Mastering Gradle

Master the technique of developing, migrating, and building
automation using Gradle

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Gradle

Master the technique of developing, migrating,
and building automation using Gradle

Mainak Mitra

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Gradle

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015
Production reference: 1280715

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-136-6

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Mainak Mitra

Reviewers
Alexander Barnes

Scott Battaglia
Michael Putters
Andreas Schmid

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Nadeem N. Bagban

Content Development Editor
Parita Khedekar

Technical Editor
Namrata Patil

Copy Editors
Mario Cecére

Kausambhi Majumdar
Angad Singh

Laxmi Subramanian

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mainak Mitra is a software developer who has rich experience in enterprise
software development and automation frameworks. He is an electrical engineer from
Jadavpur University, Kolkata. He is currently working for an online gaming company.
Prior to this, he worked for various product development companies, such as Yahoo
Inc., CA Technologies. He can be contacted at mi t ramkmegmail . com.

First, would like to thank the Gradle team for creating such a
robust build automation tool. This book would not exist without
this open source tool.

I would also like to thank the editors at Packt Publishing, who
inspired and helped me to write this book. The Packt Publishing
team, especially Parita and Namrata, provided insightful feedback
to help me.

Before this book reached you, it was reviewed by many people at
different stages. Without their comments, feedback, and criticism,
this book would not have been possible. I acknowledge the people
involved here: Alexander Barnes, Scott Battaglia, Michael Putters,
Andreas Schmid.

Special thanks goes to my friend Abhinandan for his contribution to
this book and for compromising his weekends for me. He reviewed
all the chapters in this book and guided me in writing most of the
topics. Without his expertise and support, this book would not have
been possible.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Alexander Barnes has been a professional software engineer for over 5 years
after graduating summa from the Texas A&M class of '09 with a BS in computer
engineering and a minor in mathematics. He started his career at Cisco Systems,
working with a variety of Java web technologies and tools. At Cisco, he played

a leading role in developing the RESTful User Data Services (UDS) for the
CallManager product and helped develop and maintain the administration and
user portals. He pioneered the transformation of his team's build system from Ant
to Gradle for the numerous project tools and utilities maintained by the team and
became a subject-matter expert on Git, Gradle, and Linux in particular.

Alex decided to move closer to his family, recently joining Novo Dia Group in
Austin as a senior Java developer. He is an avid advocate of best software practices
and the usage of the right tools for the job. Some of his favorite tools include Git,
Gerrit, Jenkins, Sonar, Gradle, Java, and Linux. He strives to design and develop
freely, refactor to consistent design patterns as appropriate, and focus on reducing
mutable states. Alex occasionally blogs about technologies and other interests on his
website at http://toastedbits.com/.

Alex enjoys pursuing other creative hobbies in his spare time; playing his guitar and
listening to a lot of rock, metal, and electronic music. He also wishes to pick up piano
and music production techniques to create his own electronic tracks in the future. He
is also an enthusiast of craft beers and playing board games and poker with friends.

I would like to thank my friends and family for giving me their
love and encouragement to achieve my dreams. Also, thanks to

the Electronic Frontier Foundation, GNU, and Apache Software
Foundation for making our software world a much more respectful
community.

www.it-ebooks.info

http://toastedbits.com/
http://www.it-ebooks.info/

Scott Battaglia is a senior software development engineer for Audible Inc.

(an Amazon.com, Inc. company), the leading provider of premium digital spoken
audio information. He currently leads the shared Android platform team and
coaches on a variety of topics, including open source, interviewing, and scrum. Prior
to this, he was an identity management architect and senior application developer
with Rutgers, the State University of New Jersey.

He has actively contributed to various open source projects, including Apereo
Central Authentication Service and Inspektr, and has previously contributed to
Spring Security, Apereo OpenRegistry, and Apereo uPortal. He has spoken at a
variety of conferences, including Jasig, EDUCAUSE, and Spring Forward on topics
such as CAS, Identity Management, Spring Security, and software development
practices.

Michael Putters has been working with various technologies for the past 15 years,
from low-level assembler projects to Angular websites, his main interests being
compiler and graphics development. More recently, he's been involved with the
Gradle project as it is the only build system capable of handling any type of project,
Java-based applications, native C++ software, mobile applications on iOS and
Android, and even JavaScript and TypeScript websites. Currently, he's acting

as the CTO at a number of tech companies in Paris, France.

www.it-ebooks.info

http://www.it-ebooks.info/

Andreas Schmid was born in 1985 and started working as a technology consultant
in Munich in 2009 after an apprenticeship as an IT specialist and business informatics
studies. His passion is creating software and solving difficult IT problems.

In his career, he has participated in Java enterprise projects, contributing to database
migrations, expediting the automation of various topics, as well as introducing and
coaching new software engineering techniques such as agile software development
and test-driven development. It's been over 7 years since he started using it and the
relies on continuous integration and delivery as much as possible.

Further, he believes in the advantages of open source software and likes to immerse
himself into these tools to get the most out of them. This deep understanding also
enables him to contribute by providing patches and fixes in his spare time to further
improve these tools.

While being a software engineer and doing things right, he also had the pleasure of
being a product owner. In this area, the important question he had to answer was,
"Do we do the right things?" So, he also gets his teeth into validated learning for
shorter product development cycles.

He likes to be where state-of-the-art software engineering practices and reality collide.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

[IPACKT

VvV

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents

Preface vii
Chapter 1: Getting Started with Gradle 1
Understanding Build Automation System 2
Need for BAS 3
Gradle overview 4
Installation and quick start 5
Pre-requisites 5
Gradle for Windows 6
Gradle for Mac/Linux 7
The Gradle JVM option 7
Our first script 7
Gradle command Line arguments 9
The Gradle GUI 13
Start up script 15
Build life cycle 17
Initialization 17
Configuration 18
Execution 18
Cache management 18
Cache location 19
Change Cache location 19
Cache features 19
Reduce the traffic 19
Dependency location 20
Version integration 20
Switching off remote checking 20
Version conflicts 20

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Gradle with IDE 20
Installing the Gradle plugin in Eclipse 21
Working with the Gradle project in IDE 22

Summary 27

Chapter 2: Groovy Essentials for Gradle 29

Overview 29
Minimum code 30
Simpler I/O operations 30
Integration with Ant 30
Builder classes 30
Closure 31

Groovy script for Hello World 31

Data types 32
String 33

Dynamic typing in Groovy 34

Classes, beans, and methods 36

Control structures 38
The if-else condition 38
The switch statement 39
Loops 39

Collections 40
Set 40
List 41
Map 42
Range 43

Closure 44

Builder 48

Summary 49

Chapter 3: Managing Task 51

Build script basics 51

Task configuration 55

Task execution 56

Task dependency 57

Task ordering 58

Task operations 61
Conditional execution 62
Build optimization 64
Task rules 66

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Gradle's in-built tasks 68
The Copy Task 68
The Rename Task 68
The Zip task 68

Custom tasks 69
Using buildSrc 71
The standalone task 72

Summary 74

Chapter 4: Plugin Management 75

The script plugin 75

The binary plugin 77

Gradle's in-built plugins 77
Build and Test plugins 78
Code analysis plugins 78
IDE plugins 78

The Java plugin 79
Conventions 79
Configuration 84

The custom plugin 86
The build file 87
The buildSrc directory 88
The Standalone project 90

Summary 95

Chapter 5: Dependency Management 97

Overview 97

Dependency configurations 98
Dependency types 98
Repositories 100
Repositories configuration 101

Dependency resolution 103
Transitive dependency 103
Exclude transitiveness 104
Selective exclude 104
Version conflicts 105
Dynamic dependency 107

Customizing the dependency 107
Download file other than JAR 107
Dependency on files with classifiers 108
Replacing transitive dependencies 108

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Custom configuration for dependency 108
Dependency reports 109
Dependency-specific details 112
Publishing artifacts 112
Default artifacts 113
Custom artifacts 114
Generate additional XML file along with your JAR file 114
Generate an additional ZIP file along with your JAR file 115
Custom configuration 116
The maven-publish plugins 117
Publishing to the local-hosted repository 120
Custom POM 121
Summary 122
Chapter 6: Working with Gradle 123
The War plugin 123
The Scala plugin 126
Logging 131
File management 133
Reading files 133
Writing files 134
Creating files/directories 134
File operations 135
Filter files 136
Delete files and directories 137
FileTree 138
Property management 139
ext closure 139
gradle.properties 139
The command line 140
The Custom properties file 140
Multi-project build 142
The Multi-project structure 142
The Multi-project execution 144
Task execution 146
The Flat hierarchy 148
Interproject dependency 149
Configuration-level dependency 149
Task-level dependency 151
Library dependency 152

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Partial builds 153
buildDependents 153
buildNeeded 154
Testing with Gradle 155
JUnit 155
Test configuration 157
TestNG 162
Execution based on group 163
Execution based on the TestNG suite file 164
Summary 165
Chapter 7: Continuous Integration 167
Jenkins walk-through 167
Jenkins installation 168
Jenkins configuration 169
Create job 171
Execute job 175
Checkstyle and PMD plugins 178
The Sonar Runner plugin 181
TeamCity walk-through 183
Summary 188
Chapter 8: Migration 189
Migration from Ant 189
Importing Ant file 190
Accessing properties 193
Update Ant tasks 194
Using AntBuilder API 195
Rewriting to Gradle 198
Configuration 201
Migration from Maven 204
Build filename and project properties 205
Properties 205
Dependency management 206
Exclude transitive 207
Plugin declaration 207
Repository configuration 208
Multi-module declaration 209
Default values 210
Gradle init Plugin 210
Summary 212

[vl

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 9: Deployment 213
Role of Gradle in deployment 214
Docker overview 215
Installing Docker 216
Docker commands 217

Help command 217
Download image 218
The list of images 218
Creating a container 219
The container list 219
Start/stop container 220
Connecting to a container 220
Deleting a container 220
Removing an image 221
Copying files to the container 221
Container details 221
Updating DNS settings 223
Creating an image from a container 223
Running an application in Docker 224
Build, Deployment, and Test pipeline 228
Summary 234

Chapter 10: Building Android Applications with Gradle 235
Creating Android project using Android Studio 236
Building the Android project with Gradle 242

buildTypes 245
ProGuard settings 246
Build flavors 247
Running the application on a device/emulator 249
Signing the release version 252
Summary 253
Index 255

[vi]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book is a practical guide to learning enterprise build systems with Gradle.

This book helps you to master the core concepts of the tool and to quickly apply

the knowledge to real-life projects. Throughout the book, all the chapters are
supported by sufficient examples so that the reader can easily follow and absorb the
concepts. The book is divided into 10 chapters. The first six chapters are aimed at
gaining knowledge about fundamental topics such as Task, Plugins, Dependency
Management, various in-built plugins, and a lot more. The next few chapters cover
diverse topics such as Continuous Integration, Migration, and Deployment, which
enables readers to learn concepts that are very useful for agile software development.
The last chapter of the book focuses on the Android build system with Gradle, which
will be useful for mobile developers.

What this book covers

Chapter 1, Getting Started with Gradle, discusses briefly about the build automation
system, its needs, and how Gradle can help developers to automate the build and
deployment process. Along with the Gradle installation, configuration, and features,
this chapter also talks about some important concepts such as the initialization script,
the Gradle GUI interface, and the Gradle command-line options.

Chapter 2, Groovy Essentials for Gradle, talks about the fundamental concepts of
Groovy programming language. This chapter also discusses the classes, beans,
and collection frameworks. This chapter gives the reader a heads up on Groovy,
which is required for Gradle.

Chapter 3, Managing Task, discusses Tasks in detail, which is the basic unit of action
in Gradle. Developers learn about different flavors of Tasks such as in-built tasks
and custom tasks. This chapter also discusses task configurations, task ordering,
and task dependencies.

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Plugin Management, talks about one of the important building blocks of
Gradle, plugins. The reader will learn to create simple plugins and custom plugins.
Also, the user will be able to configure plugins as per his/her needs. This chapter
also discusses one of the most usable plugins, the Java plugin, in detail. The user
will learn about different conventions supported and how to customize the standard
conventions as per the project's/organization's requirements.

Chapter 5, Dependency Management, discusses one of the other important features of
Gradle, dependency management, in detail. It discusses the dependency resolution,
dependency configuration, and dependency customization. It also discusses
repository management. It provides a deep insight of how the user can configure
different external repositories, internal repositories, as well as use the local filesystem
as a repository.

Chapter 6, Working with Gradle, discusses two additional plugins, War and Scala. It
also discusses various topics such as property management, multi-project build, and
the logging features. The user will learn about different I/O operations, as well as
unit testing features using JUnit and TestNG in Gradle.

Chapter 7, Continuous Integration, talks about the continuous integration concepts
and tools such as Jenkins and TeamCity, and their integration with Gradle. It also
discusses different code quality plugin (Checkstyle, PMD, and Sonar) integrations
with Gradle.

Chapter 8, Migration, fulfills one of the critical requirements of users who are already
using other build tools such as Ant or Maven and want to migrate to Gradle. It talks
about different migration strategies to convert the existing Ant and Maven scripts
to Gradle.

Chapter 9, Deployment, explains the deployment aspect of software engineering.

How smoothly the user can automate the deployment process, which saves lots of
developer as well as operation team time and efforts. It discusses container-based
deployment automation processes and tools; Docker. It gives details about Docker
installation, useful Docker commands, and how to integrate Docker with continuous
integration tools and Gradle to create a build-deploy-test workflow.

Chapter 10, Building Android Applications with Gradle, talks about mobile application
development and deployment. Gradle is an official build tool for Android. This
chapter focuses on sample Android application development and different
deployment strategies such as deploying the debug version, the release version,
deployment on different configurations, and so on.

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What you need for this book

Your system must have the following software before executing the code mentioned
in the book:

e Gradle24

e Java1l.7 or above
* Jenkins

e TeamCity

e Ant194

e Maven 3.2.2

e Docker1.5.0
e Android 5.0

Who this book is for

If you are a Java developer with some experience in Gradle and want to become an
expert, then this book is for you. Basic knowledge of Gradle is essential.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Gradle shares the same JVM options set by the environment variable Java_opTs."

A block of code is set as follows:

def methodMissing(String name, args) {
if (name.startsWith("plus"))
// write your own implementation
return "plus method intercepted"
}
else {
println "Method name does not start with plus"
throw new MissingMethodException(name, this.class, args)

}
}

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

apply plugin: 'java'

version=1.0

configurations {
custombDep

}

repositories {

mavenCentral ()

}
Any command-line input or output is written as follows:

$ gradle -b build customconf.gradle showCustomDep
: showCustomDep

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click
on OK to add the repository."

%j%‘\ Warnings or important notes appear in a box like this.
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

[x]

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

[xi]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

Questions

If you have a problem with any aspect of this book, you can contact us at
questionsepacktpub.com, and we will do our best to address the problem.

[xii]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Consider a typical IT company development center scenario. Different teams are
working together on one enterprise project with many components. Teams are
working on server-side technologies, frontend technologies, the messaging layer,
mobile development and there may be a separate team responsible for Quality
Assurance. Every team is working as per their schedule, developing their own
component(s), unit testing and committing code, and this cycle is repeated in multiple
iterations. So far, everybody is happy as they are able to meet the deadlines as per the
software release dates. Then comes the integration phase, when teams have to build
the complete project and deploy the software (which could be WAR, JAR, or any
service) to the integration/staging environment. And then the nightmare starts.

Although every team has successfully followed many best practices of software
engineering such as committing code on a daily basis, unit testing of code and
verifying the working software on a developer's test environment, but in the
integration or staging environment the situation has suddenly changed. The
team is stuck with configuration and interoperation issues, localization issues,
environmental issues, and so on.

This might be a very common scenario for any project and the situation will become
worse if they are not using any automated solution for the build and deployment
process. Hence the need for an automated process or we can call a Build Automation
System (BAS), which automates the manual task of building the project seamlessly
and delivers the software in a repeatable, reliable, and portable fashion. BAS doesn't
claim that there will be absolutely no issues or errors, but with BAS, the software can
be managed in a better way, minimizing the probability of repeating the same error
again and again.

Gradle is one of the advanced build automation tools available in the market. In the
next 10 chapters, we will explore how to mitigate these problems with Gradle and
with other related technologies. However, before we start learning Gradle, we need
to understand what a BAS is and why we need it.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Understanding Build Automation System

The most common processes in building any software include compiling the source
files, packaging the compiled output to a compressed format (ZIP, JAR or any

other format), and adding the required resource files and configuration files to the
packaging. Along with this, it may also include some other activities such as running
static code analysis on the source code to provide feedback on the design and coding
patterns, and another important area is Quality Assurance, which involves unit
testing, integration testing, regression testing, and so on.

A BAS is part of the software life cycle, which automates the build and deployment
phases of the software. The first phase is building the software, which is the

process of creating the binaries or executables. The second phase is the deployment
phase, wherein we need to install the software at a particular location. This phase
also includes various other activities such as unpacking the bundle, localization

of the software, configuring the software as per the environment and setting the
environment-specific properties required to execute the software. The next important
step is functional testing to check the behavior of the software. Once everything is
fine, it makes a happy and smiley ending for you.

So, as a developer, writing the code and test cases is just one of the major tasks in
Software Development Life Cycle (SDLC). Build and deployment is also considered
as another important phase in any software life cycle. If it is not managed properly,

it could lead to major downtime and client dissatisfaction.

Build automation allows us to automate the manual steps in the build process. It also
helps to eliminate the redundant tasks, mitigates the risks of manual intervention,
keeps the history of the builds, and saves the cost and time spent in the manual
process. The goal here is to create reproducible assets every time you run the build
script, which will not be the case, if you manually execute the steps every time.

Many developers relate the build automation with Continuous Integration (CI). Do
not get confused. The CI allows executing the build process, performing deployment
activities, and many more activities. It helps to create a workflow for build and
deployment automation. It also helps to schedule the builds and provides on-demand
execution of builds. The schedule could be once in every hour, once in four hours,
nightly builds or on every user commit. Some of the well known CI tools are Jenkins,
TeamCity, Bamboo, Hudson, Cruise Control, and so on, which are totally different
from Build tools, such as Ant, Maven, and Gradle.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Need for BAS

Imagine that all the preceding mentioned steps in building a software need to be
done manually, and every developer has to perform steps on different machines.
Now you can realize the amount of effort wasted in figuring out problems with build
issues rather than focusing on the actual business requirements. That's one of the
reasons why we need a BAS. Following are some of the major activities, which we
automate for the build system:

e Translating the source code into binaries

* Packaging the binaries with configuration files to create deployable artifacts
* Executing the test cases

* Publishing the artifacts to a common repository

* Deploying the artifacts to different environments (Development, QA,
and Production)

¢ Incremental builds

e Status reports that summarize the current state of the build

Another reason to have a BAS is to reduce the operational complexities. If a new
member joins the team and he has to perform the manual build of the software, it
could be a nightmare for him, if there is no automation. Rather than concentrating on
the business requirement, most of his time will be wasted on how to compile it, how
to run unit tests, how to execute integration tests, and so on.

Actually, what he needs to know is where to commit the source code, where to put
the resources, and what commands to execute to perform the build process. The
build process should automatically perform all the tasks of compiling, packaging,
running tests, uploading asserts and so on.

The more automated the build and deployment process, the faster you will get
the deliverables to the client. It also helps with business continuity. In case of any
system crash or network failure, you can rebuild and deploy the software on back
up infrastructure in much less time.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Some developers believe that project automation is a waste of time and why should
they put in extra effort as their IDE performs this job. They can build the JAR, WAR,
or any other deliverable unit with the help of IDE and deploy the same. Since they
can build, and test it quickly, it works very well on their local system. The problem
starts when integration happens. Thus, an automated system is required to avoid any
manual intervention (unless it is the only option left), and to make builds portable,
predictable and efficient.

Gradle overview

Before getting into the details of Gradle, we need to understand some of the
terminologies related to the build system.

There are two types of build tools, namely imperative build tools and declarative
build tools. An imperative build tool tells the system what to do and how to do it. In
other words, it provides a set of action statements or commands, which the system
executes in the same order and performs those actions. You can take Ant as an
example of the imperative build system.

Whereas, a declarative build tool instructs the system, telling it what you would

like to achieve, and system will figure out how to interpret it. With a declarative
approach, the user only needs to determine the what, not the how. This is one of the key
innovations Maven brought to the build world, after Ant achieved some popularity,
where we don't need to write each and every step of an action, and end up creating a
very large and verbose build script. With Maven we need to write some configuration
parameters for the build and the build system itself decides how to interpret it.
Internally, the declarative layer is based on a powerful imperative layer, which can

be accessed directly as required. Ant and Maven are very good and reliable build
systems. They are innovative in all the areas for which they were designed and built.
Each of them has introduced key innovations into the build space.

Gradle combines the good parts of both tools and provides additional features and
uses Groovy as a Domain Specific Language (DSL). It has power and flexibility of
Ant tool with Maven features such as build life cycle and ease of use.

Gradle is a general purpose, declarative build tool. It is general purpose because it
can be used to build pretty much anything you care to implement in the build script.
It is declarative, since you don't want to see lots of code in the build file, which is not
readable and less maintainable. So, while Gradle provides the idea of conventions
and a simple and declarative build, it also makes the tool adaptable and developers
the ability to extend. It also provides an easy way to customize the default behavior
and different hooks to add any third-party features.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Primarily, Gradle is a JVM-language build tool, but it also supports C, C++, Android,
and so on. You will find more information about this at https://docs.gradle.org/
current/userguide/nativeBinaries.html.

It provides automation for the different phases required in a Java project, such as
compile, package, execute test cases, and so on. It has grouped its similar automation
tasks into plugins. When you import any plugin to a Gradle script file, they always
come with a set of predefined tasks. To get started with Gradle, you need to have
basic knowledge of Java. It uses Groovy as its scripting language, which is another
JVM language. We will discuss Groovy in the next chapter. As the build script is
written in Groovy, it tends to be much shorter, expressive, and clearer than those
written in Ant or Maven. The amount of boilerplate code is much less in Gradle
with use of Groovy DSL. It also leverages Maven conventions for familiarity, while
making it easy to customize to the needs of your project. Developers can add new
functionality or extend the existing features at any time. They can override the
existing tasks or plugins to provide the new functionality.

Installation and quick start

Gradle installation is quite simple. You can download the Gradle distribution from
the Gradle home page at https://www.gradle.org/downloads, which is available
in different formats.

Pre-requisites

Gradle requires a Java JDK or JRE to be installed, needing version 6 or higher

(to check the Java version on your machine, use java -version). Some of the
features might not work with JRE, so it is recommended to have JDK installed.
Also, Gradle ships with its own Groovy library; therefore, Groovy does not need
to be installed. Any existing Groovy installation is ignored by Gradle.

Gradle is available in three formats:
* gradle- [version] -all.zip: This contains the source code, the binaries,
and the documentation
* gradle- [version] -bin.zip: This contains the binaries only

* gradle- [version] -src.zip: This contains the source code only, in case you
want to extend the Gradle features

[51]

www.it-ebooks.info

https://docs.gradle.org/current/userguide/nativeBinaries.html
https://docs.gradle.org/current/userguide/nativeBinaries.html
https://www.gradle.org/downloads
http://www.it-ebooks.info/

Getting Started with Gradle

Alternatively, you can just download gradle- [version] -bin. zip file.

Once downloaded, you need to unpack the zip file and configure it as per your
operating system.

Gradle for Windows

Following are the steps for installing Gradle on Windows:

1. Unpack the Gradle distribution on the hard drive.

2. Add Gradle's installed path (for example, c: \gradle-2.4) to the
GRADLE_HOME variable. Note that this location should be the parent
directory of the bin or the 1ib folder.

3. Add the GRADLE HOME/bin to the PATH variable.

When you are ready to go ahead with Gradle, verify your installation by running the
gradle command with the --version or -v command-line parameter.

> gradle -version

Build time: 2015-05-05 08:09:24 UTC

Build number: none

Revision: 5c9c3bc20calc281ac7972643£f1e2d190£2c943c

Groovy: 2.3.10

Ant: Apache Ant (TM) version 1.9.4 compiled on April 29 2014
JVM: 1.7.0 79 (Oracle Corporation 24.79-b02)

0S: Windows 8.1 6.3 amd64

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Gradle for Mac/Linux

Following are the steps to install Gradle on the Mac/Linux operating system.

1. Unpack the Gradle distribution.

2. Add the following two lines in your initialization script (~/.profile).
3. Export GRADLE HOME = <Gradle Installation Dir>

4. Export PATH=$PATH: SGRADLE HOME/bin

Reload the profile by executing source ~/.profile and execute the
gradle -version command. You will be able to see a similar output as
mentioned in the previous section.

The Gradle JVM option

Gradle shares the same JVM options set by the environment variable JAvA_ OPTS.
If you don't want to use this setting and want to pass arguments specifically to the
Gradle runtime, you can use the environment variable GRADLE OPTS.

Suppose if JAVA_0PTS=512MB in your system and you want to increase the default
maximum heap size to 1024MB for Gradle application. You can set it like this:

GRADLE OPTS="-Xmx1024m"

We can apply this setting in the project-specific build file. Alternatively, we can also
apply this setting to all of the Gradle build by adding the variable to the Gradle
startup script (this will be discussed later in this chapter).

Our first script

In the last section, we learned how to install Gradle. Now it's time create our very
first Gradle script. This script will print Hello Gradle- This is your first
script on the console. Just open a text editor, type in the following three lines,
and save the file as build.gradle.

task helloGradle <<
println 'Hello Gradle- This is your first script’

}

[71

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Then execute the gradle helloGradle command as follows:

$ gradle helloGradle

:helloGradle

Hello Gradle- This is your first script
BUILD SUCCESSFUL

Total time: 4.808 secs

So, what have we done here?

* We have a created a Gradle build script file called build.gradle. This is
the default name given to a build file. You can give any name to the build
file. However, to execute the script, you must use the -b option with your
filename with the gradle command. Otherwise,the build will fail with the
Task '$TASK NAME%' not found in root project '%PROJECT NAME'."
gradle [-b <file name>] [taskl task2 taskn] error.

e Trythegradle -b <buildfile_name> helloGradle command and you
should get the same output.

* With the gradle command, we have executed a task called helloGradle,
which prints a line in the console. So, the parameter we passed to the gradle
command is the task name. You can execute one to any number of tasks with
the Gradle command and these tasks will be executed in the same order as
they appear in the command line.

. There is a way to define the default task using the
~> defaultTasks keyword, which will be executed by default,
@ if user does not mention any specific task to execute on the
build file. We'll discuss this more in Chapter 3, Managing Task.

The Gradle command initializes the script, reads all tasks mentioned on the
command-line, and executes tasks. Moreover, if any task has multiple dependencies,
then dependent tasks are executed in alphabetical order unless those tasks
themselves enforce the order. You can find more about task ordering in Chapter 3,
Managing Task.

Remember that each Gradle build consists of three components: projects, tasks, and
properties. Each build has at least one project and one or more tasks. The name of the
project is the parent directory name in which the build file exists.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Gradle command Line arguments

Now that you have created the first working script, it is time to explore different
command-line options supported by Gradle.

You have already seen the usage of -b option to specify a build script. We'll start with
--helpor -hor -2 to list all the options available with the Gradle command line.

$ gradle -h
USAGE: gradle [option...] [task...]

-?, -h, --help Shows this help message.

-a, --no-rebuild Do not rebuild project dependencies.
-b, --build-file Specifies the build file.

-c, --settings-file Specifies the settings file.

--configure-on-demand Only relevant projects are configured in this
build run. This means faster build for large multi-project builds.
[incubating]

--continue Continues task execution after a task failure.

In the preceding output, -h or - -help displays many more options. We have
truncated the output.

You can execute the command on your systems and check all the options. Most of
these are self-explanatory. We will discuss the usage of some of the most useful
options in this section.

Now we'll add two more tasks, failedTask and test to the build.gradle script
and save the file as sample_build.gradle. The task named failedTask is expected
to always fail due to assertion failure and the test task is dependent on the
previously created task helloGradle. A task can succeed (executing all statements
in the task without any exception) or it can fail (due to any exception or error in any
line of code mentioned in the task) thus stopping the execution of the script.

task failedTask << {
assert 1==

task test (dependsOn: helloGradle) << {
println 'Test case executed'

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

On executing the gradle -b sample build.gradle failedTask test command,
we observe that the test task is never executed. As Gradle executes tasks
sequentially as they appear on the command-line, if a task fails to execute,

all the remaining tasks will be ignored.

$ gradle -b sample build.gradle failedTask test
:failedTask FAILED

FATILURE: Build failed with an exception.

BUILD FAILED

Total time: 6.197 secs

By default, Gradle stops the build process if any task fails to execute. This feature
helps to get a quick feedback on the build process. If you do not want to stop
execution of the build irrespective of any task failure and you want to continue with
other tasks, then it can be done by using the - -continue command-line option. This
feature could be useful when we want to build a multimodule project, where some of
the modules might fail due to compilation error or test failure. With the -continue
option, we will get a complete status of all the modules.

$ gradle -b sample build.gradle failedTask test --continue
:failedTask FAILED

:helloGradle

Hello Gradle- This is your first script

:test

Test case executed

FAILURE: Build failed with an exception.

As you can see in the preceding output, failedTask failed to execute. So the build
is marked as FAILURE. However, this time the test task executed successfully. Also
observe that the helloGradle task is executed before the test task. This is because
we have defined the test task to be dependent on the helloGradle task. This is one
of the ways you can create task dependencies. For now, don't get confused with task
dependency. We will discuss the topic in detail in Chapter 3, Managing Task.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Now, what happens if the helloGradle task fails? Just add a line assert 1==
into the helloGradle task. The assert statement forces the task to fail. When you
look at the following output, you will find that the test tasks is not executed as the
dependent task failed:

$ gradle -b sample build.gradle failedTask test --continue
:failedTask FAILED

thelloGradle

Hello Gradle- This is your first script

:helloGradle FAILED

FAILURE: Build completed with 2 failures.

In the preceding scenario, the test task is dependent on the helloGradle task. This
means that, every time we execute the test task, the helloGradle task will be
executed by default. In case you want to avoid the execution of the helloGradle
task, you can use the -x or --exclude-task option.

$ gradle -b sample build.gradle failedTask --continue test -x
helloGradle

:failedTask FAILED

:test

Test case executed

Another useful option is --dry-run or -m, which runs the build but does not execute
the tasks. It is useful if you want to know the task execution order or you want to
validate the script.

$ gradle --dry-run -b sample build.gradle failedTask test
--continue

:failedTask SKIPPED

:helloGradle SKIPPED

:test SKIPPED

BUILD SUCCESSFUL

Total time: 4.047 secs

. --dry-run executes all the statements which are not part of
% any tasks and are defined outside of a task block. To verify
" this, add a print1n statement anywhere outside a task
block definition and observe the result.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

So far, you must have noticed that each output displays extra information apart from
the task output and error messages. Try the command-line option -q or --quiet to
display only the task output:

$ gradle -q -b sample build.gradle failedTask --continue test
Hello Gradle- This is your first script

Test case executed

The options --debug (-d), --info (-i), --full-stacktrace (-S), and --stacktrace
(-s) display the output with different log levels and stack traces. - -debug is the

most detailed log level. - -full-stacktrace and --stacktrace show stack traces if
the build fails with an exception. Try the previously executed command with these
command-line options and observe the output:

$ gradle -d -b sample build.gradle failedTask --continue test

Now we will explore the - -daemon, --stop, and - -no-daemon options. On my
machine, it took around 3.6 seconds to execute the preceding script. For this

simple script, most of the execution time was spent in the initialization of Gradle.
When we execute a Gradle command, a new Java Virtual Machine is started, then
Gradle-specific classes and libraries are loaded, and finally the actual build steps are
executed. Initialization and execution of Gradle can be improved using the - -daemon
option. This is very useful if you are working in a test-driven development where you
need to execute unit tests frequently or you need to run a particular task repeatedly.

To start a daemon, you can use the - -daemon option. The daemon process
automatically expires after 3 hours of idle time. To check whether the daemon is
running on the system, use the ps command in the UNIX environment, or the Process
explorer in Windows systems. Once you have started the daemon process, again
execute the same Gradle task. You will find an improvement in the execution time.

Alternatively, you can use the gradle.properties file to set the system property
org.gradle.daemon to enable the daemon. In this scenario, you don't need to specify
the - -daemon option when executing the tasks. To try it out, create a file called
gradle.properties in the same directory where you created the sample build.
gradle file and add this line org.gradle.daemon=true. Now, run the gradle
command and check whether the daemon process is running. The org.gradle.
daemo is a property that we have set to configure the Gradle build environment. We'll
discuss more on properties and system variables in Chapter 6, Working with Gradle.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To stop the daemon process, use the gradle --stop option. Sometimes, you may
not want to execute Gradle tasks with the daemon process. Use the - -no-daemon
option with the task to ignore any running daemons.

$ gradle -b sample build.gradle failedtask --continue test

--daemon

$ ps -ef | grep gradle

root 25395 2596 46 18:57 pts/1 00:00:04

/usr/local/java/jdkl.7.0 71/bin/java
org.gradle.launcher.daemon.bootstrap.GradleDaemon 2.4
/home/root/.gradle/daemon 10800000 93dcO0fe2-4bcl-4429-a8e3-
£10b8a7291eb -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError -
Xmx1024m -Dfile.encoding=UTF-8 -Duser.country=US -Duser.language=en -

Duser.variant

$ gradle --stop
Stopping daemon(s) .
Gradle daemon stopped.

Although the Gradle daemon is recommended for the development environment,

it might get corrupted occasionally. When Gradle executes user build scripts from
multiple sources (for example, in the Continuous Integration environment), it might
exhaust the daemon process and may cause memory leakage if resources are not
handled properly. Therefore, it is recommended not to enable the daemon for staging
or continuous integration environment. Apart from the command-line, Gradle

can be executed in the Graphical User Interface (GUI) as well. In the next section,
we'll discuss the graphical user interface supported by Gradle. The other important
command-line options such as -D or --system-prop, -P or - -project-prop will be
discussed in Chapter 6, Working with Gradle, when we explore more on building Java
applications with Gradle.

The Gradle GUI

Apart from the command-line arguments and tools, Gradle provides a graphical user
interface. It can be launched with the help of the following command-line option:

$ gradle --gui

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

It launches a graphical user interface (GUI), which can be used to execute Gradle
tasks directly from the GUL

Task Tree | Favorites | Commmand Line | Setup
vECOR Description &
v masteringGrdale-code
components Displays the cornponents produced by root project ‘'masteringGrdale-code’. [iIncubating]
dependencies Displays all dependencies declared in root project 'masteringGrdale-cods'.
dependencylnsight Displays the insight into a specific dependency in root project 'masteringGrdale-cog
helloGradlel
help Displays a help message.
init Initializes a new Gradle build. [incubating]
projects Displays the sub-prajects of roat project 'masteringGrdale-code'.
properties Displays the properties of root project 'masteringGrdale-code’.
tasks Displays the tasks runnable from root project 'masteringGrdale-code'.
wrapper Generates Gradle wrapper files. [incubating]

1] ¥

Refresh

@® Completed successfully at 7:37:13PM

[] dependencies - Displays all dependencies declared in root project 'masteringGrd”

% dependencyInsight - Displays the insight into a specific dependency in root pro
help - Displays a help message.

‘4 projects - Displays the sub-projects of root project 'masteringGrdale-code’.
properties - Displays the properties of root project 'masteringGrdale-code’.
tasks - Displays the tasks runnable from root project 'masteringGrdale-code'.

Other tasks

failedTask

test

To see all tasks and more detail, run with --all.
BUILD SUCCESSFUL

Total time: 4.68 secs

Completed Successfully =l

il) ¥

Figure 1.1
It contains four tabs, which are explained as follows:

e Task Tree: The directory, under which you executed this command, is
considered as the parent project directory. If the build.gradle file is present
under this directory, task tree will list out all the tasks available in the build.
gradle file. If the build.gradle file is not in this directory, it will list out
only the default tasks. You can execute any task by double-clicking on the
task name.

Figure 1.1 displays failedTask, helloGradle and test tasks that we
developed earlier along with the default Gradle tasks.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* Favorites: This works like your browser favorites, where you can save
frequently used commands. Additionally, it provides an alias feature. In case
you want to execute multiple tasks on the command line, you can add them
here and give it a simple display name. For example, you can click on
the plus sign and add the following tasks in the command-line textbox:
clean build.

Add init in the display name area. You will see that init appears in the
Favorites area. Next time, just click on init to execute clean build tasks.

* Command line: This works like the console. Here you can execute single or
multiple inline commands. It will execute the command and will display the
result in the lower window.

* Setup: Even if you started the GUI from a specific project directory, you can
change the directory using this tab. It allows you to change your current
directory for executing commands. Along with that, it helps to change some
general settings such as Log level, Stack Trace output, and so on. It also allows
you to execute other Gradle versions through the custom Gradle Executor.

Start up script

Consider this scenario, for each of your Gradle projects you have a dependency on
a local in-house jar files. Additionally, you want to set some common environment
variables for each of your Gradle projects (such as GRADLE_OPTS).

A simple solution is to add the jar file in the dependency closure. An alternate
solution could be to create one common build file and include this common file
in each of the build files.

The simplest solution Gradle provides for these kinds of problems by introducing
the initialization script.

Initialization scripts are no special files, but a Gradle script with the .gradle extension.
However, this will execute every time before any of your build files execute.

[There can be more than one initialization script.]

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Some of the uses of the initialization script are as follows:

* Downloading some common jars for each of your projects

* Performing common environment configuration related to system details
and/or user details.

* Registering listeners and loggers.

So, how does Gradle find these initialization script(s)? There are multiple ways to
define the initialization script which are as follows:

* All the files with .gradle extension under <USER_HOME>/.gradle/init.d
directory are treated as initialization scripts. Gradle will execute all the
.gradle files under this directory before the execution of any Gradle
build script.

* Filesnamed init.gradle under <USER HOME>/.gradle/ are treated as an
initialization script.

e All the files with the .gradle extension under <GRADLE HOME>/init.d/
directory.

* You can even specify any Gradle file as the initialization script with -1
<file name> Or --init-script <file names.

+ Even if multiple files are found at the location mentioned earlier,
%j%‘\ Gradle will execute all the files as initialization script before
g executing any project build script.

Following is a sample init script.

println "Hello from init script™"
projectsLoaded
rootProject.allprojects {
buildscript
repositories ({
maven {
url "http://central.maven.org/maven2/"
}
}

dependencies {
classpath group: 'javax.mail', name: 'javax.mail-api',
version: 'l1.4.5'

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Copy and paste the preceding code and save it as init.gradle file under any of the
preceding mentioned paths. The print1n statement is intentionally added in this
file to help you understand the execution cycle of the init script. Whenever you
execute any Gradle script from a directory, you will see Hello from init script.
Apart from printing Hello from init script, this script also downloads javax.
mail-api-1.4.5.jar in the Gradle cache when the script is executed for the first
time. It will not download this library again, unless there is a change in the file in the
repository. If you don't understand what a cache is, don't worry. You will learn more
about cache management in the later section of this chapter. Remember, sometimes
defining too many configurations in the init script could be problematic. Specifically,
debugging could be difficult because the projects are no longer self-contained.

Build life cycle

Gradle build has a life cycle, which consists of three phases: initialization,
configuration, and execution. Understanding the build life cycle and the execution
phases is crucial for Gradle developers. Gradle build is primarily a collection of
tasks and a user can define the dependency between the tasks. So, even if two tasks
depend on the same task, for example, Task C and Task B both depend on Task A,
Gradle makes sure that Task A will execute only once throughout the execution of
the build script.

Before executing any task, Gradle prepares a Directed Acyclic Graph (DAG) of
all tasks for the build. It is directed because a task directly depends on another
task. It is acyclic because, if Task A depends on Task B and if you make Task B
depend on Task A, it will result in an error, as there can't be cyclic dependency
between two tasks. Before executing the build script, Gradle configures the task
dependency graph.

Let's quickly discuss the three build phases.

Initialization

User can create a build script for a single project as well as for a Multi-project build.
During the initialization phase, Gradle determines which projects are going to take
part in the build process, and creates a Project instance for each of these projects.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Configuration

This phase configures the project object. All the build scripts (in case the user is
executing a multiproject build), which are part of the build process are executed
without executing any task. This means whatever statements you have written
outside of the task in the configuration block would be executed in the configuration
phase. No tasks would be executed here; only the directed acyclic graph would be
created for all tasks.

Execution

In this phase, Gradle executes all tasks as per the order given in the command
line. However, if any dependencies exist between tasks, those relationships will be
honored first before the command-line ordering.

Cache management

The main focus of any build tool is to not only automate the build and deployment
processes, but also how to manage the cache effectively. No software works in
isolation. Each software depends on some third-party libraries and/or in-house
libraries.

Any good build tool should automatically take care of software dependencies.

It should be able to download the dependencies automatically and maintain the
versioning. When Ant was released, this feature was not available and developers
need to manually download the dependencies and need to maintain their versioning
on its own. Though it was later resolved by extending Ant with Ivy.

Gradle automatically downloads all dependencies given in the build file. It
determines all the libraries needed for the project, downloads from the repositories,
and stores them in its local cache. Next time when you run the build, it doesn't need
to download those dependencies again (unless required) as it can reuse the libraries
from the cache. It also downloads all the transitive dependencies.

Downloading the example code

M You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

[18]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

Cache location

The first question arises regarding cache, in which location Gradle maintains

its cache. Gradle uses <USER_HOME>/.gradle/caches as the default directory to
store its local cache. It might contain more than one version directory if a developer
has used multiple versions of Gradle to build the software. The actual cache is
divided into two parts. All the jars that are downloaded from the repositories can

be found under modules-2/files-2.1. Additionally, you will also find some
binary files that will store the metadata about the downloaded binaries. If you

look inside the modules-2/files-2.1 directory, it has the path in the format
group/name/version/checksum, which contains the actual binary. You can find out
more about dependency management in detail in Chapter 5, Dependency Management.

Change Cache location

If you want to change the cache location to some other directory, other than
default location, you need to set the following environment variables. You can set
this variable in Windows as the environment variable and in the Unix/Linux in
.profile file:

GRADLE USER HOME=<User defined location>

Cache features

Now, let's discuss some of the important features of the Gradle cache.

Reduce the traffic

One of the main features of Gradle cache management is to reduce the network
traffic. When you build the application for the first time, Gradle downloads all the
dependencies into a cache, so that next time onwards it can directly fetch it from
the cache.

In case multiple repositories are configured in the build script and a JAR is found in
the first repository, then Gradle won't search other repositories for the same JAR file.
In another situation, if the JAR was not found in the first repository but was fetched
from the second repository, then Gradle will store metadata information about the
tirst repository, so that next time onwards the first repository won't be searched for
the missing JAR, to save time and network traffic.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

Dependency location

Whenever Gradle downloads dependencies from the repositories, it also stores the
repository location in its metadata. It helps to detect the changes in case the binaries
are removed from the repositories or their structure is changed.

Version integration

If a developer updates the Gradle version on his machine, and he has already
downloaded libraries in an older cache, then it is reused. Gradle also provides tight
integration with Maven's local repository. Gradle figures out whether an artifact
has changed in the remote repository by comparing its checksum with the local
cache. All those artifacts whose checksum matches are not downloaded. Apart from
checksum, Gradle will consider an additional parameter to compare between the
remote and local artifacts; Gradle uses the value of the HTTP header parameter
content-length or the last modified date.

Switching off remote checking

With the - -offline command-line option, a developer can ask Gradle to only look
at the local cache, not in the remote cache. This could be useful if the user is working
without any network connectivity. If Gradle can't find the JAR in the local cache, the
build will fail.

Version conflicts

If a developer has not mentioned any specific version of dependency and there are
multiple versions available for the download, Gradle, by default, always downloads
the latest version of the artifact.

Gradle with IDE

So far, in this chapter, we have worked on creating some basic Gradle scripts. We
will conclude this chapter by creating a Java application with Gradle. To create a Java
application, we'll be using Eclipse IDE with the Gradle plugin.

