
M A N N I N G

Kenneth A. Kousen
FOREWORD BY Guillaume Laforge

www.it-ebooks.info

http://www.it-ebooks.info/

Making Java Groovy

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making Java Groovy

KENNETH A. KOUSEN

M A N N I N G
SHELTER ISLAND

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Photographs in this book were created by Martin Evans and Jordan Hochenbaum, unless
otherwise noted. Illustrations were created by Martin Evans, Joshua Noble, and Jordan
Hochenbaum. Fritzing (fritzing.org) was used to create some of the circuit diagrams.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Melinda Rankin
PO Box 261 Proofreader: Melody Dolab
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781935182948
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

 To my father, Morton Kousen, MD,
 who taught me everything I know about dedication,

 persistence, and facing the future with a positive and
 upbeat attitude, despite whatever pain and difficulties lay ahead.

 He will always be my best example of what a man should be.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents
PART 1 UP TO SPEED WITH GROOVY. ..1

1 ■ Why add Groovy to Java? 3

2 ■ Groovy by example 18

3 ■ Code-level integration 46

4 ■ Using Groovy features in Java 64

PART 2 GROOVY TOOLS ..91

5 ■ Build processes 93

6 ■ Testing Groovy and Java projects 126

PART 3 GROOVY IN THE REAL WORLD....................................165

7 ■ The Spring framework 167

8 ■ Database access 199

9 ■ RESTful web services 227

10 ■ Building and testing web applications 257
vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxii
about the cover illustration xxvi

PART 1 UP TO SPEED WITH GROOVY1

1 Why add Groovy to Java? 3
1.1 Issues with Java 4

Is static typing a bug or a feature? 5 ■ Methods must be in a class,
even if you don’t need or want one 7 ■ Java is overly verbose 10
Groovy makes testing Java much easier 11 ■ Groovy tools simplify
your build 13

1.2 Groovy features that help Java 14
1.3 Java use cases and how Groovy helps 15

Spring framework support for Groovy 16 ■ Simplified database
access 16 ■ Building and accessing web services 16
Web application enhancements 17

1.4 Summary 17
ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx

2 Groovy by example 18
2.1 Hello, Groovy 19
2.2 Accessing Google Chart Tools 19

Assembling the URL with query string 20 ■ Transmitting
the URL 23 ■ Creating a UI with SwingBuilder 24

2.3 Groovy Baseball 26
Database data and Plain Old Groovy Objects 29
Parsing XML 35 ■ HTML builders and groovlets 42

2.4 Summary 45

3 Code-level integration 46
3.1 Integrating Java with other languages 46
3.2 Executing Groovy scripts from Java 48

Using JSR223 scripting for the Java Platform API 50
Working with the Groovy Eval class 56 ■ Working with
the GroovyShell class 57 ■ Calling Groovy from Java
the easy way 59 ■ Calling Java from Groovy 62

3.3 Summary 63

4 Using Groovy features in Java 64
4.1 Treating POJOs like POGOs 65
4.2 Implementing operator overloading in Java 67
4.3 Making Java library classes better: the Groovy JDK 71
4.4 Cool AST transformations 74

Delegating to contained objects 74 ■ Creating
immutable objects 76 ■ Creating singletons 81

4.5 Working with XML 82
4.6 Working with JSON data 89
4.7 Summary 90

PART 2 GROOVY TOOLS ..91

5 Build processes 93
5.1 The build challenge 94
5.2 The Java approach, part 1: Ant 95
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

5.3 Making Ant Groovy 97
The <groovy> Ant task 97 ■ The <groovyc> Ant task 98
Writing your build in Groovy with AntBuilder 100
Custom build scripts with Gant 102 ■ Ant summary 104

5.4 The Java approach, part 2: Maven 105
The Groovy-Eclipse plugin for Maven 106
The GMaven project 110 ■ Maven summary 113

5.5 Grapes and @Grab 114
5.6 The Gradle build system 117

Basic Gradle builds 118 ■ Interesting configurations 122

5.7 Summary 124

6 Testing Groovy and Java projects 126
6.1 Working with JUnit 128

A Java test for the Groovy implementation 131
A Groovy test for the Java implementation 133
A GroovyTestCase test for a Java implementation 134

6.2 Testing scripts written in Groovy 137
Useful subclasses of GroovyTestCase: GroovyShellTestCase 139
Useful subclasses of GroovyTestCase: GroovyLogTestCase 141

6.3 Testing classes in isolation 142
Coerced closures 144 ■ The Expando class 146
StubFor and MockFor 151

6.4 The future of testing: Spock 156
The Search for Spock 156 ■ Test well, and prosper 157
Data-driven specifications 159 ■ The trouble with tribbles 161
Other Spock capabilities 163

6.5 Summary 164

PART 3 GROOVY IN THE REAL WORLD165

7 The Spring framework 167
7.1 A Spring application 168
7.2 Refreshable beans 175
7.3 Spring AOP with Groovy beans 179
7.4 Inline scripted beans 185

7.5 Groovy with JavaConfig 186

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii

7.6 Building beans with the Grails BeanBuilder 190
7.7 Summary 197

8 Database access 199
8.1 The Java approach, part 1: JDBC 200
8.2 The Groovy approach, part 1: groovy.sql.Sql 203
8.3 The Java approach, part 2: Hibernate and JPA 208
8.4 The Groovy approach, part 2: Groovy and GORM 213

Groovy simplifications 213 ■ Grails Object-Relational
Mapping (GORM) 213

8.5 Groovy and NoSQL databases 220
Populating Groovy vampires 220 ■ Querying and
mapping MongoDB data 223

8.6 Summary 226

9 RESTful web services 227
9.1 The REST architecture 229
9.2 The Java approach: JAX-RS 230

JAX-RS resource and tests 232

9.3 Implementing JAX-RS with Groovy 239
9.4 RESTful Clients 242
9.5 Hypermedia 243

A simple example: Rotten Tomatoes 244 ■ Adding transitional
links 246 ■ Adding structural links 249 ■ Using a JsonBuilder
to control the output 250

9.6 Other Groovy approaches 253

Groovlets 253 ■ Ratpack 255 ■ Grails and REST 255

9.7 Summary 256

10 Building and testing web applications 257
10.1 Groovy servlets and ServletCategory 258
10.2 Easy server-side development with groovlets 263

A “Hello, World!” groovlet 264 ■ Implicit variables
in groovlets 266
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

10.3 Unit- and integration-testing web components 268
Unit-testing servlets with Spring 268 ■ Integration testing
with Gradle 270 ■ Automating Jetty in the Gradle build 272
Using an integration-test source tree 274

10.4 Grails: the Groovy “killer app” 277
The quest for the holy Grails 279

10.5 Summary 288

appendix A Installing Groovy 289
appendix B Groovy by feature 295
appendix C Soap-based web services available online at manning.com/kousen

index 327
www.it-ebooks.info

www.manning.com/kousen
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

foreword
When we designed the Groovy language almost 10 years ago, our main goal was to cre-
ate a language that is a complement to Java, a close companion, that Java developers
would be familiar with and could learn easily. The idea was to empower users to be
more productive by removing the boilerplate of Java, and to simplify their program-
ming lives by giving them compelling and straightforward APIs to work with. I’m
proud to say that the Groovy team attained that goal, making Groovy the most popu-
lar alternative language for the Java platform.

 Along the way, and by virtue of its nature, Groovy was adopted by Java developers
in a number of ways. For example, it was introduced in Java projects for testing pur-
poses, because the Groovy syntax is light and readable but still resembles that of Java.
For interacting with XML payloads, web services, or databases, Groovy provides handy
and elegant wrappers around the Java Development Kit that make those tasks a
breeze. And for writing business rules in Java applications, Groovy shines, thanks to its
metaprogramming capabilities and its concise and expressive grammar.

 I had the pleasure and honor of meeting Ken a few years ago at a Groovy confer-
ence, and our paths have crossed several times since then. Among other topics, we
talked about how Groovy is a great fit for various assignments that Java developers
have to accomplish every day but that are painful with the heavier-weight Java. So
when Ken told me that he envisioned writing a book on this same topic, I was excited
about the idea!

 What makes this book stand out of the pack of Groovy books is its focus on the
tasks that Java developers must tackle every day. How can I more easily parse or emit
xv

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxvi

XML or JSON documents? How can I test my Java code with a more expressive syntax?
How can I talk to my database without the error-prone JDBC API? How can I build and
test Java applications more efficiently? In this book, Ken answers all of these questions
and shows you a Groovy solution for each of those chores.

GUILLAUME LAFORGE

GROOVY PROJECT MANAGER
www.it-ebooks.info

http://www.it-ebooks.info/

preface
A few months ago I enjoyed a pleasant dinner with Marjan Bace, Grand Poobah1 at
Manning Publications, the company that printed the book you now hold in your
hands.2 Eventually the conversation turned to Joseph Campbell’s Hero’s Journey as it
might apply to nonfiction, technical books. The basic concept is that a Hero is called
to Action, encounters various Forces arrayed against Him (or Her); Defeats them;
wards off Temptation; is Transformed by the journey; and eventually returns Home
Triumphant.3 Some publishing companies strongly recommend that their books fol-
low that model, with the reader as hero.

 Marjan’s idea, however, was that sometimes it isn’t the reader who is the hero; it’s
the technology covered by the book. In the case of Making Java Groovy, I interpret that
to mean that Groovy is the hero. Where does that put Java? Not as antagonist, surely;
the whole point of this book is that Java is already your ally, and that adding Groovy
makes it better. Groovy and Java are like Frodo and Samwise Gamgee, headed into the
black depths of Mordor, battling privation and despair, desperately trying to defeat
the horrible programming challenges that await them, as well as any orcs, Nazgûl, or
clueless managers they might encounter along the way.

1 His actual title is Publisher.
2 In print form, on a tablet, or whatever.
3 In case you don’t want to read the original Campbell, the Wikipedia page at http://en.wikipedia.org/wiki/
xvii

Monomyth summarizes all 17 (!) stages.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Monomyth
http://en.wikipedia.org/wiki/Monomyth
http://www.it-ebooks.info/

PREFACExviii

 That’s a little dark. Plus, I have no idea what the Ring of Power is in this analogy,
or why you’d want to destroy it.4 Instead, I’ll simply say that Groovy and Java work
really, really well together, and I’ll spend the rest of the book demonstrating how,
when, and why.

 For those of you shifting nervously from side to side, worried that the attempts at
“humor” in this preface will be sprayed liberally throughout the book (thus distracting
from the actual content), let me assure you that other than in this preface, I promise
to confine any attempts at humor to footnotes that can be safely skipped.5

 When I’m teaching my technical training classes,6 I realize that humor is a
high-risk/high-reward tool. Nobody wants to hear a joke when they’re confused.
On the other hand, programming can be a dry7 subject, and some humor can break
up the monotony. Hopefully I’ve found the right balance in this book. If not, or if
you have any other questions, comments, or heard any good jokes lately, feel free
to contact me through the book forum at Manning, or directly through my blog
on my website at http://www.kousenit.com.

 The source code for the book is available in my GitHub repository.8 If you examine
it, you’ll find more examples than the ones covered in the book. Books have length
limits, but source code repositories don’t, and extra examples can’t hurt. I decided to
use the book’s repository as a home for any examples I felt were interesting or rele-
vant, even if I couldn’t justify the extra pages necessary to discuss them.

 Again, keeping to the principle that the chapters should be as independent as pos-
sible, each project has its own Gradle build file.9 All the examples have tests as well.
The short snippets of code include Groovy assert statements, and test cases are used
to execute the scripts during a build. The rest of the examples have a mix of JUnit
tests, in Java or Groovy, and Spock tests. In practice I freely intermix both, so it
seemed natural to do so here, too.

 Enjoy the hero’s journey10 that is Making Java Groovy!

4 I do hope that if you’re holding a print copy of the book (that is, dead-treeware), no Ents were involved.
5 Like this one: How many developers does it take to change a light bulb? The classic answer is, “None; that’s a

hardware problem.” My answer is, “The developer is the person by the light switch saying, ‘Maybe this time
the light will go on. Or maybe this time. Reboot again.’”

6 Seriously, Best Training Anywhere. Contact me for a quote, which will inevitably rise once this book is pub-
lished.

7 I was going to make a DRY—Don’t Repeat Yourself—joke here but eventually decided against it.
8 Check it out at https://github.com/kousen/Making-Java-Groovy.
9 Except in the build chapter (chapter 5), where they have Ant or Maven build files, as appropriate.

10 So are you the hero, or is Groovy? Let me be blunt. Did you pay for this book? Then you’re my hero. Duh.

www.it-ebooks.info

http://www.kousenit.com
https://github.com/kousen/Making-Java-Groovy
http://www.it-ebooks.info/

acknowledgments
To paraphrase the great American poet Jerry Garcia, what a long, strange trip this has
been! Making Java Groovy has consumed several years of my life, a fact that leaves me
both horrified and endlessly amused. What I do know for sure, is that even though I’m
the sole author, I never could have done it alone.

 In late 2006, I attended a user group presentation11 by Jason Rudolph on Grails
that changed my life. He started me on my way into the wonderful world of Groovy.
The fact that Dierk König et al. had written the fantastic Groovy in Action (Manning,
2007) sealed the deal.

 I owe a great debt of gratitude to Dierk König, Guillaume Laforge,12 Paul King,13

and the other members of the Groovy core team for teaching me how much fun it can
be to code in Groovy, through their writings, examples, and, at times, direct assis-
tance. I want to express my heart-felt appreciation to Guillaume for contributing the
foreword to my book.

 Many members of the Grails team have been just as kind and helpful, and I want to
specifically mention Graeme Rocher, Jeff Brown, Peter Ledbrook, and Burt Beckwith.
This is a common theme in the Groovy world: I’ve never met so many incredibly

11 I think it was the Spring User Group in Philadelphia. Seriously, support your local Java/Groovy/Grails user
groups. They’re a great source of knowledge, networking, and experience.

12 Note the lowercase f. He’s not Geordi, although I do occasionally call him Bill.
xix

13 Because he and I have PhDs and work with Groovy, we’re groovydocs together. Russel Winder is one, too.

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxx

humble, brilliant14 people in my life. Andres Almiray also fits into that category, and I
feel privileged to know him and his wife Ixchel Ruiz.

 I’ve been very happy to learn from other developers involved in Groovy projects in
one form or another, including Dean Iverson, Cédric Champeau, Dave Klein (and the
rest of the Klein group), Hans Dockter, Peter Niederwieser, Marco Vermeulen,
Hamlet D’Arcy, Luke Daley, Bobby Warner, Colin Harrington, Jim Shingler, Danno
Ferrin, Scott Davis, Glen Smith, Adam Murdoch, Chris Judd, Tim Yates, Marc Palmer,
Rob Fletcher, Andrew Eisenberg, Russel Winder, and the indefatigable Hubert A.
Klein Ikkink.

 Over the past few years, I’ve become an active participant on the No Fluff Just Stuff
Conference Tour15 and will always be grateful to Jay Zimmerman for giving me that
opportunity. My list of NFJS colleagues and friends has to start with Nate Schutta for a
variety of technical and non-technical reasons, but I’m always happy to learn from
(and just hang out with) Venkat Subramaniam, Ken Sipe, Matt Stine, Brian Sletten,
Mark Richards, Pratik Patel, Matthew McCullough, Tim Berglund, Neal Ford, Peter
Bell, Craig Walls, Brian Sam-Bodden, Andy Painter, Paul Rayner, Daniel Hinojosa, Doug
Hawkins, Jim Harmon, Stuart Halloway, Raju Gandhi, Jeremy Deane, and David Bock.

 As friends and allies, I want to mention Mike Kimsal (editor of GroovyMag), Shawn
Hartsock, Steve Heckler, Nat Dunn, Will Provost, and especially Chris Stone, who has
been a friend and accomplice for much longer that than either of us care to admit. I
also need to single out Sandra Hartdagen for special attention. She contributed both
perspective and wisdom on a regular basis.

 I want to thank the people at Manning for all their assistance as well. Cynthia Kane
is everything I ever wanted in an editor. She continually came up with insightful sug-
gestions that fix problems in ways that never would have occurred to me. I also want to
mention Dan Robb, who has been a good friend longer than he has been at Manning.
My copyeditor, Melinda Rankin, was not only efficient and effective; she even got my
science fiction references. Thanks also to everyone at Manning who worked on my
book behind the scenes.

 Thanks to the following reviewers who read the manuscript at different stages of its
development for their helpful insights and comments: Al Scherer, Benjamin Muschko,
Bill Fly, Brandon Harper, Dan Alford, Dan Sline, Dave Klein, Domingo Torres, George
Jempty, Gorden Dickens, Greg Helton, Hien Luu, Joshua White, Marina Chernyavska,
Martin Senne, Michael Smolyak, Oleksandr Alesinskyy, Sean Reilly, Stephen Harrison,
Tariq Ahmed, Tim Vold, and Tom Fulton.

 I need to make a special reference to Valentin Crettaz, who did a full technical
proofread shortly before the book went into production. His review gave me a
“Michael Corleone in The Godfather: Part III” moment,16 and his feedback and sug-

14 Given my academic background, trust me, I know what brilliant looks like.
15 That’s http://nofluffjuststuff.com, coming soon to a city near you.

16 “Just when I thought I was out, they pull me back in!”

www.it-ebooks.info

http://nofluffjuststuff.com/
http://www.it-ebooks.info/

ACKNOWLEDGMENTS xxi

gestions made the book so much better I almost don’t recognize it. He is simply the
best there is.

 I am most grateful to my wife Ginger for her unending support and endurance
throughout the entire grueling writing process.17 My son Xander tolerated my absences
and lame geek humor with only a moderate number of eye rolls. Honestly, if I could
have been the rock star every kid dreams of being, he’s the model I would have fol-
lowed. I love you both with all my heart.

17 For example, one day I was reading my email and noticed there was a monthly list of recommended books
from Amazon.com. I wondered idly out loud how I could get my book on that list, when from the kitchen I

suddenly heard a rather exasperated, “Write it!” burst forth. Sigh.

www.it-ebooks.info

http://www.it-ebooks.info/

about this book
Who are you?
I assume you are a developer and are at least comfortable with Java.18 You don’t have
to be an expert, but any discussions of the basics of object-oriented programming are
beyond the scope of this book.

 I do not, however, assume that you have experience with Groovy. The Groovy con-
cepts are covered where they are used, and because I wanted the chapters to be as
independent as possible, that means some redundancy is involved. The question of
how to teach Groovy bothered me for some time, because I knew that some people
prefer the traditional, feature-by-feature tutorial, whereas others much prefer small
but nontrivial examples. In the end, I solved the problem by doing both. Chapter 2 is
entitled “Groovy by example,” and appendix B is called “Groovy by feature.” Hope-
fully one or the other or both will provide you with what you need.19

18 That unfortunate burst of blatant honesty just cut my potential audience by far too many. If you’re buying the
book just to have it look cool on your bookshelf, or to build a book fort, or to prop open your office door, or
to hold down stacks of new cover sheets for your T.P.S. reports, or for any other reason that doesn’t involve
actually reading it, please feel free to do so. By the way, you can get your own T.P.S. report cover sheets at
http://www.chrisglass.com/journal/downloads/TPSreport.pdf, among other places.

19 The definitive reference for Groovy is still Groovy in Action, 2nd edition, by Dierk König et al., http://manning
xxii

.com/koenig2/, my all-time favorite technical book.

www.it-ebooks.info

http://www.chrisglass.com/journal/downloads/TPSreport.pdf
http://manning.com/koenig2/
http://manning.com/koenig2/
http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii

Roadmap
The book is divided into three parts. The first part is about the Groovy language and
how to combine Groovy and Java in the same project. The second part covers testing
and build processes with which Groovy can help. The third part is a survey of the typi-
cal problems Java developers encounter and how you can use Groovy to make them
easier to solve.

 Note that the chapters are as independent as possible. By that I mean that each
chapter contains projects that combine build files, tests, persistence layers, and so on.
The chapter titles represent which topic is covered in depth in that chapter, but you
don’t need to read them in any particular order.

 The chapters in part 1, “Up to speed with Groovy,” are as follows:

1 Why add Groovy to Java?—Here I try to identify the issues that make Java awkward
or verbose, as well as the inconsistencies that have accumulated over the years,
and how Groovy can help you manage them. This is the “elevator pitch” chap-
ter, with the arguments you can use on your manager to justify adding Groovy
to a Java project.

2 Groovy by example—This chapter contains a handful of examples that highlight
features of the language that I’ll use throughout the book. As noted earlier,
appendix B (“Groovy by feature”) provides an alternative way to help you learn
any Groovy you need.

3 Code-level integration—How can Groovy and Java be mixed at the language
level? This chapter also explores how to work with Groovy scripts from Java,
including how to test them.

4 Using Groovy features in Java—What features does the Groovy language provide
that can be used anywhere, regardless of problem? This chapter covers POGOs,
operator overloading, AST transformations, and the Groovy JDK.

Part 2, “Groovy tools,” discusses testing and build processes and how Groovy can make
them easier:

5 Build processes—Managing automated builds is a pain point in many organiza-
tions. In this chapter, I look at both Ant and Maven from the Java world and
how Groovy works with each, and then I discuss one of the breakout projects
from the Groovy ecosystem: Gradle.

6 Testing Groovy and Java projects—Groovy is a dynamic language, making testing
even more important than usual. This chapter discusses testing tools like
JUnit and how Groovy works with them, along with the great mocking capabil-
ities built into the language. It finishes with a serious discussion of the Spock
testing framework.20
20 The Spock discussion includes far too many Star Trek references, but they were no tribble at all. (Sorry.)

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxiv

Part 3, “Groovy in the real world,” examines various topics that Java developers
encounter on a regular basis:

7 The Spring framework—Spring is one of the most successful and pervasive open
source projects in the Java world, and it works well with Groovy in a variety of ways.
This chapter uses Groovy classes as regular Spring beans and aspects and then dis-
cusses refreshable beans, inline scripted beans, and the BeanBuilder from Grails.

8 Database access—Every Java developer eventually works with persistent storage.
This chapter talks about using the groovy.sql.Sql class to handle raw SQL and
uses an example from MongoDB as a representative NoSQL database. It also
contains a discussion of GORM, the Grails Object Relational Mapping API from
Grails, that uses Groovy domain-specific languages to combine and configure
Spring and Hibernate.

9 RESTful web services—The REST approach for designing web services that can be
combined in scalable, efficient ways is examined, using the JAX-RS 2.0 specifica-
tion as a foundation. In addition to the typical URL-driven database, though, I
show how Groovy can be used to implement hypermedia as transitional links, as
structural links, or through custom providers.21

10 Building and testing web applications—Groovy uses metaprogramming to make
web development easier. It also includes groovlets, which make developing sim-
ple applications easy. Finally, this chapter includes a basic discussion of the
Grails framework, arguably the Groovy killer app.

Each chapter in parts 2 and 3 discusses a particular aspect of Java programming. I try
to follow this structure:

■ Review the current Java approach to the problem.
■ Present any hybrid Java/Groovy solutions.
■ Introduce pure Groovy alternatives.

For example, in chapter 6 on testing, I start with JUnit, then show the GroovyTestCase
subclass of JUnit’s TestCase, and later talk about the Spock testing framework.
Because not all the chapter topics break down cleanly that way, the beginning of each
chapter includes a figure that summarizes the technologies covered and how they
relate to each other. Also, at the end of each major section is a “Lessons Learned”
block to summarize the main points.22

 Three appendixes cover additional topics:

A Installing Groovy—This appendix explains how to install Groovy using the down-
loads, the Windows installer, and the latest cool tool: GVM, the Groovy Environ-
ment Manager.

B Groovy by feature—Here I provide a topic-by-topic review of Groovy, meant to
complement chapter 2, “Groovy by example.”

21 This really is good stuff you won’t find anywhere else.

22 Think of those as the tl;dr (“too long; didn’t read” in internet parlance) sections.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxv

C SOAP-based web services—(Available as a bonus download from www.manning.com/
MakingJavaGroovy.) Most companies have moved on from the Service Oriented
Architecture (SOA) approach to integration that dominated the early 2000s,
but Groovy works easily with the existing Java tools for SOAP and WSDL. In case
you’re working with legacy applications, this appendix shows how to use Groovy
in those situations.

Code conventions and downloads
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. Code examples appear throughout the book. Longer listings
appear under clear listing headers, while shorter listings appear between lines of text.
In many listings, the code is annotated to point out the key concepts.

 Source code for all the working examples is available from the publisher's website
at www.manning.com/MakingJavaGroovy and from the GitHub repository at https://
github.com/kousen/Making-Java-Groovy. You will find many extra examples here,
beyond those covered in the book.

Author Online
Purchase of Making Java Groovy includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/MakingJavaGroovy.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Ken Kousen is an independent consultant and technical trainer specializing in all
areas related to Java, especially involving open source projects like Spring, Hibernate,
Android, Groovy, and Grails. He has over 20 years of experience in the field and
numerous technical certifications. His academic background includes BS degrees in
both Mathematics and Mechanical Engineering from M.I.T., an MS and PhD in Aero-
space Engineering from Princeton, and an MS in Computer Science from Rensselaer
Polytechnic Institute.
www.it-ebooks.info

www.manning.com/MakingJavaGroovy
www.manning.com/MakingJavaGroovy
http://www.manning.com/MakingJavaGroovy
https://github.com/kousen/Making-Java-Groovy
https://github.com/kousen/Making-Java-Groovy
http://www.manning.com/makingJavaGroovy
http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of Making Java Groovy is captioned “The Orchestra Conduc-
tor.” The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs published in France. Each illus-
tration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages.
Whether on city streets, in small towns, or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxvi

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Up to speed with Groovy

Welcome to part 1: “Up to speed with Groovy.” This section is made up of
four chapters, covering topics that are independent of any particular applica-
tion. In the first chapter I try to help you make the business and technical case
for Groovy. The second chapter is a tutorial by example in how to use Groovy to
solve small but interesting problems. Combined with appendix B it should give
you the Groovy background you need to understand the rest of the book.

 The third chapter reviews how closely Groovy and Java work together. It cov-
ers running Groovy scripts programmatically from Java, as well as other ways the
two languages can be mixed. The easiest way to integrate the two languages is
just to make classes in each, instantiate them, and invoke their methods. This
chapter provides examples of doing exactly that.

 The final chapter in this part reviews idiomatic Groovy features that can be
particularly helpful when working with Java problems. From POGOs to AST trans-
formations to the Groovy JDK, this chapter shows many ways that Groovy can sim-
plify Java development.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Why add Groovy to Java?
For all of its flaws (and we’ll be reviewing them shortly), Java is still the dominant
object-oriented programming language in the industry today. It’s everywhere, espe-
cially on the server side, where it’s used to implement everything from web applica-
tions to messaging systems to the basic infrastructure of servers. It’s therefore not
surprising that there are more Java developers and more Java development jobs
available than for any other programming language. As a language, Java is an
unmitigated success story.

 If Java is so ubiquitous and so helpful, why switch to anything else? Why not con-
tinue using Java everywhere a Java Virtual Machine (JVM) is available?

 In this book, the answer to that question is, go right ahead. Where Java works
for you and gets the job done, by all means continue to use it. I expect that you
already have a Java background and don’t want to lose all that hard-earned experi-
ence. Still, there are problems that Java solves easily, and problems that Java makes

This chapter covers
■ Issues with Java
■ Groovy features that help Java
■ Common use cases for Java and how Groovy

makes them simpler
3

difficult. For those difficult issues, consider an alternative.

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Why add Groovy to Java?

That alternative is Groovy. In this chapter I’ll review some of the issues with Java that
lead to problems for developers and discuss how Groovy can help alleviate them. I’ll
also show a range of tools, provided as part of the Groovy ecosystem, that can make
pure Java development easier. In the long run, I suggest a blended approach: let Java
do what it does well, and let Groovy help where Java has difficulties.

 Throughout, this will be the mantra:

GUIDING PRINCIPLE Java is great for tools, libraries, and infrastructure. Groovy
is great for everything else.

Use Java where Java works well, and use Groovy where it makes your life easier.
Nobody is ever going to rewrite, say, the Spring Framework, in Groovy. There’s no
need. Groovy works beautifully with Spring, as I’ll discuss in detail in chapter 7. Like-
wise, the JVM is everywhere. That’s a good thing, because wherever Java can run, so
can Groovy, as shown in figure 1.1.

 I’ll discuss the practical details in the next chapter, but at its base Groovy is Java.
Groovy scripts and classes compile to bytecodes that can be freely intermixed with
compiled Java classes. From a runtime point of view, running compiled Groovy means
just adding a single JAR file to your environment.

 One of the goals of this book is to identify opportunities where Groovy can signifi-
cantly help Java developers. To do that, let me first review where Java might have some
issues that need help.

1.1 Issues with Java
A perfect storm swept through the development world in the mid- to late-1990s, which
ultimately resulted in moving the primary development language from C++ to Java.
Java is effectively the next-generation language in the C++ family. Its syntax shares
much in common with C and C++. Language constructs that caused intermediate-
level developers problems, like memory management and pointer arithmetic, were
handled automatically or removed from programmer control altogether. The lan-

Compiled Groovy bytecodes

+ groovy-all jar

Compiled Java

bytecodes

Java Runtime Environment

(JVM + standard libraries)

Groovy script

source

groovy command

(compiles and executes)

Figure 1.1 Groovy generates bytecodes for the Java Virtual Machine. Either compile
them ahead of time or let the groovy command generate them from source.
guage was small (as hard as that might be to imagine now), easy to write, and, above

www.it-ebooks.info

http://www.it-ebooks.info/

5Issues with Java

all, free. Just download a JDK, access the library docs (making available clean, up-to-
date, hyperlinked library documentation was quite the innovation at the time), and
start coding. The leading browser of the day, Netscape, even had a JVM built right into
it. Combined with the whole Write Once, Run Anywhere mantra, Java carried the day.

 A lot of time has passed since then. Java has grown considerably, and decisions
made early in its development now complicate development rather than simplify it.
What sorts of decisions were those? Here’s a short, though hardly exhaustive, list:

■ Java is statically typed.
■ All methods in Java must be contained within a class.
■ Java forbids operator overloading.
■ The default access for attributes and methods is “package private.”
■ Java treats primitives differently from classes.

Over time Java also accumulated inconsistencies. For example, arrays have a length
property, strings have a length method, collections have a size method, and node lists
(in XML) have a getLength method. Groovy provides a size method for all of them.

 Java also lacks metaprogramming capabilities.1 That’s not a flaw, but it limits Java’s
ability to create domain-specific languages (DSLs).

 There are other issues as well, but this list will give us a good start. Let’s look at a
few of these items individually.

1.1.1 Is static typing a bug or a feature?

When Java was created, the thinking in the industry was that static typing—the fact
that you must declare the type of every variable—was a benefit. The combination of
static typing and dynamic binding meant that developers had enough structure to let
the compiler catch problems right away, but still had enough freedom to implement
and use polymorphism. Polymorphism lets developers override methods from super-
classes and change their behavior in subclasses, making reuse by inheritance practical.
Even better, Java is dynamically bound by default, so you can override anything you
want unless the keyword final is applied to a method.

 Static typing makes Integrated Development Environments useful too, because
they can use the types to prompt developers for the correct fields and methods. IDEs
like Eclipse and NetBeans, both powerful and free, became pervasive in the industry
partly as a result of this convenience.

 So what’s wrong with static typing? If you want an earful ask any Smalltalk devel-
oper. More practically, under Java’s dynamic binding restrictions (that you can’t over-
ride anything unless two classes are related by inheritance), static typing is overly
restrictive. Dynamically typed languages have much more freedom to let one object
stand in for another.

1 That’s for a variety of good reasons, many of which relate to performance. Metaprogramming depends on
dynamic capabilities like reflection, which was very slow when Java was first released. Groovy in 1998 on Java

1.2 would have been a daunting prospect at best.

www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Why add Groovy to Java?

 As a simple example, consider arrays and strings. Both are data structures that col-
lect information: arrays collect objects, and strings collect characters. Both have the
concept of appending a new element to the existing structure. Say we have a class
that includes an array and we want to test the class’s methods. We’re not interested in
testing the behavior of arrays. We know they work. But our class has a dependency on
the array.

 What we need is some kind of mock object to represent the array during testing. If
we have a language with dynamic typing, and all we are invoking is the append method
on it using character arguments, we can supply a string wherever we have an array and
everything will still work.

 In Java one object can only stand in for another if the two classes are related by
inheritance or if both implement the same interface. A static reference can only be
assigned to an object of that type or one of its subclasses, or a class that implements
that interface if the reference is of interface type. In a dynamically typed language,
however, we can have any classes stand in for another, as long as they implement the
methods we need. In the dynamic world this is known as duck typing: if it walks like a
duck and it quacks like a duck, it’s a duck. See figure 1.2.

 We don’t care that a string is not an array as long as it has the append method we
need. This example also shows another feature of Groovy that was left out of Java:
operator overloading. In Groovy all operators are represented by methods that can be
overridden. For example, the + operator uses a plus() method and * uses multiply().
In the previous figure the << operator represents the leftShift() method, which is
implemented as append for both arrays and strings.

GROOVY FEATURE Groovy features like optional typing and operator over-
loading give developers greater flexibility in far less code.

class MyClass {

...

def collection = ...

collection << item

collection << item

...

}

Array

ref

1

ref

2

ref

N
...

String

'a' 'b' 'z'...

Figure 1.2 Arrays and strings from a duck-typing point of view. Each is a collection with
an append method. If that’s all we care about, they’re the same.
www.it-ebooks.info

http://www.it-ebooks.info/

7Issues with Java

Regarding optional typing, Groovy gives you the best of both worlds. If you know the
type of a variable, feel free to specify it. If you don’t know or you don’t care, feel free
to use the def keyword.

1.1.2 Methods must be in a class, even if you don’t need or want one

Some time ago, Steve Yegge wrote a very influential blog post called “Execution in the
Kingdom of the Nouns.”2 In it he described a world where nouns rule and verbs are
second-class citizens. It’s an entertaining post and I recommend reading it.

 Java is firmly rooted in that world. In Java all methods (verbs) must reside inside
classes (nouns). You can’t have a method by itself. It has to be in a class somewhere.
Most of the time that’s not a big issue, but consider, for example, sorting strings.

 Unlike Groovy, Java does not have native support for collections. Although collec-
tions have been a part of Java from the beginning in the form of arrays and the original
java.util.Vector and java.util.Hashtable classes, a formal collections framework
was added to the Java 2 Standard Edition, version 1.2. In addition to giving Java a
small but useful set of fundamental data structures, such as lists, sets, and maps, the
framework also introduced iterators that separated the way you moved through a col-
lection from its underlying implementation. Finally, the framework introduced a set of
polymorphic algorithms that work on the collections.

 With all that in place we can assemble a collection of strings and sort them as
shown in the following listing. First a collection of strings must be instantiated, then
populated, and finally sorted.

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class SortStrings {
 public static void main(String[] args) {
 List<String> strings = new ArrayList<String>();
 strings.add("this"); strings.add("is");
 strings.add("a"); strings.add("list");
 strings.add("of"); strings.add("strings");

 Collections.sort(strings);
 System.out.println(strings);
 }
}

The collections framework supplies interfaces, like List, and implementation classes,
like ArrayList. The add method is used to populate the list. Then the java.util
.Collections utility class includes static methods for, among other things, sorting
and searching lists. Here I’m using the single-argument sort method, which sorts its

Listing 1.1 Sorting strings using the Collections.sort method

Instantiating
a list

Populate
the list

A destructive
sort
2 Read the post from March 30, 2006 at Steve Yegge’s blog: http://mng.bz/E4MB.

www.it-ebooks.info

http://mng.bz/E4MB
http://www.it-ebooks.info/

8 CHAPTER 1 Why add Groovy to Java?

argument according to its natural sort. The assumption is that the elements of the list
are from a class that implements the java.util.Comparable interface. That inter-
face includes the compareTo method, which returns a negative number if its argu-
ment is greater than the current object, a positive number if the argument is less
than the current object, and zero otherwise. The String class implements Comparable
as a lexicographical sort, which is alphabetical, but sorts capital letters ahead of low-
ercase letters.

 We’ll look at a Groovy equivalent to this in a moment, but let’s consider another
issue first. What if you want to sort the strings by length rather than alphabetically?
The String class is a library class, so I can’t edit it to change the implementation of
the compareTo method. It’s also marked final, so I can’t just extend it and override the
compareTo implementation. For cases like this, however, the Collections.sort method
is overloaded to take a second argument, of type java.util.Comparator.

 The next listing shows a second sort of our list of strings, this time using the com-
parator, implemented as an anonymous inner class. Instead of using a main method as
in the previous example, here’s a StringSorter class that sorts strings either using the
default sort or by length.

import java.util.Collections;
import java.util.Comparator;
import java.util.List;

public class StringSorter {
 public List<String> sortLexicographically(List<String> strings) {
 Collections.sort(strings);
 return strings;
 }

 public List<String> sortByDecreasingLength(List<String> strings) {
 Collections.sort(strings, new Comparator<String>() {
 public int compare(String s1, String s2) {
 return s2.length() - s1.length();
 }
 });
 return strings;
 }
}

Here we see a consequence of the triumph of the nouns over the verbs. The Comparator
interface has a compare method, and all we want to do is to supply our own implemen-
tation of that method to Collections.sort. We can’t implement a method, however,
without including it in a class. In this case, we supply our own implementation (sort by
length in decreasing order) via the awkward Java construct known as an anonymous
inner class. To do so, we type the word new followed by the name of the interface we’re
implementing (in this case, Comparator), open a brace, and stuff in our implementa-
tion, all as the second argument to the sort method. It’s an ugly, awkward syntax,

Listing 1.2 A Java class to sort strings

Default
sort

Anonymous
inner class
whose only redeeming feature is that you do eventually get used to it.

www.it-ebooks.info

http://www.it-ebooks.info/

9Issues with Java

 Here’s the Groovy equivalent in script form:

def strings = ['this','is','a','list','of','strings']
Collections.sort(strings, {s1,s2 -> s2.size() - s1.size()} as Comparator)
assert strings*.size() == [7, 4, 4, 2, 2, 1]

First of all, I’m taking advantage of Groovy’s native support for collections by simply
defining and populating a list as though it’s an array. The strings variable is in fact a
reference to an instance of java.util.ArrayList.

 Next, I sort the strings using the two-argument version of Collections.sort. The
interesting part is that the second argument to the sort method is a closure (between
the braces), which is then “coerced” to implement Comparable using the as operator.3

 The closure is intended to be the implementation of the compare(String,String)
method analogous to that shown in the previous Java listing. Here I show the two
dummy arguments, s1 and s2, to the left of the arrow, and then use them on the right
side. I provide the closure as the implementation of the Comparator interface. If the
interface had several methods and I wanted to supply different implementations for
each method, I would provide a map with the names of the methods as the keys and
the corresponding closures as the values.

 Finally, I use the so-called spread-dot operator to invoke the size method on each
element of the sorted collection, which returns a list of results. In this case I’m asking
for the length of each string in the collection and comparing the results to the
expected values.

 By the way, the Groovy script didn’t require any imports, either. Java automati-
cally imports the java.lang package. Groovy also automatically brings in java.util,
java.net, java.io, groovy.lang, groovy.util, java.math.BigInteger, and java
.math.BigDecimal. It’s a small thing, but convenient.

GROOVY FEATURE Native syntax for collections and additional automatic
imports reduces both the amount of required code and its complexity.

If you’ve used Groovy before you probably know that there’s actually an even simpler
way to do the sort. I don’t need to use the Collections class at all. Instead, Groovy has
added a sort method to java.util.Collection itself. The default version does a nat-
ural sort, and a one-argument version takes a closure to do the sorting. In other
words, the entire sort can be reduced to a single line:

strings.sort { -it?.size() }

The closure tells the sort method to use the result of the size() method on each ele-
ment to do the sorting, with the minus sign implying that here I’m asking for descend-
ing order.

GROOVY FEATURE Groovy’s additions to the JDK simplify its use, and Groovy
closures eliminate artificial wrappers like anonymous inner classes.
3 Closure coercion like this is discussed further in chapter 4.

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Why add Groovy to Java?

There were two major productivity improvements in this section. First, there are all
the methods Groovy added to the Java libraries, known as the Groovy JDK. I’ll return
to those methods frequently. Second, I take advantage of Groovy’s ability to treat
methods as objects themselves, called closures. I’ll have a lot to say about closures in
the upcoming chapters, but the last example illustrated one advantage of them: you
almost never need anonymous inner classes.

 Incidentally, in the closure I used an additional Groovy feature to protect myself.
The question mark after the word it is the safe de-reference operator. If the reference
is null it invokes the size method here. If not it returns null and avoids the Null-
PointerException. That tiny bit of syntax wins over more Java developers to Groovy
than I ever would have believed.4

1.1.3 Java is overly verbose

The following listing shows a simple POJO. In this case I have a class called Task, per-
haps part of a project management system. It has attributes to represent the name, pri-
ority, and start and end dates of the task.

import java.util.Date;

public class Task {
 private String name;
 private int priority;
 private Date startDate;
 private Date endDate;

 public Task() {}

 public Task(String name, int priority, Date startDate, Date endDate) {
 this.name = name;
 this.priority = priority;
 this.startDate = startDate;
 this.endDate = endDate;
 }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public int getPriority() { return priority; }
 public void setPriority(int priority) { this.priority = priority; }
 public Date getStartDate() { return startDate; }
 public void setStartDate(Date startDate) { this.startDate = startDate;}
 public Date getEndDate() { return endDate; }
 public void setEndDate(Date endDate) { this.endDate = endDate; }

 @Override
 public String toString() {
 return "Task [name=" + name + ", priority=" + priority +

4 Sometimes they get tears in their eyes. “Really?” they say. “I don’t have to put in all those null checks?” It’s

Listing 1.3 A Java class representing a task

Data we
care about

Public getters
and setters
for the data

Typical
override
of toString
touching how happy they are.

www.it-ebooks.info

http://www.it-ebooks.info/

11Issues with Java

 ", startDate=" + startDate + ", endDate=" + endDate + "]";
 }
}

We have private fields and public getter and setter methods, along with whatever construc-
tors we need. We also add a typical override of the toString method. I could probably use
an override of equals and hashCode as well, but I left those out for simplicity.

 Most of this code can be generated by an IDE, but it still makes for a long listing, and
I haven’t added the necessary equals and hashCode overrides yet. That’s a lot of code
for what’s essentially a dumb data structure.

 The analogous Plain Old Groovy Object (POGO) is shown here:

@EqualsAndHashCode
class Task {
 String name
 int priority
 Date startDate
 Date endDate

 String toString() { "($name,$priority,$startDate,$endDate)" }
}

Seriously, that’s the whole class, and it does include overrides of the equals and hash-
Code methods. Groovy classes are public by default, as are Groovy methods. Attributes
are private by default. Access to an attribute is done through dynamically generated
getter and setter methods, so even though it looks like we’re dealing with individual
fields we’re actually going through getter and setter methods. Also, Groovy automati-
cally provides a map-based constructor that eliminates the need for lots of overloaded
constructors. The @EqualsAndHashCode annotation represents an Abstract Syntax
Tree (AST) transformation that generates the associated methods. Finally, I use a
Groovy string with its parameter substitution capabilities to convert a task into a string.

GROOVY FEATURE Groovy’s dynamic generation capabilities drastically reduce
the amount of code required in a class, letting you focus on the essence rather
than the ceremony.

Java also includes checked exceptions, which are a mixed blessing at best. The philos-
ophy is to catch (no pun intended) problems early in the development cycle, which is
also supposed to be an advantage to static typing.

1.1.4 Groovy makes testing Java much easier

Just because a class compiles doesn’t mean it’s implemented correctly. Just because
you’ve prepared for various exceptions doesn’t mean the code works properly. You’ve
still got to test it, or you don’t really know.5

5 My favorite example of this comes from a friend who used to teach C++ back when that language was shiny
and new. He looked at a student’s code, and it was a mess. Then he noticed the first line was /* and the last
line was */. He said, “You commented out your entire program.” The student shrugged and said, “That’s the

only way I could get it to compile!”

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Why add Groovy to Java?

 One of the most important productivity improvements of the past decade or so has
been the rise of automated testing tools. Java has tools like JUnit and its descendants,
which make both writing and running tests automated and easy.

 Testing is another area where Groovy shines. First, the base Groovy libraries
include GroovyTestCase, which extends JUnit’s TestCase class and adds a range of
helpful methods, such as testArrayEquals, testToString, and even shouldFail.
Next, Groovy’s metaprogramming capabilities have given rise to simple DSLs for testing.

 One particularly nice example is the Spock framework, which I’ll discuss in chap-
ter 6 on testing. Spock is lean and expressive, with blocks like given, expect, and
when/then.

 As an example, consider sorting strings, as implemented in Java and discussed ear-
lier. In listing 1.3 I presented a Java class that sorted strings both lexicographically and
by decreasing length. Now I’d like to test that, and to do so I’m going to use the Spock
testing framework from Groovy.

 A Spock test that checks both sorting methods is shown in the following listing.

import spock.lang.Specification;

class StringSorterTest extends Specification {
 StringSorter sorter = new StringSorter()
 def strings = ['this','is','a','list','of','strings']

 def "lexicographical sort returns alphabetical"() {
 when:
 sorter.sortLexicographically strings

 then:
 strings == ['a','is','list','of','strings','this']
 }

 def "reverse sort by length should be decreasing size"() {
 when:
 sorter.sortByDecreasingLength strings

 then:
 strings*.size() == [7, 4, 4, 2, 2, 1]
 }
}

In the Spock test the Java class under test is instantiated as an attribute. I populate the
data using the native collection in Groovy, even though the class under test is written
in Java and the methods take Java lists as arguments.6 I have two tests, and in each
case, even without knowing anything about Spock, it should be clear what the tests are
doing. I’m taking advantage of Groovy capabilities like optional parentheses and the

Listing 1.4 A Spock test that checks each Java sorting method

Testing a
Java class

Test the
lexicographical
sort

Test the
reverse
length sort
6 Applying Groovy tests to Java code is discussed in chapter 6.

www.it-ebooks.info

http://www.it-ebooks.info/

13Issues with Java

spread-dot operator, which applies to a list and returns a list with the specified proper-
ties only.

 The test passes, and I can use the same test with the Groovy implementation. The
point, though, is that I can add a Groovy test to a Java system without any problems.

1.1.5 Groovy tools simplify your build

Another area where Groovy helps Java is in the build process. I’ll have a lot to say
about Groovy build mechanisms in chapter 5, but here I’ll just mention a couple of
ways they help Java. If you’re accustomed to using Apache Ant for building systems,
Groovy adds execution and compilation tasks to Ant. Another option is to use Ant-
Builder, which allows you to write Ant tasks using Groovy syntax.

 That’s actually a common theme in Groovy, which I should emphasize:

GROOVY FEATURE Groovy augments and enhances existing Java tools, rather
than replacing them.

If your company has moved from Ant to Maven you’re using a tool that works at a
higher level of abstraction and manages dependencies for you. In chapter 5 two ways
are provided to add Groovy to a Maven build. The Groovy ecosystem, however, pro-
vides another alternative.

 In chapter 5 I discuss the latest Groovy killer app, Gradle. Gradle does dependency
management based on Maven repositories (though it uses Ivy under the hood) and
defines build tasks in a manner similar to Ant, but it’s easy to set up and run. Maven is
very powerful, but it has a lot of trouble with projects that weren’t designed from the
beginning with it in mind. Maven is a very opinionated framework, and customization
is done through plugins. Ultimately, in Maven the build file is written in XML. Gradle is
all about customization, and because the build file is written in Groovy you have the
entire power of the Groovy language available to you.

 That fact that Gradle build files are written in Groovy doesn’t limit it to Groovy
projects, though. If your Java project is in fact written in Maven form and has no exter-
nal dependencies, here’s your entire Gradle build file:

apply plugin:'java'

Applying the Java plugin defines a whole set of tasks, from compile to test to JAR. If
that one line of code is in a file called build.gradle, then just type gradle build at the
command line and a whole host of activities ensue. If you’re (hopefully) going to do
some testing, you’ll need to add a dependency on JUnit, or even Spock. The resulting
build file is shown here:

apply plugin:'java'

repositories {
 mavenCentral()

Standard Maven
repository
}

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Why add Groovy to Java?

dependencies {
 testCompile 'junit:junit:4.10'
 testCompile "org.spockframework:spock-core:0.7-groovy-2.0"
}

Now running gradle build results in a series of stages:

:compileJava
:processResources
:classes
:jar
:assemble
:compileTestJava
:processTestResources
:testClasses
:test
:check
:build

The result is a nice, hyperlinked set of documentation of all the test cases, plus a JAR
file for deployment.

 Of course, if there’s a plugin called java, there’s a plugin called groovy. Better yet,
the Groovy plugin includes the Java plugin and, as usual, augments and improves it. If
your project is similar to the ones discussed in this book, in that it combines Groovy
and Java classes and uses each where most helpful, then all you need is the Groovy plugin
and you’re ready to go. There are many other plugins available, including eclipse
and web. I’ll talk about them in chapter 5 on build processes.

 In this section I reviewed several of the features built into Java and how they can lead
to code that’s more verbose and complicated than necessary. I demonstrated how Groovy
can streamline implementations and even augment existing Java tools to make them eas-
ier to use and more powerful. I’ll show more details throughout the book. First I want
to list some of the additional capabilities Groovy brings to Java in the next section.

1.2 Groovy features that help Java
I’ve actually been discussing these all along, but let me make a few specific points
here. First, the Groovy version of a Java class is almost always simpler and cleaner.
Groovy is far less verbose and generally easier to read.

 As true as that statement is, though, it’s a bit misleading. I’m not advocating rewrit-
ing all your Java code in Groovy. Quite the contrary; if your existing Java code works,
that’s great, although you might want to consider adding test cases in Groovy if you
don’t already have them. In this book, I’m more interested in helping Java than
replacing it.

 What does Groovy offer Java? Here’s a short list of topics that are discussed in
much more detail in the rest of the book:

1 Groovy adds new capabilities to existing Java classes.
Groovy includes a Groovy JDK, which documents the methods added by Groovy to

Dependencies
in Maven form
the Java libraries. The various sort methods added to the Collection interface

www.it-ebooks.info

http://www.it-ebooks.info/

15Java use cases and how Groovy helps

that I used for strings was a simple example. You can also use Java classes with
Groovy and add features like operator overloading to Java. These and related top-
ics will be discussed in chapter 4.

2 Groovy uses Java libraries.
Practically every Groovy class relies on the Java libraries, with or without Groovy
additions. That means virtually every Groovy class is already an integration
story, mixing Groovy and Java together. One nice use case for Groovy is to
experiment with Java libraries you haven’t used before.

3 Groovy makes working with XML and JSON easy.
Here’s an area where Groovy shines. Groovy includes classes called Markup-
Builder, which makes it easy to generate XML, and JsonBuilder, which pro-
duces JSON objects. It also has classes called XmlParser and XmlSlurper, which
convert XML data structures into DOM structures in memory, and JsonSlurper,
to parse JSON data. These will be used throughout the book, especially in chap-
ter 9 on RESTful web services.

4 Groovy includes simplified data source manipulation.
The groovy.sql.Sql class provides a very simple way to work with relational
databases. I’ll talk about this in chapter 8 on databases, chapter 7 on working
with the Spring framework, and chapter 9 on RESTful web services.

5 Groovy’s metaprogramming streamlines development.
The builder classes are an example of Groovy metaprogramming. I’ll show
examples of DSLs in several chapters.

6 Groovy tests work for Java code.
The Spock testing tool, demonstrated in this chapter and extensively discussed
in chapter 6 on testing, is a great way to test Java systems.

7 Groovy build tools work on Java (and mixed) projects.
In chapter 5 on enhancing build processes, I’ll talk about AntBuilder, how to
add Groovy to Maven builds, and Gradle.

8 Groovy projects like Grails and Griffon make developing web and desktop applica-
tions easier.
The Grails project is a complete-stack, end-to-end framework for building web
applications, based on Spring and Hibernate. Griffon brings the same convention-
over-configuration ideas to desktop development. Grails is discussed in chapter 8
on databases and chapter 10 on web applications.

When looking at the sorts of problems Java developers typically encounter, this list will
be a source of ideas for making implementations simpler, easier to read and under-
stand, and faster to implement.

1.3 Java use cases and how Groovy helps
The examples I’ve discussed so far are all code-level simplifications. They’re very help-

ful, but I can do more than that. Groovy developers work on the same sorts of problems

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Why add Groovy to Java?

that Java developers do, so many higher-level abstractions have been created to make
addressing those problems easier.

 In this book I’m also going to survey the various types of problems that Java devel-
opers face on a regular basis, from accessing and implementing web services to using
object-relational mapping tools to improving your build process. In each case I’ll
examine how adding Groovy can make your life easier as a developer.

 Here’s a list of some of the areas I’ll discuss as we go along, and I’ll give you a brief
idea of how Groovy will help. This will also provide a lightweight survey of the upcom-
ing chapters.

1.3.1 Spring framework support for Groovy

One of the most successful open source projects in the Java industry today is the
Spring framework. It’s the Swiss Army chainsaw of projects; it’s pervasive throughout
the Java world and has tools for practically every purpose.

 No one is ever going to suggest rewriting Spring in Groovy. It works fine in Java as
it is. Nor is there any need to “port” it to Groovy. As far as Spring is concerned, com-
piled Groovy classes are just another set of bytecodes. Groovy can use Spring as
though it’s just another library.

 The developers of Spring, however, are well aware of Groovy and built in special
capabilities for working with it. Spring bean files can contain inline scripted Groovy beans.
Spring also allows you to deploy Groovy source code, rather than compiled versions,
as so-called refreshable beans. Spring periodically checks the source code of refreshable
beans for changes and, if it finds any, rebuilds them and uses the updated versions.
This is a very powerful capability, as chapter 7 on working with Spring will show.

 Finally, the developers of the Grails project also created a class called BeanBuilder,
which is used to script Spring beans in Groovy. That brings Groovy capabilities to
Spring bean files much the way Gradle enhances XML build files.

1.3.2 Simplified database access

Virtually all Java developers work with databases. Groovy has a special set of classes to
make database integration easy, and I’ll review them in chapter 8 on databases. I also
show an example of working with a MongoDB database through a Groovy library that
wraps the corresponding Java API.

 I’ll also borrow from the Grails world and discuss GORM, the Grails Object-
Relational Mapping tool, a DSL for configuring Hibernate. In fact, GORM has been
refactored to work with a variety of persistence mechanisms, including NoSQL data-
bases like MongoDB, Neo4J, Redis, and more.

1.3.3 Building and accessing web services

Another area of active development today is in web services. Java developers work with
both SOAP-based and RESTful services, the former involving auto-generated proxies
and the latter using HTTP as much as possible. REST is covered in chapter 9, and
www.it-ebooks.info

http://www.it-ebooks.info/

17Summary

SOAP-based web services are discussed in appendix C, available as a free download. In
both cases, if a little care is applied, the existing Java tools work just fine with Groovy
implementations.

1.3.4 Web application enhancements

Groovy includes a “groovlet” class, which acts like a Groovy-based servlet. It receives
HTTP requests and returns HTTP responses, and it includes pre-built objects for
requests, responses, sessions, and more. One of the most successful instances of
Groovy and Java integration, and arguably the killer app for Groovy, is the Grails
framework, which brings extraordinary productivity to web applications. Both are cov-
ered in chapter 10 on web development.

 In each of these use cases, Groovy can work with existing Java tools, libraries, and
infrastructure. In some situations, Groovy will simplify the required code. In other
cases, the integration is more deeply embedded and will provide capabilities far
beyond what Java alone includes. In all of them, the productivity gains will hopefully
be both obvious and dramatic.

1.4 Summary
Java is a large, powerful language, but it’s showing its age. Decisions made early in its
development are not necessarily appropriate now, and over time it has accumulated
problems and inconsistencies. Still, Java is everywhere, and its tools, libraries, and
infrastructure are both useful and convenient.

 In this chapter I reviewed some of the issues that are part of the Java development
world, from its verbosity to anonymous inner classes to static typing. Most Java devel-
opers are so accustomed to these “problems” that they see them as features as much as
bugs. Add a little bit of Groovy, however, and the productivity gains can be consider-
able. I demonstrated that simply using Groovy native collections and the methods
Groovy adds to the standard Java libraries reduced huge sections of code down to a
few lines. I also listed the Groovy capabilities that will be a rich source of ideas for sim-
plifying Java development.

 As powerful as Groovy is (and as fun as it is to use), I still don’t recommend replac-
ing your existing Java with Groovy. In this book I advocate a blended approach. The
philosophy is to use Java wherever it is appropriate, which mostly means using its tools
and libraries and deploying to its infrastructure. I add Groovy to Java wherever it helps
the most. In the next chapter I’ll begin that journey by examining class-level integra-
tion of Java and Groovy.
www.it-ebooks.info

http://www.it-ebooks.info/

Groovy by example
As the previous chapter stated, this book isn’t intended to be an exhaustive refer-
ence for Groovy, but a certain minimum level of Groovy proficiency is necessary.
While some people learn best through short, simple code examples illustrating
each concept, others prefer to see basic concepts combined to solve actual prob-
lems. For those who prefer snippets of code for each feature I’ve provided appen-
dix B, a Groovy tutorial arranged by feature.

 In this chapter, I’ll instead walk through a few small but non-trivial Groovy
examples. Hopefully this will help communicate not only the syntax of the lan-
guage, but some of the standard Groovy idioms as well. Some of the examples will
be used again in other chapters in the book, but are used here as illustrations of
basic Groovy practices.

This chapter covers
■ Basic Groovy syntax
■ Collections and closures
■ Using the Groovy JDK
18

www.it-ebooks.info

http://www.it-ebooks.info/

19Accessing Google Chart Tools

2.1 Hello, Groovy
Because every programming language book is required by law to include a “Hello,
World!” program, here’s Groovy’s version:

println 'Hello, World!'

In Java you compile with javac and execute the resulting bytecodes with java. In
Groovy you can compile with groovyc and execute with groovy, but you don’t actually
have to compile first. The groovy command can run with a source code argument,
and it will compile first and then execute. Groovy is a compiled language, but you
don’t have to separate the steps, though most people do. When you use an IDE, for
example, every time you save a Groovy script or class, it is compiled.

 The single line shown earlier is a complete program. Unlike with Java, you don’t
need to put all Groovy code into a class. Groovy supports running scripts. Everything
is still Java bytecodes under the hood, so what happens is that Groovy scripts eventu-
ally become the body of the main method in a class that extends groovy.lang.Script.

 Note two additional differences in syntax between Groovy and Java:

■ Semicolons are optional. You can add them, and it’s appropriate to use them if you
have more than one statement on a line, but they’re not normally necessary.

■ Parentheses are often optional. The println command is actually a method call,
and the String is the argument to the method. Because there’s no ambiguity,
you can leave out the parentheses. It’s not wrong to include them, though, if
you want.

OPTIONAL PARENTHESES Parentheses are optional until they aren’t. Simple
method calls normally omit them, but if there’s any uncertainty, add them.
Groovy is all about simplicity and understandability.

Now that the “Hello, World!” example is out of the way, I can move on to something a
bit more interesting. One helpful use case for Groovy is that it makes a nice client for
RESTful web services like Google Chart.

2.2 Accessing Google Chart Tools
One of the APIs that Google makes available is a RESTful web service known as the
Chart API, or, more formally, Google Chart Tools Image API.1 The documentation is
located at https://developers.google.com/chart/image/. The chart tools provide a
rich API for JavaScript users, but the inputs are ultimately URLs with query parameters.

 A developer sends a request to the base URL https://chart.apis.google.com/chart
and appends query parameters to specify the type of chart, its size, the data, and any

1 Google officially deprecated the image charts portion of Google Chart Tools on April 20, 2012. As of summer,
2013, the API still works. It is used here both as a nice, self-contained example and as a simple application that
illustrates many Groovy features. Other examples of accessing publicly available services are given throughout

the book.

www.it-ebooks.info

https://developers.google.com/chart/image/
https://chart.apis.google.com/chart
http://www.it-ebooks.info/

20 CHAPTER 2 Groovy by example

labels. Because that API also needs a “Hello, World” example, here’s the URL for a
three-dimensional pie chart:

https://chart.apis.google.com/chart?
 cht=p3&
 chs=250x100&
 chd=t:60,40&
 chl=Hello|World

This URL would be all on one line but is written
out here (and in the documentation) for illustra-
tion purposes. After the base URL, the parameters
list the chart type (cht) as a 3D pie chart, the chart
size (chs) as 250 by 100 pixels, the chart data (chd)
as 60 and 40 in simple text format, and the chart
labels (chl) “Hello” and “World.” Type that URL
into a browser and the resulting image is returned,
as shown in figure 2.1.

 The URL shown is hard-wired to produce the chart in figure 2.1. To make this
more general, I’ll show how to produce the URL from strings, lists, maps, closures,
and builders.

GOAL Write a Groovy script to generate the “Hello, World” 3D pie chart as a
desktop application.

In the process, I’ll discuss

■ String manipulation
■ Lists and maps
■ Processing data using closures
■ Groovy builder classes

In this case I’ll implement the steps in a simple script; later, it could be converted to a
class for integration purposes.

2.2.1 Assembling the URL with query string

To start, I need a variable to represent the base URL. In a Groovy script you don’t actu-
ally have to declare any types at all. If you declare a type the variable becomes local to
the script. If not, it becomes part of the “binding,” which is discussed in the next chap-
ter. Here, because I know the URL will be contained in a string before I convert it, I’ll
declare the variable to be of type java.lang.String:

String base = 'http://chart.apis.google.com/chart?'

Groovy is optionally typed. This means you can specify a type if you want to, or you can
use the keyword def if you don’t know or care. There’s some debate among develop-
ers about when to use def and when to specify a type. Dierk Koenig, lead author on

Figure 2.1 The Google Chart API
“Hello, World” example
the superb Groovy in Action (Manning, 2007), says it this way:

www.it-ebooks.info

http://www.it-ebooks.info/

21Accessing Google Chart Tools

USING DEF If you think of a type, type it (from Dierk Koenig). In other
words, if you know a variable will be a String, or a Date, or an Employee, use
that type of variable.

In my own experience, I used to use def a lot, but as time goes by I use it less and less.
I agree with Dierk, with the addition that when I’m tempted to use def I often pause a
moment and try to think of an actual type before using it. Other developers have
other styles, though. That’s the beauty of an optionally typed language: there’s room
for everybody.

 I now need to append the query parameters to this URL. Rather than write the
query string directly I’m going to use a typical idiom for this type of application, which
is to build a map and then generate the query string from the map parameters. With
that in mind, here’s the map of parameters:

def params = [cht:'p3',chs:'250x100',
 chd:'t:60,40',chl:'Hello|World']

In Groovy you create a map with square brackets, and each entry consists of keys and
values separated by a colon. The keys are assumed to be strings by default. The val-
ues can be anything. By default, the params variable is an instance of java.util
.LinkedHashMap.

COLLECTIONS Groovy has native syntax for lists and maps. Map keys are
assumed to be strings.

Each corresponding value is surrounded by single quotes. In Groovy, single-quoted
strings are instances of java.lang.String. Double-quoted strings are “interpolated”
strings, known (unfortunately) as GStrings. I’ll show an example of string interpola-
tion later in this program.

 To transform the map into a query string I first need to convert each of the map
entries into strings of the form “key=value,” and then I need to concatenate them all
together using ampersands as separators.2 The first step is accomplished by using a
special method added to all Groovy collections, known as collect. The collect
method takes a closure as an argument, applies the closure to each element of the col-
lection, and returns a new collection containing the results.

 Closures are introduced in the next sidebar and discussed extensively throughout
the book, but for the moment think of them as blocks of code representing the body
of a function, which may take dummy arguments. In the case of collect, when
applied to a map, the closure can take either one or two arguments. If the closure
takes one argument, the argument represents a Map.Entry; with two arguments, the
first is the key and the second is the value for each entry.

2 I also need to URL-encode the map entries, but in this case they’re already fine. In other examples of RESTful

web services I’ll demonstrate the encoding process.

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Groovy by example

 To transform the map into a list of key=value pairs, the following two-argument
closure works in the collect method:

params.collect { k,v -> "$k=$v" }

In Groovy, if the last argument to any method is a closure you can put the closure out-
side the parentheses. In this case the only argument to collect is a closure, so even the
optional parentheses are omitted.

The result of the operation is shown here:

["cht=p3", "chs=250x100", "chd=t:60,40", "chl=Hello|World"]

This process is illustrated in figure 2.2.
 To create the query string, use another method added by Groovy to collections,

called join. The join method takes a single argument that’s used as the separator
when assembling the elements into a string. To create a query string, invoke join with
an ampersand as an argument:

["cht=p3", "chs=250x100", "chd=t:60,40", "chl=Hello|World"].join('&')

The result is the needed query string, as shown here:

"cht=p3&chs=250x100&chd=t:60,40&chl=Hello|World"

Here’s the entire process so far, taking the base URL and the parameter map, and
building the Google Chart URL:

String base = 'http://chart.apis.google.com/chart?'
def params = [cht:'p3',chs:'250x100',
 chd:'t:60,40',chl:'Hello|World']
String qs = params.collect { k,v -> "$k=$v" }.join('&')

What is a closure?
A closure is a block of code, delimited by curly braces, which can be treated as an
object. The arrow notation is used to specify dummy arguments. In the closure
applied to the map in the current example, the two dummy arguments are k and v,
which represent the key and value of each entry. The expression on the right side of
the arrow says to substitute each key and value into a GString separated by an
equals sign. This collect method takes each entry in the map and converts it into
a string with the key assigned to the value, and produces a list of results.

collect { k,v -> "$k=$v" }

[cht:'p3', chs:'250x100',

chd:'t:60,40', chl:'Hello|World']

Figure 2.2 Apply collect to a map
to convert it into a list, where each
["cht=p3", "chs=250x100", "chd=t:60,40", "chl=Hello|World"] entry is transformed into a string.

www.it-ebooks.info

http://www.it-ebooks.info/

23Accessing Google Chart Tools

The result of all this manipulation is actually a string, not a URL. Before convert-
ing it to a URL, let me first verify that the process worked. Normally this would
require a test, as discussed extensively in chapter 6 on testing. Here, however, I’ll
just use the Groovy assert keyword, which takes a boolean expression as an argu-
ment. If the expression is true, nothing is returned, but if not, you get the error
printed to the console. In this case I’ll use the contains method from the Map
interface to check that each of the entries from the params map appears in the
query string in the proper format:

params.each { k,v ->
 assert qs.contains("$k=$v")
}

THE ASSERT KEYWORD Groovy asserts are an easy way to verify correctness. An
assert returns nothing if the expression is true, and prints a detailed error
message if it’s not.

One of the advantages of the join method is that you don’t have to worry about acci-
dentally adding an ampersand at the beginning or end of the string. It only adds the
separator internally.

 Note also that this is a case where the parentheses (on the join method) are
needed. In Groovy, if you leave off the parentheses when calling a method with no
arguments the compiler assumes you are asking for the corresponding getter or setter
method. Because I want the join() method (and not getJoin(), which doesn’t exist),
I need the parentheses.

2.2.2 Transmitting the URL

The Groovy JDK adds the toURL() method to the String class. As you might imag-
ine, this method converts an instance of java.lang.String into an instance of
java.net.URL.

To send an HTTP GET request to a URL and retrieve the results, convert the string
to a URL and invoke another Groovy JDK method, the getText() method, added to
java.net.URL. In other words, the data on a web page can be retrieved from this code:

The Groovy JDK
Groovy adds many helpful methods to existing Java library classes. Many, many times
I’ve found methods added to, say, String, Date, or Collection that I always wished
were in Java all along. The set of methods added by Groovy is known as the Groovy
JDK and has its own set of JavaDocs. The Groovy JDK documentation is available via
a link from the Groovy home page.

The Groovy JDK is discussed in more detail in chapter 3.
url.toURL().text

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Groovy by example

Here I’m deliberately using the text property of the URL class, knowing that the
effect will be to invoke the getText() method. There’s nothing wrong with actually
calling getText, but this is more idiomatic Groovy.

 Normally this would be exactly the code I want, and I use this technique in some of
the examples in the chapters on web services, but in this particular case the result isn’t
text. Google Chart takes the URL generated here and returns a binary image, so con-
verting it to text isn’t very helpful.

GROOVY PROPERTIES Accessing properties in Groovy automatically invokes
the associated getter or setter method.

Next I’ll build a Swing user interface that includes the image in a javax.swing
.ImageIcon. This will give me a chance to illustrate a builder, which is a great illustra-
tion of Groovy metaprogramming.

2.2.3 Creating a UI with SwingBuilder

In Groovy every class has a metaclass. A metaclass is another class that manages the
actual invocation process. If you invoke a method on a class that doesn’t exist, the
call is ultimately intercepted by a method in the metaclass called methodMissing.
Likewise, accessing a property that doesn’t exist eventually calls propertyMissing in
the metaclass. Customizing the behavior of methodMissing and propertyMissing is the
heart of Groovy runtime metaprogramming.

 Groovy metaprogramming is a large subject, but here I’ll demonstrate one of its
helpful results: the creation of builder classes. In a builder, the call to methodMissing
does something specific for that type of builder.

 Here I’ll illustrate a Swing builder. This is a class that intercepts names of compo-
nents and constructs a Swing user interface out of the results. This is actually easier to
demonstrate than to explain. I’ll start, however, by adding some imports to the Google
Chart script I’ve been constructing so far:3

import java.awt.BorderLayout as BL
import javax.swing.WindowConstants as WC
import groovy.swing.SwingBuilder
import javax.swing.ImageIcon

3 That’s another one of the “Duh! Why didn’t we do that all along?” type of revelations that Java developers get
all the time when they first learn Groovy. Why is it we only import java.lang in Java programs? Why not

Automatic imports
You may have noticed that I haven’t yet needed any import statements at all. Java
automatically imports the java.lang package. Groovy imports java.lang, as well
as java.util, java.io, java.net, groovy.lang, groovy.util, java.math.Big-
Integer, and java.math.BigDecimal.3
import lots of typical packages? Wouldn’t that make coding easier? Groovy says yes.

www.it-ebooks.info

http://www.it-ebooks.info/

25Accessing Google Chart Tools

In this script I’m importing three classes from the Java standard library. The first two
imports use the as operator to build an alias for the respective classes. That way the
code that uses BorderLayout and WindowConstants can just write BL or WC instead.
I’m also adding in the ImageIcon class, which will hold the image returned by Google
Chart. The import from the Groovy library is SwingBuilder, which will be used to con-
struct the Swing UI.

