

Do You

?

Java Language Fundamentals

First Edition

February 2016

Aleks Rudenko

Speak

JAVA

Covers

JDK 8

2

Trademarks

The following are trademarks of the Oracle Corporation and its affiliates in
the United States, other countries, or both:

 Oracle

 Java

 Java Beans

 JDK

 JRE

 JVM

 JavaFX

Other trademarks and registered trademarks are the properties of their

respective owners.

3

Table of Contents
Trademarks .. 2

Introduction ... 9

Installing the Software... 10

Working with Examples ... 11

Object-Oriented Programming .. 13

Object-Oriented Design ... 14

Encapsulation .. 15

Inheritance .. 16

Polymorphism .. 17

Data Types, Variables, and Literals .. 20

Primitive Data Types .. 20

Variables .. 21

Accessing the Variables ... 21

Literals ... 22

Numeric Literals ... 22

Character Literals ... 23

Boolean Literals ... 25

String Literals ... 25

Casting in arithmetic expressions .. 25

Operators ... 27

The Assignment Operator ... 27

Arithmetic Operators... 28

Bitwise Operators .. 29

Relational Operators ... 30

Boolean Logical Operators .. 31

Conditional Operator ... 33

Program Flow Control ... 34

4

The Sequential Statement... 34

The Statement Block ... 34

The “if” Statement .. 35

The “switch” Statement .. 36

Iteration statements ... 37

The “while” Statement .. 37

The “do…while” Statement ... 38

The “for” Statement .. 39

Internal Loop Control Variables .. 40

The “for-each” Statement ... 41

The “break” Statement ... 42

The “continue” Statement .. 45

Arrays .. 46

Declaring Arrays .. 46

Creating Arrays .. 46

Multi-Dimensional Arrays ... 47

Methods .. 49

The “main” Method .. 49

Classes and Objects ... 50

Declaring Classes ... 51

Class Variables and Methods .. 51

Initializing Class Variables ... 52

Instance Variables and Methods .. 54

Working with Objects ... 56

Creating Objects .. 56

Constructors .. 57

Method Overloading ... 58

The “this” Keyword ... 58

The “super” Keyword .. 60

5

Object Casting .. 61

Method Overriding .. 63

Determining the Type of an Object ... 64

Summary .. 65

Type Wrappers .. 67

Autoboxing .. 68

Strings .. 69

String Literals, Creating Strings.. 69

Comparing Strings ... 70

String Concatenation Operator ... 71

String Methods .. 72

Determining String Length .. 72

Comparing Strings ... 72

Accessing String Characters ... 72

Searching for a Character .. 72

Searching for a Substring ... 73

Extracting a Substring .. 73

Creating a new String from existing String .. 73

Creating a Character Array from a String .. 73

Creating an Array of Bytes from a String ... 73

Creating a String from an Array of Characters 74

Packages .. 75

Modifiers ... 77

Class Modifiers .. 77

Access Level Modifiers .. 77

The “static” Modifier ... 78

The “final” Modifier ... 78

Generics ... 79

Generic Methods ... 79

6

Generic Classes ... 82

Passing Generic Classes as Parameters ... 84

Generic Interfaces ... 85

Generic Constructors .. 87

Lambda Expressions .. 89

Method Reference .. 93

Constructor reference ... 95

Inner Classes ... 97

Static Inner (Nested) Classes ... 97

Non-Static Inner Classes.. 98

Local Inner Classes .. 99

Abstract Classes .. 100

Anonymous Classes ... 101

Interfaces .. 102

Interfaces vs. Abstract Classes .. 104

Default and Static Methods in Interfaces ... 106

Exceptions ... 107

Handling Exceptions .. 108

Handling Unchecked Exceptions ... 108

Handling Checked Exceptions ... 111

Exceptions Class Hierarchy.. 113

Creating Custom Exceptions ... 115

Threads.. 116

Starting Threads .. 116

Daemon Threads ... 119

Interrupting Thread Execution .. 119

Waiting on a Thread to Die ... 120

Synchronization... 120

Synchronized Methods ... 121

7

Synchronized Statement Blocks .. 121

Advanced Inter-Thread Communication ... 124

Collections Framework .. 126

Creating Collections ... 126

Retrieving Collections’ Elements ... 127

Updating Collections ... 128

Iterating through Collections ... 129

The “for-each” Loop .. 129

Iterator ... 131

List Iterator .. 132

Spliterator .. 133

Comparator ... 134

I/O Streams .. 135

Byte Output Streams ... 135

Character Output Streams ... 139

Byte Input Streams .. 140

Character Input Streams.. 141

Try-With-Resources ... 142

Serialization ... 143

New Input/Output System - NIO ... 145

The Stream API .. 150

Observable and Observers .. 154

Enumerations .. 155

Regular Expressions ... 158

Regular Expressions Basics .. 158

Regular Expressions Examples ... 159

Reflection API .. 161

Obtaining the Class object ... 161

Discovering Class Members ... 163

8

Annotations ... 164

JavaFX API ... 171

Layouts .. 174

Event Handling .. 175

Reference Material ... 181

Index .. 182

9

Introduction

There is a broad range of books on Java – from beginner’s guides to complete

references. The first category tends to concentrate on basic concepts, which

does not take you very far from the “Hello world!” program. The books of the

second category are simply too big – usually over 1,000 pages. They are very

good as reference sources, but a bit overloaded with details and lengthy

examples. They are also trying to cover as many topics as possible, which

makes the learning curve steeper.

The size of this book is less than two hundred pages so it is definitely not a

reference guide. Nor is it a “Java basics” book.

Not concentrating too much on details, and illustrating everything with small

comprehensive examples, this book focuses on Java’s fundamental features,

essential for building real-life applications. The goal is to create an overall

understanding of how Java works. The details can be picked up later either

from Java original specifications and tutorials, or from those comprehensive

guides and complete references.

Starting from the ground up, the book builds a solid foundation of your Java

knowledge.

If you want to become a Java expert – this book is a good start. Good luck!

10

Installing the Software

If you want to experiment with the sample programs provided in this book,

you need to have the JDK 8 software installed on your machine. You can

download it for free from the Oracle website:

http://www.oracle.com/technetwork/java/javase/downloads/

There are different versions of the software available, suitable for different

types of operating systems – Linux, Mac OSX, Solaris, or Windows.

The instructions of how to install and configure the Java 8 platform for

different operating systems can be found on this page:

https://docs.oracle.com/javase/8/docs/technotes/guides/install/

Note: all URLs referenced in this book might change in the future.

http://www.oracle.com/technetwork/java/javase/downloads/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/

11

Working with Examples

Throughout this book numerous examples are used to illustrate the usage of

particular features of Java language. The basic structure of an examples is

this:

// Comments . . .
class className {
 statements . . .
 public static void main (String args[]) {

 statements . . .
 System.out.println (results);
 }

}

To fully understand the above syntax, several topics of this book must be read

first. At this point, the following explanations would be sufficient for working

with examples.

Java is case-sensitive:

 thisVariable and ThisVariable are two different variables.

Comments:

// This is a non-executable comment line

/*

 This is a block of commented lines

 . . .

*/

A single statement ends with semicolon:

thisVariable = 5;

A block of statements is included within curly brackets:

{ a=5; b=”text”; }

The DOT (.) notation:

objectA.variable1; // returns the value of variable1 of objectA

objectA.method1(); // executes the method1 of objectA

The code to the left of the dot (.) must be an object, and the code to the right

of it must be the object’s property – a variable or a method. An expression

with multiple dot operators is executed from left to right.

12

The print statement:

System.out.println (“Total = “ + 5); // output: Total = 5

System.out.print (“ x=“ + 1); // output: x=1

System.out.print (“ y=“ + 2); // output: x=1 y=2

These are commonly used methods of printing the results. Both statements

use the “+” operator to concatenate all items (arguments) listed within the

brackets into a single text line and output it to the console. The print method

outputs the arguments onto the current line, appending them to the existing

contents. The println method outputs the results and switches to a new line.

The main method:

Every Java application starts execution with the main method (program):

 public static void main (String args[]) { code }

The class:

The class className {..} is a definition of a class. Each class definition is stored

in a file with corresponding name - className.java.

13

Object-Oriented Programming

The purpose of any computer program is to perform some manipulations on

data. This is also true for the object-oriented programs. The difference,

however, between a “traditional”, data-oriented program, and an object-

oriented program is in the way they view the data.

Traditional programs “see” and can perform some operations on individual

or grouped together elementary data elements of primitive data types –

numbers, characters, text strings, etc. Sometimes more complex data

structures like tables, stacks, or lists, along with specialized manipulation

commands, could be built into the language, but that’s about it. The highest

level of abstraction stops at the above mentioned data structures. If, for

example, we want to create a representation of some logical entity, like

“Customer”, we would need to construct a new group of data elements and

build the code to access it.

Object-oriented programs bring data abstraction to another level. They can

still manipulate the primitive data types – numbers, characters, etc., but the

primary focus is on so-called objects. An object is an entity that contains data

along with code to access that data. Object-oriented languages provide

additional tool sets (commands, operators, other language constructs)

allowing for creation and manipulation of objects. In the Java language, for

example, we have a construct to define classes, which are templates for

building objects, and a special operator new for creating instances of objects:

// Define the class “Apple”

class Apple {

… data and code …

}

// Create a new object of class Apple

obj = new Apple();

14

Object-Oriented Design

As we already mentioned, the main difference between traditional languages

and object-oriented programming languages is the level of abstraction in

viewing the data. Traditional languages provide means of manipulating

primarily primitive data elements, while object-oriented languages are

focused on manipulating logical objects. The way manipulation of objects is

implemented in the language is based on Object-Oriented Design (OOD)

principles. The OOD consists of three main concepts – Encapsulation,

Inheritance, and Polymorphism. In general, they set up rules on how objects

and their contents should be built, and the valid relationships between

objects. In order to understand these concepts, we have to get familiar with

terminology around objects.

Let’s look at the picture below:

Class A is a template (a definition) for building objects. It consists of data

definitions called properties and programs (executable code) called methods.

Object 1 and Object 2 are the instances of class A. They hold concrete values

of all properties declared in Class A.

There can be multiple classes (templates) and multiple objects (instances) of

those classes in a program. Now, let’s describe the three OOD concepts.

Object 1 of class A
(instance of class A)

Object 2 of class A
(instance of class A)

Declaration of Class A

Code:

Method 1
. . .
Method N

Data:

Property 1
. . .
Property N

15

Encapsulation

Encapsulation principle requires that the internals (data and code) of an

object should be protected from being arbitrarily accessed by code outside

of the object. The only way to “communicate” with an object and access its

properties is through the public methods and public properties. Below is an

example of how the principle of encapsulation is implemented in Java.

// Declare the class “Apple”

class Apple {

 private String color;

 public void setColor (String c) {

 color = c;

 }

}

// Create the “apple1” object of class Apple

Apple apple1 = new Apple();

// Invoke the public method “setColor” of object “apple1”

// and set the color property to “red”

apple1.setColor(“red”);

apple1.color = “red”;

The property color is not accessible
from the outside of the object

The method setColor() is accessible
from the outside of the object

Doesn’t work because the property
color cannot be accessed from outside
the class

16

Inheritance

Inheritance principle applies to the relationship between classes. It states

that two classes can have a parent-child connection, in which the child class

(a subclass) inherits all the features of the parent class (a superclass).

Below is an example of the inheritance mechanism.

// Declare the class “Fruit”

class Fruit {

 private String color;

 public void setColor (String c) {

 color = c;

 }

}

// Declare the class “Apple” as a child of class Fruit

class Apple extends Fruit {

}

// Create the “apple1” object of class Apple

Apple apple1 = new Apple();

// Execute the method “setColor” of object “apple1”

// and set the value of color property to “red”

apple1.setColor(“red”);

Even though the color property and the setColor methods are not defined in

the Apple class, they are accessible in the Apple objects due to inheritance.

Class Apple inherits all
properties and methods
of the Fruit class

class Fruit

class Apple

extends Fruit

class Orange

extends Fruit

Fruit is the parent class, and
Apple and Orange are the
child classes

17

Polymorphism

Polymorphism principle dictates that it is allowed to have multiple methods

with same the name but different implementations within one or more

classes, and the language must be able to determine which variation of the

method to execute at run time.

Below are examples of how the Java language implements polymorphism.

Let’s say, we need to calculate the square footage of different shapes –

rectangle, triangle, circle, etc. Each shape is represented by its own class, and

each class is a sub-class of the superclass Shape:

// Declare the class Shape

class Shape {

 public double footage;

 public void showSquareFootage() {

 System.out.println(footage);

 }

}

// Declare the class Rectangle

class Rectangle extends Shape {

 double width;

 double height;

 Rectangle (double w, double h) {

 width = w;

 height = h;

 }

 public void showSquareFootage() {

 footage = width * height;

 System.out.println(footage);

 }

}

class Shape

class Rectangle

extends Shape

class Circle

extends Shape

This method is executed
when an object of class
Rectangle is created.

This method calculates and
displays the square footage
of the Rectangle object.

18

// Declare the class Circle

class Circle extends Shape {

 double radius;

 Circle (double r) {

 radius = r;

 }

 public void showSquareFootage() {

 footage = radius * radius * 3.1415;

 System.out.println(footage);

 }

}

// Main program

// Create an object of class Shape

Shape shape1 = new Shape();

shape1.showSquareFootage(); // prints “0”

. . .

// Create a rectangle object with width=2 and height=3

shape1 = new Rectangle(2.0, 3.0); // shape1 is now a rectangle

shape1.showSquareFootage(); // prints “6”

. . .

// Create a circle object with radius=2

shape1 = new Circle(2.0); // shape1 is now a circle

shape1.showSquareFootage(); // prints “6.2830”

In the above example the shape1 variable, depending on the program flow,

could represent objects of different subclasses. During execution the

language will validate the type of object referenced by shape1 and select the

appropriate showSquareFootage method.

Consider now that we want to change the dimensions of a rectangle and at

the same time calculate its new square footage. We could add another

variation of the showSquareFootage method to the declaration of the

Rectangle class:

class Shape {

 public double footage;

 public void showSquareFootage() {

 System.out.println(footage);

 }

}

class Rectangle extends Shape {

 double width;

 double height;

 Rectangle (double w, double h) {

 width = w;

 height = h;

 }

This method is executed
when an object of class
Circle is created.

This method calculates and
displays the square footage
of the Circle object.

19

 public void showSquareFootage() {
 footage = width * height;

 System.out.println(footage);

 }

 public void showSquareFootage(double w, double h) {

 width = w;

 height = h;

 footage = width * height;

 System.out.println(footage);

 }

}

Now, in order to select and execute the proper method, the language will

need to analyze not only the object type but the signature of the method as

well. The signature of a method is the combination of its return type and the

types of input parameters. Signature of the first method of this example is

“void+void” (no output and no input parameters), and signature of the

second method is “void+double+double” (no output parameters and two

input parameters of type double).

Thise is how the two variations of the showSquareFootage method can be

used:

// Main program logic

// Create a rectangle object with width=2 and height=3

Rectangle shape1 = new Rectangle(2.0, 3.0);

shape1.showSquareFootage(); // prints “6”

// Change the rectangle dimensions to 3x4

shape1.showSquareFootage(3.0, 4.0); // prints “12”

This method calculates
the square footage of
rectangle.

This method changes the
dimensions of rectangle
and then calculates its
square footage.

20

Data Types, Variables, and Literals

The Object-Oriented Design discussion gave us an idea of how the Java

language is different from other, “traditional” languages. Now let’s look at

the features making Java similar to non-object-oriented languages.

Most languages, including Java, have the following in common:

- ability to manipulate primitive data types

- variables and literals

- a fixed set of operators

- language constructs and statements for controlling the program flow

In this chapter we will review the primitive data types, variables, and literals.

The rest will be covered in later chapters.

Primitive Data Types

A primitive data type (could be also referred to as simple or atomic type) is

a data type that is not formed by combining other data types. For example, a

string is not a primitive data type because it is defined as a set of elements of

the character data type.

Java defines eight primitive data types:

Date
Type

Description Length,
in bits

Range (approximate)

byte Signed Integer Number 8 -128 to +127

short Signed Integer Number 16 -32,768 to +32,767

int Signed Integer Number 32 -2.1*10⁹ to +2.1*10⁹

long Signed Integer Number 64 -9.2*10¹⁸ to + 9.2*10¹⁸

float Floating Point Number 32 ± (1.4e-45 to 3.4e+38)

double Floating Point Number 64 ± (4.9e-324 to 1.8e+308)

char Unicode Character 16 0 to 65,536

boolean N/A true or false

Note: Java does not reveal the length of boolean data type because its

implementation is platform-specific.

21

Variables

In Java, data elements of primitive types can be declared either as literals or

variables.

A variable is a named reference to a location in memory where the data

element of specified type resides. The format for declaring a variable is this:

type identifier; // declares the variable identifier
 // of type type

type identifier = value; // declares and assigns value
 // to variable identifier of type type

Here are some examples of declaring data elements of primitive data types.

int k; // “k” is a reference to a 32-bit area in memory

 // that will hold an integer value

k = 100; // The above memory is populated with a 32-bit

 // signed binary number (100)

char c = ‘A’; // “c” is a reference to the two-byte Unicode

 // character ‘A’

Note, that variables can reference not only the primitive data types, but

objects as well.

Accessing the Variables

At high level, you can view every Java program as blocks of code. Each block

is surrounded by curly brackets: { statements }. Blocks can be separate or

included in each other:

{ block 1 }

{ block 2 { block 3 } }

This structure determines the accessibility, also referred to as scope, of

variables. A variable declared in a block is accessible within that block and

within all included blocks. Once program flow reaches the end of a block all

variables declared within that block are destroyed.

22

Literals

A literal specifies an actual value of a data element. For example, 123 will be

treated by Java as a 32-bit signed integer number (i.e. type int), and 123.4 –

as 64-bit floating point number (type double). In fact, any whole number

value (i.e. without the decimal point) is treated as an integer, and any

fractional value (i.e. with the decimal point) is treated as a double precision

floating point number.

There are four types of literals in Java: numeric, character, boolean, and

string. Each of them is discussed below.

Numeric Literals

Numeric literals can be specified in decimal, hexadecimal, octal, or binary

notations. Here is the number 10 in different notations:

10 - decimal notation (decimal digits 0-9)

0x0A - hexadecimal notation (0x is in front of hexadecimal digits 0-F)

012 - octal notation (0 is in front of octal digits 0-7)

0b1010 - binary notation (0b is in front of binary digits 0-1)

Numeric literals can contain embedded underscores, which are ignored by

the compiler but make the values easier to read. Here are examples of valid

numeric literals:

1234567890

1_234_567_890

123__456__7890

123_456_789.0

The data type of a literal is defined either implicitly (default data type

assignment) or explicitly. Any whole number literal is defaulted to type int,

and any fractional number literal is defaulted to type double. There can be

no literals of type byte or short. The long and float literals can be defined

explicitly by appending the number with ‘L’, ‘l’, ‘F’, or ‘f’. The type double can

23

also be specified explicitly by appending the number with ‘D’ or ‘d’ but this

would be redundant. The table below shows some examples of how the data

type of literals is determined.

Literal Data Type

Not available byte

Not available short

123 int

123L or 123l long

123.0 double

123.0D or 123.0d double

1.23E+2 double

123.0F or 123.0f float

Character Literals

A character literal is represented with a value within a pair of single quotes.

The digits, letters, and special characters that are present on the keyboard,

can be specified directly, as follows: ‘a’, ‘1’, ‘%’, etc. Other symbols should be

entered using escape sequences. The escape sequence is the backslash ‘\’

followed by one or several symbols. There are several predefined escape

sequences that represent new line, tab, backspace, etc. Besides that, any

Unicode character can be entered directly using escape sequences in octal or

hexadecimal notations. Octal character notation has format ‘\nnn’ –

backslash followed by three octal digits. Hexadecimal character notation has

format ‘\unnnn’ – backslash, followed by ‘u’, followed by four hexadecimal

digits. Here is the lower-case letter ‘b’ literal in different formats:

 ‘b’, ‘\142’, ‘\u0062’

The table below shows available escape sequences.

Escape Sequence Description

\nnn Octal character (nnn – octal digits 0-7)

\unnnn Unicode character (nnnn – hexadecimal digits 0-F)

\b Backspace

\n New line

\r Carriage return

\t Tab

\f Form feed

24

\’ Single quote

\” Double quote

\\ Backslash

25

Boolean Literals

Boolean literals can have only two values – true and false. These values are

not converted to any numeric values.

boolean b = true; // “b” is declared and set to true

b = false; // “b” is set to false

String Literals

String literals are formed by enclosing a sequence of characters by double

quotes. Here are few examples of valid string literals.

“String Literal”

“\”String in double quotes\””

“String on \n two lines”

Casting in arithmetic expressions

In general, the operands (variables and literals) of an arithmetic expression

could be of different data types. The purpose of the casting mechanism is to

deal with such situations by promoting the precision of operands from lower

to higher level. Precision is increased from byte to double as follows:

byte short  int  long  float  double

There are two types of casting: implicit and explicit. Implicit casting is done

by the language automatically, based on the actual data types of the

operands. Explicit casting is requested by the programmer by placing the

desired data type in front of a variable or literal.

Below are the rules of how the type of operands is determined or set in

arithmetic expressions:

- all integer literals by default are of type int

- all non-integer literals by default are of type double

- before calculating any arithmetic expression, all byte and short varia-

bles are promoted to type int

26

- for each arithmetic operation (+, -, /, *, etc.), with mixed operand data

types, a lower precision operand is promoted to the type of the higher

precision operand

- a literal or variable is promoted or demoted to the date type explicitly

specified by the type modifier placed in front of it in parenthesis

Example 1

double result = 1.5 + 3 / 2; // result = 1.5 + 1 = 2.5

The data type determination and calculation are performed as follows:

(double) result =

(double) 1.5 + (int) 3 / (int) 2 =

(double) 1.5 + (int) 1 =

(double) 1.5 + (double) 1.0 = (double) 2.5

Example 2

double result = 1.5 + (double) 3 / 2; // result = 1.5 + 1.5 = 3.0

The data type determination and calculation are performed as follows:

(double) result =

(double) 1.5 + (double) 3 / (int) 2 =

(double) 1.5 + (double) 3 / (double) 2.0 =

(double) 1.5 + (double) 1.5 = (double) 3.0

Example 3

int result = (int) (3.0 / 2.0); // result = 1

The data type determination and calculation are performed as follows:

(int) result =

(int) ((double) 3.0 / (double) 2.0) =

(int) ((double) 1.5) =

(int) 1

27

Operators

In this chapter we will review operators that can be applied to primitive data

types. These operators can be divided into the four main categories:

arithmetic, bitwise, relational, and boolean. In addition, the assignment (=)

and the question mark (?) operators will also be discussed here.

The Assignment Operator

The assignment operator “=” assigns value to a variable. We’ve already used

it many times in previous examples. The format of the assignment operator

is this:

 variable = expression;

It also can be used to assign a value to several variables in a single statement,

like this:

 var1 = var1 = … = varN = expression;

Examples:

int x, y; // Declare the variables x and y of type integer

x = 1; // Assign the value 1 to variable x

x = y = 2; // Assign the value 2 to variables x and y

28

Arithmetic Operators

Arithmetic operators are used in calculations. Java supports the following five

basic algebraic operators: addition (+), subtraction (-), multiplication (*),

division (/), and modulus (%). Each of those can be combined with the

assignment operator (=) to form a so-called shorthand operator in this form:

arithmetic_operator=

Examples:

double x, y;

x = 2.5;

y = 10;

x += y; // x = 12.5 The result is same as in x = x + y;

x %= y; // x = 2.5 The result is same as in x = x % y;

 // note: the modulus operation (%) returns the

 // remainder of the division 12.5 / 10

Java also provides two additional arithmetic operators: increment (++) and

decrement (--) that respectively add 1 to a value or subtract 1 from a value.

