The URLConnection class automatically
sets the content type to application/x-wwi-form-urlencoded when writing data to a
HTTP URL, but you need to encode the name/value pairs:

URL url = ...;
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
try (Writer out = new OutputStreamWriter(
connection.getOutputStream(), StandardCharsets.UTF_8)) {
Map<String, String> postData = ...;
boolean first = true;
for (Map.Entry<String, String> entry : postData.entrySet()) {
if (first) first = false;
else out.write("s");
out.write(URLEncoder.encode(entry.getkey(), "UTF-8"));
out.write("=");
out.write(URLEncoder.encode(entry.getValue(), "UTF-8"));

}
}
try (InputStream in = connection.getInputStream()) {
}

9.3.2 The HTTP Client API

The HTTP client API whose incubator version is included in Java 9 provides
another mechanism for connecting to a web server which is simpler than the
URLConnection class with its rather fussy set of stages.

NOTE: To use this feature, you need to run your program with the
command-line option

--add-modules jdk.incubator.httpclient

307



Chapter 9 m Processing Input and Output

An HttpClient can issue requests and receive responses. You get a client by
calling

HttpClient client = HttpClient.newHttpClient();

Alternatively, if you need to configure the client, use a builder API like this:

HttpClient client = HttpClient.newBuilder()
.followRedirects(HttpClient.Redirect.ALWAYS)
.build();

That is, you get a builder, call methods to customize the item that is going
to be built, and then call the build method to finalize the building process.
This is a common pattern for constructing immutable objects.

Follow the same pattern for formulating requests. Here is a GET request:

HttpRequest request = HttpRequest.newBuilder()
.uri(new URI("http://horstmann.com"))
.GET()

.build();

The URI is the “uniform resource identifier” which is, when using HTTP, the
same as a URL. However, in Java, the URL class has methods for actually
opening a connection to a URL, whereas the URI class is only concerned with
the syntax (scheme, host, port, path, query, fragment, and so on).

When sending the request, you have to tell the client how to handle the
response. If you just want the body as a string, send the request with a
HttpResponse.BodyHandler.asString(), like this:

HttpResponse<String> response
= client.send(request, HttpResponse.BodyHandler.asString());

The HttpResponse class is a template whose type denotes the type of the body.
You get the response body string simply as

String bodyString = response.body();

There are other response body handlers that get the response as a byte array
or a file. One can hope that eventually the JDK will support JSON and provide
a JSON handler.

With a PosT request, you similarly need a “body processor” that turns the re-
quest data into the data that is being posted. There are body processors for
strings, byte arrays, and files. Again, one can hope that the library designers
will wake up to the reality that most PosT requests involve form data or JSON
objects, and provide appropriate processors.

In the meantime, to send a form post, you need to URL-encode the request
data, just like in the preceding section.


http://horstmann.com"

9.3 W HTTP Connections m

Map<String, String> postData = ...;

boolean first = true;

StringBuilder body = new StringBuilder();

for (Map.Entry<String, String> entry : postData.entrySet()) {
if (first) first = false;
else body.append("s");
body.append(URLEncoder.encode(entry.getKey(), "UTF-8"));
body.append("=");
body.append(URLEncoder.encode(entry.getValue(), "UTF-8"));

}

HttpRequest request = HttpRequest.newBuilder()
.uri(httpUrlString)
.header("Content-Type", "application/x-www-form-urlencoded")
.POST(HttpRequest.BodyProcessor. fromString(body.toString()))
.build();

Note that, unlike with the URLConnection class, you need to specify the content
type for forms.

Similarly, for posting JSON data, you specify the content type and provide a
JSON string.

The HttpResponse object also yields the status code and the response headers.

int status = response.statusCode();
HttpHeaders responseHeaders = response.headers();

You can turn the HttpHeaders object into a map:
Map<String, List<String>> headerMap = responseHeaders.map();
The map values are lists since in HTTP, each key can have multiple values.

If you just want the value of a particular key, and you know that there won't
be multiple values, call the firstvalue method:

Optional<String> lastModified = headerMap.firstValue("Last-Modified");

You get the response value or an empty optional if none was supplied.

TIP: To enable logging for the HttpClient, add this line to net.properties
in your JDK:

jdk.httpclient.HttpClient.log=all

Instead of all, you can specify a comma-separated list of headers, requests,
content, errors, ssl, trace, and frames, optionally followed by :control, :data,
:window, or :all. Don’t use any spaces.

Then set the logging level for the logger named jdk.httpclient.HttpClient
to INFO, for example by adding this line to the logging.properties file in
your JDK:

jdk.httpclient.HttpClient.level=INFO



httpUrlString
http://www-form-urlencoded"

Chapter 9 m Processing Input and Output

9.4 Regular Expressions

Regular expressions specify string patterns. Use them whenever you need to
locate strings that match a particular pattern. For example, suppose you want
to find hyperlinks in an HTML file. You need to look for strings of the pattern
<a href="...">. But wait—there may be extra spaces, or the URL may be enclosed
in single quotes. Regular expressions give you a precise syntax for specifying
what sequences of characters are legal matches.

In the following sections, you will see the regular expression syntax used by
the Java API, and how to put regular expressions to work.

9.4.1 The Regular Expression Syntax

In a regular expression, a character denotes itself unless it is one of the
reserved characters

cxe 2 { L ()INTS
For example, the regular expression Java only matches the string Java.

The symbol . matches any single character. For example, .a.a matches Java
and data.

The + symbol indicates that the preceding constructs may be repeated 0 or
more times; for a +, it is 1 or more times. A suffix of ? indicates that a con-
struct is optional (0 or 1 times). For example, be+s? matches be, bee, and bees.
You can specify other multiplicities with { } (see Table 9-4).

A | denotes an alternative: .(oolee)f matches beef or woof. Note the parenthe-
ses—without them, .ooleef would be the alternative between .00 and eef.
Parentheses are also used for grouping—see Section 9.4.4, “Groups” (page 316).

A character class is a set of character alternatives enclosed in brackets, such
as [3j], [0-9], [A-Za-z], or ["0-9]. Inside a character class, the - denotes a range
(all characters whose Unicode values fall between the two bounds). However,
a - that is the first or last character in a character class denotes itself. A * as
the first character in a character class denotes the complement (all characters
except those specified).

There are many predefined character classes such as \d (digits) or \p{sc} (Unicode
currency symbols). See Tables 9-4 and 9-5.

The characters * and $ match the beginning and end of input.

If you need to have a literal . + + 2 { | () [ \ " §, precede it by a backslash.
Inside a character class, you only need to escape [ and \, provided you are



9.4 W Regular Expressions

careful about the positions of 1 - *. For example, [1"-] is a class containing

all three of them.

Alternatively, surround a string with \Q and \E. For example, \(\$6\.99\) and
\Q($6.99)\E both match the string ($0.99).

TIP: If you have a string that may contain some of the many special
characters in the regular expression syntax, you can escape them all by

calling Parse.quote(str). This simply surrounds the string with \Q and \E,
but it takes care of the special case where str may contain \E.

Tahle 9-4 Regular Expression Syntax

Expression Description Example
Characters
¢, not one of . * + ? { The character ¢ ]
FCYIN"$
Any character except line
terminators, or any character if the
DOTALL flag is set
\x{p} The Unicode code point with hex \x{1D546}
code p
\uhhhh, \xhh, \6o, \eoo, The UTF-16 code unit with the given \uFEFF
\0ooo hex or octal value
\a, \e, \f, \n, \r, \t Alert (\x{7}), escape (\x{18}), form \n
feed (\x{B}), newline (\x{A}), carriage
return (\x{p}), tab (\x{9})
\cc, where ¢ is in [A-Z] ~ The control character corresponding  \cH is a
oroneofa [\]"_2? to the character ¢ backspace
(\x{8})
\c, where c is not in The character ¢ \\
[A-Za-20-9]
\Q ... \E Everything between the start and the \Q(...)\E
end of the quotation matches the
string (...)

(Continues)



m Chapter 9 m Processing Input and Output

Table 9-4 Regular Expression Syntax (Continued)

Expression Description Example

Character Classes

[CGy..0 ], Any of the characters represented [0-9+-]
where C; are by Cy, Gy - ..
characters,
ranges c-d, or
character
classes
[*...] Complement of a character class ["\d\s]
[...66...] Intersection of character classes [\p{L}&6["A-Za-2]]
\p{...}, \P{...} A predefined character class (see \p{L} matches a
Table 9-5); its complement Unicode letter, and so

does \pL—you can omit
braces around a single

letter

\d, \D Digits ([0-9], or \p{Digit} when the \d+ is a sequence of
UNICODE_CHARACTER_CLASS ﬂag is set); digits
the complement

\w, \W Word characters ([a-zA-20-9_], or
Unicode word characters when the
UNICODE_CHARACTER_CLASS flag is set);
the complement

\s, \S Spaces ([\n\r\t\f\x{B}], or \s#,\s* is a comma
\p{IsWwhite_Space} when the surrounded by
UNICODE_CHARACTER_CLASS flag is set); optional white space
the complement

\h, \v, \H, \V Horizontal whitespace, vertical
whitespace, their complements

Sequences and Alternatives

XY Any string from X, followed by any [1-9][0-9]* is a positive
string from Y number without

leading zero

XY Any string from X or Y http|ftp

(Continues)



9.4 W Regular Expressions

Table 9-4 Regular Expression Syntax (Continued)

Expression Description Example

Grouping

(X) Captures the match of X "(["']%)" captures the quoted

text
\n The nth group (['"1).#*\1 matches 'Fred' or
"Fred" but not "Fred'

(7<name>X) Captures the match of X with ~ '(?<id>[A-Za-z0-9]+)' captures
the given name the match with name 1id

\k<name> The group with the given \k<id> matches the group
name with name 1id

(2:X) Use parentheses without In (?:httplftp)://(.*), the
capturing X match after :// is \1

Cfifz. 1 X), Matches, but does not (?1:jpe?g) is a case-insensitive

Ofree o fee o1 X), capture, X with the given match

with f; in flags on or off (after -)

[dimsuux]

Other (?...) See the pPattern API
documentation

Quantifiers

X? Optional X \+? is an optional + sign

Xx, X+ 0 or more X, 1 or more X [1-9][6-9]+ is an integer > 10

X{n}, X{n,},
X{m,n}

n times X, at least n times X,
between m and n times X

[0-7]{1,3} are one to three
octal digits

Q?, where Q is
a quantified
expression

Reluctant quantifier,
attempting the shortest match
before trying longer matches

.+(<.+7>).+ captures the
shortest sequence enclosed
in angle brackets

Q+, where Q is
a quantified
expression

Possessive quantifier, taking
the longest match without
backtracking

'[*']++' matches strings
enclosed in single quotes
and fails quickly on strings
without a closing quote

Boundary Matches

" s

Beginning, end of input (or
beginning, end of line in
multiline mode)

"Java$ matches the input or
line Java

(Continues)


http|ftp

m Chapter 9 m Processing Input and Output

Table 9-4 Regular Expression Syntax (Continued)

Expression Description Example
\A\Z \z Beginning of input, end of input, absolute
end of input (unchanged in multiline
mode)
\b \B Word boundary, nonword boundary \bJava\b matches
the word Java
\R A Unicode line break
\G The end of the previous match

Tahle 9-5 Predefined Character Classes \p{...}

Name Description

posixClass posixClass is one of Lower, Upper, Alpha, Digit, Alnum,
Punct, Graph, Print, Cntrl, XDigit, Space, Blank, ASCII,
interpreted as POSIX or Unicode class, depending

on the UNICODE_CHARACTER_CLASS ﬂag

IsScript, sc=Script,
script=Script

A script accepted by Character.UnicodeScript.forName

InBlock, blk=Block,
block=Block

A block accepted by Character.UnicodeBlock. forName

Category, InCategory,
gc=Category,
general_category=Cutegory

A one- or two-letter name for a Unicode general

category

IsProperty Property is one of Alphabetic, Ideographic, Letter,
Lowercase, Uppercase, Titlecase, Punctuation, Control,
White_Space, Digit, Hex_Digit, Join_Control,
Noncharacter_Code_Point, Assigned

javaMethod Invokes the method Character.isMethod (must not be

deprecated)

9.4.2 Finding One Match

Generally, there are two ways to use a regular expression: Either you want
to find out whether a string conforms to the expression, or you want to find
all matches of a regular expressions in a string.

In the first case, simply use the static matches method:



9.4 W Regular Expressions m

String regex = "[+-12\\d+";
CharSequence input = ...;
if (Pattern.matches(regex, input)) {

}

If you need to use the same regular expression many times, it is more efficient
to compile it. Then, create a Matcher for each input:
Pattern pattern = Pattern.compile(regex);

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) ...

If the match succeeds, you can retrieve the location of matched groups—see
the following section.

If you want to match elements in a collection or stream, turn the pattern into
a predicate:

Stream<String> strings = ...;
Stream<String> result = strings.filter(pattern.asPredicate());

The result contains all strings that match the regular expression.

9.4.3 Finding All Matches

In this section, we consider the other common use case for regular
expressions—finding all matches in an input. Use this loop:
String input = ...;
Matcher matcher = pattern.matcher(input);
while (matcher.find()) {
String match = matcher.group();
int matchStart = matcher.start();
int matchEnd = matcher.end();

}

In this way, you can process each match in turn. As shown in the code
fragment, you can get the matched string as well as its position in the input
string.

More elegantly, you can call the results method to get a Stream<MatchResult>. The
MatchResult interface has methods group, start, and end, just like Matcher. (In fact,
the Matcher class implements this interface.) Here is how you get a list of all
matches:

List<String> matches = pattern.matcher(input)
.results()

.map(Matcher: :group)
.collect(Collectors.toList());



Chapter 9 m Processing Input and Output

If you have the data in a file, then you can use the Scanner.findAll method to
get a StreamcMatchResult>, without first having to read the contents into a string.
You can pass a Pattern or a pattern string:

Scanner in = new Scanner(path, "UTF-8");
Stream<String> words = in.findAl1("\\pL+")
.map(MatchResult::group);

9.4.4 Groups

It is common to use groups for extracting components of a match. For exam-
ple, suppose you have a line item in the invoice with item name, quantity,
and unit price such as

Blackwell Toaster  USD29.95
Here is a regular expression with groups for each component:
(\p{Alnum}+(\s+\p{Alnum}+)*)\s+([A-2]{3})([0-9.]%)
After matching, you can extract the nth group from the matcher as
String contents = matcher.group(n);
Groups are ordered by their opening parenthesis, starting at 1. (Group 0 is
the entire input.) In this example, here is how to take the input apart:

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) {

item = matcher.group(1);

currency = matcher.group(3);

price = matcher.group(4);

}

We aren't interested in group 2; it only arose from the parentheses that were
required for the repetition. For greater clarity, you can use a noncapturing

group:
(\p{Alnum}+(?:\s+\p{Alnum}+)+)\s+([A-2]{3})([6-9.]+)

Or, even better, capture by name:
(7<item>\p{Alnum}+(\s+\p{Alnum}+)*)\s+(?<currency>[A-Z]{3})(?<price>[0-9.]x)

Then, you can retrieve the items by name:
item = matcher.group("item");

With the start and end methods, you can get the group positions in the input:

int itemStart = matcher.start("item");
int itemEnd = matcher.end("item");



9.4 W Regular Expressions

D NOTE: Retrieving groups by name only works with a Matcher, not with
a MatchResult.

D NOTE: When you have a group inside a repetition, such as
(\s+\p{Alnum}+)+ in the example above, it is not possible to get all of its
matches. The group method only yields the last match, which is rarely
useful. You need to capture the entire expression with another group.

9.4.5 Splitting along Delimiters

Sometimes, you want to break an input along matched delimiters and keep
everything else. The Pattern.split method automates this task. You obtain an
array of strings, with the delimiters removed:

String input = ...;
Pattern commas = Pattern.compile("\\s*,\\s*");
String[] tokens = commas.split(input);

// "1, 2, 3" turns into ["1", "2", "3"]

If there are many tokens, you can fetch them lazily:
Stream<String> tokens = commas.splitAsStream(input);
If you don't care about precompiling the pattern or lazy fetching, you can
just use the String.split method:
String[] tokens = input.split("\\s#,\\s*");
If the input is in a file, use a scanner:

Scanner in = new Scanner(path, "UTF-8");
in.useDelimiter("\\s+,\\s*");
Stream<String> tokens = in.tokens();

9.4.6 Replacing Matches

If you want to replace all matches of a regular expression with a string, call
replaceAll on the matcher:

Matcher matcher = commas.matcher(input);
String result = matcher.replaceAll(",");
// Normalizes the commas
Or, if you don't care about precompiling, use the replaceAll method of the
String class.

String result = input.replaceAll1("\\s*,\\s*", ",");

317



Chapter 9 m Processing Input and Output

The replacement string can contain group numbers $n or names ${name}. They
are replaced with the contents of the corresponding captured group.

String result = "3:45".replaceAll(
"(\\d{1,2}): (2<minutes>\\d{2})",
"$1 hours and ${minutes} minutes");
// Sets result to "3 hours and 45 minutes"

You can use \ to escape $ and \ in the replacement string, or you can call

the Matcher.quoteReplacement convenience method:
matcher.replaceAll(Matcher.quoteReplacement(str))

If you want to carry out a more complex operation than splicing in group

matches, then you can provide a replacement function instead of a replacement

string. The function accepts a MatchResult and yields a string. For example, here
we replace all words with at least four letters with their uppercase version:

String result = Pattern.compile("\\pL{4,}")
.matcher("Mary had a little lamb")
.replaceAll(m -> m.group().toUpperCase());
// Yields "MARY had a LITTLE LAMB"

The replaceFirst method replaces only the first occurrence of the pattern.

9.4.7 Flags

Several flags change the behavior of regular expressions. You can specify them
when you compile the pattern:

Pattern pattern = Pattern.compile(regex,
Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CHARACTER_CLASS);

Or you can specify them inside the pattern:
String regex = "(?ilU:expression)";
Here are the flags:

* Pattern.CASE_INSENSITIVE or i: Match characters independently of the letter
case. By default, this flag takes only US ASCII characters into account.

e Ppattern.UNICODE_CASE or u: When used in combination with CASE_INSENSITIVE, use
Unicode letter case for matching.

® Pattern.UNICODE_CHARACTER_CLASS or U: Select Unicode character classes instead
of POSIX. Implies UNICODE_CASE.

* Pattern.MULTILINE or m: Make " and $ match the beginning and end of a line,
not the entire input.

® Pattern.UNIX_LINES or d: Only '\n' is a line terminator when matching " and
$ in multiline mode.



9.5 W Serialization

® Pattern.DOTALL or s: Make the . symbol match all characters, including line
terminators.

® Pattern.COMMENTS or x: Whitespace and comments (from # to the end of a
line) are ignored.

* Pattern.LITERAL: The pattern is taking literally and must be matched exactly,
except possibly for letter case.

® Pattern.CANON_EQ: Take canonical equivalence of Unicode characters into
account. For example, u followed by ~ (diaeresis) matches {i.

The last two flags cannot be specified inside a regular expression.

9.5 Serialization

In the following sections, you will learn about object serialization—a mecha-
nism for turning an object into a bunch of bytes that can be shipped some-
where else or stored on disk, and for reconstituting the object from those
bytes.

Serialization is an essential tool for distributed processing, where objects are
shipped from one virtual machine to another. It is also used for fail-over and
load balancing, when serialized objects can be moved to another server. If
you work with server-side software, you will often need to enable serialization
for classes. The following sections tell you how to do that.

9.5.1 The Serializable Interface

In order for an object to be serialized—that is, turned into a bunch of bytes—it
must be an instance of a class that implements the Serializable interface. This
is a marker interface with no methods, similar to the Cloneable interface that
you saw in Chapter 4.

For example, to make Employee objects serializable, the class needs to be
declared as
public class Employee implements Serializable {

private String name;
private double salary;

}

It is safe and appropriate to implement the Serializable interface if all instance
variables have primitive or enum type, or refer to serializable objects.
Many classes in the standard library are serializable. Arrays and the collection
classes that you saw in Chapter 7 are serializable provided their elements



Chapter 9 m Processing Input and Output

are. More generally, all objects that you can reach from a serializable object
need to be serializable.

In the case of the Employee class, and indeed with most classes, there is no
problem. In the following sections, you will see what to do when a little extra
help is needed.

To serialize objects, you need an 0bjectOutputStrean, which is constructed with
another outputStream that receives the actual bytes.

ObjectOutputStream out = new ObjectOutputStream(
Files.newOutputStream(path))

Now call the writeobject method:

Employee peter = new Employee("Peter", 90000);
Employee paul = new Manager("Paul", 180000);
out.writeObject(peter);

out.writeObject(paul);

To read the objects back in, construct an 0ObjectInputStrean:

ObjectInputStream in = new ObjectInputStream(
Files.newInputStream(path))

Retrieve the objects in the same order in which they were written, using the
readobject method.

Employee el = (Employee) in.readObject();

Employee €2 = (Employee) in.readObject();
When an object is written, the name of the class and the names and values
of all instance variables are saved. If the value of an instance variable belongs
to a primitive type, it is saved as binary data. If it is an object, it is again
written with the writeObject method.

When an object is read in, the process is reversed. The class name and
the names and values of the instance variables are read, and the object is
reconstituted.

There is just one catch. Suppose there were two references to the same object.
Let's say each employee has a reference to their boss:

Employee peter = new Employee("Peter", 90000);
Employee paul = new Manager("Barney", 105000);
Manager mary = new Manager("Mary", 180000);
peter.setBoss(mary);

paul.setBoss(mary);

out.writeObject(peter);

out.writeObject(paul);

When reading these two objects back in, both of them need to have the same
boss, not two references to identical but distinct objects.



9.5 W Serialization

In order to achieve this, each object gets a serial number when it is saved.
When you pass an object reference to writedbject, the ObjectOutputStream checks
if the object reference was previously written. In that case, it just writes out
the serial number and does not duplicate the contents of the object.

In the same way, an ObjectInputStream remembers all objects it has encountered.
When reading in a reference to a repeated object, it simply yields a reference
to the previously read object.

9.5.2 Transient Instance Variables

Certain instance variables should not be serialized—for example, database
connections that are meaningless when an object is reconstituted. Also, when
an object keeps a cache of values, it might be better to drop the cache and
recompute it instead of storing it.

To prevent an instance variable from being serialized, simply tag it with the
transient modifier. Also, mark instance variables as transient if they belong to
nonserializable classes. Transient fields are always skipped when objects are
serialized.

9.5.3 The readObject and writeObject Methods

In rare cases, you need to tweak the serialization mechanism. A serializable
class can add any desired action to the default read and write behavior, by
defining methods with the signature
private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException

private void writeObject(ObjectOutputStream out)
throws IOException

Then, the object headers continue to be written as usual, but the instance
variables fields are no longer automatically serialized. Instead, these methods
are called.

Here is a typical example. The Point20 class in the JavaFX library is not serial-
izable. Now, suppose you want to serialize a class LabeledPoint that stores a
String and a Point2D. First, you need to mark the Point2d field as transient to
avoid a NotSerializableException.

public class LabeledPoint implements Serializable {

private String label;
private transient Point2D point;



Chapter 9 m Processing Input and Output

In the writeobject method, first write the nontransient label variable by calling
the defaultWriteobject method. This is a special method of the ObjectOutputStrean
class that should only be called from within a writeobject method of a serializ-
able class. Then, write the point coordinates using the writedouble method from
the DataOutput interface.

private void writeObject(ObjectOutputStream out)
throws IOException {
out.defaultWriteObject();
out.writeDouble(point.getX());
out.writeDouble(point.getY());

}
In the readobject method, reverse the process:

private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {
in.defaultReadObject();
double x = in.readDouble();
double y = in.readDouble();
point = new Point2D(x, v);

}

The readobject and writeobject methods only need to read and write their own
instance variables. They should not concern themselves with superclass data.

D NOTE: A class can define its own serialization format by implementing
the Externalizable interface and providing methods

public void readExternal(ObjectInput in)
public void writeExternal(ObjectOutput out)

When reading an externalizable object, the object stream creates an
object with the no-argument constructor and then calls the readExternal
method. This can give better performance, but it is very rarely used.

9.5.4 The readResolve and writeReplace Methods

We take it for granted that objects can only be constructed with the construc-
tor. However, a deserialized object is not constructed. Its instance variables are
simply restored from an object stream.

This is a problem if the constructor enforces some condition. For example, a
singleton object may be implemented so that the constructor can only be
called once. Before Java had the enun construct, enumerated types were simu-
lated by classes with a private constructor that was called once for each in-
stance. As another example, database entities could be constructed so that
they always come from a pool of managed instances.



9.5 W Serialization

These situations are exceedingly rare. Nowadays, the serialization of enun types
is automatic. And you shouldn’t implement your own mechanism for single-
tons. If you need a singleton, make an enumerated type with one instance
that is, by convention, called INSTANCE.

public enum PersonDatabase {
INSTANCE;

public Person findById(int id) { ...}

}

Now let's suppose that you are in the rare situation where you want to control
the identity of each deserialized instance. As an example, suppose a Person
class wants to restore its instances from a database when deserializing. Then
don't serialize the object itself but some proxy that can locate or construct
the object. Provide a writeReplace method that returns the proxy object:
public class Person implements Serializable {
private int id;
// Other instance variables

private Object writeReplace() {
return new PersonProxy(id);
}

}

When a Person object is serialized, none of its instance variables are saved.
Instead, the writeReplace method is called and its return value is serialized and
written to the stream.

The proxy class needs to implement a readResolve method that yields a Person:

public class PersonProxy implements Serializable {
private int id;

public PersonProxy(int id) {
this.id = id;
}

public Object readResolve() {
return PersonDatabase.INSTANCE.findById(id);
}

}

When the readobject method finds a PersonProxy in an ObjectInputStream, it
deserializes the proxy, calls its readresolve method, and returns the result.



Chapter 9 m Processing Input and Output

9.5.5 Versioning

Serialization was intended for sending objects from one virtual machine to
another, or for short-term persistence of state. If you use serialization for
long-term persistence, or in any situation where classes can change between
serialization and deserialization, you will need to consider what happens
when your classes evolve. Can version 2 read the old data? Can the users
who still use version 1 read the files produced by the new version?

The serialization mechanism supports a simple versioning scheme. When an
object is serialized, both the name of the class and its serialVersionUID are
written to the object stream. That unique identifier is assigned by the
implementor, by defining an instance variable

private static final long serialVersionUID = 1L; // Version 1

When the class evolves in an incompatible way, the implementor should
change the UID. Whenever a deserialized object has a nonmatching UID, the
readobject method throws an InvalidClassException.

If the serialversionUID matches, deserialization proceeds even if the implemen-
tation has changed. Each nontransient instance variable of the object to be
read is set to the value in the serialized state, provided that the name and
type match. All other instance variables are set to the default: null for object
references, zero for numbers, and false for boolean values. Anything in the
serialized state that doesn't exist in the object to be read is ignored.

Is that process safe? Only the implementor of the class can tell. If it is, then
the implementor should give the new version of the class the same
serialVersionUID as the old version.

If you don't assign a serialversionUID, one is automatically generated by hashing
a canonical description of the instance variables, methods, and supertypes.
You can see the hash code with the serialver utility. The command

serialver ch09.sec@5.Employee
displays

private static final long serialVersionUID = -4932578720821218323L;
When the class implementation changes, there is a very high probability that
the hash code changes as well.

If you need to be able to read old version instances, and you are certain that
is safe to do so, run serialver on the old version of your class and add the
result to the new version.



Exercises m

D NOTE: If you want to implement a more sophisticated versioning scheme,

override the readobject method and call the readFields method instead of
the defaultReadObject method. You get a description of all fields found
in the stream, and you can do with them what you want.

Exercises

1. Write a utility method for copying all of an InputStream to an OutputStream,
without using any temporary files. Provide another solution, without a
loop, using operations from the Files class, using a temporary file.

2. Write a program that reads a text file and produces a file with the same
name but extension .toc, containing an alphabetized list of all words in
the input file together with a list of line numbers in which each word
occurs. Assume that the file’s encoding is UTF-8.

3. Write a program that reads a file containing text and, assuming that most
words are English, guesses whether the encoding is ASCII, ISO 8859-1,
UTEF-8, or UTF-16, and if the latter, which byte ordering is used.

4. Using a Scanner is convenient, but it is a bit slower than using a
BufferedReader. Read in a long file a line at a time, counting the number of
input lines, with (a) a Scanner and hasNextLine/nextLine, (b) a BufferedReader and
readline, (c) a BufferedReader and lines. Which is the fastest? The most
convenient?

5. When an encoder of a Charset with partial Unicode coverage can’t encode
a character, it replaces it with a default—usually, but not always, the en-
coding of "?". Find all replacements of all available character sets that
support encoding. Use the neutncoder method to get an encoder, and call
its replacement method to get the replacement. For each unique result, report
the canonical names of the charsets that use it.

6. The BMP file format for uncompressed image files is well documented
and simple. Using random access, write a program that reflects each row
of pixels in place, without writing a new file.

7. Look up the API documentation for the MessagedDigest class and write a
program that computes the SHA-512 digest of a file. Feed blocks of bytes
to the Messagedigest object with the update method, then display the result
of calling digest. Verify that your program produces the same result as the
sha512sum utility.



m Chapter 9 m Processing Input and Output

10.

11.

12.

13.

14.

15.

16.

Write a utility method for producing a ZIP file containing all files from
a directory and its descendants.

Using the URLConnection class, read data from a password-protected web
page with “basic” authentication. Concatenate the user name, a colon,
and the password, and compute the Base64 encoding:

String input = username + ":" + password;

String encoding = Base64.getEncoder().encodeToString(
input.getBytes(StandardCharsets.UTF_8));

Set the HTTP header Authorization to the value "Basic " + encoding. Then read
and print the page contents.

Using a regular expression, extract all decimal integers (including negative
ones) from a string into an Arraylist<Integer> (a) using find, and (b) using
split. Note that a + or - that is not followed by a digit is a delimiter.

Using regular expressions, extract the directory path names (as an array
of strings), the file name, and the file extension from an absolute or
relative path such as /home/cay/myfile.txt.

Come up with a realistic use case for using group references in
Matcher.replaceAll and implement it.

Implement a method that can produce a clone of any serializable object
by serializing it into a byte array and deserializing it.
Implement a serializable class Point with instance variables for x and y.

Write a program that serializes an array of Point objects to a file, and
another that reads the file.

Continue the preceding exercise, but change the data representation of
Point so that it stores the coordinates in an array. What happens when
the new version tries to read a file generated by the old version? What
happens when you fix up the serialversionUId? Suppose your life depended
upon making the new version compatible with the old. What could
you do?

Which classes in the standard Java library implement Externalizable? Which
of them use uwriteReplace/readResolve?



This page intentionally left blank



Concurrent
Programming

Topics in This Chapter

= 101
= 10.2
= 103
= 104
= 105
= 10.6
= 10.7
= 108
= 109

Concurrent Tasks — page 330

Asynchronous Computations — page 335
Thread Safety — page 341

Parallel Algorithms — page 348

Threadsafe Data Structures — page 350

Atomic Counters and Accumulators — page 354
Locks and Conditions — page 357

Threads — page 362

Processes — page 366

= Exercises — page 371



hapter B RO

Java was one of the first mainstream programming languages with built-in
support for concurrent programming. Early Java programmers were enthusiastic
about how easy it was to load images in background threads or implement
a web server that serves multiple requests concurrently. At the time, the focus
was on keeping a processor busy while some tasks spend their time waiting
for the network. Nowadays, most computers have multiple processors or
cores, and programmers worry about keeping them all busy.

In this chapter, you will learn how to divide computations into concurrent
tasks and how to execute them safely. My focus is on the needs of application
programmers, not system programmers who write web servers or middleware.

For that reason, I arranged the information in this chapter so that I can, as
much as possible, first show you the tools that you should be using in your
work. I cover the low-level constructs later in the chapter. It is useful to know
about these low-level details so that you get a feel for the costs of certain
operations. But it is best to leave low-level thread programming to the experts.
If you want to become one of them, I highly recommend the excellent book
Java Concurrency in Practice by Brian Goetz et al. [Addison-Wesley, 2006].

The key points of this chapter are:

1. A Rumnable describes a task that can be executed asynchronously but does
not return a result.

2. An ExecutorService schedules tasks instances for execution.

329



Ch

apter 10 m Concurrent Programming

10.
11.

12.

13.

A Callable describes a task that can be executed asynchronously and yields
a result.

You can submit one or more Callable instances to an ExecutorService and
combine the results when they are available.

When multiple threads operate on shared data without synchronization,
the result is unpredictable.

Prefer using parallel algorithms and threadsafe data structures over
programming with locks.

Parallel streams and array operations automatically and safely parallelize
computations.

A ConcurrentHashMap is a threadsafe hash table that allows atomic update of
entries.

You can use AtomicLong for a lock-free shared counter, or use LongAdder if
contention is high.

A lock ensures that only one thread at a time executes a critical section.

An interruptible task should terminate when the interrupted flag is set
or an InterruptedException occurs.

A long-running task should not block the user-interface thread of a pro-
gram, but progress and final updates need to occur in the user-interface
thread.

The Process class lets you execute a command in a separate process and
interact with the input, output, and error streams.

10.1 Concurrent Tasks

W

hen you design a concurrent program, you need to think about the tasks

that can be run together. In the following sections, you will see how to execute
tasks concurrently.

10

In
co

1.1 Running Tasks

Java, the Runnable interface describes a task you want to run, perhaps
ncurrently with others.
public interface Runnable {

void run();

}



10.1 m Concurrent Tasks

Like all methods, the run method is executed in a thread. A thread is a
mechanism for executing a sequence of instructions, usually provided by the
operating system. Multiple threads run concurrently, by using separate
processors or different time slices on the same processor.

If you want to execute a Runnable in a separate thread, you could spawn a
thread just for this Runnable, and you will see how to do that in Section 10.8.1,
“Starting a Thread” (page 363). But in practice, it doesn’t usually make sense
to have a one-to-one relationship between tasks and threads. When tasks are
short-lived, you want to run many of them on the same thread, so you don't
waste the time it takes to start a thread. When your tasks are computationally
intensive, you just want one thread per processor instead of one thread per
task, to avoid the overhead of switching among threads. You do not want
to think of these issues when you design tasks, and therefore, it is best to
separate tasks and task scheduling.

In the Java concurrency library, an executor service schedules and executes
tasks, choosing the threads on which to run them.
Runnable task = () -> { ... };

ExecutorService executor = ...;
executor.execute(task);

The Executors class has factory methods for executor services with different
scheduling policies. The call

exec = Executors.newCachedThreadPool();

yields an executor service optimized for programs with many tasks that are
short lived or spend most of their time waiting. Each task is executed on an
idle thread if possible, but a new thread is allocated if all threads are busy.
There is no bound on the number of concurrent threads. Threads that are
idle for an extended time are terminated.

The call

exec = Executors.newFixedThreadPool(nthreads);
yield a pool with a fixed number of threads. When you submit a task, it is
queued up until a thread becomes available. This is a good choice to use for
computationally intensive tasks, or to limit the resource consumption of a

service. You can derive the number of threads from the number of available
processors, which you obtain as

int processors = Runtime.getRuntime().availableProcessors();

Now go ahead and run the concurrency demo program in the book’s
companion code. It runs two tasks concurrently.



m Chapter 10 m Concurrent Programming

public static void main(String[] args) {
Runnable hellos = () -> {
for (int i = 1; i <= 1000; i++)
System.out.println("Hello " + i);
b
Runnable goodbyes = () -> {
for (int i = 1; i <= 1000; i++)
System.out.println("Goodbye

+1);

b

ExecutorService executor = Executors.newCachedThreadPool();
executor.execute(hellos);
executor.execute(goodbyes);

}

Run the program a few times to see how the outputs are interleaved.
Goodbye 1

Goodbye 871
Goodbye 872
Hello 806

Goodbye 873
Goodbye 874
Goodbye 875
Goodbye 876
Goodbye 877
Goodbye 878
Goodbye 879
Goodbye 880
Goodbye 881
Hello 807

Goodbye 882

Hello 1000

D NOTE: You may note that the program waits a bit after the last printout.
It terminates when the pooled threads have been idle for a while and
the executor service terminates them.

CAUTION: If concurrent tasks try to read or update a shared value, the
result may be unpredictable. We will discuss this issue in detail in
Section 10.3, “Thread Safety” (page 341). For now, we will assume that
tasks do not share mutable data.




10.1 m Concurrent Tasks

10.1.2 Futures

A Runnable carries out a task, but it doesn't yield a value. If you have a task
that computes a result, use the Callable<v> interface instead. Its call method,
unlike the run method of the Runnable interface, returns a value of type v:

public interface Callable<V> {
V call() throws Exception;
}

As a bonus, the call method can throw arbitrary exceptions which can be
relayed to the code that obtains the result.

To execute a Callable, submit it to an executor service:

ExecutorService executor = Executors.newFixedThreadPool();
Callable<Vv> task = ...;
Future<V> result = executor.submit(task);

When you submit the task, you get a future—an object that represents a
computation whose result will be available at some future time. The Future
interface has the following methods:
V get() throws InterruptedException, ExecutionException
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
boolean cancel(boolean mayInterruptIfRunning)

boolean isCancelled()
boolean isDone()

The get method blocks until the result is available or until the timeout has
been reached. That is, the thread containing the call does not progress until
the method returns normally or throws an exception. If the call method yields
a value, the get method returns that value. If the call method throws an ex-
ception, the get method throws an ExecutionException wrapping the thrown
exception. If the timeout has been reached, the get method throws a
TimeoutException

The cancel method attempts to cancel the task. If the task isn't already running,
it won't be scheduled. Otherwise, if mayInterruptIfRunning is true, the thread
running the task is interrupted.

D NOTE: A task that wants to be interruptible must periodically check for
interruption requests. This is required for any tasks that you’d like to
cancel when some other subtask has succeeded. See Section 10.8.2,
“Thread Interruption” (page 364) for more details on interruption.




Chapter 10 m Concurrent Programming

A task may need to wait for the result of multiple subtasks. Instead of sub-
mitting each subtask separately, you can use the invokeAll method, passing a
Collection of callable instances.

For example, suppose you want to count how often a word occurs in a set
of files. For each file, make a Callable<Integer> that returns the count for that
file. Then submit them all to the executor. When all tasks have completed,
you get a list of the futures (all of which are done), and you can total up the
answers.
String word = ...;
Set<Path> paths = ...;
List<Callable<Long>> tasks = new ArraylList<>();
for (Path p : paths) tasks.add(
() -> { return number of occurrences of word in p });
List<Future<Long>> results = executor.invokeAll(tasks);
// This call blocks until all tasks have completed
long total = 0;
for (Future<Long> result : results) total += result.get();

There is also a variant of invokeAll with a timeout, which cancels all tasks that
have not completed when the timeout is reached.

NOTE: If it bothers you that the calling task blocks until all subtasks
are done, you can use an ExecutorCompletionService. It returns the futures
in the order of completion.

ExecutorCompletionService service

= new ExecutorCompletionService(executor);
for (Callable<T> task : tasks) service.submit(task);
for (int i = 0; i < tasks.size(); i++) {

Process service.take().get()

Do something else

}

The invokeAny method is like invokeall, but it returns as soon as any one of the
submitted tasks has completed normally, without throwing an exception. It
then returns the value of its Future. The other tasks are cancelled. This is
useful for a search that can conclude as soon as a match has been found.
This code snippet locates a file containing a given word:

String word = ...;

Set<Path> files = ...;

List<Callable<Path>> tasks = new ArraylList<>();

for (Path p : files) tasks.add(

() -> { if (word occurs in p) return p; else throw ... });
Path found = executor.invokeAny(tasks);



10.2 m Asynchronous Computations

As you can see, the ExecutorService does a lot of work for you. Not only does
it map tasks to threads, but it also deals with task results, exceptions, and
cancellation.

NOTE: Java EE provides a ManagedExecutorService subclass that is suitable
for concurrent tasks in a Java EE environment.

10.2 Asynchronous Computations

In the preceding section, our approach to concurrent computation was to
break up a task and then wait until all pieces have completed. But waiting
is not always a good idea. In the following sections, you will see how to
implement wait-free or asynchronous computations.

10.2.1 Completable Futures

When you have a Future object, you need to call get to obtain the value,
blocking until the value is available. The Completablefuture class implements the
Future interface, and it provides a second mechanism for obtaining the result.
You register a callback that will be invoked (in some thread) with the result
once it is available.

CompletableFuture<String> f =
f.thenAccept((String s) -> Prncess the result s);

In this way, you can process the result, without blocking, as soon as it is
available.

There are a few API methods that return CompletableFuture objects. For example,
the HttpClient class can fetch a web page asynchronously:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder(new URI(urlString)).GET().build();

CompletableFuture<HttpResponse<String>> f = client.sendAsync(
request, BodyHandler.asString())

To run a task asynchronously and obtain a Completablefuture, you don't
submit it directly to an executor service. Instead, you call the static method
CompletableFuture.supplyAsync:

CompletableFuture<String> f = CompletableFuture.supplyAsync(

() -> { String result; Compute the result; return result; },
executor);

If you omit the executor, the task is run on a default executor (namely the
executor returned by ForkJoinPool.commonPool()).



Chapter 10 m Concurrent Programming

Note that the first argument of this method is a Supplier<T>, not a Callable<T>.
Both interfaces describe functions with no arguments and a return value of
type T, but a Supplier function cannot throw a checked exception.

A CompletableFuture can complete in two ways: either with a result, or with an
uncaught exception. In order to handle both cases, use the whenComplete method.
The supplied function is called with the result (or null if none) and the
exception (or null if none).
f.whenComplete((s, t) -> {
if (t == null) { Process the result s; }
else { Process the Throwable t; }

b;

The CompletableFuture is called completable because you can manually set a
completion value. (In other concurrency libraries, such an object is called
a promise). Of course, when you create a CompletableFuture with supplyAsync, the
completion value is implicitly set when the task has finished. But setting
the result explicitly gives you additional flexibility. For example, two tasks
can work simultaneously on computing an answer:

CompletableFuture<Integer> f = new CompletableFuture<>();

executor.execute(() -> {

int n = workHard(arg);

f.complete(n);

b

executor.execute(() -> {
int n = workSmart(arg);
f.complete(n);

b;

To instead complete a future with an exception, call

Throwable t = ...;
f.completeExceptionally(t);

NOTE: It is safe to call complete or completeExceptionally on the same
future in multiple threads. If the future is already completed, these calls
have no effect.

The isbone method tells you whether a Future object has been completed
(normally or with an exception). In the preceding example, the workHard and
worksmart methods can use that information to stop working when the result
has been determined by the other method.



10.2 m Asynchronous Computations

CAUTION: Unlike a plain Future, the computation of a CompletableFuture
is not interrupted when you invoke its cancel method. Canceling simply
sets the Future object to be completed exceptionally, with a
CancellationException. In general, this makes sense since a CompletableFuture
may not have a single thread that is responsible for its completion.
However, this restriction also applies to CompletableFuture instances
returned by methods such as supplyAsync, which could in principle be
interrupted. See Exercise 27 for a workaround.

10.2.2 Composing Completable Futures

Nonblocking calls are implemented through callbacks. The programmer regis-
ters a callback for the action that should occur after a task completes. Of
course, if the next action is also asynchronous, the next action after that is
in a different callback. Even though the programmer thinks in terms of “first
do step 1, then step 2, then step 3,” the program logic can become dispersed
in “callback hell.” It gets even worse when you have to add error handling.
Suppose step 2 is “the user logs in.” You may need to repeat that step since
the user can mistype the credentials. Trying to implement such a control flow
in a set of callbacks—or to understand it once it has been implemented—can
be quite challenging.

The completableFuture class solves this problem by providing a mechanism for
composing asynchronous tasks into a processing pipeline.

For example, suppose we want to extract all links from a web page in order
to build a web crawler. Let’s say we have a method

public void CompletableFuture<String> readPage(URI url)
that yields the text of a web page when it becomes available. If the method
public static List<URI> getlLinks(String page)

yields the URIs in an HTML page, you can schedule it to be called when the
page is available:

readPage(url);
contents.thenApply(Parser::getLinks);

CompletableFuture<String> contents
CompletableFuture<List<URI>> links

The thenApply method doesn’t block either. It returns another future. When the
first future has completed, its result is fed to the getLinks method, and the
return value of that method becomes the final result.

With completable futures, you just specify what you want to have done and
in which order. It won't all happen right away, of course, but what is important
is that all the code is in one place.

337



Chapter 10 m Concurrent Programming

Conceptually, CompletableFuture is a simple API, but there are many variants of
methods for composing completable futures. Let us first look at those that
deal with a single future (see Table 10-1). (For each method shown, there are
also two Async variants that I don’'t show. One of them uses a shared ForkJoinPool,
and the other has an Executor parameter.) In the table, I use a shorthand no-
tation for the ponderous functional interfaces, writing T -> U instead of Function<?
super T, U>. These aren’t actual Java types, of course.

You have already seen the thenApply method. Suppose f is a function that
receives values of type T and returns values of type U. The calls
CompletableFuture<U> future.thenApply(f);
CompletableFuture<U> future.thenApplyAsync(f);
return a future that applies the function f to the result of future when it is
available. The second call runs f in yet another thread.

The thenCompose method, instead of taking a function mapping the type T to
the type U, receives a function mapping T to CompletableFuture<U>. That sounds
rather abstract, but it can be quite natural. Consider the action of reading a
web page from a given URL. Instead of supplying a method

public String blockingReadPage(URI url)

it is more elegant to have that method return a future:

public CompletableFuture<String> readPage(URI url)

Now, suppose we have another method that gets the URL from user input,
perhaps from a dialog that won't reveal the answer until the user has clicked
the OK button. That, too, is an event in the future:

public CompletableFuture<URI> getURLInput(String prompt)

Here we have two functions T -> CompletableFuture<U> and U -> CompletableFuture<v>.
Clearly, they compose to a function T -> CompletableFuture<v> if the second
function is called when the first one has completed. That is exactly what
thenCompose does.

In the preceding section, you saw the whenComplete method for handling excep-
tions. There is also a handle method that requires a function processing the
result or exception and computing a new result. In many cases, it is simpler
to call the exceptionally method instead:
CompletableFuture<String> contents = readPage(url)
.exceptionally(t -> { Log t; return emptyPage; });

The supplied handler is only called if an exception occurred, and it produces
a result to be used in the processing pipeline. If no exception occurred, the
original result is used.



10.2 m Asynchronous Computations

The methods in Table 10-1 with void result are normally used at the end of
a processing pipeline.

Table 10-1 Adding an Action to a CompletableFuture<T> Object

Method Parameter Description

thenApply T->U Apply a function to the result.
thenAccept T -> void Like thenApply, but with void result.
thenCompose T -> CompletableFuture<U> Invoke the function on the result and

execute the returned future.

handle (T, Throwable) -> U Process the result or error and yield a
new result.

whenComplete (T, Throwable) -> void Like handle, but with void result.

exceptionally Throwable -> T Turn the error into a default result.

thenRun Runnable Execute the Runnable with void result.

Now let us turn to methods that combine multiple futures (see Table 10-2).

The first three methods run a CompletableFuture<T> and a CompletableFuture<U> action
concurrently and combine the results.

The next three methods run two CompletableFuture<T> actions concurrently. As
soon as one of them finishes, its result is passed on, and the other result is
ignored.

Finally, the static al10f and anyof methods take a variable number of com-
pletable futures and yield a CompletableFuture<void> that completes when all of
them, or any one of them, completes. The al10f method does not yield a result.
The anyof method does not terminate the remaining tasks. Exercises 28 and
29 show useful improvements of these two methods.

D NOTE: Technically speaking, the methods in this section accept
parameters of type CompletionStage, not CompletableFuture. The CompletionStage
interface describes how to compose asynchronous computations, whereas
the Future interface focuses on the result of a computation. A
CompletableFuture is both a CompletionStage and a Future.




m Chapter 10 m Concurrent Programming

Tahble 10-2 Combining Multiple Composition Objects

Method Parameters Description

thenCombine CompletableFuture<us, Execute both and combine the results
(T, U) >V with the given function.

thenAcceptBoth CompletableFuture<u>, Like thenCombine, but with void result.
(T, U) -> void

runAfterBoth CompletableFuture<?>, Execute the runnable after both
Runnable complete.

applyToEither CompletableFuture<T>, When a result is available from one or
T->V the other, pass it to the given function.

acceptEither CompletableFuture<T>, Like applyToEither, but with void result.
T -> void

runAfterEither CompletableFuture<?>, Execute the runnable after one or the
Runnable other completes.

static allof CompletableFuture<?>... Complete with void result after all given

futures complete.

static anyof CompletableFuture<?>... Complete after any of the given futures
completes and yield its result.