THE AS KEYWORD The as keyword has several uses, one of which is to provide
an alias for imported classes. The as keyword corresponds to the asType
method, which was added to java.lang.Object as part of the Groovy JDK.

In the case of SwingBuilder you invoke methods that don’t exist on the builder but
that are translated to the corresponding Swing API. For example, by calling the
frame method you’re actually instantiating the JFrame class. Giving it a map-like
argument of visible:true corresponds to calling the setVisible method with a
true argument.

 Here’s the code that uses the builder. Each method not in SwingBuilder is trans-
lated to the proper method call on the Swing library class:

SwingBuilder.edt {
 frame(title:'Hello, World!', visible:true, pack: true,
 defaultCloseOperation:WC.EXIT_ON_CLOSE) {
 label(icon:new ImageIcon("$base$qs".toURL()),
 constraints:BL.CENTER)
 }
}

The edt method on SwingBuilder builds a GUI using the event dispatch thread. It
takes a closure as an argument, and this is where the fun starts. The first statement
inside the closure is a call to the frame method, but the fact is, there’s no frame
method in SwingBuilder. The builder’s metaclass intercepts that call (via method-
Missing) and interprets it as a request to instantiate the javax.swing.JFrame class.
The frame method here lists a series of map entries, which are intended to supply val-
ues for the title, visibility, and close operation on the JFrame. The builder interprets
them as calls to setTitle, setVisible, and setDefaultCloseOperation on the
JFrame instance.

 After the parentheses there’s another closure. That’s interpreted to mean I’m
about to supply components that will be added to the JFrame instance. The next call is
to the label method, which of course doesn’t exist. The Swing builder knows to gen-
erate a JLabel instance as a result, call its setIcon method with a new ImageIcon
holding the image returned by Google Chart, and place the JLabel in the center of a
BorderLayout.

 Finally, after the frame closure I invoke the pack method on JFrame to make the
resulting GUI just big enough to hold the image. The next listing contains the com-
plete script (without the asserts, just to keep the listing short).
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Groovy by example

import java.awt.BorderLayout as BL
import javax.swing.WindowConstants as WC
import groovy.swing.SwingBuilder
import javax.swing.ImageIcon

def base = 'http://chart.apis.google.com/chart?'

def params = [cht:'p3',chs:'250x100',
 chd:'t:60,40',chl:'Hello|World']

String qs = params.collect { k,v -> "$k=$v" }.join('&')

SwingBuilder.edt {
 frame(title:'Hello, Chart!', pack: true,
 visible:true, defaultCloseOperation:WC.EXIT_ON_CLOSE) {
 label(icon:new ImageIcon("$base$qs".toURL()),
 constraints:BL.CENTER)
 }
}

The resulting image is shown in figure 2.3.

The next example demonstrates Groovy’s XML parsing and generation capabilities,
database manipulation, regular expressions, groovlets, and more.

2.3 Groovy Baseball
Figure 2.4 shows a web application I call Groovy Baseball. For a given date during

Listing 2.1 Building a Swing UI 3D pie chart using Google Chart

Lessons Learned (Google Chart)
1 Groovy variables can have types, or you can use the def keyword if you don’t

know or don’t care. The keyword def can also be used as a method return type
or argument.

2 Groovy has native syntax for lists and maps. This example used a Groovy map;
lists are used in many other examples throughout the book.

3 Closures are like anonymous function bodies with parameters.
4 The collect method transforms a collection by applying a closure to each ele-

ment and returning the resulting list.
5 The Groovy JDK adds many methods to the standard Java API.
6 Groovy parsers and builders simplify working with many APIs.

Figure 2.3 The “Hello, World”
Swing user interface, holding the
image returned by Google Chart
baseball season the page creates a Google Map that displays the results of all Major

www.it-ebooks.info

http://gd2.mlb.com/components/game/mlb/
http://.../groovybaseball/GroovyService.groovy?month=10&day=28&year=2007
http://.../groovybaseball/GroovyService.groovy?month=10&day=28&year=2007
http://www.it-ebooks.info/

27Groovy Baseball

League Baseball games on that day, using info markers centered on the stadium of the
home team. Game results are also listed in a small table. A calendar widget is provided
so the user can select an alternative date, which updates the page via an Ajax call.

 Some of the functionality is provided by JavaScript via the Google Maps API,
which creates the map and adds the markers. Also, the set of game results for a
given day is acquired via an Ajax call using the prototype JavaScript library. I’ll
show the code for that later. In the meantime I want to highlight the Groovy parts of
this application.

Figure 2.4 Groovy Baseball is a web application that shows the results of MLB games on a
given date.
www.it-ebooks.info

http://.../groovybaseball/GroovyService.groovy?month=10&day=28&year=2007
http://.../groovybaseball/GroovyService.groovy?month=10&day=28&year=2007
http://www.it-ebooks.info/

28 CHAPTER 2 Groovy by example

The application is simple but it has a fair number of moving parts, so I’ll build it in
stages. The first task is to collect the geographic information for the individual MLB
stadiums and save it in a database, as illustrated in figure 2.5.

 In this part of the process, I’ll cover

■ Plain Old Groovy Objects
■ Accessing a RESTful web service
■ The groovy.sql.Sql class

The next step is to access the online box scores and parse the resulting XML files, illus-
trated in figure 2.6.

During this stage, I’ll discuss

■ Reading from a database
■ Downloading information over the internet
■ Parsing XML

Finally, I need to send the resulting data to the view layer in a form it can understand,
as shown in figure 2.7.

During this stage, I’ll cover

■ Using a groovlet
■ Generating XML

I’ll begin the process with part 1, creating POGOs and saving data in a database.

Create stadium

POGOs

Geocode stadium

locations

Access Google

web service

Create DB and

save data

Figure 2.5 Building Groovy Baseball, part 1—geocoding stadium data and saving in DB

Load stadium

data

Access XML box

scores online

Generate game

result output

Parse XML and

extract data

Figure 2.6 Building Groovy Baseball, part 2—extracting box score data and creating
output POGOs

Format input data Get game results
Convert results to

XML

Figure 2.7 Building Groovy Baseball, part 3—drive system and generate XML
www.it-ebooks.info

http://www.it-ebooks.info/

29Groovy Baseball

2.3.1 Database data and Plain Old Groovy Objects

The game results on the web page are centered on the home stadiums of each game.
Google Maps places markers based on the latitude and longitude of a given location.
Because stadiums don’t tend to move much, it’s worth it to compute those locations
ahead of time and save them in some kind of persistence structure. In this case I used
a MySQL database, but any database would do.

 I’ll build a script here to collect the necessary info for each MLB stadium, compute
its latitude and longitude, and store them in a database table. I’ll start with a class to
represent a stadium.

THE STADIUM POGO
In Java we would call this class a Plain Old Java Object, or POJO. In Groovy I’ll use a Plain
Old Groovy Object, or POGO, instead. The following listing shows the Stadium class.

package beans

class Stadium {
 int id
 String name
 String city
 String state
 String team
 double latitude
 double longitude

 String toString() { "($team,$name,$latitude,$longitude)" }
}

If you’re used to Java, what’s conspicuous here is what’s absent. The lack of semico-
lons is probably not surprising at this point. What may be a surprise is that there are
no public or private access modifiers anywhere. In Groovy, if you don’t specify an
access modifier, attributes are assumed to be private, and methods are assumed to
be public.4

 You might also note that there are no constructors in the Stadium class. In Java,
if you don’t add a constructor, the compiler gives you a default constructor for free.
In Groovy, however, you get not only the default, but also a map-based constructor
that allows you to set any combination of attribute values by supplying them as key-
value pairs.

 With this in mind, here’s the first part of the script to populate a database table
with the Stadium locations:

Listing 2.2 Stadium.groovy: a POGO to hold stadium information

4 That’s another “duh” moment. The default access in Java is “package private,” which means the member
is accessible from any other class in the same subdirectory. In roughly 15 years of Java coding I’ve used
this access deliberately maybe twice, and both times there were reasonable alternatives. I can understand
trying to create some sort of friend access, but why make it the default? Once again, Groovy does what

makes sense.

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Groovy by example

def stadiums = []
stadiums <<
 new Stadium(name:'Angel Stadium',city:'Anaheim',state:'CA',team:'ana')
stadiums <<
 new Stadium(name:'Chase Field',city:'Phoenix',state:'AZ',team:'ari')
...
stadiums <<
 new Stadium(name:'Rogers Centre',city:'Toronto',state:'ON',team:'tor')
stadiums <<
 new Stadium(name:'Nationals Park',
 city:'Washington',state:'DC',team:'was')

The stadiums variable is initialized to an empty java.util.ArrayList. The left-shift
operator has been implemented in Collection to be an append method, so the rest
of the listing instantiates each of the MLB stadiums and appends it to the list.

 Each constructor sets the name of the stadium, as well as its city, state, and the
three-letter team abbreviation. What are missing are the latitude and longitude val-
ues. To supply those I use the Google geocoder, which is another RESTful web service
provided by Google, similar to the Google Chart API discussed in the previous section.

POGO Plain Old Groovy Objects are like POJOs, but with auto-generated get-
ters, setters, and map-based constructors.

GEOCODING

The Google Geocoding API is documented at https://developers.google.com/maps/
documentation/geocoding/. A geocoder transforms an address into a latitude and
longitude. To use the Google geocoder you need to assemble a URL that includes the
address information. According to the documentation, the URL has the form

http://maps.googleapis.com/maps/api/geocode/output?parameters

Here the value of output is either xml or json, depending on which type of data you
want back.5 The parameters property contains the address, as well as a sensor value.
Here’s the sample from the documentation, which (naturally enough) uses the address
of Google’s headquarters in Mountain View, CA:

http://maps.googleapis.com/maps/api/geocode/
xml?address=1600+Amphitheatre+Parkway,+Mountain+View,+CA&sensor=true_or_
false

If you intend to access the geocoder using JavaScript, I would say to use json
(JavaScript Object Notation) for the output value. Because I’m working with Groovy,
and Groovy works well with XML, I’ll use the xml value. The query string contains two
parameters. The first is the address, which holds URL-encoded values of the street,
city, and state (separated by “,”). The other parameter is called sensor, whose value is
true if the request is coming from a GPS-enabled device and false otherwise.

5 True REST advocates prefer that content negotiation be done in an Accept header on the HTTP request.

Here Google does it through separate URIs.

www.it-ebooks.info

https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
http://www.it-ebooks.info/

31Groovy Baseball

 I’ll start the geocoding process by setting a variable to the base URL:

def base = 'http://maps.googleapis.com/maps/api/geocode/xml?'

To assemble the query string, consider a list containing the stadium name, city,
and state:

[stadium.name, stadium.city, stadium.state]

Each of these values could potentially include spaces, apostrophes, or other symbols
that wouldn’t be legal in a URL. I therefore need to URL-encode each of the values. As
I showed in the last section, applying the collect method to a list returns a new list
containing the transformed values. In this case, the transformation I want is to use the
encode method in the java.net.URLEncoder, as shown:

[stadium.name, stadium.city, stadium.state].collect {
 URLEncoder.encode(it,'UTF-8')
}.join(',')

If you use a closure without specifying a dummy parameter, as here, each element of
the list is assigned to a variable called it. The body of the closure executes the static
encode method on the name, city, and state, using the UTF-8 encoding scheme. The
result is a list containing the encoded values. Finally, the values of the list are joined
into a string using “,” as a separator.

 That takes care of assembling the address. Forming a complete query string is
done using the same closure used in the Google Chart listing. The complete process
so far is shown here:

def url = base + [sensor:false,
 address: [stadium.name, stadium.city, stadium.state].collect {
 URLEncoder.encode(it,'UTF-8')
 }.join(',')
].collect {k,v -> "$k=$v"}.join('&')

The result of all this string manipulation is to create a full URL, similar to the one
shown in the previous example, which can be transmitted to the Google geocoder.

 Now comes the fun part. The geocoder returns a fairly extensive block of XML
(not shown here, but available online in the Google geocoder documentation at
https://developers.google.com/maps/documentation/geocoding/#XML). Processing

Building a query string
The combination of parameter map, collect closure, and join method is a conve-
nient way to build a query string. A developer can store the parameters in any order,
or accept them from the user (as in a Grails application), and turn them into a query
string with a minimum of effort.
the XML using Java would be quite verbose. Fortunately, XML is nothing to Groovy.

www.it-ebooks.info

https://developers.google.com/maps/documentation/geocoding/#XML
https://developers.google.com/maps/documentation/geocoding/#XML
http://www.it-ebooks.info/

32 CHAPTER 2 Groovy by example

The entire process of transmitting the URL to the Google geocoder and parsing the
result into a DOM tree takes one line:

def response = new XmlSlurper().parse(url)

Groovy has two classes for parsing XML. One is called XmlParser, and the other is
XmlSlurper. Both convert XML into a DOM tree. The underlying structure and process
are somewhat different, but from a practical point of view the slurper is more efficient
and takes less memory, so that’s what I’ll use here. Extracting the results I need is a sim-
ple matter of walking the tree. I could paste in a copy of the XML output to show you the
structure, but it’s easy enough to understand if you see the Groovy parsing code:

stadium.latitude = response.result[0].geometry.location.lat.toDouble()6

stadium.longitude = response.result[0].geometry.location.lng.toDouble()

In other words, the slurper returns the root of the DOM tree, which is assigned to a
variable called response. The root has a child element called result, which has a
child called geometry, which has a child called location, which then has two chil-
dren, one called lat and the other called lng. Sometimes the geocoder returns multi-
ple results, so I used the array index 0 on result to use only the first one. Because
everything in XML is a String and I want to assign the results to double values in
Stadium, I finally use the toDouble method added to String to do the conversion.

PARSING XML Whether you use an XmlParser or an XmlSlurper, extracting
data from XML means just walking the tree.7

The following listing shows the complete Geocoder class, with its method fillInLatLng
that takes a Stadium as an argument and fills in the latitude and longitude values.

class Geocoder {
 def base = 'http://maps.googleapis.com/maps/api/geocode/xml?'

 def fillInLatLng(Stadium stadium) {
 def url = base + [sensor:false,
 address: [stadium.name, stadium.city, stadium.state].collect {
 URLEncoder.encode(it,'UTF-8')
 }.join(',')
].collect {k,v -> "$k=$v"}.join('&')
 def response = new XmlSlurper().parse(url)
 stadium.latitude =
 response.result[0].geometry.location.lat.toDouble()
 stadium.longitude =
 response.result[0].geometry.location.lng.toDouble()
 return stadium
 }
}

6 Try that in Java. Nothing sells Groovy to Java developers like working with XML.
7 Parsing (actually, slurping) JSON is just as easy. The book source code for chapter 2 includes another example

Listing 2.3 Geocoder.groovy, which uses the Google geocoder to compute lat and lng
that accesses and parses JSON data.

www.it-ebooks.info

http://www.it-ebooks.info/

33Groovy Baseball

THE GROOVY.SQL.SQL CLASS

Returning to the original problem, I want to store the stadium information in a data-
base. I’m now going to take advantage of a very useful class in the Groovy library,
groovy.sql.Sql. This class connects to a database and allows you to execute SQL
against it. To begin the process, here’s how the Sql class is instantiated:

Sql db = Sql.newInstance(
 'jdbc:mysql://localhost:3306/baseball',
 '...username...',
 '...password...',
 'com.mysql.jdbc.Driver'
)

The Sql class has a static newInstance method, whose arguments are the JDBC URL,
the username and password, and the driver class. The result is a connection to the
database. Next, I drop the stadium table if it already exists:

db.execute "drop table if exists stadium;"

The execute method takes a SQL string and runs it against the database. Here again,
I’m taking advantage of the optional parentheses.

 The next step is to create the table to hold the stadium information:

db.execute '''
 create table stadium(
 id int not null auto_increment,
 name varchar(200) not null,
 city varchar(200) not null,
 state char(2) not null,
 team char(3) not null,
 latitude double,
 longitude double,
 primary key(id)
);
'''

The three single quotes represent a multiline string in Groovy. Three double quotes
would be a multiline GString, which I could use for parameter substitution, but they’re
not needed in this particular case.

 Now that the table has been constructed it’s time to populate the table with sta-
dium data:

Geocoder geo = new Geocoder()
stadiums.each { s ->
 geo.fillInLatLng s
 db.execute """
 insert into stadium(name, city, state, team, latitude, longitude)
 values(${s.name},${s.city},${s.state},
 ${s.team},${s.latitude},${s.longitude});
 """
}

After instantiating the geocoder I walk through each stadium in the collection,

assigning each to the dummy variable s. For each one, after computing the latitude

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Groovy by example

and longitude, I execute an insert statement contained within three double quotes,
where I substitute the values I need from the stadium using the standard ${…} notation.

 All that remains is to do some kind of sanity check to make sure that the values
received are reasonable. Here are some assert statements to do just that:

assert db.rows('select * from stadium').size() == stadiums.size()
db.eachRow('select latitude, longitude from stadium') { row ->
 assert row.latitude > 25 && row.latitude < 48
 assert row.longitude > -123 && row.longitude < -71
}

The first assert statement checks that the total number of rows in the table matches
the number of stadiums in the collection. The next statement invokes the eachRow
method on the connection, selecting just the latitude and longitude, and assigning
the dummy variable row to each of the rows in the result set. The two contained
assert statements verify that the latitudes are between 25 and 48 and that the longi-
tudes are between -123 and -71.

THE SQL CLASS The groovy.sql.Sql class removes almost all the ceremony
surrounding raw JDBC and adds convenience methods as well.

The complete script is shown in the next listing.

package service

import groovy.sql.Sql

def stadiums = []
stadiums <<
 new Stadium(name:'Angel Stadium',city:'Anaheim',state:'CA',team:'ana')
...
stadiums <<
 new Stadium(name:'Nationals Park',city:'Washington',
 state:'DC',team:'was')

Sql db = Sql.newInstance(
 'jdbc:mysql://localhost:3306/baseball',
 '...username...',
 '...password...',
 'com.mysql.jdbc.Driver'
)

db.execute "drop table if exists stadium;"
db.execute '''
 create table stadium(
 id int not null auto_increment,
 name varchar(200) not null,
 city varchar(200) not null,
 state char(2) not null,
 team char(3) not null,

Listing 2.4 populate_stadium_data.groovy

Populate a list with
Stadium instances

Access
database

Multiline
string
 latitude double,

www.it-ebooks.info

http://www.it-ebooks.info/

35Groovy Baseball

 longitude double,
 primary key(id)
);
'''

Geocoder geo = new Geocoder()
stadiums.each { s ->
 geo.fillInLatLng s
 db.execute """
 insert into stadium(name,city,state,team,latitude,longitude)

values(${s.name},${s.city},${s.state},${s.team},${s.latitude},${s.longit
ude});

 """
}

assert db.rows('select * from stadium').size() == stadiums.size()
db.eachRow('select latitude,longitude from stadium') { row ->
 assert row.latitude > 25 && row.latitude < 48
 assert row.longitude > -123 && row.longitude < -71
}

This script collects all the latitude and longitude values for each MLB stadium, creates
a database table to hold them, and populates the table. It only has to be run once, and
the application can then use the table. In the process of reviewing the code I used a
Stadium POGO, a list, a couple of collect methods with closures, an example that
used the URLEncoder class from Java in a Groovy script, and database manipulation
through the groovy.sql.Sql class.

 The next step is to collect box score data from a site maintained by Major League
Baseball, and generate XML information that can be sent to a view page.

2.3.2 Parsing XML

Major League Baseball continuously updates the results of baseball games online. The
information is kept in XML format in links descending from http://gd2.mlb.com/
components/game/mlb/.

 On the site the games are arranged by date. Drilling down from the base URL
requires links of the form "year_${year}/month_${month}/day_${day}/", where the
year is four digits, and the month and day are two digits each. The games for that date
are listed as individual links. For example, figure 2.8 shows links for each game played
on May 5, 2007.8

 The link for each individual game has the form

gid_${year}_${month}_${day}_${away}mlb_${home}mlb_${num}

The year, month, and day values are as expected. The values for away and home are
three-letter lowercase abbreviations for each team, and the value of num represents the
game number that day (1 for the first game, 2 for the second game of a double

Insert results
into DB

Check
results
8 By an astonishing coincidence, May 5 is my son’s birthday.

www.it-ebooks.info

http://gd2.mlb.com/components/game/mlb/
http://gd2.mlb.com/components/game/mlb/
http://www.it-ebooks.info/

36 CHAPTER 2 Groovy by example

header). The links for each game contain a series of files, but the one I’m interested
in is called boxscore.xml.

 To retrieve the box score information I’ll create a class called GetGameData. This
class will have attributes for the base URL and the team abbreviations, as shown. The
next listing shows a portion of this class.

class GetGameData {
 def day
 def month
 def year

 String base = 'http://gd2.mlb.com/components/game/mlb/'
 Map stadiumMap = [:]

 Map abbrevs = [
 ana:'Los Angeles (A)', ari:'Arizona', atl:'Atlanta',
 bal:'Baltimore', bos:'Boston', cha:'Chicago (A)',
 chn:'Chicago (N)', cin:'Cincinnati', cle:'Cleveland',
 col:'Colorado', det:'Detroit', flo:'Florida',

Listing 2.5 A portion of GetGameData, showing the attributes and initialization

Figure 2.8 Links to baseball games played on May 5, 2007

Used as strings to
download box scores

Map of team
abbreviations to
Stadium instances
 hou:'Houston', kca:'Kansas City', lan:'Los Angeles (N)',

www.it-ebooks.info

http://www.it-ebooks.info/

37Groovy Baseball

 mil:'Milwaukee', min:'Minnesota', nya:'New York (A)',
 nyn:'New York (N)', oak:'Oakland', phi:'Philadelphia',
 pit:'Pittsburgh', sdn:'San Diego', sea:'Seattle',
 sfn:'San Francisco', sln:'St. Louis', tba:'Tampa Bay',
 tex:'Texas', tor:'Toronto', was:'Washington']

 GetGameData() {
 fillInStadiumMap()
 }

 def fillInStadiumMap() {
 Sql db = Sql.newInstance(
 'jdbc:h2:build/baseball',
 'org.h2.Driver'
)

 db.eachRow("select * from stadium") { row ->
 Stadium stadium = new Stadium(
 name:row.name,
 team:row.team,
 latitude:row.latitude,
 longitude:row.longitude
)

 stadiumMap[stadium.team] = stadium
 }
 db.close()
 }

The key-value pairs in the abbrevs map hold the three-letter abbreviations for each
team and the city name, respectively.

 The next step is to process the actual box scores. Here’s some sample data, taken
at random. The random date I’ve chosen is October 28, 2007.9 The next listing shows
the box score in XML form, truncated to show the typical elements without showing
them all.

<boxscore game_id="2007/10/28/bosmlb-colmlb-1" game_pk="224026"
 home_sport_code="mlb" away_team_code="bos" home_team_code="col"
 away_id="111" home_id="115" away_fname="Boston Red Sox"
 home_fname="Colorado Rockies"
 away_sname="Boston" home_sname="Colorado" date="October 28, 2007"
 away_wins="5" away_loss="0" home_wins="0" home_loss="5" status_ind="F">
 <linescore away_team_runs="4" home_team_runs="3"
 away_team_hits="9" home_team_hits="7" away_team_errors="0"
 home_team_errors="0">
 <inning_line_score away="1" home="0" inning="1" />
 <inning_line_score away="0" home="0" inning="2" />
 ...
 <inning_line_score away="0" home="0" inning="9" />
 </linescore>

Listing 2.6 boxscore.xml: the box score from game 4 of the 2007 World Series

Read stadium data
from database
9 Just happens to be the day the Red Sox won the World Series in 2007.

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Groovy by example

 <pitching team_flag="away" out="27" h="7" r="3" er="3" bb="3"
 so="7" hr="2" bf="37" era="2.60">
 <pitcher id="452657" name="Lester" pos="P" out="17" bf="23"
 er="0" r="0" h="3" so="3" hr="0" bb="3" w="2" l="0" era="0.00"
 note="(W, 2-0)" />
 <pitcher id="434668" name="Delcarmen" pos="P" out="2" bf="4"
 er="1" r="1" h="2" so="1" hr="1" bb="0" w="0" l="0" era="9.00"
 note="(H, 2)" />
 ...
 <pitcher id="449097" name="Papelbon" pos="P" out="5" bf="5"
 er="0" r="0" h="0" so="1" hr="0" bb="0" w="0" l="0" era="0.00"
 note="(S, 4)" />
 </pitching>
 <batting team_flag="home" ab="34" r="3" h="7" d="2" t="0" hr="2"
 rbi="3" bb="3" po="27" da="18" so="7" avg=".216" lob="12">
 <batter id="430565" name="Matsui" pos="2B" bo="100" ab="4" po="3"
 r="0" bb="0" a="5" t="0" sf="0" h="1" e="0" d="1" hbp="0"
 so="1" hr="0" rbi="0" lob="2" fldg="1.000" avg=".286" />
 <batter id="466918" name="Corpas" pos="P" bo="101" ab="0" po="0"
 r="0" bb="0" a="1" t="0" sf="0" h="0" e="0" d="0" hbp="0"
 so="0" hr="0" rbi="0" lob="0" fldg="1.000" avg=".000" />
...
 </batting>
 <pitching team_flag="home" out="27" h="9" r="4" er="4" bb="1"
 so="4" hr="2" bf="34" era="6.91">
 <pitcher id="346871" name="Cook" pos="P" out="18" bf="23" er="3"
 r="3" h="6" so="2" hr="1" bb="0" w="0" l="2" era="4.50"
 note="(L, 0-2)" />
...
 </pitching>
 <batting team_flag="away" ab="33" r="4" h="9" d="2" t="0" hr="2"
 rbi="4" bb="1" po="27" da="8" so="4" avg=".322" lob="10">
 <batter id="453056" name="Ellsbury" pos="CF-LF" bo="100" ab="4"
 po="3" r="1" bb="0" a="0" t="0" sf="0" h="2" e="0" d="1"
 so="1" hr="0" rbi="0" lob="2" fldg="1.000" avg=".450" />
 <batter id="456030" name="Pedroia" pos="2B" bo="200" ab="4" po="1"
 r="0" bb="0" a="4" t="0" sf="0" h="0" e="0" d="0" hbp="0"
 so="0" hr="0" rbi="0" lob="2" fldg="1.000" avg=".227" />
...
 </batting>
...
</boxscore>

The root element is <boxscore>, which has several attributes. It has a child element
called <linescore>, which shows the scoring in each inning. Then there are <pitching>
and <batting> elements for the home team and away team, respectively.

 This isn’t a terribly complex XML file, but if you had to process it using Java the
code would quickly get involved. Using Groovy, as shown previously, all you have to do
is walk the tree.

 Parsing this data uses the same approach as parsing the geocoded data in the last
section. Here I need to assemble the URL based on the month, day, and year and then
parse the box score file:
www.it-ebooks.info

http://www.it-ebooks.info/

39Groovy Baseball

def url = base + "year_${year}/month_${month}/day_${day}/"
def game = "gid_${year}_${month}_${day}_${away}mlb_${home}mlb_${num}/

boxscore.xml"
def boxscore = new XmlSlurper().parse("urlgame")

After parsing the file I can walk the tree to extract the team names and scores:

def awayName = boxscore.@away_fname
def awayScore = boxscore.linescore[0].@away_team_runs
def homeName = boxscore.@home_fname
def homeScore = boxscore.linescore[0].@home_team_runs

The dots represent child elements, as before, and this time the @ symbols imply
attributes.

PARSING XML Dots traverse from parent elements to children, and @ signs
represent attribute values.

GENERATING GAME RESULTS

Before I show the complete method I need one more section. For the Groovy Baseball
application I’m not interested in console output. Rather, I want to assemble the game
results into a format that can be processed in the view layer by JavaScript. That means
I need to return an object that can be converted into XML (or JSON).

XML, regular expressions, and the Groovy Truth
To do some slightly more interesting processing, consider determining the winning
and losing pitchers. The XML contains that information in a note attribute of the
pitcher element. I can process that using a regular expression, assuming it exists
at all:

def pitchers = boxscore.pitching.pitcher
pitchers.each { p ->
 if (p.@note && p.@note =~ /W|L|S/) {
 println " ${p.@name} ${p.@note}"
 }
}

First I select all the pitcher elements for both teams. Then I want to examine the
pitcher elements to find out who won and lost and if anyone was assigned a save.
In the XML this information is kept in a note annotation in the pitcher element,
which may or may not exist.

In the if statement, therefore, I check to see if a note attribute is present. Here I’m
using the “Groovy Truth,” which means that non-null references evaluate to true. So
do non-empty strings or collections, non-zero numbers, and, of course, the boolean
literal true. If the note element is present, I then use the so-called “slashy” syntax
to check to see if the note matches a regular expression: p.@note =~ /W|L|S/. If
there’s a match I print out the values.
 Here’s a class called GameResult for that purpose:

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Groovy by example

class GameResult {
 String home
 String away
 String hScore
 String aScore
 Stadium stadium

 String toString() { "$home $hScore, $away $aScore" }
}

CLOSURE RETURN VALUES The last expression in a closure is returned
automatically.

This POGO is a simple wrapper for the home and away teams and the home and away
scores, as well as for the stadium. The stadium is needed because it contains the lati-
tude and longitude values I need for the Google Map. The following listing now shows
the complete getGame method in the GetGameData class shown in listing 2.5.

 def getGame(away, home, num) {
 println "${abbrevs[away]} at ${abbrevs[home]} on ${month}/${day}/

${year}"
 def url = base + "year_${year}/month_${month}/day_${day}/"
 def game = "gid_${year}_${month}_${day}_${away}mlb_${home}mlb_${num}/

boxscore.xml"
 def boxscore = new XmlParser().parse("urlgame")
 def awayName = boxscore.@away_fname
 def awayScore = boxscore.linescore[0].@away_team_runs
 def homeName = boxscore.@home_fname
 def homeScore = boxscore.linescore[0].@home_team_runs
 println "$awayName $awayScore, $homeName $homeScore (game $num)"
 GameResult result = new GameResult(home:homeName,
 away:awayName,
 hScore:homeScore,
 aScore:awayScore,
 stadium:stadiumMap[home]
)
 return result
 }

The method uses an XmlSlurper to convert the XML box score into a DOM tree,
extracts the needed information, and creates and returns an instance of the Game-
Result class.

 There’s one other method in the GetGameData class, which is the one used to parse
the web page listing the games for that day. This is necessary because due to rain-outs
and other postponements there’s no way to know ahead of time which games will actu-
ally be played on a given day.

 Parsing HTML is always a dicey proposition, especially because it may not be well-
formed. There are third-partly libraries to do it,10 but the mechanism shown here

Listing 2.7 The getGame method in GetGameData.groovy

data

Parsing
the XMLExtract

data

Create
response
object

Use home
stadium
10 See, for example, the NekoHTML parser at http://nekohtml.sourceforge.net/.

www.it-ebooks.info

http://nekohtml.sourceforge.net/
http://www.it-ebooks.info/

41Groovy Baseball

works. It also demonstrates regular-expression mapping in Groovy. The getGames
method from GetGameData is shown in the next listing.

 def getGames() {
 def gameResults = []
 println "Games for ${month}/${day}/${year}"
 String url = base + "year_$year/month_$month/day_$day/"
 String gamePage = url.toURL().text
 def pattern =
 /\"gid_${year}_${month}_${day}_(\w*)mlb_(\w*)mlb_(\d)/

 Matcher m = gamePage =~ pattern
 if (m) {
 m.count.times { line ->
 String away = m[line][1]
 String home = m[line][2]
 String num = m[line][3]
 try {
 GameResult gr = this.getGame(away,home,num)
 gameResults << gr
 } catch (Exception e) {
 println "${abbrevs[away]} at ${abbrevs[home]} not started

yet"
 }
 }
 }
 return gameResults
 }

The =~ method in Groovy returns an instance of java.util.regex.Matcher. The
parentheses in the regular expression are groups, which let me extract the away team
abbreviation, the home team abbreviation, and the game number from the URL. I use
those to call the getGames method from listing 2.7 and put the results into a collection
of GameResult instances.

TESTING

All that’s left is to test the complete GetGameData class. A JUnit test to do so is shown in
the next listing.

class GetGameDataTest {
 GetGameData ggd = new GetGameData(month:10,day:28,year:2007)

 @Test
 void testFillInStadiumMap() {
 assert 0 == ggd.stadiumMap.size()
 ggd.fillInStadiumMap()
 def stadiums = ggd.stadiumMap.values()
 assert 30 == ggd.stadiumMap.size()
 stadiums.each { Stadium stadium ->

Listing 2.8 The getGames method from GetGameData

Listing 2.9 GetGameDataTests.groovy: a JUnit 4 test case

Using the Matcher
class from Java

Extracted from
the Matcher

Before and after
populating
stadium map
 assert stadium.latitude > 25 && stadium.latitude < 48

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Groovy by example

 assert stadium.longitude > -123 && stadium.longitude < -71
 }
 }

 @Test
 void testGetGame() {
 GameResult gr = ggd.getGame 'bos','col','1'
 assert 'Boston Red Sox' == gr.away
 assert 'Colorado Rockies' == gr.home
 assert 4 == gr.aScore.toInteger()
 assert 3 == gr.hScore.toInteger()
 }
}

This is a standard JUnit 4 test case. I have much more to say about Groovy testing capa-
bilities in chapter 6 on testing, but here’s a simple example. There’s nothing inher-
ently Groovy about this class except that (1) I used the map-based constructor to
instantiate the fixture, (2) optional parentheses were left out wherever possible, and
(3) no explicit public or private keywords were needed. Otherwise, this is just a reg-
ular test case, and it works as usual.

 What have I discussed in this section?

■ Groovy has a convenient syntax for maps.
■ XML parsing and extracting data are easy, as in the previous section.
■ Groovy has a slashy syntax for regular expressions.
■ Groovy classes work with JUnit tests.

There’s one final piece of the puzzle needed, which is the driver used to call the sys-
tem for each date. I use a “groovlet” for this purpose in the next section.

2.3.3 HTML builders and groovlets

The classes used so far access XML box score information and convert it into a series
of game result objects. For the view layer, however, I need objects in a form that can be
processed by JavaScript. There are several ways to accomplish this, but one of them is
to use an XML builder to write out the information in XML form.11

GENERATING XML
The standard Groovy library includes a class called groovy.xml.MarkupBuilder,12

which is one of several builders (much like the SwingBuilder shown at the beginning
of this chapter) in the standard library. Each of the builders intercepts method calls
that don’t exist (so-called pretended methods) and constructs nodes out of them to
make a tree structure. The tree is then exported appropriately for that kind of builder.

 This is actually easier to see than to explain. Consider the GameResult class from
the previous section, which held the home and away team names and scores and a ref-
erence to a Stadium object. Here’s the syntax for creating XML out of that object:

11 The data could just as easily be written in JSON format. Other JSON examples are used throughout the book.

Check the World
Series game
12 I would bet that if this class were created today, it would be called XmlBuilder instead.

www.it-ebooks.info

http://www.it-ebooks.info/

43Groovy Baseball

MarkupBuilder builder = new MarkupBuilder()
builder.games {
 results.each { g ->
 game(
 outcome:"$g.away $g.aScore, $g.home $g.hScore",
 lat:g.stadium.latitude,
 lng:g.stadium.longitude
)
 }
}

After instantiating the MarkupBuilder and calling the reference builder, the second
line invokes the games method on it. It may not look like a method, but recall that in
Groovy, if a closure is the last argument to a method it can be placed outside the
parentheses, and here I’m using optional parentheses. Of course, there’s no method
called games in MarkupBuilder. That makes it a pretended method, and the builder
intercepts that method call and creates a node out of it. In a MarkupBuilder that
means it will ultimately create an XML element called games. The closure syntax
implies that the next elements will be child elements of games.

 Inside the closure the code iterates over each contained result, assigning it to the
dummy variable g. For each GameResult g, the builder creates an element called game.
The parentheses on game imply that game will contain attributes. In this case, each
game has an outcome, a lat, and a lng.

 Here’s the output of the MarkupBuilder:

<games>
 <game outcome='Boston Red Sox 4, Colorado Rockies 3'
 lat='39.7564956' lng='-104.9940163' />
</games>

If there had been a dozen games that day there would a <game> element for each
one of them. The bottom line is that in Groovy, generating XML is about as easy as
parsing it.

SERVER-SIDE PROCESSING WITH GROOVLETS

To drive the whole system I need a server-side component that receives the needed
date and calls the GetGameData class to retrieve the games, which are then returned in
XML form. Groovy has a component known as a groovlet to make that all easy.

 A groovlet is a script that is executed by a class called groovy.servlet.Groovy-
Servlet. This class is part of the Groovy standard library. Like any servlet, it needs to
be declared in the web.xml deployment descriptor for a web application and mapped
to a particular URL pattern. In this case I chose the pattern *.groovy. Here’s the
excerpt from the deployment descriptor:

<servlet>
 <servlet-name>GroovyServlet</servlet-name>
 <servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Groovy by example

<servlet-mapping>
 <servlet-name>GroovyServlet</servlet-name>
 <url-pattern>*.groovy</url-pattern>
</servlet-mapping>

The Groovy Baseball application will therefore send all URLs ending in .groovy
through the GroovyServlet, which will execute them. Groovlets executed this way are
deployed as source code rather than as compiled classes under WEB-INF.13 Groovlets
also contain a set of implicit objects representing the request, response, input param-
eters, and more.

 The following listing contains the complete content of the groovlet that drives the
Groovy Baseball system.

import beans.GameResult;
import beans.Stadium;
import service.GetGameData;

response.contentType = 'text/xml'
def month = params.month
def day = params.day
def year = params.year

m = month.toInteger() < 10 ? '0' + month : month
d = day.toInteger() < 10 ? '0' + day : day
y = year.toInteger() + ''

ggd = new GetGameData(month:m,day:d,year:y)
results = ggd.games

html.games {
 results.each { g ->
 game(
 outcome:"$g.away $g.aScore, $g.home $g.hScore",
 lat:g.stadium.latitude,
 lng:g.stadium.longitude
)
 }
}

The groovlet can set response headers, here setting the output to XML. Input parame-
ters populate a map of strings called params, which can be accessed in the usual way.
The URL requires two-digit days and two-digit months, so a zero is prepended when
necessary. After retrieving the games for that date the output is generated using the
implicit MarkupBuilder. There’s no need to instantiate a MarkupBuilder in this case,
because groovlets already contain one, called html.

 The groovlet is called from a regular web page, using a URL of the form http://.../
groovybaseball/GroovyService.groovy?month=10&day=28&year=2007. The XML data
is written to the output stream, which can then be processed by JavaScript.

Listing 2.10 GameServlet.groovy: a groovlet for Groovy Baseball

Set the content type of
the response

Extract input
parameters

Retrieve games for
that date

Use a builder to
generate XML
13 The details are discussed in chapter 10 on web applications.

www.it-ebooks.info

http://.../groovybaseball/GroovyService.groovy?month=10&day=28&year=2007
http://.../groovybaseball/GroovyService.groovy?month=10&day=28&year=2007
http://www.it-ebooks.info/

45Summary

The rest of the system is just HTML and JavaScript, so it’s beyond the scope of a Groovy
discussion. The complete source code for the application is contained in the GitHub
repository for the book.

2.4 Summary
This chapter is a tutorial on Groovy for Java developers, using example applications
rather than a series of features. What’s remarkable is how much Groovy simplifies the
code. POGOs are a minimal yet more flexible version of POJOs. The groovy.sql.Sql
class makes JDBC practical for reasonably small applications. The Groovy JDK adds
many convenience methods, like toURL and getText, which make existing Java classes
easier to use. The combination of maps, closures, and the join method makes it sim-
ple to build URLs for web services. Finally, the difference between working with XML
in Java and working with XML in Groovy is staggering. Whenever I have to work with
XML in any form I always look for a way to add a Groovy module to handle the details.

 In the next chapter we’ll examine mechanisms to integrate Java and Groovy
together in more detail.

Lessons learned (Groovy Baseball)
1 POGOs have private attributes and public methods by default. Public getters and

setters are auto-generated for each attribute.
2 POGOs include a map-based constructor that can be used to set any or all of the

attributes in any combination.
3 Closures and methods in Groovy return their last evaluated expressions

automatically.
4 The XmlSlurper class makes parsing XML simple and returns the root of the

resulting DOM tree. Values can be extracted by walking the tree.
5 The MarkupBuilder class produces XML.
6 The groovy.sql.Sql class is a simple façade for dealing with relational

databases.
7 Groovlets are simple Groovy scripts that respond to HTTP requests.
8 All Groovy exceptions are unchecked.
www.it-ebooks.info

http://www.it-ebooks.info/

Code-level integration
In chapter 1 I reviewed many of Java’s arguable weaknesses and drawbacks and sug-
gested ways that Groovy might help ameliorate them. Because that chapter was
intended to be introductory, I only suggested how Groovy can help, without show-
ing a lot of code examples.

 This chapter begins an examination of Java and Groovy integration in detail. In
this chapter I’ll start using Groovy and Java together in fundamental ways, without
worrying about frameworks or addressing any particular use case. A guide to the
techniques discussed in this chapter is shown in figure 3.1.

3.1 Integrating Java with other languages
Combining Java with other languages has always been a challenge. Java historically
hasn’t played well with others.1 The only API designed from the beginning for Java

This chapter covers
■ Calling Groovy scripts from Java using JSR 223
■ Calling Groovy scripts from Java using Groovy

library classes
46

1 Of course, this is true of most languages.

www.it-ebooks.info

http://www.it-ebooks.info/

47Integrating Java with other languages

to call functions written in other languages is JNI, the Java Native Interface, which is
awkward to use even in the best of circumstances.2 The past few years, however, have
seen the rise of entire families of languages that compile directly to bytecodes that run
on the JVM, from Groovy to Scala to Clojure, as well as bridge languages like Jython or
JRuby that allow you to run code written in Python or Ruby on the JVM. From the
point of view of these “alternative” JVM-based languages, Java’s real contribution isn’t
the language itself, but rather the virtual machine and the associated Java libraries.
JVM-based languages take advantage of the Java infrastructure and try to handle any
Java-specific drawbacks.

JVM Ultimately, Java’s biggest contribution isn’t the language; it’s the vir-
tual machine.

Whenever a new capability is integrated into Java’s basic infrastructure, a Java Specifi-
cation Request (JSR) is created to provide a standard implementation mechanism. In
the integration case, the JSR in question is JSR 223, Scripting for the Java Platform
(http://jcp.org/en/jsr/detail?id=223). The purpose of the JSR is to allow other (pre-
sumably scripting) languages to be invoked from Java. Although most of this book will
assume that you’re mixing Java and Groovy on a class-by-class basis, for the sake of
completeness I’ll review here how to call a Groovy script from Java, both using the JSR
technique and using library classes provided by Groovy for that purpose.

 Groovy is much closer to Java than the script integration story suggests, however.
As I’ll demonstrate in the section on calling Java from Groovy rather than the other
way around, virtually every Groovy program of any size uses Java already. Groovy
code can instantiate a Java class, call a method Groovy added to it (the so-called

2 Once, back in the late 1990s, I had to build a Java Swing user interface in front of an engineering system writ-
ten in Fortran. I used JNI to go from Java to C and then from C to Fortran. The results were like putting a

JSR 223

ScriptEngine

GroovyShell

and binding

Java and

Groovy classes
Eval

Java

Java +

Groovy

Figure 3.1 Guide to integration features. Groovy can be accessed
with Java classes alone using the JSR 223 script engine. If you are
willing to add some Groovy library classes to Java, the Eval,
GroovyShell, and Binding classes make working with scripts
easy. The best way to combine Groovy and Java is using classes for
both languages.
notch into a wooden beam and saying, “I want you to break right here.”

www.it-ebooks.info

http://jcp.org/en/jsr/detail?id=223
http://www.it-ebooks.info/

48 CHAPTER 3 Code-level integration

Groovy JDK highlighted in chapter 4, section 4.3), and call additional Java methods
on the result. The question then becomes, what does Groovy bring to Java? How can
you simplify your development tasks by adding Groovy to Java systems? I’ll address
that question in the rest of the chapter (and, indeed, in the rest of the book). Let’s
start, though, with the scripting story. How do you combine Java and Groovy in the
same system when Groovy consists of scripts rather than classes, and you want to iso-
late any Java integration code?

3.2 Executing Groovy scripts from Java
The assumption in the first couple of sections of this chapter is that you’ve written or
acquired some Groovy scripts and wish to use them in your Java system in a way that’s
minimally invasive. Perhaps you’re using the scripts to implement business logic in
Groovy because it changes so frequently (a technique referred to as Liquid Heart by
Dierk Koenig, lead author of Groovy in Action [Manning, 2007]). Perhaps you’re replac-
ing Perl scripts with Groovy because anything you can do in Perl you can do in Groovy,
with the added bonus that you can integrate with existing Java systems. Perhaps you’re
following one of the original intents of the JSR, which is to use a scripting language to
generate user interfaces while letting Java handle the back-end functionality. In any case,
I want to demonstrate how to invoke those scripts from a Java system as easily as possible.

 One of the interesting features of Groovy is that, unlike in Java, you don’t have to put
all Groovy code into a class. You can just put all your Groovy code into a file called prac-
tically anything you like, as long as the file extension is .groovy, and then you can exe-
cute the scripts with the groovy command. One possible sweet spot for Groovy is to
write short, simple programs without the clutter of creating a class with a main method
in it, and here I’ll show how to incorporate scripts like that into a Java application.

 In keeping with the standard I’ll start with a technique based on JSR 223, Scripting
for the Java Platform, which allows you to invoke Groovy purely from Java library calls.
Then I’ll show that if you use a couple of classes from the Groovy API you can simplify
the integration. Finally, I’ll show that if you can change from scripts to classes for your
Groovy code, nearly all the complexity can be eliminated.

 Incidentally, assuming any Groovy scripts are compiled, at runtime treat the com-
bined application as though it’s all Java. All the integration strategies I plan to discuss
in this chapter involve deciding where and how to use Groovy to make your life easier.
Once you have the combined system, though, the deployment story is really simple, as
the sidebar demonstrates.

Groovy and Java together at runtime
At runtime, compiled Groovy and compiled Java both result in bytecodes for the JVM.
To execute code that combines them, all that’s necessary is to add a single JAR file
to the system. Compiling and testing your code requires the Groovy compiler and
libraries, but at runtime all you need is one JAR.
www.it-ebooks.info

http://www.it-ebooks.info/

49Executing Groovy scripts from Java

At the API level, to call a Groovy script from Java you have a few alternatives. I’ll first
show the “hardest” way possible, using the JSR-223 API. The API associated with JSR 223

(continued)

That JAR comes with your Groovy distribution in the embeddable subdirectory. Sup-
pose, for example, your Groovy installation is version 2.1.5. Then on your disk in the
Groovy installation directory you have the structure shown in the following figure, and
the JAR file you need is groovy-all-2.1.5.jar.

In the rest of the text, I’ll refer to this JAR file as the “groovy-all” JAR. If this JAR is added
to your classpath you can execute combined Groovy and Java applications with the
standard java command. If you add a Groovy module to a web application, add the
groovy-all JAR to the WEB-INF//lib directory and everything will work normally.

Here’s a minimal demonstration just to prove the point. Consider the “Hello, World!”
application written in Groovy, which, unlike in Java, is a one-liner:

println 'Hello, Groovy!'

If I saved this into a file called hello_world.groovy I could execute the script using
the groovy command, which would compile it and run it all in one process. To run
it using the java command, however, first I have to compile it with groovyc and
then execute the resulting bytecodes, making sure the groovy-all JAR is in the class-
path. The two-step process is shown. Note that the java command should be all
on one line:

> groovyc hello_world.groovy
> java –cp
 .:$GROOVY_HOME/embeddable/groovy-all-2.1.5.jar
 hello_world
→ Hello, Groovy!

I needed the groovyc command in order to compile the script, but I was able to execute
it using plain old java (as long as the groovy-all JAR was in the execution classpath).

Add the groovy-all JAR to your system, and you can run it with the java command.
is designed to allow Java programs to invoke scripts written in other languages.

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Code-level integration

I’m calling this “the hard way” because it doesn’t take advantage of anything pro-
vided by Groovy other than the script itself. I’ll use the layers of indirection provided
by the Java API, which separates the Groovy code from the Java code that invokes it.
Later you’ll start mixing Java and Groovy by combining classes and methods, and
you’ll find that’s much easier. Still, it’s worth seeing how to use the JSR, especially
because, after all, it is the standard. Also, even if it’s technically the hard way, it’s
really not all that hard.

3.2.1 Using JSR223 scripting for the Java Platform API

Built into Java SE 6 and above, the API for JSR 223, Scripting for the Java Platform, is a
standard mechanism you can use to call scripts written in other languages. The advan-
tage to this approach is that it avoids introducing anything specific to Groovy into the
calling Java program. If you already have Groovy scripts and you just want to call them
from inside Java, this is a good way to go.

JSR 223 The JSR allows you to call Groovy scripts using purely Java classes.

The JSR defines an API based on a javax.script.ScriptEngine instance. As is com-
mon with many Java libraries, the API also includes a factory interface, in this case
called javax.script.ScriptEngineFactory, for retrieving ScriptEngine instances.
The API also specifies a javax.script.ScriptEngineManager class, which retrieves
metadata about the available ScriptEngineFactory instances.

 In many Java APIs you use a factory to acquire the object you need. For example,
parsing XML with a SAX parser is done by first getting an instance of the SAXParser-
Factory and then using it to acquire a new SAX parser. The same is true for DOM
builders, XSLT transformation engines, and many others. In each case, if you want to
use a particular implementation other than the built-in default, you need to specify an
environment variable, a method argument, or some other way of letting Java know
you’re planning to do something different. You also need to make the alternative
implementation available in your classpath.

 The first issue, therefore, is to determine whether the script engine used for
Groovy code is available by default and, if not, how to acquire it. Using the Java 7
JDK from Oracle I can determine which factories are already embedded. The follow-
ing listing retrieves all the available factories from the manager and prints some of
their properties.

public class ScriptEngineFactories {
 private static Logger log =
 Logger.getLogger(ScriptEngineFactories.class.getName());

 public static void main(String[] args) {
 List<ScriptEngineFactory> factories =
 new ScriptEngineManager().getEngineFactories();

Listing 3.1 Finding all the available script engine factories

A standard
logger

Looping over
the available
 for (ScriptEngineFactory factory : factories) { factories

www.it-ebooks.info

http://www.it-ebooks.info/

51Executing Groovy scripts from Java

 log.info("lang name: " + factory.getLanguageName());
 log.info("engine name: " + factory.getEngineName());
 log.info(factory.getNames().toString());
 }
 }
}

With a nod toward better practices than simply using System.out.println state-
ments, I set up a simple logger. Then I retrieved all the available factories from the
manager and printed the language name and engine name. Finally, I printed all
the available names for each factory, which shows all the available aliases that can be
used to retrieve them.

 The results are shown here, truncated for readability:

INFO: lang name: ECMAScript
INFO: lang version: 1.8
INFO: engine version: 1.7 release 3 PRERELEASE
INFO: engine name: Mozilla Rhino
INFO: [js, rhino, JavaScript, javascript, ECMAScript, ecmascript]

The output shows that by default there’s only one factory available, and its purpose is
to execute JavaScript (or, more formally, ECMAScript). This factory can be retrieved
using any of the names on the last line, but there’s only one factory available, and it
has nothing to do with Groovy.

 Fortunately, making a Groovy script engine factory available is easy. One of the fea-
tures of the ScriptEngineManager class is that it detects new factories using the same
extension mechanism used for JAR files. In other words, all you have to do is to add
the Groovy libraries to your classpath via the groovy-all JAR. Once you do that, the
same program produces the additional output shown here:

INFO: lang name: Groovy
INFO: lang version: 2.1.3
INFO: engine version: 2.0
INFO: engine name: Groovy Scripting Engine
INFO: [groovy, Groovy]

In this case the script engine reports that the Groovy language version is 2.1.3 and the
engine version is 2.0.3

 In this particular API, even though a factory is now available, you don’t need to use
it to acquire the script engine. Instead, the ScriptEngineManager class has a method
to retrieve the factory by supplying its name (either groovy or Groovy, as shown in the
previous output) in the form of a String. From the ScriptEngine I can then execute
Groovy scripts using the script engine’s eval method. The process is illustrated in fig-
ure 3.2.

 The next listing demonstrates the API in action in a simple “Hello, World!”
Groovy script.
3 I did use the Groovy 2.1.5 compiler, but the script engine still reports 2.1.3. It doesn’t affect the results, though.

www.it-ebooks.info

http://www.it-ebooks.info/

te
52 CHAPTER 3 Code-level integration

public class ExecuteGroovyFromJSR223 {
 public static void main(String[] args) {
 ScriptEngine engine =
 new ScriptEngineManager().getEngineByName("groovy");
 try {
 engine.eval("println 'Hello, Groovy!'");
 engine.eval(new FileReader("src/hello_world.groovy"));
 } catch (ScriptException e) {
 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }
}

I retrieve the Groovy script engine by calling the getEngineByName method. I then use
two different overloads of the eval method: one that takes a String argument and
one that takes an implementation of the java.io.Reader interface. In the first case,
the supplied string needs to be the actual scripting code. For the reader, though, I use
a FileReader wrapped around the “Hello, Groovy!” script. The output is what you
would expect in each case.

SUPPLYING PARAMETERS TO A GROOVY SCRIPT

What if the Groovy script took input parameters and returned data? In the Groovy
scripting world this is handled through a binding. When I discuss the GroovyShell in
the next section I’ll show that there’s actually a class in the Groovy API called Binding,
but here I’ll do the binding implicitly through the Java API.

 A binding is a collection of variables at a scope that makes them visible inside a
script. In the JSR 223 API, the ScriptEngine class itself acts as a binding. It has both
a put and a get method that can be used to add variables to scripts and retrieve the
results from them.

 To illustrate this, let’s do something a bit less trivial and possibly more practical.
Instead of doing a simple “Hello, World!” script, consider the Google geocoder, in its

Listing 3.2 Using the ScriptEngine to execute a simple Groovy script

ScriptEngineManager

ScriptEngine Groovy script
put get/

variables
Eval

getEngineByName

new

Java class

Figure 3.2 Using the JSR 223 ScriptEngine to invoke a Groovy script. Java creates a
ScriptEngineManager, which then yields a ScriptEngine. After supplying
parameters to the engine, its eval method is invoked to execute a Groovy script.

Retrieve
script
engine

Evalua
script
code

Execute
external
script
version 2 form.

www.it-ebooks.info

http://www.it-ebooks.info/

53Executing Groovy scripts from Java

GROOVY SWEET SPOT Groovy scripts are an easy way to experiment with
new libraries.

A geocoder is an application that converts addresses to latitude/longitude pairs.
Google has had a publicly available geocoder for years. In this section I’ll use version 2,
which requires a key (available through a free registration), but which gives me the
chance to show some interesting Groovy features. When I discuss XML processing
later in this chapter I’ll use version 3 of the geocoder instead. That version no longer
requires a key, but it doesn’t make the results available in the same comma-separated
form I’ll use here.

 The documentation for version 2 of the Google geocoder can be found at http://
mng.bz/Pg8S. Version 2 is currently deprecated but still works. I’m using it here
because it’s familiar from the previous chapter, so you can focus on the input/output
parts of the script, and because it also lets me demonstrate multiple return values.4

 In order to use the geocoder, the basic idea is to transmit an address as a parame-
ter in an HTTP GET request and process the results. As shown in chapter 2, using the
Google geocoder takes the following steps:

1 Convert a list containing the street, city, and state into a URL-encoded string
whose values are separated by “,”.

2 Convert a map with the key’s address and sensor into a query string.
3 Transmit the resulting URL to the Google geocoder.
4 Parse the results into the desired values.

The first step uses the collect method from Groovy, which takes a closure as an argu-
ment, applies the closure to each element of a collection, and returns a new collection
containing the results. I take the resulting collection and joined each of its elements
into a single string, using “,” as a separator:

String address = [street,city,state].collect {
 URLEncoder.encode(it,'UTF-8')
}.join(',')

UNDECLARED VARIABLES The street, city, and state are not declared in the
script. This adds them to the binding, making them available to the caller.

To build a query string I add all the required parameters to a map called params. I’m
also requesting comma-separated values for the output, which is not available in the
version 3 geocoder:

def params = [q:address, sensor:false, output:'csv', key:'ABQIAAAAaUT…']

The value of sensor should be true if this request is coming from a GPS-enabled
device and false otherwise. The key is determined at registration (version 3 doesn’t
4 Another reason to show the version 2 geocoder is because the Google Maps API for Android still uses it.

www.it-ebooks.info

http://code.google.com/apis/maps/documentation/geocoding/v2/
http://code.google.com/apis/maps/documentation/geocoding/v2/
http://www.it-ebooks.info/

54 CHAPTER 3 Code-level integration

require a key). The output is here set to CSV, so that the result is a string of comma-
separated values composed of the response code (hopefully 200), the magnification
level, and the latitude and longitude.

 To convert the map into a query string, the collect method is used again. On a
map, if a collect is applied with a two-argument closure, the method automatically
separates the keys from the values. What I want here is to replace expressions like
key:value with strings like key=value. The complete URL is then found by concate-
nating the query string to the base URL:

String url = base + params.collect { k,v -> "$k=$v" }.join('&')

Finally, I take advantage of the Groovy JDK. In the Groovy JDK the String class contains
a method called toURL, which converts the String into an instance of java.net.URL.
The URL class in the Groovy JDK includes a getText method, which I can invoke as a
text property.

PROPERTY ACCESS In Groovy, the standard idiom is to access a property,
which is automatically converted to a getter or setter method.

The code to retrieve the desired CSV string is

url.toURL().text

Now I can use the split method on String, which divides the string at the commas
and returns a list containing the elements. I can then take advantage of Groovy’s cool
multivalued return capability to assign each value to an output variable.

 The complete script is shown next and displayed graphically in figure 3.3:

String address = [street,city,state].collect {
 URLEncoder.encode(it,'UTF-8')

collect,
encode,
join

Groovy

Java

Groovy

toURL,
text,
splitJava

Groovy

[street, city, state]

Latitude, longitude

http://.../geo?sensor=false&output=csv&key=AA...&q=...

collect,
join Groovy

[sensor:false, output:csv,
key:'AA...', q:...]

Figure 3.3 The Groovy script for accessing the Google V2 geocoder
}.join(',+')

www.it-ebooks.info

http://www.it-ebooks.info/

55Executing Groovy scripts from Java

def params = [q:address,sensor:false,output:'csv',key:'ABQIAAAAaUT…']
String base = 'http://maps.google.com/maps/geo?'
String url = base + params.collect { k,v -> "$k=$v" }.join('&')
(code,level,lat,lng) = url.toURL().text.split(',')

Running this script requires me to supply the street, city, and state information, and
then retrieve the output latitude and longitude. I want to use Java to supply the input
values and process the output, but first I’ll show a typical result, which can then be
used as a test case. To avoid being too U.S.-centric I’ll use the address for the Royal
Observatory in Greenwich, England. That makes the values for street, city, and
state “Blackheath Avenue,” “Greenwich,” and “UK,” respectively.5 Executing the
script results in the output

(code,level,lat,lng) = (200,6,51.4752654,0.0014324)

The Royal Observatory was originally the arbitrarily chosen location of the prime
meridian, so the value of the longitude should be pretty close to zero, and it is. The
input address isn’t as precise as it might be, and the observatory address doesn’t
define the actual prime meridian any more, but the results are pretty impressive any-
way. The resulting test case as part of a JUnit 4 test is shown in the next listing.

@Test
public void testLatLngJSR223() {
 ScriptEngine engine = new

ScriptEngineManager().getEngineByName("groovy");
 engine.put("street", "Blackheath Avenue");
 engine.put("city", "Greenwich");
 engine.put("state", "UK");
 try {
 engine.eval(new FileReader("src/geocode.groovy"));
 } catch (ScriptException e) {
 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 assertEquals(51.4752654,
 Double.parseDouble((String) engine.get("lat")),0.01);
 assertEquals(0.0014342,
 Double.parseDouble((String) engine.get("lng")),0.01);

The result is the same as running the Groovy script by itself using Groovy. Setting the
values of the input variables is trivial. The output variables need to be cast to the
String type and then converted to doubles, but again the process is straightforward.
If your goal is to execute an external Groovy script from Java without introducing any
Groovy dependencies at all (other than adding the groovy-all JAR to your classpath),
this mechanism works just fine.

5 Clearly the word “state” is to be interpreted broadly. Supply a country name for state, and it works all over

Listing 3.3 A JUnit test case to check the JSR 223 script engine results

Set binding
variables

Invoke
Groovy script
from Java

Retrieve results
from binding
the world.

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Code-level integration

 In the next section I want to relax that requirement. If you’re willing to use some
classes from the Groovy standard library, life gets simpler.

3.2.2 Working with the Groovy Eval class

There are two special classes in the Groovy library, groovy.util.Eval and groovy
.lang.GroovyShell, specifically designed for executing scripts. In this section I’ll
show examples using the Eval class, and in the next section I’ll show GroovyShell. In
each case, the goal is still to invoke external Groovy scripts from Java.

 The Eval class is a utility class (all its methods are static) for executing operations that
take none, one, two, or three parameters. The relevant methods are shown in table 3.1.

To demonstrate the methods I’ll add additional tests to the JUnit test case. The test is
written in Java, so I’ll automatically call Groovy from Java.

 The following listing shows four tests, one for each of the static methods in the
Eval class.

public class ScriptingTests {
 @Test
 public void testEvalNoParams() {
 String result = (String) Eval.me("'abc' - 'b'");
 assertEquals("ac",result);
 }

 @Test
 public void testEvalOneParam() {
 String result = (String) Eval.x("a", "'abc' - x");
 assertEquals("bc",result);
 }

 @Test
 public void testEvalTwoParams() {
 String result = (String) Eval.xy("a", "b", "'abc' - x - y");
 assertEquals("c",result);
 }

 @Test
 public void testEvalThreeParams() {
 String result =

Table 3.1 Static methods in groovy.util.Eval for executing Groovy from Java

Eval.me Overloaded to take a String expression or an expression with a String symbol
and an Object

Eval.x One argument: the value of x

Eval.xy Two arguments, x and y

Eval.xyz Three arguments, x, y, and z

Listing 3.4 JUnit 4 test class verifying results of calling Eval methods from Java

Zero-argument
me method

One-argument
x method

Two-argument
xy method

Three-argument
xyz method
 (String) Eval.xyz("a", "b", "d", "'abc' - x - y + z");

www.it-ebooks.info

http://www.it-ebooks.info/

57Executing Groovy scripts from Java

 assertEquals("cd",result);
 }
}

In each test the Groovy script to be evaluated is included as a string. Unlike the
ScriptEngine there’s no overload for instances of Reader, so to execute a script in a
separate file would require reading the file into a string. The methods also assume
that the input variables are called x, y, and z, which might be asking too much. Still,
it’s interesting that this mechanism exists at all.

 In addition to illustrating the mechanics of calling Groovy scripts from Java, the
tests also demonstrate operator overloading in the String class. The minus operator in
Groovy corresponds to the minus method in String. Its implementation to remove the
first instance of its argument from the given string is used with strings to remove
instances of substrings. In Groovy, strings can be contained within either single or dou-
ble quotes. Single-quoted strings are regular Java strings, and double-quoted strings
are parameterized strings, diplomatically called Groovy strings, but formally called,
unfortunately, GStrings.6

 The process of using Eval from Java is shown in figure 3.4.

The Eval class is convenient and simple, but often it’s too simple. It rests on a more
powerful foundation, the GroovyShell class, which I’ll discuss next.

3.2.3 Working with the GroovyShell class

The GroovyShell class is used for scripts that aren’t restricted to the special cases
described in the previous section on Eval. The class groovy.lang.GroovyShell can
be used to execute scripts, particularly when combined with a Binding.

 Unlike Eval, the GroovyShell class does not contain only static methods. It needs
to be instantiated before invoking its evaluate method. As a simple example, con-
sider adding the following test to the previous set of test cases:

@Test
public void testEvaluateString() {
 GroovyShell shell = new GroovyShell();

6 To make matters worse, simple parameters are injected into GStrings using a dollar sign. This has led to far
too many “insert a $ into a GString” jokes. To me, this is a clear demonstration that we don’t have enough
women in computer science. Don’t you think that if there had been one woman on the team at the time, she
could have said, “Hey, that’s a funny joke, but let’s not build it into the standard library that’s going to be used
by everybody forever?” After all, it’s hard enough to get a language named Groovy taken seriously by the For-
tune 500 without going there, too. For my part, I call them Groovy strings, which is what the class should have

Java class Script in Groovyeval (Groovy)

me x, ,

xy xyz,Args

Figure 3.4 Java calls the me, x, xy, or xyz method in the Groovy Eval class to execute
a script.
been called all along. It is a funny joke, though—for about 10 minutes.

www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 Code-level integration

 Object result = shell.evaluate("3+4");
 assertEquals(7, result);
}

The evaluate method is heavily overloaded. The version I’m using here takes a
string representing the script to be evaluated. Other overloads take a java.io.File
or a java.io.Reader instance, with various additional arguments. There are over-
loads that take a java.io.InputStream as well, but they’re deprecated due to possible
encoding issues.

 So far, using the GroovyShell looks a lot like using the ScriptEngine class, though
you can instantiate it directly in this case. To deal with input and output variables,
however, the GroovyShell uses the groovy.lang.Binding class to provide a map of
input and output variables.

 The next listing shows the Binding and GroovyShell classes in action. It’s another
test to add to the growing JUnit 4 test case.

 @Test
 public void testLatLng() {
 Binding binding = new Binding();
 binding.setVariable("street", "Blackheath Avenue");
 binding.setVariable("city", "Greenwich");
 binding.setVariable("state", "UK");
 GroovyShell shell = new GroovyShell(binding);
 try {
 shell.evaluate(new File("src/geocode.groovy"));
 assertEquals(51.475,
 Double.parseDouble(
 (String) binding.getVariable("lat")),0.001);
 assertEquals(0.00143,
 Double.parseDouble(
 (String) binding.getVariable("lng")),0.001);
 } catch (CompilationFailedException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

Passing parameters into the script is easy enough using the setVariable method on
the Binding. The binding is then used as an argument to the GroovyShell construc-
tor. The script is run from Java using the evaluate method as usual, and the results
are extracted by getting the output variables from the shell. Using a GroovyShell and
Binding is illustrated in figure 3.5.

 There’s more to the GroovyShell than I’m presenting here. I can use the parse
method, rather than evaluate, to parse the script and retrieve a reference to the gen-
erated Script object. That way I can set the binding variables and rerun the script
without having to recompile every time. GroovyShell also works with a hierarchy of

Listing 3.5 Using GroovyShell and Binding to invoke the Google geocoder

Create and
populate the
binding

Use binding
in GroovyShell Execute script

using binding

Retrieve
output
variables
classloaders and configurations. Allthough all of that is interesting, it doesn’t really

www.it-ebooks.info

http://www.it-ebooks.info/

59Executing Groovy scripts from Java

add a lot to the integration story, so I’ll refer you to Dierk Koenig’s most excellent
Groovy in Action for details.

THE HARD WAY Use the ScriptEngine class from Java, or the Eval and Groovy-
Shell classes from Groovy, along with a Binding if necessary, to call Groovy
scripts from Java.

Between the ScriptEngine, Eval, and GroovyShell classes, hopefully you’ll agree that
there are a variety of ways to execute Groovy scripts from Java. Collectively I still refer
to this as “the hard way,” though it isn’t terribly hard, but it’s awfully indirect com-
pared to the easy way. From now on I’ll stop trying to maintain the artificial separation
of Java code from Groovy code. In order to make progress all I need to do is put the
Groovy code into a class.

3.2.4 Calling Groovy from Java the easy way
All the techniques I’ve discussed so far—using the JSR 223 ScriptEngine, or using the
Groovy API classes Eval and GroovyShell—work just fine but feel overly complicated.
Groovy is supposed to simplify your life, so although the mechanisms shown in the
previous section all work, for most use cases there’s an easier way.

 The easiest way to call Groovy from Java is to put the Groovy code in a class and com-
pile it. Then Java code can instantiate the class and invoke its methods the normal way.

THE EASY WAY To call Groovy from Java, put the Groovy code in a class, com-
pile it as usual, and then instantiate it and invoke methods as though it was Java.

Let’s return, once again, to the geocoder. This time, however, I’ll refactor it into a
class that can be instantiated, with methods that can be invoked from outside. The
process is shown in figure 3.6.

 As the figure shows, the Java application will use a Location class to store all the
needed attributes. It will supply the street, city, and state fields as input parame-
ters, but the Location class will also include latitude and longitude fields that will
be updated by the Groovy geocoder. The geocoder itself will be written in Groovy,
because it’s easy to write the RESTful web service client code that way.7

7 Note this is just like the geocoder with the Stadium class used in chapter 2 when I discussed the Groovy Baseball

Java class

Binding
(Groovy)

GroovyShell
(Groovy)

Script in Groovy

Parse

Evaluate

Evaluate

setVariable

getVariable

Figure 3.5 Java code sets variables in the Binding, which is used in the GroovyShell
to execute Groovy code. The results are returned via the getVariable method in
the Binding.
application. The differences here are the CSV output and that I’m invoking the Groovy implementation from Java.