These operators can be placed either before or after a variable:

int x = 1; // Declare x and set its value to 1

x++; // Add 1 to x (x=2)

++x; // Add 1 to x (x=3)

x--; // Subtract 1 from x (x=2)

--x; // Subtract 1 from x (x=1)

In the above examples the placement of the increment and decrement

operators is irrelevant. However, in assignment expressions, their location is

important. When the operator is placed after the variable, the original value

of the variable is used in the calculation of the result; after that the

increment/decrement operator is applied to the variable. When placed in

front of a variable, the increment/decrement operator is first applied to that

variable and the new value is used in the calculation.

Examples:

int x, y;

x = 1;

y = x++; // x=2, y=1 (original value of x before the increment)

y = ++x; // x=3, y=3 (new value of x after the increment)

29

Bitwise Operators

The Java language supports a set of so-called bitwise operators that can

manipulate integer types (char, byte, short, int, long) on the bit level. They

can be divided into two groups: bitwise logical operators and bitwise shift

operators. The following table lists all the bitwise operators:

Operator Performed Function Type of operator

~ Bitwise unary NOT (complement)
Bitwise Logical & Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR (XOR)

<< Shift left, filling with zeroes
Bitwise Shift >> Shift right, propagating the sign bit

>>> Shift right, filling with zeroes

As with the arithmetic operators, any bitwise operator except the NOT (~) can

be appended with the assignment operator “=” to form a shorthand:

x <<= 1; // This is equivalent to x = x << 1;

x &= y; // This is equivalent to x = x & y;

The bitwise operators &, |, ̂ , and ~ apply the logical operators AND, OR, XOR,

and NOT to corresponding bits of each operand. The table below shows the

results of logical operators for all possible two bit combinations:

Logical operators: AND OR XOR NOT

Operand A Operand B A & B A | B A ^ B ~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

The bitwise shift operators shift the contents of a signed numeric value to the

left or to the right by number of bits specified in the expression. The “>>” and

“<<” operators preserve the sign (leftmost bit) of the number, and the “>>>”

operator fills the leftmost positions with zeroes.

Examples:

 byte b;

30

 b = (byte) 0b11111110; // -2 in decimal

 b = (byte) ~b; // b = 00000001 (+1 in decimal)

 b = (byte) (b << 1); // b = 00000010 (+2 in decimal)

 b <<= 1; // b = 00000100 (+4 in decimal)

 b = (byte) (b | 0b00000001); // b = 00000101 (+5 in decimal)

 b |= (byte) 0b00000010; // b = 00000111 (+7 in decimal)

Relational Operators

The relational operators are used for comparing values of two operands and

produce a Boolean result of either true or false.

The following table lists all the available relational operators:

Operator Performed Comparison

== Operands are equal

!= Operands are not equal

> First operand is greater than the second operand

>= First operand is greater than or equal to the second operand

< First operand is less than the second operand

<= First operand is less than or equal to the second operand

Examples:

int x = 1;

int y = 2;

if (x == y) { System.out.println(“x is equal to y”); }

else { System.out.println(“x is not equal to y”); }

if (x != y) { System.out.println(“x is not equal to y”); }

else { System.out.println(“x is equal to y”); }

if (x > y) { System.out.println(“x is greater than to y”); }

else { System.out.println(“x is less or equal to y”); }

if (x >= y) { System.out.println(“x is greater or equal to y”); }

else { System.out.println(“x is less than y”); }

if (x < y) { System.out.println(“x is less than y”); }

else { System.out.println(“x is greater or equal to y”); }

if (x <= y) { System.out.println(“x is less or equal to y”); }

else { System.out.println(“x is greater than y”); }

31

Boolean Logical Operators

The Boolean logical operators are similar to the bitwise logical operators.

Both apply the logical AND, OR, XOR, and XOR to two operands and produce

Boolean results, but the bitwise logical operators act on bits, while the

Boolean logical operators act on Boolean values.

In addition to “regular” four logical operators (AND, OR, XOR, NOT), Java

provides two “improved” Boolean operators – short-circuit OR and short-

circuit AND. They will be explained later in this section.

The following table lists the Boolean logical operators:

Operator Performed Function Type of operator

! Logical unary NOT
Regular logical

operator
& Logical AND

| Logical OR

^ Logical exclusive OR (XOR)

|| Short circuit OR Short-Circuit logical
operator && Short circuit AND

Same as with the bitwise operators, the Boolean logical operators (with the

exception of the unary NOT operator and the short-circuit operators) can be

combined with the assignment operator to form the shorthand as follows:

a &= b; // This is equivalent to a = a & b;

a |= b; // This is equivalent to a = a | b;

a ^= b; // This is equivalent to a = a ^ b;

The Boolean logical operators (&), (|), (^), and (!) apply the logical operators

AND, OR, XOR, and NOT to two Boolean operands of an expression. The table

below shows the results of Boolean logical operators for all possible

combinations of two Boolean operands:

Logical operators: AND OR XOR NOT

Operand A Operand B A & B A | B A ^ B !A

True True True True False False

True False False True True False

False True False True True True

False False False False False True

32

The short-circuit operators (&&) and (||) do not evaluate the right-hand

operand of a logical expression when the value of the left-hand operand

determines the result regardless of the value of another operand. For

example, if A=true, the result of A | B is always true, no matter of what B

value is.

Examples:

 boolean a, b, c;

 a = true;

 b = true;

 a = !b; // a=false

 a &= b; // a=false (same as: a = a & b;)

 a |= b; // a=true (same as: a = a | b;)

 a ^= b; // a=false (same as: a = a ^ b;)

 a = a ^ b; // a=false

// short-circuit operators

 a = false;

 b = true;

 c = a || b; // c=true (a and b both will be evaluated)

 c = b || a; // c=true (a will not be evaluated)

 c = a && b; // c=false (b will not be evaluated)

33

Conditional Operator

Java provides a special ternary (three-way) conditional operator “?...:”, that

allows for compact implementation of some IF-THEN-ELSE statements. The

format of the “?...:” operator is this:

 variable = logical_expression ? expression1 : expression2

The logical_expression is any expression that evaluates to a Boolean value. If

it evaluates to true, then expression1 is evaluated and assigned to variable;

otherwise, expression2 is evaluated and assigned to variable. This can be

shown in pseudo-code as follows:

 IF logical_expression = true

 THEN variable = value of expression1

 ELSE variable = value of expression2

Example 1:

 int x = -1;

 int y = -1;

 y = x > 0 ? x : -x; // x = -1; y = +1

Example 2:

 int x = -1;

 int y = -1;

 y = x > 0 ? x : -(x = x + y); // x = -2; y = +2

In the second example, the x = x + y expression is executed first resulting in

x=-2. Then, expression -(-2) evaluates to +2 and this value is assigned to y.

y = -x will be executed

y = - (x = x + y) will be executed

34

Program Flow Control

Most computer languages, including Java, support the following fundamental

program flow constructs:

- Sequential Statement

- Block of Statements

- Two-Choice (IF structure)

- Multiple-Choice (CASE structure)

- Iteration

- Jump (GOTO statement)

Java’s implementation of these constructs is presented in this paragraph.

The Sequential Statement

The Sequential Statement does not change the program flow.

The assignment statement like x = b; is an example of a sequential statement.

Java also has an empty statement, which is just a semicolon (;) without any

expression in front of it.

The Statement Block

The Statement Block is a group of statements and optional declarations

enclosed within the curly brackets:

{declarations and statements}

The program flow outside of the Statement Block is not affected:

Statement

{ statement; statement; … }

35

The “if” Statement

The “if” statement implements the Two-Choice construct:

The format of the if statement is as follows:

 if (boolean expression)

 { statements, executed when condition is true }

 else

 { statements, executed when condition is false }

Examples:

 int x;

 x = 0;

 if (x < 0)

 x++;

 else

 ;

 System.out.println("x=" + x); // prints “x=0”

 if (x == 0)

 { x++; }

 else

 { x--; }

 System.out.println("x=" + x); // prints “x=1”

false true ?

statements statements

continue

condition

36

The “switch” Statement

The switch statement implements the Multiple Choice (CASE) construct:

Here is the format of the switch statement:

switch (integer or String type expression)
 {

 case value1: statement; . . . statement;
 break;

 . . .

 case valueN: statement; . . . statement;
 break;

 default: statement; . . . statement;

 }

The expression must be evaluated to one of the following numeric types –

char, byte, short, int, or to the type String. The result of the expression is

compared with the values specified in the case blocks – value1 through

valueN. When a match is found, all the statements following that case

statement are executed. If we want to execute statements for only one case

value, we need to use the break statement as shown above. The break

statement “jumps” out of the switch construct to the next following

statement. The default statement group, which is optional, is executed when

no value matches found.

Example:

 int x, y, z;

 x = y = z = 1 ;

 switch (x += y) { // evaluates to 1 + 1 = 2

 case 1: z = 0; break;

 case 2: z = 1; break;

 default: z = 999;

 }

 System.out.println("z=" + z); // prints: “z=1”

execute if ValueN execute if Value1

continue

expression

 ...

.

37

Iteration statements

Java supports three iteration statements – while, do…while, and for. All of

them implement the iteration construct that executes a block of code until

some conditions are met.

The “while” Statement

The while statement executes a block of code (body of the loop) while the

specified condition is true:

An important point here is that the condition is evaluated first, and then the

body is executed. If the condition is false initially, the body of the loop will not

be executed at all. The format of the while statement is this:

 while (condition) { body }

Example:

 int n;

 n = 2;

 while (n > 0)

 {

 System.out.print(" n=" + n); // prints: “n=2 n=1”

 n--;

 }

If the initial value of n was 0, the above code would not produce any outputs,

i.e. the body of the loop would not execute.

true

false

? statements

while

true

false

condition { body }

38

The “do…while” Statement

The do…while statement is similar to the above while statement with one

exception – it first executes the body of the loop, then evaluates the specified

condition:

The format of the do…while statement is this:

 do { body } while (condition) ;

Example:

 int n;

 n = 2;

 do

 {

 System.out.print(" n=" + n); // print: “n=2 n=1”

 n--;

 }

 while (n > 0);

The result, as we see, is exactly as in the previous example with the while

statement. However, if the initial value of n was 0, the body of the loop would

execute once and the above code would produce this output:

n=0

while

do

true

false

condition

{ body }

39

The “for” Statement

The for statement is used for implementing the so-called “controlled” loops.

Controlled loops are basically while loops, but with explicitly specified code

that initializes and iterates the value of the variable(s) used in the loop

controlling condition:

Let’s look at the previous example of the while statement:

 int n;

 n = 2;

 while (n > 0)

 {

 System.out.println("n=" + n);

 n--;

 }

Same logic can be coded with the for statement as follows:

 int n;

 for (n = 2; n > 0; n--)

 {

 System.out.println("n=" + n);

 }

This is a “classical” form of the for statement, and its format is:

 for (initialization; condition; iteration) { body }

Another form of the for statement is dealing with collections (arrays, for

example) and is called the “for-each” loop. We will present it in a few pages.

The n in the above example is called a loop control variable. There can be

more than one loop control variables, as in this example:

true

false

condition { body }

initialization

iteration

Initialization

Condition

Iteration

Initialization Condition Iteration

40

 int x, y, z;

 // Find when the sum of x, y, and z drops to zero

 for (x=3, y=5, z=7; x+y+z > 0; x--, y--, z--)

 {;} // Empty block; could be specified without curly brackets

 System.out.println("x/y/z= " + x + “/” + y + “/” + z);

The output of this code will be:

 x/y/z= -2/0/2

Note that the initialization (x=3, y=5, z=7) and the iteration (x--, y--, z--)

statements are comma separated.

Internal Loop Control Variables

Another important note about the for statement must be made. When the

loop control variable is defined within the for statement, it is “not visible”

outside of the for statement:

 for (int n = 2; n > 0; n--)

 {

 System.out.println("n=" + n); // the value of n is known

 }

 // The n variable is not “visible” beyond the for statement

 System.out.println("final n=" + n); // Error: the n is unknown

The “for” Statement without Loop Control Variables

It’s worth mentioning that the for statement could be coded without the

initialization or the iteration expressions, or both:

 int n, max;

 n = 0;

 max = 100;

 boolean reachedMax = true;

 for (; !reachedMax;) // while NOT reachedMax …

 {

 // double the value of n until it exceeds the max

 n += n;

 if (n > max) {reachedMax = true;}

 }

 System.out.println("n=" + n); // prints: n=128

41

The “for-each” Statement

Consider an example when we need to calculate the average value for a set

of numbers, stored in an array. Here is how we can accomplish that with the

“classical” for statement:

 int nArray[] = {1, 2, 3, 4, 5}; // array of five numeric values

 double avg = 0;

 // loop through nArray elements (first element is numbered 0)

 // and calculate the sum of all elements

 for (int i = 0; i < nArray.length; i++)

 { avg += nArray [i]; }

 // divide the sum by the number of elements

 avg /= nArray.length;

 System.out.println("avg=" + avg); // prints: avg=3.0

The same result can be accomplished with the “for-each” version of the for

statement, which has the following format:

 for (type iterativeVariable: collection) { body }

The above example would look like this:

 int nArray[] = {1, 2, 3, 4, 5}; // array of five numeric values

 double avg = 0;

 // The val will be assigned the value of each array element,

 // one by one, in sequential order.

 for (int val: nArray)

 { avg += val; }

 avg /= nArray.length;

 System.out.println("avg=" + avg); // prints: avg=3.0

Please note, that the iteration variable val must be of the same or compatible

data type as the elements of the collection (array). The compatible data types

are those that the original data type can be implicitly promoted to. In this

example, the original data type is int, which can be promoted to long, float,

or double.

42

The “break” Statement

Java provide two statements – break and continue, that can break the

“natural” execution flow of a loop or any block of statements. The break

statement causes the termination of a loop or any named block of code

before it reaches its end. The continue statement immediately starts the next

iteration of a loop.

Let’s start with the break statement. We have already seen it in the switch

construct where it was used in the case expressions to jump out of the switch

statement.

Breaking Out from Labeled Blocks

The break statement has the following format:

 break [label];

The label parameter is optional and is used to jump out of any named

(labeled) block of code. That block of code does not have to be a loop or a

switch statement. Consider this example:

int var;

var = 2;

block1:

 {

 if (var != 1) break block1;

 System.out.println("Block 1 executed");

 }

block2:

 {

 if (var != 2) break block2;

 System.out.println("Block 2 executed”);

 }

The output of this code will be “Block 2 executed”. Since the variable var is

not equal to 1, break block1 will jump out of block1 to the next statement.

Note that this technique will also work when the named blocks are nested

within each other. The break can jump from an inner block out of any outer

block:

43

int var = 2;

block1:

{

 block2:

 {

 block3:

 {

 if (var == 1) break block1;

 if (var == 2) break block2;

 if (var == 3) break block3;

 System.out.println("Last statement of block3");

 }

 System.out.println("Last statement of block2");

 }

 System.out.println("Last statement of block1");

}

The output of this code will be “Last statement of block1”. The (var==2)

condition will be true, and break block2 will jump out of blocks block3 and

block2 to the next statement of block1.

44

Breaking Out from Loops

When the break statement is used without its label parameter, it interrupts

execution of the loop containing that break statement. In case of nested

loops, labels can be used to identify each loop, and the label parameter will

tell which loop to terminate.

Examples:

int i;

// The for loop

for (i=9; i>0; i--)

{

 System.out.println("i=" + i);

 if (i==7) break;

}

// The while loop

i = 9;

while (i>0)

{

 System.out.println("i=" + i);

 if (i==7) break;

 i--;

}

// The do...while loop

i = 9;

do

{

 System.out.println("i=" + i);

 if (i==7) break;

 i--;

} while (i>0);

All three loops iterate the variable i from 9 down to 0, but all will stop when

i reaches 7, producing same output:

i=9

i=8

i=7

Here is an example of breaking out from nested loops:

int x, y = 0;

loopA: for (x=9; x>0; x--) {

 loopB: for (y=9; y>0; y--) {

 if (x==7 & y==7) break loopA;

}

System.out.println("x/y=" + x + “/” + y); // prints: x/y=7/7

45

The “continue” Statement

The continue statement can be used only within the body of a loop to stop

the current iteration and start the next iteration. In case of labeled nested

loops, the continue statement can specify which loop to resume.

The format of the continue statement is:

 continue [label]

The label parameter specifies the name (label) assigned to a loop and is

optional.

The continue statement works similar to the break statement, but instead of

terminating the loop, it forces the next iteration of the specified loop.

Example:

// simple for loop

int i;

for (i=4; i>1; i--) {

 if (i==3) continue; // go to next iteration when i = 3

 System.out.println("i=" + i); // will print i=4 and i=2

}

// nested loops

int x,y = 0;

loopA: for (x=0; x<=1; x++) {

 loopB: for (y=0; y<=1; y++) {

 if (x == y) continue loopA;

 System.out.println(x + "/" + y); // will print only 1/0

 }

}

46

Arrays

An array is a multi-dimensional collection of data elements of the same type

and referenced by a common name and a numeric index, e.g. - myArray[3].

Java provides a special syntax for handling arrays.

Declaring Arrays

There are two equivalent formats of the array declaration:

 type arrayName [];

 type [] arrayName;

For example, int myArray []; declares the myArray variable as the name of a

one-dimensional array of integer data elements. While each data element of

the array is of type int, the myArray variable is said to be of type int[].

Note: No physical array is actually created at the time of declaration.

Creating Arrays

After the array is declared, it can be created in one of two ways. The first way

is to use an array initializer when the array is declared:

int myArray [] = { 1, 2, 3, 4, 5 }; // the array of five integers

Another way of creating arrays is by using the new statement:

int myArray []; // declares myArray as an array variable

myArray = new int[5]; // creates the array {0, 0, 0, 0, 0}

myArray [0] = 1; // assigns 1 to the first element of the array

myArray [2] = 3; // assigns 3 to the third element of the array

Note, that the new statement creates an array and assigns the default values

to all of its elements. The default value depends on the array elements’ type;

for numbers - 0, for Boolean - false, and for classes - null.

47

Multi-Dimensional Arrays

The easiest way to explain how the multi-dimensional arrays are created is by

reviewing an example. Let’s say we want to create the following two-

dimensional array:

Using an array initializer, the above array can be created with this statement:

 int [][] N = { {1, 2}, {10, 11, 12} };

The array will consist of five elements and the values to the array elements

will be assigned as follows:

 N [0] [0] = 1;

 N [0] [1] = 2;

 N [0] [2] //  element does not exist

 N [1] [0] = 10;

 N [1] [1] = 11;

 N [1] [2] = 10;

We can also create this multi-dimensional array using the new statement:

 int [][] N;

 N = new int [2] [3]; // the 2x3 array with 6 elements created

However, the result of the above code is a 2 by 3 table with 6 elements. To

get rid of the N[0][2] element, we need to rewrite the code:

 int [][] N;

 N = new int [2] []; // two columns with undefined number of rows

 N [0] = new int [2]; // first row will contain 2 columns

 N [1] = new int [3]; // second row will contain 3 columns

2

10

1

11 12 Row 2

Row 1

Column 1 Column 2 Column 3

48

To avoid confusion with how arrays (or tables) are implemented in other

languages, you should envision Java arrays as hierarchical structures of

objects. The N array we just reviewed can be viewed as follows:

As objects, N, N[0], and N[1], have the length property, which is very useful

when we want to iterate through the array:

 // This code prints all elements of the two-dimensional array N

 for (int x=0; x<N.length; x++)

 {

 for (int y = 0; y < N[x].length; y++)

 {

 System.out.println(N[x][y]);

 }

 }

N

N [0] N [1]

N [0][0] N [0][1] N [1][0] N [1][1] N [1][2]

Object containing

2 elements
Object containing

3 elements

Integer

Object containing

2 elements

49

Methods

A method is a block of code that can be referenced and called for execution

by its name. It is constructed as follows:

accessAttributes returnType methodName (parameters) { body }

Example:

public int myMethod (int x, int y) {

 return x + y ;

}

This method accepts two integer numbers and returns its sum to the calling

program (i.e. to another method).

The access attributes are optional. They will be discussed in detail in a

separate chapter.

The return type can be of any primitive type, an array, a class, or void, which

indicates that no data is returned by the method.

The method name can be any name of your choice.

The parameters are optional.

The body is a set of variables declarations and executable statements.

The “main” Method

The main method is a special method that starts execution of all Java

applications. Java looks for this method in all classes presented for execution,

and expects it to be defined exactly like this:

public static void main (String args[]) { body }

50

Classes and Objects

Java is an Object-Oriented language, meaning that its primary purpose is to

manipulate objects. An Object is a logical entity consisting of data and code.

All objects are built from templates called classes, which makes them central

to the Java language. Any functionality you wish to implement in Java, must

be constructed as a class.

The following diagram illustrates the relationship between classes and

objects:

Class C

Class is a template for building objects No objects are needed to access

the class variables or methods

Data:

Code:

Object A of class C

Object B of class C

An instance of a

class is an object

Instance variables

Instance methods

Class methods

Class variables Instance variables

and methods are

accessible only via

objects

Data: Instance variables

Code: Instance methods

51

Declaring Classes

Classes are declared using the class statement:

class className
 }

 type variable1;
 . . .

 type variable;

 type method1(parameters);
 . . .

 type methodN(parameters);
 }

Example:

// Class Temperature provides functionality to convert

// temperatures from Celsius to Fahrenheit and vice versa

class Temperature

{

 // Class variables and methods:

 static double t; // temperature value

 static double FtoC () // method for converting °F to °C

 {return (temp - 32) / 1.8;}

 static double CtoF () // method for converting °C to °F

 {return temp * 1.8 + 32;}

 // Instance variables and methods:

 double temp; // temperature value

 double toCelsius () // method for converting °F to °C

 {return (temp - 32) / 1.8;}

 double toFahrenheit () // method for converting °C to °F

 {return temp * 1.8 + 32;}

}

Class Variables and Methods

The code in previous example declares a new class Temperature with two

sets of variables and methods. The main difference between those sets is in

the usage of the static scope modifier. All variables and methods declared as

static are called class variables and class methods, and can be used without

creating any objects. Other variables and methods are called instance

variables and instance methods, and can be used only through object

instances.

52

The code below illustrates the usage of the class variable t and class methods

FtoC() and CtoF() of the class Temperature declared above:

 double temp;

 // Class variables and methods can be referenced via class name

 Temperature.t = 77.0;

 temp = Temperature.FtoC();

 System.out.println(Temperature.t + "F=" + temp +"C");

 // Class variables and methods can be referenced

 // by their names directly (if the names are unique in the program)

 t = 25.0;

 temp = CtoF();

 System.out.println(t + "C=" + temp +"F");

This code will print:

77.0F=25.0C

25.0C=77.0F

Initializing Class Variables

During program execution, when a class is first used, i.e. when it is loaded

into the Java Virtual Machine (JVM), its class variables are assigned default

values. For numeric variables, the default value is zero. If there is a need to

initialize a class variable to a non-default value, it can be done in the

declaration statement itself, or in a statement block declared as static.

The example below declares the Temperature class with two class variables -

tF and tC. The tF gets its initial value during declaration, and the tC is

initialized in the static statement block. Note that the declaration of the tC

must be made outside of the static statement block, otherwise its scope will

be restricted to that block only.

Example:

// When the Temperature class is loaded into JVM

// the class variable tF will be assigned the value 77.0

// and the tC=FtoC(); code will run to calculate the tC value.

class Temperature {

 static double tF = 77.0; // class variable tF = 77.0

 static double tC; // class variable tC = 0.0

 static { tC = FtoC(); } // static statement block will convert

 // tF to °C and put it into tC

 // method FtoC converts °F to °C

 static double FtoC () {return (tF - 32) / 1.8;}

}

53

Everything that was said so far about the class variables and methods can be

summed up in three rules:

Declaration Rule:

Class variables, methods, and statement blocks must be declared using
the static modifier

Accessibility Rule:

Class variables and methods can be referenced by their names directly if
the name is unique, or via the class name in all cases

Execution Rule:

All static declarations and statement blocks {…} of a class will be processed
(i.e. executed) one time only, when the class is first used in the program

54

Instance Variables and Methods

The variables, methods, and statement blocks in a class declaration, that do

not have the static modifier, are called instance variables, instance methods,

and instance statement blocks. Their usage is subject to the following rules:

Declaration Rule:

Instance variables, methods, and statement blocks must be declared
without the static modifier

Accessibility Rule:

Instance variables and methods can be used only after an object (instance)
of the class is created, and must be referenced via the object name

Execution Rule:

All instance declarations and statement blocks {…} of a class are processed
(i.e. executed) each time an object (i.e. instance) of the class is created.