10.2.3 Long-Running Tasks in User-Interface Callbacks

One of the reasons to use threads is to make your programs more responsive.
This is particularly important in an application with a user interface. When
your program needs to do something time-consuming, you cannot do the
work in the user-interface thread, or the user interface will freeze. Instead,
fire up another worker thread.

For example, if you want to read a web page when the user clicks a button,
don't do this:

Button read = new Button("Read");
read.setOnAction(event -> { // Bad—long-running action is executed on UI thread
Scanner in = new Scanner(url.openStream());
while (in.hasNextLine()) {
String line = in.nextLine();

}
b

Instead, do the work in a separate thread.



10.3 ®m Thread Safety m

read.setOnAction(event -> { // Good—long-running action in separate thread
Runnable task = () -> {
Scanner in = new Scanner(url.openStream());
while (in.hasNextLine()) {
String line = in.nextLine();

}
}

executor.execute(task);
i
However, you cannot directly update the user interface from the thread that
executes the long-running task. User interfaces such as JavaFX, Swing, or
Android are not threadsafe. You cannot manipulate user-interface elements
from multiple threads, or they risk becoming corrupted. In fact, JavaFX and
Android check for this, and throw an exception if you try to access the user
interface from a thread other than the Ul thread.

Therefore, you need to schedule any UI updates to happen on the UI thread.

Each user-interface library provides some mechanism to schedule a Runnable
for execution on the Ul thread. For example, in JavaFX, you can use

Platform.runLater(() ->
message.appendText(line + "\n"));

NOTE: It is tedious to implement lengthy operations while giving users
feedback on the progress, so user-interface libraries usually provide
some kind of helper class for managing the details, such as SwingWorker
in Swing and AsyncTask in Android. You specify actions for the
long-running task (which is run on a separate thread), as well as progress
updates and the final disposition (which are run on the Ul thread).

The Task class in JavaFX takes a slightly different approach to progress
updates. The class provides methods to update task properties (a
message, completion percentage, and result value) in the long-running
thread. You bind the properties to user-interface elements, which are
then updated in the Ul thread.

10.3 Thread Safety

Many programmers initially think that concurrent programming is pretty easy.
You just divide your work into tasks, and that’s it. What could possibly go
wrong?

In the following sections, I show you what can go wrong, and give a high-level
overview of what you can do about it.



Chapter 10 m Concurrent Programming

10.3.1 Visibility

Even operations as simple as writing and reading a variable can be incredibly
complicated with modern processors. Consider this example:

private static boolean done = false;
public static void main(String[] args) {

Runnable hellos = () -> {
for (int i = 1; 1 <= 1000; i++)

System.out.println("Hello " + i);
done = true;
b
Runnable goodbye = () -> {
int i = 1;
while (!done) i++;
System.out.println("Goodbye " + i);
h

Executor executor = Executors.newCachedThreadPool();
executor.execute(hellos);
executor.execute(goodbye);

}

The first task prints “Hello” a thousand times, and then sets done to true. The
second task waits for done to become true, and then prints “Goodbye” once,
incrementing a counter while it is waiting for that happy moment.

You'd expect the output to be something like
Hello 1
Hello 1000
Goodbye 501249

When I run this program on my laptop, the program prints up to “Hello 1000”
and never terminates. The effect of

done = true;
may not be visible to the thread running the second task.

Why wouldn't it be visible? Modern compilers, virtual machines, and proces-
sors perform many optimizations. These optimizations assume that the code
is sequential unless explicitly told otherwise.

One optimization is caching of memory locations. We think of a memory lo-
cation such as done as bits somewhere in the transistors of a RAM chip. But
RAM chips are slow—many times slower than modern processors. Therefore,
a processor tries to hold the data that it needs in registers or an onboard
memory cache, and eventually writes changes back to memory. This caching
is simply indispensable for processor performance. There are operations for



10.3 ®m Thread Safety m

synchronizing cached copies, but they have a significant performance cost
and are only issued when requested.

Another optimization is instruction reordering. The compiler, the virtual ma-
chine, and the processor are allowed to change the order of instructions to
speed up operations, provided it does not change the sequential semantics
of the program.

For example, consider a computation

X

y
z

Something not involving y;
Something not involving x;
X+,

The first two steps must occur before the third, but they can occur in either
order. A processor can (and often will) run the first two steps concurrently,
or swap the order if the inputs to the second step are more quickly available.

In our case, the loop
while (!done) i++;
can be reordered as
if ('done) while (true) i++;
since the loop body does not change the value of done.

By default, optimizations assume that there are no concurrent memory
accesses. If there are, the virtual machine needs to know, so that it can then
emit processor instructions that inhibit improper reorderings.

There are several ways of ensuring that an update to a variable is visible.
Here is a summary:

1. The value of a final variable is visible after initialization.

2. The initial value of a static variable is visible after static initialization.
3. Changes to a volatile variable are visible.
4

Changes that happen before releasing a lock are visible to anyone
acquiring the same lock (see Section 10.7.1, “Locks,” page 357).
In our case, the problem goes away if you declare the shared variable done
with the volatile modifier:
private static volatile boolean done;
Then the compiler generates instructions that cause the virtual machine to

issue processor commands for cache synchronization. As a result, any change
to done in one task becomes visible to the other tasks.



Chapter 10 m Concurrent Programming

The volatile modifier happens to suffice to solve this particular problem. But
as you will see in the next section, declaring shared variables as volatile is
not a general solution.

TIP: It is an excellent idea to declare any field that does not change
after initialization as final. Then you never have to worry about its
visibility.

10.3.2 Race Conditions

Suppose multiple concurrent tasks update a shared integer counter.

private static volatile int count = 0;
count++; // Task 1

count++; // Task 2

The variable has been declared as volatile, so the updates are visible. But that
is not enough.

The update count++ actually means

register = count + 1;

count = register;
When these computations are interleaved, the wrong value can be stored
back into the count variable. In the parlance of concurrency, we say that the
increment operation is not atomic. Consider this scenario:

int count = 0; // Initial value

register; = count + 1; // Thread 1 computes count + 1

... // Thread 1 is preempted

register, = count + 1; // Thread 2 computes count + 1

count = registery; // Thread 2 stores 1 in count

... // Thread 1 is running again
count = register;; // Thread 1 stores 1 in count

Now count is 1, not 2. This kind of error is called a race condition because it
depends on which thread wins the “race” for updating the shared variable.

Does this problem really happen? It certainly does. Run the demo program
of the companion code. It has 100 threads, each incrementing the counter
1,000 times and printing the result.



10.3 ®m Thread Safety m

for (int i = 1; i <= 100; i++) {
int taskId = i;
Runnable task = () -> {
for (int k = 1; k <= 1000; k++)
count++;
System.out.println(taskId +

+ count);
H
executor.execute(task);

}
The output usually starts harmlessly enough as something like

: 1000
1 2000
13000
6: 4000

N W

After a while, it looks a bit scary:

72: 58196
68: 59196
73: 61196
71: 60196
69: 62196

But that might just be because some threads were paused at inopportune
moments. What matters is what happens with the task that finished last. Did
it bring up the counter to 100,000?

I ran the program dozens of times on my multi-core laptop, and it fails every
time. Years ago, when personal computers had a single CPU, race conditions
were more difficult to observe, and programmers did not notice such dramatic
failures often. But it doesn't matter whether a wrong value is computed
within seconds or hours.

This example looks at the simple case of a shared counter in a toy program.
Exercise 17 shows the same problem in a realistic example. But it's not just
counters. Race conditions are a problem whenever shared variables are mu-
tated. For example, when adding a value to the head of a queue, the insertion
code might look like this:

Node n = new Node();

if (head == null) head = n;

else tail.next = n;

tail = n;

tail.value = newValue;
Lots of things can go wrong if this sequence of instructions is paused at an
unfortunate time and another task gets control, accessing the queue while it
is in an inconsistent state.



Chapter 10 m Concurrent Programming

Work through Exercise 21 to get a feel for how a data structure can get
corrupted by concurrent mutation.

We need to ensure that the entire sequence of operation is carried out
together. Such an instruction sequence is called a critical section. You can use
a lock to protect critical sections and make critical sequences of operation
atomic. You will learn how to program with locks in Section 10.7.1, “Locks”
(page 357).

While it is straightforward to use locks for protecting critical sections, locks
are not a general solution for solving all concurrency problems. They are
difficult to use properly, and it is easy to make mistakes that severely degrade
performance or even cause “deadlock.”

10.3.3 Strategies for Safe Concurrency

In languages such as C and C++, programmers need to manually allocate and
deallocate memory. That sounds dangerous—and it is. Many programmers
have spent countless miserable hours chasing memory allocation bugs. In
Java, there is a garbage collector, and few Java programmers need to worry
about memory management.

Unfortunately, there is no equivalent mechanism for shared data access in a
concurrent program. The best you can do is to follow a set of guidelines to
manage the inherent dangers.

A highly effective strategy is confinement. Just say no when it comes to sharing
data among tasks. For example, when your tasks need to count something,
give each of them a private counter instead of updating a shared counter.
When the tasks are done, they can hand off their results to another task that
combines them.

Another good strategy is immutability. It is safe to share immutable objects.
For example, instead of adding results to a shared collection, a task can
generate an immutable collection of results. Another task combines the results
into another immutable data structure. The idea is simple, but there are a
few things to watch out for—see Section 10.3.4, “Immutable Classes” (page 347).

The third strategy is locking. By granting only one task at a time access to a
data structure, one can keep it from being damaged. In Section 10.5,
“Threadsafe Data Structures” (page 350), you will see data structures provided
by the Java concurrency library that are safe to use concurrently. Section 10.7.1,
“Locks” (page 357) shows you how locking works, and how experts build
these data structures.



10.3 m Thread Safety

Locking is error-prone, and it can be expensive since it reduces opportunities
for concurrent execution. For example, if you have lots of tasks contributing
results to a shared hash table, and the table is locked for each update, then
that is a real bottleneck. If most tasks have to wait their turn, they aren't
doing useful work. Sometimes it is possible to partition data so that different
pieces can be accessed concurrently. Several data structures in the Java con-
currency library use partitioning, as do the parallel algorithms in the streams
library. Don't try this at home! It is really hard to get it right. Instead, use
the data structures and algorithms from the Java library.

10.3.4 Immutabhle Classes

A class is immutable when its instances, once constructed, cannot change. It
sounds at first as if you cant do much with them, but that isn't true. The
ubiquitous String class is immutable, as are the classes in the date and time
library (see Chapter 12). Each date instance is immutable, but you can obtain
new dates, such as the one that comes a day after a given one.

Or consider a set for collecting results. You could use a mutable Hashset and
update it like this:
results.addAll(newResults);

But that is clearly dangerous.

An immutable set always creates new sets. You would update the results
somewhat like this:

results = results.union(newResults);

There is still mutation, but it is much easier to control what happens to one
variable than to a hash set with many methods.

It is not difficult to implement immutable classes, but you should pay attention
to these issues:

1. Don't change the object state after construction. Be sure to declare instance
variables final. There is no reason not to, and you gain an important ad-
vantage: the virtual machine ensures that a final instance variable is visible
after construction (Section 10.3.1, “Visibility,” page 342).

2. Of course, none of the methods can be mutators. You should make them
final, or better, declare the class final, so that mutators cannot be added
in subclasses.

3. Don't leak state that can be mutated externally. None of your (non-private)
methods can return a reference to any innards that could be used for
mutation, such as an internal array or collection. When one of your

347



Chapter 10 m Concurrent Programming

methods calls a method of another class, it must not pass any such refer-
ences either, since the called method might otherwise use them for
mutation. Instead, pass a copy.

4. Conversely, don't store any reference to a mutable object that the
constructor receives. Instead, make a copy.

5. Don't let the this reference escape in a constructor. When you call another
method, you know not to pass any internal references, but what about
this? That's perfectly safe after construction, but if you reveal this in the
constructor, someone could observe the object in an incomplete state.
Also beware of constructors giving out inner class references that contain
a hidden this reference. Naturally, these situations are quite rare.

10.4 Parallel Algorithms

Before starting to parallelize your computations, you should check if the Java
library has done this for you. The stream library or the Arrays class may already
do what you need.

10.4.1 Parallel Streams

The stream library can automatically parallelize operations on large data sets.
For example, if coll is a large collection of strings, and you want to find how
many of them start with the letter A, call

long result = coll.parallelStream().filter(s -> s.startsWith("A")).count();
The parallelstrean method yields a parallel stream. The stream is broken up

into segments. The filtering and counting is done on each segment, and the
results are combined. You don't need to worry about the details.

CAUTION: When you use parallel streams with lambdas (for example,
as the argument to filter and map in the preceding examples), be sure
to stay away from unsafe mutation of shared objects.

For parallel streams to work well, a number of conditions need to be fulfilled:

* There needs to be enough data. There is a substantial overhead for parallel
streams that is only repaid for large data sets.

e The data should be in memory. It would be inefficient to have to wait
for the data to arrive.



10.4 m Parallel Algorithms

e The stream should be efficiently splittable into subregions. A stream backed
by an array or a balanced binary tree works well, but a linked list or the
result of Stream.iterate does not.

* The stream operations should do a substantial amount of work. If the total
work load is not large, it does not make sense to pay for the cost of setting
up the concurrent computation.

* The stream operations should not block.

In other words, don’t turn all your streams into parallel streams. Use parallel

streams only when you do a substantial amount of sustained computational

work on data that is already in memory.

10.4.2 Parallel Array Operations

The Arrays class has a number of parallelized operations. Just as with the
parallel stream operations of the preceding sections, the operations break
the array into sections, work on them concurrently, and combine the results.

The static Arrays.parallelsetAll method fills an array with values computed by
a function. The function receives the element index and computes the value
at that location.

Arrays.parallelSetAll(values, i -> 1 % 10);
// Fills values with 0123 456789012

Clearly, this operation benefits from being parallelized. There are versions
for all primitive type arrays and for object arrays.

The parallelsort method can sort an array of primitive values or objects. For
example,

Arrays.parallelSort(words, Comparator.comparing(String::length));
With all methods, you can supply the bounds of a range, such as
Arrays.parallelSort(values, values.length / 2, values.length); // Sort the upper half

EI NOTE: At first glance, it seems a bit odd that these methods have
parallel in their names—the user shouldn’t care how the setting or sorting
happens. However, the API designers wanted to make it clear that the
operations are parallelized. That way, users are on notice to avoid
generator or comparison functions with side effects.

Finally, there is a parallelPrefix that is rather specialized—Exercise 4 gives a
simple example.



Chapter 10 m Concurrent Programming

For other parallel operations on arrays, turn the arrays into parallel
streams. For example, to compute the sum of a long array of integers, call

long sum = IntStream.of(values).parallel().sum();

10.5 Threadsafe Data Structures

If multiple threads concurrently modify a data structure, such as a queue or
hash table, it is easy to damage the internals of the data structure. For exam-
ple, one thread may begin to insert a new element. Suppose it is preempted
in the middle of rerouting links, and another thread starts traversing the same
location. The second thread may follow invalid links and create havoc, perhaps
throwing exceptions or even getting trapped in an infinite loop.

As you will see in Section 10.7.1, “Locks” (page 357), you can use locks to
ensure that only one thread can access the data structure at a given point in
time, blocking any others. But you can do better than that. The collections
in the java.util.concurrent package have been cleverly implemented so that
multiple threads can access them without blocking each other, provided they
access different parts.

NOTE: These collections yield weakly consistent iterators. That means
that the iterators present elements appearing at onset of iteration, but
may or may not reflect some or all of the modifications that were made
after they were constructed. However, such an iterator will not throw a
ConcurrentModificationException.

In contrast, an iterator of a collection in the java.util package throws a
ConcurrentModificationException when the collection has been modified after
construction of the iterator.

10.5.1 Concurrent Hash Maps

A ConcurrentHashMap is, first of all, a hash map whose operations are threadsafe.
No matter how many threads operate on the map at the same time, the in-
ternals are not corrupted. Of course, some threads may be temporarily blocked,
but the map can efficiently support a large number of concurrent readers and
a certain number of concurrent writers.

But that is not enough. Suppose we want to use a map to count how often
certain features are observed. As an example, suppose multiple threads en-
counter words, and we want to count their frequencies. Obviously, the
following code for updating a count is not threadsafe:



10.5 m Threadsafe Data Structures

ConcurrentHashMap<String, Long> map = new ConcurrentHashMap<>();

Long oldValue = map.get(word);
Long newValue = oldvalue == null ? 1 : oldValue + 1;
map.put(word, newvalue); // Error—might not replace oldvalue

Another thread might be updating the exact same count at the same time.

To update a value safely, use the compute method. It is called with a key and
a function to compute the new value. That function receives the key and the
associated value, or null if there is none, and computes the new value. For
example, here is how we can update a count:

map.compute(word, (k, v) -> v ==null 2 1 : v + 1);
The compute method is atomic—no other thread can mutate the map entry while
the computation is in progress.

There are also variants computeIfPresent and computeIfAbsent that only compute a

new value when there is already an old one, or when there isn't yet one.

Another atomic operation is putIfAbsent. A counter might be initialized as
map.putIfAbsent(word, OL);

You often need to do something special when a key is added for the first

time. The merge method makes this particularly convenient. It has a parameter

for the initial value that is used when the key is not yet present. Otherwise,

the function that you supplied is called, combining the existing value and the
initial value. (Unlike compute, the function does not process the key.)

map.merge(word, 1L, (existingValue, newvValue) -> existingvValue + newValue);
or simply,
map.merge(word, 1L, Long::sum);

Of course, the functions passed to compute and merge should complete quickly,
and they should not attempt to mutate the map.

NOTE: There are methods that atomically remove or replace an entry if
it is currently equal to an existing one. Before the compute method was
available, people would write code like this for incrementing a count:
do {
oldvalue = map.get(word);

newValue = oldvalue + 1;
} while (!map.replace(word, oldvalue, newValue));




m Chapter 10 m Concurrent Programming

D NOTE: There are several bulk operations for searching, transforming, or
visiting a ConcurrentHashMap. They operate on a snapshot of the data and
can safely execute even while other threads operate on the map. In the
API documentation, look for the operations whose names start with
search, reduce, and forEach. There are variants that operate on the keys,
values, and entries. The reduce methods have specializations for int-,
long-, and double-valued reduction functions.

10.5.2 Blocking Queues

One commonly used tool for coordinating work between tasks is a blocking
queue. Producer tasks insert items into the queue, and consumer tasks retrieve
them. The queue lets you safely hand over data from one task to another.

When you try to add an element and the queue is currently full, or you try
to remove an element when the queue is empty, the operation blocks. In this
way, the queue balances the workload. If the producer tasks run slower than
the consumer tasks, the consumers block while waiting for the results. If the
producers run faster, the queue fills up until the consumers catch up.

Table 10-3 shows the methods for blocking queues. The blocking queue
methods fall into three categories that differ by the action they perform when
the queue is full or empty. In addition to the blocking methods, there are
methods that throw an exception when they don't succeed, and methods that
return with a failure indicator instead of throwing an exception if they cannot
carry out their tasks.

NOTE: The poll and peek methods return null to indicate failure.
Therefore, it is illegal to insert null values into these queues.

There are also variants of the offer and poll methods with a timeout. For
example, the call

boolean success = g.offer(x, 100, TimeUnit.MILLISECONDS);
tries for 100 milliseconds to insert an element to the tail of the queue. If it

succeeds, it returns true; otherwise, it returns false when it times out. Similarly,
the call

Object head = q.poll(100, TimeUnit.MILLISECONDS)



10.5 m Threadsafe Data Structures

Table 10-3 Blocking Queue Operations

Method Normal Action Error Action
put Adds an element to the tail Blocks if the queue is full
take Removes and returns the head Blocks if the queue is empty
element
add Adds an element to the tail Throws an IllegalStateException
if the queue is full
remove Removes and returns the head Throws a NoSuchElementException if
element the queue is empty
element Returns the head element Throws a NoSuchElementException if
the queue is empty
offer Adds an element and returns Returns false if the queue is full
true
poll Removes and returns the head Returns null if the queue is
element empty
peek Returns the head element Returns null if the queue is

empty

tries for 100 milliseconds to remove the head of the queue. If it succeeds, it
returns the head; otherwise, it returns null when it times out.

The java.util.concurrent package supplies several variations of blocking queues.
A LinkedBlockingQueue is based on a linked list, and an ArrayBlockingQueue uses a
circular array.

Exercise 11 shows how to use blocking queues for analyzing files in a direc-
tory. One thread walks the file tree and inserts files into a queue. Several
threads remove the files and search them. In this application, it is likely that
the producer quickly fills up the queue with files and blocks until the
consumers can catch up.

A common challenge with such a design is stopping the consumers. A con-
sumer cannot simply quit when the queue is empty. After all, the producer
might not yet have started, or it may have fallen behind. If there is a single
producer, it can add a “last item” indicator to the queue, similar to a dummy
suitcase with a label “last bag” in a baggage claim belt.



Chapter 10 m Concurrent Programming

10.5.3 Other Threadsafe Data Structures

Just like you can choose between hash maps and tree maps in the java.util
package, there is a concurrent map that is based on comparing keys, called
ConcurrentSkipListMap. Use it if you need to traverse the keys in sorted order, or
if you need one of the added methods in the NavigableMap interface (see
Chapter 7). Similarly, there is a ConcurrentSkipListSet.

The CopyOnWriteArrayList and CopyOnWriteArraySet are threadsafe collections in which
all mutators make a copy of the underlying array. This arrangement is useful
if the threads that iterate over the collection greatly outnumber the threads
that mutate it. When you construct an iterator, it contains a reference to the
current array. If the array is later mutated, the iterator still has the old array,
but the collection’s array is replaced. As a consequence, the older iterator has
a consistent (but potentially outdated) view that it can access without any
synchronization expense.

Suppose you want a large, threadsafe set instead of a map. There is no
ConcurrentHashSet class, and you know better than trying to create your own. Of
course, you can use a ConcurrenttashMap with bogus values, but that gives you
a map, not a set, and you can't apply operations of the Set interface.

The static newkeySet method yields a Set<k> that is actually a wrapper around a
ConcurrentHashMap<K, Boolean>. (All map values are Boolean.TRUE, but you don't actually
care since you just use it as a set.)

Set<String> words = ConcurrentHashMap.newKeySet();

If you have an existing map, the keyset method yields the set of keys. That
set is mutable. If you remove the set’s elements, the keys (and their values)
are removed from the map. But it doesn’t make sense to add elements to the
key set, because there would be no corresponding values to add. You can
use a second keySet method, with a default value used when adding elements
to the set:

Set<String> words = map.keySet(1L);
words.add("Java");

If "Java" wasn't already present in words, it now has a value of one.

10.6 Atomic Counters and Accumulators

If multiple threads update a shared counter, you need to make sure that
this is done in a threadsafe way. There are a number of classes in the
java.util.concurrent.atomic package that use safe and efficient machine-level



10.6 m Atomic Counters and Accumulators

instructions to guarantee atomicity of operations on integers, long and boolean
values, object references, and arrays thereof. Using these classes correctly
requires considerable expertise. However, atomic counters and accumulators
are convenient for application-level programming.

For example, you can safely generate a sequence of numbers like this:

public static AtomicLong nextNumber = new AtomicLong();
// In some thread . . .
long id = nextNumber.incrementAndGet();

The incrementAndGet method atomically increments the AtomicLong and returns the
post-increment value. That is, the operations of getting the value, adding 1,
setting it, and producing the new value cannot be interrupted. It is guaranteed
that the correct value is computed and returned, even if multiple threads
access the same instance concurrently.

There are methods for atomically setting, adding, and subtracting values, but
suppose you want to make a more complex update. One way is to use the
updateAndéet method. For example, suppose you want to keep track of the largest
value that is observed by different threads. The following won't work:

public static AtomicLong largest = new AtomicLong();
// In some thread . . .
largest.set(Math.max(largest.get(), observed)); // Error—race condition!

This update is not atomic. Instead, call updateAndGet with a lambda expression
for updating the variable. In our example, we can call

largest.updateAndGet(x -> Math.max(x, observed));
or
largest.accumulateAndGet(observed, Math::max);

The accumulateAndGet method takes a binary operator that is used to combine
the atomic value and the supplied argument.

There are also methods getAndUpdate and getAndAccumulate that return the old value.

NOTE: These methods are also provided for the classes:

AtomicInteger AtomicLongFieldUpdater
AtomicIntegerArray AtomicReference
AtomicIntegerFieldUpdater  AtomicReferenceArray
AtomicLongArray AtomicReferenceFieldUpdater

When you have a very large number of threads accessing the same atomic
values, performance suffers because updates are carried out optimistically. That
is, the operation computes a new value from a given old value, then does



Chapter 10 m Concurrent Programming

the replacement provided the old value is still the current one, or retries if
it is not. Under heavy contention, updates require too many retries.

The classes LongAdder and LongAccumulator solve this problem for certain common
updates. A LongAdder is composed of multiple variables whose collective sum
is the current value. Multiple threads can update different summands, and
new summands are automatically provided when the number of threads
increases. This is efficient in the common situation where the value of the
sum is not needed until after all work has been done. The performance
improvement can be substantial—see Exercise 9.

If you anticipate high contention, you should simply use a LongAdder instead
of an Atomiclong. The method names are slightly different. Call increment to
increment a counter or add to add a quantity, and sun to retrieve the total.

final LongAdder count = new LongAdder();

for (...)
executor.execute(() -> {
while (...) {
i%'(...) count.increment();
}

b

long total = count.sum();

NOTE: Of course, the increment method does not return the old value.
Doing that would undo the efficiency gain of splitting the sum into
multiple summands.

The LongAccumulator generalizes this idea to an arbitrary accumulation operation.
In the constructor, you provide the operation as well as its neutral element.
To incorporate new values, call accunulate. Call get to obtain the current value.

LongAccumulator accumulator = new LongAccumulator(Long::sum, 0);

// In some tasks . . .

accumulator.accumulate(value);

// When all work is done
long sum = accumulator.get();

Internally, the accumulator has variables ay, a,, ..., a,. Each variable is
initialized with the neutral element (6 in our example).

When accumulate is called with value v, then one of them is atomically updated
as a; = a; op v, where op is the accumulation operation written in infix form.
In our example, a call to accumulate computes a; = a; + v for some i.



10.7 W Locks and Conditions

The result of get is a; op a, op ... op a,. In our example, that is the sum of
the accumulators, a; + a; + ... + a,.

If you choose a different operation, you can compute maximum or minimum
(see Exercise 10). In general, the operation must be associative and commu-
tative. That means that the final result must be independent of the order in
which the intermediate values were combined.

There are also DoubleAdder and DoubleAccumulator that work in the same way, except
with double values.

0 TIP: If you use a hash map of LongAdder, you can use the following idiom
to increment the adder for a key:

ConcurrentHashMap<String,LongAdder> counts = ...;
counts.computeIfAbsent(key, k -> new LongAdder()).increment();

When the count for key is incremented the first time, a new adder is set.

10.7 Locks and Conditions

Now you have seen several tools that application programmers can safely
use for structuring concurrent applications. You may be curious how one
would build a threadsafe counter or blocking queue. The following sections
show you how it is done, so that you gain some understanding of the costs
and complexities.

10.7.1 Locks

To avoid the corruption of shared variables, one needs to ensure that only
one thread at a time can compute and set the new values. Code that must
be executed in its entirety, without interruption, is called a critical section. One
can use a lock to implement a critical section:

Lock countlock = new ReentrantLock(); // Shared among multiple threads
int count; // Shared among multiple threads

countLock.lock();
try {
count++; // Critical section
} finally {
countLock.unlock(); // Make sure the lock is unlocked
}

357



m Chapter 10 m Concurrent Programming

D NOTE: In this section, | use the ReentrantLock class to explain how locking

works. As you will see in the next section, there is no requirement to
use explicit locks since there are “implicit” locks that are used by the
synchronized keyword. But it is easier to understand what goes on under
the hood by looking at explicit locks.

The first thread to execute the lock method locks the countLock object and then
proceeds into the critical section. If another thread tries to call lock on the
same object, it is blocked until the first thread executes the call to unlock. In
this way, it is guaranteed that only one thread at a time can execute the
critical section.

Note that, by placing the unlock method into a finally clause, the lock is released
if any exception happens in the critical section. Otherwise, the lock would
be permanently locked, and no other thread would be able to proceed past
it. This would clearly be very bad. Of course, in this case, the critical section
can't throw an exception since it only executes an integer increment. But it
is a common idiom to use the try/finally statement anyway, in case more
code gets added later.

At first glance, it seems simple enough to use locks for protecting critical
sections. However, the devil is in the details. Experience has shown that many
programmers have difficulty writing correct code with locks. They might use
the wrong locks, or create situations that deadlock when no thread can make
progress because all of them wait for a lock.

For that reason, application programmers should use locks as a matter of last
resort. First try to avoid sharing, by using immutable data or handing off
mutable data from one thread to another. If you must share, use prebuilt
threadsafe structures such as a ConcurrentHashMap or a LongAdder. Still, it is useful
to know about locks so you can understand how such data structures can be
implemented.

10.7.2 The synchronized Keyword

In the preceding section, I showed you how to use a ReentrantLock to implement
a critical section. You don't have to use an explicit lock because in Java, every
object has an intrinsic lock. To understand intrinsic locks, however, it helps to
have seen explicit locks first.

The synchronized keyword is used to lock the intrinsic lock. It can occur in two
forms. You can lock a block:



10.7 W Locks and Conditions m

synchronized (obj) {
Critical section
}

This essentially means

obj.intrinsicLock.lock();
try {
Critical section
} finally {
obj.intrinsicLock.unlock();
}

An object does not actually have a field that is an intrinsic lock. The code is
just meant to illustrate what goes on when you use the synchronized keyword.

You can also declare a method as synchronized. Then its body is locked on the
receiver parameter this. That is,

public synchronized void method() {
Body

is the equivalent of

public void method() {
this.intrinsicLock.lock();
try {
Body
} finally {
this.intrinsicLock.unlock();
}

}

For example, a counter can simply be declared as

public class Counter {
private int value;
public synchronized int increment() {
value++;
return value;

}

By using the intrinsic lock of the Counter instance, there is no need to come
up with an explicit lock.

As you can see, using the synchronized keyword yields code that is quite concise.
Of course, to understand this code, you have to know that each object has
an intrinsic lock.



m Chapter 10 m Concurrent Programming

D NOTE: There is more to locks than atomicity. Locks also guarantee
visibility. For example, consider the done variable that gave us so much
grief in Section 10.3.1, “Visibility” (page 342). If you use a lock for both
writing and reading the variable, then you are assured that the caller of
get sees any update to the variable through a call by set.

public class Flag {
private boolean done;
public synchronized void set() { done = true; }
public synchronized boolean get() { return done; }

Synchronized methods were inspired by the monitor concept that was pio-
neered by Per Brinch Hansen and Tony Hoare in the 1970s. A monitor is
essentially a class in which all instance variables are private and all methods
are protected by a private lock.

In Java, it is possible to have public instance variables and to mix synchronized
and unsynchronized methods. More problematically, the intrinsic lock is
publicly accessible.

Many programmers find this confusing. For example, Java 1.0 has a Hashtable
class with synchronized methods for mutating the table. To safely iterate over
such a table, you can acquire the lock like this:

synchronized (table) {
for (K key : table.keySet()) ...
}

Here, table denotes both the hash table and the lock that its methods use.
This is a common source of misunderstandings—see Exercise 22.

10.7.3 Waiting on Conditions

Consider a simple Queue class with methods for adding and removing objects.
Synchronizing the methods ensures that these operations are atomic.

public class Queue {
class Node { Object value; Node next; };
private Node head;
private Node tail;

public synchronized void add(Object newvalue) {
Node n = new Node();
if (head == null) head = n;
else tail.next = n;
tail = n;



10.7 W Locks and Conditions m

tail.value = newvValue;

}

public synchronized Object remove() {
if (head == null) return null;

Node n = head;
head = n.next;
return n.value;

}

Now suppose we want to turn the remove method into a method take that
blocks if the queue is empty.

The check for emptiness must come inside the synchronized method because
otherwise the inquiry would be meaningless—another thread might have
emptied the queue in the meantime.
public synchronized Object take() {

if (head == null) ... // Now what?

Node n = head;

head = n.next;

return n.value;

}
But what should happen if the queue is empty? No other thread can add el-
ements while the current thread holds the lock. This is where the wait method
comes in.

If the take method finds that it cannot proceed, it calls the wait method:

public synchronized Object take() throws InterruptedException {
while (head == null) wait();

}

The current thread is now deactivated and gives up the lock. This lets in
another thread that can, we hope, add elements to the queue. This is called
waiting on a condition.

Note that the wait method is a method of the object class. It relates to the lock
that is associated with the object.

There is an essential difference between a thread that is blocking to acquire
a lock and a thread that has called wait. Once a thread calls the wait method,
it enters a wait set for the object. The thread is not made runnable when the
lock is available. Instead, it stays deactivated until another thread has called
the notifyAll method on the same object.



Chapter 10 m Concurrent Programming

When another thread has added an element, it should call that method:
public synchronized void add(Object newvalue) {

notifyAll();

The call to notifyAll reactivates all threads in the wait set. When the threads
are removed from the wait set, they are again runnable and the scheduler
will eventually activate them again. At that time, they will attempt to reacquire
the lock. As one of them succeeds, it continues where it left off, returning
from the call to wait.

At this time, the thread should test the condition again. There is no guarantee
that the condition is now fulfilled—the notifyAll method merely signals to the
waiting threads that it may be fulfilled at this time and that it is worth
checking for the condition again. For that reason, the test is in a loop

while (head == null) wait();
A thread can only call wait, notifyAll, or notify on an object if it holds the lock
on that object.

CAUTION: Another method, notify, unblocks only a single thread from
the wait set. That is more efficient than unblocking all threads, but there
is a danger. If the chosen thread finds that it still cannot proceed, it
becomes blocked again. If no other thread calls notify again, the program
deadlocks.

D NOTE: When implementing data structures with blocking methods, the

wait, notify, and notifyAll methods are appropriate. But they are not
easy to use properly. Application programmers should never have a need
to use these methods. Instead, use prebuilt data structures such as
LinkedBlockingQueue or ConcurrentHashMap.

10.8 Threads

As we are nearing the end of this chapter, the time has finally come to talk
about threads, the primitives that actually execute tasks. Normally, you are
better off using executors that manage threads for you, but the following
sections give you some background information about working directly with
threads.



10.8 m Threads

10.8.1 Starting a Thread

Here is how to run a thread in Java:

Runnable task = () -> { ... };
Thread thread = new Thread(task);
thread.start();

The static sleep method makes the current thread sleep for a given period, so
that some other threads have a chance to do work.
Runnable task = () -> {

Thread.sleep(millis);

}

If you want to wait for a thread to finish, call the join method:
thread.join(millis);

These two methods throw the checked Interruptedexception that is discussed in
the next section.

A thread ends when its run method returns, either normally or because an
exception was thrown. In the latter case, the uncaught exception handler of the
thread is invoked. When the thread is created, that handler is set to the un-
caught exception handler of the thread group, which is ultimately the global
handler (see Chapter 5). You can change the handler of a thread by calling
the setUncaughtExceptionHandler method.

NOTE: The initial release of Java defined a stop method that immediately
terminates a thread, and a suspend method that blocks a thread until
another thread calls resume. Both methods have since been deprecated.

The stop method is inherently unsafe. Suppose a thread is stopped in
the middle of a critical section—for example, inserting an element into
a queue. Then the queue is left in a partially updated state. However,
the lock protecting the critical section is unlocked, and other threads
can use the corrupted data structure. You should interrupt a thread when
you want it to stop. The interrupted thread can then stop when it is safe
to do so.

The suspend method is not as risky but still problematic. If a thread is
suspended while it holds a lock, any other thread trying to acquire that
lock blocks. If the resuming thread is among them, the program
deadlocks.




Chapter 10 m Concurrent Programming

10.8.2 Thread Interruption

Suppose that, for a given query, you are always satisfied with the first result.
When the search for an answer is distributed over multiple tasks, you want
to cancel all others as soon as the answer is obtained. In Java, task cancellation
is cooperative.

Each thread has an interrupted status that indicates that someone would like
to “interrupt” the thread. There is no precise definition of what interruption
means, but most programmers use it to indicate a cancellation request.

A Runnable can check for this status, which is typically done in a loop:

Runnable task = () -> {
while (more work to do) {
if (Thread.currentThread().isInterrupted()) return;
Do more work

}
b

When the thread is interrupted, the run method simply ends.

NOTE: There is also a static Thread.interrupted method which gets the
interrupted status of the current thread, then clears it, and returns the old
status.

Sometimes, a thread becomes temporarily inactive. That can happen if a
thread waits for a value to be computed by another thread or for input/output,
or if it goes to sleep to give other threads a chance.

If the thread is interrupted while it waits or sleeps, it is immediately
reactivated—but in this case, the interrupted status is not set. Instead, an
InterruptedException is thrown. This is a checked exception, and you must catch
it inside the run method of a Runnable. The usual reaction to the exception is
to end the run method:

Runnable task = () -> {
try {
while (more work to do) {
Do more work
Thread.sleep(millis);
}
}
catch (InterruptedException ex) {
// Do nothing
}

b



10.8 m Threads

When you catch the Interruptedxception in this way, there is no need to
check for the interrupted status. If the thread was interrupted outside the
call to Thread.sleep, the status is set and the Thread.sleep method throws an
InterruptedException as soon as it is called.

TIP: The InterruptedException may seem pesky, but you should not just
catch and hide it when you call a method such as sleep. If you can’t
do anything else, at least set the interrupted status:

try {
Thread.sleep(millis);
} catch (InterruptedException ex) {
Thread.currentThread().interrupt();
}

Or better, simply propagate the exception to a competent handler:
public void mySubTask() throws InterruptedException {

Thread.sleep(millis);

10.8.3 Thread-Local Variables

Sometimes, you can avoid sharing by giving each thread its own instance,
using the Threadlocal helper class. For example, the NumberfFormat class is not
threadsafe. Suppose we have a static variable

public static final NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();
If two threads execute an operation such as

String amountDue = currencyFormat.format(total);

then the result can be garbage since the internal data structures used by the
NumberFormat instance can be corrupted by concurrent access. You could use a
lock or provide a synchronized method to ensure atomic access to the shared
NumberFormat variable. Alternatively, you could construct a local NumberFormat object
whenever you need it, but that is also wasteful.
To construct one instance per thread, use the following code:
public static final ThreadLocal<NumberFormat> currencyFormat
= ThreadLocal.withInitial(() -> NumberFormat.getCurrencyInstance());

To access the actual formatter, call

String amountDue = currencyFormat.get().format(total);



Chapter 10 m Concurrent Programming

The first time you call get in a given thread, the lambda expression in the
constructor is called to create the instance for the thread. From then on,
the get method returns the instance belonging to the current thread.

10.8.4 Miscellaneous Thread Properties

The Thread class exposes a number of properties for threads, but most of
them are more useful for students of certification exams than application
programmers. This section briefly reviews them.

Threads can be collected in groups, and there are API methods to manage
thread groups, such as interrupting all threads in a group. Nowadays, executors
are the preferred mechanism for managing groups of tasks.

You can set priorities for threads, where high-priority threads are scheduled
to run before lower-priority ones. Hopefully, priorities are honored by the
virtual machine and the host platform, but the details are highly platform-
dependent. Therefore, using priorities is fragile and not generally
recommended.

Threads have states, and you can tell whether a thread is new, running,
blocked on input/output, waiting, or terminated. When you use threads as
an application programmer, you rarely have a reason to inquire about their
states.

Threads have names, and you can change the name for debugging purposes.
For example:

Thread.currentThread().setName("Bitcoin-miner-1");
When a thread terminates due to an uncaught exception, the exception is

passed to the thread's uncaught exception handler. By default, its stack trace
is dumped to System.err, but you can install your own handler (see Chapter 5).

A daemon is a thread that has no other role in life than to serve others. This
is useful for threads that send timer ticks or clean up stale cache entries.
When only daemon threads remain, the virtual machine exits.

To make a daemon thread, call thread.setDaemon(true) before starting the thread.

10.9 Processes

Up to now, you have seen how to execute Java code in separate threads
within the same program. Sometimes, you need to execute another program.
For this, use the ProcessBuilder and Process classes. The Process class executes a
command in a separate operating system process and lets you interact with



10.9 m Processes

its standard input, output, and error streams. The ProcessBuilder class lets you
configure a Process object.

NOTE: The ProcessBuilder class is a more flexible replacement for the
Runtime.exec calls.

10.9.1 Building a Process

Start the building process by specifying the command that you want to exe-
cute. You can supply a List<String> or simply the strings that make up the
command.

ProcessBuilder builder = new ProcessBuilder("gcc", "myapp.c");

CAUTION: The first string must be an executable command, not a shell
builtin. For example, to run the dir command in Windows, you need
to build a process with strings "cmd.exe", "/C", and "dir".

Each process has a working directory, which is used to resolve relative directory
names. By default, a process has the same working directory as the virtual
machine, which is typically the directory from which you launched the java
program. You can change it with the directory method:

builder = builder.directory(path.toFile());

NOTE: Each of the methods for configuring a ProcessBuilder returns itself,
so that you can chain commands. Ultimately, you will call

Process p = new ProcessBuilder(command).directory(file).start();

Next, you will want to specify what should happen to the standard input,
output, and error streams of the process. By default, each of them is a pipe
that you can access with

OutputStream processIn = p.getOutputStream();

InputStream processOut = p.getInputStream();
InputStream processErr = p.getErrorStream();

Note that the input stream of the process is an output stream in the JVM!
You write to that stream, and whatever you write becomes the input of the

process. Conversely, you read what the process writes to the output and error
streams. For you, they are input streams.

367



Chapter 10 m Concurrent Programming

You can specify that the input, output, and error streams of the new process
should be the same as the JVM. If the user runs the JVM in a console, any
user input is forwarded to the process, and the process output shows up in
the console. Call

builder.inheritIO()
to make this setting for all three streams. If you only want to inherit some
of the streams, pass the value

ProcessBuilder.Redirect.INHERIT

to the redirectInput, redirectOutput, or redirectError methods. For example,
builder.redirectOutput(ProcessBuilder.Redirect.INHERIT);

You can redirect the process streams to files by supplying File objects:

builder.redirectInput(inputFile)
.redirectOutput(outputFile)
.redirectError(errorfFile)

The files for output and error are created or truncated when the process
starts. To append to existing files, use

builder.redirectOutput(ProcessBuilder.Redirect.appendTo(outputFile));

It is often useful to merge the output and error streams, so you see the outputs
and error messages in the sequence in which the process generates them. Call

builder.redirectErrorStream(true)

to activate the merging. If you do that, you can no longer call redirectError on
the ProcessBuilder or getErrorStream on the Process.

Finally, you may want to modify the environment variables of the process.
Here, the builder chain syntax breaks down. You need to get the builder’s
environment (which is initialized by the environment variables of the process
running the JVM), then put or remove entries.

Map<String, String> env = builder.environment();

env.put("LANG", "fr_FR")

env.remove("JAVA_HOME");
Process p = builder.start();

10.9.2 Running a Process

After you have configured the builder, invoke its start method to start the
process. If you configured the input, output, and error streams as pipes, you
can now write to the input stream and read the output and error streams.
For example,



10.9 m Processes m

Process process = new ProcessBuilder("/bin/ls", "-1")
.directory(Paths.get("/tmp").toFile())
.start();

try (Scanner in = new Scanner(process.getInputStream())) {
while (in.hasNextLine())
System.out.println(in.nextLine());

CAUTION: There is limited buffer space for the process streams. You
should not flood the input, and you should read the output promptly.
If there is a lot of input and output, you may need to produce and
consume it in separate threads.

To wait for the process to finish, call

int result = process.waitFor();

or, if you don’t want to wait indefinitely,

long delay = ...;
if (process.waitfor(delay, TimeUnit.SECONDS)) {
int result = process.exitValue();

} else {
process.destroyForcibly();

}

The first call to waitFor returns the exit value of the process (by convention,
0 for success or a nonzero error code). The second call returns true if the
process didn't time out. Then you need to retrieve the exit value by calling
the exitvalue method.

Instead of waiting for the process to finish, you can just leave it running and
occasionally call isAlive to see whether it is still alive. To kill the process, call
destroy or destroyForcibly. The difference between these calls is platform-
dependent. On Unix, the former terminates the process with SIGTERM, the latter
with SIGKILL. (The supportsNormalTermination method returns true if the destroy
method can terminate the process normally.)

Finally, you can receive an asynchronous notification when the process has
completed. The call process.onExit() yields a CompletableFuture<Process> that you
can use to schedule any action.

process.onExit().thenAccept(
p -> System.out.println("Exit value: " + p.exitValue()));



370

Chapter 10 m Concurrent Programming

10.9.3 Process Handles

To get more information about a process that your program started, or any
other process that is currently running on your machine, use the ProcessHandle
interface. You can obtain a ProcessHandle in four ways:

1. Given a Process object p, p.toHandle() yields its ProcessHandle.

2. Given a long operating system process ID, ProcessHandle.of(id) yields the
handle of that process.

3. ProcessHandle.current() is the handle of the process that runs this Java virtual
machine.

4. ProcessHandle.allProcesses() yields a Stream<ProcessHandle> of all operating system
processes that are visible to the current process.

Given a process handle, you can get its process ID, its parent process, its
children, and its descendants:

long pid = handle.pid();

Optional<ProcessHandle> parent = handle.parent();

Stream<ProcessHandle> children = handle.children();
Stream<ProcessHandle> descendants = handle.descendants();

D NOTE: The Stream<ProcessHandle> instances that are returned by the
allProcesses, children, and descendants methods are just snapshots in time.
Any of the processes in the stream may be terminated by the time you
get around to seeing them, and other processes may have started that
are not in the stream.

The info method yields a ProcessHandle.Info object with methods for obtaining
information about the process.

Optional<String[]> arguments()

Optional<String> command()

Optional<String> commandLine()

Optional<String> startInstant()

Optional«String> totalCpuDuration()
Optional<String> user()

All of these methods return optional values since it is possible that a particular
operating system may not be able to report the information.

For monitoring or forcing process termination, the ProcessHandle interface has
the same isAlive, supportsNormalTermination, destroy, destroyForcibly, and onExit methods
as the Process class. However, there is no equivalent to the waitFor method.



Exercises

Exercises

1.

Using parallel streams, find all files in a directory that contain a given
word. How do you find just the first one? Are the files actually searched
concurrently?

How large does an array have to be for Arrays.parallelSort to be faster than
Arrays.sort on your computer?

Implement a method yielding a task that reads through all words in a
file, trying to find a given word. The task should finish immediately (with
a debug message) when it is interrupted. For all files in a directory,
schedule one task for each file. Interrupt all others when one of them
has succeeded.

One parallel operation not discussed in Section 10.4.2, “Parallel Array
Operations” (page 349) is the parallelPrefix method that replaces each array
element with the accumulation of the prefix for a given associative oper-
ation. Huh? Here is an example. Consider the array [1, 2, 3, 4, ...] and
the x operation. After executing Arrays.parallelPrefix(values, (x, y) -> x * y),
the array contains

[1, 1x2,1x2x3, 1x2x3x4 ...]

Perhaps surprisingly, this computation can be parallelized. First, join
neighboring elements, as indicated here:

[1, 1x2,3,3 x4, 5 5x%x6,7, 7 x 8]

The gray values are left alone. Clearly, one can make this computation
concurrently in separate regions of the array. In the next step, update the
indicated elements by multiplying them with elements that are one or
two positions below:

[1, 152, 1x2x3, 1x2x3 x4 5 5%6, 5x6x7,5x6x7x8]

This can again be done concurrently. After log(n) steps, the process is
complete. This is a win over the straightforward linear computation if
sufficient processors are available.