With Integrated Development Environment (IDE), application development
becomes much easier. In this section, we will explore how to install the Gradle plugin
in Eclipse, create a simple Java application, explore Eclipse plugin tasks, and execute
Gradle tasks from Eclipse.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Apart from Eclipse, another popular IDE is JetBrains Intelli] IDEA. Gradle also
supports IDEA plugin, which is very similar to the Eclipse plugin. However, in
this book, we will focus only on the Eclipse plugin since it is freely available and
is open source.

Installing the Gradle plugin in Eclipse

The Eclipse Integration Gradle project from the spring source (https://github.
com/spring-projects/eclipse-integration-gradle/) helps the developer
to work with Gradle in Eclipse. This tool offers support for:

Working with multiprojects
Using Gradle Import Wizard to import Gradle projects into Eclipse
Using New Gradle Project Wizard to create new Gradle projects

Using Dependency Management to configure the classpath of the
Eclipse project

Executing Gradle tasks using Gradle Task UI

Integration with the Groovy Eclipse via DSLD (DSL Descriptors)

Following are the steps to install this plugin in Eclipse (3.7.2 or higher) from the
update site:

1.
2.

Launch Eclipse. Navigate to Help | Install New Software.

In the Install New Software dialog, click on the Add button to add a
new site.

Enter the Location as http://dist.springsource.com/release/TOOLS/
gradle and Name as Gradle. You can enter any meaningful name you want.

Click on OK to add the repository.
Select the newly created Gradle repository from the repository list.

Check only the box next to Extensions / Gradle Integration | Gradle IDE.
Click on Next (Refer to Figure 1.2).

On the next screen, click on Next.

[21]

www.it-ebooks.info

https://github.com/spring-projects/eclipse-integration-gradle/
https://github.com/spring-projects/eclipse-integration-gradle/
http://www.it-ebooks.info/

Getting Started with Gradle

8. Accept the terms and conditions and click on Finish. Eclipse should
download and install Gradle IDE. Then restart Eclipse.

Available Software
Check the items that you wish to install. 3‘_
Work with: |Gradle - http://dist.springsource.com/release/TOOLS/gradle 2 Add...

| i,

Find more software by working with the "Available Software Sites" preferences.

Name

Version
¥ @ 000 Extensions / Gradle Integration
[Spring UAA Integration (optional) 3.6.3.201411271001-RELEASE

» 000 Uncategorized

Select All Deselect All 1 item selected

Details

This Feature provides common components for tooling integration of the Gradle build system with the Eclipse IDE

More...
[EF show only the latest versions of available software [Hide items that are already installed
BF Group items by category ‘What is already installed?

[] show only software applicable to target environment

& Contact all update sites during install to find required software

@ <Back [Next> | cancel Finish

Figure 1.2

Working with the Gradle project in IDE

We have successfully installed Gradle plugin. Now, we'll create a simple Gradle
project and we'll look into few Eclipse-related important files, for example, .project
and . classpath. Then we will build the project using the Gradle Task UL

Following are the steps to create a Gradle project:

1. In Eclipse, navigate to File | New | Gradle | Gradle Project.

2. Inthe New Gradle Project window, specify the project name as
FirstGradleProject and select the sample project as Java Quickstart.

3. Click on Finish and wait for the build to be successful.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

You will find the following console output:

:cleanEclipseClasspath UP-TO-DATE
:cleanEclipseddt UP-TO-DATE
:cleanEclipseProject UP-TO-DATE
:cleanEclipse UP-TO-DATE

:eclipseClasspath
reclipseddt
:eclipseProject

:eclipse

BUILD SUCCESSFUL

The output clearly shows what is going on here. Gradle initially executes a series of
clean tasks (cleanEclipseClasspath, cleanEclipse, and so on.), then downloads
some jar files from the Maven repository and finally executes a few more tasks

(eclipseddt, eclipse, and so on) to complete the build process.
The autogenerated build.gradle file has the following contents:

apply plugin: 'java'
apply plugin: 'eclipse'

sourceCompatibility = 1.5

version = '1.0'
jar {
manifest {
attributes 'Implementation-Title': 'Gradle Quickstart',
'Implementation-Version': version

repositories ({
mavenCentral ()

dependencies {

compile group: 'commons-collections', name: 'commons-

collections', version: '3.2'

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

testCompile group: 'junit', name: 'junit', version: '4.+'
test {
systemProperties 'property': 'value'

}

uploadArchives {
repositories ({
flatDir
dirs 'repos'
}
}
}

This build file is, quite different from what we created earlier in this chapter. The Java
and Eclipse plugin declarations were added in the beginning. Project properties such
as sourceCompatibility and version were added. The repository was declared as
mavenCentral (). Dependencies, common-collections, and JUnit were configured on
compile and testCompile respectively. We'll learn each and every component in the
next chapters; now, let's concentrate on the other artifacts created by the Gradle project.

If you browse the source code (look for the src folder) of the project, you'll find that
the application was prepopulated with some Java source code and JUnit test cases.

Apart from the source code and build file,a few other files, namely, .project, and
.classpath and a folder, namely, . settings, were added to this Java project. These
are the default files created by Eclipse. As the name suggests, the . project file
contains the metadata information about the project such as name, description and
build specification. The . classpath file describes the Java dependency, external
library dependencies, and other project dependencies. . settings/org.eclipse.
jdt.core.prefs stores information such as the Java compiler version, source, and
the target Java version. All these three files were created during the build process
when the eclipse task was executed.

So, we claimed that the Eclipse plugin was responsible for creating all of the Eclipse
IDE-specific files. To confirm, first execute the gradle cleanEclipse command
from the project of the base folder:

$ gradle cleanEclipse
:cleanEclipseClasspath
:cleanEclipseddt

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

:cleanEclipseProject

:cleanEclipse

BUILD SUCCESSFUL

The cleanEclipse task executed three more dependent tasks:
cleanEclipseClasspath (removes the .classpath file), cleanEclipseddt
(removes the .settings/org.eclipse.jdt.core.prefs file), and
cleanEclipseProject (removes the .project file).

Check whether all the three files got deleted from the project, and, finally, execute
the gradle eclipse command to recreate those files.

$ gradle eclipse
:eclipseClasspath
:eclipseddt
:eclipseProject

:eclipse

BUILD SUCCESSFUL

Now the question is if I have a Java project, how do I import that project in
Eclipse IDE?

We have learned this already and you might have guessed it. It takes just three steps:
add the Eclipse plugin into the build file (apply the eclipse plugin), execute Eclipse
task (gradle eclipse), and finally import project using Eclipse File | Import.

Alternatively, you can use Gradle IDE. From Eclipse, select the project by navigating
to File | Import | Gradle | Gradle Project, and then perform Build Model and
finish. Use of Gradle IDE helps to avoid all the manual steps mentioned earlier.

We'll conclude this section by exploring Gradle Task Ul, which enables us to
execute tasks. Gradle task execution is supported by the standard Eclipse launching
framework. This means that before we execute any task, we must create a standard
Eclipse launch configuration. To create the launch configuration, navigate to Gradle
project | Run As | and click on Gradle Build.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Gradle

In the text area, enter the task names you want to execute, such as clean build. Then
click on Run to execute the tasks. The launch configuration will be saved as the project

name by default. In Figure 1.3, the configuration is saved as FirstGradleProject, which
is the project name.

B3 Edit Configuration

Edit configuration and launch. Q
1L '=‘j
Name: [FirstGradleProject]
Gradle Tasks “_®= Arquments | «* Refresh|] Common
Project | FirstGradleProject 2 Refresh
Type tasks in the editor below. Use <Ctrl> + <Space>to activate content assistant.
clean build
® Close Run

Figure 1.3

This launch configuration will be saved in Eclipse, so that it can be executed
again. To launch the previously saved configuration, FirstGradleProject, you
need to navigate to Run As | Gradle Build. This will once again, execute the
clean build command.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Summary

In this chapter, we briefly discussed what a Build Automation System is, why do we
need it, and why Gradle is a popular Build Automation System. You also learned
how to install Gradle and we created our first Gradle script. Then we discussed

the command-line options, GUI support, cache management, and startup scripts.
Finally, we concluded the chapter working with Eclipse IDE with the Gradle Plugin
to develop a simple Java application.

All the build scripts developed in this chapter were written in Groovy, but we have not
talked about it. So, in the next chapter, we will learn some basic concepts of the Groovy
programming language. Next chapter is meant mainly for developers who already
have some basic knowledge of Java and object-oriented programming concepts.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

In this chapter, we will learn some fundamental concepts of the Groovy programming
language. This chapter briefly covers Groovy data types, control structures, object
oriented concepts, collections, closures, and builders. This is just the tip of the iceberg.
As this is not a Groovy book, we won't be able to cover all the topics. This chapter

is meant for beginners who are coming from a Java background and have a basic
understanding of Object-oriented programming (OOP) concepts. This will help
them get started with Groovy. This chapter will also act as a tool box to proceed

with Gradle scripting.

Overview

Groovy is a dynamic programming language for the Java Platform. You might be
wondering why we specifically mention the Java platform. By the Java platform,
it means Groovy code compiles into the bytecode, and bytecodes are executed on
JVM similar to any other Java class. Along with the OOP features, it also provides
the capability of scripting languages such as Python and Smalltalk, making them
available to use in Groovy using a Java-like syntax.

As Groovy runs on JVM, it can be easily integrated with Java and nicely fits into
the existing infrastructure. For example, the build and deployment of Groovy
code is the same as the build and deployment of Java code, and you can easily mix
Groovy and Java together by just adding another JAR file to the library. Groovy

is not the only language that runs on JVM. Some of the other languages are Scala,
Clojure, JRuby, Jython, and so on. In my opinion, if you have some Java background,
Groovy is much easier to learn when compared with other languages. It has a very
Java-like syntax to it, and most of the Java syntaxes are valid Groovy syntaxes. It
just simplifies coding. Groovy is never intended to replace Java. It is intended to
supplement Java to extend it to make it easier, and also it uses modern language
features such as closures, builders, and metaprogramming,.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

The following are some of the key features of Groovy.

Integration with Java

Many people think Groovy is a scripting language. Yes, it provides scripting support,
but it's not right to say Groovy is only a scripting language. Along with scripting,

it perfectly fits into the OOP world. As mentioned earlier, Groovy also provides
seamless integration with Java. Calling Java from Groovy is as simple as writing
Groovy code. Every Groovy type is a subtype of java.lang.Object.

Minimum code

One good thing about Groovy is that it reduces the amount of code required to

do some complex tasks, such as parsing XML files and accessing databases. With
Groovy, you can always mix in Java code. If you've been using Java for a while, I
think you'll appreciate the simplicity of using Groovy since you can program more
functionality by writing less code.

Simpler I/O operations

I/ O operations, one of the main pain points for the developer while working with
Java, is made much simpler in Groovy. It's more fun to perform I/O operations in
Groovy. Groovy provides simple properties to read/write from the file. It has added
so many utility methods to the java.io.File class.

Integration with Ant

Like Java, Groovy provides seamless integration with Ant. Groovy has a helper
class, AntBuilder, which gives Groovy the power of using Ant features to make the
developer's life much simpler. Be it calculating the checksum of any file or copying
the content of a directory from one location to another with any filter criteria. With
Ant capabilities, Groovy makes developers more productive. In Chapter 8, Migration,
we will discuss more on this topic.

Builder classes

Apart from AntBuilder, Groovy provides the capability of NodeBuilder,
MarkupBuilder, and SwingBuilder. With the help of these Builders, the developer is
able to achieve things in a much simpler way, as compared to life without the Builders.
MarkupBuilder is useful while dealing with XML operations. SwingBuilder provides
simplified API to the Swing framework that helps in building user-friendly GUI
applications. NodeBuilder helps while working with object tree structure.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Closure

The inclusion of closures was a big selling point for Groovy. A closure in Groovy is
an anonymous chunk of code that may take arguments, return a value, and reference
and use variables declared in its surrounding scope. Closure has usually been
associated with functional languages.

A Groovy closure is like a code block that is defined and then executed at a later
point. It has some special properties such as implicit variables and free variables.
We will discuss Closure in detail in later section of this chapter.

Of course, there are many more features to learn. We will discuss a few in this
chapter. For more details refer to the Groovy documentation at http: //www.
groovy-lang.org/.

Groovy script for Hello World

We have discussed what Groovy is and some of its important features. Let us create

a Hello World program and feel the magic with Groovy. Here we are assuming that
Groovy is installed on the system, GROOVY_HOME is pointing to the installation directory
and <GROOVY HOME>/bin has been added to the PATH environment variable:

file: GroovyTest.groovy
println "Hello Groovy"

And that's all. Yes, for a simple Groovy program, you don't need to declare any
packaging, any main class, or any semicolons, only a simple print1n statement
would create your first Groovy program.

To execute the program, use the following command:

$ groovy GroovyTest.groovy
Hello Groovy

The groovy command is used to execute the Groovy script. The beauty of the Groovy
script is that it can execute any file, not only files with the . groovy extension. Even
you can write the preceding println statement in the Test . text file and use the
groovy command to execute the file. File extension doesn't matter in groovy, but to
make the file structures more readable, it is recommended to use .groovy extensions
for Groovy files.

[31]

www.it-ebooks.info

http://www.groovy-lang.org/
http://www.groovy-lang.org/
http://www.it-ebooks.info/

Groovy Essentials for Gradle

There is another way of executing Groovy files. You can compile Groovy files,
generate class files like Java, and then execute the class files. Perform the
following steps:

1. To compile and generate the class file, use the following command:

$ groovyc GroovyTest.groovy

2. To run the class file generated, you need to execute the following command
on Windows. If executing on Linux/Unix environment use $GROOVY_HOME:

$ java -cp %GROOVY HOME%/embeddable/groovy-all-2.3.1.jar;.
GroovyTest

Executing a Groovy compiled file is same as executing the Java file. Developer needs
to add groovy-all-<versions.jar inits classpath. You also need to make sure
that the directory in which your compiled classes are present, it should be in the
classpath. In the preceding example, we have added "." as the current directory

to the classpath to find the GroovyTest .class file.

It doesn't matter which way you execute the Groovy scripts. In both the cases,
Groovy scripts execute inside JVM only. Both the methods compile the Groovy
scripts into bytecode. The groovy <filenames stores the classes into memory in
a direct way, whereas compiling the script using the groovyc command creates a
class file and stores it on disk, which you can later execute using Java command.

Data types

The first thing you learn about any programming language are the data types; how
any programming language stores the data. Similar to the other programming
languages, Groovy also offers a different set of data types for numerical, strings,
char, and so on. As compared to Java, there are no primitive types present in Groovy.
Groovy treats everything as an object, which makes Groovy a pure Object Oriented
language. The problem with primitive data types is that developers can't perform
any object-level operations, such as calling methods on them. Also, you can't store
them as an object in maps and sets (collections that require objects). The following
table shows primitive data types and wrapper types with default values:

Data type Wrapper type Default values
byte Byte 0
short Short 0
int Integer 0
[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Data type Wrapper type Default values
long Long OL

float Float 0.0f

double Double 0.0d

char Character \ u0000
boolean Boolean false

String Not Applicable null

Groovy gives you the flexibility to even declare variables using int, byte, short, and
so on, which it internally converts into its respective classes, for example, int to
Integer, char to Character, and so on.

String

You may be thinking, why are we discussing only String here? This is because

Groovy provides different variants to represent String compared to Java,
as shown in the following code:

def sl='This is single quote string.'

def s2="This is double quote string."

def s3="""This is multi line String.

You can write multiple lines here."""

def s4 ="Example of Gstring,

${s1}"

def s5='''This is multi line String.

You can write multiple lines here.''!

def s6 =/ This is 'slashy' String.

It can also contains multiple lines $sl

/

You can refer to variable also like

Here, s1 contains String in single quotes. This String is fixed in size as we have

written it.

The s2 variable contains String in double quotes similar to Java String.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

Variable s3 contains String enclosed in three double quotes, which allows you to
declare a multiline String.

In s4, String contains an embedded variable, which will be resolved to its value.
This is formally known as GString. You can declare place holder using either
${variable} or $variable.

Another format Groovy supports is String declared inside / (slash). It also supports
multiline Strings.

Dynamic typing in Groovy

Groovy provides support for both static typing and dynamic typing features. Static
typing provides more checks at compile time, more memory optimization, and better
support for the IDE used for Groovy. It also provides additional information about
the type of variable or method parameters. However, the power of Groovy lies in
dynamic typing. In many scenarios, you are not sure about the kind of value that
would be stored in the variable or returned by the functions. In that scenario, Groovy
provides flexibility to use dynamic typing. You can just define a variable or methods
by using the def keyword, as shown in the following code:

def varl

varl ='a'

println varl.class // will print class java.lang.String
varl = 1

println varl.class // will print class java.lang.Integer

def methodl () {/*method body*/}

Another use of dynamic typing is calling methods on objects that have no
guaranteed type. This is often called duck typing. For example, consider the
following scenario where a simple addition method is called on different data types
such as Integer, List, and String. Based on different input parameters, each time the
method returns different output.

def addition(a, b) { return a + b}

addition (1, 2) // Output: 3

addition ([1,2], [4, 51) // Output: [1, 2, 4, 5]
addition('Hi ', 3) // Output: Hi 3

As you can see, when the addition method was invoked with an Integer as an
argument, it performed an arithmetic addition. With list-type arguments, the addition
method creates a new list by doing a union of two lists. Similarly, on string-type
arguments, it does a simple concatenation. In this example, the + operator was
interpreted as different method calls based on the input type arguments.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

A\l

~ A major difference between Java and Groovy is that Groovy supports
operator overloading.

So far so good. But what happens if the addition method is called on a user-defined
object, say Person? This is shown in the following code:

class Person({
String name

@Override
public String toString() {
return "Person [name=" + name +"]";

}
}

pl = new Person ()
p2 = new Person ()
addition(pl, p2) // Output: groovy.lang.MissingMethodException

This is expected because in the person class we did not define the plus method. If we
define the plus method in the pPerson class, the call to the addition (which invokes
pl + p2orpl.plus(p2)) method will be successful.

Another solution is to implement methodMissing method. This is a very powerful
concept in Groovy. In the Gradle source code, you will find reference for this method
many times.

So, instead of defining a plus method, we can define a methodMissing method
as follows:

def methodMissing (String name, args) {
if (name.startsWith("plus"))
// write your own implementation
return "plus method intercepted"
}
else {
println "Method name does not start with plus"
throw new MissingMethodException (name, this.class, args)

}
}

Now, if we call the addition method on the Person object, we will find plus method
intercepted as the new output, as shown in the following code:

addition(pl, p2) // Output: plus method intercepted

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

Classes, beans, and methods

This section introduces classes, methods, and beans. Groovy classes are similar to
Java classes declared with the class keyword. Usually, a class definition starts with
the package name, and then import package statements. One key difference with the
Java counterpart is that Groovy imports six packages and two classes by default. So,
if you create any class, these packages and classes are automatically available to you:

import
import
import
import
import
import
import
import

java.lang.* // this is the only default import in Java
java.util.*

java.io.*

java.net.*

groovy.lang.*

groovy.util.*

java.math.BigInteger

java.math.BigDecimal

Classes and methods in Groovy by default have public access, whereas in Java it is
set to package-private. We will start with a sample Groovy class:

class Order (

int orderNo

Customer orderedByCustomer

String description

static main(args)
Order orderl = new Order() ;
orderl.orderNo = 1;
orderl.orderedByCustomer = new Customer (name: "Customerl",

email: "custl@example.com")

orderl.setDescription("Ordered by Customerl")
println orderl.orderByCustomer.showMail ()

class Customer({

String name

String email

String address

String showMail () {

email

}
}

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Here we have created two classes, Order and Customer, with some fields; in the
main method, we have created objects, and finally, called the showMail () method on
the customer object. Notice how objects are initialized with values. The order object
is created by the default constructor, then the object was initialized with the setter
methods defined on fields.

However, for the Customer object, it is done with a constructor with named
parameters. The Customer object is initialized with a property-value pair in the
constructor. However, we haven't defined any parameterized constructors in the
class definition. So how does it work?

We have created fields in the class with no access modifier. If fields are created with
default access, then Groovy automatically creates a field with public getter and
setter methods. If we specify any access modifier (public, private, or protected),
then only fields will be created; no getter or setter method will be created. In our
preceding example, orderNo, orderByCustomer, and description are declared
with no access modifier. So, we were able to call the setDescription method on

the order object. Other fields are accessed by field names. In this scenario, Groovy
calls the respective getter or setter methods internally on the fields. This feature is
called Property in Groovy. So, each class in Groovy has properties and autocreated
getter and setter methods for those properties. This is similar to the Java bean
approach, where private fields are created with public getter and setter methods,
but with less number of lines of code as, getter and setter methods are implicitly
provided by Groovy. This is why, often, Groovy objects are referred to as Plain Old
Groovy Object (POGO).

Coming back to the constructor declaration, when the Customer object was created
with named parameters, actually, a default constructor was created, and then, for
each of the properties in the constructor, respective set ter methods were called to
initialize the properties.

Methods in Groovy are similar to Java, but the class method's visibility is set to public
by default. To invoke a method on a class, we need to create an object of that class.

In case of Groovy scripts where you do not provide any class definition, method
invocation is done by calling the method by name. If a method supports a dynamic
return type, then the method declaration should start with the def keyword.

Groovy also supports method invocation with default parameter values. In the
following example, the sum method is defined with three parameters %, y, and z,
with values of y and z as 10 and 1, respectively. The sum (1) and sum (1, 2) methods
should give results 12 and 4, respectively.

def sum(x,y=10,z=1) {x+y+z}
// x =1

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

sum (1)
/]l x =1, y= 2
sum(1l, 2)

Groovy does not require an explicit return statement in methods. By default, the last
evaluated expression is returned as the method output. In the preceding example,
we have not mentioned return x+y+z. It would be returned by default.

Control structures

In this section, we will discuss the basic control structures, namely the if..else
statement, the switch statement, the for loop, and the while loop.

The if-else condition

The if..else condition in Groovy is similar to Java with one exception, how Groovy
evaluates the logical if condition. In the following example, the if condition

is evaluated true for both Boolean and int values. In Groovy, non-zero integers,
non-null values, nonempty strings, initialized collections, and a valid matcher are
evaluated as Boolean true values. This is known as Groovy Truths. Let's take a look
at the following code:

def conditionl = true

1]
o

int condition2
if (conditionl) {
println("Condition 1 satisfied")
if (condition2) {
println("Condition 2 satisfied")
lelse{
println("Condition 2 failed")
}
telse{
println("Condition 1 failed")

}

Groovy also supports ternary operators (x? y: z),such as Java, which can be used
to write the standard i£-else logic:

(condition2> 0)? println("Positive") : println("Negative")

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Groovy also provides one additional operator known as the Elvis operator. It can
be used as a shorter version of the ternary operator in the scenario, where the user
wants to validate a variable against the null value. Consider the following example:

def inputName
String username = inputName?:"guest"

If inputName is not null username would be inputName else default value "guest"
would be assigned to username

The switch statement

Groovy supports Class, Object, Range, Collection, Pattern, and Closure as classifiers
in the switch statement. Anything that implements the isCcase method can be used
as a classifier in the switch statement. The following example shows a case defined
for various classifiers. Just try different values of input and observe the output of the
switch statement:

def checkInput (def input) {
switch (input) {

case [3, 4, 5] : println ("Array Matched"); break;
case 10..15 : println ("Range Matched"); break;
case Integer : println ("Integer Matched"); break;
case ~/\w+/ : println("Pattern Matched"); break;
case String : println("String Matched"); break;
default : println ("Nothing Matched"); break;

}
}

checkInput(3) // will print Array Matched

checkInput (1) // will print Integer Matched

checkInput (10) // will print Range Matched
(
(

checkInput ("abcd abed") // will print String Matched
checkInput ("abed") // will print Pattern Matched

Groovy supports both for (initialize; condition; increment) and for-each
type looping. The for-each style is expressed as for (variable in Iterable)

{ body}. Asloop works on an iterable object collection, it can be easily applied to
array, range, collections, and so on. Let's take a look at the following code:

// Traditional for loop

for(int i = 0; i< 3; i++) {/* do something */ }
// Loop over a Range

for(i in 1..5) println(i)

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

// Array iteration

def arr = ["Apple", "Banana", "Mango"]

for(i in arr) println(i)

// for applied on Set

for(i in ([10,10,11,11,12,12] as Set)) println(i)

The while loop is similar to the Java while loop, though Groovy doesn't support the
do-while style of looping. Let's demonstrate the while loop:

int count = 0
while (count < 5) {
println count++

}

Collections

We assume you have basic knowledge on Java Collection Framework (JCF), so we
are not going to discuss the fundamentals of the collection framework. We start on
what Groovy provides on collection framework and frequently used utility methods
provided by different collection objects.

Groovy supports different collective data types to store group of objects, such as
range, lists, sets, and maps. If you are already a Java programmer, you will find how
easy it is in Groovy to play with collective data types as compared to Java. Apart
from sets, lists, and maps, Groovy has introduced ranges, which was not available
in Java.

Set

A set is an unordered collection of objects, with no duplicates. It can be considered
as an unordered list with restrictions on uniqueness, and is often constructed from
a list. Set can also contain at most one null element. As implied by its name, this
interface models the mathematical set abstraction.

The following code snippet explains how to create a Set. Elements can be added or
removed from the Set using the add, addall, remove, or removeAll methods.

You might have learned a lot about set in your math classes, where the instructor
teaches you different set operations, such as union and intersection. Groovy also
provides similar functionalities. The union of two sets contains all the unique
elements and common elements present in both the sets without repetition. The
intersection finds common elements between the two sets. The complement of set1
and set2 will contain all those elements of set1 that are not present in set2.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Let's take a look at the following code:

// Creating a Set
def Setl = [1,2,1,4,5,9] as Set
Set Set2 = new HashSet(['a',6 'b','c','d'])

// Modifying a Set

Set2.add (1)

Set2.add (9)

Set2.addall ([4,5]) // Set2: [1, 4, 4, b, 5, ¢, a, 9]

Set2.remove (1)
Set2.removeAll ([4,5]) // Set2: [d, b, ¢, a, 9]

// Union of Set
Set Union = Setl + Set2 // Union: [1, 2, 4, 5, 9, 4, b, c, al

// Intersection of Set
Set intersection = Setl.intersect (Set2) // Intersection: [9]

// Complement of Set
Set Complement = Union.minus (Setl) // Complement: [d, b, c, al

List
As compared to set, a List is an ordered collection of objects, and a List can

contain duplicate elements. A List can be created using List 1list = [], which
creates an empty list that is an implementation of java.util.ArrayList.

The following code snippet shows how to create a List, read values from the list,
and list some utility methods on the List:

// Creating a List
def listl = ['a', 'b', 'c¢', 'd']
def list2 = [3, 2, 1, 4, 5] as List

// Reading a List

println listl[1] // Output: b
println list2.get (4) // Output: 5
println listl.get(5) //Throws IndexOutOfBoundsException

// Some utility method on List

//Sort a List

println list2.sort() // Output: [1, 2, 3, 4, 5]
// Reserve a list

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

println listl.reverse() // Output: [d, ¢, b, al

// Finding elements

println ("Max:" + list2.max() + ":Last:" + listl.last())
// Output: Max:5:Last:d

Some of the List methods accept Closure. The following example shows how to find
the first even number using the find method, and list of all the even numbers using
the £indall method:

println list2.find({ it %2 == 0}) // Output: 2
println list2.findAll ({it %2 == 0}) // Output: [2, 4]

Do not get confused by the "it" keyword inside the curly brackets. We will discuss
this in the Closure section.

Map

Map is a key-value pair collection, where the key is unique. In Groovy, key-value
pairs are delimited by colons. An empty Map can be created via [:]. By default,

a Map is of the type java.util.HashMap. If the keys are of type String, you can
avoid the single or double quotes in the Map declaration. For example, if you want
to create a Map with name as the key and Groovy as the value, you can use the
following notation:

Map ml = [name:"Groovy"]

Here, [name: "Groovy"] is the same as ["name": "Groovy"]. By default, Map keys
are Strings. But if you want to put some variable as the key, then use parentheses,
as shown in the following code:

String sl = "name"
Map ml = [(sl):"Groovy"]

Alternatively, you can create a Map in the following way:
def m2 = [id:1,title: "Mastering Groovy"] as Map
You can get the objects from the Map using key m2.get ("id") orm2["id"].
s If key is a String, then to get a value, you need to specify the key in

~Q double quotes (" "). If you do not specify the key in double quotes, it
will treat it as a variable name and will try to resolve it.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Now we will discuss some of the utility methods (each, any, and every) of Maps,
which accept Closures:

Map ageMap = [John:24, Meera:28,Kat:31,Lee:19,Harry:18]

To parse every entry of Map, you can use each. It takes either entry or key-value as a
parameter, as shown in the following table:

ageMap.each {key, value -> ageMap.each {entry -»>
println "Name is "+key println "Name is
println "Age is " + "+entry.key
value println "Age is " +
} entry.value
}

If you want to validate the Map data, you can use either .every or .any, based on
your requirements. The . every method checks and makes sure all records fulfil
the mentioned condition, while . any just checks whether any one record fulfils the
condition. For example, if you want to check whether there is any user who is more
than 25 years old:

ageMap.any {entry -> entry.value > 25 }
It returns the output as a Boolean value; in this case, true, as Meera is 28.
If you want to check whether all the users are above 18:

ageMap.every {entry -> entry.value > 18 }
It will return false, as Harry is 18.

You can also use the £ind and £indall methods for Map in the same pattern as we
used for List in the List section.

Range

Apart from Java collection types, Groovy also supports a new collective data type
Range. It is defined as two values (generally starting point and ending point)
separated by two dots.

To create a Range, use the following code:

def rangel = 1..10
Range range2 = 'a'..'e'

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

To read values from Range, use the following code:

rangel.each { println it }

You can also use the .any and .every operators to validate range for your specific
requirement. It checks for the condition and returns a Boolean value. Let's take a look
at the following code:

rangel.any { it > 5 }
rangel.every { it > 0 }

For modifying the range interval, use the following code. If you want to modify range
interval from default 1 to any other number, you can set it via step method. It returns
a list:

List 11 = rangel.step(2) //Output: [1, 3, 5, 7, 9]

To fetch the starting element and ending element of a range, use the From and To
element, as shown in the following code:

rangel.getFrom() //Output: 1
rangel.getTo () //Output: 10

The isreverse () method is used to check the range trend to see whether the range
is constructed using to value (higher value) to from value (lower value):

rangel.isReverse () // Output: false

Closure

Closure has usually been associated with functional languages. Groovy provides

a very easy way of creating closure objects. A Groovy Closure is like a code block
written in curly braces. Many people associate Closure to be an anonymous function
in Java.

Closure in Groovy may accept arguments and returns a value. By default, the last
statement in a Groovy Closure is the return statement. It means that if you are not
explicitly returning any value from Closure, it will by default, returns the output of
the last statement of Closure. Commonly, we define a Closure like this {argument
list-> closure body}. Here, an argument list is a comma separated value that
Closure accepts. Arguments are optional. If no argument is specified, then one
implicit untyped argument named it will be available in the Closure body. The
argument it will be null if no argument is supplied during Closure invocation.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In the following example, for the first call of Closure addTwo the variable it is
assigned is 2, but in the second call, it is assigned null:

def addTwo = {it+2 }
addTwo (2) // Output: 4
addTwo () // NullPointerException

Alternatively, you can even declare a variable of type Closure. In Groovy, Closures
are a subclass of the groovy.lang.Closure type:

groovy.lang.Closure closurel = { println it }
closurel ("This will be printed") // Output: This will be printed

To separate the Closure body from the argument list, we use the - > operator. The
closure body consists of zero or more Groovy statements. Like methods, it can also
reference and declare variables in its scope.

In the following code snippet, the addone method was able to reference the
constantValue variable in its scope, though it was defined outside of the Closure
scope. Such variables are referred to as £ree variables. A variable which is defined
within the curly braces of a Closure would be treated as a local variable:

int constantValue = 9
def addOne = { Integer a -> constantValue + a }

addOne (1) // unnamed () invocation. Output: 10
addOne.call (1) // call() invocation. Output: 10
addOne ("One") // MissingMethodException

In the preceding example, the argument of the Closure was of Integer type. With
Closures, the statements within the curly braces are not executed until you explicitly
invoke them, using either call () or by an unnamed () invocation syntax of Closure.
In our example, the closure is declared in the second line, but it's not evaluated at that
time. It will be executed if the call () method is explicitly made on the Closure. This
is an important differentiator between Closures and code blocks. They may look the
same, but they are not. Closures are only executed if the call () method is invoked on
the Closure; not during its definition time. Remember, Closures are first class objects
in Groovy, and can be referred using untyped variables or by using Closure variables.
In both the cases, it is derived from groovy.lang.Closure. This class has overloaded
call () methods with no or multiple arguments to invoke Closures.

When addone Closure was called with an Integer as an argument, it executed
successfully. However, for String type as an argument, it throws an exception. Also
observe that the compiler didn't complain when we passed a String as an argument
to the addone Closure. This is because all arguments are checked at runtime; there is
no static type checking done by the compiler.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Essentials for Gradle

The docall () method on this Closure is generated dynamically, which accepts only
Integer as an argument. So any invocation other than Integer type will throw an
exception. The docall () method is the implicit method, which cannot be overridden
and cannot be redefined. This method is always invoked implicitly when we invoke
call method or unnamed () syntax on a Closure.

We will conclude Closure by discussing the concept of delegate. This feature

is widely used in Gradle. For example, when we define a repository Closure

or dependency Closure in the build script, those Closures are executed in the
RepositoryHandler or DependencyHandler classes. These classes are passed to the
closures as delegates. You can refer to the Gradle API for more details. Let us not
complicate things here. We will try to understand the concept with simple examples.

Consider the following example, where we are trying to print a myvalue variable,
which is undefined in the class. Obviously, this call will throw an exception as this
variable is not defined in the scope:

class PrintValue({
def printClosure = {
println myValue

}
}

def pcl = new PrintValue () .printClosure
pcl () //Output: MissingPropertyException: No such property

There could be a situation where we want to execute this closure against another
class. This class can be passed to the closure as a delegate:

class PrintHandler(
def myValue = "I'm Defined Here"

}

def pcl = new PrintValue() .printClosure
pcl.delegate = new PrintHandler ()
pcl ()

OUTPUT: I'm Defined Here

In this example, the PrintHandler class has defined the myvalue variable. We have
delegated and executed the closure against the PrintHandler class.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

So far, it is working as expected. Now, what if myvalue is redefined in the
PrintValue class:

class PrintValuef{
def myValue = "I'm owner"
def printClosure = {
println myValue

}
}

In this scenario, on executing the Closure, we will find the output as I'm owner. This is
because, when closure was trying to resolve the myvalue variable, it found the variable
defined within the scope of the owner (the Printvalue class, where the Closure is
defined), so it didn't delegate the call to the PrintHandler class. Formally, this is
known as OWNER_FIRST strategy, which is the default strategy. The strategy resolves
this way — the closure will be checked first, followed by the closure's scope, then the
owner of the closure, and, finally, the delegate. Groovy is so flexible that it provides

us with the capability to change the strategy. For example, to delegate the call to the
PrintHandler class, we should specify the strategy as DELEGATE FIRST:

def pcl = new PrintValue () .printClosure
pcl.resolveStrategy = Closure.DELEGATE FIRST
pcl.delegate = new PrintHandler ()

pcl ()

With the DELEGATE_FIRST strategy, the closure will try to resolve the property or
methods to the delegate first and then the owner. The other important strategies are:

* OWNER_ONLY: It attempts to resolve the property or methods within the owner
only and doesn't delegate.

* DELEGATE_ONLY: Closure will resolve the property references or methods to
the delegate. It completely ignores the owner.

e TO_SELF: It will resolve the property references or methods to itself and go
through the usual MetaClass look-up process.

This was indeed a very short description. I suggest you to refer to the Groovy
documentation for more details at:
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html.

[47]

www.it-ebooks.info

http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html
http://www.it-ebooks.info/

Groovy Essentials for Gradle

Builder

Another important feature in Groovy is Builder. Groovy Builders allow you to
create complex tree-like hierarchical object structures. For example, SwingUI or
XML documents can be created very easily using the DSL or Closure-like features
in Groovy, with the support of the Buildersupport class and its subclasses,
MarkupBuilder and SwingBuilder.

Let's try to understand with an example. We created the order class earlier in this
chapter. Assume we have a list of orders and we want to store the details in a file
called orders.xml. So every order object in our list should be saved as a node in
the XML file. Each of these order nodes, again should contain child nodes, grand
children nodes, and so on. Creating this tree-like structure can be complex if we try
to implement a DOM-like parser in Java:

<orders>
<order>
<no>l</no>
<description>Ordered by customer l</descriptions>
<customer>
<name firstname='Customerl' />
<email>custl@example.com</email>
</customers>
</orders
<order>
<no>2</no>
<description>Ordered by customer 2</descriptions>
<customer>
<name firstname='Customer2' />
<email>cust2@example.com</email>
</customers>
</orders

</orderss>

But in Groovy, this is just few lines of code with some method calls combined

with Closure and named parameters. In the following example, we have created a
builder object from the MarkupBuilder class to create the XML document. Then we
have defined orders as the root of the document. However, builder has no method
defined as orders. So then, how does this work?

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As mentioned earlier, the MarkupBuilder class is a subclass of the BuilderSupport
class. BuilderSupport has methods such as createNode, invokeMethod,
nodeCompleted, setCurrent, setParent, and a few more. In runtime, an object is
created by calling the createNode method on the builder with the name orders. In
a similar fashion, for each order object, no, description, and customer nodes are
created. Finally, each order node is attached to the parent orders node by calling
the setParent method of the builder object:

def builder = new groovy.xml.MarkupBuilder (new FileWriter ("orders.
xml"))

builder.orders
for (i in orderlist)
order{
no (i.orderNo)
description(i.description)
customer {
name (firstname : i.orderedBy.name)
email (i.orderedBy.email)
}
}
}
}

Summary

In this chapter, we discussed some basic fundamental concepts. We learned about
concepts of classes, methods, beans, collection frameworks, and closures. We also
developed a markup builder to produce XML files. This was indeed a very short
introduction to Groovy. However, in my opinion this introduction should be good
enough to write Gradle scripts for your projects.

From the next chapter onwards, we will start exploring the core features of Gradle.
In the next chapter, we will learn task management in Groovy. We will take a close
look at the different in-built tasks supported by Gradle. We will also learn about task
dependencies and task configurations. Then we will create some custom tasks for
build scripts.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

In this chapter, we will discuss the basic unit of Gradle build script, that is, Task. We
will have a detailed look into the Task framework, how to create your own tasks,
overwrite tasks provided by Gradle, tasks configurations, and creating custom

tasks using different approaches provided by Gradle. We will also discuss the task
dependencies. This chapter will also give insight view of controlling the execution
of tasks, how to enable or disable task execution, and skip task execution based on
some conditions. Gradle provides one additional feature known as incremental
build support, which skips the execution of tasks if it is up to date, that is, if there
are no changes in the input and output of the tasks. It helps in reducing the build
time of the scripts if you are running the build repeatedly. We will try to understand
this feature with some examples. Gradle supports this functionality by default. We
will see how to extend this feature to user-defined tasks. Additionally, we will also
explore the project object provided by Gradle to control the build scripts.

Build script basics

A build script is nothing but a set of actions that execute in some predefined order
and perform certain operations. In Gradle, we call these actions or group of actions
a Task, which is part of the parent entity called Project. The atomic unit of execution
in the Gradle build file is called a Task. The outcome of the build file might be

some assets such as JAR, WAR, and so on, or it might perform certain operations
such as deployment of assets and configuration of assets. Each build file that is
build.gradle represents at least one project. It might contain more than one project
also in case of multiproject or multimodule build. We will discuss multiproject
build in Chapter 6, Working with Gradle. The execution of the build represents the
execution of the project object, which internally calls different tasks to perform

the operations.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

When you execute any build script, Gradle instantiates the org.gradle.api.Project
object for the build file and gives an implicit project object. You can use this object

to access the Project API in the build file either through project . <methodname |
property> or simply <methodname | propertys. For example; to print the name of
the project in your build file, you can use the following code:

println "Project name is "+project.name

println "Project name is "+name // here project object is implicit
println "Project name is S$project.name"

println "Project name is S$name"

All the preceding statements will return the same output, that is, the project name.
The project name is the name of the parent directory of the build.gradle file.
Consider that build.gradle is under the Chapter3 directory; thus, the output of the
preceding statements would be Project name is Chapter3. You can change the
name of the project by providing rootProject.name=<New Project Names in the
settings.gradle file. We will discuss further usage of the settings.gradle file in
Chapter 6, Working with Gradle.

To get the output Project name is Chapter3, you need to write
the statements outside of a task block. If you write it inside a task, and
if we are using the name or $name variable, it will show the task name.
T~ This is because inside a task block, the scope of the name variable will
be different.

The following are some of the properties of the project object, which can be used to
configure the build file using the getter and setter methods:

* name // readonly, you can only change using settings.gradle

® parent // readonly

®* version

® description
Some of the properties are read-only, which are directly set by Gradle runtime.

Gradle also provides some default tasks, which can be used without applying any
plugin such as copy task and zip task. It is also possible to define your own custom
properties and custom tasks for the project object.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

For each task in the build file, Gradle instantiates one of the implementations of
Task object. There are different implementations of the Task interface; you can
find further details of it at https://docs.gradle.org/current/javadoc/org/
gradle/api/Task.html. Similar to the Project object, you can also control tasks
programmatically using the Task API. You will see more details on this when we
will create custom tasks using Groovy in a later section. In summary:

* A taskis a collection of actions and properties. It can depend on some
other tasks

* A task can accept input and return output

* A task also provides certain predefined properties such as name and
description enabled

We will start with a simple build file example to explain the existing project
properties, provide custom properties, create tasks, and so on.

Consider the file location /Chapter3/build.gradle:

// Section 1: Project object existing properties
version = '1.0'
description = 'Sample Java Project'
// Section 2: Project level custom properties
ext {

startDate="Jan 2015"

}

ext.endDate = "Dec 2015"
println "This is project configuration part, description is
Sdescription"

// Section 3: Task
task sampleTaskl {
// Section 3.1: Task existing properties
description = "This is task level description"
// Section 3.2: Task level custom properties
ext {
taskDetail=" This is custom property of taskl"

}

println "This is sampleTaskl configuration statements, taskDetail
igs StaskDetail"

// Section 3.3: Task actions

doFirst

println "Project name is S$project.name, description is
Sproject.description"

[53]

www.it-ebooks.info

https://docs.gradle.org/current/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/current/javadoc/org/gradle/api/Task.html
http://www.it-ebooks.info/

Managing Task

println "Task name is S$name, description is $description"
println "Project start date is S$startDate"

}

doLast {
println "Project endDate is $endDate"

}

// Section 4: Task
task sampleTask2 {
println "This is sampleTask2 configuration statements"

doFirst

println "Task getProjectDetailsTask properties are:
"+sampleTaskl.taskDetail

}
}

To execute the preceding build.gradle file:

$ gradle sampleTaskl sampleTask2

This is project configuration part, description is Sample Java
Project

This is sampleTaskl configuration statements, taskDetail is This is
custom property of taskl

This is sampleTask2 configuration statements
:sampleTaskl
Project name is chapter3, description is Sample Java Project

Task name is sampleTaskl, description is This is task level
description

Project start date is Jan 2015
Project endDate is Dec 2015
:sampleTask2

Task getProjectDetailsTask properties are: This is custom property
of taskl

BUILD SUCCESSFUL

Total time: 6.892 secs

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In the preceding example, in Section 1, we have overwritten some of the

existing properties of the project object. In Section 2, we have added custom
properties to the project object. Note that the syntax of adding custom properties
is to add the <name=value> pair inside the ext closure, or we can define it as

ext .<propertyname> = value. Then, we have added two tasks to this build
script in Section 3 and 4 and added custom properties to the sampleTask1l task.