The following example shows how objects could track their creation sequen-

tial number.

Note: The new statement (discussed in the next section) creates an object

of specified class.

class myClass

{

 static int totalCount; // class variable

 int myNumber; // instance variable

 { myNumber = ++ totalCount; } // instance statement block

 // Main program

 public static void main (String args[])

 {

 myClass obj1 = new myClass(); // creates the object obj1

 myClass obj2 = new myClass(); // creates the object obj2

 System.out.println(obj1.myNumber); // prints 1

 System.out.println(obj2.myNumber); // prints 2

 }

}

55

The class variable totalCount will be initialized to zero when the class is first

referenced in the main program. The instance statement block will run when

object obj1 and obj2 are created, incrementing the totalCount by 1 and

assigning its new value to the instance variable myNumber. Note that objects

obj1 and obj2 will have their own copies of the myNumber variable.

The previous example contains one thing that was not covered yet - the new

statement, which creates objects. Let’s take a closer look at it and the whole

process of creating new objects.

56

Working with Objects

Objects are the core of Java language, making it is very important to have a

good understanding of how to create objects and how to use their contents.

Creating Objects

The process of creating a new object is called instantiation, and is performed

using the new statement. The format of the new statement is this

 className objectReferenceVariable = new className(parameters);

Example:

myClass object1 = new myClass();

This is what happens during execution of the above statement:

1) “myClass object1” declares the variable object1 of type myClass.

This variable can be used to reference any object of class myClass,

that’s why such variables are also called object references.

2) The new operator creates a new object; all instance declarations

of variables, statement blocks, and methods are processed.

3) The myClass() method is invoked to optionally initialize the

instance variables of the newly created object.

4) The reference between the variable object1 and the new object is

established.

57

Constructors

The myClass() method mentioned above is called a constructor, which is a

method with the same name as the class name and without the return type

specified. It is invoked by the JVM when an object of the class is being created.

The purpose of a constructor is to initialize the instant variables of the class.

If you do not declare any constructors, the JVM will create an empty one:

className() { }, which will do nothing. However, once at least one

constructor is declared by the programmer, the default constructor is gone

and cannot be used. Please remember that a constructor is invoked right after

the instance declarations and statement blocks are processed. Below is an

example of a class that keeps track of its objects:

class testClass

{

 static int count; // Total objects counter; defaults to zero

 int myNumber; // Object’s sequential number

 {myNumber = ++count;} // instance block increments the count

 // and assigns it to object’s myNumber

 testClass() {} // Constructor without parameters

 testClass(int n) { // Second constructor; assigns specified

 myNumber = n; // sequence number to new object

 }

 // ------Execution--------

 public static void main (String args[])

 {

 testClass obj1 = new testClass();

 testClass obj2 = new testClass();

 testClass obj3 = new testClass(10);

 System.out.println(obj1.myNumber); // prints 1

 System.out.println(obj2.myNumber); // prints 2

 System.out.println(obj3.myNumber); // prints 10

 }

}

Note, that we defined two different constructors with the same name. This

is called “method overloading”.

Instance block executes every
time an object is created

Create three object of class
testClass

58

Method Overloading

Method overloading is a mechanism used by Java to distinguish between

methods having the same names but different parameter lists. Each method

in Java is distinguished by its signature – the name of the method along with

the list of parameter types. The signature of the testClass() method could be

expressed as “testClass”, and the signature of the testClass(int n) would be

“testClass,int”.

The “this” Keyword

In previous examples, instance variables were referenced in constructors

directly by their names. But what will happen when a variable with the same

name as the instance variable is declared in the main method? This situation

is perfectly legal because all variables declared within the main method are

not “visible” outside of that method.

Another confusing situation would be when the name of an instance variable

is also used in the constructor’s parameter list. This problem can be solved

with the use of the keyword this, which represents the current object. See

this example:

class testClass {

 int x;

 testClass (int x)

 {

 x = x;

 this.x = x;

 }

 public static void main (String args[]) {

 int x;

 testClass obj = new testClass(100);

 x = obj.x;

 }

}

The this keyword can be used not only to refer instance variables, but also to

invoke one constructor from another, or to pass the current object as an

argument between methods.

Important note: The this keyword can be used only in constructors.

Instance variable x is visible within an object

Parameter x is visible inside constructor only

Local variable x is visible
inside the main method
only

Instance variable x is
assigned to local variable x

Parameter x is assigned to itself; no effect

Parameter x is assigned to the instance variable x

59

Another example of using the this keyword:

class Position {

 int x, y, z;

 Position (int x, int y, int z) {

 this.x = x;

 this.y = y;

 this.z = z;

 }

 Position (int x) {

 this(x, 0, 0);

 showPosition(this);

 }

 void showPosition (Position p) {

 System.out.println(“My position: ”+p.x+”,”+p.y+“,”+p.z);

 }

 public static void main (String args[]) {

 Position obj = new Position(5);

 }

}

The above code prints: My position: 5,0,0

Calls another constructor
(must be the first statement)

Passes current object to the
showPosition method

60

The “super” Keyword

One of the Object-Oriented Design principles is inheritance. Inheritance

represents the parent-child relationship between classes, when a child class

(subclass) inherits all the features of the parent class (superclass). Java uses

the “extends” keyword in class declaration to establish inheritance:

class superClass { body }
class subClass extends superclass { body }

Example of creating an object of a subclass:

class superClass {

 int x;

 superClass (int x) {

 this.x = x;

 }

 // Execution logic

 public static void main (String args[]) {

 subClass o = new subClass(1);
 System.out.println(o.x); // prints: 2
 System.out.println(((superClass) o).x); // prints: 1

 }

}

class subClass extends superClass {

 int x;

 subClass (int x) {

 super(x);

 this.x = super.x + 1;

 }
}

When an object of a subclass is created, a superclass object is created as well,

implicitly or explicitly. It means that any subclass object consists of the

subclass instance and its parent class (superclass) instance.

In the above example, the user-supplied subclass constructor subClass()

creates the superclass instance by calling the superclass constructor

superClass() via the super(x) statement. The keyword super, when used in

the subclass constructor, represents the current object of the parent class. In

the example, it is also used to access the instance variable x of the superclass.

3. Initializes the instance
variable x of the superClass
(x=1)

1. Creates an instance
of the subClass

2. Creates an instance of the
superclass. Must be the first
statement, otherwise Java will
call super()

4. Initializes the instance
variable x of the subclass
(x=1+1=2)

5. Object casting is needed to
access the superclass instance
variable x

61

Object Casting

Note, that the super keyword can be used only in constructors. So how do we

access the instance variables or instance methods of a superclass from a

subclass object? In the above example the variable x is defined in both the

subclass and the superclass. The subclass’ x can be referenced via the

subclass object name as follows: subclassObject.x, but the superclass’ x is

hidden. The solution to this problem is object casting. We can cast a subclass

object to any of its superclass objects. Consider an example with two classes

Parent and Child, both declaring an instant variable x. Class Parent is

superclass of class Child. An instance (object) of class Child would contain two

instances of variable x. The code below shows how to access all of the

different instance variables by utilizing the object casting mechanism:

class Parent { int x; }

class Child extends Parent { int x; }

class Test {

 public static void main (String args[]) {

 int y;

 // A Child object referenced by a variable of type Child:

 Child c = new Child();

 y = c.x; // reference to the x of class Child

 y = ((Parent) c).x; // reference to the x of class Parent

 // A Child object referenced by a variable of type Parent:

 Parent p = new Child();

 y = p.x; // reference to the x of class Parent

 y = ((Child) p).x; // reference to the x of class Child

 }

}

62

This table summarizes the accessibility of instance variables of super and sub-

classes:

Object
reference

class Parent class Child extends Parent
Instance variables Instance variables

unique same as in Child unique same as in Parent
Parent p1 = new Parent()

p1. can access can access - -

Parent p2 = new Child()
p2. can access can access can access -

((Child) p2). can access - can access can access

Child c = new Child()
c. can access - can access can access

((Parent) c). can access can access - -
super. can access can access - -

63

Method Overriding

Method overriding is a special mechanism allowing for declaring instance

methods with the same signatures (name and parameter types) in a

superclass and any of its subclasses.

This table presents different ways of accessing instance methods of super and

sub-classes. Please note that object casting does not give you availability to

access overridden methods of a superclass from a subclass. Once a subclass

object is created, only the subclass’ instance per each overridden method is

accessible.

Object
reference

class Parent class Child extends Parent
Instance methods Instance methods

unique overridden unique overridden

Parent p1 = new Parent()
p1. can access can access - -

Parent p2 = new Child()

p2. can access - - can access
((Child) p2). can access - can access can access

Child c = new Child()

c. can access - can access can access
super. can access can access - -

((Parent) c). can access - - can access

64

Determining the Type of an Object

When working with objects, sometimes it might be not clear what class an

object belongs to. For example, if class A is extended by classes B and C, an

object reference of type A can reference objects of classes A, B, and C:

A obj;

obj = new A(); // obj is a reference to an object of class A

obj = new B(); // obj is a reference to an object of class B

obj = new C(); // obj is now references an object of class C

An object reference of type Object can refer any object, of any class:

Object obj;

obj = String(“text”);

obj = Integer(123);

obj = MyClass();

So, how can we determine the real type of an object referred by a variable?

The answer is – with the help of the instanceof operator.

The format of the instanceof operator is:

objectReference instanceof classType

Example:

Object obj;

obj = new String(“text”);

. . .

obj = new Date();

. . .

if (obj instanceof String)

 System.out.println(“Object of type String”);

if (obj instanceof Date)

 System.out.println(“Object of type Date”);

65

Summary
Here is the summary of what we have learned thus far about the objects:

Objects are instantiated (i.e. created) using the new statement, which has
the following format:
 className new constructor;

A constructor is a special method with the same name as the class name
that is invoked automatically by the JVM when an object of the class is
being created.

The format of the constructor is: className(parameters) {body}
The parameters and body are optional, the return type is omitted.

The constructor is invoked after all instance declarations are processed
and instance blocks (if present) are executed.

A class can have several constructors with different signatures (i.e. with
different sequences of argument types).

An empty constructor (className() {}) is automatically created by Java
when no constructors are declared explicitly.

The default constructor (className() {}) will not be created by the JVM if
at least one explicitly declared constructor is present.

A constructor can invoke another constructor of the same class by
executing the this(parameters); as the first statement of the constructor’s
body.

Instance variables can be referenced in a constructor via “this” keyword as
follows: this.variableName

The keyword “super” represents a superclass (parent) of a subclass (child)
and can be used in the constructor of a subclass to invoke the superclass
constructors - super(parameters);, to access the superclass instance
variables - super.variable;, and to call the superclass methods –
super.method();.

A superclass and its subclass can declare instant variables with the same
names. The object casting mechanism should be used if we want to access
non-unique instance variables of a superclass from a subclass:

66

((superClass) subclassObject).x
// points to variable x of superClass

A superclass and its subclasses can declare instant methods with same
signatures (names and parameter list). The method overriding mechanism
makes sure that proper method is instantiated when an object is created.

The instanceof operator checks if an object belongs to specified class.

67

Type Wrappers

The usage of primitive data types has its limitations. Many of the data

structures operate on objects. For example, you cannot construct a set of

integers (a set is a collection of objects with distinct values which will be

discussed later in the book). That’s why Java provides type wrappers – classes

that encapsulate a primitive type within an object. There is one wrapper for

each primitive type:

Double, Float, Long, Integer, Short, Byte, Character, and Boolean.

Each of the above classes offers a wide range of methods (most of them

static) allowing various manipulations over the underlying primitive type

including the conversions between different primitive types.

Example:

Integer N = Integer.valueOf(10); // N is an Integer object

int n = N.intValue();

double d = N.doubleValue();

String s = Integer.toBinaryString(n);

System.out.println(“n=”+ n + “ d=” + d + “ s=” + s);

The output of this program is “n=10 d=10.0 s=1010”.

68

Autoboxing

In JDK5, Java introduced the autoboxing/auto-unboxing feature. Autoboxing

automatically creates a type wrapper object and encapsulates a primitive

type into it when an object of that type is needed. Auto-unboxing is the

reverse process; it retrieves a primitive type from a type wrapper object when

it is needed.

Example:

class testWrapper {

 public static double test(Integer N) {return N;}

 public static void main (String args[]) {

 int n = 123;

 double d = test(n);

 System.out.println("d=" + d); // prints: d=123.0

 }

}

Integer object N will be auto-unboxed to
the primitive data type double

Variable n of type int will be
autoboxed into an Integer object

69

Strings

In Java, a sequence of characters is represented by the class String. The String

class is a regular class, and can be handled as such. However, due to its

extensive usage, Java added some convenient features that make handling of

strings more intuitive. In this chapter, we will review all the special features

of the String class.

String Literals, Creating Strings

The string literal is a sequence of characters enclosed within double quotes:

“First line of a string literal. \n Second line.”

String literals can be used to create String objects directly:

String s1 = new String ();

s1 = “text”;

String s2 = new String (“text”);

String s3 = “text”;

As you can see in this example, a String object can be created without using

the new operator – just by direct assignment of a string literal to a String

variable. This might look strange at first, but there is a simple explanation:

A stand-alone string literal in Java is an object of class String.

For each unique string literal Java creates one object that can be referenced

by different object variables. The new operator, on the other hand, always

creates a new object regardless of the literal value passed to the constructor:

 String s1 = new String(“text”);

 String s2 = new String(“text”);

 String s3 = “text”;

 String s4 = “text”;

Creates an empty String (null object)

Assigns value to the String object s1

Creates a String object and initializes it

Creates a String object and initializes it with a literal

 s1 String object “text”

 s2 String object “text”

 String object “text” s3
 s4

70

Since a stand-alone string literal represent a String object, you can work with

it as an object, without creating a reference. For example, you can invoke the

length() instance method of the String class to get the length of a literal, as

follows:

int n = “text”.length(); // n = 4

Another important fact about the String object:

Once created and initialized, a String object cannot me modified. Its value
cannot be appended, truncated, or replaced. If you need a modifiable
string – use the StringBuffer class (not covered in this book).

Comparing Strings

It is important to understand that there is a difference between comparing

two actual string values and comparing two references to String objects:

String s1 = “text”;

String s2 = “text”;

boolean b = (s1 == s2); // b=true

String s3 = new String (“text”);

String s4 = new String (“text”);

boolean b = (s3 == s4); // b=false

To compare the actual values of two strings (which in fact are encapsulated

within String objects), we need to use the instance method equals() of class

String:

String s1 = new String(“text”);

String s2 = new String(“text”);

boolean b = (s1.equals(s2)); // b = true

s1 and s2 are pointing to same
String object having value “text”

s3 and s4 are pointing to
different String objects having
same value “text”

71

String Concatenation Operator

The string concatenation operator (+) combines two operands into one

string. The primitive data type operands (boolean, char, int, double, etc.) are

converted into their string representation, and object operands are

converted into a string by calling the instance method toString(). This type

conversion is performed on an operational basis, from left to right, as shown

in the following examples.

Example 1:

String s = “I have “ + 5 + 4 + “ dollars”;

Example 2:

String s = “I have “ + 5 * 4 + “ dollars”;

I have 5

I have 54

I have 54 dollars

20

I have 20

I have 20 dollars

The multiplication operator (*)
has higher precedence than
concatenation operator (+) and
is processed first.

Concatenation operators (+) are
executed from left to right.

72

String Methods

In this paragraph we will present some commonly used methods of class

String.

Determining String Length

String s = “text”;

int lng = s.length(); // lng = 4

lng = “my string”.length(); // lng = 9

Comparing Strings

The compareTo() method compares two strings lexicographically. The

comparison is based on the Unicode value of each character in the strings and

is performed by comparing one character at a time, from left to right, until

unequal characters are found or until the end of one of the strings is reached.

The value returned by the compareTo() method is calculated as difference

between the numeric values of unequal characters (‘a’ - ‘b’ = -1). If one of the

strings reaches its end, the method returns the difference of the length of the

strings.

String s = “ab”;

int n;

n = s.compareTo(“ab”); // n = 0 (“ab” = “ab”)

n = s.compareTo(“aa”); // n = +1 (“ab” > “aa”)

n = s.compareTo(“bb”); // n = -1 (“ab” < “bb”)

n = s.compareTo(“abaa”); // n = -2 (“ab” < “abaa”)

Accessing String Characters

String s = “abcdef”;

char c = s.charAt(0); // c = ‘a’

char c = s.charAt(5); // c = ‘f’

Searching for a Character

String s = “abcbcd”;

int pos;

pos = s.indexOf(‘g’); // pos=-1 (character ‘g’ not found)

pos = s.indexOf(‘b’,2); // pos=+3 (first ‘b’ after position 2

 // is in position 3)

pos = s.lastIndexOf(‘c’); // pos=+4 (last symbol ‘b’ is in position 4)

73

Searching for a Substring

String s = “abcbcd”;

int pos;

pos = s.indexOf(‘abd’); // pos = -1 (sub-string ‘abd’ not found)

pos = s.indexOf(‘bc’); // pos = 1 (sub-string ‘bc’ is in position 1)

Extracting a Substring

String s = “abcdef”;

String s1 = s.substring(1,3); // s1 = “bc”

String s2 = s.substring(1); // s2 = “bcdef”

Creating a new String from existing String

String s = “ abc ”;

String s1 = s.trim(); // s1 = “abc”

String s2 = s.replace(‘ ‘,’+’); // s2 = “+abc+”

Creating a Character Array from a String

String s = “abcd”;

char[] c = s.toCharArray();

s.getChars(0, 2, c, 2);

Creating an Array of Bytes from a String

This method converts each character of a string from Unicode (16-bit) into

the local 8-bit encoding (usually ASCII) and creates an array of bytes.

String s = “abcd”;

byte[] b = s.tgetBytes();

c[0]=’a’
c[1]=’b’
c[2]=’c’
c[3]=’d’

c[0]=’a’
c[1]=’b’
c[2]=’a’
c[3]=’b’

Copy characters in
positions 0, 1 of string
s into array c starting
from position 2.

b[0]=97 (‘a’ in ASCII)
b[1]=98 (‘b’ in ASCII)
b[2]=99 (‘c’ in ASCII)
b[3]=100 (‘d’ in ASCII)

74

Creating a String from an Array of Characters

The static copyValueOf method of class String create a String object from an

array of characters. It has the following two formats:

static copyValueOf(char[] charArray);

static copyValueOf(char[] charArray, int startPos, int numberOfEle-
ments);

Example:

char[] c = {‘a’, ‘b’, ‘c’, ‘d’};

String s1 = String.copyValueOf(c); // s1 = “abcd”;

String s2 = String.copyValueOf(c,1,2); // s2 = “bc”;

75

Packages

A package is a container for classes. All Java classes are spread across more

than 200 packages. The fundamental classes reside in the java.lang package.

Examples of other packages are java.io, java.util, java.net, java.math, etc.

Packages are arranged in a tree-like structure:

The java.lang package is always available to the Java compiler. When your

program needs to use a class residing in a different package, that class or

the whole package containing that class must be imported into the pro-

gram:

import java.math.*;

import java.io.FileReader;

 class myClass { . . . }

User-defined classes are also placed into packages. For example, the myClass

from the above example will be placed in a default, “no-name” package. To

place it into a particular package, the first statement of the program (not

counting comment lines) must be the package statement:

package mypack.io;

import java.io.FileReader;

class myClass { . . . }

Note that classes, after compiling, retain information about the package

they belong to. So, if you copy a class from one package into another, the

java

lang io util

zip jar

java.lang java.io

java.util.jar java.util.zip

java.util

All classes from package
java.math will be available

Class FileReader from the
package java.io will be available

The myClass class will be placed into the
mypack.io package.
If mypack.io does not exist it will be created.

76

new copy will not work. However, there is one exception. When a class is

compiled without the package statement, it can be placed in any named

package and be accessible by all classes in that package.

The implementation of the package concept varies depending on the

environment in which Java is installed (Linux, Mac, Windows, etc.) and

therefore it is not included in the scope of this book.

77

Modifiers

The following entities of the Java language – classes, interfaces, variables, and

methods – can be declared with so-called modifiers controlling their behavior

and/or accessibility. Here, myMethod is declared with two modifiers: public

and static.

public static void myMethod() { … };

Class Modifiers

There is a limited set of modifiers that can be applied to classes:

- public

- abstract

- final

The public modifier makes the class accessible from any package. If this

modifier is not specified, the class will be accessible from the package it was

declared.

The abstract modifier defines a class in which one or more methods are

declared as skeletons - with the return type and the list of input parameters,

but without the body. Abstract classes will further be explained in the

“Abstract Classes” section.

The final modifier prohibits the class from being extended by other classes.

Access Level Modifiers

Access level modifiers control the visibility of variables and methods of a

class from other classes in the same or different packages. There are four

access level modifiers (in order from less to more restrictive):

 public  protected  [no modifier]  private

78

Example:

public void myMethod() { … };

protected int n;

double x;

private String name;

The following table shows how access modifiers affect the visibility of

variables and methods of one class from its sub-classes and also from other

classes residing in the same or different packages.

Package One Package Two

class A subclass of A class B subclass of A class C

public visible visible visible visible

protected visible visible visible -

no modifier visible visible - -

private visible - - -

The “static” Modifier

The static modifier indicates that the variable or method can be accessed

before any object of the class is created. A good example is the main method

that starts execution of an application. It must be declared static because it

is called before any object exists.

The “final” Modifier

The final modifier can be applied to variables, methods, and classes to

“finalize” their declaration.

A final variable cannot be modified after it is assigned an initial value. That

effectively makes a final variable a constant:

final double pi = 3.1415926;

A final method cannot be overridden. If a class declares some method as

final, the sub-classes of that class cannot create a method with the same

signature as the final method.

A final class cannot have sub-classes, i.e. it cannot be inherited.

79

Generics

Generics is a feature of Java allowing the use of generic names when

specifying the class type of object parameters in the declarations of classes,

interfaces, methods, or constructors. For example, if two methods have same

functionality but one receives an integer parameter, and another receives a

double parameter, we can declare just one method and supply that method

with a “generic” type of the parameter, which will be substituted with the

proper type during compilation.

The best way to understand all the advantages and restrictions of generics is

by going through examples, which are illustrated below.

Generic Methods

Let’s say that we want to create a method that acts on an object without

knowing what its type is. One way of accomplishing that is by using the Object

class – the superclass of all objects. We could accept an Object instance and

then cast it to the desired type.

For example, method sumArea summarizes the total area occupied by

objects of type A and B by processing one object at a time. All we know about

objects A and B is that they are unrelated (i.e. belong to separate class

hierarchies) and both have the getArea method returning their area value.

The sumArea method can be implemented as follows:

class A { public double getArea() {return 10.0;}

class B { public double getArea() {return 20.0;}

class myClass

 double totalArea;

 public void sumArea(Object obj) {

 if (obj instanceof A) { totalArea += ((A) obj).getArea(); }

 if (obj instanceof B) { totalArea += ((B) obj).getArea(); }

 }

}

Now, can we use generics to get rid of instanceof and object casting? The

short answer is – Yes and No. At this point we come to a very important fact

about the generics:

Cast the obj to correct type

instanceof operator
determines the type of obj

80

Generics is a compiler feature, not a run-time feature. All class type
references are resolved at compile time.

For example, the sumArea method can be re-written in generic notation as

follows:

 public <T> void sumArea(T obj) {

 totalArea += obj.getArea();

 }

In the object-casting example, when the method sumArea receives an object

of class A, the object reference obj is treated as if it was created by the

statement Object obj = new A();. By explicitly casting obj to the original class

A we acquire access to all its variables and methods.