In this exercise, you will use the parallelPrefix method to parallelize the
computation of Fibonacci numbers. We use the fact that the nth Fibonacci
number is the top left coefficient of F", where F = ( % (l) ) Make an
array filled with 2 x 2 matrices. Define a Matrix class with a multiplication
method, use parallelSetAll to make an array of matrices, and use
parallelPrefix to multiply them.

371



372

Chapter 10 m Concurrent Programming

10.

11.

12.

13.

14.

15.

16.

17.

Produce an example that demonstrates escaping of this in a constructor
of an immutable class (see Section 10.3.3, “Strategies for Safe Concurrency,”
page 346). Try to come up with something convincing and scary. If you
use an event listener (as many examples on the Web do), it should listen
for something interesting, which isn’t easy for an immutable class.

Write an application in which multiple threads read all words from a
collection of files. Use a ConcurrentHashMap<String, Set<File>> to track in which
files each word occurs. Use the merge method to update the map.

Repeat the preceding exercise, but use computeIfAbsent instead. What is the
advantage of this approach?

In a ConcurrentdashMap<String, Long>, find the key with maximum value
(breaking ties arbitrarily). Hint: reducetntries.

Generate 1,000 threads, each of which increments a counter 100,000 times.
Compare the performance of using AtomicLong versus LongAdder.

Use a LongAccumulator to compute the maximum or minimum of the
accumulated elements.

Use a blocking queue for processing files in a directory. One thread walks
the file tree and inserts files into a queue. Several threads remove the
files and search each one for a given keyword, printing out any matches.
When the producer is done, it should put a dummy file into the queue.

Repeat the preceding exercise, but instead have each consumer compile
a map of words and their frequencies that are inserted into a second
queue. A final thread merges the dictionaries and prints the ten most
common words. Why don’t you need to use a ConcurrentHashMap?

Repeat the preceding exercise, making a Callable<Map<String, Integer>> for
each file and using an appropriate executor service. Merge the results
when all are available. Why don't you need to use a ConcurrentHashMap?

Use an ExecutorCompletionService instead and merge the results as soon as
they become available.

Repeat the preceding exercise, using a global ConcurrentiashMap for collecting
the word frequencies.

Repeat the preceding exercise, using parallel streams. None of the stream
operations should have any side effects.

Write a program that walks a directory tree and generates a thread for
each file. In the threads, count the number of words in the files and,
without using locks, update a shared counter that is declared as



Exercises

public static long count = 0;
Run the program multiple times. What happens? Why?
18. Fix the program of the preceding exercise with using a lock.
19. Fix the program of the preceding exercise with using a LongAdder.

20. Consider this stack implementation:

public class Stack {
class Node { Object value; Node next; };
private Node top;

public void push(Object newvalue) {
Node n = new Node();
n.value = newValue;
n.next = top;
top = n;

}

public Object pop() {
if (top == null) return null;
Node n = top;
top = n.next,;
return n.value;

}

Describe two different ways in which the data structure can fail to contain
the correct elements.

21. Consider this queue implementation:

public class Queue {
class Node { Object value; Node next; };
private Node head;
private Node tail;

public void add(Object newvalue) {
Node n = new Node();
if (head == null) head = n;
else tail.next = n;
tail = n;
tail.value = newvValue;

}

public Object remove() {
if (head == null) return null;
Node n = head;
head = n.next;
return n.value;

373



374 Chapter 10 m Concurrent Programming

Describe two different ways in which the data structure can fail to contain
the correct elements.

22. What is wrong with this code snippet?
public class Stack {
private Object myLock = "LOCK";

public void push(Object newvalue) {
synchronized (myLock) {

}

}

23. What is wrong with this code snippet?

public class Stack {
public void push(Object newvalue) {
synchronized (new ReentrantLock()) {

}

}

24. What is wrong with this code snippet?

public class Stack {
private Object[] values = new Object[10];
private int size;

public void push(Object newvalue) {
synchronized (values) {
if (size == values.length)
values = Arrays.copyOf(values, 2 * size);
values[size] = newValue;
size++;

}

25. Write a program that asks the user for a URL, reads the web page at that
URL, and displays all the links. Use a CompletableFuture for each step. Don't
call get.

26. Write a method

public static <T> CompletableFuture<T> repeat(
Supplier<T> action, Predicate<T> until)



Exercises

27.

28.

29.

that asynchronously repeats the action until it produces a value that is
accepted by the until function, which should also run asynchronously.
Test with a function that reads a java.net.PasswordAuthentication from the
console, and a function that simulates a validity check by sleeping for a
second and then checking that the password is "secret”. Hint: Use
recursion.

Implement a static method CompletableFuture<T> <T> supplyAsync(Supplier<T> action,
Executor exec) that returns an instance of a subclass of CompletableFuture<T>
whose cancel method can interrupt the thread that executes the action
method, provided the task is running. In a Rumnable, capture the current
thread, then call action.get(), and complete the CompletableFuture with the
result or exception.

The method
static CompletableFuture<Void> CompletableFuture.allof(CompletableFuture<?>... cfs)
does not yield the results of the arguments, which makes it a bit cumber-

some to use. Implement a method that combines completable futures of
the same type:

static <T> CompletableFuture<List<T>> allOf(List<CompletableFuture<T>> cfs)
Note that this method has a List parameter since you cannot have variable
arguments of a generic type.
The method

static CompletableFuture<Object>
CompletableFuture.anyOf(CompletableFuture<?>... cfs)

returns as soon as any of the arguments completes, normally or exception-
ally. This is markedly different from ExecutorService.invokeAny which keeps
going until one of the tasks completes successfully and prevents the
method from being used for a concurrent search. Implement a method

static CompletableFuture<T> anyOf(List<Supplier<T>> actions, Executor exec)

that yields the first actual result, or a NoSuchElementException if all actions
completed with exceptions.

375


http://java.net

Annotations

Topics in This Chapter

= 11.1 Using Annotations — page 378

= 11.2 Defining Annotations — page 383

= 11.3 Standard Annotations — page 386

= 11.4 Processing Annotations at Runtime — page 391
= 11.5 Source-Level Annotation Processing — page 394

= Exercises — page 398



Chapter B MY

Annotations are tags that you insert into your source code so that some tool
can process them. The tools can operate on the source level, or they can
process class files into which the compiler has placed annotations.

Annotations do not change the way your programs are compiled. The Java
compiler generates the same virtual machine instructions with or without the
annotations.

To benefit from annotations, you need to select a processing tool and use
annotations that your processing tool understands, before you can apply that
tool to your code.

There is a wide range of uses for annotations. For example, JUnit uses anno-
tations to mark methods that execute tests and to specify how the tests should
be run. The Java Persistence Architecture uses annotations to define mappings
between classes and database tables, so that objects can be persisted
automatically without the developer having to write SQL queries.

In this chapter, you will learn the details of the annotation syntax, how to
define your own annotations, and how to write annotation processors that
work at the source level or at runtime.

The key points of this chapter are:

1. You can annotate declarations just as you use modifiers such as public or
static.

377



378

Chapter 11 m Annotations

2. You can also annotate types that appear in declarations, casts, instanceof
checks, or method references.

3. An annotation starts with a @ symbol and may contain key/value pairs
called elements.

4. Annotation values must be compile-time constants: primitive types, enun
constants, Class literals, other annotations, or arrays thereof.

An item can have repeating annotations or annotations of different types.

To define an annotation, specify an annotation interface whose methods
correspond to the annotation elements.

7. The Java library defines over a dozen annotations, and annotations are
extensively used in the Java Enterprise Edition.

8. To process annotations in a running Java program, you can use reflection
and query the reflected items for annotations.

9. Annotation processors process source files during compilation, using the
Java language model API to locate annotated items.

11.1 Using Annotations

Here is an example of a simple annotation:
public class CacheTest {

@Test public void checkRandomInsertions()

}
The annotation @Test annotates the checkRandomInsertions method. In Java, an

annotation is used like a modifier (such as public or static). The name of
each annotation is preceded by an @ symbol.

By itself, the aTest annotation does not do anything. It needs a tool to be
useful. For example, the JUnit 4 testing tool (available at http://junit.org) calls
all methods that are labeled aTest when testing a class. Another tool might
remove all test methods from a class file so they are not shipped with the
program after it has been tested.

11.1.1 Annotation Elements

Annotations can have key/value pairs called elements, such as
ATest(timeout=10000)


http://junit.org

11.1 m Using Annotations

The names and types of the permissible elements are defined by each anno-
tation (see Section 11.2, “Defining Annotations,” page 383). The elements can
be processed by the tools that read the annotations.

An annotation element is one of the following:

* A primitive type value

e A String

* A (Class object

¢ An instance of an enum

¢ An annotation

e An array of the preceding (but not an array of arrays)
For example,

@BugReport(showStopper=true,
assignedTo="Harry",
testCase=CacheTest.class,
status=BugReport.Status.CONFIRMED)

CAUTION: An annotation element can never have the value null.

Elements can have default values. For example, the timeout element of the
JUnit aTest annotation has default 6L. Therefore, the annotation aTest is
equivalent to @Test(timeout=0L).

If the element name is value, and that is the only element you specify,
you can omit value=. For example, aSuppresswarnings("unchecked") is the same as
@SuppressWarnings(value="unchecked").

If an element value is an array, enclose its components in braces:
@BugReport(reportedBy={"Harry", "Fred"})

You can omit the braces if the array has a single component:
@BugReport(reportedBy="Harry") // Same as {"Harry"}

An annotation element can be another annotation:
@BugReport(ref=gReference(id=11235811), ...)

NOTE: Since annotations are processed by the compiler, all element
values must be compile-time constants.

379



Chapter 11 m Annotations

11.1.2 Multiple and Repeated Annotations

An item can have multiple annotations:

aTest
@BugReport(showStopper=true, reportedBy="Joe")
public void checkRandomInsertions()

If the author of an annotation declared it to be repeatable, you can repeat
the same annotation multiple times:

@BugReport(showStopper=true, reportedBy="Joe")
@BugReport(reportedBy={"Harry", "Carl"})
public void checkRandomInsertions()

11.1.3 Annotating Declarations

So far, you have seen annotations applied to method declarations. There are
many other places where annotations can occur. They fall into two cate-
gories: declarations and type uses. Declaration annotations can appear at the
declarations of

e C(lasses (including enum) and interfaces (including annotation interfaces)
¢ Methods

¢ Constructors

* Instance variables (including enun constants)

* Local variables (including those declared in for and try-with-resources
statements)

e Parameter variables and catch clause parameters
¢ Type parameters
* Packages

For classes and interfaces, put the annotations before the class or interface
keyword:

@Entity public class User { ... }
For variables, put them before the type:

aSuppressWarnings("unchecked") List<User> users = ...;
public User getUser(@Param("id") String userId)

A type parameter in a generic class or method can be annotated like this:

public class Cache<@Immutable V> { ... }

A package is annotated in a file package-info.java that contains only the package
statement preceded by annotations.



11.1 m Using Annotations

[x%
Package-level Javadoc
*/
AGPL(version="3")
package com.horstmann.corejava;
import org.gnu.GPL;

Note that the import statement for the annotation comes after the package
declaration.

NOTE: Annotations for local variables and packages are discarded when
a class is compiled. Therefore, they can only be processed at the source
level.

11.1.4 Annotating Type Uses

A declaration annotation provides some information about the item being
declared. For example, in the declaration

public User getUser(@NonNull String userId)

it is asserted that the userld parameter is not null.

D NOTE: The aNonNull annotation is a part of the Checker Framework
(http://types.cs.washington.edu/checker-framework). With that framework, you
can include assertions in your program, such that a parameter is non-null
or that a String contains a regular expression. A static analysis tool then
checks whether the assertions are valid in a given body of source code.

Now suppose we have a parameter of type List<String>, and we want to express
that all of the strings are non-null. That is where type use annotations come
in. Place the annotation before the type argument: List<aNonNull String>

Type use annotations can appear in the following places:

* With generic type arguments: List<@NonNull String>, Comparator.<@NonNull String>
reverseOrder().

e In any position of an array: aNonNull String[]1[] words (words[i][j] is not null),
String aNonNull [1[] words (words is not null), String[] aNonNull [] words (words[i] is
not null).

e With superclasses and implemented interfaces: class Warning extends @Localized
Message.

e  With constructor invocations: new @Localized String(...).


http://types.cs.washington.edu/checker-framework

Chapter 11 m Annotations

e With nested types: Map.aLocalized Entry.

e With casts and instanceof checks: (@localized String) text, if (text instanceof
dLocalized String). (The annotations are only for use by external tools. They
have no effect on the behavior of a cast or an instanceof check.)

e With exception specifications: public String read() throws @Localized IOException.

* With wildcards and type bounds: List<alocalized ? extends Message>, List<? extends
@localized Message>.

e  With method and constructor references: alocalized Message::getText.

There are a few type positions that cannot be annotated:

ANonNull String.class // Error—cannot annotate class literal
import java.lang.aNonNull String; // Error—cannot annotate import

You can place annotations before or after other modifiers such as private and
static. It is customary (but not required) to put type use annotations after
other modifiers, and declaration annotations before other modifiers. For
example,

private @NonNull String text; // Annotates the type use
aId private String userId; // Annotates the variable

D NOTE: As you will see in Section 11.2, “Defining Annotations” (page 383),
an annotation author needs to specify where a particular annotation can
appear. If an annotation is permissible both for a variable and a type
use, and it is used in a variable declaration, then both the variable and
the type use are annotated. For example, consider

public User getUser(aNonNull String userId)

if aNonNull can apply both to parameters and to type uses, the userId
parameter is annotated, and the parameter type is QNonNull String.

11.1.5 Making Receivers Explicit
Suppose you want to annotate parameters that are not being mutated by a
method.

public class Point {
public boolean equals(@ReadOnly Object other) { ... }
}

Then a tool that processes this annotation would, upon seeing a call
p.equals(q)

reason that q has not been changed.



11.2 m Defining Annotations

But what about p?

When the method is called, the receiver variable this is bound to p, but this
is never declared, so you cannot annotate it.

Actually, you can declare it, with a rarely used syntax variant, just so that
you can add an annotation:

public class Point {
public boolean equals(dReadOnly Point this, @ReadOnly Object other) { ... }
}
The first parameter is called the receiver parameter. It must be named this. Its
type is the class that is being constructed.

D NOTE: You can provide a receiver parameter only for methods, not for

constructors. Conceptually, the this reference in a constructor is not an
object of the given type until the constructor has completed. Instead,
an annotation placed on the constructor describes a property of the
constructed object.

A different hidden parameter is passed to the constructor of an inner class,
namely the reference to the enclosing class object. You can make this
parameter explicit as well:

static class Sequence {

private int from;
private int to;

class Iterator implements java.util.Iterator<Integer> {
private int current;

public Iterator(@ReadOnly Sequence Sequence.this) {
this.current = Sequence.this.from;

}

}

The parameter must be named just like when you refer to it, EnclosingClass.this,
and its type is the enclosing class.

11.2 Defining Annotations

Each annotation must be declared by an annotation interface, with the @interface
syntax. The methods of the interface correspond to the elements of the



Chapter 11 m Annotations

annotation. For example, the JUnit Test annotation is defined by the following
interface:

aTarget(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Test {
long timeout();

}

The ainterface declaration creates an actual Java interface. Tools that process
annotations receive objects that implement the annotation interface. When
the JUnit test runner tool gets an object that implements Test, it simply
invokes the timeout method to retrieve the timeout element of a particular Test
annotation.

The element declarations in the annotation interface are actually method
declarations. The methods of an annotation interface can have no parameters
and no throws clauses, and they cannot be generic.

The aTarget and @Retention annotations are meta-annotations. They annotate the
Test annotation, indicating the places where the annotation can occur and
where it can be accessed.

The value of the @Target meta-annotation is an array of ElementType objects,
specifying the items to which the annotation can apply. You can specify any
number of element types, enclosed in braces. For example,

aTarget({ElementType.TYPE, ElementType.METHOD})
public @interface BugReport

Table 11-1 shows all possible targets. The compiler checks that you use an
annotation only where permitted. For example, if you apply aBugReport to a
variable, a compile-time error results.

D NOTE: An annotation without an aTarget restriction can be used with

any declarations but not with type parameters and type uses. (These

were the only possible targets in the first Java release that supported
annotations.)

The aRetention meta-annotation specifies where the annotation can be accessed.
There are three choices.

1. RetentionPolicy.SOURCE: The annotation is available to source processors, but
it is not included in class files.

2. RetentionPolicy.CLASS: The annotation is included in class files, but the virtual
machine does not load them. This is the default.



11.2 m Defining Annotations

Tahle 11-1 Element Types for the aTarget Annotation

Element Type Annotation Applies To

ANNOTATION_TYPE Annotation type declarations

PACKAGE Packages

TYPE Classes (including enun) and interfaces (including

annotation types)

METHOD Methods

CONSTRUCTOR Constructors

FIELD Instance variables (including enum constants)
PARAMETER Method or constructor parameters
LOCAL_VARIABLE Local variables

TYPE_PARAMETER Type parameters

TYPE_USE Uses of a type

3. RetentionPolicy.RUNTIME: The annotation is available at runtime and can be
accessed through the reflection APIL

You will see examples of all three scenarios later in this chapter.

There are several other meta-annotations—see Section 11.3, “Standard
Annotations” (page 386) for a complete list.

To specify a default value for an element, add a default clause after the method
defining the element. For example,

public Qinterface Test {
long timeout() default OL;

}

This example shows how to denote a default of an empty array and a default
for an annotation:

public @interface BugReport {
String[] reportedBy() default {};
// Defaults to empty array
Reference ref() default @Reference(id=0);
// Default for an annotation



m Chapter 11 m Annotations

CAUTION: Defaults are not stored with the annotation; instead, they are
dynamically computed. If you change a default and recompile the
annotation class, all annotated elements will use the new default, even
in class files that have been compiled before the default changed.

You cannot extend annotation interfaces, and you never supply classes that
implement annotation interfaces. Instead, source processing tools and the
virtual machine generate proxy classes and objects when needed.

11.3 Standard Annotations

The Java API defines a number of annotation interfaces in the java.lang,
java.lang.annotation, and javax.annotation packages. Four of them are meta-
annotations that describe the behavior of annotation interfaces. The others
are regular annotations that you use to annotate items in your source code.
Table 11-2 shows these annotations. I will discuss them in detail in the
following two sections.

Table 11-2 The Standard Annotations

Annotation Interface  Applicable To Purpose

Override Methods Checks that this method overrides a
superclass method.

Deprecated All declarations Marks item as deprecated.

SuppressWarnings All declarations Suppresses warnings of a given type.

except packages

SafevVarargs Methods and Asserts that the varargs parameter is
constructors safe to use.
FunctionalInterface Interfaces Marks an interface as functional (with

a single abstract method).

PostConstruct Methods The method should be invoked
PreDestroy immediately after construction or before
removal of an injected object.

Resource Classes and On a class or interface, marks it as a
interfaces, resource to be used elsewhere. On a
methods, fields method or field, marks it for

dependency injection.

(Continues)



11.3 ® Standard Annotations

Table 11-2 The Standard Annotations (Continued)

Annotation Interface  Applicable To Purpose

Resources Classes and Specifies an array of resources.
interfaces

Generated All declarations Marks an item as source code that has

been generated by a tool.

Target Annotations Specifies the locations to which this
annotation can be applied.

Retention Annotations Specifies where this annotation can be
used.
Documented Annotations Specifies that this annotation should be

included in the documentation of
annotated items.

Inherited Annotations Specifies that this annotation is inherited
by subclasses.

Repeatable Annotations Specifies that this annotation can be
applied multiple times to the same item.

11.3.1 Annotations for Compilation

The @beprecated annotation can be attached to any items whose use is no longer
encouraged. The compiler will warn when you use a deprecated item.
This annotation has the same role as the adeprecated Javadoc tag. However,
the annotation persists until runtime.

NOTE: The jdeprscan utility which is part of the JDK can scan a set of
JAR files for deprecated elements.

The @override makes the compiler check that the annotated method really
overrides a method from the superclass. For example, if you declare

public class Point {
@0verride public boolean equals(Point other) { ... }

}

then the compiler will report an error—this equals method does not override
the equals method of the oObject class because that method has a parameter
of type Object, not Point.

387



Chapter 11 m Annotations

TheasuppressWarnings annotation tells the compiler to suppress warnings of a
particular type, for example,
@SuppressWarnings("unchecked") T[] result
= (T[1) Array.newInstance(cl, n);
The @safevarargs annotation asserts that a method does not corrupt its varargs
parameter (see Chapter 6).

The aGenerated annotation is intended for use by code generator tools. Any
generated source code can be annotated to differentiate it from programmer-
provided code. For example, a code editor can hide the generated code, or
a code generator can remove older versions of generated code. Each annota-
tion must contain a unique identifier for the code generator. A date string
(in ISO 8601 format) and a comment string are optional. For example,
@Generated(value="com.horstmann.generator",
date="2015-01-04T12:08:56.235-0700");
You have seen the FunctionalInterface annotation in Chapter 3. It is used to
annotate conversion targets for lambda expressions, such as
@FunctionallInterface

public interface IntFunction<R> {
R apply(int value);

If you later add another abstract method, the compiler will generate an error.

Of course, you should only add this annotation to interfaces that describe
functions. There are other interfaces with a single abstract method (such as
AutoCloseable) that are not conceptually functions.

11.3.2 Annotations for Managing Resources

The @PostConstruct and @PreDestroy annotations are used in environments that
control the lifecycle of objects, such as web containers and application servers.
Methods tagged with these annotations should be invoked immediately after
an object has been constructed or immediately before it is being removed.

The @Resource annotation is intended for resource injection. For example, con-
sider a web application that accesses a database. Of course, the database access
information should not be hardwired into the web application. Instead, the
web container has some user interface for setting connection parameters and
a JNDI name for a data source. In the web application, you can reference the
data source like this:

@Resource(name="jdbc/employeedb")
private DataSource source;



11.3 ® Standard Annotations

When an object containing this instance variable is constructed, the container
“injects” a reference to the data source—that is, sets the instance variable to
a DataSource object that is configured with the name "jdbc/employeedb”.

11.3.3 Meta-Annotations

You have already seen the aTarget and aRetention meta-annotations in
Section 11.2, “Defining Annotations” (page 383).

The @bocumented meta-annotation gives a hint to documentation tools such as
Javadoc. Documented annotations should be treated just like other modifiers
(such as private or static) for documentation purposes. In contrast, other
annotations should not be included in the documentation.

For example, the asuppressWarnings annotation is not documented. If a method
or field has that annotation, it is an implementation detail that is of no interest
to the Javadoc reader. On the other hand, the @FunctionalInterface annotation is
documented since it is useful for the programmer to know that the interface
is intended to describe a function. Figure 11-1 shows the documentation.

The @Inherited meta-annotation applies only to annotations for classes. When
a class has an inherited annotation, then all of its subclasses automatically
have the same annotation. This makes it easy to create annotations that work
similar to marker interfaces (such as the Serializable interface).

Suppose you define an inherited annotation apersistent to indicate that objects
of a class can be saved in a database. Then the subclasses of persistent
classes are automatically annotated as persistent.

dlInherited @interface Persistent { }

@Persistent class Employee { ... }
class Manager extends Employee { ... } // Also dPersistent

The dRepeatable meta-annotation makes it possible to apply the same annotation
multiple times. For example, suppose the @TestCase annotation is repeatable.
Then it can be used like this:

aTestCase(params="4", expected="24")

@TestCase(params="0", expected="1")

public static long factorial(int n) { ... }
For historical reasons, the implementor of a repeatable annotation needs to
provide a container annotation that holds the repeated annotations in an array.



Chapter 11 ®m Annotations

) Predicate (Java Platform SE 8 ) - Mozilla Firefox
Fichier Edition Affichage Historique Marque-pages Outils Aide

& @ file:///datajapps/jdk-8-docs/apij/index.html vl w B 4+ HYy By & @~ =
Java™ Platform B
Standard Ed. 8 { |

All Classes Al Profile

Packages

Java™ Platform B
Standard Ed. 8

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.applet compactl, compact2, compact3

ava awt java.util.function

Interface Predicate<T>

Portinfo

PortUnreachableExceptid

Position Type Parameters:

Position.Bias T - the type of the input to the predicate

PosixFileAttributes

PosixFileAttributeView Functional Interface:

PosixFilePermission This is a functional interface and can therefore be used as the assignment

PosixFilePermissions target for a lambda expression or method reference.
PostConstruct

Ie @Functionallnterface
PreferenceChangeEvent L public interface Predicate<T>
PreferenceChangeListen : :
Protatehoes Represents a predicate (boolean-valued function) of one argument.

PreferencesFactory
PreparedStatement
PresentationDirection
Primitiveiterator

g &l 1.8
z nm

Predicate ~ |~ | Tout surligner Respecter la casse Occurrence 5 sur 6 b 3

This is a functional interface whose functional method is test(Object).

Since:

Figure 11-1 A documented annotation

Here is how to define the aTestCase annotation and its container:

@Repeatable(TestCases.class)
dinterface TestCase {

String params();

String expected();

dinterface TestCases {
TestCase[] value();
}

Whenever the user supplies two or more @TestCase annotations, they are auto-
matically wrapped into a @TestCases annotation. This complicates processing of
the annotation, as you will see in the next section.



11.4 m Processing Annotations at Runtime

11.4 Processing Annotations at Runtime

So far, you have seen how to add annotations to source files and how to
define annotation types. Now the time has come to see what good can come
out of that.

In this section, I show you a simple example of processing an annotation at
runtime using the reflection API that you have already seen in Chapter 4.
Suppose we want to reduce the tedium of implementing toString methods. Of
course, one can write a generic tostring method using reflection that simply
includes all instance variable names and values. But suppose we want to
customize that process. We may not want to include all instance variables,
or we may want to skip class and variable names. For example, for the Point
class we may prefer [5,10] instead of Point[x=5,y=10]. Of course, any number of
other enhancements would be plausible, but let's keep it simple. The point
is to demonstrate what an annotation processor can do.

Annotate all classes that you want to benefit from this service with the aToString
annotation. In addition, all instance variables that should be included need
to be annotated as well. The annotation is defined like this:

aTarget({ElementType.FIELD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface ToString {
boolean includeName() default true;
}

Here are annotated Point and Rectangle classes:

aToString(includeName=false)

public class Point {
@ToString(includeName=false) private int x;
aToString(includeName=false) private int y;

}

aToString

public class Rectangle {
aToString(includeName=false) private Point topleft;
@ToString private int width;
@ToString private int height;



Chapter 11 m Annotations

The intent is for a rectangle to be represented as string as Rectangle[[5, 10],
width=20,height=30].

At runtime, we cannot modify the implementation of the tostring method for
a given class. Instead, let us provide a method that can format any object,
discovering and using the Tostring annotations if they are present.

The key are the methods

T getAnnotation(Class<T>)

T getDeclaredAnnotation(Class<T>)

T[] getAnnotationsByType(Class<T>)

T[] getDeclaredAnnotationsByType(Class<T>)
Annotation[] getAnnotations()

Annotation[] getDeclaredAnnotations()

of the Annotatedtlement interface. The reflection classes Class, Field, Parameter, Method,
Constructor, and Package implement that interface.

As with other reflection methods, the methods with Declared in their name
yield annotations in the class itself, whereas the others include inherited ones.
In the context of annotations, this means that the annotation is @Inherited and
applied to a superclass.

If an annotation is not repeatable, call getAnnotation to locate it. For example:

Class cl = obj.getClass();
ToString ts = cl.getAnnotation(ToString.class);
if (ts != null &6 ts.includeName()) ...

Note that you pass the class object for the annotation (here, ToString.class)
and you get back an object of some proxy class that implements the ToString
interface. You can then invoke the interface methods to get the values of the
annotation elements. If the annotation is not present, the getAnnotation method
returns null.

It gets a bit messy if an annotation is repeatable. If you call getAnnotation to
look up a repeatable annotation, and the annotation was actually repeated,
then you also get null. That is because the repeated annotations were wrapped
inside the container annotation.

In this case, you should call getAnnotationsByType. That call “looks through” the
container and gives you an array of the repeated annotations. If there was
just one annotation, you get it in an array of length 1. With this method, you
don't have to worry about the container annotation.

The getAnnotations method gets all annotations (of any type) with which an
item is annotated, with repeated annotations wrapped into containers.



11.4 m Processing Annotations at Runtime m

Here is the implementation of the annotation-aware toString method:

public class ToStrings {
public static String toString(Object obj) {
if (obj == null) return "null";
Class<?> cl = obj.getClass();
ToString ts = cl.getAnnotation(ToString.class);
if (ts == null) return obj.toString();
StringBuilder result = new StringBuilder();
if (ts.includeName()) result.append(cl.getName());
result.append("[");
boolean first = true;
for (Field f : cl.getDeclaredFields()) {
ts = f.getAnnotation(ToString.class);
if (ts != null) {
if (first) first = false; else result.append(",");
f.setAccessible(true);

if (ts.includeName()) {
result.append(f.getName());
result.append("=");
}
try {
result.append(ToStrings.toString(f.get(obj)))
} catch (ReflectiveOperationException ex) {
ex.printStackTrace();
1
}
}
result.append("1");
return result.toString();

}

When a class is annotated with ToString, the method iterates over its fields
and prints the ones that are also annotated. If the includeName element is true,
then the class or field name is included in the string.

Note that the method calls itself recursively. Whenever an object belongs to
a class that isn’t annotated, its regular tostring method is used and the recursion
stops.

This is a simple but typical use of the runtime annotation API. Look up
classes, fields, and so on, using reflection; call getAnnotation or getAnnotationsByType
on the potentially annotated elements to retrieve the annotations; then, invoke
the methods of the annotation interfaces to obtain the element values.



Chapter 11 m Annotations

11.5 Source-Level Annotation Processing

In the preceding section, you saw how to analyze annotations in a running
program. Another use for annotation is the automatic processing of source
files to produce more source code, configuration files, scripts, or whatever
else one might want to generate.

To show you the mechanics, I will repeat the example of generating toString
methods. However, this time, let's generate them in Java source. Then
the methods will get compiled with the rest of the program, and they will
run at full speed instead of using reflection.

11.5.1 Annotation Processors

Annotation processing is integrated into the Java compiler. During compilation,
you can invoke annotation processors by running

javac -processor ProcessorClassNameq,ProcessorClassNamey, ... sourceFiles

The compiler locates the annotations of the source files. Each annotation
processor is executed in turn and given the annotations in which it expressed
an interest. If an annotation processor creates a new source file, the process
is repeated. Once a processing round yields no further source files, all source
files are compiled.

NOTE: An annotation processor can only generate new source files. It
cannot modify an existing source file.

An annotation processor implements the Processor interface, generally by ex-
tending the AbstractProcessor class. You need to specify which annotations your
processor supports. In our case:

@SupportedAnnotationTypes("com.horstmann.annotations.ToString")
aSupportedSourceVersion(SourceVersion.RELEASE_8)
public class ToStringAnnotationProcessor extends AbstractProcessor {
@0verride
public boolean process(Set<? extends TypeElement> annotations,
RoundEnvironment currentRound) {

}

A processor can claim specific annotation types, wildcards such as
"com.horstmann.+* (all annotations in the com.horstmann package or any subpackage),

or even "+" (all annotations).


http://NOTE:Anannotationprocessorcanonlygeneratenewsourcefiles.It

11.5 ®m Source-Level Annotation Processing

The process method is called once for each round, with the set of all annota-
tions that were found in any files during this round, and a RoundEnvironment
reference that contains information about the current processing round.

11.5.2 The Language Model API

You use the language model API for analyzing source-level annotations. Unlike
the reflection API, which presents the virtual machine representation of
classes and methods, the language model API lets you analyze a Java program
according to the rules of the Java language.

The compiler produces a tree whose nodes are instances of classes that
implement the javax.lang.model.element.Element interface and its subinterfaces,
TypeElement, VariableElement, ExecutableElement, and so on. These are the compile-
time analogs to the Class, Field/Parameter, Method/Constructor reflection classes.

I do not want to cover the API in detail, but here are the highlights that you
need to know for processing annotations.

e The RoundEnvironment gives you a set of all elements annotated with a
particular annotation, by calling the method

Set<? extends Element> getElementsAnnotatedWith(Class<? extends Annotation> a)
Set<? extends Element> getElementsAnnotatedWithAny(
Set<Class<? extends Annotation>> annotations)
// Useful for repeated annotations

* The source-level equivalent of the AnnotateElement interface is AnnotatedConstruct.
You use the methods

A getAnnotation(Class<A> annotationType)
A[] getAnnotationsByType(Class<A> annotationType)

to get the annotation or repeated annotations for a given annotation class.

* A Typeflement represents a class or interface. The getEnclosedElements method
yields a list of its fields and methods.

e Calling getSimpleName on an Element or getQualifiedName on a TypeElement yields a
Name object that can be converted to a string with toString.

11.5.3 Using Annotations to Generate Source Code

Let us return to our task of automatically generating tostring methods. We
can't put these methods into the original classes—annotation processors can
only produce new classes, not modify existing ones.



Chapter 11 ®m Annotations

Therefore, we'll add all methods into a utility class ToStrings:

public class ToStrings {
public static String toString(Point obj) {
Generated code
}

public static String toString(Rectangle obj) {
Generated code
}

public static String toString(Object obj) {
return Objects.toString(obj);
}

}

Since we don’'t want to use reflection, we annotate accessor methods, not
fields:

aToString
public class Rectangle {

aToString(includeName=false) public Point getTopLeft() { return toplLeft; }
@ToString public int getWidth() { return width; }
aToString public int getHeight() { return height; }

}

The annotation processor should then generate the following source code:

public static String toString(Rectangle obj) {
StringBuilder result = new StringBuilder();
result.append(“Rectangle”);
result.append(“[");
result.append(toString(obj.getTopLeft()));
result.append(“,");
result.append(“width=");
result.append(toString(obj.getwidth()));
result.append(“,");
result.append(“height=");
result.append(toStrlng(obj getHeight()));
result.append(“1");
return result.toString();

}

The “boilerplate” code is in gray. Here is an outline of the method that
produces the tostring method for a class with given TypeElement:



11.5 ®m Source-Level Annotation Processing

private void writeToStringMethod(PrintWriter out, TypeElement te) {
String className = te.getQualifiedName().toString();
Print method header and declaration of string builder
ToString ann = te.getAnnotation(ToString.class);
if (ann.includeName()) Print code to add class name
for (Element c : te.getEnclosedElements()) {
ann = c.getAnnotation(ToString.class);
if (ann != null) {
if (ann.includeName()) Print code to add field name
Print code to append toString(obj.methodName())
}
}
Print code to return string

}

And here is an outline of the process method of the annotation processor. It
creates a source file for the helper class and writes the class header and one
method for each annotated class.

public boolean process(Set<? extends TypeElement> annotations,
RoundEnvironment currentRound) {
if (annotations.size() == 0) return true;
try {
JavaFileObject sourceFile = processingEnv.getFiler().createSourceFile(
"com.horstmann.annotations.ToStrings");
try (PrintWriter out = new PrintWriter(sourceFile.openWriter())) {
Print code for package and class
for (Element e : currentRound.getElementsAnnotatedWith(ToString.class)) {
if (e instanceof TypeElement) {
TypeElement te = (TypeElement) e;
writeToStringMethod(out, te);
}
}
Print code for toString(0Object)
} catch (IOException ex) {
processingEnv.getMessager().printMessage(
Kind.ERROR, ex.getMessage());
}
}
return true;

}
For the tedious details, check the book’s companion code.

Note that the process method is called in subsequent rounds with an empty
list of annotations. It then returns immediately so it doesn’t create the source
file twice.

397



m Chapter 11 m Annotations

0 TIP: To see the rounds, run the javac command with the -XprintRounds
flag:

Round 1:
input files: {ch1l.sec05.Point, chll.sec05.Rectangle,
ch11.sec05.SourceLevelAnnotationDemo}
annotations: [com.horstmann.annotations.ToString]
last round: false
Round 2:
input files: {com.horstmann.annotations.ToStrings}
annotations: []
last round: false
Round 3:
input files: {}
annotations: []
last round: true

This example demonstrates how tools can harvest source file annotations to
produce other files. The generated files don’t have to be source files. Annota-
tion processors may choose to generate XML descriptors, property files, shell
scripts, HTML documentation, and so on.

NOTE: You have now seen how to process annotations in source files
and in a running program. A third possibility is to process annotations
in class files, usually on the fly when loading them into the virtual
machine. You need a tool such as ASM (http://asm.ow2.org) to locate and
evaluate the annotations, and rewrite the byte codes.

Exercises

1. Describe how 0bject.clone could be modified to use a @Cloneable annotation
instead of the Cloneable marker interface.

2. If annotations had existed in early versions of Java, then the Serializable
interface would surely have been an annotation. Implement a aSerializable
annotation. Choose a text or binary format for persistence. Provide
classes for streams or readers/writers that persist the state of objects by
saving and restoring all fields that are primitive values or themselves
serializable. Don’t worry about cyclic references for now.

Repeat the preceding assignment, but do worry about cyclic references.

Add a @Transient annotation to your serialization mechanism that acts like
the transient modifier.


http://asm.ow2.org

Exercises

10.

Define an annotation dTodo that contains a message describing whatever
it is that needs to be done. Define an annotation processor that produces
a reminder list from a source file. Include a description of the annotated
item and the todo message.

Turn the annotation of the preceding exercise into a repeating annotation.

If annotations had existed in early versions of Java, they might have taken
the role of Javadoc. Define annotations @Param, @Return, and so on, and
produce a basic HTML document from them with an annotation processor.

Implement the aTestCase annotation, generating a source file whose name
is the name of the class in which the annotation occurs, followed by Test.
For example, if MyMath.java contains

@TestCase(params="4", expected="24")

@TestCase(params="0", expected="1")
public static long factorial(int n) { ... }

then generate a file MyMathTest.java with statements

assert(MyMath.factorial(4) == 24);

assert(MyMath.factorial(0) == 1);
You may assume that the test methods are static, and that parans contains
a comma-separated list of parameters of the correct type.

Implement the aTestCase annotation as a runtime annotation and provide
a tool that checks it. Again, assume that the test methods are static and
restrict yourself to a reasonable set of parameter and return types that
can be described by strings in the annotation elements.

Implement a processor for the @Resource annotation that accepts an
object of some class and looks for fields of type string annotated with
aResource(name="URL"). Then load the URL and “inject” the string variable
with that content, using reflection.



The Date and Time API

Topics in This Chapter

= 121 The Time Line — page 402

= 122 Local Dates — page 404

= 123 Date Adjusters — page 407

= 124 Local Time — page 409

= 125 Zoned Time — page 410

= 12.6 Formatting and Parsing — page 413

= 12.7 Interoperating with Legacy Code — page 416
= Exercises — page 417



Chapter B8 8%

Time flies like an arrow, and we can easily set a starting point and count
forwards and backwards in seconds. So why is it so hard to deal with time?
The problem is humans. All would be easy if we could just tell each other:
“Meet me at 1371409200, and don't be late!” But we want time to relate to
daylight and the seasons. That's where things get complicated. Java 1.0 had
a Date class that was, in hindsight, naive, and had most of its methods depre-
cated in Java 1.1 when a Calendar class was introduced. Its API wasn't stellar,
its instances were mutable, and it didn't deal with issues such as leap seconds.
The third time is a charm, and the java.time API introduced in Java 8 has
remedied the flaws of the past and should serve us for quite some time. In
this chapter, you will learn what makes time computations so vexing, and
how the Date and Time API solves these issues.

The key points of this chapter are:
1. All java.time objects are immutable.
2. An Instant is a point on the time line (similar to a Date).

3. In Java time, each day has exactly 86,400 seconds (that is, no leap
seconds).

A Duration is the difference between two instants.

LocalDateTime has no time zone information.

401



Chapter 12 m The Date and Time API

6. TemporalAdjuster methods handle common calendar computations, such as
finding the first Tuesday of a month.

7. ZonedDateTime is a point in time in a given time zone (similar to
GregorianCalendar).

8. Use a Period, not a buration, when advancing zoned time, in order to account
for daylight savings time changes.

9. Use DateTimeFormatter to format and parse dates and times.

12.1 The Time Line

Historically, the fundamental time unit—the second—was derived from Earth’s
rotation around its axis. There are 24 hours or 24 x 60 x 60 = 86400 seconds
in a full revolution, so it seems just a question of astronomical measurements
to precisely define a second. Unfortunately, Earth wobbles slightly, and
a more precise definition was needed. In 1967, a new precise definition of a
second, matching the historical definition, was derived from an intrinsic
property of atoms of caesium-133. Since then, a network of atomic clocks
keeps the official time.

Ever so often, the official time keepers synchronize the absolute time with
the rotation of Earth. At first, the official seconds were slightly adjusted, but
starting in 1972, “leap seconds” were occasionally inserted. (In theory, a second
might need to be removed once in a while, but that has not yet happened.)
There is talk of changing the system again. Clearly, leap seconds are a pain,
and many computer systems instead use “smoothing” where time is artificially
slowed down or sped up just before the leap second, keeping 86,400 seconds
per day. This works because the local time on a computer isn't all that precise,
and computers are used to synchronizing themselves with an external time
service.

The Java Date and Time API specification requires that Java uses a time
scale that:

* Has 86,400 seconds per day

* Exactly matches the official time at noon each day

¢ Closely matches it elsewhere, in a precisely defined way

That gives Java the flexibility to adjust to future changes in the official time.

In Java, an Instant represents a point on the time line. An origin, called the
epoch, is arbitrarily set at midnight of January 1, 1970 at the prime meridian
that passes through the Greenwich Royal Observatory in London. This is the



12.1 ® The Time Line

same convention used in the Unix/POSIX time. Starting from that origin, time
is measured in 86,400 seconds per day, forwards and backwards, to
nanosecond precision. The Instant values go back as far as a billion years
(Instant.MIN). That's not quite enough to express the age of the Universe (around
13.5 billion years), but it should be enough for all practical purposes. After
all, a billion years ago, the Earth was covered in ice and populated by micro-
scopic ancestors of today’s plants and animals. The largest value, Instant.MAX,
is December 31 of the year 1,000,000,000.

The static method call Instant.now() gives the current instant. You can compare
two instants with the equals and compareTo methods in the usual way, so you
can use instants as timestamps.

To find out the difference between two instants, use the static method
Duration.between. For example, here is how you can measure the running time
of an algorithm:

Instant start = Instant.now();

runAlgorithm();

Instant end = Instant.now();

Duration timeElapsed = Duration.between(start, end);

long millis = timeElapsed.toMillis();
A Duration is the amount of time between two instants. You can get the length
of a Duration in conventional units by calling toNanos, toMillis, toSeconds, toMinutes,
toHours, or toDays.

Conversely, you can obtain a duration with one of the static methods ofNanos,
ofMillis, ofSeconds, ofMinutes, ofHours, ofDays:

Duration oneWeek = Duration.ofDays(7);
long secondsPerWeek = oneWeek.toSeconds();

Durations require more than a long value for their internal storage. The
number of seconds is stored in a long, and the number of nanoseconds in an
additional int. If you want to make computations to nanosecond accuracy,
and you actually need the entire range of a Duration, you can use one of the
methods in Table 12-1. Otherwise, you can just call toNanos and do your
calculations with long values.

D NOTE: It takes almost 300 years of nanoseconds to overflow a long.

For example, if you want to check whether an algorithm is at least ten times
faster than another, you can compute



m Chapter 12 m The Date and Time API

Duration timeElapsed2 = Duration.between(start2, end2);

boolean overTenTimesFaster

= timeElapsed.multipliedBy(10).minus(timeElapsed2).isNegative();
// Or timeElapsed.toNanos() * 10 < timeElapsed2.toNanos()

NOTE: The Instant and Duration classes are immutable, and all methods,
such as multipliedBy or minus, return a new instance.

Table 12-1 Arithmetic Operations for Time Instants and Durations

Method

Description

plus, minus

Adds a duration to, or subtracts a duration
from, this Instant or Duration.

plusNanos, plusMillis, plusSeconds,
plusMinutes, plusHours, plusDays

Adds a number of the given time units to this
Instant or Duration.

minusNanos, minusMillis,
minusSeconds, minusMinutes,
minusHours, minusDays

Subtracts a number of the given time units from
this Instant or Duration.

multipliedBy, dividedBy, negated

Returns a duration obtained by multiplying or
dividing this Duration by a given long, or by -1,
or a long obtained by dividing two durations.
Note that you can scale only durations, not
instants.

isZero, isNegative

Checks whether this Duration is zero or negative.

12.2 Local Dates

Now let us turn from absolute time to human time. There are two kinds of
human time in the Java API, local date/time and zoned time. Local date/time
has a date and/or time of day, but no associated time zone information. An
example of a local date is June 14, 1903 (the day on which Alonzo Church,
inventor of the lambda calculus, was born). Since that date has neither a time
of day nor time zone information, it does not correspond to a precise instant
of time. In contrast, July 16, 1969, 09:32:00 EDT (the launch of Apollo 11) is
a zoned date/time, representing a precise instant on the time line.



12.2 m Local Dates

There are many calculations where time zones are not required, and in some
cases they can even be a hindrance. Suppose you schedule a meeting every
week at 10:00. If you add 7 days (that is, 7 x 24 x 60 x 60 seconds) to the
last zoned time, and you happen to cross the daylight savings time boundary,
the meeting will be an hour too early or too late!

For that reason, the API designers recommend that you do not use zoned
time unless you really want to represent absolute time instances. Birthdays,
holidays, schedule times, and so on are usually best represented as local dates
or times.

A LocalDate is a date with a year, month, and day of the month. To construct
one, you can use the now or of static methods:

LocalDate today = LocalDate.now(); // Today’s date

LocalDate alonzosBirthday = LocalDate.of(1903, 6, 14);

alonzosBirthday = LocalDate.of(1903, Month.JUNE, 14);
// Uses the Month enumeration

Unlike the irregular conventions in Unix and java.util.Date, where months are
zero-based and years are counted from 1900, you supply the usual numbers
for the month of year. Alternatively, you can use the Month enumeration.
Table 12-2 shows the most useful methods for working with LocalDate objects.
For example, Programmer’s Day is the 256th day of the year. Here is how you
can easily compute it:
LocalDate programmersDay = LocalDate.of(2014, 1, 1).plusDays(255);
// September 13, but in a leap year it would be September 12

Recall that the difference between two time instants is a Duration. The equiva-
lent for local dates is a Period, which expresses a number of elapsed years,
months, or days. You can call birthday.plus(Period.ofYears(1)) to get the birthday
next year. Of course, you can also just call birthday.plusyears(1). But
birthday.plus(Duration.ofDays(365)) won't produce the correct result in a leap year.

The until method yields the difference between two local dates. For example,
independenceDay.until(christmas)

yields a period of 5 months and 21 days. That is actually not terribly useful
because the number of days per month varies. To find the number of days, use

independenceDay.until(christmas, ChronoUnit.DAYS) // 174 days



m Chapter 12 m The Date and Time API

Table 12-2 Localpate Methods

Method

Description

now, of, ofInstant

These static methods construct a LocalDate from the
current time, from the given year, month, and day, or
from an Instant and Zoneld.

plusDays, plusWeeks,
plusMonths, plusYears

Adds a number of days, weeks, months, or years to
this LocalDate.

minusDays, minusWeeks,
minusMonths, minusYears

Subtracts a number of days, weeks, months, or years
from this LocalDate.

datesUntil

Yields a Stream<LocalDate> of all dates between this one
and the given date.

plus, minus

Adds or subtracts a Duration or Period.

withDayOfMonth,
withDayOfYear, withMonth,
withYear

Returns a new Localbate with the day of month, day of
year, month, or year changed to the given value.

getDayOfMonth Gets the day of the month (between 1 and 31).
getDayOfYear Gets the day of the year (between 1 and 366).
getDayOfWeek Gets the day of the week, returning a value of the

DayOfWeek enumeration.

getMonth, getMonthValue

Gets the month as a value of the Month enumeration,
or as a number between 1 and 12.

getYear

Gets the year, between -999,999,999 and 999,999,999.

until

Gets the Period, or the number of the given ChronoUnits,
between two dates.

toEpochSecond

Given a LocalTime and ZoneOffset, yields the number of
seconds from the epoch to the specified point in time.

isBefore, isAfter

Compares this LocalDate with another.

isLeapYear

Returns true if the year is a leap year—that is, if it is
divisible by 4 but not by 100, or divisible by 400. The
algorithm is applied for all past years, even though that
is historically inaccurate. (Leap years were invented in
the year —46, and the rules involving divisibility by 100
and 400 were introduced in the Gregorian calendar
reform of 1582. The reform took over 300 years to
become universal.)




