Do You

Speak
JAVA

?

Java Language Fundamentals

First Edition

February 2016

o~
)=
Aleks Rudenko
LA

Trademarks

The following are trademarks of the Oracle Corporation and its affiliates in
the United States, other countries, or both:

e Oracle

e Java

e Java Beans
o JDK

e JRE

o JVM

e JavaFX

Other trademarks and registered trademarks are the properties of their
respective owners.

Table of Contents

TrAdEMAIKS ..ceeeeieeeeee ettt st st es 2
INEFOAUCTION ..ttt s 9
INstalling the SOftWare........coi i 10
Working With EXamPles.....cccuuvieieiiiiiieeee et 11
Object-Oriented Programming.......cccoecuieeiiciieeieiiieeesciiee e esree e e e ssnaee e 13
Object-0riented DESIBN....ccccviiieiiiie ettt e e e s aaee e 14
ENCAPSUIAION ...oiiiiiiiiee e e 15
INNEMITANCE .ttt e saree s 16
(20 1Y 0 g T o o] o 11 o VO U 17
Data Types, Variables, and Literals........cccoceeeeeiieieciiee e, 20
Primitive Data TYPES. . .uuiieiiiieeiiiiieeeee e ee ettt ee e e e e e siiereeee e s s s ssinbeneeeeeseennas 20
Variables ..o 21
Accessing the Variables ... 21
LIEEIALS ettt 22
NUMETIC LILEralS.oeiieiieieeee et 22
Character LIterals.......cccoveereereerieieee e 23
BOOIEAN LItErals ..cc.veeieeieeiieeie ettt 25

Y 1 g Ta Y= W T | TSR 25
Casting in arithmetic eXpressionsS.......cceeeccveeeeecciiee e 25
(O T=T = o N 27
The Assignment OPeratorccuveeecciieeeeieee e e 27
Arithmetic OPErators.....cuuii i cieie et e e e 28
BitWisSe OPeratorsS..ccccee e 29
Relational OPeratorsc.eeeicciieeeeciee e e e aae e 30
Boolean Logical OpPeratorscccuuveeeieeeeecciiiieee et e e e e e e e 31
Conditional OPErator......cccuuiiiieee e 33
Program FIOW CONtIolooeiiiieiicee e 34

The Sequential Statement.........cooo i, 34

The Statement BIOCKoocuieiieiienienieneeeeeeee e 34
The “If” StatemMENt oo 35
The “switch” STatement......cccciiiiiiiiieee e 36
[teration statementscccoovviiiiiiiiiii 37
The “while” Statement.......ccocueiiieriie e 37

The “do...while” Statement.......ccccoeerieriiniiee e, 38

The “for” StatemMeNTt.....ccci i 39
Internal Loop Control Variablesccceciiiieiiiiiiciiee e 40

The “for-each” Statement........cccceveeriiiiiniiine e 41

The “break” Statementcocveiiiieiiiieee e 42

The “continue” Statementoocueeriiiiniiiiie e 45

F N - 1YL PP PPPPPPN 46
DECIANING AITAYS c.uuviieeiciieeeccieee e eeiee e e ertre e e e eree e e s sbr e e e sssbaeessenbeeesenareeesensens 46
Creating ArraysS .o, 46
Multi-DIMeNnsioNal ArTayscccoccieee et eree e e evee e e 47
MEETNOAS ...ttt s 49
The “Main” Methodcociiiiiiiiii e 49
Classes and OBJECES.....uiiiiiiiei e 50
DECIariNg ClasS@S....uuiiiiiiieiiiiieeescieee e ceitee e ereee et e e e e rrae e e e ebee e e e sarae e e ennres 51
Class Variables and Methodsccocuiiieiniiinieeeee e 51
Initializing Class Variablescoccoeeiiiiie e 52
Instance Variables and Methodscccceeiiieiiieniienne e 54
Working With ODBJECESuvviiieieiieceee e 56
Creating ObjJeCTS ...t e 56
CONSTIUCTONS ...t 57
Method OVErloading......ccueeeeciiiieeiiee e e e 58

The “this” KEYWOIdcc.eviiiiiiiie ettt e 58

The “Super” KEYWOIdccuviiiieeeeecciiieeeee e ecctrree e e e e e e scntraee e e e e e e eannns 60

(0] oY1=t a 071 11 V=R UURRRNE 61

Method OVEITIdiNGveeeeeiiiee e e e e 63
Determining the Type of an Objectcccoecveviiiciiiiiiee e 64
SUMIMIAIY ¢ ennsnnnnes 65
TYPE WAPPEIS e e e e e e e e e e 67
F XU o] oTo)'q o= 20U UPRRN 68

R Y =£ SN 69
String Literals, Creating Strings.......cccoccveeeeiiie e e 69
COMPANING SEINES weeeiiiiiiiiiiieeee ettt e e e e srrre e e e e e s s ssaeraaeeeeas 70
String Concatenation OPEratoreeeeveiviiieiiiiiiiaee 71
SEANG METNOAS ... e 72
Determining String LeNgthccvvviiiciiiiieeee e 72
COMPATING STFINES wevvvvriiiiiiiiiiiiiiirirerie e —————————————. 72
Accessing STring CharacCters.......ccvvcceeeecciiee et 72
Searching for a Character.......cccoeecciiee e e 72
Searching for a SUBSING.......c.uviiiiiieee e 73
EXtracting @ SUDSEIING ...cciiiiiiei i 73
Creating a new String from existing String........ccccoceeeeviieeeeciieee e, 73
Creating a Character Array from a Stringccccoeevveeeevcieeeecieee e, 73
Creating an Array of Bytes from a String......cccccvevveeeiviieeeeccieee e, 73
Creating a String from an Array of Charactersccccccvveeeeeiveeeecneeenn. 74
Yol T TSR UPP 75
MOGIfIEES ..ttt sb e sttt esbe e saeesaee e 77
Cl1ass MOIfIErsoeeeieeeee ettt 77
Access Level MOIfIersoouivirierieeeneene e 77
The “static” MOIfIErccouiiiiieieee e 78
The “final” MOdifier.......cooeiiiiiiieeeeee e 78
LCT=T 0 T=T o ot TP 79
Generic MEethOdsS.........ueiiiiiiiie e 79

[CT=Y 1= (ol O F= 1Y <L 82

Passing Generic Classes as Parameters........cocceeeeveeeeccieeecccieee e e 84
GENEIIC INTEITACESeeiiie ettt e 85
GENEriC CONSTIUCLONS ..eiiiiiiiieiiieee et 87
Lambda EXPreSSIONS.uuiiiieiiieecciieeeeette e e ecree e e eette e e e e aree e s senaaeeesntaeeesaraeeean 89
Method REfErENCE ...c.eeieee e 93
CONSEIUCLOr FEfErENCE. ...eiiieiiiiiieieee et 95
INNEE CLASSES ..ttt ettt ettt st ettt e b e s 97
Static Inner (Nested) Classes.......ccuuieiieeecieeeiieecieeecreeeetee et esrre e 97
NON-Static INNEr Classes........oouiiiiiiieiierie et 98
LOCAl INNEF ClASSES ..eeeuveieieeeiiieniee ettt e stee ettt e svee et e st e s saeeesbeeesabeenas 99
ADSEIaCt ClaSSES .uuveeriieeiieeiiee ettt ettt ettt ettt e e e st e sbae e sabeeeaee s 100
ANONYMOUS ClIaSSES.....uviiiiiiiiieieiiie e ettt e e et e e ectee e e et e e e s eaae e e e e earbeeesenaaeeeas 101
INEEITACES .. 102
Interfaces vs. Abstract Classes........cceeveerienieniiinieeeecesce e 104
Default and Static Methods in Interfacesccoceeieeieeneenecnienieeiens 106
(=] o] 10T [OOSR UPPP PR 107
Handling EXCEPLIONSuuiii ettt ettt ae e e e e baee e e 108
Handling Unchecked EXCEPLIONS.......ccevviiiiiiciiee et 108
Handling Checked EXCEPLIONSccccvveeiieiiee et 111
Exceptions Class HIierarchy......ccccceoeeeciiieeee et 113
Creating Custom EXCeptionscccovvviviiiiiiii, 115
TRFEAGS. ..t s 116
StArting Threads..........vviiieee e 116
DaeMON ThrEadS.....cieeieiieiieriierte et 119
Interrupting Thread EXECULION.......cceeviiiiieee e 119
Waiting on a Thread t0 DI€ccccvveeeiciiieecieee et 120
Va1 a1 o] g 1F2- 1 4[] o OSSR 120
Synchronized Methodsccoeiiiiiiiie e 121

Synchronized Statement BIOCKSuviiieeeeieicciiieeee e 121

Advanced Inter-Thread CommuUNICatioNncccceeveerieriienneeneeneeseeneene 124
Collections FrameWOrK........cocueiriiiiieeeieeree et 126
Creating ColleCtionS....cuuiii it 126
Retrieving Collections’ EI@mMeNnts.........ccccevuveeeeiiieeeicieee e 127
Updating ColleCtionSccccuvieiiiiiieieciiee ettt 128
Iterating through Collections.........cccuviiieiiiiie e 129
The “for-each” LOOP ..uveieeiiiee ittt ettt ettt e e rae e e 129
LT =) (o TP PO PPTUPPTPRPPIRE 131

LISt EErator ..ceeiiiiie e 132

Y o] [T =1 o] PSP 133

(60e]] o L] = (o] SRRSO 134
4@ I A=Y= 1 4 TP 135
Byte OULPUL STreamsS ..o 135
Character OULPUL STreamMS.......ccicciiiee ettt e et e e e bree e e 139
Byte INput STreams ..o, 140
Character INpUt StreamS........uvii it 141
TrY-With-RESOUICESeeieeiiiieeetiee ettt ettt et e e ree e e arae e e e areeas 142
SErIAliIZAtION .o 143
New Input/Output System - NIOccceeiiiiieiieeiecie ettt v eve s 145
The SEream AP .. .o e s e 150
Observable and ODSEIVErSccvvvieiierierieeeeeeesee e 154
ENUMEIALIONS e 155
REEUIAI EXPrESSIONS....uviiiiieeeeicciitieee e e e e eccree e e e e e et e e e e e e e e e nnbraaeeeaeeenas 158
Regular EXpressions BasiCsccuuriiiiiieieiiiiieeeccieeeeciee e siiee e s siveee e 158
Regular Expressions EXamples........eeiiecccieeeeee e e e 159
REFIECLION API ... s s 161
Obtaining the Class ObjJECT........coccviiiiccieee e e 161
Discovering Class MemDErs..........eeeeieeiiiciiiiiieee et e e e 163

PN Y aTo] = 1 o] o LT 164

JAVARX AP et e 171
I 1Yo U (PP PP PP PP PPPPPOPPPPPPPPPPPPPRt 174
YT Al T o | T = O UPRR 175

Reference Materialoceoveeriiiiiiieeeeee e 181

T Te =) PPV USR PP 182

Introduction

There is a broad range of books on Java — from beginner’s guides to complete
references. The first category tends to concentrate on basic concepts, which
does not take you very far from the “Hello world!” program. The books of the
second category are simply too big — usually over 1,000 pages. They are very
good as reference sources, but a bit overloaded with details and lengthy
examples. They are also trying to cover as many topics as possible, which
makes the learning curve steeper.

The size of this book is less than two hundred pages so it is definitely not a
reference guide. Nor is it a “Java basics” book.

Not concentrating too much on details, and illustrating everything with small
comprehensive examples, this book focuses on Java’s fundamental features,
essential for building real-life applications. The goal is to create an overall
understanding of how Java works. The details can be picked up later either
from Java original specifications and tutorials, or from those comprehensive
guides and complete references.

Starting from the ground up, the book builds a solid foundation of your Java
knowledge.

If you want to become a Java expert — this book is a good start. Good luck!

Installing the Software

If you want to experiment with the sample programs provided in this book,
you need to have the JDK 8 software installed on your machine. You can
download it for free from the Oracle website:

http://www.oracle.com/technetwork/java/javase/downloads/

There are different versions of the software available, suitable for different
types of operating systems — Linux, Mac OSX, Solaris, or Windows.

The instructions of how to install and configure the Java 8 platform for
different operating systems can be found on this page:

https://docs.oracle.com/javase/8/docs/technotes/guides/install/

Note: all URLs referenced in this book might change in the future.

10

http://www.oracle.com/technetwork/java/javase/downloads/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/

Working with Examples

Throughout this book numerous examples are used to illustrate the usage of
particular features of Java language. The basic structure of an examples is
this:

// Comments . . .
class classnName {
statements . . .
public static void main (String args[]) {
statements .
System.out.println (results);
}
}

To fully understand the above syntax, several topics of this book must be read
first. At this point, the following explanations would be sufficient for working
with examples.

Java is case-sensitive:
thisVariable and ThisVariable are two different variables.

Comments:

// This 1is a non-executable comment line

/*

This is a block of commented 1ines
*/ '
A single statement ends with semicolon:
thisvariable = 5;
A block of statements is included within curly brackets:
{ a=5; b="text”; }

The DOT (.) notation:

objectA.variablel; // returns the value of variablel of objectA
objectA.methodl(); // executes the methodl of objectA

The code to the left of the dot (.) must be an object, and the code to the right
of it must be the object’s property — a variable or a method. An expression
with multiple dot operators is executed from left to right.

11

The print statement:

System.out.println (“Total = “ + 5); // output: Total = 5
System.out.print " x=" + 1); // output: x=1
System.out.print " y="+ 2); // output: x=1 y=2

These are commonly used methods of printing the results. Both statements
use the “4” operator to concatenate all items (arguments) listed within the
brackets into a single text line and output it to the console. The print method
outputs the arguments onto the current line, appending them to the existing
contents. The println method outputs the results and switches to a new line.

The main method:

Every Java application starts execution with the main method (program):

public static void main (String args[]1) { code }

The class:

The class className {..} is a definition of a class. Each class definition is stored
in a file with corresponding name - className.java.

12

Object-Oriented Programming

The purpose of any computer program is to perform some manipulations on
data. This is also true for the object-oriented programs. The difference,
however, between a “traditional”, data-oriented program, and an object-
oriented program is in the way they view the data.

Traditional programs “see” and can perform some operations on individual
or grouped together elementary data elements of primitive data types —
numbers, characters, text strings, etc. Sometimes more complex data
structures like tables, stacks, or lists, along with specialized manipulation
commands, could be built into the language, but that’s about it. The highest
level of abstraction stops at the above mentioned data structures. If, for
example, we want to create a representation of some logical entity, like
“Customer”, we would need to construct a new group of data elements and
build the code to access it.

Object-oriented programs bring data abstraction to another level. They can
still manipulate the primitive data types — numbers, characters, etc., but the
primary focus is on so-called objects. An object is an entity that contains data
along with code to access that data. Object-oriented languages provide
additional tool sets (commands, operators, other language constructs)
allowing for creation and manipulation of objects. In the Java language, for
example, we have a construct to define classes, which are templates for
building objects, and a special operator new for creating instances of objects:
// Define the class “Apple”

class Apple {

.. data and code ..

}

// Create a new object of class Apple
obj = new AppleQ);

13

Object-Oriented Design

As we already mentioned, the main difference between traditional languages
and object-oriented programming languages is the level of abstraction in
viewing the data. Traditional languages provide means of manipulating
primarily primitive data elements, while object-oriented languages are
focused on manipulating logical objects. The way manipulation of objects is
implemented in the language is based on Object-Oriented Design (OOD)
principles. The OOD consists of three main concepts — Encapsulation,
Inheritance, and Polymorphism. In general, they set up rules on how objects
and their contents should be built, and the valid relationships between
objects. In order to understand these concepts, we have to get familiar with
terminology around obijects.

Let’s look at the picture below:

()
/Declaration of Class A \ Object 1 of class A

(instance of class A)
- J
Data: Code:
(N
Property 1 Method 1 iject 2 of class A
e (instance of class A)
Property N Method N ~ J

o /

Class A is a template (a definition) for building objects. It consists of data
definitions called properties and programs (executable code) called methods.

Object 1 and Object 2 are the instances of class A. They hold concrete values
of all properties declared in Class A.

There can be multiple classes (templates) and multiple objects (instances) of
those classes in a program. Now, let’s describe the three OOD concepts.

14

Encapsulation

Encapsulation principle requires that the internals (data and code) of an
object should be protected from being arbitrarily accessed by code outside
of the object. The only way to “communicate” with an object and access its
properties is through the public methods and public properties. Below is an
example of how the principle of encapsulation is implemented in Java.

/{aDeclar? t?e class “Apple The property color is not accessible
class . ppie . from the outside of the object
private String color;

public void setColor (String c) {
color = c;

}

The method setColor() is accessible
from the outside of the object

}

// Create the “applel” object of class Apple
Apple applel = new Apple();

// Invoke the public method “setColor” of object “applel”
// and set the color property to “red”

applel.setColor(“red”);

« ” . / Doesn’t work because the property
- ’ color cannot be accessed from outside
the class

15

Inheritance

Inheritance principle applies to the relationship between classes. It states
that two classes can have a parent-child connection, in which the child class
(a subclass) inherits all the features of the parent class (a superclass).

class Fruit Fruit is the parent class, and
Apple and Orange are the

child classes

class Apple class Orange
extends Fruit extends Fruit

Below is an example of the inheritance mechanism.

// Declare the class “Fruit”
class Fruit {
private String color;
public void setColor (String c) {

color = c;
}
}
// Declare the class “Apple” as a child of class Fruit
class Apple extends Fruit { /e
} Class Apple inherits all

// Create the “applel” object of class Apple | of theFruitclass

Lproperties and methods
Apple applel = new Apple();

// Execute the method “setColor” of object “applel”
// and set the value of color property to “red”

applel.setColor(“red”);

Even though the color property and the setColor methods are not defined in
the Apple class, they are accessible in the Apple objects due to inheritance.

16

Polymorphism

Polymorphism principle dictates that it is allowed to have multiple methods
with same the name but different implementations within one or more
classes, and the language must be able to determine which variation of the
method to execute at run time.

Below are examples of how the Java language implements polymorphism.
Let’s say, we need to calculate the square footage of different shapes —
rectangle, triangle, circle, etc. Each shape is represented by its own class, and
each class is a sub-class of the superclass Shape:

class Shape

class Rectangle class Circle
extends Shape extends Shape

// Declare the class Shape
class Shape {
public double footage;
public void showSquareFootage() {
System.out.printin(footage);

}
}

// Declare the class Rectangle
class Rectangle extends Shape {

. . \
double wi (flth ; This method is executed
doubTle height;

when an object of class
Rectgng1e (double w, double h) { Rectangle is created.
width = w;
height = h;
})\
This method calculates and
displays the square footage
of the Rectangle object.

public void showSquareFootage() {
footage = width * height;
System.out.printin(footage);

3

17

// Declare the class Circle
class circle extends Shape {

double radius; 4________———-—‘_{Th' hod i d
C'I rcle (doub-le I") { is method is execute

radius = r: when an object of class
’ Circle is created.

public void showSquareFootage() {
footage = radius * radius * 3.1415;
System.out.printin(footage);

}

This method calculates and
displays the square footage
of the Circle object.

}

}
// Main program

// Create an object of class Shape
Shape shapel = new Shape();
shapel.showsquareFootage(); // prints “0”

// Create a rectangle object with width=2 and height=3
shapel = new Rectangle(2.0, 3.0); // shapel is now a rectangle
shapel.showSquareFootage(); // prints “6”

// Create a circle object with radius=2
shapel = new Circle(2.0); // shapel is now a circle
shapel.showsquareFootage(); // prints “6.2830”

In the above example the shapel variable, depending on the program flow,
could represent objects of different subclasses. During execution the
language will validate the type of object referenced by shapel and select the

appropriate showSquareFootage method.

Consider now that we want to change the dimensions of a rectangle and at
the same time calculate its new square footage. We could add another
variation of the showSquareFootage method to the declaration of the

Rectangle class:

class Shape {
public double footage;
public void showSsquareFootage() {
System.out.printin(footage);
}
}

class Rectangle extends Shape {
double width;
doubTle height;
Rectangle (double w, double h) {
width = w;
height = h;

18

public void showsquareFootage() { This method calculates

footage = width * height; the square footage of
System.out.printIn(footage); rectangle

}

public void showSquareFootage(double w, double h) {
width = w;
height = h; This method changes the
footage = width * height; dimensions of rectangle
System.out.println(footage); and then calculates its

} square footage.

Now, in order to select and execute the proper method, the language will
need to analyze not only the object type but the signature of the method as
well. The signature of a method is the combination of its return type and the
types of input parameters. Signature of the first method of this example is
“void+void” (no output and no input parameters), and signature of the
second method is “void+double+double” (no output parameters and two
input parameters of type double).

Thise is how the two variations of the showSquareFootage method can be
used:

// Main program logic

// Create a rectangle object with width=2 and height=3
Rectangle shapel = new Rectangle(2.0, 3.0);

shapel.showsquareFootage(); // prints “6”

// Change the rectangle dimensions to 3x4
shapel.showsquareFootage(3.0, 4.0); // prints “12”

19

Data Types, Variables, and Literals

The Object-Oriented Design discussion gave us an idea of how the Java
language is different from other, “traditional” languages. Now let’s look at
the features making Java similar to non-object-oriented languages.

Most languages, including Java, have the following in common:

- ability to manipulate primitive data types

- variables and literals

- afixed set of operators

- language constructs and statements for controlling the program flow

In this chapter we will review the primitive data types, variables, and literals.
The rest will be covered in later chapters.

Primitive Data Types

A primitive data type (could be also referred to as simple or atomic type) is
a data type that is not formed by combining other data types. For example, a
string is not a primitive data type because it is defined as a set of elements of
the character data type.

Java defines eight primitive data types:

Date Description Length, | Range (approximate)
Type in bits

byte Signed Integer Number | 8 -128 to +127

short Signed Integer Number | 16 -32,768 to +32,767

int Signed Integer Number | 32 -2.1*10° to +2.1*10°
long Signed Integer Number | 64 -9.2*10" to + 9.2*10"®
float Floating Point Number | 32 + (1.4e-45 to 3.4e+38)
double Floating Point Number | 64 + (4.9e-324 to 1.8e+308)
char Unicode Character 16 0 to 65,536

boolean N/A true or false

Note: Java does not reveal the length of boolean data type because its
implementation is platform-specific.

20

Variables

In Java, data elements of primitive types can be declared either as literals or
variables.

A variable is a named reference to a location in memory where the data
element of specified type resides. The format for declaring a variable is this:

type identifier; // declares the variable 7dentifier
// of type type

type identifier = value; // declares and assigns value
// to variable 7dentifier of type type

Here are some examples of declaring data elements of primitive data types.

int k; // “k” is a reference to a 32-bit area in memory
// that will hold an integer value

k = 100; // The above memory 1is populated with a 32-bit
// signed binary number (100)

char c = ‘A’; // “c” is a reference to the two-byte Unicode

// character ‘A’

Note, that variables can reference not only the primitive data types, but
objects as well.

Accessing the Variables

At high level, you can view every Java program as blocks of code. Each block
is surrounded by curly brackets: { statements }. Blocks can be separate or
included in each other:

{ block 1}

{ block 2 { block 3 } }

This structure determines the accessibility, also referred to as scope, of
variables. A variable declared in a block is accessible within that block and

within all included blocks. Once program flow reaches the end of a block all
variables declared within that block are destroyed.

21

Literals

A literal specifies an actual value of a data element. For example, 123 will be
treated by Java as a 32-bit signed integer number (i.e. type int), and 123.4 —
as 64-bit floating point number (type double). In fact, any whole number
value (i.e. without the decimal point) is treated as an integer, and any
fractional value (i.e. with the decimal point) is treated as a double precision
floating point number.

There are four types of literals in Java: numeric, character, boolean, and
string. Each of them is discussed below.

Numeric Literals

Numeric literals can be specified in decimal, hexadecimal, octal, or binary
notations. Here is the number 10 in different notations:

10 - decimal notation (decimal digits 0-9)

Ox0A - hexadecimal notation (0x is in front of hexadecimal digits O-F)
012 - octal notation (0 is in front of octal digits 0-7)

0b1010 - binary notation (0b is in front of binary digits 0-1)

Numeric literals can contain embedded underscores, which are ignored by
the compiler but make the values easier to read. Here are examples of valid
numeric literals:

1234567890
1234 567_890
123_456__7890
123_456_789.0

The data type of a literal is defined either implicitly (default data type
assignment) or explicitly. Any whole number literal is defaulted to type int,
and any fractional number literal is defaulted to type double. There can be
no literals of type byte or short. The long and float literals can be defined
explicitly by appending the number with ‘L', ‘I', ‘F’, or ‘f’. The type double can

22

also be specified explicitly by appending the number with ‘D’ or ‘d’ but this
would be redundant. The table below shows some examples of how the data
type of literals is determined.

Literal Data Type
Not available byte

Not available short

123 int

123L or 123I long
123.0 double
123.0D or 123.0d double
1.23E+2 double
123.0F or 123.0f float

Character Literals

A character literal is represented with a value within a pair of single quotes.
The digits, letters, and special characters that are present on the keyboard,
can be specified directly, as follows: ‘a’, ‘1’, ‘%’, etc. Other symbols should be
entered using escape sequences. The escape sequence is the backslash ‘\
followed by one or several symbols. There are several predefined escape
sequences that represent new line, tab, backspace, etc. Besides that, any
Unicode character can be entered directly using escape sequences in octal or
hexadecimal notations. Octal character notation has format ‘\nnn’ —
backslash followed by three octal digits. Hexadecimal character notation has
format ‘\unnnn’ — backslash, followed by ‘u’, followed by four hexadecimal
digits. Here is the lower-case letter ‘b’ literal in different formats:

‘b’, \142’, \u0062’

The table below shows available escape sequences.