The generics mechanism works somewhat differently. At compile time, the

type-variable T must be resolved to a real class name. Since we did not

provide any hints to what it might be, the T will be substituted with Object –

the superclass for all classes – and that will be the only change made to the

source. Without casting, object reference obj declared as “Object obj = new

A()” will only have access to the instance variables and methods of class

Object and also to the methods of Object overridden by class A. This diagram

shows which properties of object A would be accessible in both cases:

As we see, without explicit casting, the “generics” code does not have access

to the class A instance variables and methods of object obj. This problem can

The T parameter is not a real class name,
but a generic name.
It must be placed before the return type.

 A obj = new A()

 class Object Parameter obj is treated
as being created like this:
Object obj = new A()

variable v1

method m1

T is substituted with Object.
Parameter obj is treated as
being created like this:
Object obj = new A()

((A) obj). obj.

 “Object-casting” approach “Generic” approach

 class A

variable v2

method m2

variable m3

method m3

variable v2

method m2

81

be solved by making a few changes to the class structure and also providing

more information to the generic method.

First, we can tell the generic method what class (or classes) can substitute the

type-variable T:

public <T extends AB> void sumArea(T obj) { … }

The <T extends class> is called a bounded type, which sets the upper bound

for classes that can be referenced by the type-variable T.

Second, the new class (AB) should be made a superclass of classes A and B

and should define all instance methods we want to use within the generic

method sumArea:

abstract class AB { public abstract double getArea(); }

class A extends AB { public double getArea() {return 10.0;}

class B extends AB { public double getArea() {return 20.0;}

Now our obj will be viewed as being declared with “AB obj = new AB()”, and

the getArea method of classes A and B will be reachable via the method

overriding mechanism. Simply put, the declaration of the generic method

was transformed from this:

 public <T> void sumArea(T obj) {

 totalArea += obj.getArea();

 }

to this:

 public void sumArea(AB obj) {

 totalArea += obj.getArea();

 }

Note that if we need access to the variables of classes A and B we can do it

only through methods declared in the superclass AB and overridden in A

and B.

Note: class AB is not required to be abstract

82

Generic Classes

First of all, it is very important to understand that a generic class is not much

different from any regular Java class. What makes it “generic” is a small

addition to the class declaration syntax. Here is an example of a generic class

declaration:

class G <T> { … }

The <T> notation is a class type parameter in which T is a type-variable, i.e.

parameter representing a class name. It indicates that an arbitrary (any) class

name can be used in the declarations of variables and methods of the class:

class myClass <T> {

 public T myValue;

 public void setValue(T obj) {

 myValue = obj;

 }

 public static void main (String args[]) {

 myClass<String> c = new myClass<String>();

 c.setValue(“test”);

 System.out.println(c.myValue); // print: “test”

 myClass<Integer> n = new myClass<Integer>();

 n.setValue(123);

 System.out.println(n.myValue); // print: “123”

 }

}

Note that we have to specify the class type parameter explicitly when

creating objects of generic classes. This information is used by Java for type

safety checking, making sure, for example, that an object reference of type

myClass<String> does not point to an object of type myClass<Integer>.

The class declaration shown in the previous example (class myClass <T>)

allows substitution of the type-variable T with any class name. In most cases,

it is not desirable. Usually, we want to restrict the range of classes for which

generic class objects can be built. We can achieve this by using another form

of generic class declaration:

class G <T extends classname> { ... }

The <…> notation identifies
class G as generic

83

The classname parameter sets the upper boundary for class names that are

allowed to be specified by the type-variable T and enforces that only the

classname class or any class extending the classname can be specified by the

T parameter. This is a part of the type safety mechanism provided by

generics.

The example below shows the type safety mechanism in action:

abstract class AB { public abstract String myName(); }

class A extends AB { public String myName() {return “A”;}

class B extends AB { public String myName() {return “B”;}

class G <T extends AB> {

 String name;

 G (T obj) { name = obj.myName(); } // class G constructor

 public static void main (String args[])

 {

 A a = new A();

 G g;

 g = new G (a);

 g = new G<AB> (a);

 G b;

 b = new G (new B());

 g = b;

 b = g;

 }

}

The type-variable T can specify
only class AB or its subclasses

Error! You have to specify explicitly
the object type you are passing to
the constructor of class G

Compiler will check if the reference
a is of type AB or its subclasses

Ensures that b can reference only
G objects created with the input
parameter of type B.

Compiler will check that the input
parameter new B() is of type B
(and it is), and that b can
reference a G object created with
the input parameter of this type.

“Unsafe conversion” error: b can only reference G objects
created with input parameter of type B, but g could point to the
G object created with input parameter of type AB, A, or B

OK. The g and b are
both of type G

84

Passing Generic Classes as Parameters

Objects of generic classes can be passed as parameters to methods, in the

same way as other Java objects:

class GenericClass <T> {…}

. . .

public void myMethod(GenericClass g) {…}

. . .

GenericClass<A> a = new GenericClass<A>();

GenericClass b = new GenericClass();

myMethod(a);

myMethod(b);

As you see, myMethod() can accept any object of type GenericClass

regardless of the type-variable T used in creating those objects. We can add

some type safety checking to the process by specifying restrictions for the

input parameter of myMethod(). This is accomplished with the help of the

wildcard parameter <?>. The example below demonstrates the usage of the

<?> parameter in method declaration:

abstract class AB { ... }

class A extends AB { ... }

class B extends AB { ... }

. . .

class G <T extends AB> {

. . .

public void myMethod(G<?> g) {…}

public void myMethod(G<? extends AB> g) {…}

public void myMethod(G<? super B> g) {…}

In this example <? extends AB> sets the upper boundary for passing object

references, and <? super B> sets the lower boundary.

Objects of generic class G can be of
types G, G<AB>, G<A>, or G

Object g can be of any type allowed
by the class G declaration

Object g can be of type G<AB> or its
sub-classes (i.e. G<AB>, G<A>, G)

Object g can be of type G or its
super-classes (i.e. G or G<AB>)

Valid calls to myMethod()

The a variable references an
object of type GenericClass<A>

The b variable references an
object of type GenericClass

85

Generic Interfaces

Generic interfaces are declared in a way similar to the declaration of generic

classes, for example:

interface GenericInterface <T> {

 public void myID (T id);

}

The type-variable(s) in the interface declaration are passed to the interface

from the class implementing that interface:

class myClass <T> implements myInterface <T> {…}

interface myInterface <T> { … }

This is why generic interfaces can only be implemented by generic classes.

It is possible to restrict the scope of type-variables in the class declaration, in

the interface declaration, or in both:

class myClass <T extends AB> implements myInterface <T> {…}

interface myInterface <T extends ABC> { … }

The Java compiler performs type safety checking by comparing the bounds

set for the type arguments in the class to the bounds set in the interface. The

class type arguments must be within bounds of the interface class arguments.

Note: Whether the type-variable T is used (or how it is used) in the bodies of

the class or interface, is irrelevant to the type safety checking process – the

type safety checking will be performed anyway.

86

Below are examples of valid as well as incorrect declarations.

class AB {}

class A extends AB {}

class B extends AB {}

interface myInterface <T extends AB> {…}

class myClass <T> implements myInterface <T> {…}

class myClass <T extends A> implements myInterface <T> {…}

class myClass <T extends String> implements myInterface <T> {…}

class myClass implements myInterface <T> {…}

class myClass <X> implements myInterface <T> {…}

Valid declaration

Error! Class myClass must be generic

Error! The generic type variables
in myClass and myInterface
must have same name

Valid; class A is subclass of AB

myInterface can be implemented
only by the class AB or its sub-classes

Error! Class String is not a subclass
of AB

87

Generic Constructors

It is important to remember that constructors are methods whose function is

to create instances (objects) of classes. As methods, they can be declared as

generic. The class itself can be either generic or non-generic.

We have already seen constructors of generic classes in previous examples.

Here is another example:

class GenericClass <T> {

 public T key;

 GenericClass(T k) {

 this.key = k;

 }

}

. . .

GenericClass<Integer> g = GenericClass<Integer>(123);

The above constructor is not generic. To be generic it should be able to accept

generic parameters different from those specified in the class declaration,

like this:

class GenericClass <T> {

 public T key;

 public Object value;

 <X> GenericClass(T k, X v) {

 this.key = k;

 this.value = v;

 }

}

. . .

GenericClass<String> g = GenericClass<String>(123,”test”);

The <X> in front of the constructor indicates that this constructor can accept

the type-variable X, which is not related to any type parameters in the class

declaration.

Very important note: all generic type-variables of a constructor (in this case

- X) are local to the constructor. Therefore, you should not use the names of

type variables declared by the class:

class GenericClass <T> {

 public T key;

 <T> GenericClass(T k) {

 this.key = k;

}}

This is a constructor of a generic class,
but it is not a generic constructor!

Creates object g of type GenericClass<String>
and sets key=123

This is a generic constructor.

Creates object g of type GenericClass<String>
and sets key=123 and value=”test”

Error! Type mismatch: the T declared in class
and T declared in constructor are different
type-variables.

This T is local to this constructor.

88

By default, type-variables can specify any class type or interface type. To set

boundaries to the allowed values of a type-variable, use the extends keyword

along with this format:

<T extends class> constructorName (…) {…}

The T type-variable is restricted to the type class or any of its sub-classes.

Example:

class GenericClass <T> {…}

<V extends ABC> GenericClass (T obj1, V obj2) {…}

The above type-variable V can be of type ABC or any of its sub-classes.

Generic constructors can also be used in non-generic classes.

Example:

class nonGeneric {

 String name;

 <T extends myInterface> nonGeneric(T o) {

 this.name = o.getName();

 }

 public static void main (String args[]) {

 nonGeneric g = new nonGeneric(new A());

 System.out.println(g.name); // prints: “Class A”

 }

}

interface myInterface { String getName(); }

class A implements myInterface {

 public String getName() {return “Class A”;}

}

Notice the usage of the interface name in the constructor declaration:

 <T extends myInterface>

This is valid, because when a class implements an interface, objects of that

class can be referenced by variables of the interface type.

Only classes implementing the
interface myInterface can be passed
to this constructor.

89

Lambda Expressions

A lambda expression is a special construct of the Java language used for

defining custom methods outside of any class. In reality, the lambda

expression automatically declares a “hidden” class, creates an instance of

that class, and attaches the specified method to it.

Let’s illustrate this process with an example. We will implement the same

functionality using the “traditional” approach and also using the lambda

expressions. The task is to create a method converting any text to uppercase.

Here is the “traditional” way:

class myClass {

 String transform(String s) { return s.toUpperCase();}

}

. . .

myClass c = new myClass();

System.out.println (c.transform(“text”)); // prints: “TEXT”

The same transform method declared using lambda expression:

interface myInterface {

 String transform (String s);

}

. . .

myInterface upper = (txt) -> {return txt.toUpperCase();};

System.out.println (upper.transform(“text”)); // prints: “TEXT”

It seems that the “lambda” approach does not save us much effort – instead

of declaring a class, we declare an interface, and instead of creating an object

of the class we use the lambda expression that defines the body of the

method and also creates an object of a “hidden” class. Even worse – the

lambda expression approach looks like an “un-object-oriented” way to

achieve the same thing that could be done the “object-oriented” way.

Becomes the body of
the transform method

“txt” substitutes the
input parameter

We need to create an interface that must
declare only one method.
This is called a “functional interface”

upper is an object of a “hidden”
class that implements myInterface

90

All of the above is true, but sometimes it is not practical to create a new class

for just one or for a rarely used method. Also, the same interface can be used

for creating of many different methods. For example, here is another method

that uses the same interface myInterface presented earlier:

myInterface lower = txt -> txt.toLowerCase();

System.out.println (lower.transform(“TEXT”)); // prints: “text”

To fully explore this capability, the package java.util.function provides

several predefined functional interfaces to be used in lambda expressions.

One of these functional interfaces – Function<T,R>, applies its method

apply() to object of type T and returns the result as an object of type R. The

[partial] declaration of the Function interface looks as follows:

public interface Function <T, R> {

 R apply(T t);

 . . .

}

Let’s use this interface and a lambda expression to create a method that

transforms digits into words:

import java.util.function.*;

. . .

Function<Integer, String> spell = N ->

{

 String digits [] =

 {“zero”, “one”, “two”, “three”, “four”,

 “five”, “six”, “seven”, “eight”, “nine”};

 return digits[N.intValue()];

};

Integer N = Integer.valueOf(4);

System.out.println(spell.apply(N)); // prints: “four”

spell is an object of a “hidden” class
that implements the Function interface

Returns N’th element of array digits

This block will become the body
of the apply() method

N will be the input
parameter to apply()

Creates object of type Integer
with the value of 4

Calls the apply() method of
the object spell.

91

In previous examples we were explicitly declaring the object references of

functional interface types:

Function<Integer, String> spell

myInterface lower

Then, lambda expressions were assigned to these object references. This

method of creating lambda expressions clearly shows what we’re trying to

achieve, but is not mandatory. In general, it is not necessary to explicitly

declare functional interface object references. A lambda expression itself can

be viewed (and used) as an object of the corresponding functional interface.

For example, we can pass a lambda expression as a parameter to a method if

that parameter is declared as a functional interface.

Here is an example; the IntPredicate is a factory-supplied functional interface

declaring the following test method:

boolean test(int value)

We are going to utilize it for selecting numbers within a specified value range:

(n > min) & (n < max). Here is what needs to be done:

- Create an object of type IntPredicate

- Substitute its test method with the desired conditional expression

- Use the test method to check if a number is within the range

import java.util.function.*;

class testLambda

{

 static int min = 0;

 static int max = 100;

 public static IntPredicate filter(IntPredicate p) {return p;}

 public static void main (String args[]) {

 int i = 100;

 if filter(n -> (n > min & n < max)).test(i)

 System.out.println("within range");

 else

 System.out.println("out of range");

 }

}

Explanation: the filter method accepts an object of type IntPredicate and

returns it back. The goal here is to pass a lambda expression to this method

and get it back as an object. A lambda expression itself does not tell us what

spell and lower are object references
of types Function and myInterface

The filter() method accepts object of
type IntPredicate (functional interface)
and returns same object

The “n -> (n > min & n < max)” is an object
of type IntPredicate

92

the functional interface it is used for, so we need to provide this information

to the Java compiler either by directly assigning the lambda expression to a

functional interface variable, or by passing the lambda expression as a

parameter of a functional interface type. So, in this example, the lambda

expression n -> (n>min & n<max) creates an object of the IntPredicate type,

substitutes its test method with the (n>min & n<max), and passed this object

to the filter method. The filter method returns this object back, so the

expression filter(n->(n>min&n<max)) is in fact an object reference of type

IntPredicate. Finally, we use this object reference to call the instance method

test (which, at this moment, reflects the lambda expression):

filter(n -> (n > min & n < max)).test(i)

The outcome of the above program: “out of range”.

93

Method Reference

The method reference feature allows you to create a reference to a method

without executing the method. That reference then can be passed to another

method for execution using the double colon “::” operator. The following

diagram and corresponding program code illustrates the process:

interface F {

 void execute ();

}

class myClass {

 static void common(F obj) { obj.execute(); }

 void myMethod() {…}

 public static void main (String args[]) {

 common(myClass::myMethod);

 }

}

The common() method is defined to accept an object of the functional

interface F and run its execute() method. At run time, the method reference

operator (::) creates an instance of the functional interface F (because the

common() method expects it) whose execute() method points to method1().

Then, the instance of F is passed to the common() method, and method1() is

executed. Note that method passing as reference must have the same

signature (return type and the types of parameters) as the method defined

by the functional interface.

Functional Interface F
method execute()

myClass
myMethod () {…}
common (myClass::myMethod)

common (F obj)
{ obj.execute(); }

Instance of interface F
execute() points to myMethod()

94

Below are some examples converting the string “Test Text” to upper or lower-

case.

interface Transform {

 String doit (String s);

}

class myClass {

 static void printAs (Transform obj) {

 System.out.println(obj.doit(“Test Text”));

 }

 static String upper (String s) {return s.toUpperCase();}

 String lower (String s) {return s.toLowerCase();}

 public static void main (String args[]) {

 Transform lowercase, uppercase;

 printAs (myClass :: upper);

 myClass mc = new myClass();

 printAs (mc :: lower);

 lowercase = mc :: lower;

 printAs (lowercase);

 }

}

The “::” operator creates a
new Transform object with
the doit method
referencing the static
method upper

The signature of method doit() is
<String>method<String>
All methods passing as references
must have this signature.

The printAs() method accepts
an object of type Transform
and executes its doit() method

The “::” operator creates a new
Transform object with the doit
method referencing the instance
method lower

95

Constructor reference

Constructor reference is similar to method reference.

Let’s say, the Location class holds two coordinates, x and y:

class Location {

 int x, y;

 Location () {x = y = 0;}

 Location (int x, int y) {

 this.x = x;

 this.y = y;

 }

}

We want to be able to build the Location objects not only “traditional way”,

with the new keyword, but also by calling a create method accepting two

coordinates.

First, we declare a functional interface with the create method accepting two

integers and returning an object of class Location:

interface myConstructor {

 Location create (int x, int y);

}

Then, during execution, we create an instance (i.e. object) of the functional

interface with the reference to one of the Location class constructors:

myConstructor mc = Location :: new;

Finally, we use the instance method create() to invoke a proper constructor

of the class Location:

Location a = mc.create(7, 8);

This example demonstrates the basics of creating and using constructor

references. However, having two different ways of invoking the same

constructor seems to be more confusing than beneficial.

So here is a more practical example - we will be passing default constructor

references of two different classes (A and B) to the printName() method. This

Will try to find a constructor of class
Location with same argument list as in
the create() method declared by
myConstructor interface.
If found, the create() method will be
referencing the found constructor.

Default constructor
(without arguments)

Constructor with two
arguments

96

method will use the received constructor reference to create an object and

invoke its myName method.

interface AB {

 String myName();

}

class A implements AB {

 String name;

 A () {name = "A class";}

 public String myName() {return name;}

}

class B implements AB {

 String name;

 B () {name = "B class";}

 public String myName() {return name;}

}

. . .

interface defaultConstructorRef <T> {

 T create();

}

class testConstructorReference {

 public static void main (String args[])

 {

 printName (A :: new);

 printName (B :: new);

 }

 public static void printName (defaultConstructorRef obj) {

 AB obj = (AB) obj.create();

 System.out.println(obj.myName());

 }

}

This program creates the output:

A class

B class

AB is the type to which the instances of A
and B will be casted to in the printName()
method. The myName() method must be
declared here so that the method overriding
mechanism works.

This functional interface will be
used for passing the constructor
references to printName().
Its create method will be
executing the constructor.

 “A::new” and “B::new” will
become two objects of the
defaultConstructorRef whose
create() method will be pointing
to the default constructors of
classes A and B.

The (AB) casting is needed
because the object returned by
create() will be of type Object.
Note: We could specify
<T extends AB> in
defaulConstructorRef to avoid
this casting.

97

Inner Classes

An inner class is a class declared within another class or within a method:

class classA { //  top level class (outer class)

 class classB { //  inner class

 classC { //  inner class

 }

 }

}

public void myMethod() {

 class classD { //  inner class (AKA local class)

 }

}

Static Inner (Nested) Classes

A static inner class is a class with the static modifier and declared within

another class:

 class outerClass {

 static class innerClass {

 }

 }

A static inner class can access only static variables and methods of the outer

class and has no association with the instances of the outer class. In this

regard it behaves exactly like any other class declared outside of the outer

class, so more appropriate name for such classes would be static nested

classes.

Example of using static inner (nested) classes:

public class Outer {

 static String myName = "Outer";

 static int N = 0;

 static class Nested {

 static String myName = "Nested";

 int myN;

 Nested() { myN = ++N; }

 }

Constructor of the nested class;
increments object’s sequential
number

N will keep track of total created
instances of the nested class

98

 public static void main (String args[])

 {

 System.out.println(myName);

 System.out.println(Nested.myName);

 System.out.println(Outer.Nested.myName);

 Nested nested1 = new Nested();

 Outer.Nested nested2 = new Outer.Nested();

 System.out.println(nested1.myN); // Prints: 1

 System.out.println(nested2.myN); // Prints: 2

 }

}

Non-Static Inner Classes

A non-static inner class is a class declared within another class as an instance

property (i.e. without the static modifier). An object of a non-static inner class

has access to the instance variables and methods of the outer class object in

which it was created. Objects of non-static inner classes can be created either

within instance methods of the outer class, or with the new operator prefixed

with the outer class object name:

public class Outer {

 int x = 0;

 class Inner { void innerMethod() { x++; }; }

 public static void main (String args[]) {

 Outer outer1 = new Outer();

 Inner inner1 = outer1.new Inner();

 Outer.Inner inner2 = outer1.new Inner();

 outer1.instanceMethod();

 }

 void instanceMethod() {

 Inner inner3 = new Inner();

 Outer.Inner inner4 = this.new Inner();

 }

}

This is how we can access static
variables of the nested class

This is how we can access static
variables of the outer class

This is how we can create
objects of the nested class

Valid methods of creating inner
class objects from within instance
methods of outer class objects

Valid methods of creating the
inner class objects using outer
object reference

Non-static inner class can access the instance
variables (and methods) of the outer class

99

Local Inner Classes

A class declared within a method is called a local class.

public static void main (String args[]) {

 int x = 1;

 int y = 2;

 // A local class declared within method main

 class myLocalClass {

 String s = “Local Class”;

 int z;

 { z = x + y; }

 { x = 2; }

 }

 myLocalClass loc = new myLocalClass();

 System.out.println(“z=” + loc.z); // prints: z=3

}

Local variables of method main

Local class can read local
variables

Local class cannot update
local variables

100

Abstract Classes

Abstract class is a class in which one or more methods are declared, but not

defined (i.e. a without a body). To understand why we need abstract classes,

consider this class hierarchy:

Class Shape declares the getArea method for calculating the area of a

particular shape. This method is overridden with actual implementation in

each of the subclasses – Square and Circle. If we create an object of class

Shape, its getArea() method would have no meaning. Of course, we could

make it to return a fake value, like zero, to indicate that this is not a true

shape. A better approach, however, would be to altogether disallow the

creation of class Shape objects. That’s when abstract classes and abstract

methods come in hand.

Example:

abstract class Shape {

 String myName;

 public abstract double getArea(double arg);

 public String getName() {return myName;}

 public static void main (String args[]) {

 Shape a = new Circle();

 Double area = a.getArea(1);

 System.out.println("area=" + area); // prints: “area=3.1415”

 }

}

class Circle extends Shape {

 public double getArea(double arg) {

 return (arg * arg * 3.1415);

 }

}

class Shape
method: getArea()

class Square
method: getArea()

class Circle
method: getArea()

Abstract method
cannot have a body

A subclass of an abstract class
must override all abstract
methods with “real” ones,
otherwise the subclass will
become abstract too.

Abstract class can
declare non-abstract
methods

Abstract class cannot be instantiated

101

Anonymous Classes

An anonymous class is a class declared within an expression. The definition

of the anonymous class begins with the keyword new and is enclosed within

round brackets:

 (new className() {body of the class})

This is equivalent to creating an instance of some unnamed class extending

the className. Being an instance of a class, the anonymous class definition

can be used in various expressions:

someVariable = (anonymous class definition).method();
someMethod (anonymous class definition);

Consider a situation when we have class Circle calculating the area of a circle

with this formula: area = 3.14 * radius * radius. We want to keep the existing

class Circle, but increase the precision of this calculation by using a new

formula: area = 3.1415926 * radius * radius.