12.3 ®m Date Adjusters

CAUTION: Some methods in Table 12-2 could potentially create
nonexistent dates. For example, adding one month to January 31 should
not yield February 31. Instead of throwing an exception, these methods
return the last valid day of the month. For example,

LocalDate.of(2016, 1, 31).plusMonths(1)
and

LocalDate.of(2016, 3, 31).minusMonths(1)
yield February 29, 2016.

The datesUntil method yields a stream of Localbate objects between a start and
an end date:
Stream<LocalDate> allDaysInMay2018
= LocalDate.of(2018,5,1).datesUntil(LocalDate.of(2018,6,1));

Stream<LocalDate> allMondaysIn2018
= LocalDate.of(2018,1,1).datesUntil(LocalDate.0of(2019,1,1), Period.ofDays(7))

The getDayofileek yields the weekday, as a value of the Dayofileek enumeration.
DayOfWeek .MONDAY has the numerical value 1, and Day0OfWeek.SUNDAY has the value 7.
For example,

LocalDate.of(1900, 1, 1).getDayOfWeek().getValue()
yields 1. The DayofWeek enumeration has convenience methods plus and minus to

compute weekdays modulo 7. For example, Day0fWeek.SATURDAY.plus(3) yields
DayOfWeek. TUESDAY.

NOTE: The weekend days actually come at the end of the week. This
is different from java.util.Calendar where Sunday has value 1 and Saturday
value 7.

In addition to LocalDate, there are also classes MonthDay, YearMonth, and Year to
describe partial dates. For example, December 25 (with the year unspeciﬁed)
can be represented as a MonthDay.

12.3 Date Adjusters

For scheduling applications, you often need to compute dates such as “the
first Tuesday of every month.” The TemporalAdjusters class provides a number
of static methods for common adjustments. You pass the result of an adjust-
ment method to the with method. For example, the first Tuesday of a month
can be computed like this:

407



408

Chapter 12 m The Date and Time API

LocalDate firstTuesday = LocalDate.of(year, month, 1).with(
TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY));

As always, the with method returns a new Localbate object without modifying
the original. Table 12-3 shows the available adjusters.

Table 12-3 Date Adjusters in the TemporalAdjusters Class

Method Description

next(weekday), previous(weekday) Next or previous date that falls on the
given weekday

nextOrSame(weekday ), previousOrSame(weekday) Next or previous date that falls on the
given weekday, starting from the given

date
dayOfWeekInMonth(n, weekday) The nth weekday in the month
lastInMonth(weekday) The last weekday in the month
firstDayOfMonth(), firstDayOfNextMonth(), The date described in the method name

firstDayOfNextYear(), lastDayOfMonth(),
lastDayOfPreviousMonth(), lastDayOfYear()

You can also make your own adjuster by implementing the TemporalAdjuster
interface. Here is an adjuster for computing the next weekday:

TemporalAdjuster NEXT_WORKDAY = w -> {
LocalDate result = (LocalDate) w;
do {
result = result.plusDays(1);
} while (result.getDayOfWeek().getValue() >= 6);
return result;

H
LocalDate backToWork = today.with(NEXT_WORKDAY);

Note that the parameter of the lambda expression has type Temporal, and it
must be cast to LocalDate. You can avoid this cast with the ofbateAdjuster method
that expects a UnaryOperator<LocalDate>. Here we specify the adjuster as a lambda
expression.

TemporalAdjuster NEXT_WORKDAY = TemporalAdjusters.ofDateAdjuster(w -> {
LocalDate result = w; // No cast
do {
result = result.plusDays(1);
} while (result.getDayOfWeek().getValue() >= 6);
return result;

b



12.4 W Local Time

12.4 Local Time

A LocalTime represents a time of day, such as 15:30:00. You can create an
instance with the now or of methods:

LocalTime rightNow = LocalTime.now();
LocalTime bedtime = LocalTime.of(22, 30); // or LocalTime.of(22, 30, 0)

Table 12-4 shows common operations with local times. The plus and minus
operations wrap around a 24-hour day. For example,

LocalTime wakeup = bedtime.plusHours(8); // wakeup is 6:30:00

NOTE: LocalTime doesn’t concern itself with AM/PM. That silliness is left
to a formatter—see Section 12.6, “Formatting and Parsing” (page 413).

Table 12-4 LocalTime Methods

Method

Description

now, of, ofInstant

These static methods construct a LocalTime from the
current time, from the given hours, minutes, and,
optionally, seconds and nanoseconds, or from an
Instant and Zoneld.

plusHours, plusMinutes,
plusSeconds, plusNanos

Adds a number of hours, minutes, seconds, or
nanoseconds to this LocalTime.

minusHours, minusMinutes,
minusSeconds, minusNanos

Subtracts a number of hours, minutes, seconds, or
nanoseconds from this LocalTime.

plus, minus

Adds or subtracts a Duration.

withHour, withMinute, withSecond,
withNano

Returns a new LocalTime with the hour, minute,
second, or nanosecond changed to the given value.

getHour, getMinute, getSecond,
getNano

Gets the hour, minute, second, or nanosecond of
this LocalTime.

toSecond0fDay, toNanoOfDay

Returns the number of seconds or nanoseconds
between midnight and this LocalTime.

toEpochSecond

Given a LocalDate and ZoneOffset, yields the number
of seconds from the epoch to the specified point
in time.

isBefore, isAfter

Compares this LocalTime with another.




Chapter 12 m The Date and Time API

There is a LocalDateTime class representing a date and time. That class is suitable
for storing points in time in a fixed time zone—for example, for a schedule
of classes or events. However, if you need to make calculations that span
the daylight savings time, or if you need to deal with users in different time
zones, you should use the ZonedbateTime class that we discuss next.

12.5 Zoned Time

Time zones, perhaps because they are an entirely human creation, are even
messier than the complications caused by the Earth’s irregular rotation. In a
rational world, we’d all follow the clock in Greenwich, and some of us would
eat our lunch at 02:00, others at 22:00. Our stomachs would figure it out.
This is actually done in China, which spans four conventional time zones.
Elsewhere, we have time zones with irregular and shifting boundaries and,
to make matters worse, the daylight savings time.

As capricious as the time zones may appear to the enlightened, they are a
fact of life. When you implement a calendar application, it needs to work for
people who fly from one country to another. When you have a conference
call at 10:00 in New York, but happen to be in Berlin, you expect to be
alerted at the correct local time.

The Internet Assigned Numbers Authority (IANA) keeps a database of all
known time zones around the world (https://www.iana.org/time-zones), which is
updated several times per year. The bulk of the updates deals with the
changing rules for daylight savings time. Java uses the IANA database.

Each time zone has an ID, such as America/New_York or Europe/Berlin. To find out
all available time zones, call Zoneld.getAvailableIds. At the time of this writing,
there were almost 600 IDs.

Given a time zone ID, the static method Zzoneld.of(id) yields a zoneld object.
You can use that object to turn a LocalbateTime object into a ZonedDateTime object
by calling local.atZone(zoneld), or you can construct a ZonedbateTime by calling the
static method ZonedDateTime.of(year, month, day, hour, minute, second, nano, zoneld). For
example,
ZonedDateTime apollolilaunch = ZonedDateTime.of(1969, 7, 16, 9, 32, 0, 0O,
ZoneId.of("America/New_York"));
// 1969-07-16T09:32-04:00[ America/New_York]
This is a specific instant in time. Call apollolllaunch.toInstant to get the Instant.
Conversely, if you have an instant in time, call instant.atZone(ZoneId.of("UTC"))
to get the ZonedDateTime at the Greenwich Royal Observatory, or use another
Zoneld to get it elsewhere on the planet.


https://www.iana.org/time-zones

12.5 W Zoned Time

NOTE: UTC stands for “Coordinated Universal Time,” and the acronym
is a compromise between the aforementioned English and the French
“Temps Universel Coordiné,” having the distinction of being incorrect in
either language. UTC is the time at the Greenwich Royal Observatory,
without daylight savings time.

a

Many of the methods of zonedateTime are the same as those of LocalDateTime (see
Table 12-5). Most are straightforward, but daylight savings time introduces
some complications.

Table 12-5 ZzonedpateTime Methods

Method

Description

now, of, ofInstant

These static methods construct a ZonedDateTime
from the current time, or from a year, month,
day, hour, minute, second, nanosecond (or a
LocalDate and LocalTime), and Zoneld, or from an
Instant and Zoneld.

plusDays, plusWeeks, plusMonths,
plusYears, plusHours, plusMinutes,
plusSeconds, plusNanos

Adds a number of temporal units to this
ZonedDateTime.

minusDays, minusWeeks, minusMonths,
minusYears, minusHours, minusMinutes,
minusSeconds, minusNanos

Subtracts a number of temporal units from this
LocalDate.

plus, minus

Adds or subtracts a Duration or Period.

withDayOfMonth, withDayOfYear,
withMonth, withYear, withHour,
withMinute, withSecond, withNano

Returns a new ZonedDateTime, with one temporal
unit changed to the given value.

withZoneSameInstant, Returns a new ZonedDateTime in the given time

withZoneSameLocal zone, either representing the same instant or
the same local time.

getDayOfMonth Gets the day of the month (between 1 and 31).

getDayOfYear Gets the day of the year (between 1 and 366).

getDayOfWeek Gets the day of the week, returning a value

of the DayOfWeek enumeration.

(Continues)



m Chapter 12 m The Date and Time API

Table 12-5 ZonedpateTime Methods (Continued)

Method Description

getMonth, getMonthValue Gets the month as a value of the Month enumeration,
or as a number between 1 and 12.

getYear Gets the year, between -999,999,999 and
999,999,999.

getHour, getMinute, getSecond, Gets the hour, minute, second, or nanosecond of

getNano this ZonedDateTime.

getOffset Gets the offset from UTC, as a ZoneOffset instance.

Offsets can vary from -12:00 to +14:00. Some time
zones have fractional offsets. Offsets change with
daylight savings time.

toLocalDate, tolLocalTime, Yields the local date or local time, or the
toInstant corresponding instant.
isBefore, isAfter Compares this ZonedDateTime with another.

When daylight savings time starts, clocks advance by an hour. What happens
when you construct a time that falls into the skipped hour? For example, in
2013, Central Europe switched to daylight savings time on March 31 at 2:00.
If you try to construct nonexistent time March 31 2:30, you actually get 3:30.
ZonedDateTime skipped = ZonedDateTime.of(
LocalDate.of(2013, 3, 31),
LocalTime.of(2, 30),

ZoneId.of("Europe/Berlin"));
// Constructs March 31 3:30

Conversely, when daylight time ends, clocks are set back by an hour, and
there are two instants with the same local time! When you construct a time
within that span, you get the earlier of the two.

ZonedDateTime ambiguous = ZonedDateTime.of(
LocalDate.of(2013, 10, 27), // End of daylight savings time
LocalTime.of(2, 30),
ZoneId.of("Europe/Berlin"));
// 2013-10-27T02:30+02:00[Europe/Berlin]
ZonedDateTime anHourlater = ambiguous.plusHours(1);
// 2013-10-27T62:30+01:00[Europe/Berlin]

An hour later, the time has the same hours and minutes, but the zone offset
has changed.



12.6 ®m Formatting and Parsing

You also need to pay attention when adjusting a date across daylight savings
time boundaries. For example, if you set a meeting for next week, don’t add
a duration of seven days:

ZonedDateTime nextMeeting = meeting.plus(Duration.ofDays(7));
// Caution! Won't work with daylight savings time

Instead, use the Period class.

ZonedDateTime nextMeeting = meeting.plus(Period.ofDays(7)); // OK

CAUTION: There is also an 0ffsetDateTime class that represents times
with an offset from UTC, but without time zone rules. That class is
intended for specialized applications that specifically require the absence
of those rules, such as certain network protocols. For human time, use
ZonedDateTime.

12.6 Formatting and Parsing

The DateTimeFormatter class provides three kinds of formatters to print a date/time
value:

e Predefined standard formatters (see Table 12-6)
* Locale-specific formatters
e Formatters with custom patterns

To use one of the standard formatters, simply call its format method:

String formatted = DateTimeFormatter.ISO_DATE_TIME.format(apollolllaunch);
// 1969-07-16T09:32:00-05:00[America/New_York]

The standard formatters are mostly intended for machine-readable timestamps.
To present dates and times to human readers, use a locale-specific formatter.

There are four styles, SHORT, MEDIUM, LONG, and FULL, for both date and time—see
Table 12-7.

The static methods ofLocalizedDate, oflocalizedTime, and oflLocalizedDateTime create
such a formatter. For example:
DateTimeFormatter formatter = DateTimeFormatter.ofLocalizedDateTime(FormatStyle.LONG);

String formatted = formatter.format(apollolllaunch);
// July 16, 1969 9:32:00 AM EDT

These methods use the default locale. To change to a different locale, simply
use the withLocale method.

formatted = formatter.withLocale(Locale.FRENCH).format(apollol1launch);
// 16 juillet 1969 09:32:00 EDT



m Chapter 12 m The Date and Time API

Table 12-6 Predefined Formatters

Formatter Description Example
BASIC_ISO_DATE Year, month, day, 19690716-0500
zone offset

without separators

ISO_LOCAL_DATE, Separators -, :, T 1969-07-16, 09:32:00, 1969-07-16T09:32:00
ISO_LOCAL_TIME,
ISO_LOCAL_DATE_TIME

ISO_OFFSET_DATE, Like ISO_LOCAL_XXX,  1969-07-16-05:00, 09:32:00-05:00,
ISO_OFFSET_TIME, but with zone 1969-07-16T09:32:00-05:00
ISO_OFFSET_DATE_TIME  offset

ISO_ZONED_DATE_TIME ~ With zone offset 1969-07-16T09:32:00-05:00[ America/New_York]
and zone ID

ISO_INSTANT In UTC, denoted 1969-07-16T14:32:00Z
by the Z zone ID

ISO_DATE, ISO_TIME, LikeISO_OFFSET_DATE, 1969-07-16-05:00, 09:32:00-05:00,
ISO_DATE_TIME ISO_OFFSET_TIME, and 1969-07-16T09:32:00-05:00[ America/New_York]
1S0_ZONED_DATE_TIME,
but the zone
information is

optional

ISO_ORDINAL_DATE The year and day 1969-197
of year, for
LocalDate

ISO_WEEK_DATE The year, week, 1969-W29-3

and day of week,
for LocalDate

RFC_1123_DATE_TIME The standard for Wed, 16 Jul 1969 09:32:00 -0500
email timestamps,
codified in
RFC 822 and
updated to four
digits for the year
in RFC 1123




12.6 ®m Formatting and Parsing

Table 12-7 Date and Time Formatting Styles

Style Date Time

SHORT 7/16/69 9:32 AM
MEDIUM Jul 16, 1969 9:32:00 AM
LONG July 16, 1969 9:32:00 AM EDT
FULL Wednesday, July 16, 1969 9:32:00 AM EDT

The Dayofuweek and Month enumerations have methods getdisplayName for giving the
names of weekdays and months in different locales and formats.

for (DayOfWeek w : DayOfWeek.values())
System.out.print(w.getDisplayName(TextStyle.SHORT, Locale.ENGLISH) + " ");
// Prints Mon Tue Wed Thu Fri Sat Sun

See Chapter 13 for more information about locales.

NOTE: The java.time.format.DateTimeFormatter class is intended as a
replacement for java.util.DateFormat. If you need an instance of the latter
for backwards compatibility, call formatter.toFormat().

Finally, you can roll your own date format by specifying a pattern. For
example,

formatter = DateTimeFormatter.ofPattern("E yyyy-MM-dd HH:mm");

formats a date in the form wed 1969-07-16 09:32. Each letter denotes a different
time field, and the number of times the letter is repeated selects a particular
format, according to rules that are arcane and seem to have organically grown
over time. Table 12-8 shows the most useful pattern elements.

To parse a date/time value from a string, use one of the static parse methods.
For example,

LocalDate churchsBirthday = LocalDate.parse("1903-06-14");

ZonedDateTime apollolllaunch

= ZonedDateTime.parse("1969-07-16 03:32:00-0400",
DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ssxx"));

The first call uses the standard 150_L0CAL_DATE formatter, the second one a custom
formatter.



m Chapter 12 m The Date and Time API

Table 12-8 Commonly Used Formatting Symbols for Date/Time Formats

ChronoField or Purpose Examples

ERA G: AD, GGGG: Anno Domini, GGGGG: A
YEAR_OF_ERA yy: 69, yyyy: 1969

MONTH_OF_YEAR M: 7, MM: 07, MMM: Jul, MMMM: July, MMMMM: J
DAY_OF _MONTH d: 6, dd: 06

DAY_OF_WEEK e: 3, E: Wed, EEEE: Wednesday, EEEEE: W
HOUR_OF _DAY H: 9, HH: 09

CLOCK_HOUR_OF_AM_PM K: 9, KK: 09

AMPM_OF DAY ar AM

MINUTE_OF_HOUR mm: 02

SECOND_OF _MINUTE ss: 00

NANO_OF _SECOND nnnnnn: 000000

Time zone ID VV: America/New_York

Time zone name z: EDT, zzzz: Eastern Daylight Time
Zone offset X: -04, xx: -0400, xxx: -04:00, XXX: same, but use Z for zero

Localized zone offset 0: GMT-4, 0000: GMT-04:00

12.7 Interoperating with Legacy Code

The Java Date and Time API must interoperate with existing classes, in par-
ticular, the ubiquitous java.util.Date, java.util.GregorianCalendar, and java.sql.Date/
Time/Timestamp.

The 1Instant class is a close analog to java.util.Date. In Java 8, that class has
two added methods: the toInstant method that converts a Date to an Instant,
and the static from method that converts in the other direction.

Similarly, ZonedbateTime is a close analog to java.util.GregorianCalendar, and that
class has gained conversion methods in Java 8. The tozonedDateTime method
converts a GregorianCalendar to a ZonedDateTime, and the static from method does
the opposite conversion.



Exercises

Another set of conversions is available for the date and time classes in the
java.sql package. You can also pass a DateTimeFormatter to legacy code that uses
java.text.Format. Table 12-9 summarizes these conversions.

Table 12-9 Conversions between java.time Classes and Legacy Classes

Classes

To Legacy Class

From Legacy Class

Instant
<> java.util.Date

Date.from(instant)

date.toInstant()

ZonedDateTime

<> java.util.GregorianCalendar

GregorianCalendar.
from(zonedDateTime)

cal.toZonedDateTime()

Instant
<> java.sql.Timestamp

TimeStamp.from(instant)

timestamp.toInstant()

LocalDateTime
<> java.sql.Timestamp

Timestamp.
valueOf(localDateTime)

timeStamp.toLocalDateTime()

LocalDate
<> java.sql.Date

Date.valueOf(localDate)

date.tolLocalDate()

LocalTime
<> java.sql.Time

Time.valueOf(localTime)

time.toLocalTime()

DateTimeFormatter
— java.text.DateFormat

formatter.toFormat()

None

java.util.TimeZone
—> Zoneld

Timezone.getTimeZone(id)

timeZone.toZoneId()

java.nio.file.attribute.FileTime

— Instant

FileTime.from(instant)

fileTime.toInstant()

Exercises

Compute Programmer’s Day without using plusbays.

2. What happens when you add one year to LocalDate.of(2000, 2, 29)? Four
years? Four times one year?

3. Implement a method next that takes a Predicate<Localbate> and returns an
adjuster yielding the next date fulfilling the predicate. For example,

today.with(next(w -> getDayOfWeek().getValue() < 6))

computes the next workday.

417



m Chapter 12 m The Date and Time API

4.

10.

11.

12.

Write an equivalent of the Unix cal program that displays a calendar for
a month. For example, java Cal 3 2013 should display

indicating that March 1 is a Friday. (Show the weekend at the end of the
week.)

Write a program that prints how many days you have been alive.
List all Friday the 13th in the twentieth century.

Implement a TimeInterval class that represents an interval of time, suitable
for calendar events (such as a meeting on a given date from 10:00 to
11:00). Provide a method to check whether two intervals overlap.

Obtain the offsets of today’s date in all supported time zones for the
current time instant, turning ZonelId.getAvailableZonelds into a stream and using
stream operations.

Again using stream operations, find all time zones whose offsets aren't
full hours.

Your flight from Los Angeles to Frankfurt leaves at 3:05 pm local time
and takes 10 hours and 50 minutes. When does it arrive? Write a program
that can handle calculations like this.

Your return flight leaves Frankfurt at 14:05 and arrives in Los Angeles at
16:40. How long is the flight? Write a program that can handle calculations
like this.

Write a program that solves the problem described at the beginning of
Section 12.5, “Zoned Time” (page 410). Read a set of appointments in
different time zones and alert the user which ones are due within the
next hour in local time.



This page intentionally left blank



Internationalization

Topics in This Chapter

= 13.1 Locales — page 422

= 13.2 Number Formats — page 427

= 13.3 Currencies — page 428

» 13.4 Date and Time Formatting — page 429
= 13.5 Collation and Normalization — page 431
= 13.6 Message Formatting — page 433

= 13.7 Resource Bundles — page 435

= 13.8 Character Encodings — page 438

= 13.9 Preferences — page 439

= Exercises — page 441



Chapter B 8!

There’s a big world out there, and hopefully many of its inhabitants will be
interested in your software. Some programmers believe that all they need to
do to internationalize their application is to support Unicode and translate
the messages in the user interface. However, as you will see, there is a lot
more to internationalizing programs. Dates, times, currencies, even numbers
are formatted differently in different parts of the world. In this chapter, you
will learn how to use the internationalization features of Java so that your
programs present and accept information in a way that makes sense to
your users, wherever they may be.

At the end of this chapter, you will find a brief overview of the Java
Preferences API for storing user preferences.

The key points of this chapter are:

1. Translating an application for international users requires more than
translating messages. In particular, formatting for numbers and dates
varies widely across the world.

2. A locale describes language and formatting preferences for a population
of users.

3. The NumberfFormat and DateTimeFormat classes handle locale-aware formatting
of numbers, currencies, dates, and times.

421



Chapter 13 m Internationalization

4. The MessageFormat class can format message strings with placeholders, each
of which can have its own format.

Use the Collator class for locale-dependent sorting of strings.

The ResourceBundle class manages localized strings and objects for multiple
locales.

7. The Ppreferences class can be used for storing user preferences in a
platform-independent way.

13.1 Locales

When you look at an application that is adapted to an international market,
the most obvious difference is the language. But there are many more subtle
differences; for example, numbers are formatted quite differently in English
and in German. The number

123,456.78

should be displayed as

123.456,78
for a German user—that is, the roles of the decimal point and the decimal
comma separator are reversed. There are similar variations in the display of
dates. In the United States, dates are displayed as month/day/year; Germany
uses the more sensible order of day/month/year, whereas in China, the usage
is year/month/day. Thus, the American date

3/22/61
should be presented as
22.03.1961

to a German user. If the month names are written out explicitly, then the
difference in languages becomes even more apparent. The English

March 22, 1961

should be presented as
22. Mirz 1961

in German, or
19614322 H

in Chinese.



13.1 m Locales

A locale specifies the language and location of a user, which allows formatters
to take user preferences into account. The following sections show you how
to specify a locale and how to control the locale settings of a Java program.

13.1.1 Specifying a Locale

A locale consists of up to five components:

1. A language, specified by two or three lowercase letters, such as en
(English), de (German), or zh (Chinese). Table 13-1 shows common codes.

2. Optionally, a script, specified by four letters with an initial uppercase,
such as Latn (Latin), cyrl (Cyrillic), or Hant (traditional Chinese characters).
This can be useful because some languages, such as Serbian, are written
in Latin or Cyrillic, and some Chinese readers prefer the traditional over
the simplified characters.

3. Optionally, a country or region, specified by two uppercase letters or
three digits, such as Us (United States) or ci (Switzerland). Table 13-2
shows common codes.

Optionally, a variant.

Optionally, an extension. Extensions describe local preferences for calen-
dars (such as the Japanese calendar), numbers (Thai instead of Western
digits), and so on. The Unicode standard specifies some of these exten-
sions. Extensions start with u- and a two-letter code specifying whether
the extension deals with the calendar (ca), numbers (nu), and so on. For
example, the extension u-nu-thai denotes the use of Thai numerals. Other
extensions are entirely arbitrary and start with x-, such as x-java.

EI NOTE: Variants are rarely used nowadays. There used to be a “Nynorsk”

variant of Norwegian, but it is now expressed with a different language
code, nn. What used to be variants for the Japanese imperial calendar
and Thai numerals are now expressed as extensions.

Rules for locales are formulated in the “Best Current Practices” memo BCP 47
of the Internet Engineering Task Force (http://tools.ietf.org/html/bcps7). You can
find a more accessible summary at www.w3.org/International/articles/language-tags.


http://tools.ietf.org/html/bcp47
http://www.w3.org/International/articles/language-tags

m Chapter 13 m Internationalization

Table 13-1 Common Language Codes

Language Code Language Code
Chinese zh Japanese ja
Danish da Korean ko
Dutch du Norwegian no
English en Portugese pt
French fr Spanish es
Finnish fi Swedish sv
Italian it Turkish tr

Table 13-2 Common Country Codes

Country Code Country Code
Austria AT Japan Jp
Belgium BE Korea KR
Canada CA The Netherlands NL
China CN Norway NO
Denmark DK Portugal PT
Finland FI Spain ES
Germany DE Sweden SE
Great Britain GB Switzerland CH
Greece GR Taiwan ™
Ireland IE Turkey TR
Italy T United States us

NOTE: The codes for languages and countries seem a bit random
because some of them are derived from local languages. German in
German is Deutsch, Chinese in Chinese is zhongwen; hence de and zh.
And Switzerland is CH, deriving from the latin term Confoederatio Helvetica
for the Swiss confederation.




13.1 m Locales

Locales are described by tags—hyphenated strings of locale elements such
as en-Us.

In Germany, you would use a locale de-DE. Switzerland has four official lan-
guages (German, French, Italian, and Rhaeto-Romance). A German speaker
in Switzerland would want to use a locale de-CH. This locale uses the rules for
the German language, but currency values are expressed in Swiss francs, not
euros.

If you only specify the language, say, de, then the locale cannot be used for
country-specific issues such as currencies.

You can construct a Locale object from a tag string like this:

Locale usEnglish = Locale.forLanguageTag("en-US");

The tolanguageTag method yields the language tag for a given locale. For
example, Locale.US.tolanguageTag() is the string "en-us".

For your convenience, there are predefined locale objects for various countries:

Locale.CANADA
Locale.CANADA_FRENCH
Locale.CHINA
Locale.FRANCE
Locale.GERMANY
Locale.ITALY
Locale.JAPAN
Locale.KOREA
Locale.PRC
Locale.TAIWAN
Locale.UK
Locale.US

A number of predefined locales specify just a language without a location:

Locale.CHINESE
Locale.ENGLISH
Locale.FRENCH
Locale.GERMAN
Locale.ITALIAN
Locale.JAPANESE
Locale.KOREAN
Locale.SIMPLIFIED_CHINESE
Locale.TRADITIONAL_CHINESE

Finally, the static getAvailablelLocales method returns an array of all locales
known to the virtual machine.

NOTE: You can get all language codes as Locale.getISOLanguages() and
all country codes as Locale.getISOCountries().




Chapter 13 m Internationalization

13.1.2 The Default Locale

The static getdefault method of the Locale class initially gets the default locale
as stored by the local operating system.

Some operating systems allow the user to specify different locales for displayed
messages and for formatting. For example, a French speaker living in the
United States can have French menus but currency values in dollar.

To obtain these preferences, call

Locale displayLocale = Locale.getDefault(Locale.Category.DISPLAY);
Locale formatLocale = Locale.getDefault(Locale.Category.FORMAT);

NOTE: In Unix, you can specify separate locales for numbers, currencies,
and dates, by setting the LC_NUMERIC, LC_MONETARY, and LC_TIME environment
variables. Java does not pay attention to these settings.

TIP: For testing, you might want to switch the default locale of your

v program. Supply the language and region properties when you launch

your program. For example, here we set the default locale to German
(Switzerland):

java -Duser.language=de -Duser.country=CH MainClass
You can also change the script and variant, and you can have

separate settings for the display and format locales, for example,
-Duser.script.display=Hant.

You can change the default locale of the virtual machine by calling one of

Locale.setDefault(newLocale);
Locale.setDefault(category, newLocale);

The first call changes the locales returned by Locale.getDefault() and Locale.
getDefault(category) for all categories.

13.1.3 Display Names

Suppose you want to allow a user to choose among a set of locales. You
don't want to display cryptic tag strings; the getdisplayName method returns a
string describing the locale in a form that can be presented to a user, such as

German (Switzerland)

Actually, there is a problem here. The display name is issued in the default
locale. That might not be appropriate. If your user already selected German



13.2 m Number Formats

as the preferred language, you probably want to present the string in German.
You can do just that by giving the German locale as a parameter. The code

Locale loc = Locale.forLanguageTag("de-CH");
System.out.println(loc.getDisplayName(Locale.GERMAN));

prints
Deutsch (Schweiz)

This example shows why you need Locale objects. You feed them to locale-
aware methods that produce text to be presented to users in different
locations. You will see many examples in the following sections.

CAUTION: Even such mundane operations as turning a string into
lowercase or uppercase can be locale-specific. For example, in the
Turkish locale, the lowercase of the letter | is a dotless 1. Programs that
tried to normalize strings by storing them in lowercase have mysteriously
failed for Turkish customers. It is a good idea to always use the variants
of toUpperCase and toLowerCase that take a Locale argument. For example,
try out:

String cmd = "QUIT".toLowerCase(Locale.forlLanguageTag("tr"));
// "quit" with a dotless 1

Of course, in Turkey, where Locale.getDefault() yields just that locale,
"QUIT".toLowerCase() is not the same as "quit".

If you want to normalize English language strings to lowercase, you
should pass an English locale to the toLowerCase method.

NOTE: You can explicitly set the locale for input and output operations.

e When reading numbers from a Scanner, you can set its locale with the
useLocale method.

e The String.format and PrintWwriter.printf methods optionally take a
Locale argument.

13.2 Numbher Formats

The NumberFormat class in the java.text package provides three factory methods
for formatters that can format and parse numbers: getNumberInstance,
getCurrencyInstance, and getPercentInstance. For example, here is how you can format
a currency value in German:

427



Chapter 13 m Internationalization

Locale loc = Locale.GERMANY;

NumberFormat formatter = NumberFormat.getCurrencyInstance(loc);
double amt = 123456.78;

String result = formatter.format(amt);

The result is
123.456,78€

Note that the currency symbol is € and that it is placed at the end of the
string. Also, note the reversal of decimal points and decimal commas.

Conversely, to read in a number that was entered or stored with the
conventions of a certain locale, use the parse method:
String input = ...;
NumberFormat formatter = NumberFormat.getNumberInstance();
// Get the number formatter for default format locale

Number parsed = formatter.parse(input);
double x = parsed.doublevalue();

The return type of parse is the abstract type Number. The returned object is either
a Double or a Long wrapper object, depending on whether the parsed number
was a floating-point number. If you don't care about the distinction, you can
simply use the doublevalue method of the Number class to retrieve the wrapped
number.

If the text for the number is not in the correct form, the method throws a
ParseException. For example, leading whitespace in the string is not allowed.
(Call trim to remove it.) However, any characters that follow the number in
the string are simply ignored, and no exception is thrown.

13.3 Currencies

To format a currency value, you can use the NumberFormat.getCurrencyInstance
method. However, that method is not very flexible—it returns a formatter for
a single currency. Suppose you prepare an invoice for an American customer
in which some amounts are in dollars and others are in euros. You can't just
use two formatters

NumberFormat dollarFormatter = NumberFormat.getCurrencyInstance(Locale.US);
NumberFormat euroFormatter = NumberFormat.getCurrencyInstance(Locale.GERMANY);

Your invoice would look very strange, with some values formatted like $100,000
and others like 100.000€. (Note that the euro value uses a decimal point, not
a comma.)

Instead, use the Currency class to control the currency used by the formatters.
You can get a Currency object by passing a currency identifier to the static



13.4 m Date and Time Formatting

Currency.getInstance method. Table 13-3 lists common identifiers. The static
method Currency.getAvailableCurrencies yields a Set<Currency> with the currencies
known to the virtual machine.

Once you have a Currency object, call the setCurrency method for the formatter.
Here is how to format euro amounts for your American customer:

NumberFormat formatter = NumberFormat.getCurrencyInstance(Locale.US);
formatter.setCurrency(Currency.getInstance("EUR"));
System.out.println(formatter.format(euros));

If you need to display localized names or symbols of currencies, call

getDisplayName()
getSymbol()

These methods return strings in the default display locale. You can also
provide an explicit locale parameter.

Tahle 13-3 Common Currency Identifiers

Currency Identifier Currency Identifier
U. S. Dollar usb Chinese Renminbi (Yuan) CNY
Euro EUR Indian Rupee INR
British Pound GBP Russian Ruble RUB
Japanese Yen JPY Swiss Francs CHF

13.4 Date and Time Formatting

When formatting date and time, there are four locale-dependent issues:

1. The names of months and weekdays should be presented in the local
language.
There will be local preferences for the order of year, month, and day.

The Gregorian calendar might not be the local preference for expressing
dates.

4. The time zone of the location must be taken into account.

Use the DateTimeFormatter from the java.time.format package, and not the legacy
java.util.DateFormat. Decide whether you need the date, time, or both. Pick one
of four formats—see Table 13-4. If you format date and time, you can pick
them separately.



m Chapter 13 m Internationalization

Table 13-4 Locale-Specific Formatting Styles

Style Date Time

SHORT 7/16/69 9:32 AM
MEDIUM Jul 16, 1969 9:32:00 AM
LONG July 16, 1969 9:32:00 AM EDT
FULL Wednesday, July 16, 1969 9:32:00 AM EDT

Then get a formatter:

FormatStyle style = ...; // One of FormatStyle.SHORT, FormatStyle.MEDIUM, . . .

DateTimeFormatter dateFormatter = DateTimeFormatter.ofLocalizedDate(style);

DateTimeFormatter timeFormatter = DateTimeFormatter.oflocalizedTime(style);

DateTimeFormatter dateTimeFormatter = DateTimeFormatter.oflocalizedDateTime(style);
// or DateTimeFormatter.oflLocalizedDateTime(stylel, style2)

These formatters use the current format locale. To use a different locale, use
the withLocale method:

DateTimeFormatter dateFormatter
= DateTimeFormatter.ofLocalizedDate(style).withLocale(locale);

Now you can format a LocalDate, LocalDateTime, LocalTime, or ZonedDateTime:

ZonedDateTime appointment = ...;
String formatted = formatter.format(appointment);

To parse a string, use one of the static parse methods of LocalDate, LocalDateTime,
LocalTime, or ZonedDateTime.

LocalTime time = LocalTime.parse("9:32 AM", formatter);

If the string cannot be successfully parsed, a DateTimeParseException is thrown.

CAUTION: These methods are not suitable for parsing human input, at
least not without preprocessing. For example, the short time formatter
for the United States will parse "9:32 AM" but not "9:32AM" or "9:32 am".

CAUTION: Date formatters parse nonexistent dates, such as
November 31, and adjust them to the last date in the given month.

Sometimes, you need to display just the names of weekdays and months, for
example, in a calendar application. Call the getDisplayName method of the DayofWeek
and Month enumerations.



13.5 W Collation and Normalization

for (Month m : Month.values())
System.out.println(m.getDisplayName(textStyle, locale) + " ");

Table 13-5 shows the text styles. The STANDALONE versions are for display outside
a formatted date. For example, in Finnish, January is “tammikuuta” inside a
date, but “tammikuu” standalone.

NOTE: The first day of the week can be Saturday, Sunday, or Monday,
depending on the locale. You can obtain it like this:

DayOfWeek first = WeekFields.of(locale).getFirstDayOfWeek();

Table 13-5 Values of the java.time.format.TextStyle Enumeration

Style Example
FULL / FULL_STANDALONE January
SHORT / SHORT_STANDALONE Jan
NARROW / NARROW_STANDALONE ]

13.5 Collation and Normalization

Most programmers know how to compare strings with the compareTo method
of the string class. Unfortunately, when interacting with human users, this
method is not very useful. The compareTo method uses the values of the UTF-16
encoding of the string, which leads to absurd results, even in English. For
example, the following five strings are ordered according to the compareTo
method:

Athens

Zulu

able

zebra
Angstrom

For dictionary ordering, you would want to consider upper case and lower
case equivalent, and accents should not be significant. To an English speaker,
the sample list of words should be ordered as

able

Angstrom

Athens

zebra
Zulu



Chapter 13 m Internationalization

However, that order would not be acceptable to a Swedish user. In Swedish,
the letter A is different from the letter A, and it is collated after the letter Z!
That is, a Swedish user would want the words to be sorted as

able

Athens

zebra

Zulu

Angstrim
To obtain a locale-sensitive comparator, call the static Collator.getInstance
method:

Collator coll = Collator.getInstance(locale);

words.sort(coll);
// Collator implements Comparator<Object>

There are a couple of advanced settings for collators. You can set a collator’s
strength to adjust how selective it should be. Character differences are classified
as primary, secondary, or tertiary. For example, in English, the difference be-
tween e and f is considered primary, the difference between e and ¢ is
secondary, and between e and E is tertiary.

For example, when processing city names, you may not care about the
differences between
San José

San Jose
SAN JOSE

In that case, configure the collator by calling
coll.setStrength(Collator.PRIMARY);

A more technical setting is the decomposition mode which deals with the fact
that a character or sequence of characters can sometimes be described in
more than one way in Unicode. For example, an é (U+00E9) can also be ex-
pressed as a plain e (U+0065) followed by a “~ (combining acute accent
U+0301). You probably don't care about that difference, and by default, it is
not significant. If you do care, you need to configure the collator as follows:

coll.setStrength(Collator.IDENTICAL);
coll.setDecomposition(Collator.NO_DECOMPOSITION);

Conversely, if you want to be very lenient and consider the trademark

symbol ™ (U+2122) the same as the character combination TM, then set the
decomposition mode to Collator.FULL_DECOMPOSITION.

You might want to convert strings into normalized forms even when you
don’t do collation—for example, for persistent storage or communication with
another program. The Unicode standard defines four normalization forms (C,



13.6 ® Message Formatting

D, KC, and KD)—see www.unicode.org/unicode/reports/tri5/tr15-23.html. In the normal-
ization form C, accented characters are always composed. For example, a
sequence of e and a combining acute accent * is combined into a single
character é. In form D, accented characters are always decomposed into their
base letters and combining accents: é is turned into e followed by ’. Forms
KC and KD also decompose characters such as the trademark symbol ™. The
W3C recommends that you use normalization form C for transferring data
over the Internet.

The static normalize method of the java.text.Normalizer class carries out the
normalization process. For example,

String city = "San Jose\u0301";
String normalized = Normalizer.normalize(city, Normalizer.Form.NFC);

13.6 Message Formatting

When you internationalize a program, you often have messages with variable
parts. The static format method of the MessageFormat class takes a template string
with placeholders, followed by the placeholder values, like this:

String template = "{0} has {1} messages";

String message = MessageFormat.format(template, "Pierre", 42);
Of course, instead of hardcoding the template, you should look up a locale-
specific one, such as "Il y a {1} messages pour {6}" in French. You will see how
to do that in Section 13.7, “Resource Bundles” (page 435).

Note that the ordering of the placeholders may differ among languages. In
English, the message is “Pierre has 42 messages”, but in French, it is “Il y a
42 messages pour Pierre”. The placeholder {6} is the first argument after the
template in the call to format, {1} is the next argument, and so on.

You can format numbers as currency amounts by adding a suffix number, currency
to the placeholder, like this:

template="Your current total is {0,number,currency}."
In the United States, a value of 1023.95 is be formatted as $1,023.95. The

same value is displayed as 1.023,95€ in Germany, using the local currency
symbol and decimal separator convention.

The number indicator can be followed by currency, integer, percent, or a number
format pattern of the DecimalFormat class, such as $,#0.

You can format values of the legacy java.util.bate class with an indicator date
or time, followed by the format short, medium, long, or full, or a format pattern
of the SimpleDateFormat such as yyyy-MM-dd.


http://www.unicode.org/unicode/reports/tr15/tr15-23.html

Chapter 13 m Internationalization

Note that you need to convert java.time values; for example,

String message = MessageFormat("It is now {0,time,short}.", Date.from(Instant.now()));
Finally, a choice formatter lets you generate messages such as

No files copied
1 file copied
42 files copied

depending on the placeholder value.

A choice format is a sequence of pairs, each containing a lower limit and a
format string. The limit and format string are separated by a # character, and
the pairs are separated by | characters.

String template = "{0,choice,0#tNo files|1#1 file|2#{0} files} copied";
Note that {6} occurs twice in the template. When the message format applies
the choice format to the {0} placeholder and the value is 42, the choice format

returns "{0} files". That string is then formatted again, and the result is spliced
into the message.

NOTE: The design of the choice format is a bit muddleheaded. If you
have three format strings, you need two limits to separate them. (In
general, you need one fewer limit than you have format strings.) The
MessageFormat class actually ignores the first limit!

Use the < symbol instead of # to denote that a choice should be selected if
the lower bound is strictly less than the value. You can also use the < symbol
(U+2264) as a synonym for #, and specify a lower bound of -» (a minus sign
followed by U+221E) for the first value. This makes the format string easier
to read:

-ocNo files|0<1 file|2<{0} files

CAUTION: Any text in single quotes ' ... " is included literally. For
example, '{0}' is not a placeholder but the literal string {0}. If the
template has single quotes, you must double them.

String template = "<a href=""'{0}"''>{1}</a>";

The static MessageFormat.format method uses the current format locale to format
the values. To format with an arbitrary locale, you have to work a bit harder
because there is no “varargs” method that you can use. You need to place
the values to be formatted into an Object[] array, like this:



13.7 m Resource Bundles m

MessageFormat mf = new MessageFormat(template, locale);
String message = mf.format(new Object[] { argl, arg2, ... });

13.7 Resource Bundles

When localizing an application, it is best to separate the program from the
message strings, button labels, and other texts that need to be translated. In
Java, you can place them into resource bundles. Then, you can give these
bundles to a translator who can edit them without having to touch the source
code of the program.

NOTE: Chapter 4 describes a concept of JAR file resources, whereby
data files, sounds, and images can be placed in a JAR file. The
getResource method of the class Class finds the file, opens it, and returns
a URL to the resource. That is a useful mechanism for bundling files
with a program, but it has no locale support.

13.7.1 Organizing Resource Bundles

When localizing an application, you produce a set of resource bundles. Each
bundle is either a property file or a special class, with entries for a particular
locale or set of matching locales.

In this section, I only discuss property files since they are much more common
than resource classes. A property file is a text file with extension .properties
that contains key/value pairs. For example, a file messages_de_DE.properties might
contain

computeButton=Rechnen

cancelButton=Abbrechen

defaultPaperSize=A4
You need to use a specific naming convention for the files that make up
these bundles. For example, resources specific to Germany go into a file
bundleName_de_DE, whereas those shared by all German-speaking countries go
into bundleName_de. For a given combination of language, script, and country,
the following candidates are considered:

bundleName_language_script_country

bundleName_language_script

bundleName_language_country
bundleName_language



Chapter 13 m Internationalization

If bundleName contains periods, then the file must be placed in a matching
subdirectory. For example, files for the bundle com.mycompany.messages are
com/mycompany/messages_de_DE.properties, and so on.

To load a bundle, call

ResourceBundle res = ResourceBundle.getBundle(bundleName);

for the default locale, or

ResourceBundle bundle = ResourceBundle.getBundle(bundleName, locale);

for the given locale.

CAUTION: The first getBundle method does not use the default display
locale, but the overall default locale. If you look up a resource for the
user interface, be sure to pass Locale.getDefault(Locale.Category.DISPLAY)
as the locale.

To look up a string, call the getString method with the key.
String computeButtonLabel = bundle.getString("computeButton");

The rules for loading bundle files are a bit complex and involve two phases.
In the first phase, a matching bundle is located. This involves up to three
steps.

1. First, all candidate combinations of bundle name, language, script,
country, and variant are attempted, in the order given above, until a
match is found. For example, if the target locale is de-DE and there is no
messages_de_DE.properties but there is messages_de.properties, that becomes the
matching bundle.

2. If there is no match, the process is repeated with the default locale. For
example, if a German bundle is requested but there is none, and the
default locale is en-Us, then messages_en_US.properties is accepted as a match.

3. If there is no match with the default locale either, then the bundle with
no suffixes (for example, messages.properties) is a match. If that is not present
either, the search fails.

NOTE: There are special rules for variants, Chinese simplified and
traditional scripts, and Norwegian languages. See the Javadoc for
ResourceBundle.Control for details.

In the second phase, the parents of the matching bundle are located. The
parents are those in the candidate list below the matching bundle, and



13.7 m Resource Bundles

the bundle without suffixes. For example, the parents of messages_de_DE.properties
are messages_de.properties and messages.properties.

The getstring method looks for keys in the matching bundle and its parents.

D NOTE: If the matching bundle was found in the first phase, then its
parents are never taken from the default locale.

D NOTE: In the past, property files were limited to using the ASCII
character set. All non-ASCII characters had to be encoded using the
\uxxxx encoding, like this:

prefs=Pr\u0E9fer\udOEInces

Nowadays, property files are assumed to be in UTF-8, and you can
simply write the localized string in the file:

prefs=Préférences

13.7.2 Bundle Classes

To provide resources that are not strings, define classes that extend the
ResourceBundle class. Use a naming convention similar to that of property
resources, for example

com.mycompany .MyAppResources_en_US
com.mycompany .MyAppResources_de
com.mycompany .MyAppResources

To implement a resource bundle class, you can extend the ListResourceBundle
class. Place all your resources into an array of key/value pairs and return it
in the getContents method. For example,

package com.mycompany;
public class MyAppResources_de extends ListResourceBundle {
public Object[][] getContents() {
return new Object[][] {
{ "backgroundColor", Color.BLACK },
{ "defaultPaperSize", new double[] { 210, 297 } }
H

}

To get objects out of such a resource bundle, call the getobject method:

ResourceBundle bundle

= ResourceBundle.getBundle("com.mycompany.MyAppResources", locale);
Color backgroundColor = (Color) bundle.getObject("backgroundColor");
double[] paperSize = (double[]) bundle.getObject("defaultPaperSize");

437



m Chapter 13 m Internationalization

CAUTION: The ResourceBundle.getBundle method gives preference to classes
over property files when it finds both a class and a property file with
the same bundle name.

13.8 Character Encodings

The fact that Java uses Unicode doesn’t mean that all your problems with
character encodings have gone away. Fortunately, you don't have to worry
about the encoding of string objects. Any string you receive, be it a command-
line argument, console input, or input from a GUI text field, will be a UTF-16
encoded string that contains the text provided by the user.

When you display a string, the virtual machine encodes it for the local plat-
form. There are two potential problems. It could happen that a display font
does not have a glyph for a particular Unicode character. In a Java GUI, such
characters are displayed as hollow boxes. For console output, if the console
uses a character encoding that cannot represent all output characters, missing
characters are displayed as ?. Users can correct these issues by installing
appropriate fonts or by switching the console to UTF-8.

The situation gets more complex when your program reads plain text files
produced by users. Simple-minded text editors often produce files in the local
platform encoding. You can obtain that encoding by calling

Charset platformEncoding = Charset.defaultCharset();

This is a reasonable guess for the user’s preferred character encoding, but
you should allow your users to override it.

If you want to offer a choice of character encodings, you can obtain localized
names as

String displayName = encoding.displayName(locale);
// Yields names such as UTF-8, I1S0-8859-6, or GB18030

Unfortunately, these names aren't really suitable for end users who would
want to have choices between Unicode, Arabic, Chinese Simplified, and so on.