To add/update properties of the project, you do not need to add the def keyword.
def is used to define the user-defined variables. However, here we are defining
project properties. If you use def startDate=<Values, it would be treated as

a variable not a project property.

We are able to print the startDate and endDate in sampleTaskl as we added
these two as project properties, which can be directly accessed throughout the

build file. To call task methods or to use task properties outside the task, we can

use task.<property names Or task.<method names. As in the preceding example,
inside the sampleTask2 task, we are printing sampleTaskl.taskDetail.

There are multiple ways to specify the properties of any project. We will see this in
detail when we discuss properties in Chapter 6, Working with Gradle.

Task configuration

We discussed in first chapter that a build file consists of three phases: initialization,
configuration, and execution, which are explained briefly as follows:

* Initialization creates the project object.

* The configuration phase configures the project object, creates DAG (Directed
Acyclic Graph) based on task dependencies. It also executes the project and
the task configuration statements.

* The execution phase finally executes the actions mentioned in the task body.

The task API mainly defines two types of closures: doFirst(Closure closure) and
doLast(Closure closure), which internally calls doFirst (Action action) and
doLast (Action action). You can mention either one or both of them.

1
‘\Q Statements mentioned outside of these actions are part of your

configuration, which are executed during the configuration phase.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

To verify the configuration phase of a task, you can execute the build script using
the - -dry-run or -m option. The - -dry-run (or -m) option only goes through
the initialization and configuration phase, not the execution phase. Try to execute
the preceding build file with the - -dry-run option and you will find all the
configuration statements printed on the console:

$ gradle --dry-run

This is project configuration part, description is Sample Java
Project

This is sampleTaskl configuration statements, taskDetail is This is
custom property of taskl

This is sampleTask2 configuration statements

:help SKIPPED

BUILD SUCCESSFUL

In Gradle 2.4 version, there are some performance improvements implemented
in the configuration phase. For more details, refer to the release note at https://
docs.gradle.org/2.4/release-notes#significant-configuration-time-
performance-improvements

Task execution

As mentioned earlier, a task is nothing but a single or group of actions that is
executed to perform certain operations. You can add multiple actions to doFirst
or doLast closures if needed. The doFirst closure will always execute before the
doLast closure. You can add the actions to the task even after task definition.

For example, add the following statements after the sampleTask2 task is mentioned
in the preceding script.

sampleTask2.doFirst { println "Actions added separately" }
sampleTask2.doLast { println " More Actions added " }

The preceding statement will add two more additional actions to sampleTask2.
Gradle provides one short notation for doLast, which is <<.

In Groovy, << is the left shift operator to append elements to a list:

task sampleTask3 << {
println "Executing task3"

}

sampleTask3.doFirst {println "Adding doFirst action" }

[56]

www.it-ebooks.info

https://docs.gradle.org/2.4/release-notes#significant-configuration-time-performance-improvements
https://docs.gradle.org/2.4/release-notes#significant-configuration-time-performance-improvements
https://docs.gradle.org/2.4/release-notes#significant-configuration-time-performance-improvements
http://www.it-ebooks.info/

Chapter 3

Try to execute sampleTask3 and review the output:

$ gradle sampleTask3

:sampleTask3
Adding doFirst action

Executing task3

BUILD SUCCESSFUL

If multiple tasks are mentioned on the command line, they will be executed in the
order defined (unless some dependency is applied on the tasks).

Task dependency

When we talk about build lifecycle or test lifecycle of any build tool, what does
actually happen internally? It does not execute only one task; it basically executes

a group of tasks, which are defined in a certain order and this order is nothing but
the task dependencies. Consider the example of building any Java project. You can
build a Java project by executing the gradle build task. This will do everything,
such as compiling the source code, package classes into JAR file and copy the JAR
file to a location. Does it mean that all these processes are only part of the build
task? The message we want to convey here is that Gradle's build task does not
execute only one task, but it executes the series of tasks from compileJdava, classes,
compiileTestJava and so on until the building of the JAR file.

\ compileTestJava ‘

processResources
More tasks... H build
processTestResources /

’ jar

classes

Figure 3.1

The preceding figure is nothing but the representation of the DAG after applying the
Java plugin. It represents different tasks and how they are dependent on each other.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

If a task, Taskl, depends on another task, Task2, then Gradle makes sure that Task2
is always executed before Taskl. In the preceding example, the compileJava, classes,
and jar tasks will always execute before the build task. A task can depend on one or
more tasks. Two or more tasks can also depend on the same prerequisite task. For
example, in the preceding DAG the javadoc, compileTestjava, and jar tasks depends
on the classes task. It does not mean that the classes task will execute three times.

It will execute only once in the build lifecycle. If a task has already been executed
due to some other dependency, it will not execute again. It will just inform the other
dependent task about its status so that dependent task will continue to execute
without calling it again.

In the build file, a task dependency can be defined in any of the following ways:

task taskl (dependsOn: task2)

task taskl (dependsOn: [task2,task3]) // in case of more than one
dependency

taskl.dependsOn task2, task3 //Another way of declaring
dependency

Many plugins provide tasks with default dependencies. As we have seen in the
preceding diagram, the classes task has the compileJava dependency. If you add
any other dependency (for example, task1) to the classes task, it will append the
task (task1) with the compiledava task. This means, executing the classes task
will execute both compileJava and taskl. To exclusively override the existing
dependencies with a new set of dependencies, use the following syntax:

classes {dependsOn = [taskl, task2]

}

Here, executing the classes task will execute both task1 and task2 as dependent
tasks and it will ignore the compiledava task.

Task ordering

If Task1 depends on Task2, then Gradle makes sure that Task2 will always execute
before Taskl. However, it does not make sure the ordering of tasks. That is, it will
not ensure that Task2 will execute immediately before Task1. Between the execution
of Task2 and Task1, other tasks might be executed.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Figure 3.2

As shown in the preceding diagram, Task1 depends on Task2 and Task3. Task4 is
an independent task. If you execute gradle Taskl Task4, the execution flow will be
Task2, Task3, Taskl, and then Task4, as if a task depends on multiple tasks. Gradle
executes the dependent tasks in alphabetical order.

Along with dependson, Gradle provides some additional categories of ordering. For
example, after the execution of the last task, you might want to clean the temporary
resources, which were created during the build process. To enable this type of
ordering, Gradle provides the following options:

® shouldRunAfter

®* mustRunAfter

* finalyzedBy (more strict in nature)

Let's take a look at the following example. Create the build_ordering.gradle file:

(1..6) .each {
task "sampleTask$it" << {
println "Executing $name"

}
}

sampleTaskl.dependsOn sampleTask?2
sampleTask3.dependsOn sampleTask?2

sampleTask5.finalizedBy sampleTaské6
sampleTask5.mustRunAfter sampleTask4

In the script, we have created six tasks named sampleTask with an integer suffix.
Now, to understand task ordering, execute the preceding build script with different
task names:

$ gradle -b build ordering.gradle sampleTaskl

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

This will execute sampleTask2 and sampleTaskl:

$ gradle -b build ordering.gradle sampleTaskl sampleTask3

This will execute sampleTask2, sampleTaskl, and sampleTask3. Task sampleTask2
will execute only once:

$ gradle -b build ordering.gradle sampleTask5
This will execute sampleTask5 and sampleTasksé.

Note that the sampleTasks task will not execute sampleTask4, since the
mustRunAfter ordering will come into effect when both tasks (sampleTask4 and
sampleTasks5) are part of the execution process. This is explained in the following
command. Here, you have also seen the use of the finalizedBy operation. It
provides the concluded by order, that is, sampleTasks should be immediately
followed by sampleTaské:

$ gradle -b build ordering.gradle sampleTask5 sampleTask4

This will execute sampleTask4, sampleTask5, and sampleTaské in sequence. This
is because sampleTask5 must run after sampleTask4, and sampleTasks should be
concluded by sampleTasks.

The difference between mustRunAfter and shouldRunAfter is that mustRunAfter
is strict ordering, whereas shouldRunAfter is lenient ordering. Consider the
following code:

sampleTaskl.dependsOn sampleTask2
sampleTask2.dependsOn sampleTask3
sampleTask3 .mustRunAfter sampleTaskl

In this case, for the first two statements, the execution order is sampleTask3,
sampleTask2, and then sampleTaskl. The next statement sampleTask3.
mustRunAfter sampleTaskl, which says sampleTask3 must execute after
sampleTask1 introduces cyclic dependency. Thus, the execution of sampleTaskl
will fail:

$ gradle -b build ordering.gradle sampleTaskl
FAILURE: Build failed with an exception.

* What went wrong:

Circular dependency between the following tasks:
:sampleTaskl

\--- :sampleTask?2

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

\--- :sampleTask3
\--- :sampleTaskl (%)

(¥*) - details omitted (listed previously)

If you replace mustRunAfter with shouldrRunAfter, then it will not throw any
exception and will ignore strict ordering in this scenario.

Task operations

If you are tired of typing complete task names in the command-line; here is a good
option for you. If you have defined task names in camel case (camelCase) format, you
can just execute the task by mentioning the first letter of each word. For example,
you can execute the sampleTask1 task with shorthand sT1:

$ gradle -q -b build ordering.gradle sTl sT2
This will execute sampleTaskl and sampleTask2.
If the shorthand of camel case matches more than one task, it will result in ambiguity:

$ gradle -q -b build ordering.gradle sT
FAILURE: Build failed with an exception.

* What went wrong:

Task 'sT' is ambiguous in root project 'Chapter3'. Candidates are:
'sampleTaskl', 'sampleTask2', 'sampleTask3', 'sampleTask4',
'sampleTask5', 'sampleTask6'.

* Try:

Run gradle tasks to get a list of available tasks. Run with --
stacktrace option to get the stack trace. Run with --info or --debug
option to get more log output.

Now, we will explore some other task operations such as conditional execution,
build optimization, and force execution.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

Conditional execution

There are different scenarios when you want to execute some tasks based on certain
properties. For example, you have a property named environment in the build file.
If the value of the property is set to prod, you want to execute production specific
tasks and if it is ga, you want to execute test-specific tasks. Create a build file
build_condition.gradle with the following code snippet:

ext {

environment="'prod'
// can set this value from property file or command line using -
Pname=value option

}

task prodTask << {
println 'Executing prod tasks '+ environment

prodTask.onlyIf {project.hasProperty('environment') &&
project.environment=="'prod' }

task gaTask << {
println 'Executing ga tasks '+ environment

gaTask.onlyIf { project.hasProperty('environment') &&
project.environment== 'ga '}

Execute the preceding build file with both the tasks:

$ gradle -b build condition.gradle prodTask gaTask
:prodTask

Executing prod tasks prod

:gaTask SKIPPED

BUILD SUCCESSFUL

Here, Gradle skipped gaTask and executed only prodTask based on the
environment property set in the build file. You can also remove the environment
value in the preceding ext closure and directly set the property from the command-
line option and try to execute the following commands:

$ gradle -b build condition.gradle -Penvironment=ga gaTask prodTask
:gaTask

Executing gatasks ga

:prodTask SKIPPED

BUILD SUCCESSFUL

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There might be another scenario when a task is outdated and you do not want to
execute it, even if some other task depends on this task. This feature is supported
by the enabled option in the task configuration phase:

task sampleTaskl2 << {
println " This task is disabled"

}

task sampleTaskl3 (dependsOn: sampleTaskl2) << {
println "This task depends on sampleTaskl2"

}

sampleTaskl2.enabled = false

$ gradle -b build enabled.gradle sT1l2 sT13

:sampleTaskl2 SKIPPED
:sampleTaskl3
This task depends on taskl2

BUILD SUCCESSFUL

Note that you can set enabled in the configuration phase itself. It should not be part
of the doFirst or doLast closure:

task sampleTaskl2 {

//enabled = false // valid statement
doLast
enabled = false // Invalid statement

println 'Task execution'

}

In the preceding example, if we try to set enabled = false in the doLast

closure, the task will not execute. Build will fail with the cannot call Task.
setEnabled (boolean) on task ':sampleTaskl2' after task has started

execution error.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

Build optimization

Consider a scenario where your build file consists of 10 tasks, which execute as per
the task dependencies order. Out of 10 tasks, five tasks are modifying five different
files on the filesystem. Let's say these five files are some property files and these
build tasks are setting some values to the property:

envproperty.txt
env=prod

sysproperty.txt
memory=1024

After first execution, the property files are modified with the respective values.
When you run the build script again, although the files are already modified,
the build script modifies those files again.

Gradle provides a mechanism of skipping the execution of these kinds of tasks based
on the input and output parameters of the task, which is also known as incremental
build. It helps in reducing the build time. You might have observed when you apply
Java plugin and build your project couple of times, some tasks are marked with
UP-TO-DATE keyword (execute without -q option). This means there is no change
in the input and output compared to the last execution of these tasks and those tasks
are ignored.

By default, Gradle provides this feature to its in-built tasks. You can also enhance
your tasks with this capability, with the help of inputs and outputs of the task. Task
inputs and outputs are of type TaskInputs and Taskouputs. We will explain this
behavior with help of one example:

Consider the PropDetails.xml file:

<propertiess
<propertys>
<filedetails>
<names>envproperty.txt</name>
<key>env</key>
<values>prod</value>
</filedetails>
</property>
<propertys>
<filedetails>
<names>sysproperty.txt</name>
<key>memory</key>

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<value>1024</value>
</filedetail>
</property>
</properties>

Consider the build optimization.gradle file:

task updateExample {
ext {
propXml = file('PropDetails.xml')

}

File envFile file('envproperty.txt')

File sysFile = file('sysproperty.txt')

inputs.file propXml
outputs.files (envFile, sysFile)

doLast {

println "Generating Properties files"

def properties = new XmlParser () .parse (propXml)
properties.property.each { property -»>

def fileName = property.filedetail[0] .name[0].text ()
def key = property.filedetail[0] .key[0].text ()

def value = property.filedetail[0] .valuel[0].text ()
def destFile = new File("${fileName}")
destFile.text = "$key = ${value}\n"

}

}

}

$ gradle -b build optimization.gradle updateExample

If you run this task for the first time, it will read the PropDetail.xml file and will
create two files envproperty. txt and sysproperty.txt with key=value pair
mentioned in the property file. Now, if you run this command again, you will
see the following output:

:updateExample UP-TO-DATE
BUILD SUCCESSFUL

This implies that there is no change in the input and output of this task; thus, there is
no need to execute the task again.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

Try to change either the XML file or the generated property files or delete the output
files. If you run the Gradle command again, this time, the task will execute and it
will recreate the files. Gradle internally generates snapshots of input parameters and
output parameters (Gradle generates a hash code to avoid duplicates) and stores it.
Next time onwards, Gradle generates the snapshots of input and output parameters,
and if both are the same, it avoids the execution of tasks.

Also, an important point to remember, if no output is defined for tasks, then it will
not be considered for optimization (Up-T0-DATE). The task will always execute.
There can be a scenario where the output of a task is not a file or a directory, it could
be some other logical build steps or system-related check. In this situation, you can
use the TaskOutputs.upToDateWhen () method or the outputs.upToDateWhen
closure to check the specific scenario and mark tasks UP-TO-DATE.

To skip the optimization technique and force full execution of the task, the
- -rerun-tasks command line option can be used. It will execute the task forcefully,
even if it is UP-TO-DATE.

$ gradle -b build optimization.gradle updateExample --rerun-tasks

The - -rerun-tasks option will always execute the task without checking the input
and output parameters.

Task rules

We discussed the methodMissing concept in Groovy. You can define some

method patterns in Groovy, which can respond to method calls at runtime with the
predefined patterns. Task rules provide the same flexibility with tasks. It allows
executing a task, which does not exist. Gradle checks the task rule and creates the
task if the rules have been defined. We will see the usage with the help of a simple
example. For example, you have different assets, which are synced from different
repository servers. Rather than creating different tasks for each sync, you can create
the task rule as follows:

tasks.addRule ("Pattern: sync<repoServer>") { String taskName ->
if (taskName.startsWith("sync")) {
task (taskName) << {
println "Syncing from repository: " + (taskName -
'sync')
}
}
}
[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Here you can call different tasks for each repository servers as gradle
sync<repoServers> and it will sync the assets from that repository.

A very common example of task rules can be found in the Java plugin. Add apply
plugin: 'java' as the first line in the build file and run the following command:

$ gradle -b build rule.gradle tasks

Pattern: clean<TaskName>: Cleans the output files of a task.

Pattern: build<ConfigurationName>: Assembles the artifacts of a
configuration.

Pattern: upload<ConfigurationName>: Assembles and uploads the artifacts
belonging to a configuration.

Pattern: sync<repoServer>
To see all tasks and more detail, run with --all.
BUILD SUCCESSFUL

Total time: 4.021 secs

As of now, do not worry much about the plugin. We will discuss plugins in detail in
Chapter 4, Plugin Management.

In the above output, you can find the rules defined in the Java plugin. Gradle
provides three in-built rules clean<TaskName>, build<sConfigurationName>, and
upload<ConfigurationName> and the newly created sync<repoServers rule. For
all the tasks that are available in your build file (Java plugin tasks and user-defined
tasks), you can execute one additional task using clean<TaskName>. For example,
you have assemble, classes, and jar tasks available in the Java plugin. Apart from
executing normal clean task, which deletes the build directory, you can also execute
tasks such as cleanClasses, cleandar, and so on, which cleans only the result of
one particular task.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

Gradle's in-built tasks

For day-to-day build-related activities, Gradle provides a variety of tasks. We will
take a look at some of Gradle's in-built tasks.

The Copy Task

This task is used to copy file(s) or directories from one location to the other:

task copyTask (type: Copy) {
from "."
into "abc"
include ('employees.xml')

}

In copyTask, we have configured the from location and into location, and have
also added the condition to include only employees.xml.

The Rename Task

This task is an extended version of the copy task, which is used to rename files
or directories:

task copyWithRename (type: Copy) {
from "."
into "dirl"
include ('employees.xml')
rename { String fileName ->
fileName.replace ("employees", "abc")
}

}

In the copyWithRename task, an additional rename closure was added.

The Zip task

This task is used to zip a group of file(s) or directories and copy the zip to the
destination directory:

task zipTask (type: Zip) {
File destDir = file("dest")
archiveName "sample.zip"
from "src"
destinationDir destDir

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In the ziptask task, another destinationDir configuration was added. You can
refer to the online documentation for more a detailed API for these tasks.

Note that here we have not mentioned any actions for these tasks.
% Tasks themselves know what to do. We only need to configure the
"~ tasks to define them.

Most of the time, you use tasks that are part of plugins. Mostly, a plugin is a group
of tasks bound together for some specific functionality. For example; we use the
java plugin to build the Java project, the war plugin to create web archives, and so
on. When you apply the java plugin to a build script, Java tasks are automatically
included. We will discuss about plugins in detail in Chapter 4, Plugin Management.

To execute the Java tasks, we do not need to mention even the configurations.

For these tasks, Gradle applies conventions, that is, the default configuration. If a
project follows a certain convention, it can directly execute these tasks without any
configurations. If not, it should define its own configurations. To add the java plugin
to a build file, just add the following line of code:

apply plugin: 'java'

By default, the java plugin assumes that the project's source files are located at
src/main/java. If the source files are present in this directory, you can execute the
gradle compileJava or gradle build task without any configuration. We will
discuss more on Java plugins and tasks in the next chapter.

Until now in this chapter, we have got some idea about how to create tasks and
how to use Gradle's in-built tasks. In the next section, we will explore how to create
custom tasks.

Custom tasks

Gradle supports a variety of tasks for build automation, either from Gradle's in-house
plugins or from third-party plugins. As we know the software adage, change is the
only constant thing in software; the requirements and complexity change over the
time. Many a times we come across different automation requirements for which no
task or plugin is available in Gradle. In such cases, you can extend Gradle by adding
custom tasks to the build.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

A custom task is an enhanced task, which you add to Gradle to fulfill custom
requirements. It can have input, output, configurations and more. Its scope is not
only limited to the build file where it is defined; it can be reused in other projects
by adding custom task JAR in the classpath. You can write custom tasks in Groovy,
Java, and Scala. In this section, we will create custom task examples in Groovy.

Gradle provides different ways to add custom tasks in the build script:

* Thebuildfile
* The buildsrc directory inside the project directory

* Create a standalone Groovy project

A custom task is a Java or Groovy class that extends from DefaultTask. We can use
the @TaskAction annotation to define the task actions. You can add multiple actions
in a single task. They will execute in the order they are defined. Let's start with a
simple custom task in the build file.

Consider the file located at Chapter3/Customtask/build.gradle

println "Working on custom task in build script"

class SampleTask extends DefaultTask ({
String systemName = "DefaultMachineName"
String systemGroup = "DefaultSystemGroup"
@TaskAction
def actionl() {
println "System Name is "+systemName+" and group is
"+systemGroup
}
@TaskAction
def action2() {
println 'Adding multiple actions for refactoring'

}

task hello(type: SampleTask)

hello {
systemName="'MyDevelopmentMachine'
systemGroup="'Development'
}
hello.doFirst {println "Executing first statement "}
hello.dolLast {println "Executing last statement "}

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The output of the following file will be:

$ gradle -g hello

Executing first statement

System Name is MyDevelopmentMachine and group is Development
Adding multiple actions for refactoring

Executing last statement

BUILD SUCCESSFUL

In the preceding example, we have defined a custom task type, SampleTask. We
have added two action methods actioni () and action2 (). You can add more
actions as per the requirement. We have added two task variables systemName
and systemGroup with some default values. We can reinitialize these variables in
the project scope again while configuring the task (hello). Gradle also provides the
flexibility to add more actions to a task with the help of the doFirst and doLast
closures like any other task.

Once a task type is defined, you can create a task by using task <tasknames (type:
<TaskType>).

You can configure the task in configuration closure either while declaring the task or
as a separate closure, as mentioned in the preceding file.

Using buildSrc

If you want to keep the custom task code separate from the build file, but you do not
want to create a separate project for it, you can achieve this by adding the custom
task in the buildsrc directory.

Create a buildSrc directory in the project base directory and create the following
mentioned folder hierarchy: buildSrc/src/main/groovy/ch3/SampleTask.groovy.

Move the preceding sampleTask class in the file. You also need to import
two packages: org.gradle.api.DefaultTask and org.gradle.api.tasks.
TaskAction. Now, the build file is left with the following code snippet:

task hello(type: com.test.SampleTask)
hello {
systemName="'MyDevelopmentMachine'
systemGroup="'Development'
}
hello.doFirst {println "Executing first statement "}
hello.dolLast {println "Executing last statement "}

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

On executing the hello task, you will find the same output that was displayed earlier.

After execution, you will find the following folder structure in the project. Note that
you do not need to compile the SampleTask class. All the required steps would be
performed by Gradle. It will compile the classes, create JAR, and will automatically add
the required class to the build class path. You can just define the task and execute it.

build.gradle
buildSrc
build
classes
main
ch3
L— sampleTask.class
1ibs
| I—
tmp

compileGroovy
L groovy-java-stubs

il
MANIFEST.MF

src

L— main

L— groovy
ch3

L— sampleTask.groovy

14 directories, 5 files

Figure 3.3

The limitation is that the SsampleTask task is only available in the current project and
its subprojects only. You cannot use this task in other projects.

The standalone task

To overcome the limitations of the buildsrc way of creating custom tasks, you
need to create an independent Groovy project. Move the SampleTask class in a new
project (SampleTaskProj), and then compile and package the project. You can even
use Gradle to build this Groovy project. Just add build.gradle with the following
statements to the SampleTaskProj project:

apply plugin: 'groovy'

apply plugin: 'eclipse'

version=1.0 // to generate jar with version

dependencies {

compile gradleApi() // It creates dependency on the API of current
Gradle version

compile localGroovy() // it will use the Groovy shipped with
Gradle

// these dependencies comes along with groovy plugin

}

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

If you are creating the project in Eclipse, you can run the following command to
generate the Eclipse classpath:

$ gradle clean cleanEclipse eclipse

Now, execute the gradle build command to build the project. A JAR file will be
created in the build directory. To use the tasks, in the build file (think of it as a new
build.gradle file in another project), we need to reference the JAR file path in the
repositories closure.

Create a new project and update the build.gradle file with the following content:

buildscript {

repositories {
// relative path of sampleTaskProject jar file
flatDir {dirs "../SampleTaskProj/build/libs"}

}

dependencies {
classpath group: 'ch3', name: 'SampleTaskProj', version: '1.0'

}
}

task hello(type: ch3.SampleTask)

hello {
systemName="'MyDevelopmentMachine'
systemGroup="'Development'

hello.doFirst {println "Executing first statement "}
hello.doLast {println "Executing last statement "}

Execute the hello task again and you will find the same output:

$ gradle hello

thello

Executing first statement

Adding multiple actions for refactoring

System Name is MyDevelopmentMachine and group is Development

Executing last statement

BUILD SUCCESSFUL

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Task

Summary

In this chapter, we have discussed Gradle task in detail. We learned how to
create simple tasks in Gradle and add actions to it. Along with it, we looked into
task dependencies. We also looked into strict ordering of tasks if needed, using
mustRunAfter and FinalyzedBy. We also discussed incremental build feature in
Gradle, which improves build execution time. One of the important extensions is
the custom task. We also saw how to create custom tasks and reuse the same task
across different projects.

As mentioned, a task could fulfill a simple build requirement. However, requirements
keep growing and we need more number of tasks. It is also required to group certain
related tasks to perform a specific behavior. This grouping of tasks is done in a
plugin. A plugin is a group of different tasks bonded together. So, our next chapter is
dedicated to plugin management. We will discuss how to bind tasks to a plugin and
how to utilize plugins to enhance build capabilities.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

In the last chapter, we discussed Gradle task, which is the atomic unit of execution
in Gradle. In most cases, a task provides only a single unit of work in modules.

We can choose to bundle tasks together and execute them in a certain order to
provide the complete functionality. This grouping of tasks along with properties
and configuration is called a plugin. A plugin is the logical grouping of tasks, which
may have a life cycle. You can configure plugins to alter the behavior based on the
requirements. You can extend it to provide additional features. At a broader level,
Gradle provides two types of plugins; script plugin and binary plugin. Gradle treats
a build script as a script plugin and you can use other build scripts in a project by
importing build scripts into the current project.

Binary plugins are plugins, that we create using programming languages such
as Java or Groovy. Gradle provides in-built binary plugins for different build
functionalities. There are different approaches to creating a binary plugin in
Gradle, which we will discuss in the Custom Plugin section. First, we will
explore the script plugin.

The script plugin

A script plugin is nothing but a Gradle file, which we import into other build files.
It is the same as modularizing your code across different classes. When a build file
size exceeds to a certain limit or diverse functionalities are clubbed to a sing]e file,

it might be a better option to divide the cohesive tasks into different build files.
Then, you can import these files to the main build file to use the new functionalities.

To import the build file you can use the following code:

apply from: <Path of otherfile.gradle>

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

Here, the path could be a local file or a location relative to the project directory or a
valid URL. However, if you mention the URL, the downside is that the file will be
downloaded each time. Once the build file is imported, you can use the tasks defined
in the build file without any additional configuration.

If you are adding multiple build files in the main build file, make sure you do not
have tasks with the same name in the imported build files. During import, if Gradle
finds two tasks with the same name, it will throw the following exception:

* What went wrong:

A problem occurred evaluating script.

> Cannot add task ':<TASK NAME>' as a task with that name already
exists.

* Try:

Run with --stacktrace option to get the stack trace. Run with --info
or --debug option to get more log output.

Consider the following directory structure:

/Chapter4/scriptplugin.gradle

task scriptPluginTaskl << {
println "this is scpluginl"

}
/Chapter4/build.gradle
apply from: 'scriptplugin.gradle'

task mainTask << {
println "This is main task"

}
Execute the following command:

$ gradle mainTask scriptPluginTaskl
:mainTask

This is main task
:scriptPluginTaskl

this is scpluginl

BUILD SUCCESSFUL

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Here, we have defined the scriptPluginTaskl in the scriptplugin.gradle file
and have imported this build file in the main script build.gradle. Thus, importing
the scriptplugin.gradle file into build.gradle will make scriptPluginTaskl
available in the main build file and you can call it directly without mentioning any
build filename.

The binary plugin

Binary plugins are classes that implement the Plugin interface, which you can embed
into the build script. Alternatively, you can create a separate project, package it into
ajar file and add that jar file as a classpath entry to a project. The second approach
makes it more reusable. Each binary plugin has one ID to uniquely identify it. To use
a binary plugin, you need to include it using the apply plugin statement:

apply plugin: '<pluginids>'
For example, to use the Java plugin, you can write the following code:
apply plugin: 'java'

You can also use the class type to add plugins. For example, if you are creating a
custom class, DisplayPlugin, as a plugin, you can apply the following code:

apply plugin: DisplayPlugin

Before using this approach make sure you import this class in the build file using the
import statement. All the Gradle core plugins are available to you by default. You

do not need any additional configuration to use them. For third-party or community
plugins, you need to make sure they are available in the classpath before you use
them. You can do this by adding the plugin in the classpath using the buildscript{}
closure. When you apply any plugin to a build file, all the tasks that are part of

the plugin are automatically added. You can directly use the task with the default
configurations or you can customize the task configuration, if needed.

' Ll - L)
Gradle's in-built plugins
Gradle provides different in-built plugins to automate the build process. Gradle not

only provides different plugins to build a project, but also provides plugins to test
the project, for code analysis, for IDE support, for web container support, and so on.

The following are some of the frequently used plugins in different categories.
You will find more details on core plugins in the Gradle documentation at
https://docs.gradle.org/current/userguide/userguide.

[77]

www.it-ebooks.info

https://docs.gradle.org/current/userguide/userguide
http://www.it-ebooks.info/

Plugin Management

Build and Test plugins

These plugins also support the testing features to execute Junit and TestNG tests:

* The Java plugin

e The Groovy plugin
* The Scala plugin

e The War plugin

Code analysis plugins

The following are the code analysis plugins:

* The Checkstyle plugin

* The FindBugs plugin

e The Sonar plugin

* The Sonar Runner plugin
e The PMD plugin

IDE plugins

The following are IDE plugins:

e The Eclipse plugin
* The IDEA plugin

These are some of the frequently used plugins. Apart from the core plugins, you
can also find third-party plugins at https://plugins.gradle.org/. It allows the
publication of binary plugins with the support of the Gradle Plugin Publishing
plugin. Consider spending some time learning how to publish a plugin and how to
use the Plugin Publishing plugin. In the following chapters, we will learn a few
core plugins. In the next section, we will explore the Java plugin.

[78]

www.it-ebooks.info

https://plugins.gradle.org/
http://www.it-ebooks.info/

Chapter 4

The Java plugin

In Chapter 1, Getting Started with Gradle, we already created a Java project called
FirstGradleProject. However, the discussion was only limited to the Eclipse
plugin tasks. We did not discuss anything about the Java plugin. The Java plugin is
part of the Gradle core API, which enables us to build a Java project with supporting
tasks such as compiling the Java code, testing the code, assembling binaries to create
libraries, and more. It supports conventions over configuration. This means, if we
use this plugin, some default configuration is already available to the developer,
such as the location of the source code, the location of the compiled class file, and the
jar naming convention. Unless we want to override these configurations, we do not
need to write a lot of code to work with the default tasks and properties.

To apply the Java plugin, we add a single statement to the build file:
apply plugin: 'java'

Internally, the apply method of the Java plugin is invoked with the project object
as the argument and the build script is enabled in order to use all the tasks and
properties provided by the Java plugin. To understand the Java plugin, we will
create a new Java application (project name Cho4-Javal) similar to the Java project
FirstGradleProject, which we developed in Chapter 1, Getting Started with Gradle.
We will add two new classes, Customer and Order; we will also add a new JUnit or
TestNG library dependency to support unit testing functionality for the project.

With the help of this example, we will explore different Java plugin conventions.

To be precise, we will try to understand how different tasks work and which default
conventions are supported by the Java plugin. Then, in the next section, we will learn
how to customize different properties, so that we can create our own configuration in
the build file.

Conventions

To understand conventions, let us start with the Java plugin tasks. Once we have
applied the Java plugin to display all the available tasks in the project (project name
Ch04-Javal), we can use the tasks command:

$ gradle tasks --all

Build tasks

assemble - Assembles the outputs of this project. [jar]

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

build - Assembles and tests this project. [assemble, check]

buildDependents - Assembles and tests this project and all projects
that depend on it. [build]

buildNeeded - Assembles and tests this project and all projects it
depends on. [build]

classes - Assembles classes 'main'.

compileJava - Compiles Java source 'main:java'.

processResources - Processes JVM resources 'main:resources'.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the main classes. [classes]
testClasses - Assembles classes 'test'. [classes]

compileTestJava - Compiles Java source 'test:java'.

processTestResources - Processes JVM resources 'test:resources'.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source
code. [classes]

Verification tasks
check - Runs all checks.

test - Runs the unit tests.

Pattern: clean<TaskName>: Cleans the output files of a task.

Pattern: build<ConfigurationName>: Assembles the artifacts of a
configuration.

Pattern: upload<ConfigurationName>: Assembles and uploads the
artifacts belonging to a configuration.

To see all tasks and more detail, run with --all.

BUILD SUCCESSFUL

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding output displays different build tasks, test tasks, documentation
tasks, and other available tasks in the Java plugin. The output also shows the task
dependencies between different tasks. For example, task classes internally depend
on the compileJdava and processResources tasks, which compile and process

the source code and resources from src/main/java and src/main/resources,
respectively. Similarly, the compileTestJava task and processTestResources task
compile and process resources from src/test/java and src/test/resources,
respectively. The output of all these tasks is compiled classes and resources, which
will be created under the build directory by convention and will be added to the
classspath during the execution of the program. Now, let us explore, with an
example, what these tasks mean and which conventions are available by default.

To compile classes only under src/main, we should use the task classes. The
compiled classes will be created under build/classes/ directory.

$ gradle classes
:compileJdava
:processResources UP-TO-DATE

:classes

BUILD SUCCESSFUL

The testClasses task compiles and processes test classes and resources, and
additionally, executes the classes task. In the following output, you can see that the
compileJava, processResources, and classes tasks were executed again but the
tasks were marked as UP-TO-DATE. This is because there was no change in the input
and output of those tasks, as we have already executed the classes task in the last
command. After successful execution, you will find a test directory created under
the build/classes folder:

$ gradle testClasses
:compiledJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:compileTestJdava
:processTestResources UP-TO-DATE

:testClasses

BUILD SUCCESSFUL

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

The other important task is the test task. This task helps to execute unit test code
written under the src/test directory. After successful execution, you will find the
test results created under the build/test-results directory:

$ gradle test

:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE

:test

BUILD SUCCESSFUL

You have the assemble task or the jar task to package classes and resources into a
jar file. The jar task will only create jar files, whereas, the assemble task helps you to
produce other artifacts, including jar. For example, when you apply the war plugin,
the jar task is disabled and is replaced with the war task. By default, the JAR file is
named <project-name>.jar and is created under build/libs. If you have not set
the <project-name> in the build file, you will get the jar name <project-folder-
name>.jar. This is not good practice if the jar file does not contain any version. You
can add the version to the jar file by adding the version property to your project

in the build file, which will generate <name>-<versions>.jar. In our example, the
project name is Ch04-Javal and the version property is set to 1. 0 in the build file.
Therefore, the jar file will be named cho4-Javal-1.0.jar. Execute the following
command and you will find the jar file under build/libs:

$ gradle assemble
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE

:jar

:assemble

BUILD SUCCESSFUL

[Q No test classes will be packaged in the JAR file.]

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Another task is the build task, which executes the check and assemble tasks
together. The clean task deletes all the artifacts created by another task. It actually
deletes the complete build/ folder. This means, the clean task deletes the output
generated by all the tasks, that is, check and assemble. To delete a task-specific
output, we can apply the clean<TaskName> rule. For example, to delete only the jar
file created by the build task, we can execute the gradle cleanJar command.

All the tasks in the Java plugin execute based on conventions such as source directory
location, build folder name, test result folder, and so on. To understand this in a better
way, the following example shows some of the conventions supported by Gradle:

task displayJavaPluginConvention << {

println "Lib Directory: $libsDir"

println "Lib Directory Name: $libsDirName"
println "Reports Directory: S$reportsDir"

println "Test Result Directory: S$testResultsDir"

println "Source Code in two sourcesets: $sourceSets"
println "Production Code: ${sourceSets.main.java.srcDirs}"
println "Test Code: ${sourceSets.test.java.srcDirs}"

println "Production code output: ${sourceSets.main.output.classesDir}
& ${sourceSets.main.output.resourcesDir}"

println "Test code output: ${sourceSets.test.output.classesDir} &
${sourceSets.test.output.resourcesDir}"

}

The output displays various conventions supported by the Java plugin.
You can find the complete list in the official Gradle documentation at
https://docs.gradle.org/current /userguide/java_plugin.html.
$ gradle displayJavaPluginConvention
:displayJavaPluginConvention

Lib Directory: <path>/build/libs

Lib Directory Name: libs

Reports Directory: <path>/build/reports

Test Result Directory: <path>/build/test-results

Source Code in two sourcesets: [source set 'main', source set 'test']
Production Code: [<path>/src/main/javal

Test Code: [<path>/src/test/javal

[83]

www.it-ebooks.info

https://docs.gradle.org/current/userguide/java_plugin.html
http://www.it-ebooks.info/

Plugin Management

Production code output: <path>/build/classes/main &
<path>/build/resources/main

Test code output: <path>/build/classes/test &
<path>/build/resources/test

BUILD SUCCESSFUL

Sometimes, these default configurations might not suffice. We might need to
configure some default properties to support our requirements. In the next
section, we will explore how to configure some of the default configurations.

Configuration

In the previous example, we learned about the default properties or conventions
available in the Java plugin. Now, we will configure some of these properties. This

is important when we want to change the build directory name, the libs folder name,
or the source file location of the project.

The source- related configuration changes can be set in the sourcesets closure.
The upcoming code snippet (project name Cho4 -Java2) shows that the source
code location has been modified from src/main/java to src/productioncode
for the source code location and src/test/java to src/testcode for the test
code location, respectively. As a result, compiled classes will now be stored in
classes/productioncode and classes/testcode locations for the source and
test code, respectively. This will not replace the source directory from main to
productioncode, but Gradle will now look for source code in both main and
productioncode directories and for test code in both test and testcode
directories. If you want Gradle to look for the source code only in the
productioncode directory, you can set the java.srcDirs property.

These Java plugin conventions are written in the JavaPluginConvention and
BasePluginConvention classes. One such property, testResultsDirName, can
also be set in the build file:

buildDir = 'buildfolder'
libsDirName = 'libfolder'

sourceSets {
main {
java {
srcDir 'src/productioncode/java'
}
resources {
srcDir 'src/productioncode/resources’

}
}

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

test{

java {

srcDir 'src/testcode/java'
resources {

srcDir 'src/testcode/resources'

}
}
}

testResultsDirName = "S$buildDir/new-test-result"
sourceSets.main.output.classesDir
"${buildDir}/classes/productioncode/java"
sourceSets.main.output.resourcesDir
"${buildDir}/classes/productioncode/resources"
sourceSets.test.output.classesDir
"${buildDir}/classes/testcode/java"
sourceSets.test.output.resourcesDir
"${buildDir}/classes/testcode/resources"

These changes will make sure that buildfolder, libfolder, and test-result folders
have been replaced with buildfolder, libfolder, and new-test-result folders.

Figure 4.1 shows the directory structure of the src folder and new the buildfolder:

resources
testcode
L— 5

tmp

compile
compile

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

All these new changes can be verified by executing the previously created
displayJavaPluginConvention task. After executing the task, you will find
the output updated with new configurations:

$ gradle displayJavaPluginConvention

:displayJavaPluginConvention

Lib Directory: <path>/buildfolder/libfolder

Lib Directory Name: libfolder

Reports Directory: <path>/buildfolder/reports

Test Result Directory: %path%/buildfolder/new-test-result

Source Code in two sourcesets: [source set 'main', source set 'test']

Production Code: [<path>/src/main/java,
<path>/src/productioncode/javal

Test Code: [<path>/src/test/java, <path>/src/testcode/javal

Production code output:
<path>/buildfolder/classes/productioncode/java &
<path>/buildfolder/classes/productioncode/resources

Test code output: <path>/buildfolder/classes/testcode/java &
<path>/buildfolder/classes/testcode/resources

BUILD SUCCESSFUL

The custom plugin

In this section, we will discuss how to create a custom plugin. A plugin can be
created by implementing the org.gradle.api.Plugin<T> interface. This interface
has one method named apply (T target), which must be implemented in the
plugin class. Typically, we write a plugin for the Gradle projects. In that situation,
T becomes the Project. However, T can be any type of object.

The class that implements the plugin interface can be placed in various locations,
such as:

¢ The same build file
* The buildSrc directory

* A standalone project

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This is similar to creating a custom task that we discussed in the last chapter. When
we define a plugin in the same build file, the scope is limited to the defining project
only. This means, this plugin cannot be reused in any other projects. This is not a
good idea, if we want to distribute our plugin for other projects. For a multiproject
Gradle build, the plugin code can be placed in the buildsrc folder of the root project
or build file of the root project. All the subprojects will have access to this custom
plugin. The most elegant way to create a plugin is to create a standalone Groovy
project, create a jar file from it and share the plugin across projects and teams. Now,
we will explore how to create a custom plugin with examples.

The build file

In the following example, we have added a FilePlugin class, which implements a
Plugin interface in the build file. In the apply method, we have added two tasks, copy
and move. These tasks are simple tasks, which print a line in the console. Now, we need
to add this plugin to the build file if we want to execute the copy or move tasks. In this
example, the plugin name is FilePlugin. We add this plugin using the apply plugin
statement. Without adding the plugin, you will find could not find property
'copy' on root project 'PROJECT NAME'. if you try to execute the copy task:

apply plugin: FilePlugin

class FilePlugin implements Plugin<Projects> {
void apply (Project project) {
project.task('copy') << {
println "Task copy is running"
/] ..
}

project.task('move') << {
println "Task move is running"
/...
}
}
}

copy.doLast { println "Copy Task ending .." }

On executing the copy task (for the cho4_CustomPluginil project) from the
command-line, we find the following two lines printed in the console as expected:

$ gradle copy

:copy

Task copy is running
Copy Task ending ..
BUILD SUCCESSFUL

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

The buildSrc directory

Similar to Task, to keep the plugin code separate from the build file, we can create
a buildsrc folder inside the project root directory and any common code, task or
plugin can be placed in this folder. In the following example, the Plugin is created
in the buildsrc folder, which can be reused in the root build file and in all the
subprojects. We have created a FilePlugin.groovy class under buildSrc/src/
main/groovy. This class implements the plugin interface and adds two tasks: the
copy task and the move task in the apply method. This FilePlugin.groovy class
is similar to what we have done in the previous example. For this example, we will
create a project Ch04_CustomPlugin2. Additionally, in the FilePlugin.groovy
class, we need to add the package declaration and import statements (import org.
gradle.api.*).

During build execution, this plugin class will be compiled automatically by
Gradle and added to the classpath of the project. As the plugin definition is not in
the build file, we need a mechanism to declare plugin information in the build file.
This is done by importing the Plugin class and adding the plugin with the apply
plugin statement. The following snippet shows the content of the main build file.
In the file, additionally, we have added a doLast method in the copy task just for
logging purposes:

import ch4.FilePlugin
apply plugin: FilePlugin

copy.doLast {
println "This is main project copy dolast"

}

Next, we create two subprojects: projectl and project2. Each project has a simple
build file. This build file is similar to the main build file. The build file imports and
applies the FilePlugin and adds a doLast method to the copy task for logging. The
content of build.gradle of project1 is shown in the following code. The build file
of project2 is also similar to this:

import ch4.FilePlugin

apply plugin: FilePlugin

copy.doLast {
println "Additional doLast for projectl"

}

We need another settings.gradle file, which includes the subprojects in the
main project:

include 'projectl', 'project2'

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Do not get confused with the settings.gradle file. We will discuss multiproject
builds in detail in Chapter 6, Working with Gradle.