Escape Sequence Description

\nnn Octal character (nnn — octal digits 0-7)

\unnnn Unicode character (nnnn — hexadecimal digits 0-F)
\b Backspace

\n New line

\r Carriage return

\t Tab

\f Form feed

23

\ Single quote
\” Double quote
\\ Backslash

24

Boolean Literals

Boolean literals can have only two values — true and false. These values are
not converted to any numeric values.

boolean b = true; // “b” is declared and set to true
b = false; // “b” is set to false

String Literals

String literals are formed by enclosing a sequence of characters by double
qguotes. Here are few examples of valid string literals.
“String Literal”

“\”string in double quotes\
“String on \n two lines”

Casting in arithmetic expressions

In general, the operands (variables and literals) of an arithmetic expression
could be of different data types. The purpose of the casting mechanism is to
deal with such situations by promoting the precision of operands from lower
to higher level. Precision is increased from byte to double as follows:

byte 2short 2 int 2 long = float = double

There are two types of casting: implicit and explicit. Implicit casting is done
by the language automatically, based on the actual data types of the
operands. Explicit casting is requested by the programmer by placing the
desired data type in front of a variable or literal.

Below are the rules of how the type of operands is determined or set in
arithmetic expressions:

- allinteger literals by default are of type int

- all non-integer literals by default are of type double

- before calculating any arithmetic expression, all byte and short varia-
bles are promoted to type int

25

- for each arithmetic operation (+, -, /, *, etc.), with mixed operand data
types, a lower precision operand is promoted to the type of the higher
precision operand

- aliteral or variable is promoted or demoted to the date type explicitly
specified by the type modifier placed in front of it in parenthesis

Example 1

double result = 1.5 + 3 / 2; // result = 1.5 +1 = 2.5

The data type determination and calculation are performed as follows:
(double) result =

(double) 1.5 + (int) 3 / (int) 2 =

(double) 1.5 + (int) 1 =

(double) 1.5 + (double) 1.0 = (double) 2.5

Example 2

double result = 1.5 + (double) 3 / 2; // result = 1.5 + 1.5 = 3.0

The data
(double)
(double)
(double)
(double)

type determination and calculation are performed as follows:
result =

1.5 + (double) 3 / (int) 2 =

1.5 + (double) 3 / (double) 2.0 =

1.5 + (double) 1.5 = (double) 3.0

Example 3

int result = (int) (3.0 / 2.0); // result = 1

The data

type determination and calculation are performed as follows:

(int) result =
(int) ((double) 3.0 / (double) 2.0) =
(int) ((double) 1.5) =

(int) 1

26

Operators

In this chapter we will review operators that can be applied to primitive data
types. These operators can be divided into the four main categories:
arithmetic, bitwise, relational, and boolean. In addition, the assignment (=)
and the question mark (?) operators will also be discussed here.

The Assignment Operator

“u_n

The assignment operator “=" assigns value to a variable. We’ve already used
it many times in previous examples. The format of the assignment operator
is this:

variable = expression;

It also can be used to assign a value to several variables in a single statement,
like this:

varl =varl =...=varN = expression;
Examples:
int x, y; // Declare the variables x and y of type integer
x = 1; // Assign the value 1 to variable x
X =Yy = 2; // Assign the value 2 to variables x and y

27

Arithmetic Operators

Arithmetic operators are used in calculations. Java supports the following five
basic algebraic operators: addition (+), subtraction (-), multiplication (*),
division (/), and modulus (%). Each of those can be combined with the
assignment operator (=) to form a so-called shorthand operator in this form:

arithmetic_operator=

Examples:

double x, vy;

X =2.5;

y = 10;

X +=Y; // X 12.5 The result is same as in X = X + Yy;

X %=Y; // x = 2.5 The result is same as in x = X % y;
// note: the modulus operation (%) returns the
// remainder of the division 12.5 / 10

Java also provides two additional arithmetic operators: increment (++) and
decrement (--) that respectively add 1 to a value or subtract 1 from a value.
These operators can be placed either before or after a variable:

int x = 1; // Declare x and set its value to 1
X++; // Add 1 to x (x=2)

+4X; // Add 1 to x (x=3)

X==3 // Subtract 1 from x (x=2)

--X; // Subtract 1 from x (x=1)

In the above examples the placement of the increment and decrement
operators is irrelevant. However, in assignment expressions, their location is
important. When the operator is placed after the variable, the original value
of the variable is used in the calculation of the result; after that the
increment/decrement operator is applied to the variable. When placed in
front of a variable, the increment/decrement operator is first applied to that
variable and the new value is used in the calculation.

Examples:

int x, y;

x = 1;

Y = X++; // x=2, y=1 (original value of x before the increment)
y = ++X; // x=3, y=3 (new value of x after the increment)

28

Bitwise Operators

The Java language supports a set of so-called bitwise operators that can
manipulate integer types (char, byte, short, int, long) on the bit level. They
can be divided into two groups: bitwise logical operators and bitwise shift
operators. The following table lists all the bitwise operators:

Operator | Performed Function Type of operator
~ Bitwise unary NOT (complement)

& Bitwise AND Bitwise Logical
| Bitwise OR

A Bitwise exclusive OR (XOR)

<< Shift left, filling with zeroes

>> Shift right, propagating the sign bit Bitwise Shift
>>> Shift right, filling with zeroes

As with the arithmetic operators, any bitwise operator except the NOT (~) can
be appended with the assignment operator “=" to form a shorthand:

X <<= 1; // This is equivalent to x
X &= y; // This is equivalent to x

X << 1;
X & vy;

The bitwise operators &, |, #, and ~ apply the logical operators AND, OR, XOR,
and NOT to corresponding bits of each operand. The table below shows the
results of logical operators for all possible two bit combinations:

Logical operators: | AND OR XOR NOT
Operand A | OperandB | A&B A|B ANB ~A
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

The bitwise shift operators shift the contents of a signed numeric value to the
left or to the right by number of bits specified in the expression. The “>>" and
“<<” operators preserve the sign (leftmost bit) of the number, and the “>>>"
operator fills the leftmost positions with zeroes.

Examples:
byte b;
29

o T T T

o T

= (byte) 0Ob11111110; //
= (byte) ~b; //
= (byte) (b << 1); //
<<= 1; //
= (byte) (b | 0b00000001); //
|= (byte) 0b00000010; //

Relational Operators

-2 1in decimal

b

T T

00000001 (+1 in decimal)

00000010 (+2 in decimal)
00000100 (+4 in decimal)

00000101 (+5 in decimal)
00000111 (+7 in decimal)

The relational operators are used for comparing values of two operands and
produce a Boolean result of either true or false.

The following table lists all the available relational operators:

Operator | Performed Comparison
== Operands are equal
I= Operands are not equal
> First operand is greater than the second operand
>= First operand is greater than or equal to the second operand
< First operand is less than the second operand
<= First operand is less than or equal to the second operand
Examples:
int x = 1;
inty = 2;
if (x == y) { System.out.println(“x is equal to y"); }
else { System.out.println(“x is not equal to y”); }
if (x !'=y) { System.out.println(“x is not equal to y”); }
else { System.out.println(“x is equal to y”); }
if (x > y) { system.out.printin(“x is greater than to y”); }
else { System.out.println(“x is Tless or equal to y”); }
if (x >= y) { System.out.printin(“x is greater or equal to y”); }
else { system.out.println(“x is less than y”); }
if (x <y) { sSystem.out.printin(“x is less than y”); }
else { System.out.printin(“x is greater or equal to y”); }
if (x <= y) { System.out.println(“x is less or equal to y”); }
else { System.out.println(“x is greater than y”); }

30

Boolean Logical Operators

The Boolean logical operators are similar to the bitwise logical operators.
Both apply the logical AND, OR, XOR, and XOR to two operands and produce
Boolean results, but the bitwise logical operators act on bits, while the
Boolean logical operators act on Boolean values.

In addition to “regular” four logical operators (AND, OR, XOR, NOT), Java
provides two “improved” Boolean operators — short-circuit OR and short-
circuit AND. They will be explained later in this section.

The following table lists the Boolean logical operators:

Operator | Performed Function Type of operator

! Logical unary NOT

& Logical AND Regular logical

| Logical OR operator

A Logical exclusive OR (XOR)

| Short circuit OR Short-Circuit logical
&& Short circuit AND operator

Same as with the bitwise operators, the Boolean logical operators (with the
exception of the unary NOT operator and the short-circuit operators) can be
combined with the assignment operator to form the shorthand as follows:

a &= b; // This is equivalent to a = a & b;
a |= b; // This is equivalent to a = a | b;
a A= b; // This is equivalent to a = a A b;

The Boolean logical operators (&), (]), (*), and (!) apply the logical operators
AND, OR, XOR, and NOT to two Boolean operands of an expression. The table
below shows the results of Boolean logical operators for all possible
combinations of two Boolean operands:

Logical operators: | AND OR XOR NOT
Operand A | OperandB | A&B A|B ANB 1A
True True True True False False
True False False True True False
False True False True True True
False False False False False True

31

The short-circuit operators (&&) and (]]) do not evaluate the right-hand
operand of a logical expression when the value of the left-hand operand
determines the result regardless of the value of another operand. For
example, if A=true, the result of A | B is always true, no matter of what B
value is.

Examples:
boolean a, b, c;
a = true;
b = true;
a = !b; // a=false
a &= b; // a=false (same as: a = a & b;)
a |= b; // a=true (same as: a =a | b;)
a A= b; // a=false (same as: a = a A b;)
a =aA b; // a=false

// short-circuit operators

false;

true;

a || b; // c=true (a and b both will be evaluated)
b || a; // c=true (a will not be evaluated)

a && b; // c=false (b will not be evaluated)

NnNnnNncw
I [[I I |

32

Conditional Operator

Java provides a special ternary (three-way) conditional operator “?...:", that
allows for compact implementation of some IF-THEN-ELSE statements. The
format of the “?...:” operator is this:

variable = logical_expression ? expressionl : expression2

The logical_expression is any expression that evaluates to a Boolean value. If
it evaluates to true, then expressionl1 is evaluated and assigned to variable;
otherwise, expression2 is evaluated and assigned to variable. This can be
shown in pseudo-code as follows:

IF logical_expression = true
THEN variable = value of expression1

ELSE variable = value of expression2

Example 1:
. = -x will be executed
int x = -1;
inty = -1;
y=x>07?x1:-x; // x=-1;y
Example 2:
int X = -1: Qv)wnlbe executed]
int y = -1;
y=x>07?x:-(x=x+y); //x=-2;y=+2

In the second example, the x = x + y expression is executed first resulting in
=-2. Then, expression -(-2) evaluates to +2 and this value is assigned to y.

Program Flow Control

Most computer languages, including Java, support the following fundamental
program flow constructs:

- Sequential Statement

- Block of Statements

- Two-Choice (IF structure)

- Multiple-Choice (CASE structure)
- Iteration

- Jump (GOTO statement)

Java’s implementation of these constructs is presented in this paragraph.

The Sequential Statement

The Sequential Statement does not change the program flow.

— Statement >

The assignment statement like x = b; is an example of a sequential statement.
Java also has an empty statement, which is just a semicolon (;) without any
expression in front of it.

The Statement Block

The Statement Block is a group of statements and optional declarations
enclosed within the curly brackets:

{declarations and statements}

The program flow outside of the Statement Block is not affected:

—_— { statement; statement; .. } - >

34

The “if” Statement

The “if” statement implements the Two-Choice construct:

false true

statements statements

continue

The format of the if statement is as follows:

if (boolean expression)

{ statements, executed when condition is true }
else
{ statements, executed when condition is false }

Examples:

int x;
x = 0;

if (x < 0)
X++;
else

System.out.println("x=" + x); // prints “x=0"

if (x == 0)
{ x++; }
else
{ x--5 1}

System.out.println("x=" + x); // prints “x=1"

35

The “switch” Statement

The switch statement implements the Multiple Choice (CASE) construct:

expression

execute if Valuel A execute if ValueN

continue

Here is the format of the switch statement:

switch (integer or String type expression)

case valuel: statement; . . . statement;
break;

case valueN: statement; . . . statement;
break;

default: statement; . . . statement;

}

The expression must be evaluated to one of the following numeric types —
char, byte, short, int, or to the type String. The result of the expression is
compared with the values specified in the case blocks — valuel through
valueN. When a match is found, all the statements following that case
statement are executed. If we want to execute statements for only one case
value, we need to use the break statement as shown above. The break
statement “jumps” out of the switch construct to the next following
statement. The default statement group, which is optional, is executed when
no value matches found.

Example:

int x, y, z;
XxX=y=z=1;

switch (x += y) { // evaluates to 1 + 1 =2
case 1: z = 0; break;
case 2: z = 1; break;

default: =z 999;
1

System.out.println("z='

+z); // prints: “z=1"

36

Iteration statements

Java supports three iteration statements — while, do...while, and for. All of
them implement the iteration construct that executes a block of code until
some conditions are met.

true
statements

false

The “while” Statement

The while statement executes a block of code (body of the loop) while the
specified condition is true:

la
l

while

{ body }

An important point here is that the condition is evaluated first, and then the
body is executed. If the condition is false initially, the body of the loop will not
be executed at all. The format of the while statement is this:

while (condition) { body}

Example:

int n;

n=2;

while (n > 0)

{
System.out.print(" n=" + n); // prints: “n=2 n=1"
n--;

}

If the initial value of n was 0, the above code would not produce any outputs,
i.e. the body of the loop would not execute.

37

The “do...while” Statement

The do...while statement is similar to the above while statement with one
exception —it first executes the body of the loop, then evaluates the specified
condition:

The format of the do...while statement is this:
do { body } while (condition) ;

Example:

system.out.print(" n=
n--;

}

while (n > 0);

+n); // print: “n=2 n=1"

The result, as we see, is exactly as in the previous example with the while
statement. However, if the initial value of n was 0, the body of the loop would
execute once and the above code would produce this output:

n=0

38

The “for” Statement

The for statement is used for implementing the so-called “controlled” loops.
Controlled loops are basically while loops, but with explicitly specified code
that initializes and iterates the value of the variable(s) used in the loop

controlling condition:

initialization
< iteration
' f
condition { body }

Let’s look at the previous example of the while statement:
int n; 4| Initialization l
n=2;
while (n>0) i " l
{ Condition

System.out.printin("n=" + n);

n--; i Iteration l
}

Same logic can be coded with the for statement as follows:

for (n = 2; n > 0; n--)

{
}

System.out.println("n=" + n);

This is a “classical” form of the for statement, and its format is:

for (initialization; condition; iteration) { body }

Another form of the for statement is dealing with collections (arrays, for
example) and is called the “for-each” loop. We will present it in a few pages.

The n in the above example is called a loop control variable. There can be

more than one loop control variables, as in this example:

39

int x, y, z;

// Find when the sum of x, y, and z drops to zero

for (x=3, y=5, z=7; X+y+z > 0; X--, y--, z--)

{;} // Empty block; could be specified without curly brackets
System.out.printin("x/y/z= "+ x + “/7 +y + “/” + 2);

The output of this code will be:
x/y/z= -2/0/2

Note that the initialization (x=3, y=5, z=7) and the iteration (x--, y--, z--
statements are comma separated.

Internal Loop Control Variables

Another important note about the for statement must be made. When the
loop control variable is defined within the for statement, it is “not visible”
outside of the for statement:

for (int n = 2; n>o0; n--)

{
}

system.out.printin("n=" + n); // the value of n is known

// The n variable is not “visible” beyond the for statement
System.out.println("final n=" + n); // Error: the n is unknown

The “for” Statement without Loop Control Variables

It’s worth mentioning that the for statement could be coded without the
initialization or the iteration expressions, or both:

int n, max;

n = 0;

max = 100;

boolean reachedMax = true;

for (; !reachedmax;) // while NOT reachedmax ..
{

// double the value of n until it exceeds the max
n += n;
if (n > max) {reachedmax = true;}

}

System.out.printin("n=" + n); // prints: n=128

40

The “for-each” Statement

Consider an example when we need to calculate the average value for a set
of numbers, stored in an array. Here is how we can accomplish that with the
“classical” for statement:

int nArray[] {1, 2, 3, 4, 5}; // array of five numeric values

double avg 0;

// Toop through nArray elements (first element is numbered 0)
// and calculate the sum of all elements

for (int i = 0; 1 < nArray.length; i++)
{ avg += nArray [i]; }

// divide the sum by the number of elements
avg /= nArray.length;
System.out.printin("avg=" + avg); // prints: avg=3.0

The same result can be accomplished with the “for-each” version of the for
statement, which has the following format:

for (type iterativeVariable: collection) { body }

The above example would look like this:

int nArray[] {1, 2, 3, 4, 5}; // array of five numeric values

double avg = 0;

// The val will be assigned the value of each array element,
// one by one, in sequential order.

for (int val: nArray)
{ avg += val; }

avg /= nArray.length;
System.out.printin("avg=" + avg); // prints: avg=3.0

Please note, that the iteration variable val must be of the same or compatible
data type as the elements of the collection (array). The compatible data types
are those that the original data type can be implicitly promoted to. In this
example, the original data type is int, which can be promoted to long, float,
or double.

41

The “break” Statement

Java provide two statements — break and continue, that can break the
“natural” execution flow of a loop or any block of statements. The break
statement causes the termination of a loop or any named block of code
before it reaches its end. The continue statement immediately starts the next
iteration of a loop.

Let’s start with the break statement. We have already seen it in the switch
construct where it was used in the case expressions to jump out of the switch
statement.

Breaking Out from Labeled Blocks

The break statement has the following format:
break [label];

The label parameter is optional and is used to jump out of any named
(labeled) block of code. That block of code does not have to be a loop or a
switch statement. Consider this example:

int var;
var = 2;

blockl:

{
if (var != 1) break blockl;
System.out.println("Block 1 executed");
}

block2:
{
if (var != 2) break block2;
System.out.println("Block 2 executed”);

}
The output of this code will be “Block 2 executed”. Since the variable var is

not equal to 1, break blockl will jump out of block1 to the next statement.

Note that this technique will also work when the named blocks are nested
within each other. The break can jump from an inner block out of any outer
block:

42

int var = 2;

bTockl:
{
bTock2:
{
block3:
{
if (var == 1) break blockl;
if (var == 2) break block2;
if (var == 3) break block3;
System.out.printin("Last statement of block3™);
}

System.out.printin("Last statement of block2™);

1
System.out.printin("Last statement of blockl");

3

The output of this code will be “Last statement of blockl”. The (var==2)
condition will be true, and break block2 will jump out of blocks block3 and
block2 to the next statement of block1.

43

Breaking Out from Loops

When the break statement is used without its label parameter, it interrupts
execution of the loop containing that break statement. In case of nested
loops, labels can be used to identify each loop, and the label parameter will
tell which loop to terminate.

Examples:

int i;

// The for Toop

for (i=9; i>0; i--)

{

System.out.printin("i='
if (i==7) break;

}

// The while loop

i=9;

while (i>0)

{
System.out.println("i='
if (i==7) break;

i--;

}

// The do...while loop

i=9;

do

{
System.out.printin("i='
if (i==7) break;

i--;
} while (i>0);

+ 1);

+ 1);

+ 1);

All three loops iterate the variable i from 9 down to 0, but all will stop when
i reaches 7, producing same output:

T T F—
L
N 0 O

Here is an example of breaking out from nested loops:

int x, y = 0;
ToopA: for (x=9; x>0; x--) {
ToopB: for (y=9; y>0; y--) {
if (x==7 & y==7) break 100pA;
}
System.out.printin("x/y=" + x + “/” + y); // prints: x/y=7/7

a4

The “continue” Statement

The continue statement can be used only within the body of a loop to stop
the current iteration and start the next iteration. In case of labeled nested
loops, the continue statement can specify which loop to resume.

The format of the continue statement is:
continue [label]

The label parameter specifies the name (label) assigned to a loop and is
optional.

The continue statement works similar to the break statement, but instead of
terminating the loop, it forces the next iteration of the specified loop.

Example:
// simple for Toop
int i;
for (i=4; i>1; i--) {
if (i==3) continue; // go to next iteration when i = 3

System.out.printin("i=" + i); // will print i=4 and i=2

}

// nested Toops
int x,y = 0;
loopA: for (x=0; x<=1; x++) {
ToopB: for (y=0; y<=1; y++) {
if (x == y) continue TloopA;
system.out.printin(x + "/" + y); // will print only 1/0
}
}

45

Arrays

An array is a multi-dimensional collection of data elements of the same type
and referenced by a common name and a numeric index, e.g. - myArray[3].

Java provides a special syntax for handling arrays.

Declaring Arrays

There are two equivalent formats of the array declaration:
type arrayName [];
type [] arrayName;

For example, int myArray []; declares the myArray variable as the name of a
one-dimensional array of integer data elements. While each data element of
the array is of type int, the myArray variable is said to be of type int[].

Note: No physical array is actually created at the time of declaration.

Creating Arrays

After the array is declared, it can be created in one of two ways. The first way
is to use an array initializer when the array is declared:

int myArray [1 = {1, 2, 3, 4, 5}; // the array of five integers

Another way of creating arrays is by using the new statement:

int myArray []; // declares myArray as an array variable
myArray = new int[5]; // creates the array {0, 0, 0, 0, 0}

myArray [0] = 1; // assigns 1 to the first element of the array
myArray [2] = 3; // assigns 3 to the third element of the array

Note, that the new statement creates an array and assigns the default values
to all of its elements. The default value depends on the array elements’ type;
for numbers - 0, for Boolean - false, and for classes - null.

46

Multi-Dimensional Arrays

The easiest way to explain how the multi-dimensional arrays are created is by
reviewing an example. Let’s say we want to create the following two-
dimensional array:

Column1l Column2 Column3

Row 1 1 2

Row 2 10 11 12

Using an array initializer, the above array can be created with this statement:

int [101 N = { {1, 2}, {10, 11, 12} };

The array will consist of five elements and the values to the array elements
will be assigned as follows:

N [0] [0] = 1;

N [0] [1] = 2;

N—LO1—f27 // € element does not exist
N [1] [0] = 10;

N [1] [1] = 11;

N [1] [2] = 10;

We can also create this multi-dimensional array using the new statement:

int [1[1 N;
N = new int [2] [3]; // the 2x3 array with 6 elements created

However, the result of the above code is a 2 by 3 table with 6 elements. To
get rid of the N[0][2] element, we need to rewrite the code:
int [I[1 N;

ew int [2] []; // two columns with undefined number of rows
= new int [2]; // first row will contain 2 columns

N=n
N [0] =
N [1] = new int [3]; // second row will contain 3 columns

47

To avoid confusion with how arrays (or tables) are implemented in other
languages, you should envision Java arrays as hierarchical structures of
objects. The N array we just reviewed can be viewed as follows:

Object containing
2 elements - —
Object containing
Object containing N 3 elements
2 elements

N [0] N [1] Integer
N [0][0] || N[O][1] N[1][0] | N[2][2] | N[1][2]

As objects, N, N[0], and N[1], have the length property, which is very useful
when we want to iterate through the array:

// This code prints all elements of the two-dimensional array N

for (int x=0; x<N.length; x++)

{
for (int y = 0; y < N[x].Tength; y++)
{
system.out.printIn(N[x][y]);
}
}

48

Methods

A method is a block of code that can be referenced and called for execution
by its name. It is constructed as follows:

accessAttributes returnType methodNvame (parameters) { body }

Example:

public int myMethod (int x, int y) {
return x +y ;
}
This method accepts two integer numbers and returns its sum to the calling

program (i.e. to another method).

The access attributes are optional. They will be discussed in detail in a
separate chapter.

The return type can be of any primitive type, an array, a class, or void, which
indicates that no data is returned by the method.

The method name can be any name of your choice.
The parameters are optional.

The body is a set of variables declarations and executable statements.

The “main” Method

The main method is a special method that starts execution of all Java
applications. Java looks for this method in all classes presented for execution,
and expects it to be defined exactly like this:

public static void main (String args[]) { body }

49

Classes and Objects

Java is an Object-Oriented language, meaning that its primary purpose is to
manipulate objects. An Object is a logical entity consisting of data and code.
All objects are built from templates called classes, which makes them central
to the Java language. Any functionality you wish to implement in Java, must

be constructed as a class.

The following diagram illustrates the relationship between classes and

objects:

[Class is a template for building objects]

N

the class variables or methods

No objects are needed to access]

y L

Class C pata:

Class variables

Code:

Class methods

P

Data:

Instance variables

Code:

Instance methods

Instance variables
and methods are
accessible only via

objects

[J

An instance of a

class is an object

object A of class C

Object B of class C

Instance variables

Instance methods

50

Declaring Classes

Classes are declared using the class statement:

class className

! type variablel;
%yﬁe.variab7e;
type methodl(parameters);
%yée.methodW(parameters);
}
Example:

// Class Temperature provides functionality to convert

// temperatures from Celsius to Fahrenheit and vice versa

class Temperature

{
// Class variables and methods:
static double t; // temperature value
static double FtoC () // method for converting °F to °C
{return (temp - 32) / 1.8;}
static double CtoF () // method for converting °C to °F
{return temp * 1.8 + 32;}
// Instance variables and methods:
doubTle temp; // temperature value
double tocCelsius // method for converting °F to °C
{return (temp - 32) / 1.8;}
double toFahrenheit O // method for converting °C to °F
{return temp * 1.8 + 32;}
}

Class Variables and Methods

The code in previous example declares a new class Temperature with two
sets of variables and methods. The main difference between those sets is in
the usage of the static scope modifier. All variables and methods declared as
static are called class variables and class methods, and can be used without
creating any objects. Other variables and methods are called instance
variables and instance methods, and can be used only through object

instances.