TIP: Java source files are also text files. Assuming you are not the only
programmer on a project, don’t store source files in the platform encoding.
You could represent any non-ASCII characters in code or comments with
\uxxxx escapes, but that is tedious. Instead, set your text editor to use
UTF-8. Either set your console preference to UTF-8, or compile with

javac -encoding UTF-8 *.java




13.9 m Preferences

13.9 Preferences

I close this chapter with an API that is tangentially related to internationaliza-
tion—the storage of user preferences (which might include the preferred
locale).

Of course, you can store preferences in a property file that you load on pro-
gram startup. However, there is no standard convention for naming and
placing configuration files, which increases the likelihood of conflicts as users
install multiple Java applications.

Some operating systems have a central repository for configuration information.
The best-known example is the registry in Microsoft Windows. The Preferences
class, which is the standard mechanism in Java for storing user preferences,
uses the registry on Windows. On Linux, the information is stored in the local
file system instead. The specific repository implementation is transparent to
the programmer using the Preferences class.

The Preferences repository holds a tree of nodes. Each node in the repository
has a table of key/value pairs. Values can be numbers, boolean values, strings,
or byte arrays.

NOTE: No provision is made for storing arbitrary objects. You are, of
course, free to store a serialized object as a byte array if you aren’t
worried about using serialization for long-term storage.

Paths to nodes look like /com/mycompany/myapp. As with package names, you can
avoid name clashes by starting the paths with reversed domain names.

There are two parallel trees. Each program user has one tree. An additional
tree, called the system tree, is available for settings that are common to all
users. The Preferences class uses the operating system notion of the “current
user” for accessing the appropriate user tree. To access a node in the tree,
start with the user or system root:

Preferences root = Preferences.userRoot();
or
Preferences root = Preferences.systemRoot();
Then access nodes through their path names:

Preferences node = root.node("/com/mycompany/myapp");



Chapter 13 m Internationalization

Alternatively, provide a Class object to the static userNodeForPackage or
systemNodeForPackage method, and the node path is derived from the package
name of the class.

Preferences node = Preferences.userNodeForPackage(obj.getClass());
Once you have a node, you can access the key/value table. Retrieve a
string with

String preferredLocale = node.get("locale", "");
For other types, use one of these methods:

String get(String key, String defval)

int getInt(String key, int defval)

long getlong(String key, long defval)

float getFloat(String key, float defval)
double getDouble(String key, double defval)
boolean getBoolean(String key, boolean defval)
byte[] getByteArray(String key, byte[] defval)

You must specify a default value when reading the information, in case the
repository data is not available.

Conversely, you can write data to the repository with put methods such as

void put(String key, String value)
void putInt(String key, int value)

and so on.
To remove an entry from a node, call
void remove(String key)
Call node.removeNode() to remove the entire node and its children.

You can enumerate all keys stored in a node, and all child paths of a node,
with the methods

String[] keys()
String[] childrenNames()

NOTE: There is no way to find out the type of the value of a
particular key.

You can export the preferences of a subtree by calling the method

void exportSubtree(OutputStream out)

on the root node of the subtree.



Exercises

The data is saved in XML format. You can import it into another repository
by calling

InputStream in = Files.newInputStream(path);
Preferences.importPreferences(in);

Exercises

1. Write a program that demonstrates the date and time formatting styles
in France, China, and Thailand (with Thai digits).

2. Which of the locales in your JVM don't use Western digits for formatting
numbers?

3. Which of the locales in your JVM use the same date convention
(month/day/year) as the United States?

4. Write a program that prints the names of all languages of locales in your
JVM in all available languages. Collate them and suppress duplicates.

Repeat the preceding exercise for currency names.

Write a program that lists all currencies that have different symbols in at
least two locales.

7. Write a program that lists the display and standalone month names in
all locales in which they differ, excepting those where the standalone
names consist of digits.

8. Write a program that lists all Unicode characters that are expanded to
two or more ASCII characters in normalization form KC or KD.

9. Take one of your programs and internationalize all messages, using
resource bundles in at least two languages.

10. Provide a mechanism for showing available character encodings with a
human-readable description, like in your web browser. The language
names should be localized. (Use the translations for locale languages.)

11. Provide a class for locale-dependent display of paper sizes, using the
preferred dimensional unit and default paper size in the given locale.
(Everyone on the planet, with the exception of the United States and
Canada, uses ISO 216 paper sizes. Only three countries in the world have
not yet officially adopted the metric system: Liberia, Myanmar (Burma),
and the United States.)



Compiling and
Scripting

Topics in This Chapter

= 141
= 142
= 143
= 144

The Compiler APl — page 444

The Scripting APl — page 448

The Nashorn Scripting Engine — page 452
Shell Scripting with Nashorn — page 461

= Exercises — page 464



Chapter B 4

In this chapter, you will learn how to use the compiler API to compile Java
code from inside of your application. You will also see how to run programs
written in other languages from your Java programs, using the scripting APL
This is particularly useful if you want to give your users the ability to enhance
your program with scripts.

The key points of this chapter are:

1.

With the compiler API, you can generate Java code on the fly and
compile it.

The scripting API lets Java program interoperate with a number of
scripting languages.

The JDK includes Nashorn, a JavaScript interpreter with good performance
and fidelity to the JavaScript standard.

Nashorn offers a convenient syntax for working with Java lists and maps,
as well as JavaBeans properties.

Nashorn supports lambda expressions and a limited mechanism for
extending Java classes and implementing Java interfaces.

Nashorn has support for writing shell scripts in JavaScript.

443



Chapter 14 m Compiling and Scripting

14.1 The Compiler API

There are quite a few tools that need to compile Java code. Obviously, devel-
opment environments and programs that teach Java programming are among
them, as well as testing and build automation tools. Another example is the
processing of JavaServer Pages—web pages with embedded Java statements.

14.1.1 Invoking the Compiler

It is very easy to invoke the compiler. Here is a sample call:

JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

OutputStream outStream = ...;

OutputStream errStream = ...;

int result = compiler.run(null, outStream, errStream,
"-sourcepath", "src", "Test.java");

A result value of 0 indicates successful compilation.

The compiler sends output and error messages to the provided streams. You
can set these parameters to null, in which case System.out and System.err are
used. The first parameter of the run method is an input stream. As the com-
piler takes no console input, you can always leave it as null. (The run method
is inherited from a generic Tool interface, which allows for tools that read
input.)

The remaining parameters of the run method are the arguments that you
would pass to javac if you invoked it on the command line. These can be
options or file names.

14.1.2 Launching a Compilation Task

You can have more control over the compilation process with a CompilationTask
object. This can be useful if you want to supply source from string, capture
class files in memory, or process the error and warning messages.

To obtain a CompilationTask, start with a compiler object as in the preceding
section. Then call

JavaCompiler.CompilationTask task = compiler.getTask(
errorWriter, // Uses System.err if null
fileManager, // Uses the standard file manager if null
diagnostics, // Uses System.err if null
options, // null if no options
classes, // For annotation processing; null if none
sources);



14.1 m The Compiler API

The last three arguments are Iterable instances. For example, a sequence of
options might be specified as

Iterable<String> options = List.of("-d", "bin");

The sources parameter is an Iterable of JavaFileObject instances. If you want to
compile disk files, get a StandardlavaFileManager and call its getJavaFileObjects
method:

StandardJavaFileManager fileManager

= compiler.getStandardFileManager(null, null, null);
Iterable<JavaFileObject> sources

= fileManager.getJavaFileObjectsFromFiles("Filel.java", "File2.java");
JavaCompiler.CompilationTask task

= compiler.getTask(null, null, null, options, null, sources);

D NOTE: The classes parameter is only used for annotation processing. In

that case, you also need to call task.processors(annotationProcessors) with
a list of Processor objects. See Chapter 11 for an example of annotation
processing.

The getTask method returns the task object but does not yet start the compila-
tion process. The CompilationTask class extends Callable<Boolean>. You can pass
it to an ExecutorService for concurrent execution, or you can just make a
synchronous call:

Boolean success = task.call();

14.1.3 Reading Source Files from Memory

If you generate source code on the fly, you can have it compiled from mem-
ory, without having to save files to disk. Use this class to hold the code:

public class StringSource extends SimpleJavaFileObject {
private String code;

StringSource(String name, String code) {
super(URI.create("string:///" + name.replace('.','/") + ".java"), Kind.SOURCE);
this.code = code;

}

public CharSequence getCharContent(boolean ignoreEncodingErrors) {
return code;
}

}

Then generate the code for your classes and give the compiler a list of
StringSource objects.



Chapter 14 m Compiling and Scripting

String pointCode = ...;
String rectangleCode = ...;
List<StringSource> sources = List.of(
new StringSource("Point", pointCode),
new StringSource("Rectangle", rectangleCode));
task = compiler.getTask(null, null, null, null, null, sources);

14.1.4 Writing Byte Codes to Memory

If you compile classes on the fly, there is no need to save the class files to
disk. You can save them to memory and load them right away.

First, here is a class for holding the bytes:

public class ByteArrayClass extends SimpleJavaFileObject {
private ByteArrayOutputStream out;

ByteArrayClass(String name) {
super(URI.create("bytes:///" + name.replace('.','/") + ".class"), Kind.CLASS);
}

public byte[] getCode() {
return out.toByteArray();
}

public OutputStream openQutputStream() throws IOException {
out = new ByteArrayOutputStream();
return out;

}
Next, you need to configure the file manager to use these classes for output:

List<ByteArrayClass> classes = new ArraylList<>();
StandardJavaFileManager stdFileManager
= compiler.getStandardFileManager(null, null, null);
JavaFileManager fileManager
= new ForwardingJavaFileManager<JavaFileManager>(stdFileManager) {
public JavaFileObject getJavaFileForOutput(Location location,
String className, Kind kind, FileObject sibling)
throws IOException {
if (kind == Kind.CLASS) {
ByteArrayClass outfile = new ByteArrayClass(className);
classes.add(outfile);
return outfile;
} else
return super.getJavaFileForOutput(
location, className, kind, sibling);



14.1 m The Compiler API

To load the classes, you need a class loader (see Chapter 4):

public class ByteArrayClassLoader extends ClassLoader {
private Iterable<ByteArrayClass> classes;

public ByteArrayClassLoader(Iterable<ByteArrayClass> classes) {
this.classes = classes;
}

@0verride public Class<?> findClass(String name) throws ClassNotFoundException {
for (ByteArrayClass cl : classes) {
if (cl.getName().equals("/" + name.replace('.','/') + ".class")) {
byte[] bytes = cl.getCode();
return defineClass(name, bytes, 0, bytes.length);
}
}

throw new ClassNotFoundException(name);

}

After compilation has finished, call the Class.forName method with that class
loader:

ByteArrayClassLoader loader = new ByteArrayClassLoader(classes);
Class<?> cl = Class.forName("Rectangle", true, loader);

14.1.5 Capturing Diagnostics

To listen to error messages, install a DiagnosticListener. The listener receives a
Diagnostic object whenever the compiler reports a warning or error message.
The DiagnosticCollector class implements this interface. It simply collects all
diagnostics so that you can iterate through them after the compilation is
complete.
DiagnosticCollector<JavaFileObject> collector = new DiagnosticCollector<>();
compiler.getTask(null, fileManager, collector, null, null, sources).call();

for (Diagnostic<? extends JavaFileObject> d : collector.getDiagnostics()) {
System.out.println(d);
}

A Diagnostic object contains information about the problem location (including
file name, line number, and column number) as well as a human-readable
description.

You can also install a DiagnosticListener to the standard file manager, in case
you want to trap messages about missing files:

StandardJavaFileManager fileManager
= compiler.getStandardFileManager(diagnostics, null, null);

447



Chapter 14 m Compiling and Scripting

14.2 The Scripting API

A scripting language is a language that avoids the usual edit/compile/link/run
cycle by interpreting the program text at runtime. This encourages experimen-
tation. Also, scripting languages tend to be less complex, which makes them
suitable as extension languages for expert users of your programs.

The scripting API lets you combine the advantages of scripting and traditional
languages. It enables you to invoke scripts written in JavaScript, Groovy, Ruby,
and even exotic languages such as Scheme and Haskell, from a Java program.
In the following sections, you will see how to select an engine for a particular
language, how to execute scripts, and how to take advantage of advanced
features that some scripting engines offer.

14.2.1 Getting a Scripting Engine

A scripting engine is a library that can execute scripts in a particular language.
When the virtual machine starts, it discovers the available scripting
engines. To enumerate them, construct a ScriptEngineManager and invoke the
getEngineFactories method.
Usually, you know which engine you need, and you can simply request it by
name. For example:

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("nashorn");

The Java Development Kit contains a JavaScript engine called “Nashorn” de-
scribed in Section 14.3, “The Nashorn Scripting Engine” (page 452). You can
add more languages by providing the necessary JAR files on the class path.
There is no longer an official list of languages with Java scripting integration.
Just use your favorite search engine to find “JSR 223 support” for your favorite
language.

Once you have an engine, you can call a script simply by invoking
Object result = engine.eval(scriptString);

You can also read a script from a Reader:
Object result = engine.eval(Files.newBufferedReader(path, charset));

You can invoke multiple scripts on the same engine. If one script defines
variables, functions, or classes, most scripting engines retain the definitions
for later use. For example,



14.2 ® The Scripting API

engine.eval("n = 1728");
Object result = engine.eval("n + 1");

will return 1729.

D NOTE: To find out whether it is safe to concurrently execute scripts in
multiple threads, call engine.getFactory().getParameter("THREADING"). The
returned value is one of the following:

e null: Concurrent execution is not safe.

e "MULTITHREADED": Concurrent execution is safe. Effects from one thread
might be visible from another thread.

e "THREAD-ISOLATED": In addition, different variable bindings are maintained
for each thread.

e 'STATELESS": In addition, scripts do not alter variable bindings.

14.2.2 Bindings

A binding consists of a name and an associated Java object. For example,
consider these statements:

engine.put("k", 1728);
Object result = engine.eval("k + 1");

Conversely, you can retrieve variables that were bound by scripting statements:

engine.eval("n = 1728");
Object result = engine.get("n");

These bindings live in the engine scope. In addition, there is a global scope.
Any bindings that you add to the ScriptEngineManager are visible to all engines.

Instead of adding bindings to the engine or global scope, you can collect
them in an object of type Bindings and pass it to the eval method:

Bindings scope = engine.createBindings();
scope.put("k", 1728);
Object result = engine.eval("k + 1", scope);

This is useful if a set of bindings should not persist for future calls to the eval
method.

14.2.3 Redirecting Input and Output

You can redirect the standard input and output of a script by calling the
setReader and setWriter methods of the script context. For example,



Chapter 14 m Compiling and Scripting

StringWriter writer = new StringWriter();
engine.getContext().setWriter(writer);
engine.eval("print('Hello")");

String result = writer.toString();

Any output written with the JavaScript print function is sent to writer.

The setReader and setiriter methods only affect the scripting engine’s standard
input and output sources. For example, if you execute the JavaScript code

print('Hello');
java.lang.System.out.println('World");

only the first output is redirected.

EI NOTE: The Nashorn engine does not have the notion of a standard
input source. Calling setReader has no effect.

D NOTE: In JavaScript, semicolons at the end of a line are optional. Many

JavaScript programmers put them in anyway, but in this chapter, | omit
them so you can more easily distinguish between Java and JavaScript
code snippets.

For the same reason, | use '...', not "...", for JavaScript strings
whenever possible.

14.2.4 Calling Scripting Functions and Methods

With some scripting engines, you can invoke a function in the scripting lan-
guage without evaluating the code for the invocation as a script. This is useful
if you allow users to implement a service in a scripting language of their
choice, so that you can call it from Java.

The scripting engines that offer this functionality (among them Nashorn) im-
plement the Invocable interface. To call a function, call the invokeFunction method
with the function name, followed by the arguments:

// Define greet function in JavaScript
engine.eval("function greet(how, whom) { return how + ', ' + whom + "!' }");

// Call the function with arguments "Hello", "World"
result = ((Invocable) engine).invokeFunction(
"greet", "Hello", "World");

If the scripting language is object-oriented, call invokeMethod:



14.2 ® The Scripting API n

// Define Greeter class in JavaScript
engine.eval("function Greeter(how) { this.how = how }");
engine.eval("Greeter.prototype.welcome = "

+ " function(whom) { return this.how + ', ' + whom + '!' }")
// Construct an instance
Object yo = engine.eval("new Greeter('Yo')");

// Call the welcome method on the instance
result = ((Invocable) engine).invokeMethod(yo, "welcome", "World");

D NOTE: For more information on how to define classes in JavaScript,
see JavaScript—The Good Parts by Douglas Crockford (O’Reilly, 2008).

D NOTE: If the script engine does not implement the Invocable interface,
you might still be able to call a method in a language-independent way.
The getMethodCallSyntax method of the ScriptEngineFactory class produces

a string that you can pass to the eval method.

You can go a step further and ask the scripting engine to implement a Java
interface. Then you can call scripting functions and methods with the
Java method call syntax.

The details depend on the scripting engine, but typically you need to supply
a function for each method of the interface. For example, consider a Java
interface

public interface Greeter {
String welcome(String whom);
}

If you define a global function with the same name in Nashorn, you can call
it through this interface.

// Define welcome function in JavaScript

engine.eval("function welcome(whom) { return 'Hello, ' + whom + "!' }");

// Get a Java object and call a Java method

Greeter g = ((Invocable) engine).getInterface(Greeter.class);
result = g.welcome("World");

In an object-oriented scripting language, you can access a script class through
a matching Java interface. For example, here is how to call an object of the
JavaScript Greeter class with Java syntax:

Greeter g = ((Invocable) engine).getInterface(yo, Greeter.class);
result = g.welcome("World");

See Exercise 2 for a more useful example.



Chapter 14 m Compiling and Scripting

14.2.5 Compiling a Script

Some scripting engines can compile scripting code into an intermediate form
for efficient execution. Those engines implement the Compilable interface. The
following example shows how to compile and evaluate code contained in a
script file:
if (engine implements Compilable) {
Reader reader = Files.newBufferedReader(path, charset);

CompiledScript script = ((Compilable) engine).compile(reader);
script.eval();

Of course, it only makes sense to compile a script if it does a lot of work or
if you need to execute it frequently.

14.3 The Nashorn Scripting Engine

The Java Development Kit ships with a JavaScript engine called Nashorn,
which is very fast and highly compliant with version 5.1 of the ECMAScript
standard for JavaScript. (An ECMAScript 6.0 implementation is in progress.)
You can use Nashorn like any other script engine, but it also has special
features for interoperating with Java.

NOTE: Nashorn is the German word for rhinoceros—literally, nose-horn,
an allusion to a well-regarded JavaScript book that has a rhino on the
cover. (You get extra karma for pronouncing it nas-horn, not na-shorn.)

14.3.1 Running Nashorn from the Command Line

The Java Development Kit ships with a command-line tool called jjs that is
similar to the jshell tool, except that it is a shell for JavaScript. Simply launch
it and issue JavaScript commands.

$ Jis

jjs> 'Hello, World'

Hello, World
The JavaScript shell provides a “read-eval-print” loop, or REPL. Whenever
you enter an expression, its value is printed.

jjs> 'Hello, World!'.length
13

You can define functions and call them:



14.3 m The Nashorn Scripting Engine m

jjs> function factorial(n) { return n <= 1?2 1 : n % factorial(n - 1) }
function factorial(n) { return n <=1 ? 1 : n * factorial(n - 1) }

jjs> factorial(10)

3628800

a TIP: When writing more complex functions, it is a good idea to put the
JavaScript code into a file and load it into jjs with the load command:

load('functions.js"')

You can call Java methods:

var url = new java.net.URL('http://horstmann.com')
var input = new java.util.Scanner(url.openStream())
input.useDelimiter('$")

var contents = input.next()

Now, when you type contents, you see the contents of the web page.

Look how refreshing this is. You didn't have to worry about exceptions. You
can make experiments dynamically. I wasn’t quite sure whether I could read
the entire contents by setting the delimiter to §, but I tried it out and it
worked. And I didn't have to write public static void main. I didn’'t have to
compile a thing. I didn't have to make a project in my IDE. The REPL is an
easy way to explore an API. It is a bit odd that one drives Java from JavaScript,
but it is also convenient. Note how I didn't have to define the types for the
input and contents variables.

TIP: The JavaScript REPL would be even more refreshing if it supported
command-line editing. On Linux/Unix/Mac OS, you can install rlwrap
and run rlurap jjs. Then you can press the T key to get the previous
commands, and you can edit them. Alternatively, you can run jjs inside
Emacs. Don’t worry—this won’t hurt a bit. Start Emacs and hit M-x (that
is, Alt+x or Esc x) shell Enter, then type jjs. Type expressions as usual.
Use M-p and M-n to recall the previous or next line, and the left and
right arrow keys to move within a line. Edit a command, then press
Enter to see it executed.

14.3.2 Invoking Getters, Setters, and Overloaded Methods

When you have Java objects in a Nashorn program, you can invoke methods
on them. For example, suppose you get an instance of the Java class
NumberFormat:

var fmt = java.text.NumberFormat.getPercentInstance()


http://java.net
http://horstmann.com'

Chapter 14 m Compiling and Scripting

Of course, you can call a method on it:

fmt.setMinimumFractionDigits(2)
But in the case of a property getter or setter, you can do better than that,
using the property access syntax:

fmt.minimumFractionDigits = 2
If the expression fmt.minimumFractionDigits occurs to the left of the = operator, it
is translated to an invocation of the setMinimumFractiondigits method. Otherwise
it turns into a call fmt.getMinimumFractionDigits().
You can even use the JavaScript bracket notation to access properties:

fmt[ 'minimumFractionDigits'] = 2
Note that the argument of the [] operator is a string. In this context, it's not

useful, but you can call fnt[str] with a string variable and thereby access
arbitrary properties.

JavaScript has no concept of method overloading. There can be only one
method with a given name, and it can have any number of parameters of
any type. Nashorn attempts to pick the correct Java method by looking at
the number and types of the parameters.

In almost all cases, there is only one Java method that matches the supplied
parameters. If there is not, you can manually pick the correct method with
the following rather strange syntax:

list['remove(Object)'1(1)
Here, we specify the remove(Object) method that removes the Integer object 1

from the list. (There is also a remove(int) method that removes the object at
position 1.)

14.3.3 Constructing Java Objects

When you want to construct objects in JavaScript (as opposed to having them
handed to you from the scripting engine), you need to know how to access
Java packages. There are two mechanisms.

There are global objects java, javax, javafx, com, org, and edu that yield package
and class objects via the dot notation. For example,

var javaNetPackage = java.net // A JavaPackage object
var URL = java.net.URL // A JavaClass object

If you need to access a package that does not start with one of the above
identifiers, you can find it in the Package object, such as Package.ch.cern.

Alternatively, call the Java.type function:


http://java.net
http://java.net
http://Package.ch.cern

14.3 m The Nashorn Scripting Engine

var URL = Java.type('java.net.URL")

This is a bit faster than java.net.URL, and you get better error checking. (If you
make a spelling error such as java.net.Url, Nashorn will think it is a package.)
But if you want speed and good error handling, you probably shouldn't
be using a scripting language in the first place, so I will stick with the
shorter form.

NOTE: The Nashorn documentation suggests that class objects should
be defined at the top of a script file, just like you place imports at the
top of a Java file:

var URL = Java.type('java.net.URL")

var JMath = Java.type('java.lang.Math')
// Avoids conflict with JavaScript Math object

Once you have a class object, you can call static methods:

IMath.floorMod(-3, 10)
To construct an object, pass the class object to the JavaScript new operator.
Pass any constructor parameters in the usual way:

var URL

= java.net.URL
var url = n

ew URL('http://horstmann.com')

If you aren't concerned about efficiency, you can also call

var url = new java.net.URL('http://horstmann.com')

CAUTION: If you use Java.type with new, you need an extra set of
parentheses:

var url = new (Java.type('java.net.URL'))("http://horstmann.com')

If you need to specify an inner class, you can do so with the dot notation:
var entry = new java.util.AbstractMap.SimpleEntry('hello', 42)

Alternatively, if you use Java.type, add a $ like the JVM does:
var Entry = Java.type('java.util.AbstractMap$SimpleEntry')

14.3.4 Strings in JavaScript and Java

Strings in Nashorn are, of course, JavaScript objects. For example, consider
the call

'Hello'.slice(-2) // Yields 'lo’


http://'java.net
http://java.net
http://java.net
http://'java.net
http://java.net
http://horstmann.com'
http://java.net
http://horstmann.com'
http://'java.net
http://horstmann.com'

Chapter 14 m Compiling and Scripting

Here, we call the JavaScript method slice. There is no such method in Java.
But the call
"Hello'.compareTo( 'World')

also works, even though in JavaScript there is no compareTo method. (You just
use the < operator.)

In this case, the JavaScript string is converted to a Java string. In general, a
JavaScript string is converted to a Java string whenever it is passed to a Java
method.

Also note that any JavaScript object is converted to a string when it is passed
to a Java method with a String parameter. Consider

var path = java.nio.file.Paths.get(/home/)
// A JavaScript Regkxp is converted to a Java String!

Here, /home/ is a regular expression. The Paths.get method wants a String, and
it gets one, even though it makes no sense in this situation. One shouldn't
blame Nashorn for this. It follows the general JavaScript behavior to turn
anything into a string when a string is expected. The same conversion happens
for numbers and Boolean values. For example, 'Hello'.slice('-2') is perfectly
valid. The string '-2' is silently converted to the number -2. It is features like
this one that make programming in a dynamically typed language such an
exciting adventure.

14.3.5 Numbers

JavaScript has no explicit support for integers. Its Number type is the same as
the Java double type. When a number is passed to Java code that expects an int
or long, any fractional part is silently removed. For example, 'Hello'.slice(-2.99)
is the same as 'Hello'.slice(-2).

For efficiency, Nashorn keeps computations as integers when possible, but
that difference is generally transparent. Here is one situation when it is not:

var price = 10

java.lang.String.format('Price: %.2f', price)

// Error: f format not valid for java.lang.Integer

The value of price happens to be an integer, and it is assigned to an Object
since the format method has an Object... varargs parameter. Therefore, Nashorn
produces a java.lang.Integer. That causes the format method to fail because the
f format is intended for floating-point numbers. In this case, you can force
conversion to java.lang.Double by calling the Number function:

java.lang.String.format('Unit price: %.2f', Number(price))



14.3 m The Nashorn Scripting Engine

14.3.6 Working with Arrays

To construct a Java array, first make a class object:

var intArray = Java.type('int[]")
var StringArray = Java.type('java.lang.String[]')

Then call the new operator and supply the length of the array:

var numbers = new intArray(10) // A primitive int[] array
var names = new StringArray(10) // An array of String references

Then use the bracket notation in the usual way:

numbers[0] = 42
print(numbers[0])

You get the length of the array as numbers.length. To iterate through all values
of the names array, use

for each (var elem in names)
Do something with elem

This is the equivalent of the enhanced for loop in Java. If you need the index
values, use the following loop instead:

for (var i in names)
Do something with i and names[i]

CAUTION: Even though this loop looks just like the enhanced for loop
in Java, it visits the index values. JavaScript arrays can be sparse.
Suppose you initialize a JavaScript array as

var names = []

names[0] = 'Fred'
names[2] = 'Barney'

Then the loop for (var i in names) print(i) prints 0 and 2.

Java and JavaScript arrays are quite different. When you supply a JavaScript
array where a Java array is expected, Nashorn will carry out the conversion.
But sometimes, you need to help it along. Given a JavaScript array, use the
Java.to method to obtain the equivalent Java array:

var javaNames = Java.to(names, StringArray) // An array of type String[]
Conversely, use Java.fron to turn a Java array into a JavaScript array:

Java. from(numbers)
42

var jsNumbers
jsNumbers[-1]

You need to use Java.to to resolve overload ambiguities. For example,
java.util.Arrays.toString([1, 2, 31)

457



Chapter 14 m Compiling and Scripting

is ambiguous since Nashorn can’t decide whether to convert to an int[] or
Object[] array. In that situation, call

java.util.Arrays.toString(Java.to([1, 2, 3], Java.type('int[]')))
or simply
java.util.Arrays.toString(Java.to([1, 2, 3], 'int[]"))

14.3.7 Lists and Maps

Nashorn provides “syntactic sugar” for Java lists and maps. You can use the
bracket operator with any Java List to invoke the get and set methods:
var names = java.util.List.of('Fred', 'Wilma', 'Barney')

var first = names[0]
names[0] = 'Duke’

The bracket operator also works for Java maps:

var scores = new java.util.HashMap
scores['Fred'] = 10 // Calls scores.put('Fred', 10)

To visit all elements in the map, you can use the JavaScript for each loop:

for (var key in scores) ...

for each (var value in scores) ...
If you want to process keys and values together, simply iterate over the
entry set:

for each (var e in scores.entrySet())
Process e.key and e.value

NOTE: The for each loop works for any Java class that implements the
Iterable interface.

14.3.8 Lambhdas

JavaScript has anonymous functions, such as

var square = function(x) { return x * x }

// The right-hand side is an anonymous function
var result = square(2)

// The () operator invokes the function

Syntactically, such an anonymous function is very similar to a Java lambda
expression. Instead of an arrow after the parameter list, you have the keyword
function.

You can use an anonymous function as a functional interface argument of a
Java method, just like you could use a lambda expression in Java. For example,



14.3 m The Nashorn Scripting Engine

java.util.Arrays.sort(words,
function(s, t) { return s.length - t.length })
// Sorts the array by increasing length

If you turn on ECMAScript 6 syntax by starting jjs with the --language=esé
option, you can use the “arrow function” syntax:

java.util.Arrays.sort(words, (s, t) => s.length - t.length);

This looks just like a Java lambda expression, except that JavaScript uses a
“fat arrow” => where Java uses the -> symbol.

14.3.9 Extending Java Classes and Implementing Java Interfaces

To extend a Java class, or to implement a Java interface, use the Java.extend
function. Supply the class object of the superclass or interface and a JavaScript
object with the methods that you want to override or implement.

For example, here is an iterator that produces an infinite sequence of random
numbers. We override two methods, next and hasNext. For each method, we
provide an implementation as an anonymous JavaScript function:

var RandomIterator = Java.extend(java.util.Iterator, {
next: function() Math.random(),
hasNext: function() true
}) // RandomIterator is a class object
var iter = new RandomIterator() // Use it to construct an instance

NOTE: When calling Java.extend, you can specify any number of
superinterfaces as well as a superclass. Place all class objects before
the object with the implemented methods.

Another Nashorn syntax extension lets you define anonymous subclasses of
interfaces or abstract classes. When new JavaClassObject is followed by a
JavaScript object, an object of the extended class is returned. For example,
var iter = new java.util.Iterator {
next: function() Math.random(),
hasNext: function() true

}

If the supertype is abstract and has only one abstract method, you don’t even
have to name the method. Instead, pass the function as if it were a constructor
parameter:

var task = new java.lang.Runnable(function() { print('Hello') })
// task is an object of an anonymous class implementing Runnable



m Chapter 14 m Compiling and Scripting

CAUTION: When extending a concrete class, you cannot use this
constructor syntax. For example,

new java.lang.Thread(function() { print('Hello') })

calls a Thread constructor, in this case the constructor Thread(Runnable).
The call to new returns an object of class Thread, not of a subclass of
Thread.

If you want instance variables in your subclass, add them to the JavaScript
object. For example, here is an iterator that produces ten random numbers:
var iter = new java.util.Iterator {
count: 10,
next: function() { this.count--; return Math.random() },
hasNext: function() this.count > 0

}

Note that the JavaScript methods next and hasNext refer to the instance variable
as this.count.

It is possible to invoke a superclass method when overriding a method,
but it is quite finicky. The call Java.super(obj) yields an object on which you
can invoke the superclass method of the class to which obj belongs, but
you must have that object available. Here is a way to achieve that:
var arr = new (Java.extend(java.util.ArrayList)) {
add: function(x) {
print('Adding ' + x);
return Java.super(arr).add(x)

}

When you call arr.add('Fred'), a message is printed before the value is added
to the array list. Note that the call Java.super(arr) requires the arr variable,
which is being set to the value returned by new. Calling Java.super(this) does
not work—that only gets the JavaScript object that defines the method, not
the Java proxy. The Java.super mechanism is only useful for defining individual
objects, not subclasses.

NOTE: Instead of calling Java.super(arr).add(x), you can also use the
syntax arr.super$add(x).




14.4 m Shell Scripting with Nashorn

14.3.10 Exceptions

When a Java method throws an exception, you can catch it in JavaScript in
the usual way:

try {
var first = list.get(0)

} catch (e) {
if (e instanceof java.lang.IndexOutOfBoundsException)
print('list is empty')
}
Note that there is only one catch clause, unlike in Java where you can catch
expressions by type. That, too, is in the spirit of dynamic languages where
all type inquiry happens at runtime.

14.4 Shell Scripting with Nashorn

If you need to automate a repetitive task on your computer, chances are that
you have put the commands in a shell script—a script that replays a set of
OS-level commands. I have a directory ~/bin filled with dozens of shell scripts:
to upload files to my website, my blog, my photo storage, and to my
publisher’s FTP site; to convert images to blog size; to bulk-email my students;
to back up my computer at two o’clock in the morning.

For me, these are bash scripts, but in the olden days when I used Windows
they were batch files. So what is wrong with that? The problem comes once
you have a need for branches and loops. For some reason, most implementors
of command shells are terrible at programming language design. The way
variables, branches, loops, and functions are implemented in bash is simply
awful, and the batch language in Windows is even worse. I have a few bash
scripts that started out modest but have over time accreted so much cruft
that they are unmanageable. This is a common problem.

Why not just write these scripts in Java? Java is quite verbose. If you call
external commands via Runtime.exec, you need to manage standard input/out-
put/error streams. The Nashorn designers want you to consider JavaScript as
an alternative. The syntax is comparatively lightweight, and Nashorn offers
some conveniences that are specifically geared towards shell programmers.



Chapter 14 m Compiling and Scripting

14.4.1 Executing Shell Commands

To use the scripting extensions in Nashorn, run

jjs -scripting
Now you can execute shell commands by including them in backquotes, for
example

s -al’
The standard output and standard error streams of the last command are
captured in $0UT and $ERR. The exit code of the command is in $EXIT. (By con-

vention, an exit code of zero means success, and nonzero codes describe error
conditions.)

You can also capture the standard output by assigning the result of the
backquoted command to a variable:

var output = “1s -al’
You can use the familiar < and > operators to redirect standard input and
output:

“sort < /etc/group”
“ls -al > /tmp/dir.txt’

Use the | operator to pipe the output of one command into the input of
another:

“Is -al | sort’
Use semicolons to separate commands:

“ed Jusr/bin ; 1s -al’

14.4.2 String Interpolation

In shell scripts, expressions inside ${...} are evaluated within doubly quoted
and backquoted strings. This is called “string interpolation.” For example,

var cmd = "javac -classpath ${classpath} ${mainclass}.java"
$EXEC(cmd)

or simply
“javac -classpath ${classpath} ${mainclass}.java"
injects the contents of the variables classpath and mainclass into the command.

You can use arbitrary expressions inside the ${...}:

var message = "The current time is ${java.time.Instant.now()}"
// Sets message to a string such as The current time is 2013-10-12T21:48:58.545Z



14.4 m Shell Scripting with Nashorn

As with the bash shell, string interpolation does not work inside singly
quoted strings.

var message = 'The current time is ${java.time.Instant.now()}'

// Sets message to The current time is ${java.time.Instant.now()}

Strings are also interpolated in “here documents”’—inline documents in a
script. These inline documents are useful when a command reads multiple
lines from standard input and the script author doesn’t want to put the input
in a separate file. As an example, here is how you can feed commands to
the GlassFish administration tool:

name="'myapp’

dir="/opt/apps/myapp’

$EXEC("asadmin", <<END)

start-domain

start-database

deploy ${name} ${dir}

exit

END
The <«END construct means: “Insert the string that starts on the next line and
is terminated by the line END.” (Instead of END, you can use any identifier that
doesn't appear inside the string.)

Note that the name and location of the application are interpolated.

String interpolation and here documents are only available in scripting mode.

14.4.3 Script Inputs

You can supply command-line arguments to a script. Since it is possible to
include multiple script files on the jjs command line, you need to separate
the script files and arguments with a --:

jjs scriptl.js script2.js -- argl arg2 arg3
In the script file, you receive the command-line arguments in the arguments
array:

var deployCommand = "deploy ${arguments[0]} ${arguments[1]}"
You can use $ARG instead of arguments. If you use that variable with string
interpolation, you need two dollar signs:

var deployCommand = "deploy ${$ARG[0]} ${$ARG[1]}"
In your script, you can obtain the shell's environment variables through the
$ENV object:

var javaHome = $ENV.JAVA_HOME



Chapter 14 m Compiling and Scripting

In scripting mode, you can prompt the user for input with the readLine function:
var username = readlLine('Username: ')

Finally, to exit a script, use the exit function. You can supply an optional
exit code.

if (username.length == 0) exit(1)
The first line of a script can be a “shebang,” the symbols #! followed by the
location of the script interpreter. For example,

#!/opt/java/bin/jjs
On Linux/Unix/Mac OS X, you can make the script file executable, add the
script directory to the PATH, and then simply run it as script.js.

When a script starts with a shebang, scripting mode is automatically activated.

CAUTION: When you use a shebang in a script with command-line
arguments, script users need to supply dashes before the arguments:

script.js -- argl arg2 arg3

Exercises

1. In the JavaServer Pages technology, a web page is a mixture of HTML

and Java, for example:

<ul>

<% for (int i = 10; i >= 0; i--) { %

<li><= 1 %></1i>

<%} %>

<p>Liftoffi</p>
Everything outside <%...%> and <%=...% is printed as is. Code inside is
evaluated. If the starting delimiter is <%=, the result is added to the printout.

Implement a program that reads such a page, turns it into a Java method,
executes it, and yields the resulting page.

2. From a Java program, call the JavaScript JS0N.parse method to turn a JSON-
formatted string into a JavaScript object, then turn it back into a string.

Do this (a) with eval, (b) with invokeMethod, (c) by a Java method call through
the interface

public interface JSON {
Object parse(String str);
String stringify(Object obj);
t



Exercises m

Is compiling worthwhile with Nashorn? Write a JavaScript program that
sorts an array the dumb way, trying all permutations until it is sorted.
Compare the running time of the compiled and interpreted version. Here
is a JavaScript function for computing the next permutation:
function nextPermutation(a) {
// Find the largest nonincreasing suffix starting at a[i]
var i = a.length - 1
while (1 > 0 6§ a[i - 1] >= a[i]) i--
if (1>0){
// Swap ali - 1] with the rightmost a[k] > a[i - 1]
// Note that a[i] > a[i - 1]
var k = a.length - 1
while (a[k] <= a[i - 1]) k--
swap(a, 1 - 1, k)
} // Otherwise, the suffix is the entire array

// Reverse the suffix
var j = a.length - 1
while (i < j) { swap(a, 1, j); i++; j-- }
}
Find a Scheme implementation that is compatible with the Java Scripting
API. Write a factorial function in Scheme and call it from Java.

Pick some part of the Java API that you want to explore—for example,
the ZonedDateTime class. Run some experiments in jjs: construct objects, call
methods, and observe the returned values. Did you find it easier than
writing test programs in Java?

Run jjs and, using the stream library, interactively work out a solution
for the following problem: Print all unique long words (> 12 characters)
from a file in sorted order. First read the words, then filter the long words,
and so on. How does this interactive approach compare to your usual
workflow?

Run jjs. Call
var b = new java.math.BigInteger('1234567890987654321")

Then display b (simply by typing b and Enter). What do you get?
What is the value of b.mod(java.math.BigInteger.TEN)? Why is b displayed so
strangely? How can you display the actual value of b?

At the end of Section 14.3.9, “Extending Java Classes and Implementing
Java Interfaces” (page 459), you saw how to extend ArrayList so that every
call to add is logged. But that only worked for a single object. Write a
JavaScript function that is a factory for such objects, so that you can
generate any number of logging array lists.



Chapter 14 m Compiling and Scripting

10.
11.

Write a script that makes a JAR file containing all class files in the sub-
directories of a given directory. Derive the JAR file name from the last
component of the directory name. Use the JAvA_HOME environment variable
to locate the jar executable.

Write a script that prints the values of all environment variables.

Write a script nextYear.js that obtains the age of the user and then prints
Next year, you will be ..., adding 1 to the input. The age can be specified
on the command line or in the AGE environment variable. If neither are
present, prompt the user.



This page intentionally left blank



The Java Platform

Module System

Topics in This Chapter

= 151
= 152
= 153
= 154
= 155
= 156
= 157
= 158
= 159
= 15.10
= 1511
= 1512
= 1513

The Module Concept — page 470

Naming Modules — page 472

The Modular “Hello, World!” Program — page 472

Requiring Modules — page 474

Exporting Packages — page 476

Modules and Reflective Access — page 479

Modular JARs — page 482

Automatic Modules and the Unnamed Module — page 484

Command-Line Flags for Migration — page 485
Transitive and Static Requirements — page 487
Qualified Exporting and Opening — page 489
Service Loading — page 490
Tools for Working with Modules — page 491

= Exercises — page 494



thapter B ES

An important characteristic of object-oriented programming is encapsulation.
A class declaration consists of a public interface and a private implementa-
tion. A class can evolve by changing the implementation without affecting
its users. A module system provides the same benefits for programming in
the large. A module can make classes and packages selectively available so
that its evolution can be controlled.

Several existing Java module systems rely on class loaders to isolate classes.
However, Java 9 introduces a new system, called the Java Platform Module
System, that is supported by the Java compiler and virtual machine. It was
designed to modularize the large code base of the Java platform. You can, if
you choose, use this system to modularize your own applications.

Whether or not you use Java platform modules in your own applications, you
may be impacted by the modularized Java platform. This chapter shows
you how to declare and use Java platform modules. You will also learn how
to migrate your applications to work with the modularized Java platform and
third-party modules.

The key points of this chapter are:

1. The Java Platform Module System was designed to modularize the Java
platform.

2. You can use the Java Platform Module System to modularize applications
and libraries.

469



470

Chapter 15 m The Java Platform Module System

A module is a collection of packages.
The properties of a module are defined in module-info.java.

A module declares on which other modules it depends.

S

A module provides encapsulation. Accessible packages must be explicitly
exported.

7. A module may allow reflective access to private features by opening a
package or the entire module.

The module system provides support for the Serviceloader facility.

A modular JAR is a JAR with a module-info.class file that is placed on the
module path.

10. By placing a regular JAR on the module path, it becomes an automatic
module that exports and opens all of its packages.

11. All packages on the class path form the unnamed module.

12. To migrate existing applications, you may need to override access
restrictions with command-line options.

13. The jdeps tool analyzes the dependencies of a given set of JAR files. The
jlink tool produces an application with minimal dependencies.

15.1 The Module Concept

In object-oriented programming, the fundamental building block is the class.
Classes provide encapsulation. Private features can only be accessed by code
that has explicit permission, namely the methods of the class. This makes it
possible to reason about access. If a private variable has changed, you can
produce a set of all possible culprits. If you need to modify the private
representation, you know which methods are affected.

In Java, packages provide the next larger organizational grouping. A package
is a collection of classes. Packages also provide a level of encapsulation. Any
feature with package access (neither public nor private) is accessible only
from methods in the same package.

However, in large systems, this level of access control is not enough. Any
public feature (that is, a feature that is accessible outside a package) is acces-
sible everywhere. Suppose you want to modify or drop a rarely used feature.
Once it is public, there is no way to reason about the impact of that change.

This is the situation that the Java platform designers faced. Over twenty years,
the JDK grows by leaps and bounds, but clearly some features are essentially



15.1 m The Module Concept

obsolete. Everyone’s favorite example is CORBA. When is the last time you
used it? Yet, the org.omg.corba package is shipped with every JDK. As it happens,
it would not be too difficult to put all of CORBA into a JAR file so that it
can be used by those few who still need it.

What about java.awt? It shouldn't be required in a server-side application,
right? Except that the class java.awt.DataFlavor is used in the implementation of
SOAP, an XML-based web services protocol.

The Java platform designers, faced with a giant hairball of code, decided that
they needed a structuring mechanism that provides more control. They looked
at existing module systems (such as OSGi) and found them unsuitable for
their problem. Instead, they designed a new system, called the Java Platform
Module System, that is now a part of the Java language and virtual machine.
That system has been used successfully to modularize the Java API, and you
can, if you so choose, use it with your own applications.

A Java platform module consists of:

* A collection of packages

* Optionally, resource files and other files such as native libraries
* A list of the accessible packages in the module

e A list of all modules on which this module depends

The Java platform enforces encapsulation and dependencies, both at compile
time and in the virtual machine.

Why should you consider using the Java Platform Module System for your
own programs instead of following the traditional approach of using JAR files
on the class path? There are two advantages.

1. Strong encapsulation: You can control which of your packages are acces-
sible, and you don’t have to worry about maintaining code that you didn't
intend for public consumption.

2. Reliable configuration: You avoid common class path problems such as
duplicate or missing classes.

There are some issues that the Java Platform Module System does not address,
such as versioning of modules. There is no support for specifying which ver-
sion of a module is required, or for using multiple versions of a module in
the same program. These can be desirable features, but you must use
mechanisms other than the Java Platform Module System if you need them.

471



472

Chapter 15 m The Java Platform Module System

15.2 Naming Modules

A module is a collection of packages. The package names in the module need
not be related. For example, the module java.sql contains packages java.sql,
javax.sql, and javax.transaction.xa. Also, as you can see from this example, it is
perfectly acceptable for the module name to be the same as a package name.

Just like a package name, a module name is made up of letters, digits, under-
scores, and periods. Also, just as with package names, there is no hierarchical
relationship between modules. If you had a module com.horstmann and another
module con.horstmann.corejava, they would be unrelated, as far as the module
system is concerned.

When creating a module for use by others, it is important that its name is
globally unique. It is expected that most module names will follow the “reverse
domain name” convention, just like package names.

The easiest approach is to name a module after the top-level package that
the module provides. For example, the SLF4] logging facade has a module
org.slf4j with packages org.s1f4j, org.s1f4j.spi, org.slf4j.event, and org.s1f4j.helpers.

This convention prevents package name conflicts in modules. Any given
package can only be placed in one module. If your module names are unique
and your package names start with the module name, then your package
names will also be unique.

You can use shorter module names for modules that are not meant to be
used by other programmers, such as a module containing an application
program. Just to show that it can be done, I will do the same in this chapter.
Modules with what could plausibly be library code will have names such as
com.horstmann.greet, and modules containing programs (with a class that has a
main method) will have catchy names such as ch15.sec03.

D NOTE: You only use module names in module declarations. In the

source files for your Java classes, you never refer to module names.
Instead, you use package names in the same way that they have always
been used.

15.3 The Modular “Hello, World!” Program

Let us put the traditional “Hello, World!” program into a module. First we
need to put the class into a package—the “unnamed package” cannot be
contained in a module. Here it is:



15.3 W The Modular “Hello, World!” Program

package com.horstmann.hello;

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello, Modular World!");
}

}

So far, nothing has changed. To make a module chi5.sec63 containing this
package, you need to add a module declaration. You place it in a file named
module-info.java, located in the base directory (that is, the same directory that
contains the com directory). By convention, the name of the base directory is
the same as the module name.
ch15.sec03/
L module-info.java
com/
L horstmann/

L hello/
L HelloWorld. java

The module-info.java file contains the module declaration:

module ch15.sec03 {

}
This module declaration is empty because the module has nothing to offer
to anyone, nor does it need anything.

Now you compile as usual:

javac ch15.sec03/module-info.java ch15.sec03/com/horstmann/hello/HelloWorld. java

The module-info.java file doesn’t look like a Java source file, and of course there
can't be a class with the name module-info, since class names cannot contain
hyphens. The module keyword, as well as keywords requires, exports, and so on,
that you will see in the following sections, are “restricted keywords” that have
a special meaning only in module declarations. The file is compiled into a
class file module-info.class that contains the module definition in binary form.