For convenience, the directory structure of the cho4_CustomPlugin2 project is
displayed in Figure 4.2:

build.gradle
settings.gradle

buildSec
SPC

L—main

FilePlugin.groouy

projectl
build.gradle

project2
build.gradle

Figure 4.2

When we execute the copy task, we find three copy tasks being executed: one
from the main project and two other copy tasks from subprojects project 1
and project 2.

$ gradle copy

:buildSrc:compileJava UP-TO-DATE

:buildSrc:compileGroovy

:buildSrc:processResources UP-TO-DATE

:buildSrc:classes

:buildSrc:jar

:buildSrc:assemble

:buildSrc:compileTestJava UP-TO-DATE

:buildSrc:compileTestGroovy UP-TO-DATE
:buildSrc:processTestResources UP-TO-DATE

:buildSrc:testClasses UP-TO-DATE

:buildSrc:test UP-TO-DATE

:buildSrc:check UP-TO-DATE

:buildSrc:build

:copy

Task copy is running

This is main project copy dolast

:projectl:copy

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

Task copy is running
Additional dolLast for projectl
:project2:copy

Task copy is running

Additional dolLast for project2

BUILD SUCCESSFUL

The Standalone project

In the last section, we placed the plugin code in the buildsrc directory and we
used the plugin in the root build file and all the subprojects build files. It was just
one step towards modularizing the plugin code from the build logic. However,
this plugin is not reusable in other projects. Ideally, a plugin should be created in
a standalone Groovy project. Then we create a JAR file and include that JAR file
in the classpath of other build files. In this section, we will explore how to create a
standalone plugin project.

We will start by creating a simple Groovy project. We will add a plugin class
FilePlugin.groovy and two tasks CopyTask and MoveTask in the src/main/
groovy. We will also add a properties file in the resource folder. The snapshot
of the project (Ch04_CustomPlugin3) is displayed in Figure 4.3:

|: build.gradle
src
main
groovy
L 14
L— custom
plugin
FilePlugin.groovy
FilePluginRootExtension.groovy
tasks
AbstractTask.groovy
CopyTask.groovy

MoveTask.groovy

'a
ources
L— META-INF
— gradle-plugins
fileplugin.properties

Figure 4.3

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The FilePlugin.groovy class creates two tasks named copy and move by referring
to the copyTask and MoveTask classes. These tasks are created by calling the
create(...) method on the TaskContainer object with the taskname and task
classes as method parameters. Both tasks extend DefaultTask and define their own
implementation. This is just an example of creating a custom task that we learned
about in the last chapter. We have created one more additional task customTask,
which will print the sourceFile property value. The sourceFile property is
defined using the extension object. Plugin extensions are plain old Groovy objects
used to add properties to plugins. You can provide properties/configuration
information to Plugins using extension objects. You can create more than one
extension object in the plugin to group the related properties together. Gradle adds
a configuration closure block for each extension object.

The code snippet of the FilePlugin.groovy class is as follows:

package ch4.custom.plugin

import org.gradle.api.Plugin
import org.gradle.api.Project
import org.slf4j.Logger

import org.slf4j.LoggerFactory
import ch4.custom.tasks.CopyTask
import ch4.custom.tasks.MoveTask

class FilePlugin implements Plugin<Projects> {

@Override
public void apply(Project project) {

def extension = project.extensions.create("simpleExt",
FilePluginRootExtension)

project.tasks.create ("copy", CopyTask.class)
project.tasks.create ("move", MoveTask.class)

project.task ('customTask') << {

println "Source file is "+project.filePluginExtension.sourceFile

}

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin Management

The following is the source code for the AbstractTask, CopyTask, MoveTask, and
extension classes.

File: AbstractTask.groovy

package ch4.custom.tasks

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class AbstractTask extends DefaultTask {

}

File: copyTask.groovy

package ch4.custom.tasks

import org.gradle.api.tasks.TaskAction

class CopyTask extends AbstractTask {
@TaskAction

def actionl() {
println "Copy Task Running"

}

File: MoveTask . groovy

package ch4.custom.tasks

import org.gradle.api.tasks.TaskAction

class MoveTask extends AbstractTask {
@TaskAction

def actionl() {
println "Move Task Running"

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

File: FilePluginRootExtension.groovy

package ch4.custom.plugin
class FilePluginRootExtension {

def sourceFile = "/home/tmp"
def destinationFile

}

Now, we need a plugin ID so that Gradle can find this plugin information. This is
done by creating a properties file under src/main/resources/META-INF/gradle-
plugins. The name of the file becomes the plugin ID. In our example, we have
named the file fileplugin.properties. So, the plugin ID is fileplugin. In any
other build file, we can now apply the plugin as:

apply plugin: 'fileplugin'

In the fileplugin.properties file, we need to add the implementation-class
property, which maps to the main plug in the implementing class:

implementation-class=ch4.custom.plugin.FilePlugin

That's all you need. Now, we can build this project to create a jar file and then
we can use this jar in any other project. In our example, the jar file is named
Ch04_CustomPlugin3-1.0.jar. If you wish to publish a plugin in https://
plugins.gradle.org/, you need to make sure the plugin ID is unique. In such
cases, you might want to rename fileplugin.properties to something like
mastering.gradle.ch4.properties to ensure uniqueness of the plugin ID.

Once the jar file is created, the plugin can be used in any other build file. The code
snippet shows how the buildscript closure can define a local directory as the
repository. The plugin jar file can be included in the classpath by the dependencies
closure. In the example, we are using the plugin from the local directory. Ideally, we
should publish the plugin jar to a private or public repository and reference it via the
Maven or Ivy URL:

buildscript
repositories ({
flatDir {dirs "../Ch04 CustomPlugin3/build/libs/"}
}
dependencies {

classpath group: 'ch4.custom.plugin', name:
'Ch04_CustomPlugin3',version: '1.0'

[93]

www.it-ebooks.info

https://plugins.gradle.org/
https://plugins.gradle.org/
http://www.it-ebooks.info/

Plugin Management

}

apply plugin: 'fileplugin'

copy.doLast {
println "This is from project S$project.name"

}

We have added a dolast in the copy task, which prints the project name. Try to
execute the following command:

$ gradle copy cT

:copy

Copy Task Running

This is from project UsingPlugin
:customTask

Source file is /home/tmp

BUILD SUCCESSFUL

Total time: 3.59 secs

From the output, you can understand that the copy task has two statements. One we
mentioned in plugin definition and the other we added in the build.gradle file.
The output of the customTask prints the default value of the source file, which is
/home/tmp. This value was set in the FilePluginRootExtension.groovy class.

If you want to update the property to some other value, add the following
configuration closure in the build file:

filePluginExtension ({
sourceFile = "/home/userl"

}
After adding the preceding closure, try to execute the following command:

$ gradle cT
:customTask

Source file is /home/userl
BUILD SUCCESSFUL

Total time: 3.437 secs

Now, the output is changed to the new value mentioned in the
filePluginExtension closure.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Summary

In this chapter, we have mainly discussed two topics: the Java plugin and the
custom plugin. In the Java plugin, we learned about the default convention and
properties supported by Gradle. Then we discussed how to customize and configure
these properties. In the custom plugin, we showed different ways to create a plugin.
However, there are so many plugins to discuss in Gradle. We will be discussing a
few important plugins in Chapter 6, Working with Gradle and Chapter 7, Continuous
Integration. However, we will not be able to cover all the plugins in this book. We
request readers to refer to the Gradle documentation for more details.

In the next chapter, we will cover another important topic in Gradle, which is
dependency management. We will learn about various repository configurations
in the build file, different dependency resolution strategies, publishing artifacts
in the repositories, and more.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

One of the most important features of any software is managing dependencies. As
we know, no software works in isolation and we usually depend on third-party or
open source libraries. The libraries are required during the compile and runtime
execution and they have to be available in the classpath. Gradle has excellent support
for dependency management. We just need to write few lines of code in the build file
and Gradle internally does all the heavy lifting of managing configurations.

In this chapter, we will go into details of dependency management of Gradle. We
will discuss the different features such as how to manage project dependencies,
resolving conflicts, and resolution strategies. We will also discuss how to publish
artifacts in different repositories.

Overview

Dependency management is one of the most the important features of any build
tool. It helps to manage software dependencies in a better way. If you are using Ant,
which initially did not support any dependency management, you need to write

the name of each and every dependent jar file and its location to build.xml. For
small applications that do not have many dependencies, this approach might work
well. However, for enterprise applications, where software depends on hundreds

of other libraries, which internally can depend on some other libraries (transitive
dependencies), this approach of configuring each and every jar file in your build.xml
could work but it requires huge effort to maintain it. Also, managing their version
conflicts would be really a big pain for any developer and could turn the build
process into a nightmare. To resolve these drawbacks in Ant, Maven came with an
internal dependency management solution.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

Later, Ant also integrated with Apache Ivy (a dependency management solution)
to provide the same feature. Gradle came with its own dependency management
implementation. It helps to define first-level dependencies, logically group them
into different configurations, define multiple repositories and also provide tasks
to publish assets after the execution of the build file. It also supports Ivy, Maven,
and flat file repositories. In this chapter, along with dependency management,
we will also look into repositories configurations and asset publications, that is,
how to configure different repositories and upload assets to repositories.

Dependency configurations

Before starting with dependency configuration, let's discuss how to publish
packaged software in Java. You package and publish either in . jar or .war or

.ear file formats to a repository. The goal is to share these assets within the teams
in an organization or with open source developers. Consider a scenario where

you are publishing a utility project (messageutil.jar) to a repository. Although
the publication process mostly depends on an organization's policy, the common
practice is, all the assets that you plan to publish should be versioned and stored in a
central repository, so that all other teams can share it. This versioning helps to track
different versions of libraries. With versioned libraries, you can also revert to old
versions in case of any functionality issues. Whenever you publish any asset to the
repositories, always make sure it is versioned. To know more about versioning look
at this link: http://semver.org/.

Dependency types

Other than internal or external JAR files, a project can also depend on:

e The files located on the filesystem
* Some other projects (in case of a multiproject build) in the same build
e The Gradle API (for custom tasks and plugins)

* The Groovy version used by Gradle (for custom tasks and plugins)

We saw an example of the Gradle API and the Groovy version used in the previous
chapters when we developed custom tasks and plugins. Project dependency will
be discussed in Chapter 6, Working with Gradle. In this chapter, we will discuss other
module dependencies on global and local repositories, and file dependencies on the
local system.

We will start dependency management with a simple example. Consider you
are building a project, SsampleProject, which depends on a third-party library
log4j-1.2.16.jar.

[98]

www.it-ebooks.info

http://semver.org/
http://www.it-ebooks.info/

Chapter 5

To build the project, you need this jar file at compile time. Gradle provides a
very easy and systematic way to define dependencies of the project using the
dependencies closure in the following way:

dependencies {
<configuration name> <dependencies>

}

Gradle groups dependencies to different configurations. If you apply Java Plugin
to a project, it provides six different configurations, which are listed in the
following table:

Names Details

compile The dependencies mentioned here are added to the classpath during
compilation of the source code (src/main/java)

runtime The dependencies mentioned here are required at runtime during
execution of the source code (src/main/java)

testCompile The dependencies mentioned here are added to the classpath during
compilation of the test code (src/main/test)

testRuntime The dependencies mentioned here are required at runtime during
execution of the test code (src/main/test)

archives This is used to tell the build file about the artifacts generated by the
project

default This contains the artifacts and dependencies used at runtime

To define the preceding dependencies, you need to pass the following details to
Gradle's dependency manager:

* JAR file group (or namespace)
* JAR filename
* JAR file version

* classifier (in case JAR has classifier-like-specific JDK version)
The dependencies can be defined in one of the following ways:

* Anindividual dependency:

compile group: 'log4j', name: 'log4j', version: 'l.2.16'

* A Dependency as an Arraylist:
compile 'log4j:log4j:1.2.16"','junit:junit:4.10"

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

* A Dependency as a Configuration Closure:

compile ('log4j:log4j:1.2.16')) {
// extra configurations

}

* A Dependency as a Configuration Closure with key-value format:

compile (group:'log4j',name:'log4j',version:'1.2.16") {
// extra configurations

}

the dependency group name is not required.

[Ql@ In case of a flat directory (local or remote filesystem),]

To configure project dependencies, you need to mention all the libraries in the
dependencies closure. So the build file will look like this:

apply plugin: 'java'
repositories ({
mavenCentral ()
}
dependencies {
compile group: 'log4j', name: 'log4j', version: 'l.2.16'

}

Do not get confused with the repositories closure we have added in the example.
We will discuss about this in the next section.

Repositories

The job is half done when we say dependencies are identified and defined. How
Gradle will know where to get these dependencies from? Here comes the concept

of repositories. Gradle provides the repositories closure to define repositories
from where dependencies can be downloaded. You can configure any number of
repositories and also any type of repositories in your project. For dependencies listed
in the dependencies closure, Gradle searches repositories in sequential order. If it
finds a library or a dependency in one of the repositories (if multiple repositories are
configured), it skips searching other repositories. In the next section, we will learn
how to configure different repositories.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Repositories configuration

You can use the following methods to configure repositories. Gradle allows you to
use more than one configuration in a build file.

Maven Central repository: This configuration is used to directly download

your dependencies from the Maven Central repository. You do not need to
remember the repository URL. You can directly add mavenCentral () to the
repositories closure as mentioned here:

repositories {

mavenCentral ()

}

Maven JCenter repository: Gradle also connects directly to the jCcenter
repository by using jcenter () inside the repositories.
repositories {

jcenter ()

}

Maven local Repository: There might be a scenario where the local Maven
cache contains all the required dependencies and you do not want to
connect to the Maven central repository. Instead, you will need to use jars
from Maven's local cache. In this scenario, you can use mavenLocal () in
the repositories closure. By default, Maven's local cache path would be
<USER_HOME>/.m2/repository. If you want to change it to another location,
you can configure the path in settings.xml under <USER_HOME>/.m2 Or
<USER_HOME>/.m2/conf. Having this configuration makes it easy to build a
"SNAPSHOT" version of another project locally and include that version.
repositories {

mavenLocal ()

}

Ivy repository: If you want to refer to the Ivy repository, you can define it as
follows:
repositories {
ivy {
url "http://<ivyrepositorylocations>"
layout "ivy" // valid values are maven, gradle, ivy

}
}

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

You can also define the custom layout for your Ivy repository. There is not
an equivalent ivyLocal () because Ivy does not allow local publishing of
artifacts such as Maven.

* Organization repository: No matter how many open source repositories are
there, you will always need a private repository for software development
as you are the owner of this repository and changes can be tracked and
managed better by private repositories. To use your organization's private
repository, you can configure the Repositories location in the following
format:

repositories {
maven {
url "http://private.repository/path"
credentials {
username 'guest'
password '123123"
}
}

ivy { // For Ivy repositories
url "http://private.repository/path"

}
}

If your private repository needs authentication, you can provide

the credentials as well. You can add the credentials to
~/.gradle/gradle.properties as well and use it from there,

because it is not a good practice to add credentials directly to the build file.

For Maven's format repositories, there is always metadata attached with the
jar as pom.xml. There might be a scenario in which POM file and JAR file
are located at two different locations. In such cases, you can mention both
locations as follows:

repositories {
maven {
url "http://private.repository/pompath"
artifactUrls "http://private.repository/jardir"

If the URL mentioned earlier contains the JAR file, Gradle
~ will download the JAR file from that location; otherwise, it

Q will search in artifactUrls. You can mention more than
one artifactUrls.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* Flat directory repository: There might be a case when you refer a repository
in the local filesystem (not the mavenLocal () location). This situation could
arise when some other projects or teams are creating jars at a different
location and publishing those jars to a central location. You want your project
to refer to these local directories only for dependency. This can be achieved
by using the following code:
repositories ({
flatDir {
dirs '/localfile/dirl', '/localfile/dir2'
}

}

This is not the recommended approach as this will result in inconsistencies.
The recommended approach is to always use the private or global repository.

Dependency resolution

We have seen the standard way of defining dependency and repository, which
can help you to quick start with the concepts. It's time for a deep dive, and
understand how to customize the standard configuration, which can suit your
specific requirements.

Transitive dependency

Suppose your application depends on commons-httpclient-3.1.jar, whichisa
first-level dependency. However, this JAR again depends on the following other
JARSs, commons-codec-1.2.jar and commons-logging-1.0.4.jar.And if we try
to find more details, commons-logging jar again depends on some other JARs.

Here, commons-httpclient-3.1 is a first-level dependency; the two previously
mentioned JARs are second-level dependencies, and so on. However, with Gradle,
you do not need to manage all these levels of dependencies. Imagine the complexity,
if you have to figure out and mention each level of dependency in the build file.
This can be very tedious and time consuming. And it becomes more painful if you
encounter some version conflicts.

With Gradle, you do not need to bother about any such dependency-related issues.
Gradle provides complete automation for the dependency management. You just
define the first-level dependency and Gradle will take care of all the transitive
dependencies. By default, it will download all the transitive dependencies until
the last level.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

Exclude transitiveness

For some scenarios, you might not want to depend on Gradle to fetch all transitive
dependencies. Rather, you want to have complete control to download only the
libraries that you have mentioned in the build file. To switch off a transitive feature,
you can set the transitive flag of £ in the build file (build_transitive.gradle):

apply plugin:'java'
repositories {
mavenCentral ()

}

dependencies {
compile group:'commons-httpclient', name:'commons-httpclient',
version:'3.1', transitive: false

Clean the Gradle cache (~/.gradle/caches) and try to build the project again. This
time it will download only one JAR that is commons-httpclient-3.1.jar:

$ gradle -b build transitive.gradle build

:compiledava

Download https://repol.maven.org/maven2/commons-httpclient/commons-
httpclient/3.1/commons-httpclient-3.1.pom

Download https://repol.maven.org/maven2/commons-httpclient/commons-
httpclient/3.1/commons-httpclient-3.1.jar

:processResources UP-TO-DATE

This feature could be useful if you need some other version of second-level
dependencies, or the second-level dependency is missing in the repository
and you want to manually copy that.

Selective exclude

There might be a scenario when you want to partially use transitive feature, that
is, you do not want to stop Gradle from getting transitive dependencies, but

you know it might result in a version conflict. So, you might want some specific
jars to be excluded from the second or next-level of dependencies. To selectively
exclude dependencies from the second-level onwards, you can use the following
configuration:

dependencies
compile ('commons-httpclient:commons-httpclient:3.1") {

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

exclude group:'commons-codec' // exclude by group
// exclude group:'commons-codec',module: 'commons-codec'

}
}

Al

~ The exclude criteria requires group as the mandatory field, but
the module can be optional.

Version conflicts

Version conflict is a very common scenario in which the project depends on a specific
JAR but of different versions. For example, your project depends on commons-
httpclient-3.1 JAR and commons-codec-1.1 JAR. The commons-httpclient-3.1
JAR has a transitive dependency on the commons-codec-1.2 JAR. During the build
process, Gradle will find the dependency on two different versions of the same JAR.
Your build file (build versionconflict.gradle) will look like this:

apply plugin:'java'

repositories {
mavenCentral ()
dependencies {

compile group:'commons-httpclient', name:'commons-httpclient',
version:'3.1"

compile group:'commons-codec',name: 'commons-codec',
version:'1.1"

}

Issues due to version conflicts take a considerable amount of
s time even to get noticed.

Gradle supports different strategies to resolve the version conflicts scenarios, they
are as follows:

* Latest version: By default Gradle applies the get latest strategy to resolve
version conflicts issues if it finds different versions of the same JAR file. In
the preceding scenario, it will skip version 1.1 and download the commons-
codec JAR of version 1.2.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

After executing the gradle -b build_versionconflict.gradle clean
build command, the output will be as follows:

Download https://repol.maven.org/maven2/commons-codec/commons -
codec/1l.1/commons-codec-1.1.pom

Download https://repol.maven.org/maven2/commons-codec/commons -
codec/1.2/commons-codec-1.2.pom

Download https://repol.maven.org/maven2/commons-codec/commons -
codec/1l.2/commons-codec-1.2.jar

:processResources UP-TO-DATE

BUILD SUCCESSFUL

* fail on conflict: The Get latest strategy might not work always.
Sometimes, rather than getting the latest version, you might want the
build to fail for further investigation. To enable this, you apply the
failonvVersionConflict () configuration by adding the following closure:

configurations.all {
resolutionStrategy ({
failOnVersionConflict ()

}
}

You can update your build file with the preceding configuration. If you want
this strategy for all the builds, you can add this to your init script.

* Force specific version: In conflict situations, another alternative could be,
rather than failing the build, you can download specific version of a JAR.
This can be achieved by using force flag:

dependencies {

compile group:'commons-httpclient', name:'commons-
httpclient', version:'3.1'

compile group:'commons-codec',name: 'commons-codec',
version:'1.1', force:true

}

Now, try to execute the gradle -b build versionconflict.gradle
build and observe the output:

Download https://repol.maven.org/maven2/commons-codec/commons -
codec/1l.1/commons-codec-1.1.pom

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Download https://repol.maven.org/maven2/commons-codec/commons-
codec/1l.1/commons-codec-1.1.jar

:processResources UP-TO-DATE

:classes

BUILD SUCCESSFUL

Dynamic dependency

To make the build flexible on the jar version, you can use the latest.integration
placeholder, or you can define a version range such as 1. +. With this option, you do
not have to stick to a specific version. With the 1.+ or 2. + format, it will fix the major
version to 1 or 2 (it could be any number) and it will pick the latest of the minor
version (for example, 1.9 or 2.9).

compile group:'commons-codec',name: 'commons-codec', version: 'l.+'
compile group:'commons-codec',name: 'commons-codec', version:
'latest.integration'

You can use either one to get the latest dependency.

Customizing the dependency

Whenever Gradle searches for dependencies in the repository, first it searches for
a module descriptor file (for example, pom.xml or ivy.xml). Gradle parses this file
and downloads the actual JAR file and its dependencies mentioned in the module
descriptor. There might be a case when a module descriptor file is not present. In
this case, Gradle directly looks for the JAR file and downloads it.

Gradle enables you to play with your dependencies in different ways. Not only
you can download other file formats such as ZIP and WAR, you can also mention
different classifiers, if needed.

Download file other than JAR

By default, Gradle downloads file with the . jar extension. Sometimes, you might
need to download either a ZIP file or a WAR file, which does not have any module
descriptor. In this scenario, you can explicitly mention the extension of the file:

Dependencies {

runtime group: 'org.mywar',6 name: 'sampleWeb', version: '1.0',
ext: 'war'

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

Dependency on files with classifiers

Sometimes you release the artifacts with special notation (known as classifiers) such
as sampleWeb-1.0-dev.war Or sampleWeb-1.0-ga.jar. To download artifacts with
classifiers, Gradle provides the classifier tag:

dependencies {
runtime group: 'org.mywar', name: 'sampleWeb', version: '1.0',
classifier: 'ga', ext:'war'

Replacing transitive dependencies

If you do not want to download the existing transitive dependencies and want to
replace them with your customized transitive dependencies, Gradle provides the
following way:

dependencies {
compile module (group: 'commons-httpclient', name:'commons-
httpclient', version:'3.1') {
dependencies "commons-codec:commons-codec:1l.l@jar"

}
}

Here we have used @jar, which can be used as a replacement for the ext tag that
is used in the preceding example. This code snippet will not download the existing
transitive dependencies of commons-httpclient, but it will download the JAR
mentioned inside the curly braces.

Custom configuration for dependency

When we apply the Java plugin, Gradle automatically gives you some default
configurations such as compile and runtime. We can extend this feature and use our
own configuration for dependencies. This is an excellent way to group dependencies
only needed at build time to achieve particular tasks such as code generators
(depending on a templating library), xjc, cxf wsdl to Java, and so on. We can group
them under our user-defined configurations. Before using custom configurations
under the dependency closure, we need to define it inside the configuration closure.
The following is the code snippet of the build customconf.gradle file:

apply plugin: 'java'
version=1.0
configurations ({

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

customDep

}
repositories {

mavenCentral ()

}

dependencies {
customDep group: 'junit', name: 'junit', version: '4.11'
compile group: 'log4j', name: 'log4j', version: 'l.2.16'

task showCustomDep << {
FileTree deps = project.configurations.customDep.asFileTree
deps.each {File file ->
println "File names are "+file.name

}
}

The following is the output of the preceding code:

$ gradle -b build customconf.gradle showCustomDep

: showCustomDep

Download https://repol.maven.org/maven2/junit/junit/4.11/junit-4.11.jar

Download https://repol.maven.org/maven2/org/hamcrest/hamcrest-core/1.3/
hamcrest-core-1.3.jar

File names are junit-4.1l1l.jar

File names are hamcrest-core-1l.3.jar

BUILD SUCCESSFUL

Dependency reports

Gradle provides a very convenient way to list out all of the project dependencies
from the first level to the nth level. It includes all your transitive dependencies,
including manually changed, overridden, and forced dependencies. The dependency
tree groups dependencies by configurations such as compile, testCompile, and so on.
The following is the code snippet from the build_depreport.gradle file:

apply plugin: 'java'

version=1.0

repositories {
mavenCentral ()

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

dependencies {

compile group: 'log4j', name: 'log4j', version: 'l.2.16'

compile 'commons-httpclient:commons-httpclient:3.1"
compile 'dom4j:dom4j:1.6.1"

}

$ gradle -b build depreport.gradle dependencies

Root project

+--- log4j:log4j:1.2.16

+--- commons-httpclient:commons-httpclient:3.1
| +--- commons-logging:commons-logging:1.0.4
| \--- commons-codec:commons-codec:1.2

\--- dom4j:dom4j:1.6.1
\--- xml-apis:xml-apis:1.0.b2

default - Configuration for default artifacts.

+--- log4j:log4j:1.2.16

+--- commons-httpclient:commons-httpclient:3.1
| +--- commons-logging:commons-logging:1.0.4
| \--- commons-codec:commons-codec:1.2

\--- dom4j:dom4j:1.6.1
\--- xml-apis:xml-apis:1.0.b2

runtime - Runtime classpath for source set 'main'.

+--- log4j:log4j:1.2.16

+--- commons-httpclient:commons-httpclient:3.1
| +--- commons-logging:commons-logging:1.0.4
| \--- commons-codec:commons-codec:1.2

\--- dom4j:dom4j:1.6.1
\--- xml-apis:xml-apis:1.0.b2

testCompile - Compile classpath for source set 'test'.
+--- log4j:log4j:1.2.16

+--- commons-httpclient:commons-httpclient:3.1

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

| +--- commons-logging:commons-logging:1.0.4
| \--- commons-codec:commons-codec:1.2
\--- dom4j:dom4j:1.6.1

\--- xml-apis:xml-apis:1.0.b2

testRuntime - Runtime classpath for source set 'test'.

+--- log4j:log4j:1.2.16

+--- commons-httpclient:commons-httpclient:3.1
| +--- commons-logging:commons-logging:1.0.4
| \--- commons-codec:commons-codec:1.2

\--- dom4j:dom4j:1.6.1
\--- xml-apis:xml-apis:1.0.b2

BUILD SUCCESSFUL

It will show until the child level of all the dependencies for all configurations. You
might be surprised to see why other configurations such as runtime and testRuntime
are being displayed, though only compile configuration was defined. The following
table shows the relationship between different configurations:

Dependency Extends

compile -

runtime compile

testCompile compile

testRuntime runtime, testCompile
default runtime

If you want to list out dependencies for only one configuration, you can mention that
using -configuration <configuration names:

$ gradle -b build depreport.gradle dependencies -configuration compile

:dependencies
Root project
compile - Compile classpath for source set 'main’'.

+--- log4j:log4j:1.2.16

+--- commons-httpclient:commons-httpclient:3.1

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

| +--- commons-logging:commons-logging:1.0.4
| \--- commons-codec:commons-codec:1.2
\--- dom4j:dom4j:1.6.1

\--- xml-apis:xml-apis:1.0.b2

BUILD SUCCESSFUL

Dependency-specific details

Sometimes you might get issues while downloading some transitive dependencies
and you do not know which dependency is downloading that JAR file.

Suppose while executing the preceding build depreport.gradle script, you are
getting issues while fetching the commons-1logging JAR file. It is not the first-level
dependency and you do not know which first-level dependency is responsible for
this. To get that detail, use the dependencyInsight command:

$ gradle -b build depreport.gradle dependencyInsight -dependency
commons-logging -configuration runtime

:dependencyInsight

commons-logging:commons-logging:1.0.4

\--- commons-httpclient:commons-httpclient:3.1

\--- runtime

BUILD SUCCESSFUL

If you do not specify the —~configuration option, it will apply the compile
configuration by default. The other options are runtime, testCompile, and
so on, as mentioned in the preceding example.

Publishing artifacts

Until now, we have discussed a lot about dependencies. How we can define project
dependencies, customize them, and configure repositories to download libraries.
Now, let's try to build the artifacts (JAR, WAR, and so on) and publish it to Artifact
repositories (could be a local filesystem, remote location, or Maven repository) to
make it available to all the other teams to share.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Default artifacts

When we apply the Java plugin, Gradle adds some default configuration to the
project such as compile, runtime, testCompile. The Java plugin also adds one
more configuration archive, which is used to define the artifacts of your project.
Gradle provides the default artifact with some of the plugins. For example, Java,
Groovy plugin publishes JAR as a default artifact, war plugin publish WAR as a
default artifact. This JAR can be uploaded or published to a repository using the
uploadArchives task.

The following code snippet shows how to configure the repository to upload
archives using the build uploadarchives.gradle file:

apply plugin: 'java'
version=1.0

repositories {
mavenCentral ()
}
dependencies {
compile group: 'log4j', name: 'log4j', version: 'l.2.16'
compile 'commons-httpclient:commons-httpclient:3.1"
compile 'dom4j:dom4j:1.6.1"
}
uploadArchives {
repositories {
maven {
credentials
username "guest"
password "guest"

}

url "http://private.maven.repo"
}
//flatDir {dirs "./templ" }
}
}

Instead of the Maven repository, we can also use the flat directory as a repository.
In the preceding example, replace the Maven closure with flatDir (flatDir {dirs
"./templ" })configuration. Now, if you execute the gradle uploadArchives
command, you will find the JAR file published in the temp1 directory.

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

Custom artifacts

For each configuration, Gradle provides Upload<configuration names, by default,
which assembles and uploads the artifacts in the specified configuration. The
UploadArchives task provided by the Java plugin uploads the default artifact (jar)
to the repository.

Sometimes, you might need to generate some additional artifacts with the JAR file
such as the ZIP and XML files. This can be done by archive task to define
an artifact.

jar k—| UploadArchives |

Figure 5.1

In the preceding figure, the assemble task depends on the jar task, which is nothing
but the default artifact of your Java plugin project. You can configure additional
artifacts using the archives configuration. The input to the archive configuration
can be an artifact itself or a task which creates an artifact.

Let's take a look at the following two examples:

Generate additional XML file along with your
JAR file

In this example, we will generate additional XML file with the JAR file and upload
it to the repository. The following is the content of the CustomaArtifact/build.
gradle file:

apply plugin: 'java'
archivesBaseName="MySample" // to customize Jar Name
version=1.0
repositories {
mavenCentral ()
}
def confFile = file('configurations.xml') // artifact2
artifacts
archives confFile

}

uploadArchives {

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

repositories {

flatDir {dirs "./tempRepo"}
}
}

Here, we have added configurations.xml as a separate XML file to the archive
so that we can upload the file, along with the the JAR file, to the repository.

After executing Gradle's uploadArchives command, you will find the following files
in the tempRrepo directory:

=] configurations-1.0.xml XML Document 1KB

|| cenfigurations-1.0.xml.shal SHAI File 1KE

2] vy-1.0uxml XML Document 2KB

|| iwy-10.xml.shal SHAI File 1KB

4] MySample-1.0.jar Executable Jar File 2KB

| MySample-1.0.jar.shal SHA1 File 1KB
Figure 5.2

Gradle also generates checksum and a deployment descriptor (here, ivy-1.0.xml)
along with the artifact.

In the following section, we will learn how to upload a ZIP file as an artifact.

Generate an additional ZIP file along with your
JAR file

If you want to upload an additional ZIP file along with the JAR file, then you can
mention the additional archives in the artifacts closure. The following is the
CustomArtifact/build zip.gradle file:

apply plugin: 'java'

archivesBaseName="MySample" // to customize Jar Name

version=1.0

repositories ({
mavenCentral ()

}

task zipSrc(type: Zip)
from 'src'

}

artifacts
archives zipSrc

}

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

uploadArchives {
repositories {
flatDir {dirs "./templ" }
}
}

After executing the gradle -b build_zip.gradle uploadArchives command,
verify the files in the temp1 directory:

12 iwy-103ml AML Document 2KB

|| ivy-1.0xml.shal SHAD File 1KB

=) MySample-1.0.jar Executable Jar File 2KB

| MySample-1.0.jar.shal SHAL File 1KB

1) MySample-1.0.zip Compressed (zipp... 1KB

| MySample-1.0.zip.shal SHAI File 1KB
Figure 5.3

Here, an additional MySample-1.0.zip is generated with the JAR file. You may
have noticed that we did not make any additional call to the zipsrc task, which is
required to create the ZIP file. Gradle applies a declarative approach here. Whatever
archives you have configured in the artifacts closure, Gradle will create those
artifacts. Within this closure, you can assign different type of tasks, such as JAR,
ZIP, TAR (org.gradle.api.tasks.building.AbstractArchiveTask), or any file
to be archived.

Custom configuration

In the same way as custom dependency, you can also define custom configurations
for your artifacts. Consider the following example (CustomArtifacts/build_
customconf .gradle):

apply plugin: 'java'

archivesBaseName="MySampleZip" // to customize Jar Name
version=1.0
configurations {
zipAsset
repositories ({
mavenCentral ()
task zipSrc(type: Zip)
from 'src'

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

artifacts
zipAsset zipSrc
}
uploadZipAsset
repositories ({
flatDir {dirs "./templ" }
}
}

Now, execute the gradle -b build customconf.gradle uploadZipAsset
command to create and upload files to the repository. In the example, we have
defined a custom configuration zipAsset. We used that configuration inside the
artifacts closure. As mentioned in the preceding example, Gradle automatically
provides the upload<configname> task for each configuration. Thus, we have the
cuploadZipAsset task available to upload the required ZIP file to the repository.

The maven-publish plugins

In the previous section, we discussed the Maven plugin and other repositories
configuration. Here, we will discuss the new plugin (maven-publish plugin)
introduced by Gradle.

To have more control over the publication process, Gradle provides the
'maven-publish' plugin. With the help of the following examples, you will see
how it can help us in publication using the MavenPublish/build.gradle file:

You can configure publications by using following closure:

publishing {
publications {
customPublicationName (MavenPublication) {
// Configure the publication here

}
}
}

The following is the file MavenPublish/build.gradle

apply plugin: 'java'
apply plugin: 'maven-publish'

publishing {
publications {

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

mavenJava (MavenPublication)
from components.java
groupId 'org.mygroup'
artifactId 'MySampleProj'
version '1.0"'

}
This plugin adds the following tasks:

* publish: This publishes all the publications produced by this project

* publishToMavenLocal: This publishes all the Maven publications
produced by this project to the local Maven cache

When you add the preceding mentioned publications closure inside publishing,
it will add two additional tasks, generatePomFileFor<publicationName>Public
ation and public<publicationName>PublicationToMavenLocal. You can find
additional tasks in task list as follows:

* generatePomFileForPluginPublication: This generates the Maven
POM file for publication 'plugin'

* publishPluginPublicationToMavenLocal: This publishes Maven
publication 'plugin' to the local Maven repository

To publish the artifacts in the local Maven repository, execute the following command:

$ gradle -i publishToMavenLocal

:publishMavenJavaPublicationToMavenLocal
Executing task ': publishMavenJavaPublicationToMavenLocal'
(up-to-date check took 0.001 secs) due to:
Task has not declared any outputs.
Publishing to repository

org.gradle.api.internal.artifacts.repositories.DefaultMavenLocal
ArtifactRepository Decorated@4a454218

[INFO] Installing
/Chapter5/sent/MavenPublish/build/libs/MavenPublish.jar to
<%USER_HOME>/.m2/repository/org/mygroup/MySampleProj/1.0/
MySampleProj-1.0.jar

: publishMavenJavaPublicationToMavenLocal (Thread[main,5,main])
completed. Took 1.079 secs.

BUILD SUCCESSFUL

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

If you browse the local Maven repository, you will also find that the POM file has the
following content:

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance">
<modelVersion>4.0.0</modelVersion>
<groupld>org.mygroup</groupIds>
<artifactId>MySampleProj</artifactId>
<version>1.0</version>

</projects>

By default, it produces the JAR file for the Java project. If you want to add additional
artifact along with JAR, you can customize the preceding configuration by adding
additional artifact declaration in the following format.

Here is the sample code for MavenPublish/build zip.gradle:

apply plugin: 'java'
apply plugin: 'maven-publish'

task zipSrc(type: Zip)
baseName = 'SampleSource'

from 'src'

publishing {
publications {
mavenJava (MavenPublication) {
from components.java
groupId 'org.mygroup'
artifactId 'MySampleProj'

version '1.0'

artifact zipSrc
classifier "sources"

// artifact can be <Jar,Zip tasks which will generate
jar,zip file>

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

$ gradle -b build zip.gradle - i publishToMavenLocal

Publishing to repository
org.gradle.api.internal.artifacts.repositories.DefaultMavenLocalArtif
actRepository Decorated@434d54de

[INFO] Installing

/Chapter5/MavenPublish/build/libs/MavenPublish.jar to
<USER_HOME>/.m2/repository/org/mygroup/MySampleProj/1.0/MySampleProj-
1.0.jar

[INFO] Installing
/Chapter5/MavenPublish/build/distributions/SampleSource-source-

.zip to <USER HOME>
/.m2/repository/org/mygroup/MySampleProj/1.0/MySampleProj-1.0-source-
.zip

:publishPluginPublicationToMavenLocal (Thread[main,5,main])
completed. Took 0.85 secs.

BUILD SUCCESSFUL

Now, in the local repository, along with the JAR file, you will also find an additional
ZIP file.

* Remember that for each additional artifact that you are publishing,
%@‘\ you will need to mention a classifier. Gradle allows only one
artifact without a classifier.

Publishing to the local-hosted repository

To publish artifacts to the local-hosted repository with help of the maven-publish
plugin, we can use the same configuration, which we discussed in the Maven plugin.
The repositories closure is exactly the same as before, but it has to be surrounded by
a publishing closure. You can define the closure as follows:

Publishing {
repositories {
maven {
name "localRepo"
url "http://local.maven.repo"
credentials { // if required
username = 'username'
password = 'password'

}

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}
}
}

You can even publish to a local file repository by mentioning the URL . /localrepo.
Maven will automatically create a directory structure for you and you can find
artifacts under localrepo/<group>/<version>/artifact-<versions.jar.

If you mention the name attribute in the maven { ...} closure, Gradle will
automatically create a new task with the name publishPluginPublicationTo<name
>Repository:

publishing {
repositories ({
maven {
name "localRepo"
url "./localrepo"
}
}
}

Now, you will be able to use the
publishMavenJavaPublicationToLocalRepoRepository task
or simply the publish task to publish to the repository; such as
gradle -b build localrepo.gradle publish.

Custom POM

By default, Gradle generates the POM file for the artifact with default parameters.

If you want to modify POM with additional details, you can utilize the pom.withxml
closure. You can add any number of new nodes to the XML file and also update
some of the existing details. Remember that group1d, artifactId and version are
read only. You cannot modify these details. Consider the file build custompom.
gradle.

apply plugin: 'java'

apply plugin: 'maven-publish'

publishing {

publications {
mavenCustom (MavenPublication)

from components.java
groupId 'org.mygroup'
artifactId 'MySampleProj'
version '1.0"'

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Management

pom.withXml
def root = asNode ()
root .appendNode ('name', 'Sample Project')
root .appendNode ('description', 'Adding Additional details')
def devs = root.appendNode ('developers')
def dev = devs.appendNode ('developer')
dev.appendNode ('name', 'DeveloperName')

}
}
}
}

Now, execute the publishToMavenLocal task and you will find pom.xml generated
in the repository.

Summary

This chapter covered details of dependency management provided by Gradle. We
looked into dependency configuration, strategies involved in dependency resolution,
and configuring transitive dependencies. We also learned different versions of
conflict strategies provided by Gradle and how we can configure it to get the most
out of it.

We also talked about repositories. We covered how you can use different repositories
such as flat file, local Maven Repository, and remote repositories hosted on the
HTTPS server. Finally, we discussed the publication of the project. With the help of
different plugins, you can publish artifacts to a central location such as the local or
remote Maven Repository. We also discussed how we can utilize the new maven-
publish plugin and how to configure it, so that it fits into our own requirement.

In the next chapter, we will discuss few important plugins such as War and Scala.
We'll also discuss other important concepts such as File management, Multi-Project,
and Properties management.

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

This chapter covers some more plugins such as War and Scala, which will be helpful in
building web applications and Scala applications. Additionally, we will discuss diverse
topics such as Property Management, Multi-Project build, and logging aspects. In

the Multi-project build section, we will discuss how Gradle supports multi-project build
through the root project's build file. It also provides the flexibility of treating each
module as a separate project, plus all the modules together like a single project. In the
final section of this chapter, we will learn the automated testing aspects with Gradle.
You will learn to execute unit tests with different configurations. In this section, we
will learn about testing concepts with the examples of two commonly used testing
frameworks, JUnit and TestNG.

The War plugin
The War plugin is used to build web projects, and like any other plugin, it can be
added to the build file by adding the following line:

apply plugin: 'war'

wWar plugin extends the Java plugin and helps to create the war archives. The war
plugin automatically applies the Java plugin to the build file. During the build
process, the plugin creates a war file instead of a jar file. The war plugin disables
the jar task of the Java plugin and adds a default war archive task. By default, the
content of the war file will be compiled classes from src/main/java; content from
src/main/webapp and all the runtime dependencies. The content can be customized
using the war closure as well.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

In our example, we have created a simple servlet file to display the current date
and time, a web.xm1 file and a build.gradle file. The project structure is displayed
in the following screenshot:

|: build.gradle
Src
L— main
java
ché
L— DateTimeServlet. java
webapp

META-INF
L— MANIFEST.MF

WEB-INF
1ib
web.xml

8 directories, 4 files

Figure 6.1

The simpleWebApp/build.gradle file has the following content:

apply plugin: 'war'

repositories {
mavenCentral ()

}

dependencies {
providedCompile "javax.servlet:servlet-api:2.5"
compile ("commons-io:commons-io:2.4")
compile 'javax.inject:javax.inject:1'

}

The war plugin adds the providedCompile and providedRuntime dependency
configurations on top of the Java plugin. The providedCompile and providedRuntime
configurations have the same scope as compile and runtime respectively, but the only
difference is that the libraries defined in these configurations will not be a part of the

war archive. In our example, we have defined servlet-api as the providedCompile
time dependency. So, this library is not included in the weB- INF/1ib/ folder of the war
file. This is because this library is provided by the servlet container such as Tomcat. So,
when we deploy the application in a container, it is added by the container. You can
confirm this by expanding the war file as follows:

SimpleWebAppS$ jar -tvf build/libs/SimpleWebApp.war
0 Mon Mar 16 17:56:04 IST 2015 META-INF/
25 Mon Mar 16 17:56:04 IST 2015 META-INF/MANIFEST.MF

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

0 Mon Mar 16 17:56:04 IST 2015 WEB-INF/
0 Mon Mar 16 17:56:04 IST 2015 WEB-INF/classes/
0 Mon Mar 16 17:56:04 IST 2015 WEB-INF/classes/ch6/

1148 Mon Mar 16 17:56:04 IST 2015 WEB-
INF/classes/ch6/DateTimeServlet.class

0 Mon Mar 16 17:56:04 IST 2015 WEB-INF/lib/
185140 Mon Mar 16 12:32:50 IST 2015 WEB-INF/lib/commons-io-2.4.jar
2497 Mon Mar 16 13:49:32 IST 2015 WEB-INF/lib/javax.inject-1.jar
578 Mon Mar 16 16:45:16 IST 2015 WEB-INF/web.xml

Sometimes, we might need to customize the project's structure as well. For example,
the webapp folder could be under the root project folder, not in the src folder. The
webapp folder can also contain new folders such as conf and resource to store the
properties files, Java scripts, images, and other assets. We might want to rename the
webapp folder to WwebContent. The proposed directory structure might look like this:

build.gradle
Src

L— main

— va
{- ché

L DateTimeServlet. java

WebContent
conf
L app.proper ties

META-INF
L— MANIFEST.MF
resources
I: images
js
WEB - INF
1ib
web.xml

Figure 6.2

We might also be interested in creating a war file with a custom name and version.
Additionally, we might not want to copy any empty folder such as images or js
to the war file.