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 Code-level integration

Here’s the new Location class, which could be written in either Java or Groovy. This
time, to keep the code simple I’ll use a Groovy POGO:

class Location {
 String street
 String city
 String state

 double latitude
 double longitude
}

The Location class encapsulates the address information in strings and provides dou-
ble variables for the latitude and longitude values that will be set using the geocoder.
Speaking of the geocoder, the next listing shows a revised version that wraps the script
into a class.

class Geocoder {
 def base = 'http://maps.google.com/maps/geo?'

 void fillInLatLong(Location loc) {
 def addressFields = loc.street ?
 [loc.street,loc.city,loc.state] : [loc.city,loc.state]
 def address = addressFields.collect {
 URLEncoder.encode(it,'UTF-8')
 }.join(',')
 def params = [q:address,sensor:false,
 output:'csv',key:'ABQIAAAAa…']
 def url = base + params.collect { k,v -> "$k=$v" }.join('&')
 def (code,level,lat,lng) = url.toURL().text.split(',')
 loc.latitude = lat.toDouble()
 loc.longitude = lng.toDouble()
 }
}

The fillInLatLong method takes a Location as an argument. Strictly speaking, I

Listing 3.6 A Groovy class for geocoding

Java application

class Location

(POJO or POGO)

class Geocoder

(Groovy)

new setStreet, ,

setCity setState,

fillInLatLng(Location)

updates lat lng,

Figure 3.6 Mixing Java and Groovy classes. The Java app instantiates
a Location and supplies it with street, city, and state values. It sends
the new Location to the Groovy geocoder, whose fillInLatLng
method supplies the latitude and longitude, which can then be
retrieved by Java again.
didn’t have to declare a type for the parameter at all. I could have relied on duck typing

www.it-ebooks.info

http://www.it-ebooks.info/

61Executing Groovy scripts from Java

within the method and just been careful not to call it with anything other than an object
with street, city, and state properties. Still, I’m building the service with a Location in
mind, so it doesn’t hurt to say so.

 The addressFields variable uses the ternary operator to determine whether or
not a street has been supplied when returning the collection of address compo-
nents. Note that I’m appealing to the so-called “Groovy truth” here, in that I don’t
need to compare loc.street to null or an empty string explicitly. Any non-blank
value of the street field as part of the loc argument will return true, so it will be
added to the collection.

 The rest of the class is the same as the previous script, though to make the class
more useful I went to the trouble of converting the string results to doubles before
returning the location.

 One final issue is notable, and it highlights an important difference between a
script and a class. All of the variables, whether they are local variables or attributes,
have to be declared. There are no undefined variables, so there’s also no binding to
worry about any more.

 How do I use these classes (Geocoder and Location) from Java? Just instantiate
them and call methods as usual. In the previous section I started accumulating JUnit 4
tests into a test class. Here’s another test to add to that set:

 @Test
 public void testGeocoder() {
 Location loc = new Location();
 loc.setState("1600 Pennsylvania Avenue");
 loc.setCity("Washington");
 loc.setState("DC");
 Geocoder geocoder = new Geocoder();
 geocoder.fillInLatLong(loc);
 assertEquals(38.895,loc.getLatitude(),0.001);
 assertEquals(-77.037,loc.getLongitude(),0.001);
 }

It doesn’t get much easier than that. I don’t need to instantiate a script engine or
worry about Groovy shells or class loaders. Just instantiate and populate a Location,
instantiate a Geocoder, and invoke the desired method.

 From now on all of the examples I show will do integration the easy way. Again, this
isn’t a value judgment against all the techniques demonstrated earlier in the chapter.
If you want to call an existing Groovy script from Java, or you’re required to keep Java
and Groovy code separate in your application, the previous mechanisms all work.
Freely intermixing classes the way this script does, however, is very easy.

 One last issue remains before I start looking at how Groovy might help Java. So far
in this chapter the goal was always to call Groovy from Java. What about the other
direction? How do you call Java from Groovy?
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Code-level integration

3.2.5 Calling Java from Groovy

Actually, this is so easy it hardly deserves a section at all. I’ve already shown it more
than once. Remember the earlier example using the Google V2 geocoder (repro-
duced here for convenience)?

def address = [street,city,state].collect {
 URLEncoder.encode(it,'UTF-8')
}.join(',')
def params = [q:address,sensor:false,output:'csv',key:'ABQIAAAAaUT…']
def base = 'http://maps.google.com/maps/geo?'
def url = base + params.collect { k,v -> "$k=$v" }.join('&')
(code,level,lat,lng) = url.toURL().text.split(',')

The integration is already here through the use of the library class and various Java
methods. I needed to pass the address to Google in URL-encoded form. To do that I
ran each element of the address (street, city, and state) through the java.net.URL-
Encoder, using its encode method. In other words, the Groovy script used a Java library
class and called one of its methods.

The combination of Java and Groovy is also emphasized in Figure 3.3, shown with the
original listing. In that figure each Java method and each Groovy method is indicated
with arrows.

 The fact that the script mixes both Java and Groovy is true of practically any
Groovy script. Groovy rests on the foundation of the Java libraries. It enhances those
libraries, as you’ll see in section 4.3 on the Groovy JDK, but there’s no need to re-
invent the flat tire.8 Groovy is perfectly happy to use any Java classes you supply, and it
makes many of them better.

COMPILE WITH GROOVYC Whenever you mix Java and Groovy, compile every-
thing with groovyc. Let groovyc handle all the cross-compiler issues.

In the next chapter I’ll look at some of the ways Groovy improves Java.

Lessons learned (integration)
1 Groovy scripts can be called with Java alone using the JSR 223 script engine.
2 The Groovy Eval class makes calling scripts involving zero, one, two, or three

arguments simple.
3 The GroovyShell and Binding classes are used to programmatically set input

variables, invoke a script, and retrieve its result.
4 The easiest way to call Groovy from Java is to make a Groovy class, compile it,

instantiate it in Java, and call the methods as usual.

Java SE library code
8 Re-inventing the flat tire is what happens when you try to re-invent the wheel and get it wrong.

www.it-ebooks.info

http://www.it-ebooks.info/

63Summary

3.3 Summary
This chapter is about basic Groovy / Java integration, regardless of use case. After
reviewing all the different ways to call Groovy from Java, from the JSR-223 Script-
Engine to the GroovyShell and Eval classes in Groovy, I switched to the easy way,
which is to put Groovy in a class and use it like any other library class. This easy blend
of Java and Groovy will be used from now on.

 Next I reviewed many ways that Groovy can help Java at the basic level, from POJO
enhancements to AST transformations to building XML and more. I’ll use these tech-
niques in future chapters wherever they can help. I’ll also review other helpful tech-
niques along the way, though these are most of the major ones.

Don’t separate Groovy and Java classes
The natural tendency when using two different languages is to separate the two code-
bases and compile them independently. With Groovy and Java that can lead to all
sorts of problems, especially when cyclic dependencies are involved (in other words,
Java class A uses Groovy class B, which invokes another method from Java class A,
and so on). Maven projects in particular lead you down this path, because their
default layouts naturally suggest putting Java code under src/main/java and Groovy
code under src/main/groovy. The idea then is to use javac to compile the Java code
and groovyc to compile the Groovy code.

Although you probably can get that to work, it makes life much more difficult than it
needs to be. The developers of Groovy have worked hard on the cross-compilation
issue for years. It’s better for us, as users of both languages, to take advantage of
their progress.

The simplest way to compile Groovy and Java in the same project is to let the
groovyc compiler handle both codebases. Groovy knows all about Java and is quite
capable of handling it. Any compiler flags you would normally send to javac work just
fine in groovyc as well. This is actually a good general principle.

In the projects in this book I’ll let groovyc do all the work. I’ll show specific exam-
ples of this in chapter 5, but you can safely assume I’m using groovyc throughout.
www.it-ebooks.info

http://www.it-ebooks.info/

Using Groovy
features in Java
In chapter 1 I reviewed many of Java’s arguable weaknesses and drawbacks and sug-
gested ways that Groovy might help ameliorate them. Because that chapter was
intended to be introductory I only suggested how Groovy can help, without show-
ing a lot of code examples. Now that I’ve established how easy it is to add Groovy
classes to Java applications, when is it helpful to do so? What features, if any, does
Groovy bring to Java systems that make them easier to develop?

 A guide to the techniques covered in this chapter is shown in figure 4.1. I’ll
review several Groovy advantages, like POGOs, operator overloading, the Groovy
JDK, AST transformations, and how to use Groovy to work with XML and JSON
data. To start, I’ll show that from Groovy code POJOs can be treated as though
they were POGOs.

This chapter covers
■ Basic code-level simplifications
■ Useful AST transformations
■ XML processing
64

www.it-ebooks.info

http://www.it-ebooks.info/

65Treating POJOs like POGOs

4.1 Treating POJOs like POGOs
POGOs have more capabilities than POJOs. For example, all POGOs have a map-based
constructor that’s very convenient for setting properties. The interesting thing is that
even if a class is written in Java, many of the same conveniences apply as long as it’s
accessed from Groovy.

 Consider a simple POJO representing a person, possibly created as part of a
domain model in Java, shown in the next listing. To keep it simple I’ll only include an
ID and a name. I’ll put in a toString override as well but won’t include the inevitable
equals and hashCode overrides.

public class Person {
 private int id;
 private String name;

 public Person() {}

 public Person(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public void setId(int id) { this.id = id; }
 public int getId() { return id; }
 public void setName(String name) { this.name = name; }
 public String getName() { return name; }

 @Override
 public String toString() {
 return "Person [id=" + id + ", name=" + name + "]";
 }
}

Any typical Java persistence layer has dozens of classes just like this, which map to rela-
tional database tables (figure 4.2).

 If I instantiate this class from Groovy I can use a map-based1 constructor to do so,
even though the Java version already specifies two constructors and neither is the one

Listing 4.1 A simple POJO representing a person

1 The term map-based refers to the fact that the attributes are set using the key-value notation used in Groovy

XML parsers

and builders

Groovy

JDK

JSON parsers

and builders

Operator

overloading

AST

transformations
POGOs

Groovy

features

Figure 4.1 Groovy features that
can be added to Java classes
maps. The constructor doesn’t actually use a map to do its job.

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4 Using Groovy features in Java

I want. The following Groovy script creates some Person instances using three differ-
ent mechanisms, none of which appear in the Java class:

def buffy = new Person(name:'Buffy')
assert buffy.id == 0
assert buffy.name == 'Buffy'

def faith = new Person(name:'Faith',id:1)
assert faith.id == 1
assert faith.name == 'Faith'

def willow = [name:'Willow',id:2] as Person
assert willow.getId() == 2
assert willow.getName() == 'Willow'

The instances buffy and faith are created using the map-based constructor, first set-
ting only the name, and then setting both the name and the id. I’m then able to verify,
using Groovy’s built-in assert method (omitting its optional parentheses), that the
person’s properties are set correctly.

 Incidentally, all the assert statements that seem to be accessing private properties
of the class directly really aren’t. Groovy goes through the getter and setter methods
provided in the Java class when it looks like properties are being accessed or assigned.
I can prove this by modifying the implementation of the getter method to return
more than just the name:

public String getName() {
 return "from getter: " + name;
}

Now I have to modify each of the asserts to include the string "from getter: " for
them to still return true.

 The third person, willow, is constructed using the as operator in Groovy. This
operator has several uses, one of which is to coerce a map into an object as shown
here. In this case the operator instantiates a person and supplies the map as proper-
ties for the resulting instance.

 Moving on, I can also add the person instances to a Groovy collection, which isn’t
all that surprising but has some nice additional benefits. For example, Groovy collec-
tions support operator overloading, making it easy to add additional persons and have

Groovy

Groovy adds map-based constructor

Java Class A with

typical constructors

new A(prop1:...,

prop2:...)

Figure 4.2 Groovy adds a map-based constructor to Java classes, regardless of
what constructors are already included.
additional methods for searching:

www.it-ebooks.info

http://www.it-ebooks.info/

67Implementing operator overloading in Java

def slayers = [buffy, faith]
assert ['Buffy','Faith'] == slayers*.name
assert slayers.class == java.util.ArrayList

def characters = slayers + willow
assert ['Buffy','Faith','Willow'] == characters*.name

def doubles = characters.findAll { it.name =~ /([a-z])\1/ }
assert ['Buffy','Willow'] == doubles*.name

Groovy has a native syntax for collections, which simplifies Java code. Putting the ref-
erences inside square brackets creates an instance of the java.util.ArrayList class
and adds each element to the collection. Then, in the assert statement, I used the so-
called “spread-dot” operator to extract the name property from each instance and
return a list of the results (in other words, the spread-dot operator behaves the same
way collect does). By the way, I restored the getName method to its original form,
which returns just the attribute value.

 I was able to use operator overloading to add willow to the slayers collection,
resulting in the characters collection. Finally, I took advantage of the fact that in
Groovy, the java.util.Collection interface has been augmented to have a findAll
method that returns all instances in the collection matching the condition in the pro-
vided closure. In this case the closure contains a regular expression that matches any
repeated lowercase letter.

 Many existing Java applications have extensive domain models. As you can see,
Groovy code can work with them directly, even treating them as POGOs and giving you
a poor-man’s search capability.

 Now to demonstrate a capability Groovy can add to Java that Java doesn’t even sup-
port: operator overloading.

4.2 Implementing operator overloading in Java
So far I’ve used the fact that both the + and – operators have been overloaded in the
String class. The overloaded + operator in String should be familiar to Java develop-
ers, because it’s the only overloaded operator in all of Java; it does concatenation for
strings and addition for numerical values. Java developers can’t overload operators
however they want.

 That’s different in Groovy. In Groovy all operators are represented by methods,
like the plus method for + or the minus method for—. You can overload2 any opera-
tor by implementing the appropriate method in your Groovy class. What isn’t neces-
sarily obvious, though, is that you can implement the correct method in a Java class,
too, and if an instance of that class is used in Groovy code, the operator will work
there as well (see figure 4.3).

2 Incidentally, changing the behavior of operators this way is normally called operator overloading, because the
same operator has different behavior in different classes. Arguably, though, what I’m actually doing is opera-

tor overriding. Effectively they’re the same thing here, so I’ll use the terms interchangeably.

www.it-ebooks.info

http://www.it-ebooks.info/

d
68 CHAPTER 4 Using Groovy features in Java

To demonstrate this I’ll create a Java class that wraps a map. A Department contains a
collection of Employee instances and will have a hire method to add them and a
layOff method to remove them (hopefully not very often). I’ll implement operator
overloading through three methods: plus, minus, and leftShift. Intuitively, plus will
add a new employee, minus will remove an existing employee, and leftShift will be
an alternative way to add. All three methods will allow chaining, meaning that they’ll
return the modified Department instance.

 Here’s the Employee class, which is just the Person POJO by another name:

public class Employee {
 private int id;
 private String name;

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
}

Now for the Department class, shown in the following listing, which maintains the
employee collection in a Map keyed to the employee id values.

public class Department {
 private int id;
 private String name;
 private Map<Integer, Employee> empMap =
 new HashMap<Integer, Employee>();

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 public Collection<Employee> getEmployees() { return empMap.values(); }

 public void hire(Employee e) { empMap.put(e.getId(), e); }
 public void layOff(Employee e) { empMap.remove(e.getId()); }

 public Department plus(Employee e) {
 hire(e);
 return this;

Listing 4.2 A Department with a map of Employees and operator overriding

Groovy

Groovy uses methods for operators

Java Class A with

plus() method

A1 + A2 + A3 + ...

Figure 4.3 Groovy operators are implemented as methods, so if the Java class contains
the right methods, Groovy scripts can use the associated operators on their instances.

Employees
indexed by ID

Business
methods to ad
and remove
Employees

Overriding operator
 }
methods

www.it-ebooks.info

http://www.it-ebooks.info/

69Implementing operator overloading in Java

 public Department minus(Employee e) {
 layOff(e);
 return this;
 }

 public Department leftShift(Employee e) {
 hire(e);
 return this;
 }
}

By the way, notice that the plus method doesn’t add two Department instances; rather,
it adds an Employee to a Department. Groovy only cares about the name of the
method for the operator.3

 To test this I’ll use the Spock testing framework. As in chapter 1, I’ll present the
test without going into much detail about the Spock framework itself, which I’ll
deal with in chapter 6. Fortunately, Spock tests are easy to read even if you don’t
know the details. The next listing shows a Spock test that’s focused on just the oper-
ator methods.

class DepartmentTest extends Specification {
 private Department dept;

 def setup() { dept = new Department(name:'IT') }

 def "add employee to dept should increase total by 1"() {
 given: Employee fred = new Employee(name:'Fred',id:1)

 when: dept = dept + fred

 then:
 dept.employees.size() == old(dept.employees.size()) + 1
 }

 def "add two employees via chained plus"() {
 given:
 Employee fred = new Employee(name:'Fred',id:1)
 Employee barney = new Employee(name:'Barney',id:2)

 when:
 dept = dept + fred + barney

 then:
 dept.employees.size() == 2
 }

 def "subtract emp from dept should decrease by 1"() {
 given:
 Employee fred = new Employee(name:'Fred',id:1)
 dept.hire fred

3 As an example from the Groovy JDK, the java.util.Date class has a plus method that takes an integer

Listing 4.3 A Spock test to check the operator overloading methods in a Java class

Overriding
operator
methods
representing the number of days. See also the multiply method in Collection that takes an integer.

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 Using Groovy features in Java

 when:
 dept = dept - fred

 then:
 dept.employees.size() == old(dept.employees.size()) - 1
 }

 def "remove two employees via chained minus"() {
 given:
 Employee fred = new Employee(name:'Fred',id:1)
 Employee barney = new Employee(name:'Barney',id:2)
 dept.hire fred; dept.hire barney

 when: dept = dept - fred - barney

 then: dept.employees.size() == 0
 }

 def "left shift should increase employee total by 1"() {
 given:
 Employee fred = new Employee(name:'Fred',id:1)

 when:
 dept = dept << fred

 then:
 dept.employees.size() == old(dept.employees.size()) + 1
 }

 def "add two employees via chained left shift"() {
 given:
 Employee fred = new Employee(name:'Fred',id:1)
 Employee barney = new Employee(name:'Barney',id:2)

 when:
 dept = dept << fred << barney

 then:
 dept.employees.size() == 2
 }
}

The Spock test is written in Groovy, so I can use +, –, and << and know that the associ-
ated methods will be used, even though they’re implemented in a Java class.

 The list of operators that can be overridden in Groovy includes plus, minus,
and leftShift, as shown in the listing, and many others as well. You can imple-
ment array-like access through an index by implementing getAt, for example. Pre-
and post-increment are implemented through the next and previous methods,
respectively. The spaceship operator, <=>, is implemented through compareTo. You
can even override the dot operator, believe it or not. The cool part is that you can
implement these methods in either POJOs or POGOs, and Groovy will take advan-
tage of them either way.

 The next feature of Groovy that simplifies Java is one I’ve taken advantage of sev-
eral times already: the Groovy JDK.
www.it-ebooks.info

http://www.it-ebooks.info/

71Making Java library classes better: the Groovy JDK

4.3 Making Java library classes better: the Groovy JDK
Every Groovy class contains a metaclass. In addition to providing information about a
class, the metaclass contains methods that come into play if a method or property that
doesn’t exist is accessed through an instance. By intercepting those method or prop-
erty “missing” failures, developers can provide whatever they want.

 One application of this is for Groovy to add methods to existing classes. This is
especially useful when you want to add methods to classes where you cannot change
the source code. As mentioned earlier, Groovy makes extensive use of the existing Java
standard libraries. It does not, however, simply use them as it finds them. In many
cases, a range of new methods has been added to the Java libraries to make them eas-
ier and more powerful.

 Collectively the set of enhanced Java libraries is known as the Groovy JDK. Groovy
has two sets of Javadoc documentation. One is the Groovy API, which contains infor-
mation about the included Groovy libraries. The other is the Groovy JDK, which shows
only those methods and properties that have been added to the standard Java librar-
ies, in order to, as the saying goes, make them groovier (see figure 4.4).

 For example, Groovy adds many methods to the java.util.Collection interface,
including collect, count, find, findAll, leftShift, max, min, sort, and sum. These
methods are then available in any Groovy collection, whether they include objects
from Java or Groovy.

 I’ve already spent a fair amount of time on collections, though, and I’ll revisit
them frequently in the book. So to choose an example from a different Java class, let’s
illustrate why it’s a bad idea to use basic authentication over HTTP.

 In basic authentication a username and password are transmitted in encoded
form to a server. Basic authentication concatenates the username and the password
Figure 4.4 Groovy adds convenience methods to classes in the Java standard library.

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 Using Groovy features in Java

together, separated by a colon, performs a Base 64 encoding on the resulting string,
and sends the result as part of the authenticated HTTP request header.

 There’s a big difference, however, between encoding and encrypting. Encoded
strings can just as easily be decoded. Groovy makes it easy to demonstrate this, because
the Groovy JDK adds a method called encodeBase64 to, of all things, byte arrays. It also
adds a decodeBase64 method to String. The following listing demonstrates both.

def u = 'username'
def p = 'password'
def encoded = "$u:$p".getBytes().encodeBase64().toString()
println "$u:$p -> $encoded"
assert encoded == 'dXNlcm5hbWU6cGFzc3dvcmQ='
def (user,pass) = new String(encoded.decodeBase64()).split(':')
println "(user,pass) = ($user,$pass)"
assert user == u
assert pass == p

There’s a lot going on in this short script. First, a username and password are assem-
bled into a Groovy string. Then the getBytes method is invoked on the combined
string, which encodes the string into a sequence of bytes using the default character
encoding. That method is from Java. The result is a byte array. Check the Groovy JDK
and you’ll find that Groovy has added the method encodeBase64 to byte[], which
returns an instance of groovy.lang.Writable. Here I just use its toString method
(from Java, of course, though it’s overridden in the Groovy class) to see the resulting
values. In effect I went from Java to Groovy to Java in one chained method call.

 To go the other direction, first I use the decodeBase64 method that Groovy adds to
java.lang.String, which returns a byte[] again. Then String has a constructor that
takes a byte array, and I use the split method from Java to separate the username from
the password again and verify that they haven’t been modified by the transformations.

 Other than showing how the Groovy JDK adds new methods to standard Java data
types, this example also demonstrates that encoded text isn’t encrypted. Anyone who
intercepts the request and accesses the encoded header can extract the username and
password. Using basic authentication therefore is not at all secure if the requests are
transmitted over an unencrypted connection, like HTTP. At a minimum the request
should be sent over HTTPS instead.4

 There are lots and lots of useful methods in the Groovy JDK. As another example,
date manipulation is always painful in Java.5 Groovy doesn’t necessarily fix the many
problems, but the Groovy JDK adds several methods to make date-related classes more

Listing 4.4 Base 64 encoding and decoding username/password information

4 For several years Twitter supported basic authentication as part of its RESTful API. Hopefully all the many
Twitter clients who used it transmitted their authentication over secure sockets. If not you might want to con-
sider changing your password. These days Twitter has switched to OAuth, which may be overly complicated
but is much better than basic authentication.

5 Java 8 is supposed to fix this, at long last. In the meantime, the open source date/time library of choice in the

Mixing Java
and Groovy
methods

Reversing
the encoding
Java world is Joda time: http://joda-time.sourceforge.net/.

www.it-ebooks.info

http://icndb.com
http://icndb.com
http://api.icndb.com/jokes/random?limitTo=%5bnerdy
http://joda-time.sourceforge.net/
http://www.it-ebooks.info/

Inv
getT

to re
a D
73Making Java library classes better: the Groovy JDK

powerful. Here’s an example, which hopefully will be both interesting and at least
mildly amusing to some readers.

 In the United States and Canada, February 2 is known as Groundhog Day. On
Groundhog Day, the groundhog is supposed to emerge from his hole and look for his
shadow. If he doesn’t see it he’ll stay out of the burrow, and winter is nearly over. If he
sees his shadow, he goes back to sleep in his burrow, and we’ll sadly have to suffer
through six more weeks of winter.

 Let’s check the math on that, though, as shown in the next listing.

println 'Groundhog sees shadow --> 6 more weeks of Winter'
def c = Calendar.instance
c.set 2013, Calendar.FEBRUARY, 2
def groundHogDay = c.time
c.set 2013, Calendar.MARCH, 20
def firstDayOfSpring = c.time
def days = firstDayOfSpring – groundHogDay
assert days == (firstDayOfSpring..groundHogDay).size() – 1
println """
There are ${(int)(days/7)} weeks and ${days % 7} days between GroundHog Day
and the first day of Spring (March 20), so Spring
comes early if the groundhog sees his shadow.
"""

I get an instance of the Calendar class by accessing its instance property. Of course,
there’s no instance property in Calendar, but the syntax actually means that I invoke
the static getInstance method with no arguments. Then I call set with the appropri-
ate arguments for Groundhog Day and the first day of spring. Extracting a Date
instance from the Calendar is done through the getTime method (sigh6), which again
is invoked by accessing the time property. So far this is straight Java, except that I’m
invoking methods via properties and omitting optional parentheses.

 I can subtract dates, though, because the Groovy JDK shows that the minus method
in Date returns the number of days between them. The Date class has a next method
and a previous method and implements compareTo. Those are the requirements nec-
essary for a class to be used as part of a range, so I can check the math by invoking the
size method on a range. The size of a range counts both ends, so I have to correct for
the potential off-by-one error by subtracting one.

 The bottom line is that there are six weeks and four days between Groundhog Day
and the first day of spring (March 20). In other words, if the groundhog sees his shadow
the resulting six more weeks of winter is actually a (slightly) early spring anyway.7

 One last convenience should be noted here. In Java, arrays have a length prop-
erty, strings have a length method, collections have a size method, NodeLists have

Listing 4.5 GroundHog Day—an example of Date and Calendar in the Groovy JDK

6 Seriously, couldn’t the method getDate have been used to extract a Date from a Calendar?
7 Yes, that’s a long way to go for a gag, but it does clearly show a mix of Java and Groovy that takes advantage of

okes
ime

turn
ate

Set method
from Java

Subtracting
dates

Dates as
a range
both Groovy JDK methods and operator overloading. The joke is just a side benefit.

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Using Groovy features in Java

a getLength method, and so on. In Groovy you can invoke size on all of them to get
the proper behavior. In this case the Groovy JDK has been used to correct a historical
inconsistency in Java.

 The Groovy JDK is full of helpful methods. Even if your application is planning to
use only Java library classes I encourage you to check the Groovy JDK for possible sim-
plifications and enhancements.

 I mentioned runtime metaprogramming, which is done through the metaclass. One
of the more interesting features of Groovy, though, is compile-time metaprogramming
done through AST transformations, which is the subject of the next section.

4.4 Cool AST transformations
Groovy 1.6 introduced Abstract Syntax Tree (AST) transformations. The idea is to
place annotations on Groovy classes and invoke the compiler, which builds a syntax
tree as usual and then modifies it in interesting ways. Writing AST transformations is
done through various builder classes, but that’s not my primary concern here. Instead
I want to show some of the AST transformations that Groovy provides in the standard
library and demonstrate that they can be applied to Java classes, too.

4.4.1 Delegating to contained objects

Let’s start with delegation. Current design principles tend to favor delegation over
inheritance, viewing inheritance as too highly coupled. Instead of extending a class in
order to support all its methods, with delegation you wrap an instance of one class
inside another. You then implement all the same methods in the outer class that the
contained class provides, delegating each call to the corresponding method on the
contained object. In this way your class has the same interface as the contained object
but is not otherwise related to it.

 Writing all those “pass-through” methods can be a pain, though. Groovy intro-
duced the @Delegate annotation to take care of all that work for you.

 Phones keep getting more and more powerful, so that the term phone is now some-
thing of a misnomer. The current generation of “smart phones” includes a camera, a
browser, a contact manager, a calendar, and more.8 If you’ve already developed classes
for all the components, you can then build a smart phone by delegation. The interest-
ing part is that the component classes can be in Java, and the container in Groovy.

 Consider a trivial Camera class in Java:

public class Camera {
 public String takePicture() {
 return "taking picture";
 }
}

8 Here’s a good quote attributed to Bjarne Stroustrup, inventor of C++: “I’ve always wished for my computer
to be as easy to use as my telephone; my wish has come true because I can no longer figure out how to use

my telephone.”

www.it-ebooks.info

http://www.it-ebooks.info/

75Cool AST transformations

Here also is a Phone class, in Java.

public class Phone {
 public String dial(String number) {
 return "dialing " + number;
 }
}

Now here’s a SmartPhone class in Groovy that uses the @Delegate annotation to
expose the component methods through the SmartPhone class (see figure 4.5):

class SmartPhone {
 @Delegate Camera camera = new Camera()
 @Delegate Phone phone = new Phone()
}

A JUnit test (written in Groovy this time) demonstrates the delegated methods in the
next listing.

class SmartPhoneTest {
 SmartPhone sp = new SmartPhone()

 @Test
 void testPhone() {
 assert 'dialing 555-1234' == sp.dial('555-1234')
 }

 @Test
 void testCamera() {
 assert 'taking picture' == sp.takePicture()
 }
}

Simply add whatever components are needed, and the @Delegate annotation will
expose their methods through the SmartPhone class. I could also add smart phone-
specific methods as desired. The @Delegate annotation makes including capabilities
easy, and the components themselves can be written in Java or Groovy, whichever
is more convenient. The only requirement is that the SmartPhone class itself must
be written in Groovy, because only the Groovy compiler understands the AST

Listing 4.6 A JUnit test in Groovy to demonstrate the delegated methods

Java or

Groovy client

Phone

Camera

class SmartPhone {

@Delegate Phone

@Delegate Camera

}

Groovy
Java or Groovy

Call any method in

phone or camera

(via)SmartPhone

Figure 4.5 The @Delegate AST transformation exposes all methods in the delegates
through the composite object. The transformation only works in Groovy classes, but the
delegates themselves can be in Groovy, Java, or both.
transformation.

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 Using Groovy features in Java

 I’ll have another practical example of @Delegate later, in appendix C on SOAP-
based web services (available for free download), but for now let’s move on to making
objects that can’t be changed.

4.4.2 Creating immutable objects

With the rise of multi-core machines, programs that handle concurrency well are
becoming more and more important. One mechanism for handling operations in a
thread-safe manner is to use immutable objects as much as possible whenever shared
information is required.

 Unlike C++, Java has no built-in way to make it impossible to modify an object.
There’s no “const” keyword in Java, and applying the combination of static and
final to a reference only makes the reference a constant, not the object it references.
The only way to make an object immutable in Java is to remove all ways to change it.

 This turns out to be a lot harder than it sounds. Taking out all setter methods is a
good first step, but there are other requirements. Making a class support immutability
requires that

■ All mutable methods (setters) must be removed.
■ The class should be marked final.
■ Any contained fields should be private and final.
■ Mutable components like arrays should defensively be copied on the way in

(through constructors) and the way out (through getters).
■ equals, hashCode, and toString should all be implemented through fields.

That sounds like work. Fortunately Groovy has an @Immutable AST transformation,
which does everything for you (see figure 4.6).

 The @Immutable transformation can only be applied to Groovy classes, but those
classes can then be used in Java applications. I’ll start by showing how the @Immutable

annotation works and what its limitations are, and then use an immutable object in a
Java class.

Groovy

Java

Groovy

Modify x,y throws

ReadOnlyPropertyException

Can't modify x,y
(no set methods)

@Immutable
class Point { double x; double y; }

Figure 4.6 The @Immutable AST transformation results in an immutable

object that can be used in both Java and Groovy clients.

www.it-ebooks.info

http://www.it-ebooks.info/

77Cool AST transformations

Here’s an immutable point class. It contains two fields, x and y, which represent the
location of the point in a two-dimensional space:

@Immutable
class ImmutablePoint {
 double x
 double y

 String toString() { "($x,$y)" }
}

The @Immutable annotation is applied to the class itself. It still allows the properties
to be set through a constructor, but once set the properties can no longer be modi-
fied. The next listing shows a Spock test to demonstrate that fact.

class ImmutablePointTest extends Specification {
 ImmutablePoint p = new ImmutablePoint(x:3,y:4)

 def "can use map ctor for immutables"() {
 expect: [3,4] == [p.x, p.y]
 }

 def "can't change x"() {
 when: p.x = 5
 then: thrown(ReadOnlyPropertyException)
 }

 def "can't change y"() {
 when: p.y = 5
 then: thrown(ReadOnlyPropertyException)
 }
}

In the test the ImmutablePoint class is instantiated by specifying the values of x and
y as constructor arguments. This is necessary, because there are no set methods
available. I can access the properties through the regular dynamically generated
get methods, but if I try to modify a property the attempt will throw a ReadOnly-
PropertyException.

 The @Immutable annotation is very powerful, but it has limitations. You can only
apply it to classes that contain primitives or certain library classes, like String or Date.
It also works on classes that contain properties that are also immutable. For example,
here’s an ImmutableLine, which contains two ImmutablePoint instances:

@Immutable
class ImmutableLine {
 ImmutablePoint start
 ImmutablePoint end

 def getLength() {
 double dx = end.x - start.x
 double dy = end.y - start.y
 return Math.sqrt(dx*dx + dy*dy)

Listing 4.7 Testing the ImmutablePoint class

Set properties
through
constructor

Access
properties

Attempts to
change throw
exception
 }

www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 Using Groovy features in Java

 String toString() { "from $start to $end" }
}

The start and end fields are both of type ImmutablePoint. I’ve added a method to
return a dependent length property, which is computed using the Pythagorean
theorem in the usual manner. This means I can access the length property of an
ImmutableLine and the access will go through the getLength method, but because
there’s no setter I can’t change the value from outside. The corresponding test for this
class is shown in the following listing.

class ImmutableLineTest extends Specification {
 ImmutableLine line

 def setup() {
 ImmutablePoint p1 = new ImmutablePoint(x:3,y:0)
 ImmutablePoint p2 = new ImmutablePoint(x:0,y:4)
 line = new ImmutableLine(start:p1,end:p2)
 }

 def "points should be set properly"() {
 expect:
 line.start.x == 3; line.end.x == 0
 line.start.y == 0; line.end.y == 4
 (line.length - 5).abs() < 0.0001
 }

 def "can't change start"() {
 when: line.start = new ImmutablePoint(x:1,y:1)
 then: thrown(ReadOnlyPropertyException)
 }

 def "can't change end"() {
 when: line.end = new ImmutablePoint(x:1,y:1)
 then: thrown(ReadOnlyPropertyException)
 }
}

In order to create an ImmutableLine I need to first create a pair of ImmutablePoint
instances that can be used in the ImmutableLine constructor. The first test checks that
the contained points are set properly and then checks the getLength implementation
by accessing the length “field.” Finally, I make sure that I can’t reassign the start or
end properties of the line.

 Taking this one step further, what happens if the class contains a collection? The
@Immutable annotation will cause the collection to be wrapped by one of its unmodi-
fiable alternatives. For example, let’s say that a path is a collection of lines, so here’s
the definition of an ImmutablePath:

@Immutable
class ImmutablePath {
 List<ImmutableLine> segments = []

Listing 4.8 A Spock test for the ImmutableLine class

The line contains
ImmutablePoints

Check the
getLength
computation

Once assigned
start and end
can’t be
changed
}

www.it-ebooks.info

http://www.it-ebooks.info/

79Cool AST transformations

This time I can’t just declare the segments variable using def. If I want the @Immutable

annotation to work I need to specify that I’m using some sort of collection. On the
right-hand side of the segments definition I still just have [], which normally means
an instance of java.util.ArrayList. In this case, however, what I actually get (by
printing segments.class.name) is java.util.Collections$UnmodifiableRandom-
AccessList, believe it or not. The Collections class has utility methods like unmodi-
fiableList that take a regular list and return a new list that can’t be changed, but to
be honest I wouldn’t have necessarily expected it to be a RandomAccessList in this
case. It doesn’t make any difference what the actual class is, of course, as long as the
contract is maintained.

 Speaking of that contract, those unmodifiable methods in Collections don’t remove
the available mutator methods. Instead, they wrap them and throw an Unsupported-
OperationException if they’re accessed. That’s arguably a strange way to implement
an interface, but so be it. The Spock test for this class is shown in the following listing.

class ImmutablePathTest extends Specification {
 ImmutablePath path

 def setup() {
 def lines = []
 ImmutablePoint p1 = new ImmutablePoint(x:0,y:0)
 ImmutablePoint p2 = new ImmutablePoint(x:3,y:0)
 ImmutablePoint p3 = new ImmutablePoint(x:0,y:4)
 lines << new ImmutableLine(start:p1,end:p2)
 lines << new ImmutableLine(start:p2,end:p3)
 lines << new ImmutableLine(start:p3,end:p1)

 path = new ImmutablePath(segments:lines)
 }

 def "points should be set through ctor"() {
 expect:
 path.segments.collect { line -> line.start.x } == [0,3,0]
 path.segments.collect { line -> line.start.y } == [0,0,4]
 path.segments.collect { line -> line.end.x } == [3,0,0]
 path.segments.collect { line -> line.end.y } == [0,4,0]
 }

 def "cant add new segments"() {
 given:
 ImmutablePoint a = new ImmutablePoint(x:5,y:5)
 ImmutablePoint b = new ImmutablePoint(x:4,y:4)

 when:
 path.segments << new ImmutableLine(start:a,end:b)

 then:
 thrown UnsupportedOperationException
 }

Listing 4.9 A Spock test for the ImmutablePath class
}

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 Using Groovy features in Java

Everything works as expected. It takes some doing to build up all the immutable
objects needed to create an ImmutablePath instance, but once everything is set it
all works.

 Everything I’ve shown about the @Immutable annotation so far falls in the cate-
gory of the good news. Now for the bad news, though again it’s not all that bad. First,
the @Immutable annotation, like many of the AST transformations, wreaks havoc on
Integrated Development Environments (IDEs). The transformations occur at compile
time, which the IDEs have a hard time anticipating. Even though everything I’ve done
so far is legal and works just fine, my IDE9 continually struggled with it. At this point
the IDE issues are mostly annoying, but fixing them is legitimately a Hard Problem
and probably won’t go away soon.

 The next problem occurs when I try to use my ImmutablePoint in a Java program.
How am I supposed to assign the x and y values? Groovy gives me a map-based con-
structor that I’ve been using so far, but Java won’t see that.

 Fortunately, the developers of @Immutable anticipated that problem. The transfor-
mation also generates a tuple constructor that takes each of the properties in the
order they’re defined. In this case, it’s as though the ImmutablePoint class has a two-
argument constructor that takes doubles representing x and y in that order.

 Here’s a JUnit 4 test (written in Java, so it’s an example of Java/Groovy integration
itself) that takes advantage of that constructor:

public class ImmutablePointJUnitTest {
 private ImmutablePoint p;

 @Test
 public void testImmutablePoint() {
 p = new ImmutablePoint(3,4);
 assertEquals(3.0, p.getX(), 0.0001);
 assertEquals(4.0, p.getY(), 0.0001);
 }
}

This, again, works just fine. At the moment, my IDE even understands that the two-
argument constructor exists, which is pretty sweet. I’m using the three-argument
version of the Assert.assertEquals method, by the way, because I’m comparing dou-
bles, and for that you need to specify a precision.

 There’s also no need to try to check for immutability, because from the Java point
of view the class has no methods to invoke that might change x or y. Unlike the getX
and getY methods shown, there are no corresponding setters.

 As I say, this all works, but if you’re trying to use the generated constructor and
your system refuses to believe that one exists, there’s a simple workaround. Simply add
a factory class in Groovy that can instantiate the points in the usual way:

class ImmutablePointFactory {
 ImmutablePoint newImmutablePoint(xval,yval) {
9 Most of the code in this chapter was written using Groovy / Grails Tool Suite (STS) version 3.2.

www.it-ebooks.info

http://www.it-ebooks.info/

81Cool AST transformations

 return new ImmutablePoint(x:xval,y:yval)
 }
}

Now the Java client can instantiate ImmutablePointFactory and then invoke the
newImmutablePoint factory method, supplying the desired x and y values.

 Everything works, that is, until you succumb to the temptation to follow standard
practices in the Java API and make the factory class a singleton. That’s the subject of
the next subsection.

4.4.3 Creating singletons

When a new Java developer first discovers the wide, wonderful world of design pat-
terns, one of the first ones they tend to encounter is Singleton. It’s an easy pattern to
learn, because it’s easy to implement and only involves a single class. If you only want
one instance of a class, make the constructor private, add a static final instance vari-
able of the class type, and add a static getter method to retrieve it. How cool is that?

 Unfortunately, our poor new developer has wandered into a vast jungle, full of
monsters to attack the unwary. First of all, implementing a true singleton isn’t nearly
as easy as it sounds. If nothing else, there are thread safety issues to worry about, and
because it seems no Java program is every truly thread-safe the results get ugly fast.

 Then there’s the fact that a small but very vocal contingent of developers view the
whole Singleton design pattern as an anti-pattern. They trash it for a variety of rea-
sons, and they tend to be harsh in their contempt for both the pattern and anyone
foolish or naïve enough to use it.

 Fortunately I’m not here to resolve that issue. My job is to show you how Groovy
can help you as a Java developer, and I can do that here. As you may have anticipated
based on the title of this section, there’s an AST transformation called @Singleton.

 To use it all I have to do is add the annotation to my class. Here I’ve added it to the
ImmutablePointFactory from earlier:

@Singleton
class ImmutablePointFactory {
 ImmutablePoint newImmutablePoint(xval,yval) {
 return new ImmutablePoint(x:xval,y:yval)
 }
}

Again, I can’t resist saying it: that was easy. The result is that the class now contains a
static property called instance, which contains, naturally enough, the one and only
instance of the class. Also, everything is implemented in as correct a manner as possible
by the author10 of the transformation. In Groovy code I can now write the following:

ImmutablePoint p = ImmutablePointFactory.instance.newImmutablePoint(3,4)

10 Paul King, one of the coauthors of Groovy in Action (Manning, 2007) and a fantastic developer. Let me be blunt
about this: everything Paul King writes is good. He tends to add his presentations to SlideShare.net as well, so

go read them as soon as humanly possible.

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Using Groovy features in Java

That works just fine. It’s when I try to do the same thing in Java that I run into prob-
lems. Again, the compiler understands, but I’ve never been able to coax my IDE into
believing that the factory class has a public static field called instance in it.

 Still, the annotation works and the IDEs will eventually understand how to deal
with it. In fact, all the cool new AST transformations work, and I encourage you to con-
sider them significant shortcuts to writing applications.

 There are other AST transformations available and more being written all the time.
I encourage you to keep an eye on them in case one comes along that can simplify
your code the same way the ones just discussed do.

 As cool as AST transformations are, though, our last task is so much easier to do in
Groovy than in Java that it practically sells Groovy to Java developers all by itself. That
issue is parsing and generating XML.

4.5 Working with XML
Way back in the late 90s, when XML was young, new, and still popular (as hard to
imagine as that may be now), the combination of XML and Java was expected to be
a very productive one. Java was the portable language (write once, run anywhere,
right?), and XML was the portable data format. Unfortunately, if you’ve ever tried
working with XML through the Java built-in APIs you know the results have fallen
far short of the promise. Why are the Java APIs for working with XML so painful
to use?

 Here’s a trivial example. I have a list of books in XML format, as shown here:

<books>
 <book isbn="...">
 <title>Groovy in Action</title>
 <author>Dierk Koenig</author>
 <author>Paul King</author>
 ...
 </book>
 <book isbn="...">
 <title>Grails in Action</title>
 <author>Glen Smith</author>
 <author>Peter Ledbrook</author>
 </book>
 <book isbn="...">
 <title>Making Java Groovy11</title>
 <author>Ken Kousen</author>
 </book>
</books>

Now assume that my task is to print the title of the second book. What could be easier?
Here’s one Java solution, based on parsing the data into a document object model
(DOM) tree and finding the right element:
11 I had to find some way to include my book in that august company, just to bask in the reflected glory.

www.it-ebooks.info

http://www.it-ebooks.info/

83Working with XML

public class ProcessBooks {
 public static void main(String[] args) {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 Document doc = null;
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 doc = builder.parse("src/jag/xml/books.xml");
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 if (doc == null) return;
 NodeList titles = doc.getElementsByTagName("title");
 Element titleNode = (Element) titles.item(1);
 String title = titleNode.getFirstChild().getNodeValue();
 System.out.println("The second title is " + title);
 }
}

This is actually the short version of the required program. To make it any shorter I’d
have to collapse the exception handling into catching just Exception, or add a throws
clause to the main method.

 Many APIs in Java are designed around a set of interfaces, with the assumption that
there will be many different alternative implementations. In the Java API for XML Pro-
cessing (JAXP) world there are many parsers available, so the API is dominated by
interfaces. Of course, you can’t instantiate an interface, so using the API comes down
to factories and factory methods.

 To parse the XML file using a simple DOM parser, therefore, I first need to acquire
the relevant factory, using its newInstance method. Then I use the factory method
newDocumentBuilder, which is admittedly a really good name for a factory method.
Parsing the file is then done through the parse method, as expected. Inside the DOM
parser the tree is constructed using, interestingly enough, a SAX parser, which is why I
need to prepare for SAX exceptions.

 Assuming I get that far, the result at that point is a reference to the DOM tree. Find-
ing my answer by traversing the tree is quite frankly out of the question. Traversals are
highly sensitive to the presence of white-space nodes, and the available methods (get-
FirstChild, getNextSibling, and the like) aren’t really a direct method to my
answer. If whoever put together the XML file had been kind enough to assign each ele-
ment an ID I could have used the great getElementByID method to extract the node I
need, but no such luck there. Instead I’m reduced to collecting the relevant nodes
using getElementsByTagName, which doesn’t return something from the Collections
framework as you might expect, but a NodeList instead. The NodeList class has an
item method that takes an integer representing the zero-based index of the node I

want, and at long last I have my title node.

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Using Groovy features in Java

 Then there’s the final indignity, which is that the value of a node is not the charac-
ter content I want. No, I have to retrieve the first text child of the node, and only then
can I get the value, which returns the text I needed.

Let’s look at another, somewhat more practical, example. Remember the Google geo-
coder used in chapter 3? When the geocoder went to version 3, Google removed the
requirement to register for a key (good) but also removed the CSV output type (unfor-
tunate). Now the only available output types are either JSON or XML. Google also
changed the URL for accessing the web service (pretty typical when versioning a web
service, actually), embedding the two available output types into the new URLs. In
chapter 9 on RESTful web services I’ll have a lot more to say about the choice of out-
put types (formally known as content negotiation), but here the type is embedded in
the URL.

 From a Java point of view, working with JSON output is a bit of a complication
because it requires an external library to parse the JSON data. That’s not too much of
a burden because there are several good JSON libraries available, but you still have to
pick one and learn to use it. We’ve already talked about how involved it is to work with
XML data in Java, so that’s not a great alternative either.

 Groovy, however, eats XML for lunch. Let’s see just how easy it is for Groovy to
access the new geocoder and extract the returned latitude and longitude data.

 First, here’s a sample of the XML output returned from the web service for the
input address of Google’s home office:

<GeocodeResponse>
 <status>OK</status>
 <result>
 <type>street_address</type>
 <formatted_address>1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA</

XML and Groovy
I was once teaching a class about Java and XML, and one of the exercises was to
extract a nested value. After taking the students through the awkward, ugly, Java
solution, a woman in the back raised her hand.

“I kept waiting for you to say, ‘this is the hard way,’” she said, “and now here’s the
easy way, but you never got to the easy way.”

In reply I had to say, “Want to see the easy way? Let’s look at the Groovy solution to
this problem.”

def root = new XmlSlurper().parse('books.xml')
println root.book[1].title

How’s that for easy? I instantiated an XmlSlurper, called its parse method on the
XML file, and just walked the tree to the value I want.

If I ever need to parse or generate XML I always add a Groovy module to do it.
formatted_address>

www.it-ebooks.info

http://www.it-ebooks.info/

85Working with XML

...
 <geometry>
 <location>
 <lat>37.4217550</lat>
 <lng>-122.0846330</lng>
 </location>
 ...
 </geometry>
 </result>
</GeocodeResponse>

A lot of child elements have been omitted from this response in order to focus on
what I actually want. The latitude and longitude values are buried deep inside the out-
put. Of course, digging to that point is easy enough for Groovy. Here’s a script that
creates the required HTTP request, transmits it to Google, and extracts the response,
all in less than a dozen lines:

String street = '1600 Ampitheatre Parkway'
String city = 'Mountain View'; state = 'CA'
String base = 'http://maps.google.com/maps/api/geocode/xml?'
String url = base + [sensor:false,
 address:[street, city, state].collect { v ->
 URLEncoder.encode(v,'UTF-8')
 }.join(',')].collect {k,v -> "$k=$v"}.join('&')
def response = new XmlSlurper().parse(url)
latitude = response.result[0].geometry.location.lat
longitude = response.result[0].geometry.location.lng

The code strongly resembles the version 2 client presented earlier, in that I have a
base URL for the service (note that it includes the response type, XML, as part of the
URL) and a parameters map that I convert into a query string. Transmitting the request
and parsing the result is done in one line of code, because the XmlSlurper class has a
parse method that takes a URL. Then extracting the latitude and longitude is simply
a matter of walking the tree.

 Several times I’ve written applications that took this script, after converting it to a
class that used a Location like before, and added it as a service. The code savings over
the corresponding Java version is just too great to ignore.

 Parsing is one thing, but what about generation? For that, Groovy provides a
builder class called groovy.xml.MarkupBuilder.

 Consider another POJO representing a Song, as shown here:

public class Song {
 private int id;
 private String title;
 private String artist;
 private String year;

 public Song() {}

 public Song(int id, String title, String artist, String year) {
 this.id = id;

 this.title = title;

www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Using Groovy features in Java

 this.artist = artist;
 this.year = year;
 }

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }
 public String getArtist() { return artist; }
 public void setArtist(String artist) { this.artist = artist; }
 public String getYear() { return year; }
 public void setYear(String year) { this.year = year; }
}

The Song class, implemented in Java, contains an id and strings for the title, artist,
and year. The rest is just constructors, getters, and setters. In a real system the class
would also probably have overrides of toString, equals, and hashCode, but I don’t
need that here.

 How should Song instances be represented in XML? One simple idea would be to
treat the ID as an attribute of the song, and have title, artist, and year as child ele-
ments. In the following listing I show part of a Groovy class that converts Song
instances to XML and back.

class SongXMLConverter {
 String song2xml(Song s) {
 StringWriter sw = new StringWriter()
 MarkupBuilder builder = new MarkupBuilder(sw)
 builder.song(id:s.id) {
 title s.title
 artist s.artist
 year s.year
 }
 return sw.toString()
 }

 Song xml2song(String xml) {
 def root = new XmlSlurper().parseText(xml)
 return new Song(id:root.@id.toInteger(),
 title:root.title, artist:root.artist, year:root.year)
 }

 String songlist2xml(songs) {
 StringWriter sw = new StringWriter()
 MarkupBuilder builder = new MarkupBuilder(sw)
 builder.songs {
 songs.each { s ->
 song(id:s.id) {
 title s.title
 artist s.artist
 year s.year
 }

Listing 4.10 Converting songs to XML and back

Output buffer
for XML

Script the XML using
Groovy builder

Script the XML using
Groovy builder
 }

www.it-ebooks.info

http://www.it-ebooks.info/

87Working with XML

 }
 return sw.toString()
 }

 List<Song> xml2songlist(String xml) {
 def result = []
 def root = new XmlSlurper().parseText(xml)
 root.song.each { s ->
 result << new Song(id:s.@id.toInteger(),title:s.title,
 artist:s.artist,year:s.year)
 }
 return result
 }
}

The SongXMLConverter class has four methods: one to convert a single song to XML,
one to convert XML to a single song, and two to do the same for a collection of songs.
Converting from XML to Song instances is done with the XmlSlurper illustrated ear-
lier. The only new part is that the slurper accesses the song ID value using the @id
notation, where the @ is used to retrieve an attribute. Figure 4.7 shows the job of the
XmlSlurper, or its analogous class, XmlParser.

 Going the other direction, from song to XML, is done with a MarkupBuilder. The
MarkupBuilder class writes to standard output by default. In this class I want to return
the XML as a string, so I used the overloaded MarkupBuilder constructor that takes a
java.io.Writer as an argument. I supply a StringWriter to the constructor, build the
XML, and then convert the output to a String using the normal toString method.

 Once I have a MarkupBuilder I write out the song’s properties as though I was
building the XML itself. Let’s focus on the conversion of a single song to XML form, as
shown next:

MarkupBuilder builder = new MarkupBuilder(sw)
builder.song(id:s.id) {
 title s.title
 artist s.artist
 year s.year
}

The job of the MarkupBuilder is illustrated in figure 4.8.
 This is an example of Groovy’s metaprogramming capabilities, though it doesn’t

look like it at first. The idea is that inside the builder, whenever I write the name of a

XmlSlurper /
XmlParser

Song

int id
String title
String artist
String year

<song id="...">
<title>...</title>
<artist>...</artist>
<year>...</year>

</emp>

Figure 4.7 Using an XmlSlurper or XmlParser to populate an object from

XML data

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4 Using Groovy features in Java

method that doesn’t exist, the builder interprets it as an instruction to create an XML
element. For example, I invoke the song method on the builder with the argument
being a map with a key called id and a value being the song’s ID. The builder doesn’t
have a song method, of course, so it interprets the method call as a command to build
an element called song, and the argument is an instruction to add an id attribute to
the song element whose value is the song ID. Then, when it encounters the curly brace
it interprets that as an instruction to begin child elements.

 I have three more method calls: one to title, one to artist, and one to year. The
lack of parentheses can be misleading in this case, but each is actually a method call.
Once again the builder interprets each of the non-existent methods as commands to
create XML elements, and the arguments this time, because they’re not in map form,
become character data contained in the elements. The result of the builder process is
the XML shown next:

<song id="...">
 <title>...</title>
 <artist>...</artist>
 <year>...</year>
</song>

The method that converts a list of songs into a larger XML file just does the same thing
for each song.

GROOVY SWEET SPOT Groovy is excellent at parsing and generating XML. If
your Java application works with XML, strongly consider delegating to a
Groovy module.

Lessons learned (XML)
1 Groovy’s XmlParser and XmlSlurper make parsing XML trivial, and values can

be extracted by walking the resulting DOM tree.
2 Generating XML is just as easy, using MarkupBuilder.

<song id="...">
<title>...</title>
<artist>...</artist>
<year>...</year>

</emp>

MarkupBuilder

Song

int id
String title
String artist
String year

Figure 4.8 Generating an XML representation of an object using a
groovy.xml.MarkupBuilder
www.it-ebooks.info

http://www.it-ebooks.info/

89Working with JSON data

4.6 Working with JSON data
Groovy processes JSON data as easily as it processes XML. To conclude this chapter, let
me present a trivial example of JSON response data from a web service.

 The service is known as ICNDB: the Internet Chuck Norris Database. It is located at
http://icndb.com and has a RESTful API for retrieving the associated jokes. If you send
an HTTP GET request to http://api.icndb.com/jokes/random?limitTo=[nerdy] you
get back a string in JSON form.

 Groovy makes it easy to send a GET request. In the Groovy JDK the String class has
a toURL method, which converts it to an instance of java.net.URL. Then the Groovy
JDK adds a method to the URL class called getText. Accessing the web service is there-
fore as simple as

String url = 'http://api.icndb.com/jokes/random?limitTo=[nerdy]'
String jsonTxt = url.toURL().text
println jsonTxt

Executing this returns a JSON object of the form

{ "type": "success", "value": { "id": 563, "joke": "Chuck Norris causes the
Windows Blue Screen of Death.", "categories": ["nerdy"] } }

In all the Google geocoder demonstrations I’ve used so far in this book I introduced
the XmlSlurper class, whose parse method takes the URL in string form and automat-
ically converts the result to a DOM tree. Since version 1.8, Groovy also includes a
JsonSlurper, but it doesn’t have as many overloads of the parse method as the
XmlSlurper does. It does, however, contain a parseText method, which can process
the jsonTxt returned from the previous code.

 If I add that to the earlier lines, the complete ICNDB script is shown in the next listing.

import groovy.json.JsonSlurper

String url = 'http://api.icndb.com/jokes/random?limitTo=[nerdy]'
String jsonTxt = url.toURL().text
def json = new JsonSlurper().parseText(jsonTxt)
def joke = json?.value?.joke
println joke

The parseText method on JsonSlurper converts the JSON data into Groovy maps
and lists. I then access the value property of the json object, which is a contained
JSON object. It has a joke property, which contains the string I’m looking for.

 The result of executing this script is something like this:

Chuck Norris can make a method abstract and final

Just as generating XML is done by scripting the output through a MarkupBuilder, gen-
erating JSON data uses the groovy.json.JsonBuilder class. See the GroovyDocs for

Listing 4.11 chuck_norris.groovy, which processes data from ICNDB
JsonBuilder for a complete example.

www.it-ebooks.info

http://icndb.com
http://api.icndb.com/jokes/random?limitTo=[nerdy]
http://www.it-ebooks.info/

90 CHAPTER 4 Using Groovy features in Java

This completes the tour of Groovy features that can be added to Java applications
regardless of use case.

4.7 Summary
This chapter reviewed many ways that Groovy can help Java at the basic level, from
POJO enhancements to AST transformations to building XML and more. I’ll use these
techniques in future chapters wherever they can help. I’ll also review other helpful
techniques along the way, though these are most of the major ones.

 The next couple of chapters, however, change the focus. Although mixing Java and
Groovy is easy and is a major theme of this book, some companies are reluctant to
add Groovy to production code until their developers have a certain minimum com-
fort level with the language. As it happens, there are two major areas where Groovy
can strongly impact and simplify Java projects without being integrated directly. The
first of those is one of the major pain points in enterprise development: the build pro-
cess. The other is testing, which is valued more highly the better the developer.

 By covering these two techniques early in the book I can then use, for example, Gra-
dle builds and Spock tests when I attack the use cases Java developers typically encoun-
ter, like web services, database manipulation, or working with the Spring framework.

Lessons learned (JSON)
1 The JsonSlurper class has a parseText method for working with JSON format-

ted strings.
2 The JsonBuilder class generates JSON strings using the same mechanism as

the XmlSlurper.

Lessons learned (Groovy features used in Java)
1 When Groovy access a POJO it can use the map-based constructor as though it

were a POGO.
2 Every operator in Groovy delegates to a method, and if that method is imple-

mented in a Java class the operator in Groovy will still use it. This means you
can do operator overloading even in a Java class.

3 The Groovy JDK documents all the methods that Groovy adds to the Java stan-
dard API through metaprogramming.

4 Groovy AST transformations can only be applied to Groovy classes, but the
classes can be mixed with Java in interesting ways. This chapter includes exam-
ples of @Delegate, @Immutable, and @Singleton.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Groovy tools

Welcome to part 2: “Groovy tools.” In these two chapters, I address two of
the major ways Groovy is often introduced into an organization: namely, build
processes and testing.

 Chapter 5 on build processes reviews the dominant build tools in the Java
world, Ant and Maven, and shows how to add Groovy dependencies to each. It
also covers the Ant tasks that work with Groovy and the major Groovy plugins for
Maven. Finally, it provides an introduction to Gradle, one of the most important
projects in the Groovy world, and includes examples covering several interesting
build tasks.

 Chapter 6 on testing starts with JUnit tests in both Java and Groovy and then
looks at the JUnit subclass GroovyTestCase and its descendants and what addi-
tional capabilities they bring. Then it covers the MockFor and StubFor classes in
the Groovy library, which are great ways to build mock objects and also provide
some insight into Groovy metaprogramming. Finally, the chapter ends with a
good overview of the Spock testing framework, which includes mocking capabil-
ities of its own.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Build processes
Building source code is almost always a pain point in development organizations.
An ideal build process is automated end-to-end, including compilation, running
tests, generating reports, and producing any required artifacts. The process needs
to be fast enough that it can be done frequently, especially given modern agile
approaches, and yet flexible enough to adapt to the exigencies of individual teams.

 In the Java world two primary approaches to automated builds have emerged
over time. Both are open source projects from Apache. The first is Ant (http://
ant.apache.org), which uses a library of tasks configured in XML backed by Java
classes. The other is Maven (http://maven.apache.org), which offers a rich array of
options and promises to make the entire process simple, but uses a highly opinion-
ated API that requires a degree of mastery to use effectively.

 To start I want to address the goals of any build process, and then see how the

This chapter covers
■ Adding Groovy to Ant builds
■ Using Maven with Groovy
■ Groovy Grapes and @Grab
■ The future: Gradle
93

various tools attempt to meet them.

www.it-ebooks.info

http://ant.apache.org
http://ant.apache.org
http://maven.apache.org
http://www.it-ebooks.info/

94 CHAPTER 5 Build processes

5.1 The build challenge
A software build combines several features that individually seem like they ought to be
easy but in practice become complicated. To build your code you must

■ Download any necessary dependencies.
■ Compile the source code with the dependencies properly resolved, handling

any cross-language issues that may arise.
■ Run the unit, integration, and/or functional tests.
■ Produce the desired artifacts, whatever they may be.

Optionally, other tasks might include checking code out of source code control, gen-
erating documentation, and even deploying the results into production.

The IDE build
Some companies still do their builds inside integrated development environments
(IDEs). Although this is not in itself a bad thing, it often leads to long-term problems.
Sooner or later such companies wind up with a special computer that no one is
allowed to touch, even though the original owner left or transferred to another division
long ago, because it’s the only system where the build still works.

Current thinking is that the source code control system should manage all aspects
of a build, from the required scripts to the JAR dependencies. That way you can
always be sure the build is correct and self-sufficient, which avoids the whole “at
least it works on my machine” problem.

Groovy

Ant tasks

Ant

AntBuilder

Grapes and
@Grab

Gant
Groovy

Eclipse plugin

Maven

Gradle

GMaven

Java

Java +

Groovy

Groovy

Figure 5.1 Guide to technologies in this chapter. Java approaches are based on Ant or
Maven. Groovy supplies Ant tasks for compilation and executing scripts. Gant is used by
Grails but will eventually be replaced by Gradle. The AntBuilder class is useful and built
into Gradle. There are two separate plugins available for Maven builds. Groovy Grapes
make it easy to deliver code (normally scripts) to a client without compiling it first.

Ultimately, though, the future belongs to Gradle.

www.it-ebooks.info

http://www.it-ebooks.info/

95The Java approach, part 1: Ant

In fact, the recent trend in development processes is toward continuous delivery,
where a single command performs the whole sequence from build to deployment in
one motion.1

 There are two primary build tools in the Java world: Ant and Maven. Ant is older
and is gradually being replaced, but it is still common in the industry and is the foun-
dation of everything that came afterward. Maven is used extensively in the Java indus-
try but tends to trigger strong feelings in developers.

 A guide to the technologies covered in this chapter is shown in figure 5.1. I’ll start
with the Apache Ant project in the next section.

5.2 The Java approach, part 1: Ant
Apache Ant is a Java-based build tool, based on the older “make” technology but with-
out many of its difficulties. The name Ant represents either “another neat tool” or a
tool that lifts far more than its own weight, depending on whom you ask. Ant build
files are written in XML, so they are inherently cross-platform, and because Java classes
implement the XML tasks, a single API suffices for all operating systems.

 That’s the good news. The (somewhat) bad news is that Ant is an extremely low-
level API, so many build files consist of lots of twisty little tasks, all alike.2

 Let me start with a “Hello, World” example in the next listing, based on a sample
from the Ant tutorial provided by Apache at the Ant website.

<project name="HelloWorld" basedir="." default="main">

 <property name="src.dir" value="src"/>
 <property name="build.dir" value="build"/>
 <property name="classes.dir" value="${build.dir}/classes"/>
 <property name="jar.dir" value="${build.dir}/jar"/>
 <property name="main-class" value="mjg.HelloWorld"/>

 <target name="clean">
 <delete dir="${build.dir}"/>
 </target>

 <target name="compile">
 <mkdir dir="${classes.dir}"/>
 <javac srcdir="${src.dir}" destdir="${classes.dir}"
 includeantruntime="false"/>
 </target>

 <target name="jar" depends="compile">
 <mkdir dir="${jar.dir}"/>
 <jar destfile="${jar.dir}/${ant.project.name}.jar"

1 See Jez Humble and Dave Farley’s book Continuous Delivery (Addison Wesley, 2010) for details. (Available
through its companion website, http://continuousdelivery.com/.)

Listing 5.1 build.xml: A simple Ant build file for a “Hello, World” Java application
2 Yes, an Adventure (or Zork) reference. I just mean they’re small, they’re many, and they’re easy to get lost in.

www.it-ebooks.info

http://continuousdelivery.com/
http://www.it-ebooks.info/

96 CHAPTER 5 Build processes

 basedir="${classes.dir}">
 <manifest>
 <attribute name="Main-Class" value="${main-class}"/>
 </manifest>
 </jar>
 </target>

 <target name="run" depends="jar">
 <java jar="${jar.dir}/${ant.project.name}.jar" fork="true"/>
 </target>

 <target name="clean-build" depends="clean,jar"/>

 <target name="main" depends="clean,run"/>

</project>

By default, this file is called build.xml and resides in the root directory of the proj-
ect. The root element of the project file is called <project>, which is given a name, a
base directory, and the name of a default task to run if none is supplied on the com-
mand line.

 At the top of the file a series of properties are set, including the locations of various
directories. Note that one property can refer to another by using the ${...} syntax.

 A series of <task> elements (clean, compile, jar, run, clean-compile, and main)
are defined to represent individual actions during the build process. Some tasks depend
on others, which is expressed using the depends attribute of the <task> element.

 All the defined tasks ultimately delegate to a library of predefined Ant tasks. Here
those tasks include file-based tasks like mkdir and delete, and Java-related tasks like
javac, jar, and java.

 Executing this build without arguments means typing ant at the command line,
which will execute the default main task. Because main depends on clean and run it
will execute those tasks first, which will execute their own individual dependencies,
and so on. The result looks like the following listing.

Buildfile: /.../build.xml
clean:
 [delete] Deleting directory /.../build
compile:
 [mkdir] Created dir: /.../build/classes
 [javac] Compiling 1 source file to /.../build/classes
jar:
 [mkdir] Created dir: /.../build/jar
 [jar] Building jar: /.../build/jar/HelloWorld.jar
run:
 [java] Hello, World!
main:
BUILD SUCCESSFUL
Total time: 1 second

Listing 5.2 Execution of the default task in the “Hello, World” Ant build
www.it-ebooks.info

http://www.it-ebooks.info/

97Making Ant Groovy

Each task outputs its own name, followed by the included built-in Ant tasks indented
underneath. The build completed successfully, though that can be misleading. The
BUILD SUCCESSFUL statement at the end means that Ant finished all the tasks. The
individual tasks may or may not have worked.

 The tasks chosen here are typical, but there is no standard. Each organization (and
even each developer) is free to choose their own. Reusing tasks between different
builds also requires an import statement (or copy-and-paste reuse), plus some effort
to make sure the tasks are not tied to a particular project structure.

 Again, the benefit here is that this is all completely portable. The Ant build should
work just as well on Mac OS X as it does on Windows or Linux. The downside is that
this is a trivial Hello World application and the build file is already over 35 lines long.
Once you add in the junit and junitreport tasks, to say nothing of customizing the
classpath with third-party libraries, the size of this file will grow quickly. A more exten-
sive build file, including the JUnit 4 libraries and a test case, can be found in the chap-
ter source code.

 Rather than do that here, however, let me show you how to introduce Groovy
into this system.

5.3 Making Ant Groovy
Ant is not as common in Java builds as it used to be, but switching build tools is a
major decision for most organizations and not to be undertaken lightly. If you’re
working with a large installed base of Ant builds, then Groovy can still contribute.

 Four approaches are available:

■ Groovy scripting code can be added directly to an Ant build file.
■ Groovy scripts and classes can be compiled and executed in Ant builds using

special Ant tasks for that purpose.
■ The Groovy standard library contains a special class called groovy.util.Ant-

Builder that can replace the XML build file with Groovy scripting code that
does the same thing.

■ There’s a Groovy DSL available, called Gant, which provides an alternative to
AntBuilder.

ANTBUILDER Even if you don’t use Ant, the AntBuilder class is worth know-
ing about because it’s embedded in other build tools, like Gant and Gradle.

The following subsections will tackle each of these Groovy and Ant topics in turn.

5.3.1 The <groovy> Ant task

Ant has two hooks that allow you to add Groovy to a standard build file. The <groovy>
and <groovyc> tasks use the Groovy libraries to execute Groovy scripts and compile
Groovy source files, respectively.
www.it-ebooks.info

http://commons.apache.org/math/
http://commons.apache.org/math/
http://commons.apache.org/math/
http://groovy.codehaus.org/Groovy-Eclipse+compiler+plugin+for+Maven
http://developer.yahoo.com/weather/
http://www.it-ebooks.info/

98 CHAPTER 5 Build processes

 Starting first with <groovy>, defining the associated task in an Ant build lets you write
Groovy code directly into the build file. The following listing shows a trivial example.

<?xml version="1.0" encoding="UTF-8"?>
<project name="Groovy Ant" basedir="." default="info">
 <property environment="env" />

 <path id="groovy.classpath">
 <fileset dir="${env.GROOVY_HOME}/embeddable" />
 </path>

 <taskdef name="groovy"
 classname="org.codehaus.groovy.ant.Groovy"
 classpathref="groovy.classpath" />

 <target name="info">
 <groovy>
 println 'Hello, World!'
 ant.echo 'Hello, World!'
 </groovy>
 </target>
</project>

The environment property allows the build to access system properties in the operat-
ing system. Here the env variable is used to access the current value of GROOVY_HOME,
the installation directory for Groovy. The <path> element assigns the groovy-all JAR
file (found in the embeddable directory) to the groovy.classpath ID.

 The <taskdef> element then defines the groovy task as a reference to the
org.codehaus.groovy.ant.Groovy class, which is resolved in the groovy-all JAR file.
Once the groovy task has been defined it can be used to execute arbitrary Groovy
code. A straight print of “Hello, World!” is executed, and then the Ant echo task is
also called.