To run this program as a modular application, you specify the module path,
which is similar to the class path, but it contains modules. You also specify
the main class in the format modulename/classname:

java --module-path ch15.sec03 --module ch15.sec03/com.horstmann.hello.HelloWorld
Instead of --module-path and --module, you can use the single-letter options -p
and -m:

java -p chi15.sec03 -m ch15.sec03/com.horstmann.hello.HelloWorld

473



474 Chapter 15 m The Java Platform Module System

Either way, the "Hello, Modular World!" greeting will appear, demonstrating that
you have successfully modularized your first application.

NOTE: When you compile this module, you get two warnings:

warning: [module] module name component sec03 should avoid terminal digits
warning: [module] module name component chi15 should avoid terminal digits

These warnings are intended to discourage programmers from adding
version numbers to module names. You can ignore them, or suppress
them with an annotation:

@SuppressWarnings("module")

module ch15.sec03 {
}

In this one respect, the module declaration is just like a class declaration:
You can annotate it. (The annotation type must have target
ElementType.MODULE.)

15.4 Requiring Modules

Let us make a new module ch15.sec04 in which a program uses a JoptionPane to
show the “Hello, Modular World!” message:

package com.horstmann.hello;
import javax.swing.JOptionPane;

public class HelloWorld {
public static void main(String[] args) {
JOptionPane.showMessageDialog(null, "Hello, Modular World!");
}

}

Now compilation fails with this message:

error: package javax.swing is not visible
(package javax.swing is declared in module java.desktop,
but module chl5.sec04 does not read it)

The JDK has been modularized, and the javax.swing package is now contained
in the java.desktop module. Our module needs to declare that it relies on that
module:

module chi15.sec04 {
requires java.desktop;
}



15.4 m Requiring Modules

It is a design goal of the module system that modules are explicit about their
requirements, so that the virtual machine can ensure that all requirements
are fulfilled before starting a program.

In the preceding section, the need for explicit requireents did not arise because
we only used the java.lang package. This package is included in the java.base
module which is required by default.

Note that our chi5.seco4 module lists only its own module requirements. It
requires the java.desktop module so that it can use the javax.swing package. The
java.desktop module itself declares that it requires three other modules, namely
java.datatransfer, java.prefs, and java.xml.

Figure 15-1 shows the module graph whose nodes are modules. The edges of
the graph (that is, the arrows joining nodes) are either declared requirements
or the implied requirement on java.base when none is declared.

chl5.sec04

java.desktop

java.datatransfer

Figure 15-1 The module graph of the Swing “Hello, Modular World!” application

You cannot have cycles in the module graph. That is, a module cannot directly
or indirectly require itself.

A module does not automatically pass on access rights to other modules. In
our example, the java.desktop module declares that it requires java.prefs, and
the java.prefs module declares that it requires java.xml. That does not give
java.desktop the right to use packages from the java.xml module. It needs to
explicitly declare that requirement. In mathematical terms, the requires

475



476

Chapter 15 m The Java Platform Module System

relationship is not “transitive.” Generally, this behavior is desirable because
it makes requirements explicit, but as you will see in Section 15.10, “Transitive
and Static Requirements” (page 487), you can relax it in some cases.

D NOTE: The error message at the beginning of this section stated that

our ch15.sec04 module did not “read” the java.desktop module. In the
parlance of the Java Platform Module System, module M reads module
N in the following cases:

1. M requires N.

2. M requires a module that transitively requires N (see Section 15.10,
“Transitive and Static Requirements,” page 487).

3. N is M or java.base.

15.5 Exporting Packages

In the preceding section, you saw that a module must require another module
if it wants to use its packages. However, that does not automatically make
all packages in the required module available. A module states which of its
packages are accessible, using the exports keyword. For example, here is a
part of the module declaration for the java.xnl module:
module java.xml {

exports javax.xml;

exports javax.xml.catalog;

exports javax.xml.datatype;

exports javax.xml.namespace;
exports javax.xml.parsers;

}

This module makes many packages available, but hides others (such as
jdk.xml.internal) by not exporting them.

When a package is exported, its public and protected classes and interfaces, and
their public and protected members, are accessible outside the module. (As
always, protected types and members are accessible only in subclasses.)

However, a package that is not exported is not accessible outside its own
module. This is quite different from Java before modules. In the past, you
were able to use public classes from any package, even if it was not part of
the public API. For example, it was commonly recommended to use classes
such as sun.misc.BASE64Encoder or com.sun.rowset.CachedRowSetImpl when the public API
did not provide the appropriate functionality.



15.5 m Exporting Packages art

Nowadays, you can no longer access unexported packages from the Java
platform API since all of them are contained inside modules. As a result,
some programs will no longer run with Java 9. Of course, nobody ever com-
mitted to keeping non-public APIs available, so this should not come as a
shock.
Let us put exports to use in a simple situation. We will prepare a module
com.horstmann.greet that exports a package, also called com.horstmann.greet, following
the convention that a module that provides code for others should be
named after the top-level package inside it. There is also a package
com.horstmann.greet.internal that we don't export.
A public Greeter interface is in the first package.

package com.horstmann.greet;

public interface Greeter {

static Greeter newInstance() {
return new com.horstmann.greet.internal.GreeterImpl();
}

String greet(String subject);

The second package has a class that implements the interface. The class is
public since it is accessed in the first package.

package com.horstmann.greet.internal;
import com.horstmann.greet.Greeter;

public class GreeterImpl implements Greeter {
public String greet(String subject) {
return "Hello, " + subject +

}

wyn,
L

}
The com.horstmann.greet module contains both packages but only exports the
first:

module com.horstmann.greet {
exports com.horstmann.greet;

}
The second package is inaccessible outside the module.

We put our application into a second module, which will require the first
module:

module ch15.sec05 {
requires com.horstmann.greet;
1



478 Chapter 15 m The Java Platform Module System

NOTE: The exports statement is followed by a package name, whereas
requires is followed by a module name.

Our application now uses a Greeter to obtain a greeting:

package com.horstmann.hello;
import com.horstmann.greet.Greeter;

public class HelloWorld {
public static void main(String[] args) {
Greeter greeter = Greeter.newInstance();
System.out.println(greeter.greet("Modular World"));
}
}

Here is the source file structure for these two modules:

com.horstmann.greet
t module-info.java
com
L horstmann
L greet
t Greeter.java
internal
L GreeterImpl.java
ch15.sec05
t module-info.java
com
L horstmann
L hello
L HelloWorld. java

To build this application, first compile the com.horstmann.greet module:

javac com.horstmann.greet/module-info.java \
com.horstmann.greet/com/horstmann/greet/Greeter.java \
com.horstmann.greet/com/horstmann/greet/internal/GreeterImpl.java
Then compile the application module with the first module on the
module path:

javac -p com.horstmann.greet chi15.sec05/module-info.java \
ch15.sec05/com/horstmann/hello/HelloWorld. java

Finally, run the program with both modules on the module path:

java -p chl15.sec05:com.horstmann.greet \
-m ch15.sec05/com.horstmann.hello.HelloWorld



15.6 m Modules and Reflective Access

You have now seen the requires and exports statements that form the backbone
of the Java Platform Module System. As you can see, the module system is
conceptually simple. Modules specify what modules they need, and which
packages they offer to other modules. Section 15.11, “Qualified Exporting and
Opening” (page 489) shows a minor variation of the exports statement.

CAUTION: A module does not provide a scope. You cannot have two
packages with the same name in different modules. This is true even
for hidden packages (that is, packages that are not exported.)

15.6 Modules and Reflective Access

In the preceding section, you saw that the module system enforces encapsu-
lation. A module can only access explicitly exported packages from another
module. In the past, it was always possible to overcome pesky access restric-
tions by using reflection. As you have seen in Chapter 4, reflection can access
private members of any class.

However, in the modular world, that is no longer true. If a class is inside a
module, reflective access to non-public members will fail. Specifically, recall
how we accessed private fields:

Field f = obj.getClass().getDeclaredField("salary");

f.setAccessible(true);

double value = f.getDouble(obj);
f.setDouble(obj, value * 1.1);

The call f.setAccessible(true) succeeds unless a security manager disallows private
field access. However, it is not common to run Java applications with security
managers, and there are many libraries that use reflective access. Typical ex-
amples are object-relational mappers such as JPA that automatically persist
objects in databases.

If you use such a library, and you also want to use modules, you have to be
careful. To demonstrate this issue, I will use JAXB instead of JPA. (JPA isn't
a part of Java SE, but JAXB is, at least for now—its module is deprecated).
JAXB can turn arbitrary objects into XML, and conversely turn XML back into
objects. You use annotations to direct the process. Here is a trivial class that
illustrates the mechanism:

479



480 Chapter 15 m The Java Platform Module System

package com.horstmann.places;

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

aXmlRootElement

public class Country {
@XmlElement private String name;
AXmlElement private double area;

public Country() {}

public Country(String name, double area) {
this.name = name;
this.area = area;

}
/...
}

The axmlRootElement annotation indicates that objects of this class can be format-
ted (or “marshalled”) into XML, and the @xmlElement annotation is applied to
the fields that should be included in the generated XML.

Here is a short program that demonstrates how to convert an object into XML

package com.horstmann.places;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;

public class Demo {
public static void main(String[] args) throws JAXBException {
Country belgium = new Country("Belgium", 30510);
JAXBContext context = JAXBContext.newInstance(Country.class);
Marshaller m = context.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
m.marshal(belgium, System.out);

}
When you run the program, it prints

<country>
<name>Belgium</name>
<area>30510.0</area>
</country>



15.6 m Modules and Reflective Access

As you can see, there is nothing that the programmer needs to do to make
this happen. Through reflection, the JAXB library determines the names and
values of the fields. (There are numerous ways to tweak the XML that is
generated, but those details are not important here. I just use JAXB as an
example of a library that uses reflection.)

Now let us put the Country and Demo classes inside a module. When you do
that, the Demo program will fail with an exception:
Exception in thread "main" java.lang.reflect.InaccessibleObjectException:
Unable to make field

private java.lang.String com.horstmann.places.Country.name accessible:
module ch15.sec06 does not "opens com.horstmann.places" to module java.xml.bind

Of course, in pristine theory, it is wrong to violate encapsulation and poke
around in the private members of an object. But mechanisms such as XML
binding or object-relational mapping are so common that the module system
must accommodate them.

Using the opens keyword, a module can open a package, which enables runtime
access to all types and members in the given package, allowing access of
private members through reflection. Here is what our module has to do:
module ch15.sec6 {
requires java.xml.bind;
opens com.horstmann.places;

}
With this change, JAXB will work correctly.

A module can be declared as open, such as

open module chi15.sec06 {
requires java.xml.bind;
}

An open module grants runtime access to all of its packages, as if all packages
had been declared with exports and opens. However, only explicitly exported
packages are accessible at compile time. Open modules combine the compile-
time safety of the module system with the classic permissive runtime behavior.

Recall from Section 4.4.2, “Loading Resources” (page 162) that JAR files can
contain, in addition to class files and a manifest, file resources which can be
loaded with the method Class.getResourceAsStream, and now also with
Module.getResourceAsStream. If a resource is stored in a directory that matches a
package in a module, then the package must be opened to the caller. Re-
sources in other directories, as well as the class files and manifest, can be
read by anyone.



m Chapter 15 m The Java Platform Module System

D NOTE: It is possible that future libraries will use variable handles instead

of reflection for reading and writing fields. A varHandle is similar to a
Field. You can use it to read or write a specific field of any instance
of a specific class. However, to obtain a varHandle, the library code needs
a Lookup object:

public Object getFieldvalue(Object obj, String fieldName, Lookup lookup)
throws NoSuchFieldException, ITllegalAccessException {
Class<?> cl = obj.getClass();
Field field = cl.getDeclaredField(fieldName);
VarHandle handle = MethodHandles.privateLookupIn(cl, lookup)
.unreflectVarHandle(field);
return handle.get(obj);

}

This works provided the Lookup object is generated in the module that
has the permission to access the field. Some method in the module
simply calls MethodHandles.lookup(), which yields an object encapsulating
the access rights of the caller. In this way, one module can give
permission for accessing private members to another module. The
practical issue is how those permissions can be given with a minimum
of hassle.

15.7 Modular JARs

So far, we have simply compiled modules into the directory tree of the source
code. Clearly, that is not satisfactory for deployment. Instead, a module can
be deployed by placing all its classes in a JAR file, with a module-info.class in
the root. Such a JAR file is called a modular JAR.

To create a modular JAR file, you use the jar tool in the usual way. If you
have multiple packages, it is best to compile with the -d option which places
class files into a separate directory. The directory is created if it doesn't already
exists. Then use the -C option of the jar command to change to that directory
when collecting files.

javac -d modules/com.horstmann.greet “find com.horstmann.greet -name *.java’
jar -cvf com.horstmann.greet.jar -C modules/com.horstmann.greet .

If you use a build tool such as Maven, Ant, or Gradle, just keep building
your JAR file as you always do. As long as module-info.class is included, you
get a modular JAR.



15.7 m Modular JARs

Then you can include the modular JAR in the module path, and the module
will be loaded.

CAUTION: In the past, the classes of a package were sometimes
distributed over multiple JAR files. (Such a package is called a “split
package.”) This was probably never a good idea, and it is not possible
with modules.

As with regular JAR files, you can specify a main class in a modular JAR:

javac -p com.horstmann.greet.jar -d modules/ch15.sec05 "find ch15.sec05 -name *.java’

jar -c -v -f ch15.sec@5.jar -e com.horstmann.hello.HelloWorld -C modules/ch15.sec@5 .
When you launch the program, you specify the module containing the main
class:

java -p com.horstmann.greet.jar:chl5.sec05.jar -m ch15.sec05
When creating a JAR file, you can optionally specify a version number. Use

the --module-version parameter, and also add @ and the version number to the
JAR file name:

jar -c -v -f com.horstmann.greeta1.0.jar --module-version 1.0 -C com.horstmann.greet .
As already discussed, the version number is not used by the Java Platform

Module System for resolving modules, but it can be queried by other tools
and frameworks.

D NOTE: You can find out the version number through the reflection API.
In our example:

Optional<String> version
= Greeter.class.getModule().getDescriptor().rawVersion();

yields an Optional containing the version string "1.0".

EI NOTE: The module equivalent to a class loader is a layer. The Java
Platform Module System loads the JDK modules and application modules
into the boot layer. A program can load other modules, using the layer
API (which is not covered in this book). Such a program may choose
to take module versions into account. Is is expected that developers of
programs such as Java EE application servers make use of the layer
API to provide support for modules.




484

Chapter 15 m The Java Platform Module System

a TIP: If you want to load a module into JShell, include the JAR on the
module path and use the --add-modules option:

jshell --module-path com.horstmann.greet@l.0.jar \
--add-modules com.horstmann.greet

15.8 Automatic Modules and the Unnamed Module

You now know to put the Java Platform Module System to use. If you start
with a brand-new project in which you write all the code yourself, you can
design modules, declare module dependencies, and package your application
into modular JAR files.

However, that is an extremely uncommon scenario. Almost all projects rely
on third-party libraries. Of course, you can wait until the providers of all li-
braries have turned them into modules, and then modularize your own code.

But what if you don't want to wait? The Java Platform Module System provides
two mechanisms for crossing the chasm that separates today’s pre-modular
world and fully modular applications: automatic modules and the unnamed
module.

For migration purposes, you can turn any JAR file into a module, simply by
placing it onto a directory in the module path instead of the class path. A
JAR without a module-info.class on the module path is called an automatic
module. An automatic module has the following properties:

1. The module implicitly has a requires clause for all other modules.
2. All of its packages are exported and opened.

3. If there is an entry with key Automatic-Module-Name in the JAR file manifest
META-INF/MANIFEST.MF, the value becomes the module name.

4. Otherwise the module name is obtained from the JAR file name, dropping
any trailing version number and replacing sequences of non-alphanumeric
characters with a dot.

The first two rules imply that the packages in the automatic module act as
if they were on the class path. The reason for using the module path is for
the benefit of other modules, allowing them to express dependencies on this
module.

Suppose, for example, that you are implementing a module that processes
CSV files and uses the Apache Commons CSV library. You would like to
express in your module-info.java file that your module depends on Apache
Commons CSV.



15.9 m Command-Line Flags for Migration

If you add commons-csv-1.4.jar onto the module path, then your modules can
reference the module. Its name is commons.csv since the trailing version number
-1.4 is removed and the non-alphanumeric character - is replaced by a dot.

This name might be an acceptable module name because Commons CSV is
well known and it is unlikely that someone else will try to use the same
name for a different module. But it would be better if the maintainers of this
JAR file could quickly agree to reserve a reverse DNS name, preferably the
top-level package name org.apache.commons.csv as the module name. They just
need to add a line

Automatic-Module-Name: org.apache.commons.csv
to the META-INF/MANIFEST.MF file inside the JAR. Eventually, hopefully, they will
turn the JAR file into a true module by adding module-info.java with the reserved

module name, and every other module that refers to the CSV module with
that name will just continue to work.

NOTE: The migration plan to modules is a great social experiment, and
nobody knows whether it will end well. Before you put third-party JARs
on the module path, check whether they are modular, and if not, whether
their manifest has a module name. If not, you can still turn the JAR into
an automatic module, but be prepared to update the module name later.

Any class that is not on the module path is part of an unnamed module.
Technically, there may be more than one unnamed module, but all of them
together act as if they were a single module, which is called the unnamed
module. As with automatic modules, the unnamed module can access all
other modules, and all of its packages are exported and opened.

However, no named module can access the unnamed module. Therefore, migra-
tion to the Java Platform Module System is necessarily a bottom-up process.
The Java platform itself is modularized. Next, you modularize libraries, either
by using automatic modules or by turning them into true modules. Once all
libraries used by your application are modularized, you can turn the code of
your application into a module.

15.9 Command-Line Flags for Migration

Even if your programs do not use modules, you cannot escape the modular
world when running with Java 9 and beyond. Even if the application code
resides on the class path in an unnamed module and all packages are exported
and opened, it interacts with the Java platform, which is modularized.



486

Chapter 15 m The Java Platform Module System

In Java 9, the default behavior is to permit illegal module access but to display
a warning on the console for the first instance of each offense. In a future
version of Java, the default behavior will change, and illegal access with be
denied. In order to give you time to prepare for that change, you should test
your applications with the --illegal-access flag. There are four possible settings:

1. --illegal-access=pernit is the Java 9 default behavior, printing a message for
the first instance of illegal access.

2. --illegal-access=warn prints a message for each illegal access.

3. --illegal-access=debug prints a message and stack trace for each illegal access.

4. --illegal-access=deny is the future default behavior, denying all illegal access.

Now is the time to test with --illegal-access=deny so that you can be ready when
that behavior becomes the default.

Consider an application that uses an internal API that is no longer accessible,
such as com.sun.rowset.CachedRowSetInpl. The best remedy is to change the imple-
mentation. (As of Java 7, you can get a cached row set from a RowSetProvider.)
But suppose you don't have access to the source code.

In that case, start the application with the --add-exports flag. Specify the module
and the package that you want to export, and the module to which you want
to export the package, which in our case is the unnamed module.
java --illegal-access=deny --add-exports java.sql.rowset/com.sun.rowset=ALL_UNNAMED \
-jar MyApp.jar

Now suppose your application uses reflection to access private fields or
methods. Reflection inside the unnamed module is OK, but it is no longer
possible to reflectively access non-public members of the Java platform
classes. For example, some libraries that dynamically generate Java classes
call the protected Classloader.defineClass method through reflection. If an
application uses such a library, add the flag

--add-opens java.base/java.lang=ALL-UNNAMED

A small number of modules in the Java SE platform are not in the java.se
aggregator module, and they are not accessible by default. These are the
modules java.activation, Jjava.corba, java.transaction, java.xml.bind, java.xml.ws,
java.xml.ws.annotation, which contain packages that are a part of the Java EE
specification. Java EE application servers include these packages. They would
not start up under Java 9 if there were conflicting packages in the Java
platform.

You can use these modules from a modular application simply by requiring
them in the module descriptor. But if an application is not modularized and


http://java.se

15.10 ®m Transitive and Static Requirements 487

you need one of them, you have to add it explicitly. Use the --add-module flag
when compiling and running the program:

java --illegal-access=deny --add-module java.xml.bind -jar MyProg.java

NOTE: The java.activation, java.corba, java.transaction, java.xml.bind,
java.xml.ws, and java.xml.ws.annotation modules are deprecated in Java 9
and may be removed from the Java SE platform in a future version.

When adding all those command-line options to get a legacy app to work,
you may well end up with the command line from hell. To better manage a
multitude of options, you can put options in one or more files which you
specify with an @ prefix. For example,

java @optionsl @options2 -jar MyProg.java
where the files optionsl and options2 contain options for the java command.
There are a few syntax rules for the options files:
e Separate options with spaces, tabs, or newlines.

e Use double quotes around arguments that include spaces, such as "Program
Files".

* A line ending in a \ is merged with the next line.
e Backslashes must be escaped, such as C:\\Users\\Fred.

e Comment lines start with #.

15.10 Transitive and Static Requirements

In Section 15.4, “Requiring Modules” (page 474), you have seen the basic form
of the requires statement. In this section, you will see two variants that are
occasionally useful.

In some situation, it can be tedious for a user of a given module to declare
all required modules. Consider for example the javafx.controls module that
contains JavaFX user interface elements such as buttons. The javafx.controls
requires the javafx.base module, and everyone using javafx.controls will also
need javafx.base. (You wouldn't be able to do much with a user interface
control such as a Button if you didn’t have packages from the javafx.base module
available.) For that reason, the javafx.controls module declares the requirement
with the transitive modifier:



Chapter 15 m The Java Platform Module System

module javafx.controls {

}

requires transitive javafx.base;

Any module that declares a requirement on javafx.controls now automatically
requires javafx.base.

NOTE: Some programmers recommend that you should always use
requires transitive when a package from another module is used in the
public API. But that is not a rule of the Java language. Consider for
example, the java.sql module:

module java.sql {
requires transitive java.logging;

}

There is a single use of a package from the java.logging module in the
entire java.sql API, namely the java.sql.Driver.parentLogger method that
returns a java.util.logging.Logger. It would have been perfectly acceptable
to not declare this module requirement as transitive. Then those modules,
and only those, who actually use that method would need to declare
that they require java.logging.

One compelling use of the requires transitive statement is an aggregator
module—a module with no packages and only transitive requirements. One
such module is the java.se module, declared like this:

module java.se {

}

requires transitive java.compiler;
requires transitive java.datatransfer;
requires transitive java.desktop;

requires transitive java.sql;
requires transitive java.sql.rowset;
requires transitive java.xml;
requires transitive java.xml.crypto;

A programmer who isn't interested in fine-grained module dependencies can
simply require java.se and get all modules of the Java SE platform.

Finally, there is an uncommon requires static variant that states that a module
must be present at compile time but is optional at runtime. There are two
use cases:


http://java.se
http://java.se
http://java.se

15.11 m Qualified Exporting and Opening

1. To access an annotation that is processed at compile time and declared
in a different module.

2. To use a class in a different module if it is available, and otherwise do
something else, such as:

try {
new oracle.jdbc.driver.OracleDriver();

} catch (NoClassDefFoundError er) {
// Do something else
}

15.11 Qualified Exporting and Opening

In this section, you will see a variant of the exports and opens statement that
narrows their scope to a specified set of modules. For example, the javafx.base
module contains a statement

exports com.sun.javafx.collections to
javafx.controls, javafx.graphics, javafx.fxml, javafx.swing;

Such a statement is called a qualified export. The listed modules can access
the package, but other modules cannot.

Excessive use of qualified exports can indicate a poor modular structure.
Nevertheless, they can arise when modularizing an existing code base. Here,
the Java platform designers distributed the code for JavaFX into multiple
modules, which is a good idea because not all JavaFX applications need FXML
or Swing interoperability. However, the JavaFX implementors liberally used
internal classes such as com.sun.javafx.collections.ListListenerHelper in their code.
In a greenfield project, one can instead design a more robust public APL

Similarly, you can restrict the opens statement to specific modules. For example,
in Section 15.6, “Modules and Reflective Access” (page 479) we could have
used a qualified opens statement, like this:
module chi15.sec06 {
requires java.xml.bind;
opens com.horstmann.places to java.xml.bind;

}
Now the com.horstmann.places package is only opened to the java.xnl.bind module.

Admittedly, it seems rather brittle to put a dependency on a particular persis-
tence mechanism into the module descriptor. Instead, you could place all
classes that need to be persisted into a separate package and open up that
package to all modules, so that any persistence mechanism can access it.

489



Chapter 15 m The Java Platform Module System

15.12 Service Loading

The ServiceLoader class (see Section 4.4.5, “Service Loaders,” page 166) provides
a lightweight mechanism for matching up service interfaces with implementa-
tions. The Java Platform Module System makes it easier to use this mechanism.

Here is a quick reminder of service loading. A service has an interface and
one or more possible implementations. Here is a simple example of a simple
interface:

public interface GreeterService {

String greet(String subject);
Locale getLocale();
}

One or more modules provide implementations, such as

public class FrenchGreeter implements GreeterService {
public String greet(String subject) { return "Bonjour
public Locale getlocale() { return Locale.FRENCH; }

}

The service consumer must pick an implementation among all offered
implementations, based on whatever criteria it deems appropriate.

+ subject; }

Serviceloader<GreeterService> greeterLoader = Serviceloader.load(GreeterService.class);
GreeterService chosenGreeter;
for (GreeterService greeter : greeterlLoader) {
if (...) o
chosenGreeter = greeter;
}
}

In the past, implementations were offered by placing text files into the
META-INF/services directory of the JAR file containing the implementation classes.
The module system provides a better approach. Instead of text files, you add
statements to the module descriptors.

A module providing an implementation of a service adds a provides statement
that lists the service interface (which may be defined in any module) and the
implementing class (which must be a part of this module). Here is an example
from the jdk.security.auth module:



15.13 | Tools for Working with Modules m

module jdk.security.auth {

provides javax.security.auth.spi.LoginModule with
com.sun.security.auth.module.Krb5LoginModule,
com.sun.security.auth.module.UnixLoginModule,
com.sun.security.auth.module.JndilLoginModule,
com.sun.security.auth.module.KeyStoreLoginModule,
com.sun.security.auth.module.LdapLoginModule,
com.sun.security.auth.module.NTLoginModule;

}
This is the equivalent of the META-INF/services file.
The consuming modules contain a uses statement.

module java.base {

uses javax.security.auth.spi.LoginModule;

}

When code in a consuming module calls Serviceloader.load(servicelnterface.class),
the matching provider classes will be loaded, even though they may not be
in accessible packages.

15.13 Tools for Working with Modules

The jdeps tool analyzes the dependencies of a given set of JAR files. Suppose,
for example, you want to modularize JUnit 4. Run

jdeps -s junit-4.12.jar hamcrest-core-1.3.jar
The -s flag generates a summary output:

hamcrest-core-1.3.jar -> java.base
junit-4.12.jar -> hamcrest-core-1.3.jar
junit-4.12.jar -> java.base
junit-4.12.jar -> java.management

That tells you the module graph:

java.management




Chapter 15 m The Java Platform Module System

If you omit the -s flag, you get the module summary followed by a mapping
from packages to required packages and modules. If you add the -v flag, the
listing maps classes to required packages and modules.

The --generate-module-info option produces module-info files for each analyzed
module:

jdeps --generate-module-info /tmp/junit junit-4.12.jar hamcrest-core-1.3.jar

D NOTE: There is also an option to generate graphical output in the “dot”
language for describing graphs. Assuming you have the dot tool installed,
run these commands:

jdeps -s -dotoutput /tmp/junit junit-4.12.jar hamcrest-core-1.3.jar
dot -Tpng /tmp/junit/summary.dot > /tmp/junit/summary.png

Then you get this summary.png image:

hamcrest-core-1.3.jar java.management (java.management)
java.base (java.base)

You use the jlink tool to produce an application that executes without a
separate Java runtime. The resulting image is much smaller than the entire
JDK. You specify the modules that you want to have included and an output
directory.

jlink --module-path com.horstmann.greet.jar:ch15.sec05.jar:$JAVA_HOME/jmods \
--add-modules ch15.sec05 --output /tmp/hello

The output directory has a subdirectory bin with a java executable. If you run
bin/java -m ch15.sec05
the main method of the module’s main class is invoked.

The point of jlink is that it bundles up the minimal set of modules that is
required to run the application. You can list them all:

bin/java --list-modules

In this example, the output is



15.13 | Tools for Working with Modules

ch15.sec05
com.horstmann.greet
java.baseq9

All modules are included in a runtime image file lib/modules. On my computer,
that file is 23MB, whereas the runtime image of all JDK modules take up
181MB. The entire application takes up 45MB, less than 10% of the JDK which
is 486MB.

This can be the basis of a useful tool for packaging an application. You would
still need to produce file sets for multiple platforms and launch scripts for
the application.

NOTE: You can inspect the runtime image with the jimage command.
However, the format is internal to the JVM, and runtime images are not
meant to be generated or used by other tools.

Finally, the jmod tool builds and inspects the module files that are included
with the JDK. When you look into the jmods directory inside the JDK, you will
find a file with extension jmod for each module. There is no longer a rt.jar file.

Like JAR files, these files contain class files. In addition, they can hold native
code libraries, commands, header files, configuration files, and legal notices.
The JMOD files use the ZIP format. You can inspect their contents with any
ZIP tool.

Unlike JAR files, JMOD files are only useful for linking; that is, for producing
runtime images. There is no need for you to produce JMOD files unless you
also want to bundle binary files such as native code libraries with your
modules.

NOTE: Since the rt.jar and tools.jar files are no longer included with
Java 9, you need to update any references to them. For example, if you
referred to tools.jar in a security policy file, change it to a reference to
the module:

grant codeBase "jrt:/jdk.compiler" {
permission java.security.AllPermission;
b

The jrt: syntax denotes the Java runtime file.




Chapter 15 m The Java Platform Module System

Exercises

1.

10.

The “restricted keywords” module, exports, requires, uses, to, and so on, have
specific meanings in module declarations. Can you use them as names
for classes? Packages? Modules? In particular, can you make a module
called module? Try creating a context where you can produce declarations
such as the following:

requires requires;

exports exports;

opens to to opens;
How about a module transitive? Can you require it?

Try accessing GreeterImpl in the program in Section 15.5, “Exporting
Packages” (page 476) from the Helloworld class. What happens? Is it a
compile-time or a runtime error?

In the program in Section 15.5, “Exporting Packages” (page 476), use
java.util.logging.Level to make a Greeter return an empty string when the
level is less than Level.INFO. What is the effect on the module descriptors?

What happens if you put the Apache CSV JAR onto the class path as an
unnamed module and try accessing its packages from a module? What
should you do instead?

Develop an example that demonstrates a compelling use for a requires
transitive dependency on a module such as java.sql, java.xml, or java.desktop.

Develop examples for the two uses cases of requires static. Would you
ever want to have requires transitive static?

In the program in Section 15.12, “Service Loading” (page 490), what
happens if the provides or uses statements are omitted? Why aren't these
compile-time errors?

In the program in Section 15.12, “Service Loading” (page 490), use a service
provider factory; that is, a class with a public static method provider() that
returns the service object.

Reorganize the program in Section 15.7, “Modular JARs” (page 482) so
that the service interface and implementation are defined in separate
modules.

Download the open source JFreeChart program and use jdeps to analyze
the dependencies of the demo program and the JAR files in the 1lib
subdirectory.



Exercises

11. Turn the demo program of JFreeChart into a module and the JAR files
in the lib subdirectory into automatic modules.

12. Run jlink to get a runtime image of the JFreeChart demo program.

13. Try running a Java 8 version of the JavaFX SceneBuilder program under
Java 9. What command-line flags do you need to start it? How did you
find out?



This page intentionally left blank



Symbols and Numbers
- (minus sign)
flag (for output), 35
in dates, 414
in regular expressions, 310
operator, 17-18
in command-line options, 81
in shell scripts, 463
operator, 17, 19
->, in lambda expressions, 114, 117
-w, in string templates, 434
_ (underscore)
in number literals, 12
in variable names, 14, 67
, (comma)
flag (for output), 35
in numbers, 422, 428, 433
normalizing, 317
trailing, in arrays, 44
; (semicolon)
in Java vs. JavaScript, 450
path separator (Windows), 81,
248

Index

: (colon)
in assertions, 194
in dates, 414
in switch statement, 37
path separator (Unix), 81, 248
:: operator, 117, 145
! (exclamation sign)
comments, in property files, 247
operator, 17, 22
!= operator, 17, 22
for wrapper classes, 47
? (quotation mark)
in regular expressions, 310-311, 313
replacement character, 295, 438
wildcard, for types, 212-216, 227
? : operator, 17, 22
/ (slash)
file separator (Unix), 248, 298
in javac path segments, 5
operator, 17-18
root component, 298
//, /*...x/ comments, 3
/*+...*/ comments, 90-91
/= operator, 17

497



498

Index

. (period)
in method calls, 6
in numbers, 422, 428, 433
in package names, 5, 79
in regular expressions, 310-311, 319
operator, 17
.., parent directory, 299
... (ellipsis), for varargs, 54
“...” (back quotes), in shell scripts, 462
" (caret)
for function parameters, 114
in regular expressions, 310-313, 318
operator, 17, 23
"= operator, 17
~ (tilde), operator, 17, 23
"..." (single quotes)
for character literals, 13-14
in JavaScript, 450
in string templates, 434
"..." (double quotes)
for strings, 6
in javadoc hyperlinks, 94
in shell scripts, 462
" (empty string), 26-27, 147
( (left parenthesis), in formatted output,
35
(...) (parentheses)
empty, for anonymous classes, 130
for anonymous functions (JavaScript),
458
for casts, 21, 103
in regular expressions, 310-313,
316-317
operator, 17
[...] (square brackets)
for arrays, 43-44, 50
in JavaScript, 454, 457-458
in regular expressions, 310-312
operator, 17
{...} (curly braces)
in annotation elements, 379
in lambda expressions, 114
in regular expressions, 310-313, 318
in string templates, 433
with arrays, 44
{{...}}, double brace initialization, 144

a (at)
in java command, 487
in javadoc comments, 91
$ (dollar sign)
currency symbol, 433
flag (for output), 36
in JavaScript function calls, 455, 460
in regular expressions, 310-311, 313,
318
in variable names, 14
${...}, in shell scripts, 462-463
€ currency symbol, 428, 433
+ (asterisk)
for annotation processors, 394
in documentation comments, 92
in regular expressions, 310-313, 317
operator, 17-18
wildcard:
in class path, 81
in imported classes, 83-84
*= operator, 17
\ (backslash)
character literal, 14
file separator (Windows), 248, 298
in option files, 487
in regular expressions, 310-311, 318
& (ampersand), operator, 17, 23
66 (double ampersand)
in regular expressions, 312
operator, 17, 22
&= operator, 17
# (number sign)
comments, in property files, 247
flag (for output), 35
in javadoc hyperlinks, 93
in option files, 487
in string templates, 434
#!, in shell scripts, 464
% (percent sign)
conversion character, 34-35
operator, 17-18
%% pattern variable, 202
%= operator, 17
+ (plus sign)
flag (for output), 35
in regular expressions, 310-313



operator, 17-18
for strings, 24-25, 27, 147
++ operator, 17, 19
+= operator, 17
< (left angle bracket)
flag (for output), 36
in shell syntax, 33
in string templates, 434
operator, 22, 456
<< operator, 17, 23
<= operator, 17
<= operator, 17, 22
<%...%>, <%=...%> delimiters (JSP), 464
s, in string templates, 434
<> (diamond syntax)
for array lists, 45
for constructors of generic classes, 209
<...> (angle brackets)
for type parameters, 109, 208
in javadoc hyperlinks, 93
in regular expressions, 313
=, -= operators, 17-18
== operator, 17, 22, 149
for class objects, 160
for enumerations, 155
for strings, 26
for wrapper classes, 47
=>, in JavaScript, 459
> (right angle bracket)
in shell syntax, 33
operator, 22
>z, >>, >>> operators, 17, 22-23
>>z, >>>= operators, 17
| (vertical bar)
in regular expressions, 310-312
in string templates, 434
operator, 17, 23
|= operator, 17
|| operator, 17, 22
0 (zero)
as default value, 71, 74
flag (for output), 35
formatting symbol (date/time), 416
prefix, for octal literals, 11
\0, in regular expressions, 311
0b prefix, 11

ox prefix, 11, 35
OXFEFF byte order mark, 291

A

a formatting symbol (date/time), 416
a, A conversion characters, 34
\a, \A, in regular expressions, 311, 314
abstract classes, 141-142
abstract methods, of an interface, 115
abstract modifier, 103, 141-142
AbstractCollection class, 106
AbstractMethodError, 107
AbstractProcessor class, 394
accept methods (Consumer, XxxConsumer),
121-122
acceptEither method (CompletableFuture),
339-340

AccessibleObject class, 172

setAccessible method, 170, 172

trySetAccessible method, 170
accessors, 62
accumulate method (LongAccumulator), 356
accumulateAndGet method (AtomicXxx), 355
accumulator functions, 278
add method

of ArrayDeque, 250

of Arraylist, 46, 62

of BlockingQueue, 353

of Collection, 236

of List, 238

of ListIterator, 241

of LongAdder, 356
addAll method

of Collection, 214, 236

of Collections, 239

of List, 238
addExact method (Math), 20
addHandler method (Logger), 200
addition, 18

identity for, 278
addSuppressed method (IOException), 189
aggregators, 488
allMatch method (Stream), 267
allof method

of CompletableFuture, 339-340

of EnumSet, 250



Index

allProcesses method (ProcessHandle), 370
and, andNot methods (BitSet), 249
and, andThen methods (functional
interfaces), 121
Android, 341
AnnotatedConstruct interface, 395
AnnotatedElement interface, 392—-393
annotation interfaces, 383-386
annotation processors, 394
annotations
accessing, 384
from a different module, 489
and modifiers, 382
container, 389, 392
declaration, 380-381
documented, 389
generating source code with, 395-398
inherited, 389, 392
key/value pairs in. See elements
meta, 384-390
multiple, 380
processing:
at runtime, 391-393
source-level, 394-398
repeatable, 380, 389, 392
standard, 386-390
type use, 381-382
anonymous classes, 130-131
anyMatch method (Stream), 267
any0f method (CompletableFuture), 339-340
Apache Commons CSV, 484
API documentation, 28-30
generating, 90
Applet class, 163
applications. See programs
apply, applyAsXxx methods (functional
interfaces), 121-122
applyToEither method (CompletableFuture),
339-340
$ARG, in shell scripts, 463
arguments array (jjs), 463
arithmetic operations, 17-24
Array class, 174-175
array list variables, 45
array lists, 45-46
anonymous, 144

checking for nulls, 215

constructing, 45-46

converting between, 212

copying, 48

filling, 49

instantiating with type variables, 222

size of, 46

sorting, 49

visiting all elements of, 47

working with elements of, 46-47
array variables

assigning values to, 45

copying, 47

declaring, 43-44

initializing, 43
ArrayBlockingQueue class, 353
ArrayDeque class, 250
ArrayIndexOutOfBoundsException, 43
Arraylist class, 45-46, 237

add method, 46, 62

clone method, 154

forEach method, 117

get, remove, set, size methods, 46

removeIf method, 116
arrays, 43-45

accessing nonexisting elements in,

43

allocating, 222

annotating, 381

casting, 174

checking, 174

comparing, 149

computing values of, 349

constructing, 43-44

constructor references with, 118

converting:

to a reference of type Object, 146
to/from streams, 271, 281, 350

copying, 48

covariant, 212

filling, 44, 49

generating Class objects for, 160

growing, 174-175

hash codes of, 151

in JavaScript, 457-458

length of, 43, 45, 127



Index

multidimensional, 50-52, 147

of bytes, 288-289

of generic types, 118, 223

of objects, 44, 349

of primitive types, 349

of strings, 317

passing into methods, 53

printing, 49, 52, 147

serializable, 319

sorting, 49, 109-111, 349-350

superclass assignment in, 140

using class literals with, 160
Arrays class

asList method, 253

copyof method, 48

deepToString method, 147

equals method, 149

fill method, 49

hashCode method, 151

parallelXxx methods, 49, 349

sort method, 49, 111-112, 116-117

stream method, 262, 279

toString method, 49, 147
ArrayStoreException, 140, 212, 223
ASCII, 30, 290

for property files, 437

for source files, 438
ASM tool, 398
assert statement, 194
AssertionError, 194
assertions, 193-195

checking, 381

enabling/disabling, 194-195
assignment operators, 18
associative operations, 278
asString method (HttpResponse), 308
asSubclass method (Class), 227
asynchronous computations, 335-341
AsyncTask class (Android), 341
atomic operations, 346, 351, 354-357,

360

and performance, 355
AtomicXxx classes, 355
atzone method (LocalDateTime), 410
dauthor tag (javadoc), 91, 95
autoboxing, 46, 123

AutoCloseable interface, 187, 210
close method, 188
availableCharsets method (Charset), 292
availableProcessors method (Runtime),
331
average method (XxxStream), 280

b, B conversion characters, 35
\b (backspace), 14
\b, \B, in regular expressions, 314
bash scripts (Unix), 461
BasicFileAttributes class, 303
batch files (Windows), 461
BeanInfo class, 173
between method (Duration), 403
BiConsumer interface, 121
BiFunction interface, 121, 123
BigDecimal class, 13, 23-24
big-endian format, 291, 296-297
BigInteger class, 11, 23-24
binary data, reading/writing, 296
binary numbers, 11, 13
binary trees, 242
BinaryOperator interface, 121
binarySearch method (Collections), 240
Bindings interface, 449
BiPredicate interface, 121
BitSet class, 248-249
collecting streams into, 279
methods of, 249
bitwise operators, 23
block statement, labeled, 41
blocking queues, 352-353
BlockingQueue interface, 353
Boolean class, 46
boolean type, 14
default value of, 71, 74
formatting for output, 35
reading/writing, 296
streams of, 279
BooleanSupplier interface, 122
bootstrap class loader, 163
boxed method (XxxStream), 280
branches, 36-38
break statement, 37, 39-41



Index

bridge methods, 218-219
clashes of, 225
BufferedReader class, 294
build method (HttpClient), 308
bulk operations, 352
Byte class, 46
MIN_VALUE, MAX_VALUE constants, 11
toUnsignedInt method, 12
byte codes, 4
writing to memory, 446-447
byte order mark, 291
byte type, 10-12, 289
streams of, 279
type conversions of, 21
ByteArrayClass class, 446
ByteArrayClassLoader class, 447
ByteArrayXxxStream classes, 288-289
ByteBuffer class, 297
bytes
arrays of, 288-289
converting to strings, 292
reading, 289
writing, 290

c

¢, C conversion characters, 34
C:\ root component, 298
C/C++ programming languages
#include directive in, 84
allocating memory in, 346
integer types in, 11
pointers in, 63
C# programming language, type
parameters in, 215
\¢, in regular expressions, 311
CachedRouwSetImpl class, 486
calculators, 157
Calendar class, 401
getFirstDayOfWeek method, 431
weekends in, 407
calendars, 60
call method (CompilationTask), 445
call by reference, 69
Callable interface, 112
call method, 333
extending, 445

callbacks, 112-113, 337
registering, 335
camel case, 15
cancel method
of CompletableFuture, 337
of Future, 333
cancellation requests, 364
CancellationException, 337
cardinality method (BitSet), 249
carriage return, character literal for,
14
case label, 37
cast method (Class), 227
casts, 21, 103-104, 140
and generic types, 220
annotating, 382
inserting, 217-218
catch statement, 186-187
annotating parameters of, 380
in JavaScript, 461
in try-with-resources, 189
no type variables in, 225
ceiling method (NavigableSet), 243
Channel interface, 104
channels, 297
char type, 13-14
streams of, 279
type conversions of, 21
Character class, 46
character classes, 310
character encodings, 290-293
detecting, 292
localizing, 438
partial, 292, 295
platform, 292, 438
character literals, 13-14
characters, 288
combined, 432
formatting for output, 34
normalized, 432-433
reading/writing, 296
charAt method (String), 31
CharSequence interface, 28
chars, codePoints methods, 279
splitting by regular expressions,
263



Charset class
availableCharsets method, 292
defaultCharset method, 292, 438
displayName method, 438
forName method, 292
checked exceptions, 183-186
and generic types, 226
and no-argument constructors, 171
combining in a superclass, 185
declaring, 185-186
documenting, 186
in lambda expressions, 186
not allowed in a method, 191
rethrowing, 190
checked views, 221, 254
checkedXxx methods (Collections), 240, 254
Checker Framework, 381
childrenNames method (Preferences), 440
choice indicator, in string templates, 434
Church, Alonzo, 114, 404
Class class, 159-162, 228
asSubclass, cast methods, 227
comparing objects of, 160
forName method, 160-161, 164-165,
184, 192, 447
generic, 227
getCanonicalName method, 160-161
getClassLoader method, 161
getComponentType method, 161, 174
getConstructor(s) methods, 162, 168,
171, 227
getDeclaredConstructor(s) methods, 162,
168, 227
getDeclaredField(s) methods, 162
getDeclaredMethod(s) methods, 162, 171
getDeclaringClass method, 161
getEnclosingXxx methods, 161
getEnumConstants method, 227
getField(s) methods, 162, 168
getInterfaces method, 161
getMethod(s) methods, 162, 168, 171
getModifiers method, 161
getName method, 159-161
getPackage, getPackageName methods, 161
getResource method, 163, 435
getResourceAsStream method, 161-162

getSimpleName method, 161
getSuperclass method, 161, 227
getTypeName method, 161
getTypeParameters method, 228
isxxx methods, 161, 174
newInstance method, 171, 227
toString, toGenericString methods, 161
class declarations
annotations in, 380, 389
initialization blocks in, 72-73
class files, 4, 163
paths of, 79
processing annotations in, 398
class literals, 160
no annotations for, 382
no type variables in, 221
class loaders, 163-164
class objects, 160
class path, 80-81
problems with, 471
.class suffix, 160
ClassCastException, 104, 221
classes, 2, 60
abstract, 103, 108, 141-142
accessing from a different module, 489
adding functionality to, 77
adding to packages, 83
anonymous, 130-131
companion, 106
compiling on the fly, 446
constructing objects of, 14
deprecated, 93
documentation comments for, 90-92
encapsulation of, 469-470
enumerating members of, 158,
168-169
evolving, 324
extending, 136-145
in JavaScript, 459-460
fields of, 135
final, 141
generic, 45
immutable, 28, 347
implementing, 65-69, 153
importing, 83-84
inner, 87-89



classes (cont.) code element (HTML), in documentation
instances of, 6, 65, 78 comments, 91
loading, 169 code generator tools, 388
local, 129-130 code points, 31, 290
members of, 135 turning a string into, 263
naming, 14-15, 78, 159 code units, 13, 31, 279
nested, 85-90, 382 in regular expressions, 311
not known at compile time, 160, 175 codePoints method (CharSequence), 279
protected, 142-143 codePoints, codePointXxx methods (String),

public, 83, 476 31-32

static initialization of, 164 Collator class, 27

system, 195 methods of, 432

testing, 83 collect method (Stream), 271-272, 279

utility, 83, 165 Collection interface, 106, 236

wrapper, 46—47
classes win rule, 151
classifier functions, 274
(ClassLoader class
defineClass method, 486
extending, 447
findClass, loadClass methods, 164
setXxxAssertionStatus methods, 195
classloader inversion, 165
ClassNotFoundException, 184
CLASSPATH environment variable, 82
clear method
of BitSet, 249
of Collection, 236
of Map, 246
clone method
of Arraylist, 154
of Enum, 156
of Message, 153-154
of Object, 143, 146, 151-154, 171
protected, 152
Cloneable interface, 153
CloneNotSupportedException, 153—-154,
156
cloning, 151-154
close method
of AutoCloseable, 188
of PrintWriter, 187-188
throwing exceptions, 188
Closeable interface, 104
close method, 188
closures, 125

add method, 236

addAll method, 214, 236

clear method, 236

contains, containsAll, isEmpty methods,
237

iterator, spliterator methods, 237

parallelStream method, 237, 260-261,
280, 348

remove, removeXxx, retainAll methods, 236

size method, 237

stream method, 237, 260-261

toArray method, 237

collections, 235-254

generic, 254

iterating over elements of, 260-261
mutable, 253

processing, 239

serializable, 319

threadsafe, 354

unmodifiable views of, 253-254
vs. streams, 261

with given elements, 252

Collections class, 106, 239

addAll method, 239

binarySearch method, 240

copy method, 239

disjoint method, 239

fill method, 49, 239

frequency method, 239

index0fSubList, lastIndexOfSublList
methods, 240

nCopies method, 237, 239



replaceAll method, 239 compareTo method
reverse, shuffle methods, 49, 240 of Enum, 156
rotate, swap methods, 240 of Instant, 403
sort method, 49, 215, 240 of String, 26-27, 109, 431
synchronizedXxx, unmodifiableXxx methods, compareToIgnoreCase method (String), 117
240 compareUnsigned method (Integer, Long), 20
Collector interface, 272 compatibility, drawbacks of, 216
Collectors class, 85 Compilable interface, 452
counting method, 275 compilation, 4
filtering method, 277 CompilationTask interface, 444
flatMapping method, 276 call method, 445
groupingBy method, 274-277 compile method (Pattern), 315, 318
groupingByConcurrent method, 275, 282 compiler
joining method, 272 instruction reordering in, 343
mapping method, 276 invoking, 444
maxBy, minBy methods, 276 compile-time errors, 15
partitioningBy method, 275, 277 completable futures, 335-340
reducing method, 277 combining, 340
summarizingXxx methods, 272, 276 composing, 337-340
summingXxx methods, 276 interrupting, 337
toCollection, toList methods, 272 CompletableFuture class, 335-340
toConcurrentMap method, 274 acceptEither, applyToEither methods,
toMap method, 273-274 339-340
toSet method, 272, 275 allof, anyof methods, 339-340
con global object (JavaScript), 454 cancel method, 337
command-line arguments, 49-50 complete, completeExceptionally methods,
comments, 3 336
documentation, 90-95 exceptionally method, 338-339
commonPool method (ForkJoinPool), 335 handle method, 339
companion classes, 106 isDone method, 336
Comparable interface, 109-111, 155, 215, runAfterXxx methods, 339-340
242 supplyAsync method, 335-337
compareTo method, 109 thenAccept method, 335, 339
streams of, 265 thenAcceptBoth, thenCombine methods,
with priority queues, 251 339-340
Comparator interface, 85, 111-112, thenApply, thenApplyAsync, thenCompose