Here is how we can accomplish this with an anonymous class:

class Circle {

 public double getArea (double r) {return 3.14 * r * r;};

}

class testClass {

 public static void main (String args[]) {

 Circle a = new Circle();

 System.out.println(a.getArea(2)); //prints: 12.56

 a = (new Circle() {

 public double getArea (double r)

 {return 3.1415926 * r * r;}

 }

);

 System.out.println(a.getArea(2)); // prints: 12.5663704

 }

}

Original formula from class
Circle is used

New formula is used because a is
now referencing the anonymous class

The anonymous class extends class
Circle and overrides the getArea()

102

Interfaces

An interface is a collection of constants, abstract methods, and default

methods. The main purpose of interfaces is to supply useful constants and

methods to classes, and also to expand the polymorphism mechanism

beyond the class hierarchies.

An interface can extend one or more other interfaces. Interfaces cannot be

instantiated (you cannot create an object of an interface), but they can be

implemented by a class. The class implementing an interface must override

all abstract methods of the interface, otherwise the class will be abstract.

The example below demonstrates the common technique of working with

interfaces.

First, we declare two interfaces: Conversion1 and Conversion2. The

Conversion2 interface extends the Conversion1 and adds one constant and

one method.

interface Conversion1 {

 double F2C = 5.0 / 9.0;

 double toCelsius (double t);

}

interface Conversion2 extends Conversion1

{

 double C2F = 9.0 / 5.0;

 double toFahrenheit (double t);

}

Next, we declare two classes implementing the Conversion2 interface. Both

classes will have access to the constants declared in Conversion1 and

Conversion2 interfaces, and they must also implement all methods declared

in those interfaces.

// Approximate temperature conversions

class myClass1 implement Conversion2 {

 public double toFahrenheit(double t) {return t * 2 + 32;}

 public double toCelsius(double t) {return (t - 32) / 2;}

}

All variables are implicitly
public static final

By default, methods are public
unless declared as static

Declares an interface

Conversion2 adds new features
to Conversion

103

// Precise temperature conversions

class myClass2 implements Conversion2

{

 public double toFahrenheit(double t) {return t * C2F + 32;}

 public double toCelsius(double t) {return (t - 32) * F2C;}

Finally, we create two objects of classes myClass1 and myClass2 and execute

their instance methods toFahrenheit() and toCelcius().

 public static void main (String args[])

 {

 Conversion2 obj;

 obj = new myClass1();

 System.out.println(obj.toFahrenheit(25)); // prints: 82.0

 System.out.println(obj.toCelsius(77)); // prints: 22.5

 obj = new myClass2();

 System.out.println(obj.toFahrenheit(25)); // prints: 77.0

 System.out.println(obj.toCelsius(77)); // prints: 25.0

 }

}

Note that same variable “obj” of type Conversion2 can be used to reference

objects of classes myClass1 and myClass2. This technique employs the

polymorphism mechanism and instructs Java to find correct instance

methods dynamically, at run time, based on the actual type of the object

referenced by “obj”.

104

Interfaces vs. Abstract Classes

You might have noticed already that an interface and abstract classes are

similar. Both can declare constants and provide method templates for further

implementation by other classes. So the question is – what can we do with

interfaces that cannot be done with classes?

Let’s take a look at an example:

The getVolume() method of the Orange and Box objects can be accessed as

follows:

Orange orange = new Orange(); orange.getVolume();

Fruit fruit = new Orange(); fruit.getVolume();

Box box = new Box(); box.getVolume();

Package pack = new Box(); pack.getVolume();

Since the Orange and Box classes belong to different class hierarchies, it’s not

possible to create an object reference that can be used for referencing both

objects.

Interfaces allow us to do that because the class hierarchy and the interface

hierarchy are unrelated. Interfaces break the class hierarchy boundaries.

Otherwise unrelated classes can implement the same interface, and a

variable of that interface type can reference the objects of both classes.

Example: using a single interface variable to reference class objects in

different class hierarchies.

abstract class Fruit
getVolume()

class Orange extends Fruit
getVolume() {…}

abstract class Package
getVolume()

class Box extends Package
getVolume() {…}

interface Shape
getVolume()

class Orange implements Shape
getVolume() {…}

class Box implements Shape
getVolume() {…}

105

interface Shape {

 double getVolume();

}

class Orange implements Shape {

 double getVolume() { implementation code };
}

class Box implements Shape {

 double getVolume() { implementation code };
}

. . .

Shape shape;

shape = new Orange();

shape.getVolume();

shape = new Box();

shape.getVolume();

Note: the polymorphism mechanism is employed to find and execute the

getVolume() method of the actual object referenced by the shape variable.

The getVolume() of Orange will
be executed

The getVolume() of Box will be
executed

Declare the object reference
shape of type Shape

106

Default and Static Methods in Interfaces

Sometimes it might be beneficial to have interfaces with fully implemented

methods (i.e. methods with a body). This can be accomplished in two ways:

by declaring default methods or static methods.

A default method is an instance method that has a body and is prefixed with

the default modifier. Default methods can be, but are not required to be,

overridden in the classes implementing the interface.

interface Shape {

 default double getVolume() {return 1.0;}

}

A static method is a class-level method that has a body and is prefixed with

the static modifier. Static methods can be, but are not required to be

overridden in classes implementing the interface.

interface Shape {

 static String getShapeName(Object obj)

 { return obj.getClass().getName(); }

}

Example:

class Orange implements Shape {

 public static void main (String args[]) {

 double volume;

 String name;

 Shape obj = new Orange();

name = Shape.getShapeName(obj);

 volume = obj.getVolume();

 System.out.println(“Shape=”+ name); // prints: “Shape=Orange”

 System.out.println(“Volume=”+ volume); // prints: “Volume=0”

 }

}

Create an object of the Orange class

Use the static method of interface
Shape to get the name of the
object referenced by obj

Use the default instance
method getVolume() of
interface Shape

107

Exceptions

An exception is an interruption of normal program flow due to an error. Some

errors are fatal and cannot be recovered from, while others are not critical

and can be handled by the application (e.g. file not found situation). Java

recognizes two types of exceptions: checked exceptions and unchecked

exceptions.

Unchecked exceptions are not anticipated. For example, a JVM failure or

division by zero are not expected situations. Usually these errors are due to

issues with the Java runtime environment or bugs in the application code. The

way to deal with unchecked exceptions is to fix the environment issues (if

any) or get rid of bugs in your application (debugging).

Unchecked exceptions are not anticipated and not required to be
processed by the application.

Checked exceptions are explicitly declared in some Java classes or in user-

defined classes and could be thrown (i.e. created) under some circumstances.

For example, the FileReader class will throw the FileNotFoundException if

the file you’re trying to open cannot be found. A checked exception must be

caught and processed in the method where the exception occurs, or it can be

passed through (propagated) to the calling method (if any), all the way to the

JVM.

Checked exceptions are declared in Java or user-defined classes and could
be thrown under some circumstances.
Checked exceptions are anticipated and must be processed or passed
through by the application.

Java provides a special mechanism for handling exceptions. When an error

situation occurs during execution of an application, Java interrupts the

application and triggers the exception handling mechanism. This process is

referred to as throwing an exception. After that, the exception can be

handled either by the application, or by the JVM. The details of the whole

process are described in the next section.

108

Handling Exceptions

Java’s exception handling mechanism includes a built-in default exception

handler and special language constructs for catching or throwing the

exceptions. The default exception handler is executed when your program

does not process the exception; it prints out some diagnostic information and

terminates the program. A program can build its own custom code for

handling specific exceptions by utilizing these five commands: try, catch,

finally, throw, and throws.

As we mentioned before, exceptions (i.e. error situations) could be

anticipated (checked exceptions) or unanticipated (unchecked exceptions).

Checked exceptions are explicitly declared in some Java classes (or in user-

defined classes or methods) and must be handled by methods that use those

classes or methods. Unchecked exceptions are usually unexpected (e.g.

division by zero) and could be left unhandled. Java supports a predefined set

of unchecked exceptions. The similarities and differences in handling of

checked and unchecked exceptions are explained below.

Handling Unchecked Exceptions
When an unexpected error occurs, Java creates an object of appropriate

unchecked exception type that contains information about the exception,

and passes that object to the application. If the current method does not have

logic for catching the exception, Java propagates (passes) it to the calling

method if one exists, or to the JVM.

This diagram illustrates how the JVM handles unchecked exceptions:

call

JVM’s default exception handler

main()

myMethod()

{ n = 5 / 0; } (1) Division by zero exception
is thrown by JVM

(2) Propagated if not caught
in myMethod()

(4) Prints an error message
and stops execution

(3) Propagated if not caught
in main()

109

To handle unchecked exceptions in your application, you can use the

following constructs:

try {

 code you want to monitor for possible exceptions
}

catch (exceptionType1 e) {
 code processing the exception of type exceptionType1
}

. . .

catch (exceptionTypeN e) {
 code processing the exception of type exceptionTypeN
}

finally {

 code to be executed regardless of the results of try or catch

blocks

}

Example of handling unchecked (not anticipated) exceptions:

 int n = 0;

 try {

 n = 5 / n;

 }

 catch (ArithmeticException e)

 {

 System.out.println("Exception caught!”);

 }

 finally

 {

 System.out.println("n=” + n);

 }

Note that once an exception is caught, the propagation process stops and

normal program execution resumes. It is possible, however, to pass an

exception to the calling method even after the exception was caught and

processed. This is done by using the throw statement:

Division by zero

Catch all arithmetic exception

Print “Exception
caught!” and
continue

Prints: “n=0”

110

// Explicit propagation of unchecked exceptions

public static void main (String args[]) {

 try {

 myMethod();

 }

 catch (ArithmeticException e) {

 System.out.println("Exception in main!”);

 }

}

public static void myMethod () {

 int n = 0;

 try { n = 5 / n; }

 catch (ArithmeticException e) {

 System.out.println("Exception in myMethod!”);

 throw e;

 }

}

The above code will produce this output:

Exception in myMethod!

Exception in main!

Division by zero error

Catch all arithmetic exceptions

Propagate the same exception
up to the main method

Will catch the exception
propagated from myMethod()

111

Handling Checked Exceptions

Checked exceptions are exceptions explicitly declared and thrown by some

Java classes or by user programs. If your program uses a Java class or calls a

method that could throw a checked exception, you must catch that exception

or explicitly propagate it up to the calling method.

This diagram illustrates how the checked exceptions should be processed:

Note that this method must be declared with the throws someException

clause if it can create and throw its own exception or if it catches a checked

exception and then re-throws it with the throw someException statement.

Example:

// Explicit propagation of checked exceptions

import java.io.*;

class myClass {

public static void main (String args[]) {

 String file = “not_existing_file”;

 try {

 checkFile(file);

 }

 catch (IOException e) {

 System.out.println("main: checkFile failed!”);

 }

}

JVM’s default exception handler

main() throws IOException
{ methodA(); }

methodA() throws IOException
{ f = new FileReader(file); }
 (1) FileReader class throws an

IOException

(2) Exception is propagated to
main if not caught in
methodA()

(4) Prints an error message
and stops execution

(3) Exception is propagated to
the JVM if not caught in main()

IOException can be thrown in
methodA

Will catch an IOException
propagated from checkFile

Can throw an IOException

FileReader class resides in java.io

112

 public static void checkFile (String file) throws IOException {

 FileReader f;

 try {

 f = new FileReader(file);

 }

 catch (IOException e) {

 System.out.println("checkFile: IOException!”);

 throw e;

 }

 }

}

The above code produces the output:

checkFile: IOException!

main: checkFile failed!

In addition to the pre-defined set of checked and unchecked exceptions

provided by Java, you can build your own exceptions, similar to checked

exceptions. To understand how it’s done, we will first review the exceptions

classes.

Method can throw an IOException

Catches all I/O exceptions

Propagates IOException up to the main method

113

Exceptions Class Hierarchy

For every exception, Java creates an object containing some useful

information about the exception. Each type of exception is represented by its

own class – FileNotFoundException, IndexOutOfBoundsException, etc. All

these classes are sub-classes of the top class Throwable. The diagram below

shows the hierarchy of the exceptions classes:

All Error and RunTimeExceptions are unchecked exceptions and are not

required to be caught and handled. The rest are checked exceptions that

must be handled by application logic if they can be thrown during execution.

Throwable

Error Exception

ThreadDeath

LinkageError

VirtualMachineError

RunTimeException

IOException

ArithmeticException

IndexOutOfBoundsExcep-
tion

NegativeArraySizeExcep-
tion

NullPointerException

ClassCastException

. . .

FileException

FileNotFoundException

. . .

. . .

 Custom Exceptions

114

Class Throwable provides several useful methods that can be used in the

exception handling logic of your program. Here are some of them:

String getMessage() Returns the detailed message string
for this exception

void printStackTrace() Sends the above message and the
trace information to the standard
error stream

String toString() Returns a short description of this
exception

Now, that we know how the exceptions classes are organized, let’s take a look

at how to create a custom one.

115

Creating Custom Exceptions

A custom, user-defined exception can be built as a sub-class of the Exception

class as follows:

class CustomException extends Exception {

 public CustomException(String msg) {

 super(msg);

}

class runMyTest {

public static void main (String args[])

{

 try {

 testMyException();

 }

 catch (CustomException e) {

 System.out.println(e.getMessage());

 }

 // Method that throws CustomException

 public static void testMyException () throws CustomException

 {

 CustomException e;

 e = new CustomException("My exception");

 throw e;

 }

}

Could throw CustomException

Prints: “My exception”

Must extend Exception

Need this constructor if we
want to have an exception
with a message

Method can throw
CustomException

Constructor of the superclass
Exception must be called

Creates an object of CustomException

116

Threads

When two or more parts of a program are running concurrently, such

program is called a multithreaded program. Each path of execution is called

a thread. Every Java program has at least one thread that starts with the main

method.

Starting Threads

An application program can create as many threads as needed. To be able to

create a thread, a class needs either to extend the Thread class, or implement

the Runnable interface. In both cases, the class creating a thread must

implement the run() method. The below diagram illustrates the two ways of

creating threads. Note that in both cases an object of type Thread must be

present and have access to the run() method of your class:

As the diagram shows, a thread is started by the start() method of class

Thread that calls the run() method defined in the class starting the thread.

In this example a new thread is started by an object of class myClass which

extends the Thread class:

class myClass extends Thread {

 public void run() {…}

 public static void main (String args[]) {

 myClass th1 = new myClass();

 th1.start();

 }

}

When your class extends the Thread class, the only method that you have to

implement is the run() method. This method should define the processing

Object of type Thread Object of type Thread

class A
extends Thread

class Thread

class B
implements
Runnable

start {…}

run() {…}

class Thread

start {…}

run() {…}

117

that will be done by the new thread. Note, that the run() method defined by

the class Thread is empty and does nothing.

You can also implement (i.e. override) other methods of class Thread, but

with one exception – the start() method. If you implement the start()

method, and even if it calls the run() method, no threads will be started, run()

will be executed as a regular method of your class, within the current thread.

This method of creating threads is completely acceptable, but if you are not

intending to override other methods of class Thread besides the run()

method, a better approach would be to implement the Runnable interface.

In this example a new thread is created by an object of class myClass

implementing the Runnable interface:

class myClass implements Runnable {

 public void run() {…}

 public static void main (String args[]) {

 Thread th2 = new Thread(new myClass());

 th2.start();

 }

}

The Runnable interface declares only one method – run(), so your class needs

to implement just that method. To start a new thread, the program has to

create an object of class Thread using the following constructor:

 Thread (Runnable target)

Here, target is an instance of your class.

It’s important to reiterate that a thread can be started only by the start()

method of a Thread object. In the first example, when a sub-class of Thread

was instantiated, an object of class Thread was created automatically by

calling the super() constructor. In the second example, we created a Thread

object explicitly, and at the same time passed an object of the class myClass

to it.

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#Thread-java.lang.Runnable-
http://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

118

Here is a sample program that starts one thread.

import java.io.IOException;

class testThread implements Runnable

{

 public static void main (String args[])

 {

 Thread th = new Thread(new testThread());

 th.setName(“Thread 1”);

 th.start();

 try {

 System.out.println("main: hit enter...");

 System.in.read();

 }

 catch (Exception e)

 { System.out.println("main exception:" + e); }

 System.out.println("main ended");

 }

 public void run()

 {

 String name = Thread.currentThread().getName();

 try {

 System.out.println("thread: hit enter…");

 System.in.read();

 System.in.read();

 }

 catch (Exception e) {

 System.out.println("thread exception:" + e);

 }

 System.out.println(name + " thread ended”);

 }

}

The above program will prompt you to hit Enter twice. The first request will

come from the thread, the second – from the main method. You should hit

Enter twice to first stop the execution of the main method, then the thread

execution.

Create a Thread object with a
reference to the object of our
class testThread

Assign a name to the thread

Start the thread (invoke the run() method)

Read one byte from the
console

Read two bytes from console

Get the current
thread instance,
then obtain the
thread’s name

Thread starts with this method

119

Daemon Threads

When you execute the previous program, you will notice that the main thread

ends once you hit Enter, but the thread will continue running until you hit

Enter again. Threads that continue execution after the parent thread dies are

called user threads. Another type of threads is called daemon threads. A

daemon thread dies once its parent thread dies. By default, a newly created

thread is a user thread; to make it a daemon, you need to mark it as such by

calling setDaemon(true). Make sure it is done before you start the thread:

Thread th = new Thread(new myClass());

th.setDaemon(true);

th.start();

Interrupting Thread Execution

A thread can be interrupted by another thread via the instance method

interrupt():

Thread th = new Thread(new myClass());

th.start();

. . .

th.interrupt();

The interrupt method sets a flag in the thread object, which has to be checked

in the run() method to have any effect.

public void run() {

 . . .

 if (Thread.interrupted())

 { System.out.println(“I was interrupted"); }

}

Note that interrupt() is an instance method, and interrupted() is a static

method.

Neither of these methods stop tread execution. They merely allow to “send

a signal” to the thread, but how to process this “signal” is up to the thread

being interrupted.

120

Waiting on a Thread to Die

If the main thread depends on the execution of its child threads, it can use

the join() method of class Thread to “connect” to the child thread and wait

until it finishes.

Thread th = new Thread(new myClass());

th.start();

try {

 th.join(1000);

 th.join();

}

catch (InterruptedException e) {

 System.out.println("Exception: " + e);

}

Synchronization

In multithreaded programming, it is often critical to restrict the access to

shared resources to only one thread at a time. Java offers a resource locking

mechanism that can be employed in two ways – through synchronized

methods or synchronized statement blocks. Both approaches will be

discussed in few moments.

First, to understand Java’s synchronization and locking mechanism we need

to know two key terms: the monitor and the lock. When a thread acquires a

lock, it is said to have entered the monitor. This does not add much to the

understanding of the topic itself, but is important because these terms are

used in all Java manuals.

Wait 1sec for thread th to die

Wait forever for thread th to die

This exception can be thrown
by the join() method

121

Synchronized Methods

You can declare any method of your class as synchronized:

synchronized static public void method1() {…}

synchronized public void method2() {…}

By doing so, you activate the locking mechanism either on the class level, or

on the object level, or both.

The object-level synchronization works as follows:

All synchronized instance methods of an object are controlled by the same
lock. Only one synchronized instance method of that object can be
executed at any point in time.

The class-level synchronization works as follows:

All synchronized static methods of a class are controlled by the same lock.
Only one synchronized static method of the class can be executed at any
point in time.

Note that object-level synchronization and class-level synchronization work

independently of each other.

Synchronized Statement Blocks

There might be situations when you cannot use the synchronized methods

such as when you’re not allowed to modify the class. In such circumstances

you can use a synchronized statement block. Here is how a synchronized

statement block is defined:

synchronized (object) { statement block }

This statement can be used anywhere in the thread execution path (i.e. in the

run() methods or any other methods called by it). The statement block will be

locked on the object and will be accessible only by one thread at a time.

122

An important note must be made regarding the object used in the above

construct. The object could be an object of any class, even a dummy object

created just for the purpose of being a lock. As long as all threads have access

to the same object – synchronization on the statement block will work.

The example below demonstrates the usage of statement block

synchronization.

123

Example: only one thread at a time can execute the synchronized block

import java.io.IOException;

class testSyncBlock implements Runnable {

 Object lock;

 public static void main (String args[])

 {

 testSyncBlock mainThread = new testSyncBlock();

 mainThread.lock = new Object();

 Thread th1 = new Thread(mainThread, "thread1");

 Thread th2 = new Thread(mainThread, "thread2");

 th1.start();

 th2.start();

 try {

 th1.join();

 th2.join();

 }

 catch (InterruptedException e) { System.out.println(e); }

 }

 public void run()

 {

 String name = Thread.currentThread().getName();

 System.out.println(name + “ started”);

 synchronized (lock)

 {

 try

 {

 System.out.println("hit enter...");

 System.in.read();

 }

 catch (Exception e) { System.out.println(e); }

 }

 }

}

Beginning of the synchronized
block

End of the synchronized block

The lock object will be used only
for synchronization

Wait for both threads to finish

Declare the instance reference lock of
type Object

Synchronizing on the object lock

Create and start two threads

124

Advanced Inter-Thread Communication

In most cases synchronized methods and synchronized statement blocks are

sufficient for establishing safe access to shared resources. However, there

might be a need for more granular control over the synchronization process.

The following three methods defined by the Object class allow two or more

threads to communicate with each other:

wait(), notify(), notifyAll()

The wait() method releases the lock held by the current thread and puts the

thread in a waiting state.

The notify() method wakes up one of the waiting threads (if any). The choice

of which thread to wake up is arbitrary (i.e. a random thread will be chosen

for you by the JVM).

The notifyAll() method wakes up all threads waiting on the lock held by the

current thread.

The above methods must be used within either synchronized methods or

synchronized statement blocks.

The example below illustrates how communication between threads could

be established. The program creates two threads reading the same array of

strings, one element at a time. Once the next element of the array is

processed by one thread, the thread gives control to another thread and goes

to sleep.

import java.io.IOException;

class testNotify implements Runnable {

 Object lock = new Object();

 String[] s = {"one", "two", "three", "four"};

 int count = 0;

 public static void main (String args[])

 {

 testNotify me = new testNotify();

 Thread th1 = new Thread(me, "thread1");

 Thread th2 = new Thread(me, "thread2");

 th1.start();

 th2.start();

The lock object will be
used for synchronization

Create two threads with the
reference to object me

Start both threads; the run()
method of object me will be called

125

 try {

 th1.join();

 th2.join();

 }

 catch (InterruptedException e) { System.out.println(e); }

 }

 public void run()

 {

 String name = Thread.currentThread().getName();

 synchronized (lock)

 {

 try

 {

 while (count < s.length)

 {

 System.out.println(name + ": " + s[count++]);

 lock.notify();

 lock.wait();

 }

 }

 catch (Exception e) { System.out.println(e); }

 lock.notifyAll();

 }

 }

}

Note that the wait(), notify(), and notifyAll() methods must be invoked by

the object on which the current thread is locked – object lock in this example.

Otherwise, the IllegalMonitorStateException would be thrown.

The output of the above program is this:

thread1: one

thread2: two

thread1: three

thread2: four

Obtain the name of current thread

Synchronize the block below on the
object lock

Wake up another thread

Release the lock and go to sleep
until notified by another thread

Wait until both threads die

After all elements of the array are
processed, wake up all waiting
threads so they can finish too

126

Collections Framework

The Collections Framework is a set of interfaces and classes that provide a

standardized approach for managing groups of objects. The cornerstone of

the whole concept is the collection, a generic term for a set of objects

grouped together by some means. Based on the way collections are built and

accessed, all collections can be divided into three major categories:

LIST - a sequence of objects; examples: arrays, sorted lists, queues, stacks.

SET - a group of unique objects; no duplicates allowed.

MAP - a group of key/value pairs of objects.

Each group can be divided further into sub-groups. For example, a list could

be sorted, linked, organized as a stack, etc. However, regardless of the

differences between collections, most of the operations upon them are

performed in a similar manner, through standardized interfaces. This chapter

provides an overview of such operations.