 It’s therefore easy enough to add Groovy code to an existing Ant build file, which
can be useful if looping or conditional logic is needed in the build. It’s notoriously dif-
ficult to “program” in XML, and technologies that tend that direction (like Ant and
XSLT) often result in awkward, complex build files. Adding Groovy scripting code
might help the build file without modifying the underlying source code.

5.3.2 The <groovyc> Ant task

Say you follow the advice in this book and decide to add Groovy modules to your
implementation code. If you’re still going to build with Ant you’ll need a compilation
task, similar to <javac>, for Groovy. That task is <groovyc>.

 The basic <groovyc> task definition is simple enough:

<taskdef name="groovyc"
 classname="org.codehaus.groovy.ant.Groovyc"

Listing 5.3 A trivial Ant build that executes Groovy code in a task

Access environment
variables

Use the groovy-all
JAR file

Define the
groovy task

Use the
groovy task
 classpathref="groovy.classpath"/>

www.it-ebooks.info

http://www.it-ebooks.info/

99Making Ant Groovy

The name of the task is <groovyc>, and it’s backed by the Groovyc class in the
org.codehaus.groovy.ant package. This class is part of the Groovy Ant JARs refer-
enced in the earlier build file.

 The result of this task definition is that you can compile Groovy classes with
<groovyc> while you compile Java classes with <javac>. This enforced separation of
code bases can lead to difficulties, however, if there are cross dependencies. For exam-
ple, a Groovy class may implement a Java interface and reference a Java class, which in
turn uses a Groovy class, and so on.

 A good way to resolve these issues is to use the joint-compilation approach. Ant lets
you embed the <javac> task inside the <groovyc> task. The nested tag approach
results in a <groovyc> task that looks like this:

<groovyc srcdir="${src.dir}" destdir="${classes.dir}"
 classpathref="classpath">
 <javac source="1.5" target="1.5" />
</groovyc>

The nested <javac> task doesn’t imply the Java compiler is running. As a child of the
<groovyc> task it lets the Groovy joint compiler do all the work.

 The source directory, destination directory, and classpath variables defined in the
<groovyc> task are passed down to the nested <javac> task. The joint-compilation
approach means that Groovy will compile the Groovy sources and create stubs for
them, then call the Java compiler to do the same for the Java sources, and resume the
compilation process with the Groovy compiler. The result is that you can mix Java and
Groovy sources without a problem.

 Therefore, to extend the Ant build file presented section 5.2 to include Groovy
files, make the additions and changes shown in the next listing.

 <path id="groovy.classpath">
 <fileset dir="${env.GROOVY_HOME}/embeddable" />
 </path>

 <path id="classpath">
 <fileset dir="${lib.dir}" includes="**/*.jar" />
 </path>

 <taskdef name="groovyc"
 classname="org.codehaus.groovy.ant.Groovyc"
 classpathref="groovy.classpath" />
...
 <target name="compile">
 <mkdir dir="${classes.dir}" />
 <groovyc srcdir="${src.dir}" destdir="${classes.dir}"
 classpathref="classpath">
 <javac source="1.5" target="1.5" />
 </groovyc>
 </target>

Listing 5.4 Extending the “Hello, World” build to mix Java and Groovy sources
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 Build processes

The rest is the same as before.
 If you’re committed to Ant builds using XML, that’s all there is to it. If, however,

you’re willing to switch your build language to Groovy, there are a couple of other
alternatives. The next two subsections use Groovy for the build language but are still
fundamentally based on Ant.

5.3.3 Writing your build in Groovy with AntBuilder

The standard Groovy library includes a class called groovy.util.AntBuilder. To use
it you need to add the Java-based Ant JAR library files to your classpath, but once you
do, AntBuilder lets you replace the XML syntax with Groovy.

 Any task defined by Ant can be used through the AntBuilder class. For example,
the following listing shows a simple script that makes a copy of its own source, verifies
that it worked, and then deletes the copy.

def ant = new AntBuilder()
String dir = 'src/main/groovy'

assert !(new File("$dir/antbuildercopy.groovy").exists())

ant.echo 'about to copy the source code'
ant.copy file:"$dir/antbuilder.groovy",
 tofile:"$dir/antbuildercopy.groovy"

assert (new File("$dir/antbuildercopy.groovy").exists())

ant.echo 'deleting the copied file'
ant.delete file:"$dir/antbuildercopy.groovy"

Builder code and regular Groovy code are freely intermixed in this example. The Ant
tasks used here are echo, copy, and delete, but it would be easy enough to use others
like javac, junitreport, or even optional Ant tasks like mail. As long as the required
Ant libraries are in the classpath, each will work.

 There’s actually a simplification available. The with syntax is available as a part of
Groovy’s metaprogramming capabilities. It can simplify the previous listing down to
that shown in the next listing.

ant.with {
 echo 'about to copy the source code'
 copy file:"$dir/antbuilder.groovy",
 tofile:"$dir/antbuildercopy.groovy"
 echo 'deleting the copied file'
 delete file:"$dir/antbuildercopy.groovy"
}

Listing 5.5 antbuilder.groovy, which copies itself

Listing 5.6 Simplifying the build script using the with method
The with method invokes the contained methods on the Ant builder.

www.it-ebooks.info

http://www.it-ebooks.info/

101Making Ant Groovy

AntBuilder can be used to script entire build files. It’s useful for creating a build
file quickly, especially if you already know the corresponding Ant tasks well. Because
AntBuilder is part of the standard Groovy library it can be used wherever you need to
do build-related tasks. Even better, Gradle build files include an instance of Ant-
Builder, making the migration path from Ant to Gradle much simpler.

 A more interesting example is given in the next listing, which is a port of the origi-
nal Ant build shown in listing 5.1.

AntBuilder ant = new AntBuilder()

String srcDir = 'src'
String buildDir = 'build'
String classesDir = "${buildDir}/classes"
String jarDir = "${buildDir}/jar"
String reportDir = "${buildDir}/reports"
String libDir = 'lib'

ant.with {
 path(id:'classpath') {
 fileset dir:libDir, includes:"**/*.jar"
 }

 path id:'application', location:"$jarDir/HelloAntBuilder.jar"

 delete dir:buildDir
 mkdir dir:classesDir
 javac(srcdir:srcDir, destDir:classesDir,
 includeantruntime:false, classpathref:'classpath')

 mkdir dir:jarDir
 jar(destfile:"${jarDir}/HelloAntBuilder.jar", basedir:classesDir) {
 manifest {
 attribute name:'Main-Class', value:'mjg.HelloWorld'
 }
 }

 mkdir dir:reportDir
 junit(printsummary:'yes') {
 classpath {
 path refid:'classpath'
 path refid:'application'
 }
 formatter type:'xml'
 batchtest(fork:'yes', todir:reportDir) {
 fileset dir:srcDir, includes:"**/*Test.java"
 }

 }

 junitreport(todir:reportDir) {
 fileset dir:reportDir, includes:"TEST-*.xml"
 report todir:reportDir

Listing 5.7 A Groovy AntBuilder script port of the build.xml file from listing 5.1

Instantiate the builder

Port of
<property>
elements

Use builder as delegate
for unrecognized
methods in block

Compile Java

Build
JAR

Run tests

Generate
test report
 }

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 Build processes

 java(jar:"$jarDir/HelloAntBuilder.jar", fork:'true') {
 classpath {
 path refid:'classpath'
 path refid:'application'
 }
 }
}

You execute this script with the groovy command. Inside the with block, all methods
like mkdir, javac, and junit are passed to the builder instance. Formally this means
that the delegate property for the with block is the AntBuilder instance. Because
this is a Groovy script you could add any code you wish to do other processing. It’s
notoriously awkward do arrange loops and conditionals inside XML files, for instance,
but here that would be easy.

 For all of its simplicity, though, AntBuilder is still just Ant under the hood. Groovy
wouldn’t be Groovy if there wasn’t a domain-specific language (DSL) alternative. The
best of breed is Gradle, which is discussed later in this chapter. There’s another
approach, however, which you may encounter in practice. For completeness the next
subsection contains a brief discussion of Groovy Ant, known as Gant.

5.3.4 Custom build scripts with Gant

Although the future of build files in Groovy belongs to Gradle, Gant still occupies one
special niche in the Groovy ecosystem. As of this writing, the latest version of the
Grails framework (2.3)3 still implements its build scripts in Gant.4 If you need to cre-
ate a custom build script for a Grails application, Gant is still useful. If you’re not plan-
ning to do that, you can comfortably skip this subsection.

GANT USE CASE Grails commands are implemented as Gant scripts, so if you
need to customize a Grails command or create a new one, Gant is the tool
of choice.

The Gant scripts in Grails are also an excellent choice of sample code. To keep this
section simple I’ll review parts of an existing Grails Gant script, called Clean.groovy.
The script can be found in the scripts directory under the root of the Grails distri-
bution. As with all Grails Gant scripts, it’s invoked using the script name in lower-
case, substituting dashes for camel case; so for the Clean script the command would
be grails clean, and for the CreateDomainObject script the command is grails
create-domain-object.

 Here’s the Clean script in its entirety (minus the copyright statement):

includeTargets << grailsScript("_GrailsClean")
setDefaultTarget("cleanAll")

3 Grails is discussed in chapter 8 on databases and chapter 10 on web development. The home page for Grails
is http://grails.org.

Execute
main
method
4 Gant will continue to be included in Grails through at least version 2.3.

www.it-ebooks.info

http://grails.org
http://www.it-ebooks.info/

103Making Ant Groovy

The grailsScript command loads a different Gant script, called _GrailsClean.
By convention (and Grails is all about conventions), scripts that begin with an
underscore are internal scripts that can’t be executed from the command line.
The first line thus loads a series of tasks, and the second line makes the cleanAll
task the default.

 Turning now to the _GrailsClean script, let me highlight a couple of small sec-
tions from it:

includeTargets << grailsScript("_GrailsEvents")

target (cleanAll: "Cleans a Grails project") {
 clean()
 cleanTestReports()
 grailsConsole.updateStatus "Application cleaned."
}

target (clean: "Implementation of clean") {
 depends(cleanCompiledSources, cleanWarFile)
}

The resemblance to Ant is not accidental. Gant scripts contain targets, and targets can
be invoked as though they were method calls. Here the target defined with the name
cleanAll invokes two other tasks (clean and cleanTestReports) and then invokes
the updateStatus method on the predefined grailsConsole object.

 The clean task uses the depends method (again analogous to the same functional-
ity in Ant) to make sure that the cleanCompiledSources and cleanWarFile tasks are
invoked when the clean task is invoked. Here’s a snippet from the cleanCompiled-
Sources task:

target (cleanCompiledSources: "Cleans compiled Java and Groovy sources") {
 def webInf = "${basedir}/web-app/WEB-INF"
 ant.delete(dir:"${webInf}/classes")
 ant.delete(file:webXmlFile.absolutePath, failonerror:false)
 ant.delete(dir:"${projectWorkDir}/gspcompile", failonerror:false)

The task goes on to delete many more items, delegating to an internal AntBuilder
object in each case. The cleanWarFile task shows how you can mix in Groovy logic
code inside a script:

target (cleanWarFile: "Cleans the deployable .war file") {
 if (buildConfig.grails.project.war.file) {
 warName = buildConfig.grails.project.war.file
 }
 else {
 def fileName = grailsAppName
 def version = metadata.'app.version'
 if (version) {
 fileName += "-$version"
 }
 warName = "${basedir}/${fileName}.war"

 }

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5 Build processes

 ant.delete(file:warName, failonerror:false)
}

This is straightforward Groovy code that simply defines some variables and sets their
properties based on the current configuration, and then invokes the delete method
on the ant object.

 That’s enough Gant for this book.5

5.3.5 Ant summary

That also concludes the discussion of Ant and Ant-based approaches, both in Java and
Groovy. The “Lessons learned” sidebar shows the details.

It’s time now to examine the other major build tool in the Java world: Maven.

5 Additional information on Gant can be found at the Groovy website. There’s also a decent tutorial in the book
Grails in Action (Manning, 2009), by Peter Ledbrook and Glen Smith. Finally, the Grails user guide has a sec-

Lessons learned (Ant)
1 If you have an existing Ant build, you can add <groovyc> and <groovy> tasks

to it.
2 Gant is only used by Grails, and not for very much longer.
3 AntBuilder is rare by itself but is built into and useful in Gradle

Ant limitations
When it was released Ant was a major improvement over previous build processes.
Still, it has major issues that complicate life, especially in larger builds. Here’s a brief
list of complexities associated with using Ant. This is not intended to be a criticism
of Ant, but rather to highlight the issues that lead to the next-generation tools.

Ant builds are based on XML, and XML is not a scripting language. Builds inevitably
need to be customized and usually vary depending on whether the project is in
development, test, or production mode. Ant allows you to set properties, but prop-
erties aren’t variables. It’s especially difficult to do complex branching logic in an
XML file.

Ant says nothing about dependency management. It assumes you have all the
required libraries available and that you can build a file set to hold them and use that
as your classpath. The Ivy project (also from Apache) fills that gap, and the combina-
tion of Ant and Ivy is much more common now than Ant alone.

XML was designed to be processed by programs, not people. Reading a short XML file
isn’t hard. Reading a long, involved one is, and even the trivial build file presented in
this section is over 50 lines long when a few basic tasks are included.
tion on creating Gant scripts specifically for Grails.

www.it-ebooks.info

http://www.it-ebooks.info/

105The Java approach, part 2: Maven

5.4 The Java approach, part 2: Maven
I’m going to confess up front that Maven is hard to talk about rationally. Its best fea-
tures (establishing a conventional project layout, managing dependencies, providing
a rich plugin architecture) are also considered some of its worst features (difficult to
work outside its conventions, hard to manage transitive dependencies, the whole
“download the internet” problem). I can honestly say I’ve never encountered a tech-
nology that’s both common in the industry and yet loathed with the white-hot inten-
sity of a thousand suns.6 Bring up Maven in a group of developers, and someone will
refuse to discuss “the M word.” Yet, at the same time, somebody else will quietly say
that they can make it do anything and don’t understand what all the fuss is about.

 My own experience isn’t so black-and-white. I find that if a project was designed
using Maven from the beginning, it tends to work well with the system. It’s also hard to
use that system without Maven. On the other hand, adding Maven to a system that
wasn’t started with it can be quite painful. In addition, friends have also assured me
that once a system gets above a certain size, the whole process becomes an unmanage-
able mess.

 Perhaps the best way to stay above the fray is to say that Maven has a highly opin-
ionated API. To be successful you have to do things the Maven way. Plus, like Ant,
you’re coding your build in XML, which is never easy. The multi-project build capabil-
ities are awkward, too.7

 I will note that the standard Maven project layout (shown in figure 5.2) has
become common throughout the industry. Also, people may complain about Maven’s
approach to dependency management, but I haven’t seen anything dramatically bet-
ter. Gradle (the proposed replacement, discussed later in this chapter) uses Maven
repositories and Ivy dependency management and suffers from the same “download
the internet” problem. Dependency management is just hard, no matter how you
approach it.

 Returning (at last) to the core theme of this book, the goal of this section is to
show you how to incorporate Groovy into Maven builds. There are two ways to do that.
I’ll start with the Groovy-Eclipse plugin and then build the same application using the
GMaven project.

(continued)

The built-in Ant tasks are very low level. As a result, Ant build files quickly grow long
and complex and involve a lot of repetition.

For all these reasons and others Ant was ripe for a higher-level replacement. That role
was filled by the Maven project, which is either a blessing or a curse depending on
your experiences with it.

6 Except possibly for every Microsoft technology ever.

7 Admittedly that doesn’t sound terribly “above the fray,” but at least I’m trying.

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5 Build processes

5.4.1 The Groovy-Eclipse plugin for Maven

The Groovy-Eclipse compiler plugin (http://mng.bz/2rHY) is a standard com-
piler plugin for Maven. It emerged from the effort to build a good Eclipse plugin
for Groovy that worked with combined Groovy and Java projects. The Maven plugin
is a way to take advantage of that effort, whether you plan to use the Eclipse IDE
or not.

 To demonstrate its use I’ll build a small project that accesses the Yahoo! Weather
web service and reports on the current conditions. This is easy enough to do in Java
but becomes particularly simple in Groovy.

 The Yahoo! Weather web service (http://developer.yahoo.com/weather/) pro-
vides weather information in the form of an RSS feed. The web service is accessed
from a URL of the form

http://weather.yahooapis.com/forecastrss

The URL has two parameters, one required and one optional. The required parame-
ter is w, a so-called WOEID (Where On Earth ID), that Yahoo uses to identify a location.
The other parameter is u, which is used to specify the temperature units in Fahrenheit
(f, the default) or Celsius (c). For unknown reasons, there’s no way to programmati-
cally look up a WOEID. Instead Yahoo! directs you to its own weather page and sug-
gests you search for your city.

 A simple HTTP GET request to the proper URL returns an XML response in RSS
form. A sample is included on Yahoo!’s web page.

 Suppose I decided to build a simple application to retrieve the current weather
conditions based on this service. Maven recommends that you specify a particular arti-
fact to begin the project, so I’ll start with the classic maven-archetype-quickstart:

> mvn archetype:generate –DgroupId=mjg –DartifactId=weather
 –DarchetypeArtifactId=maven-archetype-quickstart
 -Dversion=1.0-SNAPSHOT –Dpackage=mjg

MAVEN ARCHETYPES The Groovy-Eclipse plugin uses regular Java archetypes
and adds Groovy functionality. The GMaven approach in the next section
includes a basic archetype to get started.

Figure 5.2 Standard Maven project
structure used for the application in this
section. Compiled sources are in src/main/
java, and tests reside in src/test/java.
www.it-ebooks.info

http://mng.bz/2rHY
http://developer.yahoo.com/weather/
http://www.it-ebooks.info/

107The Java approach, part 2: Maven

This generates a Java project with the standard layout, meaning the source code direc-
tory is src/main/java and the testing directory is src/test/java. The quick start arche-
type includes a trivial App.java and AppTest.java in those directories, respectively. The
generator also adds a standard Maven POM file in the root directory, whose only
dependency is on JUnit, as shown in the next listing.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>mjg</groupId>
 <artifactId>weather</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>weather</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The only change I’ve made so far from the standard is to upgrade the JUnit depen-
dency to 4.10 from 3.8.1.

 To do the actual work I need a class to send the request to Yahoo and parse the
response, and a POJO to hold the resulting weather information. Starting with the POJO,
for a given city, region, and country I want to store the condition, temperature, wind
chill, and humidity. The web service returns a lot more information than this, but this
will suffice to get started.

POJOs are simple containers for data, so the constructors, getter and setter meth-
ods, and any necessary overrides are mostly clutter. I can therefore simplify my life if I
use a POGO instead, as shown in the following listing.

package mjg

class Weather {
 String city
 String region
 String country
 String condition

Listing 5.8 The Maven pom.xml file for a standard Java project

Listing 5.9 Weather.groovy, a POGO to hold weather results from the web service
 String temp

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 Build processes

 String chill
 String humidity

 String toString() {
 """
 Weather for $city, $region, $country:
 Condition : $condition
 Temperature: $temp
 Wind Chill : $chill
 Humidity : $humidity
 """
 }
}

The toString method is a way to produce formatted output. Groovy’s multiline string
makes it particularly easy.

 The other class I need is a parser for the web service. Because all I need is a GET
request I can use the parse method in the XmlSlurper class as usual and drill down
the resulting DOM tree to get the results I want. That’s pretty simple, too, as shown in
the following listing.

package mjg

class YahooParser {
 final static String BASE = 'http://weather.yahooapis.com/forecastrss?'

 Weather getWeather(String woeid) {
 def root = new XmlSlurper().parse(BASE + "w=$woeid")
 Weather w = new Weather(
 city:root.channel.location.@city,
 region:root.channel.location.@region,
 country:root.channel.location.@country,
 condition:root.channel.item.condition.@text,
 temp:root.channel.item.condition.@temp,
 chill:root.channel.wind.@chill,
 humidity:root.channel.atmosphere.@humidity
)
 }
}

Given a WOEID, the service builds the URL and accesses the web service, parses the
resulting RSS, and returns an instance of the Weather class with all the relevant
fields populated.

 To complete the program I need a driver, which I can write as a Groovy script.
That’s a one-liner, unless I want to allow the client to specify a WOEID on the com-
mand line:

def woeid = args.size() ? args[0] : '2367105'
println new YahooParser().getWeather(woeid)

Listing 5.10 YahooParser.groovy, which accesses and parses the weather service
www.it-ebooks.info

http://www.it-ebooks.info/

109The Java approach, part 2: Maven

The default WOEID in the script is for Boston, MA, and it’s stored in RunDemo.groovy.
In order to demonstrate the differences when both Java and Groovy sources are pres-
ent together, I also added a Java class to access the web service in the file RunIn-
Java.java:

public class RunInJava {
 public static void main(String[] args) {
 String woeid = "2367105";
 if (args.length > 0) woeid = args[0];
 YahooParser yp = new YahooParser();
 System.out.println(yp.getWeather(woeid));
 }
}

Now comes the interesting part: how do I get Maven to handle all the Groovy code?
The Groovy-Eclipse plugin requires two additions to the POM file. First I need to add
Groovy as a dependency:

<dependencies>
...
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>2.1.5</version>
 </dependency>
 </dependencies>

Next I need to add the Groovy-Eclipse plugin in a build section below the dependencies:

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <compilerId>groovy-eclipse-compiler</compilerId>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.7.0-01</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
</build>

With both of these additions Maven will compile and use Groovy code appropriately,
except for one rather strange oddity. Normally I would add my Groovy classes to src/
main/groovy and any Groovy tests to src/test/groovy. According to the plugin docu-
mentation, I can do that only if (1) there’s at least one Java class in src/main/java or

(2) I add a lot more XML to specify the additional source directories.

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 Build processes

SOURCE DIRECTORIES For the Groovy-Eclipse plugin, put Java and Groovy
sources in the src/main/java and src/test/java directories by default.

I put my Groovy files in src/main/java and src/test/java. Now I can build the proj-
ect using

mvn clean install

I can even execute the project using the exec:java (!) task, both using the default
WOEID and with a supplied command-line argument:

> mvn exec:java -Dexec.mainClass=mjg.RunDemo
...
 Weather for Boston, MA, United States:
 Condition : Cloudy
 Temperature: 58
 Wind Chill : 58
 Humidity : 84

I can supply a command-line argument using –Dexec.args:

> mvn exec:java -Dexec.mainClass=mjg.RunDemo -Dexec.args='44418'
...
 Weather for London, , United Kingdom:
 Condition : Cloudy
 Temperature: 54
 Wind Chill : 54
 Humidity : 82

A guiding principle in this book is that Java is good at tools, libraries, and (existing)
infrastructure, and that Groovy is good at everything else. It’s hard to imagine a better
demonstration of that than the current example. The entire application was written in
Groovy, at a code savings on the order of 10 to 1. The infrastructure treated the code
as though it was all Java, and I was even able to use the Java exec task to execute the
Groovy script to drive the application.

 The Groovy-Eclipse compiler plugin is a funded project, because it’s used inside
the IDEs provided by SpringSource (a division of VMware).8 The quality of the plugin,
especially for cross-compilation, is therefore quite high. Just because it has the name
“Eclipse” wired into it, there’s no reason not to use it in a Maven project. There’s no
implication that the plugin is exclusive to the IDE. You can use it anywhere, as I did
with the Maven project in this section.

 The other way to add Groovy to a project built with Maven is to use the GMaven
project, discussed in the next section.

5.4.2 The GMaven project

GMaven is an alternative approach for adding Groovy into Maven projects. It works
with combined Java and Groovy sources by generating stubs for the Groovy files as
part of the build sequence.
8 Now part of Pivotal, which is owned by VMware, which is owned by EMC…

www.it-ebooks.info

http://www.it-ebooks.info/

111The Java approach, part 2: Maven

 To help users get started, the project provides a Maven archetype called gmaven-
archetype-basic. To use the archetype, execute the following at the command line:

> mvn archetype:generate –DgroupId=mjg –DartifactId=weather
 –DarchetypeArtifactId=gmaven-archetype-basic
 -Dversion=1.0-SNAPSHOT –Dpackage=mjg

This again produces a project in standard Maven structure, in which the sources are in
src/main/groovy and the tests are in src/test/groovy. The plugin expects both Java
and Groovy sources to reside in those directories.

 The generated POM is shown in the following listing, with some modifications dis-
cussed in the listing.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>mjg</groupId>
 <artifactId>weather</artifactId>
 <name>weather project</name>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>2.1.5</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.gmaven</groupId>
 <artifactId>gmaven-plugin</artifactId>
 <version>1.4</version>
 <configuration>
 <providerSelection>2.0</providerSelection>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>generateStubs</goal>
 <goal>compile</goal>

Listing 5.11 The Maven pom.xml file produced by the GMaven project

Groovy 2.0
dependency

Groovy 2
support for
GMaven

Stub
 <goal>generateTestStubs</goal>
generation

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 5 Build processes

 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

The POM needs a Groovy dependency. It doesn’t have to be global, but it was just as
easy to add it that way here. The provider was adjusted to 2.1.5 in order to use Groovy
version 2.

 Building the system is done with a standard Maven install:

> mvn clean install

During the build process, Java stubs are generated for each Groovy file. The stubs
themselves are quite minimal; they’re only used to resolve the inter-language
dependencies rather than execution. As an example, here’s a portion of the stub
generated for the Weather class, whose Groovy implementation was shown in the
previous section.

public class Weather
 extends java.lang.Object
 implements groovy.lang.GroovyObject {
 public groovy.lang.MetaClass getMetaClass() {
 return (groovy.lang.MetaClass)null;}
 public void setMetaClass(groovy.lang.MetaClass mc) { }
 public java.lang.Object invokeMethod(
 java.lang.String method, java.lang.Object arguments) { return null;}
 public java.lang.Object getProperty(java.lang.String property) {
 return null;}
 public void setProperty(
 java.lang.String property, java.lang.Object value) { }
 public java.lang.String getCity() { return (java.lang.String)null;}
 public void setCity(java.lang.String value) { }
 // ... remaining getter and setter methods
}

Any Java class can be treated as though it was Groovy source by implementing the
GroovyObject interface, as the stub does here. The first five methods in the stub pro-
vide no-op implementations for all the methods in that interface. The rest of the stub
consists of empty implementations for the remaining methods, which in this case are
the getters and setters and the toString method.

 The stub generated for the RunDemo class is slightly different, in an interesting way.
The Groovy implementation is just a couple lines of scripting code. As noted in the
demonstration in chapter 3 where I executed a compiled Groovy script from the java
command, every Groovy script is ultimately converted to a class by the compiler, and

Listing 5.12 Part of the Java stub generated from Weather.groovy

Treat Java class
as Groovy

Business methods
(getters and setters)
the corresponding RunDemo.java stub illustrates this:

www.it-ebooks.info

http://www.it-ebooks.info/

113The Java approach, part 2: Maven

public class RunDemo extends groovy.lang.Script {
 public RunDemo() {}
 public RunDemo(groovy.lang.Binding context) {}
 public static void main(java.lang.String... args) { }
 public java.lang.Object run() { return null;}
}

The class extends groovy.lang.Script, has a default constructor and a constructor
that takes a groovy.lang.Binding, a standard Java main method, and a run method.
All Groovy scripts look like this to the JVM. Running the script is like executing the
main method, which delegates to the run operation here.

 As before, to run the program using the Maven you call the exec:java task with
the right arguments. In this case that means the main class is either RunDemo or
RunInJava:

> mvn exec:java -Dexec.mainClass=mjg.RunDemo

> mvn exec:java -Dexec.mainClass=mjg.RunInJava

Either way, the result is the same as in the previous section.
 The GMaven project has been quiet recently, but it’s still alive. As demonstrated,

the archetype works and the stub generation allows the plugin to delegate compila-
tion to the standard Maven tools.

5.4.3 Maven summary

There are two ways to add Groovy dependencies to a Maven project: the Groovy-
Eclipse plugin and the GMaven project. My advice (which may change as the projects
evolve) is

1 For an already existing Maven build, add the Groovy-Eclipse plugin. It works,
and a company that has a significant interest in the success of Groovy financially
supports development of the plugin itself. The fact that the name includes the
word Eclipse is irrelevant.

2 For new projects either plugin will work, but the existence of a Maven archetype
makes it particularly easy to get started with GMaven.

3 It’s quite interesting that both plugins expect Java and Groovy sources to reside
together. There’s a significant integration lesson there somewhere.

Moving now from hybrid approaches to purely Groovy solutions, I’ll address first the

Lessons learned (Maven)
1 There are two separate ways to add Groovy to Maven builds, each with benefits

and drawbacks: the “Groovy Eclipse” plugin and GMaven.
2 If at all possible, consider moving to Gradle.
short and sweet Grapes approach before moving to the real destination: Gradle.

www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 5 Build processes

5.5 Grapes and @Grab
The Grape mechanism allows you to declare library dependencies directly inside a
Groovy script. This is useful when you need to deliver a script to a client that doesn’t
already have the required dependencies but is willing to download them as part of the
build process.

 The overall API is called Grape (Groovy Adaptable/Advanced Packaging Engine)
and starts with the groovy.lang.Grab annotation. It uses an Ivy resolver to identify
and download dependencies. Its primary use case is on scripts, so that they can be
delivered to a client without any setup requirements other than having Groovy
installed. At runtime Groovy will download and install any declared libraries and their
transitive dependencies as part of the execution process.

GRAPE USE CASE Grape allows you to deliver a simple script that can be exe-
cuted by a client without any setup necessary other than installing Groovy,
making it particularly convenient for testers or QA people.

To demonstrate the Grape system, let me choose the Math library from the Apache
Commons project (http://commons.apache.org/math/). Specifically, I want to work
with the complex numbers package. The package includes a class called Complex,
which represents complex numbers. Although the class is interesting in itself, it also
makes for a nice demonstration of Groovy’s metaprogramming capabilities.

 In Maven syntax the library has a group ID of org.apache.commons, an artifact ID
of commons-math3, and a version of 3.0. Therefore, the format of the @Grab annota-
tion is as shown in the following script:

import org.apache.commons.math3.complex.*

@Grab('org.apache.commons:commons-math3:3.0')
Complex first = new Complex(1.0, 3.0);
Complex second = new Complex(2.0, 5.0);

The @Grab annotation downloads both the given library and its dependencies. The
syntax uses Maven structure, using colons to connect the group ID, the artifact ID, and
the version number. Alternatively, you can specify the sections individually:

@Grab(group='org.apache.commons', module='commons-math3', version='3.0')

The behavior is equivalent in either case.
 There isn’t much more to Grapes than this. In order to show an interesting

example that requires an external Java library, let me present a simple case of
Groovy metaprogramming. There’s nothing about it that requires Grapes in particu-
lar, but it shows how a small amount of metaprogramming can make a Java library
class groovier. Using Grapes in the script allows me to send it to a client without
compiling it or providing the library dependencies. The Grape annotations will han-
dle the rest.
www.it-ebooks.info

http://commons.apache.org/math/
http://www.it-ebooks.info/

115Grapes and @Grab

 The Complex class represents a complex number, which combines real and imagi-
nary parts. The class contains a two-argument constructor, as shown, that takes the
real and imaginary parts as parameters. Many methods are defined on the class, so
that it generalizes basic numerical computations to the complex domain.

 Recall that in Groovy every operator delegates to a method call. Interestingly
enough, the Complex class already has a method called multiply for computing the
product of two complex numbers. Because the * operator in Groovy uses the multi-
ply method, that operator can be used immediately:

assert first.multiply(second) == first * second

Again, this is a Java class. Fortunately, the developers of the class chose to include a
method called multiply, so Groovy can use the * operator with complex numbers.

 What about all the other mathematical operations? Most don’t line up as cleanly.
For example, the class uses add instead of plus and subtract instead of minus. It’s
easy to connect them, however, by adding the appropriate methods to the metaclass
associated with Complex when viewed through Groovy.

 As a reminder, every class accessed through Groovy contains a metaclass, and the
metaclass is an Expando. This means that methods and properties can be added to the
metaclass as desired, and the resulting members will be part of any instantiated object.
Here’s how to add several mathematical operations to Complex:

Complex.metaClass.plus = { Complex c -> delegate.add c }
Complex.metaClass.minus = { Complex c -> delegate.subtract c }
Complex.metaClass.div = { Complex c -> delegate.divide c }
Complex.metaClass.power = { Complex c -> delegate.pow c }
Complex.metaClass.negative = { delegate.negate() }

That takes care of the +, -, /, **, and negation operators, respectively. In each case, the
relevant method is defined on the metaclass by setting it equal to a closure. The asso-
ciated closure takes a Complex argument (in the case of binary operators) and invokes
the desired existing method on the closure’s delegate, passing along the argument.

CLOSURE DELEGATES Every closure has a delegate property. By default the
delegate points to the object that the closure was invoked on.

After adding those methods to the metaclass, the operators can be used in the
Groovy script:

assert new Complex(3.0, 8.0) == first + second
assert new Complex(1.0, 2.0) == second - first
assert new Complex(0.5862068965517241, 0.03448275862068969) ==
 first / second
assert new Complex(-0.007563724861696302, 0.01786136835085382) ==
 first ** second
assert new Complex(-1.0, -3.0) == -first
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5 Build processes

To complete this part of the story I want to demonstrate the famous equation known
as Euler’s identity,9 which is expressed as

e iπ = –1

This equation connects the imaginary numbers (i) and the transcendental numbers
(e and π) to the negative numbers (–1). Euler found this expression so profound he
had it inscribed on his tombstone.

 The java.lang.Math class contains constants Math.E and Math.PI, and the Complex
class has the constant Complex.I. To make the formula look better I’ll use static
imports for all of them.

 One final addition is necessary to make this work. Math.E in Java is of type double,
and I want to raise it to a Complex power. The easiest way to do that is to convert the dou-
ble to an instance of the Complex class and then use the pow method in the Complex
class. Returning to Groovy metaprogramming, I need a power method (which corre-
sponds to the ** operator) on Double that takes a Complex argument:

Double.metaClass.power = { Complex c -> (new Complex(delegate,0)).pow(c) }

With all that machinery in place the resulting code is a bit anticlimactic, but that’s a
good thing:

Complex result = E ** (I * PI)
assert result.real == -1
assert result.imaginary < 1.0e-15

As usual in Groovy, accessing the real or imaginary property is equivalent to calling
the getReal or getImaginary method, respectively. The expression does generate a
real part of –1, but the imaginary part isn’t exactly zero due to the round-off error
associated with Java doubles. On my machine it evaluates to a number less than the
bound shown, which is certainly close enough.

 There are a few additional annotations available in the Grapes system. One is @Grab-
Config, used in the next example when loading a database driver. The following script
uses the groovy.sql.Sql class to generate an H2 database and add some data to it:

import groovy.sql.Sql

@GrabConfig(systemClassLoader=true)
@Grab(group='com.h2database', module='h2', version='1.2.140')
Sql sql = Sql.newInstance(url:'jdbc:h2:mem:',driver:'org.h2.Driver')

The annotations provide the driver, so the Sql class can be used normally.
 Because a member of a class can only have a single instance of a particular annota-

tion, the @Grapes annotation is used to combine multiple @Grab annotations. The
next listing computes complex values and stores them in a database table.

9 Leonhard Euler (1707 – 1783) was one of the most brilliant mathematicians of all time. His work spanned
virtually every field of math and science, and his collected works filled between 60 and 80 quarto volumes.

The transcendental number e is named after him.

www.it-ebooks.info

http://www.it-ebooks.info/

117The Gradle build system

@GrabConfig(systemClassLoader=true)
@Grapes([
 @Grab('org.apache.commons:commons-math3:3.0'),
 @Grab(group='com.h2database', module='h2', version='1.2.140')
])

import static java.lang.Math.*
import org.apache.commons.math3.complex.Complex
import org.apache.commons.math3.complex.ComplexUtils
import groovy.sql.Sql

Sql sql = Sql.newInstance(url:'jdbc:h2:mem:',driver:'org.h2.Driver')

sql.execute '''
 create table coordinates (
 id bigint generated by default as identity,
 angle double not null,
 x double not null,
 y double not null,
 primary key (id)
)
'''

int n = 20
def delta = 2*PI/n
(0..<n).each { num ->
 Complex c = ComplexUtils.polar2Complex(1, num*delta)
 sql.execute """
 insert into coordinates(id,angle,x,y)
 values(null, ${i*delta}, $c.real, $c.imaginary)
 """
}

sql.rows('select * from coordinates').each { row ->
 println "$row.id, $row.angle, $row.x, $row.y"
}

The script creates a table to hold x and y coordinates at 20 points along a circle. The
ComplexUtils.polar2Complex method takes a radius (here using one for simplicity)
and an angle (in radians) along the circle and generates a complex number, which is
then stored in the database.

 The Grapes system is simple and effective, but limited in practice. The additions
work in a script, but for a larger system it’s more common to use a full-scale build tool,
like Gradle, which is the subject of the next section.

5.6 The Gradle build system
Gradle is proposed as a next-generation build solution. Gradle combines the flexibil-
ity of Groovy builds with a powerful domain-specific language (DSL) that configures a

Listing 5.13 Using Apache Commons Math and a database driver together
rich set of classes.

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5 Build processes

 As with virtually all Groovy projects of any significant size, Gradle is written in both
Java and Groovy. Gradle is essentially a DSL for builds.10 It defines a language of syntax
and semantics that allows you to write a build file quickly and easily.

 Gradle doesn’t come with an installer. Instead you just download a ZIP file, set the
GRADLE_HOME environment variable to wherever you unzip it, and add the $GRADLE_
HOME/bin directory to your path, and you’re ready to go. In fact, you don’t even
need to install Groovy first, because Gradle comes with its own version of Groovy.

For Grails, the bundled Groovy version locks you into that version for the entire appli-
cation. For Gradle, however, the bundled Groovy version is used only to execute the
build script itself. You’re free to use any version of Groovy in your own projects, and
Gradle will correctly build them.

 When you run the gradle –v command, in addition to showing the Gradle and
Groovy versions, Gradle also reports the included versions of Ant and Ivy, as well as the
JVM and OS.

 Gradle builds range from extremely simple to quite powerful. I’ll start with the
simplest possible example and build from there.

5.6.1 Basic Gradle builds

Gradle is a plugin-based architecture. Most Gradle tutorials start by defining what a
task is and showing how to call one. Rather than do that here, let me instead show you
a minimal build file and go from there.

10 Mandatory DSL jokes: “JavaScript is a DSL for finding browser bugs”; “Java is a DSL for generating stack

How projects in the Groovy ecosystem include Groovy
One of the dirty little secrets of Groovy is that the major versions are not always binary
compatible. Code compiled with one version doesn’t necessarily work with any other.

This means that projects in the Groovy ecosystem have a choice. They can either be
compiled with different versions of Groovy and make the Groovy version number part
of their own version, or they can bundle in a particular version of Groovy.

The Spock framework (discussed in chapter 6) takes the former approach. Spock ver-
sions are in the form 0.7-groovy-2.0, meaning Spock version 0.7 compiled with
Groovy version 2.0.

The Grails and Gradle projects take the other approach. Grails 1.3.9, for example,
includes a copy of Groovy 1.7.8, Grails 2.0.3 includes Groovy 1.8.6, and Grails 2.2.1
includes Groovy 2.0.8. To see the Groovy version included in your Gradle distribution,
run the gradle –v command.
traces”; “Maven is a DSL for downloading the internet.”

www.it-ebooks.info

http://www.it-ebooks.info/

119The Gradle build system

 Here’s the smallest possible Gradle build for a Java project, in a file called
build.gradle:

apply plugin:'java'

The apply syntax indicates that the build is using the Java plugin. When you run the
build command using this file, Gradle executes tasks in several stages, as shown:

:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test
:check
:build

BUILD SUCCESSFUL

Each word after the colon is a Gradle task. Gradle constructs a Directed Acyclic Graph
(DAG) out of the specified tasks, paying attention to their dependencies, and then
executes them in order. This minimal project has no source code, so the compile tasks
are up to date without running at all. In fact, the only task that does anything is the
jar task, which creates a JAR file in the build/libs directory.

 If you’re doing any testing your project will need to include the JUnit dependency.
Consider a simple project that uses standard Maven structure, so that any Java classes
are contained in src/main/java, and any tests are in src/test/java. The next listing
shows a POJO called Greeting with a single String property called message.

public class Greeting {
 private String message = "Hello, World!";

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

The following listing is a JUnit test called GreetingTest, which checks the getter and setter.

import static org.junit.Assert.*;
import org.junit.Test;

public class GreetingTests {

Listing 5.14 A Greeting POJO to demonstrate a Gradle build

Listing 5.15 A JUnit test for the Greeting POJO
 private Greeting greeting = new Greeting();

www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5 Build processes

 @Test
 public void testGetGreeting() {
 assertEquals("Hello, World!", greeting.getMessage());
 }

 @Test
 public void testSetGreeting() {
 greeting.setMessage("What up?");
 assertEquals("What up?", greeting.getMessage());
 }
}

The next listing shows a Gradle build file with a JUnit dependency during the testing
phase. It’s still a “Hello, World” example, but it does introduce some essential concepts.

apply plugin:'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.10'
}

The terms repositories and dependencies are part of the Gradle DSL. Any required
libraries are listed in the dependencies block. There are several legal forms for listing
dependencies. The one used here is a string separated by colons. Using Maven syntax
is not an accident, as shown in the repositories section. Many different types of
repositories can be used, but here the standard Maven central repository is declared.

 Executing the build this time runs the same series of tasks, but now any tests are
executed and a JUnit report in HTML form is produced in the build/reports/tests
directory.

 That demonstrated that a Gradle build can be applied to a Java project with no
Groovy dependencies. To show that the same process works on mixed Java/Groovy
projects, I’ll add a Groovy test case, called GroovyGreetingTests, in the src/test/
groovy directory. The test case is shown in the next listing.

import static org.junit.Assert.*
import org.junit.Test

class GroovyGreetingTests {
 Greeting greeting = new Greeting()

 @Test
 void testGetMessage(){
 assert 'Hello, World!' == greeting.message

Listing 5.16 A build.gradle file for the POJO application with testing

Listing 5.17 A Groovy test for the POJO, making this a mixed Java/Groovy project

Maven notation
‘group:artifact:version’
 }

www.it-ebooks.info

http://www.it-ebooks.info/

121The Gradle build system

 @Test
 void testSetMessage() {
 greeting.message = 'Yo, dude'
 assert 'Yo, dude' == greeting.message
 }
}

The new build.gradle file requires a Groovy dependency. Prior to Gradle version 1.6
the name of the dependency was “groovy”. Now the preferred notation is to
declare the Groovy dependency as a standard compile-time requirement. The com-
plete build.gradle file is shown in the following listing.

apply plugin:'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.1.5'
 testCompile 'junit:junit:4.10'
}

The other change to the build file is that the Java plugin has been replaced by the
Groovy plugin, which includes the Java tasks already. The new plugin adds a couple of
tasks to the build, as shown here:

:compileJava
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes
:jar
:assemble
:compileTestJava
:compileTestGroovy
:processTestResources UP-TO-DATE
:testClasses
:test
:check
:build

BUILD SUCCESSFUL

Both the compileGroovy and compileTestGroovy tasks are new, but everything else
proceeds normally. The classes are compiled, the tests run, and the HTML test report
is produced.

 That’s the basic structure of a Gradle build file when dealing with Java, Groovy, or
mixed Java/Groovy projects. Similar files are shown throughout this book. To illus-
trate some interesting Gradle features I’ll now consider several use cases that often

Listing 5.18 A build.gradle file for a mixed Java/Groovy project
come up in practice.

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 Build processes

5.6.2 Interesting configurations

Gradle builds are used throughout this book. I’ll bring up lots of different options
when discussing specific examples in context, but here I can discuss a few interest-
ing ideas.

CUSTOM SOURCE SETS

First, one of the running themes in this book is that separating Groovy source code
from Java source code is rather artificial. What if you wanted to use the same source
folder for both, as an Eclipse project might do? Here’s an easy customized project lay-
out to do so:

sourceSets {
 main {
 java { srcDirs = [] }
 groovy { srcDir 'src' }
 }
 test {
 java { srcDirs = [] }
 groovy { srcDir 'src' }
 }
}

Source sets are collections of source code in a Gradle build. Here, by assigning the
srcDirs property of both the src/main/java and src/test/java folders to an empty list,
the Java compiler won’t run at all. Instead, the Groovy compiler is used for all classes
in the src directory, which will presumably hold both Java and Groovy classes.

COPYING JARS

Another useful tactic is to make a local copy of the dependent libraries. The following
task does that:

task collectJars(type: Copy) {
 into "$buildDir/output/lib"
 from configurations.testRuntime
}

The collectJars task is a kind of Copy task—one of the built-in task types in Gradle.
Running collectJars copies the JAR files in the runtime classpath into the output/
lib folder in the build directory. Spock uses this task to make a complete distribution.

INPUTS AND OUTPUTS

Another neat capability of Gradle is that it can skip tasks that aren’t necessary. It
does this by creating hashes of files and directories and checking whether or not
they have changed. The following listing shows an example taken from the sam-
ples11 that come with Gradle.

11 See the userguide/tasks/incrementalBuild/inputsAndOutputs directory in the download distribution. Gra-

dle comes with a huge number of very simple samples like this one.

www.it-ebooks.info

http://www.it-ebooks.info/

123The Gradle build system

task transform {
 ext.srcFile = file('mountains.xml')
 ext.destDir = new File(buildDir, 'generated')
 inputs.file srcFile
 outputs.dir destDir
 doLast {
 println "Transforming source file."
 destDir.mkdirs()
 def mountains = new XmlParser().parse(srcFile)
 mountains.mountain.each { mountain ->
 def name = mountain.name[0].text()
 def height = mountain.height[0].text()
 def destFile = new File(destDir, "${name}.txt")
 destFile.text = "$name -> ${height}\n"
 }
 }
}

The srcFile and destDir properties of the script are assigned to the ext map, which
puts them in the project but avoids any potential conflict with existing Project prop-
erties. The inputs and outputs properties can be assigned to either files or directo-
ries (in other words, the word file is interpreted as a java.io.File). If both
properties are the same as during the previous run, the code inside the doLast block
is skipped.

ANT INTEGRATION

One of the nice features of Gradle is that it includes an instance of groovy.ant.Ant-
Builder as part of the build. That means that anything that can be done with Ant can
be handled inside a Gradle build. That has a couple of consequences. First, if you
already have an Ant build file, you can invoke its tasks inside a Gradle build. You can
even make the Gradle tasks dependent on the Ant tasks.

 Consider this example, from the Gradle samples.12 The Ant build file is build.xml,
and it contains a single task called hello:

<project>
 <target name="hello">
 <echo>Hello, from Ant</echo>
 </target>
</project>

The Gradle build is in the file build.gradle:

ant.importBuild 'build.xml'

task intro(dependsOn: hello) << {
 println 'Hello, from Gradle'
}

Listing 5.19 Inputs/outputs example from the incrementalBuilds Gradle sample

External properties for the
source and destination files

Time-stamped file
and directory

Executed only if
inputs or outputs
have changed
12 See userguide/ant/dependsOnAntTarget in the distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 Build processes

The intro task depends on the hello task from the Ant build, which is imported
using the ant variable (an instance of AntBuilder). Running gradle intro executes
both tasks:

:hello
[ant:echo] Hello, from Ant
:intro
Hello, from Gradle

BUILD SUCCESSFUL

THE WRAPPER TASK

Finally, a client can execute a Gradle build even if they don’t have Gradle installed.
Gradle comes with a special Wrapper task, which has a version property:

task wrapper(type: Wrapper) {
 gradleVersion = '1.6'
}

Running this task generates scripts for both Windows and Unix, called gradlew.bat
and gradlew, respectively, along with a minimal Gradle JAR distribution. When exe-
cuted the wrappers first download and install a local copy of Gradle and then execute
the build.

 Gradle is a very powerful system, and a thorough investigation is well beyond the
scope of this book.13 Hopefully this section will provide you with enough of an intro-
duction to get you started.

5.7 Summary
This chapter looked at build tools useful for both Groovy and Java projects. Ant is very
common but low level. Groovy provides both a raw groovy task and a groovyc com-
piler task, which can be useful in combined projects.

 Maven is a higher-level tool, but it can be difficult to customize. In this chapter I
presented both the GMaven project as a way to add Groovy to Maven and the Groovy-
Eclipse plugin approach, which tends to be more robust for cross-compilation issues.

13 The book Gradle in Action (Manning, 2013) by Benjamin Muschko is both well written and thorough. I highly

Lessons learned (Grapes and Gradle)
1 @Grab is helpful for Groovy scripts.
2 Gradle uses Groovy build files to configure your build but downloads the internet

like Maven.
3 Gradle does not have artifacts like Maven, but people are working on ways to

create standard builds for various goals.
4 In addition to the discussion in this chapter, every project in this book includes

a Gradle build highlighting a variety of capabilities.
recommend it.

www.it-ebooks.info

http://www.it-ebooks.info/

125Summary

 Groovy includes an @Grab annotation with its so-called Grapes capability, which
can be used to add dependencies directly to a Groovy script. It’s powerful, but it’s
restricted to Groovy builds.

 Finally, I presented the Gradle build tool. This chapter included a basic discussion
of Gradle and mentioned several more advanced capabilities. Gradle is used through-
out this book to demonstrate interesting mechanisms in each chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Testing Groovy
 and Java projects
The rise of automated testing is one of the most significant software development
productivity improvements in the past 20 years. Automated tests, running as part of
your build process, are very easy to set up, catch problems right away, and give you
the freedom to refactor your code without worrying that you’re breaking some-
thing unrelated.

 Testing is the cornerstone of many of the “agile” development processes, from
more modern techniques like SCRUM to Kanban back to the original Extreme Pro-
gramming (XP) movement. There are two other benefits of automated testing,
however, that aren’t nearly as publicized:

1 Tests are executable documentation.
Any major open source project is a communal effort by some of the best

This chapter covers
■ Using GroovyTestCase and its subclasses
■ Testing scripts as well as classes
■ The MockFor and StubFor classes in the

Groovy library
■ The Spock testing framework
126

developers in the world, many of whom are working on their own time.

www.it-ebooks.info

http://www.it-ebooks.info/

127Testing Groovy and Java projects

They’re highly motivated to write code, not documentation. The result is that
the documentation quality tends to be inferior to the code quality, if it’s even
up to date in the first place.

My own experience is that the better the developer, the more he or she cares
about testing. The best developers write complete tests, and these tests run all
the time as part of a continuous integration system. If a test breaks, the system
notifies the project committers right away. As a result, the tests are excellent
examples of how the developers intend the system to be used.

Whenever you work with a major open source project, download the source.
You may or may not look at the details, but the tests are invaluable.

2 Tests aren’t part of production code.
This isn’t as big a deal from a developer point of view, but it’s a huge issue for
managers. One of the reasons companies are reluctant to adopt new languages
is that they aren’t sure how well they work in a production environment. Pro-
duction code often involves complex approval processes and performance
assessments that can be extremely conservative.

If you would like to try Groovy in your system, testing is one easy way to do it.
Groovy has many testing capabilities built into the language, all of which work
with both Groovy and Java code. Best of all from a management point of view, at
runtime Groovy’s just another JAR file.

This chapter reviews the Groovy APIs and libraries that make testing easier. First I’ll
review how Java developers normally test applications, focusing on the JUnit library.
Then I’ll show how Groovy enhances that process through its GroovyTestCase
extension. Next I’ll show how to test scripts written in Groovy, using subclasses of

JUnit

GroovyShell

TestCase

GroovyLog

TestCase

Groovy

TestCase

Java

Java +

Groovy

Spock

StubForMockFor

Expando

Groovy

Groovy mock

objects

Figure 6.1 Java tests in this chapter are from JUnit. The standard Groovy library includes
a subclass of JUnit’s TestCase called GroovyTestCase, and its subclasses are useful
as well. The Spock framework is a very popular alternative testing API that includes a JUnit
test runner. Groovy makes it easy to create mock objects through library classes like

Expando, MockFor, and StubFor.

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 6 Testing Groovy and Java projects

GroovyTestCase. From there I’ll discuss testing classes in isolation using mocks and
stubs. This involves the built-in mock and stub capabilities in Groovy, both through
the Expando class and through Groovy’s MockFor and StubFor classes. Finally I’ll
show you a glimpse of the future in the form of the powerful Spock framework, a
pure Groovy library that simplifies testing for both Java and Groovy projects.

 Figure 6.1 is a guide to the technologies discussed in this chapter.

6.1 Working with JUnit
The agile development community created JUnit (http://junit.org) as a great tool for
automating tests. While other Java testing tools exist, JUnit has been so influential that
nearly every Java developer I encounter has either used it or heard of it. JUnit’s success
has spawned an entire family of comparable tools for other languages (known collec-
tively as “xUnit”). JUnit is simple, easy to use, and ubiquitous in the Java world. As I’ll
show in this chapter, the available Groovy tools also are easy to use and easy to learn,
and some of them are based directly on JUnit. 1

When writing JUnit tests in Groovy, you have two options. You can write a JUnit test
with annotations as usual, but implement it in Groovy, or you can extend the

Adding JUnit to your projects (a review from chapter 5)
JUnit is an open source project created by two of the founders of Extreme Program-
ming,1 Erich Gamma and Kent Beck. The JUnit library can be downloaded from the
home site (http://junit.org), but it’s built into most of the common IDEs, including
Eclipse, NetBeans, and IntelliJ IDEA. It also can be retrieved from the Maven central
repository, using a POM dependency of the form

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
</dependency>

As an alternative, JUnit version 4.5 and above enables the artifact ID junit-dep
instead, which does not include the so-called Hamcrest matchers (http://code
.google.com/p/hamcrest/) that simplify the syntax in certain cases. Like most cool
projects, the source code for JUnit now resides at GitHub, at https://github.com/
junit-team/junit.

Most of the Gradle build files in this book (especially for the projects in this chapter)
include JUnit as a “test-compile” dependency. That means classes in the API (like
org.junit.TestCase and org.junit.Assert) are only available for test classes.

1 Now known more commonly as “agile” development, because most Fortune 500 companies don’t want to be

associated with “extreme” anything.

www.it-ebooks.info

http://junit.org
http://junit.org
http://code.google.com/p/hamcrest/
http://code.google.com/p/hamcrest/
http://code.google.com/p/hamcrest/
https://github.com/junit-team/junit
https://github.com/junit-team/junit
http://www.it-ebooks.info/

129Working with JUnit

GroovyTestCase class. The only difference is that GroovyTestCase adds a few addi-
tional methods to the TestCase class from JUnit.

 Because this book is all about integration, I’d like to examine the following cases:

■ Use a standard Groovy JUnit test to check a Java implementation.
■ Use a standard Java JUnit test to check a Groovy implementation.
■ Write a Groovy test that extends GroovyTestCase to see what additions it provides.

In each case I need something to test. Because I plan to mix the languages, one way
I’ve found that makes that easier is to declare my methods in a Java interface and then
implement it in both languages. That’s actually a pretty general rule.

GROOVY IMPLEMENTS JAVA Groovy classes can implement Java interfaces as
easily as Java classes can.

The next listing shows a Java interface, called UtilityMethods, containing three
method declarations.

public interface UtilityMethods {
 int[] getPositives(int... values);
 boolean isPrime(int x);
 boolean isPalindrome(String s);
}

In true test-driven development (TDD) I would now write the tests, watch them fail,
and then write the correct implementations. Because the subject of this chapter is the
tests rather than the implementations, let me present the implementations first.2

 The following listing is the Java implementation of the UtilityMethods interface.

import java.util.ArrayList;
import java.util.List;

public class JavaUtilityMethods implements UtilityMethods {

 public int[] getPositives(int... values) {
 List<Integer> results = new ArrayList<Integer>();
 for (Integer i : values) {
 if (i > 0) results.add(i);
 }
 int[] answer = new int[results.size()];
 for (int i = 0; i < results.size(); i++) {
 answer[i] = results.get(i);
 }

Listing 6.1 A Java interface with three methods

2 I try to use TDD, but more often I use GDD, which stands for Guilt-Driven Development. If I write code and

Listing 6.2 The Java implementation of the UtilityMethods interface
it’s not tested, I feel guilty and write a test for it.

www.it-ebooks.info

http://spockframework.org
http://code.google.com/p/spock/
http://code.google.com/p/spock/
http://code.google.com/p/spock/
https://github.com/spockframework/spock
http://www.it-ebooks.info/

130 CHAPTER 6 Testing Groovy and Java projects

 return answer;
 }

 public boolean isPrime(int x) {
 if (x < 0) throw new IllegalArgumentException("argument must be >

0");
 if (x == 2) return true;
 for (int i = 2; i < Math.sqrt(x) + 1; i++) {
 if (x % i == 0) return false;
 }
 return true;
 }

 public boolean isPalindrome(String s) {
 StringBuilder sb = new StringBuilder();
 for (char c : s.toCharArray()) {
 if (Character.isLetter(c)) {
 sb.append(c);
 }
 }
 String forward = sb.toString().toLowerCase();
 String backward = sb.reverse().toString().toLowerCase();
 return forward.equals(backward);
 }
}

The implementations will not be surprising to anyone with a Java background. The
Groovy implementation, shown in the next listing, is somewhat shorter.

class GroovyUtilityMethods implements UtilityMethods {

 @Override
 int[] getPositives(int... values) {
 values.findAll { it > 0 }
 }

 @Override
 boolean isPrime(int x) {
 if (x < 0) throw new IllegalArgumentException('argument must be > 0')
 if (x == 2) return true
 (2..< Math.sqrt(x) + 1).each { num ->
 if (x % num == 0) return false // DANGER! THIS IS A BUG!
 }
 return true
 }

 @Override
 boolean isPalindrome(String s) {
 String str = s.toLowerCase().replaceAll(/\W/,'')
 str.reverse() == str
 }
}

Listing 6.3 The Groovy implementation of the UtilityMethods interface

findAll returns all values
satisfying the closure

A range
with an

open
upper
bound

The Groovy JDK adds a
reverse method to String
www.it-ebooks.info

http://www.it-ebooks.info/

131Working with JUnit

There is, in fact, a subtle bug in the implementation of the isPrime method. The tests
will detect it and give me a chance to explain the trap.

 In the next subsection I’ll use Java to test the Groovy implementation and fix the
bug. Then I’ll use Groovy to test the Java implementation, and finally I’ll write the test
as a subclass of GroovyTestCase to see how that can help.

6.1.1 A Java test for the Groovy implementation

The following listing contains a JUnit 4 test, written in Java, to test the Groovy imple-
mentation. It includes a static import for the methods in the org.junit.Assert class
and @Test annotations for the individual tests.

package mjg;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

import java.util.ArrayList;
import java.util.List;

import org.junit.Test;

public class GroovyImplJavaTest {
 private UtilityMethods impl = new GroovyUtilityMethods();

 @Test
 public void testGetPositives() {
 int[] testValues = {-3, 1, 4, -1, 5, -2, 6};
 List<Integer> testList = new ArrayList<Integer>();
 testList.add(1); testList.add(4);
 testList.add(5); testList.add(6);
 int[] results = impl.getPositives(testValues);
 for (int i : results) {
 assertTrue(testList.contains(i));
 }
 }

 @Test
 public void testIsPrime() {
 int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
 for (int p : primes) {
 assertTrue(impl.isPrime(p));
 }
 assertFalse("9 is not prime", impl.isPrime(9));
 }

 @Test(expected=IllegalArgumentException.class)
 public void testNegativePrime() {
 impl.isPrime(-3);
 }

Listing 6.4 A Java JUnit test to check the Groovy implementation

Static import so assert methods
don’t start with Assert

Results in List in order
to use contains method

Test passes if
exception thrown
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 6 Testing Groovy and Java projects

 @Test
 public void testIsPalindrome() {
 assertTrue(impl.isPalindrome("Step on no pets!"));
 assertTrue(impl.isPalindrome("Lisa Bonet ate no basil"));
 assertTrue(impl.isPalindrome(
 "Are we not drawn onward, we few, drawn onward to new era!"));
 assertFalse(impl.isPalindrome("This is not a palindrome"));
 }
}

In JUnit 3 tests extended the org.junit.TestCase class, and test methods were
detected by reflection. TestCase had all the needed assert methods in it. Now, in
JUnit 4, tests don’t have a superclass and are detected through the @Test annota-
tion. The assert methods are now static methods in the Assert class, leading to
probably the most common use of static imports in all of Java. If you do a static
import on the Assert class you can write the assert methods the same way they
looked in the older version.

 The only other interesting part of this is the use of the expected property of the @Test
annotation, which declares that the test only passes if the expected exception is thrown.
Figure 6.2 shows the result.

 The test detected that the Groovy implementation is returning true for all cases.
The Groovy implementation divides the given number by all the integers from 2 up to
the square root of the number minus 1, looking for any that come out even. That

Figure 6.2 The isPrime method
has a bug, but the rest are fine.
www.it-ebooks.info

http://www.it-ebooks.info/

133Working with JUnit

algorithm is fine. The problem is that if a composite (non-prime) number is detected,
the method is supposed to return false.

 Unfortunately, a return from inside a closure doesn’t behave the way a regular Java
developer expects. In fact, when you return from a closure it’s like you’re returning
from a method within another method. It only returns from the closure, not the
method containing it.

 That’s a trap worthy of a callout:

RETURN FROM CLOSURE A return from inside a closure only returns from the
closure, not the method that contains it.

Probably the easiest fix is to switch to a loop, where returns work as expected. Here’s
one proper implementation:

boolean isPrime(int x) {
 if (x < 0) throw new IllegalArgumentException('argument must be > 0')
 if (x == 2) return true

 for (num in 2..< Math.sqrt(x) + 1) {
 if (x % num == 0) {
 return false
 }
 }
 return true
}

Now the test passes. Next I’ll show a Groovy test for the Java implementation.

6.1.2 A Groovy test for the Java implementation

You can implement JUnit tests using Groovy as easily as Java, with the attendant code
simplifications. The next listing shows such a test.

import org.junit.Test

class JavaImplGroovyTest {
 UtilityMethods impl = new JavaUtilityMethods()

 @Test
 void testGetPositives() {
 def correct = [1, 2, 3]
 def results = impl.getPositives(-3..3 as int[])
 assert results.every { it > 0 }
 }

 @Test
 void testIsPrime() {
 def primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
 primes.each { num ->

Listing 6.5 A Groovy JUnit test for a Java implementation

Coercion of a range
into an int array

Every method returns
true if closure is true
for all elements
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 6 Testing Groovy and Java projects

 assert impl.isPrime(num)
 }
 assert !impl.isPrime(9)
 }

 @Test(expected=IllegalArgumentException)
 void testIsPrimeWithNegative() {
 impl.isPrime(-3)
 }

 @Test
 void testIsPalindrome() {
 assert impl.isPalindrome('No cab, no tuna nut on bacon')
 assert impl.isPalindrome('Do geese see God?')
 assert impl.isPalindrome("Go hang a salami; I'm a lasagna hog!")
 assert !impl.isPalindrome('This is not a palindrome')
 }
}

There are some code simplifications here, but this is still recognizably a standard JUnit
test. Initial data can be provided by coercing a range into an array of integers. The
every method in Collection lets me check all the return values in one statement.
Otherwise this is the same as before.

 One other note: due to the Groovy Truth,3 assert in Groovy is the same as
assertTrue and assertNotNull. Also, the Groovy assert has excellent debugging
output. As a result, most Groovy developers use assert in their tests rather than any
of the assert methods from the org.junit.Assert class.

 Finally, let me show a test class that extends GroovyTestCase and see what extra
capabilities that brings.

6.1.3 A GroovyTestCase test for a Java implementation

Groovy provides the class groovy.util.GroovyTestCase as part of its standard library.
As mentioned earlier, it extends org.junit.TestCase. The following listing shows
one such test for the Java implementation.

class JavaImplGTCTest extends GroovyTestCase {
 UtilityMethods impl = new JavaUtilityMethods()

 void testGetPositives() {
 log.info('inside testGetPositives')
 def correct = [1, 2, 3]
 def results = impl.getPositives(-3..3 as int[])
 assertLength(3, results)
 assertArrayEquals(correct as Integer[], results as Integer[])
 correct.each { assertContains(it, results) }
 }

3 Non-null references are true, non-zero numbers are true, non-empty collections are true, non-empty strings

Listing 6.6 A GroovyTestCase test for the Java implementation

Same mechanism
as in Java test

Protected log
property

Additional
methods
are true, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

135Working with JUnit

 void testIsPrime() {
 def primes = [2, 3,5, 7, 11, 13, 17, 19, 23, 29]
 primes.each { num ->
 assert impl.isPrime(num)
 }
 assert !impl.isPrime(9)
 }

 void testIsPrimeWithNegative() {
 shouldFail(IllegalArgumentException) {
 impl.isPrime(-3)
 }
 }

 void testIsPalindrome() {
 assert impl.isPalindrome('A Santa pets rats, as Pat taps a star step

at NASA.')
 assert impl.isPalindrome('Oy, Oy, a tonsil is not a yo-yo.')
 assert impl.isPalindrome('''
 A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar,
 a hoop, a pint, a catalpa, a gas, an oil, a bird, a yell, a vat,
 a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay,
 a tsar, a wall, a car, a luger, a ward, a bin, a woman, a vassal,
 a wolf, a tuna, a nit, a pall, a fret, a watt, a bay, a daub,
 a tan, a cab, a datum, a gall, a hat, a fag, a zap, a say, a jaw,
 a lay, a wet, a gallop, a tug, a trot, a trap, a tram, a torr,
 a caper, a top, a tonk, a toll, a ball, a fair, a sax, a minim,
 a tenor, a bass, a passer, a capital, a rut, an amen, a ted,
 a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a sub,
 a salt, an axon, a sail, an ad, a wadi, a radian, a room, a rood,
 a rip, a tad, a pariah, a revel, a reel, a reed, a pool, a plug,
 a pin, a peek, a parabola, a dog, a pat, a cud, a nu, a fan, a pal,
 a rum, a nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap,
 a maxim, a mood, a leek, a grub, a gob, a gel, a drab, a citadel,
 a total, a cedar, a tap, a gag, a rat, a manor, a bar, a gal,
 a cola, a pap, a yaw, a tab, a raj, a gab, a nag, a pagan, a bag,
 a jar, a bat, a way, a papa, a local, a gar, a baron, a mat, a rag,
 a gap, a tar, a decal, a tot, a led, a tic, a bard, a leg, a bog,
 a burg, a keel, a doom, a mix, a map, an atom, a gum, a kit,
 a baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat,
 a pagoda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer,
 a leer, a lever, a hair, a pad, a tapir, a door, a moor, an aid,
 a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag,
 a saw, a mass, an anus, a gnat, a lab, a cadet, an em, a natural,
 a tip, a caress, a pass, a baronet, a minimax, a sari, a fall,
 a ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort,
 a gut, a poll, a gateway, a law, a jay, a sap, a zag, a fat, a hall,
 a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a patina,
 a nut, a flow, a lass, a van, a mow, a nib, a draw, a regular,
 a call, a war, a stay, a gam, a yap, a cam, a ray, an ax, a tag,
 a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat,
 a catnip, a pooh, a rail, a calamus, a dairyman, a bater,
 a canal - Panama!
 ''')

Additional
shouldFail
method
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 6 Testing Groovy and Java projects

 assert !impl.isPalindrome('This is not a palindrome')
 }
}

There are a few new features here. First, GroovyTestCase includes a static, protected
property called log of type java.util.logging.Logger. It’s not exactly difficult to
add a logger to a test yourself, but providing one automatically is a convenience.

 Next, the class adds an assertLength method. It has three overloads. In each, the
first argument is the expected length of the array. The second argument is an array of
integers, an array of characters, or an array of type Object. Here I’m using the
method to check that the number of positive integers returned is as expected.

 The class also provides an assertArrayEquals method, which takes two Object
arrays as arguments. The docs say that this method checks that the arrays are equiva-
lent and contain the same elements.4

 Another added method is assertContains. That method has two overloads, one
for characters and one for integers, so it’s only useful in those cases.

 Finally, the superclass also provides the shouldFail method, which takes either an
exception type and a closure or just a closure. It expects an exception when the clo-
sure is run, so it behaves much as the @Test annotation with an expected property.

 The GroovyTestCase class has a few additional methods that don’t appear here,
like assertScript, shouldFailWithCause, and the ever-popular notYetImplemented.
See the GroovyDocs for details.

 The interesting part is that this test can be run from the command line. The
groovy command acts as a text-based JUnit runner for GroovyTestCase subclasses.
The result looks similar to this:

$ groovy -cp bin src/test/groovy/mjg/JavaImplGTCTest.groovy
.Jun 23, 2013 5:53:05 PM java_util_logging_Logger$info call
INFO: inside testGetPositives
...
Time: 0.179

OK (4 tests)

The Java interface and implementation classes are compiled and reside in the proj-
ect’s bin directory, so they need to be added to the classpath when running the
Groovy script.5

4 That sounds like it’s from the Department of Redundancy Department, but it’s not.

Lessons learned (JUnit)5

1 JUnit is the most common Java unit-testing framework in the industry.
2 Normal JUnit tests are based on annotations. The @Test annotation has a prop-

erty called expected. Such tests only pass if the expected exception is thrown.

5 Before I leave this section, I should mention that the palindromes used in the examples come from the Gigan-

tic List of Palidromes page at www.derf.net/palindromes/old.palindrome.html.

www.it-ebooks.info

www.derf.net/palindromes/old.palindrome.html
http://www.it-ebooks.info/

137Testing scripts written in Groovy

Testing a script written in Groovy involves special circumstances, especially if input
data is supplied from outside. That’s the subject of the next section.

6.2 Testing scripts written in Groovy
Testing scripts is a bit different from testing classes. You don’t normally instantiate a
script and call a method on it, although you can. Instead, it’s easiest just to execute the
script and let its own internal assert statements do any correctness checks.

USING ASSERT When Groovy developers write scripts, they typically add asserts
to demonstrate that the script works properly.

Running a script inside a test case is easy enough if no input or output variables are
involved. Because scripts normally contain assert statements that verify their correct-
ness, the key is simply to execute the script programmatically. That’s what the Groovy-
Shell class is for.