51

The code below illustrates the usage of the class variable t and class methods
FtoC() and CtoF() of the class Temperature declared above:

double temp;

// Class variables and methods can be referenced via class name
Temperature.t = 77.0;

temp = Temperature.FtoC(Q);

System.out.printin(Temperature.t + "F=" + temp +"C");

// Class variables and methods can be referenced

// by their names directly (if the names are unique in the program)
t = 25.0;

temp = CtoF(Q);

System.out.printin(t + "C=" + temp +"F");

This code will print:
77 .0F=25.0C
25.0C=77.0F

Initializing Class Variables

During program execution, when a class is first used, i.e. when it is loaded
into the Java Virtual Machine (JVM), its class variables are assigned default
values. For numeric variables, the default value is zero. If there is a need to
initialize a class variable to a non-default value, it can be done in the
declaration statement itself, or in a statement block declared as static.

The example below declares the Temperature class with two class variables -
tF and tC. The tF gets its initial value during declaration, and the tC is
initialized in the static statement block. Note that the declaration of the tC
must be made outside of the static statement block, otherwise its scope will
be restricted to that block only.

Example:

// When the Temperature class is loaded into JvM
// the class variable tF will be assigned the value 77.0
// and the tC=FtoC(); code will run to calculate the tC value.

class Temperature {
static double tF = 77.0; // class variable tF 77.0
static double tC; // class variable tC = 0.0
static { tC = FtocQ; } // static statement block will convert
// tF to °C and put it into tC
// method FtoC converts °F to °C
static double FtoC Q) {return (tF - 32) / 1.8;}

52

Everything that was said so far about the class variables and methods can be
summed up in three rules:

Declaration Rule:

Class variables, methods, and statement blocks must be declared using
the static modifier

Accessibility Rule:

Class variables and methods can be referenced by their names directly if
the name is unique, or via the class name in all cases

Execution Rule:

All static declarations and statement blocks {...} of a class will be processed
(i.e. executed) one time only, when the class is first used in the program

53

Instance Variables and Methods

The variables, methods, and statement blocks in a class declaration, that do
not have the static modifier, are called instance variables, instance methods,
and instance statement blocks. Their usage is subject to the following rules:

Declaration Rule:

Instance variables, methods, and statement blocks must be declared
without the static modifier

Accessibility Rule:

Instance variables and methods can be used only after an object (instance)
of the class is created, and must be referenced via the object name

Execution Rule:

All instance declarations and statement blocks {...} of a class are processed
(i.e. executed) each time an object (i.e. instance) of the class is created.

The following example shows how objects could track their creation sequen-
tial number.

Note: The new statement (discussed in the next section) creates an object
of specified class.

class myClass

{
static int totalCount; // class variable
int myNumber; // instance variable
{ myNumber = ++ totalCount; } // instance statement block
// Main program
public static void main (String args[])
{
myClass objl = new myClass(); // creates the object objl
myClass obj2 = new myClass(); // creates the object obj2
System.out.printin(objl.myNumber); // prints 1
System.out.println(obj2.myNumber); // prints 2
}
}

54

The class variable totalCount will be initialized to zero when the class is first
referenced in the main program. The instance statement block will run when
object objl and obj2 are created, incrementing the totalCount by 1 and
assigning its new value to the instance variable myNumber. Note that objects
obj1 and obj2 will have their own copies of the myNumber variable.

The previous example contains one thing that was not covered yet - the new
statement, which creates objects. Let’s take a closer look at it and the whole
process of creating new objects.

55

Working with Objects

Objects are the core of Java language, making it is very important to have a
good understanding of how to create objects and how to use their contents.

Creating Objects

The process of creating a new object is called instantiation, and is performed
using the new statement. The format of the new statement is this

className objectReferenceVariable = new className(parameters);

Example:

myClass objectl = new myClass(Q);

This is what happens during execution of the above statement:

1) “myClass object1” declares the variable objectl of type myClass.
This variable can be used to reference any object of class myClass,
that’s why such variables are also called object references.

2) The new operator creates a new object; all instance declarations
of variables, statement blocks, and methods are processed.

3) The myClass() method is invoked to optionally initialize the
instance variables of the newly created object.

4) The reference between the variable objectl and the new object is
established.

56

Constructors

The myClass() method mentioned above is called a constructor, which is a
method with the same name as the class name and without the return type
specified. Itis invoked by the JVM when an object of the class is being created.
The purpose of a constructor is to initialize the instant variables of the class.
If you do not declare any constructors, the JVM will create an empty one:
className() { }, which will do nothing. However, once at least one
constructor is declared by the programmer, the default constructor is gone
and cannot be used. Please remember that a constructor is invoked right after
the instance declarations and statement blocks are processed. Below is an
example of a class that keeps track of its objects:

class testClass

{
static int count; // Total objects counter; defaults to zero
int myNumber; // Object’s sequential number
Instance block executes every
time an object is created
{myNumber = ++count;} // instance block increments the count
// and assigns it to object’s myNumber
testClass({} // Constructor without parameters
testClass(int n) { // Second constructor; assigns specified
myNumber = n; // sequence number to new object
}
// -====- Execution--------

public static void main (String args[])
{ Create three object of class]

testClass objl = new testClass(); testClass
testClass obj2 = new testClass();
testClass obj3 = new testClass(10);
System.out.println(objl.myNumber); // prints 1
System.out.println(obj2.myNumber); // prints 2
System.out.printin(obj3.myNumber); // prints 10
}
}

Note, that we defined two different constructors with the same name. This
is called “method overloading”.

57

Method Overloading

Method overloading is a mechanism used by Java to distinguish between
methods having the same names but different parameter lists. Each method
in Java is distinguished by its signature — the name of the method along with
the list of parameter types. The signature of the testClass() method could be
expressed as “testClass”, and the signature of the testClass(int n) would be
“testClass,int”.

The “this” Keyword

In previous examples, instance variables were referenced in constructors
directly by their names. But what will happen when a variable with the same
name as the instance variable is declared in the main method? This situation
is perfectly legal because all variables declared within the main method are
not “visible” outside of that method.

Another confusing situation would be when the name of an instance variable
is also used in the constructor’s parameter list. This problem can be solved
with the use of the keyword this, which represents the current object. See
this example:

class testClass {/[Instance variable x is visible within an object

int x;
testClass (int x) 4{ Parameter x is visible inside constructor only

X = X; ?{ Parameter x is assigned to itself; no effect]

{
this.x = x;
} \l Parameter x is assigned to the instance variable x
public static void main (string args[]) { ,
int x; Local variable x is visible
testClass obj = new testClass(100); l inside the main method
X = obj.x; only

}
3 Instance variable x is
assigned to local variable x

The this keyword can be used not only to refer instance variables, but also to

invoke one constructor from another, or to pass the current object as an
argument between methods.

Important note: The this keyword can be used only in constructors.

58

Another example of using the this keyword:

class Position {
int x, y, z;
Position (int x, int y, int z) {

this.x = x;
this.y = y;
this.z = z; Calls another constructor
} (must be the first statement)

Position (int x) {
this(x, 0, 0);
showPosition(this); Passes current object to the]

} showPosition method
void showPosition (Position p) {
Ssystem.out.printin(“My position: "+p.x+”,”+p.y+",”+p.z);

}

public static void main (String args[]) {
Position obj = new Position(5);
}
}

The above code prints: My position: 5,0,0

59

The “super” Keyword

One of the Object-Oriented Design principles is inheritance. Inheritance
represents the parent-child relationship between classes, when a child class
(subclass) inherits all the features of the parent class (superclass). Java uses
the “extends” keyword in class declaration to establish inheritance:

class superciass { body }
class subClass extends superclass { body }

Example of creating an object of a subclass:

class supercClass {

int x; _ | 3. Initializes the instance

superClass (int x) { variable x of the superClass
thisx = x; (x=1)

}

// Execution logic
public static void main (String a:g:ii;::é:[1.CmawsankwmnCﬂ
subClass o = new subClass(1l); of the subClass
System.out.printin(o.x); // prints: 2
System.out.printin(((superClass) 0).x); // prints: 1
} 5. Object casting is needed to

} access the superclass instance
variable x

int x; superclass. Must be the first

subClass (int x) {

statement, otherwise Java will
call super()

class subClass extends superclass { (1 Creates an instance of the
.

super(x);
this.x = super.x + 1;

}
!

4. Initializes the instance
variable x of the subclass
(x=1+1=2)

J/

When an object of a subclass is created, a superclass object is created as well,
implicitly or explicitly. It means that any subclass object consists of the
subclass instance and its parent class (superclass) instance.

In the above example, the user-supplied subclass constructor subClass()
creates the superclass instance by calling the superclass constructor
superClass() via the super(x) statement. The keyword super, when used in
the subclass constructor, represents the current object of the parent class. In
the example, it is also used to access the instance variable x of the superclass.

60

Object Casting

Note, that the super keyword can be used only in constructors. So how do we
access the instance variables or instance methods of a superclass from a
subclass object? In the above example the variable x is defined in both the
subclass and the superclass. The subclass’ x can be referenced via the
subclass object name as follows: subclassObject.x, but the superclass’ x is
hidden. The solution to this problem is object casting. We can cast a subclass
object to any of its superclass objects. Consider an example with two classes
Parent and Child, both declaring an instant variable x. Class Parent is
superclass of class Child. An instance (object) of class Child would contain two
instances of variable x. The code below shows how to access all of the
different instance variables by utilizing the object casting mechanism:

class Parent { int x; }
class child extends Parent { int x; }
class Test {

public static void main (String args[]) {
int y;

// A child object referenced by a variable of type child:
child c¢ = new child(Q;

y = C.X; // reference to the x of class child
y = ((Parent) c).x; // reference to the x of class Parent

// A child object referenced by a variable of type Parent:
Parent p = new Child(Q);

y = p.X; // reference to the x of class Parent
y = ((child) p).x; // reference to the x of class child

61

This table summarizes the accessibility of instance variables of super and sub-
classes:

. class Parent class Child extends Parent
Object " -
Instance variables Instance variables
reference - - - - -
unigue | same as in Child unique | same asin Parent
Parent p1 = new Parent()
pl. | can access | can access | - | -
Parent p2 = new Child()
p2. can access can access can access -
((Child) p2). can access - can access can access
Child ¢ = new Child()
c. can access - can access can access
((Parent) c). can access can access - -
super. can access can access - -

62

Method Overriding

Method overriding is a special mechanism allowing for declaring instance
methods with the same signatures (name and parameter types) in a
superclass and any of its subclasses.

This table presents different ways of accessing instance methods of super and
sub-classes. Please note that object casting does not give you availability to
access overridden methods of a superclass from a subclass. Once a subclass
object is created, only the subclass’ instance per each overridden method is
accessible.

Object class Parent class Child extends Parent
) Instance methods Instance methods
reference - - - -
unique | overridden unique | overridden
Parent p1 = new Parent()
pl. | can access | can access | - | -
Parent p2 = new Child()
p2. can access - - can access
((Child) p2). can access - can access can access
Child ¢ = new Child()
c. can access - can access can access
super. can access can access - -
((Parent) c). can access - - can access

63

Determining the Type of an Object

When working with objects, sometimes it might be not clear what class an
object belongs to. For example, if class A is extended by classes B and C, an
object reference of type A can reference objects of classes A, B, and C:

A obj;

obj = new AQ; // obj is a reference to an object of class A
obj = new BQ); // obj is a reference to an object of class B
obj = new cQ; // obj is now references an object of class C

An object reference of type Object can refer any object, of any class:

Object obj;

obj = string(“text”);
obj = Integer(123);
obj = MyClass(Q);

So, how can we determine the real type of an object referred by a variable?
The answer is — with the help of the instanceof operator.

The format of the instanceof operator is:
objectReference instanceof classType

Example:

Object obj;
obj = new String(“text”);

obj = new Date(Q);

if (obj instanceof Sstring)
System.out.printin(“object of type String”);

if (obj instanceof Date)
System.out.printin(“object of type Date”);

64

Summary
Here is the summary of what we have learned thus far about the objects:

Objects are instantiated (i.e. created) using the new statement, which has
the following format:
className new constructor;

A constructor is a special method with the same name as the class name
that is invoked automatically by the JVM when an object of the class is
being created.

The format of the constructor is: className(parameters) {body}
The parameters and body are optional, the return type is omitted.

The constructor is invoked after all instance declarations are processed
and instance blocks (if present) are executed.

A class can have several constructors with different signatures (i.e. with
different sequences of argument types).

An empty constructor (className() {}) is automatically created by Java
when no constructors are declared explicitly.

The default constructor (className() {}) will not be created by the JVM if
at least one explicitly declared constructor is present.

A constructor can invoke another constructor of the same class by
executing the this(parameters); as the first statement of the constructor’s
body.

Instance variables can be referenced in a constructor via “this” keyword as
follows: this.variableName

The keyword “super” represents a superclass (parent) of a subclass (child)
and can be used in the constructor of a subclass to invoke the superclass
constructors - super(parameters);, to access the superclass instance
variables - super.variable;, and to call the superclass methods —
super.method();.

A superclass and its subclass can declare instant variables with the same
names. The object casting mechanism should be used if we want to access
non-unique instance variables of a superclass from a subclass:

65

((superclass) subclassObject).x
// points to variable x of superciass

A superclass and its subclasses can declare instant methods with same
signatures (names and parameter list). The method overriding mechanism
makes sure that proper method is instantiated when an object is created.

The instanceof operator checks if an object belongs to specified class.

66

Type Wrappers

The usage of primitive data types has its limitations. Many of the data
structures operate on objects. For example, you cannot construct a set of
integers (a set is a collection of objects with distinct values which will be
discussed later in the book). That’s why Java provides type wrappers —classes
that encapsulate a primitive type within an object. There is one wrapper for
each primitive type:

Double, Float, Long, Integer, Short, Byte, Character, and Boolean.
Each of the above classes offers a wide range of methods (most of them

static) allowing various manipulations over the underlying primitive type
including the conversions between different primitive types.

Example:

Integer N = Integer.valueof(10); // N is an Integer object
int n = N.intvalue();

double d = N.doublevalue();

String s = Integer.toBinaryString(n);
System.out.printin(“n="+ n + “ d=" + d + “ s=" + s);

The output of this program is “n=10 d=10.0 s=1010".

67

Autoboxing

In JDKS5, Java introduced the autoboxing/auto-unboxing feature. Autoboxing
automatically creates a type wrapper object and encapsulates a primitive
type into it when an object of that type is needed. Auto-unboxing is the
reverse process; it retrieves a primitive type from a type wrapper object when
it is needed.

Example: Integer object N will be auto-unboxed to
the primitive data type double

class testwrapper {
public static double test(Integer N) {return N;}

pu?llcnsfa'i;;vmd main (string args(l) { Variable n of type int will be]
double d = test(n); \autoboxed into an Integer object
Ssystem.out.printin("d=" + d); // prints: d=123.0

3

68

Strings

In Java, a sequence of characters is represented by the class String. The String
class is a regular class, and can be handled as such. However, due to its
extensive usage, Java added some convenient features that make handling of
strings more intuitive. In this chapter, we will review all the special features
of the String class.

String Literals, Creating Strings

The string literal is a sequence of characters enclosed within double quotes:

“First Tine of a string literal. \n Second line.”

String literals can be used to create String objects directly:

Z Creates an empty String (null object)]
String sl = new String Q;

sl = “text”; 1 Assigns value to the String object s1]

String s2 = new string (“text”) ;ﬁ Creates a String object and initializes it]
string s3 text™; <i Creates a String object and initializes it with a literal]

As you can see in this example, a String object can be created without using
the new operator — just by direct assignment of a string literal to a String
variable. This might look strange at first, but there is a simple explanation:

A stand-alone string literal in Java is an object of class String.

For each unique string literal Java creates one object that can be referenced
by different object variables. The new operator, on the other hand, always
creates a new object regardless of the literal value passed to the constructor:

Sstring sl = new String(“text”); —p | sl|—p| String object “text”
String s2 = new String(“text”™); —p [s2|—p| String object “text”

s3 " .
String object “text”
ST Svngon

String s3 = “text”;
String s4 = “text”;

\A 4

69

Since a stand-alone string literal represent a String object, you can work with
it as an object, without creating a reference. For example, you can invoke the
length() instance method of the String class to get the length of a literal, as
follows:

int n = “text”.lengthQ; // n=4

Another important fact about the String object:

Once created and initialized, a String object cannot me modified. Its value
cannot be appended, truncated, or replaced. If you need a modifiable
string — use the StringBuffer class (not covered in this book).

Comparing Strings

It is important to understand that there is a difference between comparing
two actual string values and comparing two references to String objects:

EE” ng S;‘ i “Eexzu ’ s1 and s2 are pointing to same
ring sé = ext; String object having value “text”

boolean b = (s1 == s2); // b=true

String s3 = new String (“text”); —

String s4 = new String (“text”); s3 and s4 are pointingto

boolean b = (s3 == s4); // b=false different String objects having

same value “text”

To compare the actual values of two strings (which in fact are encapsulated
within String objects), we need to use the instance method equals() of class
String:

String sl = new String(“text”);
String s2 = new String(“text”);
boolean b = (sl.equals(s2)); // b = true

70

String Concatenation Operator

The string concatenation operator (+) combines two operands into one
string. The primitive data type operands (boolean, char, int, double, etc.) are
converted into their string representation, and object operands are
converted into a string by calling the instance method toString(). This type
conversion is performed on an operational basis, from left to right, as shown
in the following examples.

Example 1:

String s = “I have + 5+ 4 + “ dollars”;

Concatenation operators (+) are
executed from left to right.

The multiplication operator (*)

has higher precedence than

concatenation operator (+) and
Example 2: is processed first.

string s = “I have “ + 5 * 4 + “ dollars”;

20

20 |

| I have 20 dollars

String Methods

In this paragraph we will present some commonly used methods of class
String.

Determining String Length

Sstring s = “text”;
int Tng = s.lengthQ; // 1ng
Tng = “my string”.lengthQ; // Ing

nn
N

Comparing Strings

The compareTo() method compares two strings lexicographically. The
comparison is based on the Unicode value of each character in the strings and
is performed by comparing one character at a time, from left to right, until
unequal characters are found or until the end of one of the strings is reached.
The value returned by the compareTo() method is calculated as difference
between the numeric values of unequal characters (‘a’ - ‘b’ = -1). If one of the
strings reaches its end, the method returns the difference of the length of the
strings.

String s = “ab”;

int n;

n = s.compareTo(“ab”); // n=20 (“ab” = “ab”)

n = s.compareTo(“aa”); // n=+1 ("ab” > “aa”)

n = s.compareTo(“bb”); // n=-1 ("ab” < “bb™)

n = s.compareTo(“abaa”); // n = -2 (“ab” < “abaa”)

Accessing String Characters

String s = “abcdef”;

char ¢ = s.charAt(0); // c = *‘a’

char c = s.charAt(5); // c = Ff’

Searching for a Character

String s = “abcbcd”;

int pos;

pos = s.indexof(‘g’); // pos=-1 (character ‘g’ not found)

pos = s.indexof(‘b’,2); // pos=+3 (first ‘b’ after position 2
// is in position 3)

pos = s.lastIndexof(‘c’); // pos=+4 (last symbol ‘b’ is in position 4)

72

Searching for a Substring

String s = “abcbcd”;
int pos;
pos = s.indexof(‘abd’); // pos

= -1 (sub-string ‘abd’ not found)
pos = s.indexof(‘bc’); // pos

1 (sub-string ‘bc’ is in position 1)

Extracting a Substring

string s = “abcdef”;
String sl = s.substring(1,3); // sl
String s2 = s.substring(1); // s2

“pe”
“bcdef”

Creating a new String from existing String

String s = “ abc ”;
String sl = s.trimQ); // sl = “abc”
String s2 = s.replace(* “,’+’); // s2 = “+abc+”

Creating a Character Array from a String

String s “abcd”;

O o

char[] ¢ = s.toCharArray(Q;

0
1
2
3

="’
1="b’
I=¢
1="d

_
_
_
_

[
[
c[
[

Copy characters in c[o]="a’
positions 0, 1 of string | c[1]="b’

s into array c starting c[2]="a’
\\from position 2. c[3]='b’

(o]

s.getChars(0, 2, c, 2);

Creating an Array of Bytes from a String

This method converts each character of a string from Unicode (16-bit) into
the local 8-bit encoding (usually ASCIl) and creates an array of bytes.

String s = “abcd”; b[0]=97 (‘a’ in ASCII)
b[1]=98 (b’ in ASCII)
byte[] b = s.tgetBytes(); b[2]=99 (‘c’ in ASCII)

b[3]=100 (‘d’ in ASCII)

73

Creating a String from an Array of Characters

The static copyValueOf method of class String create a String object from an
array of characters. It has the following two formats:

static copyvalueof(char[] chararray);

static copyvalueof(char[] charArray, int startPos, int numberofEle-
ments) ;

Example:
char[] c = {‘a’, ‘b’, ‘c’, ‘d’};
Sstring sl = String.copyvalueof(c); // sl = “abcd”;

String s2 = string.copyvalueof(c,1,2); // s2 = “bc”;

74

Packages

A package is a container for classes. All Java classes are spread across more
than 200 packages. The fundamental classes reside in the java.lang package.
Examples of other packages are java.io, java.util, java.net, java.math, etc.

Packages are arranged in a tree-like structure:

java
lang io util |~
jar zip

java.lang java.io

java.util jar java.util.zip

The java.lang package is always available to the Java compiler. When your
program needs to use a class residing in a different package, that class or
the whole package containing that class must be imported into the pro-
gram:

import java.math.*;

__
.) : . All classes from package
import java.io.Fil eReadr‘;\L java.math will be available

classmyClass{...}

Class FileReader from the
package java.io will be available

User-defined classes are also placed into packages. For example, the myClass
from the above example will be placed in a default, “no-name” package. To
place it into a particular package, the first statement of the program (not
counting comment lines) must be the package statement:

PaCkage _mypac_:k - 0; The myClass class will be placed into the
import java.io.FileReader; mypack.io package.

class myClass { . . . } If mypack.io does not exist it will be created.

Note that classes, after compiling, retain information about the package
they belong to. So, if you copy a class from one package into another, the

75

new copy will not work. However, there is one exception. When a class is
compiled without the package statement, it can be placed in any named
package and be accessible by all classes in that package.

The implementation of the package concept varies depending on the
environment in which Java is installed (Linux, Mac, Windows, etc.) and
therefore it is not included in the scope of this book.

76

Modifiers

The following entities of the Java language — classes, interfaces, variables, and
methods —can be declared with so-called modifiers controlling their behavior
and/or accessibility. Here, myMethod is declared with two modifiers: public
and static.

public static void myMethod() { .. };

Class Modifiers

There is a limited set of modifiers that can be applied to classes:

- public
- abstract
- final

The public modifier makes the class accessible from any package. If this
modifier is not specified, the class will be accessible from the package it was
declared.

The abstract modifier defines a class in which one or more methods are
declared as skeletons - with the return type and the list of input parameters,
but without the body. Abstract classes will further be explained in the
“Abstract Classes” section.

The final modifier prohibits the class from being extended by other classes.

Access Level Modifiers

Access level modifiers control the visibility of variables and methods of a
class from other classes in the same or different packages. There are four
access level modifiers (in order from less to more restrictive):

public > protected = [no modifier] - private

77

Example:

public void myMethod() { .. };
protected int n;

double x;

private String name;

The following table shows how access modifiers affect the visibility of
variables and methods of one class from its sub-classes and also from other
classes residing in the same or different packages.

Package One Package Two
class A | subclass of A | class B subclass of A class C
public visible visible visible visible
protected visible visible visible -
no modlifier visible visible - -
private visible - - -

The “static” Modifier

The static modifier indicates that the variable or method can be accessed
before any object of the class is created. A good example is the main method
that starts execution of an application. It must be declared static because it
is called before any object exists.

The “final” Modifier

The final modifier can be applied to variables, methods, and classes to
“finalize” their declaration.

A final variable cannot be modified after it is assigned an initial value. That
effectively makes a final variable a constant:

final double pi = 3.1415926;

A final method cannot be overridden. If a class declares some method as
final, the sub-classes of that class cannot create a method with the same
signature as the final method.

A final class cannot have sub-classes, i.e. it cannot be inherited.

78

Generics

Generics is a feature of Java allowing the use of generic names when
specifying the class type of object parameters in the declarations of classes,
interfaces, methods, or constructors. For example, if two methods have same
functionality but one receives an integer parameter, and another receives a
double parameter, we can declare just one method and supply that method
with a “generic” type of the parameter, which will be substituted with the
proper type during compilation.

The best way to understand all the advantages and restrictions of generics is
by going through examples, which are illustrated below.

Generic Methods

Let’s say that we want to create a method that acts on an object without
knowing what its type is. One way of accomplishing that is by using the Object
class —the superclass of all objects. We could accept an Object instance and
then cast it to the desired type.

For example, method sumArea summarizes the total area occupied by
objects of type A and B by processing one object at a time. All we know about
objects A and B is that they are unrelated (i.e. belong to separate class
hierarchies) and both have the getArea method returning their area value.
The sumArea method can be implemented as follows:

class A { public double getArea() {return 10.0;}
class B { public double getArea() {return 20.0;}

class myClass Cast the obj to correct type
double totalArea;
public void sumArea(Object obj) {

if (obj instanceof A) { totalArea += ((A) obj).getArea(); }
if (obj instanceof B) { totalArea += ((B) obj).getArea(); }

}
} instanceof operator
determines the type of obj

Now, can we use generics to get rid of instanceof and object casting? The
short answer is — Yes and No. At this point we come to a very important fact
about the generics:

79

Generics is a compiler feature, not a run-time feature. All class type
references are resolved at compile time.

For example, the sumArea method can be re-written in generic notation as
follows:

The T parameter is not a real class name,
but a generic name.
It must be placed before the return type.

public <T> void sumArea(T obj) {
totalArea += obj.getArea(Q);
}

In the object-casting example, when the method sumArea receives an object
of class A, the object reference obj is treated as if it was created by the
statement Object obj = new A();. By explicitly casting obj to the original class
A we acquire access to all its variables and methods.