To implement these new changes, add the additional properties to the build.gradle
file as described here. The webAppDirName property sets the new webapp folder
location to the webContent folder. The war closure defines properties such as

version and name, and sets the includeEmptyDirs option as false. By default,
includeEmptyDirs is set to true. This means any empty folder in the webapp
directory will be copied to the war file. By setting it to false, the empty folders such
as images and js will not be copied to the war file.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

The following would be the contents of CustomWebApp/build.gradle:

apply plugin: 'war'

repositories {
mavenCentral ()
}
dependencies {
providedCompile "javax.servlet:servlet-api:2.5"
compile ("commons-io:commons-io:2.4")
compile 'javax.inject:javax.inject:1'
}

webAppDirName="WebContent"

war {
baseName = "simpleapp"
version = "1.0"
extension = "war"

includeEmptyDirs = false

}

After the build is successful, the war file will be created as simpleapp-1.0.war.
Execute the jar -tvf build/libs/simpleapp-1.0.war command and verify the
content of the war file. You will find the conf folder is added to the war file, whereas
images and js folders are not included.

You might also find the Jetty plugin interesting for web application deployment,
which enables you to deploy the web application in an embedded container. This
plugin automatically applies the War plugin to the project. The Jetty plugin defines
three tasks; jettyRun, jettyRunWar, and jettyStop. Task jettyRun runs the web
application in an embedded Jetty web container, whereas the jettyRunwar task
helps to build the war file and then run it in the embedded web container. Task
jettyStop stops the container instance. Covering more on war configuration is
beyond the scope of the book, so for more information please refer to the Gradle API
documentation. Here is the link: https://docs.gradle.org/current /userguide/
war_ plugin.html.

The Scala plugin

The Scala plugin helps you to build the Scala application. Like any other plugin,
the Scala plugin can be applied to the build file by adding the following line:

apply plugin: 'scala'

[126]

www.it-ebooks.info

https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
http://www.it-ebooks.info/

Chapter 6

The Scala plugin also extends the Java plugin and adds a few more tasks such as
compileScala, compileTestScala, and scaladoc to work with Scala files. The
task names are pretty much all named after their Java equivalent, simply replacing
the java part with scala. The Scala project's directory structure is also similar to a
Java project structure where production code is typically written under src/main/
scala directory and test code is kept under the src/test/scala directory. Figure
6.3 shows the directory structure of a Scala project. You can also observe from the
directory structure that a Scala project can contain a mix of Java and Scala source
files. The HelloScala. scala file has the following content. The output is Hello,
Scala. .. on the console. This is a very basic code and we will not be able to discuss
much detail on the Scala programming language. We request readers to refer to the
Scala language documentation available at http://www.scala-lang.org/.

package cheé

object HelloScala ({
def main(args: Array[Stringl)
println("Hello, Scala...")

}
}

To support the compilation of Scala source code, Scala libraries should be added in
the dependency configuration:

dependencies {
compile('org.scala-lang:scala-library:2.11.6")

}

|: build.gradle
src
main
EVE]
ché

Customer. java
Order. java

resources

scala
L— che

L— HelloScala.scala

test

java
resources
scala

Figure 6.3

[127]

www.it-ebooks.info

http://www.scala-lang.org/
http://www.it-ebooks.info/

Working with Gradle

As mentioned, the Scala plugin extends the Java plugin and adds a few new
tasks. For example, the compileScala task depends on the compileJava task
and the compileTestScala task depends on the compileTestJava task. This
can be understood easily, by executing classes and testClasses tasks and
looking at the output.

$ gradle classes $ gradle testClasses
:compileJava :compileJava UP-TO-DATE
:compileScala :compileScala UP-TO-DATE
:processResources UP-TO-DATE :processResources UP-TO-DATE
:classes :classes UP-TO-DATE
:compileTestJava UP-TO-DATE
BUILD SUCCESSFUL :compileTestScala UP-TO-DATE

:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE

BUILD SUCCESSFUL

Scala projects are also packaged as jar files. The jar task or assemble task creates a
jar file in the build/1ibs directory.

$ jar -tvf build/libs/ScalaApplication-1.0.jar

0 Thu Mar 26 23:49:04 IST 2015 META-INF/

94 Thu Mar 26 23:49:04 IST 2015 META-INF/MANIFEST.MF

0 Thu Mar 26 23:49:04 IST 2015 ché6/

1194 Thu Mar 26 23:48:58 IST 2015 ché6/Customer.class
609 Thu Mar 26 23:49:04 IST 2015 ch6/HelloScala$.class
594 Thu Mar 26 23:49:04 IST 2015 ch6/HelloScala.class
1375 Thu Mar 26 23:48:58 IST 2015 ché6/Order.class

The Scala plugin does not add any extra convention to the Java plugin. Therefore,

the conventions defined in the Java plugin, such as lib directory and report directory
can be reused in the Scala plugin. The Scala plugin only adds few sourceset
properties such as allScala, scala.srcDirs, and scala to work with source set.
The following task example displays different properties available to the Scala plugin.
This example is similar to the convention example task that we created in Chapter 4,
Plugin Management.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The following is a code snippet from ScalaApplication/build.gradle:

apply plugin: 'java'
apply plugin: 'scala'
apply plugin: 'eclipse'

version = '1.0'

jar {
manifest {

attributes 'Implementation-Title': 'ScalaApplication',
'Implementation-Version': version

repositories {
mavenCentral ()

dependencies {
compile('org.scala-lang:scala-library:2.11.6")
runtime ('org.scala-lang:scala-compiler:2.11.6")
compile('org.scala-lang:jline:2.9.0-1")

task displayScalaPluginConvention << {
println "Lib Directory: $libsDir"
println "Lib Directory Name: $libsDirName"
println "Reports Directory: S$SreportsDir"
println "Test Result Directory: S$testResultsDir"

println "Source Code in two sourcesets: $sourceSets"

println "Production Code: ${sourceSets.main.java.srcDirs},
${sourceSets.main.scala.srcDirs}"

println "Test Code: ${sourceSets.test.java.srcDirs},
${sourceSets.test.scala.srcDirs}"

println "Production code output:
${sourceSets.main.output.classesDir} &

${sourceSets.main.output.resourcesDir}"

println "Test code output: ${sourceSets.test.output.classesDir}

& ${sourceSets.test.output.resourcesDir}"

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

The output of the task displayScalaPluginConvention is shown in the
following code:

$ gradle displayScalaPluginConvention

:displayScalaPluginConvention

Lib Directory: <path>/ build/libs

Lib Directory Name: libs

Reports Directory: <path>/build/reports

Test Result Directory: <path>/build/test-results

Source Code in two sourcesets: [source set 'main', source set 'test']
Production Code: [<path>/src/main/javal, [<path>/src/main/scalal

Test Code: [<path>/src/test/javal, [<path>/src/test/scalal

Production code output: <path>/build/classes/main & <path>/build/
resources/main

Test code output: <path>/build/classes/test & <path>/build/resources/test

BUILD SUCCESSFUL

Finally, we will conclude this section by discussing how to execute Scala application
from Gradle; we can create a simple task in the build file as follows.

task runMain (type: JavaExec) {
main = 'ché.HelloScala'

classpath = configurations.runtime + sourceSets.main.output +
sourceSets.test.output

}

The HelloScala source file has a main method which prints Hello, Scala... in
the console. The runMain task executes the main method and displays the output in
the console:

$ gradle runMain

:runMain

Hello, Scala...

BUILD SUCCESSFUL

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Logging

Until now we have used print1ln everywhere in the build script to display the
messages to the user. If you are coming from a Java background you know a
println statement is not the right way to give information to the user. You need
logging. Logging helps the user to classify the categories of messages to show at
different levels. These different levels help users to print a correct message based on
the situation. For example, when a user wants complete detailed tracking of your
software, they can use debug level. Similarly, whenever a user wants very limited
useful information while executing a task, they can use quiet or info level. Gradle
provides the following different types of logging:

Log Level Description

ERROR This is used to show error messages

QUIET This is used to show limited useful information
WARNING This is used to show warning messages
LIFECYCLE This is used to show the progress (default level)
INFO This is used to show information messages
DEBUG This is used to show debug messages (all logs)

By default, the Gradle log level is LIFECYCLE. The following is the code snippet
from LogExample/build.gradle:

task showLogging << {

println "This is println example"

logger.
logger.
logger.
logger.
logger.
logger.

}

error "This is error message"

quiet "This is gquiet message"

warn "This is WARNING message"
lifecycle "This is LIFECYCLE message"
info "This is INFO message"

debug "This is DEBUG message"

Now, execute the following command:

$ gradle showLogging

:showLogging

This is println example

This is error message

This is quiet message

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

This is WARNING message
This is LIFECYCLE message

BUILD SUCCESSFUL

Here, Gradle has printed all the logger statements upto the lifecycle level (including
lifecycle), which is Gradle's default log level. You can also control the log level from
the command line.

-q This will show logs up to the quiet level. It will include error and quiet messages

-1 This will show logs up to the info level. It will include error, quiet, warning,
lifecycle and info messages.

-s This prints out the stacktrace for all exceptions.

-d This prints out all logs and debug information. This is most expressive log level,

which will also print all the minor details.

Now, execute gradle showLogging -q:

This is println example
This is error message

This is quiet message

Apart from the regular lifecycle, Gradle provides an additional option to provide
stack trace in case of any exception. Stack trace is different from debug. In case of any
failure, it allows tracking of all the nested functions, which are called in sequence up
to the point where the stack trace is generated.

To verify, add the assert statement in the preceding task and execute the following:

task showLogging << {
println "This is println example"

assert 1==

}

$ gradle showLogging -s
* Exception is:

org.gradle.api.tasks.TaskExecutionException: Execution failed for
task ':showLogging'.

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

at org.gradle.api.internal.tasks.execution.ExecuteActionsTaskExecuter.
executeActions (ExecuteActionsTaskExecuter.java:69)

at

org.gradle.api.internal.tasks.execution.SkipOnlyIfTaskExecuter.
execute (SkipOnlyIfTaskExecuter.java:53)

at org.gradle.api.internal.tasks.execution.
ExecuteAtMostOnceTaskExecuter
.execute (ExecuteAtMostOnceTaskExecuter.java:43)

at org.gradle.api.internal.AbstractTask.executeWithoutThrowingTask
Failure (AbstractTask.java:305)

With stracktrace, Gradle also provides two options:

* -sor --stracktrace: This will print truncated stracktrace

* -sor--full-stracktrace: This will print full stracktrace

File management

One of the key features of any build tool is I/O operations and how easily you

can perform the I/O operations such as reading files, writing files, and
directory-related operations. Developers with Ant or Maven backgrounds know
how painful and complex it was to handle the files and directory operations in old
build tools; sometimes you had to write custom tasks and plugins to perform these
kinds of operations due to XML limitations in Ant and Maven. Since Gradle uses
Groovy, it will make your life much easier while dealing with files and directory-
related operations.

Reading files

Gradle provides simple ways to read the file. You just need to use the File API
(application programing interface) and it provides everything to deal with the file.
The following is the code snippet from FileExample/build.gradle:

task showFile << ({
File filel = file("readme.txt")
println filel // will print name of the file
filel.eachLine ({
println it // will print contents line by line

}

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

To read the file, we have used file (<file Names>). This is the default Gradle

way to reference files because Gradle adds some path behavior ($PROJECT
PATH/<filename>) due to absolute and relative referencing of files. Here, the first
println statement will print the name of the file which is readme. txt. To read a file,
Groovy provides the eachLine method to the File API, which reads all the lines of
the file one by one.

To access the directory, you can use the following file API:

def dirl = new File("src")

println "Checking directory "+dirl.isFile() // will return false
for directory

println "Checking directory "+dirl.isDirectory() // will return

true for directory

Writing files
To write to the files, you can use either the append method to add contents to the end

of the file or overwrite the file using the setText or write methods:

task fileWrite << {
File filel = file ("readme.txt")

// will append data at the end
filel.append ("\nAdding new line. \n")

// will overwrite contents
filel.setText ("Overwriting existing contents")

// will overwrite contents
filel.write("Using write method")

Creating files/directories

You can create a new file by just writing some text to it:

task createFile << {
File filel = new File("newFile.txt")
filel.write("Using write method")

}

By writing some data to the file, Groovy will automatically create the file if it does
not exist.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To write content to file you can also use the leftshift operator (<<), it will append data
at the end of the file:

filel << "New content"

If you want to create an empty file, you can create a new file using the
createNewFile () method.

task createNewFile << {
File filel = new File("createNewFileMethod.txt")
filel.createNewFile ()

}

A new directory can be created using the mkdir command. Gradle also allows you to
create nested directories in a single command using mkdirs:

task createDir << {
def dirl = new File("folderl")
dirl.mkdir ()

def dir2 = new File("folder2")
dir2.createTempDir ()

def dir3 = new File("folder3/subfolder31l")
dir3.mkdirs() // to create sub directories in one command

}

In the preceding example, we are creating two directories, one using mkdir () and
the other using createTempDir (). The difference is when we create a directory
using createTempDir (), that directory gets automatically deleted once your build
script execution is completed.

File operations

We will see examples of some of the frequently used methods while dealing with
files, which will help you in build automation:

task fileOperations << ({
File filel = new File("readme.txt")
println "File size is "+filel.size()
println "Checking existence "+filel.exists()
println "Reading contents "+filel.getText ()
println "Checking directory "+filel.isDirectory ()
println "File length "+filel.length()
println "Hidden file "+filel.isHidden()

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

// File paths

println "File path is "+filel.path

println "File absolute path is "+filel.absolutePath
println "File canonical path is "+filel.canonicalPath

// Rename file
filel.renameTo ("writeme.txt")

// File Permissions
filel.setReadOnly ()

println "Checking read permission "+ filel.canRead()+" write
permission "+filel.canWrite ()

filel.setWritable (true)

println "Checking read permission "+ filel.canRead()+" write
permission "+filel.canWrite ()

}

Most of the preceding methods are self-explanatory. Try to execute the preceding
task and observe the output. If you try to execute the fileOperations task twice,
you will get the exception readme.txt (No such file or directory) since you
have renamed the file to writeme. txt.

Filter files

Certain file methods allow users to pass a regular expression as an argument.
Regular expressions can be used to filter out only the required data, rather than
fetch all the data. The following is an example of the eachFileMatch () method,
which will list only the Groovy files in a directory:

task filterFiles << {

def dirl = new File("dirl")

dirl.eachFileMatch (~/.*.groovy/) {
println it

}

dirl.eachFileRecurse { dir -»>
if (dir.isDirectory())

dir.eachFileMatch(~/.*.groovy/) {
println it

}

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The output is as follows:

$ gradle filterFiles

:filterFiles

dirl\groovySample.groovy
dirl\subdirl\groovySamplel.groovy
dirl\subdir2\groovySample2.groovy
dirl\subdir2\subDir3\groovySample3.groovy

BUILD SUCCESSFUL

Delete files and directories

Gradle provides the delete () and deleteDir () APIs to delete files and directories
respectively:

task deleteFile << ({
def dir2 = new File("dir2")
def filel = new File("abc.txt")
filel.createNewFile ()
dir2.mkdir ()
println "File path is "+filel.absolutePath
println "Dir path is "+dir2.absolutePath
filel.delete ()
dir2.deleteDir ()

println "Checking file(abc.txt) existence: "+filel.exists()+"
and Directory(dir2) existence: "+dir2.exists()

}

The output is as follows:

$ gradle deleteFile

:deleteFile

File path is Chapter6/FileExample/abc.txt
Dir path is Chapter6/FileExample/dir2

Checking file(abc.txt) existence: false and Directory(dir2) existence:
false

BUILD SUCCESSFUL

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

The preceding task will create a directory dir2 and a file abe . txt. Then it will
print the absolute paths and finally delete them. You can verify whether it is
deleted properly by calling the exists () function.

FileTree

Until now, we have dealt with single file operations. Gradle provides plenty of
user-friendly APIs to deal with file collections. One such APl is FileTree. A FileTree
represents a hierarchy of files or directories. It extends the FileCollection interface.
Several objects in Gradle such as sourcesets, implement the FileTree interface. You
can initialize FileTree with the £ileTree () method. The following are the different
ways you can initialize the fileTree method:

task fileTreeSample << {
FileTree fTree = fileTree('dirl')
fTree.each {
println it.name
}
FileTree fTreel = fileTree('dirl') {
include '**/* _groovy'
}
println "
fTreel.each
println it.name
}
println ""
FileTree fTree2 = fileTree(dir:'dirl',excludes:['**/*.groovy'])
fTree2.each {
println it.absolutePath

}
}

Execute the gradle fileTreeSample command and observe the output. The first
iteration will print all the files in dir1. The second iteration will only include Groovy
files (with extension .groovy). The third iteration will exclude Groovy files (with
extension .groovy) and print other files with absolute path.

You can also use FileTree to read contents from the archive files such as ZIP, JAR,
or TAR files:

FileTree jarFile = zipTree('SampleProject-1.0.jar")
jarFile.each {
println it.name

}

The preceding code snippet will list all the files contained in a jar file.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Property management

We cannot make a software available on different operating systems, or different
environments without configuring it dynamically. One approach to configure

software is by using the properties file or environment properties. The following
are the different ways Gradle provides to configure properties to build.gradle:

* ext closure
® gradle.properties
* Command line

* Custom properties file

ext closure

We saw many examples in Chapter 3, Managing Task, of adding custom properties to
a project using the ext closure. Thus, we will not discuss the topic in this chapter.

gradle.properties

Gradle provides a default mechanism of reading the properties file using
gradle.properties. You can add the gradle.properties file in any of the
following locations:

* <USER HOME>/.gradle: gradle.properties defined under this
directory would be accessible to all the projects. You can use this file
to define global properties and you can access these properties using
$project.<propertynames. If you have defined GRADLE_USER HOME to
some other directory, then Gradle will skip the <USER_HOME>/ .gradle
directory and will read gradle.properties from the GRADLE USER_HOME
directory. By default <USER_HOME>/.gradle would be considered to read
the gradle.properties file. If properties are defined in <USER_HOME>/ .
gradle/gradle.properties, but are not set by the user, it leads to an
exception. If this is not desired, such properties should be checked using
the hasProperty method of project, and if not set, it should be
initialized with a default value. This property file may also be used for
storing passwords.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

* <ProjectDirs>:gradle.properties defined under this directory would be
accessible to the current project. You cannot access these properties from
any other project. So, all the project-specific properties can be defined in the
project's gradle.properties file.

Along with project-level properties, you can also define system-level
properties in the gradle.properties file. To define system-level properties,
you can append properties with systemProp. So systemProp.sPropl=svVall
will set sProp1 as a system-level property with the value svali.

We will see an example in the next section.

The command line

You can define runtime properties on the command line also using the -p and -D
options. Using -P, you can define project-specific properties. Using -D, you can
define system-level properties. To access system-level properties, you can use
System.properties['<propertynames'] .Note that, command line properties
override gradle.properties. When you configure properties in multiple places,
the following order applies and the last one gets the highest priority:

* gradle.properties in project build dir.
* gradle.properties in Gradle user home.

* System properties set on the command line.

The Custom properties file

You might want to use the custom filename for your properties file, for example,
login.properties or profile.properties. To use the custom properties, simply
read the file using FileInputStreamand convert it to the properties object:

task showCustomProp << {
Properties props = new Properties|()
props.load(new FileInputStream("login.properties"))
println props
println props.get ('loginKeyl!')

}

The preceding code will read the 1ogin.properties file, and the first println
statement will print all the properties while the second print1n statement will
display the value of the 1oginKeyl property.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Let's take a look at a comprehensive example. We will create one gradle.

properties file in the <USER_HOME>/ .gradle directory and another gradle.

properties file in the project directory:

<USER_HOME>/.gradle/gradle.properties

globalPropl=globalVall

globalProp2=globalVal2

Chapteré6/PropertyExample/Projl/gradle.properties

ProjlPropl=Projlvall

ProjlProp2=Projlval2

systemProp.sysPropl=sysVall

Here is our build script, Chapteré6/PropertyExample/Projl/build.gradle

task showProps <<

println
println
println
println
println
println

println

"local property "+ProjlPropl

"local property "+ProjlProp2

"local property via command line: "+projCommandPropl
"global property "+globalPropl

"global property "+globalProp2

"System property "+System.properties['sysPropl']
"System property via command line:

"+System.properties ['sysCommandPropl']

}

Now, execute the following command:

$gradle -PprojCommandPropl=projCommandVall
-DsysCommandPropl=sysCommandVall showProps

:showProps

local property Projlvall

local property Projlval2

local property via command line: projCommandVall

global property globalVall

global property globalVal2

System property sysVall

System property via command line: sysCommandVall

BUILD SUCCESSFUL

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

Here, you can see that the first two lines contain the properties defined in the
project's gradle.properties file. The third line shows the property, which the user
initialize with the -p option. The fourth and fifth lines show the properties defined
in <USER_HOME>/.gradle/gradle.properties. The sixth line shows the system
properties defined in the project's gradle.properties file, and finally, the example
shows the system property passed in the command line using the -D option.

Multi-project build

We have explored many features of Gradle such as tasks, plugins, and dependency
management. We have seen many examples of the build script involving in-built
tasks, custom tasks, and dependencies between the tasks. Yet, we have not covered
one of the main features of Gradle, which is Multi-Project Build. Until now we
have seen build files for a single project. A single project build file represents only
one project or one module. It is a very common scenario in any software world
that it starts with a single module initially and as the software matures and grows
over time, it turns into a big project. Then we need to divide it again into different
submodules, but overall, we build the project using one file only. Gradle provides
the capability of treating different modules as a different project, which can be
grouped under a root project. It also gives the flexibility of building a submodule
independently without building the complete project.

Multi-project is not a new concept. The only additional capability Gradle provides
is to build the modules separately as an individual subproject, and whenever
required, you can build the entire module using the root project. The subproject has
all the properties and features, which a project object has in Gradle. You can define
modular dependencies to other projects. Gradle allows you to define subproject
tasks' dependencies to other subprojects. You can build only one subproject (and its
dependencies) to optimize the build performance time and so on.

The Multi-project structure

Consider a simple user management Java application, which authenticates and
authorizes the user, allows the user to manage his profile, and perform transactions.
Let's say we divided this into three different subprojects or modules: login module,
profile module, and transaction module.

One more question might arise, when we have already defined three subprojects
why do we need the root project UserManagement, as it does not contain any source
code? One of the purposes of the root project is to coordinate among the subprojects,
define dependencies between the projects, if any, define common behaviors to avoid
duplicate build configurations in each project, and more.

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The purpose of these three modules is to work on them independently, build them
separately, and if required, publish its artifacts without any dependency.

The directory structure will look like the following diagram:

UserManagement
> login
profile
> transactions
> build.gradle
settings.gradle
Figure 6.4

Here, we have created three subprojects: login, profile, and transaction, each module
with its own src/main/java hierarchy. We have grouped the subprojects under the
root project UserManagement. Additionally, the root project contains one build.
gradle file and a settings.gradle file.

The settings.gradle file is one of the key files in multi-project build. This file needs to
be present in the root project's directory. It lists all the subprojects. The content of the
settings.gradle file is shown in the following code:

settings.gradle:
include 'login', 'profile', 'transactions'

Here, we have included all the subprojects, which are part of the root project. On
executing the following command, we get all the project details as output:

$ gradle projects
Root project 'UserManagement'

+--- Project ':login'

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

+--- Project ':profile'
\--- Project ':transactions’

BUILD SUCCESSFUL

The output displays the root project UserManagement, and all the subprojects

which are under the root project. Now, try to delete the settings.gradle file or
remove the include statements in the settings.gradle file and run this command
again. This time, it will display only root project details. The settings.gradle

is an important file, which makes the root project aware of all the subprojects it
should include. It is also possible to declare multiple levels of subprojects using
'subproject:subsubproject', 'subproject: subsubproject : subsubsubproject’,
and so on.

We talked about three phases of the Gradle build life cycle: initialization, configuration,
and execution. Using the settings.gradle file during the initialization phase, Gradle
adds all the subproject instances to the build process. You can also add projects by
using the include (String[]) method to this object.

The settings.gradle file also has access to the gradle.properties file defined in the
settings directory of the build or <USER_HOME>/ .gradle directory and properties
provided on the command line using the -p option. The settings.gradle file can
also execute Gradle tasks, and include plugins and other operations, which can be
done in any .gradle file.

The Multi-project execution

To determine if the current build process is part of a multi-project build, it searches for
the settings.gradle file first in the current directory and then in its parent hierarchy.
If it finds settings.gradle in the same directory, it considers itself as a parent project
and then checks for subprojects. In another case, if it finds the settings.gradle file in
its parent hierarchy, it checks whether or not the current subdirectory is a subproject of
the root project that is found. If the current project is part of the root project, then it is
executed as a part of the multi-project build, otherwise, as a single project build.

The following is the sample build.gradle under the UserManagement directory:
println "Project name is S$name"
project (':login') {

apply plugin: 'java'
println "Project name is S$name"

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

task loginTask << {
println "Task name is S$Sname"

}

project (':profile') {
apply plugin: 'java'
println "Project name is S$name"
task profileTask << {
println "Task name is S$Sname"

}
}

project (':transactions') {
apply plugin: 'java'
println "Project name is S$name"
task transactionTask << {
println "Task name is S$Sname"

}
}

Now, try to execute the following command from the UserManagement directory:

/UserManagement$ gradle

Project name is UserManagement
Project name is login

Project name is profile
Project name is transactions

thelp

Now, go to the 1login directory and execute the same command; you will find a
similar output. The difference is, in the subproject, the help task would be replaced
by: login:help, because Gradle automatically detects the subproject you are in.

In the first scenario, Gradle found the settings.gradle file in the same directory
and found three subprojects. Gradle initialized three subprojects and during
configuration phase it executed the configuration statements. We did not mention
any tasks, so no task is executed.

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

In the second scenario, when we executed the Gradle command from the login
module, Gradle again started searching for the settings.gradle file and found
this file in the parent directory, and also found the current project to be a part of the
multi-project build, and thus, executed the build script as a multi-project build.

One thing you might have noticed here is that we did not define any build.gradle
for any of the subprojects. We added all the subprojects to the root project's build file.
This is one of the ways you can define the multi-project build. The alternative is to
create individual build.gradle files in each of the subprojects. Just remove the project
closures from the main build file and copy it to its respective project build file. The
new project structure is shown in figure 6.4:

UserManagement

login
> src
—————> build.gradle

profile

> src
——————> build.gradle

transactions
e
build.gradle
build.gradle

settings.gradle

Figure 6.5

Task execution

Before executing a task in the multi-project build, Gradle will search for the task in
the root project and in all the subprojects. If the task are found in multiple projects,
it will execute all the tasks consecutively. Execute the following command from the
UserManagement directory:

$ gradle loginTask

Project name is UserManagement

Project name is login

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Project name is profile
Project name is transactions
:login:loginTask

Task name is loginTask

BUILD SUCCESSFUL

Now, copy loginTask to the transaction project and try to execute the same command:

$ gradle loginTask

:login:loginTask
Task name is loginTask
:transactions:loginTask

Task name is loginTask

BUILD SUCCESSFUL

Here, you can see the Gradle-executed 1oginTask in both the 1ogin and
transactions projects. To execute a project-specific task, prefix the task name with
the project name and use colon (:) as a separator —gradle project:task. To execute
loginTask for the 1ogin module, use the $ gradle login:loginTask command.

The multi-project build helps to avoid redundant configurations and allows
optimizing and organizing the build file structure appropriately.

In the preceding example, we have three subprojects and all have a dependency on
the Java plugin. These subprojects might depend on some common libraries as well.
Instead of defining dependencies in each of the subproject build files, we can define
a common configuration into the root project. By doing so, the entire subproject

will inherit this common configuration. This can be done by using two closures:
allprojects and subprojects. The configuration defined under allprojects will
be shared by all the subprojects, including the root project, whereas configuration
under subprojects will be shared by all the subprojects excluding the root project.
Add the following subprojects{} and allprojects{} closures, which are used to
build a file and remove the apply plugin: 'java' statement from each subproject:

println "Project name is S$name"
allprojects {
version = '2.0'
}
subprojects { // for all subprojects
apply plugin: 'java'

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

repositories ({
mavenCentral ()

}

dependencies {
compile 'log4j:log4j:1.2.16"
}
}

Here, we have added the Java plugin, repositories closure, and common
dependencies to the subprojects closure. So, it will be shared by all the subprojects.
We have added a version in allprojects, which would be shared by all the
subprojects, including the root subproject.

Now, try to execute the following command:

$ gradle clean

Project name is UserManagement
Project name is login

Project name is profile
Project name is transactions
:login:clean

:profile:clean

:transactions:clean

BUILD SUCCESSFUL

It has executed clean tasks in all the subprojects but not for the root project. Even if
you try to execute UserManagement : clean task explicitly, it will throw an exception.
If you add apply plugin: 'java' tothe allprojects closure, it will add clean
task to root project along with the subprojects.

The Flat hierarchy

Apart from the parent/child hierarchy, you can also create the subprojects at the
same level, which can be included using the includeFlat '<projectnames>' syntax.

Let's add one more subproject department at the same level with the
UserManagement module.

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The department module can be added as a subproject to the UserManagement
project by adding the following code in the settings.gradle file:

includeFlat 'department'
// adding same level project as sub project

Interproject dependency

When you execute some common tasks such as clean and compile (after adding
the Java plugin) on a multi-project build, the default execution order is based on
their alphabetical order:

$ gradle clean

Project name is UserManagement
Project name is department
Project name is login

Project name is profile
Project name is transactions
:department:clean UP-TO-DATE
:login:clean UP-TO-DATE
:profile:clean UP-TO-DATE
:transactions:clean UP-TO-DATE

BUILD SUCCESSFUL

The first root project is getting evaluated and then all the subprojects as per their
alphabetical order. To override the default behavior, Gradle provides you with a
different level of dependency management.

Configuration-level dependency

The configuration-level dependency evaluates or configures a project after the
execution of the project on which it depends upon. For example, you want to set
some properties in the profile project and you want to use those properties in the
login project. You can achieve this using evaluationDependsOn. To enable this
feature, you should have separate build.gradle files for each subproject. Let's
create independent build.gradle for each subprojects.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

You can create each subproject and build.gradle in the following pattern.

/<project name>/build.gradle

println "Project name is S$name"

task <projectName>Task << {
println "Task name is Sname "

}
The root project build.gradle will look like the following code:
UserManagement confDep/build.gradle

println "Project name is S$name"
allprojects {
version = '2.0'

}

subprojects { // for all sub projects
apply plugin: 'java'
repositories {
mavenCentral ()

}
Now, execute the following Gradle command:

/UserManagement confDep$ gradle

Project name is UserManagement confDep
Project name is login
Project name is profile

Project name is transactions

BUILD SUCCESSFUL

We have executed the Gradle command without any task. It has executed up
to the configuration phase and you can see the preceding configuration order in
alphabetical order (after root project configuration).

Now, add the following statement in your login project build.gradle file:

evaluationDependsOn (' :profile')

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Then, execute the Gradle command:

/UserManagement confDep$ gradle

Project name is UserManagement confDep

Project name is profile // Order is changed
Project name is login

Project name is transactions

BUILD SUCCESSFUL

Now, you can see that the profile configuration is evaluated before the
login configuration.

Task-level dependency

There might be a situation when a task of a project may depend on another project
task. Gradle allows you to maintain task-level dependencies across subprojects.
Here is an example where 1oginTask depends on profileTask:

project (':login') {
println "Project name is $name"
task loginTask (dependsOn: ":profile:profileTask")<< ({
println "Task name is $name"

}
}

Now the output shows the dependency between the tasks:

/UserManagement taskDep$ gradle loginTask

:profile:profileTask
Task name is profileTask
:login:loginTask

Task name is loginTask

BUILD SUCCESSFUL

If you declare an execution dependency between different projects with dependson,
the default behavior of this method is to also create a configuration dependency
between the two projects.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

Library dependency
If one of the subprojects needs a class file or JAR file of another subproject to compile,

this can be introduced as a compile time dependency. If the login project needs a
profile jar in its classpath, you can introduce dependencies at compile level:

project (':login') {
dependencies {
compile project (':profile')

}

task loginTask (dependsOn: ":profile:profileTask")<< {
println "Task name is $Sname"

}

/UserManagement libDep$ gradle clean compileJava

:login:clean

:profile:clean

:transactions:clean
:department:compileJava UP-TO-DATE
:profile:compiledava
:profile:processResources UP-TO-DATE
:profile:classes

:profile:jar

:login:compileJava

:transactions:compileJdava

BUILD SUCCESSFUL

From the output, we can realize that all the dependent modules were compiled
before the login compile tasks were executed.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Partial builds

During development, you might need to build the projects again and again. Sometimes
you do not make any changes to your dependent subproject, but Gradle by default
always builds the dependencies first and then builds the dependent subprojects. This
process might affect overall build performance. To overcome this problem, Gradle
provides a solution called partial builds. Partial builds enable you to build only the
required project, not its dependency projects. In the preceding example, we have the
compile dependency of the login module on the profile project. To compile the login
project without the dependent profile project, command-line option -a can be applied:

$ gradle :login:compileJava -a

:login:compileJava

BUILD SUCCESSFUL

buildDependents

In an enterprise project, we have project dependencies. When you want to build
a project and at the same time you want to build the other dependent projects,
the Java plugin provides the buildDependents option.

In the previous example, the login project has compile time dependency on the
profile project. We will try to build a profile with the buildbependents option:

/UserManagement libDep$ gradle :profile:buildDependents

:profile:compileJava UP-TO-DATE
:profile:processResources UP-TO-DATE
:profile:classes UP-TO-DATE
:profile:jar UP-TO-DATE
:login:compiledJava UP-TO-DATE
:login:processResources UP-TO-DATE
:login:classes UP-TO-DATE

:login:jar

:login:assemble
:login:compileTestJava UP-TO-DATE
:login:processTestResources UP-TO-DATE
:login:testClasses UP-TO-DATE

:login:test UP-TO-DATE

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

:login:check UP-TO-DATE
:login:build

:login:buildDependents
:profile:assemble UP-TO-DATE
:profile:compileTestJava UP-TO-DATE
:profile:processTestResources UP-TO-DATE
:profile:testClasses UP-TO-DATE
:profile:test UP-TO-DATE
:profile:check UP-TO-DATE
:profile:build UP-TO-DATE
:profile:buildDependents

BUILD SUCCESSFUL

Since the login module depends on the profile module, executing the profile project
also builds the login project.

buildNeeded

When you build the project, it only compiles the code and prepares the JAR file.
If you have compile-time dependencies on the other project, it only compiles the
other project and prepares the JAR file. To check the functionality of the complete
component, you might want to execute the test cases as well. To execute the test
case of the subproject as well as the dependent project, use buildNeeded:

/UserManagement libDep$ gradle :login:buildNeeded
:login:processTestResources UP-TO-DATE
:login:testClasses UP-TO-DATE
:login:test UP-TO-DATE

:login:check UP-TO-DATE

:login:build UP-TO-DATE
:profile:assemble UP-TO-DATE
:profile:compileTestJava UP-TO-DATE
:profile:processTestResources UP-TO-DATE
:profile:testClasses UP-TO-DATE
:profile:test UP-TO-DATE

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

:profile:check UP-TO-DATE
:profile:build UP-TO-DATE
:profile:buildNeeded UP-TO-DATE
:login:buildNeeded UP-TO-DATE

BUILD SUCCESSFUL

Here, buildNeeded not only executes the login test cases, it also executes the profile
test cases.

Testing with Gradle

No piece of software is production ready unless it passes through a proper quality
check. It helps to deliver software with minimum defects and saves lots of maintenance
effort. However, manual test execution requires lots of time to execute tests and
therefore the software release cycle is delayed. Release time and productivity can be
improved if tests are automated.

Gradle provides an automated way to execute test code, especially for unit tests. In
the following section, we'll explore how to integrate JUnit and TestNG with Gradle.

JUnit

Gradle's Java plugin provides a predefined structure to keep test code and test
resources for configuration and execution. As with the source code structure, the
default test code location is src/test/java/<test_packages. If you follow

this convention, you just need to execute the test task to run the unit test cases
as shown in the following command:

$ gradle test
:compiledava
:processResources
:classes
:compileTestJdava
:processTestResources
:testClasses

:test

BUILD SUCCESSFUL

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

This test task will perform all the required operations such as the compilation of the
source code, compilation of the test code, process resources, and finally, execution of
the test cases and creation of reports.

JUnit provides a user-friendly format to understand the result. You will find the
following hierarchy after executing the test task:

testUsingJunit

src

build.gradle >|After test task execution
build

L e
| dopendenoycache|
L e]
| esvree |

— tmp

Figure 6.6

The reports folder contains a tests subdirectory, which has a test summary result
in HTML format named index.html. If you open the index.html file, you will find
the following output:

Test Summary

2 0 0 0.002s 100%

tests failures ignored duration

successful

Packages Classes
Package Tests Failures Ignored Duration Success rate
ché 2 0 0 0.002s 100%

Figure 6.7

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

It provides a complete analysis of test case scenarios such as number of test cases
executed, test cases failed, ignored, and so on. From the report, you can drill down
further to the individual test case level by following the hyperlinks on the report
page. The report will show a detailed explanation of the error/exception that
occurred, if any, and the execution time in a tabular format.

Until now, we have only discussed the execution of the test cases using Gradle. To
compile and execute test cases, we need a test framework library. Like any other
configuration, you need to mention the JUnit JAR as a dependency for your project.
Typically, the dependency is added as a testCompile configuration:

repositories {
mavenCentral ()
dependencies {
testCompile 'junit:junit:4.12"'

}

This configuration will download the junit-4.12.jar from the Maven
repository and the JAR file will be added to the classpath during the compilation
and execution phase.

Test configuration

There are different configuration parameters that can be set for test configuration,
which help to optimize the resources and customize the behavior based on project
requirements.

Sometimes, the test directory structure does not follow the default convention, that
is, src/test/java. In a similar way to the source code directory configuration, you
can configure the new test code location as follows:

sourceSets {
test {
java {
srcDir 'testSrc!
}
}
}

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

maxParallelForks

Gradle executes the test cases in a separate JVM. By default, Gradle executes all
the tests in a single process. You can specify the number of parallel processes by
configuring the maxParallelForks property in the test closure. Its default
value is one:

test {
maxParallelForks = 3

}

To understand how it works exactly, we can modify our previous example. Just
create multiple copies of the test class in src/test/java. In our example, in the
TestUsingJunitParallel project, we have created a total of five copies of the
same LoginTest class as LoginTest1, LoginTest2, and so on. Now, execute the
Gradle command with the - -info option:

TestUsingJunitParallel$ gradle clean --info test | grep 'Test
Executor'

Successfully started process 'Gradle Test Executor 2'
Successfully started process 'Gradle Test Executor 1'
Successfully started process 'Gradle Test Executor 3'
Gradle Test Executor started executing tests.
Gradle Test Executor started executing tests.
Gradle Test Executor started executing tests.
Gradle Test Executor finished executing tests.

Gradle Test Executor

2
3
1
3
2 finished executing tests.
1

Gradle Test Executor finished executing tests.

The command-line output shows that three processes were created by Gradle and all
the test cases were executed in those processes.

The forkEvery option

This option allows setting the number of test classes per process. The default value is
0, that is, unlimited. If you set this option to a nonzero value, then a process will be
created when this limit is reached.

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In the previous example, we have five test classes and we have set the parallel
process count to three. Now, we will set the forkEvery option to 1, so every

process will execute only one test class:

test {
ignoreFailures = true
maxParallelForks = 3

forkEvery = 1

TestUsingJunitParallel$ gradle clean --info test |
Executor!'

Successfully started process 'Gradle Test Executor
Successfully started process 'Gradle Test Executor
Successfully started process 'Gradle Test Executor
Gradle Test Executor 1 started executing tests.
Gradle Test Executor 2 started executing tests.
Gradle Test Executor 3 started executing tests.
Gradle Test Executor 1 finished executing tests.
Starting process 'Gradle Test Executor 4'. Working
Successfully started process 'Gradle Test Executor
Gradle Test Executor 3 finished executing tests.
Gradle Test Executor 2 finished executing tests.
Starting process 'Gradle Test Executor 5'. Working
Successfully started process 'Gradle Test Executor
Gradle Test Executor 4 started executing tests.
Gradle Test Executor 5 started executing tests.
Gradle Test Executor 4 finished executing tests.
5

Gradle Test Executor finished executing tests.

grep 'Test

1l
3l
2!

directory:

directory:

From the output, we can observe that Gradle first created three processes, which
executed three test classes. Then, other two processes, for example, 'Gradle Test
Executor 4' and 'Gradle Test Executor 5', were created to execute another

two test files.

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

ignoreFailures
Whenever any of the test cases fails, the build is marked as FAILED:

$ gradle test

ctest

ch6.login.LoginTest > testLoginl FAILED

java.lang.AssertionError at LoginTest.java:26

4 tests completed, 1 failed
:test FAILED

FAILURE: Build failed with an exception.

BUILD FAILED

If you want the build to succeed irrespective of the test case outcome, you can add
ignoreFailures=true in the build script test closure, as shown in the previous
example. Its default value is false. On executing the test task again, the build will
be successful as follows:

$ gradle test

ch6.login.LoginTest > testLoginl FAILED

java.lang.AssertionError at LoginTest.java:26

4 tests completed, 1 failed

BUILD SUCCESSFUL

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

filter
Gradle allows you a selective execution of test cases by filtering them based on
different patterns. Suppose we have two test packages with four test cases.

/src/test/java/ch6/login/LoginTest . java contains 2 test packages as follows:

® testUserLoginl ()

® testUserLogin2 ()
/src/test/java/ché/profile/ProfileTest.java contains 2 test packages
as follows:

® testUserProfilel ()

® testUserProfile2 ()

The following code snippet shows how to apply a filter based on different patterns:

test {
filter {
// 1: execute only login test cases
includeTestsMatching "ch6.login.*"

//2: include all test cases matching *Test
includeTestsMatching "*Test"

//3: include all integration tests having 1 in their name
includeTestsMatching "*1"

//4: Other way to include/exclude packages
include "ché/profile/*=*"

}

The first filter will identify only two test cases from the ché.login package. The
second filter selects all four test cases, as test class names are matching the *Test
pattern. The third statement finally filters only two test cases: testUserLoginl ()
and testUserProfilel().

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

Just comment the first two patterns and execute the test with filter pattern *1.
Although we have a total of four test cases, you will find that Gradle executes

one test case from each package. You can also include or exclude packages by
using include or exclude with the package structure mentioned in the preceding
example. If you only want to execute a single test class, you can also execute it by
appending test classes to the command-line option --tests. Command gradle
tests --tests ché6.login.LoginTest will execute only the test case mentioned
in the LoginTest class:

Test Summary

2 0 0 0.002s 100%

tests failures ignored duration
successful
Packages Classes
Package Tests Failures Ignored Duration Success rate
ché.login 1 0 0 0Os 100%
chb.profile 1 0 0 0.002s 100%
Figure 6.8

TestNG

Gradle also provides integration with the TestNG framework. To write test cases in
TestNG, you need to add the dependency in the build.gradle file:

dependencies {
testCompile 'org.testng:testng:6.8.21"

}

In our example, we have created a TestNG test class with three test cases. Now, by
executing the test task, we get the report file created under build/reports/tests:

$ gradle clean test

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Now, open the index.html file and you will see the following output:

Package ch6.testhg.example

all > ché.testng.example

3 0 0 0.003s 100%

tests failures ignored duration

successful

Classes

Class Tests Failures Ignored Duration Success rate
ArrayTest 3 0 0 0.003s 100%
Figure 6.9

The look and feel of the report is similar to the JUnit that we saw earlier. Actually,
JUnit and TestNG on their own generate completely different report formats, but
Gradle reconciles them into a standard look and feel.