127-129, 242
comparing, comparingXxxmethods, 128-129
naturalOrder method, 129
nullsFirst, nullsLast methods, 129
reversed method, 128
reverseOrder method, 129
streams of, 265
thenComparing method, 128-129
with priority queues, 251
compare method (Integer, Double), 110

methods, 337-339

thenRun method, 339

whenComplete method, 336, 338—-339
CompletionStage interface, 339
compose method (functional interfaces),

121

computations

asynchronous, 335-341

mutator, 62

reproducible floating-point, 20



Index

computations (cont.)
with arbitrary precision, 13
compute, computeIfXxx methods (Map), 245
concat method (Stream), 265
concatenation, 24-25
objects with strings, 147
concurrent access errors, 126
concurrent programming, 329-369
for scripts, 449
strategies for, 346
ConcurrentHashMap class, 350-352, 362
compute method, 350-352
computeIfXxx, forEachXxx, merge, putIfAbsent,
reduceXxx, searchXxx methods, 351
keySet, newKeySet methods, 354
no null values in, 244
ConcurrentModificationException, 241, 350
ConcurrentSkipListXxx classes, 354
conditional operator, 22
configuration files, 439-441
editing, 199-200
locating, 162
resolving paths for, 299
confinement, 346
connect method (URLConnection), 306
Console class, 33
console, displaying fonts on, 438
ConsoleHandler class, 200, 203
constants, 15-16, 105
naming, 15
static, 75-76
using in another class, 16
Constructor interface, 168-169
getModifiers, getName methods, 168
newInstance method, 171-172
constructor references, 118-119
annotating, 382
constructors, 69-74
annotating, 224, 380-381
documentation comments for, 90
executing, 70
for subclasses, 139
implementing, 69-70
in abstract classes, 142
invoking another constructor from, 71
no-argument, 73, 139, 171

overloading, 70-71

public, 70, 168

references in, 348
Consumer interface, 121
contains method (String), 28
contains, containsAll methods (Collection),

237

containsXxx methods (Map), 246
Content-Type header, 292
context class loaders, 164-166
continue statement, 40-41
control flow, 36-43
conversion characters, 34-35
cooperative cancellation, 364
copy method

of Collections, 239

of Files, 290, 301-302, 305
copyof method (Arrays), 48
CopyOnWriteArrayXxx classes, 354
CORBA (Common Object Request

Broker Architecture), 470

count method (Stream), 261, 266
counters

atomic, 354-357

de/incrementing, 189
counting method (Collectors), 275
country codes, 275, 424
covariance, 211
createBindings method (ScriptEngine), 449
createInstance method (Util), 165
createTempXxx methods (Files), 301
createXxx methods (Files), 300
critical sections, 346, 357, 363
Crockford, Douglas, 451
currencies, 428-429

formatting, 433
Currency class, 428
current method (ProcessHandle), 370

D

d
conversion character, 34
formatting symbol (date/time), 416
D suffix, 12
\d, \D, in regular expressions, 312
daemon threads, 366



Index

databases, 377

annotating access to, 388

persisting objects in, 479
DataInput/Output interfaces, 295-296

read/writeXxx methods, 296-297, 322
DataXxxStream classes, 296
Date class, 401, 416-417
DateFormat class, 429
dates

computing, 407-408

formatting, 413-416, 422, 429-431,

433

local, 404-407

nonexistent, 407, 412, 430

parsing, 415
datesUntil method (LocalDate), 406—-407
DateTimeFormat class, 429-431
DateTimeFormatter class, 413-416

and legacy classes, 417

format method, 413, 430

ofLocalizedXxx methods, 413, 430

ofPattern method, 415

parse method, 415

toFormat method, 415

withLocale method, 413, 430
DateTimeParseException, 430
daylight savings time, 410-413
DayOfWeek enumeration, 61, 406—407,

411

getDisplayName method, 415, 430

day0OfWeekInMonth method
(TemporalAdjusters), 408

deadlocks, 346, 358, 362-363
debugging

messages for, 183

overriding methods for, 141

primary arrays for, 49

streams, 266

threads, 366

using anonymous subclasses for,

143-144

with assertions, 194
DecimalFormat class, 78

number format patterns of, 433
declaration-site variance, 215
decomposition (for classes), 52-54

decomposition modes (for characters),
432

decrement operator, 19
decrementExact method (Math), 20
deep copies, 153
deepToString method (Arrays), 147
default label (in switch), 37, 159
default methods, 106-108

conflicts of, 107-108, 144-145

in interfaces, 151
default modifier, 106, 385
defaultCharset method (Charset), 292, 438
defaultXxxObject methods (ObjectXxxStream),

322

defensive programming, 193
deferred execution, 119-120
defineClass method (ClassLoader), 486
delete, deleteIfExists methods (Files), 301
delimiters, for scanners, 294
aDeprecated annotation, 93, 386—387
ddeprecated tag (javadoc), 93, 387
Deque interface, 238, 250
destroy, destroyForcibly methods

of Process, 369

of ProcessHandle, 370
DiagnosticCollector class, 447
DiagnosticlListener interface, 447
diamond syntax (<>)

for array lists, 45

for constructors of generic classes, 209
directories, 298

checking for existence, 300, 302

creating, 300-302

deleting, 301, 304-305

moving, 301

temporary, 301

user, 299

visiting, 302-305

working, 367
directory method (ProcessBuilder), 367
disjoint method (Collections), 239
displayName method (Charset), 438
distinct method (Stream), 265, 282
dividedBy method (Duration), 404
divideUnsigned method (Integer, Long), 20
division, 18

507



Index

do statement, 38
doc-files directory, 91
documentation comments, 90-95
@bocumented annotation, 387, 389
domain names
for modules, 472
for packages, 79
dot notation, 6, 16
double brace initialization, 144
Double class, 46
compare method, 110
equals method, 149
isFinite, isInfinite methods, 13
NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY
values, 13
parseDouble method, 27
toString method, 27
double type, 12-13
atomic operations on, 357
functional interfaces for, 122
streams of, 279
type conversions of, 20-22
DoubleAccumulator, DoubleAdder classes,
357
DoubleConsumer, DoubleXxxOperator,
DoublePredicate, DoubleSupplier,
DoubleToXxxFunction interfaces, 122
DoubleFunction interface, 122, 220
doubles method (Random), 280
DoubleStream class, 279-280
DoubleSummaryStatistics class, 272, 280
doublevalue method (Number), 428
downstream collectors, 275-277, 282
Driver.parentLogger method, 488
dropwhile method (Stream), 265
Duration class
between method, 403
dividedBy, isZero, isNegative, minus,
minusXxx, multipliedBy, negated, plus,
plusXxx methods, 404
immutability of, 347, 404
of Xxx methods, 403, 405, 413
toXxx methods, 403
dynamic method lookup, 139-140,
218-219
dynamically typed languages, 456

E

E constant (Math), 20
e E
conversion characters, 34
formatting symbols (date/time), 416
\e, \E, in regular expressions, 311
Eclipse, 5
ECMAScript standard, 452, 459
edu global object (JavaScript), 454
effectively final variables, 126
efficiency, and final modifier, 141
Element interface, 395
element method (BlockingQueue), 353
elements (in annotations), 378—-379, 385
else statement, 36
en element (HTML), in documentation
comments, 91
Emacs text editor, 453
empty method
of Optional, 269
of Stream, 262
empty string, 26, 147
concatenating, 27
encapsulation, 60, 469-471, 479
encodings. See character encodings
end method (Matcher, MatchResult), 315-316
<<END, in shell scripts, 463
endsWith method (String), 28
engine scope, 449
enhanced for loop, 47, 52, 126
for collections, 241
for enumerations, 155
for iterators, 167
for paths, 300
entering, exiting methods (Logger), 197
Entry class, 217
entrySet method (Map), 246
Enum class, 155-156
enum instances
adding methods to, 157
construction, 156
referred by name, 159
enum keyword, 16, 154
enumeration sets, 250
enumerations, 154-159
annotating, 380



comparing, 155
constructing, 156
defining, 16
nested inside classes, 158
serialization of, 323
static members of, 157-158
traversing instances of, 155
using in switch, 158
EnumMap, EnumSet classes, 250
$ENV, in shell scripts, 463
environment variables, modifying, 368
epoch, definition of, 402
equality, testing for, 22
equals method
final, 150
for subclasses, 149
for values from different classes, 149
null-safe, 149
of Arrays, 149
of Double, 149
of Instant, 403
of Object, 146, 148-150
of Objects, 149
of String, 25-26
of wrapper classes, 47
overriding, 148-150
symmetric, 150
equalsIgnoreCase method (String), 26
$ERR, in shell scripts, 462
Error class, 183
error messages, for generic methods, 210
eval method (ScriptEngine), 449-451
even numbers, 18
EventHandler interface, 113
Exception class, 183
exceptionally method (CompletableFuture),
338-339
exceptions, 182-193
and generic types, 225-226
annotating, 382
catching, 186-190
in JavaScript, 461
chaining, 190-191
checked, 171, 183-186
combining in a superclass, 185
creating, 184

documenting, 186

hierarchy of, 183-185

logging, 198

rethrowing, 189-191

suppressed, 189

throwing, 182-183

uncaught, 192

unchecked, 183
exec method (Runtime), 367
Executable class

getModifiers method, 172

getParameters method, 169
ExecutableElement interface, 395
ExecutionException, 333
Executor interface, 338
executor services, 331

default, 335
ExecutorCompletionService class, 334
Executors class, 331
ExecutorService interface, 445

execute method, 331

invokeAll, invokeAny methods, 334
exists method (Files), 300, 302
exit function (shell scripts), 464
$EXIT, in shell scripts, 462
exitvalue method (Process), 369
exports keyword, 473, 476-479

qualified, 489
exportSubtree method (Preferences), 440
extends keyword, 104, 136, 210-214
Externalizable interface, 322

F
f conversion character, 34
F suffix, 12
\f, in regular expressions, 311
factory methods, 70, 78
failures, logging, 190
falling through, 37
false value (boolean), 14
as default value, 71, 74
Field interface, 168-169
get, getXxx, set, setXxx methods, 170,
172
getModifiers, getName method, 168, 172
getType method, 168



Index

fields (instance and static variables), 135
enumerating, 168-169
final, 344
provided, 143
public, 168
retrieving values of, 169-171
setting, 170
transient, 321
File class, 300
file attributes
copying, 301
filtering paths by, 303
file handlers
configuring, 201-202
default, 200
file managers, 446
file pointers, 296
file.encoding system property, 292
file.separator system property, 248
FileChannel class
get, getXxx, open, put, putXxx methods,
297
lock, tryLock methods, 298
FileFilter class, 120
FileHandler class, 200-203
FileNotFoundException, 183
files
archiving, 305
channels to, 297
checking for existence, 183, 300-302
closing, 187
copying/moving, 301-302
creating, 299-302
deleting, 301
empty, 300
encoding of, 290-291
locking, 297-298
memory-mapped, 297
missing, 447
random-access, 296-297
reading from/writing to, 33, 183, 289
temporary, 301
Files class
copy method, 290, 301-302, 305
createTempXxx methods, 301
createXxx methods, 300

delete, deleteIfExists methods, 301
exists method, 300, 302
find method, 302-303
isXxx methods, 300, 302
lines method, 263, 293
list method, 302-303
move method, 301-302
newBufferedReader method, 294, 448
newBufferedWriter method, 294, 302
newXxxStream methods, 288, 302, 320
read, readNBytes methods, 289
readAl1Bytes method, 289, 293
readAllLines method, 293
walk method, 302-305
walkFileTree method, 302, 304
write method, 295, 302
FileSystem, FileSystems classes, 305
FileTime class, 417
FileVisitor interface, 304
fill method
of Arrays, 49
of Collections, 49, 239
filter method (Stream), 261-263, 267
Filter interface, 202
filtering method (Collectors), 277
final fields, 344
final methods, 347
final modifier, 15, 73, 141
final variables, 343, 347
finalize method
of Enum, 156
of Object, 146
finally statement, 189-190
for locks, 358
financial calculations, 13
find method (Files), 302-303
findAll method (Scanner), 316
findAny method (Stream), 267
findClass method (ClassLoader), 164
findFirst method (Stream), 168, 267
fine method (Logger), 197
first method (SortedSet), 243
first day of week, 431
firstDayOfXxx methods (TemporalAdjusters),
408
flag bits, sequences of, 248



flatMap method
general concept of, 264
of Optional, 269-271
of Stream, 264
flatMapping method (Collectors), 276
flip method (BitSet), 249
Float class, 46
float type, 12-13
streams of, 279
type conversions of, 20-22
floating-point types, 12-13
and binary number system, 13
comparing, 110
division of, 18
formatting for output, 34
in hexadecimal notation, 13
type conversions of, 20-22
floor method (NavigableSet), 243
floorMod method (Math), 19
fonts, missing, 438
for statement, 39
declaring variables for, 42
enhanced, 47, 52, 126, 155, 241, 300
multiple variables in, 39
for each loop (JavaScript), 458
forEach method
of Arraylist, 117
of Map, 246
forEach, forEachOrdered methods (Stream),
271
forkachXxx methods (ConcurrentHashMap),
352
ForkJoinPool class, 338
commonPool method, 335
forLanguageTag method (Locale), 426
format method
of DateTimeFormatter, 413, 430
of MessageFormat, 433—-435
of String, 427
Format class, 417
format specifiers, 34
formatted output, 33-36
Formatter class, 203
formatters, for date/time values,
414-415
forms, posting data from, 307-309

forName method
of Charset, 292
of Class, 160-161, 164-165, 184, 192,
447
frequency method (Collections), 239
from method (Instant, ZonedDateTime), 416
full indicator, in string templates, 433
Function interface, 121, 273
function keyword (JavaScript), 458
function types, 114
structural, 120
functional interfaces, 115-116
as method parameters, 213-214
common, 121
contravariant in parameter types, 214
for primitive types, 122
implementing, 123
@FunctionalInterface annotation, 123, 386,
388-389
functions, 60
higher-order, 127-129
Future interface, 334
cancel, isCancelled, isDone methods, 333
get method, 333, 335
futures, 333-335
completable, 335-340

G

6 formatting symbol (date/time), 416
g, G conversion characters, 34
\G, in regular expressions, 314
%g pattern variable, 202
garbage collector, 251
generate method (Stream), 262, 279
@Generated annotation, 387-388
generators, converting to streams, 281
generic classes, 45, 208-209
constructing objects of, 209
information available at runtime, 227
instantiating, 209
generic collections, 254
generic constructors, 228
generic methods, 209-210
calling, 210
declaring, 210
information available at runtime, 227



generic type declarations, 228-229
generic types, 110
and exceptions, 225-226
and lambda expressions, 213
and reflection, 226-229
annotating, 381
arrays of, 118
casting, 220
in JVM, 216-219
invariant, 212-213
restrictions on, 220-226
GenericArrayType interface, 228
get method
of Array, 174
of Arraylist, 46
of BitSet, 249
of Field, 170, 172
of FileChannel, 297
of Future, 333, 335
of List, 238
of LongAccumulator, 356
of Map, 243, 245
of Optional, 269-271
of Path, 298-300
of Preferences, 440
of Serviceloader.Provider, 167
of Supplier, 121
of Threadlocal, 365
GET requests, 308
getAndXxx methods (AtomicXxx), 355
getAnnotation, getAnnotationsByType methods
(AnnotatedConstruct), 395
getAnnotationXxx methods
(AnnotatedElement), 392-393
getAsXxx methods
of OptionalXxx, 280
of XxxSupplier, 122
getAudioClip method (Applet), 163
getAvailableCurrencies method (Currency),
428
getAvailableIds method (Zoneld), 410
getAvailableLocales method (Locale), 425
getAverage method (XxxSummaryStatistics),
272
getBundle method (ResourceBundle), 436—438
getCanonicalName method (Class), 160-161

getClass method (Object), 141, 146, 149,
159, 221, 227
getClassLoader method (Class), 161
getComponentType method (Class), 161, 174
getConstructor(s) methods (Class), 162,
168, 171, 227
getContents method (ListResourceBundle),
437
getContextClassLoader method (Thread),
165
getCountry method (Locale), 274
getCurrencyInstance method (NumberFormat),
427
getDayOf Xxx methods
of LocalDate, 61, 406—407
of LocalTime, 409
of ZonedDateTime, 411
getDeclaredAnnotationXxx methods
(AnnotatedElement), 392-393
getDeclaredConstructor(s) methods (Class),
162, 168, 227
getDeclaredField(s) methods (Class), 162
getDeclaredMethod(s) methods (Class), 162,
171
getDeclaringClass method
of Class, 161
of Enum, 156
getDefault method (Locale), 426, 436
getDisplayName method
of Currency, 429
of DayOfWeek, Month, 415, 430
of Locale, 426
getElementsAnnotatedWwith method
(RoundEnvironment), 395
getEnclosedElements method (TypeElement),
395
getEnclosingXxx methods (Class), 161
getEngineXxx methods (ScriptEngineManager),
448
getEnumConstants method (Class), 227
getErrorStrean method (Process), 368
getField(s) methods (Class), 162, 168
getFileName method (Path), 300
getFilePointer method (RandomAccessFile),
297
getFirstDayOfWeek method (Calendar), 431



getGlobal method (Logger), 195
getHead method (Formatter), 203
getHeaderFields method (URLConnection), 307
getInputStream method
of URL, 306
of URLConnection, 307
getInstance method
of Collator, 432
of Currency, 428
getInterfaces method (Class), 161
getISOXxx methods (Locale), 425
getlength method (Array), 174
getLogger method (Logger), 196
getMax method (XxxSummaryStatistics),
272
getMethod(s) methods (Class), 162, 168,
171
getMethodCallSyntax method
(ScriptEngineFactory), 451
getModifiers method
of Class, 161
of Constructor, 168
of Executable, 172
of Field, 168, 172
of Method, 168
getMonthXxx methods
of LocalDate, 61, 406
of LocalTime, 409
of ZonedDateTime, 412
getName method
of Class, 159-161
of Constructor, 168
of Field, 168, 172
of Method, 168
of Parameter, 172
of Path, 300
of PropertyDescriptor, 173
getNumberInstance method (NumberFormat),
427
getObject method (ResourceBundle), 437
getOrDefault method (Map), 244-245
getOutputStream method (URLConnection), 306
getPackage, getPackageName methods (Class),
161
getParameters method (Executable), 169
getParent method (Path), 300

getPath method (FileSystem), 305
getPercentInstance method (NumberFormat),
427
getProperties method (System), 248
getProperty method (System), 163
getPropertyDescriptors method (BeanInfo),
173
getPropertyType, getReadMethod methods
(PropertyDescriptor), 173
getQualifiedName method (TypeElement), 395
getResource method (Class), 163, 435
getResourceAsStream method
of Class, 161-162
of Module, 481
getRoot method (Path), 300
getSimpleName method
of Class, 161
of Element, 395
getString method (ResourceBundle), 436
getSuperclass method (Class), 161, 227
getSuppressed method (IOException), 189
getSymbol method (Currency), 429
getSystemJavaCompiler method (ToolProvider),
444
getTail method (Formatter), 203
getTask method (JavaCompiler), 444-445
getType method (Field), 168
getTypeName method (Class), 161
getTypeParameters method (Class), 228
getURLs method (URLClassLoader), 163
getValue method (Localbate), 61
getWriteMethod method (PropertyDescriptor),
173
getXxx methods (Array), 174
getXxx methods (Field), 170, 172
getXxx methods (FileChannel), 297
getXxx methods (Preferences), 440
getXxxInstance methods (NumberFormat), 78
getXxxStream methods (Process), 367
getYear method
of LocalDate, 406
of LocalTime, 409
of ZonedDateTime, 412
GlassFish administration tool, 463
Goetz, Brian, 329
Gregorian calendar reform, 406



Index

GregorianCalendar class, 416-417
group method (Matcher, MatchResult), 315,
317
grouping, 274-275
classifier functions of, 274
reducing to numbers, 275
groupingBy method (Collectors), 274-277
groupingByConcurrent method (Collectors),
275, 282
GUI (graphical user interface)
callbacks in, 112-113
long-running tasks in, 340-341
missing fonts in, 438

H

H formatting symbol (date/time), 416
h, H conversion characters, 35
\h, \H, in regular expressions, 312
%h pattern variable, 202
handle method (CompletableFuture), 339
Handler class, 203
Hansen, Per Brinch, 360
hash method (Object), 151
hash codes, 150-151
computing in String class, 150
formatting for output, 35
hash functions, 150-151, 242
hash maps
concurrent, 350-352
weak, 251
hash tables, 242
hashCode method
of Arrays, 151
of Enum, 156
of Object, 146, 148, 150-151
HashMap class, 243
null values in, 244
HashSet class, 242
Hashtable class, 360
hasNext method (Iterator), 240
hasNext, hasNextXxx methods (Scanner), 33,
293
headMap method (SortedMap), 253
headSet method
of NavigableSet, 243
of SortedSet, 243, 253

heap pollution, 221, 254
Hello, World! program, 2
modular, 472-474
helper methods, 216
here documents, 463
hexadecimal numbers, 11, 13
formatting for output, 34
higher method (NavigableSet), 243
higher-order functions, 127-129
hn, hr elements (HTML), in
documentation comments, 91
Hoare, Tony, 360
HTML documentation, generating,
398
HTTP connections, 306-309
HttpClient class, 306—-309, 335
enabling logging for, 309
HttpHeaders class, 309
HttpResponse class, 308—-309
HttpURLConnection class, 306—307
hyperlinks
in documentation comments, 93-94
regular expressions for, 310

|

[T prefix, 147, 160

IANA (Internet Assigned Numbers
Authority), 410

IDE (integrated development
environment), 3, 5

identity method

of Function, 121, 273
of UnaryOperator, 121

identity values, 278

if statement, 36

ifPresent, ifPresentOrtlse methods
(optional), 268

IllegalArgumentException, 194

IllegalStateException, 273, 353

ImageIcon class, 163

images, locating, 162

img element (HTML), in documentation
comments, 91

immutability, 346

immutable classes, 347

implements keyword, 101-102



import statement, 7, 83—-84

no annotations for, 382

static, 85
import static statement, 159
importPreferences method (Preferences), 441
InaccessibleObjectException, 170, 481
increment method (LongAdder), 356
increment operator, 19
incrementAndGet method (AtomicXxx), 355
incrementExact method (Math), 20
index0f method

of List, 238

of String, 28
index0fSubList method (Collections), 240
info method

of Logger, 195

of ProcessHandle, 370
inheritance, 136-154

and default methods, 144-145

classes win rule, 145, 151
dInherited annotation, 387, 389
initCause method (Throwable), 191
initialization blocks, 72-73

static, 76
inlining, 141
inner classes, 87-89

anonymous, 130-131

capturing this references in, 118

invoking methods of outer classes, 88

local, 126, 129-131

syntax for, 89
input

reading, 32-33, 293-294

redirecting, 449

setting locales for, 427

splitting along delimiters, 317
input prompts, 33
input streams, 288

copying, 290

obtaining, 288

reading from, 289
InputStream class, 289

transferTo method, 290
InputStreamReader class, 293
INSTANCE instance (enum types), 323
instance methods, 6, 66—67

instance variables, 65, 67—-68
annotating, 380
comparing, 149
default values of, 71-72
final, 73
in abstract classes, 142
in JavaScript, 460
initializing, 72-73, 139
not accessible from static methods, 77
of deserialized objects, 322-324
protected, 143
setting, 70
transient, 321
vs. local, 72
instanceof operator, 104, 140, 149
annotating, 382
instances, 6
Instant class, 402
and legacy classes, 417
compareTo, equals methods, 403
from method, 416
immutability of, 347, 404
minus, minusXxx, plus, plusXxx methods,
404
now method, 403
instruction reordering, 343
int type, 10-12
functional interfaces for, 122
processing values of, 120
random number generator for, 6, 38
streams of, 279
type conversions of, 20-22
using class literals with, 160
IntBinaryOperator interface, 122
IntConsumer interface, 120, 122
Integer class, 46
compare method, 110
MIN_VALUE, MAX_VALUE constants, 11
parseInt method, 27, 184
toString method, 27
unsigned division in, 12
xxxUnsigned methods, 20
integer indicator, in string templates, 433
integer types, 10-12
comparing, 110
computing, 18, 20



Index

integer types (cont.)
formatting for output, 34
in hexadecimal notation, 11
reading/writing, 296-297
type conversions of, 20-22
values of:
even/odd, 18
signed, 12
dinterface declaration, 384-385
interface keyword, 101
interface methods, 106-108
interfaces, 100-105
annotating, 380-381
compatibility of, 107
declarations of, 100-101
defining variables in, 105
documentation comments for, 90
evolution of, 106
extending, 104
functional, 115-116
implementing, 101-103
in JavaScript, 459-460
in scripting engines, 451
multiple, 105
methods of, 101-102
nested, enumerating, 168-169
no instance variables in, 105
no redefining methods of the Object
class in, 151
views of, 252
Internet Engineering Task Force, 423
interrupted method (Thread), 364
interrupted status, 364
InterruptedException, 363—364
intersects method (BitSet), 249
IntFunction interface, 122, 220
IntPredicate interface, 122
intrinsic locks, 358-360
ints method (Random), 280
IntSequence interface, 129
IntStream class, 279-280
parallel method, 280
IntSummaryStatistics class, 272, 280
IntSupplier, IntToXxxFunction,
IntUnaryOperator interfaces, 122
InvalidClassException, 324

InvalidPathException, 298
Invocable interface, 450
InvocationHandler interface, 175
invoke method (Method), 171-172
invokeXxx methods (ExecutorService), 334
I0Exception, 183, 293

addSuppressed, getSuppressed methods, 189
isAfter, isBefore methods

of LocalDate, 406

of LocalTime, 409

of ZonedDateTime, 412
isAlive method

of Process, 369

of ProcessHandle, 370
isCancelled method (Future), 333
isbone method

of CompletableFuture, 336

of Future, 333
isEmpty method

of BitSet, 249

of Collection, 237

of Map, 246
iskqual method (Predicate), 121-122
isFinite, isInfinite methods (Double), 13
isInterrupted method (Thread), 364
isLoggable method (Filter), 202
isNamePresent method (Parameter), 172
isNull method (0Objects), 117
ISO 8601 format, 388
ISO 8859-1 encoding, 292, 295
isPresent method (Optional), 269-271
isXxx methods (Class), 161, 174
isXxx methods (Files), 300, 302
isXxx methods (Modifier), 162, 168
isZero, isNegative methods (Duration), 404
Iterable interface, 240-241, 300, 458

iterator method, 240
iterate method (Stream), 262, 266, 279,

349

iterator method

of Collection, 237

of Serviceloader, 167

of Stream, 271
Iterator interface

next, hasNext methods, 240

remove, removeIf methods, 241



Index

iterators, 240-241, 271
converting to streams, 281
for random numbers, 459
invalid, 241
traversing, 167
weakly consistent, 350

J
JAR files, 80-81
dependencies in, 491
for split packages, 483
manifest for, 484—-485
modular, 482-484
processing order of, 82
resources in, 163, 435
scanning for deprecated elements, 387
jar program, 80-81
-C option, 482-483
-d option, 482-483
--module-version option, 483
Java EE platform, 335, 486-487
Java Persistence Architecture, 377
Java Platform Module System, 469-493
layers in, 483
migration to, 484-486
no support for versioning in, 471, 474,
483
service loading in, 490-491
java program, 4
--add-exports, --add-opens options, 486
--add-module option, 484, 487
-cp (--class-path, -classpath) option,
81-82
-disableassertions (-da) option, 195
-enableassertions (-ea) option, 194
-enablesystemassertions (-esa) option, 195
--illegal-access option, 486
-jar option, 81
-m, -p (--module, --module-path) options,
473, 483
option files for, 487
specifying locales in, 426
Java programming language
compatibility with older versions of,
145, 216
online API documentation on, 28-30

portability of, 19
strongly typed, 14
Unicode support in, 30-32
uniformity of, 3, 108
java, javax, javafx global objects
(JavaScript), 454
java.activation module, 486487
java.awt package, 83, 471
java.base module, 475
java.class.path, java.home, java.io.tmpdir
system properties, 248
java.corba module, 486—487
java.desktop module, 474
Java.extend function (JavaScript), 459
Java.from function (JavaScript), 457
java.lang, java.lang.annotation packages,
386
java.lang.reflect package, 168
java.logging module, 488
java.sql package, 417
Java.super function (JavaScript), 460
java.time package, 401-417
Java.to function (JavaScript), 457
java.transaction module, 486-487
Java.type function (JavaScript), 454-455
java.util package, 7, 350
java.util.concurrent package, 350, 353
java.util.concurrent.atomic package, 355
java.util.logging package, 196
java.version system property, 248
java.xml.bind, java.xml.ws,
java.xml.ws.annotation modules,
486-487
JavaBeans, 172-173
javac program, 4
-author option, 95
-cp (--class-path, -classpath) option, 81
-d option, 80, 94
-encoding option, 438
-link, -linksource options, 95
-parameters option, 169
-processor option, 394
-version option, 95
-Xlint option, 37
-XprintRounds option, 398
JavaCompiler.getTask method, 444-445

517


http://java.io.tmpdir

Index

javadoc program, 90-95
including annotations in, 389
JavaFileObject interface, 445
JavaFX platform, 112-113
and threads, 341
distributed over multiple modules,
489
javafx.base, javafx.controls modules,
487-488
javan.log files, 200
JavaScript programming language
accessing classes of, from Java, 451
anonymous functions in, 458
anonymous subclasses in, 459
arrays in, 457-458
arrow function syntax, 459
bracket notation in, 454, 457-458
calling static methods in, 455
catching Java exceptions in, 461
constructing Java objects in,
454-455
delimiters in, 450
extending Java classes in, 459-460
implementing Java interfaces in,
459-460
inner classes in, 455
instance variables in, 460
lists and maps in, 458
methods in, 453-454
numbers in, 456
objects in, 456
REPL for, 452-453
semicolons in, 450
strings in, 456
superclasses in, 460
JavaServer Faces framework, 246
javax.annotation package, 386
javax.swing package, 474
JAXB (Java Architecture for XML
Binding), 479
jconsole program, 200
jdeprscan program, 387
jdeps program, 491
JDK (Java Development Kit), 3
obsolete features in, 470
jdk.incubator.http package, 306

jjs program, 452-453
command-line arguments in, 463
executing commands in, 462

jlink program, 492

jmod program, 493

job scheduling, 251

join method
of String, 25
of Thread, 363

joining method (Collectors), 272

JPA (Java Persistence API), 479

JShell, 7-10
imported packages in, 9-10
loading modules into, 484

JSP (JavaServer Pages), 464

JUnit, 377-378

K

K formatting symbol (date/time), 416
\k, in regular expressions, 313
key/value pairs
adding new keys to, 243
in annotations. See elements
removed by garbage collector, 251
values of, 243
keys method (Preferences), 440
keySet method
of ConcurrentHashMap, 354
of Map, 246, 252
keywords, 15

L

L suffix, 11

[L prefix, 160

labeled statements, 40-41

lambda expressions, 113-116
and generic types, 213
annotating targets for, 388
capturing variables in, 124-127
executing, 119
for loggers, 196
parameters of, 115
processing, 119-123
return type of, 115
scope of, 124
this reference in, 124



throwing exceptions in, 186
using with streams, 263
vs. anonymous functions (JavaScript),
458
with parallel streams, 348
language codes, 275, 424
language model API, 395
last method (SortedSet), 243
lastIndexof method
of List, 238
of String, 28
lastIndex0fSubList method (Collections),
240
lastXxx methods (TemporalAdjusters), 408
lazy operations, 261, 266, 283, 317
leap seconds, 402
leap years, 405-406
legacy code, 416-417
length method
of arrays, 43
of RandomAccessFile, 297
of String, 6, 31
.level suffix, 199
lib/modules file, 493
limit method (Stream), 264, 282
line feed
character literal for, 14
formatting for output, 35
in regular expressions, 314
line.separator system property, 248
lines method
of BufferedReader, 294
of Files, 263, 293
alink tag (javadoc), 93-94
linked lists, 237, 241
LinkedBlockingQueue class, 353, 362
LinkedHashMap class, 246
LinkedList class, 237
list method (Files), 302-303
List interface, 215, 237
add, addAll, get, index0f, lastIndexOf,
listIterator, remove, replaceAll, set,
sort methods, 238
of method, 46, 48, 238, 252
subList method, 238, 253
ListIterator interface, 241

ListResourceBundle class, 437
lists
converting to streams, 281
in Nashorn, 458
mutable, 253
printing elements of, 117
removing null values from, 117
sublists of, 253
unmodifiable views of, 254
little-endian format, 291
load method (Serviceloader), 167
load balancing, 319
loadClass method (ClassLoader), 164
local classes, 129-130
local date/time, 404-410
local variables, 41-43
annotating, 380-381
vs. instance, 72
LocalDate class, 61
and legacy classes, 417
datesUntil method, 406-407
getXxx methods, 61, 406—407
isXxx methods, 406
minus, minusXxx methods, 406—-407
now method, 70, 77, 405-406
of method, 61, 70, 405-406
ofInstant method, 406
parse method, 430
plus, plusXxx methods, 61-62, 64,
406-407
toEpochSecond method, 406
until method, 406
withXxx methods, 406
LocalDateTime class, 410
and legacy classes, 417
atZone method, 410
parse method, 430
Locale class, 273
forLanguageTag method, 426
getAvailableLocales method, 425
getCountry method, 274
getDefault method, 426, 436
getDisplayName method, 426
getISOXxx methods, 425
setDefault method, 426
predefined fields, 425



locales, 273-276, 422-427
date/time formatting for, 429-431
default, 413, 426, 429-430, 436
displaying names of, 426
first day of week in, 431
for template strings, 433-435
formatting styles for, 415, 430
sorting words for, 431-432
specifying, 423-425
weekdays and months in, 415

LocalTime class, 409-410
and legacy classes, 417
final, 141
getXxx, isXxx, minus, minusXxx, now, of,

ofInstant, plus, plusXxx, toXxx, withXxx
methods, 409
parse method, 430

lock method
of FileChannel, 298
of ReentrantLock, 358

locks, 346
error-prone, 347
intrinsic, 358-360
reentrant, 357-358
releasing, 189, 343

log handlers, 200-202
default, 197, 200
filtering/formatting, 202
installing custom, 200
levels of, 200
suppressing messages in, 197

Logger class, 488
addHandler method, 200
entering, exiting methods, 197
fine method, 197
getGlobal method, 195
getLogger method, 196
info method, 195
log method, 197-198
logp, logrb methods, 198
setFilter method, 203
setLevel method, 195, 197, 200
setUseParentHandlers method,

200
throwing method, 198
warning method, 197

loggers
defining, 196
filtering/formatting, 202
hierarchy of, 196
logging, 195-203
configuring, 197-200
enabling/disabling, 197
failures, 190
levels of, 197-200
localizing, 199
overriding methods for, 141
using for unexpected exceptions, 198
Long class, 46
MIN_VALUE, MAX_VALUE constants, 11
unsigned division in, 12
xxxUnsigned methods, 20
long indicator, in string templates, 433
long type, 10-12
atomic operations on, 356-357
functional interfaces for, 122
streams of, 279
type conversions of, 20-22
LongAccumulator class, 356
accumulate, get methods, 356
LongAdder class, 356-357
add, increment, sum methods, 356
LongConsumer, LongXxxOperator, LongPredicate,
LongSupplier, LongToXxxFunction
interfaces, 122
LongFunction interface, 122, 220
longs method (Random), 280
LongStream class, 279-280
LongSummaryStatistics class, 272, 280
long-term persistence, 324
Lookup class, 482
lookup method (MethodHandles), 482
loops, 38-39
exiting, 39-41
infinite, 39

M
m, M formatting symbols (date/time), 416
main method, 2, 6

decomposing, 52-54

string array parameter of, 49
ManagedExecutorService class, 335



Map interface, 238
clear method, 246
compute, computeIfXxx methods, 245
containsXxx methods, 246
entrySet method, 246
forkach method, 246
get, getOrDefault methods, 243, 245
isEmpty method, 246
keySet method, 246, 252
merge method, 244-245
of method, 246, 252
ofEntries method, 252
put method, 243, 245
putAll, putIfAbsent methods, 245
remove, replace methods, 245
replaceAll method, 246
size method, 246
values method, 246, 252
map method
of Optional, 268
of Stream, 263
mapping method (Collectors), 276
maps, 243-246
concurrent, 246, 274
empty, 246
in Nashorn, 458
iterating over, 244
of stream elements, 273-274, 282
order of elements in, 246
views of, 244
unmodifiable , 254
mapToInt method (Stream), 278
mapToXxx methods (XxxStream), 280
marker interfaces, 153
Matcher class, 315-317
quoteReplacement method, 318
replaceAll method, 317-318
replaceFirst method, 318

matcher, matches methods (Pattern), 314

MatchResult interface, 315-318
Math class

E constant, 20

floorMod method, 19

max, min methods, 19

PI constant, 20, 75

pow method, 19, 77

round method, 21

sqrt method, 19

xxxExact methods, 20, 22
max method

of Stream, 266

of XxxStream, 280
MAX_VALUE constant (integer classes), 11
maxBy method

of BinaryOperator, 121

of Collectors, 276
medium indicator, in string templates, 433
memory

allocating, 346

caching, 342

concurrent access to, 343
memory-mapped files, 297
merge method

of ConcurrentHashMap, 351

of Map, 244-245
Message class, 153-154
MessageFormat class, 433—-435
meta-annotations, 384-390
META-INF/MANIFEST.MF file, 484485
META-INF/services directory, 490
Method interface, 168—169

getModifiers, getName methods, 168

invoke method, 171-172
method calls, 6

receiver of, 67
method expressions, 117, 145
method references, 117-118, 221

annotating, 382
MethodHandles.lookup method, 482
methods, 2

abstract, 115, 141-142

accessor, 62

annotating, 224, 380

atomic, 351

body of, 66

chaining calls of, 62

clashes of, 224-225

compatible, 151

declarations of, 65

default, 106-108

deprecated, 93

documentation comments for, 90, 92



methods (cont.)
enumerating, 168-169
factory, 70, 78
final, 141, 347
header of, 65
inlining, 141
instance, 66—67
invoking, 171
modifying functions, 128
mutator, 62, 254, 347
naming, 14-15
native, 76
overloading, 71, 118
overriding, 106, 137-139, 141,
185-186, 387
parameters of, 169
null checks for, 193
passing arrays into, 53
private, 109
proxied, 176
public, 101-102, 168
restricted to subclasses, 142-143
return value of, 2, 66
returning functions, 127
static, 53, 77-78, 85, 105-106
storing in variables, 6
symmetric, 150
synchronized, 359-361
utility, 83
variable number of arguments of, 53
Microsoft Notepad, 291
Microsoft Windows
batch files, 461
path separator, 81, 248
registry, 439
min method
of Math, 19
of Stream, 266
of XxxStream, 280
MIN_VALUE constant (integer classes), 11
minBy method
of BinaryOperator, 121
of Collectors, 276
minus, minusXxx methods
of Instant, Duration, 404
of LocalDate, 406-407

of LocalTime, 409
of ZonedDateTime, 411
Modifier interface
isXxx methods, 162, 168
toString method, 162
modifiers, checking, 168
module keyword, 473
module path, 473, 483-485
Module.getResourceAsStream method, 481
module-info.class file, 473, 482
module-info.java file, 473
modules, 469-493
aggregator, 488
and versioning, 471, 474, 483
annotating, 474
automatic, 484-485
bundling up the minimal set of,
492
declaration of, 472-473
deprecated, 487
documentation comments for, 91, 94
illegal access to, 486
inspecting files in, 493
loading into JShell, 484
naming, 472, 484
open, 481
reflective access for, 169-170
required, 474-476, 487-489
tools for, 491-493
transitive, 487-489
unnamed, 485
monads, 264
monitors (classes), 360
Month enumeration, 405-406, 412
getDisplayName method, 415, 430
MonthDay class, 407
move method (Files), 301-302
multiplication, 18
multipliedBy method (Duration), 404
mutators, 62
and unmodifiable views, 254

N

n
conversion character, 35
formatting symbol (date/time), 416



\n (line feed)
for character literals, 14
in property files, 247-248
in regular expressions, 311-313, 318
name method (Enum), 156
NaN (not a number), 13
Nashorn engine, 448, 452-461
anonymous subclasses in, 459
arrays in, 457-458
catching Java exceptions in, 461
class objects in, 455
extending Java classes in, 459-460
getters/setters in, 454
implementing Java interfaces in,
459-460
instance variables in, 460
lists and maps in, 458
methods in, 453-454
no standard input source in, 450
numbers in, 456
running from command line, 452
shell scripting in, 461-464
strings in, 455
superclasses in, 460
native methods, 76
naturalOrder method (Comparator), 129
navigable maps/sets, 254
NavigableMap interface, 354
NavigableSet interface, 238, 242, 253
methods of, 243
nCopies method (Collections), 237, 239
negate method (Predicate, BiPredicate), 121
negated method (Duration), 404
negatefxact method (Math), 20
NEGATIVE_INFINITY value (Double), 13
negative values, 10
nested classes, 85-90
annotating, 382
enumerating, 168-169
inner, 87-89
public, 86
static, 85-86
new operator, 6, 14, 17, 70
as constructor reference, 118
for anonymous classes, 130
for arrays, 43-44, 50

in JavaScript, 455-459
newBufferedReader method (Files), 294, 448
newBufferedWriter method (Files), 294, 302
newBuilder, newHttpClient methods

(HttpClient), 308, 335
newFileSystem method (FileSystems), 305
newInputStream method (Files), 288, 302,
320
newInstance method
of Array, 174
of Class, 171, 227
of Constructor, 171-172
newKeySet method (ConcurrentHashMap), 354
newline. See line feed
newOutputStream method (Files), 288, 302,
320

newProxyInstance method (Proxy), 175

newXxxThreadPool methods (Executors), 331

next method (Iterator), 240

next, nextOrSame methods
(TemporalAdjusters), 408

next, nextXxx methods (Scanner), 32, 293

nextInt method (Random), 6, 38

nextXxxBit methods (BitSet), 249

nominal typing, 120

noneMatch method (Stream), 267

none0f method (EnumSet), 250

noninterference, of stream operations,
283

aNonNull annotation, 381

normalize method (Path), 299

Normalizer class, 433

NoSuchElementException, 269, 353

notify, notifyAll methods (Object), 146,
361-362

NotSerializableException, 321

now method

of Instant, 403

of LocalDate, 70, 77, 405-406

of LocalTime, 409

of ZonedDateTime, 411
null value, 26, 64

as default value, 71, 74

checking parameters for, 193

comparing against, 149

converting to strings, 147



Index

NullPointerException, 26, 45, 64, 72, 184,
193, 244
vs. Optional, 266
nullsFirst, nullsLast methods (Comparator),
129
Number class, 428
number indicator, in string templates, 433
Number type (JavaScript), 456
NumberFormat class
getXxxInstance methods, 78, 427
not threadsafe, 365-366
parse method, 428
setCurrency method, 429
NumberFormatException, 184
numbers
big, 23-24
comparing, 110
converting to strings, 27
default value of, 71, 74
even or odd, 18
formatting, 34, 422, 427, 433
from grouped elements, 275
in regular expressions, 312
non-negative, 194, 248
printing, 34
random, 6, 38, 262, 264, 280
reading/writing, 293, 296-297
rounding, 13, 21
type conversions of, 20-22
unsigned, 12, 20
with fractional parts, 12-13

0

o conversion character, 34

Object class, 145-154
clone method, 143, 146, 151-154, 171
equals method, 146, 148-150
finalize method, 146
getClass method, 141, 146, 149, 159,

221, 227

hashCode method, 146, 148, 150-151
notify, notifyAll methods, 146, 361-362
toString method, 146-147
wait method, 146, 361-362

object references, 63-64
and serialization, 320

attempting to change, 69
comparing, 148
default value of, 71, 74
nll, 64
passed by value, 69
ObjectInputStream class, 320-321
defaultReadObject method, 322
readfields method, 325
readobject method, 320-323, 325
object-oriented programming, 59-97
encapsulation, 469-470
ObjectOutputStream class, 320
defaultWriteObject method, 322
writeObject method, 320-322
object-relational mappers, 479
objects, 2, 60-64
calling methods on, 6
casting, 103-104
cloning, 151-154
comparing, 47, 148-150
constructing, 6, 69-74, 171-172
in JavaScript, 454-455
converting:
to strings, 146-147
to XML, 480
deep/shallow copies of, 152-154
deserialized, 322-324
externalizable, 322
immutable, 62
initializing variables with, 14
inspecting, 169-171
invoking static methods on, 77
mutable, 73
serializable, 319-321
sorting, 109-111
state of, 60
Objects class
equals method, 149
hash method, 151
isNull method, 117
requireNonNull method, 193
ObjXxxConsumer interfaces, 122
octal numbers, 11
formatting for output, 34
octonions, 31
odd numbers, 18



of method

of EnumSet, 250

of IntStream, 279

of List, 46, 48, 238, 252

of LocalbDate, 61, 70, 405-406

of LocalTime, 409

of Map, 246, 252

of Optional, 269

of ProcessHandle, 370

of Set, 252

of Stream, 261-262

of ZonedDateTime, 410-411
ofDateAdjuster method (TemporalAdjusters),

408

ofDays method (Period), 413
ofEntries method (Map), 252
offer method (BlockingQueue), 353
offsetByCodePoints method (String), 31
OffsetDateTime class, 413
ofInstant method

of LocalDate, 406

of LocalTime, 409

of ZonedDateTime, 411
ofLocalizedXxx methods (DateTimeFormatter),

413, 430

ofNullable method

of Optional, 269

of Stream, 271
ofPattern method (DateTimeFormatter), 415
of Xxx methods (Duration), 403, 405, 413
onExit method

of Process, 369

of ProcessHandle, 370
open keyword, 481
open method (FileChannel), 297
openConnection method (URL), 306
opens keyword, 481

qualified, 489
openStream method (URL), 288
Operation interface, 157
operations

associative, 278

atomic, 346, 351, 354-357, 360

bulk, 352

lazy, 261, 266, 283, 317

parallel, 348-350

performed optimistically, 355
stateless, 281
threadsafe, 350-354
operators, 17-24
precedence of, 17
option files, 487
Optional class, 266—270
creating values of, 269
empty method, 269
flatMap method, 269-271
for empty streams, 277-278
for processes, 370
get method, 269-271
ifPresent, ifPresentOrtlse methods, 268
isPresent method, 269-271
map method, 268
of, ofNullable methods, 269
orElse method, 266-268
orElseXxx methods, 267-268
stream method, 270-271
OptionalXxx classes, 280
or method
of BitSet, 249
of Predicate, BiPredicate, 121
order method (ByteBuffer), 297
ordinal method (Enum), 156
org global object (JavaScript), 454
org.omg.corba package, 470
os.arch, os.name, os.version system
properties, 248
OSGi (Open Service Gateway Initiative),
471
$0UT, in shell scripts, 462
output
formatted, 33-36
redirecting, 449
setting locales for, 427
writing, 294-295
output streams, 288
closing, 290
obtaining, 288
writing to, 290
OutputStream class, 320
write method, 290
OutputStreamwWriter class, 294
a0verride annotation, 138, 386-387