The generics mechanism works somewhat differently. At compile time, the
type-variable T must be resolved to a real class name. Since we did not
provide any hints to what it might be, the T will be substituted with Object —
the superclass for all classes — and that will be the only change made to the
source. Without casting, object reference obj declared as “Object obj = new
A()” will only have access to the instance variables and methods of class
Object and also to the methods of Object overridden by class A. This diagram
shows which properties of object A would be accessible in both cases:

“Object-casting” approach A obj = new A() “Generic” approach

class Object

Parameter obj is treated
as being created like this:
Object obj = new A()

T is substituted with Object.
Parameter obj is treated as
being created like this:

\ Object obj = new A()

N

variable v1

method m1

AN

AN

variable v2
method m2 N

((A) obj). ez obj.

variable v2

method m2 |4

/)]

\ variable m3

method m3

As we see, without explicit casting, the “generics” code does not have access
to the class A instance variables and methods of object obj. This problem can

80

be solved by making a few changes to the class structure and also providing
more information to the generic method.

First, we can tell the generic method what class (or classes) can substitute the
type-variable T:

public <T extends AB> void sumArea(T obj) { .. }

The <T extends class> is called a bounded type, which sets the upper bound
for classes that can be referenced by the type-variable T.

Second, the new class (AB) should be made a superclass of classes A and B
and should define all instance methods we want to use within the generic

method sumArea:
4ﬁ<:::::{NmecbsABBnmrmMmdmbewﬂma
abstract class AB { public abstract double getArea(); }

class A extends AB { public double getArea() {return 10.0;}
class B extends AB { public double getArea() {return 20.0;}

o o

Now our obj will be viewed as being declared with “AB obj = new AB()"”, and
the getArea method of classes A and B will be reachable via the method
overriding mechanism. Simply put, the declaration of the generic method
was transformed from this:

public <T> void sumArea(T obj) {
totalArea += obj.getArea(Q);

}

to this:

public void sumArea(AB obj) {
totalArea += obj.getArea(Q);

}

Note that if we need access to the variables of classes A and B we can do it
only through methods declared in the superclass AB and overridden in A
and B.

81

Generic Classes

First of all, it is very important to understand that a generic class is not much
different from any regular Java class. What makes it “generic” is a small
addition to the class declaration syntax. Here is an example of a generic class
declaration:

The <...> notation identifies
class G <> { .. } class G as generic

The <T> notation is a class type parameter in which T is a type-variable, i.e.
parameter representing a class name. It indicates that an arbitrary (any) class
name can be used in the declarations of variables and methods of the class:

class myClass <T> {

public T myvalue;
public void setvalue(T obj) {

myvalue = obj;

}
public static void main (string args[1) {

myClass<String> c = new myClass<String>Q);
c.setvalue(“test”);
System.out.printin(c.myvalue); // print: “test”

myClass<Integer> n = new myClass<Integer>Q);
n.setvalue(123);
System.out.printin(n.myvalue); // print: “123”

}

Note that we have to specify the class type parameter explicitly when
creating objects of generic classes. This information is used by Java for type
safety checking, making sure, for example, that an object reference of type
myClass<String> does not point to an object of type myClass<integer>.

The class declaration shown in the previous example (class myClass <T>)
allows substitution of the type-variable T with any class name. In most cases,
it is not desirable. Usually, we want to restrict the range of classes for which
generic class objects can be built. We can achieve this by using another form
of generic class declaration:

class G <7 extends classname> { ... }

82

The classname parameter sets the upper boundary for class names that are
allowed to be specified by the type-variable T and enforces that only the
classname class or any class extending the classname can be specified by the
T parameter. This is a part of the type safety mechanism provided by
generics.

The example below shows the type safety mechanism in action:
abstract class AB { public abstract String myName(); }

class A extends AB { public string myName() {return “A”;}
class B extends AB { public string myName() {return “B”;}

class G <T extends AB> { The type-variable T can specify
String name; only class AB or its subclasses

G (T obj) { name = obj.myName(); 3} // class G constructor

public static void main (String args[])

{ Error! You have to specify explicitly
the object type you are passing to

= new AQ); the constructor of class G

A a
G g;

Compiler will check if the reference
= ’ a is of type AB or its subclasses
g = new G<AB> (a);

/ Ensures that b can reference only

G b; G objects created with the input
b = new G (new BQ); parameter of type B.

i

Compiler will check that the input h

parameter new B() is of type B

(and it is), and that b can

reference a G object created with
the input parameter of this type. Y,

g = b;
OK.The gand b are
b=g: both of type G

“Unsafe conversion” error: b can only reference G objects
created with input parameter of type B, but g could point to the
G object created with input parameter of type AB, A, or B

83

Passing Generic Classes as Parameters

Objects of generic classes can be passed as parameters to methods, in the
same way as other Java objects:

class GenericClass <T> {..}

public void myMethod(GenericClass g) {..} Thelalvariableererenceaan
object of type GenericClass<A>

GenericClass<A> a = new GenericClass<A>();
GenericClass b = new GenericClass(); The b variable references an
object of type GenericClass

myMethod(a) ; < Valid calls to myMethod()]
myMethod (b) ;

As you see, myMethod() can accept any object of type GenericClass
regardless of the type-variable T used in creating those objects. We can add
some type safety checking to the process by specifying restrictions for the
input parameter of myMethod(). This is accomplished with the help of the
wildcard parameter <?>. The example below demonstrates the usage of the
<?> parameter in method declaration:

abstract class AB { ... }
class A extends AB { ... }
class B extends AB { ... }

Objects of generic class G can be of
types G, GAB>, G<A>, or G

class G <T extends AB> {

Object g can be of any type allowed
by the class G declaration

public void myMethod(G<?> g) {..} Object g can be of type G<AB> or its

sub-classes (i.e. GRAB>, G<A>, GB>)

public void myMethod(G<? extends AB> g) {..}

Object g can be of type G or its
super-classes (i.e. G or G<AB>)

public void myMethod(G<? super B> g) {..}

In this example <? extends AB> sets the upper boundary for passing object
references, and <? super B> sets the lower boundary.

84

Generic Interfaces

Generic interfaces are declared in a way similar to the declaration of generic
classes, for example:
interface GenericInterface <T> {

public void myID (T id);
}

The type-variable(s) in the interface declaration are passed to the interface
from the class implementing that interface:

N

class myClass <T> implements myInterface <T> {..}

interface myInterface <T> { .. }

This is why generic interfaces can only be implemented by generic classes.

It is possible to restrict the scope of type-variables in the class declaration, in
the interface declaration, or in both:

class myClass <T extends AB> implements myInterface <T> {.}

interface myInterface <T extends ABC> { .. }

The Java compiler performs type safety checking by comparing the bounds
set for the type arguments in the class to the bounds set in the interface. The
class type arguments must be within bounds of the interface class arguments.

Note: Whether the type-variable T is used (or how it is used) in the bodies of
the class or interface, is irrelevant to the type safety checking process — the
type safety checking will be performed anyway.

85

Below are examples of valid as well as incorrect declarations.

class AB {}
class A extends AB {} myInterface can be implemented
class B extends AB {} only by the class AB or its sub-classes

interface myInterface <T extends AB> {..}]]
Valid declaration

class myClass <T> implements myInterface <T> {..}

Valid; class A is subclass of AB]

class myClass <T extends A> implements myInterface <> {..}

class myClass <T extends String> implements myInterface <T> {..}

Error! Class String is not a subclass
of AB

class myClass implements myInterface <T> {.}

\[Error! Class myClass must be generic]

class myClass <X> implements myInterface <T> {..}

Error! The generic type variables
in myClass and mylnterface
must have same name

86

Generic Constructors

It is important to remember that constructors are methods whose function is
to create instances (objects) of classes. As methods, they can be declared as
generic. The class itself can be either generic or non-generic.

We have already seen constructors of generic classes in previous examples.
Here is another example:

class G‘_ener1 cClass <T> { This is a constructor of a generic class,
pubTi C T key; but it is not a generic constructor!
GenericClass(T k) {

this.key = k;

Creates object g of type GenericClass<String>

} and sets key=123

}

GenericClass<Integer> g = GenericClass<Integer>(123);

The above constructor is not generic. To be generic it should be able to accept
generic parameters different from those specified in the class declaration,
like this:

class GenericClass <T> {
public T key;
public Object value;
<X> GenericClass(T k, X v) {
this.key = k;
this.value = v;

This is a generic constructor.

Creates object g of type GenericClass<String>
and sets key=123 and value="test”

}

GenericClass<String> g = GenericClass<String>(123,”test”);

The <X> in front of the constructor indicates that this constructor can accept
the type-variable X, which is not related to any type parameters in the class
declaration.

Very important note: all generic type-variables of a constructor (in this case
- X) are local to the constructor. Therefore, you should not use the names of
type variables declared by the class:

class GenericClass <Ti—£‘£::::::::{ThbTisbcdtotthonsUudon]
public T key;

<r> G(_enem ccl as_? @ { Error! Type mismatch: the T declared in class

thisvkey—=—; and T declared in constructor are different

3 type-variables.

87

By default, type-variables can specify any class type or interface type. To set
boundaries to the allowed values of a type-variable, use the extends keyword
along with this format:

<T extends class> constructorName (..) {..}
The T type-variable is restricted to the type class or any of its sub-classes.

Example:

class GenericClass <T> {..}
<V extends ABC> GenericClass (T objl, Vv obj2) {.}

The above type-variable V can be of type ABC or any of its sub-classes.

Generic constructors can also be used in non-generic classes.

Example:

class nonGeneric { Only classes implementing the

. interface mylnterface can be passed
string name; to this constructor.

<T extends myInterface> nonGeneric(T o) {
this.name = o.getName();

}
public static void main (String args[]) {
nonGeneric g = new nonGeneric(new AQ));
System.out.printin(g.name); // prints: “Class A”
) }
interface myInterface { String getName(); }
class A implements myInterface {

public String getName() {return “Class A”;}
}

Notice the usage of the interface name in the constructor declaration:

<T extends myInterface>

This is valid, because when a class implements an interface, objects of that
class can be referenced by variables of the interface type.

88

Lambda Expressions

A lambda expression is a special construct of the Java language used for
defining custom methods outside of any class. In reality, the lambda
expression automatically declares a “hidden” class, creates an instance of
that class, and attaches the specified method to it.

Let’s illustrate this process with an example. We will implement the same
functionality using the “traditional” approach and also using the lambda
expressions. The task is to create a method converting any text to uppercase.

IM

Here is the “traditional” way:

class myClass {
string transform(string s) { return s.toUppercCase();}
}

myClass ¢ = new myClass();
System.out.println (c.transform(“text”)); // prints: “TEXT”

The same transform method declared using lambda expression:

We need to create an interface that must
declare only one method.
interface myInterface { This is called a “functional interface

string transform (String s);

“txt” substitutes the
input parameter

}

Becomes the body of
the transform method

myInterface upper = (txt) -> {return txt.toUppercCase();};

System.out.printin (upper.transform(“text”)); // prints: “TEXT”

upper is an object of a “hidden”
class that implements mylnterface

It seems that the “lambda” approach does not save us much effort — instead
of declaring a class, we declare an interface, and instead of creating an object
of the class we use the lambda expression that defines the body of the
method and also creates an object of a “hidden” class. Even worse — the
lambda expression approach looks like an “un-object-oriented” way to
achieve the same thing that could be done the “object-oriented” way.

89

All of the above is true, but sometimes it is not practical to create a new class
for just one or for a rarely used method. Also, the same interface can be used
for creating of many different methods. For example, here is another method
that uses the same interface mylnterface presented earlier:

myInterface lower = txt -> txt.toLowercCase();
System.out.printin (lower.transform(“TEXT”)); // prints: “text”

To fully explore this capability, the package java.util.function provides
several predefined functional interfaces to be used in lambda expressions.
One of these functional interfaces — Function<T,R>, applies its method
apply() to object of type T and returns the result as an object of type R. The
[partial] declaration of the Function interface looks as follows:

public interface Function <T, R> {
R apply(T t);

}

Let’s use this interface and a lambda expression to create a method that
transforms digits into words:

spell is an object of a “hidden” class
import java.util.function.¥*; that implements the Function interface

Function<Integer, String> spell = N -> —==:::::{N\mﬂbethemput I
arameter to appl
/(This block will become the body 2 pely()
{ \ofthe apply() method
String digits [] =
{“zero”, “one”, “two”, “three”, “four”,
“five”, “six”, “seven”, “eight”, “nine”};

return digits[N.intvalue ;
9 [Ol :i Returns N’th element of array digits]

1

Creates object of type Integer
Integer N = Integer.valueof(4); with the value of 4

System.out.printin(spell.apply(N)); // prints: “four”

Calls the apply() method of I
the object spell.

90

In previous examples we were explicitly declaring the object references of
functional interface types:

Function<Integer, String> spell spell and Iowe‘r are object references
of types Function and mylnterface
myInterface Tower

Then, lambda expressions were assigned to these object references. This
method of creating lambda expressions clearly shows what we’re trying to
achieve, but is not mandatory. In general, it is not necessary to explicitly
declare functional interface object references. A lambda expression itself can
be viewed (and used) as an object of the corresponding functional interface.
For example, we can pass a lambda expression as a parameter to a method if
that parameter is declared as a functional interface.

Here is an example; the IntPredicate is a factory-supplied functional interface
declaring the following test method:

boolean test(int value)

We are going to utilize it for selecting numbers within a specified value range:
(n > min) & (n < max). Here is what needs to be done:

- Create an object of type IntPredicate
- Substitute its test method with the desired conditional expression
- Use the test method to check if a number is within the range

import java.util.function.*;

class testLambda

The filter() method accepts object of
{ L. i . type IntPredicate (functional interface)
Stat-fc '!nt min = 0; and returns same object
static int max = 100;
public static IntPredicate filter(IntPredicate p) {return p;}
public static void main (String args[]) {
int i = 100; The “n -> (n > min & n < max)” is an object
of type IntPredicate
if filter(n -> (n > min & n < max)).test(i)
System.out.printin("within range");
else
System.out.printin("out of range");
}
}

Explanation: the filter method accepts an object of type IntPredicate and
returns it back. The goal here is to pass a lambda expression to this method
and get it back as an object. A lambda expression itself does not tell us what

91

the functional interface it is used for, so we need to provide this information
to the Java compiler either by directly assigning the lambda expression to a
functional interface variable, or by passing the lambda expression as a
parameter of a functional interface type. So, in this example, the lambda
expression n -> (n>min & n<max) creates an object of the IntPredicate type,
substitutes its test method with the (n>min & n<max), and passed this object
to the filter method. The filter method returns this object back, so the
expression filter(n->(n>min&n<maxy)) is in fact an object reference of type
IntPredicate. Finally, we use this object reference to call the instance method
test (which, at this moment, reflects the lambda expression):

filter(n -> (n > min & n < max)).test(i)

The outcome of the above program: “out of range”.

92

Method Reference

The method reference feature allows you to create a reference to a method
without executing the method. That reference then can be passed to another

method for execution using the double colon “::” operator. The following
diagram and corresponding program code illustrates the process:

Functional Interface F Instance of interface F

method execute() /,execute() points to myMethod()

\
myClass «
myMethod () {...} common (F obj)

common (myClass::myMethod) {obj.execute(); }

interface F {
void execute Q;

}

class myClass {
static void common(F obj) { obj.execute(); }

void myMethod() {..}

public static void main (String args[]) {
common (myClass: :myMethod) ;
}
}

The common() method is defined to accept an object of the functional
interface F and run its execute() method. At run time, the method reference
operator (::) creates an instance of the functional interface F (because the
common() method expects it) whose execute() method points to method1().
Then, the instance of F is passed to the common() method, and method1() is
executed. Note that method passing as reference must have the same
signature (return type and the types of parameters) as the method defined
by the functional interface.

93

Below are some examples converting the string “Test Text” to upper or lower-
case.

interface Transform { The signature of method doit() is

string doit (String s); <String>method<String>
! All methods passing as references

must have this signature.

class myClass { The printAs() method accepts

an object of type Transform
and executes its doit() method

static void printAs (Transform obj) {
System.out.printin(obj.doit(“Test Text”));
1

static String upper (String s) {return s.toUppercCase();}

string lower (String s) {return s.toLowercCase();}

The “::” operator creates a
new Transform object with
the doit method
referencing the static
method upper

public static void main (String args[]) {
Transform lowercase, uppercase;

printAs (myClass :: upper);

myClass mc = new myClass(); The “::” operator creates a new

printAs (mc :: Tower); Transform object with the doit
method referencing the instance

Towercase = mc :: Tower; itied D

printAs (lowercase); =

94

Constructor reference

Constructor reference is similar to method reference.

Let’s say, the Location class holds two coordinates, x and y:

class Location {
int X, Y5 Default constructor
Location () {x =y = 0;} (without arguments)
Location (int x, int y) {

this.x = x;
this.y = vy;

Constructor with two
arguments

}

We want to be able to build the Location objects not only “traditional way”,
with the new keyword, but also by calling a create method accepting two
coordinates.

First, we declare a functional interface with the create method accepting two
integers and returning an object of class Location:

interface myConstructor {
Location create (int x, int y);

}

Then, during execution, we create an instance (i.e. object) of the functional
interface with the reference to one of the Location class constructors:

myConstructor mc = Location :: new; Will try to find a constructor of class

Location with same argument list as in
the create() method declared by
myConstructor interface.

If found, the create() method will be
referencing the found constructor.

Finally, we use the instance method create() to invoke a proper constructor
of the class Location:

Location a = mc.create(7, 8);

This example demonstrates the basics of creating and using constructor
references. However, having two different ways of invoking the same
constructor seems to be more confusing than beneficial.

So here is a more practical example - we will be passing default constructor
references of two different classes (A and B) to the printName() method. This

95

method will use the received constructor reference to create an object and
invoke its myName method.

AB is the type to which the instances of A

interface AB { and B will be casted to in the printName()
String myName(Q) ; method. The myName() method must be

} declared here so that the method overriding

class A implements AB { mechanism works.

String name;

A (O {name = "A class";}

public String myName() {return name;}
}
class B implements AB {

String name;

B () {name = "B class";}

public String myName() {return name;}

}
L. This functional interface will be
interface defaultConstructorRef <T> { used for passing the constructor
T create(); references to printName().
} ’ Its create method will be
executing the constructor. y
class testConstructorReference {
ubTlic static void main (String args
? (9 gs[]) “A::new” and “B::new” will 2
printName (A :: new); become two objects of the
rintName (B new) ’ defaultConstructorRef whose
P " ’ create() method will be pointing
} to the default constructors of

classes A and B. J

public static void printName (defaultConstructorRef obj) {

AB obj = (AB) obj.create(); The (AB) casting is heeded
because the object returned by
create() will be of type Object.
Note: We could specify

<T extends AB> in
defaulConstructorRef to avoid

this casting.

System.out.printin(obj.myName());

This program creates the output:

A class
B class

96

Inner Classes

An inner class is a class declared within another class or within a method:

class classA { // € top level class (outer class)
class classB { // € inner class
classc { // € inner class
}
}
}
public void myMethod() {
class classD { // € inner class (AKA local class)
}

Static Inner (Nested) Classes

A static inner class is a class with the static modifier and declared within
another class:
class outerclass {
static class innerClass {

}
}

A static inner class can access only static variables and methods of the outer
class and has no association with the instances of the outer class. In this
regard it behaves exactly like any other class declared outside of the outer
class, so more appropriate name for such classes would be static nested
classes.

Example of using static inner (nested) classes:

public class outer {
static String myName = "outer"; N will keep track of total created
static int N = 0: \ instances of the nested class

static class Nested {
static String myName = "Nested";
int myN;
Nested() { myN = ++N; }

increments object’s sequential

Constructor of the nested class; ’
number

97

public static void main (String args[])

This is how we can access static I

{ variables of the outer class

System.out.println(myName) ;
4[This is how we can access static I
System.out.println(Nested.myName) ; variables of the nested class
System.out.printin(Outer.Nested.myName) ;
4[This is how we can create

Nested nestedl = new Nested(): objects of the nested class
outer.Nested nested2 = new Oouter.Nested();
System.out.printin(nestedl.myN); // Prints: 1
System.out.println(nested2.myN); // Prints: 2

}

Non-Static Inner Classes

A non-static inner class is a class declared within another class as an instance
property (i.e. without the static modifier). An object of a non-static inner class
has access to the instance variables and methods of the outer class object in
which it was created. Objects of non-static inner classes can be created either
within instance methods of the outer class, or with the new operator prefixed
with the outer class object name:

public class outer {

Non-static inner class can access the instance
int x = 0;

variables (and methods) of the outer class

class Inner { void innerMethod() { x++; }; }

public static void main (string args[1) {

Valid methods of creating the
outer outerl = new outer();

inner class objects using outer
object reference

Inner innerl = outerl.new Inner();
outer.Inner inner2 = outerl.new Inner();

outerl.instanceMethod(); - -
} Valid methods of creating inner

class objects from within instance

void instanceMethod() { methods of outer class objects

Inner inner3 = new Inner();
outer.Inner inner4 = this.new Inner();

98

Local Inner Classes

A class declared within a method is called a local class.

public static void main (String args[]) {
int x = 1;]

inty = 2; \L Local variables of method main

// A Tocal class declared within method main

class myLocalClass {
. o ’ Local class can read local
String s = “Local Class”;)
> variables
int z;

{z=x+y; }/(Localclasscannot update
fFx—=2573

local variables
—

}

myLocalClass Toc = new myLocalClass();

system.out.println(“z=" + loc.z); // prints: z=3

99

Abstract Classes

Abstract class is a class in which one or more methods are declared, but not
defined (i.e. a without a body). To understand why we need abstract classes,
consider this class hierarchy:

class Shape
method: getArea()

/\

class Square class Circle
method: getArea() method: getArea()

Class Shape declares the getArea method for calculating the area of a
particular shape. This method is overridden with actual implementation in
each of the subclasses — Square and Circle. If we create an object of class
Shape, its getArea() method would have no meaning. Of course, we could
make it to return a fake value, like zero, to indicate that this is not a true
shape. A better approach, however, would be to altogether disallow the
creation of class Shape objects. That's when abstract classes and abstract
methods come in hand.

Example:

:! Abstract class cannot be instantiated]
abstract class Shape {

String myName;
public abstract double getArea(double arg);<£i{AbﬂmCtmem0d

public String getName() {return myName;} cannot have a body

Abstract class can
declare non-abstract
methods

public static void main (String args[]) {

Shape a = new CircleQ);

Double area = a.getArea(l);

System.out.println("area=" + area); // prints: “area=3.1415"

}

}
A subclass of an abstract class

class Circle extends Shape { g e et

public double getArea(double arg) { methods with “real” ones,

return (arg * arg * 3.1415); otherwise the subclass will

3 become abstract too.

}

100

Anonymous Classes

An anonymous class is a class declared within an expression. The definition
of the anonymous class begins with the keyword new and is enclosed within
round brackets:

(new className() {body of the class})

This is equivalent to creating an instance of some unnamed class extending
the className. Being an instance of a class, the anonymous class definition
can be used in various expressions:

somevariable = (anonymous class definition) .method() ;
someMethod (anonymous class definition);

Consider a situation when we have class Circle calculating the area of a circle
with this formula: area = 3.14 * radius * radius. We want to keep the existing
class Circle, but increase the precision of this calculation by using a new
formula: area = 3.1415926 * radius * radius.

Here is how we can accomplish this with an anonymous class:

class circle {
public double getArea (double r) {return 3.14 * r * r;};
}

class testClass {
public static void main (Stri ng;ﬂ])[Original formula from class
Circle is used I
Circle a = new Circle(Q);
system.out.printin(a.getArea(2)); //prints: 12.56
The anonymous class extends class
%{ Circle and overrides the getArea() I

a = (new Circle() {

public double getArea (double r)
{return 3.1415926 * r * r;}

); New formula is used because a is
now referencing the anonymous class

System.out.printin(a.getArea(2)); // prints: 12.5663704

101

Interfaces

An interface is a collection of constants, abstract methods, and default
methods. The main purpose of interfaces is to supply useful constants and
methods to classes, and also to expand the polymorphism mechanism
beyond the class hierarchies.

An interface can extend one or more other interfaces. Interfaces cannot be
instantiated (you cannot create an object of an interface), but they can be
implemented by a class. The class implementing an interface must override
all abstract methods of the interface, otherwise the class will be abstract.

The example below demonstrates the common technique of working with
interfaces.

First, we declare two interfaces: Conversionl and Conversion2. The
Conversion2 interface extends the Conversionl and adds one constant and
one method.

__‘====::::::::{ Declares an interface
All variables are implicitly
interface Conversionl { public static final

double F2Cc = 5.0 / 9.0;
double toCelsius (double t); By default, methods are public
} unless declared as static

interface Conversion2 extends Conversionl

Conversion2 adds new features
double C2F = 9.0 / 5.0; to Conversion

double toFahrenheit (double t);

}

Next, we declare two classes implementing the Conversion2 interface. Both
classes will have access to the constants declared in Conversionl and
Conversion2 interfaces, and they must also implement all methods declared
in those interfaces.

// Approximate temperature conversions

class myClassl implement Conversion2 {

public double toFahrenheit(double t) {return t * 2 + 32;}
public double tocCelsius(double t) {return (t - 32) / 2;}

102

// Precise temperature conversions
class myClass2 implements Conversion2

{
public double toFahrenheit(double t) {return t * C2F + 32;}
public double toCelsius(double t) {return (t - 32) * F2C;}

Finally, we create two objects of classes myClass1 and myClass2 and execute
their instance methods toFahrenheit() and toCelcius().

public static void main (String args[])

{
conversion2 obj;
obj = new myClassl(Q);
System.out.printin(obj.toFahrenheit(25)); // prints: 82.0
System.out.printin(obj.toCelsius(77)); // prints: 22.5
obj = new myClass2(Q);
System.out.printin(obj.toFahrenheit(25)); // prints: 77.0
System.out.printin(obj.toCelsius(77)); // prints: 25.0
}

3

Note that same variable “obj” of type Conversion2 can be used to reference
objects of classes myClassl and myClass2. This technique employs the
polymorphism mechanism and instructs Java to find correct instance
methods dynamically, at run time, based on the actual type of the object
referenced by “obj”.