 Here’s a simple example. Consider a short but powerful script that accesses the
Internet Chuck Norris Database,6 reproduced from chapter 4:

import groovy.json.JsonSlurper

def result = 'http://api.icndb.com/jokes/random'.toURL().text
def json = new JsonSlurper().parseText(result)
def joke = json?.value?.joke
assert joke
println joke

This script, when executed, accesses the RESTful web service at the URL shown,
retrieves a random joke in JavaScript Object Notation (JSON) form, parses (or, rather,
slurps) it, and prints the resulting joke. The script uses the safe dereference operator
to avoid NullPointerExceptions in case something goes wrong, but it has an assert
statement to check that something actually was retrieved. When executed, the result is
something like

Chuck Norris can instantiate an interface

(continued)

3 Version 4 tests do not have a superclass. Instead, all of the assert methods are
static methods in the org.junit.Assert class.

4 By the Groovy truth, assert, assertTrue, and assertNotNull are all the same.
5 Because the Groovy assert provides so much debugging information when it

fails, it’s normally preferred over the standard JUnit assertEquals methods.
6 GroovyTestCase extends TestCase from JUnit and adds a handful of conve-

nience methods, like assertLength and shouldFail.
6 Arguably, this is why the internet was invented.

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 6 Testing Groovy and Java projects

To test this script all I need to do is execute it and let the embedded assert statement
do the work. I can execute it programmatically as in the following listing.

class ScriptTests {
 @Test
 void testChuckNorrisScript() {
 GroovyShell shell = new GroovyShell()
 shell.evaluate(new File('src/main/groovy/mjg/chuck_norris.groovy'))
 }
}

The GroovyShell class, discussed in chapter 3 on Groovy and Java integration, has an
evaluate method that takes a File argument. I simply point the File to the script in
question, and the evaluate method on the shell executes it.

 What if I want to check the results? In this case the result is random, but if my script
has an actual result based on input values, is there something that can be done then?

 To handle this I’m going to need a binding for the script (again discussed in chap-
ter 3). A binding is an object that allows input and output variables to be accessed
from the script.

SCRIPT BINDING Any variable that isn’t declared in a script is part of the bind-
ing and can be accessed from outside.

Consider the classic “Hello, World!” script in Groovy. I’ll put it in a package in the
next listing, but other than that it’s the same script described in appendix B, “Groovy
by Feature.”

package mjg
println 'Hello, World!'

This script doesn’t contain any assert statements, but because it prints to the console
I’d like to be able to check the output. To do so I can assign the out property of the cor-
responding binding to a StringBuffer, which I can access after the script executes.7

The following test has been added to the ScriptTests class started in listing 6.7.

@Test
void testHelloWorld() {
 Binding binding = new Binding()

Listing 6.7 A class to hold all the script tests

Listing 6.8 The “Hello, World!” script

7 This isn’t documented well at all, so consider it more value added for you by reading this book. Guillaume

Listing 6.9 A test that captures script output
Laforge told me about it (and wrote it, too), so he gets the real credit.

www.it-ebooks.info

http://www.it-ebooks.info/

139Testing scripts written in Groovy

 def content = new StringWriter()
 binding.out = new PrintWriter(content)
 GroovyShell shell = new GroovyShell(binding)
 shell.evaluate(new File('src/main/groovy/mjg/hello_world.groovy'))
 assert "Hello, World!" == content.toString().trim()
}

The out property of the binding is assigned to a PrintWriter wrapped around a
StringWriter, so that when the println method in the script is executed, the output
goes to the writer instead of the console. Then, after executing the script using the
shell, I can check that the proper statement was printed by accessing the writer and
trimming its output.

 Normally a binding is used to pass input variables into a script. Here’s a slight vari-
ation on the previous example, using a name variable.

package mjg
println "Hello, $name!"

Again, the only real difference here is that the print statement uses a name variable
that is not declared inside the script. That means it can be passed in from outside, as
shown in the following test.

@Test
void testHelloName() {
 Binding binding = new Binding()
 binding.name = 'Dolly'
 def content = new StringWriter()
 binding.out = new PrintWriter(content)
 GroovyShell shell = new GroovyShell(binding)
 shell.evaluate(new File('src/main/groovy/mjg/hello_name.groovy'))
 assert "Hello, Dolly!" == content.toString().trim()
}

The name variable is set to Dolly, and the result is confirmed as before.

6.2.1 Useful subclasses of GroovyTestCase: GroovyShellTestCase

The combination of script and binding is sufficiently common that the Groovy API
now includes the class groovy.util.GroovyShellTestCase. This is a subclass of
GroovyTestCase that instantiates a GroovyShell inside the setUp method. The shell is
provided as a protected attribute, but the class also includes a withBinding method
that takes a Map of parameters and a closure to execute. The following listing shows
tests for the Groovy scripts in this section.

Listing 6.10 A script with a binding variable

Listing 6.11 Setting a binding variable to test a script
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6 Testing Groovy and Java projects

class ScriptShellTests extends GroovyShellTestCase {
 String base = 'src/main/groovy'

 void testChuckNorris() {
 shell.evaluate(new File("$base/mjg/chuck_norris.groovy"))
 }

 void testHelloWorld() {
 def content = new StringWriter()
 withBinding([out:new PrintWriter(content)]) {
 shell.evaluate(new File("$base/mjg/hello_world.groovy"))
 assert "Hello, World!" == content.toString().trim()
 }
 }

 void testHelloName() {
 def content = new StringWriter()
 withBinding([out:new PrintWriter(content), name:'Dolly']) {
 shell.evaluate(new File("$base/mjg/hello_name.groovy"))
 assert "Hello, Dolly!" == content.toString().trim()
 }
 }
}

The first test finds the script to run and executes it using the shell instantiated in the
superclass. The other tests use the withBinding method to override the out variable
and provide an input parameter. The results are the same as instantiating the Groovy-
Shell and Binding classes directly.

 The previous example showed how to capture standard output from a script, but
normally scripts return concrete values. The withBinding method returns whatever
the script returns. As a trivial example, consider the following powerful Groovy calcu-
lator, saved in a file called calc.groovy:

z = x + y

Because none of the three variables (x, y, and z) are declared, they can all be accessed
through the script’s binding. The next listing shows a test for this script that validates
the returned value.

void testAddition() {
 def result = withBinding([x:3,y:4]) {
 shell.evaluate(new File('src/main/groovy/mjg/calc.groovy'))
 shell.context.z
 }
 assert 7 == result
}

The last line of the closure accesses the z variable, whose value is retrieved from

Listing 6.12 Testing Groovy scripts using GroovyShellTestCase

Listing 6.13 A test for the addition script, calc.groovy

Executing a script,
which includes

assert statements

Changing the
out variable
in the binding

Adding an input
parameter
the binding.

www.it-ebooks.info

http://www.it-ebooks.info/

141Testing scripts written in Groovy

 There’s one other subclass of GroovyTestCase available in the standard library,
called GroovyLogTestCase, which helps when testing logging. That class is the subject
of the next subsection.

6.2.2 Useful subclasses of GroovyTestCase: GroovyLogTestCase

Good developers don’t rely on capturing standard output. Instead they use loggers to
direct output to locations that can be accessed later. For some time now Java has had a
basic logging capability built into it, which can act as the front end on logging API
implementations.

 The Java logging classes, like Logger and Level, reside in the java.util.logging
package. As an example of their use, consider the following minor variation on
the calculator script from the previous section, stored in a file called calc_with_
logger.groovy.

import java.util.logging.Logger

Logger log = Logger.getLogger(this.class.name)
log.info("Received (x,y) = ($x,$y)")
z = x + y

The static getLogger method from the Logger class is a factory method that creates
a Logger instance for this particular component. Here I’m using the name of the
script, which becomes the name of the generated class. Once again, the variables x,
y, and z are part of the script binding. The logger provides methods corresponding
to various log levels. In the standard, the built-in levels include finest, finer, fine,
info, warning, and severe. In this particular case, the input parameters are being
logged at info level. To execute this script with x and y set to 3 and 4, use the follow-
ing code:

Binding b = new Binding(x:3, y:4)
GroovyShell shell = new GroovyShell(b)
shell.evaluate(new File('src/main/groovy/mjg/calc_with_logger.groovy'))
println shell.context.z

The result is similar to this (dates and times may vary):

Jun 24, 2013 12:21:19 AM
org.codehaus.groovy.runtime.callsite.PojoMetaMethodSite$PojoCachedMethod
SiteNoUnwrap invoke

INFO: Received (x,y) = (3,4)
7

The default logger includes a console “appender,” which directs all log output to the
console. The mechanisms for capturing standard output don’t work here, though.
Instead, Groovy provides a class called GroovyLogTestCase, which includes a static
method called stringLog for that purpose. The next listing shows a test demonstrat-

Listing 6.14 A script that uses a logger
ing its use.

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Testing Groovy and Java projects

class CalcWithLoggerTests extends GroovyLogTestCase {

 void testAddition() {
 def result = stringLog(Level.INFO, calc_with_logger.class.name) {
 Binding b = new Binding()
 b.x = 3; b.y = 4
 GroovyShell shell = new GroovyShell(b)
 shell.evaluate(
 new File('src/main/groovy/mjg/calc_with_logger.groovy'))
 assert 7 == shell.context.z
 }
 assert result.contains('INFO: Received (x,y) = (3,4)')
 }
}

The stringLog method returns the log output as a string, which is used to check that
the logger is working correctly.

 Most of the scripts in this book are tested using the techniques described in this
section. If the script (or any class, for that matter) has dependencies, however, there’s
a bit more work to be done.

True unit testing means testing an isolated class. The success or failure of the test
should not rely on any associated objects. Any dependent objects should be replaced
by mocks or stubs that return predetermined values when accessed.

 This is another area that’s significantly easier to handle when using Groovy than it
is when using Java. Groovy has several built-in mechanisms for creating mock or stub
objects, which I’ll review in the next section.

6.3 Testing classes in isolation
In object-oriented programs no class is an island. Classes normally have dependencies.
An integration test uses all of the dependencies together with the class under test
(often called the CUT for that reason), but to truly test a given class you need to isolate
it from its environment.

 To isolate a class you need to provide it with what it needs from the dependencies
in order to do its job. For example, if a class processes data it extracts from the rest of
the system, you need to supply that data in a controlled manner that doesn’t involve

Listing 6.15 Capturing log output in a test case

Lessons learned (testing scripts)
1 Groovy scripts provide their own challenges, especially when trying to capture

input or output data and logging results.
2 Groovy source code can be executed programmatically through the GroovyShell

and Binding classes, which then execute any contained assert methods.
3 Special subclasses of GroovyTestCase are available to simplify script testing.
the rest of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

143Testing classes in isolation

 Formally, the class being tested is known as the caller, and the classes it depends on
are known as collaborators. The goal is to provide controlled implementations of all the
collaborators so the caller can be tested by itself.

 In this section we’ll look at an example similar to the one shown in chapter 7 on
Spring. It’s simple enough to follow without being totally artificial. The example is
a classic bank account. There’s an Account class, an AccountDAO interface, a File-
AccountDAO implementation, and an AccountService class. The layout is shown in
figure 6.3. The idea is that the service will have a method called transferFunds
that sets transaction boundaries, the DAO class does persistence for the Account,
and the Account itself is just an entity that will be saved and restored from some
persistence structure.

 In this case I’ll use a simple file for persistence. Normally I would use a database,
but I want to illustrate how to do a unit test in Groovy with a stub representing the file.
In the process I’ll get to discuss the difference between unit tests and integration tests.
So far the tests in this chapter haven’t tried to mock any dependent objects, so they
can be considered integration tests. Now I’ll look at doing true unit tests.

 In addition to the basic classes, figure 6.3 also shows where the techniques in the
following subsections (coerced closures and expandos) will be used for testing.

 A (programmatic) client would use the banking system by invoking methods on
the service class, AccountService, which presumably would be transactional. The ser-
vice class uses implementations of the AccountDAO interface to work with individual
accounts. The Account class itself is a simple POJO.

 The next sections show the implementation code for the service and DAO, and
illustrate how to use coerced closures and expandos to represent dependent
objects. Specifically, when testing the logic in the service class a closure is used to
represent the DAO. When testing the DAO implementation an expando stands in
for the File class.

AccountService

Account FileFileAccountDAO

<<interface>>
AccountDAO

Coerced closure

Expando

Figure 6.3 A UML diagram of a simple banking system that uses a service, and a
DAO implementation based on flat files. Dashed open arrows represent
dependencies, solid open arrows are associations, and the dashed closed arrow
indicates implementation.
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 6 Testing Groovy and Java projects

6.3.1 Coerced closures

Let me start with the AccountService, as shown in the next listing.

public class AccountService {
 private AccountDAO dao;

 public void setDao(AccountDAO dao) {
 this.dao = dao;
 }

 public void transferFunds(int from, int to, double amount) {
 Account fromAccount = dao.findAccountById(from);
 Account toAccount = dao.findAccountById(to);

 fromAccount.withdraw(amount);
 toAccount.deposit(amount);
 }

 public double getBalance(int id) {
 return dao.findAccountById(id).getBalance();
 }
}

Again, to keep things simple, the AccountService has only two business methods: a
transferFunds method to move money from one account to another, and a get-
Balance method that delegates to the corresponding method in Account. Both
methods take integer ids as arguments and use the AccountDAO to look up the corre-
sponding accounts. Therefore, in order to do its job the AccountService needs an
AccountDAO instance.

 The AccountService is tied to the AccountDAO. A true unit test would test this class
in isolation, meaning I need to provide some kind of stub for the AccountDAO class.
AccountDAO is actually an interface, as shown in the next listing.

public interface AccountDAO {
 Account findAccountById(int id);
 Collection<Account> findAllAccounts();
 int createNewAccount(double balance);
 void deleteAccount(int id);
}

If I create a stub implementation of the AccountDAO interface, I need to implement all
these methods. Notice, however, that the AccountService only uses one method out
of the interface: findAccountById. That’s the only method I actually need. Unfortu-
nately, I can’t implement only that method. When implementing an interface I need
to implement all its methods, whether I plan to use them or not.

 I can use a Groovy technique to avoid all the extra work. If I provide a closure with

Listing 6.16 AccountService (in Java): uses the AccountDAO to find Accounts

Listing 6.17 The AccountDAO interface, with CRUD methods for the Account class

Insert the
DAO

Using
the DAO
the same argument list as the method I care about, I can then “coerce” the closure

www.it-ebooks.info

http://www.it-ebooks.info/

145Testing classes in isolation

into the interface. The closure becomes the implementation of all the methods in the
interface with the same argument list.

 In this case I want to provide an implementation for the findAccountById
method, which takes an integer id and returns an Account. I’m going to use a map to
accomplish this:

 Account a1 = new Account(1,100)
 Account a2 = new Account(2,100)
 def accounts = [1:a1, 2:a2]

The Account class (not shown, but it’s a simple POJO contained in the book source
code) has a two-argument constructor that takes an id and an initial balance. I instan-
tiated two accounts with IDs 1 and 2 and added them to a map under the ID values.
Now I need the closure that implements my method:

{ id -> accounts[id] }

That’s a one-argument closure whose dummy variable, again called id, returns the
Account stored under that ID. With that machinery in place I can provide a stub
implementation for the DAO to the service class, as shown in the next listing.

class AccountServiceTest {
 AccountService service = new AccountService()
 Account a1 = new Account(1,100)
 Account a2 = new Account(2,100)
 def accounts = [1:a1, 2:a2]

 @Before
 void setUp() throws Exception {
 service.dao = { id -> accounts[id] } as AccountDAO
 }

 @Test
 void testTransferFunds() {
 assertEquals 100, a1.balance, 0.01
 assertEquals 100, a2.balance, 0.01

 service.transferFunds(1, 2, 50)

 assertEquals 50, a1.balance, 0.01
 assertEquals 150, a2.balance, 0.01
 }
}

In the setUp method (with the @Before annotation), I use the as operator to treat the
closure as an AccountDAO interface. That means the closure will be used as an imple-
mentation for all the methods in the interface. Because the only method used in the
DAO interface was findAccountById, I can assign a single coerced closure to the dao
property in the service (which goes through the setDao method, as usual), and I’m
done. The testTransferFunds method verifies that the initial balances of the two

Listing 6.18 A JUnit 4 test case for the AccountService, in Groovy, with a stubbed DAO

Closure as interface
implementation

Service method that
uses the dao
accounts are as expected, does the transfer, and then checks that the updated balances

www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6 Testing Groovy and Java projects

are correct, keeping in mind that comparing doubles requires a third argument rep-
resenting the precision.

 If I need to implement multiple methods in the interface using a closure, I can
supply a map of closures to method names, where each closure has the proper argu-
ment list. For example, the following listing shows a map of closures representing the
entire AccountDAO interface and a few tests showing how it works.

Account a1 = new Account(1, 100)
Account a2 = new Account(2, 100)
def accounts = [1:a1, 2:a2]
int nextId = 3

def mock = [findAccountById: { int id -> accounts[id] },
 findAllAccounts: { -> accounts.values() },
 createNewAccount: { double bal -> nextId++ },
 deleteAccount: { int id -> }] as AccountDAO

assert mock.findAccountById(1) == a1
mock.findAllAccounts().each {
 assert accounts.containsValue(it)
}
assert 3 == mock.createNewAccount(200)
assert !mock.deleteAccount(3)

The bottom line is that closures can be used as the implementation of an interface,
and that this is an easy and very powerful technique for providing stub implementa-
tions of collaborators.

 Next I want to test the DAO implementation class that uses a flat file to store
the accounts. The goal in this case will be to provide a stub that stands in for the
java.io.File class.

6.3.2 The Expando class

I’m going to use a file as my persistence mechanism, but for the testing environment
I’m going to keep a cache of accounts in a map. This means that when I initialize the
DAO I need to read the file and store the accounts found there in a map, and any time
I make a change to an account I need to write the results back to a file. When reading
the data I can just use the map—unless the file has been changed, in which case I’ll
have to re-read the file.8

 To start, here are the attributes in my FileAccountDAO class:

 def accountsFile
 Map<Integer, Account> accounts = [:]
 private static int nextId
 boolean dirty

Listing 6.19 Using a map of closures to implement an interface

8 I got the idea of using an expando this way from Jeff Brown, indefatigable coauthor of Definitive Guide to Grails 2

Coercing a map
of closures into
an interface
(Apress, 2013).

www.it-ebooks.info

http://www.it-ebooks.info/

147Testing classes in isolation

I deliberately declared the variable representing the accounts file to be of type def
rather than File, for reasons I’ll explain when I create the stub. The other attributes
are a map to represent the accounts cache (using generics, which Groovy compiles
successfully but doesn’t enforce9), a private static integer that will be my primary
key generator, and a Boolean flag to indicate whether the accounts cache needs to
be refreshed.

 Here’s the method used to read the accounts from the file:

void readAccountsFromFile() {
 accountsFile.splitEachLine(',') { line ->
 int id = line[0].toInteger()
 double balance = line[1].toDouble()
 accounts[id] = new Account(id:id,balance:balance)
 }
 nextId = accounts?.keySet().max() ?: 0
 nextId++
 dirty = false
}

Each account is stored as plain text, with a comma separating the id from the balance.
Reading accounts uses the splitEachLine method that takes two arguments: the
delimiter (a comma in this case) and a closure that defines what to do with the result-
ing list. The closure says to parse the ID and balance into the proper data types, instan-
tiate an account with the resulting values, and save it in the map. Then I need to set
the nextId variable to one more than the max of the IDs used so far, which gives me
an opportunity to use the cool Elvis operator.10 Finally, because this method refreshes
the cache, I can set the dirty flag to false.

 The corresponding method to write out the accounts is shown next:

void writeAccountsToFile() {
 accountsFile.withWriter { w ->
 accounts.each { id, account ->
 w.println("$id,$account.balance")
 }
 }
 dirty = true
}

The withWriter method is from the Groovy JDK and is added to the java.io.File class.
It provides an output writer wrapped around the file that closes automatically when the
closure argument completes. The closure writes the ID and balance of each account to a
single line in the file, separated by a comma. Because this method changes the file, it sets
the dirty flag to true so that the class knows the cache needs to be refreshed.

9 That’s another subtle trap. The syntax for Java generics compiles in Groovy, but just because you declared a
List<Integer> doesn’t mean you can’t add instances of String, Date, or Employee if you want to. In
Groovy, think of the generic declaration as nothing more than documentation.

10 I don’t really go out of my way to find excuses to use the cool Elvis operator, but I don’t pass them up when

they present themselves either.

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Testing Groovy and Java projects

 With those methods in place, the next listing shows the complete DAO implementation.

class FileAccountDAO implements AccountDAO {
 def accountsFile
 Map<Integer, Account> accounts = [:]
 private static int nextId
 boolean dirty

 private void readAccountsFromFile() {
 accountsFile.splitEachLine(',') { line ->
 int id = line[0].toInteger()
 double balance = line[1].toDouble()
 accounts[id] = new Account(id:id,balance:balance)
 }
 nextId = accounts?.keySet().max() ?: 0
 nextId++

 dirty = false
 }

 private void writeAccountsToFile() {
 accountsFile.withWriter { w ->
 accounts.each { id, account ->
 w.println("$id,$account.balance")
 }
 }
 dirty = true
 }

 @Override
 Account findAccountById(int id) {
 if (dirty) readAccountsFromFile()
 return accounts[id]
 }

 @Override
 Collection<Account> findAllAccounts() {
 if (dirty) readAccountsFromFile()
 return accounts.values()
 }

 @Override
 int createNewAccount(double balance) {
 int newId = nextId++
 accounts[newId] = new Account(id:newId,balance:balance)
 writeAccountsToFile()
 return newId;
 }

 @Override
 void deleteAccount(int id) {
 accounts.remove(id)
 writeAccountsToFile()
 }

Listing 6.20 The complete FileAccountDAO implementation, in Groovy

Refresh
the cache if
necessary

Cache
changed, so
persist it
}

www.it-ebooks.info

http://www.it-ebooks.info/

149Testing classes in isolation

The business methods are straightforward, based on the accounts cache (the map).
The only complication is determining whether or not the cache needs to be refreshed
before returning a value. Methods that change the accounts force a write to the file.
Methods that retrieve them just need to check if a read is necessary.

 That’s a fair amount of code, and I would feel very uncomfortable if it wasn’t
tested. An integration test would simply supply an actual file to the DAO, and I have
such a test in the book’s source code. A unit test, however, would remove the depen-
dency on the File class. That’s where the Expando comes in.

 The groovy.util.Expando class creates an object with no attributes or methods of
its own, other than the ones it inherits. The cool part is that you can treat an instance
of Expando as though it was a map, where the keys are the names of properties or
methods, and the values are the property values or method implementations.

EXPANDO A groovy.util.Expando is a class that creates an empty object to
which you can add properties and methods as desired.

To see this in action, let me create an Expando to act as a replacement for the file in
my DAO. First I have to see what methods in File need to be represented.

 Here are the methods in AccountDAO that use the accountsFile dependency. The
methods I need to mock are in bold:

 private void readAccountsFromFile() {
 accountsFile.splitEachLine(',') { line ->
 int id = line[0].toInteger()
 double balance = line[1].toDouble()
 accounts[id] = new Account(id:id,balance:balance)
 }
 nextId = accounts?.keySet().max() ?: 0
 nextId++

 dirty = false
 }

 private void writeAccountsToFile() {
 accountsFile.withWriter { w ->
 accounts.each { id, account ->
 w.println("$id,$account.balance")
 }
 }
 dirty = true
 }

Examining the previous listing shows that I’m using splitEachLine and withWriter
in the File class and the println method from the Writer class, so these methods
need to be implemented in the Expando.

 All of those methods are already implemented in the String class. Therefore, why
not use a string to represent the file? I’ll add a string property to the Expando and
then implement all the needed methods so that they delegate to the corresponding

methods on the string. Here’s the resulting code:

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 6 Testing Groovy and Java projects

Expando ex = new Expando()
ex.data = ''
ex.println = { data.append(it) }
ex.withWriter = { new StringWriter() }
ex.splitEachLine = { pattern, clos ->
 data.splitEachLine(pattern, clos) }

First I instantiate the Expando. Next I add a data property to it and assign it to an
empty string. The println method is then implemented through the append method
on String. The withWriter method is assigned a closure that returns a new String-
Writer. Finally, the splitEachLine method is assigned to a two-argument closure that
delegates to the corresponding existing method on String.

 All that’s left is to substitute the Expando for the file in the DAO:

FileAccountDAO dao = new FileAccountDAO(accountsFile:ex)

Here at last is the reason I needed to declare the accountsFile variable with def rather
than File. An Expando isn’t a file and isn’t related to the File class in any way, so a File
reference would be a problem. If I use def to declare the variable instead, I can freely
assign the Expando variable to my variable. Duck typing does the rest; every time a
method is invoked on the variable, the corresponding method is called on the Expando.

DYNAMIC TYPING TO THE RESCUE If I declare a reference using def, I can
assign it to anything. When I invoke methods on it I’m relying on the meth-
ods being there in whatever class I’ve used.

The next listing shows the complete unit test for the file DAO.

class FileAccountDAOUnitTests {
 FileAccountDAO dao

 @Before
 void setUp() {
 Expando ex = new Expando()
 ex.data = ''
 ex.splitEachLine = { pattern, clos ->
 data.splitEachLine(pattern, clos) }
 ex.withWriter = { new StringWriter() }
 ex.println = { data.append(it) }
 dao = new FileAccountDAO(accountsFile:ex)
 }

 @Test
 void testCreateAndFindNewAccount() {
 int id = dao.createNewAccount(100.0)
 Account local = new Account(id:id,balance:100.0)
 Account fromDao = dao.findAccountById(id)
 assertEquals local.id, fromDao.id
 assertEquals local.balance, fromDao.balance, 0.01

Listing 6.21 FileAccountDAO unit test, using an Expando to stub the File
 }

www.it-ebooks.info

http://www.it-ebooks.info/

151Testing classes in isolation

 @Test
 void testFindAllAccounts() {
 (1..10).each { num -> dao.createNewAccount(num*100) }
 def accounts = dao.findAllAccounts()
 assertEquals 10, accounts.size()
 accounts*.balance.each { it in (100..1000) }
 }

 @Test
 void testDeleteAccount() {
 (1..10).each { num -> dao.createNewAccount(num*100) }
 def accounts = dao.findAllAccounts()
 assertEquals 10, accounts.size()
 accounts.each { account -> dao.deleteAccount(account.id) }
 assert 0 == dao.findAllAccounts().size()
 }
}

In a way, I got lucky with this example. The variable I needed to stub, accountsFile,
was exposed as a property, so I could assign the Expando to it from outside. What if
that’s not the case? What if the variable is instantiated inside the class? Can anything
be done then?

 If I’m limited to Java, I’m out of luck.11 In fact, even mocking frameworks have
trouble with this situation. Fortunately, Groovy has a built-in mechanism for handling
exactly this problem. The classes I need are called StubFor and MockFor.

6.3.3 StubFor and MockFor

A typical Groovy developer doesn’t necessarily spend a lot of time metaprogramming,
but they sure reap the benefits of it. I use builders in several places in this book.
Domain-specific languages (DSLs) like GORM, are built through metaprogramming
techniques. The whole Groovy JDK is created through metaclass manipulation. In the
last section I used an Expando to create a test object, and that only works in a language
that supports metaprogramming. After a while you get used to metaprogramming
capabilities and aren’t really surprised by their benefits any more.

 In this section I’m going to show a technique that, even after all my years of pro-
gramming in Groovy, still feels like magic. I know it works, and I use it wherever I
can, but every time it happens I have to take a moment to sit back and smile at how
cool it is.

 Let me go directly to the example I want to show and then explain the stub tech-
nique. Rather than use the bank account system described so far, let me remind you
of the geocoder example I’ve used in several chapters of this book. The next listing
shows the Geocoder class that’s part of the Groovy Baseball system described in
chapter 2.
11 Unless I have AspectJ available, but even then the solution is complicated.

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6 Testing Groovy and Java projects

class Geocoder {
 String base = 'http://maps.googleapis.com/maps/api/geocode/xml?'

 void fillInLatLng(Stadium stadium) {
 String urlEncodedAddress =
 [stadium.street, stadium.city, stadium.state].collect {
 URLEncoder.encode(it,'UTF-8')
 }.join(',')
 String url = base + [sensor:false,
 address: urlEncodedAddress].collect {k,v -> "$k=$v"}.join('&')
 def response = new XmlSlurper().parse(url)
 String latitude =
 response.result[0].geometry.location.lat ?: "0.0"
 String longitude =
 response.result[0].geometry.location.lng ?: "0.0"
 stadium.latitude = latitude.toDouble()
 stadium.longitude = longitude.toDouble()
 }
}

I have a test for this class, but it’s most definitely an integration test. The following list-
ing shows a JUnit 4 test for the geocoder, written in Groovy.

import static org.junit.Assert.*;
import org.junit.Test;

class GeocoderIntegrationTest {
 Geocoder geocoder = new Geocoder()

 @Test
 public void testFillInLatLng() {
 Stadium google = new Stadium(
 street:'1600 Ampitheatre Parkway',
 city:'Mountain View',state:'CA')

 geocoder.fillInLatLng(google)

 assertEquals(37.422, google.latitude, 0.01)
 assertEquals(-122.083, google.longitude, 0.01)
 }
}

A Stadium has a street, city, state, latitude, and longitude, and the geocoder’s job is to
take the address, invoke Google’s geocoder service using it, and use the result to update
the latitude and longitude. After setting up a Stadium instance corresponding to
Google’s home office, the test invokes the fillInLatLng method and checks that the
updated latitude and longitude values are within tolerances.

 This works just fine, but to do its job it has to access the Google geocoder service.
That’s why it’s an integration test.12

Listing 6.22 The Groovy Baseball Geocoder class, revisited

Listing 6.23 GeocoderIntegrationTests.groovy: a JUnit 4 test for the geocoder

What if I’m
not online?

Google
headquarters

Access
Google’s
geocoder
online

Comparing doubles
requires a precision
12 See http://en.wikipedia.org/wiki/Integration_testing for the definition of an integration test.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Integration_testing
http://www.it-ebooks.info/

153Testing classes in isolation

What happens if I’m not online? More formally, is there any way I can test the logic in
the fillInLatLng method without relying on the external URL?

 The online access is being handled through the parse method of XmlSlurper.
That method takes a URL, accesses it, downloads the XML response, parses it into a
DOM tree, and returns the root element. In a normal mock I’d like to replace the
expression “new XmlSlurper().parse(url)” with a pre-defined DOM tree. If the slurper
had been supplied from outside this class, I could create a stub and force the parse
method to return what I want. Unfortunately, the slurper is instantiated right inside
the method.

 Here’s where Groovy’s MockFor and StubFor classes come in.

Figure 6.4 shows how I want the stub to work.
 I want the parse method of the slurper to return the root of a DOM tree that looks

like what the Google geocoder would have returned had I been able to access it. The
easiest way to get that value is to set up the proper XML tree and parse it ahead of time:

String xml = '''
<root><result><geometry>
 <location>

Stubs vs. mocks
Mocks have strong expectations, while stubs do not. That means that a test involving
a mock fails if the collaborator methods are not called the proper number of times
and in the proper order. With stubs, expectations are looser; you don’t need to call
the methods in the proper order, though it does enforce the multiplicity requirement.

Conceptually, a stub is simply a stand-in for the collaborator, so the focus is on the
caller. Because a mock’s expectations are strong, you’re effectively testing the inter-
action between the caller and the collaborator, known as the protocol.

GeocoderTest Geocoder

class Geocoder {
...
void mllInLatLng(Stadium s) {

...
def root = new XmlSlurper().parse(url)
...

}
}

Stubbed XmlSlurper

Figure 6.4 The geocoder relies on an XmlSlurper instantiated locally to do its
job. The goal is to modify its parse method to return the needed value, even
though the slurper is a local variable in the test method.
 <lat>37.422</lat>

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 Testing Groovy and Java projects

 <lng>-122.083</lng>
 </location>
</geometry></result></root>'''

def correctRoot = new XmlSlurper().parseText(xml)

The XML string has the proper latitude and longitude for the Google home office. To get
the proper root value I invoke the parseText method of the XmlSlurper. My Geocoder
class can take that root and walk the tree as usual to get the latitude and longitude.

 The challenge is this: how do I get my own Geocoder to use this implementation
when there’s no obvious way to inject it? The solution is to use the StubFor class and
set the expectations around it:

def stub = new StubFor(XmlSlurper)
stub.demand.parse { correctRoot }

The StubFor constructor takes a class reference and builds a stub around it. Then I
“demand” that the parse method return the root of the tree calculated in the previ-
ous fragment.

 To get Groovy to use the new stub, invoke the test inside a closure argument to the
use method:

stub.use {
 geocoder.fillInLatLng(stadium)
}

The use closure is the key. Through the magic of Groovy metaprogramming, when
the parse method of XmlSlurper is accessed inside the fillInLatLng method, the
demanded version is used rather than the actual implementation. The result is that
the business logic of the fillInLatLng method is tested, without relying on the
slurper itself.

 The next listing shows the complete test. To make absolutely sure that the online
version of the geocoder is not being used, I created a stadium with the wrong address.
The only way the test passes is if the slurper returns the rigged values.

import static org.junit.Assert.*
import groovy.mock.interceptor.StubFor

import org.junit.Test

class GeocoderUnitTest {
 Geocoder geocoder = new Geocoder()

 @Test
 public void testFillInLatLng() {
 Stadium wrongStadium = new Stadium(
 street:'1313 Mockingbird Lane',

Listing 6.24 GeocoderUnitTest.groovy: tests geocoder even if not online

Deliberately using
the wrong address
 city:'New York',state:'NY')

www.it-ebooks.info

http://www.it-ebooks.info/

155Testing classes in isolation

 String xml = '''
 <root><result><geometry>
 <location>
 <lat>37.422</lat>
 <lng>-122.083</lng>
 </location>
 </geometry></result></root>'''

 def correctRoot = new XmlSlurper().parseText(xml)

 def stub = new StubFor(XmlSlurper)
 stub.demand.parse { correctRoot }

 stub.use {
 geocoder.fillInLatLng(wrongStadium)
 }
 assertEquals(37.422, wrongStadium.latitude, 0.01)
 assertEquals(-122.083, wrongStadium.longitude, 0.01)
 }
}

The test sets up a Stadium instance that deliberately has the wrong address. The cor-
rect root of the DOM tree is generated using the string data, and the demand property
of the stub is used to return it. By executing the test inside the use block, the correct
answer is supplied at the proper moment, and the test succeeds.

 The StubFor and MockFor APIs are far more extensive than what’s being shown
here. You can demand that a method returns different preset values each time you
call it. You can verify that the methods are called the proper number of times in the
proper order by using the verify method on StubFor (MockFor does that automati-
cally). See the API for details.

 The only real limitation on the StubFor and MockFor classes is that they can only
be used to replace Groovy implementations. You can’t supply a Java class and have it
work. Still, if your service is implemented in Groovy, they are an invaluable addition to
your testing arsenal.13 14

Lessons learned (mocking dependencies)
1 To easily create a stub of an interface, use closures to implement the methods.

This is known as closure coercion.
2 The Expando class has no properties or methods, but both can be added at run-

time to configure an object to do what you want.
3 The StubFor and MockFor classes in the standard library can be used to create

mock objects even when they’re replacing local variables in the test fixture.14

13 Candor compels me to admit that I worked out how to use StubFor and MockFor over a few days, and then
did what I should have done originally: looked them up in Groovy in Action. GinA (as it was then known; the
second edition is ReGinA) had it all laid out over a few pages, nice and neat. There’s a reason that Groovy in
Action is still my all-time favorite technical book.

The correct
DOM tree

Setting
expectations

Use the
stub
14 If you read nothing else in this chapter, take a look at that.

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Testing Groovy and Java projects

So far every technique in this chapter has been based on existing classes in the Groovy
standard library. One new testing library, however, has been gaining momentum in
the Groovy community, and not just because it has a clever name. The Spock frame-
work is simple to learn, easy to use, and the subject of the next section.

6.4 The future of testing: Spock
The Spock framework yields more productivity for less effort than any other frame-
work I’ve encountered. Spend a small amount of time with Spock (for example,
through the discussions in this section), and you can immediately be productive.
Spock provides both tests and a solid mocking capability in an easy-to-use package.

 According to the developer of the framework,15 the name Spock is a blend of
“specification” and “mock.” That may even be true. It seems more likely, however, that
somebody just liked the name Spock and the rest is clever rationalization.16 The result,
inevitably, is that any discussion of the framework results in a series of Star Trek-related
puns. My original plan was to avoid them, but it’s practically impossible.17

6.4.1 The Search for Spock

The main site for Spock is http://spockframework.org, which actually redirects to a
Google code project at https://code.google.com/p/spock/. There you’ll find wiki
pages with lots of good information. Like most cool projects these days, the source
code is hosted at GitHub at https://github.com/spockframework/spock. You can
clone the repository and do a manual build, or you can install the distribution from
the standard Maven repository.

 Spock versions are tied to Groovy versions. The latest release version of Spock is
0.7-groovy-2.0. Don’t let the low version number deter you.18 The Spock API is simple
and easy to use and understand, and its adoption has been very rapid.19

 The Gradle file in the next listing shows the appropriate dependencies to build
this chapter’s source code.

apply plugin: "groovy"

repositories {
 mavenCentral()
}

15 Peter Niederweiser, who is active and helpful on the Spock email list.
16 Of which I totally approve.
17 For example, Spock is a logical framework for enterprise testing. Test well, and prosper. I have been, and always

shall be, your friendly testing framework.
18 Version 1.0 is due out by the time this book appears in print.

Listing 6.25 Building and testing with Spock using Gradle
19 The Spock plugin will be included in Grails by default starting in version 2.3.

www.it-ebooks.info

http://spockframework.org
https://code.google.com/p/spock/
https://github.com/spockframework/spock
http://www.it-ebooks.info/

157The future of testing: Spock

dependencies {
 groovy "org.codehaus.groovy:groovy-all:2.1.5
 testCompile "org.spockframework:spock-core:0.7-groovy-2.0"
}

The repository at Maven central holds the Groovy distribution and the Spock
release versions. The dependency is decoded in the usual way, with the group being
“org.spockframework,” the name (or artifact ID, in Maven speak) being “spock-core,”
and the version number of 0.7-groovy-2.0. Note that the Spock version is tied to a
Groovy version.

6.4.2 Test well, and prosper

Spock tests all extend a superclass called spock.lang.Specification. In addition to its
own methods, the Specification class includes the @RunWith annotation from JUnit.
The result is that Spock tests can be run within the normal JUnit testing infrastructure.

 The tests themselves all have a common form. Each test method (known as a fix-
ture) is declared using the def keyword, followed by a string that describes what the
test is supposed to accomplish. Fixture methods normally take no arguments.

 Listing 6.26 shows a simple Spock test to verify some String behavior. By conven-
tion, Spock test cases end in Spec. That isn’t a requirement,20 but it does help to keep
the Spock tests easily identifiable, especially when your system uses both Spock and
JUnit tests together.

import spock.lang.Specification;

class StringSpec extends Specification {
 String llap

 def setup() { llap = "Live Long and Prosper" }

 def "LLaP has 21 characters"() {
 expect: llap.size() == 21
 }

 def "LLaP has 4 words"() {
 expect: llap.split(/\W/).size() == 4
 }

 def "LLaP has 6 vowels"() {
 expect: llap.findAll(/[aeiou]/).size() == 6
 }
}

The class extends spock.lang.Specification, which is what makes it a Spock test.
The spec is testing a String, so it has an attribute named llap. In the setup method,
the llap variable is assigned to the string “Live Long and Prosper.” The setup method
runs before each test, similar to @Before in JUnit 4. JUnit 3 contains a method called

Listing 6.26 A specification verifying basic java.lang.String behavior
20 Spock tests in Grails do have to end in Spec.

www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6 Testing Groovy and Java projects

setUp that does the same thing, but in Spock the setup method is written in lower-
case, with a def keyword.

 The test methods, known as feature methods in the Spock documentation, are
written in block structure. In each of the test methods shown here, there’s a single
block called expect. The expect block consists of a series of Boolean expressions,
each of which must evaluate to true for the test to pass.

 The three sample tests check (1) the number of characters in the test string; (2)
that there are four words in the test string, based on splitting the string at non-word
boundaries; and (3) that the test string has a total of six vowels, again based on a regu-
lar expression.

 Like JUnit 4, Spock tests can verify that exceptions are thrown. Spock tests can also
verify that exceptions are not thrown. Consider the following two tests, which are
added to the previous listing:

 def "Access inside the string doesn't throw an exception"() {
 when: s.charAt(s.size() – 1)
 then: notThrown(IndexOutOfBoundsException)
 }

 def "Access beyond the end of the string throws exception"() {
 when: s.charAt(s.size() + 1)
 then: thrown(IndexOutOfBoundsException)
 }

These tests use the when/then blocks, which are used as a stimulus/response pair. Any
code can be added to the when block, but the then block must consist of Boolean
expressions, as with expect. The expressions are evaluated automatically, using the
Groovy Truth. This means that non-null references, non-empty strings, and non-zero
numbers all evaluate to true.

 The charAt method in String throws an exception if its argument is negative or
beyond the end of the string. The previous two tests show both conditions, using the
thrown() and notThrown() methods. The thrown method can return the exception if
you want to process it further, using one of two variations in syntax

Exception e = thrown()

or

e = thrown(Exception)

where the Exception can be any specific exception class.
 Consider the following test, which also introduces the extremely useful old method.

class QuoteSpec extends Specification {
 String quote = """I am endeavoring, ma'am, to construct a
 mnemonic memory circuit, using stone knives and bear skins."""

 List<String> strings

Listing 6.27 Another spec, illustrating the old method
 def setup() { strings = quote.tokenize(" ,.") }

www.it-ebooks.info

http://www.it-ebooks.info/

159The future of testing: Spock

 def "test string has 16 words"() {
 expect: strings.size() == 16
 }

 def "adding a word increases total by 1"() {
 when: strings << 'Fascinating'
 then: strings.size() == old(strings.size()) + 1
 }
}

The tokenize method takes a set of delimiters as arguments and divides the string at
those positions. The result is an ArrayList of words. That’s interesting enough, but
the cool part is in the test that appends a new word to the list. In this case, the size
of the list is evaluated twice, once before the when block is executed and once after-
ward. The expression shows that the result afterward is equal to the result before-
hand, plus one.

6.4.3 Data-driven specifications

Spock tests have one additional feature beyond what appears in other testing frame-
works: data-driven21 specifications. The idea is that if you provide a collection of data
in a format that Groovy can iterate over, then the test will run each entry through any
supplied Boolean conditions.

 This is easier to show than to describe. Consider the test shown on the main page
of the Spock website, repeated in the next listing. It feeds names from a data table
into expect, using three different sources of data.

class HelloSpock extends spock.lang.Specification {
 @Unroll
 def "#name should be #length"() {
 expect:
 name.size() == length

 where:
 name | length
 "Spock" | 5
 "Kirk" | 4
 "Scotty" | 6
 'McCoy' | 5
 }

 def "check lengths using arrays"() {
 expect: name.size() == length

 where:
 name << ["Spock","Kirk","Scotty"]
 length << [5,4,6]
 }

Listing 6.28 Data-driven Spock test
21 Shouldn’t Data run on Android? (Yeah, that was particularly bad. Sorry.)

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Testing Groovy and Java projects

 def "check lengths using pairs"() {
 expect: name.size() == length
 where:
 [name,length] << [["Spock",5],["Kirk",4],["Scotty",6]]
 }

}

The where block in the first test contains a data table. The column names (name and
length) are variables, which are referenced in the expect block. Groovy takes each
row of the table and evaluates the expect condition. It’s an elegant system that’s easy
to understand and quite powerful. While the data table is a powerful construct, in fact
any collection that Groovy knows how to iterate over works as well.

 The second and third tests illustrate the same process but supply the data via col-
lections. The second test uses separate lists for the name and length values. This
means that to understand the test data you have to match up the collection indexes.
For example, “Spock” goes with 5, “Kirk” goes with 4, and so on. The third test is a bit
easier to visualize, because the data is organized into ordered pairs. Which mecha-
nism you use (data table, sets of pairs, individual collections, and so on) is purely a
question of style.

 Another interesting part of Spock is the @Unroll annotation. Without it, the name
listed in the test output would be the name of the test itself. With it, each row of the
where block creates a different name.

 Figure 6.5 shows the results of executing this test in the Groovy and Grails Tool
Suite (which is just Eclipse plus lots of plugins) as a JUnit test. In addition to demon-
strating that Spock tests run with the existing JUnit infrastructure, the test also shows
the difference in output that results with the @Unroll annotation. The second and
third tests use the name of the method as their output. The first test, marked with
@Unroll, shows up under “unrooted tests,” where each test gets its own unique name
based on the test data.

Figure 6.5 Results of the Spock data-driven
tests. The test with the @Unroll annotation
is shown in the Eclipse output as “unrooted,”
showing different output messages for each

set of data.

www.it-ebooks.info

http://www.it-ebooks.info/

161The future of testing: Spock

What if the class you plan to test has dependencies? Those dependencies need to be
stubbed or mocked, as discussed earlier. Fortunately, Spock has its own mocking capa-
bilities built in.

6.4.4 The trouble with tribbles

The Specification class from Spock contains a method called Mock that is used to
create mock objects. If your dependency is based on an interface, the Mock method
can generate a mock object directly, using Java’s dynamic proxy mechanism. If it’s a
class, Mock will extend the class using the CGLIB library.

 It’s time for a relatively simple (and relatively silly) example. A tribble22 is a small,
furry animal that breeds prolifically, likes Vulcans, and hates Klingons. Here’s a Tribble
class, written in Groovy.

class Tribble {

 String react(Vulcan vulcan) {
 vulcan.soothe()
 "purr, purr"
 }

 String react(Klingon klingon) {
 klingon.annoy()
 "wheep! wheep!"
 }

 def feed() {
 def tribbles = [this]
 10.times { tribbles << new Tribble() }
 return tribbles
 }
}

What do you get when you feed a tribble? Not a fat tribble, but rather a lot of hungry little
tribbles. The feed method returns a list containing the original tribble plus 10 more.

 The overloaded react method takes either a Vulcan or a Klingon as an argument.
If it’s a Vulcan, the tribble soothes the Vulcan and purrs contentedly. If it’s a Klingon,
the tribble annoys the Klingon and reacts badly. The Tribble class has a dependency
on both Vulcan and Klingon.

 To keep things simple, both Vulcan and Klingon are interfaces. The Vulcan inter-
face is shown here:

interface Vulcan {
 def soothe()
 def decideIfLogical()
}

22 See http://en.wikipedia.org/wiki/The_Trouble_With_Tribbles for details, in the unlikely event you haven’t

Listing 6.29 A Tribble class in Groovy
seen that particular Star Trek (original series) episode. It holds up remarkably well after 35 (!) years.

www.it-ebooks.info

http://en.wikipedia.org/wiki/The_Trouble_With_Tribbles
http://www.it-ebooks.info/

162 CHAPTER 6 Testing Groovy and Java projects

Vulcans have a soothe method, called by the tribble, and a decideIfLogical method
that isn’t necessary for this test. That’s one of the problems with implementing stubs,
by the way; you have to implement all the interface methods, even the ones that aren’t
relevant to the test in question.

 Klingons are a bit different:

interface Klingon {
 def annoy()
 def fight()
 def howlAtDeath()
}

Tribbles annoy Klingons. Klingons also fight and howlAtDeath,23 two methods that
aren’t needed here. To test the Tribble class, I need to create mock objects for both
the Vulcan and Klingon classes, set their expectations appropriately, and test that the
tribble behaves appropriately around each.

 Let me show the tests one by one. First I’ll check to see that the feed method
works properly:

 def "feed a tribble, get more tribbles"() {
 when:
 def result = tribble.feed()

 then:
 result.size() == 11
 result.every {
 it instanceof Tribble
 }
 }

The when block invokes the feed method. The then block checks that there are 11 ele-
ments in the returned collection and that each is a tribble. There’s nothing new or
unusual about this test. Moving on to the test for reacting to Vulcans, however, I need
to mock the Vulcan interface.24

 def "reacts well to Vulcans"() {
 Vulcan spock = Mock()

 when:
 String reaction = tribble.react(spock)

 then:
 reaction == "purr, purr"
 1*spock.soothe()
 }

There are two ways to use the Mock method in Spock. The first is shown here: instanti-
ate the class, and assign it to a variable of the proper type. The method will implement

23 Klingons in Star Trek: The Next Generation howl at death. They didn’t in the original series, as far as I know.

24 When I mock a Vulcan, I feel like Dr. McCoy.

www.it-ebooks.info

http://www.it-ebooks.info/

163The future of testing: Spock

the interface of the declared type. The second way is to use the interface type as an
argument to the Mock method, which isn’t shown here.

 Once the mock has been created, the when block uses the mock as the argument to
the react method. In the then block, first the proper reaction is checked, and then
comes the interesting part. The last line says that the test passes only if the soothe
method is called on the mock exactly one time, ignoring any returned value.

 This is a very flexible system. The cardinality can be anything, including using an
underscore as a wild card (for example, (3.._) means three or more times).

 Moving on to the Klingon interface, the following test does multiple checks:

 def "reacts badly to Klingons"() {
 Klingon koloth = Mock()

 when:
 String reaction = tribble.react(koloth)

 then:
 1 * koloth.annoy() >> {
 throw new Exception()
 }
 0 * koloth.howlAtDeath()
 reaction == null
 Exception e = thrown()
 }

After mocking the Klingon25 and invoking the react method, the then block first
checks to see that the annoy method on the mock is invoked exactly once and, using
the right-shift operator, implements the method by throwing an exception. The next
line checks that the howlAtDeath method is not invoked at all. Because the annoy
method throws an exception, there is no returned reaction. The last line then verifies
that annoying the Klingon did in fact throw the expected exception.

 The idea is that even if the mock is configured to throw an exception, the tribble
test still passes. The test verifies that the exception is thrown without making the test
itself fail.

6.4.5 Other Spock capabilities

The capabilities shown so far hopefully provide a teaser for Spock. There are more
features in Spock that go beyond the scope of this chapter. For example, the @Ignore
annotation on a test skips that test, but there’s also an @IgnoreRest annotation that
skips all the other tests instead. The @IgnoreIf annotation checks a Boolean condi-
tion and skips the test if the condition evaluates to true. There’s also a @Stepwise
annotation for tests that have to be executed in a particular order, and a @Timeout
annotation for tests that are taking too long to execute.
25 How do you mock a Klingon? From a galaxy far, far away (rimshot).

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 6 Testing Groovy and Java projects

The wiki for Spock contains many examples, as well as detailed documentation about
mock details (called interactions) and more. The source code also comes with a Spock
example project that you can use as a basis for your project. Spock is built with Gradle,
which configures all the dependencies, and can plug into other APIs like Spring. See
the docs and APIs for details.26

6.5 Summary
This chapter covered a lot of ground in the testing arena. Groovy brings a simple
assert statement into play that can be used for scripts and includes the GroovyTest-
Case class that extends JUnit’s capabilities. When it comes to managing dependencies,
you can build a stub implementation of an interface using closures, and you can build
a more complete stub using the Expando class.

 Groovy also has the StubFor and MockFor classes, which can be used to test interac-
tions. They can even create mock objects for classes that are instantiated as local vari-
ables, which is pretty amazing.

 Finally, if you’re willing to add an additional library, the Spock testing framework
provides a simple yet versatile API that still runs on your existing JUnit-based infra-
structure. It also has its own mock abilities and integrates with other libraries, like
Spring and Tapestry.

 Adding Groovy also adds a wide variety of options for testing Java and mixed Java/
Groovy projects. Hopefully the techniques in this chapter will help you decide where
you can get the most benefit from them.

Lessons learned (Spock)
1 Spock tests extend spock.lang.Specification.
2 The Specification class has a JUnit runner, so Spock tests run in your existing

JUnit infrastructure.
3 Spock test names are descriptive sentences. The framework uses AST transfor-

mations to convert them to legal Groovy.
4 The tests are composed of blocks, like expect or when/then. Expressions in an

expect or then block are evaluated for the Groovy Truth automatically.
5 The old method from spock.lang.Specification evaluates its argument

before the when block is executed.
6 The where block is used to iterate over test data, either from a table, a database

result, or any data structure over which Groovy can iterate.
7 Spock has its own built-in mocking capabilities.
26 See also the Manning book Spock in Action, by Ken Sipe, coming soon.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Groovy in
the real world

In part 3, “Groovy in the real world,” I try to address the sorts of challenges
Java developers face on a regular basis.

 I start with the Spring framework, which is probably the most commonly used
open source project in the Java world. Spring and Groovy are old friends and
work together beautifully. Chapter 7 shows how to use Groovy classes as Spring
beans anywhere in your system, including aspects. It then shows Spring capabili-
ties unique to dynamic languages, like refreshable beans, inline scripted beans,
and the BeanBuilder class from Grails.

 Chapter 8 covers Groovy interactions with persistent storage. Groovy includes
a very useful façade over JDBC known as the groovy.sql.Sql class, which is
effective when working with relational databases. The chapter also provides an
example of working with the GMongo project, a Groovy wrapper around the Java
API for working with MongoDB. This is a typical Groovy idiom—taking a Java
library and making it easier to use. Finally, the chapter discusses many of the
issues associated with GORM, the Grails Object Relational Mapping layer from
Grails, which is probably the most common domain-specific language in Groovy
used today.

 Chapter 9 focuses on RESTful web services, with an emphasis on the JAX-RS
2.0 specification. Most of the JAX-RS capabilities operate the same way under
Groovy as under Java, but examples are provided to show how to work with

hypermedia applications as well.

www.it-ebooks.info

http://www.it-ebooks.info/

 The last chapter in this section is about web application development. Chapter 10
starts with a nice example of Groovy metaprogramming using categories. Specifically,
the ServletCategory class is presented as an example of what can be done quickly and
easily with Groovy. Next comes a discussion of groovlets, which are Groovy scripts exe-
cuted through a servlet that make it easy to get a simple application running. The chap-
ter concludes with a demonstration of the Grails framework as a beautiful combination
of Groovy DSLs that combine and configure Spring/Hibernate-based web applications.
www.it-ebooks.info

http://www.it-ebooks.info/

The Spring framework
As Java frameworks go, Spring is one of the most successful. Spring brought the
ideas of dependency injection, complex object lifecycle management, and
declarative services for POJOs to the forefront of Java development. It’s a rare
project that doesn’t at least consider taking advantage of all Spring has to offer,
including the vast array of Spring “beans” included in its library. Spring touches
almost every facet of enterprise Java development, in most cases simplifying
them dramatically.

 In this chapter I’ll look at how Groovy interacts with the Spring framework. As it
turns out, Groovy and Spring are old friends. Spring manages Groovy beans as eas-
ily as it handles Java. Spring includes special capabilities for working with code
from dynamic languages, however, which I’ll review here.

This chapter covers
■ Using Groovy classes in Spring applications
■ Refreshable beans
■ Inline scripted beans
■ The Grails BeanBuilder class
■ Spring AOP with Groovy classes
167

www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 7 The Spring framework

Groovy can be used to implement beans or to configure them. In this chapter I’ll try
to review all the ways Groovy can help Spring. Figure 7.1 contains a guide to the tech-
nologies discussed in this chapter.

 To show how Groovy helps Spring, I need to review what Spring is all about and
how it’s used and configured. I’ll start with a simple, but non-trivial, sample applica-
tion. Rather than show all the pieces (which are in the source code repository for the
book), I’ll highlight the overall architecture and the Groovy parts.

7.1 A Spring application
For all its benefits, Spring is a hard framework to demonstrate to developers unfamil-
iar with it. The “Hello, World” application in Spring makes you question why you’d
ever want it, because it replaces a couple of lines of simple, easy-to-understand,
strongly typed Java with several additional lines of code, plus about 20 lines of XML.
That’s not exactly a ringing endorsement.

 To see the real value of Spring you have to see a real application, even if it’s sim-
plified in various ways. The following application models the service and persis-
tence layers of an account management application. The presentation layer is
arbitrary, so the following code could be used in either a client-side or a server-side
application. In this case, I’ll demonstrate the functionality through both unit and

AOP

BeanBuilder

Closure

coercion

Refreshable

beans

Inline scripted

beans

Spock

Spring

Java

POJO POGO

Groovy

Spring + Groovy

Figure 7.1 Guide to the Spring technologies with Groovy. Spring manages POGOs as easily
as POJOs, so the examples include Groovy implementations of both normal beans and
aspects. Closure coercion is used to implement the RowMapper interface in a
JdbcTemplate. Refreshable beans are Groovy source files that can be modified at
runtime. Inline scripted beans are included inside XML configuration files. Grails provides a
BeanBuilder class for configuring beans. Finally, Spock has a library that allows it to be
used with Spring’s test context feature.
integration tests.

www.it-ebooks.info

http://www.it-ebooks.info/

169A Spring application

JAVA AND GROOVY SPRING BEANS Rather than build the entire application in
Java and then convert it to Groovy as in other chapters, to save space this
application mixes both languages. The point is that Spring managed beans
can be implemented in either Java or Groovy, whichever is most convenient.

Consider an application that manages bank accounts. I’ll have a single entity class rep-
resenting an account, with only an id and a balance, along with deposit and with-
draw methods.

 The next listing shows the Account class in Groovy, which has a serious advantage
over its Java counterpart: it makes it easy to work with a java.math.BigDecimal.

import groovy.transform.EqualsAndHashCode
import groovy.transform.ToString

@EqualsAndHashCode(includes=['id'])
@ToString(includeNames=true)
class Account {
 Integer id
 BigDecimal balance

 def deposit(amount) {
 balance += amount
 }

 def withdraw(amount) {
 balance -= amount
 }
}

Financial calculations are one of the reasons we need java.math.BigDecimal and
java.math.BigInteger. Using BigDecimal keeps round-off errors from being sent
into an account where it can accumulate over time.1 It’s easy to show how quickly
round-off errors can become a problem. Consider the following two lines:

println 2.0d – 1.1d
println 2.0 – 1.1

The first line uses doubles, while the second line uses java.math.BigDecimal. The
first evaluates to 0.8999999999999999, while the second evaluates to 0.9. In the
double case I’ve only done a single calculation and already I have enough error to
show up.

 When coding in Java working with BigDecimal is awkward because it’s a class
rather than a primitive. That means you can’t use your normal +, *, - operators and
have to use the class’s API instead.

Listing 7.1 An Account POGO in Groovy that uses BigDecimal

AST transformations

Using operators
with BigDecimal
1 If you haven’t seen Office Space yet (http://mng.bz/c6o8), you have a real treat ahead of you.

www.it-ebooks.info

http://mng.bz/c6o8
http://www.it-ebooks.info/

170 CHAPTER 7 The Spring framework

Because Groovy has operator overloading, however, none of that is necessary. I can
simply declare the balance to be a BigDecimal, and everything else just works, even if
I use the Account class from Java.

 One additional comment about the Account: at the moment no constraints are
being applied to ensure that the balance stays positive. This is as simple as I can make
it, just for exposition purposes.

 The overall design for using the Account class is shown in figure 7.2. This is a very
simple form of a layered architecture, with transactional support in the service layer
and a persistence layer that consists of an interface and a DAO class, discussed shortly.

 The persistence layer follows the normal Data Access Object design pattern. The
next listing shows a Java interface, called AccountDAO, written in Java.

package mjg.spring.dao;

import java.util.List;

import mjg.spring.entities.Account;

public interface AccountDAO {
 int createAccount(double initialBalance);
 Account findAccountById(int id);
 List<Account> findAllAccounts();
 void updateAccount(Account account);
 void deleteAccount(int id);
}

The interface contains typical methods for transferring Account objects to the database
and back. There’s a method to create new accounts, update an account, and delete an
account; a method to find an account by id; and one to return all the accounts.

 The implementation of the interface, using a Groovy class called JdbcAccount-
DAO, works with the JdbcTemplate from Spring. Rather than show the whole class
(which is available in the book source code), let me present just the structure and
then emphasize the Groovy aspect afterward. An outline of the class is shown in the
following listing.

Listing 7.2 The AccountDAO interface, in Java

@Service
AccountService

<<interface>>
AccountDAO

@Repository
JdbcAccountDAO

JdbcTemplate

Account Embedded

DB

Figure 7.2 A simple account management application. Transactions are demarcated in
the service layer. The persistence layer consists of a single DAO class that implements an
interface and uses the Spring JdbcTemplate to access an embedded database.
www.it-ebooks.info

http://www.it-ebooks.info/

171A Spring application

@Repository
class JdbcAccountDAO implements AccountDAO {
 JdbcTemplate jdbcTemplate

 @Autowired
 JdbcAccountDAO(DataSource dataSource) {
 jdbcTemplate = new JdbcTemplate(dataSource)
 }

 int createAccount(double initialBalance) { ... }
 void updateAccount(Account account) { ... }
 void deleteAccount(int id) { ... }

 Account findAccountById(int id) {
 String sql = "select * from accounts where id=?"
 jdbcTemplate.queryForObject(sql,
 accountMapper as RowMapper<Account>, id)
 }

 List<Account> findAllAccounts() {
 String sql = "select * from accounts"
 jdbcTemplate.query(sql, accountMapper as RowMapper<Account>)
 }

 def accountMapper = { ResultSet rs, int row ->
 new Account(id:rs.getInt('id'),balance:rs.getDouble('balance'))
 }
}

The various query methods take an argument of type RowMapper<T>, whose defini-
tion is

public interface RowMapper<T> {
 T mapRow(ResultSet rs, int rowNum) throws SQLException
}

When you execute one of the query methods in JdbcTemplate, Spring takes the
ResultSet and feeds each row through an implementation of the RowMapper inter-
face. The job of the mapRow method is then to convert that row into an instance of the
domain class. The normal Java implementation would be to create an inner class
called, say, AccountMapper, whose mapRow method would extract the data from the
ResultSet row and convert it into an Account instance. Providing an instance of
the AccountMapper class to the queryForObject method would then return a single
Account. The same instance can be supplied to the query method, which then returns
a collection of Accounts.

 This is exactly the type of closure coercion demonstrated in chapter 6. A variable
called accountMapper is defined and assigned to a closure with the same arguments as
the required mapRow method. The variable is then used in both the findAccountById
and findAllAccounts methods.

Listing 7.3 Implementing the AccountDAO using JdbcTemplate, in Groovy

Template that
simplifies JDBC

Closure
coercion

implementing
the interface
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7 The Spring framework

 There are two uses for Groovy here:

1 A Groovy class implemented a Java interface, which makes integration easy and
simplifies the code.

2 Closure coercion eliminated the expected inner class.

In the example in the book source code I also included the service class referenced in
figure 7.2. It uses Spring’s @Transactional annotation to ensure that each method
operates in a required transaction. There is nothing inherently Groovy about it, so
again I’ll just show an outline of the implementation in the next listing.

@Service
@Transactional
public class AccountService {
 @Autowired
 private AccountDAO dao;

 public double getAccountBalance(int id) { ... }
 public double depositIntoAccount(int id, double amount) { ... }
 public double withdrawFromAccount(int id, double amount) { ... }

 public boolean transferFunds(int fromId, int toId, double amount) {
 Account from = dao.findAccountById(fromId);
 Account to = dao.findAccountById(toId);
 from.withdraw(amount);
 to.deposit(amount);
 dao.updateAccount(from);
 dao.updateAccount(to);
 return true;
 }

}

The @Autowired annotation is used by Spring to plug in (inject) an instance of a class
implementing the AccountDAO interface into the service class. See the Spring docu-
mentation2 for more details on autowiring.

 The service implementation is in Java mostly because there’s no great advantage to
implementing it in Groovy, though I could easily have done so.

 The last piece of the puzzle is the Spring bean configuration file. The configura-
tion in the book source code uses a combination of XML and a component scan for
the repository and service classes. Again, nothing in it uses Groovy, so I won’t pres-
ent it here. For the record, the sample uses Spring’s <embedded-database> tag to
set up a sample H2 database in memory that is reinitialized on each run. The rest is
as described.

 Returning now to Groovy, I want to show the Gradle build file in the next listing.

Listing 7.4 A portion of the AccountService class in Java

Declarative transactional
behavior

Injecting
the DAO
2 http://mng.bz/m9M3

www.it-ebooks.info

http://mng.bz/m9M3
http://www.it-ebooks.info/

173A Spring application

apply plugin:'groovy'
apply plugin:'eclipse'

repositories {
 mavenCentral()
}

def springVersion = '3.2.2.RELEASE'
def spockVersion = '0.7-groovy-2.0'

dependencies {
 compile "org.codehaus.groovy:groovy-all:2.1.5"
 compile "org.springframework:spring-context:$springVersion"
 compile "org.springframework:spring-jdbc:$springVersion"
 runtime "com.h2database:h2:1.3.172"
 runtime "cglib:cglib:2.2"

 testCompile "org.springframework:spring-test:$springVersion"
 testCompile "org.spockframework:spock-core:$spockVersion"
 testCompile "org.spockframework:spock-spring:$spockVersion"
}

The build file is typical of projects presented in this book so far. It declares both the
Groovy and Eclipse plugins. It uses Maven central for the repository. The dependen-
cies include Groovy and Spock, as usual. Spring is added by declaring the spring-
context and spring-jdbc dependencies. Those dependencies wind up adding several
other Spring-related JARs. The h2database dependency is used for the H2 driver
needed by the embedded database.

 One interesting addition is the spock-spring dependency. Spring includes a pow-
erful testing framework of its own, which is based on JUnit and automatically caches
the Spring application context. The spock-spring dependency lets Spock tests work
with the Spring testing context.

 The first test class is a Spock test for the JdbcAccountDAO. The following listing
shows some of the tests from the complete set.

import spock.lang.Specification;

@ContextConfiguration("classpath:applicationContext.xml")
@Transactional
class JdbcAccountDAOSpec extends Specification {
 @Autowired
 JdbcAccountDAO dao

 def "dao is injected properly"() {
 expect: dao
 }

 def "find 3 accounts in sample db"() {
 expect: dao.findAllAccounts().size() == 3

Listing 7.5 The Gradle build file for the account application

Listing 7.6 Spock tests for the JdbcAccountDAO implementation
 }

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 7 The Spring framework

 def "find account 0 by id"() {
 when:
 Account account = dao.findAccountById(0)

 then:
 account.id == 0
 account.balance == 100.0
 }
 // tests for other methods as well
}

The @ContextConfiguration annotation tells the test runner how to find the Spring
bean configuration file. Adding @Transactional means that each test runs in a
required transaction that (and this is the cool part) rolls back automatically at the end
of each test, implying that the database is reinitialized at the beginning of each test.
The DAO is autowired into the test class. The individual tests check that all the meth-
ods in the DAO work as expected.

 The next listing shows the tests for the service class, which includes using the old
method from Spock described in chapter 6 on testing.

import spock.lang.Specification

@ContextConfiguration("classpath:applicationContext.xml")
@Transactional
class AccountServiceSpec extends Specification {
 @Autowired
 AccountService service

 def "balance of test account is 100"() {
 expect: service.getAccountBalance(0) == 100.0
 }

 // ... other tests as necessary ...

 def "transfer funds works"() {
 when:
 service.transferFunds(0,1,25.0)

 then:
 service.getAccountBalance(0) ==
 old(service.getAccountBalance(0)) - 25.0
 service.getAccountBalance(1) ==
 old(service.getAccountBalance(1)) + 25.0
 }
}

As before, the annotations let the Spock test work with Spring’s test framework, which
caches the application context. I used the old operation from Spock to check changes
in the account balance after a deposit or withdrawal. No other additions are needed
to use Spock with the Spring test context.

 This application, though simple, illustrates a lot of Spring’s capabilities, from

Listing 7.7 Spock tests for the service class
declarative transaction management to autowiring to simplified JDBC coding to effective

www.it-ebooks.info

http://www.it-ebooks.info/

175Refreshable beans

testing. From Spring’s point of view, Groovy beans are just bytecodes by another
name. As long as the groovy-all JAR file is in the classpath, Spring is quite happy to use
beans written in Groovy.

 Spring manages beans from Groovy as easily as it manages beans from Java. There
are special capabilities that Spring offers beans from dynamic languages, though. I’ll
illustrate them in the next sections, beginning with beans that can be modified in a
running system.

7.2 Refreshable beans
Since version 2.0, Spring has provided special capabilities for beans from dynamic lan-
guages like Groovy. One particularly interesting, if potentially dangerous, option is to
deploy what are known as refreshable beans.

 For refreshable beans, rather than compile classes as usual, you deploy the actual
source code and tell Spring where to find it and how often to check to see if it has
changed. Spring checks the source code at the end of each refresh interval, and if the
file has been modified it reloads the bean. This gives you the opportunity to change
deployed classes even while the system is still running.3

 I’ll demonstrate a somewhat contrived but hopefully amusing example. In the
previous section I presented an application for managing accounts. Let me now
assume that the account manager, presumably some kind of bank, decides to get
into the mortgage business. I now need a class representing a mortgage application,
which a client would submit for approval. I’m also going to need a mortgage evalua-
tor, which I’ll implement both in Java and in Groovy. The overall system is shown in
figure 7.3.

 To keep this example simple, the mortgage application class only has fields repre-
senting the loan amount, the interest rate, and the number of years desired, as shown
in the next listing.

3 Yes, that’s a scary notion to me, too. The Spider-Man corollary applies: With Great Power Comes Great

Mortgage

application

<<interface>>
Evaluator

GroovyEvaluator
(refreshable)

JavaEvaluator
Modify source code.

Spring loads new version.

Figure 7.3 The GroovyEvaluator is a refreshable bean. The source code is
deployed, and Spring checks it for changes after each refresh interval. If it has
changed, Spring reloads the bean.
Responsibility.