As explained in the JUnit section, you can also define other properties in the test
closure such as ignoreFailures, maxParallelForks, and so on.

test{
useTestNG ()
ignoreFailures = true
maxParallelForks = 2

forkEvery = 1

Execution based on group

In the preceding test closure, we have used the useTestNG option to enable TestNG
support. You can also set other options such as groups and listeners in this closure. For
example, the following setting only executes test cases with the group name Smoke and
it creates an additional emailable TestNG report in the reports/tests folder:

useTestNG () {
includeGroups 'Smoke'
listeners << 'org.testng.reporters.EmailableReporter'

}

In useTestNG, you can group test cases based on the group attribute to the
@Test annotation:

@Test (groups = "<group name>")

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Gradle

In our example, we have grouped the test cases as Smoke and Integration. On
executing the test task, only the verifyArraySize and verifyArrayNotNull
test cases will be executed:

@Test (groups = "Smoke")
public void verifyArraySize ()

@Test (groups = "Smoke")
public void verifyArrayNotNull ()

@Test (groups = "Integration")
public void verifyArrayPosition ()

Execution based on the TestNG suite file

TestNG suite files provide better control to execute tests. In a test suite file, you can
define all the test classes and methods that will be included to execute the test case,
any filter based on group name, listener information, and so on.

We have created a testng.xml file in the src/test/resource folder. The file has
three key pieces of information; the 1istener configuration to create an emailable
report format, included the test group as smoke and added the ArrayTest file as a test
class. Using the test suite file, you can also configure other properties such as thread
pool size, whether test classes or test methods will run in parallel, and many more:

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >
<suite name="Suitel" verbose="1" >
<listeners>
<listener class-name="org.testng.reporters.EmailableReporter"
/>
</listenerss>
<test name="Smoke Test">
<groups>
<runs
<exclude name="Integration" />
<include name="Smoke" />
</runs>
</groups>

<classes>
<class name="ché6.testng.example.ArrayTest">
</class>
</classes>
</test>
</suite>

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This suite file can be included in the test closure as follows. Then, on executing the
test task, reports will be created in the reports/tests folder:

test {
ignoreFailures = true
useTestNG () {
suites ("src/test/resources/testng.xml")

}
}

Summary

In this chapter, we have explored different topics of Gradle such as I/O operations,
logging, Multi-Project build and testing using Gradle. We also learned how easy it is
to generate assets for web applications and Scala projects with Gradle. In the Testing
with Gradle section, we learned some basics to execute tests with JUnit and TestNG.

In the next chapter, we will learn the code quality aspects of a Java project. We will
analyze a few Gradle plugins such as Checkstyle and Sonar. Apart from learning these
plugins, we will discuss another topic called Continuous Integration. These two topics
will be combined and presented by exploration of two different continuous integration
servers, namely Jenkins and TeamCity.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

Continuous Integration is one of the most used terminologies in today's software
world. Wherever you go in the software world, everybody talks about continuous
integration. So what is continuous integration?

Continuous Integration is the practice of integrating all of the software code in

a shared repository; prepare an automated build for every commit, and run the
automated tests without any manual effort. It helps developers to detect problems
early in fail fast mode. Here, early means as soon as a developer commits the

code; within a couple of seconds or minutes (as per the project size), continuous
integration process will notify about the success or failure of the build. Since errors
are caught in the early stages, it saves a lot of effort while performing integration
and functional testing of the application.

In this chapter, we will explore the popular Continuous Integration tools, Jenkins
and TeamCity. As this is a Gradle book, we will limit our discussion to basic setup
and configuration for these tools. We will also introduce a new topic, code quality
management with Gradle. We will learn how Checkstyle, PMD, and Sonar Runner
plugins can be integrated with Gradle, and how it can be integrated with Continuous
Integration tools.

Jenkins walk-through

Jenkins is one of the most popular open source continuous integration tools which
helps to automate software build and the deployment process. It can work with build
tools such as Maven, Gradle, and Ant. It supports various source code management
systems such as CVS, Git, Subversion, and Perforce. Even simple shell or batch script
execution is supported. The main advantage of Jenkins lies in its plugin support.
There are more than 1000+ plugins for different functionalities, and if needed, it can
be extended to support new requirements.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

Some of the main features of Jenkins are:

* Easy to install and configure. Simple web-based UI for managing the server

* Support for a variety of plugins for different builds and deployment
related tasks

* A very large community forum
* Support for different repositories like SVN, Git, CVS, and Perforce etc.
* Support for post build hook

Jenkins installation

Jenkins installation is just a two-step process. You need to download jenkins.war
from http://jenkins-ci.org/. You will always get the latest version from this
URL. For any previous releases, click on the past releases option and decide which
version you want.

Once the war file is downloaded, it can be deployed in a container such as Tomcat,
or it can be executed using the following command:

$ java -jar jenkins.war
Running from: /jenkins/jenkins.war

webroot: $user.home/.jenkins

Apr 02, 2015 3:30:32 PM org.eclipse.jetty.util.log.JavaUtilLog info
INFO: Started SelectChannelConnector@0.0.0.0:8080

Apr 02, 2015 3:30:37 PM org.jenkinsci.main.modules.sshd.SSHD start
INFO: Started SSHD at port 50566

Apr 02, 2015 3:30:37 PM jenkins.InitReactorRunner$l onAttained
INFO: Completed initialization

Apr 02, 2015 3:30:37 PM hudson.WebAppMain$3 run

INFO: Jenkins is fully up and running

Here, Jenkins started with an inbuilt Jetty container at 8080 port. Default Jenkins
home directory will be set to <USER_HOME>/ . jenkins. By setting the JENKINS_HOME
environment variable, you can set it to any other location. This directory stores all
the Jenkins related information such as job information, user account details, plugin
information, and Jenkins general settings.

[168]

www.it-ebooks.info

http://jenkins-ci.org/
http://www.it-ebooks.info/

Chapter 7

Now open a browser and type the following: http://localhost:8080 and the
Jenkins welcome page will be displayed. That is all. Jenkins is ready for you:

/L4 Dashboard [lenkin] %\

« C Y localhost:3080

Jenkins =

= New ltem
& peope Welcome to Jenkins!
= Build History
#. Manage Jenkins Please create new jobs to get started
A. Credentials

Build Queue =

No builds in the queue.

Build Executor Status =

1 Idle
2 Idle

Figure 7.1

Since this is not a Jenkins user guide, we will not be covering Jenkins functionalities
in detail. You can go through the tutorials available on Jenkins main website. We
will be mostly covering the topics that will be helpful to automate the build process
with Gradle.

Jenkins configuration

Only installation is not enough for Jenkins to get started with the Gradle build
process. We need to configure some plugins before we start with our first job in
Jenkins. Like task in Gradle, the unit of execution in Jenkins is job. A build job
can perform compilation, run automated tests, package or even deployment
related tasks. But before we start working with jobs, we will configure the
following plugins for Jenkins.

* Gradle Plugin

* Git Plugin (required if you are using Git as a repository)

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

Click on the Manage Jenkins on the left-hand side vertical menu. You will find a
list of different categories available. Click on Manage Plugins. You will find the
following four tabs:

Filter: | <,

Updates

Install Name | Version Installed

Credentials Plugin

This plugin allows you to store credentials in Jenkins.

122 1.18

212 211

13 11
This plugin add
JUnit Plugin

Allows JUnit-format test results to be published

14 1.2-beta-4

Figure 7.2

Go to the Available tab and filter (top right) for Gradle Plugin. You will find
Gradle Plugin with the following details:

Gradle Plugin
This plugin makes it possible to invoke Gradle build script as the main build step.

Select the plugin and click on Download now and Install after restart. It is better to
restart Jenkins after an installation, in order to avoid any issues.

This will add Gradle build execution capability to the Jenkins server. You will be
able to see a success message once installation is successful. You might get an error
if the system is firewall protected, which can restrict the system when connecting to
the internet. In such cases, manually download the plugin (* . hpi files) and copy it
to <Jenkins_home>/plugins directory. Jenkins plugins can be downloaded from
https://updates.jenkins-ci.org/download/plugins/.

For the examples in this chapter, we are using GitHub as a repository. To work with
GitHub, we will add the GitHub plugin to the Jenkins server. We can add it in the
same way we added the Gradle plugin. If the plugin is dependent on other plugins,
then Jenkins will automatically download the required plugins. You can observe this
when we install the GitHub plugin. Jenkins automatically installs the other required
plugins such as the Git client plugin, and the Git API Plugin. As mentioned earlier,
some plugins might require the Jenkins server to be restarted. In such cases, stop the
current process and restart the Jenkins server in order to make the plugin effective.

The next important step is to configure JDK, Gradle, and Git with Jenkins. To
configure these settings, open Jenkins URL and click on Manage Jenkins, and then
Configure System.

[170]

www.it-ebooks.info

https://updates.jenkins-ci.org/download/plugins/
http://www.it-ebooks.info/

Chapter 7

Enter the correct path to the JDK and save the settings. Jenkins also has an
option to install the software automatically from the internet. Take a look at the

following screenshot:

JDK

JDK installations. JDK

Name jok1.7.0_71
JAVA_HOME | e ocalijavalidkl.7.0_ 71

Install automatically

Add JDK

List of JDK installations on this system

@

Delete JDK

Figure 7.3

Figure 7.4 shows how to configure Gradle in Jenkins:

Gradle

Gradle installations Gradle

name gradie-2.4

GRADLE_HOME /home/mainak/GradleProject/gradle-2.4

Install automatically

Add Gradle

List of Gradle installations on this system

@

Delete Gradle

Figure 7.4

Create job

After the Gradle plugin has been successfully installed, we will create the first Gradle
build job. Go to Jenkins home page and click on create new jobs. There are different
categories of jobs that can be created in Jenkins. We will create a Freestyle project

in this example. For simplicity, we will build the plugin project that we created in
Chapter 4, Plugin Management. A project can be created by simply giving it a name,
such as PluginProject, as shown in Figure 7.5. Also, try to avoid spaces in job

names, as it is considered as a bad practice.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

If you want words to be separated, you can use underscore(_):

Item name PluginProject]
® Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something other than software build

Maven project
Build a maven project. Jenkins takes advantage of yeur POM files and drastically reduces the configuration.

Build multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple envirenments, platferm-specific builds, etc.

External Job
This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine. This is designed se that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details

OK

Figure 7.5

Once you click on OK, in the next page you will have to configure the job. You will
have to configure a few details as follows:

* Source code management location to download the project

* Build step for the project

* Schedule the Build task (daily, hourly, after every commit etc.)

e Putin any post build action to perform

First, we will configure the repository under Source Code Management. As we are
using the GitHub repository, we need to select the Git option.

Source Code Management
None
CVs
CVS Projectset
® Git
Repositories _
Repository URL hitps:/igithub.com/mitramkm/mastering-gradie.git ®
Credentials mitramkm/**+*+ (mastering gradle ity ¥ &= Add
@
Advanced...
Add Repository Delete Repository
Branches to build ifi any” _
Branch Specifier (blank for ‘any’) “Jmaster @
Add Branch Delete Branch
Repaository browser (Auto) . @
Additional Behaviours

Figure 7.6

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Provide the repository URL and add the authentication (username/password) using
the Credentials option as configured in Figure 7.6.

Git executable must be set in the Jenkins system configuration, otherwise you will
not be able to execute Git commands. If there is any issue with connecting to the
URL, Jenkins will show you a proper error message. This helps to debug and resolve
the issues. If the URL is validated to be successful, the next step is to choose the build
options from one of the options displayed in the following figure:

Build Triggers

Build after other projects are built 'ﬁ‘

Build periodically 'ii‘
& Build when achange is pushed to GitHub
Poll SCM @
Figure 7.7

For our project we have selected the option Build when a change is pushed to
GitHub, which helps to validate every commit by running a build script. You can
set any other option as per the build requirement.

The next step is to select a build tool for the project. From the options available,
such as shell, Ant, and batch, we will select Gradle as the build tool for this project.
This option is highlighted in the next figure:

Build
Add build step ~

I Execute Windows batch command
Execute shell
Invoke Ant
Invoke Gradle script
Invoke top-level Maven targets

Setbuild status to "pending” on GitHub commit

Figure 7.8

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

Select the option Invoke Gradle script and configure a few basic parameters:

Invoke Gradle script @

® Invoke Gradle (2]
Gradle Version gradie-2.4 -

Use Gradie Wrapper @

Build step description

4

Swilches v | &

LT

Tasks clean build Y@

Root Build script ${warkspace}/Chapter7/PluginProject/ -@

Build File @

Specify Gradle build file to run. Also, some environment variables are available to the build script
Force GRADLE_USER_HOME to use workspace .@

Figure 7.9

We have configured the installed Gradle on the system gradle-2.4 as the working
Gradle version. To build the PluginProject, tasks can be set as clean build in the
Tasks text box. If the build.gradle file is in the home/root folder of the project,
then you can leave the Root Build Script textbox empty. However, if it is in another
directory, you will have to mention the path relative to the workspace location. Our
build.gradle file is in the Chapter7/PluginProject folder. So we can enter the
Root Build script as $ {workspace}/Chapter7/PluginProject. As we are using the
build file name as build.gradle, which is the default naming convention in Gradle,
we do not need to specify the file name in the Build File text box. If you are using
any other build file name, it has to be mentioned in the Build file text box.

You can also add Post-build Actions such as publish Java doc, send email
notifications, build other projects as per the project requirements.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Now, save the configurations and you will be able to see the project on the
dashboard:

« C' [localhost:8080

Jenkins @

Jenkins

New ltem ‘&add description

Al e
& reope

S w Name | Last Success Last Failure Last Duration
= Build History

PluginProject A A A 3
#_. Manage Jenkins - FlLarEreest (%3]

Cradent lcon: SML . . .
A Credentials Legend EJRSSforall [)RSS for failures [5) RSS for just latest builds

Build Queue =

No builds in the queue

Build Executor Status =

1 Idle
2 ldle

Figure 7.10

Execute job

Although we configured the build to be executed when a change is pushed to the
source code management system, build can always be executed manually if you do
not want to wait for changes to happen in the repository. Click on the PluginProject
job on the Jenkins home page, which you had created earlier. You will be navigated
to the job console at http://localhost:8080/job/PluginProject/.

4 Jenkins o
Jenkins PluginProject B s

& Back to Dashboard Project PluginProject

v Status Zadd description
= Changes

Disable Project
& Workspace

~ " =
) Buiid Now 7 Werkspace
Y Delete Project

T

& Configure —# Recent Changes
b =
Build History wend = Permalinks

]

Y RSS for all [5) RSS for failures

Figure 7.11

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

On the job console, you will find the Build Now option on the left-hand side. Click
on the option to execute the job manually. In the console page, you can configure the
job at any time by selecting the Configure option. Once the job has been executed
successfully, you will find similar output as displayed in Figure 7.12 by clicking the
build no link in the Build History section:

Q Console Output

Started by user anonymous

Building in workspace /home/mainak/.jenkins/jobs/PluginProject/workspace

> git rev-parse --is-inside-work-tree # timeout=10

Fetching changes from the remote Git repository

> git config remote.origin.url https://github.com/mitramkm/mastering-gradle.git # timeout=10

Fetching upstream changes from https://github.com/mitramkm/mastering-gradle.git

> git --version # timeout=10

using .gitcredentials to set credentials

> git config --lecal credential.helper store --file=/tmp/git2724750680381022610.credentials # timeout=10

> git -c core.askpass=true fetch --tags --progress https://github.com/mitramkm/mastering-gradle.git +refs/heads/*:refs/remotes/origin/*
> git config --lecal --remove-section credential # timeout=10

> git rev-parse refs/remotes/origin/master~{commit} # timeout=18

> git rev-parse refs/remotes/origin/origin/master”{commit} # timeout=1@

Checking out Revision 6d09384b6@176c645e57ab6ae7echabea7ffcead (refs/remotes/origin/master)

> git config core.sparsecheckout # timeout=16

> git checkout -f 6d89384b60176c645e57ab6ae7echabea7ffcead

> git rev-list 6d09384b60176c645e57abbaeTechabea7ffcead # timeout=10

[6radle] - Launching build.

[PluginProject] $gradle clean build

:clean

:compilelava UP-TO-DATE
:compileGroovy
:processResources
:classes

tjar

rassemble
:compileTestJava
:compileTestGroovy UP-T
:processTestResources UP-T0-DATE
rtestClasses UP-T0-DATE
itest UP-T
:check
tbuild

BUILD SUCCESSFUL

Total time: 7.162 secs
Build step 'Invoke Gradle script' changed build result to SUCCESS
Finished: SUCCESS

Figure 7.12

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Build history is displayed in the UI with the latest job execution status on top.

Figure 7.13 shows that the 1st and 2nd execution failed with some error, but the 3rd
execution was successful. In the Build History section, if a job has failed, it will be
marked in red. For success, it is blue, and aborted jobs can be identified in gray:

0
Y
Y

. Status

= Changes
W Workspace
‘2) Build Now
(Y Delete Project
#. Configure
D GitHub Hook Log

¢ Build History

4 Back to Dashboard

Apr5, 2015 11:40 PM

Apr5, 2015 11:37 PM

Apr5, 2015 11:15 PM

Project PluginProject

J
Iﬁ | Workspace

LOO00040

—z# Recent Changes
[Se—

Permalinks

frEndie « Last build (#3), 15 min ago

+ Last stable build (#3). 15 min ago

+ Last successful build (#3). 15 min ago
.

.

Last failed build (#2). 18 min ago
Last unsuccessful build (#2). 18 min ago

o| RSS for all [y RSS for failures

Figure 7.13

The default location for this job is <USER_HOME>/.jenkins/jobs/<JOB_NAME>/
workspace. If you browse to <USER_HOME>/ . jenkins/jobs location, you will find
a directory created with a job name, that is PluginProject, which further contains
config.xml for job configuration. The job directory has two further sub-directories,
builds for executed jobs and workspace where the build actually runs. If you go
inside the builds directory, you will find the build execution details for each run.

mainak@ubuntu:~}.ienkins}iobs}PluéinProiect}buildsS 1s -1

total 20

drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x

mainak
mainak
mainak
mainak

mainak
mainak
mainak
mainak

4096
4096
4096
4096

23:16

23:38 2
23:40 3
00:00 ¢

Apr
Apr

Apr
Apr

[= B P RV R V)

2

2

2

2
drwxrwxr-x 2 mainak mainak 4096 Apr 6 01:07 5
lrwxrwxrwx 1 mainak mainak Apr 5 23:38 lastFailedBuild -=> 2
lrwxrwxrwx 1 mainak mainak Apr 6 00:31 lastStableBuild -= 5
lrwxrwxrwx 1 mainak mainak Apr 6 00:31 lastSuccessfulBuild -> 5
lrwxrwxrwx 1 mainak mainak Apr 5 23:12 ->
lrwxrwxrwx 1 mainak mainak Apr 5 23:38 lastUnsuccessfulBuild -> 2
-rWw-rw-r-- 1 mainak mainak Apr 5 17:24 legacylds

Figure 7.14
[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

The workspace directory contains the project that we have configured for the job.
Earlier in the build configuration, we specified the Build Root as ${workspace}/
Chapter7/PluginProject. Now if we go to this location, we will find the build
folder created for this project:

/workspace/Chapter7/PluginProject$ 1ls -1

total 12

drwxrwxr-x 6 mainak mainak 4096 Apr 6 00:31 build
-rw-rw-r-- 1 mainak mainak 328 Apr 5 23:15 build.gradle

drwxrwxr-x 3 mainak mainak 4096 Apr 5 23:15 src

This is just a brief overview of Jenkins configuration. More details can be found at
https://jenkins-ci.org/. In the next two sections, we will explore Checkstyle,
PMD, and Sonar Runner plugins.

Checkstyle and PMD plugins

We have seen how simple it is to create a Gradle build job in Jenkins. We will now
add Checkstyle and PMD plugins to our project for quality checking purposes.
There are different approaches that we can follow in order to use these plugins.
We can directly add these plugins to Jenkins and run it for our project, or we can
use Gradle Checkstyle and PMD plugins and evaluate the project.

We will use the Gradle approach to add Checkstyle and PMD plugins for code
quality check, and execute this using Jenkins. Let's create two Gradle files, one
for Checkstyle and the other for PMD:

build checkstyle.gradle

apply plugin: 'groovy'
apply plugin: 'eclipse'
apply plugin: 'checkstyle'

version = '1.0'

repositories ({
mavenCentral ()

}

checkstyle ({
toolVersion = 6.5

[178]

www.it-ebooks.info

https://jenkins-ci.org/
http://www.it-ebooks.info/

Chapter 7

ignoreFailures = true

}

dependencies {
compile gradleApi ()
compile localGroovy ()

compile group: 'commons-collections', name: 'commons-collections',
version: '3.2"

testCompile group: 'junit', name: 'junit',6 version: '4.+'

}

In the build file, we have added additional configuration in the closure checkstyle
{ .. }.If the source code does not pass the CheckStyle rules, it results in build
failure. To ignore any build failure due to Checkstyle rule violation; we need

to add the ignoreFailures=true property in the checkstyle closure.

Checkstyle plugin provides the following tasks:

* checkstyleMain: This executes Checkstyle against the Java source files
* checkstyleTest: This executes Checkstyle against the Java test source files

* checkstyleSourceSet: This executes Checkstyle against the given source
set's Java source files

For Checkstyle plugin, we need a checkstyle.xml file in the <Project>/config/
checkstyle/ directory. This is the default location. You can find a sample
checkstyle.xml at: https://github.com/google/google-api-java-client/
blob/dev/checkstyle.xml.

It provides a standard quality checks for projects. You can write customized
checkstyle.xml for your requirements as well.

To use PMD plugin, you can copy the above file and replace checkstyle closure
with pmd closure and remove the toolversion property. If you don't specify a
version, Gradle downloads PMD version 5.1.1 by default. You will also need

to add apply plugin: pmd.

build pmd.gradle

apply plugin: 'groovy'
apply plugin: 'pmd'

version = '1.0'

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

repositories {
mavenCentral ()

}

pmd {
ignoreFailures = true

}

dependencies {
compile gradleApi ()
compile localGroovy ()

compile group: 'commons-collections', name: 'commons-
collections', version: '3.2'

testCompile group: 'junit', name: 'junit', version: '4.+'

}
PMD plugin provides the following tasks:

* pmdMain: This executes PMD against the Java source files.

* pmdTest: This executes PMD against the Java test source files.

* pmdSourceset: This executes PMD against the given source set's Java
source files

Both the Checkstyle and PMD plugins can be executed using check task.

e If you add Checkstyle plugin and execute check task, it will call all
checkstyle tasks

e If you add PMD plugin and execute check tasks, it will execute pmd tasks

We will create a new project QualityCheck and add the following files to the project:

® build checkstyle.gradle

® Dbuild pmd.gradle

® config/checkstyle/checkstyle.xml
Checkstyle and PMD plugin are executed in Java code, so we will add some sample
Java files under the src/main/java/ directory. To create a build step in Jenkins,

we will create a build step to execute a Checkstyle task (check task), as shown in
Figure 7.15. You can repeat the same steps for PMD plugin.

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

For a new conﬁguration, Root Build script issetto ${workspace}/Chapter7/
QualityCheck. Also, we added the Build file name in the text box as
build checkstyle.gradle.

Invoke Gradle script @
* Invoke Gradle @
Gradle Version gradie-2.4 v
Use Gradle Wrapper @
Build step description v
Switches v
Tasks check b
Root Build script B{workspace}/Chapter7/QualityCheck @
Build File build_checkstyle.gradie @
Specify Gradle build file to run. Also, some enviranment variables are available to the build script
Force GRADLE_USER_HOME to use workspace ®

Figure 7.15

Save this configuration and execute the job again. As configured, build
checkstyle.gradle file executed on java source code and generated CheckStyle
reports for it. You can find the reports under $ {workspace}\Chapter7\
QualityCheck\build\reports\checkstyle\main.xml

The Sonar Runner plugin

Sonar is one of the most popular quality management tools which gives complete
analysis of a project in terms of lines of code, documentation, test coverage, issues
and complexities. Gradle provides seamless integration with Sonar. The only
prerequisite is that sonar server should be installed and running. Details on
Sonar can be found at http://www.sonarqube.org/.

To run sonar runner plugin, we just need to apply plugin sonar-runner and
configure it to connect to the sonar server.

Create build file build_sonar.gradle for your project with the following contents:

apply plugin: 'groovy'
apply plugin: 'eclipse'
apply plugin: "sonar-runner"

[181]

www.it-ebooks.info

http://www.sonarqube.org/
http://www.it-ebooks.info/

Continuous Integration

repositories {
mavenCentral ()

version = '1.0'
sonarRunner {

sonarProperties {
property "sonar.host.url", "http://<IP_ADDRESS>:9000"

property "sonar.jdbc.url",
"jdbc:h2:tcp://<IP_ADDRESS>:9092/sonar"

property "sonar.jdbc.driverClassName", "org.h2.Driver"
property "sonar.jdbc.username", "sonar"
property "sonar.jdbc.password", "sonar"

}

The preceding configuration is self-explanatory. You need to add configurations such
as Sonar URL, DB URL, JDBC driver details. Our build file is ready. The next step is
to configure a job in the Jenkins server. To configure sonarRunner task in Jenkins,
we can add a few basic steps as shown in Figure 7.16:

Invoke Gradle script @
® Invoke Gradle @
Gradle Version gradie-2.4 -

Use Gradle Wrapper '@
Build step description v
Switches

LAY 7)
Tasks sonarRunner Y@
Root Build script ‘${workspace}/Chapter7/QualityCheck -@
Build File build_sonar.gradie [2)
Specify Gradle build file to run. Also, some environment variahles are available to the build script
Force GRADLE_USER_HOME to use workspace ®
Figure 7.16

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Here, the task name is sonarRunner and the build file name is build_sonar.
gradle. Now, execute this job in Jenkins and you will find the output in the console.
The output contains a link to the Sonar server. You can follow the link, which will
redirect you to the Sonar report, as displayed in Figure 7.17:

Dashboards Projects ~ Measures Issues Quality Profiles Login
B qualitycheck
Dashboard ersion 1.0- 25 Feb 2015 13:54 | Time changes.
Hotspots
IS Lines of code Classes Issues A Blocker 0
a
Time Machine ?21‘ ? . 12 2 Crical 0
ines 1 packages Rules compliance ry Major 7 []

19 statements 4 methods - Minor 5 _—
Tk 2 files 0 accessors 36.6%
C—— v o 0
Issues Drilldown
Design Documentation Comments Package tangle index Dependencies to cut
e 0.0% docu. AP 18.0% 0.0% 0 between packages
Clouds 5 public AP 9 lines > 0 eycles 0 between files

5 undocu. API
Compare

~ . .
sonarqube Duplications 3“3 nT/ests Coverage Ejlt‘:s, :sst success
0, U

0.0% 0.0% line coverage

Olines 0.0% branch coverage

0 blocks

Ofiles

Complexity

3

2.0 /method 2

4.0 sclass 1

il-.[] Jille T2 28 8w

otal: 8
® Methods Files

Figure 7.17

As mentioned preceding, Sonar gives an analysis of the project in different areas and
you can find the details in the Sonar UI.

TeamCity walk-through

In the previous section, we learned how to configure a Gradle project in Jenkins
and how to integrate quality plugins. In this section, we will explore one more
popular continuous integration tool, TeamCity. We are assuming that TeamCity

is already installed and running on your machine. Therefore, we will skip the
TeamCity installation and configuration details. Actually, the installation process is
very simple and it can be completed in a few minutes. You can download TeamCity
from the following URL: https://www.jetbrains.com/teamcity/download/ and
installation instructions are available at https://confluence.jetbrains.com/
display/TCD9/Installation.

By default, TeamCity runs on http://localhost:8111/ and it has one build agent
that runs on the server. We will build the same plugin project using TeamCity.

[183]

www.it-ebooks.info

https://www.jetbrains.com/teamcity/download/
https://confluence.jetbrains.com/display/TCD9/Installation
https://confluence.jetbrains.com/display/TCD9/Installation
http://www.it-ebooks.info/

Continuous Integration

Log in to TeamCtiy and click on Create a project. Provide a project name and

description:
General | VCS Roots Report Tabs Parameters
Name: * PluginProject
Description:

Test Plugin Porject

Build Configurations (20)

4k Create build configuration 4 Create Maven build configuration

Build Configuration Templates

=k Create template

Cancel

Save

Figure 7.18

Save and then click on the Create Build Configuration button. You will need to
provide general settings for the project. After general settings, proceed to Version

Control Settings:

Administration 3 PluginProject Project > Create Build Configuration

Version Control Settings
There are no VCS roots attached to this build configuration

4 Create and attach new VCS root

or attach existing VCS root: -- Cheese VCS roct to attach -

Checkeut Setiings

VCS checkout mode: = Automatically on server

Checkout directory: Auto (recommended)
Clean all files before build:
Display seftings

Display options: Show changes from snapshet dependencies

With this selection all build configurations with the same

CS settings wil Usé the same checkout directory

<< General Settings Add Build Step >>

Cancel

Figure 7.19

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The next step is to configure Create and attach new VCS root. Choose Git from the
drop down, since we are using Git as a repository, as shown in Figure 7.20:

VCS Roct Name
VCS Root Name: PluginProjectRoot

Enter a unique name to distinguish this VCS root from other roots. If not spec & generate matically
General Settings
Fetch URL: * https:/github.com/mitramkm/mastering-gradie.git 2

Itis us etching data from repository
Push URL: =]

Itis used f hing tags to the remate repository. If blank, the fetch url is used
Default Branch: * master =]

Branch to m Branch Spe: atl et
Branch Specification: [Edit branch specification

=]
Branches to monitor in addition o defautt one. Newline-gelimited s s in the form of +|-:branch name (with optional * placenolder) @
Figure 7.20

Provide General settings and the Fetch URL of the plugin project, also provide
authentication, such as username/password and the Git exe location in Path To Git.

At the end of the screen, click on Test Connection. If the connection is successful,
click on Save. The next step is Add Build Step.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

In the build step, you need to configure the PluginProject build file details and build
tasks details. For example, we need to provide some basic information such as clean
build for task, working directory as Chapter7/pPluginProject, and Gradle and

JDK home directory:

New Build Step

Runner type:

Step name:

Execute step:

Gradle Parameters

Gradle tasks:

Incremental building:

Working directory:]

Gradle home path:

Gradle Wrapper: B
Run Parameters

Debug:@

Stacktrace: &
Java Parameters

JDK home path: e

JVM command line parameters:

Code Coverage

Additional Gradle command line parameters:

Gradle -

Runner for Gradle projects

You can specify a build step name to distinguish it from other steps

Only if all previous steps were successful v

You can specify step execution policy

clean build =]
Enter task nam biank to use the ‘default’ task.

Example: “myprojectclean n build

Enable incremental building
buildDependents task will be run on projects affected by changes

Chapter7/PluginProject Sl
Optional, set if differs from the checkout directory.

D:\Soft\gradle-2.4 =]
Path to the Gradle home directory (parent of bin' directory). Overrides agent GRADLE_HOME environment variable

=]

Additional parameters will be added to the 'Gradie’ command line

Use gradle wrapper to build project

Log debug messages

Print stacktrace

C:\Program Files\Java\jdk1.7.0_51 =
If left blank, the path will be read from JAVA_HOME environment variable or agent's own Java.

=

Figure 7.21

Save this configuration and the project will then be ready. The details of the
build step can be reviewed in the build configuration screen, as shown in the

following screenshot:

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Administration PluginProject Project > PluginProject Configuration Run ... Build Configuration Home

Configuration Steps

Build configuration "PluginProject” has been created successfully.

Build S1eps General Settings
Build Step Description
Version Control Settings
Gradle Gradle tasks: clean build edit more
Use wrapper script no
Execute: Only if all previous steps were successful Build Step: Gradle

4 Add build step

Build Failure Conditions
Additional Build Features

Build Triggers

There are no build features configured.

< Add build feature Dependencies

Figure 7.22

TeamCity executes the project through TeamCity Agents. TeamCity server installs an
agent with the server. You can use this agent to execute the job. Otherwise, you can
configure more agents through the Agents tab.

Agents Install Build Agents
Connected © Disconnected 1 Unauthorized o Pools Parameters Report Matrix Stafistcs Cloud o Agent Push
There are no agents available
Install Build Agents
« Java Web Start
« MS Windows Installer
+ Zip file distribution for manual installation (unzip file, specify build agent's properties and run an executable file)

See detailed instructions in our Reference Guide.

Figure 7.23

Once the agent is configured and connected, you can map the project with the build
agent and you are ready to run the build job.

T@ Projects My Changes Agents 1 [BuildQueue o admin |~ Administration
PluginProject (Test Plugin Porject) ® Hide Successful Configurations Edit Project Seftings.

Overview = Change Log Statistics CurrentProblems Investigations Muted Tests

¥ PluginProject Run

9 Success No artifacts No changes seconds ago (8s)

Figure 7.24

On clicking on the Run button, TeamCity server will execute the build job on
mapped agent, and you can see the output of the build job as a success or failure.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration

In the Build Log console, you can also analyze the complete log, as shown in the
following screenshot:

T@ Projects My Changes Agents 1 [:] Build Queue o admin Administration
PluginProject » PluginProject D #4 (25 Feb 15 16-38) Run_ ...| Build Actions Edit Configuration Settings
Overview Changes o Build Log = Buid Parameters Artifacts « @ #3 | Allhistory Last recorded build
Important messages | All messages | Tree view | Tail 3 Download full build log (~4.2TKb) | zip
T |+ View: |All messages v ¥ Repeat block names

Figure 7.25

Summary

In this chapter, we discussed briefly the need for continuous integration in the
software development world, and looked into the two most popular continuous
integration tools, Jenkins and TeamCity. In this chapter, we learned how easy it is

to configure these tools and how we can integrate Gradle with these CI tools. We
also learned three different quality plugins of Gradle: Checkstyle, PMD and Sonar
Runner. And we executed these quality tasks with the help of Jenkins. There are so
many topics to learn in Continuous Integration, Jenkins or TeamCity. Unfortunately,
we won't be able to take up those topics in this book. We strongly recommend
readers to do further reading in every area left uncovered.

In the next chapter, we will discuss different migration strategies from Ant and
Maven to Gradle. This will help to migrate existing Ant or Maven scripts to Gradle.

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

If you are coming from an Ant or Maven background, the first question that comes
to mind is: why Gradle? We have already discussed this topic in the initial chapters.
Then, another important question comes up. We already have lots of build code
written in Ant or Maven; now, if a new script needs to be written into Gradle,
wouldn't it be tough to manage two build tools? In this chapter, we will explain
different techniques to migrate existing Ant or Maven script to Gradle build script.
In the first section of this chapter, we will discuss different strategies that can be
applied to migrate from Ant to Gradle and later sections will cover strategies from
Maven to Gradle migration.

Migration from Ant

Ant is one of the initial build tools that became very popular among developers
because they can control each and every step of the build process. But writing each
and every step means a lot of boilerplate code in the build file. Another feature which
was lacking in the initial Ant releases was complexity in dependency management,
which was later simplified by introducing an Ivy dependency manager. For Ant
users, it is very simple and easy to switch to using Gradle as their build tool. Gradle
provides direct integration with Ant using Groovy's AntBuilder. Ant tasks are
treated as first class citizens in the Gradle world. In the next sections, we will discuss
three different strategies: importing Ant file into Gradle, script use of AntBuilder
class and rewriting to Gradle. These strategies can be followed to migrate from Ant
to Gradle.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

Importing Ant file

This is one of the simplest ways of integrating the Ant script with Gradle script. It

is very useful as the first step of migration where you have lots of build scripts, all
written in Ant, and you want to start with Gradle without making any big changes to
the current build structure initially. We will start with a sample Ant file. Consider we
have the build.xml Ant file for a Java project and we perform the following tasks:

1. Build project (compile code and generate a JAR file).
2. Generate checksum of the JAR file.
3. Create a ZIP file that contains the JAR file and checksum file.

The following is the build.xml file to perform all three preceding mentioned
operations:

<project name="sampleProject" default="makeJar" basedir=".">

<property name="src" location="src/main/java"/>

<property name="build" location="build"/>

<property name="classes" location="build/classes"/>

<property name="libs" location="build/libs"/>

<property name="distributions" location="build/distributions"/>
<property name="version" value="1.0"/>

<target name="setup" depends="clean">
<mkdir dir="${classes}"/>
<mkdir dir="${distributions}"/>

</target>

<target name="compile" depends="setup" description="compile the
source">

<javac srcdir="${src}" destdir="${build}/classes"
includeantruntime="false"/>

</target>

<target name="makeJar" depends="compile" description="generate the
distributions">

<jar jarfile="${libs}/sampleproject-${version}.jar"
basedir="${classes}"/>
</target>
<target name="clean" description="clean up">
<delete dir="${build}"/>
</target>

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<target name="zip" description="zip the jar and checksum"
depends="makeJar, checksum" >

<zip destfile="${distributions}/sampleproject.zip" filesonly="true"
basedir="${libs}" includes="*.checksum, *.jar" />
</target>

<target name="checksum" description="generate checksum and store
in file" depends="makeJar"s>

<checksum file="${libs}/sampleproject-${version}.jar"
property="sampleMD5" />

<echo file="${libs}/sampleproject.checksum"
message="checksum=${sampleMD5}" />
</target>

<target name="GradleProperties"s>
<echo message="Gradle comments are:: ${comments}"/>
</target>

</project>

To build the project, you need to run the following target (in Ant, we execute a target
that can be compared to a Gradle task):

SampleProject$ ant makedar

Buildfile: <path>/Chapter8/SampleProject/build.xml

clean:

[delete] Deleting directory <path>/Chapter8/SampleProject/build

setup:
[mkdir] Created dir: <path>/Chapter8/SampleProject/build/classes

[mkdir] Created dir: <path>/Chapter8/SampleProject/build/
distributions

compile:

[javac] Compiling 2 source files to
<path>/Chapter8/SampleProject/build/classes

makedJar:

[jar] Building jar:
<path>/Chapter8/SampleProject/build/libs/sampleproject-1.0.jar

BUILD SUCCESSFUL

Total time: 0 seconds

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

The target will execute other required targets such as compile, clean, setup, and so
on. This will generate the sampleproject-1.0.jar file in the build/1ibs directory.
Now, to generate checksum for JAR and to bundle it along with the JAR file, we can
run the following target:

$ ant zip

This target will run the makeJar target and all the other dependent targets to
create the JAR file and then it will execute the checksum target to generate the mds
checksum for the JAR file. Finally, ZIP task will bundle the checksum file and the
JAR file, and creates a ZIP file inside the build/distributions directory.

This is a sample build file for a Java project; you can have additional targets for
customized requirements. We can simply import this Ant build file in a Gradle build
file and will be able to execute Ant targets as Gradle tasks. The content of the build
file will look as follows:

ant.importBuild 'build.xml'

This one line is sufficient to import the Ant build file and go ahead with Gradle.
Now try to execute the following:

$ gradle -b build import.gradle zip
t:clean

:setup

:compile

:makeJar

:checksum

:zip

BUILD SUCCESSFUL

Here we have named the build file as build_import.gradle. The preceding
command executed all Ant tasks, one after another. You can find the ZIP file
created in the build/distributions directory.

This is one of the first steps to migrate from Ant to Gradle. This will help initially,
if you do not want to play with the existing build script and want to use Gradle.
Just importing the Ant file in the Gradle build help you to get started.

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Accessing properties

Gradle also enable you to access existing Ant properties and add new properties.
To access existing Ant properties, you can use ant .properties, as shown here:

ant.importBuild 'build.xml’

def antVersion = ant.properties|['version']
def src = ant.properties|['src']

task showAntProperties << {
println "Ant Version is "+ antVersion
println "Source location is "+ src

}

$ gradle -b build import.gradle sAP

:showAntProperties
Ant Version is 1.0

Source location is D:\Chapter8\SampleProject\src\main\java

BUILD SUCCESSFUL

Here, Gradle script has fetched properties value from the Ant file and we are
printing the value in the Gradle task. In a similar fashion, we can set Ant properties
in Gradle and access these properties in the Ant build file.

Update the build file with the following statement:
ant.properties['comments'] = "This comment added in Gradle"
This property will be read by the Gradleproperties target in the Ant file, as follows:

<target name="GradleProperties">
<echo message="Gradle comments are ${comments}"/>
</target>

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

Now, on executing the GradleProperties target, we can find the comments
property printed in the console as shown in this code snippet:

$ gradle -b build import.gradle GradleProperties
Starting Build

Executing task ':GradleProperties' (up-to-date check took 0.015 secs) due
to:

Task has not declared any outputs.
[ant:echo] Gradle comments are:: This comments added in Gradle

:GradleProperties (Thread[main,5,main]) completed. Took 0.047 secs.

BUILD SUCCESSFUL

Update Ant tasks

Gradle also enables you to enhance an existing Ant task. In the same way, we
enhance any existing Gradle tasks using the doFirst or doLast closures; Ant tasks
can be extended in a similar fashion. Add the following statements in the build

file (file: build import.gradle) to add the doFirst and doLast closures to the
GradleProperties task:

GradleProperties.doFirst
println "Adding additional behavior before Ant task operations"

}

GradleProperties.doLast
println "Adding additional behavior after Ant Task operations"

}

Now, the GradleProperties target executes the doFirst and doLast closures,
and the console output is displayed as follows:

$ gradle -b build import.gradle GP

Starting Build
:GradleProperties (Thread[main,5,main]) started.
:GradleProperties

Executing task ':GradleProperties' (up-to-date check took 0.003 secs)
due to:

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Task has not declared any outputs.
Adding additional behavior before Ant task operations
[ant:echo] Gradle comments are:: This comments added in Gradle
Adding additional behavior after Ant Task operations

:GradleProperties (Thread[main,5,main]) completed. Took 0.158 secs.

BUILD SUCCESSFUL

Using AntBuilder API

We have seen how easy it is to just import the Ant build.xml into Gradle and

use Ant targets as Gradle tasks. Another approach is to use the AntBuilder class.
With AntBuilder you can call Ant tasks from the Gradle script. An instance of
AntBuilder class called 'ant' is available in the Gradle build file. Using this instance,
when we call a method, it actually executes an Ant task.