103

Interfaces vs. Abstract Classes

You might have noticed already that an interface and abstract classes are
similar. Both can declare constants and provide method templates for further
implementation by other classes. So the question is — what can we do with
interfaces that cannot be done with classes?

Let’s take a look at an example:

abstract class Fruit abstract class Package
getVolume() getVolume()

class Orange extends Fruit class Box extends Package
getVolume() {...} getVolume() {...}

The getVolume() method of the Orange and Box objects can be accessed as
follows:

new Orange(); orange.getvolume();
new Oorange(); fruit.getvolume(Q);

orange orange
Fruit fruit

Box box
Package pack

new Box(); box.getvolume(Q);
new Box(); pack.getvolume(Q);

Since the Orange and Box classes belong to different class hierarchies, it’s not
possible to create an object reference that can be used for referencing both
objects.

Interfaces allow us to do that because the class hierarchy and the interface

hierarchy are unrelated. Interfaces break the class hierarchy boundaries.

Otherwise unrelated classes can implement the same interface, and a
variable of that interface type can reference the objects of both classes.

interface Shape

getVolume()
/\
class Orange implements Shape class Box implements Shape
getVolume() {...} getVolume() {...}

Example: using a single interface variable to reference class objects in
different class hierarchies.

104

interface Shape {
doubTe getvolume(Q);
}

class orange +implements Shape {
doubTle getvolume() { 7mplementation code };

}
class Box implements Shape {

doubTle getvolume() { 7mplementation code };
}

Shape shape; Declare the object reference I
shape of type Shape

shape = new orange(Q);
shape.getvolume(); The getVolume() of Orange wiIII

be executed

shape = new Box(); The getVolume() of Box will be
shape.getvolume(); executed

Note: the polymorphism mechanism is employed to find and execute the
getVolume() method of the actual object referenced by the shape variable.

105

Default and Static Methods in Interfaces

Sometimes it might be beneficial to have interfaces with fully implemented
methods (i.e. methods with a body). This can be accomplished in two ways:
by declaring default methods or static methods.

A default method is an instance method that has a body and is prefixed with
the default modifier. Default methods can be, but are not required to be,
overridden in the classes implementing the interface.

interface Shape {
default double getvolume() {return 1.0;}
}

A static method is a class-level method that has a body and is prefixed with
the static modifier. Static methods can be, but are not required to be
overridden in classes implementing the interface.

interface Shape {
static String getShapeName(Object obj)
{ return obj.getClass().getName(Q; }

}

Example:

class Orange implements Shape {

public static void main (String args[]) {
double volume;
String name;

Create an object of the Orange class]

Shape obj = new orange();

Use the static method of interface
Shape to get the name of the

name = Shape.getShapeName(obj); object referenced by obj

volume = obj.getvolume(); Use the default instance

method getVolume() of
interface Shape

System.out.printin(“Shape="+ name); // prints: “Shape=Orange”
System.out.printin(“volume="+ volume); // prints: “volume=0"

}

106

Exceptions

An exception is an interruption of normal program flow due to an error. Some
errors are fatal and cannot be recovered from, while others are not critical
and can be handled by the application (e.g. file not found situation). Java
recognizes two types of exceptions: checked exceptions and unchecked
exceptions.

Unchecked exceptions are not anticipated. For example, a JVM failure or
division by zero are not expected situations. Usually these errors are due to
issues with the Java runtime environment or bugs in the application code. The
way to deal with unchecked exceptions is to fix the environment issues (if
any) or get rid of bugs in your application (debugging).

Unchecked exceptions are not anticipated and not required to be
processed by the application.

Checked exceptions are explicitly declared in some Java classes or in user-
defined classes and could be thrown (i.e. created) under some circumstances.
For example, the FileReader class will throw the FileNotFoundException if
the file you’re trying to open cannot be found. A checked exception must be
caught and processed in the method where the exception occurs, or it can be
passed through (propagated) to the calling method (if any), all the way to the
JVM.

Checked exceptions are declared in Java or user-defined classes and could
be thrown under some circumstances.

Checked exceptions are anticipated and must be processed or passed
through by the application.

Java provides a special mechanism for handling exceptions. When an error
situation occurs during execution of an application, Java interrupts the
application and triggers the exception handling mechanism. This process is
referred to as throwing an exception. After that, the exception can be
handled either by the application, or by the JVM. The details of the whole
process are described in the next section.

107

Handling Exceptions

Java’s exception handling mechanism includes a built-in default exception
handler and special language constructs for catching or throwing the
exceptions. The default exception handler is executed when your program
does not process the exception; it prints out some diagnostic information and
terminates the program. A program can build its own custom code for
handling specific exceptions by utilizing these five commands: try, catch,
finally, throw, and throws.

As we mentioned before, exceptions (i.e. error situations) could be
anticipated (checked exceptions) or unanticipated (unchecked exceptions).
Checked exceptions are explicitly declared in some Java classes (or in user-
defined classes or methods) and must be handled by methods that use those
classes or methods. Unchecked exceptions are usually unexpected (e.g.
division by zero) and could be left unhandled. Java supports a predefined set
of unchecked exceptions. The similarities and differences in handling of
checked and unchecked exceptions are explained below.

Handling Unchecked Exceptions

When an unexpected error occurs, Java creates an object of appropriate
unchecked exception type that contains information about the exception,
and passes that object to the application. If the current method does not have
logic for catching the exception, Java propagates (passes) it to the calling
method if one exists, or to the JVM.

This diagram illustrates how the JVM handles unchecked exceptions:

(4) Prints an error message
and stops execution

(3) Propagated if not caught
main() in main()
1

JVM’s default exception handler

call ¢

myMethod()

(2) Propagated if not caught
in myMethod()

{n=5/0;} | (1) Division by zero exception]

l is thrown by JVM

108

To handle unchecked exceptions in your application, you can use the
following constructs:

try {
code you want to monitor for possible exceptions
1

catch (exceptionTypel e) {
code processing the exception of type exceptionTypel

3

catch (exceptionTypen e) {
code processing the exception of type exceptionTypeN
}
finally {
code to be executed regardless of the results of try or catch
blocks

}

Example of handling unchecked (not anticipated) exceptions:

int n = 0; Division by zero
try { _

} n=5/n; [Catch all arithmetic exception]

catch (ArithmeticException e) —

{ Print “Exception
System.out.println("Exception caught!”);| caught!”and

3 continue

finally

{ S prns o]
System.out.printin("n=" + n);

}

Note that once an exception is caught, the propagation process stops and
normal program execution resumes. It is possible, however, to pass an
exception to the calling method even after the exception was caught and
processed. This is done by using the throw statement:

109

// Explicit propagation of unchecked exceptions

public static void main (String args[]) {
try {

} myMethod (3 ; ! Will catch the exception]
. . . ted f Method
catch (ArithmeticException e) { propagated from myMethod()

System.out.println("Exception in main!”);

}
}

public static void mymethod O { S0 O CILEL]

int n = 0;
try {n=5/n; })Catch all arithmetic exceptions]
catch (ArithmeticException e) {

System.out.println("Exception in myMethod!”);
throw e;

4
} Propagate the same exception
} up to the main method

The above code will produce this output:

Exception in myMethod!
Exception in main!

110

Handling Checked Exceptions

Checked exceptions are exceptions explicitly declared and thrown by some
Java classes or by user programs. If your program uses a Java class or calls a
method that could throw a checked exception, you must catch that exception
or explicitly propagate it up to the calling method.

This diagram illustrates how the checked exceptions should be processed:

(4) Prints an error message
and stops execution
— \

JVM'’s default exception handler

(3) Exception is propagated to
the JVM if not caught in main()

N\

IOException can be thrown in

main() throws |OException |
methodA

{ methodA(); }

(2) Exception is propagated to
main if not caught in
methodA() throws IOException methodA()

{f =new FileReader(file); } Ve N
(1) FileReader class throws an
I0Exception

y

J

Note that this method must be declared with the throws someException
clause if it can create and throw its own exception or if it catches a checked
exception and then re-throws it with the throw someException statement.

Example:

// Explicit propagation of checked exceptions
import java.io.*; r
class myClass { —l FileReader class resides in java.io]

public static void main (String args[]) {

string file = “not_existing_file”;]
try { /[Can throw an IOException]
checkFile(file);
} Will catch an IOException
propagated from checkFile

catch (IOException e) {
System.out.printin("main: checkFile failed!”);

3

111

public static void checkFile (String file) throws IOException {
FileReader f;

[Method can throw an IOException]

try {
f = new FileReader(file);

} Catches all I/0 exceptions]
catch (IO0Exception e) {

System.out.printin("checkFile: IOException!”);

throw e;
) } & Propagates IOException up to the main method]

3

The above code produces the output:

checkFile: IOException!
main: checkFile failed!

In addition to the pre-defined set of checked and unchecked exceptions
provided by Java, you can build your own exceptions, similar to checked
exceptions. To understand how it’s done, we will first review the exceptions
classes.

112

Exceptions Class Hierarchy

For every exception, Java creates an object containing some useful
information about the exception. Each type of exception is represented by its
own class — FileNotFoundException, IndexOutOfBoundsException, etc. All
these classes are sub-classes of the top class Throwable. The diagram below
shows the hierarchy of the exceptions classes:

Throwable
Error 1 Exception
ThreadDeath L » RunTimeException
LinkageError v
ArithmeticException
VirtualMachineError
IndexOutOfBoundsExcep-
NegativeArraySizeExcep-
NullPointerException
ClassCastException
> IOException
FileException
FileNotFoundException
—>
—p Custom Exceptions

All Error and RunTimeExceptions are unchecked exceptions and are not
required to be caught and handled. The rest are checked exceptions that
must be handled by application logic if they can be thrown during execution.

113

Class Throwable provides several useful methods that can be used in the
exception handling logic of your program. Here are some of them:

String getMessage() Returns the detailed message string
for this exception
void printStackTrace() Sends the above message and the

trace information to the standard
error stream

String toString() Returns a short description of this
exception

Now, that we know how the exceptions classes are organized, let’s take a look
at how to create a custom one.

114

Creating Custom Exceptions

A custom, user-defined exception can be built as a sub-class of the Exception
class as follows:

. . Must extend Excepti
class CustomException extends Exception { —==::{ Gl S]

Need this constructor if we
want to have an exception
——— with a message

public CustomException(String msg) {
super(msg);

}
Constructor of the superclass
Exception must be called

class runMyTest {
public static void main (String args[])

{ Could throw CustomException]
try {
testMyException();
}) Prints: “My exception”]
catch (CustomException e) {

System.out.printin(e.getMessage());
}

// Method that throws CustomException
public static void testMyException () throws CustomException

{

CustomException e;
e = new CustomException("My exception™);
throw e; —

Method can throw
CustomException

[Creates an object of CustomException]

115

Threads

When two or more parts of a program are running concurrently, such
program is called a multithreaded program. Each path of execution is called
athread. Every Java program has at least one thread that starts with the main
method.

Starting Threads

An application program can create as many threads as needed. To be able to
create a thread, a class needs either to extend the Thread class, or implement
the Runnable interface. In both cases, the class creating a thread must
implement the run() method. The below diagram illustrates the two ways of
creating threads. Note that in both cases an object of type Thread must be
present and have access to the run() method of your class:

Object of type Thread Object of type Thread
class Thread class Thread

start {...} start {...}

class A v class B ‘}
extends Thread | run(){...} implements
I:I Runnable run() {--}

As the diagram shows, a thread is started by the start() method of class
Thread that calls the run() method defined in the class starting the thread.

In this example a new thread is started by an object of class myClass which
extends the Thread class:

class myClass extends Thread {
public void run() {.}
public static void main (String args[]) {
myClass thl = new myClass();
thl.start(Q;
}
}

When your class extends the Thread class, the only method that you have to
implement is the run() method. This method should define the processing

116

that will be done by the new thread. Note, that the run() method defined by
the class Thread is empty and does nothing.

You can also implement (i.e. override) other methods of class Thread, but
with one exception — the start() method. If you implement the start()
method, and even if it calls the run() method, no threads will be started, run()
will be executed as a regular method of your class, within the current thread.

This method of creating threads is completely acceptable, but if you are not
intending to override other methods of class Thread besides the run()
method, a better approach would be to implement the Runnable interface.

In this example a new thread is created by an object of class myClass
implementing the Runnable interface:
class myClass implements Runnable {
public void run() {.}
public static void main (String args[]) {
Thread th2 = new Thread(new myClass(Q));
th2.start(Q);

}
}

The Runnable interface declares only one method — run(), so your class needs
to implement just that method. To start a new thread, the program has to
create an object of class Thread using the following constructor:

Thread (Runnable target)

Here, targetis an instance of your class.

It’s important to reiterate that a thread can be started only by the start()
method of a Thread object. In the first example, when a sub-class of Thread
was instantiated, an object of class Thread was created automatically by
calling the super() constructor. In the second example, we created a Thread
object explicitly, and at the same time passed an object of the class myClass
to it.

117

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#Thread-java.lang.Runnable-
http://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Here is a sample program that starts one thread.

import java.io.IOException;

Create a Thread object with a
reference to the object of our
class testThread

class testThread implements Runnable
{
public static void main (String args[])
{
Thread th = new Thread(new testThread());
th.setName(“Thread 1”);
th.start();

1 Assign a name to the thread]

\l Start the thread (invoke the run() method)]

System.out.printin("main: hit enter...");
System.in.read(); — Read one byte from the
} . \l console
catch (Exception e)
{ system.out.println("main exception:" + e); }

try {

System.out.println("main ended");

}
public void runQ) J Thread starts with this method]
{
String name = Thread.currentThread() .getName();
Get the current
try {)
. " . " thread instance,
System.out.printin("thread: hit enter..");
X then obtain the
system.in.read(); 5
. thread’s name
System.in.read();
} X Read two bytes from console]
catch (Exception e) {
System.out.println("thread exception:" + e);
}
System.out.println(name + " thread ended”);
}

}

The above program will prompt you to hit Enter twice. The first request will
come from the thread, the second — from the main method. You should hit
Enter twice to first stop the execution of the main method, then the thread
execution.

118

Daemon Threads

When you execute the previous program, you will notice that the main thread
ends once you hit Enter, but the thread will continue running until you hit
Enter again. Threads that continue execution after the parent thread dies are
called user threads. Another type of threads is called daemon threads. A
daemon thread dies once its parent thread dies. By default, a newly created
thread is a user thread; to make it a daemon, you need to mark it as such by
calling setDaemon(true). Make sure it is done before you start the thread:

Thread th = new Thread(new myClass());
th.setbDaemon(true) ;
th.start(Q);

Interrupting Thread Execution

A thread can be interrupted by another thread via the instance method
interrupt():

Thread th = new Thread(new myClass());
th.start(Q);

éh:iﬁterrupt();

The interrupt method sets a flag in the thread object, which has to be checked
in the run() method to have any effect.

public void run() {

if (Thread.interrupted())
{ System.out.println(“I was interrupted"); }

Note that interrupt() is an instance method, and interrupted() is a static
method.

Neither of these methods stop tread execution. They merely allow to “send
a signal” is up to the thread
being interrupted.

III

to the thread, but how to process this “signa

119

Waiting on a Thread to Die

If the main thread depends on the execution of its child threads, it can use
the join() method of class Thread to “connect” to the child thread and wait
until it finishes.

Thread th = new Thread(new myClass());
th.start(Q);

ﬂ 1sec for thread th to die]
try {

th.join (1000 ; /I Wait forever for thread th to die]

th.joinQ;
} This exception can be thrown]
catch (Interruptedexception e) { by the join() method
System.out.println("Exception: " + e);
}
Synchronization

In multithreaded programming, it is often critical to restrict the access to
shared resources to only one thread at a time. Java offers a resource locking
mechanism that can be employed in two ways — through synchronized
methods or synchronized statement blocks. Both approaches will be
discussed in few moments.

First, to understand Java’s synchronization and locking mechanism we need
to know two key terms: the monitor and the lock. When a thread acquires a
lock, it is said to have entered the monitor. This does not add much to the
understanding of the topic itself, but is important because these terms are
used in all Java manuals.

120

Synchronized Methods

You can declare any method of your class as synchronized:

synchronized static public void method1() {.}
synchronized public void method2() {..}

By doing so, you activate the locking mechanism either on the class level, or
on the object level, or both.

The object-level synchronization works as follows:

All synchronized instance methods of an object are controlled by the same
lock. Only one synchronized instance method of that object can be
executed at any point in time.

The class-level synchronization works as follows:

All synchronized static methods of a class are controlled by the same lock.
Only one synchronized static method of the class can be executed at any
point in time.

Note that object-level synchronization and class-level synchronization work
independently of each other.

Synchronized Statement Blocks

There might be situations when you cannot use the synchronized methods
such as when you’re not allowed to modify the class. In such circumstances
you can use a synchronized statement block. Here is how a synchronized
statement block is defined:

synchronized (object) { statement block }
This statement can be used anywhere in the thread execution path (i.e. in the

run() methods or any other methods called by it). The statement block will be
locked on the object and will be accessible only by one thread at a time.

121

An important note must be made regarding the object used in the above
construct. The object could be an object of any class, even a dummy object
created just for the purpose of being a lock. As long as all threads have access
to the same object — synchronization on the statement block will work.

The example below demonstrates the usage of statement block
synchronization.

122

Example: only one thread at a time can execute the synchronized block

import java.io.IOException;

class testSyncBlock implements Runnable {

object lock; __—— Declare the instance reference lock of
type Object
public static void main (String args[])
{
testSyncBlock mainThread = new testSyncBlock();
. . The lock object will b d onl
mainThread.lock = new Object(); € lock object will be used only
for synchronization
Thread thl = new Thread(mainThread, "threadl");
Thread th2 = new Thread(mainThread, "thread2");
thl.start(Q);
th2.start(Q; i Create and start two threads]
try {
thl.joinQ); /[Wait for both threads to finish]
th2.j0inQ); ~
}
catch (Interruptedexception e) { System.out.printin(e); }
}

public void run(Q)

{
String name = Thread.currentThread() .getName();
System.out.println(name + “ started”);
] :J Synchronizing on the object lock]
synchronized (lock)
{ ol Beginning of the synchronized
try l block
{
System.out.printin("hit enter...");
System.in.read();
}
catch (Exception e) { System.out.printin(e); }
} Ve
} —l End of the synchronized block]

123

Advanced Inter-Thread Communication

In most cases synchronized methods and synchronized statement blocks are
sufficient for establishing safe access to shared resources. However, there
might be a need for more granular control over the synchronization process.
The following three methods defined by the Object class allow two or more
threads to communicate with each other:

wait(, notify(, notifyAl1Q

The wait() method releases the lock held by the current thread and puts the
thread in a waiting state.

The notify() method wakes up one of the waiting threads (if any). The choice
of which thread to wake up is arbitrary (i.e. a random thread will be chosen
for you by the JVM).

The notifyAll() method wakes up all threads waiting on the lock held by the
current thread.

The above methods must be used within either synchronized methods or
synchronized statement blocks.

The example below illustrates how communication between threads could
be established. The program creates two threads reading the same array of
strings, one element at a time. Once the next element of the array is
processed by one thread, the thread gives control to another thread and goes
to sleep.

import java.io.IOException;

class testNotify implements Runnable { ! The lock object will be]
object Tock = new oObject(); used for synchronization

string[] s = {"one", "two", "three", "four"};
int count = 0;

public static void main (String args[])

{
testNotify me = new testNotify(); Create two threads with the
reference to object me
Thread thl = new Thread(me, "threadl");
Thread th2 = new Thread(me, "thread2");

Start both threads; the run()
th2.start(Q); !
O method of object me will be called

thl.start(Q); T]

124

try {

thl.joinQ; _{ Wait until both threads die]
th2.j0inQ; —

}
catch (Interruptedexception e) { System.out.printin(e); }

3

i A Obtain the name of current thread]
public void runQ [

{
String name = Thread.currentThread() .getName(Q);

synchronized (lock) ﬁ Synchronize the block below on the]

{ object lock

try
{

while (count < s.length)

{

System.out.println(name + + s[count++]);

Tock.notify () ;4 Wake up another thread]

Tock.wait(); Release the lock and go to sleep
} ¥ until notified by another thread

catch (Exception e) { System.out.println(e); }

Tock.notifyAl1(Q);

} After all elements of the array are
} processed, wake up all waiting
! threads so they can finish too

Note that the wait(), notify(), and notifyAll() methods must be invoked by
the object on which the current thread is locked — object lock in this example.
Otherwise, the lllegalMonitorStateException would be thrown.

The output of the above program is this:

threadl: one
thread2: two
threadl: three
thread2: four

125

Collections Framework

The Collections Framework is a set of interfaces and classes that provide a
standardized approach for managing groups of objects. The cornerstone of
the whole concept is the collection, a generic term for a set of objects
grouped together by some means. Based on the way collections are built and
accessed, all collections can be divided into three major categories:

LIST -asequence of objects; examples: arrays, sorted lists, queues, stacks.
SET - a group of unique objects; no duplicates allowed.
MAP - a group of key/value pairs of objects.

Each group can be divided further into sub-groups. For example, a list could
be sorted, linked, organized as a stack, etc. However, regardless of the
differences between collections, most of the operations upon them are
performed in a similar manner, through standardized interfaces. This chapter
provides an overview of such operations.

Creating Collections

Most of the collections use the add() method of the corresponding class for
putting new elements into collections:

// Create a LinkedList collection

LinkedList<String> 1list = new LinkedList<String>Q);

Tist.add(“A”); Declare a linked list of
’ % Inserts first element] String objects.

Tist.add(“B"); § Inserts second element]

Tist.add(l, “C”); Inserts “C” at the second
position

System.out.println(list); // prints: [A, C, B]

126

// Create a TreeSet collection

TreeSet<Integer> intset = new TreeSet<>();
intset.add(3); Declare a s.orted set of
intset.add(5); Integer objects.

intset.add(1);
System.out.printin(intset); // prints: [1, 3, 5]

Some collection classes (Vector, Stack, PriorityQueue, etc.), as well as all the
map classes do not use the add() method for adding elements to the
collection. For example, the Vector class, uses the addElement() method, the
PriorityQueue class uses the push() method, and the map classes use the
put() method:

TreeMap<Integer,String> map = new TreeMap<>(Q); Declares a sorted

Key/Value map of the

map.put (2,”two”); Integer/String type.

map.put (1,”ten”);

map. puz Ei’ ,,thrﬁ)e _) ; The 1/one pair will override the previous 1/ten
map . pu » onerJ; entry because the keys must be unique.

System.out.printin(map); // prints: {l=one, 2=two, 3=three}

Retrieving Collections’ Elements

The most common way of retrieving an element from a collection is via the
get() method or its variations (e.g., getFirst(), getLast()):

LinkedList<String> 1list = new LinkedList<String>(Q);
Tist.add(“A™);
Tist.add(“B”);
Tist.add(0, “Cc”);

Retrieves the second
element of the list

System.out.println(list.get(1);) // prints: “A”
System.out.printin(list.getFirst();) // prints: “C”
System.out.println(list.getLast();) // prints: “B”

TreeMap<String,String> map = new TreeMap<>(Q);

map.put (“keyl”,”A”);

map.put (“key2”,”B"); Retrieves the value
associated with the “key1”

System.out.printin(map.get(“keyl”);) // prints: “A”
System.out.printin(map.get(“key3”);) // prints: “null”

127

Updating Collections

Every collection defines a set of methods allowing you to make changes to
already created collections by removing or updating their elements. These
methods can differ among the collection classes. The only method that is
common to all collections is remove(). Below are a few examples of
performing update operations on different collections.

TreeMap<String,String> map = new TreeMap<>(Q);
map.put (“keyl”,”A”);

map.put (:keyZ:) :B:) , Removes the “key1/A”
map.put (“key3”,”C™); pair from the map

map.remove (“keyl”,”A”);

Replaces the “key2/B” with the “key2/D”]

\

map.replace (“key2”,”D”);
System.out.printin(map); // prints: {key2=D, key3=C}

vector<String> new Vector<>(Q);

v
v.addElement (“A’
g’
‘C

)l
s
")

v.addETement (*
v.addETement (*

N\
Removes the element at
position 1 (i.e. second element)

v.removeElementAt (1); /

System.out.printin(v); // prints: [A, C]

N
Removes all elements from this
v.removeAllETements (); vector and sets its size to zero
J

128

Iterating through Collections

There are situations when you need to access a collection sequentially,
reading its elements one by one, in one or both directions. There are two
ways to accomplish this: by using the for-each loop, and by using iterators -
the Iterator, Listlterator, and Spliterator classes. However, a collection must
implement the Iterable interface in order to use either of these methods. The
map classes, for example, do not implement the Iterable interface, so you
have to obtain a collection-view of a map using the entrySet() method (i.e.
convert the map into a SET-type collection) in order to work with the map as
a “real” collection.

The “for-each” Loop

The first way of cycling through a collection is by use of the for-each loop.
This is the easiest way to access the elements of a collection sequentially, one
by one, in one direction.

Example:

// Iterating through 1list

LinkedList<String> list = new LinkedList<String>Q);

Tist.add(“A™);

Tist.add(“B”);
Tist.add(“C”);

Iterates through the list.
for (string s : Tist) Each element is assigned to s, one by one.

{
}

System.out.printin(s); // Prints each element of the Tist

// Iterating through a map
TreeMap<String,String> map = new TreeMap<>(Q);

map.put (“keyl”,”A”); £ Puts one key/value pair into the map]

[Creates a set-type collection from the map elements]

s
Set<Map.Entry<String, String>> mapset = map.entrySet();

Cycles through the
. . t. Each map entry
for (Map.Entry<String, String> m : mapset mapse
(P y 9 9 P) element is assigned to m.