Creating Collections

Most of the collections use the add() method of the corresponding class for

putting new elements into collections:

// Create a LinkedList collection

LinkedList<String> list = new LinkedList<String>();

list.add(“A”);

list.add(“B”);

list.add(1, “C”);

System.out.println(list); // prints: [A, C, B]

Declare a linked list of
String objects. Inserts first element

Inserts second element

Inserts “C” at the second
position

127

// Create a TreeSet collection

TreeSet<Integer> intset = new TreeSet<>();

intset.add(3);

intset.add(5);

intset.add(1);

System.out.println(intset); // prints: [1, 3, 5]

Some collection classes (Vector, Stack, PriorityQueue, etc.), as well as all the

map classes do not use the add() method for adding elements to the

collection. For example, the Vector class, uses the addElement() method, the

PriorityQueue class uses the push() method, and the map classes use the

put() method:

TreeMap<Integer,String> map = new TreeMap<>();

map.put (2,”two”);

map.put (1,”ten”);

map.put (3,”three”);

map.put (1,”one”);

System.out.println(map); // prints: {1=one, 2=two, 3=three}

Retrieving Collections’ Elements

The most common way of retrieving an element from a collection is via the

get() method or its variations (e.g., getFirst(), getLast()):

LinkedList<String> list = new LinkedList<String>();

list.add(“A”);

list.add(“B”);

list.add(0, “C”);

System.out.println(list.get(1);) // prints: “A”

System.out.println(list.getFirst();) // prints: “C”

System.out.println(list.getLast();) // prints: “B”

TreeMap<String,String> map = new TreeMap<>();

map.put (“key1”,”A”);

map.put (“key2”,”B”);

System.out.println(map.get(“key1”);) // prints: “A”

System.out.println(map.get(“key3”);) // prints: “null”

Declare a sorted set of
Integer objects.

Declares a sorted
Key/Value map of the
Integer/String type.

The 1/one pair will override the previous 1/ten
entry because the keys must be unique.

Retrieves the second
element of the list

Retrieves the value
associated with the “key1”

128

Updating Collections

Every collection defines a set of methods allowing you to make changes to

already created collections by removing or updating their elements. These

methods can differ among the collection classes. The only method that is

common to all collections is remove(). Below are a few examples of

performing update operations on different collections.

TreeMap<String,String> map = new TreeMap<>();

map.put (“key1”,”A”);

map.put (“key2”,”B”);

map.put (“key3”,”C”);

map.remove (“key1”,”A”);

map.replace (“key2”,”D”);

System.out.println(map); // prints: {key2=D, key3=C}

Vector<String> v = new Vector<>();

v.addElement (“A”);

v.addElement (“B”);

v.addElement (“C”);

v.removeElementAt (1);

System.out.println(v); // prints: [A, C]

v.removeAllElements ();

Removes the “key1/A”
pair from the map

Replaces the “key2/B” with the “key2/D”

Removes the element at
position 1 (i.e. second element)

Removes all elements from this
vector and sets its size to zero

129

Iterating through Collections

There are situations when you need to access a collection sequentially,

reading its elements one by one, in one or both directions. There are two

ways to accomplish this: by using the for-each loop, and by using iterators -

the Iterator, ListIterator, and Spliterator classes. However, a collection must

implement the Iterable interface in order to use either of these methods. The

map classes, for example, do not implement the Iterable interface, so you

have to obtain a collection-view of a map using the entrySet() method (i.e.

convert the map into a SET-type collection) in order to work with the map as

a “real” collection.

The “for-each” Loop
The first way of cycling through a collection is by use of the for-each loop.

This is the easiest way to access the elements of a collection sequentially, one

by one, in one direction.

Example:

// Iterating through list

LinkedList<String> list = new LinkedList<String>();

list.add(“A”);

list.add(“B”);

list.add(“C”);

for (String s : list)

{

 System.out.println(s); // Prints each element of the list

}

// Iterating through a map

TreeMap<String,String> map = new TreeMap<>();

map.put (“key1”,”A”);

Set<Map.Entry<String, String>> mapset = map.entrySet();

for (Map.Entry<String, String> m : mapset)

{

 System.out.println(m); // prints: key1=A

 System.out.println(m.getKey()); // prints: key1

 System.out.println(m.getValue()); // prints: A

}

Iterates through the list.
Each element is assigned to s, one by one.

Puts one key/value pair into the map

Cycles through the
mapset. Each map entry
element is assigned to m.

Creates a set-type collection from the map elements

130

Let’s take a closer look at the mapset declaration. The instance method

entrySet() transforms the TreeMap map into the Set-type collection mapset

of type Set<Map.Entry<String,String>>. Set indicates that this is a Set

collection; Map.Entry is the type of objects stored in the collection; and

<String,String> specifies the type of key/value pairs stored in the Map.Entry

objects.

By explicitly declaring the type of objects stored in the collection as

Map.Entry, we also gain access to all methods declared in the Map.Entry

interface. In this example we used the methods getKey() and getValue().

The mapset can also be defined as follows:

Set mapset = map.entrySet();

Though, in this case, we would know only that the mapset collection contains

objects of type Object. We could use them as is or cast them to the proper

type to perform any meaningful operations on the underlying map elements.

Note that the for statement must explicitly specify the type of objects fetched

from a collection:

for (Map.Entry<String, String> m : mapset)

131

Iterator

The Iterator interface is used to provide sequential access to the elements of

collections, and for removing elements from collections.

In order to use an iterator, a collection class must implement the Iterable

interface and define the iterator() method returning an Iterator object for

this collection.

Example:

LinkedList<String> list = new LinkedList<>();

list.add("A");

list.add("B");

list.add("C");

System.out.println(list); // prints: [A, B, C]

Iterator<String> loop = list.iterator();

while (loop.hasNext())

{

 String s = loop.next();

 if (s == "B") { loop.remove(); }

}

System.out.println(list); // prints: [A, C]

The above code removes the string “B” from the LinkedList list.

Declare a list of String
objects

Creates an Iterator to
the underlying
collection of String
objects

hasNext() checks if next element exists

next() obtains next element

remove() method
removes current element
from the collection

132

List Iterator

The ListIterator interface extends the functionality of Iterator by providing

methods allowing to traverse LIST-type collections in both directions and

modify the list during iteration.

Example:

// Iterate through a LinkedList collection backwards

LinkedList<String> list = new LinkedList<>();

list.add("A");

list.add("B");

list.add("C");

System.out.println(list); // prints: [A, B, C]

ListIterator<String> loop = list.listIterator(list.size());

// Iterate through the list backwards

while (loop.hasPrevious())

{

 String s = loop.previous();

 loop.set(s + “1”);

}

System.out.println(list); // prints: [A1, B1, C1]

List of String objects

Create a ListIterator
to the underlying list
of String objects

The iterator will be positioned
at the last element of the list

The hasPrevious() method checks
if the previous element exists

Retrieves the previous
element from the list

Updates the last retrieved
element: append it with ‘1’

133

Spliterator

The newest type of iterator added in JDK 8 is the Spliterator interface. It was

designed for traversing collections or other sources of data elements and

optionally partitioning them for parallel processing. We said “collections or

other sources elements of data elements” because the Spliterator can be

created not only for collections, but also for arrays, I/O channels, or generator

functions.

Note that Spliterator consumes the source. A new Spliterator must be

created once all the elements of the source are processed.

In the below example we create a spliterator for an array of integers, split it

in two, and calculate the sum of all values stored in the array.

import java.util.*;

class testSpliterator {

 static int total = 0;

 public static void sum (Integer i) { total += i;); }

 public static void main (String args[]) {

 Integer[] integers = {1, 2, 3, 4};

 Spliterator<Integer> sp1 = Arrays.spliterator(integers);

 Spliterator<Integer> sp2 = sp1.trySplit();

 while (sp1.tryAdvance (i -> total += i));

 if (sp2 != null) {

 while (sp2.tryAdvance (i -> sum(i)));

 }

 System.out.println("Total=" + total); // prints: Total=10

 }

}

Pay attention to the tryAdvance() method. It checks if the next element of

the source is present and, if not – returns the boolean false. Otherwise it

executes the accept() method of the functional interface Consumer and

returns the true. We substitute the accept() method via two different lambda

expressions: “i -> total += i” and “i -> sum(i)”.

Note that the while statements have no bodies (however, they could)

because all the processing is done though the lambda expressions.

Creates a Spliterator for the
array of integers

Creates another Spliterator
by dividing the source in half

Cycle through the first
Spliterator updating the total

Cycle through the second
Spliterator updating the total

134

Comparator
Any ordered collection (e.g. TreeSet) needs to have some kind of compare

algorithm to determine which element of the collection is “greater” than the

other. In fact, there are default algorithms for each type of objects that can

be stored in ordered collections. These algorithms are implemented via the

Comparator functional interface that defines the compare() method. In case

we want to alter the default sequence of objects in a collection, we can build

a collection that points to a custom comparator.

Note that the Comparator can be used to provide an ordering for collections

of objects that don't have a natural ordering.

The example below shows how to create a custom comparator to sort an

array of integers into descending order.

import java.util.*;

class testComparator {

 public static int reverse (Integer n1, Integer n2) {

 return n2 - n1;

 }

 public static void main (String args[]) {

 Integer[] nn = { 1, 2, 3 };

 Arrays.sort(nn, (n1, n2) -> reverse (n1, n2));

 System.out.println(nn[0] + “,” + nn[1] + “,” + nn[2]);

 }

}

The output of this program will be “3,2,1”.

Note: The Arrays class defines several sort methods; we’ve used one:

static void sort(T[] a, Comparator<? super T> c)

Here is how it is executed:

- T becomes an Integer

- The integers array substitutes the first operant T[]

- The lambda expression (n1, n2) -> reverse (n1, n2) is transformed into an

object of the Comparator<Integer> functional interface, whose compare()

method body is implemented as { reverse (n1, n2); }

- During the sorting, reverse() is used in determining which one of two inte-

gers is greater, as follows:

n1>n2 : result>0; n1<n2 : result<0; n1=n2 : result=0

This reverse() method will be used to
substitute the compare() method of
the functional interface Comparator.

The reverse(n1,n2) substitutes the
compare() method of the functional
interface Comparator.

http://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-T:A-java.util.Comparator-
http://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

135

I/O Streams

A stream is an abstract representation of an input, where source data is

retrieved from, or an output, where destination data is sent to. Java

recognizes two types of streams – byte streams and character streams. The

byte streams should be used for sending or receiving binary objects, and the

character streams should be used when working with characters and the

“character” representation of data is needed.

Note that the transmission of data via byte or character streams is done one

byte or one character at a time. There are buffered streams that group the

data into buffers, but those streams are still based on the underlying byte or

character streams.

This chapter provides an overview of the concept behind streams and

illustrates the usage of some input and output streams.

Byte Output Streams
Imagine that an application generates the following types of data and wants

to write them out into a file:

Sending Host
(any binary data,
including objects)

Receiving Host
(any binary data,
including objects)

Byte Stream
(one byte at a time)

Sending Host
(local representa-
tion of characters)

Receiving Host
(local representa-
tion of characters)

Character Stream
(one character at a time)

Double number

File

Array of bytes

Objects

136

One way to accomplish this would be by creating different classes for each

type of input data, but Java’s approach to this task is by building a “chain” of

streams, each performing necessary data transformation and passing the

result to the next stream:

The FileOutputStream class provides several methods for writing data out

into files. For example, it defines the method write(byte[] b) that writes the

specified array of bytes to a file. If we had an array ready, we could use this

method as follows:

byte[] b = {97, 98, 99};

FileOutputStream fileout;

fileout = new FileOutputStream(“myfile.txt”);

fileout.write(b);

However, class FileOutputStream does not deal with primitive data types

(double, float, int, etc.). So in order to write out a double number, we need

to engage the DataOutputStream class, which implements the writeDouble

method. DataOutputStream converts the received argument to an array of

bytes and passes each byte, one by one, to the underlying stream by calling

the write method of the underlying stream:

DataOutputStream dataout;

dataout = DataOutputStream(fileout);

Now, we can call the writeDouble method of DataOutputStream that will

convert the double number to bytes and pass them to FileOutputStream via

the write method:

dataout.writeDouble(123.4);

Double number

DataOutputStream

FileOutputStream
File

dataout will be calling the
fileout.write() method for each
output byte.

137

In general, the chain of streams is constructed from the bottom up:

C c = new C();

B b = new B(c);

A a = new A(b);

// or just:

A a = A(new B(new C)));

The data is passed between output streams as follows:

In order of this mechanism to work, the following requirements must be met:

Each output stream must be a subclass of the class OutputStream and has
the constructor streamName (OutputStream s)

Each output stream has to implement the following methods defined in
the OutputStream class:

- write(int i) - mandatory
- write(byte[] b) - optional
- write(byte[] b, int offset, int length) - for buffered outputs

Classes in the output stream chain should not extend each other;
otherwise it would be not possible to call the write method of the top class
due to polymorphism.

There are quite a few byte output streams, but reviewing all of them would

not add much to the general understanding of the concept of input/output

streams, so we give you a single example of creating a custom byte output

stream.

Object a:
a.write(…)
{
 conversion
 b.write(…)
}

Object b:
write(…)
{
 conversion
 c.write(…)
}

Object c:
write(…)
{
 conversion
 write(…)
}

138

// Example of sending a double number to custom myOutputStream

// though DataOutputStream and BufferedOutputStream

import java.io.*;

class myOutputStream extends OutputStream {

 public void write(int i) { }

 public void write(byte[] b, int offset, int len)

 {

 System.out.println("Received “ + len + “bytes”);

 }

}

class testMyStream {

 public static void main (String args[])

 {

 myOutputStream() myout;

 BufferedOutputStream buffout;

 DataOutputStream dataout;

 try {

 myout = new myOutputStream();

 bufout = new BufferedOutputStream(myout);

 dataout = new DataOutputStream(bufout);

 dataout.writeDouble(123.4);

 dataout.flush();

 }

 catch (IOException e)

 {

 System.out.println("I/O error");

 }

 }

}

The above program produces this output:

“Received bytes: 8”

Where the output stream classes are

Not used by the buffered output,
but must be implemented

This method
will be called
by bufout

An IOException can be thrown
by the output stream classes;
must be caught

Push the data out of the buffer

The 123.4 will be
converted to 8
bytes by dataout
and put into a
buffer by bufout

139

Character Output Streams

All character data in Java is represented in the Unicode format. The character

output stream classes convert Unicode characters into their local

representation (e.g. ASCII format) before sending them to output devices or

other streams. Another function of the character output streams is to

generate a character representation of any primitive type, as well as objects.

This is implemented via the print and println methods of the class

PrintWriter. These methods are overloaded (i.e. there are multiple versions

of them) and can accept all primitive data types, Strings, character arrays, or

objects.

Similar to the byte output stream classes that extend the OutputStream class,

the character stream classes extend the Writer abstract class and implement

its write methods.

The following program uses two different character output streams to write

an array of characters into a file:

import java.io.*;

class testCharStreams {

 public static void main (String args[]) {

 char[] c = {'a', 'b', 'c'};

 FileWriter fileout;

 PrintWriter printout;

 try {

 fileout = new FileWriter("write.txt");

 fileout.write(c, 0, 3);

 fileout.flush();

 printout = new PrintWriter("print.txt");

 printout.println(123.4);

 printout.flush();

 }

 catch (IOException e) {

 System.out.println("I/O error");

 }

 }

}

Push data out of the buffer

Put the first three
characters of array c
into an internal buffer

Convert the double
number 123.4 into a
character
representation and
put it into a buffer Push data out of the buffer

140

Byte Input Streams

Byte input streams are used to receive (read) a sequence of bytes. All classes

of this group have to extend the InputStream abstract class and implement

its read methods:

abstract int read ();

int read (byte[] b); // optional

int read (byte[] b, int offset, int len); // optional

Note: the read methods return the integer value -1 when the end of the

stream is reached.

In addition to the read methods, the InputStream class provides several other

methods for supporting the so-called markable streams. With markable

streams, you can mark a current position within the stream and later return

to that position. The markSupported method can be used to check if a stream

is markable.

Below is an example of reading integers from a file:

// Assumption: a set of integer values were written into the

// “test.txt” file via DataOutputStream.

import java.io.*;

class testByteInputStream {

 public static void main (String args[]) {

 boolean EOF = false;

 int i;

 try {

 File myFile = new File("test.txt");

 FileInputStream filein = new FileInputStream(myFile);

 DataInputStream datain = new DataInputStream(filein);

 while (!EOF) {

 try {

 i = datain.readInt();

 System.out.println("i=" + i);

 }

 catch (EOFException e) {

 EOF = true;

 }

 }

 }

 catch (IOException e) { System.out.println("I/O Error"); }

 }

}

Catch the end-of-file

Read next integer from file

Get access to the test.txt file
This stream will be reading
bytes from file test.txt

This stream will be converting
bytes to the proper data type

141

Character Input Streams

Character input streams are represented by a group of classes extending the

abstract class Reader. Their purpose is to read characters from different

sources in their native (local) encoding format and convert them into the

Unicode format. Each input stream class has to implement the read methods:

int read (); // read a single character

int read (char[] c); // read characters into an array

// reads into a portion of an array:

abstract int read (char[] c, int off, int len);

Note: the read methods return the integer value -1 when the end of the

stream is reached.

In addition to the read methods, the Reader class provides several other

methods for supporting the so-called markable streams. With markable

streams, you can mark a current position within the stream and later return

to that position. The markSupported method can be used to check if a stream

is markable.

Example:

// Print every other character of the alphabet

import java.io.*;

class testStringReader {

 public static void main (String args[]) {

 String s = "abcdefghijklmnopqrstuvwxyz";

 int i = 0;

 try

 {

 StringReader sReader = new StringReader(s);

 do

 {

 sReader.skip(1);

 i = sReader.read();

 if (i > 0)

 System.out.print((char) i);

 } while (i != -1);

 }

 catch (IOException e) {

 System.out.println("Error reading file");

 }

 }

}

This program creates the output: “dfhjlnprtvxz”

Detect the end-of-stream

Alphabet

Prepare to read string s

Skip 1 character Read next character and
return its integer value

Convert (cast) integer to character

142

Try-With-Resources

There is one nice enhancement added to the stream handling process in JDK7.

It allows to automatically release the resources held by a stream (e.g. close

the file) once we are done using the stream. This feature can be used with

the classes implementing the AutoClosable interface, which declares only

one method – close(). The close method will be called when the try block

ends.

The new format of the try block:

try (resource declaration and initialization)
{ usage of the resource }
catch (. . .) {. . .}

Example:

class myStream extends OutputStream{

 public void write(int i) {}

 public void write(byte[] b, int offset, int lng) {

 System.out.println("Received bytes: " + lng);

 }

}

class testStreams {

 public static void main (String args[]) {

 try (

 DataOutputStream dataout =

 new DataOutputStream (

 new BufferedOutputStream (

 new myStream ()))

)

 {

 dataout.writeInt(123);

 // dataout.flush();

 }

 catch (IOException e) {

 System.out.println("I/O error");

 }

}

The dataout.close() will be
automatically called at the end
of the try block

Start of the resource (stream)
declaration

The flush() or close() would be
required in a “traditional” try block.

143

Serialization

Byte output streams have the capability of writing Java objects from

computer memory into output devices or data streams, and byte input

streams can read them back into the computer memory. The process of

writing an object into a stream is called serialization, and the process of

reading an object from a stream is called deserialization.

Every Java object is a complex structure that may include methods, variables,

and even other objects. That structure is referred to as an “object graph”.

Java encodes all data into a special internal format before writing it out into

a stream.

The implementation of serialization/deserialization is done by the

ObjectOutputStream and ObjectInputStream classes. Their main methods

are writeObject() and readObject(), respectively.

The writeObject method can serialize any object, as long as its class

implements the Serializable interface. The Serializable interface does not

declare any constants or methods; it is an indication that objects of this class

are allowed to be serialized.

Example:

// Write one object of class myClass into file object.txt

import java.io.*;

class myClass implements Serializable {

 private String name;

 myClass (String s) { this.name = s; }

 public String myName() {return name;}

 public static void main (String args[]) {

 // Write one object of class myClass to file object.txt

 try (

 ObjectOutputStream objout =

 new ObjectOutputStream(

 new FileOutputStream(

 new File("object.txt"))) ;

)

 {

 objout.writeObject(new myClass("First object"));

 }

myClass constructor

Instance method returning
the name variable

objout.writeObject()
method will be writing
objects into the file
object.txt via the
FileOutputStream

Create a new myClass
object and write it to a file

144

 catch (IOException e) {

 System.out.println("I/O error");

 }

// Read one object from the object.txt file

 try (

 ObjectInputStream objin =

 new ObjectInputStream(

 new FileInputStream(

 new File("object.txt"))) ;

)

 {

 Object obj = objin.readObject();

 myClass myObj = (myClass) obj;

 System.out.println(myObj.myName());

 }

 catch (IOException e) {

 System.out.println("I/O error");

 }

 catch (ClassNotFoundException e) {

 System.out.println("Class not found error");

 }

 }

}

When you serialize an object, you can choose not to serialize some of its

data members - primitive types or other objects. For this, you declare a vari-

able as transient. In the above example, to prevent the name variable from

being written out to the file, declare it as follows:

private transient String name;

During deserialization the transient variables are set to their default values –

zero for numbers, true/false for Boolean, and null for objects.

In the above example, if the name variable was declared as transient, the

output of the program would be “null” because strings are objects in Java.

A special situation will occur if your serializable class extends a non-

serializable class. During the deserialization process, an instance of the non-

serializable class (your superclass) will be created automatically using the no-

argument constructor. You have to make sure that such a no-argument

constructor of the superclass exists.

The objin.readObject()
method will be reading
objects from file object.txt
via FileInputStream

Read an object from file
as type Object

Cast the type of the just-
read object to myClass

Execute the instance
method myName

145

New Input/Output System - NIO

Since the inception of the language, Java’s approach to the input/output

operations was stream-oriented. The transmission of data between the

application and an external entity (e.g. a disk file) was seen as a stream of

single bytes or characters.

Based on the direction of the stream and the type of data transmitted,

streams are divided into four categories: byte input stream, byte output

stream, character input stream, and character output stream. Each of these

streams is represented by a group of Java classes, each extending,

respectively, InputStream class (byte input stream), OutputStream class

(byte output stream), Reader class (character input stream), or Writer class

(character output stream).

The common characteristic of all the above streams is that they are blocking

data streams. It means that the current execution thread of your application

is put on hold until the I/O request is completed.

In version 1.4 Java first introduced an alternative input/output system named

New Input Output, or just NIO, in which the I/O concept changed from the

stream-oriented to buffer/channel-oriented.

Here are the highlights of NIO features:

- All data is transmitted via a channel into or out of a buffer. The

application manipulates data directly in the buffer.

- Unlike standard streams, a channel can transmit data in both

directions.

- Channels are capable of operating in blocking mode, same as

streams, and in non-blocking mode. In the non-blocking mode, the

thread that issues an I/O request is not put on hold until the I/O

operation completes, but continues its execution.

- NIO also added the capability of handling multiple channels within a

single thread.

Application

Buffer
Source or target

of data channel

146

In addition to the above features, over time NIO was enhanced to work

together with standard I/O streams and to perform file system operations

(i.e. manipulation of files and directories).

Here are the main NIO classes and interfaces:

Buffer

The Buffer class is used to create buffers and manipulate the buffer’s

contents. There are sub-classes of the Buffer class to hold different

types of primitive data – ByteBuffer, CharBuffer, IntBuffer, etc.

Channel

The Channel is actually an interface implemented by various channel

classes: SocketChannel, DatagramChannel, SeekableByteChannel,

FileChannel, etc. It represents a connection to an entity capable of

performing I/O operations (file, network socket, etc.)

Selector

The Selector class allows a single application thread to handle

multiple channels.

(The usage of the Selector class is beyond the scope of this book.)

Files

The Files class provides methods to operate on files and directories.

It also can open standard byte streams (i.e. InputStream and

OutputStream) for reading from or writing to a file.

The first example illustrates the usage of Buffer, Channel, and Files for

passing unformatted data (bytes) between the application program and a

disk file via a blocking channel.