In the following examples, we will use the same build.xml file and will explain how
to rewrite the tasks to Gradle using AntBuilder:

1. Setting the properties:

Ant way With AntBuilder

<project defaultTasks "makeJar"
name="qualitycheck"
default="makeJar" def src = "src/main/java"
basedir="."> def build = "build"

def libs = "build/libs"
<property name="src" def classes = "build/classes"
location="src/main/java"/> def distributions = "build/
<property name="build" distributions"

location="build"/> def version = 1.0
<property name="1lib"
location="1ib"/>
<property name="dist"
location="dist"/>
<property name="version"
value="1.0"/>

2. Cleaning the build directories:

Ant way With AntBuilder
<delete dir="${build}"/> ant.delete(dir:"${build}")
[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

3. Creating new directories:

Ant way

With AntBuilder

<mkdir dir="${classes}"/>
<mkdir dir="${distributions}"/

ant.mkdir (dir:"${libs}")

> ant.mkdir (dir:"${classes}")

4. Compiling the Java code:

Ant way

With AntBuilder

<javac srcdir="${src}"
destdir="${build}/classes"
includeantruntime="false"

/>

ant.javac (srcdir:"${src}",
destdir:"${classes}",

includeantruntime:"false")

5. Create JAR file from the compiled source code:

Ant way

With AntBuilder

<jar jarfile
="${1libs}/sampleproject-
${version}.jar"
basedir="${classes}"

/>

ant.jar (

destfile: "${libs}/
sampleproject-${version}.jar",
basedir:"${classes}")

6. Generate the checksum for JAR:

Ant way

With AntBuilder

<checksum file="${1libs}/
sampleproject-${version}.jar"
property="sampleMD5" />

<echo file ="${libs}/
sampleproject.checksum"
message="checksum=${sampleMD5}"

ant .checksum (
file:"${libs}/sampleproject-
${version}.jar",
property:"sampleMD5"

)

ant.echo(file:"${1libs}/

/> sampleproject.checksum",
message: "checksum=${ant.
sampleMD5 } "

)
[196]
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

7. Bundle the checksum file and JAR file into a ZIP file:

Ant way With AntBuilder
<zip ant.zip(destfile: "${dist}/
destfile ="${distributions}/ sampleproject.zip",
sampleproject.zip" basedir:"dist")

filesonly="true"
basedir="${libs}" includes="*.
checksum, *.jar"

/>

So the complete build file will look as follows:

defaultTasks "makedJar"

def src="src/main/java"

def build="build"

def libs="build/libs"

def classes = "build/classes"

def distributions="build/distributions"
def version=1.0

task setup (dependsOn:'clean') << {
ant .mkdir (dir:"${libs}")
ant .mkdir (dir:"${classes}")

task clean << {
ant.delete(dir:"${build}")

task compileProject (dependsOn: 'setup') << {
ant.javac (srcdir:"${src}",destdir:"${classes}",
includeantruntime:"false")

}

task makedJar << {
ant.jar (destfile: "${libs}/sampleproject-${version}.jar",
basedir:"s${classes}")

}

task zip (dependsOn: 'checksum') << {
ant.zip(destfile: "${distributions}/sampleproject.zip",
basedir:"${libs}")

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

}

task checksum(dependsOn: 'makedar') << {
ant.checksum(file:"${1libs}/sampleproject-${version}.jar",
property:"sampleMD5")
ant.echo (file:"${1libs}/sampleproject.checksum",
message: "checksum=${ant.sampleMD5}")

}

makedJar.dependsOn compileProject

Now, execute the ZIP task and check the distributions directory. You will find the
sampleproject.zip file, created as follows:

$ gradle -b build ant.gradle zip
:clean

:setup

:compileProject

:makeJar

:checksum

:zip

BUILD SUCCESSFUL

Note here that antBuilder is most useful for the custom Ant taskdef tasks that
have not been ported over to Gradle.

Rewriting to Gradle

Until now, we have seen how easy it is to import an Ant file to a Gradle script.

We also looked into a different approach, where we used AntBuilder instance to
replicate the same behavior while migrating from Ant to Gradle. Now, in the third
approach, we will rewrite the Ant script in Groovy.

We will continue with the same Ant build.xml file and we will convert this to a
Gradle build script. In this example, we are building a Java project. As we know, to
build a Java project Gradle already provides us with a Java plugin; you just need to
apply the Java plugin in the build file and that is all. The Java plugin will take care
of all the standard conventions and configurations.

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The following are some of the conventions of the Java plugin that we have already
discussed in Chapter 4, Plugin Management:

Convention used Description

build Default build directory name
build/libs Default jar location
src/main/java; src/test/java Java source files location
Project name Archive filename

If the project also follows these conventions, we do not need to write any additional
configurations for the project. The only configuration needed is to define the version
property; otherwise the JAR will be created without the version information.

So, our new build script will look as follows:

apply plugin :'java'
version = 1.0

Now, we are done. No need to write any script to create and delete directories, compile
files, create JAR tasks, and so on. You can find <projectnames>-<versions.jar in the
build/libs directory after executing the build command:

$ gradle build

:clean

:compiledava
:processResources UP-TO-DATE
:classes

:jar

:assemble

:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE

:check UP-TO-DATE

:build

BUILD SUCCESSFUL

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

It is so easy to trim around 30 lines of Ant code to two lines of Gradle code. It
allowed us to escape all the boilerplate code and concentrate on the main logic.
However, all projects can't be simply converted just by applying a plugin or
following some convention. You might need to configure sourcesets and other
configurations if the project does not follow Gradle or Maven conventions.

Coming back to the example, we have only created the JAR file; two more tasks are
pending. We have to generate a file to store the checksum and we need to bundle
the checksum file and JAR file in to a ZIP file. We can define two additional tasks
to accomplish this, as follows:

apply plugin:'java'
version = 1.0

task zip(type: Zip) {
from "${libsDir}"
destinationDir project.distsDir

}

task checksum << {
ant.checksum(file:"${1ibsDir}/${project.name}-
${version}.jar",property: "sampleMD5")
ant.echo(file:"${1ibsDir}/${project.name}.checksum", message:"c
hecksum=${ant.sampleMD5}")

}

zip.dependsOn checksum
checksum.dependsOn build

In the preceding build script, checksum task will create the checksum for the jar file.
Here we are again using Ant. The checksum task creates checksum, as this is the
simplest way in Gradle. We have configured the ZIP task (of type ZIP) to create a ZIP
file. Gradle already provides a convention for the build/distributions directory as
project.distsDir:

$ gradle clean zip

:clean
:compiledava
:processResources UP-TO-DATE

:classes

:check UP-TO-DATE

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

:build
:checksum

:zip

BUILD SUCCESSFUL

Configuration

If you do not want to follow the convention, Gradle provides an easy way to
configure projects as per requirement. We will show how to configure previously

created Ant tasks in Gradle:

1. Cleaning the build directories:

<delete dir = "${build}"/>

<delete dir = "${dist}"/>
</target>

Ant way Gradle way
<target task cleanDir (type: Delete)
name="clean" description="clean {
up"> delete "${build}"

}

2. Creating new directories:

Ant way

Gradle way

<target
name="setup" depends="clean">

<mkdir dir
"${build}"/>
</target>

task setup (dependsOn:'cleanDir')
<< {

def classesDir
file("${classes}™")
def distDir
file("${distributions}")
classesDir.mkdirs ()
distDir.mkdirs ()

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

3. Compiling the Java code:

Ant way

Gradle way

<target name="compile"
depends="getup"
description="compile the
source">

<javac srcdir="${src}"
destdir="${build}" />
</target>

compiledava {
File classesDir
file("${classes}")
FileTree srcDir
fileTree (dir: "${src}")
source srcDir

destinationDir classesDir

4. JAR the compiled classes:

Ant way

Gradle way

<target name="dist"
depends="compile"
description="generate the
distribution">

<mkdir dir="s${dist}"/>

<jar jarfile="${dist}/
sampleproject-${version}.
jar" basedir="${build}"/>
</target>

task myJar (type: Jar) {
manifest

attributes
'Implementation-Title': 'Sample
Project',
'Implementation-
Version': version,

'Main-Class':
'com.test.SampleTask'
}
baseName = project.name +"-"
+version
from "build/classes"
into project.libsDir

So the final build file (build_conf.gradle) with configuration will look as follows:

apply plugin:'java'

def src="src/main/java"
def build="SbuildDir"
def libs="S$buildDir/libs"

def classes = "$buildDir/classes"
def distributions="$buildDir/distributions"
def version=1.0

task setup (dependsOn:'cleanDir') << {

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

def classesDir = file("${classes}")
def distDir = file("${distributions}")
classesDir.mkdirs ()

distDir.mkdirs ()

task cleanDir (type: Delete) {
delete "${build}"

}

compiledava {
File classesDir = file("${classes}")
FileTree srcDir = fileTree(dir: "${src}")
source srcDir
destinationDir classesDir
}
task myJar (type: Jar) {
manifest {
attributes 'Implementation-Title': 'Sample Project',
'Implementation-Version': version,
'Main-Class': 'com.test.SampleTask'
}
baseName = project.name +"-" +version
from "build/classes"
into project.libsDir
}
task zip(type: Zip) {
from "${libsDir}"
destinationDir project.distsDir
}
task checksum << {
ant.checksum(file:"${1libsDir}/${project.name}-${version}.jar",
property: "sampleMD5")
ant.echo (file:"${1ibsDir}/${project.name}.checksum",
message: "checksum=${ant.sampleMD5}")

myJar.dependsOn setup
compileJava.dependsOn myJar
checksum.dependsOn compileJava
zip.dependsOn checksum

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

Now, try to execute the ZIP command. You can find the JAR file and checksum file
created in the build/1ibs directory, and the ZIP file inside the build/distributions
directory:

$ gradle -b build conf.gradle zip
:cleanDir

:setup

tmyJar

:compileJdava

:checksum

:zip

BUILD SUCCESSFUL

Migration from Maven

As the size and complexities of Ant files started to increase for enterprise software,
developers started searching for better solutions. Maven easily fitted as a solution,
as it introduced the concept of conventions over configurations. If you follow certain
conventions, it saves a lot of time by skipping boilerplate code. Maven also provided
a dependency management solution that was one of the major drawbacks of the

Ant tool. Ant didn't provide any dependency management solution whereas

Maven came with a built-in dependency manager.

When we discussed migration strategies from Ant to Gradle, you learned that the
simplest solution is to import the Ant build.xml file and use it as it is. For Maven
migration, we do not have such a feature. Maven users might find it easy to migrate
from Maven to Gradle, as both follow these common principles:

* Convention over configurations
* Dependency management solution

* Repositories configuration

To migrate from Maven to Gradle, we will need to write a new Gradle script that
mimics the functionality. If you have already worked on Maven, you might have
noticed that Gradle uses most of the Maven concepts; thus, it would not be very
difficult to migrate from Maven to Gradle. One of the main differences is that Gradle
uses Groovy as a build script language, whereas Maven uses XML. In this section,
we will discuss some of the most common tasks to convert a Maven script to a
Gradle script.

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Build filename and project properties

The Group1d, artifactId, and version are the minimum required properties that
the user needs to provide in the Maven pom file, whereas in Gradle these are not
mandatory. Default values are assumed if the user does not configure them. It is
always recommended to specify these values to avoid any conflicts:

Maven way

Gradle way

* <groupld>ch8.example</grouplds>

* <artifactId>SampleMavenx</
artifactIds>

e <version>1l.0</versions>

* <packaging>jar</packagings>

groupid: Not required.
artifactId: Defaultis the
project directory name.

version: If not mentioned,
artifact will be created without a
version.

Packaging depends on the plugin
that you apply in the build script.

sl If packaging is not mentioned in Maven, by default it will be JAR. The

Q

Properties

rar, and par.

other core packaging are: pom, jar, maven-plugin, ejb, war, ear,

The following are the ways in which you can define properties in Maven and Gradle:

Maven way

Gradle way

<propertiess>
<src>src/main/java
</src>
<build>build</build>
<classes>
build/classes
</classes>
<libs>
build/1libs
</libs>
<distributions>
build/distributions
</distributions>
<version>
1.0
</version>
</properties>

def src="src/main/java"
def build="build"

def lib="1lib"

def dist="dist™"

def version=1.0

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

Dependency management

Both Maven and Gradle provide a dependency management feature. They manage
dependency on their own. You do not need to worry about any second- or third-
level dependencies for your project. Similar to the Maven scope (such as compile and
runtime), Gradle also provides different configurations such as compile, runtime,
testCompile, and so on. The following table lists the scope supported by both
Maven and Gradle:

Maven scopes Gradle scopes
e compile * compile
e provided * providedCompile
* runtime * runtime
* test * providedRuntime
* system * testCompile
* testRutime

As compared to provided scope in Maven, the Gradle war plugin adds two
additional scopes, providedCompile and providedRuntime. For test cases also
Gradle provides two scopes, testCompile and testRuntime. The following is an
example of how you use scope while defining dependencies:

Maven way Gradle way
<dependencys> dependencies {
<groupId>org.apache.commons</ compile group: 'org.apache.
groupIds> commons', name: 'commons-lang3',
<artifactId>commons-lang3</ version:'3.1"'
artifactIds> }
<version>3.1l</version>
<scope>compile</scope>
</dependency>

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Exclude transitive

In Chapter 5, Dependency Management, you learned how to work with dependency
management. Maven doesn't differ much in terms of dependency management
features. Here is a sample to exclude transitive dependencies in both the build tools:

Maven way Gradle way

<dependencies> dependencies
<dependencys>
<groupld> compile ('commons-
commons-httpclient httpclient:commons-
</groupId> httpclient:3.1"') {
<artifactIds> exclude group:'commons-codec',
commons-httpclient module: ' commons-codec'
</artifactIds> }
<version>3.1l</version>
<exclusions> }
<exclusion>
<groupIlds>
commons-codec
</groupIds>
<artifactIds>
commons -codec
</artifactId>
</exclusions>
</exclusions>
</dependency>

</dependencies>

Plugin declaration

A maven plugin is a collection of one or more goals that can be applied to a project
using the plugins element. A goal in a plugin is executed by the mvn [plugin-
name] : [goal-name] command. In Maven, generally we have two types of plugins:
build plugins and reporting plugins. Build plugin will executed during build
process, and should be configured in the <build/> element of pom.xml. Reporting
plugins will be executed during site generation, and are configured using the
<reporting/> element. Examples of reporting plugins are Checkstyle, PMD, and so
on. In Gradle, you just need to apply a plugin statement in the Gradle script or you
need to define it in the buildscript closure.

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

The following is a sample code, which describes how to include plugins in Maven

and how we define the same in Gradle:

Maven way

Gradle way

<build>

<plugins>

<plugin>
<artifactIds>maven-compiler-
plugin</artifactIds>
<version>2.3.2</version>
<configuration>
<sources>1l.7</source>
<target>1.7</targets>
</configurations>
</plugin>

</plugins>

</build>

e apply plugin:'<pluginids'

e For custom plugin:

buildscript {

ext {

springBootVersion =
'1.2.2.RELEASE'

}

repositories {

jcenter ()

maven { url "http://repo.
spring.io/snapshot" }
maven { url "http://repo.
spring.io/milestone" }

}

dependencies {
classpath("org.springframework.
boot : spring-boot-gradle-
plugin:1.2.2.RELEASE")

}

}

Repository configuration

Repositories are used to download assets and artifacts, and also to publish the
artifacts. In Maven, you can define repositories in pom.xml or in settings.xml.
In Gradle, you can add repositories in the init script (init.gradle) or in the

build.gradle file:

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Maven way

Gradle way

<repositories>
<repositorys>
<ids>repl</id>
<name>org repol</names>
<urls>
http://company.
repositoryl
</urls
</repository>
</repositoriess>

repositories {
maven {

url "http://company.
repositoryl™"

}

}

Multi-module declaration

Maven and Gradle both provide ways to create multi-module projects, as follows:

Maven way Gradle way

<projects>
<groupId>
com.test.multiproject
</groupIds>
<artifactIds>
rootproject
</artifactIds>
<versions>
1.0
</version>
<packaging>
Pom
</packaging>
<modules>

<modules>subprojectl</
module>
<modules>subproject2</
module>
</modules>
</projects>

Add settings.gradle under root project

and include subprojects as follows:

include 'subprojectl',
'subproject2’',

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

Default values

Gradle and Maven both provide default values for certain properties. You can use
them as they are, if you want to follow convention and update them if required:

Maven way

Gradle way

Project directory

${project.basedir}

${project.rootDir}

Build directory

${project.basedir}/
target

${project.rootDir}/
build

Classes directory

${project.build.
directory}/classes

${project.rootDir}/
build/classes

JAR name ${project. ${project.name}
artifactId}-
${project.version}

Test output directory | ${project.build. ${project.
directory}/test- testResultsDir}
classes

Source directory

${project.basedir}/
src/main/java

${project.rootDir}/src/
main/java

Test source directory

${project.basedir}/
src/test/java

${project.rootDir}/src/
test/java

Gradle init Plugin

Build init plugin can be used to generate the build.gradle file from a pom file.

Command gradle init --type pomor gradle init creates Gradle build files and

other artifacts if executed from a project or directory that has a valid pom.xm1 file.

We created one project, sampleMaven, that contains Java files in the src\main\java\

chs directory and the pom.xm1 file under the root project directory. The following is
the content of the pom.xm1 file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>ch8.example</groupIds>

<artifactId>SampleMaven</artifactId>

<versions>1l.0</versions>

<packaging>jar</packaging>

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<dependencies>
<dependency>
<groupld>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactIds>
<versions>3.1l</versions>
<scope>compile</scope>
</dependency>
</dependencies>
</project>

Now, execute the following command:

$ gradle init --type pom
:wrapper
:init

Maven to Gradle conversion is an incubating feature.

BUILD SUCCESSFUL

Note that Maven to Gradle is an incubating feature. Current DSL and other
configurations might change in future. On executing the preceding command, you
will find build.gradle, settings.gradle, and Gradle wapper files created in the
project directory. The auto-generated build.gradle file has the following content.
It automatically adds plugin details, and group and version information.

The content of a system-generated build file is shown in the following code snippet:

apply plugin: 'java'
apply plugin: 'maven'

group = 'ch8.example'
version = '1.0'
description — nnunun
sourceCompatibility = 1.5
targetCompatibility = 1.5

repositories {
maven { url "http://repo.maven.apache.org/maven2" }
}

dependencies {

compile group: 'org.apache.commons', name: 'commons-lang3',
version:'3.1"'

}

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Migration

This plugin also supports multiproject build, repository configuration, dependency
management, and a lot of other features.

Summary

In this chapter, we discussed migration to Gradle from Ant and Maven. This is a
very common scenario in any organization where the existing build script is written
in Ant or Maven and it is trying to upgrade to Gradle. This chapter gives some
analysis and different approaches, which might help to plan the Gradle migration
in a better and more organized way.

In the next chapter, we will discuss the deployment aspect of build automation
with Docker.

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

A Gradle book will be incomplete, unless we talk about the deployment aspect of a
software component. In my opinion, in software engineering the most logical step
after build automation is deployment. Deployment itself is a different domain and
this has very little to do with Gradle. But still I think it makes sense to discuss build
and deployment tools together, so that the reader gets an overview of Build, Deploy,
and Test workflow. In this chapter, we will discuss some basics of deployment to
give a flavor of the build and deployment process. We will learn how to use tools
such as Gradle, Jenkins, and Docker together to create a build, deployment, and test
workflow. Before we start, we have to understand, what deployment is. Deployment
is as important as the build process in the software life cycle. You can write and build
great software, but unless the application is deployed, it does not produce much
value. Deployment of software is not just about installing software and starting it. It
varies from application to application, operating system to operating system. Some
application can be deployed just by copying a JAR file to a particular location; some
applications require deployment in a web container, or in external containers and so
on. We can generalize the deployment process of software as follows:

1. Prepare the prerequisite hardware and software environment where you
want to deploy the application.

Copy project assets on the prepared environment.

Configure assets based on the environment.

Prepare a life cycle of the application such as start, stop, restart, and so on.

ARSI

Do a sanity check of the application to verify its functionality.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

So deployment is not just copying the assets and notifying everyone that the
application is ready to use. It also involves a lot of other pre and post steps.
Deployment process has also been evolved along with the development processes and
is still evolving with newer technologies. There was a time when the operation team
used to deploy the application manually on specified nodes, configure load balancing
mechanism and routing from box to box to effectively handle client requests. Now,
with the help of new cloud infrastructures, such as Infrastructure as a Service (IaaS) or
with various automation tools, with just one click or with some commands, developer
can deploy application on one box, cluster environment, cloud-based environment or
containerized environment. In this chapter, we will focus on the deployment process
with Docker, an application containerization technology. We will have a detailed look
into different aspects of Docker such as installation, configuration; benefits of Docker
over virtual server node deployment; deploy application inside Docker; and how to
make it available to the outside world.

Role of Gradle in deployment

Gradle plays one of the major roles in the build and deployment process. Developer
can use a combination of different tools based on the requirement to automate the
complete build and deployment process. Tools such as Jenkins, Puppet, Chef, and
Docker help to create the build and deployment infrastructure. But for very simple
deployments, some of the Gradle features can be useful. Gradle provides a variety
of tasks that can automate some of deployment tasks as mentioned previously. Few
useful tasks are as follows:

1. Download task to downloading the artifacts (ZIP, WAR, EAR, and so on) and
its dependencies.

You can download artifacts by just adding the list in the dependencies
closure. In a similar fashion, you can download all the other dependencies
needed to run the software. It is not needed to bundle the software with all
the dependencies and make it heavy. It is good to download dependencies
at the time of the installing the software to make it lightweight.

2. Unzip or untar tasks to unzip the artifacts.
Once artifacts and their dependencies are downloaded, next step is to unzip
or untar the artifact if required.

3. Configure the application.

Configuration or localization of the application can be done in Gradle by
adding custom tasks.

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

4. Start/stop the application.

Start/Stop of the application can be performed using existing Gradle tasks,
such as JavaExec or any other custom task.

In my opinion, though these tasks can be automated in Gradle, a better alternative
would be a scripting language such as Shell script or Perl. Later in this chapter
when we create an example of build and deployment pipeline, the role of Gradle
will be a pure build and test tool. We will not explore any task or plugin specific to
deployment. Now we will move on to the next topic, Docker, that has become very
popular in recent years with the emergence of micro-service architecture.

Docker overview

Docker is an open source container-based virtualization technology that helps to
automate the deployment of an application inside a container. Docker uses resource
isolation features of the Linux kernel such as cgroups and kernel namespaces and it
allows the running of multiple containers independently and isolated from each other
on a host machine. The benefit of Docker over virtual machine is that Docker is a
light-weight process compared to a virtual machine and it provides resource isolation
when sharing the same kernel including drivers of the host machine. Docker is open
source technology and supported on different platforms. As Docker is built on top of
Linux kernel, it supports Windows and Mac using Boot2Docker application.

Some of the main features of Docker are:

* Docker Engine: The light-weight container to create, manage and
containerize the application.

* Portability: One of the important features is container-reuse. You can
prepare one Tomcat image and use this image as a base image for all other
web applications. This image can be deployed in any system like desktop,
physical servers, virtual machines, and even in cloud.

* Docker Hub: Docker also has its own SaaS-based public registry shared
with developers across the globe. You can fid different kinds of images like
MySQL, Tomcat, Java, Redis, and other technologies. Users can create and
upload images to this repository.

* Faster delivery: Docker containers are very fast compared to virtual
machines. This feature helps in reducing the time for development,
testing and deployment.

* APIL Docker supports a user friendly API to manage Docker containers.

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

You might be using virtual machine in an organization infrastructure. Docker is
very different from a virtual machine. A virtual machine has its own operating
system with device drivers, memory, CPU shares, and son on. On the other hand, a
container shares the host operating system and most of these resources with other
container on the same host.

Let's look at some differences between Docker and virtual machines:

* Docker uses Linux containers, which share the same operating system,
whereas each virtual machine has its own operating system thus increasing
the overhead

* Docker uses Another Union File System (AUFS) that is a layered file system.
It has a read-only part that is shared by all containers and write part that is
unique for each container to write its own data

* Docker is a light weight technology that requires minimum resources of its
own as it shares the maximum resources, whereas a full VM system shares
minimum resources and gets most of resources of its own

* Docker startup time is very less as compared to VM

* Docker is mostly suitable for small applications (Micro Services) that can
share the common resources and just isolate itself with some processes,
whereas VM is suitable for heavier applications that need full isolation
of resources

Now in the next two sections, we will work with Docker installation and then we
will learn some of the most used Docker commands.

Installing Docker

To install Docker in Ubuntu Trusty 14.04 LTS, following commands can be used:

$ sudo apt-get update
$ sudo apt-get -y install docker.io

Alternatively, to get the latest version of Docker you can use this:
$ sudo wget -gO- https://get.docker.com/ | sh

To know the installed version, you have to run the docker version command,
as follows:

$ docker version

Client version: 1.6.0

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Client API version: 1.18
Go version (client): gol.4.2

Git commit (client): 4749651

Docker is also supported on Mac OS X, Windows, or cloud platforms. Docker
installation guide for these platforms is available at https://docs.docker. com/.

To verify the installation, you can execute the docker run hello-world command.
This command downloads a test image and runs the command in a container:

$ docker run hello-world

Unable to find image 'hello-world' locally
Pulling repository hello-world
91c95931e552: Download complete
a8219747bell: Download complete

Hello from Docker.

If the preceding message is displayed on the console, it means the installation is
successful. In the next section, we will learn some of the useful Docker commands.

Docker commands

Once Docker is installed on the host machine, it runs as a daemon process. The
interface given to users is a Docker client. Communication between Docker daemon
and users happens through Docker client. Docker provides a variety of commands
for different needs, which helps to automate the deployment process very easily.
Now we will learn different Docker commands. As this is not a Docker book, the
discussion will be limited to some basic commands. You can refer to the following
Docker website for the complete reference guide at https://docs.docker. com/
reference/.

Help command

Once Docker is installed, to see the list of all the commands supported you can type
docker help.

This command lists all the available Docker commands. The basic syntax of a Docker
command is docker <options> command <arguments.

[217]

www.it-ebooks.info

https://docs.docker.com/
https://docs.docker.com/reference/
https://docs.docker.com/reference/
http://www.it-ebooks.info/

Deployment

Download image

As we mentioned earlier, Docker provides its own public repository from where you
can download the images to get started with Docker. You do not need to reinvent
the wheel by creating the image, unless needed. In the repository, you can find lots
of images varying from plain vanilla OS to images embedded with Java, Tomcat,
MySQL, and so on. To download an image from the repository, you can use the
docker pull <image name> command, as follows:

$ docker pull ubuntu
latest: Pulling from ubuntu

e9e06b06el4c: Pull complete
a82efea989f9: Pull complete
37bea4eelc81l: Pull complete

By default, this command pulls images from the public Docker registry, but you can
configure private registry as well.

The list of images

Once the image is downloaded, you can find the list of images using the docker
images command, as follows:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

<none> <none> 07£8e8c5e660 14 hours
ago 188.3 MB

python 2.7 912046e33£03 8 days
ago 747.9 MB

ubuntu latest d0955£21bf24 6 weeks
ago 188.3 MB

It will list all the downloaded images available in the filesystem. You can create one
or many containers using images.

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Creating a container

Once image is downloaded, you can create a container using the Docker run
command, as follows:

$ docker run -dit --name "testUbuntul" ubuntu /bin/bash

b25a9d5806a71£f411631c4bb5c4c2dd4d059d874a24fee2210110ac9e8c2909a

This command creates a container named testUbuntul from the image Ubuntu
and the command we have mentioned is /bin/bash, to just execute a shell or
command-line interface. The output of this command is the container ID. You can
access the container by its name tesUbuntul or by the container ID.

Here the -d option will start it as a daemon process, the -1 option is for interactive,
and the -t option is to allocate a pseudo-TTv. Let's create another container
as follows:

$ docker run -dit --name "testUbuntu2" ubuntu /bin/bash

£9cdd046cbf47£957e£972690592245£27784£5£79ded6ca836afab54b4£f9a8f

It will create another container with the name testUbuntu2. You can create many
containers with the same image by giving different names. If you do not specify
any name, Docker assigns some default name. The syntax of the run command is
$ docker run <options> <imagename> <commands.

The container list

To find the list of running containers use the Docker ps command, as shown here:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

b25a9d5806a7 ubuntu:latest /bin/bash 2 minutes ago
Up 2 minutes testUbuntul

Here, we have created two containers but the output shows only one container
testUbuntul that is running. Run the same command now with the -a option,
as follows:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

£8148e333eb3 ubuntu:latest echo hello world 7 seconds ago
Exited (1) 7 seconds ago testUbuntu2

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

b25a9d5806a7 ubuntu:latest /bin/bash 3 minutes ago
Up 3 minutes testUbuntul

The output lists all the containers with individual status. Notice that the testUbuntu2
container is exited, that is, stopped, whereas testUbuntul is still running.

Start/stop container

Once the container is created from the image, it can be started /stopped using the
following commands:

$ docker start|stop containername|containerid

Following is an example of the preceding command:

$ docker stop testUbuntul
$ docker start £8148e333eb3

Connecting to a container

If you have started a container and then you want to connect to the running container
console, the Docker attach command can be used as shown here:

$ docker attach testUbuntul

[Enter]

root@b25a9d5806a7:/#

Use Ctrl + P + Q to exit the container. The exit or *¢ command will take you out of
the container and additionally, it will stop the running container by killing all the
running processes. If you want to just move out of the container without stopping,
use Ctrl + P + Q. These commands could be different based on operating systems.
Refer to the Docker documentation for more details.

Deleting a container

The Docker rm command deletes or removes a container from the machine,
as follows:

$ docker rm testUbuntu2
testUbuntu2

You can check whether it is deleted properly by running the docker ps -a command:

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Removmg dan iImage

To remove an image from the system, use the docker rmi command. This command
will remove the image from the machine. You need to stop any running container
before removing the image. This is done as follows:

$ docker rmi ubuntu

Copying files to the container

With the UNIX cp command, a file can be copied from the host to the container. For

example, the following command copies the dir1 folder from the host system to the
container's /home /mycontents directory. Here we have to provide the absolute path
of the container installed in the host machine:

$sudo cp -r dirl
/var/lib/docker/aufs/mnt/b25a9d5806a71£411631c4bb5c4c2dd4d059d874a24¢f
ee2210l110ac9e8c2909a/home/mycontents/

But this is not a good practice. Alternative solution is to mount the directories when
creating the container with the -v option:

$ docker run -ditP --name testUbuntu -v /home/userl/dirl:/home/dirl
ubuntu

The preceding command will create a container named testUbuntu. The command
also maps the /home/user1/dir1 directory of host machine to the /home/dir1
directory of the container.

To copy the contents from the container to host machine, the docker cp command
can be used, as shown here:

$ docker cp testUbuntul:/home/dirl/readme.txt .

Container details

The Docker inspect command helps to find the complete details of container run
as follows:

$ docker inspect testUbuntul
[{
"Args": [],
"Config": {
"AttachStderr": false,
"AttachStdin": false,

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

"AttachStdout": false,

"Cmd": [

"/bin/bash"

1,

"CpuShares": 0,

"Cpuset": "",

"Domainname": "",

"Entrypoint": null,

"Env": [

"PATH=/usr/local/sbin:/usr/local/bin:
/usr/sbin: /usr/bin:/sbin:/bin"

1,

"PublishAllPorts": false,
"VolumesFrom": null

b

"HostnamePath": "/var/lib/docker/containers/
b25a9d5806a71f411631c4bb5c4c2dd4d059d8
74a24fee2210110ac9e8c2909a/hostname",

"HostsPath": "/var/lib/docker/containers/
b25a9d5806a71f411631c4bb5c4c2dd4d059d8
74a24fee2210110ac9e8c2909a/hosts™",
nIdnr:
"b25a9d5806a71f411631c4bb5c4c2dd4d059d874a24fee2210110ac9e8c2909a"
"Image":
"d0955f21bf24f5bfffd32d2d0bb669d0564701c271bc3dfcedcfcs5adfdec2do7",

"MountLabel": "",

"Name": "/testUbuntul",

"NetworkSettings": {

"Bridge": "dockerO",
"Gateway": "172.17.42.1",
"IPAddress": "172.17.0.22",
"IPPrefixLen": 16,
"PortMapping": null,
"ports": {}

I

"Path": "/bin/bash",

It will provide the complete detail of the container such as name, path, network
settings, IP address, and so on.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Updating DNS settings

To update DNS settings, you can edit the /etc/default/docker file. You can
change proxy setting and DNS setting in this file. The content of the file is shown
as follows:

Docker Upstart and SysVinit configuration file

Customize location of Docker binary (especially for development
testing) .
#DOCKER="/usr/local/bin/docker"

Use DOCKER_OPTS to modify the daemon startup options.
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"

If you need Docker to use an HTTP proxy, it can also be
specified here.

#export http proxy="http://127.0.0.1:3128/"

This is also a handy place to tweak where Docker's temporary
files go.
#export TMPDIR="/mnt/bigdrive/docker-tmp"

Networking in an important concept and you should spend more time reading
about it. More details can be found at https://docs.docker.com/articles/
networking/.

Creating an image from a container

You might be interested in creating new images from the base container with
additional software. Consider an example where you have created the testUbuntul
container from the base Ubuntu image. Then you have installed Tomcat server,
deployed web application, and maybe you have installed some other required
software like Ant, Git, and so on. You might want to save all the changes for future.
The following docker commit command is useful in this scenario:

$ docker commit -m "Creating new image" testUbuntul userl/ubuntu 1

This command will create a new image userl/ubuntu_1 that will comprise a basic
Ubuntu image and all the applications installed by you on that container. This
command will commit the new image to the local repository. Next time, you can
start a container from the new image.

$ docker run -dit --name testUbuntu 1 wuserl/ubuntu 1

[223]

www.it-ebooks.info

https://docs.docker.com/articles/networking/
https://docs.docker.com/articles/networking/
http://www.it-ebooks.info/

Deployment

This command will create the testUbuntu_1 container using the new image
committed earlier. If you have created an account in the Docker repository
(https://registry.hub.docker.com), you can even push the new images
to the public repository.

Running an application in Docker

So far, we have learnt what is Docker and the different commands to work with
Docker. In this section, we will develop a web application and we will deploy the
web application in a Docker container. For simplicity, we will download a Tomcat
image from the Docker repository. Then the Docker container will be started with
proper port mapping, so that it can be accessed from the host machine. Finally, a
web application will be deployed in the running container.

To create a Tomcat container, we will pull an image from the central repository
https://registry.hub.docker.com/_/tomcat/. The repository provides support
for different versions of Tomcat such as 6, 7, and 8. For this application, we will use
Tomcat 7.0.57 version. This version can be downloaded from the registry by running
the docker pull tomcat:7.0.57-jre7 command.

After the image is downloaded, we have to create the container using the downloaded
image and then start it. The container is created and started with the docker run
command with one of the options -p <host_port>:<container ports. This option
enables to access the running Tomcat container by routing the host port to the
container port. The following command starts the container with the name as
userdetailsservice. Additionally, the -rm option is used to remove the filesystem
when the container exits. This is required for the cleanup process:

$ docker run -it --rm -p 8181:8080 --name "userdetailsservice"
tomcat:7.0.57-jre?7

Using CATALINA BASE: /usr/local/tomcat

Using CATALINA HOME: /usr/local/tomcat

Using CATALINA TMPDIR: /usr/local/tomcat/temp

Using JRE_HOME: /usr

Using CLASSPATH: /usr/local/tomcat/bin/bootstrap.jar:/usr/local/
tomcat/bin/tomcat-

juli.jar

May 03, 2015 5:03:07 PM org.apache.catalina.startup.VersionLoggerListener
log

INFO: Server version: Apache Tomcat/7.0.57

[224]

www.it-ebooks.info

https://registry.hub.docker.com
https://registry.hub.docker.com/_/tomcat/
http://www.it-ebooks.info/

Chapter 9

After running the command, the Tomcat server is accessible from the host machine
at http://localhost:8181:

[localhost:
Home Dc i Config ion F Wiki Mailing Lists Find Help
Apache Tomcat/7.0.57 wllache Software Foundation
& http://www.apache.org/
™ Recommended Reading: Server Status
Security Considerations HOW-TO
Manager App
/d&\‘ Manager Application HOW-TO —_—
Clusteri ion Replication HOW-TO postitanaasy
Figure 9.1

Tomcat server is up and running; and the next task is to deploy the web application
in the running container. Deploying the web application can be done in multiple
ways. Here we will discuss three different approaches to deploy the web application.

e Adding web application as a data volume: Already we have learnt how to
mount a data volume with the container using the -v option. This approach
can be applied even to deploy a web application. If we have the file structure
of the web application on the host machine, it can be mounted to the
webapps directory of Tomcat.

The following command shows an example of deploying an application
named userdetailsservice in the /usr/local/tomcat/webapps/
directory of the Tomcat container:

$ docker run -it --rm -p 8181:8080 -v
~/userdetailsservice:/usr/local/tomcat/webapps/userdetailsserv
ice --name "userdetailsservice" tomcat:7.0.57-jre7

* Copying WAR file from host to container: Another approach is to copy the
application WAR file directly from the host machine to the container. To
achieve this, first we have to start the container with the run command as
explained previously:

$ docker run -it --rm -p 8181:8080 --name "userdetailsservice"
tomcat:7.0.57-jre7

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

When the container is running, we have to find the long container ID.
This can be done as follows using the docker ps command with the
--no-trunc option:

$ docker ps --no-trunc

CONTAINER ID
IMAGE COMMAND CREATED
STATUS PORTS NAMES

1ad08559109a0f5eec535d05d55e76c5ad3646ae7bb6£f4£f£ffa92ad47219553
49 tomcat:7.0.57-jre7 "catalina.sh run" About a minute
ago Up About a minute 0.0.0.0:8181->8080/

Then, we can use the simple UNIX cp command to copy the .war file to the
Docker file system as shown here:

$ sudo cp

~/UserDetailsService/build/lib/userdetailsservice.war

/var/lib/docker/aufs/mnt/1ad08559109a0f5eec535d05d55e76c5ad364
6ae7bb6f4fffa92ad4721955349/usr/local/tomcat/webapps

However, this approach is not recommended as copying file from host to
container is not a good option. Rather we should use the data mount option.

* Tomcat Admin: Tomcat admin tool can be used to deploy web application
from a web-based user interface. To deploy a web app from Tomcat admin,
you need to have the proper access privilege to the Tomcat manager GUIL
The Tomcat image that we downloaded for this example does not allow us
to access the Tomcat admin page. So first, we have to enable access for a user
by modifying the tomcat-users.xml file. We can simply use the -v option to
bind an existing tomcat-users.xml file to the container as follows:

$ docker run -it --rm -p 8181:8080 -v ~/Downloads/tomcat-
users.xml:/usr/local/tomcat/conf/tomcat-users.xml --name
"userdetailsservice" tomcat:7.0.57-jre7

This approach works well. But if you want to modify the tomcat-users.xml
file of the container permanently, a different approach can be taken. First, we
have to start the Tomcat container with the following command:

$ docker run -it --rm -p 8181:8080 --name "userdetailsservice"
tomcat:7.0.57-jre7 command.

Then from another terminal, enter the bash of the container using the Docker
exec command. as shown here:

$ docker exec -it userdetailsservice /bin/bash

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Next step is to modify the /usr/local/tomcat/conf/tomcat-users.xml file from
a text editor. To do this, we might need to install vim with the apt-get install vim
command. You are free to use any text editor of your choice:

root@0f£f13ab7£f076:/usr/local/tomcat# apt-get update
root@0f£f13ab7£f076:/usr/local/tomcat# apt-get install vim

After vim is installed successfully, we have to add the following lines at the end
of the tomcat-users.xml file (before </tomcat-userss), to enable access to
Tomcat-admin GUI for the admin user:

<role rolename="manager-gui"/>

<user username="admin" password="admin" roles="manager-gui"/>

Now, changes have been applied to the container and we have to save the new
changes by creating a new image using the docker commit command as follows:
$ docker commit 0ff13ab7f076 usedetailsimage:vl
1d4cbdbe2b6ba97048431dbe2055£1df4d780c£5564200c5946e0944baf84b8f

The new image was saved as usedetailsimage with the v1 tag. This can be verified
by listing all the docker images:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

usedetailsimage vl 1d4cbdbe2béb 8 seconds
ago 384.4 MB

hello-world latest 91c95931e552 3 weeks
ago 910 B

tomcat 7.0.57-jre’7 b215£f59£9987 3 months
ago 345.9 MB

This newly created image can be used to start the Tomcat server as follows:

$ docker run -it --rm -p 8181:8080 --name "userdetailsservice"
usedetailsimage:vl

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

After Tomcat is started successfully, we will be able to log in to the Tomcat
administrator page at http://localhost:8181/manager/ with the admin/admin
credentials. The web application can be deployed by selecting the WAR file to deploy
option. Application userdetailsservice takes few seconds to start up and it will be
visible on the Tomcat admin page as shown in the following screenshot:

Software Foundation VaaN

p://www.apache.org/

Tomcat Web Application Manager

[message: oK

|
|Manaaﬁ I

|L|st Applications HTML Manager Help Manager Help Server Status

Path Version Display Name Running [sessions Commands

start | Stop || Reload | | Undepioy
i None specified Welcome to Tomcat true 0 —

Expire sessions |vith idle = 30 minutes

Start | Stop || Reload || Undepioy
Jdocs None specified Tomeat Documentation true i ——

Expire sessions |with idle =(30 minutes.

Start | Stop || Reload | | Undepioy
fexamples None specified Serviet and JSP Examples true o —

Expire sessions | with idle = 30 minutes

start | Stop || Reload | | Undepioy
host-manager None specified Tomeat Host Manager Appiication true -

©

Expire sessions |with idle 2(30 minutes

Start_Stop Reload Undeploy
/manager None specified Tomcat Manager Application true

=

Expire sessions | vith idle = 30 minutes

Start | Stop || Reload | | Undeploy
userdetailsservice None specified. true —

©

Expire sessions |with idle =(30 minutes.

Figure 9.2

Build, Deployment, and Test pipeline

In the last section, we have learned how to create a container like Apache Tomcat
with Docker and how to deploy an application in the running container. Once

the application is up and running, we can run some automated tests to verify the
functionality. That should be easy! What else can be done? Well, throughout this book
we have learned how to automate the build process with Gradle; also in Chapter 7,
Continuous Integration, we discussed continuous integration tools, such as Jenkins.
Now we should be able to apply all these knowledge to create a simple build, deploy,
and test workflow to automate the complete process from build to deployment. Do
not get confused with the continuous delivery pipeline. This is just a simple example
to automate the build, deployment, and test together with tools, such as Gradle,
Docker, and Jenkins. We can set up the pipeline with three simple steps:

* Automate the process of creating or building the artifacts with Gradle.

* Deploy the newly created libraries in a running container. The container is
created and started with Docker.

* Run automated tests to verify the functionalities of the deployed application.

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

These steps can be sequentially configured and executed with the help of Jenkins. All
we need to do is to create a new Freestyle project, say build deployment_pipeline.
Then, add the Source Code Management configuration such as Git (Git URL is
https://github.com/mitramkm/mastering-gradle.git) as shown in the following
screenshot. For more details please refer Chapter 7, Continuous Integration. After the
basic Jenkins job configuration, we have to configure three build steps to automate the
build, deployment, and test execution:

Source Code Management
None
Cvs
CVS Projectset

® Git
Repositories i -
Repository URL hitps://github.com/mitramkm/mastering-gradle.git @
Credentials mitramkm/™**** (mastering gradie gi) T - Add
@
Advanced...
‘Add Repository Delete Repository
Branches to build Branch Specifier (blank for ‘any) |, oo)

Figure 9.3

After the source code management configuration, we have to add a build step in
Jenkins to build the web application. In this step, we will execute the clean war task
on a Gradle project named UserDetailsService. This is a simple web application to
expose a RESTful service. The Gradle task will create a WAR file in the build/libs
directory of the project. In the build step configuration, we have specified the Root
Build script as ${workspace}/Chapter9/UserDetailsService. So, the WAR

file will be created in the $JENKINS HOME%/jobs/build deployment pipeline/
workspace/Chapter9/UserDetailsService/build/libs/ directory:

Invoke Gradle script @.