{

System.out.printin(m); // prints: keyl=A
System.out.printin(m.getKey()); // prints: keyl
Ssystem.out.printin(m.getvalue()); // prints: A

129

Let’s take a closer look at the mapset declaration. The instance method
entrySet() transforms the TreeMap map into the Set-type collection mapset
of type Set<Map.Entry<String,String>>. Set indicates that this is a Set
collection; Map.Entry is the type of objects stored in the collection; and
<String,String> specifies the type of key/value pairs stored in the Map.Entry
objects.

By explicitly declaring the type of objects stored in the collection as
Map.Entry, we also gain access to all methods declared in the Map.Entry
interface. In this example we used the methods getKey() and getValue().

The mapset can also be defined as follows:

Set mapset = map.entryset();

Though, in this case, we would know only that the mapset collection contains
objects of type Object. We could use them as is or cast them to the proper
type to perform any meaningful operations on the underlying map elements.

Note that the for statement must explicitly specify the type of objects fetched
from a collection:

for (Map.Entry<String, String> m : mapset)

130

Iterator

The Iterator interface is used to provide sequential access to the elements of
collections, and for removing elements from collections.

In order to use an iterator, a collection class must implement the Iterable
interface and define the iterator() method returning an Iterator object for
this collection.

Example:

LinkedList<String> Tist = new LinkedLiSt<>();<=::(Dedama|mtof$ﬁng]
. objects

Tist.add("A™);

Tist.add("B");

Tist.add("c")

System.out.printin(list); // prints: [A, B, C] Creates an Iterator to

the underlying

. . i collection of String
Iterator<string> loop = list.iterator(); objects

while (Toop.hasNext()) -<[hasNext() checks if next element exists]
{
string s = Toop.next(Q);
:i next() obtains next element]

if (s == "B") { loop.remove(); }
} remove() method

)]) removes current element
System.out.printin(list); // prints: [A, C] from the collection

The above code removes the string “B” from the LinkedList list.

131

List Iterator

The Listlterator interface extends the functionality of Iterator by providing
methods allowing to traverse LIST-type collections in both directions and
modify the list during iteration.

Example:

// Iterate through a LinkedList collection backwards

LinkedList<String> 1list = new LinkedList<>(); % List of String objects]

Tist.add("A™);
Tist.add("B");
Tist.add("c"); Create a Listlterator

System.out.printin(list); // prints: [A, B, C] to the underlying list
of String objects

ListIterator<string> loop = list.listIterator(Tist.size(Q));

The iterator will be positioned
// Iterate through the Tist backwards at the last element of the list
while (loop.hasPreviousQ)) The hasPrevious() method checks
{ if the previous element exists
string s = Toop.previousQ;
Retrieves the previous
loop.set(s + “1"); element from the list

¥ Updates the last retrieved]

element: append it with ‘1’

System.out.printin(list); // prints: [Al, B1l, c1]

132

Spliterator

The newest type of iterator added in JDK 8 is the Spliterator interface. It was
designed for traversing collections or other sources of data elements and
optionally partitioning them for parallel processing. We said “collections or
other sources elements of data elements” because the Spliterator can be
created not only for collections, but also for arrays, I/O channels, or generator
functions.

Note that Spliterator consumes the source. A new Spliterator must be
created once all the elements of the source are processed.

In the below example we create a spliterator for an array of integers, split it
in two, and calculate the sum of all values stored in the array.

import java.util.*;

class testSpliterator {
static int total = 0;

public static void sum (Integer i) { total += 1i;); 1}

public static void main (String args[]) { Creates a Spliterator for the

Integer[] integers = {1, 2, 3, 4}; array of integers

Spliterator<Integer> spl = Arrays.spliterator(integers);
spl.trysplitQ; {

while (spl.tryAdvance (i -> total += 1i)); < Cycle through the first
Spliterator updating the total

Spliterator<Integer> sp2

Creates another Spliterator
by dividing the source in half

if (sp2 !'= null) {
while (sp2.tryAdvance (i -> sum(i))); Cycle through the second
Spliterator updating the total

}

System.out.printin("Total=" + total); // prints: Total=10
}
}

Pay attention to the tryAdvance() method. It checks if the next element of
the source is present and, if not — returns the boolean false. Otherwise it
executes the accept() method of the functional interface Consumer and
returns the true. We substitute the accept() method via two different lambda
expressions: “i -> total +=i” and “i -> sum(i)”.

Note that the while statements have no bodies (however, they could)
because all the processing is done though the lambda expressions.

133

Comparator

Any ordered collection (e.g. TreeSet) needs to have some kind of compare
algorithm to determine which element of the collection is “greater” than the
other. In fact, there are default algorithms for each type of objects that can
be stored in ordered collections. These algorithms are implemented via the
Comparator functional interface that defines the compare() method. In case
we want to alter the default sequence of objects in a collection, we can build
a collection that points to a custom comparator.

Note that the Comparator can be used to provide an ordering for collections
of objects that don't have a natural ordering.

The example below shows how to create a custom comparator to sort an
array of integers into descending order. This reverse() method will be used to]

substitute the compare() method of

import java.util.*; the functional interface Comparator.

class testComparator {
public static int reverse (Integer nl, Integer n2) {
return n2 - nl;

}

compare() method of the functional

The reverse(n1,n2) substitutes the
interface Comparator.

public static void main (String args[])
Integer[] nn = { 1, 2, 3 };
Arrays.sort(nn, (nl, n2) -> reverse (nl, n2));
System.out.printin(nn[0] + “,” + nn[1] + “,” + nn[2]);

}
}

The output of this program will be “3,2,1”.

Note: The Arrays class defines several sort methods; we’ve used one:

static void sort(T[] a, comparator<? super T>c)

Here is how it is executed:

- Tbecomes an Integer

- Theintegers array substitutes the first operant T[]

- The lambda expression (n1, n2) -> reverse (n1, n2) is transformed into an
object of the Comparator<integer> functional interface, whose compare()
method body is implemented as { reverse (n1, n2); }

- During the sorting, reverse() is used in determining which one of two inte-
gers is greater, as follows:

n1>n2 : result>0; n1<n2 : result<0; n1=n2 : result=0

134

http://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-T:A-java.util.Comparator-
http://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

/O Streams

A stream is an abstract representation of an input, where source data is
retrieved from, or an output, where destination data is sent to. Java
recognizes two types of streams — byte streams and character streams. The
byte streams should be used for sending or receiving binary objects, and the
character streams should be used when working with characters and the
“character” representation of data is needed.

Sending Host Byte Stream Receiving Host
(any binary data, (one byte at a time) (any binary data,
including objects) including objects)

Receiving Host

Sending Host
(local representa- Character Stream (.Iocal representa-
tion of characters) || (one character at a time) tion of characters)

Note that the transmission of data via byte or character streams is done one
byte or one character at a time. There are buffered streams that group the
data into buffers, but those streams are still based on the underlying byte or
character streams.

This chapter provides an overview of the concept behind streams and
illustrates the usage of some input and output streams.

Byte Output Streams

Imagine that an application generates the following types of data and wants
to write them out into a file:

Double number Array of bytes Objects
]

135

One way to accomplish this would be by creating different classes for each
type of input data, but Java’s approach to this task is by building a “chain” of
streams, each performing necessary data transformation and passing the
result to the next stream:

| Double number |

\

| DataOquutStream |
\

- > —
| FileOutputStream

The FileOutputStream class provides several methods for writing data out
into files. For example, it defines the method write(byte[] b) that writes the
specified array of bytes to a file. If we had an array ready, we could use this
method as follows:

byte[] b = {97, 98, 99};

FileoutputStream fileout;

fileout = new FileoutputStream(“myfile.txt”);
fileout.write(b);

However, class FileOutputStream does not deal with primitive data types
(double, float, int, etc.). So in order to write out a double number, we need
to engage the DataOutputStream class, which implements the writeDouble
method. DataOutputStream converts the received argument to an array of
bytes and passes each byte, one by one, to the underlying stream by calling
the write method of the underlying stream:

DataOutputStream dataout; dataout will be calling the
dataout = DataoutputStream(fileout); fileout.write() method for each
output byte.

Now, we can call the writeDouble method of DataOutputStream that will
convert the double number to bytes and pass them to FileOutputStream via
the write method:

dataout.writebouble(123.4);

136

In general, the chain of streams is constructed from the bottom up:

C c =new CQ;

B b = new B(c);

A a = new A(b);

// or just:

A a = A(new B(new Q)));

The data is passed between output streams as follows:

Object a: Object b: Object c:
—| a.write(...) write(...) write(...)
{
conversion conversion conversion
b.write(...) c.write(...) 7 write(...) —»
} } }

In order of this mechanism to work, the following requirements must be met:

Each output stream must be a subclass of the class OutputStream and has
the constructor streamName (OutputStream s)

Each output stream has to implement the following methods defined in
the OutputStream class:

- write(int i) - mandatory

- write(byte[] b) - optional

- write(byte[] b, int offset, int length) - for buffered outputs

Classes in the output stream chain should not extend each other;
otherwise it would be not possible to call the write method of the top class
due to polymorphism.

There are quite a few byte output streams, but reviewing all of them would
not add much to the general understanding of the concept of input/output
streams, so we give you a single example of creating a custom byte output
stream.

137

// Example of sending a double number to custom myOutputStream
// though DataoutputStream and BufferedoutputStream

. . A
mport java.io.*; % Where the output stream classes are]

class myoutputStream extends OutputStream {
public void writeCint i) { } Not used by Fhe buffered output,
but must be implemented
public void write(byte[] b, int offset, int len)

{
System.out.printin("Received “ + len + “bytes”);

}

This method
will be called
by bufout
}

class testMyStream {
public static void main (String args[])

{
myoOutputStream() myout;
BufferedoutputStream buffout;
DataoutputStream dataout;
try { -
myout = new myOutputStream(); The 123.4 will be
bufout = new BufferedoutputStream(myout); | convertedtos8
dataout = new DataoutputStream(bufout); bytes by dataout
and putinto a
dataout.writeDouble(123.4); Bftey Oy ETET
dataout.flush(Q; —[Push the data out of the buffer]
}
An |0Exception can be thrown
catch (IOException e) by the output stream classes;
{ must be caught
System.out.printin("I1/0 error");
}
}

The above program produces this output:

“Received bytes: 8”

138

Character Output Streams

All character data in Java is represented in the Unicode format. The character
output stream classes convert Unicode characters into their local
representation (e.g. ASCIl format) before sending them to output devices or
other streams. Another function of the character output streams is to
generate a character representation of any primitive type, as well as objects.
This is implemented via the print and printin methods of the class
PrintWriter. These methods are overloaded (i.e. there are multiple versions
of them) and can accept all primitive data types, Strings, character arrays, or
objects.

Similar to the byte output stream classes that extend the OutputStream class,
the character stream classes extend the Writer abstract class and implement
its write methods.

The following program uses two different character output streams to write
an array of characters into a file:
import java.io.*;
class testCharStreams {
public static void main (String args[]) {

char‘[] Cc = {lal, 'b', 'C'};

Filewriter fileout;
Printwriter printout;

try {
fileout = new Filewriter("write.txt"); (Putmefwﬂthme
fileout.write(c, 0, 3); characters of array ¢

fileout.flush(); \\into an internal buffer

\ Push data out of the buffer]

printout = new Printwriter("print.txt");
printout.println(123.4);
printout.flush();

}
. Push data out of the buffer
catch (IOException e) {

System.out.printin("1/0 error™);

Convert the double
number 123.4 into a
character

representation and
put it into a buffer

}

139

Byte Input Streams

Byte input streams are used to receive (read) a sequence of bytes. All classes
of this group have to extend the InputStream abstract class and implement
its read methods:

abstract int read Q;

int read (byte[] b); // optional
int read (byte[] b, int offset, int len); // optional

Note: the read methods return the integer value -1 when the end of the
stream is reached.

In addition to the read methods, the InputStream class provides several other
methods for supporting the so-called markable streams. With markable
streams, you can mark a current position within the stream and later return
to that position. The markSupported method can be used to check if a stream
is markable.

Below is an example of reading integers from a file:

// Assumption: a set of integer values were written into the
// “test.txt” file via DataoutputStream.
import java.io.*;
class testByteInputStream {
public static void main (String args[]) {
booTlean EOF = false;

int 1; Get access to the test.txt file
try {

File myFile = new File("test.txt");
FileInputStream filein = new FileInputStream(myFile);
DataInputStream datain = new DataInputStream(filein);

while (!EOF) { This stream will be converting
try { bytes to the proper data type

This stream will be reading
bytes from file test.txt

i = datain.readInt(); : -
System.out.printin("i=" + i); ﬁ Read nextlntegerfromflle]
3
catch (EOFException e) { —-===:::{Cauhtheend0ﬁﬁb]
EOF = true;
3

}

}
catch (IOException e) { System.out.printin("I1/0 Error"); }

140

Character Input Streams

Character input streams are represented by a group of classes extending the
abstract class Reader. Their purpose is to read characters from different
sources in their native (local) encoding format and convert them into the
Unicode format. Each input stream class has to implement the read methods:
int read Q; // read a single character

int read (char[] c); // read characters into an array

// reads into a portion of an array:
abstract int read (char[] c, int off, int Tlen);

Note: the read methods return the integer value -1 when the end of the
stream is reached.

In addition to the read methods, the Reader class provides several other
methods for supporting the so-called markable streams. With markable
streams, you can mark a current position within the stream and later return
to that position. The markSupported method can be used to check if a stream
is markable.

Example:

// Print every other character of the alphabet
import java.io.*;
class testStringReader {

public static void main (String args[]) {
String s = "abcdefghijklmnopgrstuvwxyz"; =

int i = 0;
try Prepare to read string s

{

StringReader sReader = new StringReader(s);

do Skip 1 character Read next character and
{ return its integer value

sReader.skip(1);
i = sReader.read(); Convert (cast) integer to character]
if (i > 0)

System.out.print((char) 1i);

while (i != -1);
} } () :i Detect the end-of-stream]

catch (IOException e) {
System.out.printin("Error reading file");

}
}
}

This program creates the output: “dfhjlnprtvxz”

141

Try-With-Resources

There is one nice enhancement added to the stream handling process in JDK7.
It allows to automatically release the resources held by a stream (e.g. close
the file) once we are done using the stream. This feature can be used with
the classes implementing the AutoClosable interface, which declares only
one method — close(). The close method will be called when the try block
ends.

The new format of the try block:

try (resource declaration and initialization)
{ wusage of the resource }
catch (. . D) {. . .}

Example:

class myStream extends OutputStream{
public void write(int i) {}
public void write(byte[] b, int offset, int 1ng) {
System.out.printin("Received bytes: " + 1ng);
}
}

class testStreams {
public static void main (String args[]) {

try (

e
Start of the resource (stream)
DataoutputStream dataout =

declaration
new DataoOutputStream (
new BufferedoutputStream (
new myStream ()))

)
{ \
dataout.writeInt(123); The flush() or close() would be
// dataout.flushQ); required in a “traditional” try block.
} J

catch (IOException e) {
System.out.printin("I/0 error™);

3 — The dataout.close() will be
} automatically called at the end
of the try block

J/

142

Serialization

Byte output streams have the capability of writing Java objects from
computer memory into output devices or data streams, and byte input
streams can read them back into the computer memory. The process of
writing an object into a stream is called serialization, and the process of
reading an object from a stream is called deserialization.

Every Java object is a complex structure that may include methods, variables,
and even other objects. That structure is referred to as an “object graph”.
Java encodes all data into a special internal format before writing it out into
a stream.

The implementation of serialization/deserialization is done by the
ObjectOutputStream and ObjectinputStream classes. Their main methods
are writeObject() and readObject(), respectively.

The writeObject method can serialize any object, as long as its class
implements the Serializable interface. The Serializable interface does not
declare any constants or methods; it is an indication that objects of this class
are allowed to be serialized.

Example:

// Write one object of class myClass into file object.txt

import java.io.*;

class myClass implements Serializable {
private String name;

myClass constructor

myClass (String s) { this.name = s;

Instance method returning
public String myName() {return name;} the name variable

public static void main (String args[]) {

// Write one object of class myClass to file object.txt

try (
ObjectOutputStream objout = objout.writeObject() A
new ObjectoutputStream(method will be writing
new FileoutputStream(objects into the file
new File("object.txt"))) ; object.txt via the

{) FileOutputStream)

objout.writeobject(new myClass("First object"));
} N
Create a new myClass
object and write it to a file

143

catch (IOException e) {
System.out.printin("1/0 error");

}
// Read one object from the object.txt file
try (
ObjectInputStream objin = N\
new ObjectInputStream(The objin.readObject()
new FileInputStream(method will be reading
new File("object.txt™))) ; objects from file object.txt
) via FilelInputStream
{ J
N
Read an object from file
Object obj = objin.readobject(); as type Object

myClass myobj = (myClass) obj;

Cast the type of the just-
read object to myClass

System.out.printin(myobj.myName());

} Execute the instance
method myName

catch (IoException e) {
System.out.printin("1/0 error");
}

catch (ClassNotFoundeException e) {
System.out.printin("Class not found error");

}
}

When you serialize an object, you can choose not to serialize some of its
data members - primitive types or other objects. For this, you declare a vari-
able as transient. In the above example, to prevent the name variable from
being written out to the file, declare it as follows:

private transient String name;

During deserialization the transient variables are set to their default values —
zero for numbers, true/false for Boolean, and null for objects.

In the above example, if the name variable was declared as transient, the
output of the program would be “null” because strings are objects in Java.

A special situation will occur if your serializable class extends a non-
serializable class. During the deserialization process, an instance of the non-
serializable class (your superclass) will be created automatically using the no-
argument constructor. You have to make sure that such a no-argument
constructor of the superclass exists.

144

New Input/Output System - NIO

Since the inception of the language, Java’s approach to the input/output
operations was stream-oriented. The transmission of data between the
application and an external entity (e.g. a disk file) was seen as a stream of
single bytes or characters.

Based on the direction of the stream and the type of data transmitted,
streams are divided into four categories: byte input stream, byte output
stream, character input stream, and character output stream. Each of these
streams is represented by a group of Java classes, each extending,
respectively, InputStream class (byte input stream), OutputStream class
(byte output stream), Reader class (character input stream), or Writer class
(character output stream).

The common characteristic of all the above streams is that they are blocking
data streams. It means that the current execution thread of your application
is put on hold until the I/0 request is completed.

In version 1.4 Java first introduced an alternative input/output system named
New Input Output, or just NIO, in which the 1/O concept changed from the
stream-oriented to buffer/channel-oriented.

Application
Source or target
—> Buffer » channel < of data

Here are the highlights of NIO features:

- All data is transmitted via a channel into or out of a buffer. The
application manipulates data directly in the buffer.

- Unlike standard streams, a channel can transmit data in both
directions.

- Channels are capable of operating in blocking mode, same as
streams, and in non-blocking mode. In the non-blocking mode, the
thread that issues an I/O request is not put on hold until the 1/O
operation completes, but continues its execution.

- NIO also added the capability of handling multiple channels within a
single thread.

145

In addition to the above features, over time NIO was enhanced to work
together with standard 1/O streams and to perform file system operations
(i.e. manipulation of files and directories).

Here are the main NIO classes and interfaces:
Buffer

The Buffer class is used to create buffers and manipulate the buffer’s
contents. There are sub-classes of the Buffer class to hold different
types of primitive data — ByteBuffer, CharBuffer, IntBuffer, etc.

Channel

The Channel is actually an interface implemented by various channel
classes: SocketChannel, DatagramChannel, SeekableByteChannel,
FileChannel, etc. It represents a connection to an entity capable of
performing I/O operations (file, network socket, etc.)

Selector

The Selector class allows a single application thread to handle
multiple channels.

(The usage of the Selector class is beyond the scope of this book.)
Files

The Files class provides methods to operate on files and directories.
It also can open standard byte streams (i.e. InputStream and
OutputStream) for reading from or writing to a file.

The first example illustrates the usage of Buffer, Channel, and Files for
passing unformatted data (bytes) between the application program and a
disk file via a blocking channel.

146

// Example of using NIO for writing to and reading from files

import java.io.*;

import java.nio.*;

import java.nio.file.*;
import java.nio.channels.*;

class testNIO {

public static void main (String args[]) {

Byte array; represents]

byte[] bytes = {97, 98, 99}; “abc” in character format

ByteBuffer buffer = ByteBuffer.allocate(16) ;<4 Allocatesa 16-
byte buffer

try {

}

Path path = Paths.get("testNIO.txt");

Creates a path to file testNIO.txt]

SeekableByteChannel channel =

Files.newByteChannel (path,
StandardopenOption.CREATE,
StandardopenOption.WRITE,
StandardopenOption.READ);

Creates a read/write channel
to file testN10.txt; Allocates
the file if it does not exist

buffer.put(bytes); < Puts the bytes array into a buffer]
buffer.rewindQ; ;J Repositions at the first byte of the buffer]

channe].write(buffer);<i

Puts the buffer into a channel and into the file]

channel.position(1); Writes out the same buffer again
buffer.rewind(Q); starting with the second byte of the file
channel.write(buffer);

channel.truncate(3); :'_‘ Truncates the file to 3 bytes]
channel.position(0); ﬁ Repositions at the beginning of the file]

buffer.rewind();
int i = channel.read(buffer);
System.out.printin("file length = " + i); // prints: 3

Reads the file into a buffer]

channel.close();

catch (InvalidpathException e) {

}

System.out.printin("Invalid path");

catch (IOException e) {

}
}

System.out.printin("I/0 error");

After the execution of the code, the file testNIO.txt will contain “aab”.

147

The next example demonstrates how NIO and standard stream 1/O can work
together to read the contents of a file.

// Print the testIO.txt file created in previous example

import java.io.*;
import java.nio.file.*;

class testNIOStream {
public static void main (String args[]) {
int i;

3

try / Create a path to file testNIO.txt]

{

Path path = Paths.get("testNIO.txt");

InputStream stream = byte i ;
Files.newInputStream(path); Create a byte input stream for

the file specified by path.

do

{ i = st dO; Read next byte from the file and
1 = stream.rea put it into the integer |;
iF (o= -1 (i = -1) indicates the end of file.

{ system.out.printin(C (char) 1i);
} while (i !'= -1);

stream.close(); Cast the i .|nteger to a character
and print it

catch (InvalidpathException e) {

}

System.out.printin("Invalid path");

catch (IOException e) {

}

System.out.printin("I/0 error™);

148

The last example in this chapter demonstrates some of NIO’s capabilities
when working with the file system.

// Print all the directories on the C: drive
import java.io.*;

import java.nio.file.*;
import java.nio.file.attribute.¥*;

class testNIOFileTree {

Starting point of traversing the
public static void main (String args[]) {

file system

try {
path = Paths.get("c:/");
Files.walkFileTree(path, new CustomFilevisitor());

}

catch (IOException e) {
System.out.printin(e);

For each file, one of four pre-
defined methods will be called.
These methods are defined in the
class SimpleFileVisitor. We need to
override them if we want non-
default behavior.

}

class CustomFilevisitor extends SimpleFilevisitor <Path> {

public FilevisitResult visitFile (Path path,
BasicFileAttributes attr) - -
throws IOException { This method is called when a
return FilevisitResult.CONTINUE; file is visited; we do nothing
3 and continue the scan.

public FilevisitResult previsitDirectory (Path path,
BasicFileAttributes attr)

throws IOException { T.his meth.od .is.called bef9re a
System.out.printin(path.getFileName())] directoryisvisited; we print the
return FilevisitResult.CONTINUE; directory name and continue.

3

public FilevisitResult visitFileFailed (Path path, IOException e)
throws IOException {
return FilevisitResult.CONTINUE;

This method is called when an
error occurs while reading a file;
} we do nothing and continue.

Note: The FileVisitResult enumeration defines other constants besides
CONTINUE, controlling the execution of the method walkFileTree. The
SKIP_SUBTREE constant, for example, will force walkFileTree to skip visiting
the entries of the current directory.

149

The Stream API

Stream API is a new application programming interface added in JDK 8. It is
not an extension to or a replacement of the previously discussed I/O streams
(byte and character streams). The stream API introduced a new stream
concept. It sees any stream as a sequence of objects on which various
manipulations are performed. Using the stream API classes, we can apply
different transformations to the stream (sorting, filtering, etc.) and produce
either another stream (i.e. sequence of objects) or a final result. There are no
ultimate “destination points” like files or network sockets. For example, we
might want to find the array element with the highest value. In this case the
result is not a destination, but rather some value derived from the source
data, and the whole process resembles a database query. Note that the data
source remains unchanged in stream processing.

Let’s start with a very small and simple example.

// Find the Towest value stored in an array of integers

import java.util.¥*;
import java.util.stream.*;

The static method stream()
of class Arrays converts the
array integers into a

i B sequential stream of
int[] integers = {8, 5, 7, 2, 3, 4}; integers

class testStreamAPI {
public static void main (String args[]) {

IntStream intstream = Arrays.stream(integers);

The min() method of IntStream
finds the minimum element of the
stream and returns it as an
Optionalnt object

OptionalInt val = intstream.min();

System.out.printin(val.getAsInt());

}

} The getAsint() method of the Optionalnt object
retrieves the integer value.

What should be noted about this example is that the min() method applied
to the stream produces a final result, i.e. the result is not a stream anymore.
Methods that produce final results are known as terminal operations, which
consume the stream. Other methods that return the result as another stream

are called intermediate operations. The next example presents two-stage
stream processing involving intermediate and terminal methods.

150

Let’s say that we have an array of double numbers and we want to calculate
the sum of all elements, but first round them up to the next larger integer.
This can be accomplished with a single line of code, but we will present and
explain each step of the process.