147

// Example of using NIO for writing to and reading from files

import java.io.*;

import java.nio.*;

import java.nio.file.*;

import java.nio.channels.*;

class testNIO {

 public static void main (String args[]) {

 byte[] bytes = {97, 98, 99};

 ByteBuffer buffer = ByteBuffer.allocate(16);

 try {

 Path path = Paths.get("testNIO.txt");

 SeekableByteChannel channel =

 Files.newByteChannel (path,

 StandardOpenOption.CREATE,

 StandardOpenOption.WRITE,

 StandardOpenOption.READ);

 buffer.put(bytes);

 buffer.rewind();

 channel.write(buffer);

 channel.position(1);

 buffer.rewind();

 channel.write(buffer);

 channel.truncate(3);

 channel.position(0);

 buffer.rewind();

 int i = channel.read(buffer);

 System.out.println("file length = " + i); // prints: 3

 channel.close();

 }

 catch (InvalidPathException e) {

 System.out.println("Invalid path");

 }

 catch (IOException e) {

 System.out.println("I/O error");

 }

 }

}

After the execution of the code, the file testNIO.txt will contain “aab”.

Byte array; represents
“abc” in character format

Allocates a 16-
byte buffer

Creates a path to file testNIO.txt

Creates a read/write channel
to file testNIO.txt; Allocates
the file if it does not exist

Puts the bytes array into a buffer

Repositions at the first byte of the buffer

Puts the buffer into a channel and into the file

Writes out the same buffer again
starting with the second byte of the file

Truncates the file to 3 bytes

Repositions at the beginning of the file

Reads the file into a buffer

148

The next example demonstrates how NIO and standard stream I/O can work

together to read the contents of a file.

// Print the testIO.txt file created in previous example

import java.io.*;

import java.nio.file.*;

class testNIOStream {

 public static void main (String args[]) {

 int i;

 try

 {

 Path path = Paths.get("testNIO.txt");

 InputStream stream =

 Files.newInputStream(path);

 do

 {

 i = stream.read();

 if (i != -1)

 { System.out.println((char) i); }

 } while (i != -1);

 stream.close();

 }

 catch (InvalidPathException e) {

 System.out.println("Invalid path");

 }

 catch (IOException e) {

 System.out.println("I/O error");

 }

 }

}

Create a path to file testNIO.txt

Create a byte input stream for
the file specified by path.

Read next byte from the file and
put it into the integer I;
(i = -1) indicates the end of file.

Cast the i integer to a character
and print it

149

The last example in this chapter demonstrates some of NIO’s capabilities

when working with the file system.

// Print all the directories on the C: drive

import java.io.*;

import java.nio.file.*;

import java.nio.file.attribute.*;

class testNIOFileTree {

 public static void main (String args[]) {

 try {

 path = Paths.get("c:/");

 Files.walkFileTree(path, new CustomFileVisitor());

 }

 catch (IOException e) {

 System.out.println(e);

 }

 }

}

class CustomFileVisitor extends SimpleFileVisitor <Path> {

 public FileVisitResult visitFile (Path path,

 BasicFileAttributes attr)

 throws IOException {

 return FileVisitResult.CONTINUE;

 }

 public FileVisitResult preVisitDirectory (Path path,

 BasicFileAttributes attr)

 throws IOException {

 System.out.println(path.getFileName());

 return FileVisitResult.CONTINUE;

 }

 public FileVisitResult visitFileFailed (Path path, IOException e)

 throws IOException {

 return FileVisitResult.CONTINUE;

 }

}

Note: The FileVisitResult enumeration defines other constants besides

CONTINUE, controlling the execution of the method walkFileTree. The

SKIP_SUBTREE constant, for example, will force walkFileTree to skip visiting

the entries of the current directory.

Starting point of traversing the
file system

For each file, one of four pre-
defined methods will be called.
These methods are defined in the
class SimpleFileVisitor. We need to
override them if we want non-
default behavior.

This method is called when a
file is visited; we do nothing
and continue the scan.

This method is called before a
directory is visited; we print the
directory name and continue.

This method is called when an
error occurs while reading a file;
we do nothing and continue.

150

The Stream API

Stream API is a new application programming interface added in JDK 8. It is

not an extension to or a replacement of the previously discussed I/O streams

(byte and character streams). The stream API introduced a new stream

concept. It sees any stream as a sequence of objects on which various

manipulations are performed. Using the stream API classes, we can apply

different transformations to the stream (sorting, filtering, etc.) and produce

either another stream (i.e. sequence of objects) or a final result. There are no

ultimate “destination points” like files or network sockets. For example, we

might want to find the array element with the highest value. In this case the

result is not a destination, but rather some value derived from the source

data, and the whole process resembles a database query. Note that the data

source remains unchanged in stream processing.

Let’s start with a very small and simple example.

// Find the lowest value stored in an array of integers

import java.util.*;

import java.util.stream.*;

class testStreamAPI {

 public static void main (String args[]) {

 int[] integers = {8, 5, 7, 2, 3, 4};

 IntStream intstream = Arrays.stream(integers);

 OptionalInt val = intstream.min();

 System.out.println(val.getAsInt());

 }

}

What should be noted about this example is that the min() method applied

to the stream produces a final result, i.e. the result is not a stream anymore.

Methods that produce final results are known as terminal operations, which

consume the stream. Other methods that return the result as another stream

are called intermediate operations. The next example presents two-stage

stream processing involving intermediate and terminal methods.

The static method stream()
of class Arrays converts the
array integers into a
sequential stream of
integers

The min() method of IntStream
finds the minimum element of the
stream and returns it as an
OptionaInt object

The getAsInt() method of the OptionaInt object
retrieves the integer value.

151

Let’s say that we have an array of double numbers and we want to calculate

the sum of all elements, but first round them up to the next larger integer.

This can be accomplished with a single line of code, but we will present and

explain each step of the process.

The first step is to convert the array of doubles into a stream. We can use the

static method stream of the class Arrays that returns a sequential stream of

type DoubleStream:

double[] doubles = {1.5, 2.6, 3.3};

DoubleStream dblstream = Arrays.stream(doubles);

The next step is to transform the stream of doubles into a stream of integers

while rounding each double to the next larger integer. We can utilize the

mapToInt method of the interface DoubleStream for this. The mapToInt

method is declared as follows:

IntStream mapToInt(DoubleToIntFunction mapper)

It accepts an object of the functional interface DoubleToIntFunction, applies

its method applyAsInt to each element of the stream, and returns the new

IntStream. So, we need to create an object of type DoubleToIntFunction,

implementing the method applyAsInt according to our needs. The easiest

way to do this is by using a lambda expression:

DoubleToIntFunction mapper = n -> (int) (n + 0.5);

This statement will create the object mapper of type DoubleToIntFunction

with the applyAsInt method defined as follows:

int applyAsInt (double n) { return (int) (n+0.5); }

Now we’re ready to transform a DoubleStream into an IntStream:

IntStream intstream = dblstream.mapToInt(mapper);

The final step is to calculate the sum of all elements of the integer stream by

using the sum() method of IntStream:

int sum = intstream.sum();

When put together, the code will look as follows:

double[] doubles = {1.5, 2.6, 3.3};

DoubleStream dblstream = Arrays.stream(doubles);

DoubleToIntFunction mapper = n -> (int) (n + 0.5);

IntStream intstream = dblstream.mapToInt(mapper);

int sum = intstream.sum();

152

The result calculated by this code is 8.

Now, as mentioned before, the whole process can be expressed in one line:

int sum = Arrays.stream(doubles).mapToInt(n -> (int) (n + 0.5)).sum();

Note, if we need to put more complex logic into the mapper (i.e. into the

applyAsInt method), we can define a custom method and specify it in the

lambda expression:

public static int round(double n) {

 int i = (int) (n + 0.5); // round the double number

 System.out.println(“in=” + n + “ out=” + i);

 Return i;

}

. . .

int sum = Arrays.stream(doubles).mapToInt(n -> round(n)).sum();

The mapToInt() method is an intermediate operation - it accepts a stream

and returns another stream. The sum() method is a terminal operation – it

consumes the stream and returns a final result.

The next example demonstrates the process of iterating through all elements

(objects) of a stream. We utilize the forEach() instance method of class

Stream to perform the loop. The forEach() method is declared as follows:

forEach (Consumer<? super T> action)

For each object of the stream, the forEach() method invokes the accept()

method of Consumer, providing it with the object retrieved from the stream.

The Consumer is a functional interface, so an object of type Consumer can be

created either via a lambda expression or by using a method reference. Both

approaches are presented in the following example.

DoubleStream

IntStream

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

153

// Using the forEach() method of class Stream

import java.util.*;

import java.util.stream.*;

class testStream {

 public static void main (String args[]) {

 String[] words = {"One", "Two", "Three"};

 Stream<String> stream;

 stream = Arrays.stream(words);

 stream.forEach(w -> System.out.print (w));

 stream = Arrays.stream(words);

 stream.forEach(System.out::print);

 }

}

The above code prints two lines:

“OneTwoThree”

“OneTwoThree”

Before we conclude this overview of the Stream API, we want to mention that

one of the benefits offered by the Stream API is parallel processing. The

operations on a stream can occur in parallel, assuming the environment

supports parallelism. To switch to parallel processing, use the parallel()

method:

int sum = Arrays.stream(doubles)

 .parrallel()

 .mapToInt(n -> round(n)).sum();

This lambda expression will
create a Consumer object
with its accept() method
implemented as
System.out.println(w)

This method reference will
create a Consumer object and
pass to it the print method of
the System.out object

154

Observable and Observers

The Observable class, together with the Observer interface offers a simple

mechanism of establishing communication between objects. One object

(observable object) can be watched (observed) by one or more other objects

(observers). When needed, the object being observed can notify its

observers, and they can perform some actions.

Example:

import java.util.*;

public class myClass extends Observable implements Observer {

 String myName;

 public myClass (String s) {myName = s;}

 public void update(Observable m, Object arg)

 { System.out.println(myName + " received a " + arg +

 " from " + m.myName); }

 public static void main (String args[])

 {

 myClass m = new myClass ("manager");

 m.addObserver(new myClass ("Bob");

 m.addObserver(new myClass ("Joe");

 m.setChanged();

 m.notifyObservers("message");

 }

}

The output of this program:

“Bob received a message from manager”

“Joe received a message from manager”

class M extends Observable
m = new M()
m.addObserver(w1)
m.addObserver(w2)
. . .
m.setChanged()
m.notifyObservers()

class W1 implements Observer
w1 = new W1()

class W2 implements Observer
w2 = new W2()

w1.update()

w2.update()

Objects of myClass can act as
observer and observable.

The update() method of each
observer will be called;
Note: m will be passed to
update() automatically.

The setChanged() must
be called before each
notification

Create two new objects
and register them as
observers of object m.

155

Enumerations

The idea behind enumerations is to provide an easy way of defining sets of

constants not bound to any primitive or object types, which usually restricts

the scope of their usage. Java’s solution to this problem was a new type of

classes, whose instances are treated as constants. Here is a sample

declaration of an enumeration class:

enum myEnum { MIN, MAX }

Notice the usage of enum instead of class. The MIN and MAX are the

instances (objects) of the class myEnum and are called enumeration

constants. They are implicitly declared as public, static, final. The

enumeration constants are created (instantiated) automatically, when the

enumeration class is first referenced in the program. Therefore, you do not

need to use the new operator (in fact, you cannot) to create an object of the

enumeration class. Besides these differences, the enumeration classes are

still Java classes, and as such, they can have static and instance variables,

methods, statement blocks, and even constructors.

Example:

enum myEnum { MIN, MAX;

 static { System.out.println(“Class myEnum loaded"); }

 { System.out.println(this + " created "); }

 public static void main (String args[]) {

 myEnum min, max;

 }

}

This program produces the output:

MIN created

MAX created

Class myEnum loaded

Now, let’s see what we can do with the enumerations. The best way to

illustrate the benefits of enumerations is to go through examples. Imagine

Enumeration constants

First reference to class myEnum;
Declares two variables of type myEnum

Static statement block; executes when
class myEnum is loaded into the JVM

Instance statement
block; executes when
an instance of the
class is created.

156

that we have a method that monitors weather conditions at major national

airports. By employing enumeration, we can ensure, at compile time, that our

method receives requests only for a predefined set of airports, which reduces

the risk of the run-time errors:

class testEnumAirport {

 enum Airport { JFK, PHL, MIA; }

 public static void main (String args[]) {

 Airport a;

 a = Airport.MIA;

 System.out.println(getTemp(a)); // prints: 80.0

 // System.out.println(getTemp("JFK"));

 }

 public static double getTemp (Airport a) {

 switch (a) {

 case JFK: return 60.0;

 case PHL: return 70.0;

 case MIA: return 80.0;

 default: return 0.0;

 }

 }

}

It looks beneficial, but what if we want to provide some other information

about the airports, like state and city names? This can also be easily achieved

with the help of enumerations. As an object, each enumeration constant can

have instance variables, and those variables could hold the state code and

city name. All we need to do is to declare the instance variables, define a

constructor that initializes them, and provide their initial values for each

enumeration object:

class testEnumAirport {

 enum Airport {

 JFK("NY","New York"),

 PHL("PA","Philadelphia"),

 MIA("FL","Miami");

 String state, city;

 Airport (String s, String c) {this.state = s; this.city=c;}

 }

 public static double getTemp(Airport a) {return 80.0;}

 public static String getCity(Airport a) {return a.city;}

 public static String getState(Airport a) {return a.state;}

It’s impossible to provide
the getTemp() method
with an object of any other
type except Airport

An enumeration can be
declared within another class

Instance variables

Specify the initial values of instance
variables for each enumeration
constant
 Constructor

initializing the
instance variables

157

 public static void main (String args[]) {

 Airport a;

 a = Airport.MIA;

 System.out.println(getCity(a) + “, ”

 + getState(a) + ” temp=”

 + getState(a));

 }

}

This program produces the output: Miami, FL temp=80.00

We have mentioned already that enumerations are classes of a special type.

When you create an enumeration class, it implicitly extends the regular Enum

class. All the methods defined by the Enum class are available to any

enumeration you create. We will present some commonly-used methods.

The static method values() returns an array of enumeration constants in the

order they were declared:

enum Airport { JFK, PHL, MIA; }

. . .

 for (Airport a : Airport.values())

 { System.out.println(a); }

The static method valueOf() returns the enumeration constant (object) with

the specified name:

Airport a = Airport.valueOf(“PHL”);

The instance method ordinal() returns the position of the enumeration

constant within the declaration, staring with zero:

enum Airport { JFK, PHL, MIA; }

. . .

System.out.println(Airport.JFK.ordinal()); // prints: 0

System.out.println(Airport.PHL.ordinal()); // prints: 1

System.out.println(Airport.MIA.ordinal()); // prints: 2

for-each loop can be
used to iterate over the
enumeration objects

158

Regular Expressions

The validation and manipulation of the contents of text strings can be found

in many applications. For example, we might need to check if an email

address entered has valid format. The Regular Expressions API is a powerful

tool that a Java programmer can utilize to perform text validation, parsing,

tokenization, or other type of manipulations.

The Regular Expression API consists of two utility classes: Pattern and

Matcher. The Pattern class is used to build regular expressions, which are

referred to as patterns. The Matcher class is used to apply the pattern to a

text string. The usage of these two classes is quite simple but the challenge is

in mastering regular expression skills, which, unfortunately, is beyond the

scope of this book. Nevertheless, we will go through several examples to

make you familiar with the operations that can be performed on text strings,

and also to cover the basics of regular expressions.

Regular Expressions Basics

A regular expression is a sequence of characters defining a pattern that can

be matched against a text string. For example, the regular expression “abc”

can be used to check if a text contains the “abc” sequence.

There are several categories of regular expressions. We will present three of

them.

The first category of regular expressions is called “characters” and includes

most of the characters and also the escape sequences, like \t (tab character),

or \n (newline character). “abc” is an example of the character regular

expression.

The second category of regular expressions is called “character classes” and

represents a range of valid characters. For example, the [a-zA-Z] pattern will

match any lower-case or upper-case letter.

For some of the character classes constructs Java provides a shorthand form:

. - matches any character

\s - matches the white space character

\d - matches any digit

159

\w - matches any word character

. . .

The third category of regular expression constructs is called “quantifiers”.

Quantifier can be appended to any character or character class construct to

specify the allowed number of occurrences for the construct:

? - occurs once or not at all

* - occurs zero or more times

+ - occurs one or more times

{n} - occurs exactly n times
{n,} - occurs at least n times
{n,m} - occurs from n to m times

There are other regular expression groups, but their review is beyond the

scope of this book.

Regular Expressions Examples

Before we start with examples, we need to mention that the Pattern and

Matcher classes have no constructors. Pattern objects are created by the

static method compile() of class Pattern, and Matcher objects are created by

the instance method matcher() of class Pattern.

Example: Validate if the whole text matches the pattern.

String regex;

Pattern p;

Matcher m;

p = Pattern.compile(“[a-z]+”);

m = p.matcher(“test”) ;

System.out.println(m.matches()); // prints: true

Example: Validate the email format.

 regex = "[a-zA-Z0-9]+"

 + "@"

 + "\\w+"

 + "\\."

 + "com";

 p = Pattern.compile(regex);

 m = p.matcher("John123@site.com");

 System.out.println(m.matches()); // prints: true

Example: Extract the user name and website address from email.

 p = Pattern.compile(“@”);

 String[] ss = p.split(“John@site.com”);

[a-z]+ matches one or
more lower case letters

Matches any number of letters or digits

Matches the character ‘@’

Matches any number of word characters

Matches the character ‘.’

Matches the string “com”

Create Matcher object m

160

 System.out.println(ss[0]); prints: John

 System.out.println(ss[1]); prints: site.com

The next example is more complicated. It uses the splitAsStream() method of

the Pattern class to obtain the distinct (unique) words from the input text. It

also uses a lambda expression to print the results from within the forEach()

method of the Stream class.

Example: Extract the distinct (unique) words from string.

import java.io.*;

import java.util.stream.*;

import java.util.regex.*;

class testRegex

{

 public static void main (String args[])

 {

 String text = “a b c a b c def b b b g”;

 p = Pattern.compile(" ");

 Stream<String> stream = p.splitAsStream(text);

 Stream<String> unique = stream.distinct();

 unique.forEach(w -> System.out.print(w + “ “));

 // same result can be achieved in one statement:

 Pattern.compile(" ")

 .splitAsStream(text)

 .distinct()

 .forEach(w->System.out.print(w + “ “));

 }

}

The output of the above program is: “a b c def g “.

Example: Replace all blank sequences with semicolons.

 String text = “One Two Three Four”;

 System.out.println

 (

 Pattern.compile("\\s+").matcher(text).replaceAll(";")

);

 // prints: One;Two;Three;Four

Matches any number of blanks

161

Reflection API

Every Java program performs some manipulations on objects of various types

- classes, interfaces, enumerations, arrays, primitive types, etc. At run time,

for each type of objects used by the program, the Java Virtual Machine (JVM)

creates an instance of class Class, which provides methods to examine the

properties of the object’s type. For example, when you declare a class A, the

JVM builds a corresponding Class object, providing all information about class

A – its methods, interfaces, annotations, fields, etc.

The Reflection API is a very important component of the Java language. It is

used extensively by Java Beans (not covered by this book), by various test

tools, when working with annotations, etc. You can also use it for debugging

purposes.

Obtaining the Class object

There are three primary methods of obtaining the Class object for a particular

class.

When you have an instance of the class you want to explore, you can call the

instance method getClass() defined by class Object and available to all Java

objects:

class myClass { ... }

. . .

myClass obj = new myClass();

Class c = obj.getClass();

Object c of type Class
represents the myClass class

162

In the case when no instances of a class are available you can employ the so-

called class literal to obtain the Class object. A class literal is formed by the

class name appended with .class:

interface myInterface {

 Void myMethod();

}

class myClass { ... }

. . .

Class c = myClass.class;

Class i = myInterface.class;

Finally, you can use the static method forName() of the class Class. This

method accepts a fully-qualified name of a class and returns its Class object.

Note, that the forName() method can throw the ClassNotFoundException.

class myClass { ... }

. . .

Class c = Class.forName(“myClass”);

Class s = Class.forName(“java.lang.String”);

Object c of type Class
represents the myClass class

Object i of type Class represents the
myInterface interface

Object c of type Class
represents the myClass class

Object s of type Class
represents the String class

163

Discovering Class Members

Once you get the Class object for the class being examined, you can use

various methods of Class to obtain more information about the class. We will

give you one example of obtaining the names of all methods and fields

declared by a class. Please check the java.lang.reflect package for other

reflection classes and methods.

import java.lang.reflect.*;

class myClass {

 private String name;

 void setName (String s) {this.name = s;}

 String getName () {return name;}

 public static void main (String args[]) {

 Class c = myClass.class;

 try {

 Method[] methods = c.getDeclaredMethods();

 for (Method m: methods) {

 System.out.print(“ Method:” + m.getName());

 }

 Field[] fields = c.getDeclaredFields();

 for (Field f: fields) {

 System.out.print(“ Field:“ + f.getName());

 }

 }

 catch (Exception e) {System.out.println(e);}

 }

}

The above code produces the output:

Method:main Method:getName Method:setName Field:name

Object c of type Class
represents the myClass class

Returns an array of Method objects

Returns an array of Field objects

164

Annotations
Annotations provide a standard way of documenting Java programming

code. The following characteristics make the annotations distinct from other

documenting means:

- Annotations are closely associated with the program constructs they

annotate; this reduces the possibility of misrepresentation.

- Annotations can be used as instructions to the Java compiler to per-

form certain actions, e.g. to suppress some warning messages.

- Annotations are Java objects that can be accessed at run time by the

application program containing annotations or by third-party tools.

Important note: annotations have no effect at run time.

How do we create an annotation?
In a nutshell, annotations are regular Java classes, only declared and handled

differently. All annotation classes (referred to as annotation types) are

created by implementing the Annotation interface. However, instead of

using the implements keyword in the class declaration, we specify the

annotation class as @interface:

@interface myAnnotation {
 Type method();
 Type method() default value;
 . . .

}

Example:

@interface Author {

 String name();

 String version() default “1.0”;

}

Any declaration in the program source, even the annotation itself, can be

annotated. Annotation should precede the declaration being annotated:

@Author (name=”John Doe”, version=”1.2”)

class myClass { … }

. . .

@Author (name=”Bob”)

public void myMethod (int n) { … }

Only methods without bodies are
allowed in the annotation declarations

A default value returned by the
method can be declared.

Method myMethod is annotated.
it’s OK to skip the version because it
was defined with default return value

Class myClass is annotated with
the Author information

165

What can we do with annotations?
Before answering this question, we need to review the lifecycle of the Java

program, which can be broken into four stages:

- Source code

- Compilation

- Byte code

- Execution (run time)

The initial question needs to be broken down for each stage: “What can we

do with annotations in the source code, during compilation, while in byte

code, and at the run time?”

As we have already seen, the source code contains the annotation

declarations. From the programmer’s standpoint, not much can be discussed

here except the specifics of the declaration syntax, which will be covered

later.

The next stage is compilation. The compiler interprets the annotation

declarations and creates proper Java objects, but does the compiler do

anything else with the annotations? The answer is yes - there is a set of pre-

defined (i.e. built-in) annotations, which serve as instructions to the compiler.

They all are defined in the java.lang.annotation package:

@Retention

@Target

@Inherited

@Override

@SuppressWarnings

@Deprecated

@SafeVarargs

@Repeatable

@FunctionalInterface

As all the annotations, the pre-defined annotations should precede the

annotated declaration (or another annotation). For example, the following

code will instruct the compiler to check if the someMethod() is indeed an

override of the same method of the superclass. If the superclass of the

current class does not declare the someMethod(), a compile-time error will

occur.

@Override

public void myMethod() {…}

166

Other, not pre-defined annotations (user-defined, or declared in other Java

packages), are controlled by the @Retention pre-defined annotation. The

@Retention annotation can specify three values defined by the

RetentionPolicy enumeration:

@Retention (RetentionPolicy.SOURCE)

@Retention (RetentionPolicy.CLASS)  default value

@Retention (RetentionPolicy.RUNTIME)

Note: @Retention can annotate only another annotation declaration.