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7 The Spring framework

class MortgageApplication {
 BigDecimal amount
 BigDecimal rate
 int years
}

As before, Groovy is used just to reduce the amount of code and to make it easier to
work with BigDecimal instances. An instance of this class is submitted to the bank,
which runs it through a mortgage evaluator to decide whether or not to approve it.
The following listing shows a Java interface representing the evaluator, which will be
implemented in both Java and Groovy.

public interface Evaluator {
 boolean approve(MortgageApplication application);
}

The interface contains only one method, approve, which takes a mortgage application
as an argument and returns true if the application is approved and false otherwise.

 Pretend now that it is currently the summer of 2008. The general public is bliss-
fully unaware of terms like credit default swaps, and banks are eager to loan as much
money as possible to as many people as possible. In other words, here’s a Java imple-
mentation of the Evaluator interface.

public class JavaEvaluator implements Evaluator {
 public boolean approve(MortgageApplication application) {
 return true;
 }

}

That’s a very forgiving loan policy, but if everyone else is doing it, what could go wrong?
 What went wrong, of course, is that in the late summer and early fall of 2008, Bear

Stearns collapsed, Lehman Brothers went bankrupt, and the U.S. economy nearly col-
lapsed. The bank needs to stop the bleeding as soon as possible. If the evaluator in
place is the Java evaluator just shown, then the system has to be taken out of service in
order to modify it. The fear is that if the system is taken offline, then customers might
worry that it will never come back again.4

 There’s another possibility, however. Consider the Groovy version of the mort-
gage evaluator, whose behavior is equivalent to the Java version, as shown in the fol-
lowing listing.

Listing 7.8 A trivial mortgage application class in Groovy

Listing 7.9 The Evaluator interface in Java

Listing 7.10 A Java evaluator, with a rather lenient loan policy
4 That’s an It’s a Wonderful Life reference: “George, if you close those doors, you’ll never open them again!”

www.it-ebooks.info

http://www.it-ebooks.info/

c
177Refreshable beans

class GroovyEvaluator implements Evaluator {
 boolean approve(MortgageApplication application) { true }
}

Again, it simply returns true, just as the Java version did. Rather than compiling this
class and deploying it as usual, however, this time I want to create a refreshable bean.
To do so, I need to work with the lang namespace in the Spring configuration file
(assuming I’m using XML; alternatives exist for Java configuration files). I also need to
deploy the source code itself, rather than the compiled version of this file.

DEPLOYING SOURCE Note that for refreshable beans you deploy the source,
not the compiled bean.

The next listing shows the bean configuration file with both evaluators. Note the addi-
tion of the lang namespace and the Groovy bean.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd">

 <bean id="javaEvaluator" class="mjg.spring.JavaEvaluator" />

 <lang:groovy id="groovyEvaluator"
 script-source="file:resources/GroovyEvaluator.groovy"
 refresh-check-delay="1000" />

</beans>

Groovy provides a namespace for beans from dynamic languages, including Groovy,
BeanShell, and JRuby. One of the elements declared in that namespace is <lang:
groovy>, whose script-source attribute is used to point to the source code of a
Groovy class. Note that unlike the Java evaluator bean in the same file, this attribute
points to the actual source file, rather than the compiled bean. The other important
attribute for the element is refresh-check-delay, which indicates the time period, in
milliseconds, after which Spring will check to see if the source file has changed. Here
the delay has been set to one second.

 Now comes the fun part.5 The next listing shows a demo application that loads the
Groovy evaluator bean and calls the approve method 10 times, sleeping for one sec-
ond between each call.

Listing 7.11 A Groovy mortgage evaluator deployed as source code

Listing 7.12 The bean configuration file with the refreshable Groovy evaluator bean

Namespace
for dynami
languages

Refreshable
bean
5 Seriously. This is a fun demo to do in front of a live audience. Try it and see.

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7 The Spring framework

public class Demo {
 public static void main(String[] args) {
 ApplicationContext ctx =
 new FileSystemXmlApplicationContext(
 "resources/applicationContext.xml");
 Evaluator e = null;
 boolean ok;

 for (int i = 0; i < 10; i++) {
 e = (Evaluator) ctx.getBean("groovyEvaluator");
 ok = e.approve(null);
 System.out.println(ok ? "approved" : "denied");

 try {
 Thread.sleep(1000);
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 }
}

The idea is to start the demo running and then, while the iteration is going, edit the
source code to change the return value of the approve method from true to false.6

The output of the program resembles

approved
approved
approved
approved
approved
denied
denied
denied
denied
denied

The source code is changed halfway through the loop to stop the bleeding. If Con-
gress should then spring7 into action and award a massive government bailout, it can
be changed back.8

 The ability to change the implementation of a bean inside a running system is pow-
erful, but obviously risky. Spring only makes it available to beans from dynamic lan-
guages like Groovy.

Listing 7.13 A demo application that loads the Groovy bean and calls approve 10 times

6 Did you notice that the approve method was invoked with a null argument, acknowledging that the mortgage
application doesn’t matter at all? That’s part of the gag, so be sure to chuckle when you do it.

7 Ouch. Yes, a bad pun, but an irresistible one.

Load
refreshable
bean

Check
approval

Gives time to change
the implementation
of approve

Code
changed
here
8 Or not.

www.it-ebooks.info

http://www.it-ebooks.info/

179Spring AOP with Groovy beans

Before discussing the other Spring capability restricted to beans from dynamic lan-
guages, namely inline scripted beans, let me introduce another idea. One of the great
features of Spring is that it provides a convenient infrastructure for aspect-oriented
programming. I want to discuss what that means and how to use Groovy to implement
an aspect.9

7.3 Spring AOP with Groovy beans
Many of Spring’s capabilities are implemented using aspect-oriented programming
(AOP). Spring provides the infrastructure for developing aspects. The interesting part
is that aspects can be written as easily in Groovy as in Java.

AOP is a big subject, but I can summarize a few of the key features here.10 Aspects
are designed to handle crosscutting concerns, which are features that apply to many dif-
ferent locations. Examples of crosscutting concerns include logging, security, and
transactions. Each of them needs to be applied at multiple locations in a system,
which results in considerable duplication, as well as tangling of different kinds of
functionality in the same feature.

 Crosscutting concerns are written as methods, known as advice. The next issue
is where to apply the advice. The generic term for all available locations where
advice can be applied is joinpoints. The set of selected joinpoints for a given aspect
is known as a pointcut. The combination of an advice and a pointcut is what defines
an aspect.

 The sample application for this section and the next is shown in figure 7.4.

A real use case for refreshable beans
As much fun as the banking application illustrated in this section is, few companies
will allow you to deploy source code into production and then edit it while the system
is running. So when would you actually use this capability?

Some problems only occur when a system is under load. Think of a refreshable bean
as an adaptable probe that can be inserted into a Spring-based system by a server-
side developer in a controlled fashion. You have the freedom to do more than just
change a log level or some other property (which you could in principle do with JMX,
the Java Management Extensions). You can change what the probe is doing in real
time and diagnose what’s actually going on.

Dierk Koenig, lead author of Groovy in Action (Manning, 2007), calls this pattern “key-
hole surgery.” It’s used as a minimally invasive procedure when you don’t know what
you’re going to find when you go in.9

9 Check out Dierk’s presentation “Seven Groovy Usage Patterns for Java Developers” on www.slideshare.net for
more details.

10 A complete discussion of AOP can be found in AspectJ in Action, 2nd edition (Manning, 2009), by Ramnivas

Laddad, www.mannin10g.com/laddad2/.

www.it-ebooks.info

http://www.slideshare.net
http://www.manning.com/laddad2/
http://www.it-ebooks.info/

180 CHAPTER 7 The Spring framework

The following listing shows an example of an aspect, using Spring annotations, written
in Java. This aspect is applied whenever a set method is about to be called, and it logs
which method is being invoked and what the new value will be.

package mjg.aspects;

import java.util.logging.Logger;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class ChangeLogger {
 private Logger log = Logger.getLogger(
 ChangeLogger.class.getName());

 @Before("execution(void set*(*))")
 public void trackChange(JoinPoint jp) {
 String method = jp.getSignature().getName();
 Object newValue = jp.getArgs()[0];
 log.info(method + " about to change to " +
 newValue + " on " + jp.getTarget());
 }
}

The @Aspect annotation tells Spring this is an aspect. The @Before annotation defines
the pointcut using AspectJ pointcut language.11 This particular pointcut applies at all
methods that begin with the letters set that take a single argument and return void.
The trackChange method is the advice. The JoinPoint argument is supplied by
Spring when the aspect is called. It provides context for the execution. In this case,

Listing 7.14 A Java aspect that logs changes to properties

11 The documentation for AspectJ is hosted with Eclipse, of all places. See http://www.eclipse.org/aspectj/

<<Aspect>>
ChangeLogger

<<Aspect>>
GroovyAspect

<<Aspect>>
UpdateReporter

POJOTest

Spring container

class POJO {
setOne(..)
setTwo(...)
setThree(..)

...
}

Figure 7.4 Spring AOP in action. ChangeLogger is a Java aspect that logs a
message before each set method. UpdateReporter does the same in Groovy
but reports on existing values. The GroovyAspect is an inline scripted bean
defined inside the configuration file.
for details.

www.it-ebooks.info

http://www.eclipse.org/aspectj/
http://www.it-ebooks.info/

181Spring AOP with Groovy beans

the JoinPoint has methods to retrieve the signature of the method being advised, as
well as the arguments supplied to the method and the target object.

 To demonstrate this aspect in action, I need to configure Spring to apply the
aspect, and I need an object to advise. The latter is easy enough. The next listing
shows a simple class with three properties.

package mjg;

public class POJO {
 private String one;
 private int two;
 private double three;

 public String getOne() { return one; }
 public void setOne(String one) { this.one = one; }

 public int getTwo() { return two; }
 public void setTwo(int two) { this.two = two; }

 public double getThree() { return three; }
 public void setThree(double three) { this.three = three; }

 @Override
 public String toString() {
 return "POJO [one=" + one + ", two=" + two +
 ", three=" + three + "]";
 }
}

The class is called POJO, and it has three properties, called one, two, and three. Each
has a getter and a setter. The aspect will run before each of the set methods.

 Spring’s AOP infrastructure has some restrictions compared to full AOP solutions.
Spring restricts pointcuts to only public method boundaries on Spring-managed
beans. I therefore need to add the POJO bean to Spring’s configuration file. I also
need to tell Spring to recognize the @Aspect annotation and to generate the needed
proxy. The resulting bean configuration file is presented in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 ... namespace declarations elided ... >

 <aop:aspectj-autoproxy />

 <bean id="tracker" class="mjg.aspects.ChangeLogger" />
 <bean id="pojo" class="mjg.POJO" p:one="1" p:two="2" p:three="3"/>
</beans>

The aop namespace provides the <aspect-autoproxy> element, which tells Spring to
generate proxies for all classes annotated with @Aspect. The tracker bean is the Java

Listing 7.15 A simple POJO with three set methods

Listing 7.16 The Spring bean configuration file for AOP
aspect shown previously. The pojo bean is the POJO class just discussed.

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7 The Spring framework

 Now I need to call the set methods in order to see the aspect in action. The next
listing shows a test case based on JUnit 4 that uses Spring’s JUnit 4 test runner, which
caches the application context in between tests.

package mjg;

import static org.junit.Assert.*;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@ContextConfiguration("classpath:applicationContext.xml")
@RunWith(SpringJUnit4ClassRunner.class)
public class POJOTest {
 @Autowired
 private POJO pojo;

 @Test
 public void callSetters() {
 pojo.setOne("one");
 pojo.setTwo(22);
 pojo.setThree(333.0);
 assertEquals("one", pojo.getOne());
 assertEquals(22, pojo.getTwo());
 assertEquals(333.0, pojo.getThree(),0.0001);
 }
}

Spring injects an instance of the POJO into the test and executes the test, which simply
calls the three setters and checks that they work properly. The interesting part is in the
console output, which shows the aspect in play:

INFO: setOne about to change to one on POJO [one=1, two=2, three=3.0]
INFO: setTwo about to change to 22 on POJO [one=one, two=2, three=3.0]
INFO: setThree about to change to 333.0 on POJO [one=one, two=22, three=3.0]

The aspect reports the name of each set method and its argument when it’s called.
Everything works as advertised.

 There’s one issue, though. What if you want to know the current value of each
property before the setter changes it? There’s no obvious way to find out. The join-
point gives access to the target, and I know that a set method is being called, but
while I know conceptually that for every setter there’s a getter, figuring out how to
invoke it isn’t trivial. Determining the proper get method could probably be done
with a combination of reflection and string manipulation, but there’s work involved.

 At least, there’s work involved unless I appeal to Groovy. I can do everything I just
described in a handful of lines of Groovy, as the next listing demonstrates.

Listing 7.17 A JUnit 4 test case to exercise the POJO
www.it-ebooks.info

http://www.it-ebooks.info/

183Spring AOP with Groovy beans

package mjg.aspects

import java.util.logging.Logger

import org.aspectj.lang.JoinPoint
import org.aspectj.lang.annotation.Aspect
import org.aspectj.lang.annotation.Before

@Aspect
class UpdateReporter {
 Logger log = Logger.getLogger(UpdateReporter.class.name)

 @Before("execution(void set*(*))")
 void reportOnSet(JoinPoint jp) {
 String method = jp.signature.name
 String base = method – 'set'
 String property = base[0].toLowerCase() + base[1..-1]
 def current = jp.target."$property"
 log.info "About to change $property from $current to ${jp.args[0]}"
 }
}

The UpdateReporter class is written in Groovy. It has the @Aspect and @Before
annotations exactly as the Java aspect did. The method being invoked is computed
the same way the Java aspect did, with the only minor difference being that Groovy
accesses the signature and name properties rather than explicitly invoking the
associated getSignature and getName methods. That’s a case of foreshadowing,
actually, because it means that all I really need to do is to figure out the name of
the property.

 The property is found by taking the name of the set method, subtracting out the
letters set, and converting the result to standard property syntax. Now that I have
the name of the property, I just need to access it from the target, which is done on the
next line. I used a Groovy string to make sure that the property is evaluated. The
result is that in three lines of Groovy I now know what the original value of the prop-
erty is. All that remains is to log it to standard output.

 To run this aspect I just added a corresponding bean to the configuration file:

 <bean id="updater" class="mjg.aspects.UpdateReporter" />

Now if I run the same test case the output is as shown here:

INFO: About to change one from 1 to one
INFO: setOne about to change to one on POJO [one=1, two=2, three=3.0]
INFO: About to change two from 2 to 22
INFO: setTwo about to change to 22 on POJO [one=one, two=2, three=3.0]
INFO: About to change three from 3.0 to 333.0
INFO: setThree about to change to 333.0 on POJO [one=one, two=22, three=3.0]

Both the Groovy aspect and the Java aspect are executing on the set methods of the
POJO. The advantage of the Groovy aspect is that it’s easily able to determine the exist-

Listing 7.18 A Groovy aspect for printing property values before they are changed
ing value of the property before changing it.

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7 The Spring framework

 Life isn’t quite as simple as I’m describing it. The string manipulation that pro-
cessed the set method determined a property name. If the property doesn’t actually
exist (or, rather, the get method doesn’t exist), accessing it isn’t going to work. Still,
asking that each setter has a corresponding getter doesn’t seem to be too much to
expect, especially because Groovy POGOs do that automatically.

 To finish this section, listing 7.19 shows an aspect added to the banking example
from the beginning of this chapter, tracing methods in the Account class. Because
Account is a POGO, I don’t have explicit setter methods. I don’t necessarily want to
track all the getters, either, because one of them is getMetaClass, and that’s not a
business method.

 One way around that is to use a Java interface implemented by the POGO. Instead,
here I’m going to use explicit pointcuts and put them together.

 Here’s the complete AccountAspect listing with the pointcuts and advice.

import java.util.logging.Logger

import org.aspectj.lang.JoinPoint
import org.aspectj.lang.annotation.Aspect
import org.aspectj.lang.annotation.Before
import org.aspectj.lang.annotation.Pointcut

@Aspect
class AccountAspect {
 Logger log = Logger.getLogger(AccountAspect.class.name)

 @Pointcut("execution(* mjg..Account.deposit(*))")
 void deposits() {}

 @Pointcut("execution(* mjg..Account.withdraw(*))")
 void withdrawals() {}

 @Pointcut("execution(* mjg..Account.getBalance())")
 void balances() {}

 @Before("balances() || deposits() || withdrawals()")
 void audit(JoinPoint jp) {
 String method = jp.signature.name
 log.info("$method called with ${jp.args} on ${jp.target}")
 }
}

The @Pointcut annotation is how you create a named pointcut. The name is set by the
name of the method on which it’s applied. The three pointcuts here match the
deposit, withdraw, and getBalance methods in the Account class. The @Before
advice combines them using an or expression and logs the method calls. When run-
ning the AccountSpec tests, the (truncated) output is similar to this:

Jun 28, 2013 12:03:29 PM
INFO: getBalance called with [] on mjg.spring.entities.Account(id:4,

balance:100.0)

Listing 7.19 An aspect tracking methods in the Account POGO
Jun 28, 2013 12:03:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

185Inline scripted beans

INFO: deposit called with [100] on mjg.spring.entities.Account(id:8,
balance:100.0)

INFO: withdraw called with [100] on mjg.spring.entities.Account(id:9,
balance:100.0)

Jun 28, 2013 12:03:29 PM
INFO: getBalance called with [] on mjg.spring.entities.Account(id:9,

balance:0.0)

The JoinPoint can be used to get more information, but those are AOP details rather
than Groovy.

 In both of these examples the aspect was provided in its own class. Spring provides
an alternative, however, in the form of beans defined right in the bean definition file.

7.4 Inline scripted beans
Another capability Spring provides to beans from dynamic languages is that they can
be coded right inside the XML configuration.12

 Here’s an example. The following sections can be used in a bean configuration
file, as shown in the next listing.

<lang:groovy id="aspectScript">
 <lang:inline-script>
<![CDATA[
import org.aspectj.lang.JoinPoint
import java.util.logging.Logger

class GroovyAspect {
 Logger log = Logger.getLogger(GroovyAspect.getClass().getName())

 def audit(JoinPoint jp) {
 log.info "${jp.signature.name} on ${jp.target.class.name}"
 }
}
]]>
 </lang:inline-script>
</lang:groovy>

<aop:config>
 <aop:aspect ref="aspectScript">
 <aop:before method="audit" pointcut="execution(* *.*(*))"/>
 </aop:aspect>
</aop:config>

The <inline-script> tag wraps the source code for the Groovy bean. I took the added
step of wrapping the code in a CDATA section, so the XML parser will leave the Groovy
source alone when validating the XML.

12 I have to admit that in several years of using Spring and Groovy I’ve never found a compelling use case for
inline scripted beans that couldn’t have been handled with regular classes. If you have one, please let

Listing 7.20 Additions to bean configuration file for an inline scripted aspect
me know.

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 The Spring framework

 Rather than use annotations, this time the code is written as though it was any
other bean. As a result I had to add the <config> element as well. As usual, an aspect
is a combination of a pointcut and an advice. In this case the pointcut is contained in
the <before> element, but this time it applies to every one-argument method in the
system. The advice is the audit method in the aspectScript bean, which just prints
the name of the method being invoked and the name of the object containing it.

 The resulting output adds more lines to the console:

INFO: setOne on mjg.POJO
INFO: setTwo on mjg.POJO
INFO: setThree on mjg.POJO

The original motivation for inline scripted beans was that you could do as much pro-
cessing as you liked in the script before releasing the bean.13 Now that Spring has
moved to version 3.x, however, there are additional options for configuring beans.

7.5 Groovy with JavaConfig
Spring introduced a third way to configure beans in version 3.0. Originally all beans
were configured using XML. Then version 2.0 introduced annotations (assuming JDK
1.5 is available) like @Component, @Service, and @Repository and component scans
that picked them up.

 In version 3.0 Spring introduced a Java configuration option. Instead of defin-
ing all your beans in a central location in XML, or spreading annotations through-
out the code base in Java, now you can define the beans in a Java class annotated
with @Configuration. Inside the configuration file, individual beans are anno-
tated with @Bean.

 One of the advantages of this approach is that the configuration information is
strongly typed, because it’s all written in Java. Another advantage, though, is that
you’re now free to write whatever code you want, as long as you ultimately return the
proper object.

 Consider the following example. In the account manager example discussed previ-
ously, say I want to charge a processing fee once a month.14 To do so I create a class that
processes accounts, called, naturally enough, AccountProcessor. I want the Account-
Processor to get all the accounts and charge each one a fee of one dollar.15

 If I did this in the traditional way, I would inject the AccountDAO into the Account-
Processor. Then, in a processAccounts method, I would use the DAO to retrieve the
accounts and charge the fee on each. With the Java configuration option, however, I
have an alternative.

 The following listing shows the AccountProcessor class, in Java this time.

13 As I say, it’s a reach. The Spring docs suggest that this is a good opportunity for scripted validators, but I don’t
see it.

14 Gee, I feel more like a real banker already.

15 It’s not much, but it’s a start.

www.it-ebooks.info

http://www.it-ebooks.info/

187Groovy with JavaConfig

package mjg.spring.services;

import java.util.List;

import mjg.spring.entities.Account;

public class AccountProcessor {
 private List<Account> accounts;

 public void setAccounts(List<Account> accounts) {
 this.accounts = accounts;
 }

 public List<Account> getAccounts() { return accounts; }

 public double processAccounts() {
 double total = 0.0;
 for (Account account : accounts) {
 account.withdraw(1.0);
 total += 1.0;
 }
 return total;
 }
}

Instead of injecting the AccountDAO into the processor, I gave it a list of accounts as
an attribute. The processAccounts method runs through them, withdrawing a dol-
lar from each and returning the total. Without the dependency on the AccountDAO,
this processor could be used on any collection of accounts from any source. This has
the extra benefit of always retrieving the complete set of accounts from the DAO.
Injecting the account list would initialize it when the application starts but not
update it later.

 So how does the collection of accounts get into my processor? The next listing
shows the Java configuration file.

package mjg.spring;

import mjg.spring.dao.AccountDAO;
import mjg.spring.services.AccountProcessor;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class JavaConfig {
 @Autowired
 private AccountDAO accountDAO;

 @Bean
 public AccountProcessor accountProcessor() {

Listing 7.21 An account processor that debits each account by one dollar

Listing 7.22 A Java configuration file that declares the AccountProcessor bean
 AccountProcessor ap = new AccountProcessor();

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7 The Spring framework

 ap.setAccounts(accountDAO.findAllAccounts());
 return ap;
 }
}

The @Configuration annotation indicates that this is a Java configuration file that
defines beans for Spring. Each bean is defined with the @Bean annotation. The name of
the method is the name of the bean, and the return type is the class for the bean. Inside
the method my job is to instantiate the bean, configure it appropriately, and return it.

 The implementation of a bean method can be as simple as instantiating the bean and
returning it, setting whatever properties are needed along the way. In this case, though, I
decided to autowire in the AccountDAO bean (which was picked up in the component
scan) and then use the DAO to retrieve all the accounts and put them in the processor.

 The next listing shows a Spock test to prove that the system is working. It relies on
the embedded database again, which, as you may recall, configures three accounts.

package mjg.spring.services

import mjg.spring.dao.AccountDAO;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration
import org.springframework.transaction.annotation.Transactional

import spock.lang.Specification

@ContextConfiguration("classpath:applicationContext.xml")
@Transactional
class AccountProcessorSpec extends Specification {
 @Autowired
 AccountProcessor accountProcessor

 @Autowired
 AccountDAO dao

 def "processing test accounts should yield 3"() {
 given: def accounts = dao.findAllAccounts()

 when: def result = accountProcessor.processAccounts()

 then:
 result == 3.0
 accounts.every { account ->
 account.balance.toString().endsWith "9"
 }
 }
}

Both the AccountProcessor and the AccountDAO beans are autowired into the test.
The DAO is used to retrieve the accounts. Then, when the processor processes the
accounts, three dollars are returned.

Listing 7.23 A Spock test to check the behavior of the AccountProcessor
www.it-ebooks.info

http://www.it-ebooks.info/

189Groovy with JavaConfig

 The other test condition relies on the fact that the initial balance for each account
is divisible by 10. Therefore, after subtracting one from each account, the updated
balances should all end in the digit 9. It’s kind of kludgy, but it works.

 The point of this exercise was to show that with the Java configuration option you
can write whatever code you want to configure the bean before releasing it. There’s
not much Groovy can add to that, though it’s worth proving that the Java configura-
tion option works on a Groovy class as well.

 Normally I wouldn’t use Spring to manage basic entity instances. Spring specializes
in managing back-end services, especially those that would normally be designed as
singletons. Spring beans are all assumed to be singletons unless otherwise specified.
Still, you can tell Spring to provide a new instance each time by making the scope of
the bean equal to prototype.

 Listing 7.24 shows a Java (actually, a Groovy) configuration file, with a single bean
definition of type Account called prototypeAccount. It uses the AccountDAO to gener-
ate a new bean each time a prototypeAccount is requested, essentially making Spring
a factory for Account beans, all of which start with an initial balance of 100.

package mjg.spring.config

import mjg.spring.dao.AccountDAO
import mjg.spring.entities.Account

import org.springframework.beans.factory.annotation.Autowired
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.context.annotation.Scope

@Configuration
class GroovyConfig {
 @Autowired
 AccountDAO dao

 @Bean @Scope("prototype")
 Account prototypeAccount() {
 int newId = dao.createAccount(100.0)
 new Account(id:newId,balance:100.0)
 }
}

The @Configuration and @Bean annotations are the same as their counterparts in the
Java configuration file. The AccountDAO is autowired in as before. This time, though,
the @Scope annotation is used to indicate that the prototypeAccount is not a single-
ton. The implementation uses the DAO to create each new account with the given bal-
ance and then populates an Account object with the generated ID.

 To prove this is working properly, here is another Spock test in the next listing.

Listing 7.24 A Spring configuration file in Groovy as a factory for Accounts
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7 The Spring framework

package mjg.spring.services

import mjg.spring.entities.Account

import org.springframework.beans.factory.annotation.Autowired
import org.springframework.context.ApplicationContext
import org.springframework.test.context.ContextConfiguration
import org.springframework.transaction.annotation.Transactional

import spock.lang.Specification

@ContextConfiguration("classpath:applicationContext.xml")
@Transactional
class AccountSpec extends Specification {
 @Autowired
 ApplicationContext ctx

 def "prototype accounts have consecutive ids and balance 100"() {
 when:
 Account a1 = (Account) ctx.getBean("prototypeAccount")
 Account a2 = (Account) ctx.getBean("prototypeAccount")
 Account a3 = (Account) ctx.getBean("prototypeAccount")

 then:
 a3.id == a2.id + 1
 a2.id == a1.id + 1
 a1.balance == 100.0
 a2.balance == 100.0
 a3.balance == 100.0
 }
}

This time the application context itself is autowired into the test, because I want to
call its getBean method myself multiple times. The test then gets three instances of
prototypeAccount and verifies first that their account numbers are consecutive and
then that all three have the expected balance.

 The bottom line is that you can use Groovy to create a Spring configuration file as
easily as you can use Java, and in both cases you have the full power of the language to
do whatever additional configuration you might want before releasing the beans.

 All of the techniques so far have discussed how to use capabilities defined in
Spring. There’s one new capability, however, that allows you to define complex beans
using a builder notation. This mechanism came from the Grails project but can be
used anywhere.

7.6 Building beans with the Grails BeanBuilder
So far in this book I haven’t said much about Grails, the powerful framework that
combines Groovy DSLs with Spring MVC and Hibernate. I’ll discuss Grails much more
in chapter 10 on Groovy web applications, but part of it is relevant here. Normally
innovations in Spring find their way into Grails, usually in the form of a plugin, but

Listing 7.25 A Spock test for the prototype Accounts
every once in a while a Grails innovation goes the other way.

www.it-ebooks.info

http://www.it-ebooks.info/

191Building beans with the Grails BeanBuilder

 The Grails BeanBuilder is an example. The grails.spring.BeanBuilder class uses
Groovy’s builder syntax to create Spring configuration files. Everything you can do in
regular configuration files you can do using the Grails BeanBuilder class. The best
part, and the part most relevant for discussion here, is that you don’t need to be work-
ing on a Grails project to use the BeanBuilder.

NOTE Rumor has it that the Grails BeanBuilder class will be added to the core
Spring libraries in version 4, which will make using it trivial. Still, the process
described here is useful for any general external library.

The version of Spring used for the examples in this chapter is 3.2, which doesn’t
include the BeanBuilder. A few versions ago Grails was reformulated to split its depen-
dencies into separate JARs as much as possible, the same way Spring was refactored in
version 3. The Grails distribution thus contains a JAR file called grails-spring-2.2.2.jar,
corresponding to Grails version 2.2.2.

 The Grails-Spring JAR could simply be added to my projects as an external JAR
dependency, but because the rest of my project was built with Gradle I prefer to list my
additional dependency that way too. The Grails-Spring JAR itself depends on Simple
Logging Framework for Java (SLF4J), so its dependencies must be added too.

 The following listing shows the complete build file, which assumes the project is
using traditional Maven structure.

apply plugin:'groovy'
apply plugin:'eclipse'

repositories {
 mavenCentral()
}

def springVersion = '3.2.2.RELEASE'
def spockVersion = '0.7-groovy-2.0'

dependencies {
 compile "org.codehaus.groovy:groovy-all:2.1.5"
 compile "org.springframework:spring-context:$springVersion"
 compile "org.springframework:spring-jdbc:$springVersion"
 runtime "com.h2database:h2:1.3.172"
 testCompile "commons-dbcp:commons-dbcp:1.4"
 runtime "cglib:cglib:2.2"

 runtime "org.slf4j:slf4j-nop:1.5.8"
 runtime "org.slf4j:slf4j-api:1.5.8"
 testCompile "org.grails:grails-spring:2.2.2"

 compile "aopalliance:aopalliance:1.0"
 compile "org.aspectj:aspectjrt:1.6.10"
 compile "org.aspectj:aspectjweaver:1.6.10"

 testCompile "org.springframework:spring-test:$springVersion"
 testCompile "org.spockframework:spock-core:$spockVersion"
 testCompile "org.spockframework:spock-spring:$spockVersion"

Listing 7.26 The complete Gradle build file, including Grails-Spring dependencies

Grails-Spring
additions
}

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7 The Spring framework

The additions shown in the build file are all that’s necessary to use the Grails Bean-
Builder in a regular application. The Grails-Spring dependency (and SLF4J) are listed
in the regular way. Any additional required JARs (and there are several) will then be
downloaded automatically.

 To demonstrate how to use the BeanBuilder, let me take a different approach
from the earlier examples. The BeanBuilder is a class provided by an open source
project. Open source projects by definition make their source code available. While
browsing through the implementation of an open source project is certainly educa-
tional, I’d like to point out an oft-overlooked resource. The better open source projects
are loaded with test cases. Because nobody is really fond of writing documentation,16

sometimes it’s hard to figure out exactly how to use a particular capability in a project.
If you’re lucky, whoever wrote the feature you want also wrote test cases for it. Then
the tests demonstrate in great detail how the feature is intended to be used. Test cases
are executable documentation, illustrating the ways the author meant for you to use
the feature.

 In the case of the Grails BeanBuilder, there’s a test case called grails.spring
.BeanBuilderTests, which has a couple of very nice properties:

■ It was originally authored by Graeme Rocher, the head of the Grails project and
possibly the best developer I’ve ever met.17

■ The test case has nearly 30 different tests in it, demonstrating everything you
might want to do with the class.

In this section I want to review some basic features of the BeanBuilderTests class. In
fact, I copied the class into the book source code just to make sure everything worked.
I needed to remove a couple of tests that weren’t relevant to running BeanBuilder
independently from Grails, but everything else tested successfully.

 Before I continue, I should highlight this approach as a good general rule:

TEST CASES Downloading the source code of an open source project is useful
even if you never look at the implementation. The test cases alone are often
more valuable than the actual documentation.

That advice might be more useful than anything else said in this book.
 The next listing shows the first test case in the BeanBuilderTests class.

class BeanBuilderTests extends GroovyTestCase {

 void testImportSpringXml() {
 def bb = new BeanBuilder()

16 Other than in book form, I mean. Writing books is both fun and easy. That’s my story, and I’m sticking to it.
17 Except for maybe Guillaume Laforge, Dierk Koenig, Paul King, Andres Almiray, or a few others. The Groovy

Listing 7.27 The BeanBuilderTests class with its first test case
ecosystem is filled with wicked-smart developers.

www.it-ebooks.info

http://www.it-ebooks.info/

193Building beans with the Grails BeanBuilder

 bb.beans {
 importBeans "classpath:grails/spring/test.xml"
 }

 def ctx = bb.createApplicationContext()

 def foo = ctx.getBean("foo")
 assertEquals "hello", foo
 }
}

To use BeanBuilder all you have to do is instantiate the class. This is similar to using
MarkupBuilder, SwingBuilder, AntBuilder, or any of the wide range of builders writ-
ten in Groovy. Here the builder is assigned to the variable bb, so using the builder
starts with bb.beans, which is like creating a root <beans> element in a Spring config-
uration file. The curly braces then indicate child elements. Here the child element is
an importBeans element, which reads the file test.xml from the classpath. Before pro-
ceeding, here’s the text of test.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="foo" class="java.lang.String">
 <constructor-arg value="hello" />
 </bean>
</beans>

This is a typical beans configuration file containing a single bean definition. The bean
is an instance of java.lang.String whose value is hello and whose name is foo.

 Returning to the test case, after importing the XML file the createApplication-
Context method is invoked, which makes the beans available through the application
context. Then the test calls getBean to return the foo bean and checks that its value
is hello.

 The conclusions to be drawn are that to use the BeanBuilder you must (1) instan-
tiate the class, (2) define the beans using normal builder syntax, (3) create the appli-
cation context from the builder, and (4) access and use the beans in the normal way.

 The next listing contains another test in the test case that illustrates setting a
bean’s properties.

 void testSimpleBean() {
 def bb = new BeanBuilder()
 bb.beans {
 bean1(Bean1) {
 person = "homer"
 age = 45
 props = [overweight:true, height:"1.8m"]

Listing 7.28 Setting bean properties in the BeanBuilder, from BeanBuilderTests
 children = ["bart", "lisa"]

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 7 The Spring framework

 }
 }
 def ctx = bb.createApplicationContext()

 assert ctx.containsBean("bean1")
 def bean1 = ctx.getBean("bean1")

 assertEquals "homer", bean1.person
 assertEquals 45, bean1.age
 assertEquals true, bean1.props?.overweight
 assertEquals "1.8m", bean1.props?.height
 assertEquals(["bart", "lisa"], bean1.children)
 }

Inside the builder the syntax uses the bean name followed by the bean class in paren-
theses. In this case, bean1 is the name or ID of an instance of the Bean1 class. Near the
bottom of the file you’ll find the definition of Bean1:

class Bean1 {
 String person
 int age
 Properties props
 List children
}

In fact, several beans are defined at the bottom of the class. Unlike Java, Groovy
source files can have multiple classes defined in them. The Bean1 class contains attri-
butes of type String, int, Properties, and List. The test case assigns the name to
homer and the age to 45, uses the map syntax to assign the overweight and height
properties, and sets the list to the names of the children.18 The tests then assert that
the bean is in the application context and that, after retrieving it, all the properties
have been set as described.

 You’re not limited to defining a single bean, of course. The next listing shows a test
that creates several beans and sets their relationships.

 void testBeanReferences() {
 def bb = new BeanBuilder()
 bb.beans {
 homer(Bean1) {
 person = "homer"
 age = 45
 props = [overweight:true, height:"1.8m"]
 children = ["bart", "lisa"]
 }
 bart(Bean1) {
 person = "bart"
 age = 11
 }
 lisa(Bean1) {

Listing 7.29 Defining several related beans with the BeanBuilder
18 Leaving out Maggie, who sadly always seems to be an afterthought.

www.it-ebooks.info

http://www.it-ebooks.info/

195Building beans with the Grails BeanBuilder

 person = "lisa"
 age = 9
 }
 marge(Bean2) {
 person = "marge"
 bean1 = homer
 children = [bart, lisa]
 }
 }
 def ctx = bb.createApplicationContext()

 def homer = ctx.getBean("homer")
 def marge = ctx.getBean("marge")
 def bart = ctx.getBean("bart")
 def lisa = ctx.getBean("lisa")

 assertEquals homer, marge.bean1
 assertEquals 2, marge.children.size()

 assertTrue marge.children.contains(bart)
 assertTrue marge.children.contains(lisa)
 }

The beans named homer, bart, and lisa are all instances of the Bean1 class. The
marge bean is an instance of Bean2, which adds a reference of type Bean1 called bean1.
Here the bean1 reference in marge is assigned to homer. The Bean1 class also has a
children attribute of type List, so it’s assigned to a list containing bart and lisa.

 I don’t want to go through all the tests here, but there are a couple of features that
should be highlighted. For example, you can define beans at different scopes, as
shown in the next listing.

 void testScopes() {
 def bb = new BeanBuilder()
 bb.beans {
 myBean(ScopeTest) { bean ->
 bean.scope = "prototype"
 }
 myBean2(ScopeTest)
 }
 def ctx = bb.createApplicationContext()

 def b1 = ctx.myBean
 def b2 = ctx.myBean

 assert b1 != b2

 b1 = ctx.myBean2
 b2 = ctx.myBean2

 assertEquals b1, b2
 }

By setting the scope attribute on myBean to prototype, retrieving the bean twice
results in separate instances. The scope of myBean2 is singleton by default, so asking

Listing 7.30 Defining beans at different scopes
for it twice results in two references to the same object.

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7 The Spring framework

 You can also use tags from different Spring namespaces. Earlier in this chapter I
created an aspect using Groovy. The following listing shows a similar case using the
BeanBuilder.

void testSpringAOPSupport() {

 def bb = new BeanBuilder()

 bb.beans {
 xmlns aop:"http://www.springframework.org/schema/aop"

 fred(AdvisedPerson) {
 name = "Fred"
 age = 45
 }
 birthdayCardSenderAspect(BirthdayCardSender)

 aop.config("proxy-target-class":true) {
 aspect(id:"sendBirthdayCard",ref:"birthdayCardSenderAspect") {
 after method:"onBirthday", pointcut:
 "execution(void grails.spring.AdvisedPerson.birthday())
 and this(person)"
 }
 }
 }

 def appCtx = bb.createApplicationContext()
 def fred = appCtx.getBean("fred")
 assertTrue (fred instanceof SpringProxy)

 fred.birthday()

 BirthdayCardSender birthDaySender = appCtx.getBean(
 "birthdayCardSenderAspect")

 assertEquals 1, birthDaySender.peopleSentCards.size()
 assertEquals "Fred", birthDaySender.peopleSentCards[0].name
}

The aop namespace is declared using xmlns. In the builder that’s interpreted as a
(non-existent) method call, whose interpretation is to make the namespace avail-
able under the aop prefix. The fred bean is an instance of AdvisedPerson, whose
definition is

@Component(value = "person")
class AdvisedPerson {
 int age
 String name

 void birthday() {
 ++age
 }

Listing 7.31 Defining an aspect using BeanBuilder
}

www.it-ebooks.info

http://www.it-ebooks.info/

197Summary

The birthdayCardSenderAspect is an instance of BirthdayCardSender, which is defined
at the bottom of the file:

class BirthdayCardSender {
 List peopleSentCards = []
 void onBirthday(AdvisedPerson person) {
 peopleSentCards << person
 }
}

Using the config element from the aop namespace, the builder declares an aspect
called sendBirthdayCard that references the aspect. After any execution of the birth-
day method in an advised person, the aspect’s onBirthday method is executed, which
adds the person to the peopleSentCards collection. The test then verifies that the
aspect did in fact run.

 Other tests illustrate other capabilities in BeanBuilder. For example, if the prop-
erty you’re trying to set requires a hyphen, you put the property in quotes. Some tests
show examples like

aop.'scoped-proxy'()

or

jee.'jndi-lookup'(id:"foo", 'jndi-name':"bar")

See the test file for a wide range of examples. The bottom line is that anything
you can do in a regular Spring bean configuration file, you can do with the Grails
BeanBuilder.

7.7 Summary
This chapter demonstrated all the places where Groovy can work productively with
the Spring framework. In addition to writing Spring beans in Groovy, which some-
times results in significant code savings, there are features of Spring unique to beans
from dynamic languages. I showed both refreshable beans, in which you deploy the
source code and can revise it without stopping the system, and inline scripted beans,
in which the beans are defined directly in the configuration file. Groovy beans can

Lessons learned (Spring with Groovy)
1 Spring manages POGOs the same way it manages POJOs, so beans can be

implemented in Groovy as easily as in Java.
2 Closure coercion eliminates the need for anonymous inner classes.
3 By adding a single JAR file, Spock tests work inside the Spring test context.
4 Refreshable beans allow you to modify the system without restarting it.
5 Inline scripted beans are embedded in configuration files.
6 The Grails BeanBuilder gives yet another way to configure Spring.
also be Spring AOP aspects, as shown. Finally, I reviewed tests from the BeanBuilder

www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 7 The Spring framework

class from Grails, which can be used to create Spring bean definitions using the nor-
mal Groovy builder syntax, even outside of Grails.

 In the next chapter, it’s time to look at database development and manipulation.
There, in addition to the cool capabilities of the groovy.sql.Sql class, I’ll also use
another contribution from the Grails project, the Grails Object Relational Mapping
(GORM) capability.
www.it-ebooks.info

http://www.it-ebooks.info/

Database access
Virtually every significant application uses persistent data in one form or another.
The vast majority of them save the data in relational databases. To make it easy to
switch from one database to another, Java provides the JDBC1 API. While JDBC does
handle the required tasks, its low-level nature leads to many lines of code to handle
even the simplest tasks.

 Because the software is object-oriented and the database is relational, there’s a
mismatch at the boundary. The open source Hibernate project attempts to bridge
that gap at a higher level of abstraction. Java includes the Java Persistence API
(JPA) as a uniform interface to Hibernate and other object-relational mapping
(ORM) tools.

This chapter covers
■ JDBC and the Groovy Sql class
■ Simplifying Hibernate and JPA using GORM
■ Working with the NoSQL database

1 You would think that JDBC stands for Java Database Connectivity. Everyone would agree with you, except
for the people at Sun (now Oracle) who created the API. They claim that JDBC is a trademarked acronym
that doesn’t stand for anything. Clearly lawyers were involved somewhere in the process. I’m not going to
199

be bound by such silliness, and if I get sued as a result, I’ll be sure to blog about it.

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Database access

Groovy, as usual, provides some simplifications to the Java APIs. For raw SQL, the Groovy
standard library includes the groovy.sql.Sql class. For ORM tools like Hibernate,
the Grails project created a domain-specific language (DSL) called GORM. Finally,
many of the so-called “No SQL” databases that have become popular recently also
provide Groovy APIs to simplify their use. Figure 8.1 shows the technologies cov-
ered in this chapter.

 With relational databases everything ultimately comes down to SQL, so I’ll start there.

8.1 The Java approach, part 1: JDBC
JDBC is a set of classes and interfaces that provide a thin layer over raw SQL. That’s a
significant engineering achievement, actually. Providing a unified API across virtually
every relational database is no trivial task, especially when each vendor implements
significantly different variations in SQL itself. Still, if you already have the SQL
worked out, the JDBC API has classes and methods to pass it to the database and pro-
cess the results.

 The following listing shows a simple example, based on a single persistent class
called Product.

package mjg;

public class Product {
 private int id;
 private String name;
 private double price;

 public Product() {}

 public Product(int id, String name, double price) {
 this.id = id;
 this.name = name;
 this.price = price;

Listing 8.1 The Product class, a POJO mapped to a database table

NoSQL

database

APIs

Hibernate

and JPA
JDBCJava

Java +

Groovy
GORM

groovy.sql.SqlGroovy

Figure 8.1 Java uses JDBC and JPA,
with Hibernate being the most common
JPA provider. Most NoSQL databases
have a Java API that can be wrapped by
Groovy; in this chapter GMongo is used
to access MongoDB. GORM is a Groovy
DSL on top of Spring and Hibernate.
Finally, the groovy.sql.Sql class
makes it easy to use raw SQL with a
relational database.
 }

www.it-ebooks.info

http://www.it-ebooks.info/

201The Java approach, part 1: JDBC

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public double getPrice() { return price; }
 public void setPrice(double price) { this.price = price; }
}

The Product class has only three attributes, one of which (id) will represent the pri-
mary key in the database. The rest of the class is simply constructors, getters and set-
ters, and (not shown) the normal toString, equals, and hashCode overrides. The
complete version is available in the book source code.

 The next listing shows the ProductDAO interface.

import java.util.List;
public interface ProductDAO {
 List<Product> getAllProducts();
 Product findProductById(int id);
 void insertProduct(Product p);
 void deleteProduct(int id);
}

To implement the interface I need to know the table structure. Again, to keep
things simple, assume I only have a single table, called product. For the purposes of
this example the table will be created in the DAO implementation class, using the
H2 database.

 The implementation class is JDBCProductDAO. A couple of excerpts are shown
ahead. Java developers will find both the code and the attendant painful verbosity
quite familiar.

 The following listing shows the beginnings of the implementation, including con-
stants to represent the URL and driver class.

public class JDBCProductDAO implements ProductDAO {
 private static final String URL = "jdbc:h2:build/test";
 private static final String DRIVER = "org.h2.Driver";

 public JDBCProductDAO() {
 try {
 Class.forName(DRIVER);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 return;
 }
 createAndPopulateTable();
 }
// ... More to come ...

Listing 8.2 A DAO interface for the Product class

Listing 8.3 A JDBC implementation of the DAO interface
}

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 Database access

The import statements have been mercifully omitted. The private method to create
and populate the table is shown in the next listing.

private void createAndPopulateTable() {
 Connection conn = null;
 Statement stmt = null;
 try {
 conn = DriverManager.getConnection(URL);
 stmt = conn.createStatement();
 stmt.execute("drop table product if exists;");
 stmt.execute("create table product (id int primary key, name " +
 "varchar(25), price double);");
 stmt.executeUpdate("insert into product values " +
 "(1,'baseball',4.99),(2,'football',14.95),(3,'basketball',14.99)");
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 try {
 if (stmt != null) stmt.close();
 if (conn != null) conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

A phrase often used when describing Java is that the essence is buried in ceremony.
JDBC code is probably the worst offender in the whole API. The “essence” here is to
create the table and add a few rows. The “ceremony” is all the boilerplate surrounding
it. As the listing shows, try/catch blocks are needed because virtually everything in
JDBC throws a checked SQLException. In addition, because it’s absolutely necessary to
close the database connection whether an exception is thrown or not, the connection
must be closed in a finally block. To make matters even uglier, the close method
itself also throws an SQLException, so it, too, must be wrapped in a try/catch block,
and of course the only way to avoid a potential NullPointerException is to verify that
the connection and statement references are not null when they’re closed.

 This boilerplate is repeated in every method in the DAO. For example, the follow-
ing listing shows the implementation of the findProductById method.

public Product findProductById(int id) {
 Product p = null;
 Connection conn = null;
 PreparedStatement pst = null;
 try {
 conn = DriverManager.getConnection(URL);
 pst = conn.prepareStatement(
 "select * from product where id = ?");

Listing 8.4 Adding creation and population of the Product table to the DAO

Listing 8.5 The findProductById method with all the required ceremony

Declared outside try/catch,
to access in finally

Everything in JDBC
throws an SQLException

Only way to guarantee
everything is closed

Yes, even close()
throws an exception

The essence;
everything else
 pst.setInt(1, id); is ceremony

www.it-ebooks.info

https://github.com/poiati/gmongo
http://developer.rottentomatoes.com
http://developer.rottentomatoes.com
http://developer.rottentomatoes.com
http://api.rottentomatoes.com/api/public/v1.0
http://api.rottentomatoes.com/api/public/v1.0
http://www.it-ebooks.info/

203The Groovy approach, part 1: groovy.sql.Sql

 ResultSet rs = pst.executeQuery();
 if (rs.next()) {
 p = new Product();
 p.setId(rs.getInt("id"));
 p.setName(rs.getString("name"));
 p.setPrice(rs.getDouble("price"));
 }
 rs.close();
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 try {
 if (pst != null) pst.close();
 if (conn != null) conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 return p;
}

As with so many things in Java, the best thing you can say about this code is that even-
tually you get used to it. All that’s being done here is to execute a select statement
with a where clause including the necessary product ID and converting the returned
database row into a Product object. Everything else is ceremony.

 I could go on to show the remaining implementation methods, but suffice it to say
that the details are equally buried. See the book source code for details.

Years ago this was the only realistic option for Java. Now other options exist, like
Spring’s JdbcTemplate (discussed in chapter 7 on Spring) and object-relational map-
ping tools like Hibernate (discussed later in this chapter). Still, if you already know
SQL and you want to implement a DAO interface, Groovy provides a very easy alterna-
tive: the groovy.sql.Sql class.

8.2 The Groovy approach, part 1: groovy.sql.Sql
The groovy.sql.Sql class is a simple façade over JDBC. The class takes care of
resource management for you, as well as creating and configuring statements and log-
ging errors. It’s so much easier to use than regular JDBC that there’s never any reason
to go back.

 The next listing shows the part of the class that sets up the connection to the data-

Lessons learned (JDBC)
1 JDBC is a very verbose, low-level set of classes for SQL access to relational

databases.
2 The Spring JdbcTemplate class (covered in chapter 7) is a good choice if Groovy

is not available.

The essence;
everything else
is ceremony
base and initializes it.

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Database access

import groovy.sql.Sql

class SqlProductDAO implements ProductDAO {
 Sql sql = Sql.newInstance(url:'jdbc:h2:mem:',
 driver:'org.h2.Driver')

 SqlProductDAO() {
 sql.execute '''
 create table product (
 id int primary key,
 name varchar(25),
 price double
)'''
 sql.execute """
 insert into product values
 (1,'baseball',4.99),
 (2,'football',14.95),
 (3,'basketball',14.99)"""
 }

 // ... more to come ...
}

The groovy.sql.Sql class contains a static factory method called newInstance that
returns a new instance of the class. The method is overloaded for a variety of parame-
ters; see the GroovyDocs for details.

 The execute method takes an SQL string and, naturally enough, executes it.
Here I’m using a multiline string to make the create table and insert into state-
ments easier to read. The Sql class takes care of opening a connection and closing
it when finished.

THE SQL CLASS The groovy.sql.Sql class does everything raw JDBC does, and
handles resource management as well.

The same execute method can be used to delete products:

void deleteProduct(int id) {
 sql.execute 'delete from product where id=?', id
}

The execute method not only creates the prepared statement, it also inserts the pro-
vided ID into it and executes it. It’s hard to get much simpler than that.

 Inserting products can use the same method, but with a list of parameters:

void insertProduct(Product p) {
 def params = [p.id, p.name, p.price]
 sql.execute
 'insert into product(id,name,price) values(?,?,?)', params
}

The class has another method called executeInsert, which is used if any of the col-

Listing 8.6 A ProductDAO implementation using the groovy.sql.Sql class

Configure the
database properties

Multiline
strings to make
reading easier
umns are auto-generated by the database. That method returns a list containing the

www.it-ebooks.info

../../../../daeghrafen/Desktop/GroovyJava/'jdbc:h2:mem
http://www.it-ebooks.info/

205The Groovy approach, part 1: groovy.sql.Sql

generated values. In this example the id values are supplied in the program. Auto-
generated values will be considered in section 8.3 on Hibernate and JPA.

 Retrieving products involves a minor complication. There are several useful meth-
ods for querying. Among them are firstRow, eachRow, and rows. The firstRow
method is used when a single row is required. Either eachRow or rows can be used if
there are multiple rows in the result set. In that case, eachRow returns a map of col-
umn names to column values, and the rows method returns a list of maps, one for
each row.

 The complication is that the returned column names are in all capitals. For exam-
ple, the query

sql.firstRow 'select * from product where id=?', id

returns

[ID:1, NAME:baseball, PRICE:4.99]

for an id of 1. Normally I’d like to use that map as the argument to the Product con-
structor, but because the Product attributes are all lowercase that won’t work.

 One possible solution is to transform the map into a new one with lowercase keys.
That’s what the collectEntries method in the Map class is for. The resulting imple-
mentation of the findProductById method is therefore

Product findProductById(int id) {
 def row = sql.firstRow('select * from product where id=?', id)
 new Product(row.collectEntries { k,v -> [k.toLowerCase(), v] });
}

It would be easy enough to generalize this to the getAllProducts method by using
eachRow and transforming them one at a time. A somewhat more elegant solution is to
use the rows method and transform the resulting list of maps directly:

List<Product> getAllProducts() {
 sql.rows('select * from product').collect { row ->
 new Product(
 row.collectEntries { k,v -> [k.toLowerCase(), v] }
)
 }
}

This solution is either incredibly elegant or too clever by half, depending on your
point of view. Collecting2 everything together (except for the initialization shown in
the constructor already), the result is shown in the following listing.
2 No pun intended.

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Database access

class SqlProductDAO implements ProductDAO {
 Sql sql = Sql.newInstance(url:'jdbc:h2:mem:',driver:'org.h2.Driver')

 List<Product> getAllProducts() {
 sql.rows('select * from product').collect { row ->
 new Product(
 row.collectEntries { k,v -> [k.toLowerCase(), v] }
)
 }
 }

 Product findProductById(int id) {
 def row = sql.firstRow('select * from product where id=?', id)
 new Product(
 row.collectEntries { k,v -> [k.toLowerCase(), v] });
 }

 void insertProduct(Product p) {
 def params = [p.id, p.name, p.price]
 sql.execute
 'insert into product(id,name,price) values(?,?,?)', params
 }

 void deleteProduct(int id) {
 sql.execute 'delete from product where id=?', id
 }
}

By the way, there’s one other option available,3 but only if the Person class is imple-
mented in Groovy. If so, I can add a constructor to the Person class that handles the
case conversion there:

class Product {
 int id
 String name
 double price

 Person(Map args) {
 args.each { k,v ->
 setProperty(k.toLowerCase(), v)
 }
 }
}

With this constructor, the getAllProducts method reduces to

List<Product> getAllProducts() {
 sql.rows('select * from product').collect { new Product(it) }
}

It’s hard to beat that for elegance.

Listing 8.7 The complete SqlProductDAO class, except for the parts already shown
3 Thanks to Dinko Srkoc on the Groovy Users email list for this helpful suggestion.

www.it-ebooks.info

http://www.it-ebooks.info/

207The Groovy approach, part 1: groovy.sql.Sql

The advantages of groovy.sql.Sql over raw JDBC are obvious. If I have SQL code
already written, I always use it. 4

Going meta
The “elegant” solution in the chapter breaks down if the class attributes use camel
case, which is normal. The corresponding database table entries would then use
underscores to separate the words.

As shown by Tim Yates on the Groovy Users email list,4 you can use Groovy metapro-
gramming to add a toCamelCase method to the String class to do the conversion.
The relevant code is

String.metaClass.toCamelCase = {->
 delegate.toLowerCase().split('_')*.capitalize().join('').with {
 take(1).toLowerCase() + drop(1)
 }
}

Every Groovy class has a metaclass retrieved by the getMetaClass method. New
methods can be added to the metaclass by assigning closures to them, as is
done here. A no-arg closure is used, which implies that the new method will take
zero arguments.

Inside the closure the delegate property refers to the object on which it was invoked.
In this case it’s the string being converted. The database table columns are in upper-
case separated by underscores, so the delegate is converted to lowercase and then
split at the underscores, resulting in a list of strings.

Then the spread-dot operator is used on the list to invoke the capitalize method
on each one, which capitalizes only the first letter. The join method then reassem-
bles the string.

Then comes the fun part. The with method takes a closure, and inside that closure
any method without a reference is invoked on the delegate. The take and drop meth-
ods are used on lists (or, in this case, a character sequence). The take method
retrieves the number of elements specified by its argument. Here that value is 1, so
it returns the first letter, which is made lowercase. The drop method returns the rest
of the elements after the number in the argument is removed, which in this case
means the rest of the string.

The result is that you can call the method on a string and convert it. 'FIRST_NAME'
.toLowerCase() becomes 'firstName', and so on.

Welcome to the wonderful world of Groovy metaprogramming.

4 See http://groovy.329449.n5.nabble.com/Change-uppercase-Sql-column-names-to-lowercase-td5712088.html

for the complete discussion.

www.it-ebooks.info

http://groovy.329449.n5.nabble.com/Change-uppercase-Sql-column-names-to-lowercase-td5712088.html
http://www.it-ebooks.info/

208 CHAPTER 8 Database access

Rather than write all that SQL, you can instead use one of the object-relational map-
ping (ORM) tools available, the most prevalent of which is still Hibernate. The Java
Persistence API (JPA) specification acts as a front-end on ORM tools and is the subject
of the next section.5

8.3 The Java approach, part 2: Hibernate and JPA
One approach to simplifying JDBC is to automate as much of it as possible. The early
years of Java saw attempts to add ORM tools directly to the specification, with varying
degrees of success. First came Java Data Objects, which worked directly with com-
piled bytecodes and are largely forgotten today. Then came Enterprise JavaBeans
(EJB) entity beans, which were viewed by the community as a mess in the first couple
of versions.

 As frequently happens when there’s a need and only an unpopular specification
available, the open source community developed a practical alternative. In this case
the project that emerged was called Hibernate, which still aims to be the ORM tool of
choice in the Java world when dealing with relational databases.

 In regular JDBC a ResultSet is connected to the data source as long as the connec-
tion is open, and goes away when the connection is closed. In the EJB world, therefore,
you needed two classes to represent an entity: one that was always connected, and one
that was never connected. The former was called something analogous to ProductEJB,
and the latter was a ProductTO, or transfer object.6 When getting a product from the
database the ProductEJB held the data for a single row, and its data was transferred to a
ProductTO for display. The transfer object wasn’t connected, so it could get stale, but at
least it didn’t use up a database connection, which is a scarce commodity. Transferring
the data from the EJB to the TO was done by a session EJB, where the transaction bound-
aries occurred. The session EJBs formed the service layer, which also held business logic.
The whole process was much like that shown in figure 8.2.

 The result is that the ProductEJB class and the ProductTO class were essentially
identical, in that they both contained the same method signatures, even though
the implementations were different. Martin Fowler (author of Patterns of Enterprise
Application Architecture [Addison-Wesley, 2002], Refactoring [Addision-Wesley, 1999],

Lessons learned (Groovy SQL5)
1 The groovy.sql.Sql class makes working with raw SQL better in every way:

resource management, multiline strings, closure support, and mapping of result
sets to maps.

2 Related examples in this book can be found in chapter 7 on Spring and chapter 9
on REST.

5 Worst SQL Joke Ever Told: SQL query walks into a bar, selects two tables and says, “Mind if I join you?” (rimshot).
(Warning: NoSQL version later in this chapter.)
6 Older terms included Data Transfer Object (DTO) and Value Object (VO).

www.it-ebooks.info

http://www.it-ebooks.info/

209The Java approach, part 2: Hibernate and JPA

and several other books) calls that an anti-pattern and says that it’s a symptom of a
flawed design.

 One of the key differences between Hibernate and EJBs is the concept of a Hiber-
nate session. The innovation was that, rather than one class of objects that were always
connected and another class of objects that were never connected, what was needed was
a set of objects that were sometimes connected and sometimes not. In Hibernate,
when objects are part of a Hibernate session, the framework promises to keep them in
sync with the database. When the session closes, the object is disconnected, thereby
becoming its own transfer object. Any time an object is retrieved through Hibernate,
it becomes part of a Hibernate session.

 You retrieve a Hibernate session via a session factory. The session factory reads all
the mapping metadata, configures the framework, and performs any necessary pre-
processing. It’s supposed to be instantiated only once, acting as a singleton.

 Those readers who are familiar with the Spring framework (as discussed in chap-
ter 7) should suddenly become interested, because managing singletons is one of the
things that Spring is all about. Another of its capabilities is declarative transaction
management, which fits in nicely too. The result is that designs in the EJB 2.x world
were replaced by a combination of Spring for the declarative transactions and the ses-
sion factory and Hibernate for the entity beans.

 In version 3 of EJB the architecture was redesigned again to fit more closely with
that used by Spring and Hibernate. The entity beans part led to the creation of the
Java Persistence API. The JPA world uses the same concepts but labels them differ-
ently.7 The Hibernate Session becomes an EntityManager. The SessionFactory is an
EntityManagerFactory. Objects that are managed (that is, in the Hibernate session)
compose a persistence context.

ProductTO

CustomerTO

Product
EJB

Customer
EJB

Controller
Session

EJB

Transactions

Transfer objects

(never connected)

Entity beans

(always connected)

Database

Figure 8.2 Controllers contact transactional session EJBs, which acquire database
data through entity EJBs. The data is copied to transfer objects and returned to
the controller.
7 Of course it does. Using the same terms would be too easy.

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 Database access

 Finally, in the original Hibernate, mapping from entity classes to database tables was
done through XML files. Over time XML has become less popular and has been
replaced by annotations. Hibernate and JPA share many annotations, which is fortunate.

 It’s time for an example, which will bring Spring, Hibernate, and JPA together.
Chapter 7 on the Spring framework discusses Spring in some detail. Here I’ll just
highlight the parts needed for the example.

 To start I’ll need a database. For that I’ll use H2, a pure Java file- or memory-based
database. Spring provides an embedded database bean to make it easy to work with
H2. The relevant bean from the Spring configuration file is

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:schema.sql"/>
 <jdbc:script location="classpath:test-data.sql"/>
 </jdbc:embedded-database>

The schema and test-data SQL files define a single table, called PRODUCT, with three rows:

create table PRODUCT (
 id bigint generated by default as identity (start with 1),
 name varchar(255), price double, primary key (id)
)
insert into PRODUCT(name, price) values('baseball', 5.99)
insert into PRODUCT(name, price) values('basketball', 10.99)
insert into PRODUCT(name, price) values('football', 7.99)

Spring provides a bean to represent the EntityManagerFactory, which has a handful
of properties to set:

<bean id="entityManagerFactory" class=
 "org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="persistenceUnitName" value="jpaDemo" />
 <property name="packagesToScan">
 <list>
 <value>mjg</value>
 </list>
 </property>
 <property name="jpaVendorAdapter">
 <bean class=
 "org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">
 <property name="database" value="H2" />
 </bean>
 </property>
</bean>

The LocalContainerEntityManagerFactoryBean8 class uses the data source bean
defined previously, scans the given packages for entities, and uses Hibernate as its
implementation.

8 Extremely long class names are a Spring staple. My favorite is AbstractTransactionalDataSourceSpring-

ContextTests, which has 49 characters and is even deprecated. What’s yours?

www.it-ebooks.info

http://www.it-ebooks.info/

211The Java approach, part 2: Hibernate and JPA

 The entity itself is the Product class, this time with a sprinkling of JPA (or Hiber-
nate) annotations:

@Entity
public class Product {

 @Id
 private int id;
 private String name;
 private double price;

 // ... constructors ...
 // ... getters and setters ...
 // ... toString, equals, hashCode ...
}

The @Entity and @Id annotations declare Product to be a class mapped to a database
table and identify the primary key, respectively. Because, by an amazing coincidence,9

the Product attribute names and the database column names happen to match, I
don’t need the additional physical annotations like @Table and @Column.

 The ProductDAO interface is the same as that shown in section 8.1 on JDBC, except
that now the insertProduct method returns the new database-generated primary key.
The JpaProductDAO implementation class is where the action happens, and it’s shown
in the next listing.

@Repository
public class JpaProductDAO implements ProductDAO {
 @PersistenceContext
 private EntityManager entityManager;

 public List<Product> getAllProducts() {
 return entityManager.createQuery("from Product p").getResultList();
 }

 public Product findProductById(int id) {
 return entityManager.find(Product.class, id);
 }

 public int insertProduct(Product p) {
 entityManager.persist(p);
 return p.getId();
 }

 public void deleteProduct(int id) {
 entityManager.remove(findProductById(id));
 }
}

Listing 8.8 The JpaProductDAO class, which uses JPA classes to implement the DAO

Spring bean detected
on a component scan

Injected entity
manager
9 Not really.

www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 8 Database access

The JPA implementation is wonderfully spare, but that’s because it assumes the trans-
action management is handled elsewhere and that Spring will handle allocating and
closing the necessary database resources.

 I would never be comfortable writing that much code without a decent test case.
Spring’s test context framework manages the application context, allows the test fix-
ture to be injected, and, if a transaction manager is supplied, automatically rolls back
transactions at the end of each test.

 To handle the transactions I used another Spring bean, JpaTransactionManager,
which uses the entity manager factory previously specified:

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="entityManagerFactory" />

The resulting test case is shown in the following listing.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
@Transactional
public class JpaProductDAOTest {
 @Autowired
 private ProductDAO dao;

 @Test
 public void testFindById() {
 Product p = dao.findProductById(1);
 assertEquals("baseball", p.getName());
 }

 @Test
 public void testGetAllProducts() {
 List<Product> products = dao.getAllProducts();
 assertEquals(3, products.size());
 }

 @Test
 public void testInsert() {
 Product p = new Product(99, "racketball", 7.99);
 int id = dao.insertProduct(p);
 Product p1 = dao.findProductById(id);
 assertEquals("racketball", p1.getName());
 }

 @Test
 public void testDelete() {
 List<Product> products = dao.getAllProducts();
 for (Product p : products) {
 dao.deleteProduct(p.getId());
 }
 assertEquals(0, dao.getAllProducts().size());
 }

Listing 8.9 A Spring test case for the JPA DAO implementation
}

www.it-ebooks.info

http://www.it-ebooks.info/

213The Groovy approach, part 2: Groovy and GORM

The tests check each of the DAO methods. My favorite is testDelete, which deletes
every row in the table, verifies that they’re gone, and doesn’t add them back in, which has
the side effect of giving any DBAs heart palpitations. Fortunately, Spring rolls back all
the changes when the test is finished, so nothing is lost, but a good time is had by all.

 The last piece of the puzzle is the Maven build file. You can see it, as usual, in the
book source code.

 That’s a fair amount of code and configuration, and I’ve only got one class and
one database table. Frankly, if I can’t make that work, I might as well give it up. It’s
when you add relationships that life gets complicated.10

Groovy can help this situation in a couple of ways, which will be discussed in the
next section.

8.4 The Groovy approach, part 2: Groovy and GORM
Before getting into the Grails Object-Relational Mapping (GORM) part of Grails, let
me identify a couple of places where Groovy can simplify the example application
from the previous section.

8.4.1 Groovy simplifications

The entity class Product could be written as a POGO. That wouldn’t change the behav-
ior, but it would cut the size of the class by about two-thirds. That and the other
Spring-related parts of the application could be converted to Groovy, which is shown
in more detail in chapter 7 on Spring.

 A Gradle build file is contained in the book source code. It looks like most of the
build files shown in earlier chapters, but it’s considerably shorter and easier to read
than the corresponding Maven build.

8.4.2 Grails Object-Relational Mapping (GORM)

The Grails framework consists of a set of Groovy DSLs on top of Spring and Hibernate.
Because the combination of Spring and Hibernate is a very common architecture in

Lessons learned (Hibernate and JPA)
1 The Java Persistence API manages object-relational mapping providers that con-

vert objects to table rows and back again.
2 Hibernate is the most common JPA provider in the industry.
3 ORM tools provide transitive persistence, persistence contexts, SQL code gen-

eration, and more.
4 Like all Java libraries, they’re still pretty verbose.
10 On many levels; sometimes the jokes just write themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 8 Database access

the Java world, Grails is a natural evolution that simplifies the coding and integra-
tion issues.

 Grails is discussed in more detail in chapter 10 on web applications, but the Hiber-
nate integration part is relevant here. Grails combines Groovy domain-specific lan-
guages (DSLs) to make configuring the domain classes easy.

DOMAIN CLASSES In Grails the term domain is like entity in JPA. Domain classes
map to database tables.

Consider a small but nontrivial domain model based on the same Product class used
earlier in this chapter. The next listing shows the Product class, now in Groovy.

class Product {
 String name
 double price

 String toString() { name }

 static constraints = {
 name blank:false
 price min:0.0d
 }
}

In Grails each domain class implicitly has a primary key called id of some integer type,
which isn’t shown here but exists nevertheless. The constraints block here is part of
GORM.11 Each line in the constraints block is actually a method call, where the name
of the method is the attribute name. The blank constraint implies, naturally enough,
that the name of the product can’t be an empty string. The price constraint sets a
minimum value of 0, and the d makes it a double, because the constraint type must
match the attribute data type.

 This application will have three more domain classes, representing customers,
orders, and lines on the orders. Next up is the Customer class, shown in the next listing.

class Customer {
 String name

 String toString() { name }

 static hasMany = [orders:Order]

 static constraints = {
 name blank:false
 }
}

Listing 8.10 The Product class, this time as a POGO in a Grails application

11 The lizard creature that Captain Kirk fought in the Star Trek original series episode “Arena” was a Gorn, not
a GORM. I mean, who ever heard of Grails Object-Relational Napping, anyway? (Though there’s probably a

Listing 8.11 The Customer class. Customers have many orders (hopefully).

One-to-many
relationship
“lazy loading” joke in there somewhere.)

www.it-ebooks.info

http://www.it-ebooks.info/

215The Groovy approach, part 2: Groovy and GORM

Customers have a name attribute and a Set representing their orders.

GRAILS HASMANY In Grails the hasMany property implies a one-to-many rela-
tionship. By default, the contained objects form a set.

The name cannot be blank. The Order class is shown in the following listing.

class Order {
 String number
 Date dateCreated
 Date lastUpdated

 static hasMany = [orderLines:OrderLine]
 static belongsTo = [customer:Customer]

 double getPrice() {
 orderLines*.price.sum()
 }

 static mapping = {
 table 'orders'
 orderLines fetch: 'join'
 }
}

There’s a lot going on here. First, an order contains a Set of order lines. Orders also
belong to a specific customer. The customer reference implies that you can navigate
from an order to its associated customer. By assigning it to the belongsTo property in
this way, a cascade-delete relationship exists between the two classes. If a customer is
deleted from the system, all of its orders are deleted as well.

GRAILS BELONGSTO In Grails, the word belongsTo implies a cascade-delete
relationship.