The first step is to convert the array of doubles into a stream. We can use the
static method stream of the class Arrays that returns a sequential stream of
type DoubleStream:

double[] doubles = {1.5, 2.6, 3.3};
DoubleStream dblstream = Arrays.stream(doubles);

The next step is to transform the stream of doubles into a stream of integers
while rounding each double to the next larger integer. We can utilize the
mapTolnt method of the interface DoubleStream for this. The mapTolnt
method is declared as follows:

IntStream mapToInt(DoubleToIntFunction mapper)

It accepts an object of the functional interface DoubleTolntFunction, applies
its method applyAsint to each element of the stream, and returns the new
IntStream. So, we need to create an object of type DoubleTolntFunction,
implementing the method applyAsint according to our needs. The easiest
way to do this is by using a lambda expression:

DoubleToIntFunction mapper = n -> (int) (n + 0.5);
This statement will create the object mapper of type DoubleTolntFunction
with the applyAsint method defined as follows:

int applyAsIint (double n) { return (int) (n+0.5); }

Now we’re ready to transform a DoubleStream into an IntStream:

IntStream intstream = dblstream.mapToInt(mapper);

The final step is to calculate the sum of all elements of the integer stream by
using the sum() method of IntStream:

int sum = intstream.sum();

When put together, the code will look as follows:

double[] doubles = {1.5, 2.6, 3.3};

DoubleStream dblstream = Arrays.stream(doubles);
DoubleToIntFunction mapper = n -> (int) (n + 0.5);
IntStream intstream = dblstream.mapToInt(mapper);
int sum = intstream.sum();

151

The result calculated by this code is 8.

Now, as mentioned before, the whole process can be expressed in one line:

int sum = Arrays.stream(doubles).mapToInt(n -> (int) (n + 0.5)).sum(Q);

Note, if we need to put more complex logic into the mapper (i.e. into the
applyAsint method), we can define a custom method and specify it in the
lambda expression:

public static int round(double n) {

int i = (int) (n + 0.5); // round the double number
System.out.printin(“in=" + n + “ out=" + 1i);
Return 1i;

}

int sum = Arrays.stream(doubles).mapToInt(n -> round(n)).sum(Q);

The mapTolnt() method is an intermediate operation - it accepts a stream
and returns another stream. The sum() method is a terminal operation — it
consumes the stream and returns a final result.

The next example demonstrates the process of iterating through all elements
(objects) of a stream. We utilize the forEach() instance method of class
Stream to perform the loop. The forEach() method is declared as follows:

foreach (Consumer<? super T> action)

For each object of the stream, the forEach() method invokes the accept()
method of Consumer, providing it with the object retrieved from the stream.
The Consumer is a functional interface, so an object of type Consumer can be
created either via a lambda expression or by using a method reference. Both
approaches are presented in the following example.

152

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

// Using the foreach() method of class Stream
import java.util.*;

import java.util.stream.*;

class testStream {

public static void main (String args[]) {

string[] words = {"One", "Two", "Three"};

This lambda expression will
create a Consumer object
with its accept() method
implemented as
System.out.printin(w)

Stream<String> stream;

stream = Arrays.stream(words);

stream.foreach(w -> System.out.print (w));

This method reference will
create a Consumer object and
pass to it the print method of

stream = Arrays.stream(words); the System.out object

stream.foreach(System.out::print);

3

The above code prints two lines:

“OoneTwoThree”
“OoneTwoThree”

Before we conclude this overview of the Stream API, we want to mention that
one of the benefits offered by the Stream API is parallel processing. The
operations on a stream can occur in parallel, assuming the environment
supports parallelism. To switch to parallel processing, use the parallel()
method:

int sum = Arrays.stream(doubles)

.parrallelQ
.mapToInt(n -> round(n)).sum(Q);

153

Observable and Observers

The Observable class, together with the Observer interface offers a simple
mechanism of establishing communication between objects. One object
(observable object) can be watched (observed) by one or more other objects
(observers). When needed, the object being observed can notify its

observers, and they can perform some actions.

m = new M()
m.addObserver(w1)
m.addObserver(w2)

m.setChanged()
m.notifyObservers()

class M extends Observable

/

/

class W1 implements Observer
w1l =new W1()

v w1l.update()

class W2 implements Observer
w2 = new W2()

Example:
import java.util.*;

String myName;

w2.update()

Objects of myClass can act as
observer and observable.

public class myClass extends Observable implements Observer {

public myClass (String s) {myName

public void update(observable m, oObject arg)

{ System.out.println(myName + "
+ m.myName) ;

" from

public static void main (String args[])

{

myClass m = new myClass ("manager");

}

received a

+ arg +

Create two new objects
and register them as
observers of object m.

m.addobserver(new myClass ("Bob");

m.addobserver(new mycClass ("Joe"); The setChanged() must
be called before each

m.setcChanged() ; notification

The output of this program:

.notifyobservers("message") ;

AN

The update() method of each
observer will be called;

Note: m will be passed to
update() automatically.

“Bob received a message from manager”
“Joe received a message from manager”

154

Enumerations

The idea behind enumerations is to provide an easy way of defining sets of
constants not bound to any primitive or object types, which usually restricts
the scope of their usage. Java’s solution to this problem was a new type of
classes, whose instances are treated as constants. Here is a sample
declaration of an enumeration class:

enum myEnum { MIN, MAX }

Notice the usage of enum instead of class. The MIN and MAX are the
instances (objects) of the class myEnum and are called enumeration
constants. They are implicitly declared as public, static, final. The
enumeration constants are created (instantiated) automatically, when the
enumeration class is first referenced in the program. Therefore, you do not
need to use the new operator (in fact, you cannot) to create an object of the
enumeration class. Besides these differences, the enumeration classes are
still Java classes, and as such, they can have static and instance variables,
methods, statement blocks, and even constructors.

Example:

Enumeration constants

Static statement block; executes when
class myEnum is loaded into the JVM

static { System.out.printin(“Class myenum loaded"); }

enum myEnum { MIN, MAX;

Instance statement
block; executes when
an instance of the
class is created.

{ system.out.println(this + " created "); }

public static void main (String args[]) {
myEnum min, max;

} First reference to class myEnum;
} Declares two variables of type myEnum

This program produces the output:

MIN created
MAX created
Class myEnum loaded

Now, let’s see what we can do with the enumerations. The best way to
illustrate the benefits of enumerations is to go through examples. Imagine

155

that we have a method that monitors weather conditions at major national
airports. By employing enumeration, we can ensure, at compile time, that our
method receives requests only for a predefined set of airports, which reduces
the risk of the run-time errors:

class testEnumAirport {

enum Airport { JFK, PHL, MIA; } An enumeration can be
declared within another class

public static void main (String args[]) {
Airport a;
a = Airport.MmIA;
System.out.printin(getTemp(a)); // prints: 80.0

/) i printlng r LTI It’s impossible to provide
} the getTemp() method

with an object of any other
type except Airport

public static double getTemp (Airport a) {
switch (a) {
case JFK: return 60.0;
case PHL: return 70.0;
case MIA: return 80.0;
default: return 0.0;

3
3
}

It looks beneficial, but what if we want to provide some other information
about the airports, like state and city names? This can also be easily achieved
with the help of enumerations. As an object, each enumeration constant can
have instance variables, and those variables could hold the state code and
city name. All we need to do is to declare the instance variables, define a
constructor that initializes them, and provide their initial values for each
enumeration object:
class testEnumAirport {
enum A:"rp?r'f { . Specify the initial values of instance

JFK(C'NY", "New York™), variables for each enumeration

PHL("PA","Philadelphia"),

MIAC'FL","Miami™);

/ Instance variables
String state, city;

Airport (String s, String c) {fhis.state = s; this.city=c;}

}

Constructor
initializing the
instance variables

public static double getTemp(Airport a) {return 80.0;}
public static String getCity(Airport a) {return a.city;}
public static String getState(Airport a) {return a.state;}

156

public static void main (String args[]) {
Airport a;
a = Airport.MIA;
System.out.println(getCity(a) + “, ”
+ getsState(a) +
+ getstate(a));

temp="

}

This program produces the output: Miami, FL temp=80.00

We have mentioned already that enumerations are classes of a special type.
When you create an enumeration class, it implicitly extends the regular Enum
class. All the methods defined by the Enum class are available to any
enumeration you create. We will present some commonly-used methods.

The static method values() returns an array of enumeration constants in the
order they were declared:

enum Airport { JFK, PHL, MIA; } e lea e e

used to iterate over the
enumeration objects

for (Airport a : Airport.values())
{ System.out.println(a); }

The static method valueOf() returns the enumeration constant (object) with
the specified name:

Airport a = Airport.valueof(“PHL”);

The instance method ordinal() returns the position of the enumeration
constant within the declaration, staring with zero:

enum Airport { JFK, PHL, MIA; }

System.out.printin(Airport.JFK.ordinal()); // prints: 0
System.out.printin(Airport.PHL.ordinal()); // prints: 1
System.out.println(Airport.MIA.ordinal()); // prints: 2

157

Regular Expressions

The validation and manipulation of the contents of text strings can be found
in many applications. For example, we might need to check if an email
address entered has valid format. The Regular Expressions API is a powerful
tool that a Java programmer can utilize to perform text validation, parsing,
tokenization, or other type of manipulations.

The Regular Expression APl consists of two utility classes: Pattern and
Matcher. The Pattern class is used to build regular expressions, which are
referred to as patterns. The Matcher class is used to apply the pattern to a
text string. The usage of these two classes is quite simple but the challenge is
in mastering regular expression skills, which, unfortunately, is beyond the
scope of this book. Nevertheless, we will go through several examples to
make you familiar with the operations that can be performed on text strings,
and also to cover the basics of regular expressions.

Regular Expressions Basics

A regular expression is a sequence of characters defining a pattern that can
be matched against a text string. For example, the regular expression “abc”
can be used to check if a text contains the “abc” sequence.

There are several categories of regular expressions. We will present three of
them.

The first category of regular expressions is called “characters” and includes
most of the characters and also the escape sequences, like \t (tab character),
or \n (newline character). “abc” is an example of the character regular
expression.

The second category of regular expressions is called “character classes” and
represents a range of valid characters. For example, the [a-zA-Z] pattern will
match any lower-case or upper-case letter.

For some of the character classes constructs Java provides a shorthand form:
- matches any character

\s - matches the white space character
\d - matches any digit

158

\w - matches any word character

The third category of regular expression constructs is called “quantifiers”.
Quantifier can be appended to any character or character class construct to
specify the allowed number of occurrences for the construct:

? - occurs once or not at all
* - occurs zero or more times

+ - occurs one or more times
{n} - occurs exactly n times

{n,} - occurs at least n times
{n,m} - occurs from n to m times

There are other regular expression groups, but their review is beyond the
scope of this book.

Regular Expressions Examples

Before we start with examples, we need to mention that the Pattern and
Matcher classes have no constructors. Pattern objects are created by the
static method compile() of class Pattern, and Matcher objects are created by
the instance method matcher() of class Pattern.

Example: Validate if the whole text matches the pattern.

String regex;

Pattern p; [a-z]+ matches one or
Matcher m; more lower case letters

p Pattern.compile(“[a-z] +");//[Create Matcher object m]
m = p.matcher(“test”) ;

System.out.printin(m.matches()); // prints: true

Example: Validate the email format. | Matches any number of letters or digits |

regex = " [a—ZA—Z?(‘—;?:H" I Matches the character ‘@’]
+
+ "\\w+" < Matches any number of word characters]
+ ll\\ . " —
+ "com"; - | Matches the character ‘.]

p Pattern.compi1e(reg;;3?======:::i Matches the string “com”]

m = p.matcher("Johnl23@site.com");
System.out.printin(m.matches()); // prints: true

Example: Extract the user name and website address from email.

p = Pattern.compile(“@”);
string[] ss = p.split(“John@site.com™);

159

system.out.printin(ss[0]); prints: John
System.out.printin(ss[1]); prints: site.com

The next example is more complicated. It uses the splitAsStream() method of
the Pattern class to obtain the distinct (unique) words from the input text. It
also uses a lambda expression to print the results from within the forEach()
method of the Stream class.

Example: Extract the distinct (unique) words from string.

import java.io.*;
import java.util.stream.*;
import java.util.regex.*;

class testRegex

{

public static void main (String args[])

{
Sstring text = “ab c ab ¢ defbbbg’;

p = Pattern.compile(" ");

Stream<String> stream = p.splitAsStream(text);
Stream<String> unique = stream.distinct();
unique.foreach(w -> System.out.print(w + “ “));

// same result can be achieved in one statement:

pattern.compile(" ")
.splitAsStream(text)
.distinctQ
.foreach(w->System.out.print(w + “ “));
}
1

The output of the above program is: “a b c def g “.

Example: Replace all blank sequences with semicolons.

String text = “One Two Three Four”;

System.out.printlin Matches any number of blanks

(

Pattern.compile("\\s+").matcher(text).replaceAll(";
);

// prints: One;Two;Three;Four

160

Reflection API

Every Java program performs some manipulations on objects of various types
- classes, interfaces, enumerations, arrays, primitive types, etc. At run time,
for each type of objects used by the program, the Java Virtual Machine (JVM)
creates an instance of class Class, which provides methods to examine the
properties of the object’s type. For example, when you declare a class A, the
JVM builds a corresponding Class object, providing all information about class
A —its methods, interfaces, annotations, fields, etc.

The Reflection API is a very important component of the Java language. It is
used extensively by Java Beans (not covered by this book), by various test
tools, when working with annotations, etc. You can also use it for debugging
purposes.

Obtaining the Class object

There are three primary methods of obtaining the Class object for a particular
class.

When you have an instance of the class you want to explore, you can call the
instance method getClass() defined by class Object and available to all Java
objects:

class myClass { ... }

ot . Object ¢ of type Class
myClass obj = new myClass();
y] y O/[represents the myClass class

Class ¢ = obj.getClassQ;

161

In the case when no instances of a class are available you can employ the so-
called class literal to obtain the Class object. A class literal is formed by the
class name appended with .class:

interface myInterface {
void myMethod();

}
class myclass { ... } Object c of type Class
represents the myClass class
Class c = myClass.class; Object i of type Class represents the
myInterface interface
Class i = myInterface.class;

Finally, you can use the static method forName() of the class Class. This
method accepts a fully-qualified name of a class and returns its Class object.
Note, that the forName() method can throw the ClassNotFoundException.

class myClass { ... }

Object c of type Class
represents the myClass class

Class c = Class.forName(“myClass™);

4[Object s of type Class]
Class s = Class.forName(“java.lang.String”); represents the String class

162

Discovering Class Members

Once you get the Class object for the class being examined, you can use
various methods of Class to obtain more information about the class. We will
give you one example of obtaining the names of all methods and fields
declared by a class. Please check the java.lang.reflect package for other
reflection classes and methods.
import java.lang.reflect.*;
class myClass {

private String name;

void setName (String s) {this.name = s;}
string getName () {return name;}

public static void main (String args[1) { (opjectcof type Class
represents the myClass class
Class ¢ = myClass.class;

try { [Returns an array of Method objects]

—_
Method[] methods = c.getDeclaredMethods();
for (Method m: methods) {
System.out.print(“ Method:” + m.getName());

2 Returns an array of Field objects]

Field[] fields = c.getDeclaredFields();
for (Field f: fields) {
System.out.print(“ Field:“ + f.getName());

}

}
}

catch (Exception e) {System.out.printin(e);}
}
}

The above code produces the output:

Method:main Method:getName Method:setName Field:name

163

Annotations

Annotations provide a standard way of documenting Java programming
code. The following characteristics make the annotations distinct from other
documenting means:

- Annotations are closely associated with the program constructs they
annotate; this reduces the possibility of misrepresentation.

- Annotations can be used as instructions to the Java compiler to per-
form certain actions, e.g. to suppress some warning messages.

- Annotations are Java objects that can be accessed at run time by the
application program containing annotations or by third-party tools.

Important note: annotations have no effect at run time.

How do we create an annotation?

In a nutshell, annotations are regular Java classes, only declared and handled
differently. All annotation classes (referred to as annotation types) are
created by implementing the Annotation interface. However, instead of
using the implements keyword in the class declaration, we specify the
annotation class as @interface:

@interface myAnnotation {
Type method(); Only methods without bodies are
Type method() default value; allowed in the annotation declarations

1
Example:
@ nterface Author { A default value returned by the
String name(Q);
.) « " method can be declared.
string version() default “1.0”;
}

Any declaration in the program source, even the annotation itself, can be
annotated. Annotation should precede the declaration being annotated:

@Author (name="John Doe”, version="1.2") | Class myClass is annotated with
class myClass { .. } the Author information
—

Method myMethod is annotated.
it’s OK to skip the version because it
@Author (name="Bob”) R Was defined with default return value

public void mymethod (int n) { .. }

164

What can we do with annotations?
Before answering this question, we need to review the lifecycle of the Java
program, which can be broken into four stages:

- Source code

- Compilation

Byte code

- Execution (run time)

The initial question needs to be broken down for each stage: “What can we
do with annotations in the source code, during compilation, while in byte
code, and at the run time?”

As we have already seen, the source code contains the annotation
declarations. From the programmer’s standpoint, not much can be discussed
here except the specifics of the declaration syntax, which will be covered
later.

The next stage is compilation. The compiler interprets the annotation
declarations and creates proper Java objects, but does the compiler do
anything else with the annotations? The answer is yes - there is a set of pre-
defined (i.e. built-in) annotations, which serve as instructions to the compiler.
They all are defined in the java.lang.annotation package:

@Retention

@Target

@Inherited

@override
@Ssuppresswarnings
@peprecated
@safevarargs
@Repeatable
@FunctionalInterface

As all the annotations, the pre-defined annotations should precede the
annotated declaration (or another annotation). For example, the following
code will instruct the compiler to check if the someMethod() is indeed an
override of the same method of the superclass. If the superclass of the
current class does not declare the someMethod(), a compile-time error will
occur.

@override
public void myMethod() {..}

165

Other, not pre-defined annotations (user-defined, or declared in other Java
packages), are controlled by the @Retention pre-defined annotation. The
@Retention annotation can specify three values defined by the
RetentionPolicy enumeration:

@Retention (RetentionPolicy.SOURCE)

@Retention (RetentionPolicy.CLASS) < default value
@Retention (RetentionPolicy.RUNTIME)

Note: @Retention can annotate only another annotation declaration.
Here is the effect of the above constants:

- SOURCE- annotation stays only in the source (.java file) and is dis-
carded after compilation.

- CLASS — annotation will be stored in the bytecode (.class file) but will
be discarded before the execution; this is the default value.

- RUNTIME - annotation will be available at run time.

The SOURCE-level annotations are not processed by the Java compiler (with
the exception of the pre-defined annotations). However, as of Java SE 6, you
can add annotation processors to the Java compiler, which are stand-alone,
custom tools for processing annotations. They are out of the scope of this
book.

The CLASS-level annotations are too specialized and therefore are also
beyond the scope of our discussion, so let’s talk about run-time processing.

Processing Runtime Annotations

When the @Retention(RetentionPolicy.RUNTIME) annotation is specified
for another annotation (custom defined, or declared in one of the Java
packages), it makes that annotation available at the run time. Since Java does
not provide any special run-time mechanisms of handling the annotations,
it’s up to us what to do with them.

As we already mentioned, annotations are objects of Java classes
implementing the Annotation interface. What it means is that if we can
obtain a reference to the object of some annotation, we can invoke its
method(s) to retrieve the declared values:

166

@interface Author {
String name();

}

@Author (name="Bob”)
class myClass {
public static void main (String args[]) {
Author a = (myClass.class).getAnnotation(Author.class);
system.out.printin(a.name()); // would print: Bob
}
}

To understand how to access an instance of an annotation, we need to recall
the purpose of annotations, which is to provide some supplemental
information about other declarations. The @Author (name="Bob”) above
creates an object of type Author, associated with the class myClass, and
whose method name() returns the value “Bob”.

As we explained previously in the Reflection chapter, at run time, each class
is represented by a Class object. The association between the annotation and
the annotated class can be presented with this diagram:

_» Class object Author object
myClass.class —

getAnnotation()”] name()

myClass.class is the instance of the Class object representing myClass. (We
could use the getClass() method on myClass instance, but such an instance
might not be created). Then, we can use the instance method
getAnnotation() to obtain the instance of the Author annotation. The final
step is to execute the name() method of the annotation to retrieve the value
“Bob”.

Here is the statement obtaining the Author object annotating myClass:

Author a = (myClass.class).getAnnotation(Author.class);

Note that we provided Author.class to the getAnnotation() method. This was
necessary because myClass could have more than one annotation, and the
getAnnotation method would need to know which one to retrieve.

167

Here is a sample code accessing an annotation at run time:

import java.lang.reflect.*;

@interface Author {
string name(Q); Declares the annotation Author
}

@Author (name="Bob™) <[Annotatesthemyclass]

class myClass - -

{ Obtains the instance of Author
public static void main (String args[]) \@ssociated with myClass
{

Author a = (myClass.class).getAnnotation(Author.class);
System.out.printin(a.name()); // prints: “Bob”

}

The same technique can be used for annotated methods, fields, etc. For
example, if the above annotation was used to annotate the myMethod(String
s) method, the access to the annotation object would be as follows:

Author a = (myClass.class)
.getMethod(“myMethod”, String.class)
.getAnnotation(Author.class);

Annotation Types

Annotation coding semantics allows dropping some parts of the annotation
constructs when the corresponding information can be derived from the
context. For example, if the annotation does not have any parameters, the
following two declarations are equal:

@interface MyAnnotation { }
@interface MyAnnotation

This is driven by the number of elements an annotation has. Based on this,
Java recognizes the following types of annotations:

e Normal Annotation
e Single Element Annotation
e Marker Annotation

168

A Normal Annotation is an annotation explicitly declaring all components of
the annotation constructs, for example:

@interface Book { - -
. Declares the Book annotation with two
String name(); elements — name and edition
int edition() default 1;

3 Annotates myClass with Book
. annotation; both elements
@ Book ({ name="My Book”,version=2; }) are specified.

class mycClass {..}

A Single-Element Annotation is a shorthand designed for use with
annotations declaring a single element. If the element name is value, it can
be omitted from the annotation:

@interface Name {
String value(Q)
}

@Name (value="Bob”)
@Name ("Bob”)

Itis also valid to use single-element annotations for annotations with multiple
elements, so long as one element is named value and all other elements have
default values. All below constructs are valid:

@interface BookName {
String value(Q;
int edition() default 1;
}

@ BookName ({ name="My Book”,edition=2; })

@ BookName (name="My Book™”)

@ BookName (”My Book™) Single-value annotation with other
elements declared with default values

A Marker Annotation is shorthand for annotations without elements. All
below constructs are valid:

@interface Book { }
@interface Book

@Book (O JMarkerannotation]
U

@Book

169

Restricting the Usage of Annotations

The pre-defined annotation @Target can be used to specify the types of
items to which another annotation can be applied. Valid values are defined

by the enumeration ElementType:

@Target
@Target
@Target
@Target
@Target
@Target
@Target
@Target
@Target
@Target

Example:

(ElementType.
(ElementType.
(ElementType.
(ElementType.
(ElementType.
(ElementType.
(ElementType.
(ElementType.
(ElementType.
(ElementType.

ANNOTATION_TYPE)
CONSTRUCTOR)
FIELD)
LOCAL_VARIABLE)
METHOD)

PACKAGE)
PARAMETER)

TYPE)
TYPE_PARAMETER)
TYPE_USE)

// @Author can only be used to annotate constructors and methods:

@Target ({ ElementType.CONSTRUCTOR, ElementType.METHOD })

@interface Author {
String name()

}

<
Invalid annotation:
3 3
@—Agther—(—name=—"3Jee" > cannot annotate classes

class mycClass {..}

.
@ Author (name = "Bob”) Ai VL ann:t:tloln: truct
myC'laSS () {} Can annotate Class constructors)

@ Author (name = "Mike”) Valid annotation:
public void myMmethod () {..} can annotate methods

170

JavaFX API

JavaFX is a set of graphics and media packages that enables developers to
create rich client applications with high-performance modern graphical user
interfaces featuring audio, video, graphics, and animation.

Each JavaFX application consists of two major parts: application and stage.
The application (represented by the Application class) is responsible for
building the stage and its elements, and for defining the processing logic. The
stage (represented by the Stage class and other classes) is a hierarchical
collection of objects defining the visual appearance of the application.

This diagram presents the structure of JavaFX applications:

myClass extends Application class Stage
launch() class Scene
init)
Builds the Stage elements
start() Node Node
Builds the Stage elements
Defines the processing logic
stop()
Cleanup

The Stage defines the environment for the JavaFX application. A default Stage
instance is provided by the Java run-time environment. However, you can
create multiple Stage instances (objects).

The Scene is a container (a window) that holds the contents (i.e. elements) of
the Stage. The contents of a Scene create what is referred to as a scene
graph.

The Root Node determines the layout of the elements of the Scene.

The Node represents an element of the Scene. It could be a button, a text
box, a geometrical shape, an animation, etc.

The Application class launches the JavaFX applications. The launch() method
executes the init() method, then start(), and after the Stage is finished (e.g.
the window is closed) — the stop() method.