Here is the effect of the above constants:

- SOURCE – annotation stays only in the source (.java file) and is dis-

carded after compilation.

- CLASS – annotation will be stored in the bytecode (.class file) but will

be discarded before the execution; this is the default value.

- RUNTIME – annotation will be available at run time.

The SOURCE-level annotations are not processed by the Java compiler (with

the exception of the pre-defined annotations). However, as of Java SE 6, you

can add annotation processors to the Java compiler, which are stand-alone,

custom tools for processing annotations. They are out of the scope of this

book.

The CLASS-level annotations are too specialized and therefore are also

beyond the scope of our discussion, so let’s talk about run-time processing.

Processing Runtime Annotations
When the @Retention(RetentionPolicy.RUNTIME) annotation is specified

for another annotation (custom defined, or declared in one of the Java

packages), it makes that annotation available at the run time. Since Java does

not provide any special run-time mechanisms of handling the annotations,

it’s up to us what to do with them.

As we already mentioned, annotations are objects of Java classes

implementing the Annotation interface. What it means is that if we can

obtain a reference to the object of some annotation, we can invoke its

method(s) to retrieve the declared values:

167

@interface Author {

 String name();

}

@Author (name=”Bob”)

class myClass {

 public static void main (String args[]) {

 Author a = (myClass.class).getAnnotation(Author.class);

 System.out.println(a.name()); // would print: Bob

 }

}

To understand how to access an instance of an annotation, we need to recall

the purpose of annotations, which is to provide some supplemental

information about other declarations. The @Author (name=”Bob”) above

creates an object of type Author, associated with the class myClass, and

whose method name() returns the value “Bob”.

As we explained previously in the Reflection chapter, at run time, each class

is represented by a Class object. The association between the annotation and

the annotated class can be presented with this diagram:

myClass.class is the instance of the Class object representing myClass. (We

could use the getClass() method on myClass instance, but such an instance

might not be created). Then, we can use the instance method

getAnnotation() to obtain the instance of the Author annotation. The final

step is to execute the name() method of the annotation to retrieve the value

“Bob”.

Here is the statement obtaining the Author object annotating myClass:

Author a = (myClass.class).getAnnotation(Author.class);

Note that we provided Author.class to the getAnnotation() method. This was

necessary because myClass could have more than one annotation, and the

getAnnotation method would need to know which one to retrieve.

myClass.class

Class object

getAnnotation()

Author object

name() “Bob”

168

Here is a sample code accessing an annotation at run time:

import java.lang.reflect.*;

@interface Author {

 String name();

}

@Author (name=”Bob”)

class myClass

{

 public static void main (String args[])

 {

 Author a = (myClass.class).getAnnotation(Author.class);

 System.out.println(a.name()); // prints: “Bob”

 }

}

The same technique can be used for annotated methods, fields, etc. For

example, if the above annotation was used to annotate the myMethod(String

s) method, the access to the annotation object would be as follows:

Author a = (myClass.class)

 .getMethod(“myMethod”, String.class)

 .getAnnotation(Author.class);

Annotation Types
Annotation coding semantics allows dropping some parts of the annotation

constructs when the corresponding information can be derived from the

context. For example, if the annotation does not have any parameters, the

following two declarations are equal:

@interface MyAnnotation { }

@interface MyAnnotation

This is driven by the number of elements an annotation has. Based on this,

Java recognizes the following types of annotations:

 Normal Annotation

 Single Element Annotation

 Marker Annotation

Declares the annotation Author

Annotates the myClass

Obtains the instance of Author
associated with myClass

169

A Normal Annotation is an annotation explicitly declaring all components of

the annotation constructs, for example:

@interface Book {

 String name();

 int edition() default 1;

}

@ Book ({ name=”My Book”,version=2; })

class myClass {…}

A Single-Element Annotation is a shorthand designed for use with

annotations declaring a single element. If the element name is value, it can

be omitted from the annotation:

@interface Name {

 String value()

}

@Name (value=”Bob”)

@Name (”Bob”)

It is also valid to use single-element annotations for annotations with multiple

elements, so long as one element is named value and all other elements have

default values. All below constructs are valid:

@interface BookName {

 String value();

 int edition() default 1;

}

@ BookName ({ name=”My Book”,edition=2; })

@ BookName (name=”My Book”)

@ BookName (”My Book”)

A Marker Annotation is shorthand for annotations without elements. All

below constructs are valid:

@interface Book { }

@interface Book

@Book ()

@Book

Marker annotation

Single-value annotation with other
elements declared with default values

Declares the Book annotation with two
elements – name and edition

Annotates myClass with Book
annotation; both elements
are specified.

170

Restricting the Usage of Annotations
The pre-defined annotation @Target can be used to specify the types of

items to which another annotation can be applied. Valid values are defined

by the enumeration ElementType:

@Target (ElementType.ANNOTATION_TYPE)

@Target (ElementType.CONSTRUCTOR)

@Target (ElementType.FIELD)

@Target (ElementType.LOCAL_VARIABLE)

@Target (ElementType.METHOD)

@Target (ElementType.PACKAGE)

@Target (ElementType.PARAMETER)

@Target (ElementType.TYPE)

@Target (ElementType.TYPE_PARAMETER)

@Target (ElementType.TYPE_USE)

Example:

// @Author can only be used to annotate constructors and methods:

@Target ({ ElementType.CONSTRUCTOR, ElementType.METHOD })

@interface Author {

 String name()

}

@ AUthor (name = ”Joe”)

class myClass {…}

@ AUthor (name = ”Bob”)

myClass () {…}

@ Author (name = ”Mike”)

public void myMethod () {…}

Invalid annotation:
cannot annotate classes

Valid annotation:
can annotate class constructors

Valid annotation:
can annotate methods

171

JavaFX API
JavaFX is a set of graphics and media packages that enables developers to

create rich client applications with high-performance modern graphical user

interfaces featuring audio, video, graphics, and animation.

Each JavaFX application consists of two major parts: application and stage.

The application (represented by the Application class) is responsible for

building the stage and its elements, and for defining the processing logic. The

stage (represented by the Stage class and other classes) is a hierarchical

collection of objects defining the visual appearance of the application.

This diagram presents the structure of JavaFX applications:

The Stage defines the environment for the JavaFX application. A default Stage

instance is provided by the Java run-time environment. However, you can

create multiple Stage instances (objects).

The Scene is a container (a window) that holds the contents (i.e. elements) of

the Stage. The contents of a Scene create what is referred to as a scene

graph.

The Root Node determines the layout of the elements of the Scene.

The Node represents an element of the Scene. It could be a button, a text

box, a geometrical shape, an animation, etc.

The Application class launches the JavaFX applications. The launch() method

executes the init() method, then start(), and after the Stage is finished (e.g.

the window is closed) – the stop() method.

The following example uses JavaFX to create a window displaying a circle and

a rectangle:

myClass extends Application

class Stage

class Scene

Root Node

Node

Node

Node

Node

launch()

init()
Builds the Stage elements

start()
Builds the Stage elements
Defines the processing logic

stop()
Cleanup

172

import javafx.application.*;

import javafx.stage.*;

import javafx.scene.*;

import javafx.scene.shape.*;

public class testJavaFX extends Application {

 Circle circle;

 Rectangle rectan;

 public static void main(String[] args) {

 System.out.println("JavaFX: launch");

 launch(new String[1]);

 }

 // -------------

 public void init() {

 System.out.println("JavaFX: init");

 System.out.println(Thread.currentThread().getName());

 circle = new Circle (100, 40, 30);

 rectan = new Rectangle (80, 80, 40, 40);

 }

 // --------------

 public void start(Stage stage) {

 System.out.println("JavaFX: start");

 System.out.println(Thread.currentThread().getName());

 Group rootNode = new Group();

 rootNode.getChildren().add(circle);

 rootNode.getChildren().add(rectan);

 Scene scene = new Scene(rootNode, 200, 200);

 stage.setTitle("My JavaFX Application");

 stage.setScene(scene);

 stage.show();

 }

 // -------------

 public void stop() {

 System.out.println("JavaFX: stop");

 System.out.println(Thread.currentThread().getName());

 }

}

In addition to the new window displayed, this program prints the following

text to the console:

JavaFX: launch

JavaFX: init

Creates an instance of class
testJavaFX and executes the init(),
start(), and stop() methods.
The String[] parameter must be
provided but can be empty.

The init() method is optional; all
declarations can be made in start()

We can create the nodes in
the init() method.

Add two nodes to the group

Declare a group of nodes

Place the nodes into a
200x200 pixel window

The stop() method is optional;

Place the scene on the stage

Open the window.
Start executing JavaFX application.

Build the stage and start the
execution of the JavaFX
application

173

JavaFX: - Launcher

JavaFX: start

JavaFX: Application Thread

JavaFX: stop

JavaFX: Application Thread

Note 1: The main(), init(), and stop() methods are optional. The start()

method is sufficient for starting a JavaFX application.

Note 2: The init() method is running on the so-called “launching” thread, and

the start() and stop() methods are running on a separate “application”

thread. The output produced by the example illustrates the latter by

displaying the thread names during execution of each method.

As mentioned, same application can be written without the main(), init(), and

stop() methods:

import javafx.application.*;

import javafx.stage.*;

import javafx.scene.*;

import javafx.scene.shape.*;

public class testJavaFX extends Application {

 public void start(Stage stage) {

 Group rootNode = new Group();

 Circle circle = new Circle (100, 40, 30);

 Rectangle rectan = new Rectangle (80, 80, 40, 40);

 rootNode.getChildren().add(circle);

 rootNode.getChildren().add(rectan);

 Scene scene = new Scene(rootNode, 200, 200);

 stage.setTitle("My JavaFX Application");

 stage.setScene(scene);

 stage.show();

 }

}

174

Layouts
In the previous example, the location of the nodes (the circle and the

rectangle) within the scene (i.e. window) was specified explicitly. The root

node Group provides a container for holding other nodes, without any

attempts to arrange them in any particular way.

Layout containers or panes can be used to allow for flexible and dynamic

arrangements of the UI controls within a scene graph of a JavaFX application.

The JavaFX Layout API provides several container classes that can hold

components and arrange them according to pre-defined layout models. The

layout classes reside in the javafx.scene.layout.Pane package. We will show

you an example of using one of these layouts – TilePane. It places the nodes

in uniformly sized cells:

import javafx.application.*;

import javafx.stage.*;

import javafx.scene.*;

import javafx.scene.layout.*;

import javafx.scene.shape.*;

public class testJavaFX extends Application {

 public void start(Stage stage) {

 TilePane tile = new TilePane();

 for (int i = 0; i < 10; i++) {

 tile.getChildren().add(new Circle(20));

 }

 Scene scene = new Scene(tile, 200, 100);

 stage.setTitle("Tiles");

 stage.setScene(scene);

 stage.show();

 }

}

This program displays the following window:

175

Event Handling
When you interact with a GUI application, each action triggers an event.

Mouse move, mouse click, keyboard input, scroll, screen touch, swipe, etc. –

all are examples of events that can be captured by the JavaFX application and

processed.

The event handling mechanism employed by JavaFX is easier explained

through an example. Let’s say that we clicked on a button on the screen. This

action triggers a “mouse click” event. In JavaFX, an event is an instance of the

javafx.event.Event class or any subclass of Event, so JavaFX creates a

corresponding Event object for the event. The event object then “travels”

through the object hierarchy of the JavaFX application, from the Stage object

to the target node that was clicked (a Button), and then backwards. By

“travel” we mean “presented for processing”. The first path is called

“capturing phase”:

Stage  Scene Root Node  branch nodes (if any)  Target Node

The second path is called “bubbling phase”:

Target Node  branch nodes  Root Node  Scene  Stage

The following diagram illustrates the event handling mechanism:

Any time during the capturing or bubbling phase the event can be flagged as

“consumed” by executing the consume() instance method of class Event. This

stops further event propagation.

Presenting (i.e. delivering) an event to an object for processing does not imply

that the event will be or can be processed by that object. To be able to accept

Event object

Root Node

Node

Node

Stage

Scene

Bubbling phase of
event delivery.
Event handling.

Capturing phase
of event delivery.
Event filtering.

This node was clicked

176

and process an event, every object must register itself as an event handler

and implement some kind of event handling logic. Since events are delivered

to each object twice – during the capturing (or filtering) phase, and during

the bubbling (or handling) phase, the object can set up either an event filter,

or event handler, or both.

All nodes (i.e. subclasses of the Node class), as well as the Stage and Scene

classes define methods for registering and implementing event filters and

event handlers:

<T extends Event> void addEventFilter (EventType<T> eventType,

 EventHandler<? super T> eventFilter)

<T extends Event> void addEventHandler (EventType<T> eventType,

 EventHandler<? super T> eventHandler)

There are also so-called convenience methods for registering the event

handlers for different types of events. They are basically shorthand for the

addEventHandler methods. For example, this method registers an event

handler for the “mouse clicked” event:

void setOnMouseClicked(EventHandler<? super MouseEvent> value)

Let’s practice and create a couple of event handlers using the

addEventHandler() and setOnMouseClicked() methods.

The setOnMouseClicked method declares one argument – an object of

generic functional interface EventHandler, whose generic class parameter

can be the MouseEvent or any superclass of MouseEvent (e.g.

EventHandler<MouseEvent>, EventHandler<Event>, etc.).

The EventHandler functional interface declares the following method:

void handle(T event)

Next, we need to create an object of type EventHandler<MouseEvent>,

implement its handle() method, and pass this object as an argument to the

setOnMouseClicked() method. This can be accomplished in several different

ways, three of which are presented below.

http://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#addEventFilter-javafx.event.EventType-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#addEventFilter-javafx.event.EventType-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#setOnMouseClicked-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/MouseEvent.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html

177

The first way of registering an event handler with the setOnMouseClicked()

method is by using an anonymous class:

node.setOnMouseClicked
(

 new EventHandler<MouseEvent>()

 {

 public void handle(MouseEvent e)

 {

 … event handling logic …
 }

 }

);

The second way of using the setOnMouseClick() method is by using a lambda

expression:

node.setOnMouseClicked
(

 e -> {… event handling logic …}
);

The third way of using the setOnMouseClick() method is by using a method

reference:

class myClass {

 public static myClickHandler (MouseEvent e) {

 … event handling logic …
 }

 public static void main(String[] args) {

 . . .

 node.setOnMouseClicked (

 myClass::myClickHandler

);

 }

}

Note that the myClickHandler method must have same signature as the

handle method of the EventHandler interface, which is declared as follows:

void handle (T event)

The T is the event type we want to handle; in our case it is the MouseEvent.

Create an object of type
EventHandler<MouseEvent>

Implement the
handle() method of
the EventHandler
functional interface

This lambda expression creates an object
of type EventHandler<MouseEvent> with
its handle() method implemented as
specified in {…}

This method reference expression
creates an object of type
EventHandler<MouseEvent> with its
handle() method now pointing to the
myClickHandler() method

178

Now let’s create an event handler using the addEventHandler() method. The

format of the addEventHandler is this:

<T extends Event> void addEventHandler (EventType<T> eventType,

 EventHandler<? super T> eventHandler)

The first difference of this method from the previously reviewed

setOnMouseClicked method is that the EventHandler object can be of any

event type, not just MouseEvent. In fact, the EventHandler can be created for

the Event class and any subclass of the Event class. The second difference –

we need to tell the method which event type we will be processing by passing

it an object of type EventType<T>, where T can specify the Event class and

any of its subclasses.

Using a lambda expression, we can build an event handler for the “mouse

click” event as follows:

node.addEventHandler
(

 MouseEvent.MOUSE_CLICKED,

 e -> {… event handling logic …}

);

Note: The MouseEvent.MOUSE_CLICKED in this example is a static variable of type

EventType<MouseEvent> defined in the MouseEvent class, representing the

“mouse clicked” event type. Its definition is:

public static final EventType<MouseEvent> MOUSE_CLICKED

The registration of event filters is similar to the registration of event handlers

with the exception that there are no convenience methods provided.

Represents the event type
EventType<MouseEvent>

This lambda expression creates an object
of type EventHandler<MouseEvent>
with its handle() method implemented
as specified in {…}

http://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#addEventFilter-javafx.event.EventType-javafx.event.EventHandler-
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventHandler.html
http://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/MouseEvent.html

179

With the next example we will conclude this brief overview of the JavaFX API

features. The example illustrates everything we have learned so far about the

JavaFX event handling mechanism. When executed on a Windows system, it

will display the following window:

After you click anywhere within the black rectangle, the following messages

will be printed on the console:

Capturing phase: Stage clicked

Capturing phase: Scene clicked

Capturing phase: Group clicked

Capturing phase: Rectangle clicked

Bubbling phase: Rectangle clicked

Bubbling phase: Group clicked

Bubbling phase: Scene clicked

Bubbling phase: Stage clicked

To stop the JavaFX application, close the displayed window.

180

The JavaFX event handling example:

import javafx.application.*;

import javafx.stage.*;

import javafx.scene.*;

import javafx.scene.shape.*;

import javafx.event.*;

import javafx.scene.input.MouseEvent;

public class testJavaFX_events extends Application {

 public void start(Stage stage) {

 stage.addEventFilter(MouseEvent.MOUSE_CLICKED,

 e -> System.out.println("Capturing phase: Stage clicked"));

 stage.addEventHandler(MouseEvent.MOUSE_CLICKED,

 e -> System.out.println("Bubbling phase: Stage clicked"));

 Rectangle rect = new Rectangle(80, 30, 40, 40);

 rect.addEventFilter(MouseEvent.MOUSE_CLICKED,

 e -> System.out.println("Capturing phase: Rectangle clicked”));

 rect.setOnMouseClicked (

 e -> System.out.println("Bubbling phase: Rectangle clicked"));

 Group rootNode = new Group();

 rootNode.addEventFilter(MouseEvent.MOUSE_CLICKED,

 e -> System.out.println("Capturing phase: Group clicked"));

 rootNode.setOnMouseClicked (

 e -> System.out.println("Bubbling phase: Group clicked"));

 rootNode.getChildren().add(rect);

 Scene scene = new Scene(rootNode, 200, 100);

 scene.addEventFilter(MouseEvent.MOUSE_CLICKED,

 e -> System.out.println("Capturing phase: Scene clicked"));

 scene.setOnMouseClicked (new EventHandler<MouseEvent>() {

 public void handle(MouseEvent e)

 { System.out.println("Bubbling phase: Scene clicked"); }

 });

 stage.setTitle("JavaFX Events");

 stage.setScene(scene);

 stage.show();

 }

}

181

Reference Material

https://docs.oracle.com/javase/8/docs/technotes/guides/install/

Instructions on how to install and configure the Java platform for different

operating systems.

http://www.oracle.com/technetwork/java/javase/downloads/

Java SE downloads. The latest Java Development Kit (JDK) and Java Runtime

Environment (JRE) can be downloaded from this page.

http://docs.oracle.com/en/java/

The starting point for browsing the Java SE (Standard Edition), Java EE

(Enterprise Edition), and Java Micro Edition Embedded documentation.

http://docs.oracle.com/javase/tutorial/

Java SE tutorials. Hundreds of complete, working examples, and dozens of

lessons.

http://docs.oracle.com/javase/8/docs/api/index.html

Java SE 8 API Specifications. Complete specifications on all Java classes and

interfaces.

https://docs.oracle.com/javase/specs/

Java Language and Virtual Machine Specifications.

http://docs.oracle.com/javase/8/javafx/api/toc.htm

JavaFX API Specifications. All “javafx” packages are presented here.

https://docs.oracle.com/javase/8/docs/technotes/guides/install/
http://www.oracle.com/technetwork/java/javase/downloads/
http://docs.oracle.com/en/java/
http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/8/javafx/api/toc.htm

182

Index

Abstract Classes ... 100

Access modifiers .. 77

Annotations ... 164

marker .. 169

normal .. 169

restricted usage .. 170

single-element .. 169

Anonymous Classes ... 101

Application class .. 171

Arrays

creating ... 46

declaring ... 46

multi-dimensional ... 47

Autoboxing / Auto-unboxing ... 68

Buffer class .. 146

Casting

in arithmetic expressions .. 25

objects .. 61

Channel interface .. 146

Class

Application .. 171

Buffer .. 146

Enum ... 157

FileOutputStream ... 136

Files ... 146

InputStream .. 140

Matcher .. 158

Node ... 171

Observable .. 154

OutputStream ... 137

Pattern .. 158

Reader .. 141

Scene ...See

Selector ... 146

Stage ..See

String... 69

Throwable ... 113

Writer ... 139

Classes

abstract ... 100

anonymous ... 101

class variables and methods ... 51

183

constructor, super keyword .. 60

constructor, this keyword ... 58

constructors .. 57

declaring ... 51

initializing class variables .. 52

instance variables and methods ... 54

local inner ... 99

method overriding .. 63

non-static inner ... 98

static inner (nested) .. 97

Classes and Objects ... 50

Collections

creating ... 126

framework .. 126

iterating .. 129

retrieving elements ... 127

updating .. 128

Comparator ... 134

Constructor Reference ... 95

Deserialization ... 143

Encapsulation .. 15

Enum class ... 157

Enumerations .. 155

Exceptions .. 107

checked ... 107

checked, handling ... 111

class hierarchy .. 113

custom exceptions .. 115

default exception handler ... 108

run time .. 113

unchecked ... 107

unchecked, handling ... 108

FileOutputStream class .. 136

Files class ... 146

For-Each Loop .. 129

Generics ... 79

classes ... 82

constructors .. 87

interfaces .. 85

methods .. 79

passing methods as parameters ... 84

type safety .. 82

type variable ... 82

wildcard parameter (?) ... 84

Inheritance... 16

Inner Classes .. 97

InputStream class .. 140

184

Interfaces ... 102

Consumer.. 133, 152

default methods ... 106

fully-implemented methods ... 106

static methods .. 106

IO Streams ... 135

Iteration statements .. 37

Iterator .. 131

JavaFX .. 171

JavaFX events... 175

JDK 8 installation ... 10

Lambda Expressions .. 89

List Iterator .. 132

Literals ... 22

boolean ... 25

casting ... 25

character ... 23

class literal .. 162

numeric ... 22

string ... 25, 69

Loop control variables ... 40

Method overloading .. 58

Method overriding ... 63

Method Reference ... 93

Methods .. 49

main .. 49

Modifiers

access level ... 77

default .. 106

final ... 78

static ... 78

New IO Stream .. 145

NIO ... 145

Node class .. 171

Objects

casting ... 61

creating ... 56

instantiation .. 56

Observable class .. 154

Observer interface ... 154

Operators

(::) method reference ... 93

(+) string concatenation .. 71

for-each .. 129

instanceof ... 64

OutputStream class ... 137

Packages .. 75

185

Polymorphism .. 17

Primitive data types ... 20

Reader class ... 141

Reflection API .. 161

Regular Expressions ... 158

Scene class ... 171

scope of variables .. 21

Selector class ... 146

Serialization ... 143

Spliterator .. 133

Stage class.. 171

Statements

block of ... 34

break ... 42

continue .. 45

do while .. 38

empty .. 34

for 39

for-each... 41

new ... 56

package ... 75

program flow control .. 34

sequential ... 34

switch .. 36

try-with-resources .. 142

while ... 37

Stream API ... 150

Streams .. 135

Byte Input Stream ... 140

Byte Output Stream .. 135

Character Input Stream .. 141

Character Output Stream.. 139

Fundamentals ... 135

String class ... 69

Strings

comparing ... 70

concatenation ... 71

creating ... 69

methods .. 72

super keyword ... 60

switch statement ... 36

this keyword .. 58

Threads .. 116

communication (wait & notify) ... 124

daemon threads .. 119

interrupting ... 119

joining ... 120

186

synchronizing .. 120

synchronizing on methods .. 121

synchronizing on statement blocks .. 121

user threads .. 119

Try-With Resorces ... 142

Type wrappers ... 67

Variables .. 21

wildcard parameter (?) .. 84

Writer class .. 139

		2016-02-25T14:10:10+0000
	Preflight Ticket Signature