Index

overriding, 137-139
for logging/debugging, 141
overview.html file, 94

P

\p, \P, in regular expressions, 312
package statement, 79
package declarations, 79-80
Package object (JavaScript), 454
package-info.java file, 94, 380
packages, 3, 78-85

accessing, 83, 143, 470, 477-478, 481,

484

adding classes to, 83

annotating, 380-381

default, 79

documentation comments for, 91, 94

exporting, 476-479, 481

naming, 79

not nesting, 79

split, 483
parallel method (XxxStream), 280
parallel streams, 348-349
parallelStream method (Collection), 237,

260-261, 280, 348

parallelXxx methods (Arrays), 49, 349
dparan tag (javadoc), 92
Parameter class, 172
parameter variables, 68

annotating, 380

scope of, 42
ParameterizedType interface, 228
parentLogger method (Driver), 488
parse method

of DateTimeFormatter, 415

of LocalXxx, ZonedDateTime, 430

of NumberFormat, 428
Parse.quote method, 311
parseDouble method (Double), 27
ParseException, 428
parseInt method (Integer), 27, 184
partitioning, 347
partitioningBy method (Collectors), 275,

277

Pascal triangle, 51
passwords, 33

Path interface, 106, 298-300
get method, 298-300
getXxx methods, 300
normalize, relativize methods, 299
resolve, resolveSibling methods, 299
subpath method, 300
toAbsolutePath, toFile methods, 299
path separators, 298
path.separator system property, 248
paths, 298
absolute vs. relative, 298-299
filtering, 303
resolving, 299
taking apart/combining, 300
Paths class, 106
Pattern class
compile method, 315, 318
flags, 318-319
matcher, matches methods, 314
split method, 317
splitAsStream method, 263, 317
pattern variables, 202
PECS (producer extends, consumer super),
214
peek method
of BlockingQueue, 353
of Stream, 266
percent indicator, in string templates, 433
performance
and atomic operations, 355
and combined operators, 19
and memory caching, 343
Period class, 405
ofDays method, 413
@Persistent annotation, 389
PI constant (Math), 20, 75
placeholders, 433-435
platform class loader, 163
platform encoding, 292, 438
plugins, loading, 164
plus, plusXxx methods
of Instant, Duration, 404
of LocalDate, 61-62, 64, 406-407
of LocalTime, 409
of ZonedDateTime, 411-412
Point class, 146-147


http://overview.html

Index

Point2D class (JavaFX), 321
poll method (BlockingQueue), 353
pollXxx methods (NavigableSet), 243
pop method (ArrayDeque), 250
portability, 19
POSITIVE_INFINITY value (Double), 13
POST requests, 308
@PostConstruct annotation, 386, 388
pow method (Math), 19, 77
predefined character classes, 310, 312,
314
@PreDestroy annotation, 386, 388
predicate functions, 275
Predicate interface, 116, 121
and, or, negate methods, 121
isEqual method, 121-122
test method, 121, 213
Preferences class, 439-441
previous method (ListIterator), 241
previous, previousOrSame methods
(TemporalAdjusters), 408
previousXxxBit methods (BitSet), 249
preVisitDirectory, postVisitDirectory
methods (Filevisitor), 304
primitive types, 10-14
and type parameters, 220
attempting to update parameters of,
68
comparing, 149
converting to strings, 147
functions interfaces for, 122
passed by value, 69
streams of, 278-280
wrapper classes for, 46—-47
printStackTrace method (Throwable), 192
PrintStream class, 6, 147, 295
print method, 6, 33, 195, 294-295
printf method, 34-35, 53, 294-295
println method, 6, 32-33, 49, 117,
294-295
PrintWriter class, 294
close method, 187-188
printf method, 427
priority queues, 251
private modifier, 2, 83
for enum constructors, 157

Process class, 366—370
destroy, destroyForcibly methods,
369
exitValue method, 369
getErrorStream method, 368
getXxxStream methods, 367
isAlive method, 369
onExit method, 369
supportsNormalTermination method, 369
toHandle method, 370
waitFor method, 369
ProcessBuilder class, 366—370
directory method, 367
redirectXxx methods, 368
start method, 368
processes, 366—370
building, 367-368
getting info about, 370
killing, 369
running, 368-369
ProcessHandle interface, 370
processing pipeline, 337
Processor interface, 394
Programmer’s Day, 405
programming languages
dynamically typed, 456
functional, 99
object-oriented, 2
scripting, 448
programs
compiling, 3
configuration options for, 247
localizing, 421-441
packaging, 493
responsive, 340
running, 3
testing, 193
promises (in concurrent libraries),
336
properties, 172-173
loading from file, 247
naming, 173
read-only/write-only, 173
testing for, 213
Properties class, 247-248
.properties extension, 435

527



Index

property files
encoding, 247, 437
generating, 398
localizing, 435-437
protected modifier, 142-143
Provider.get, Provider.type methods, 167
provides keyword, 490
Proxy class, 175-176
newProxyInstance method, 175
public modifier, 2, 83
and method overriding, 139
for interface methods, 101-102
push method (ArrayDeque), 250
put method
of BlockingQueue, 353
of FileChannel, 297
of Map, 243, 245
of Preferences, 440
putAll method (Map), 245
putIfAbsent method
of ConcurrentHashMap, 351
of Map, 245
putXxx methods (FileChannel), 297
putXxx methods (Preferences), 440

Q

\Q, in regular expressions, 311

qualified exports, 489

Queue interface, 238, 250
synchronizing methods in, 360
using ArrayDeque with, 250

quote method (Parse), 311

quoteReplacement method (Matcher), 318

R

\r (carriage return)
for character literals, 14
in property files, 248
\r, \R, in regular expressions, 311,
314
race conditions, 281, 344-346
Random class, 6
ints, longs, doubles methods, 280
nextInt method, 6, 38
random numbers, 6, 38, 459
streams of, 262, 264, 280

RandomAccess interface, 237
RandomAccessFile class, 296-297

getFilePointer method, 297

length method, 297

seek method, 296-297
RandomNumbers class, 77
range method (EnumSet), 250
range, rangeClosed methods (XxxStream), 279
ranges, 253

converting to streams, 281
raw types, 217, 220-221
read method

of Files, 289

of InputStream, 289

of InputStreamReader, 293
readAllXxx methods (Files), 289, 293
Reader class, 293
readers, 288
readExternal method (Externalizable), 322
readFields method (ObjectInputStream), 325
readLine function (shell scripts), 464
readLine method

of BufferedReader, 294

of Console, 33
read\Bytes method (Files), 289
readobject method (ObjectInputStream),

320-323, 325
readPassword method (Console), 33
readResolve method (Serializable),
322-323

readXxx methods (DataInput), 296-297, 322
receiver parameters, 67, 383
redirection syntax, 33
redirectXxx methods (ProcessBuilder), 368
reduce method (Stream), 277-279
reduceXxx methods (ConcurrentHashMap), 352
reducing method (Collectors), 277
reductions, 266, 277-279
ReentrantLock class, 357-358

lock, unlock methods, 358
reflection, 168-176

and generic types, 222, 226-229

and module system, 169-170, 479,

486

processing annotations with, 391-393

ReflectiveOperationException, 160



regular expressions, 310-319
finding matches of, 314-316
flags for, 318-319
groups in, 316-317
replacing matches with, 317
splitting input with, 317

relational operators, 22

relativize method (Path), 299

remainderUnsigned method (Integer, Long),

20

remove method
of ArrayDeque, 250
of Arraylist, 46
of BlockingQueue, 353
of Collection, 236
of Iterator, 241
of List, 238
of Map, 245
of Preferences, 440

removeIf method
of ArraylList, 116
of Iterator, 241

removeNode method (Preferences), 440

removeXxx methods (Collection), 236

@Repeatable annotation, 387, 389

REPL (“read-eval-print” loop), 452-453

replace method
of Map, 245
of String, 28

replaceAll method
of Collections, 239
of List, 238
of Map, 246
of Matcher, 317-318
of String, 317

replaceFirst method (Matcher), 318

requireNonNull method (0Objects), 193

requires keyword, 473, 476-479, 484,

487-489

resolve, resolveSibling methods (Path), 299

@Resource annotation, 386, 388

resource bundles, 435-438

resource injections, 388

ResourceBundle class, 199
extending, 437
getBundle method, 436-438

getObject method, 437
getString method, 436
resources, 159-168
loading, 162, 481
managing, 187
@Resources annotation, 387
resune method (Thread, deprecated),
363
retainAll method (Collection), 236
@Retention annotation, 384, 387
return statement, 37, 53, 66
in lambda expressions, 114
not in finally, 189
dreturn tag (javadoc), 92
return types, covariant, 138, 219
return values
as arrays, 53
missing, 266
providing type of, 53
reverse method (Collections), 49, 240
reverse domain name convention, 79,
472
reversed method (Comparator), 128
reverseOrder method (Comparator), 129
RFC 822, RFC 1123 formats, 414
rlwrap program, 453
rotate method (Collections), 240
round method (Math), 21
RoundEnvironment interface, 395
roundoff errors, 13
RowSetProvider class, 486
rt.jar file, 493
runAfterXxx methods (CompletableFuture),
339-340
Runnable interface, 112, 121, 331, 333
executing on the Ul thread, 341
run method, 121, 330, 363-364
using class literals with, 160
runtime
raw types at, 220-221
safety checks at, 218
Runtime class
availableProcessors method, 331
exec method, 367
runtime image file, 493
RuntimeException, 183



Index

S

s formatting symbol (date/time), 416
s, S conversion characters, 34
\s, \S, in regular expressions, 312
safety checks, as runtime, 218
@Safevarargs annotation, 224, 386, 388
Scala programming language
REPL in, 453
type parameters in, 215
Scanner class, 32
findAll method, 316
hasNext, hasNextXxx, next, nextXxx methods,
32, 293
tokens method, 263, 294
uselLocale method, 427
scheduling applications
and time zones, 405, 410
computing dates for, 407-408
ScriptContext interface, 449
ScriptEngine interface
createBindings method, 449
eval method, 449-451
ScriptEngineFactory interface, 451
ScriptEngineManager class
getEngineXxx methods, 448
visibility of bindings in, 449
scripting engines, 448-449
compiling code in, 452
implementing Java interfaces in, 451
scripting languages, 448
invoking functions in, 450
searchXxx methods (ConcurrentHashMap), 352
security, 83
SecurityException, 170
dsee tag (javadoc), 93-94
seek method (RandomAccessFile), 296
sequences, producing, 262
serial numbers, 321
Serializable interface, 319-321
readResolve, writeReplace methods,
322-323
serialization, 319-325
serialVersionUID instance variable, 324
server-side software, 319
Serviceloader class, 166-168, 490
iterator, load method, 167

Serviceloader.Provider interface, 167
services
configurable, 166
loading, 166-168, 490-491
ServletException class, 191
Set interface, 238, 354
of method, 252
working with EnumSet, 250
set method
of Array, 174
of Arraylist, 46
of BitSet, 249
of Field, 172
of List, 238
of ListIterator, 241
setAccessible method (AccessibleObject),
170, 172
setContextClassLoader method (Thread),
165
setCurrency method (NumberFormat), 429
setDaemon method (Thread), 366
setDecomposition method (Collator), 432
setDefault method (Locale), 426
setDefaultUncaughtExceptionHandler method
(Thread), 192
setDoOutput method (URLConnection), 306
setFilter methods (Handler, Logger), 203
setFormatter method (Handler), 203
setLevel method (Logger), 195, 197, 200
setOut method (System), 76
setReader method (ScriptContext), 449
setRequestProperty method (URLConnection),
306
sets, 242-243
immutable, 347
threadsafe, 354
unmodifiable views of, 254
setStrength method (Collator), 432
setUncaughtExceptionHandler method (Thread),
363
setUseParentHandlers method (Logger), 200
setWriter method (ScriptContext), 449
setXxx methods (Array), 174
setXxx methods (Field), 170, 172
setXxxAssertionStatus methods
(ClassLoader), 195



shallow copies, 152-154
shared variables, 343-347
atomic mutations of, 354-357
locking, 357-358
shebang, 464
shell scripts, 461-464
command-line arguments in, 463
environment variables in, 463
executing, 462
generating, 398
string interpolation in, 462-463
shell, redirection syntax of, 33
shift operators, 23
Shift_JIS encoding, 292
short circuit evaluation, 22
Short class, 46
MIN_VALUE, MAX_VALUE constants, 11
short indicator, in string templates, 433
short type, 10-12
streams of, 279
type conversions of, 21
short-term persistence, 324
shuffle method (Collections), 49, 240
SimpleFileVisitor class, 304
SimpleJavaFileObject class, 446
dsince tag (javadoc), 92
singletons, 323
size method
of Arraylist, 46
of Collection, 237
of Map, 246
skip method (Stream), 264
sleep method (Thread), 363, 365
SLF4] (Simple Logging Fasade for Java),
196, 472
SOAP protocol, 471
SocketHandler class, 200
sort method
of Arrays, 49, 111-112, 116-117
of Collections, 49, 215, 240
of List, 238
sorted maps, 253-254
sorted method (Stream), 265
sorted sets, 238, 253
traversing, 242
unmodifiable views of, 254

sorted streams, 281
SortedMap interface, 253
SortedSet interface, 238, 242
first, last methods, 243
headSet, subSet, tailSet methods, 243,
253
sorting
array lists, 49
arrays, 49, 109-111
chaining comparators for, 128
changing order of, 127
streams, 265
strings, 26-27, 117, 431-432
source code, generating, 395-398
source files
documentation comments for, 94
encoding of, 438
placing, in a file system, 80
reading from memory, 445
space flag (for output), 35
spaces
in regular expressions, 312
removing, 28
split method
of Pattern, 317
of String, 25, 317
splitAsStream method (Pattern), 263, 317
spliterator method (Collection), 237
sqrt method (Math), 19
square root, computing, 270
Stack class, 250
stack trace, 192-193
StackWalker class, 192
standard output, 3
StandardCharsets class, 292
StandardJavaFileManager interface, 445-447
start method
of Matcher, MatchResult, 315-316
of ProcessBuilder, 368
of Thread, 363
startsWith method (String), 28
stateless operations, 281
statements, combining, 43
static constants, 75-76
static imports, 85
static initialization, 164



Index

static methods, 53, 77-78
accessing static variables from, 77
importing, 85
in interfaces, 105-106
static modifier, 2, 16, 53, 74-78, 158
for modules, 488
static nested classes, 85-86
static variables, 74-75
accessing from static methods, 77
importing, 85
visibility of, 343
stop, suspend methods (Thread, deprecated),
363
Stream interface
collect method, 271-272, 279
concat method, 265
count method, 261, 266
distinct method, 265, 282
dropWhile method, 265
empty method, 262
filter method, 261-263, 267
findAny method, 267
findFirst method, 168, 267
flatMap method, 264
forEach, forEachOrdered methods, 271
generate method, 262, 279
iterate method, 262, 266, 279, 349
iterator method, 271
linit method, 264, 282
map method, 263
mapToInt method, 278
max, min methods, 266
of method, 261-262
ofNullable method, 271
peek method, 266
reduce method, 277-279
skip method, 264
sorted method, 265
takeWhile method, 265
toArray method, 118, 271
unordered method, 282
xxxMatch methods, 267
stream method
of Arrays, 262, 279
of BitSet, 249
of Collection, 237, 260-261

of Optional, 270-271

streams, 259-283
collecting elements of, 271-274
computing values from, 277-279
converting to/from arrays, 262, 271,

281, 350
creating, 261-263
debugging, 266
empty, 262, 266, 277-278
filtering, 270
finite, 262
flattening, 264, 270
infinite, 261-262, 264, 266
intermediate operations for, 261
locating services with, 167
noninterference of, 283
of primitive type values, 278-280
of random numbers, 280
ordered, 281
parallel, 260, 267, 271, 274-275, 278,
280-283, 348-349

processed lazily, 261, 266, 283
reductions of, 266
removing duplicates from, 265
sorting, 265
splitting/combining, 264-265
summarizing, 272, 280
terminal operation for, 261, 266
transformations of, 263-264, 280
vs. collections, 261

strictfp modifier, 19

StrictMath class, 20

String class, 6, 28
charAt method, 31
codePoints, codePointXxx methods, 31-32
compareTo method, 26-27, 109, 431
compareToIgnoreCase method, 117
contains method, 28
endsWith method, 28
equals method, 25-26
equalsIgnoreCase method, 26
final, 141
format method, 427
hash codes, 150
immutability of, 28, 347
index0f, lastIndex0f methods, 28



join method, 25
length method, 6, 31
of fsetByCodePoints method, 31
replace method, 28
replaceAll method, 317
split method, 25, 317
startsWwith method, 28
substring method, 25
toLowerCase method, 28, 263, 427
toUpperCase method, 28, 427
trim method, 28, 428
string interpolation, in shell scripts,
462-463
StringBuilder class, 25
strings, 6, 24-32
comparing, 25-27
concatenating, 24-25, 147
converting:
from byte arrays, 292
from objects, 146-147
to code points, 263
to numbers, 27
empty, 26-27, 147
formatting for output, 34
internal representation of, 32
normalized, 432
sorting, 26-27, 117, 431-432
splitting, 25, 263
templates for, 433-435
transforming to lower/ uppercase, 263,
427
StringSource class, 445
StringWriter class, 295
strong element (HTML), in
documentation comments, 91
subclasses, 136-137
anonymous, 143-144, 157
calling toString method in, 147
constructors for, 139
initializing instance variables in, 139
methods in, 137
preventing, 141
public, 139
superclass assignments in, 139
subList method (List), 238, 253
subMap method (SortedMap), 253

subpath method (Path), 300
subSet method
of NavigableSet, 243
of SortedSet, 243, 253
substring method (String), 25
subtractExact method (Math), 20
subtraction, 18
accurate, 24
not associative, 278
subtypes, 103
wildcards for, 212
sum method
of LongAdder, 356
of XxxStream, 280
summarizingXxx methods (Collectors), 272,
276
summaryStatistics method (XxxStream), 280
summingXxx methods (Collectors), 276
super keyword, 108, 138-139, 145,
213-215
superclasses, 136-137
annotating, 381
calling equals method, 149
default methods of, 144-145
in JavaScript, 460
methods of, 137-139
public, 139
supertypes, 103-105
wildcards for, 213-214
Supplier interface, 121, 336
supplyAsync method (CompletableFuture),
335-337
supportsNormalTermination method
of Process, 369
of ProcessHandle, 370
@SuppressWarnings annotation, 37, 220, 386,
388-389, 474
swap method (Collections), 240
Swing GUI toolkit, 113, 341
SwingConstants interface, 105
SwingWorker class (Swing), 341
switch statement, 37
using enumerations in, 158
symbolic links, 302-303
synchronized keyword, 358-361
synchronized views, 254



Index

synchronizedXxx methods (Collections), 240
System class
getProperties method, 248
getProperty method, 163
setOut method, 76
system class loader, 163, 165
system classes, enabling/disabling
assertions for, 195
system properties, 248
System.err constant, 192, 200, 366, 444
System.in constant, 32
System.out constant, 6, 16, 32-35, 49, 53,
76, 117, 195, 294, 444
systemXxx methods (Preferences), 439

T
T, in dates, 414
t, T conversion characters, 35
\t
in regular expressions, 311
tab, for character literals, 14
%t pattern variable, 202
tab completion, 9
tagging interfaces, 153
tailMap method (SortedMap), 253
tailSet method
of NavigableSet, 243
of SortedSet, 243, 253
take method (BlockingQueue), 353
takeWhile method (Stream), 265
tar program, 80-81
aTarget annotation, 384-385, 387
Task class (JavaFX), 341
tasks, 330-335
cancelling, 333-334
combining results from, 333-335
computationally intensive, 331
coordinating work between, 352-353
defining, 112
executing, 112, 331
groups of, 366
long-running, 340-341
running, 330-332
short-lived, 331
submitting, 333
vs. threads, 331

working simultaneously, 336
Temporal interface, 408
TemporalAdjuster.ofDateAdjuster method,
408
TemporalAdjusters class, 408
terminal window, 4
test method
of BiPredicate, 121
of Predicate, 121, 213
of XxxPredicate, 122
@Test annotation, 378-379, 384
TextStyle enumeration, 431
thenAccept method (CompletableFuture), 335,
339
thenAcceptBoth, thenCombine methods
(CompletableFuture), 339-340
thenApply, thenApplyAsync methods
(CompletableFuture), 337-339
thenComparing method (Comparator), 128-129
thenCompose method (CompletableFuture),
338-339
thenRun method (CompletableFuture), 339
third-party libraries, 484-485
this reference, 67-68
annotating, 383
capturing, 118
in constructors, 71, 348
in lambda expressions, 124
Thread class
get/setContextClassLoader methods, 165
interrupted, isInterrupted methods, 364
join method, 363
properties, 366
resume, stop, suspend methods
(deprecated), 363
setDaemon method, 366
setDefaultUncaughtExceptionHandler
method, 192
setUncaughtExceptionHandler method, 363
sleep method, 363, 365
start method, 363
ThreadLocal class, 365-366
get, withInitial methods, 365
threads, 331, 362-366
and visibility, 342-344, 360
atomic mutations in, 354-357


http://System.in

creating, 112 of Stream, 118, 271
daemon, 366 of XxxStream, 280
groups of, 366 toByteArray method
interrupting, 333, 364-365 of BitSet, 249
local variables in, 365-366 of ByteArrayOutputStream, 288—-289
locking, 357-358 toCollection method (Collectors), 272
names of, 366 toConcurrentMap method (Collectors), 274
priorities of, 366 toEpochSecond method
race conditions in, 281, 344-346 of LocalDate, 406
running tasks in, 112 of LocalTime, 409
starting, 363 toFile method (Path), 300
states of, 366 toFormat method (DateTimeFormatter), 415
temporarily inactive, 364 toGenericString method (Class), 161
terminating, 331-332 toHandle method (Process), 370
uncaught exception handlers of, 366 toInstant method
vs. tasks, 331 of Date, 416
waiting on conditions, 360 of ZonedDateTime, 410, 412
worker, 340-341 toIntExact method (Math), 22
throw statement, 183 tokens method (Scanner), 263, 294
Throwable class, 183 toList method (Collectors), 272
getStackTrace, printStackTrace methods, toLocalXxx methods (ZonedDateTime), 412
192 toLongArray method (BitSet), 249
in assertions, 194 toLowerCase method (String), 28, 263, 427
initCause method, 191 toMap method (Collectors), 273-274
no generic subtypes for, 225 ToolProvider.getSystemJavaCompiler method,
throwing method (Logger), 198 444
throws keyword, 185 tools.jar file, 493
type variables in, 225-226 toPath method (File), 300
athrows tag (javadoc), 92, 186 toSet method (Collectors), 272, 275
time toString method
current, 402 calling from subclasses, 147
formatting, 413-416, 429-431 of Arrays, 49, 147
measuring, 403 of BitSet, 249
parsing, 415 of Class, 161
Time class, 416-417 of Double, Integer, 27
time indicator, in string templates, 433 of Enum, 156
time zones, 410-413 of Modifier, 162
TimeoutException, 333 of Object, Point, 146-147
Timestamp class, 150, 416-417 toUnsignedInt method (Byte), 12
timestamps, 413 toUpperCase method (String), 28, 427
using instants as, 403 toXxx methods (buration), 403
TimeZone class, 417 ToXxxFunction interfaces, 122, 220
™ (trademark symbol), 432-433 toXxx0fDay methods (LocalTime), 409
toAbsolutePath method (Path), 299 toZonedDateTime method (GregorianCalendar),
toArray method 416-417

of Collection, 237 transferTo method (InputStream), 290



Index

transient modifier, 321

transitive keyword, 487-489

TreeMap class, 243, 274

TreeSet class, 242

trim method (String), 28, 428

true value (boolean), 14

try statement, 186-190
for visiting directories, 302

tryLock method (FileChannel), 298

trySetAccessible method (AccessibleObject),

170

try-with-resources statement, 187-189
closing output streams with, 290
for file locking, 298

type bounds, 210-211, 229
annotating, 382

type erasure, 216-219, 224
clashes after, 224-225

Type interface, 228

type method (Serviceloader.Provider), 167

type parameters, 109, 208-209
and primitive types, 209, 220
annotating, 380

type variables
and exceptions, 225-226
in static context, 224
no instantiating of, 221-223
wildcards with, 214-215

TypeElement interface, 395

TypeVariable interface, 228

U

\u
for character literals, 13-14, 437-438
in regular expressions, 311

%u pattern variable, 202

UnaryOperator interface, 121

uncaught exception handlers, 363, 366

unchecked exceptions, 183
and generic types, 226
documenting, 186

UncheckedIOException, 293

Unicode, 30-32, 279, 290
normalization forms in, 432
replacement character in, 295

unit tests, 377

Unix operating system
bash scripts, 461
path separator, 81, 248
specifying locales in, 426
wildcard in classpath in, 82
unlock method (Reentrantlock), 358
unmodifiableXxx methods (Collections), 240
unordered method (Stream), 282
until method (LocalDate), 405-406
updateAndGet method (AtomicXxx), 355
URI class, 308
URL class, 308
final, 141
getInputStream method, 306
openConnection method, 306
openStream method, 288
URLClassLoader class, 163
URLConnection class, 306-307
connect method, 306
getHeaderFields method, 307
getInputStream method, 307
getOutputStream method, 306
setDoOutput method, 306
setRequestProperty method, 306
URLs, reading from, 288, 306
useLocale method (Scanner), 427
user directory, 299
user interface. See GUI
user preferences, 439-441
user.dir, user.home, user.name system
properties, 248
userXxx methods (Preferences), 439
uses keyword, 491
UTC (coordinated universal time), 411
UTF-8 encoding, 290-291
for source files, 438
modified, 296
UTF-16 encoding, 13, 31, 279, 291
in regular expressions, 311
Util class, 165

v

v formatting symbol (date/time), 416
\v, \V, in regular expressions, 312
valueof method

of BitSet, 249



Index

of Enum, 155-156
values method
of Enum, 155
of Map, 246, 252
varargs parameters
corrupted, 388
declaring, 54
VarHandle class, 482
variable handles, 482
VariableElement interface, 395
variables, 6, 14-16
atomic mutations of, 354-357
capturing, in lambda expressions,
124-127
declaring, 14-15
defined in interfaces, 105
deprecated, 93
documentation comments for, 91-92
effectively final, 126
final, 343, 347
holding object references, 63-64
initializing, 14-16
local, 41-43
naming, 14-15
parameter, 68
private, 65, 83
public static final, 105
redefining, 42
scope of, 41, 83
shared, 343-347, 357-358
static final. See constants
static, 74-75, 77, 85, 343
thread-local, 365-366
using an abstract class as type of,
142
visibility of, 342-344, 360
volatile, 343-344
aversion tag (javadoc), 91, 95
versioning, 324
views, 252-254
virtual machine, 4
instruction reordering in, 343
visibility, 342-344
guaranteed with locks, 360
visitFile, visitFileFailed methods
(Filevisitor), 304

void keyword, 2, 53
using class literals with, 160
volatile modifier, 343-344

W
\w, \W, in regular expressions, 312
wait method (Object), 146, 361-362
waitFor method (Process), 369
waiting on a condition, 361
walk method (Files), 302-305
walkFileTree method (Files), 302, 304
warning method (Logger), 197
warnings
for switch statements, 159
suppressing, 220, 224, 388
weak references, 251
weaker access privilege, 139
WeakHashMap class, 251
weakly consistent iterators, 350
WeakReference class, 252
web pages
extracting links from, 337
reading, 338, 340
whenComplete method (CompletableFuture),
336, 338-339
while statement, 38—39
breaking/continuing, 40
continuing, 40
declaring variables for, 42
white space
in regular expressions, 312
removing, 28
wildcards
annotating, 382
capturing, 216
for annotation processors, 394
for types, 212-214
in class path, 81
unbounded, 215
with imported classes, 83-84
with type variables, 214-215
WildcardType interface, 228
Window class, 83
WindowAdapter class, 106
WindowListener interface, 106
with method (Temporal), 408

537



Index

withInitial method (ThreadLocal), 365
withLocale method (DateTimeFormatter), 413,
430
withXxx methods
of LocalDate, 406
of LocalTime, 409
of ZonedDateTime, 411
words
in regular expressions, 312
reading from a file, 293
sorting alphabetically, 431-432
working directory, 367
wrapper classes, 46-47
write method
of Files, 295, 302
of OutputStream, 290
writeExternal method (Externalizable),
322
writeObject method (ObjectOutputStream),
320-322
Writer class, 294-295
write method, 294
writeReplace method (Serializable),
322-323
writers, 288
writeXxx methods (DataOutput), 296—297,
322

X

x formatting symbol (date/time), 416
X, X conversion characters, 34

\x, in regular expressions, 311
XML descriptors, generating, 398
aXmlElement annotation, 480
aXmlRootElement annotation, 480
xor method (BitSet), 249

Y

y formatting symbol (date/time), 416
Year, YearMonth classes, 407

Z
z, 7 formatting symbols (date/time), 414,
416
\z, \Z, in regular expressions, 314
ZIP file systems, 305
ZipInputStream, ZipOutputStream classes, 305
zoned time, 404-407, 410-413
ZonedDateTime class, 410-413
and legacy classes, 417
getDay0f Xxx methods, 411
getMonthXxx, getYear, getXxx, isXxx
methods, 412
minus, minusXxx, now, ofInstant methods,
411
of method, 410-411
parse method, 430
plus, plusXxx methods, 411-412
toInstant method, 410, 412
toLocalXxx methods, 412
withXxx methods, 411
Zoneld class, 410



Learn Scala Quickly

C:overa Scala 2.12

+ Get started quickly with
Scala’s interpreter, syntax,

tools, and unique idioms
for the
Impatlent

G 00| + Become familiar
\EA with object-oriented
programming in Scala

* Master core language
features

+ Use Scala for real-world
programming tasks

Cay S. Horstmann

Foreword by Martin Odersky 7 /,yh ",

Scala embraces the functional programming style without
abandoning the object-oriented paradigm, and it allows
you to write programs more concisely than in Java. Because
Scala runs on the JVM, it can access any Java library and is
interoperable with familiar Java frameworks. Scala also makes
it easier to leverage the full power of concurrency.

Written for experienced Java, C++, or C# programmers who are
new to Scala or functional programming, Scala for the Impatient,
Second Edition, introduces the key Scala concepts and techniques
you need in order to be productive quickly.

informit.com/horstmann

Pearson &
Addison-Wesley I!l!'grm!;!cgﬁl S afal’l


http://www.informit.com/horstmann
http://www.informit.com

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

Download available product updates.
+Access bonus material if available.

Check the box to hear from us and receive exclusive offers on new
editions and related products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world's
foremost education company. At InformlIT.com, you can:
Shop our books, eBooks, software, and video training
Take advantage of our special offers and promotions (informit.com/promotions)
Sign up for special offers and content newsletter (informit.com/newsletters)
Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

AN

informit

the trusted technology learning source

Addison-Wesley - Adobe Press - Cisco Press - Microsoft Press - Pearson IT Certification - Prentice Hall - Que - Sams - Peachpit Press

@ Pearson


http://www.informit.com/register
http://www.informit.com
http://www.informit.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	1 FUNDAMENTAL PROGRAMMING STRUCTURES
	1.1 Our First Program
	1.1.1 Dissecting the “Hello, World” Program
	1.1.2 Compiling and Running a Java Program
	1.1.3 Method Calls
	1.1.4 JShell

	1.2 Primitive Types
	1.2.1 Signed Integer Types
	1.2.2 Floating-Point Types
	1.2.3 The The char Type

	1.2.4 The boolean Type


	1.3 Variables
	1.3.1 Variable Declarations
	1.3.2 Names
	1.3.3 Initialization
	1.3.4 Constants

	1.4 Arithmetic Operations
	1.4.1 Assignment
	1.4.2 Basic Arithmetic
	1.4.3 Mathematical Methods
	1.4.4 Number Type Conversions
	1.4.5 Relational and Logical Operators
	1.4.6 Big Numbers

	1.5 Strings
	1.5.1 Concatenation
	1.5.2 Substrings
	1.5.3 String Comparison
	1.5.4 Converting Between Numbers and Strings
	1.5.5 The String API
	1.5.6 Code Points and Code Units

	1.6 Input and Output
	1.6.1 Reading Input
	1.6.2 Formatted Output

	1.7 Control Flow
	1.7.1 Branches
	1.7.2 Loops
	1.7.3 Breaking and Continuing
	1.7.4 Local Variable Scope

	1.8 Arrays and Array Lists
	1.8.1 Working with Arrays
	1.8.2 Array Construction
	1.8.3 Array Lists
	1.8.4 Wrapper Classes for Primitive Types
	1.8.5 The Enhanced Loop

	1.8.6 Copying Arrays and Array Lists
	1.8.7 Array Algorithms
	1.8.8 Command-Line Arguments
	1.8.9 Multidimensional Arrays

	1.9 Functional Decomposition
	1.9.1 Declaring and Calling Static Methods
	1.9.2 Array Parameters and Return Values
	1.9.3 Variable Arguments

	Exercises

	2 OBJECT-ORIENTED PROGRAMMING
	2.1 Working with Objects
	2.1.1 Accessor and Mutator Methods
	2.1.2 Object References

	2.2 Implementing Classes
	2.2.1 Instance Variables
	2.2.2 Method Headers
	2.2.3 Method Bodies
	2.2.4 Instance Method Invocations
	2.2.5 The this Reference

	2.2.6 Call by Value

	2.3 Object Construction
	2.3.1 Implementing Constructors
	2.3.2 Overloading
	2.3.3 Calling One Constructor from Another
	2.3.4 Default Initialization
	2.3.5 Instance Variable Initialization
	2.3.6 Final Instance Variables
	2.3.7 The Constructor with No Arguments

	2.4 Static Variables and Methods
	2.4.1 Static Variables
	2.4.2 Static Constants
	2.4.3 Static Initialization Blocks
	2.4.4 Static Methods
	2.4.5 Factory Methods

	2.5 Packages
	2.5.1 Package Declarations
	2.5.2 The jar Command

	2.5.3 The Class Path
	2.5.4 Package Access
	2.5.5 Importing Classes
	2.5.6 Static Imports

	2.6 Nested Classes
	2.6.1 Static Nested Classes
	2.6.2 Inner Classes
	2.6.3 Special Syntax Rules for Inner Classes

	2.7 Documentation Comments
	2.7.1 Comment Insertion
	2.7.2 Class Comments
	2.7.3 Method Comments
	2.7.4 Variable Comments
	2.7.5 General Comments
	2.7.6 Links
	2.7.7 Package, Module, and Overview Comments
	2.7.8 Comment Extraction

	Exercises

	3 INTERFACES AND LAMBDA EXPRESSIONS
	3.1 Interfaces
	3.1.1 Declaring an Interface
	3.1.2 Implementing an Interface
	3.1.3 Converting to an Interface Type
	3.1.4 Casts and the instance of Operator

	3.1.5 Extending Interfaces
	3.1.6 Implementing Multiple Interfaces
	3.1.7 Constants

	3.2 Static, Default, and Private Methods
	3.2.1 Static Methods
	3.2.2 Default Methods
	3.2.3 Resolving Default Method Conflicts
	3.2.4 Private Methods

	3.3 Examples of Interfaces
	3.3.1 The Comparable Interface

	3.3.2 The Comparator Interface

	3.3.3 The Runnable Interface

	3.3.4 User Interface Callbacks

	3.4 Lambda Expressions
	3.4.1 The Syntax of Lambda Expressions
	3.4.2 Functional Interfaces

	3.5 Method and Constructor References
	3.5.1 Method References
	3.5.2 Constructor References

	3.6 Processing Lambda Expressions
	3.6.1 Implementing Deferred Execution
	3.6.2 Choosing a Functional Interface
	3.6.3 Implementing Your Own Functional Interfaces

	3.7 Lambda Expressions and Variable Scope
	3.7.1 Scope of a Lambda Expression
	3.7.2 Accessing Variables from the Enclosing Scope

	3.8 Higher-Order Functions
	3.8.1 Methods that Return Functions
	3.8.2 Methods That Modify Functions
	3.8.3 Comparator Methods


	3.9 Local and Anonymous Classes
	3.9.1 Local Classes
	3.9.2 Anonymous Classes

	Exercises

	4 INHERITANCE AND REFLECTION
	4.1 Extending a Class
	4.1.1 Super- and Subclasses

	4.1.2 Defining and Inheriting Subclass Methods
	4.1.3 Method Overriding
	4.1.4 Subclass Construction
	4.1.5 Superclass Assignments
	4.1.6 Casts
	4.1.7 Final Methods and Classes
	4.1.8 Abstract Methods and Classes
	4.1.9 Protected Access
	4.1.10 Anonymous Subclasses
	4.1.11 Inheritance and Default Methods
	4.1.12 Method Expressions with

	4.2 Object: The Cosmic Superclass

	4.2.1 The toString Method

	4.2.2 The equals Method

	4.2.3 The hashCode Method

	4.2.4 Cloning Objects

	4.3 Enumerations
	4.3.1 Methods of Enumerations
	4.3.2 Constructors, Methods, and Fields
	4.3.3 Bodies of Instances
	4.3.4 Static Members
	4.3.5 Switching on an Enumeration

	4.4 Runtime Type Information and Resources
	4.4.1 The Class
	4.4.2 Loading Resources
	4.4.3 Class Loaders
	4.4.4 The Context Class Loader
	4.4.5 Service Loaders

	4.5 Reflection
	4.5.1 Enumerating Class Members
	4.5.2 Inspecting Objects
	4.5.3 Invoking Methods
	4.5.4 Constructing Objects
	4.5.5 JavaBeans
	4.5.6 Working with Arrays
	4.5.7 Proxies

	Exercises

	5 EXCEPTIONS, ASSERTIONS, AND LOGGING
	5.1 Exception Handling
	5.1.1 Throwing Exceptions
	5.1.2 The Exception Hierarchy
	5.1.3 Declaring Checked Exceptions
	5.1.4 Catching Exceptions
	5.1.5 The Try-with-Resources Statement
	5.1.6 The finally Clause

	5.1.7 Rethrowing and Chaining Exceptions
	5.1.8 Uncaught Exceptions and the Stack Trace
	5.1.9 The Objects.requireNonNull Method


	5.2 Assertions
	5.2.1 Using Assertions
	5.2.2 Enabling and Disabling Assertions

	5.3 Logging
	5.3.1 Using Loggers
	5.3.2 Loggers
	5.3.3 Logging Levels
	5.3.4 Other Logging Methods
	5.3.5 Logging Configuration
	5.3.6 Log Handlers
	5.3.7 Filters and Formatters

	Exercises

	6 GENERIC PROGRAMMING
	6.1 Generic Classes
	6.2 Generic Methods
	6.3 Type Bounds
	6.4 Type Variance and Wildcards
	6.4.1 Subtype Wildcards
	6.4.2 Supertype Wildcards
	6.4.3 Wildcards with Type Variables
	6.4.4 Unbounded Wildcards
	6.4.5 Wildcard Capture

	6.5 Generics in the Java Virtual Machine
	6.5.1 Type Erasure
	6.5.2 Cast Insertion
	6.5.3 Bridge Methods

	6.6 Restrictions on Generics
	6.6.1 No Primitive Type Arguments
	6.6.2 At Runtime, All Types Are Raw
	6.6.3 You Cannot Instantiate Type Variables
	6.6.4 You Cannot Construct Arrays of Parameterized Types
	6.6.5 Class Type Variables Are Not Valid in Static Contexts
	6.6.6 Methods May Not Clash after Erasure
	6.6.7 Exceptions and Generics

	6.7 Reflection and Generics
	6.7.1 The Class<T> Class

	6.7.2 Generic Type Information in the Virtual Machine

	Exercises

	7 COLLECTIONS
	7.1 An Overview of the Collections Framework
	7.2 Iterators
	7.3 Sets
	7.4 Maps
	7.5 Other Collections
	7.5.1 Properties
	7.5.2 Bit Sets
	7.5.3 Enumeration Sets and Maps
	7.5.4 Stacks, Queues, Deques, and Priority Queues
	7.5.5 Weak Hash Maps

	7.6 Views
	7.6.1 Small Collections
	7.6.2 Ranges
	7.6.3 Unmodifiable Views

	Exercises

	8 STREAMS
	8.1 From Iterating to Stream Operations
	8.2 Stream Creation
	8.3 The filter, map, and flatMap Methods

	8.4 Extracting Substreams and Combining Streams
	8.5 Other Stream Transformations
	8.6 Simple Reductions
	8.7 The Optional Type
	8.7.1 How to Work with Optional Values
	8.7.2 How Not to Work with Optional Values
	8.7.3 Creating Optional Values
	8.7.4 Composing Optional Value Functions with
	8.7.5 Turning an Optional Into a Stream

	8.8 Collecting Results
	8.9 Collecting into Maps
	8.10 Grouping and Partitioning
	8.11 Downstream Collectors
	8.12 Reduction Operations
	8.13 Primitive Type Streams
	8.14 Parallel Streams
	Exercises

	9 PROCESSING INPUT AND OUTPUT
	9.1 Input/Output Streams, Readers, and Writers
	9.1.1 Obtaining Streams
	9.1.2 Reading Bytes
	9.1.3 Writing Bytes
	9.1.4 Character Encodings
	9.1.5 Text Input
	9.1.6 Text Output
	9.1.7 Reading and Writing Binary Data
	9.1.8 Random-Access Files
	9.1.9 Memory-Mapped Files
	9.1.10 File Locking

	9.2 Paths, Files, and Directories
	9.2.1 Paths
	9.2.2 Creating Files and Directories
	9.2.3 Copying, Moving, and Deleting Files
	9.2.4 Visiting Directory Entries
	9.2.5 ZIP File Systems

	9.3 HTTP Connections
	9.3.1 The URLConnection and HttpURLConnection Classes

	9.3.2 The HTTP Client API

	9.4 Regular Expressions
	9.4.1 The Regular Expression Syntax
	9.4.2 Finding One Match
	9.4.3 Finding All Matches
	9.4.4 Groups
	9.4.5 Splitting along Delimiters
	9.4.6 Replacing Matches
	9.4.7 Flags

	9.5 Serialization
	9.5.1 The Serializable Interface

	9.5.2 Transient Instance Variables
	9.5.3 The readObject and writeObject Methods

	9.5.4 The readResolve and writeReplace Methods

	9.5.5 Versioning

	Exercises

	10 CONCURRENT PROGRAMMING
	10.1 Concurrent Tasks
	10.1.1 Running Tasks
	10.1.2 Futures

	10.2 Asynchronous Computations
	10.2.1 Completable Futures
	10.2.2 Composing Completable Futures
	10.2.3 Long-Running Tasks in User-Interface Callbacks

	10.3 Thread Safety
	10.3.1 Visibility
	10.3.2 Race Conditions
	10.3.3 Strategies for Safe Concurrency
	10.3.4 Immutable Classes

	10.4 Parallel Algorithms
	10.4.1 Parallel Streams
	10.4.2 Parallel Array Operations

	10.5 Threadsafe Data Structures
	10.5.1 Concurrent Hash Maps
	10.5.2 Blocking Queues
	10.5.3 Other Threadsafe Data Structures

	10.6 Atomic Counters and Accumulators
	10.7 Locks and Conditions
	10.7.1 Locks
	10.7.2 The synchronized Keyword

	10.7.3 Waiting on Conditions

	10.8 Threads
	10.8.1 Starting a Thread
	10.8.2 Thread Interruption
	10.8.3 Thread-Local Variables
	10.8.4 Miscellaneous Thread Properties

	10.9 Processes
	10.9.1 Building a Process
	10.9.2 Running a Process
	10.9.3 Process Handles

	Exercises
	11.4 Processing Annotations at Runtime

	11 ANNOTATIONS
	11.1 Using Annotations
	11.1.1 Annotation Elements
	11.1.2 Multiple and Repeated Annotations
	11.1.3 Annotating Declarations
	11.1.4 Annotating Type Uses
	11.1.5 Making Receivers Explicit

	11.2 Defining Annotations
	11.3 Standard Annotations
	11.3.1 Annotations for Compilation
	11.3.2 Annotations for Managing Resources
	11.3.3 Meta-Annotations

	11.4 Processing Annotations at Runtime
	11.5 Source-Level Annotation Processing
	11.5.1 Annotation Processors
	11.5.2 The Language Model API
	11.5.3 Using Annotations to Generate Source Code

	Exercises

	12 THE DATE AND TIME API
	12.1 The Time Line
	12.2 Local Dates
	12.3 Date Adjusters
	12.4 Local Time
	12.5 Zoned Time
	12.6 Formatting and Parsing
	12.7 Interoperating with Legacy Code
	Exercises

	13 INTERNATIONALIZATION
	13.1 Locales
	13.1.1 Specifying a Locale
	13.1.2 The Default Locale
	13.1.3 Display Names

	13.2 Number Formats
	13.3 Currencies
	13.4 Date and Time Formatting
	13.5 Collation and Normalization
	13.6 Message Formatting
	13.7 Resource Bundles
	13.7.1 Organizing Resource Bundles
	13.7.2 Bundle Classes

	13.8 Character Encodings
	13.9 Preferences
	Exercises

	14 COMPILING AND SCRIPTING
	14.1 The Compiler API
	14.1.1 Invoking the Compiler
	14.1.2 Launching a Compilation Task
	14.1.3 Reading Source Files from Memory
	14.1.4 Writing Byte Codes to Memory
	14.1.5 Capturing Diagnostics

	14.2 The Scripting API
	14.2.1 Getting a Scripting Engine
	14.2.2 Bindings
	14.2.3 Redirecting Input and Output
	14.2.4 Calling Scripting Functions and Methods
	14.2.5 Compiling a Script

	14.3 The Nashorn Scripting Engine
	14.3.1 Running Nashorn from the Command Line
	14.3.2 Invoking Getters, Setters, and Overloaded Methods
	14.3.3 Constructing Java Objects
	14.3.4 Strings in JavaScript and Java
	14.3.5 Numbers
	14.3.6 Working with Arrays
	14.3.7 Lists and Maps
	14.3.8 Lambdas
	14.3.9 Extending Java Classes and Implementing Java Interfaces
	14.3.10 Exceptions

	14.4 Shell Scripting with Nashorn
	14.4.1 Executing Shell Commands
	14.4.2 String Interpolation
	14.4.3 Script Inputs

	Exercises

	15 THE JAVA PLATFORM MODULE SYSTEM
	15.1 The Module Concept
	15.2 Naming Modules
	15.3 The Modular “Hello, World!” Program
	15.4 Requiring Modules
	15.5 Exporting Packages
	15.6 Modules and Reflective Access
	15.7 Modular JARs
	15.8 Automatic Modules and the Unnamed Module
	15.9 Command-Line Flags for Migration
	15.10 Transitive and Static Requirements
	15.11 Qualified Exporting and Opening
	15.12 Service Loading
	15.13 Tools for Working with Modules
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