The getPrice method computes the price of the order by summing up the prices on
each order line. It too is a derived quantity and is therefore not saved in the database.

 The dateCreated and lastUpdated properties are automatically maintained by
Hibernate. When an order is first saved, its dateCreated value is set; and every time
it’s modified, lastUpdated is saved as well.

 Finally, the mapping block is used to customize how the class is mapped to a data-
base table. By default, Grails will generate a table whose name matches the class name.
Because the word order is an SQL keyword, the resulting DDL statement would have
problems. In the mapping block the generated table name is specified to be orders,
rather than order, to avoid that problem. Also, Hibernate treats all associations as lazy.
In this case, that means that if an order is loaded, a separate SQL query will be
required to load the order lines as well. In the mapping block, the fetch join rela-
tionship means that all the associated order lines will be loaded at the same time as

Listing 8.12 The Order class, which has many orders and belongs to a customer

Automatically maintained
by Hibernate

One-to-many

Bidirectional and
cascade delete

Derived quantity;
not saved

Custom
mapping
the order, via an inner join.

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8 Database access

 The OrderLine class contains the product being ordered and the quantity, as
shown in the following listing.

class OrderLine {
 Product product
 int quantity

 double getPrice() { quantity * product?.price }

 static constraints = {
 quantity min:0
 }
}

The getPrice method multiplies the quantity times the price of the product to get
the price of the order line. This, in turn, is summed in order to get the total price, as
you saw earlier.

 Note also that the OrderLine class does not have a reference to the Order it
belongs to. This is a unidirectional cascade-delete relationship. If the order is
deleted, all the order lines go, but you cannot navigate from an order line to its asso-
ciated order.

 When you declare a hasMany relationship, Grails then provides methods for add-
ing the contained objects to their containers. To illustrate one of those methods, here’s
the file BootStrap.groovy, which is a configuration file used in a Grails application
for initialization code. The next listing shows code that instantiates a customer, two
products, an order, and some order lines and saves them all to the database.

class BootStrap {

 def init = { servletContext ->
 if (!Product.findByName('baseball')) {
 Product baseball =
 new Product(name:'baseball', price:5.99).save()
 Product football =
 new Product(name:'football', price:12.99).save()
 Customer cb = new Customer(name:'Charlie Brown').save()
 Order o1 = new Order(number:'1', customer:cb)
 .addToOrderLines(product:baseball, quantity:2)
 .addToOrderLines(product:football, quantity:1)
 .save()
 }
 }

 def destroy = {
 }
}

The code in the init closure is executed when the application is started. The

Listing 8.13 The OrderLine POGO, which is assembled to build an Order

Listing 8.14 Initialization code in BootStrap.groovy
addToOrderLines method comes from declaring that an Order has many OrderLine

www.it-ebooks.info

http://www.it-ebooks.info/

217The Groovy approach, part 2: Groovy and GORM

instances. The save method first validates each object against its constraints and then
saves it to the database.

 Grails uses Hibernate’s ability to generate a database schema. An entity relation-
ship diagram (ERD) for the generated database is shown in figure 8.3.12

 In this case the database is MySQL version 5, so the data type for id is BIGINT. It
also converts the camel case properties dateCreated and lastUpdated into under-
scores in the table. Because the relationship between Order and OrderLine was unidi-
rectional, Hibernate generates a join table between them called orders_order_line.

 Grails also adds a column called version to each table. Hibernate uses this for
optimistic locking. That means whenever a row of a table is modified and saved,
Hibernate will automatically increment the version column by one. That’s an attempt
to get locking behavior without actually locking a row and paying the resulting perfor-
mance penalty. If the application involves many reads but only a few writes, this works
well. If there are too many writes, Grails also adds an instance method called lock to
each domain class that locks the row. That’s called pessimistic locking and will result in
worse performance, so it’s only used when necessary.

 Grails does far more than this. For example, Grails uses Groovy to generate
dynamic finder methods for each domain class. For the Product class, Grails gener-
ates static methods on the domain class that include

■ Product.list(), which returns all product instances
■ Product.findByName(...), which returns the first product matching the name

12 This diagram was generated using MySQL Workbench, which is a free tool available at www.mysql.com/

Figure 8.3 An entity relationship diagram for the generated database, given the
domain classes listed in the text
products/workbench/.

www.it-ebooks.info

www.mysql.com/products/workbench/
www.mysql.com/products/workbench/
http://www.it-ebooks.info/

218 CHAPTER 8 Database access

■ Product.findAllByPriceGreaterThan(...), which returns all the products
whose prices are greater than the argument

■ Product.findAllByNameIlikeAndPriceGreaterThan(...,...), which returns
products whose names satisfy a case-insensitive SQL like clause and which have
prices greater than the second argument

There are many more; see the Grails documentation13 for details. In each case Grails
uses the mappings to generate SQL code satisfying the desired conditions.

 Grails also uses Groovy to provide a builder for criteria queries. Hibernate has an
API for criteria queries that allows you to build up a query programmatically. The Java
API works but is still quite verbose. Grails dramatically simplifies it so that you can
write expressions like this:

Product.withCriteria {
 like('name','%e%')
 between('price', 2.50, 10.00)
 order('price','desc')
 maxResults(10)
}

This generates an SQL statement to find all products whose names include the letter e
and whose prices are between $2.50 and $10.00. It returns the first 10 matching prod-
ucts in descending order by price.

 One of the fundamental principles in Hibernate is the concept of a Hibernate ses-
sion. As stated in the previous section, Hibernate ensures that any object inside a
Hibernate session (what JPA calls a persistence context) will be kept in sync with the
database. In Hibernate, objects can be in one of three states,14 as shown in figure 8.4.

13 See http://grails.org/doc/latest/ for the Grails documentation. Chapter 6 in those docs discusses GORM
in detail.

Transient Persistent

Detached

DB

get load findBy, , ,

findAllBy
save

delete

Close
sessionMerge

Figure 8.4 New and deleted objects are transient. When they are saved
they become persistent, and when the session closes they become
detached. Knowing the state of an object is key to understanding how it
works in Hibernate.
14 The Hibernate docs defining the states can be found at http://mng.bz/Q9Ry.

www.it-ebooks.info

http://mng.bz/Q9Ry
http://grails.org/doc/latest/
http://www.it-ebooks.info/

219The Groovy approach, part 2: Groovy and GORM

Any object retrieved through Hibernate—for example, by using one of the dynamic
finders or criteria queries—is placed in the persistent state and will stay in sync
with the database while it remains in that state. Newly created objects that have not
yet been saved are transient, and objects that are in memory when the Hibernate
session is closed are then detached. Detached objects are no longer connected to
the database.

 The key question is, when is the Hibernate session created, and when is it
closed? Over time a common practice has been established to scope the session to a
single HTTP request. This is known in the Hibernate literature as the Open Session
in View (OSIV) pattern, and it’s implemented through a request interceptor. The
Spring framework comes with a library class to do this automatically, which Grails
uses by default.

OSIV BEAN Grails uses an OSIV bean from Spring to scope the Hibernate
session to each HTTP request. The bean intercepts incoming requests and
creates the session, and then it intercepts the outgoing responses and closes
the session.

Finally, transactions are managed using Spring’s declarative transaction capabilities,
using the @Transactional annotation. All Grails service methods are transactional by
default, but their behavior can be customized using the annotation.

 Setting up all this infrastructure—managing the sessions and transactions, map-
ping domain classes to tables, establishing relationships, handling optimistic locking,
generating dynamic finders and criteria queries, and scoping the Hibernate session to
each request—requires a lot of work when putting Spring and Hibernate together
manually. Grails does all of this for you, and much more besides.

 The Spring framework is one of the most common open source projects in all of
Java, and Hibernate is still the most common ORM tool. Any project considering using
them together owes it to itself to consider using Grails.

Recent versions of Grails can also map to non-relational databases, but you can also
use regular Groovy to do that, as the next section shows.

Lessons learned (Groovy and GORM)
1 Groovy simplifies all database access by using POGOs instead of POJOs, using

closures for result set processing, and making building and testing easier.
2 The GORM API makes configuring Hibernate-based applications easy. When

combined with Spring (as in Grails), transactions and the Hibernate session
become simple, too.

3 It’s not so easy to use GORM outside of Grails, which is tightly tied to Spring.
Trying to do so is rare enough in the industry that the process wasn’t covered in
this chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8 Database access

8.5 Groovy and NoSQL databases
One of the most interesting trends in software development in the past few years15 has
been the growth of alternative, non-relational databases. The generic term NoSQL
(which the majority of the community interpret as “Not Only SQL”) refers to a range
of schema-less databases that are not based on relational approaches.

 The subject of NoSQL databases is already large and rapidly growing, and it’s well
beyond the scope of this book. But many of the databases have a Java API, and some of
them also have Groovy wrappers that simplify them.

 One of the most interesting is MongoDB,16 whose Java API is rather awkward but is
dramatically improved through a Groovy wrapper called GMongo. The GMongo proj-
ect, whose GitHub repository is located at https://github.com/poiati/gmongo, is the
product of Paulo Poiati and is the subject of this section.

 MongoDB is a document-oriented database that stores its data in binary JSON
(BSON) format. This makes it perfect for storing data downloaded from RESTful web
services, which often produce JSON data on request.

8.5.1 Populating Groovy vampires

This example came about because I was wandering in a bookstore recently and
noticed that while there was only one bookshelf labeled “Computer,” there were three
others labeled “Teen Paranormal Romance.” Rather than lament the decline of West-
ern Civilization I chose to take this as evidence that I needed to add Groovy vampires
to my book.

 Consider the web service provided by the movie review site Rotten Tomatoes,
http://developer.rottentomatoes.com. If you register for an API key, you can make
HTTP GET requests that search for movies, cast members, and more. The data is
returned in JSON form. The base URL for the API is located at http://api.rottentomatoes
.com/api/public/v1.0. All requests start with that URL.

 For example, searching for information about the movie Blazing Saddles17 is done
by accessing http://api.rottentomatoes.com/api/public/v1.0/movies.json?q=Blazing
%20Saddles&apiKey=... (supply the API key in the URL). The result is a JSON object
that looks like the following listing.

{
 "total": 1,
 "movies": [
 {
 "id": "13581",
 "title": "Blazing Saddles",

15 Other than the rise of dynamic languages on the JVM, of course.
16 See www.mongodb.org/ for downloads and documentation.
17 That’s not a vampire movie, obviously, but the urge to save Mongo in MongoDB is irresistible. “Mongo only

Listing 8.15 A portion of the JSON object representing the movie Blazing Saddles
pawn in game of life” is a brilliant line and arguably the peak of the Alex Karras oeuvre.

www.it-ebooks.info

https://github.com/poiati/gmongo
http://developer.rottentomatoes.com
http://api.rottentomatoes .com/api/public/v1.0
http://api.rottentomatoes .com/api/public/v1.0
http://api.rottentomatoes.com/api/public/v1.0/movies.json?q=Blazing %20Saddles&apiKey=...
http://api.rottentomatoes.com/api/public/v1.0/movies.json?q=Blazing %20Saddles&apiKey=...
http://www.mongodb.org/
http://www.it-ebooks.info/

221Groovy and NoSQL databases

 "year": 1974,
 "mpaa_rating": "R",
 "runtime": 93,
 "release_dates": {
 "theater": "1974-02-07",
 "dvd": "1997-08-27"
 },
 "ratings": {
 "critics_rating": "Certified Fresh",
 "critics_score": 89,
 "audience_rating": "Upright",
 "audience_score": 89
 },
 "synopsis": "",
 ...,
 "abridged_cast": [
 {
 "name": "Cleavon Little",
 "id": "162693977",
 "characters": [
 "Bart"
]
 },
 {
 "name": "Gene Wilder",
 "id": "162658425",
 "characters": [
 "Jim the Waco Kid"
]
 },
 ...
],
 "alternate_ids": {
 "imdb": "0071230"
 },
...
 }

In addition to the data shown, the JSON object also has links to the complete cast list,
reviews, and more. Another reason to use a database like MongoDB for this data is that
not every field appears in each movie. For example, some movies contain a critic’s
score and some do not. This fits with the whole idea of a schema-less database based
on JSON.

 First, to populate the MongoDB I’ll use an instance of the com.gmongo.GMongo class.
This class wraps the Java API directly. In fact, if you look at the class in GMongo.groovy,
you’ll see that it consists of

class GMongo {

 @Delegate
 Mongo mongo

 // ... Constructors and other methods ...

}

www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 8 Database access

There follow various constructors and simple patch methods. The @Delegate annota-
tion from Groovy is an Abstract Syntax Tree (AST) transformation18 that exposes the
methods in the com.mongodb.Mongo class, which comes from the Java API, through
GMongo. The AST transformation means you don’t need to write all the delegate
methods by hand.

 Initializing a database is as simple as

GMongo mongo = new GMongo()
def db = mongo.getDB('movies')
db.vampireMovies.drop()

MongoDB uses movies as the name of the database, and collections inside it, like vam-
pireMovies, are properties of the database. The drop method clears the collection.

 Searching Rotten Tomatoes consists of building a GET request with the proper
parameters. In this case, the following code searches for vampire movies:

String key = new File('mjg/rotten_tomatoes_apiKey.txt').text
String base = "http://api.rottentomatoes.com/api/public/v1.0/movies.json?"
String qs = [apiKey:key, q:'vampire'].collect { it }.join('&')
String url = "$base$qs"

The API key is stored in an external file. Building the query string starts with a map of
parameters, which is transformed into a map of strings of the form “key=value” and
then joined with an ampersand. The full URL is then the base URL with an appended
query string. Getting the movies and saving them into the database is almost trivial:

def vampMovies = new JsonSlurper().parseText(url.toURL().text)
db.vampireMovies << vampMovies.movies

The JsonSlurper receives text data in JSON form from the URL and converts it to JSON
objects. Saving the results into the database is as simple as appending the whole collection.

 The API has a limit of 30 results per page. The search results include a property
called next that points to the next available page, assuming there is one. The script
therefore needs to loop that many times to retrieve the available data:

def next = vampMovies?.links?.next
while (next) {
 println next
 vampMovies = slurper.parseText("$next&apiKey=$key".toURL().text)
 db.vampireMovies << vampMovies.movies
 next = vampMovies?.links?.next
}

That’s all there is to it. Using a relational database would require mapping the movie
structure to relational tables, which would be a bit of a challenge. Because MongoDB
uses BSON as its native format, even a collection of JSON objects can be added with no
work at all.

18 Discussed in chapter 4 on integration and in appendix B, “Groovy by Feature,” and used in many other places

in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

223Groovy and NoSQL databases

There’s an Eclipse plugin, called MonjaDB, which connects to MongoDB databases.
Figure 8.5 shows a portion of the vampireMovies database.

8.5.2 Querying and mapping MongoDB data

Now that the data is in the database I need to be able to search it and examine the
results. This can be done in a trivial fashion, using the find method, or the data can
be mapped to Groovy objects for later processing.

 The find method on the collection returns all JSON objects satisfying a particu-
lar condition. If all I want is to see how many elements are in the collection, the fol-
lowing suffices:

println db.vampireMovies.find().count()

With no arguments, the find method returns the entire collection. The count
method then returns the total number.

 Mapping JSON to Groovy brings home the difference between a strongly typed
language, like Groovy, and a weakly typed language, like JSON. The JSON data
shown is a mix of strings, dates, integers, and enumerated values, but the JSON
object has no embedded type information. Mapping this to a set of Groovy objects
takes some work.

 For example, the following listing shows a Movie class that holds the data in the
JSON object.

@ToString(includeNames=true)
class Movie {
 long id
 String title
 int year
 MPAARating mpaaRating
 int runtime

Listing 8.16 Movie.groovy, which wraps the JSON data

Figure 8.5 A portion of the vampire movies database, using the MonjaDB plugin for Eclipse
 String criticsConsensus

www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 8 Database access

 Map releaseDates = [:]
 Map<String, Rating> ratings = [:]
 String synopsis
 Map posters = [:]
 List<CastMember> abridgedCast = []
 Map links = [:]
}

The Movie class has attributes for each contained element, with the data types speci-
fied. It contains maps for the release dates, posters, ratings, and additional links, and a
list for the abridged cast. A CastMember is just a POGO:

class CastMember {
 String name
 long id
 List<String> characters = []
}

A Rating holds a string and an integer:

class Rating {
 String rating
 int score
}

Just to keep things interesting, the MPAA rating is a Java enum, though it could just as
easily have been implemented in Groovy:

public enum MPAARating {
 G, PG, PG_13, R, X, NC_17, Unrated
}

Converting a JSON movie to a Movie instance is done through a static method in the
Movie class. A portion of the fromJSON method is shown in the next listing.

 static Movie fromJSON(data) {
 Movie m = new Movie()
 m.id = data.id.toLong()
 m.title = data.title
 m.year = data.year.toInteger()
 switch (data.mpaa_rating) {
 case 'PG-13' : m.mpaaRating = MPAARating.PG_13; break
 case 'NC-17' : m.mpaaRating = MPAARating.NC_17; break
 default :
 m.mpaaRating = MPAARating.valueOf(data.mpaa_rating)
 }
 m.runtime = data.runtime
 m.criticsConsensus = data.critics_consensus ?: ''

The complete listing can be found in the book source code but isn’t fundamentally

Listing 8.17 A portion of the method that converts JSON movies to Movie instances
different from what’s being shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

225Groovy and NoSQL databases

 A test to prove the conversion is working is shown in the following listing.

class MovieTest {
 @Test
 void testFromJSON() {
 def data = new JsonSlurper().parseText(
 new File('src/main/groovy/mjg/blazing_saddles.txt').text)
 Movie.fromJSON(data.movies[0]).with {
 assert id == 13581
 assert title == 'Blazing Saddles'
 assert year == 1974
 assert mpaaRating == MPAARating.R
 assert runtime == 93
 assert releaseDates ==
 ['theater':'1974-02-07', 'dvd':'1997-08-27']
 assert ratings['critics'].rating == 'Certified Fresh'
 assert ratings['critics'].score == 89
 assert ratings['audience'].rating == 'Upright'
 assert ratings['audience'].score == 89
 assert synopsis == ''
 assert posters.size() == 4
 assert abridgedCast.size() == 5
 assert abridgedCast[0].name == 'Cleavon Little'
 assert abridgedCast[0].id == 162693977
 assert abridgedCast[0].characters == ['Bart']
 assert links.size() == 6
 }
 }
}

Once the mapping works, finding all vampire movies that have a critic’s consensus is
as simple as the following script:19

GMongo mongo = new GMongo()
def db = mongo.getDB('movies')
db.vampireMovies.find([critics_consensus : ~/.*/]).each { movie ->
 println Movie.fromJSON(movie)
}

Listing 8.18 A JUnit test to verify the JSON conversion

Lessons learned (NoSQL19)
1 NoSQL databases like MongoDB, Neo4J, and Redis are becoming quite common

for specific use cases.
2 Most NoSQL databases make a Java-based API available, which can be called

directly from Groovy.
3 Often a Groovy library will be available that wraps the Java API and simplifies it.

Here, GMongo is used as an example.

Use Movie
methods in
the closure
19 NoSQL version of Worst SQL Joke Ever Told: DBA walks into a NoSQL bar; can’t find a table, so he leaves.

www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 8 Database access

It’s hard to be much simpler than that. Working with MongoDB20 is just as easy as
using a traditional relational database.21

8.6 Summary
Virtually every significant application requires persistent data. The vast majority of
those are based on relational databases. In the Java world, relational persistence uses
either JDBC or an object-relational mapping tool like Hibernate or JPA. This chapter
reviewed both approaches and examined how Groovy can simplify them.

 The Groovy Sql class removes most of the clutter that accompanies raw JDBC. Any
code that uses JDBC directly can be significantly simplified using the Sql class.

 Many modern applications use JPA for persistence, especially with Hibernate as the
underlying API and the Spring framework to handle singletons and transactions. Just
configuring such an application is a nontrivial task. On the other hand, the Grails
framework handles all of it elegantly and with a minimum of effort.

 Finally, many so-called NoSQL databases have a Java API. Some, like MongoDB,
include a Groovy wrapper that makes working with the underlying databases simple.

20 A detailed treatment of MongoDB is contained in the book MongoDB in Action (Manning, 2011) by Kyle
Banker: www.manning.com/banker/.

21 For some reason, none of the Twilight movies were returned from the “vampire” query. I thought about fixing

that, and ultimately decided it wasn’t a bug, but a feature.

www.it-ebooks.info

www.manning.com/banker/
http://www.it-ebooks.info/

RESTful web services
RESTful web services dominate API design these days, because they provide a con-
venient mechanism for connecting client and server applications in a highly
decoupled manner. Mobile applications especially use RESTful services, but a
good RESTful design mimics the characteristics that made the web so successful
in the first place.

 After discussing REST in general, I’ll talk about the server side, then about the cli-
ent side, and finally the issue of hypermedia. Figures 9.1, 9.2, and 9.3 show the dif-
ferent technologies in this chapter.

This chapter covers
■ The REST architectural style
■ Implementing REST in Java using JAX-RS
■ Using a Groovy client to access RESTful

services
■ Hypermedia
227

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 RESTful web services

Resources

Annotations

JAX-RS

(server side)

Response

builder

methods

Representations

(JSON, XML)

@Produces @Consumes,

@GET @POST @PUT, , ,

@DELETE @Path @PathParam,

@Context @UriInfo,

Figure 9.1 Server-side JAX-RS technologies in this chapter. JAX-RS 2.0 is
annotation-based but includes builders for the responses. URIs are mapped to
methods in resources, which are assigned using annotations. Resources are
returned as representations using content negotiation from client headers.

Apache

HttpClient

JAX-RS

(client side)

Client,

web target

JsonBuilder,

JsonSlurper

Java

Java +

Groovy
RESTClient

Groovy

Figure 9.2 Client-side REST
technologies in this chapter. Unlike
JAX-RS 1.x, version 2.0 includes client
classes. Apache also has a common
client, which is wrapped by Groovy in
the HttpBuilder project. Finally, you can
use standard Groovy classes to parse
requests and build responses manually.

Hypermedia

JsonBuilder,

JsonSlurper

Transitional

links

Structural

links

MessageBody

reader and writer

Figure 9.3 Hypermedia approaches in this
chapter. Hypermedia in JAX-RS is done
through transitional links in the HTTP
headers, structural links in the message
body, or customized responses using builders

and slurpers.

www.it-ebooks.info

http://www.it-ebooks.info/

229The REST architecture

9.1 The REST architecture
The term Representational State Transfer (REST) comes from the 2000 PhD thesis1 by
Roy Fielding, a person with one of the all-time great resumes.2

 In his thesis, Fielding defines the REST architecture in terms of addressable resources
and their interactions. When restricted to HTTP requests made over the web (not a
requirement of the architecture, but its most common use today), RESTful web ser-
vices are based on the following principles:

■ Addressable resource—Items are accessible to clients through URIs.
■ Uniform interface—Resources are accessed and modified using the standard

HTTP verbs GET, POST, PUT, and DELETE.3

■ Content negotiation—The client can request different representations of resources,
usually by specifying the desired MIME type in the Accept header of a request.

■ Stateless services—Interactions with resources are done through self-contained
requests.

Web services based on these ideas are intended to be highly scalable and extensi-
ble, because they follow the mechanisms that make the web itself highly scalable
and extensible.

 Part of the scalability of a RESTful web service comes from the terms safe and
idempotent:

■ Safe—Does not modify the state of the server
■ Idempotent—Can be repeated without causing any additional effects

GET requests are both safe and idempotent. PUT and DELETE requests are idempo-
tent but not safe. They can be repeated (for example, if there’s a network error) with-
out making any additional changes.4 POST requests are neither safe nor idempotent.

 Another key concept is Hypermedia as the Engine of Application State, which has
the truly unfortunate, unpronounceable acronym HATEOAS. Most REST advocates5 I
know simply say “hypermedia” instead.

1 “Architectural Styles and the Design of Network-based Software Architectures,” available online at
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

2 Fielding is a cofounder of the Apache Software Foundation; was on the IETF working groups for the URI,
HTTP, and HTML specifications; and helped set up some of the original web servers. I place him easily in the
Top Ten of CS resumes, along with people like James Duncan Davidson (creator of the first versions of both
Tomcat and Ant; he basically owned the 90s), Sir Timothy Berners-Lee (create the web  knighthood FTW),
and Haskell Curry (whose first name is the definitive functional programming language, and whose last name
is a fundamental coding technique; if your name is your resume, you win).

3 Some services support HEAD requests as GET requests that return headers with empty responses and
OPTIONS requests as an alternate way to specify what types of requests are valid at a particular address.
PATCH requests are proposed as a way to do a partial update.

4 Sometimes it’s hard to picture DELETE requests as idempotent, but if you delete the same row multiple times,
it’s still gone.
5 Often known, believe it or not, as RESTafarians.

www.it-ebooks.info

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.it-ebooks.info/

230 CHAPTER 9 RESTful web services

 The principles defined in this section are architectural and are thus independent
of implementation language. In the next section I’ll address6 the Java-specific specifi-
cation intended to implement RESTful services, JAX-RS.

9.2 The Java approach: JAX-RS
The Java EE specification includes the Java API for RESTful Services. Version 1.18 is
from JSR 311. The new version, 2.0, is an implementation of JSR 339 and was released
in May of 2013.

 In this section I’ll implement a set of CRUD methods on a simple POJO.7 The JAX-
RS part doesn’t depend on this, so I’ll discuss that separately. I’ll start with the basic
infrastructure and then move to REST.

The application in this section exposes a POGO called Person as a JAX-RS 2.0 resource.
The application supports GET, POST, PUT, and DELETE operations and (eventually)
supports hypermedia links.8910

 The infrastructure for the project includes the POJO, Spock tests, and a DAO
implementation based on an H2 database. While the implementations are interesting,
they are ancillary to the real goal of discussing RESTful services and how Groovy can
simplify their development. Therefore they will not be presented in detail in this
chapter. As usual, the complete classes, including Gradle build files and tests, can be
found in the book source code repository.

 As a brief summary, the Person class is shown in the next listing.

6 Sorry.
7 Yes, that’s a URL-driven database, and yes, that violates hypermedia principles. I promise to get to that later.

What do Java developers actually use for REST?
In this book I normally start with what Java developers use for a particular problem,
then show how Groovy can help the Java implementations, and finally discuss what
Groovy offers as an alternative. When I describe what Java developers typically use,
I default to what the Java SE or EE specification provides.

That’s not the case with REST. In addition to the spec, JAX-RS, Java developers use sev-
eral third-party alternatives. Among the most popular are Restlet (http://restlet.org/),
RestEasy (www.jboss.org/resteasy), and Restfulie (http://restfulie.caelum.com.br/),
and there are other alternatives as well.8 It’s hard at this point to know which, if any,
is going to be the REST framework of choice for Java developers in a few years.9

Therefore, I’m basing this chapter on the JAX-RS specification, even though it’s not
necessarily the most popular alternative. When the alternative is not blindingly obvi-
ous, the spec usually wins.10

8 Spring REST doesn’t follow the JAX-RS specification. Apache CXF was designed for JAX-WS, but the latest
version has JAX-RS support. Apache Wink is another JAX-RS 1.x implementation.

9 If I had to bet, I’d go with Restlet. Most of the good REST people I know really like it.

10 Except when it doesn’t. See, for example, JDO, which is still part of Java EE.

www.it-ebooks.info

http://restlet.org/
http://www.jboss.org/resteasy
http://restfulie.caelum.com.br/
http://www.it-ebooks.info/

231The Java approach: JAX-RS

 class Person {
 Long id
 String first
 String last

 String toString() {
 "$first $last"
 }
}

The DAO interface for the Person objects includes finder methods, as well as methods
to create, update, and delete a Person. It’s shown in the following listing.

import java.util.List;

public interface PersonDAO {
 List<Person> findAll();
 Person findById(long id);
 List<Person> findByLastName(String name);
 Person create(Person p);
 Person update(Person p);
 boolean delete(long id);
}

The implementation of the DAO is done in Groovy using the groovy.sql.Sql class,
just as in chapter 8 on databases. The only part that differs from that chapter is that
the id attribute is generated by the database. Here’s how to use the Sql class to
retrieve the generated ID:

Person create(Person p) {
 String txt = 'insert into people(id, first, last) values(?, ?, ?)'
 def keys = sql.executeInsert txt, [null, p.first, p.last]
 p.id = keys[0][0]
 return p
}

The executeInsert method returns the collection of generated values, and in this
case the new ID is found as the first element of the first row.

 The Spock test for the DAO is similar to those shown in chapter 6 on testing or
chapter 8 on databases. The only new part is that the when/then block in Spock is
repeated to insert and then delete a new Person. When Spock sees a repeat of the
when/then pair, it executes them sequentially. Listing 9.3 shows this test, which inserts
a row representing Peter Quincy Taggart,11 verifies that he’s stored properly, and then

Listing 9.1 A Person POGO, used in the RESTful web service

Listing 9.2 The DAO interface with the CRUD methods for Person

11 Remember him? Commander of the NSEA Protector? “Never give up, never surrender?” That’s Galaxy Quest,
a Star Trek parody, but arguably one of the better Star Trek movies. Did you know that the designation of the
Protector was NTE-3120, and that NTE stood for “Not The Enterprise”? By Grabthar’s hammer, that’s the

kind of research you are obligated to do when you write a Groovy/Java integration book.

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 RESTful web services

deletes the row. Recall that the seriously cool old method in Spock evaluates its argu-
ment before executing the when block, so it can be compared to the rest of the expres-
sion evaluated after the when block is done.

def 'insert and delete a new person'() {
 Person taggart = new Person(first:'Peter Quincy', last:'Taggart')

 when:
 dao.create(taggart)

 then:
 dao.findAll().size() == old(dao.findAll().size()) + 1
 taggart.id

 when:
 dao.delete(taggart.id)

 then:
 dao.findAll().size() == old(dao.findAll().size()) - 1
}

Now that the preliminaries are out of the way it’s time to look at the features provided
by the JAX-RS API.

9.2.1 JAX-RS resource and tests

Moving now to the RESTful part of the application, there are several features of the
JAX-RS API involved in the implementation. Here I’ll use a PersonResource class to
implement the CRUD methods.

COLLECTION AND ITEM RESOURCES Normally two resources are provided: one
for a collection of person instances and one for an individual person. In this
case both are combined to keep the sample short.

First, each method that’s tied to a particular type of HTTP request uses one of these
annotations: @GET, @POST, @PUT, or @DELETE. For example, the findAll method can be
implemented as follows:

@GET
public List<Person> findAll() {
 return dao.findAll();
}

A GET request returns the HTTP status code 200 for a successful request. The @Produces
annotation identifies to the client the MIME type of the response. In this case I want to
return JSON or XML:

@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})

The annotation accepts an array of MediaType instances, which are used for content

Listing 9.3 The Spock test method to insert and delete a new Person
negotiation based on the Accept header in the incoming request.

www.it-ebooks.info

http://www.it-ebooks.info/

233The Java approach: JAX-RS

 If I want to specify the response header, JAX-RS provides a factory class called
Response using the builder design pattern. Here’s the implementation of the find-
ById method that uses it:

@GET @Path("{id}")
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Response findById(@PathParam("id") long id) {
 return Response.ok(dao.findById(id))
 .build();
}

The ok method on the Response class sets the response status code to 200. It takes an
object as an argument, which is added to the response. The @PathParam annotation
also converts the input ID from a string to a long automatically.

 Inserting a new instance is a bit more complicated, because the newly inserted
instance needs its own URI. Because in this case the generated URI will contain an ID
generated by the database, the resource method is tied to HTTP POST requests, which
are neither safe nor idempotent.

IMPLEMENTATION DETAIL The create method returns a URL that includes the
primary key from the database table. That detail is not something you want to
expose to the client. Some unique identifier is required; here the ID is used
for simplicity.

The new URI is added to the response as part of its Location header. The new URI is
generated using the UriBuilder class from JAX-RS, based on the incoming URI:

UriBuilder builder =
 UriBuilder.fromUri(uriInfo.getRequestUri()).path("{id}");

The uriInfo reference in that expression refers to a UriInfo object injected from the
application context. This is added as an attribute to the implementation:

@Context
private UriInfo uriInfo;

In general, the response from any insert method in a REST application is either “no
content” or the entity itself. Here in the create method I decided to use the entity,
because it includes the generated ID in case the client wants it.

 Putting it all together, the create method is as follows:

@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Response create(Person person) {
 dao.create(person);
 UriBuilder builder =
 UriBuilder.fromUri(uriInfo.getRequestUri()).path("{id}");
 return Response.created(builder.build(person.getId()))
 .entity(person)
 .build();

}

www.it-ebooks.info

http://www.it-ebooks.info/

e
terpar
234 CHAPTER 9 RESTful web services

The @POST annotation sets the HTTP status code in the response to 201.
 The URL patterns for the resource are summarized as follows:

■ The base resource pattern is /people. A GET request at that URL returns all the
Person instances. The plural form of Person is used for this reason.

■ A POST request at the same URL (/person) creates a new Person, assigns it a
URL of its own, and saves it in the database.

■ A sub-resource at /people/lastname/{like} uses a URL template (the like
parameter) to do an SQL-like query and find all Person instances who have a
last name satisfying the clause.

■ A sub-resource using the URL template {id} supports a GET request that
returns the Person instance with that ID.

■ PUT and DELETE requests at the {id} URL update and delete Person instances,
respectively.

The following listing shows the complete PersonResource class for managing Person
instances.

@Path("/people")
public class PersonResource {
 @Context
 private UriInfo uriInfo;

 private PersonDAO dao = JdbcPersonDAO.getInstance();

 @GET
 @Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public List<Person> findAll() {
 return dao.findAll();
 }

 @GET @Path("lastname/{like}")
 @Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public List<Person> findByName(@PathParam("like") String like) {
 return dao.findByLastName(like);
 }

 @GET @Path("{id}")
 @Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public Response findById(@PathParam("id") long id) {
 return Response.ok(dao.findById(id))
 .build();
 }

 @POST
 @Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 @Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public Response create(Person person) {
 dao.create(person);
 UriBuilder builder =

Listing 9.4 Java resource class for Person POJO

URI template
parameter like

Access
templat
parame

URI
template

ameter ID
 UriBuilder.fromUri(uriInfo.getRequestUri()).path("{id}");

www.it-ebooks.info

https://github.com/jgritman/httpbuilder
http://www.it-ebooks.info/

235The Java approach: JAX-RS

 return Response.created(builder.build(person.getId()))
 .entity(person)
 .build();
 }

 @PUT @Path("{id}")
 @Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 @Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public Person update(Person person) {
 dao.update(person);
 return person;
 }

 @DELETE @Path("{id}")
 @Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public Response remove(@PathParam("id") long id) {
 dao.delete(id);
 return Response.noContent().build();
 }
}

To verify that everything is working properly, I’ll again present a test class using Spock.
Testing a RESTful API requires a server where the application can be deployed. The
Jersey reference implementation includes a server called Grizzly for that.

 The Spock test methods setupSpec and shutdownSpec are executed once each,
before and after the individual tests, respectively. They therefore become the appro-
priate places to start and stop the server, as shown:

 @Shared static HttpServer server

 void setupSpec() {
 server = GrizzlyHttpServerFactory.createHttpServer(
 'http://localhost:1234/'.toURI(), new MyApplication())
 }

 void cleanupSpec() {
 server?.stop()
 }

The createHttpServer method starts a server on the specified URI and deploys a
RESTful application to it. The MyApplication class is very simple:

public class MyApplication extends ResourceConfig {
 public MyApplication() {
 super(PersonResource.class, JacksonFeature.class);
 }
}

The class MyApplication extends a JAX-RS class called ResourceConfig, which has a
constructor that takes the desired resources and features as arguments. The Jackson-
Feature used here provides the mechanism to convert from PersonResource instances
to JSON and back.12

12 As soon as I mention JSON, I’m talking about representations, not resources. Again, I’ll discuss that in sec-

tion 9.5 on hypermedia.

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 RESTful web services

 Note the convenience of the safe-dereference operator, ?., used when shutting down
the server. That will avoid a null pointer exception when the server fails to start properly.

 The first actual test verifies that the server is up and running, using the isStarted
method on the HttpServer class:

 def 'server is running'() {
 expect: server.started
 }

Again, the isStarted method is invoked using the standard Groovy idiom of accessing a
property. There’s no reason you couldn’t call the method instead, though, if you prefer.

 The rest13 of the test methods require a client to generate the HTTP request using
the proper verb. GET requests are trivial with Groovy, because you can take advantage
of the getText method that the Groovy JDK adds to the java.net.URL class. So the
request to retrieve all the instances could be written as

'http://localhost:1234/people'.toURL().text

While that would work, the response would then need to be parsed to get the proper
information. Often that isn’t a problem, but here I’m using an alternative.

 The class RESTClient is part of the HttpBuilder (http://groovy.codehaus.org/
modules/http-builder/) project. I’ll discuss that further in section 9.4 on Groovy cli-
ents, but for now let me say it defines Groovy classes that wrap Java classes supplied by
Apache’s HttpClient project. The test therefore contains an attribute of type REST-
Client, as follows:

 RESTClient client
 new RESTClient('http://localhost:1234/', ContentType.JSON)

The client points to the proper endpoint, and the second argument specifies the con-
tent type for the Accept header in the request. A GET request using this client returns
an object that can be interrogated for header properties as well as data:

 def 'get request returns all people'() {
 when:
 def response = client.get(path: 'people')

 then:
 response.status == 200
 response.contentType == 'application/json'
 response.data.size() == 5
 }

Other finder methods are tested similarly. To keep the tests independent, the insert
and delete methods are tested together; first a person is inserted, then it’s verified,
and then it’s deleted again. The test uses another feature of Spock: each block (when/
then/expect, and so on) can be given a string to describe its purpose. It’s not exactly
behavior-driven development, but it’s as close as Spock comes at the moment.
13 Again, no pun intended.

www.it-ebooks.info

http://groovy.codehaus.org/modules/http-builder/
http://groovy.codehaus.org/modules/http-builder/
http://www.it-ebooks.info/

ion
237The Java approach: JAX-RS

 The insert and delete test looks like the following:

 def 'insert and delete a person'() {
 given: 'A JSON object with first and last names'
 def json = [first: 'Peter Quincy', last: 'Taggart']

 when: 'post the JSON object'
 def response = client.post(path: 'people',
 contentType: ContentType.JSON, body: json)

 then: 'number of stored objects goes up by one'
 getAll().size() == old(getAll().size()) + 1
 response.data.first == 'Peter Quincy'
 response.data.last == 'Taggart'
 response.status == 201
 response.contentType == 'application/json'
 response.headers.Location ==
 "http://localhost:1234/people/${response.data.id}"

 when: 'delete the new JSON object'
 client.delete(path: response.headers.Location)

 then: 'number of stored objects goes down by one'
 getAll().size() == old(getAll().size()) - 1
 }

Given a JSON object representing a person, a POST request adds it to the system. The
returned object holds the status code (201), the content type (application/json), the
returned person object (in the data property), and the URI for the new resource in
the Location header. Deleting the object is done by sending a DELETE request to the
new URI and verifying that the total number of stored instances goes down by one.

 Updates are done through a PUT request. To ensure that PUT requests are idempo-
tent, the complete object needs to be specified in the body of the request. This is why
PUT requests aren’t normally used for inserts; the client doesn’t know the ID of the
newly inserted object, so POST requests are used for that instead.

 The complete test is shown in the next listing.

class PersonResourceSpec extends Specification {
 @Shared static HttpServer server
 RESTClient client =
 new RESTClient('http://localhost:1234/', ContentType.JSON)

 void setupSpec() {
 server = GrizzlyHttpServerFactory.createHttpServer(
 'http://localhost:1234/'.toURI(), new MyApplication())
 }

 def 'server is running'() {
 expect: server.started
 }

 def 'get request returns all people'() {
 when:

Listing 9.5 A Spock test for the PersonResource with a convenient test server

Client from
HttpBuilder project

JSON
representat

Shared
server
 def response = client.get(path: 'people')

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 9 RESTful web services

 then:
 response.status == 200
 response.contentType == 'application/json'
 response.data.size() == 5
 }

 @Unroll
 def "people/#id gives #name"() {
 expect:
 def response = client.get(path: "people/$id")
 name == "$response.data.first $response.data.last"
 response.status == 200

 where:
 id | name
 1 | 'Jean-Luc Picard'
 2 | 'Johnathan Archer'
 3 | 'James Kirk'
 4 | 'Benjamin Sisko'
 5 | 'Kathryn Janeway'
 }

 def 'people/lastname/{like} searches for last names like'() {
 when:
 def response = client.get(path: "people/lastname/a")

 then:
 response.data.size() == 3
 response.data*.last ==~ /.*[aA].*/
 }

 def 'insert and delete a person'() {
 given: 'A JSON object with first and last names'
 def json = [first: 'Peter Quincy', last: 'Taggart']

 when: 'post the JSON object'
 def response = client.post(path: 'people',
 contentType: ContentType.JSON, body: json)

 then: 'number of stored objects goes up by one'
 getAll().size() == old(getAll().size()) + 1
 response.data.first == 'Peter Quincy'
 response.data.last == 'Taggart'
 response.status == 201
 response.contentType == 'application/json'
 response.headers.Location ==
 "http://localhost:1234/people/${response.data.id}"

 when: 'delete the new JSON object'
 client.delete(path: response.headers.Location)

 then: 'number of stored objects goes down by one'
 getAll().size() == old(getAll().size()) - 1
 }

 def 'can update an existing person'() {
 given:
 def kirk = client.get(path: 'people/3')

Spock data
table

Location header
for inserted
resource
 def json = [id: 3, first:'James T.', last: 'Kirk']

www.it-ebooks.info

http://www.it-ebooks.info/

239Implementing JAX-RS with Groovy

 when:
 def response = client.put(path: "people/${kirk.data.id}",
 contentType: ContentType.JSON, body: json)

 then:
 "$response.data.first $response.data.last" == 'James T. Kirk'
 }

 private List getAll() {
 client.get(path: 'people').data
 }

 void cleanupSpec() {
 server?.stop()
 }
}

The JAX-RS annotations are easy enough to use. Building a URL-driven API with them
isn’t difficult. The 2.0 version of the spec also includes a client-side API, but that’s not
shown here.

Instead, I want to illustrate the Groovy implementation of the same specifications, mostly
to illustrate the code simplifications. After that I’ll deal with the issue of hypermedia.

9.3 Implementing JAX-RS with Groovy
Groovy doesn’t change JAX-RS in any fundamental way, though as usual it simplifies
the implementation classes. JAX-RS is already simplifying the implementation by pro-
viding its own kind of DSL, so the Groovy modifications are minimal.

 The previous section used Groovy implementations but didn’t present them. Here
I’ll show just enough to illustrate the Groovy features.

 To begin, here’s the Person POGO. Note the @XmlRootElement annotation, used to
control the serialization of the Person for the response. Normally that’s used for Java
API for XML Binding (JAXB), but the presence of the Jackson JSON parser causes the
serialization process to produce JSON objects instead:

@XmlRootElement
@EqualsAndHashCode
class Person {
 Long id
 String first
 String last

 String toString() { "$first $last" }

Lessons learned (JAX-RS)
1 JAX-RS 2.0 is part of the Java EE specification and, like most of the recent

specs, is annotation-based.
2 It’s very easy to build a hyperlink-driven database using JAX-RS.
3 Hypermedia mechanisms do exist in JAX-RS, but they’re well hidden.
}

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 9 RESTful web services

Getters, setters, and constructors are all generated in the normal manner. The
@EqualsAndHashCode AST transformation takes care of equals and hashCode method
implementations. The @ToString annotation could also have been used, but the
desired toString method is barely longer than that, so I just wrote it out.

 Speaking of AST transformations, the @Singleton annotation is applied to the
JdbcPersonDAO class when implemented in Groovy. That automatically implements
and enforces the singleton property on the class by making the constructor private,
adding a static instance variable, and so on. That class implements the same interface
as before. Here’s the beginning of the class:

@Singleton
class JdbcPersonDAO implements PersonDAO {
 static Sql sql = Sql.newInstance(
 url:'jdbc:h2:db', driver:'org.h2.Driver')

 static {
 sql.execute 'drop table if exists people'
 ...
 }
...
}

GROOVY AND JAVA INTERFACES Java tools prefer Java interfaces. Most Java/
Groovy integration problems vanish if you use Java interfaces with Groovy
implementations.

There’s one slight syntax variation required by the switch from Java to Groovy. The
@Produces and @Consumes annotations take a list of media types that they support. In
the Java implementation this is expressed as an array, using the braces notation:

@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})

In Groovy, braces indicate closures. Square brackets delimit a list, however, so the
Groovy implementation just replaces the braces with brackets.

BRACES VS. BRACKETS Groovy uses curly braces for closures, so the literal
notation to define a Java array should use square brackets for a java.util
.ArrayList instead.

The complete PersonResource implementation in Groovy is shown in the next listing.

@Path('/people')
class PersonResource {
 @Context
 private UriInfo uriInfo

 PersonDAO dao = JdbcPersonDAO.instance

 @GET

Listing 9.6 A Groovy implementation of the PersonResource class
 @Produces([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])

www.it-ebooks.info

http://www.it-ebooks.info/

241Implementing JAX-RS with Groovy

 List<Person> findAll() {
 dao.findAll();
 }

 @GET @Path("lastname/{like}")
 @Produces([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])
 List<Person> findByName(@PathParam("like") String like) {
 dao.findByLastName(like);
 }

 @GET @Path("{id}")
 @Produces([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])
 Response findById(@PathParam("id") long id) {
 Response.ok(dao.findById(id))
 .build()
 }

 @POST
 @Consumes([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])
 @Produces([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])
 Response create(Person person) {
 dao.create(person);
 UriBuilder builder =
 UriBuilder.fromUri(uriInfo.requestUri).path("{id}")
 Response.created(builder.build(person.id))
 .entity(person)
 .build()
 }

 @PUT @Path("{id}")
 @Consumes([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])
 @Produces([MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML])
 Person update(Person person) {
 dao.update(person)
 person
 }

 @DELETE @Path("{id}")
 Response remove(@PathParam("id") long id) {
 dao.delete(id);
 Response.noContent().build()
 }
}

Most discussions of JAX-RS end at this point, with a working, URL-driven database.
True REST is more flexible than that, however. A RESTful service is supposed to act like
the web, in that it presents a single URL to the client, which accesses it and receives
additional links in return. This is known as HATEOAS, or simply hypermedia.

Lessons learned (JAX-RS with Groovy)
1 Groovy doesn’t significantly change JAX-RS.
2 The real Groovy simplifications are in the POGO and DAO classes. The resource

implementation is essentially the same in both languages.
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 9 RESTful web services

Hypermedia links are exposed to clients, which consume them. JAX-RS 1.x doesn’t
include a client-side API. Version 2.0 does, and there’s a convenient project in the
Groovy ecosystem known as HttpBuilder for performing HTTP requests. Both are the
subjects of the next section.

9.4 RESTful Clients
Accessing a RESTful web service involves creating an HTTP request of the proper type
and adding any necessary information to the body. One of the biggest changes in
JAX-RS when moving from version 1 to version 2 is the addition of a standard client
API. The API includes Client and WebTarget classes, which are used as follows:

Client cl = ClientBuilder.newClient()
WebTarget target = cl.target('http://localhost:1234/people/3')
def resp = target.request().get(Response.class)

A Client instance is created from a ClientBuilder, which in turn leads to a WebTarget.
A GET request uses the get method, whose argument is the data type of the returned
object. This example is taken from a hypermedia test, shown in the next section.

 In Groovy, the Groovy JDK makes GET requests trivial. Groovy adds the toURL method
to java.lang.String, which converts a String into an instance of java.net.URL. The
Groovy JDK also adds the getText method to java.net.URL. Pulling information from
the web can therefore be as simple as

String response = 'http://localhost:1234/people/3'.toURL().text

Making POST, PUT, and DELETE requests is done in Groovy the same way it’s done in
Java, which isn’t fun. Instead, client access is best done through a library.

 One of the most popular HTTP libraries is the open source Apache HTTP Client
library (http://hc.apache.org/httpcomponents-client-ga/index.html), which is part
of the Apache HttpComponents project.

 Rather than show the details of that library I’d rather focus on the corresponding
Groovy project, HttpBuilder. The HttpBuilder project (http://groovy.codehaus.org/
modules/http-builder/) follows the classic Groovy idiom: wrap a Java library and
make it easier to use. While the documentation on the website isn’t bad, I recommend
looking at the test cases in the source code for guidance on how to use the API.

 Like most cool projects, the source code is hosted at GitHub at https://
github.com/jgritman/httpbuilder. The API includes a convenient class for REST appli-
cations called RESTClient, which I used in the tests in this chapter. The correspond-
ing test class, RESTClientTests, shows how to access Twitter using all the standard
HTTP verbs.

 I used the RESTClient class in the PersonResourceSpec tests. The RESTClient
class has a constructor that takes two arguments, the base URL and a content type:

RESTClient client = new RESTClient(

 'http://localhost:1234/', ContentType.JSON)

www.it-ebooks.info

http://hc.apache.org/httpcomponents-client-ga/index.html
http://groovy.codehaus.org/modules/http-builder/
http://groovy.codehaus.org/modules/http-builder/
https://github.com/jgritman/httpbuilder
https://github.com/jgritman/httpbuilder
http://www.it-ebooks.info/

243Hypermedia

In this case I’m running the Grizzly test server on port 1234, and for this demo the
data is in JSON form. The test for the GET method produces the following:

def response = client.get(path: 'people')
response.status == 200
response.contentType == 'application/json'
response.data.size() == 5

The RESTClient provides a get method that takes a path parameter. The response
comes back with special properties for (most of) the typical headers. Other headers
can be retrieved either by requesting the allHeaders property or by calling get-
Header("...") with the required header. Any returned entity in the body of the
response is in the data property.

 See the rest14 of the PersonResourceSpec class for examples of POST, PUT, and
DELETE requests.

Both the RESTClient and the JAX-RS 2.0 client are used in the test cases in the hyper-
media section, which is as good a segue as any to finally discuss HATEOAS in Java.15

9.5 Hypermedia
A series of resource URLs is not a RESTful web service. At best, it’s a URL-driven
database. Yet applications like that, which claim to be RESTful services, are all over
the web.

 A true16 REST application understands that specific resource URLs may evolve,
despite attempts to keep them as stable as possible. The idea therefore is to make
requests that discover the subsequent URLs to follow. We’re so accustomed to having a
fixed API that this can be a difficult concept to adopt. Instead of knowing exactly what
you’re going to get back from any given request, you know how to make the first
request and interrogate the result for whatever may come next. This is similar to the
way we browse the web, which is no coincidence.

 It does place a higher burden on the client and the server, though. The server
needs to add some sort of metadata to explain what the subsequent resources are

14 Again, sorry. At some point (and that may already have happened), when I say, “No pun intended,” you’re
simply not going to believe me.

Lessons learned (REST clients)
1 JAX-RS 2.0 includes classes for building REST clients.15

2 The Groovy project HttpBuilder wraps the Apache HttpClient project and makes
it easier to use.

15 The JAX-RS client classes are very easy to use, too, which is unfortunate when you’re trying to show how cool
Groovy is, but helpful for users. Oh well.
16 The word true here is defined as “at least trying to follow the principles in Roy Fielding’s thesis.”

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 9 RESTful web services

and how to access them, and the client needs to read those responses and interpret
them correctly.

 This section will illustrate the ways you can add links to the service responses. I’ll
start by showing an example from a public API, then demonstrate how to add links to
the HTTP response headers or to the response bodies, and finally demonstrate how to
customize the output however you want.

9.5.1 A simple example: Rotten Tomatoes

As a simple example, consider the API provided by the movie review website Rotten
Tomatoes used in chapter 8 on Groovy with databases. The Rotten Tomatoes API only
supports GET requests, so it isn’t a full RESTful service.17

 Using the site’s URL-based API to query for movies including the word trek looks
like this:

api.rottentomatoes.com/api/public/v1.0/movies.json?q=trek&apikey=3...

Out of the resulting 151 (!) movies,18 if I select Star Trek Into Darkness, I get a JSON
object that looks like the following (with a lot of parts elided):

{
 "id": "771190753",
 "title": "Star Trek Into Darkness",
 "year": 2013,
 ...,
 "synopsis": "The Star Trek franchise continues ...",
 ...,
 "links": {
 "self": "http://api.rottentomatoes.com/.../771190753.json",
 "cast": "http://api.rottentomatoes.com/.../771190753/cast.json",
 "clips": "http://api.rottentomatoes.com/.../771190753/clips.json",
 "reviews": "http://api.rottentomatoes.com/.../771190753/reviews.json",
 "similar": "http://api.rottentomatoes.com/.../771190753/similar.json"
 }
}

The movie object (a resource using a JSON representation) includes an entry called
links, which itself is a map of keys and values. The keys in the links objects all point
to additional resources, such as a full cast listing or reviews.

 The Rotten Tomatoes service adds links to the individual resources rather than
appending them to the response headers. The site uses its own format rather than

17 RESTful services that only support GET can be called GETful services. If they’re stateless, too, doesn’t that
make them FORGETful services? Thank you, thank you. I’ll be here all week. Try the veal, and don’t forget
to tip your waitresses.

18 Including one called, I kid you not, Star Trek versus Batman. The Enterprise goes back in time to the 1960s and

gets taken over by the Joker and Catwoman. Seriously.

www.it-ebooks.info

http://www.it-ebooks.info/

245Hypermedia

some other standard.19 It also handles content negotiation by embedding the “.json”
string in the URL itself.

 The client, of course, needs to know all of that, but by including a links section in
the response the server is identifying exactly what’s expected next. The client can sim-
ply present those links to the user, or it can try to place them in context, which
requires additional understanding.

 Generating a good client for a hypermedia-based RESTful service is not a trivial task.
 Notice one interesting point: the entire API uses JSON to express the objects. So far

in this chapter I’ve used the term resource to represent not only the server-side object
exposed to the client, but also how it’s expressed. Formally, the term representation is
used to describe the form of the resource.

REPRESENTATION A representation is an immutable, self-descriptive, stateless
snapshot of a resource, which may contain links to other resources.

The most common representations are XML and JSON, with JSON becoming almost
ubiquitous.

19 Attempts at standardizing JSON links include www.subbu.org/blog/2008/10/generalized-linking and

The Richardson maturity model: a rigged demo
The Richardson Maturity Model (RMM) is based on a 2008 presentation made by
Leonard Richardson, who described multiple levels of REST adoption.

RMM has four levels, numbered from zero to three:

■ Level 0: Plain old XML (POX) over HTTP—HTTP is merely a transport protocol, and
the service is essentially remote procedure calls using it. Sounds a lot like
SOAP, doesn’t it? That’s no accident.

■ Level 1: Addressable resources—Each URI corresponds to a resource on the
server side.

■ Level 2: Uniform interface—The API utilizes only the HTTP verbs GET, PUT, POST,
and DELETE (plus maybe OPTIONS and TRACE).

■ Level 3: Hypermedia—The representation of the response contains links defin-
ing additional steps in the process. The server may even define custom MIME
types to specify how the additional metadata is included.

Now, honestly, I have no objections to this model. It’s fundamental to Roy Fielding’s
thesis to include all of it; you’re not really adopting REST unless you have hyperme-
dia, too.

The word maturity, however, carries a lot of emotional baggage. Who wants their
implementation to be less mature? It also can’t be a coincidence that SOAP is con-
sidered maturity level 0. The model is fine, but there’s no need to load it down with
judgmental overtones that make it feel like a rigged demo.
www.mnot.net/blog/2011/11/25/linking_in_json.

www.it-ebooks.info

www.mnot.net/blog/2011/11/25/linking_in_json
http://www.subbu.org/blog/2008/10/generalized-linking
http://www.it-ebooks.info/

246 CHAPTER 9 RESTful web services

Hypermedia20 in JAX-RS works through links, which come in two types:

■ Transitional links in HTTP headers
■ Structural links embedded in the response

Figure 9.4 shows both in a single HTTP response.
 Version 2.0 of the JAX-RS specification supports transitional links using the Link

and LinkBuilder classes, and structural links using a special JAXB serializer.
 To illustrate both, I’ll continue with the Person example from earlier by adding

links to each instance. Each person has three possible links:

■ A self link, containing the URL for that person
■ A prev link, pointing to the person with an ID one less than the current person
■ A next link, pointing to the person with an ID one greater than the current person

This is a rather contrived case, but it has the advantage of simplicity.
 First I’ll add the links to the HTTP headers and show how to use them. Then I’ll use

structural links instead, using the JAXB serializer. Finally, I’ll take control of the output
generation process and customize the output writer using Groovy’s JsonBuilder.

9.5.2 Adding transitional links

To create transitional links, the JAX-RS API starts with the inner class Response
.ResponseBuilder in the javax.ws.rs.core package. ResponseBuilder has three
relevant methods:

public abstract Response.ResponseBuilder link(String uri, String rel)
public abstract Response.ResponseBuilder link(URI uri, String rel)
public abstract Response.ResponseBuilder links(Link... link)

20 Believe it or not, neither the words hypermedia nor HATEOAS appears at all in the JSR 339 specification. I

HTTP/1.1 200 OK
Link: <http://localhost:1234/people/2>; rel="prev"
Link: <http://localhost:1234/people/3>; rel="self"
Link: <http://localhost:1234/people/4>; rel="next"
Content-Type: application/json
Date: Thu, 11 Apr 2013 16:08:47 GMT
Content-Length: 257

{"id":3,"mrst":"James","last":"Kirk",
"prev":{"params":{"rel":"prev"},"href":"http://localhost:1234/people/2"},
"self":{"params":{"rel":"self"},"href":"http://localhost:1234/people/3"},
"next":{"params":{"rel":"next"},"href":"http://localhost:1234/people/4"}}

Transitional links

Structural links

Figure 9.4 Transitional links appear in the HTTP response headers, while structural links are part
of the response objects. In each case the links can be used to access other resources from this one.
have no explanation for this.

www.it-ebooks.info

http://www.it-ebooks.info/

247Hypermedia

The first two add a single Link header to the HTTP response. The third adds a series
of headers to the response. Here’s an example from the PersonResource class:

@GET @Produces(MediaType.APPLICATION_JSON)
Response findAll() {
 def people = dao.findAll();
 Response.ok(people).link(uriInfo.requestUri, 'self').build()
}

The link method in this case uses the request URI as the first argument and sets the
rel property to self. The corresponding test accesses the link as follows:

def 'get request returns all people'() {
 when:
 def response = client.get(path: 'people')

 then:
 response.status == 200
 response.contentType == 'application/json'
 response.headers.Link ==
 '<http://localhost:1234/people>; rel="self"'
}

This example returns only a single Link header. For multiple links (for example, the
three transitional links prev, next, and self for each individual person), the method
getHeaders('Link') retrieves them all.

 In the PersonResource the links are set with a private method, shown in the
next listing.

private Link[] getLinks(long id) {
 long minId = dao.minId
 long maxId = dao.maxId
 UriBuilder builder = UriBuilder.fromUri(uriInfo.requestUri)
 Link self = Link.fromUri(builder.build()).rel('self').build()
 String uri = builder.build().toString() - "/$id"
 switch (id) {
 case minId:
 Link next = Link.fromUri("${uri}/${id + 1}").rel('next').build()
 return [self, next]
 case maxId:
 Link prev = Link.fromUri("${uri}/${id - 1}").rel('prev').build()
 return [prev, self]
 default:
 Link next = Link.fromUri("${uri}/${id + 1}").rel('next').build()
 Link prev = Link.fromUri("${uri}/${id - 1}").rel('prev').build()
 return [prev, self, next]
 }
}

So-called “self” links are generated for each person. Next and previous links are gen-
erated for those elements between the first and last. The links themselves are simply

Listing 9.7 Setting prev, self, and next link headers for each person

Getter methods for
min and max IDs

Subtract to
get base URI
generated by string manipulation.

www.it-ebooks.info

http://www.it-ebooks.info/

e

248 CHAPTER 9 RESTful web services

 Adding the links to the resource is done with the links method:

Response findById(@PathParam("id") long id) {
 Person p = dao.findById(id)
 Response.ok(p)
 .links(getLinks(id))
 .build()
}

It turns out that converting the Link headers into something useful isn’t simple
with the RESTClient. In this case the JAX-RS Client class works better. The Client
class has a method called getLink, which takes a string argument, in which the
string is the relation type. That method returns an instance of the javax.ws.rs
.core.Link class, which corresponds to specification RFC 5988, Web Linking, of
the IETF.

 I’ll demonstrate the hypermedia capability by walking through the links one by
one in a client. The following listing is a JUnit test case, written in Groovy, that accesses
the next links.

@Test
void testNextAndPreviousHeaders() {
 Client cl = ClientBuilder.newClient()
 int id = 1
 WebTarget target = cl.target("http://localhost:1234/people/$id")
 def resp = target.request().get(Response.class)
 def next = resp.getLink('next').uri
 assert next.toString()[-1] == (++id).toString()
 println 'following next links...'
 while (next) {
 println "Accessing $next"
 target = cl.target(next)
 resp = target.request().get(Response.class)
 next = resp.getLink('next')?.uri
 if (next)
 assert next.toString()[-1] == (++id).toString()
 }
 println 'following prev links...'
 def prev = resp.getLink('prev').uri
 assert prev.toString()[-1] == (--id).toString()
 while (prev) {
 println "Accessing $prev"
 target = cl.target(prev)
 resp = target.request().get(Response.class)
 prev = resp.getLink('prev')?.uri
 if (prev)
 assert prev.toString()[-1] == (--id).toString()
 }
 cl.close()
}

Listing 9.8 Walking through the data using link headers

JAX-RS 2.0
client

Use rel
to return
link and

xtract URI
Last char
should be
proper ID

Following
the link
www.it-ebooks.info

http://www.it-ebooks.info/

249Hypermedia

The client uses the getLink method with the relation type (next or prev), which
returns a Link instance. The getUri method then returns an instance of java.net.URI,
which can be followed by the client on the next iteration.21

 If you would rather put the links in the body of the response, you need a different
approach, as described in the next section.

9.5.3 Adding structural links

Structural links in JAX-RS are instances of the Link class inside the entity itself. Con-
verting them to XML or JSON then requires a special serializer, which is provided by
the API.

 Here’s the Person class, expanded to hold the self, next, and prev links as attributes:

@XmlRootElement
@EqualsAndHashCode
class Person {
 Long id
 String first
 String last

 @XmlJavaTypeAdapter(JaxbAdapter)
 Link prev

 @XmlJavaTypeAdapter(JaxbAdapter)
 Link self

 @XmlJavaTypeAdapter(JaxbAdapter)
 Link next
}

The prev, self, and next links are instances of the javax.ws.rs.core.Link class, as
before. Link.JaxbAdapter is an inner class that tells JAXB how to serialize the links.

 Setting the values of the link references is done in the resource, this time using an
interesting Groovy mechanism:

Response findById(@PathParam("id") long id) {
 Person p = dao.findById(id)
 getLinks(id).each { link ->
 p."${link.rel}" = link
 }
}

The same getLinks private method is used as in the headers section, but this time the
links are added to the Person instance. By calling link.rel (which calls the getRel
method) and injecting the result into a string, the effect is to call p.self, p.next, or
p.prev, as the case may be. In each case, that will call the associated setter method and
assign the attribute to the link on the right-hand side.

21 I have to mention that this is probably one of the only times in the last decade that I really could have used a

do/while loop. Ironically, that’s just about the only Java construct not supported by Groovy.

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 9 RESTful web services

 A test of the structural links using the RESTClient looks like this:

def 'structural and transitional links for kirk are correct'() {
 when:
 def response = client.get(path: 'people/3')

 then:
 'James Kirk' == "$response.data.first $response.data.last"
 response.getHeaders('Link').each { println it }
 assert response.data.prev.href == 'http://localhost:1234/people/2'
 assert response.data.self.href == 'http://localhost:1234/people/3'
 assert response.data.next.href == 'http://localhost:1234/people/4'
}

The response wraps a Person instance, accessed by calling getData. Then the individ-
ual links are retrieved as the prev, self, and next properties. The result is a Link
instance whose getHref method can be used to verify the links.

 There’s only one problem, and it’s more of a nuisance than anything else. In the
Rotten Tomatoes example at the beginning of the hypermedia section, the links were
not top-level attributes of the movies. Instead, each movie representation contained a
JSON object whose key was links, and which contained the list of individual links and
relations. Here’s the snippet from the Rotten Tomatoes response:

"links": {
 "self": "http://api.rottentomatoes.com/.../771190753.json",
 "cast": "http://api.rottentomatoes.com/.../771190753/cast.json",
 "clips": "http://api.rottentomatoes.com/.../771190753/clips.json",
 "reviews": "http://api.rottentomatoes.com/.../771190753/reviews.json",
 "similar": "http://api.rottentomatoes.com/.../771190753/similar.json"
}

In the JAX-RS approach using the serializer, the relation is the attribute name. What if
I want to make a collection of links as shown in the movie example? For that I need to
take control of the serialization process.

9.5.4 Using a JsonBuilder to control the output

To customize output generation, JAX-RS includes an interface called javax.ws.rs.ext
.MessageBodyWriter<T>. This interface is the contract for converting a Java type into
a stream. It contains three methods to be implemented.

 The first method is called isWriteable, and it returns true for types supported by
this writer. For the Person class the implementation is simple:

boolean isWriteable(Class<?> type, Type genericType,
 Annotation[] annotations, MediaType mediaType) {
 type == Person && mediaType == MediaType.APPLICATION_JSON_TYPE
}

The method returns true only for Person instances and only if the specified media
type is JSON.

 The second method is called getSize, and it’s deprecated in JAX-RS 2.0. Its imple-

mentation is supposed to return -1:

www.it-ebooks.info

http://www.it-ebooks.info/

251Hypermedia

long getSize(Person t, Class<?> type, Type genericType,
 Annotation[] annotations, MediaType mediaType) {
 return -1;
}

The writeTo method does all the work. Here I use groovy.json.JsonBuilder to gen-
erate the output in the form I want, as shown in the following listing.

void writeTo(Person t, Class<?> type, Type genericType,
 Annotation[] annotations, MediaType mediaType,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream entityStream) throws IOException,
 WebApplicationException {
 def builder = new JsonBuilder()
 builder {
 id t.id
 first t.first
 last t.last
 links {
 if (t.prev) {
 prev t.prev.toString()
 }
 self t.self.toString()
 if (t.next) {
 next t.next.toString()
 }
 }
 }
 entityStream.write(builder.toString().bytes)
}

One special quirk is notable here. The method calls toString on the individual Link
instances. As the JavaDocs for Link make clear, the toString and valueOf(String)
methods in Link are used to convert to and from strings.

 The MessageBodyReader interface is quite similar. In that case there are only two
methods: isReadable and readFrom. The implementation of isReadable is the same
as the isWriteable method:

public boolean isReadable(Class<?> type, Type genericType,
 Annotation[] annotations, MediaType mediaType) {
 type == Person && mediaType == MediaType.APPLICATION_JSON_TYPE
}

The readFrom method uses a JsonSlurper to convert string input into a Person, as
shown in the next listing.

public Person readFrom(Class<Person> type, Type genericType,
 Annotation[] annotations, MediaType mediaType,

Listing 9.9 Using a JsonBuilder to produce nested links

Listing 9.10 Parsing a Person instance from a string

Using a Groovy
JsonBuilder

Nesting
links

Conversion to
bytes to write to
the output stream
 MultivaluedMap<String, String> httpHeaders,

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 9 RESTful web services

 InputStream entityStream)
 throws IOException, WebApplicationException {

 def json = new JsonSlurper().parseText(entityStream.text)
 Person p = new Person(id:json.id, first:json.first, last:json.last)
 if (json.links) {
 p.prev = Link.valueOf(json.links.prev)
 p.self = Link.valueOf(json.links.self)
 p.next = Link.valueOf(json.links.next)
 }
 return p
}

The readFrom method uses the JsonSlurper’s parseText method to convert the
input text data into a JSON object and then instantiates a Person based on the result-
ing properties. If links exist in the body, they’re converted using the valueOf method.

 To use the MessageBodyWriter, I need to add an @Provider annotation to the
implementation class and make sure it’s loaded in the application. The latter is done
by adding the provider to the MyApplication class:

public class MyApplication extends ResourceConfig {
 public MyApplication() {
 super(PersonResource.class, PersonProvider.class,
 JacksonFeature.class);
 }
}

In this case both the PersonProvider and the JacksonFeature are used. The Person
provider converts individual Person instances to JSON, and the JacksonFeature han-
dles collections. A test of the resulting structure looks like this:

def 'transitional links for kirk are correct'() {
 when:
 def response = client.get(path: 'people/3')

 then:
 'James Kirk' == "$response.data.first $response.data.last"
 Link.valueOf(response.data.links.prev).uri ==
 'http://localhost:1234/people/2'.toURI()
 Link.valueOf(response.data.links.self).uri ==
 'http://localhost:1234/people/3'.toURI()
 Link.valueOf(response.data.links.next).uri ==
 'http://localhost:1234/people/4'.toURI()
}

The response body now has a links element, which contains prev, self, and next as
child elements.

Lessons learned (hypermedia)
1 JAX-RS mostly ignores hypermedia but does make some methods available for it.
2 Transitional link headers are added by the link and links methods in

ResponseBuilder.
www.it-ebooks.info

http://www.it-ebooks.info/

253Other Groovy approaches

Between the transitional links, the structural links with the JAXB serializer, and the
Groovy JsonBuilder, hopefully you now have enough mechanisms to implement
hypermedia links in any way your application requires. The choice of which to use is
largely a matter of style, but there are some guidelines:

■ Structural links are contained in the response, so the client has to parse the
response to get them.

■ Transitional links are in the HTTP headers. That gets them out of the response
but forces the client to parse the HTTP response headers to retrieve them.

■ Custom links can be anything, so they must be clearly documented.

Examples of all three approaches can be found on the web.

9.6 Other Groovy approaches
There are three other approaches in the Groovy ecosystem that I should mention
for RESTful web services. Here I’ll specifically discuss groovlets, the Ratpack project,
and Grails.