The following example uses JavaFX to create a window displaying a circle and
a rectangle:

171

o My JavaPx A csllEle| s

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.shape.*;
public class testJavaFX extends Application {
Circle circle;

Rectangle rectan; Creates an instance of class)
public static void main(String[] args) { | testlavaFX and executes the init(),
System.out.println("JavarX: Taunch"); start(), and stop() methods.
The String[] parameter must be
Tlaunch(new string[1]); 4\\pmvwedbutcanbeempw. y
}
[/ - . - -
. AR Th t thod t I; all
public void init(Q { [e'nlorne SRl e
. " ‘—“Tf—w——___\dmbmnmwwnbemwemsmnﬂ
System.out.println("JavarFX: init"); J
System.out.println(Thread.currentThread() .getName());
. . We can create the nodes in |
circle = new Circle (100, 40, 30); the init() method.
rectan = new Rectangle (80, 80, 40, 40); J
¥ Build the stage and start the
/7 LT T execution of the JavaFX
public void start(Sstage stage) { application

System.out.printin("JavaFX: start");
System.out.printin(Thread.currentThread() .getName());

/J Declare a group of nodes]

rootNode.getchildren().add(circle); A_=4 Add two nodes to the group]
rootNode.getcChildren() .add(rectan); ‘c[

Group rootNode = new Group();

Place the nodes into a
200x200 pixel window

Scene scene = new Scene(rootNode, 200, 200);

stage.setTitle("My JavaFX Appli Cwl Place the scene on the stage]
stage.setScene(scene);

_r
stage.show(); Open the window.
} —l Start executing JavaFX application.
A
public void stop() { [The stop() method is optional;]
e

System.out.println("JavaFX: stop");
System.out.println(Thread.currentThread() .getName());

}
}

In addition to the new window displayed, this program prints the following
text to the console:

JavaFX: Tlaunch
JavaFx: init

172

JavaFX: - Launcher

JavaFX: start

JavaFx: Application Thread
JavaFX: stop

JavaFx: Application Thread

Note 1: The main(), init(), and stop() methods are optional. The start()
method is sufficient for starting a JavaFX application.

Note 2: The init() method is running on the so-called “launching” thread, and
the start() and stop() methods are running on a separate “application”
thread. The output produced by the example illustrates the latter by
displaying the thread names during execution of each method.

As mentioned, same application can be written without the main(), init(), and
stop() methods:
import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.shape.*;
public class testJavaFX extends Application {
public void start(stage stage) {

Group rootNode = new Group(Q);

new Circle (100, 40, 30);
new Rectangle (80, 80, 40, 40);

Circle circle
Rectangle rectan

rootNode.getChildren().add(circle);
rootNode.getChildren().add(rectan);

Scene scene = new Scene(rootNode, 200, 200);
stage.setTitle("My JavaFX Application");

stage.setScene(scene);
stage.show();

173

Layouts

In the previous example, the location of the nodes (the circle and the
rectangle) within the scene (i.e. window) was specified explicitly. The root
node Group provides a container for holding other nodes, without any
attempts to arrange them in any particular way.

Layout containers or panes can be used to allow for flexible and dynamic
arrangements of the Ul controls within a scene graph of a JavaFX application.

The JavaFX Layout API provides several container classes that can hold
components and arrange them according to pre-defined layout models. The
layout classes reside in the javafx.scene.layout.Pane package. We will show
you an example of using one of these layouts — TilePane. It places the nodes
in uniformly sized cells:

import javafx.application.*;

import javafx.stage.*;

import javafx.scene.*;

import javafx.scene.layout.*;
import javafx.scene.shape.*;

public class testJavaFX extends Application {
public void start(Stage stage) {
TilePane tile = new TilePane();

for (int i = 0; i < 10; i++) {
tile.getChildren().add(new Circle(20));
}

Scene scene = new Scene(tile, 200, 100);
stage.setTitle("Tiles");
stage.setScene(scene);
stage.show();
}
}

This program displays the following window:

174

Event Handling

When you interact with a GUI application, each action triggers an event.
Mouse move, mouse click, keyboard input, scroll, screen touch, swipe, etc. —
all are examples of events that can be captured by the JavaFX application and
processed.

The event handling mechanism employed by JavaFX is easier explained
through an example. Let’s say that we clicked on a button on the screen. This
action triggers a “mouse click” event. In JavaFX, an event is an instance of the
javafx.event.Event class or any subclass of Event, so JavaFX creates a
corresponding Event object for the event. The event object then “travels”
through the object hierarchy of the JavaFX application, from the Stage object
to the target node that was clicked (a Button), and then backwards. By
“travel” we mean “presented for processing”. The first path is called
“capturing phase”:

Stage = Scene 2Root Node = branch nodes (if any) - Target Node
The second path is called “bubbling phase”:
Target Node = branch nodes - Root Node - Scene - Stage

The following diagram illustrates the event handling mechanism:

:| Stage
Capturing phase
of event delivery.
Event filtering. (
Root Node
S 5
Event object

Bubbling phase of
event delivery.
Event handling.

i This node was clicked l

Any time during the capturing or bubbling phase the event can be flagged as
“consumed” by executing the consume() instance method of class Event. This
stops further event propagation.

Presenting (i.e. delivering) an event to an object for processing does not imply
that the event will be or can be processed by that object. To be able to accept

175

and process an event, every object must register itself as an event handler
and implement some kind of event handling logic. Since events are delivered
to each object twice — during the capturing (or filtering) phase, and during
the bubbling (or handling) phase, the object can set up either an event filter,
or event handler, or both.

All nodes (i.e. subclasses of the Node class), as well as the Stage and Scene
classes define methods for registering and implementing event filters and
event handlers:

<T extends Event> void addEventFilter (EventType<T> eventType,
EventHandler<? super T> eventFilter)

<T extends Event> void addEventHandler (EventType<T> eventType,
EventHandler<? super T> eventHandler)

There are also so-called convenience methods for registering the event
handlers for different types of events. They are basically shorthand for the
addEventHandler methods. For example, this method registers an event
handler for the “mouse clicked” event:

void setonMousecClicked(EventHandler<? super MouseEvent> value)

Let’'s practice and create a couple of event handlers using the
addEventHandler() and setOnMouseClicked() methods.

The setOnMouseClicked method declares one argument — an object of
generic functional interface EventHandler, whose generic class parameter
can be the MouseEvent or any superclass of MouseEvent (e.g.
EventHandler<MouseEvent>, EventHandler<Event>, etc.).

The EventHandler functional interface declares the following method:

void handle(T event)

Next, we need to create an object of type EventHandler<MouseEvent>,
implement its handle() method, and pass this object as an argument to the
setOnMouseClicked() method. This can be accomplished in several different
ways, three of which are presented below.

176

http://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#addEventFilter-javafx.event.EventType-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#addEventFilter-javafx.event.EventType-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#setOnMouseClicked-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/MouseEvent.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html

The first way of registering an event handler with the setOnMouseClicked()
method is by using an anonymous class:

node.setonMouseCl1icked
C Create an object of type]
new EventHandler<MouseEvent>() 4[EventHandler<MouseEvent>

{
pubTlic void handle(MouseEvent e)
{
i) Implement the
. event handling Togic .. handle() method of
} the EventHandler
} functional interface

);

The second way of using the setOnMouseClick() method is by using a lambda
expression:

node.setonMouseCl1icked

(This lambda expression creates an object
e -> {.. event handling logic ..} of type EventHandler<MouseEvent> with
); its handle() method implemented as

specified in {...}

The third way of using the setOnMouseClick() method is by using a method
reference:

class myClass {
public static myClickHandler (MouseEvent e) {
. event handiing Togic ..
}

public static void main(string[] args) {

node. setonMouseclicked (This method reference expression
creates an object of type

myClass: :myClickHandler EventHandler<MouseEve.nt% with its
); handle() method now pointing to the

} myClickHandler() method

}

Note that the myClickHandler method must have same signature as the
handle method of the EventHandler interface, which is declared as follows:

void handle (T event)

The T is the event type we want to handle; in our case it is the MouseEvent.

177

Now let’s create an event handler using the addEventHandler() method. The
format of the addEventHandler is this:

<T extends Event> void addEventHandler (EventType<T> eventType,
EventHandler<? super T> eventHandler)

The first difference of this method from the previously reviewed
setOnMouseClicked method is that the EventHandler object can be of any
event type, not just MouseEvent. In fact, the EventHandler can be created for
the Event class and any subclass of the Event class. The second difference —
we need to tell the method which event type we will be processing by passing
it an object of type EventType<T>, where T can specify the Event class and
any of its subclasses.

Using a lambda expression, we can build an event handler for the “mouse
click” event as follows:

node.addEventHandler Represents the event type
(EventType<MouseEvent>

MouseEvent.MOUSE_CLICKED,

This lambda expression creates an object
e -> {.. event handling logic ..} of type EventHandler<MouseEvent>
): with its handle() method implemented
as specified in {...}

Note: The MouseEvent.MOUSE_CLICKED in this example is a static variable of type
EventType<MouseEvent> defined in the MouseEvent class, representing the
“mouse clicked” event type. Its definition is:

public static final EventType<MouseEvent> MOUSE_CLICKED

The registration of event filters is similar to the registration of event handlers
with the exception that there are no convenience methods provided.

178

http://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#addEventFilter-javafx.event.EventType-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/MouseEvent.html

With the next example we will conclude this brief overview of the JavaFX API
features. The example illustrates everything we have learned so far about the
JavaFX event handling mechanism. When executed on a Windows system, it
will display the following window:

' JavaFX Events L“:“ K=k ﬂj
g -

After you click anywhere within the black rectangle, the following messages
will be printed on the console:

Capturing phase:
Capturing phase:
Capturing phase:
Capturing phase:

Bubbling phase:
Bubbling phase:
Bubbling phase:
Bubbling phase:

Stage clicked
Scene clicked
Group clicked
Rectangle clicked

Rectangle clicked
Group clicked
Scene clicked
Stage clicked

To stop the JavaFX application, close the displayed window.

179

The JavaFX event handling example:

import javafx.application.*;

import javafx.stage.*;

import javafx.scene.*;

import javafx.scene.shape.*;

import javafx.event.*;

import javafx.scene.input.MouseEvent;

public class testJavaFX_events extends Application {
public void start(Stage stage) {

stage.addEventFilter(MouseEvent.MOUSE_CLICKED,
e -> System.out.printin("Capturing phase: Stage clicked"));

stage.addEventHandler (MouseEvent.MOUSE_CLICKED,
e -> System.out.printin("Bubbling phase: Stage clicked™));

Rectangle rect = new Rectangle(80, 30, 40, 40);

rect.addeventFilter(MouseEvent.MOUSE_CLICKED,
e -> System.out.printIin("Capturing phase: Rectangle clicked”));

rect.setonMouseClicked (
e -> System.out.printIin("Bubbling phase: Rectangle clicked"));

Group rootNode = new Group(Q);

rootNode.addEventFilter (MouseEvent.MOUSE_CLICKED,
e -> System.out.printin("Capturing phase: Group clicked"));

rootNode. setonMouseClicked (
e -> System.out.printin("Bubbling phase: Group clicked™));

rootNode.getChildren().add(rect);
Scene scene = new Scene(rootNode, 200, 100);

scene.addEventFilter (MouseEvent.MOUSE_CLICKED,
e -> System.out.printin("Capturing phase: Scene clicked™));

scene.setonMouseClicked (new EventHandler<MouseEvent>() {
public void handle(MouseEvent e)
{ system.out.printTn("Bubbling phase: Scene clicked"); }
)

stage.setTitle("JavaFxX Events");

stage.setScene(scene);
stage.show();

180

Reference Material

https://docs.oracle.com/javase/8/docs/technotes/guides/install/

Instructions on how to install and configure the Java platform for different
operating systems.

http://www.oracle.com/technetwork/java/javase/downloads/

Java SE downloads. The latest Java Development Kit (JDK) and Java Runtime
Environment (JRE) can be downloaded from this page.

http://docs.oracle.com/en/java/

The starting point for browsing the Java SE (Standard Edition), Java EE
(Enterprise Edition), and Java Micro Edition Embedded documentation.

http://docs.oracle.com/javase/tutorial/

Java SE tutorials. Hundreds of complete, working examples, and dozens of
lessons.

http://docs.oracle.com/javase/8/docs/api/index.html

Java SE 8 API Specifications. Complete specifications on all Java classes and
interfaces.

https://docs.oracle.com/javase/specs/

Java Language and Virtual Machine Specifications.

http://docs.oracle.com/javase/8/javafx/api/toc.htm

JavaFX API Specifications. All “javafx” packages are presented here.

181

https://docs.oracle.com/javase/8/docs/technotes/guides/install/
http://www.oracle.com/technetwork/java/javase/downloads/
http://docs.oracle.com/en/java/
http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/8/javafx/api/toc.htm

Index

LY o1 - [d 1 = 11 L OO OO SUPUPR P 100
ACCESS MOTITIEIS c.eeiieiiieeteerte ettt st e st e rbe e st e et e e st e e beesateesbeesabeenbaesasaenasesnne 77
ANNOTATIONS .eeiiiiiite ettt e e e e e e s e bttt e e e e e s s an b et e e e e s e arrbeeeeeesennrreeeeeeenanrneen 164

(00T T SO O OO R PRSPPI 169

(a1 s o -1 SRR PUPROPPPRINE 169

FESTIICTEU USAEE .eviiiiiiieieite ettt sttt et e sttt e s st e e s sate e e s bt e e e s beeessteeesnnee 170

SINGIE-BIEMENT ...eiiiiiiie et et et e e e bb e e e st r e e eeab e e e e baea e aaaeas 169
ANONYMOUS ClIaSSES ...eeuvriiutieririeiiieeieesite et e et et e sb e e st e et esaressbeesaseesbeesareesaseebeesateessnesnneennnes 101
APPIICALION CIASS .eeeiieiiii ettt sttt s nnnes 171
Arrays

CIBATING ..ttt ettt e e s s s e e s et s e e e e nae e e eanee 46

(o LT -] o o V- 2SR PP PPRRPPPRROE 46

MUILI-IMENSTONAL ...ttt st e be e s te e beesbeenbaesnteesaneenne 47
AULObOXING / AULO-UNDOXING ...evnieiieiieiiitisieteete ettt sttt se s ssessannan 68
BUFFEI ClaSS .vveeiieeiie ettt ettt et sa et e st e e sae e s bee s bt e e nbeesateensaeeteenaeeenee 146
Casting

in arithmetic expressions

(o] o =T £ USRS
(01 Yo Lo 1= T o =T o =Y PSSR
Class

Ao o] [Tor- Y o T o F U UPRRRPURRTR 171

Buffer

InputStream... ... 140
Y1 ol o1 USSR 158
NOGE ettt ettt et e st e s bt e st e e sat e e bt e sa b e e b e st e e beeeabeenhbeebeenateebeens 171
(0] o 1T V=1 o =S 154
OULPULSTIEAM ettt e e e e e s et e e e e e s e anreeee e e e e e annneeeeeeseannrnnneeeeas 137
PatEIN . s e et 158
22T Lo =Y SR 141
1ol o 1= PSP PPRTPPPPRIRY See
Y= 1= o] OSSOSO P PP PP STUPRRPRPRPRRNE 146
= <{ TSP PPRTPPPPRRY See
L g1 7= PP UPPRPTRPPP 69
TRFOWADIE .. ettt sttt e e bt aeesne e 113
K1Y 41 €= U STUU P PPPUPPPUPPNE 139
Classes
] o1 A= ot OO ST O PO RSP PO PP
F=] 0o T8 1Y/ s 4o 10 U

class variables and methods....

182

CONSEIUCTON, SUPET KEYWOIT. . oiiiiiiiiiiiie ettt ettt et e te e e et e e s b e e e s baeeesaaaeeeas 60

CONSErUCTOr, this KEYWOIdeeeieeie et e 58
(o010 11 1 (U1 o S SO P PSPPSR 57
(o [T -] o o T~ 0P PPRPPPR 51
iNitializing class Variableseiiiiii i 52
instance variables and MEthOASooveiriiiiiiiiie e 54
[ToTor Y N[0T o =T o USRS UPP SRR 99
MELNOA OVEITIAING ..eeeiviiiiiie ettt st e s st e e et e e sbbeessabaeesnataeesnnne 63
NON-STATIC INMNEI et ettt e e e e st e s sbee e s anneeeeanne 98
STALIC INNET (NESTEA) ..iiiiiiie ettt et e e eab e e s ba e e e sabe e e ebbeeesabaeesantaeeens 97

Classes AN ODBJECES ...uuviiiiiiieiiiiee ettt s e s st e e st e e e s bb e e e sbeeesnntaeeeas 50

Collections
(o = 141V R PSPRRNE 126
FrAMEWOTK . et e s st e e e s bae e s sabeeesataeenanee 126
(10T 141 oY= PSPPSR 129
FELIIEVING EIEMENTS .. eiiiiiee ettt st b e sneesneesneesnees 127
updating

Comparator

CONSEIUCTOr REFEIENCE...i ittt st e e s bb e e s sbaeessstaeeeas 95

Deserialization

Encapsulation

[100 oo - T PP UPUPUPPRN

Enumerations

[(ol=T o] A 1o o -SSP PP P TP TUPUPTUPPRON
CRECKEA ...ttt st b e st h e s bbb e e areeane
ol o T=Tol (T o =T Vo | =PSRN 111
(ol =l o 11T - [ol o 12U 113
CUSTOM @XCEPTIONS ceeiiiiiiteee ettt e e ettt e e e e sttt e e e s e saabbeeeeeesssnntbeaeesessssreaeaeessnsansnnes 115
default eXception NaNdIEr......ocei i 108
FUN TIMIE ettt et e et e e bt e e e sbb e e s s b b e e e bbe e e sabaeessabaeeesnreee e 113
UNCRECKE. ...t ettt ettt e sb e st bee st eesbeeeabeenanes 107
(8 ol aT<Tol 1Yo I o - 3 o | T = PSS 108

FileOULPULSTIEAM ClasS...uuviiiiiiiiiiiiieciiie e etiee ettt ettt e s ie e e e s e e e sabee e sbbeeesbbeeesabaeesnstaeeans 136

FIIES CIASS cunteentieetteeite ettt ettt st et e e sab e e bt e s bt e be e st e e bt e et e sab e e heesabeenbaeeareens 146

Lo ot ol T e Yo Yo H PSSR 129

(CT= a1 ol PO P PP P P RUPPPPPRON 79
ClASSES ettt ettt ettt sttt et s ettt e bt s bt e s ha e s beesa b e e beesate e heeebeenares 82
(o014 11 £ (U1 o] TSRO 87
INEEITACES .ttt ettt ettt e s bt e et esat e et e e sab e e bt e sate e aeesbeenaaesareens 85
L0074 oo o -3 79
PassSing MEthOdS @S PArAMELENSccuuiecieeiieieeeeeree et see e e ae e e sae e e e saeessaeeneeeas 84
type safety ...cccceevveeevcieiiiee e,
type variable
V1o Lo Yo e = Y= Y2 =1 =T ol () PSP 84

Inheritance.......cccccoevueenen.

Inner Classes
INPUESTIEAM ClASS .oiuviiiieiiieciiiee ettt et e et e e e e sba e e e s bae e e sabaeasasbeeessseeesabaaassseeenns 140

[0 = o =TT YOS RUPRPRRPPPRNt 102

(00T 0 U o 1 1= o PRSP 133, 152
o =3 = TU 1 0 T=1 4 T Yo L3S 106
fully-implemented MEethodscooiiiiiiie e e 106
SEAtIC MELNOAS ..ottt e e 106
[O STIRAIMS ettt ettt e ettt e e st e s et bt e e st e e e sbbe e s ettt e e sabbeesanbeeeebneeennnee 135
1EEration STATEMENTS ...t e 37
(LT =1 (0] SO UP U PPPPPPPPTN 131
JAVAFX oot e e st e e e s 171
JAVAFX @VENTS...ciiiiiiiit e e st e e s 175
IDK 8 INSTAllAtionceeieiiiiiiiie ettt st e e s te e e nanae s 10
Lambda EXPrESSIONS ..cccvuiiiiiiieiiiieeeitte e st eeeeiee e e sttt e e eaa e e s sabaeeesabaeeeabeeessbaeesssraeessbeeesnsaeesnsseeas 89
(RS L =T | o] S PP PP P RO T P TOUPPPRTOPPPRON
[=T] LU UPPPTP
oo To] [T o TSSO PRRUSPRRPRNE
LoF= 15111 o V- S0P PP PPPOPPPOE
character.....

class literal

NIUINEIIC . ttttteeeeesuittteeeeeseuaarbteeeesesunnbteeeeesaanbateeeesasssssbaeeesesassssaeaeessannssbaeeeeesannnsanaaessensnnsnnen
[(410 V- S
Loop control variables
Method OVErIOAAINGcovieiiieiiere ettt e sr et e e e s b e sseesareens
Method overriding. .
Y =TT U] T =T o ol SRS
IMIEENOMAS <.ttt e sh e st esat et sab e s bt e sab e e bee s ate e nar e e b e e naenareens
20T 1o F O OO PP PR PPTOPPPTRPP
Modifiers
ACCESS TBVEL ..ttt b e b e e s n e naeesre e 77
Lo =3 =T USRS 106
LT | U PP TP U PP PR PP PPTPPTOP 78
SEATIC 1ttt e e et s b e s a e e e e e ea 78
NEW 1O SEFAM it e e st e e e s et e e e e e e s e snrneeeeesenanes 145
IO ettt ettt sh bt e bt e et sh b e e bt e sa bt e bt e sab e e nht e e beeshb e e bt e sabeenbeeeteenareenne 145
NOAE CIaSS ..t utteittette sttt ettt ettt sat e s bt e sa bt e bt e sab e e saeesbeesabeebeesuseenseesaseensnesnne 171
Objects
(o 1) 4 o= 20RO PT P PPPPPRRN 61
(o =T- 141V OO PPT PP PPPPPPRN 56
INSEANTIATION ...t e e e s e e e s e e e e e s e e e e e e e e enaes 56
ODBSEIVADIE CIASS ..eeueiiuiieriieeiieeteert ettt sttt ettt e it e be e st e e b e s e naaeereens 154
(0] o 1YY VT 101 d=Y o - Vol SR 154
Operators
(22) MELNO FEEIENCEveeeeeeiee ettt e s e re e sae e s aae e aeesaaeenraean

(+) string concatenation
L0t <T- ol SRS
instanceof ...
OutputStream class
LYol & =L L TSP TUPPPP

(o1 1Y 00 oY 0 o] a1 o s VOO TPPPOPRPSPRRPPRINE 17

Primitive data tyPeS ettt s e et e 20
[T Lo LT ool = T PP UPURUPPRON 141
REFIECHION API ..ottt ettt ettt ettt s ba e st e e sat e e beesbbeesbeesabeensaesnseens 161
REGUIAE EXPIrESSIONS «..eeiiiiiieeiiiiee ettt ettt e st e e sttt e e sttt e e sttt e e s bte e e sabbeessabeeessteeesbbeesanseeeenntaeenns 158
Yol=T o [0l o 1L OO OO PRRPRP 171
SCOPE OF VATIADIES ..ot et e e e e e st e e et a e e s bt e e e sabeeesabaeassnnaeans 21
=] [Tot] ol - 113 PP P PP 146
SEIIAIIZATION 1eeeiieeiie ettt ettt sa e et st enae e et ba e st e e et e e beenaaes 143
Y oL H=T-) o] PR PP 133
SEAEE ClaSS ettt ittt ettt ettt et e e s bt e e e bt e e e s bt e e e abe e e e areeenaraeas 171
Statements

o] ool Qe RPN 34

package

Program flOW CONTIOL......coiuiiiiieiieee ettt e 34

sequential .

7711 ol o PSR

try-with-resources

WHHTE ettt ettt e st e et e st e et e e et e e nae e e te e sae e e teeeateenreeeteennaeenn
STFEAM AP ..t e e e st e e e e s e e e e e s e rr e e e e e s e rrereeeeenne
SEIAIMIS ..ttt ettt sttt et e e s b e s e e et e st e e a e e e nare s

BYETE INPUL SEr@AM ..t e e e s e e 140

BYTE OULPUL STr M ..eeeiiiiiiieiiieeee ettt e e e e s s e e e s s s s aabreeeeessesannnaeaeeas 135

Character INPUL SEFEAM ...ciiiiiiiiiiee ettt e s bre e e sstr e e sabe e e sbaeeennsaeas 141

Character OULPUL STr @Miieiieeeerieectieete ettt et e s e e sae e srteesneeebeessaeenseesneeenne 139

FUNAAMENTALS ..ttt et ettt sbe e st esbeesabe e bt e eareenaees 135
] 1 g1 F = - 1P PUP 69
Strings

COMPATINE 1ot iiititteeeeee sttt ittt e e sssittreeeeeesasttateteeesasassaaeeessssassstaeeeesansasssaeeesssssssreseeeesasssssaaeens 70

CONCATENATION ..ttt st e s e e e s e e sbb e s ebee e e snreee e 71

(ol {=- 1 1oV USSR 69

(00114 aToTe ST RO P PO OPPUPIUPRRPP 72
SUPET KEYWOIT ..e.eieiieeeee ettt ettt s ettt e et e e e s teesne e eaeessaeesteesnseeseessseenneeenseenseesnseennsnanes 60
LTl TR =T 1= o PSSP 36

communication (Wait & NOTIfY)ceevuveiieeierie e e e 124
daemon threads
LT o (V] o] o= SO UU P PPPUPPPUPUNE
J o1 L0117 =TT UPUPPPPP

SYNCRTONIZING o ittt et e e et e e e s e e e eetbeeesbbeeesstaeesnabeeesnbaeasnnseeas 120

SYNChronizing 0N MEthOUS.....cc.eiciecieeee et e e enee 121
synchronizing on statement blocksoocuii i 121
USEE TNTEATS .. uteeiie ettt ettt sttt et s e st e st e et e e sa b e s beesabe e beesabeenbeesnbeenaaesnbeens 119
TrY-With RESOICES ...eeiiiiieiiieeeiee ettt ettt e e st e st e e st e e e s bt ee e abaeesbteeennneeas 142
YL TSR T o] o 1= PR OROROROPRRORORRPORON 67
VATTADIES .ttt et st st e st e b sate e bt e e beenbaesbeenateenne 21
V1o Lo Yo e =T = Yo = =T ol () USSR 84
L = o - TSP SUPRUPRP 139

186

		2016-02-25T14:10:10+0000
	Preflight Ticket Signature