* Invoke Gradle @'
Use Gradle Wrapper @'

Build step d i

uild step description v
Switch =

witches Al
Tasks clean war (AL
Root Build script ${workspace}/Chapter9/UserDetailsService @-
Build File ®

Specify Gradle build file to run. Also, some environment variables are available to the build script
Force GRADLE_USER_HOME to use workspace [2)]
Figure 9.4

www.it-ebooks.info

https://github.com/mitramkm/mastering-gradle.git
http://www.it-ebooks.info/

Deployment

We are done with the first step. Next step is to create a Tomcat container and
deploy the WAR file. This can be done by running a shell script that automates
the following tasks:

1. Pull Tomcat container from the repository.

2. Check whether any existing container is running. If any container is running,
stop and remove that container.

3. Start the container with the required configuration such as port, name,
memory, and CPU.

4. Finally, deploy the application.
The following shell script automates all the operations mentioned previously:

#!/bin/sh

if [-z "$1"]; then

BUILD HOME=$ (pwd) /UserDetailsService
else

BUILD HOME=$1
fi

docker pull tomcat:7.0.57-jre7

runningContainer="docker ps -1 | grep userdetailsservice | awk

"{print $1}'"
if [! -z "$runningContainer"]
then

docker stop $runningContainer
docker rm $runningContainer

fi

docker run -d -v

$BUILD HOME/build/libs/userdetailsservice.war:/usr/local/tomcat/
webapps/userdetailsservice.war -p 8181:8080 --name
"userdetailsservice" tomcat:7.0.57-jre7

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The script is ready. We will configure and execute the script as the second build step
in the deployment pipeline job. Though we are using shell script to control docker
commands, even this can be done using Gradle tasks (such as Exec) or Gradle plugin
for Docker. Some Docker plugins are available at https://plugins.gradle.org/.
You can also explore these plugins, if you want to do everything in Gradle way:

Execute shell [2)

Command | haptera/dockerscript.sh $(pwd)/Chapter9/UserDetailsService

See the list of available environment variables

Figure 9.5

After the execution of the second build step, the web application is up and running
in the Tomcat container. Finally, we have to verify the functionality of the application
by running an automated test suite. The sample web application is a RESTful service,
which exposes the getUsers () and createUser () type functionalities as HTTP

GET and POST methods. The following code snippet is an example of TestNG cases
that can be executed as sanity checks. It makes HTTP GET and HTTP POST calls at
http://localhost:8080/userdetailsservice/userdetails

@Test

public void createUser() {
User request = new User ("Userl", "User user", "user@abc.com") ;
User response = resttemplate.postForObject (URL, request,

User.class) ;
Assert.assertEquals (response.getEmail (), "user@abc.com") ;

}

@Test (dependsOnMethods="createUser")

public void getUsers() {
User[] response = resttemplate.getForObject (URL, User|[].class);
Assert.assertEquals (response.length, 1);

}

[231]

www.it-ebooks.info

https://plugins.gradle.org/
http://www.it-ebooks.info/

Deployment

To execute the test case, we will create a third build step in the Jenkins pipeline with
the task as gradle test. In this example, for simplicity we have created integration test
code in the src/test folder. Ideally, in the src/test directory, we should keep only
unit test code. If you are writing any integration or regression test, it should be done
in a separate Java project. Another point to remember is that, test task is primarily
used to execute unit test code. If you are writing some integration test code, consider
creating a new Gradle task (such as integrationTest) that runs JUnit, TestNG or
any other test suite:

Invoke Gradle script @.
* Invoke Gradle @'
Gradle Version gradie-2.4 v
Use Gradle Wrapper @'
Build step description
P pt v
Switches =
v @
Tasks TR, . il Y @
test -Duri=http:/ocalhost:8181/userdetailsservice/userdetails @
Root Build script ${workspace}/Chapter9/UserDetailsService @-
Build File ®
Specity Gradle build file to run. Also, some environmen: varisbles are available to the build script
Force GRADLE_USER_HOME to use workspace @.

Figure 9.6

Now we are ready to run the job in Jenkins. The job executes three tasks
sequentially —building a web application, deploying the application in a newly
created container, and finally performing some integration tests. The console
output of the complete job is displayed in the following screenshot:

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

@ Console Output

Started by user anonymous

Building in workspace /home/mainak/.jenkins/jobs/build_deployment_pipeline/workspace

> git rev-parse --is-inside-work-tree # timeout=10

Fetching changes from the remote Git repository

> git config remote.origin.url https://github.com/mitramkm/mastering-gradle.git # timeout=10
Fetching upstream changes from https://github.com/mitramkm/mastering-gradle.git

> git --version # timeout=10

using .gitcredentials to set credentials

> git config --local credential.helper store --file=/tmp/git3324867988525449137.credentials # timeout=10
> git -c core.askpass=true fetch --tags --progress https://github.com/mitramkm/mastering-gradle.git +refs/heads/*:refs/remotes/origin/*
> git config --local --remove-section credential # timeout=10

> git rev-parse refs/remotes/origin/master~{commit} # timeout=10

> git rev-parse refs/remotes/origin/origin/master~{commit} # timeout=18

Checking out Revision 87169e64db028c93c210911683a678814266b03d (refs/remotes/origin/master)
> git config core.sparsecheckout # timeout=1@

> git checkout -f 07169e64db828c93¢c210911683a678814266b83d

> git rev-list c29ff3dc3a522cb522dd658648bed9a5831eaf66 # timeout=10

[Gradle] - Launching build.

[UserDetailsServicel $ gradle clean war

:clean

:compilelava

:processResources UP-TO-DATE

:classes

‘war

BUILD SUCCESSFUL
Total time: 2 mins 51.134 secs

This build could be faster, please consider using the Gradle Daemon: http://gradle.org/docs/2.4/userguide/gradle_daemon.html
Build step 'Invoke Gradle script' changed build result to SUCCESS

[workspace] $ /bin/sh -xe /tmp/hudson69163518606549082258.sh

+ pwd

+ sudo Chapter9/dockerscript.sh /home/mainak/.jenkins/jobs/build deployment pipeline/workspace/Chapter9/UserDetailsService
Pulling repository tomcat

b215f59f9987: Pulling image (7.0.57-jre7) from tomcat

b215f59f9987: Pulling image (7.0.57-jre7) from tomcat, endpoint: https://registry-1.docker.io/vl,

b215f59f9987: Pulling dependent layers

511136ea3c5a: Download complete

8771fbfe935¢: Download complete
0e30e84e9513: Downleoad complete
c90a56bfe7dd: Downlead complete
4b976fb59d87: Download complete
€43216966b96: Download complete

1d1873aa2b8d: Download complete

834592b%ae6e: Download complete

518febcc1732: Download complete

Download complete

Download complete

Download complete

Download complete

Download complete

Download complete

Download complete

Download complete

6ebe@b2feb63: Download complete

b215f59f9987: Download complete

b215f59f9987: Download complete

Status: Image is up to date for tomcat:7.0.57-jre7
1c26e8da3ch9

lc26e8da3cbd
2dd1d51069bdc2d8a65fe5a601c3996090399fabe37ca3laalb575eal654018a
[Gradle] - Launching build.

[UserDetailsServicel $ /home/mainak/GradleProject/gradle-2.4/bin/gradle test -Durl=http://localhost:8181/userdetailsservice/userdetails
:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:compileTestJava

:processTestResources UP-TO-DAT

:testClasses

itest

BUILD SUCCESSFUL

Total time: 44.539 secs

Figure 9.7

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

Summary

In this chapter, we discussed about application deployment and how to containerize
an application with the help of Docker. We learned how to automate build, deploy,
and test workflow with Gradle, Docker, and Jenkins.

In the next chapter, we will cover Android application development and its build
process using Gradle.

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

10

Building Android Applications
with Gradle

With an increasing number of smartphone users in recent years, mobile application
development has become one of the major areas to focus on other than big data and
Cloud computing. Most of the companies are coming up with mobile apps for their
products such as games, social networking, e-commerce, and so on. And this trend
is surely going to increase in next few years. So, in the last chapter, we will cover the
topic related to mobile technology.

In this chapter, we will discuss how to create a basic Android application with
Android Studio as IDE and how to build the application with Gradle. We already
know that the Gradle philosophy is based on conventions rather than configurations,
and it is much easier to write a build automation infrastructure with Gradle in
comparison to other build tools available in the market. This is one of the reasons
why Gradle is the official build tool for Android. You just write few lines of code

in the build file and the application is ready for different platforms and versions,
such as free or paid. It also provides support to sign application before release. With
Gradle, you can run the application on an emulator or physical devices to run unit
and function tests.

In this chapter, we will primarily focus on two areas: a quick overview of Android
application development with Android Studio and various aspects of Gradle as a
build tool for Android. As this is a Gradle book, our discussion will be focused on
understanding the Gradle features.

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

Creating Android project using Android
Studio

We will start by creating a sample Android application, which will display Hello
World when you open it on a mobile device. You can use Eclipse with the Android
Development Tool (ADT) plugin or Android Studio, which has been released by
Google. Android Studio is based on Intelli] IDEA and it is now the most preferred IDE
for building Android applications. Both Eclipse with ADT and Android studio setup
instructions can be found at http://developer.android.com/sdk/index.html.

In this chapter, we will use Android Studio for application development. Once you
have downloaded and installed Android Studio on your system, start Android
Studio. Android Studio also installs Android SDK, which is required to compile
and execute Android applications. To create an application, navigate to File | New
Project. You will see the following screen:

) Create NewProject i — — [

New Project
H Android Studio

Configure your new project

Application name: | AndroidsampleApp ‘

Company Domain: | ch10 |

Packagename: chif.androidsampleapp Edit

Project location: D:\sw\androld_studlo\Andro\d\workspace\Andro\dSamplaApd ”j

Figure 10.1

[236]

www.it-ebooks.info

http://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

Chapter 10

Click on the Next button and follow the steps. On the activity screen, select
Blank Activity:

) Create New Project =)

M Add an activity to Mobile

Add Ne Activity

Blank Activity Blank Activity with Fragment Fullscreen Activity Google AdMob Ads Activity

= o] []

Figure 10.2

For this chapter, our main purpose is to create a sample application and emphasize
on the build process of the Android application with Gradle. So it is not required to
create a full-fledged Android application. Therefore, the sample application will do
just one job, which is to display Hello World when you launch the application.

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

To complete the project setup, in the Customize the Activity screen, provide the
details such as Activity Name, Title, and so on:

) Create New Project =]

A Customize the Activity

Creates a new blank activity with an action bar.

Activity Name: | MeinActivity |
Layout Name: | activity_main |
Title: | MeinActivity |

|

Menu Resource Name: | menu_main

Blank Activity

The name of the activity class to create

(o] (e] () D

Figure 10.3

Once you click on Finish, Android studio will create the project and the directory
structure will be as follows:

Mame Type Size

1. .gradle File folder

1. idea File folder

1 app File folder

. build File folder

. gradle File folder

__ .gitignore Text Document 1KB
| Androidsamplefpp.iml IML File 1KE
#| build.gradle GRADLE File 1KB
| gradle.properties PROPERTIES File 1KE
| gradlew File 5KB
[&] gradlew.bat Windows Batch File 3KB
#| local.properties PROPERTIES File 1KB
4| settings.gradle GRADLE File 1KE

Figure 10.4
[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In the project home directory, you will find the build.gradle and
settings.gradle files. This means that Android Studio has created a multi-project
build structure. In Chapter 6, Working with Gradle, we have already covered the
multi-project structure, in which a parent project contains one or more subprojects.
The parent project contains all the common configurations and other related details
that are shared among the subprojects.

Android Studio creates one build.gradle for the parent project and individual
build.gradle files for the subprojects. It also creates settings.gradle file that
includes all the subprojects that are part of this parent project. You will also find the
local.properties file. This file has information about the location of the Android
SDK. The content of this file will be as follows:

sdk.dir=<Location of Android sdk>

Android Studio also adds Gradle Wrapper, which means the Android project can
be built on a machine where Gradle is not installed. Gradle Wrapper automatically
installs Gradle and executes the build.

The actual Android application is in the app directory that has the source code,
resource, and so on. The content of app directory is as shown here:

MName Type Size

J build File folder

J libs File folder

| srC File folder
__ .gitignore Text Document 1KE
|| app.iml IML File B KB
#| build.gradle GRADLE File 1KB
|| proguard-rules.pro PRO File 1 KB

Figure 10.5

It contains the src directory for the Java source code and test code.

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

Source and test directories are src/main/java and src/androidTest/java,
respectively, as shown in the following screenshot:

androidTest

L—s5ava
L——tum
L—example
L—test
L —androidsampleapp

ain
ELUE
om

L —example
Tl

test
L—androidsampleapp

rawable
layout
enu
ipmap—hdpi
ipmap—mdpi
ipmap—xhdpi
ipmap—xxhdpi
alues
alues—wBZ2B@dp

Figure 10.6

Already you are aware of Java plugin and its default conventions. If we include
Java plugin in a project, the source structure is src/main/java and src/main/
resources. For Android plugin apart from these two directories, you can also add
extra files and folders specific to Android conventions, as mentioned here:

® AndroidManifest.xml

* res/

® assets/

* Jjni/

® proguard-rules.pro

This can be configured in the android closure as sourceSets properties, as follows:

android
sourceSets {

main {
java {
manifest.srcFile 'Manifest.xml'
res.srcDirs = ['src/res']
assets.srcDirs = ['src/assets']

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

We will discuss some of the important concepts here. You can find more details at
https://developer.android.com/sdk/index.html.

The AndroidManifest.xml file is one of the important files that must be present
in the application directory. It contains some important information related to the
application, such as activities, content providers, permissions, and so on. Manifest
file contains only predefined elements. Some values are populated from the Gradle
properties. You cannot add any custom element in the manifest file. Elements such
as <manifest> and <application> are mandatory and they appear only once.
Other elements are optional and can be applied once or multiple times.

The res directory is used to place resources. You can place all the application
resources, such as layout files, drawable files, and string values under the res
directory. You can find more details about resources at http://developer.
android.com/guide/topics/resources/providing-resources.html.

The directories supported inside the res directory are:

® animator
® anim

® color

* drawable

® mipmap

* layout
® menu
° raw

®* +values

* xml

The assets directory may contain all the basic files. Files under this directory will be
part of the . apk file without any modification and the original file name is preserved.

jni contains native code using the Java Native Interface.

proguard-rules.pro contains the ProGuard-related settings. We will discuss
ProGuard settings later in this chapter.

[241]

www.it-ebooks.info

https://developer.android.com/sdk/index.html
http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html
http://www.it-ebooks.info/

Building Android Applications with Gradle

Building the Android project with Gradle

We created the application with one simple activity and now we will try to build
the application with Gradle. Android Studio has automatically generated two build
files for the project; one build.gradle file in the root folder of the project and other
build file in the app directory. We will use the build.gradle file of the subproject
(app folder) to build the Android application. This build.gradle file has the
following content:

apply plugin: 'com.android.application'

android {
compileSdkVersion 22
buildToolsVersion "22.0.1"

defaultConfig
applicationId "chl0.androidsampleapp"
minSdkVersion 15
targetSdkVersion 22
versionCode 1
versionName "1.0"
}
buildTypes {
release {
minifyEnabled false

proguardFiles getDefaultProguardFile ('proguard-
android.txt'), 'proguard-rules.pro'

}
}
}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar']l)
compile 'com.android.support:appcompat-v7:22.1.1"'

}

In the very first line, we applied a plugin with the apply plugin: 'com.android.
application' statement. This is similar to applying any other standard Gradle
plugin. But from where will this plugin jar be downloaded? If you check the
build.gradle file in the parent project, you will find the following entry:

buildscript {
repositories {
jcenter ()

}

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

dependencies {
classpath 'com.android.tools.build:gradle:1.2.3"

}

In the buildscript closure, we have defined dependencies as com. android.
tools.build:gradle:1.2.3. This JAR file will be downloaded from the jcenter
repository and it will be added to the classpath of the build.gradle.

Next part of the build file is the android closure definition where we define all the
basic configurations related to the application such as SDK version, minimum SDK
version supported, target SDK version, application ID, and versioning.

Next, we have the standard dependencies closure to define compile and runtime
dependencies for the application. Here, we have included the 1ib directory and
appcompat-v7 jar as dependencies.

With these simple configurations, we are ready to build the application with Gradle.
We have applied Android plugin in the build file. Now, we will explore different
tasks available to build the project. Type gradle tasks on the command prompt

to get the list of tasks, as shown here:

> gradle tasks

Android tasks
androidDependencies - Displays the Android dependencies of the project.

signingReport - Displays the signing info for each variant.

Build tasks

assemble - Assembles all variants of all applications and secondary
packages.

assembleAndroidTest - Assembles all the Test applicatioms.
assembleDebug - Assembles all Debug builds.
compileDebugSources

compileDebugUnitTestSources

compileReleaseSources

compileReleaseUnitTestSources

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

mockableAndroidJar - Creates a version of android.jar that's suitable for
unit tests.

installDebug - Installs the Debug build.

installDebugAndroidTest - Installs the android (on device) tests for the
Debug build.

uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build.

uninstallDebugAndroidTest - Uninstalls the android (on device) tests for
the Debug build.

uninstallRelease - Uninstalls the Release build.

Q Note that to build Android project, you need Gradle 2.2.1 and above.

Following are the some of the important tasks that you might need to build an
Android application:

* assemble: This task is same as the assemble task in the Java plugin that is
used to assemble the output of the application.

* check: This is similar to the Java plugin check task, it runs all the checks.

* clean: This task removes all the artifacts created during build process.

e build: This task executes the assemble and check task and builds the
application artifacts.

* androidDependencies: This task will display all the Android dependencies
of the project.

e connectedCheck: It will execute the check task on all the connected devices
in parallel

e install<buildvariants>: You can find various install tasks
(such as installDebug, installRelease) that are used to install specific
buildvariant on a device. We will discuss more on the buildvariant
in a later section of the book.

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

buildTypes

The buildTypes configuration is used to define types or environments of build, such
as debug, release, QA, and staging to build and package the app. By default, when
you build the Android project, you can find both the debug and release versions that
were created in the build/outputs/apk directory. By default, the debug version is
signed with a key/certificate that is created automatically with a known username/
password. The release build type is not signed during the build process; therefore,
you can find the app-release-unsigned. apk file created for the release build type.
Release build type needs to be signed before deploying it in any device.

You can customize both build and release build types and also extend the build types
by adding your own build types, as follows:

buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile ('proguard-android.txt'),
'proguard-rules.pro'
}

staging.initWith (buildTypes.release)
staging {
debuggable true

}
}

Here we have added one more build type staging (for staging environment), and
configured it to be a copy of the release build type and added debuggable true.
You can modify the following properties for any build types:

Property name Default values for debug Default values for
type release and other types
debuggable true false
jniDebuggable false false
renderscriptDebuggable false false
renderscriptOptimLevel 3 3
applicationIdsuffix null null
versionNameSuffix null null
signingConfig android. null
(discussed later) signingConfigs.debug
zipAlignEnabled false true
minifyEnabled (discussed false false
later)
Table 10.1
[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

Also, for each build type, you can define their build type-specific SourceSet such

as src/<build types>. As mentioned in the preceding example, you can define

a new directory src/staging and put the staging-related source code and resources
in this directory.

Also for each build type, new tasks will be added by the Android plugin

in the following format: assemble<buildtype>, install<buildtypes,
compile<buildtypes>, jar<buildtypes. This can be observed by executing
the gradle task command, as shown here:

> gradle tasks | grep -i staging

assembleStaging - Assembles all Staging builds.
compileStagingSources
compileStagingUnitTestSources

installStaging - Installs the Staging build.
uninstallStaging - Uninstalls the Staging build.
lintStaging - Runs lint on the Staging build.
testStaging - Run unit tests for the staging build.

jarStagingClasses

As mentioned previously, these task are only associated with the staging build types.

ProGuard settings

For release build type, Gradle provides access to the Proguard tool that is used to
optimize and obfuscate the code. It shrinks the source code and makes the . apk file
smaller in size. You can enable/disable this feature by setting minifyEnabled in the
buildTypes/release closure. As mentioned in Table 10.1, the default value is set to
false; so set it to true if you want to enable it.

The default setting can be obtained using the

getDefaultProguardFile ('proguard-android.txt') method. You can find

the location of the ProGuard tool at <Android sdk dirs/tools/proguard.If you
want to provide custom rules for the project, you can add it to the proguard-rules.
pro file provided by Android studio. You can even add your own files with
different names:

buildTypes
release {
minifyEnabled true
proguardFiles getDefaultProguardFile ('proguard-android.txt'),
'proguard-rules.pro'

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Build flavors

Build flavors or product flavors are different from build type. It is another level

of separation, which allows building multiple flavors of the application, such as
paid version, free version, phone version, and tab version. Each version of the
application can have its own separate features and different hardware requirements.
The combination of productFlavors and buildTypes forms a build variant and a
different APK is generated for each build variant. Product flavors are defined under
the productFlavors closure:

productFlavors {
phone {
applicationId "chl0.androidsampleapp"
minSdkVersion 14
targetSdkVersion 20

versionName "1.0-phone"
}
tab {
applicationId "chl0.androidsampleapp"
minSdkVersion 15
targetSdkVersion 22
versionName "1.0-tab"

}

Now, if we build the project with the gradle clean build command, we will find
different APK files created in the build/outputs/apk/ directory. We have two flavors
(phone and tab) with four build types (debug signed, debug unaligned, staging,
and release). Therefore, total 2*4 = 8§ APK files will be created in the build process.

| app-phene-debug.apk APK File 1,008 KB
| app-phene-debug-unaligned.apk APK File 1,008 KB
__| app-phone-release-unsigned.apk APK File 990 KB
__ app-phone-staging-unsigned.apk APK File 930 KB
| app-tab-debug.apk APK File 1,008 KB
__ app-tab-debug-unaligned.apk APK File 1,008 KB
| app-tab-release-unsigned.apk APK File 990 KB
| app-tab-staging-unsigned.apk APK File 990 KB
Figure 10.7
[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

When we added staging as the build type in the previous section, we observed that
Gradle had automatically created some tasks. Similarly, for each flavor configuration,
Gradle will add different tasks such as assemblePhoneDebug and assembleTabDebug:

> gradle tasks | grep -i phone
assemblePhone - Assembles all Phone builds.

assemblePhoneDebug - Assembles the DebugPhone build.

assemblePhoneDebugAndroidTest - Assembles the android (on device) tests
for the PhoneDebug build.

assemblePhoneRelease - Assembles the ReleasePhone build.
assemblePhoneStaging - Assembles the StagingPhone build.
compilePhoneDebugAndroidTestSources
compilePhoneDebugSources
compilePhoneDebugUnitTestSources
compilePhoneReleaseSources
compilePhoneReleaseUnitTestSources
compilePhoneStagingSources
compilePhoneStagingUnitTestSources

installPhoneDebug - Installs the DebugPhone build.

installPhoneDebugAndroidTest - Installs the android (on device) tests for
the PhoneDebug build.

uninstallPhoneDebug - Uninstalls the DebugPhone build.

uninstallPhoneDebugAndroidTest - Uninstalls the android (on device) tests
for the PhoneDebug build.

uninstallPhoneRelease - Uninstalls the ReleasePhone build.
uninstallPhoneStaging - Uninstalls the StagingPhone build.

connectedAndroidTestPhoneDebug - Installs and runs the tests for
DebugPhone build on connected devices.

lintPhoneDebug - Runs lint on the PhoneDebug build.
lintPhoneRelease - Runs lint on the PhoneRelease build.
lintPhoneStaging - Runs lint on the PhoneStaging build.
testPhoneDebug - Run unit tests for the phoneDebug build.
testPhoneRelease - Run unit tests for the phoneRelease build.
testPhoneStaging - Run unit tests for the phoneStaging build.
jarPhoneDebugClasses

jarPhoneReleaseClasses

jarPhoneStagingClasses

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Product flavors extend the configuration from the defaultconfig closure. You can
overwrite the default configurations inside each product flavor. For each flavor, you
can also have a separate source code and the required files as src/<flavors>/java,
src/<flavors/resources, and so on.

Running the application on a device/
emulator

Once an application is built, you will want to install or run the application, either on
an emulator or a physical mobile device. For simplicity, we will run the application
on an emulator. During the development phase, with the help of an emulator you
can test the application on different platforms without using devices. Some of the
advantages of using an emulator are as follows:

* You can test the application on multiple emulator devices

* You can test with different hardware features such as sound, webcam,
or sensors

* You control battery power, phone location, network settings, such as 2G or
3G, and so on

Emulators are very flexible, but using too many emulators can bring down your
system performance. Based on your system configuration, you should carefully
configure the emulators. You can add new emulator devices using AVD Manager
as shown in the following screenshot:

~ |
o

App - [C\Users\3p-mah riavAndroidStudioProjects\AndroidSampleApp] - app - Android Studio 1211

1
m

Edit View Mavigate Code Analyze Refoctor Build Run [VCS Window Help
H O MHE &R & | 48[E Tk &Contexts Vi | ?

Save File as Template...

o

AndroidSampleApp [app © " build.gradle -
Generate JavaDoc...

| '@ Android = D = | #- ml x (Il local.properties x | (& AndroidSampleApp X
[= app New Scratch File... Ctrl+ Alt+Shift+Insert
&
E =l < Gradle Scripts IDE Scripting Console
Ir.
[& build.gradle (Project: AndreidSampleApp) G Groovy Console...
v =
T & build.gradle (Module: apf & T - Navigation Editer
'8 1l gradle.properties (Global Properties) minifyEnsbled false & SyncProject with Gradle Files
13
Ve =| proguard-rules.pro (ProGuard Rules for app) proguardfiles getDe -ﬁ- Android Device Monitor android.txt'), 'prog
; ill gradle.properties (Project Properties) } LW AVD Manager

o settings.gradle (Project Settings) N ﬁ SDK Manager

Enable ADB Integration

" 1

stag.initWith(build’

ill lecal.properties (50K Location stag {

i Captures

applicationldSuffix ".st

jniDebuggakble true

1

Figure 10.8

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

It will show the existing emulator devices. You can create a new device
as per application requirement. For more information, refer to this link
http://developer.android.com/tools/help/emulator.html.

Android Virtual Device Manager [a]=@] = |

Your Virtual Devices

A Android Studio
e e ol Target | CPU/ABL| Size on Disk | Actions
NEUss s SRR -m

Figure 10.9

You can start the emulator by clicking on the start symbol in the Actions column.
For our example, we created a Nexus 5 API 22x86 emulator to test the application.
Alternatively, you can also start the emulator device by executing the following
command on the command prompt:

>%ANDROID SDK%\tools\emulator.exe -netdelay none -netspeed full -avd
Nexus 5 API 22 x86

It takes a while to initialize the emulator. Once the emulator is up and running, we
should be able to run the application from Android Studio. Go to the Run menu
and choose Run app.

¥ Choose Device 555

o Choose a running device

Device | Serial Mumber | State | Compatible

Figure 10.10

This will show all the devices (connected to the system) and the emulator that
is up and running. You can select any of the running devices and click OK.
The application should be visible in the emulator after few seconds.

[250]

www.it-ebooks.info

http://developer.android.com/tools/help/emulator.html
http://www.it-ebooks.info/

Chapter 10

.| 5554:Meus _5_APT 22 86

AndroidSampleApp

Hello world!

Figure 10.11

Alternatively, you can also install the application using the gradle
install<buildVariant> command. We have already created different build
variants and flavors in the previous section. Let's try to install the PhoneDebug
variant on the emulator. This is done as follows:

> gradle installPhoneDebug

:app:preBuild UP-TO-DATE
:app:prePhoneDebugBuild UP-TO-DATE
:app:mergePhoneDebugAssets UP-TO-DATE
:app:compilePhoneDebugdava UP-TO-DATE
:app:compilePhoneDebugNdk UP-TO-DATE
:app:compilePhoneDebugSources UP-TO-DATE
:app:preDexPhoneDebug UP-TO-DATE
:app:dexPhoneDebug UP-TO-DATE
:app:validateDebugSigning
:app:packagePhoneDebug UP-TO-DATE
:app:zipalignPhoneDebug UP-TO-DATE
:app:assemblePhoneDebug UP-TO-DATE
:app:installPhoneDebug

Installing APK 'app-phone-debug.apk' on 'Nexus 5 API 22 x86 (AVD) - 5.1°'

Installed on 1 device.
BUILD SUCCESSFUL

Total time: 24.543 secs

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android Applications with Gradle

You will be able to find the application in the phone's application list.
AndroidSampleApp is the application that we installed using Gradle task. You
can launch the application and check the output. It will display Hello wWorld.

To uninstall the application using Gradle, use the gradle uninstall command
as follows:

> gradle uninstallPhoneDebug

Signing the release version

You might have observed while running gradle tasks that the release related install
tasks are not created; for example, installPhoneRelease, installTabRelease, and
so on. Release build type-related tasks will be available, if you sign the application
using keystore. Now, we will try to sign an application using a keystore. If you
already have a valid keystore, you can use that file to sign the application; otherwise
you will need to generate a new keystore by using the following command:

> keytool -genkey -v -keystore myCustomkey.keystore -alias customKey
-keyalg RSA -keysize 2048 -validity 10000

To create the keystore, we need to provide some basic details. On entering all the
details, the preceding command will generate the myCustomkey .keystore file. Now,
we have to update build.gradle with the following configurations to enable the
signing of the application:

android {

signingConfigs {
release {
storeFile file("myCustomkey.keystore")
storePassword "welcome"
keyAlias "customKey"
keyPassword "welcome"

buildTypes {
release {
minifyEnabled false
signingConfig signingConfigs.release

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

proguardFiles getDefaultProguardFile ('proguard-android.txt'),
'proguard-rules.pro'

Now, if we execute the gradle tasks command, we will find new tasks have been
added for the release builds. Similarly, new APK files will be created in the apk
folder:

> gradle tasks | grep -i install
Install tasks
installPhoneDebug - Installs the DebugPhone build.

installPhoneDebugAndroidTest - Installs the android (on device) tests for
the PhoneDebug build.

installPhoneRelease - Installs the ReleasePhone build.
installPhoneStaging - Installs the StagingPhone build.
installTabDebug - Installs the DebugTab build.

installTabDebugAndroidTest - Installs the android (on device) tests for
the TabDebug build.

installTabRelease - Installs the ReleaseTab build.
installTabStaging - Installs the StagingTab build.

uninstallAll - Uninstall all applicatioms.

Summary

In this chapter, we briefly discussed Android development with Gradle as a build
tool. We also discussed different closures provided by the Android plugin and how
to build an Android project by following the default conventions. We also explained
how to customize the build file to fulfill the new project requirements. Of course,
there are a lot of things to discuss, such as Android development and Android

with Gradle, and we were not able to cover everything in a single chapter. It would
require a separate book to detail out all the features of the Android plugin. But we
think that we covered most of the basic and important steps required to build an
Android project, which will help you to get started with Gradle as an Android
build system.

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A

Android Development Tool (ADT) 236
Android project
build flavors 247, 249
building, with Gradle 242-244
buildTypes configuration 245, 246
creating, with Android Studio 236-241
ProGuard settings 246
resources, URL 241
URL 241
Android Studio
URL 236
used, for creating Android project 236-241
Another Union File System (AUFS) 216
Ant
about 97
file, importing 190
Groovy, integrating with 30
migrating from 189-204
AntBuilder API
using 195-198
Ant file
importing 190, 192
properties, accessing 193, 194
tasks, updating 194
application
running, on device/emulator 249-251
artifacts
custom artifacts 114
custom configuration 116,117
default artifacts 113
maven-publish plugins 117-120
publishing 112
assemble task 114

Index

B

BAS
about 1,2
activities 3
need for 3
beans 36, 37
binary plugin 77
Boot2Docker application 215
build and deployment pipeline
setting 228-232
Build Automation System. See BAS
Builder, Groovy 48
build life cycle
about 17
configuration 18
execution 18
initialization 17
build script
basics 51-55

C

cache features
dependency location 20
remote checking, switching off 20
traffic, reducing 19
version conflicts 20
version integration 20
cache management
about 18
cache location, modifying 19
features 19

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Checkstyle plugin

about 167-181

URL 179
classes 36, 37
Closure

about 31, 44-47

URL 47
collections

about 40

List 41

Map 42

range, creating 44

set 40
compileTestjava 58
Continuous Integration (CI) 2
control structures

about 38

if...else condition 38

loops 39

switch statement 39
custom artifacts

about 114

XML file, generating along with

JAR file 114, 115
ZIP fie, generating along with
JAR file 115,116

custom plugin

about 86

build file 87

buildSrc directory 88

standalone project 90-94
custom tasks

about 70, 71

buildSrc, using 71, 72

Standalone task 72,73

D

data types
about 32, 33
string 33
declarative build tools 4
dependencies closure 99
dependency
custom configuration 109
customizing 107
files other than JAR, downloading 107

on files, with classifiers 108
reports 109-111
transitive dependencies, replacing 108
dependency configuration
about 98
dependency types 98-100
repositories 100
repositories configuration 101-103
dependency management
overview 97
dependency reports
about 109, 111
dependency-specific details 112
dependency resolution
about 103
dynamic dependency 107
exclude transitiveness 104
selective exclude 104
transitive dependency 103
version conflicts 105, 106
Deploy workflow 213
device/emulator
application, running on 249-251
release version, signing 252
URL 250
Directed Acyclic Graph (DAG) 17, 55
directories
creating 135
deleting 137, 138
Docker
and virtual machines, differences 216
application, running 224-228
build and deployment pipeline,
setting 228-232
commands 217
features 215
installation 216, 217
overview 215, 216
reference guide, URL 217
repository, URL 224
URL 217
Docker commands
cp command 221
for connecting to container 220
for copying files to container 221
for creating container 219
for creating image from container 223

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

for deleting container 220

for downloading image 218

for finding container details 221, 222

for removing image 221

for starting/stopping container 220

for updating DNS setting 223

help command 217

inspect command 221, 222

list of images 218

ps command 219

rm command 220

rmi command 221

running containers list, searching 219
Domain Specific Language (DSL) 4

E

Eclipse
Gradle plugin, installing 21, 22
Eclipse Integration Gradle project
URL 21

F

file
creating 134
deleting 137, 138
FileTree 138
filtering 136
managing 133
operations 135
reading 133
writing 134

FileTree 138

flat directory repository 103

G

get latest strategy 105

Gradle
dependency management 97
documentation, URL 77, 83, 84
in-built tasks 68
installation 5
installing, on Mac/Linux 7

installing, on Windows 6
integrating, with JUnit 155
JUnit 156
JVM option 7
overview 4,5
plugin, URL 78, 93
pre-requisite 5
project, in IDE, working with 22-26
rewriting, configuration 201-204
rewriting to 198-200
role, in deployment 214
URL 5
used, for building Android
project 242-244
used, for testing 155
Gradle 2.4
URL 56
Gradle GUI
command line 15
favorites 15
setup 15
task tree 14
Gradle script
command-line arguments 9-13
creating 7, 8
GUI 13
graphical user interface (GUI) 14
Groovy
Builder 48
Closure 44-47
features 30
overview 29
URL 31
Groovy, features
builder classes 30
Closure 31
integration, with Ant 30
integration, with Java 30
minimum code 30
simpler I/O operations 30
Groovy Truths 38

H

Hello World Groovy 31, 32

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

IDE
about 21
Gradle project, working with 22-26
using, with Gradle 20
imperative build tools 4
in-built plugin, Gradle
about 77
build and test plugins 78
code analysis plugins 78
IDEs plugins 78
in-built tasks, Gradle
about 68
Copy Task 68
Rename Task 68
Zip task 68
incremental build 64
Infrastructure as a Service (IaaS) 214
initialization script
defining 16
uses 16
init plugin 210, 211
installation
Jenkins 168, 169
Integrated Development Environment. See
IDE
Ivy repository 101

J

jar task 114
Java
Groovy, integrating with 30
Java Collection Framework (JCF) 40
Java plugin
about 79
configuration 84-86
conventions 79-84
Jenkins
about 167, 168
configuration 169, 170
installation 168, 169
installation, URL 168
job, creating 171-174
job, executing 175-178
URL 178

Jetty plugin
about 126
jettyRun task 126
jettyRunWar task 126
jettyStop task 126
JUnit
integrating, with Gradle 155-157
integrating, with TestNG 162, 163
test configuration 157

L

List 41

logging
about 131
level, controlling 132, 133
levels 131

Mag/Linux
Gradle, installing on 7
Map 42,43
Maven
default values 210
dependency management 206
filename, building 205
Gradle init plugin 210
migrating from 204-211
multi-module declaration 209
plugin declaration 207
project properties 205
properties, defining 205
repository configuration 208
transitive dependencies, excluding 207
maven-publish plugins
about 117-120
custom POM 121
local-hosted repository, publishing
to 120,121
methods 36, 37
Multi-project build
about 142
buildDependents option 153, 154
build.gradle file 143
buildNeeded option 154, 155

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

configuration-level dependency 149, 151

execution 144-146

Flat hierarchy 148, 149
interproject dependency 149
library dependency 152
login 143

partial builds 153

profile 143

settings.gradle file 143
structure 142-144

task, executing 146, 147, 148
task-level dependency 151
transaction 143
UserManagement 143

(0

organization repository 102

P

Plain Old Groovy Object (POGO) 37
PluginProject
URL 175
PMD plugin 167,178-181
project object 52
Property, Groovy 37
property management
about 139
command line 140
Custom properties file 140, 142
ext closure 139
gradle.properties 139

R

range
creating 43, 44
repositories closure 73
repositories configuration
flat directory repository 103
Ivy repository 101
Maven Central repository 101
Maven JCenter repository 101
Maven local Repository 101
organization repository 102

S

Scala plugin
about 127-130
URL 127
script plugin 75,76
set 40
Software Development Life Cycle
(SDLC) 2
sonar runner plugin 167, 181-183
startup script 15, 16
string
about 33
dynamic typing, in Groovy 34, 35
switch statement 39

-

task
configuring 55
dependency 57, 58
executing 56
operations 61
ordering 58-61
Task interface
URL 53
task operations
about 61
build optimization 64, 65
conditional execution 62, 63
rules 66, 67
TeamCity
about 183-187
URL 183
test configuration, JUnit
about 157
filter 161, 162
forkEvery option 158, 159
ignoreFailures 160
maxParallelForks 158
TestNG
execution, based on group 163, 164
execution, based on TestNG suite
file 164,165
integrating, with Gradle 162, 163
Test workflow 213

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Tomcat administrator page W

URL 228
Tomcat container War plugin
creating, URL 224 about 123-126
transitive dependencies URL 126
about 109 webAppDirName property 125
excluding 207 Windows

Gradle, installing on 6

Vv

version conflicts scenarios
fail on conflict 106
force specific version 106
latest version 105

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

[PACKT] open source®

PUBLISHING

Thank you for buying
Mastering Gradle

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

community experience distilled

rivT]open source®
CINT] com

Android Application Development
with Maven
ISBN: 978-1-78398-610-1 Paperback: 192 pages

Learn how to use and configure Maven to support all
phases of the development of an Android application

1. Learn how to effectively use Maven to create,
test, and release Android applications.

Android Application
Development with Maven

2. Customize Maven using a variety of suggested
plugins for the most popular Android tools.

3. Discover new ways of accelerating
the implementation, testing, and
maintenance using this step-by-step
simple tutorial approach.

Learning Android Application

Testing
ISBN: 978-1-78439-533-9 Paperback: 274 pages

Improve your Android applications through
intensive testing and debugging

1. Focus on Android instrumentation testing to
ensure full application coverage.

Learpmq AndI'OIFI 2. Apply testing techniques and utilize tools to
Application Testing improve Android application development.

3. Build intensively tested and bug free Android
applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

community experience distilled

rivT]open source®
CINT] com

Maven Build Customization
ISBN: 978-1-78398-722-1 Paperback: 270 pages

Discover the real power of Maven 3 to manage your
Java projects more effectively than ever

1. Administer complex projects customizing the
Maven framework and improving the software
lifecycle of your organization with "Maven
friend technologies".

Maven Build
. . 2. Automate your delivery process and make it fast
Customization and easy.

er of Mavei \age your Java projects

3. An easy-to-follow tutorial on Maven
customization and integration with a real
project and practical examples.

PACKT 2

Effective Gradle Implementation
[Video]

ISBN: 978-1-78216-766-2 Duration: 03:07 hours

Build, automate, and deploy your application
using Gradle

Effective Gradle 1. Setting up basic and multi-module
Java projects.

Implementation

Ryan Vanderwerf 2. Learn more about the Gradle JavaScript plugin
to build your own JavaScript projects.

Lee Fox

3. Familiarize yourself with Scala plugin
support with available tasks, layout, setup,
and dependencies.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Gradle
	Understanding Build Automation System
	Need for BAS

	Gradle overview
	Installation and quick start
	Pre-requisites
	Gradle for Windows
	Gradle for Mac/Linux
	The Gradle JVM option

	Our first script
	Gradle command Line arguments
	The Gradle GUI
	Start up script
	Build life cycle
	Initialization
	Configuration
	Execution

	Cache management
	Cache location
	Change Cache location
	Cache features
	Reduce the traffic
	Dependency location
	Version integration
	Switching off remote checking
	Version conflicts

	Gradle with IDE
	Installing the Gradle plugin in Eclipse
	Working with the Gradle project in IDE

	Summary

	Chapter 2: Groovy Essentials for Gradle
	Overview
	Minimum code
	Simpler I/O operations
	Integration with Ant
	Builder classes
	Closure

	Hello World Groovy
	Data types
	String
	Dynamic typing in Groovy

	Classes, beans, and methods
	Control structures
	The if…else condition
	The switch statement
	Loops

	Collections
	Set
	List
	Map
	Range

	Closure
	Builder
	Summary

	Chapter 3: Managing Task
	Build script basics
	Task configuration
	Task execution
	Task dependency
	Task ordering
	Task operations
	Conditional execution
	Build optimization
	Task rules

	Gradle's in-built tasks
	The Copy Task
	The Rename Task
	The Zip task

	Custom tasks
	Using buildSrc
	The standalone task

	Summary

	Chapter 4: Plugin Management
	The script plugin
	The binary plugin
	Gradle's in-built plugin
	Build and Test plugins
	Code analysis plugins
	IDE plugins

	The Java plugin
	Conventions
	Configuration

	The custom plugin
	The build file
	The buildSrc directory
	The Standalone project

	Summary

	Chapter 5: Dependency Management
	Overview
	Dependency configurations
	Dependency types
	Repositories
	Repositories configuration

	Dependency resolution
	Transitive dependency
	Exclude transitiveness
	Selective exclude
	Version conflicts
	Dynamic dependency

	Customizing the dependency
	Download file other than JAR
	Dependency on files with classifiers
	Replacing transitive dependencies
	Custom configuration for dependency
	Dependency reports
	Dependency-specific details

	Publishing artifacts
	Default artifacts
	Custom artifacts
	Generate additional XML file along with your
JAR file
	Generate an additional ZIP file along with your
JAR file

	Custom configuration
	The maven-publish plugins
	Publishing to the local-hosted repository
	Custom POM

	Summary

	Chapter 6: Working with Gradle
	The War plugin
	The Scala plugin
	Logging
	File management
	Reading files
	Writing files
	Creating files/directories
	File operations
	Filter files
	Delete files and directories
	FileTree

	Property management
	ext closure
	gradle.properties
	The command line
	The Custom properties file

	Multi-project build
	The Multi-project structure
	The Multi-project execution
	Task execution
	The Flat hierarchy
	Interproject dependency
	Configuration-level dependency
	Task-level dependency
	Library dependency
	Partial builds
	buildDependents
	buildNeeded

	Testing with Gradle
	JUnit
	Test configuration

	TestNG
	Execution based on group
	Execution based on the TestNG suite file

	Summary

	Chapter 7: Continuous Integration
	Jenkins walk-through
	Jenkins installation
	Jenkins configuration
	Create job
	Execute job

	Checkstyle and PMD plugins
	The Sonar Runner plugin
	TeamCity walk-through
	Summary

	Chapter 8: Migration
	Migration from Ant
	Importing Ant file
	Accessing properties
	Update Ant tasks

	Using AntBuilder API
	Rewriting to Gradle
	Configuration

	Migration from Maven
	Build filename and project properties
	Properties
	Dependency management
	Exclude transitive

	Plugin declaration
	Repository configuration
	Multi-module declaration
	Default values
	Gradle init Plugin

	Summary

	Chapter 9: Deployment
	Role of Gradle in deployment
	Docker overview
	Installing Docker
	Docker commands
	Help command
	Download image
	The list of images
	Creating a container
	The container list
	Start/stop container
	Connecting to a container
	Deleting a container
	Removing an image
	Copying files to the container
	Container details
	Updating DNS settings
	Creating an image from a container

	Running an application in Docker
	Build, Deployment and Test pipeline
	Summary

	Chapter 10: Building Android Applications with Gradle
	Creating Android project using Android Studio
	Building the Android project with Gradle
	buildTypes
	ProGuard settings
	Build flavors

	Running the application on a device/emulator
	Signing the release version

	Summary

	Index