9.6.1 Groovlets

Groovlets are discussed in chapter 10 on web applications as well as the simple exam-
ple in chapter 2, but essentially they’re groovy scripts that receive HTTP requests and
return HTTP responses. Groovlets contain many implicit variables, including request,
response, session, and params (to hold input variables).

 In a groovlet you can use the getMethod method on the request object to
determine if the request is a GET, PUT, POST, or DELETE. Then you can build the
response accordingly.

 The book source code has a project in chapter 10 called SongService, which dem-
onstrates how to use a groovlet. The service itself is a groovlet, which is shown in the
following listing.

def dao = SongDAO.instance

switch (request.method) {
case 'GET' :
 if (params?.id) {
 def s = dao.getSong(params.id)

(continued)

3 Structural links in the body are added through a special JAXB annotation.
4 You can manage the parsing and response generation stages yourself by writ-

ing a provider class that implements MessageBodyReader and/or Message-
BodyWriter.

Listing 9.11 A groovlet that processes and produces XML

Implicit
MarkupBuilder
 html.song(id:s.id) { html

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 9 RESTful web services

 title s.title
 artist s.artist
 year s.year
 }
 } else {
 def songs = dao.getAllSongs()
 html.songs {
 songs.each { s ->
 song(id:s.id) {
 title s.title
 artist s.artist
 year s.year
 }
 }
 }
 }
 break
case 'POST' :
 def data = new XmlSlurper().parse(request.reader)
 def s = new Song(id:data.@id,title:data.title,
 artist:data.artist,year:data.year)
 def exists = dao.exists(s.id)

 if (!exists) {
 dao.addSong s
 response.addHeader 'Location',
 "http://localhost:8080/GroovySongs/SongService.groovy?id=${s.id}"
 out.print "${s.title} added with id ${s.id}"
 } else {
 out.print "${s.title} already exists"
 }
 break
case 'DELETE' :
 dao.deleteSong params.id
 out.print "${params.id} deleted"
 break
default:
 print 'Only GET, POST, and DELETE supported'
}

The groovlet uses request.method in a switch statement to determine the correct
implementation. Then it uses a built-in MarkupBuilder called html to produce XML,
and an XmlSlurper to convert XML to song instances. Now that groovlets have a built-
in JsonBuilder as well,22 JSON could easily be used instead.

 This approach is pretty low-level, but it may be useful for quick-and-dirty imple-
mentations or if you need such detailed control.

22 That’s my great contribution to Groovy—the implicit json object in groovlets, which I not only added, but
with which I managed to break the build in the process. Sigh. If you’re interested, details can be found at

Converting
request data
to XML
http://mng.bz/5Vn6.

www.it-ebooks.info

http://kousenit.wordpress.com/2012/03/06/writing-json-output-from-a-groovlet/
http://www.it-ebooks.info/

255Other Groovy approaches

9.6.2 Ratpack

The second alternative is to look at the Ratpack project (https://github.com/ratpack/
ratpack). Ratpack is a Groovy project that follows the same ideas as the Sinatra23 proj-
ect in the Ruby world. Ratpack is called a “micro” framework, in that you write simple
Groovy scripts that govern how to handle individual requests.

 For example, a simple Ratpack script looks like this:

get("/person/:personid") {
 "This is the page for person ${urlparams.personid}"
}

post("/submit") {
 // handle form submission here
}

put("/some-resource") {
 // create the resource
}

delete("/some-resource") {
 // delete the resource
}

The project shows a lot of promise, and Sinatra is very popular in the Ruby world, so
it’s probably worth a look. The project has recently come under the control of Luke
Daley, who is a major player in the Groovy world, so I expect significant improve-
ments soon.

9.6.3 Grails and REST

Finally, Grails has REST capabilities as well. For example, in a Grails application you
can edit the URLMappings.groovy file as follows:

static mappings = {
 "/product/$id?"(resource:"product")
}

The result is that GET, POST, PUT, and DELETE requests for products will be directed
to the show, save, update, and delete actions in the ProductController, respectively.
Grails also automatically parses and generates XML and/or JSON, as desired.

 There’s also a JAX-RS plugin available for Grails. At the moment it’s based on JAX-RS
version 1, but the implementation can use either the Jersey reference implementation
or Restlets. Of course, once again, nothing is said about hypermedia in either case,
though anything you can do in Groovy you can, of course, do in Grails as well.

REST capabilities are a major design goal of Grails 3.0, so by then the situation will
no doubt change.
23 Sinatra, Ratpack, get it? If nothing else, it’s a great name.

www.it-ebooks.info

https://github.com/ratpack/ratpack
https://github.com/ratpack/ratpack
https://github.com/ratpack/ratpack
http://www.it-ebooks.info/

256 CHAPTER 9 RESTful web services

9.7 Summary
The topic of RESTful web services is very hot these days, for good reason. The REST
architecture enables developers to build flexible, highly decoupled applications that
take advantage of the same features that made the web itself so successful.

 In the Java world many libraries are available for implementing the REST architec-
ture. This chapter focused on the JAX-RS 2.0 specification and how Groovy can be
used with it. In addition to the basic URL-driven database, hypermedia can be imple-
mented using transitional links in the HTTP headers, structural links in the entity
bodies, or even through a Groovy JsonBuilder. Hopefully some combination of tech-
niques in this chapter will enable you to build the service you want.
www.it-ebooks.info

http://www.it-ebooks.info/

Building and testing
web applications
While Java on the desktop has its adherents, Java found a true home on the server
side. Java’s growth and adoption in the early days neatly follow that of the web itself.
It’s a rare Java developer who hasn’t at least worked on a web application.

 In this chapter I’m going to look at modern web application development
and where Groovy can make the process simpler and easier. Sometimes Groovy
just simplifies the code. Other times it provides helpful testing tools, like Gradle
and HTTPBuilder. Finally, there’s the most famous framework in the Groovy eco-
system, Grails. I’ll review them all and try to place them in the overall context of
web applications.

 Figure 10.1 is a guide to the technologies discussed in this chapter.

This chapter covers
■ Groovy servlets and ServletCategory
■ Groovlets
■ Unit and integration testing of web apps
■ The Groovy killer app, Grails
257

www.it-ebooks.info

http://groovy.codehaus.org/modules/http-builder/home.html
http://groovy.codehaus.org/modules/http-builder/home.html
http://groovy.codehaus.org/modules/http-builder/home.html
http://www.it-ebooks.info/

258 CHAPTER 10 Building and testing web applications

10.1 Groovy servlets and ServletCategory
Groovy doesn’t add a lot to basic servlet development, but the standard library does
provide a category class that illustrates what Groovy’s metaprogramming can do. The
following listing shows a trivial servlet, HelloGroovyServlet.groovy, part of a web
application implemented in Groovy.

class HelloGroovyServlet extends HttpServlet {
 void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.writer.print 'Hello from a Groovy Servlet!'
 }
}

Other than the normal Groovy simplifications (omitting the word public, lack of
semicolons, use of writer rather than getWriter(), and the optional parentheses on
print), this isn’t much different from a Java implementation. Use Groovy if you pre-
fer the slightly shorter code, but really the choice of language is a matter of style.

 What Groovy does provide is a category class to simplify the code even further. Cat-
egory classes are an example of Groovy’s metaprogramming capabilities. They show
how to add methods to existing classes in a specified block of code, unlike using the
metaclass object to add them everywhere in your program. If you ever wanted to
understand categories, ServletCategory is a great, extremely simple, useful example.

Listing 10.1 A simple servlet implemented in Groovy

Gradle

integration

testing

Servlet

category

Spring web

mocks
Java

testing

Java +

Groovy

testing

Groovy

language
Groovlets

HttpBuilder GrailsGroovy

projects

Figure 10.1 Guide to the technologies in this chapter. Spring provides
mock objects for testing that are also used in Grails. Using plugins and
some configuration, Gradle builds can do integration testing of web
applications. The ServletCategory class makes session, request,
and other objects easier to use. Groovlets are a quick way to build
simple applications. Finally, the HTTPBuilder project provides a
programmatic web client, and Grails applications use Groovy DSLs and
elegant metaprogramming to combine Spring and Hibernate in a
standard convention-over-configuration framework.
www.it-ebooks.info

http://www.it-ebooks.info/

259Groovy servlets and ServletCategory

CATEGORIES Use a Groovy category to add methods to existing classes when
you only need those methods under specific circumstances. Category meth-
ods are only available in a use block.

Figure 10.2 shows a sample of the GroovyDocs for the groovy.servlet.Servlet-
Category class.

 A Groovy category consists of static methods having one or more arguments. The
first argument to the method is the class that receives the method. In Servlet-
Category there are only four methods, with lots of overloads (see table 10.1).

Table 10.1 The ServletCategory methods for different scopes

Method Name First Argument

get(arg, String key) ServletContext, HttpSession,
ServletRequest, PageContext

getAt(arg, String key) Same as above

putAt(arg, String key, Object value) Same as above

set(arg, String key, Object value) Same as above

Figure 10.2 The GroovyDocs for ServletCategory. Each method is static and is added to the class
listed in the first argument.
www.it-ebooks.info

http://www.gebish.org/
http://www.gebish.org/
http://www.gebish.org/
http://webtest.canoo.com/
http://www.it-ebooks.info/

260 CHAPTER 10 Building and testing web applications

See a pattern? The job of this category is to make it easy to add attributes at page
scope (PageContext), request scope (ServletRequest), session scope (HttpSession),
and application scope (ServletContext). Remember that in Groovy all operators
correspond to methods. In this case, the get and set methods correspond to the
dot operator, and the getAt and putAt methods implement the array subscript
operator. Before I show an example, take a look at a portion of the actual implemen-
tation class, groovy.servlet.ServletCategory, in the following listing, imple-
mented in Java.

public class ServletCategory {

 public static Object get(HttpSession session, String key) {
 return session.getAttribute(key);
 }
 ...
 public static Object getAt(HttpSession session, String key) {
 return session.getAttribute(key);
 }
 ...
 public static void set(HttpSession session,
 String key, Object value) {
 session.setAttribute(key, value);
 }
 ...
 public static void putAt(HttpSession session,
 String key, Object value) {
 session.setAttribute(key, value);
 }
}

The first interesting thing to note is that this class is written in Java (!), even though
it’s being used in Groovy. When overloading operators, Groovy doesn’t care which lan-
guage you use to implement the methods, only that you use the operators that dele-
gate to the methods in Groovy. In this case, I don’t even plan to use the methods
directly. Instead, I’m using the dot operator and/or the array subscript notation to
invoke them implicitly.

 The other important detail here is that all the methods are delegating to either
the getAttribute or setAttribute method. The effect is that either the dot opera-
tor or the subscript operator can be used to add attributes to the page, request, ses-
sion, or application scope.

SERVLETCATEGORY Whether you use ServletCategory or not, its combina-
tion of metaprogramming and operator overloading make it an excellent
example of how Groovy helps Java.

Listing 10.2 Methods for HttpSession from groovy.servlet.ServletCategory
www.it-ebooks.info

http://www.slideshare.net/paulk_asert/make-tests-groovy
http://www.slideshare.net/paulk_asert/make-tests-groovy
http://www.it-ebooks.info/

261Groovy servlets and ServletCategory

Categories in Groovy 2.0
Groovy 2.0 introduced an alternative syntax for defining categories. In the Servlet-
Category discussed in this section, the category class contains static methods
whose first argument is the class being modified. In the new notation you can use
annotations and instance methods instead.

As an example, consider formatting numbers as currency. The java.text.Number-
Format class has a method called getCurrencyInstance, which has both a no-arg
method that formats for the current locale and an overloaded version that takes a
java.util.Locale argument. The classic way to add an asCurrency method to
Number that employs the currency formatter is

import java.text.NumberFormat

class CurrencyCategory {
 static String asCurrency(Number amount) {
 NumberFormat.currencyInstance.format(amount)
 }

 static String asCurrency(Number amount, Locale loc) {
 NumberFormat.getCurrencyInstance(loc).format(amount)
 }
}

use(CurrencyCategory) {
 def amount = 1234567.89012
 println amount.asCurrency()
 println amount.asCurrency(Locale.GERMANY)
 println amount.asCurrency(new Locale('hin','IN'))
}

The new way to implement a category uses the @Category annotation, which takes
the class to be modified as an argument. Then instance methods are used inside the
category, and the this reference refers to the object where the category is invoked.
The analogous implementation for the currency category is

import java.text.NumberFormat

@Category(Number)
class AnnotationCurrencyCategory {
 String asCurrency() {
 NumberFormat.currencyInstance.format(this)
 }

 String asCurrency(Locale loc) {
 NumberFormat.getCurrencyInstance(loc).format(this)
 }
}

Number.mixin AnnotationCurrencyCategory
def amount = 1234567.89012
println amount.asCurrency()
println amount.asCurrency(Locale.GERMANY)
println amount.asCurrency(new Locale('hin','IN'))
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 10 Building and testing web applications

An example will make this clear. The next listing shows a class called HelloName-
Servlet, implemented in Groovy, which receives a name parameter and replies with
the standard welcome.1

import groovy.servlet.ServletCategory;

import javax.servlet.ServletException
import javax.servlet.http.HttpServlet
import javax.servlet.http.HttpServletRequest
import javax.servlet.http.HttpServletResponse

class HelloNameServlet extends HttpServlet {
 void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 def session = request.session
 use (ServletCategory) {
 request.name = 'Hello, ' +
 (request.getParameter('name') ?: 'World')
 session['count'] = (session.count ?: 0) + 1
 }
 request.getRequestDispatcher('hello.jsp')
 .forward(request,response)
 }
}

This class works with attributes in both the request and the session. After getting the
session from the request (which is standard “property access means get method” style,
not the category), the use block defines the region where the category is active. Inside
the use block, a name attribute is added to the request using the dot notation, whose
value is either supplied by the user in the form of a parameter, or consists of the
default value World. Next, a count attribute is placed in the session; its value is either
incremented from its existing value or set to 1 if it doesn’t already exist.

 The test class, HelloNameServletTest, is shown in the next listing. It uses the Spring
API mock objects to test the doGet method both with and without a supplied name.

import static org.junit.Assert.*;

import org.junit.Test;
import org.springframework.mock.web.MockHttpServletRequest;

(continued)

Note also the use of the mixin method to add the category to the Number class.

Presumably, if the ServletCategory was being implemented now, it would use the
annotation approach. The result is the same either way, of course.1

Listing 10.3 The HelloNameServlet class, which uses the ServletCategory

Listing 10.4 The HelloNameServletTest class, which uses Spring’s mock objects

Get session
from request

Make category
methods available

Delegate to get/set and
getAt/putAt methods
1 The book source code includes the two ways of doing the currency category as well as a test case.

www.it-ebooks.info

http://www.it-ebooks.info/

263Easy server-side development with groovlets

import org.springframework.mock.web.MockHttpServletResponse;
import org.springframework.mock.web.MockHttpSession;

class HelloNameServletTest {
 HelloNameServlet servlet = new HelloNameServlet()

 @Test
 void testDoGetWithNoName() {
 MockHttpServletRequest request = new MockHttpServletRequest()
 MockHttpServletResponse response = new MockHttpServletResponse()
 MockHttpSession session = new MockHttpSession()
 request.session = session
 servlet.doGet(request, response)
 assert 'hello.jsp' == response.forwardedUrl
 assert request.getAttribute("name") == 'Hello, World'
 assert session.getAttribute("count") == 1
 }

 @Test
 void testDoGetWithName() {
 MockHttpServletRequest request = new MockHttpServletRequest()
 MockHttpServletResponse response = new MockHttpServletResponse()
 MockHttpSession session = new MockHttpSession()
 request.session = session
 request.setParameter('name','Dolly')
 servlet.doGet(request, response)
 assert 'hello.jsp' == response.forwardedUrl
 assert request.getAttribute("name") == 'Hello, Dolly'
 assert session.getAttribute("count") == 1
 }
}

The ServletCategory isn’t needed in the tests, because I’m already using mock
objects rather than the Servlet API classes. Note that the tests check both the request
and session attributes and the forwarded URL from the doGet method. The Servlet-
Category class is a simple example of how to use Groovy’s metaprogramming capabil-
ities to simplify an API.

 As a simple alternative to normal servlet development, Groovy provides groovlets.

10.2 Easy server-side development with groovlets
Groovlets are groovy scripts that are executed in response to HTTP requests. A built-in
library class called groovy.servlet.GroovyServlet executes them. Like all Groovy
scripts, they’re associated with a binding that holds many pre-instantiated variables.

 To use a groovlet, first configure the GroovyServlet to receive mapped requests. A
typical way of doing so is to add the following XML to the standard web application
deployment descriptor, web.xml:

<servlet>
 <servlet-name>Groovy</servlet-name>
 <servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>
<servlet-mapping>

 <servlet-name>Groovy</servlet-name>

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 10 Building and testing web applications

 <url-pattern>*.groovy</url-pattern>
</servlet-mapping>

The GroovyServlet class is part of the standard Groovy library. Here it’s mapped to
the URL pattern *.groovy, which means that any URL that ends in that pattern will be
directed to this servlet. For example, the URL http://localhost/.../hello.groovy would
match a script named hello.groovy in the root of the web application. Keep in mind
that this is literally the source file, not the compiled class.

GROOVLETS Groovlets are deployed as source code, not compiled.

When invoked, the GroovyServlet class finds the script whose name ends the URL,
pre-instantiates a series of variables, creates an instance of the GroovyScriptEngine
class, and executes the script. The actual script code can be placed in any accessible
directory from the web application root, or in any subdirectory of /WEB-INF/groovy.

 The key to the simplicity of groovlets is this already-configured infrastructure. With
this in place a developer has a lot less work to do.

10.2.1 A “Hello, World!” groovlet

Because every technology needs a “Hello, World!” application, here’s a groovlet to
greet the user. Assume that the GroovyServlet has already been configured, and add
a file called hello.groovy in the root of a web application. In a standard Maven struc-
ture that would be src/main/webapp/hello.groovy. The contents of the groovlet are

name = params.name ?: 'World'
println "Hello, $name!"

It’s a simple groovlet, but it should still be tested. Integration-testing of web applica-
tions is discussed later in this chapter, but the syntax in the next listing uses the same
mechanism for transmitting a GET request (use the Groovy JDK to convert a string to a
URL and then call URL’s getText method) that was used in several earlier chapters.

class HelloGroovletTest {
 int port = 8163

 @Test
 void testHelloGroovletWithNoName() {
 String response =
 "http://localhost:$port/HelloGroovlet/hello.groovy"
 .toURL().text
 assert 'Hello, World!' == response.trim()
 }

 @Test
 void testHelloGroovletWithName() {
 String response =
 "http://localhost:$port/HelloGroovlet/hello.groovy?name=Dolly"

Listing 10.5 HelloGroovletTest, an integration test for the hello groovlet
 .toURL().text

www.it-ebooks.info

http://localhost/.../hello.groovy
http://www.it-ebooks.info/

265Easy server-side development with groovlets

 assert 'Hello, Dolly!' == response.trim()
 }
}

There’s nothing particularly surprising or unusual about this test, which is simple
because the groovlet only responds to GET requests.

 Unit tests are also doable, based on the fact that the GroovyServlet is executing
the groovlet as a script with predefined variables. For example, the next listing shows
a unit test for the groovlet that uses an instance of the GroovyShell class and the
Binding class in a manner similar to that described in chapter 6 on testing.

class HelloGroovletUnitTest {
 String groovlet = 'src/main/webapp/hello.groovy'
 GroovyShell shell
 Binding binding = new Binding()
 StringWriter content = new StringWriter()

 @Before
 void setUp() {
 binding.params = [:]
 binding.out = new PrintWriter(content)
 shell = new GroovyShell(binding)
 }

 @Test
 void testGroovletWithNoName() {
 shell.evaluate(new File("$groovlet"))
 assert 'Hello, World!' == content.toString().trim()
 }

 @Test
 void testGroovletWithName() {
 binding.params = [name:'Dolly']
 shell.evaluate(new File("$groovlet"))
 assert 'Hello, Dolly!' == content.toString().trim()
 }
}

The interesting parts of this test are first that the groovlet expects a map of input
parameters, so the test has to provide one, and that I need a way to capture the output
stream from the groovlet, which is done through the out variable of the binding.

 Recall from chapter 6 that Groovy also provides a subclass of GroovyTestCase, called
GroovyShellTestCase, which is designed to test scripts like this. The following listing
shows the same unit test using GroovyShellTestCase. Note that it’s noticeably simpler.

class HelloGroovletShellTest extends GroovyShellTestCase {
 String groovlet = 'src/main/webapp/hello.groovy'
 StringWriter content = new StringWriter()

Listing 10.6 A unit test for the groovlet using GroovyShell and Binding

Listing 10.7 Using GroovyShellTestCase to simplify unit-testing groovlets

Setting the
params map

Capturing the
output stream
 def capturedOut = new PrintWriter(content)

www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 10 Building and testing web applications

 @Test
 void testGroovletWithNoName() {
 withBinding([out: capturedOut, params:[:]]) {
 shell.evaluate(new File("$groovlet"))
 }
 assert 'Hello, World!' == content.toString().trim()
 }

 @Test
 void testGroovletWithName() {
 withBinding([out: capturedOut, params:[name:'Dolly']]) {
 shell.evaluate(new File("$groovlet"))
 }
 assert 'Hello, Dolly!' == content.toString().trim()
 }
}

The GroovyShellTestCase class instantiates a GroovyShell internally and allows you
to pass a map of binding parameters through the withBinding method.

10.2.2 Implicit variables in groovlets

The previous example shows that groovlets expect that all the request parameters are
bundled into a map called params. Groovlets operate in an environment containing
many implicit variables. Table 10.2 shows the complete list.

The previous example used only the params variable. Now I’ll discuss a slightly more
elaborate example, which was used in the Groovy Baseball application first presented
in chapter 2. The following listing shows the complete source.

Table 10.2 Implicit variables available in groovlets

Variable Represents Notes

request ServletRequest

response ServletResponse

session getSession(false) May be null

context ServletContext

application ServletContext (same as context)

params Map of request parameters

headers Map of request/response headers

out response.getWriter()

sout response.getOutputStream()

html new MarkupBuilder(out)

Pass
binding
variables
through
the method
www.it-ebooks.info

http://www.it-ebooks.info/

267Easy server-side development with groovlets

import beans.GameResult;
import beans.Stadium;
import service.GetGameData;

response.contentType = 'text/xml'
def month = params.month
def day = params.day
def year = params.year

m = month.toInteger() < 10 ? '0' + month : month
d = day.toInteger() < 10 ? '0' + day : day
y = year

results = new GetGameData(month:m,day:d,year:y).games

html.games {
 results.each { g ->
 game(
 outcome:"$g.away $g.aScore, $g.home $g.hScore",
 lat:g.stadium.latitude,
 lng:g.stadium.longitude
)
 }
}

The goal of the GameService groovlet is to get the date provided by the user interface,
invoke the getGames method in the GetGameData service, and provide the results to
the user in XML form. The groovlet sets the contentType header in the response to XML,
retrieves the input parameters representing the requested date, normalizes them to
the proper form if necessary, calls the game service, and uses the built-in markup
builder to write out the game results as a block of XML.

 Using the markup builder to write out XML is helpful here. One of the prob-
lems faced by current web applications is that JavaScript code used in the user
interface can’t parse the Java or Groovy objects produced by the server side. An
intermediate format is needed that both sides can interpret and generate. There
are only two realistic options for that: XML and JavaScript Object Notation
(JSON). The recent trend has been to use JSON objects as much as possible, but
the markup builder inside groovlets makes it easy to produce XML instead. The
amount of XML generated by this application is minimal, so it’s not a problem to
parse-in the user interface.

PRODUCING XML Use the html markup builder in groovlets to write out XML
when needed, not to produce a web page in HTML.

This demonstration is simple, but that’s the point. Groovlets are a convenient way to
receive input data, access back-end services, and produce responses or forward the

Listing 10.8 The GameService groovlet from the Groovy Baseball application

Setting a
response
header

Access request
parameters

Writing out
XML data
user to a new destination. Because they have a built-in way to convert objects into XML

www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 10 Building and testing web applications

(and it wouldn’t be hard to add a JsonBuilder to convert to JSON instead2), they’re
ideal as a front-end for RESTful web services.

Before demonstrating the Grails framework, let me now discuss the issue of testing web
applications, both in isolation as unit tests and automated integration tests using Gradle.

10.3 Unit- and integration-testing web components
Chapter 6 discussed techniques for unit-testing Java and Groovy classes and demon-
strated how Groovy’s mock capabilities provide a standard library of mocks and stubs
to support unit tests. It’s easy to test individual classes and to run those tests automati-
cally as part of a build process.

 Testing is so important that most modern web frameworks consider testability a
major design goal, so they try to make the individual components easy to test. For
example, one of the major differences between the original Struts framework and the
more modern Struts 2, Spring MVC, JSF, or any of a number of others is how their
parts are designed with testing in mind. Despite this, testing of web components is far
less pervasive than you might expect.

 Still, unit-testing and integration-testing web applications is as important as testing
anything else in the system, and doing so automatically is critical. Integration-testing a
web application by making a tester manually enter data in forms and click links is an
extremely expensive and error-prone mechanism. There has to be a better way, and
fortunately Groovy helps a lot in that area.

 To lay the foundation, however, I’ll begin with a library of mock classes that comes
from one of the biggest Java libraries of them all, the Spring framework.

10.3.1 Unit-testing servlets with Spring
The Spring framework is one of the most popular open source libraries in the Java
world. Chapter 7 on Groovy and Spring discusses it in some detail, but I want to use it
here for two reasons: (1) Spring provides a great collection of mock objects for unit-
testing web applications, and (2) Spring is one of the underlying technologies for
Grails, so knowing more about how Spring works helps you use Grails more effectively.

 To illustrate the challenge and highlight the dependencies that need to be mocked
during testing, let me start with a simple servlet class, written in Java, called HelloServlet:

Lessons learned (groovlets)
1 Groovlets are Groovy scripts executed by an embedded servlet.
2 Groovlets contain implicit objects for request parameters, the HTTP session,

and more.
3 Groovlets use builders to generate formatted output.
2 In fact, I helped do exactly that. That’s open source for you; if you get an idea, go do it.

www.it-ebooks.info

http://www.it-ebooks.info/

269Unit- and integration-testing web components

public class HelloServlet extends HttpServlet {
 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.getWriter().print("Hello, Servlet!");
 }
}

Servlets are all created by inheritance, normally by extending javax.servlet.http
.HttpServlet. HttpServlet is an abstract class with no abstract methods. It receives
HTTP requests and delegates them to a do method corresponding to each HTTP verb,
like doGet, doPost, doPut, doTrace, or doOptions. Each of these methods takes two
arguments, one of type HttpServletRequest and one of type HttpServletResponse.

 The HelloServlet class overrides the doGet method to respond to HTTP GET
requests. It uses the resp argument (an instance of HttpServletResponse) to get the
associated output writer, which is used to print to the output stream.

 Even in a class this simple, it’s apparent that unit testing is going to be a challenge.
As a reminder of what unit testing is all about, let me say this:

UNIT-TESTING WEB COMPONENTS The goal of unit-testing web applications is
to run tests outside of a container. This requires mock objects for all the
container-provided classes and services.

In this case I need objects representing the two arguments of type HttpServlet-
Request and HttpServletResponse. In most cases I’ll also need objects representing
HttpSession, ServletContext, and possibly more.

 This is where the set of mock classes from the Spring framework helps. The Spring
API includes a package called org.springframework.mock.web that, as described in
the API, contains “a comprehensive set of Servlet API 2.53 mock objects, targeted at
usage with Spring’s web MVC framework.” Fortunately they can be used with any web
application, whether it’s based on Spring MVC or not.

 The next listing shows a JUnit test for the doGet method of my “Hello, World!” servlet.

import static org.junit.Assert.*;

import org.junit.Test;
import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.mock.web.MockHttpServletResponse;

public class HelloServletJavaTest {
 @Test
 public void testDoGet() {
 HelloServlet servlet = new HelloServlet();
 MockHttpServletRequest req = new MockHttpServletRequest();
 MockHttpServletResponse resp = new MockHttpServletResponse();

Listing 10.9 HelloServletJavaTest: a servlet test class using mock objects
3 The mock objects work for Servlet 3.0 as well, with some minor exceptions listed in the JavaDocs.

www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 10 Building and testing web applications

 try {
 servlet.doGet(req, resp);
 assertEquals("Hello, Servlet!",
 resp.getContentAsString().trim());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The try/catch blocks do their best to bury the essence in ceremony, but the intent is
clear. The method instantiates the servlet and mock objects representing the servlet
request and servlet response classes, and then it invokes the doGet method on the serv-
let with the mocks as arguments. The good part is that the MockHttpServletResponse
class has a method called getContentAsString, which captures the data written to the
output writer in the servlet so it can be compared to the expected answer.

 Note that the mock classes are being used not as Spring beans in the traditional
sense (as they are in chapter 7 on Spring), but simply as an available API.

 Unit-testing servlets is that simple, as illustrated in figure 10.3. Instantiate the serv-
let, provide it with whatever mock objects it needs, invoke the proper do method,
and check the results. This example showed getContentAsString; additional tests in
this chapter will illustrate two other convenient methods: getForwardedUrl and get-
RedirectedUrl. With these classes and methods available, no deployment to a servlet
container is required.

So far, however, I haven’t used Groovy at all. What does Groovy provide to make serv-
let development and testing easier? I’ll answer that in the next section.

 Unit testing isn’t always enough, though. I’d like to prove that my application
classes work in practice as well, so I want to do an integration test, too. That means I
need a servlet container, some way to deploy my web application, and a way to trigger
requests types other than simple GETs. That’s the subject of the next section.

10.3.2 Integration testing with Gradle

Gradle is a build tool implemented in Groovy, which was discussed extensively in
chapter 5 on build processes. Gradle uses Groovy builder syntax to specify reposito-
ries, library dependencies, and build tasks. Executing a build using one of the normal
plugins (like the Groovy plugin used throughout this book) downloads any needed

doGet(HttpServletRequest, HttpServletResponse) {
...
response.getWriter().print(...);

}

Mock object Mock object

Mock object

Figure 10.3 Servlet tests using Spring
mocks. The Spring API provides mock
classes for the request, response, and
session, and captures outputs, forwards,
and redirected URLs.
dependencies, compiles and tests the code, and prepares a final report of the results.

www.it-ebooks.info

http://www.it-ebooks.info/

271Unit- and integration-testing web components

One of the advantages of working with Gradle
is its large variety of available plugins. In this
chapter I’m working with web applications,
and Gradle understands their structure as well
as regular Java or Groovy applications. All you
need to do is include the war plugin, and
everything works. Even better, Gradle also
includes a jetty plugin, which is designed for
testing web applications.

 Simply add the following line to a Gradle
build:

apply plugin:'war'

The project will then use the default Maven
structure of a web application. That means the
web directory src/main/webapp will hold any
view layer files, like HTML, CSS, and JavaScript.
That directory will also contain the WEB-INF sub-
directory, which contains the web deployment
descriptor, web.xml. The source structure can be
mapped any way you want, but for this section
I’ll stick with the default Maven approach.

 Consider a web application that holds
HelloServlet from the previous section. The
project layout is shown in figure 10.4.

 At this stage, the Gradle build file is very
simple, as shown in the following listing.

apply plugin:'groovy'
apply plugin:'war'

repositories {
 mavenCentral()
}

def springVersion = '3.2.2.RELEASE'

dependencies {
 groovy "org.codehaus.groovy:groovy-all:2.1.5"
 providedCompile 'javax.servlet:servlet-api:2.5'
 providedCompile 'javax.servlet.jsp:jsp-api:2.2'

 testCompile "junit:junit:4.10"
 testCompile "org.springframework:spring-core:$springVersion"
 testCompile "org.springframework:spring-test:$springVersion"

Listing 10.10 Gradle build file for web application, using the war plugin

Figure 10.4 Web project layout. The
integrationTest directories are discussed
later in this chapter. The project has the
standard Maven structure for a web
application.

Gradle war
plugin

Use but do
not deploy
}

www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 10 Building and testing web applications

The listing includes the war plugin. As usual, dependencies come from Maven central.
The dependent libraries include JUnit and the Spring API libraries used for unit-
testing. The interesting feature is the providedCompile dependency. That tells Gradle
that the servlet and JSP APIs are required during compilation but not at deployment,
because the container will provide them.

 The war plugin really shines when it’s combined with the jetty plugin. Jetty is a
lightweight, open source servlet container hosted by the Eclipse foundation.4 This
makes it convenient for testing web applications, and Gradle includes a jetty plugin
with the standard distribution.

10.3.3 Automating Jetty in the Gradle build

To use Jetty in Gradle, you need to add the plugin dependency, but you also need to
configure some settings:

apply plugin:'jetty'

httpPort = 8080
stopPort = 9451
stopKey = 'foo'

The httpPort variable is the port that Jetty will use for HTTP requests. Using 8080 is
typical, because it’s the default port for both Tomcat and Jetty, but it’s certainly not
required. The Jetty container will listen for shutdown requests on the stopPort, and
the plugin will send the stopKey to Jetty when it’s time to shut down.

 Adding the plugin and properties to the Gradle build enables three new tasks:

1 jettyRun, which starts the server and deploys the application
2 jettyRunWar, which creates a WAR file before deployment
3 jettyStop, which stops the server

That’s helpful, but I want to automate the process of deploying my application so
that I can run an integration test without human intervention. To make that hap-
pen, I need the jettyRun and jettyRunWar tasks to run in “daemon” mode, which
means that after starting, control will be returned to the build so it can continue
with other tasks.

 Therefore, I add the following line to the build:

[jettyRun, jettyRunWar]*.daemon = true

Remember that the spread-dot operator (*.) in Groovy here means to set the daemon
property on each element of the collection. Without the star, the dot operator would
try to set the property on the collection itself, which wouldn’t work.

 The test itself can then be defined as a private method in the build file and called
from inside a Gradle task, as follows:
4 See www.eclipse.org/jetty/ for details.

www.it-ebooks.info

http://www.eclipse.org/jetty/
http://www.it-ebooks.info/

273Unit- and integration-testing web components

task intTest(type: Test, dependsOn: jettyRun) << {
 callServlets()
 jettyStop.execute()
}

private void callServlet() {
 String response = "http://localhost:$httpPort/HelloServlet/hello"
 .toURL().text.trim()
 assert response == 'Hello, Servlet!'
}

The intTest task is defined using the left-shift operator (<<), which is an alias for add-
ing a doLast closure. In other words, this defines the task but doesn’t execute it.
Because the task depends on the jettyRun task, jettyRun will be called first if this task
is invoked. The task calls the private callServlet method, which converts a String to
a URL, accesses the site, and compares the response to the expected value. Once the
method completes, the intTest task tells Jetty to shut down, and I’m finished.

 I can invoke the intTest task directly from the command line, but I’d rather make
it part of my normal build process. To do that, I notice that in the directed acyclic
graph (DAG, see chapter 5) formed by the Gradle build file, the next task after the test
task is completed is called check.

 That sounded way more complicated than it actually was. All I needed to do was
run Gradle with the –m flag to keep it from actually executing, which gives the fol-
lowing output:

prompt> gradle -m build
:compileJava SKIPPED
:processResources SKIPPED
:classes SKIPPED
:war SKIPPED
:assemble SKIPPED
:compileTestJava SKIPPED
:processTestResources SKIPPED
:testClasses SKIPPED
:test SKIPPED
:check SKIPPED
:build SKIPPED

BUILD SUCCESSFUL

As you can see, the check task occurs right after the test task completes, and the int-
Test task doesn’t execute at all unless I call for it. To put my task into the process, I set
it as a dependency of the check task:

check.dependsOn intTest

Now if I run the same build task again, the integration test runs at the proper time:

prompt> gradle -m build
:compileJava SKIPPED
:processResources SKIPPED
:classes SKIPPED

:war SKIPPED

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 10 Building and testing web applications

:assemble SKIPPED
:jettyRun SKIPPED
:compileTestJava SKIPPED
:processTestResources SKIPPED
:testClasses SKIPPED
:intTest SKIPPED
:test SKIPPED
:check SKIPPED
:build SKIPPED

BUILD SUCCESSFUL

Note that the jettyRun task is also triggered before the tests. Now everything works
the way I want.

 From one perspective, this is quite a feat of engineering. The class structure in
Gradle makes it easy to define new tasks, I can make sure my task runs at the proper
time, and I can even embed the test as Groovy code right in my build file.

 The problem, of course, is that I can embed the test as Groovy code right in my
build file. That works in this instance, but doing business logic (even testing) in a
build file can’t be a good long-term solution. Test cases aren’t part of a build; a build
calls them. Inside the build, they’re hard to maintain and not easily reusable.

10.3.4 Using an integration-test source tree

A good way to separate the testing infrastructure from the actual tests is to create a
special source tree for it. That provides a convenient location for the tests, which will
run automatically at the proper point in the build.

 Gradle projects have a sourceSets property, which can be used to map source
directories if they don’t fit the default Maven pattern. An example of this was given in
chapter 5. Here I want to add an additional testing directory. For both the Java and
Groovy plugins, simply defining a source set name generates the proper tasks.

 In the current build I add a source set called integrationTest:

sourceSets {
 integrationTest
}

This causes Gradle to generate tasks called compileIntegrationTestJava, compile-
IntegrationTestGroovy, processIntegrationTestResources, and integrationTest-
Classes. The directory tree now includes src/integrationTest/java, src/integrationTest/
groovy, and src/integrationTest/resources.

 For this source set I would like the compile and runtime dependencies to match
their counterparts in the regular test directory:

dependencies {
 // ... Various libraries ...
 integrationTestCompile configurations.testCompile
 integrationTestRuntime configurations.testRuntime

}

www.it-ebooks.info

http://www.it-ebooks.info/

275Unit- and integration-testing web components

As before, I’ll use the intTest task, but now I need to configure it to have the proper
classpath and test directories. Here’s the new version of the task:

task intTest(type: Test, dependsOn: jettyRun) {
 testClassesDir = sourceSets.integrationTest.output.classesDir
 classpath = sourceSets.integrationTest.runtimeClasspath
 jettyStop.execute()
}

The testClassesDir property points to the compiled test sources. The classpath is set
to the runtime classpath of the source set, which is simply the runtime classpath of the
regular tests. I can now place integration tests into the src/integrationTest directory
tree, and they’ll be executed at the proper time.

 One final issue remains before presenting the integration tests. It’s easy to create an
HTTP GET request: you convert the string URL to an instance of java.net.URL and then
access its text property, as shown previously. It’s not as simple to create POST, PUT,
and DELETE requests, however. These are discussed in some detail in chapter 8, but
for now I’ll use a third-party open source library.

 The HTTPBuilder library (http://groovy.codehaus.org/modules/http-builder/) is
a Groovy wrapper around Apache’s HttpClient library. It uses Groovy to make it easy
to execute HTTP requests and process the responses. To use it, I added the following
dependency to my Gradle build file:

testCompile 'org.codehaus.groovy.modules.http-builder:http-builder:0.6'

With this addition, the following listing now shows a variety of integration tests. The
test class includes tests both with the HTTPBuilder client and without.

class ServletIntegrationTests {
 def httpPort = 8080

 @Test
 void testHelloServlet() {
 String response =
 "http://localhost:$httpPort/HelloServletWithHttpBuilder/hello"
 .toURL().text.trim()
 assert response == 'Hello, Servlet!'
 }

 @Test
 void testHelloServletGetWithHttpBuilder() {
 def http = new HTTPBuilder("http://localhost:$httpPort/")
 def resp = http.get(path:'HelloServletWithHttpBuilder/hellogs',
 contentType: ContentType.TEXT) { resp, reader ->
 reader.text.trim()
 }
 assert resp == 'Hello from a Groovy Servlet!'
 }

Listing 10.11 ServletIntegrationTests.groovy: accessing deployed servlets

GET request

GET request with
HTTPBuilder
www.it-ebooks.info

http://groovy.codehaus.org/modules/http-builder/
http://www.it-ebooks.info/

r

276 CHAPTER 10 Building and testing web applications

 @Test
 void testHelloServletPostWithName() {
 def http = new HTTPBuilder("http://localhost:$httpPort/")
 def resp = http.post(path:'HelloServletWithHttpBuilder/hellogs',
 requestContentType: ContentType.TEXT,
 query:[name:'Dolly']) { resp, reader ->
 reader.text.trim()
 }
 assert resp == 'Hello, Dolly!'
 }
}

The listing demonstrates three different types of tests. The first shows a simple GET
request without any library dependencies. The second uses the HTTPBuilder5 library
to execute a GET request, and the last does the same with a POST request. The
detailed syntax comes from the library documentation.

 With this infrastructure in place, both unit and integration tests can be added to a
standard project tree, and both can be executed with an embedded Jetty server using
a plugin in the Gradle build.

GRADLE INTEGRATION TESTS Using Gradle’s web and jetty plugins with an
integration source tree, web applications can be tested in “live” mode during
a normal build.67

5 HTTPBuilder includes a class called RESTClient, which is used extensively in the discussion of REST in
chapter 9.

The Geb web testing framework
Geb (www.gebish.org) (pronounced “jeb,” with a soft g) is a Groovy testing tool based
on Spock that allows tests to be written using a page-centric approach to web appli-
cations. Website interactions can be scripted in terms of page objects, rather than
simple screen scraping. It uses a jQuery-like syntax along with Groovy semantics to
do browser automation, using the WebDriver library under the hood.

The Geb project shows a lot of promise and has a growing number of adherents. It’s
certainly worth considering as a functional testing tool, along with alternatives like
Canoo WebTest (http://webtest.canoo.com) and the Selenium6 (http://seleniumhq.org)
JavaScript library. An entire chapter could be written covering those tools alone, but
this book is arguably already long enough.

Because this an active area of development, I recommend the testing presentations
at Slide Share by Paul King (for example, www.slideshare.net/paulk_asert/make-
tests-groovy), one of the coauthors of Groovy in Action (Manning, 2007) and an out-
standing developer, as a helpful reference.7

6 By the way, do you know why it’s called Selenium? When it was developed, there was a much-loathed product
called Mercury Test Runner. As it happens, the element Selenium (Se) is the cure for Mercury (Hg) poisoning.

POST request
with HTTPBuilde
7 I’ll just say it here: everything Paul King says is right. Start with that assumption and you’ll be fine.

www.it-ebooks.info

www.gebish.org
www.slideshare.net/paulk_asert/make-tests-groovy
www.slideshare.net/paulk_asert/make-tests-groovy
http://webtest.canoo.com
http://seleniumhq.org
http://www.it-ebooks.info/

277Grails: the Groovy “killer app”

Groovy has other classes that support server-side configuration, like ServletBinding,
which extends the regular script Binding class.

Larger applications require more structure to be easily maintainable. The Java
world is full of web frameworks, from Struts (both versions 1 and 2) to Tapestry to
Wicket to JSF to Spring MVC and more. In the Groovy world, one particular frame-
work is dominant, to the point of attracting developers to Groovy just so they can
use this framework. That’s the definition of a killer app: an application so cool peo-
ple will learn a new language just to use it. That framework, as most readers well
know, is called Grails.

 This is a book about using Java and Groovy together, so I won’t present a standard
tutorial on how to get started with Grails. There are plenty of references for that avail-
able.8 Instead, I’ll show a simple, but hopefully nontrivial, application, discuss some of
the architectural choices made when creating Grails, and show how existing Java
classes can be incorporated into a Grails application.

10.4 Grails: the Groovy “killer app”
It’s hard to overstate the impact on the Java world made by the Ruby on Rails (RoR)
comet that streaked across the Java sky back in 2005. Java web development at the
time consisted of a series of layers composed of a wide mix of technologies, each with
its own configuration files and dependencies. Just starting a new web application was
a challenge.

 Ruby on Rails, with its strong emphasis on the DRY (Don’t Repeat Yourself) prin-
ciple and Convention over Configuration, demonstrated how much simpler life
could be. While a lot of Java web developers embraced the RoR approach, not every-
one was in a position to simply abandon the Java world. The big question was, how
do we bring the rapid development principles from the RoR world into Java enter-
prise development?

 I’ll address that in a moment, but first I want to discuss every web application ever
created,9 from the 30,000-foot level. Figure 10.5 shows the standard architecture.

 The user interface in the standard model is a browser, also known as a lightweight
client, as opposed to a heavyweight (desktop) Java client. The browser presents views

Lessons learned (testing)
1 Spring provides a library of mock objects for unit-testing web applications. The

same library is built into Grails.
2 The web and Jetty plugins in Gradle make it easy to build and deploy web appli-

cations. With some work, Gradle can do automatic integration testing.

8 See especially the excellent Grails in Action, by Peter Ledbrook and Glen Smith (Manning, 2009).

9 True for most non-web applications as well. These layers are pretty universal.

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 10 Building and testing web applications

to the user, who occasionally submits information back to the server side. The infor-
mation goes through controllers, which are classes that decide where to go, what busi-
ness logic to invoke, and what view to use when the request has been processed.

 A key principle of Java web application development is to keep the controllers
thin, meaning minimal in the amount of actual processing that they do. Instead, the
business logic is delegated to service classes. The services are needed also as transac-
tional boundaries, because data access is handled through a set of classes in a data
access layer. The data access classes follow the Data Access Object (DAO) design pat-
tern, which encapsulates10 a data source and transforms entities into database tables
and back.

 While I’m on the subject, I need to show you one more figure that’s inevitable in
the web application world. It’s the standard Model-View-Controller (MVC) architec-
ture, illustrated in figure 10.6.

 The basic idea behind MVC is separation of concerns. Views display model objects,
collect data from users, and submit it to controllers. Controllers create and configure
model objects and forward them to the views. While the controllers and views are
tightly coupled, the model objects are not tied to either. If anything in the system is

10 Encapsulates. Sigh. Can’t we just say “wraps”? Why does every term from OOP have to be so overly compli-
cated? Why can’t we just “make” or “create” something, rather than “instantiate” it? And I get the whole “many
forms” idea, but who thought the term “polymorphism” was exactly what we needed? Who talks like that

DB

Browser

Service layer

Data access layer

(DAO)

Transform objects

to table rows

Business logic,

transactions

Controllers,

views
Presentation layer

Figure 10.5 The layered design of every Java
web application ever made. Presentation
layer classes, including controllers, go
through transactional services to access
persistent data.

Controller

Model

View

Calls

Forwards

Displays Creates and

configures
Figure 10.6 The Model-View-Controller (MVC)
architecture, little changed since the days of
Smalltalk. Views display model objects, which
are created and configured by controllers.
(other than me, after all these years)?

www.it-ebooks.info

http://www.it-ebooks.info/

279Grails: the Groovy “killer app”

reusable, it’s the model classes. By the way, noticeably absent from this architecture
are the services from the previous figure, but the approach is an oversimplification
anyway, so I choose not to worry about it.

 Grails is typical of the MVC-based, layered architecture just described, with some inter-
esting variations that are discussed in this section. Grails is notable for several reasons:

■ Grails is built on top of existing, mature technologies. Grails combines a series of
Groovy domain-specific languages (DSLs) on top of Spring and Hibernate.

■ Grails is a complete stack framework (in much the same way as RoR) that combines
open source solutions from the view layer to the persistence layer and every-
thing in between.

■ Grails has an interactive scripting capability that makes it easy to rapidly prototype
applications.

■ The design of Grails is based on a plugin system that makes it very easy to extend.11

■ Grails applications deploy on existing Java-based infrastructure.

Grails relies on the Spring framework for its internal infrastructure, so anything
Spring can do, Grails can do, either directly or through a plugin. Persistence is man-
aged through the Hibernate Object-Relational Mapping layer, which is powerful
enough but can also be replaced for the modern family of NoSQL databases.

 To show how Grails fits into the standard architecture, I’ll walk through the com-
ponents of an example.

10.4.1 The quest for the holy Grails

Grails can be used to design arbitrarily complex web applications, but one of its sweet
spots is to provide a web interface on a set of database tables. I’ll come back to that
after showing the components, because it’s both a blessing and a curse.

GRAILS The goal of this section is to demonstrate a portion of a small but
nontrivial Grails application. Chapter 8 examines GORM in more detail.
Chapter 9 on REST briefly talks about REST in Grails. Finally, chapter 7 on
Spring talks about the underlying infrastructure.

Consider a web application with four domain classes: Quest, Task, Knight, and Castle.

DOMAIN CLASSES In Grails, instances of domain classes map to database
table rows.

The Grails approach to convention over configuration means that there’s a specific
directory for everything, as illustrated in figure 10.7. Domain classes have their own
directory, as do controllers, services, and views. This makes it easy to understand a
Grails application you haven’t written, because they all store their elements in the
same place.
11 At latest count, there are over 800 plugins available for Grails (of widely varying quality).

www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 10 Building and testing web applications

 Grails domain classes are normally written in Groovy, though that’s not required.
In the application shown in the next listing, a quest has a name and is associated with
many tasks and knights.

class Quest {
 String name
 String toString() { name }

 static hasMany = [knights:Knight, tasks:Task]
 static constraints = {
 name blank:false
 }
}

The Quest has a name property and an override of toString to return it. The key-
word hasMany is part of GORM, the Grails Object-Relational Mapping DSL, which pro-
grammatically configures Hibernate. Other ORM tools are available, but Hibernate is
the default. The hasMany keyword implies a foreign key relationship between both the
Knight and Task tables and the Quest table.

 Domain classes also have constraints, which are enforced by Grails when creating
new instances. For the Quest, the name field cannot be empty.

Listing 10.12 The Quest domain class

Built-in testing

Specific directories

for controllers, services,

and domain classes

Subfolders for

each domain

Figure 10.7 Standard layout for all
Grails applications. Adherence to
convention over configuration makes it
easy to find the various components,
from controllers to services to domain

classes to views.

www.it-ebooks.info

http://www.it-ebooks.info/

281Grails: the Groovy “killer app”

The Task class is shown in the next listing. Tasks have a name, a priority, a start and
end date, and a completion marker.

class Task {
 String name
 int priority = 3
 Date startDate = new Date()
 Date endDate = new Date()
 boolean completed

 String toString() { name }

 static belongsTo = [quest:Quest]

 static constraints = {
 name blank:false
 priority range:1..5
 startDate()
 endDate validator: { value, task ->
 value >= task.startDate
 }
 completed()
 }
}

The constraints closure states that Tasks must have a name, a priority that falls
between 1 and 5, and an end date that’s greater than or equal to the start date. The
other notable part of this class is the belongsTo keyword, which implies a cascade
delete relationship between quests and tasks. If a Quest is deleted, all its associated
Tasks are removed from the database as well.

Knights are associated with both Quests and Castles, but not through a cascade
delete. In fact, a Knight can be between Quests and not belong to a Castle, so both
references are listed as nullable in the next listing.

class Knight {
 String title = 'Sir'
 String name
 Quest quest
 Castle castle

 String toString() { "$title $name" }

 static constraints = {
 title inList: ['Sir','King','Lord','Squire']
 name blank: false
 quest nullable: true
 castle nullable: true
 }

Listing 10.13 Tasks belong to a Quest

Listing 10.14 The Knight class, which is associated with a Quest and a Castle
}

www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 10 Building and testing web applications

The last domain class is Castle, which has a name, a city, a state, and a computed lati-
tude/longitude pair, as shown in the following listing.

class Castle {
 String name
 String city
 String state
 double latitude
 double longitude

 String toString() { "$name Castle" }

 static hasMany = [knights:Knight]

 static constraints = {
 name blank: false
 city blank: false
 state blank: false
 latitude min: -90d, max: 90d
 longitude()
 }
}

The hasMany variable in Castle indicates that the Knight table will have a foreign key
to the Castle table.

 In a trivial Grails demonstration, all the associated controllers would be scaffolded.
In Grails, that means they have a single property, called scaffold, as shown:

class QuestController {
 static scaffold = Quest
}

The scaffold term tells Grails to dynamically (that is, at runtime) generate views to
list, show, edit, update, and delete a quest. The code for each of those actions is
produced at runtime, so it’s not visible here. Eventually, however, I need to customize
the controllers and views, so I need to generate the static versions.

 A portion of the Castle controller is shown in the next listing.

class CastleController {
...
 def list(Integer max) {
 params.max = Math.min(max ?: 10, 100)
 [castleInstanceList: Castle.list(params),
 castleInstanceTotal: Castle.count()]
 }
...}

The list action checks to see if the params map already contains a key called max. If
so it’s converted to an integer and reset to the minimum of the provided value and

Listing 10.15 The Castle, which stores location information

Listing 10.16 The static Castle controller class
100. If the parameter doesn’t exist, then 10 is used as the max. Starting in Grails 2.0,

www.it-ebooks.info

http://www.it-ebooks.info/

283Grails: the Groovy “killer app”

request parameters can be used as arguments to controller actions, and type conver-
sions will be done automatically.

CONTROLLERS Grails controllers contain methods called actions that map to
URLs. They either forward to other resources, render outputs directly, or redi-
rect to other URLs.

More important for the architecture discussion, however, is the map provided as the
return value of the action. The map contains two keys, castleInstanceList and
castleInstanceTotal. The former is associated with a list of 10 castles (or whatever
the max parameter evaluates to), and the latter gives their total number. That’s fine,
but it’s how those values are computed that’s truly interesting. Grails adds both a list
method and a count method as static methods on the domain classes.

NO DAO CLASSES Instead of Data Access Objects, Grails uses Groovy metapro-
gramming to add static methods to the domain classes. This follows the Active
Record12 approach, which is unusual in Java frameworks but very popular
in Ruby.

According to the standard architecture, a controller is supposed to access DAO classes
through a service layer. In the static scaffolding there’s no service layer. That’s fine if
the application really is little more than a web-driven database, but in general applica-
tions need more than that.

SERVICES Business logic in Grails should be placed in services, which are
transactional, Spring-managed beans that can be automatically injected into
other artifacts.

This application does contain a service. It’s the Geocoder, familiar from the Groovy
Baseball application. In the next listing it operates on Castles.

class GeocoderService {

 String base = 'http://maps.googleapis.com/maps/api/geocode/xml?'

 def fillInLatLng(Castle castle) {
 String encodedAddress =
 [castle.city, castle.state].collect {
 URLEncoder.encode(it, 'UTF-8')
 }.join(',+')
 String qs =
 [address: encodedAddress, sensor: false].collect { k,v ->
 "$k=$v"
 }.join('&')

12 From Martin Fowler’s Patterns of Enterprise Application Architecture (Addison-Wesley Professional, 2002). See

Listing 10.17 The Geocoder, yet again, which works on Castles this time
http://en.wikipedia.org/wiki/Active_record for a brief summary.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Active_record
http://www.it-ebooks.info/

284 CHAPTER 10 Building and testing web applications

 def root = new XmlSlurper().parse("$base$qs")
 castle.latitude = root.result[0].geometry.location.lat.toDouble()
 castle.longitude = root.result[0].geometry.location.lng.toDouble()
 }
}

That much code certainly has to be tested.13 Grails has had testing capabilities from
the beginning, which were originally based on JUnit subclasses. Since version 2.0,
Grails test cases use annotations (specifically, the @TestFor annotation) to control so-
called mixin classes. The @TestFor annotation applied to a controller or service test
automatically instantiates the test and assigns it to an attribute.

 For example, the next listing shows the test for the GeocoderService class.

@TestFor(GeocoderService)
class GeocoderServiceTests {

 void testGoogleHeadquarters() {
 Castle google = new Castle(name: 'Google',
 city: 'Mountain View', state: 'CA')

 service.fillInLatLng(google)

 assertEquals(37.4, google.latitude, 0.1)
 assertEquals(-122.1, google.longitude, 0.1)
 }
}

TEST CASES Grails generates a unit-test class for each artifact (domain class,
controller, or service) that it produces. The default implementations fail on
purpose to encourage you to implement them properly.

In a Grails application, services use Spring’s dependency injection. Here the Geocoder
service is injected into CastleController to update the latitude and longitude before
an instance is saved in a database. Injecting a service is done by declaring an attribute
with the same name as the service with a lowercase first letter.14 To illustrate, the fol-
lowing code is another section of the CastleController implementation.

class CastleController {
 def geocoderService

 def save() {
 def castleInstance = new Castle(params)
 geocoderService.fillInLatLng(castleInstance)

13 In pure test-driven development (TDD), the test would be written first. Then you watch it fail, implement the
service, and watch the test eventually pass.

Listing 10.18 The unit test for the GeocoderService

Listing 10.19 Dependency injection of a service into a controller

Automatically
instantiated by
@TestFor

Using JUnit assertEquals for
doubles with a precision

Injecting the dependency
by declaring a variable
with the proper name

Using the
injected service
14 In Spring parlance, this is “autowiring by name.”

www.it-ebooks.info

http://www.it-ebooks.info/

285Grails: the Groovy “killer app”

 if (!castleInstance.save(flush: true)) {
 ...
 }

Services are injected by name (the term is autowiring in Spring) into the controller, so
declaring a variable of the same name as the service using a lowercase first letter tells
Grails to provide an instance of the service at that point. The service is used inside the
save method to update the Castle before saving it.

GRAILS SERVICES Use Grails applications with the standard, layered architec-
ture. Let controllers delegate to services, and let the transactional services
work with the databases.

As noted earlier in this section, Grails has a rich set of available plugins. One that’s
useful in this application is the Google Visualization plugin, which provides a custom
library of GSP tags that generate JavaScript for Google Maps applications.

 As with everything else, Grails manages plugin installations in a standard way. The
file BuildConfig.groovy in the grails-app/conf folder has a section on plugins. Add-
ing the proper statement to that file causes Grails to automatically download and
install the plugin on its next application start.

 Here’s the relevant section of the BuildConfig.groovy file:

plugins {
 runtime ":hibernate:$grailsVersion"
 runtime ":jquery:1.8.3"
 runtime ":resources:1.1.6"

 compile ":google-visualization:0.6.2"
 build ":tomcat:$grailsVersion"
}

The documentation for the Google Visualization plugin says that to use it, add the tag
<gvisualization:apiImport /> to the <head> section of the GSP where you want the
map to appear. Then the plugin provides a <gvisualization:map /> tag to produce
the map itself. The map tag uses columns and data attributes for the information for
the map points, which I need to specify.

 The Quest application provides a nice demonstration of the process involved. Sup-
pose I want the map to appear on the list.gsp page associated with the castles. Grails
maps the URL http://<host>:<port>/holygrails/castle/list to the list action in the
CastleController class. The last expression in that action is a map (a Groovy one
rather than a Google one), so Grails automatically adds the entries to the HTTP
request and forwards to the list.gsp page.

 The goal, therefore, is to add the information needed by the map to the proper
controller action. As usual, the data should come from a service, and I already have
the GeocoderService available. The next listing shows the additional methods.
www.it-ebooks.info

http://<host>:<port>/holygrails/castle/list
http://www.it-ebooks.info/

286 CHAPTER 10 Building and testing web applications

class GeocoderService {

 // ... fillInLatLng from before ...

 def columns =
 [['number','Lat'],['number','Lon'],['string','Name']]

 def getMarkers() {
 Castle.list().collect { c ->
 [c.latitude, c.longitude, c.toString()]
 }
 }
}

The list action in the CastleController is already returning a list of castles and the
total count, which are used to display them in a table. I might as well use the same
action to return the columns and data for the map.

 The revised list action in CastleController looks like this:

def list() {
 params.max = Math.min(params.max ? params.int('max') : 10, 100)
 [castleInstanceList: Castle.list(params),
 castleInstanceTotal: Castle.count(),
 mapColumns:geocoderService.columns, mapData:geocoderService.markers]
}

The following listing shows the additions made to the view, list.gsp, in order to display
a map of castles.

<%@ page import="mjg.Castle" %>
<!doctype html>
<html>
 <head>
 ...
 <gvisualization:apiImport />
 </head>
 <body>
 ...
 <gvisualization:map elementId="map" showTip="${true}"
 columns="${mapColumns}" data="${mapData}"/>
 <div id="map" style="width: 400px; height: 300px"></div>
 ...
</html>

The result is shown in figure 10.8, which displays the castles on a Google Map. The
plugin generates the JavaScript required by the Google Maps API.

 Grails is a large, powerful framework with lots of features, and the features it lacks
are provided with plugins. If you spend any time with Groovy, it’s worth a look when-
ever you have to build web applications.

Listing 10.20 Methods added to the GeocoderService to support the mapping plugin

Listing 10.21 Modifications to list.gsp to display a Google Map of castles

Column names and types
required by Google Maps

Transforms the Castles
into a list of triples

Additions
for Google
Visualization
plugin

<div> to
hold the
Google Map
www.it-ebooks.info

http://www.it-ebooks.info/

287Grails: the Groovy “killer app”

Grails uses Spring and Hibernate under the hood, so it mixes Groovy-based domain-
specific languages on top of major Java libraries.

Lessons learned (Grails)
1 Grails is a convention-over-configuration framework for producing web applications.
2 Grails domain classes are managed by Hibernate and mapped to database tables.
3 Grails services are Spring-managed beans that are autowired by name into other

artifacts. They use Spring’s transaction management by default.
4 The plugin design of the Grails architecture makes it easy to add additional

capabilities.

Figure 10.8 Displaying the castles on a Google Map. The Castle domain classes have their latitude
and longitude coordinates set by the GeocoderService. The Google Visualization plugin generates
the proper JavaScript to add them to a Google Map.
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 10 Building and testing web applications

10.5 Summary
This chapter examined ways Groovy helps with testing and building web applications.
Unit tests are similar to their Java counterparts, but the Gradle build framework pro-
vides a great way to do integration testing of deployed applications.

 The Groovy JDK includes classes like ServletCategory, which simplify the imple-
mentation of web components. Groovy also has a built-in web scripting engine called
groovlets, which makes it easy to work with requests, responses, sessions, and input
parameters in a web application.

 Finally, this chapter includes a brief discussion of Grails, possibly the biggest Java/
Groovy integration success story of them all.
www.it-ebooks.info

http://www.it-ebooks.info/

appendix A
Installing Groovy

Installing Groovy is easy. This appendix shows you how to do it, with a review of the
various options involved.

A.1 Installing a JDK
Groovy generates Java bytecodes that are interpreted by a Java virtual machine. This
means you have to have Java installed in order to install Groovy. You need a full Java
Development Kit (JDK), rather than a Java Runtime Environment (JRE). You only
need the Standard Edition (SE) of Java, rather than the Enterprise1 Edition.

 The official JDK for Java SE is available from Oracle at http://mng.bz/83Ct. At
the time of this writing, the current version is Java SE 7u25 (Java 7, update 25), but
Groovy works on any version of Java 1.5 and above.

 Be sure to set an environment variable called JAVA_HOME to point to the instal-
lation directory. You also probably want to add the bin folder under JAVA_HOME to
your path.

 On Windows that will look like this:

C:\> set JAVA_HOME="C:\Program Files\Java\jdk1.7.0"
C:\> set PATH=%JAVA_HOME%\bin;%PATH%

Those commands will set the JAVA_HOME and PATH properties in the local shell. To
set them everywhere, right-click My Computer, select Properties, click Advanced,
and then click Environment Variables. Add them as System variables, and start a
new shell.2

1 Just as an aside, when did the word business get deprecated in favor of the word enterprise? Is it a Star Trek
thing? Does being an Enterprise Architect mean you design starships for a living? Are Enterprise Java
Beans used when making coffee on a starship?

2 The specifics of the process will be slightly different on different Windows versions, but the concepts are
the same. Set the variables as System environment variables, and start a new shell because Windows won’t
289

update an existing one.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

290 APPENDIX A Installing Groovy

 On Macs or Unix flavors, the same settings are

$ export JAVA_HOME=/Library/Java/…
$ export PATH=$PATH:$JAVA_HOME/bin

There are too many variations on these statements to count, depending on directory
structure and version numbers, but the principles are always the same: install Java, set
the JAVA_HOME variable to point to it, and add its bin subdirectory to your path.

A.2 Installing Groovy
Assuming you’ve installed Java, installing Groovy is easy. Again, there are several
options, but the basic process comes down to downloading and unzipping the distri-
bution, setting a GROOVY_HOME environment variable, and adding its bin subdirectory
to your path.

 If you’re not a fan of automated installers or you don’t have root privileges on your
machine, you can download a zipped, binary distribution of Groovy directly. The cur-
rent version can always be found at http://groovy.codehaus.org/Download. You can
get either the binary release or the source release (or both). Either way, unzip the
download into a directory of your choice.

 On Windows, following the same pattern as the Java installation, it’s

C:\> set GROOVY_HOME=C:\Groovy\groovy-2.1.6
C:\> set PATH=%GROOVY_HOME%\bin;%PATH%

On a Mac or Unix, the same process is

$ export GROOVY_HOME=...
$ export PATH=$PATH:$GROOVY_HOME/bin

If you don’t mind installers, a good one is available for Windows. An EXE installer is
available on the same download page, which will install Groovy to a directory of your
choice, set the GROOVY_HOME variable for you, and add the bin folder underneath it to
your path. It also offers to install some optional libraries for you, which are useful and
do not interfere with your regular installation in any way. I’ve been using the Windows
installer at client sites for years and have never had a problem with it. It will, by the
way, notify you if you don’t have a JAVA_HOME environment variable set.

 If you’re on a Mac or other Unix box, you have other convenient alternatives avail-
able. First, there’s a MacPorts (www.macports.org) option. Run

$ sudo port install groovy

That will download and install the latest version. If you prefer HomeBrew (http://
mxcl.github.io/homebrew), the relevant command is

$ brew install groovy

That, too, will download the latest version, install it, and create soft links to the execut-

able scripts in your path.

www.it-ebooks.info

http://groovy.codehaus.org/Download
http://www.macports.org/
http://mxcl.github.io/homebrew/
http://mxcl.github.io/homebrew/
http://www.it-ebooks.info/

291Testing your installation

 The other major alternative is to use GVM, the Groovy enVironment Manager
(http://gvmtool.net). This is the best option if you plan to switch versions at any time.
GVM is installed using curl, with this command:

$ curl –s get.gvmtool.net | bash

GVM assumes you are using a bash shell, but the same process works for most Unix fla-
vors. It also works on Windows if you install Cygwin. See the web page for details.

 The great advantage of GVM is that it makes switching versions almost trivially
easy. If you have GVM installed, you can find out which versions of Groovy are avail-
able by typing

$ gvm list groovy

You can install the latest one like this:

$ gvm install groovy

If you supply a version number to the install command, you can select which version
of Groovy to install. You can switch from one version of Groovy to another using

$ gvm use groovy [version]

If the version you request isn’t installed, GVM will download and install it for you. In
my own work, I don’t switch Groovy versions that often, but I switch Grails versions
frequently and the same tool works for Groovy, Grails, Griffon, and a few other soft-
ware distributions. GVM installs software under a .gvm folder in your home direc-
tory, so you should set the GROOVY_HOME variable to point there. For example, on my
Mac, I have

$ export GROOVY_HOME=/Users/kousen/.gvm/groovy/current

That’s useful because switching versions through GVM updates the current link. I
don’t have to explicitly add that folder to my path, though, because the tool adds soft
links to a bin folder already in my path.

A.3 Testing your installation
The easiest way to see if your Groovy installation is working is to try out the Groovy
shell or the Groovy console. If you type

$ groovysh

you should get a response like this:

Groovy Shell (2.1.5, JVM: 1.7.0_11)
Type 'help' or '\h' for help.

groovy:000> println 'Hello, World!'
Hello, World!
===> null

groovy:000>

www.it-ebooks.info

http://gvmtool.net/
http://www.it-ebooks.info/

292 APPENDIX A Installing Groovy

The Groovy shell is essentially the REPL3 for Groovy (or even Java). Note that the
response here is null because the println command has a void return type.

 The Groovy console is a bit more useful. Start it with this command:

$ groovyConsole

On Windows, that spawns a separate process. On Macs and Unix flavors, the groovy-
Console command locks up that particular shell, so you might want to run it in the
background by appending an ampersand (&). The result looks like figure A.1.

 The Groovy console appends its results to the output window, which can be prob-
lematic. Worse, if you type a line that throws an exception,4 the result window stops
scrolling, even if you later fix the error. My recommendation, therefore, is to select
the last entry under the View menu, entitled Auto Clear Output On Run. That will
make the console clear the output every time you execute a script. The Groovy con-
sole includes an Abstract Syntax Tree browser, among other things. It’s useful even if
you normally work with an IDE.

 Speaking of IDEs, the next section documents their current level of support.

A.4 IDE support
If you’re an Eclipse user, the Groovy Eclipse plugin is state-of-the-art. To add it to an
existing Eclipse distribution, use the update string found on the page at http://groovy
.codehaus.org/Eclipse+Plugin. The plugin can also be found at the Eclipse Marketplace.

 Eclipse has an annoying bug that requires the installation directory to be writable
by the user. Groovy Eclipse cannot be installed into a so-called “shared” install, which

3 Read-Eval-Print-Loop, discussed further in appendix B.

Figure A.1 The Groovy console, which comes with the Groovy distribution.
Remember to go under the View menu and select Auto Clear Output On Run to
make the tool far more practical.
4 I know you would never do that, but you know what your coworkers are like. They’re capable of anything.

www.it-ebooks.info

http://groovy.codehaus.org/Eclipse+Plugin
http://groovy.codehaus.org/Eclipse+Plugin
http://www.it-ebooks.info/

293Installing other projects in the Groovy ecosystem

often includes the c:\Program Files directory on Windows. Simply move your Eclipse
installation somewhere else, and you’ll be fine.

 If you only want to use Groovy, the Groovy Eclipse plugin is sufficient. If you want
to use Grails as well, then you can install the Groovy and Grails Tool Suite, GGTS.
GGTS is a set of plugins based on Eclipse and is managed by Pivotal (formerly Spring-
Source). You can download GGTS from www.springsource.org/downloads/sts-ggts. Be
careful: the site lists the STS downloads first and the GGTS downloads below that.

 Both STS and GGTS come from the same code base. The difference is the initial set
of plugins. GGTS comes with both the Groovy Eclipse plugin and Grails support that
provides an entire Grails perspective, various wizards, keyboard shortcuts, and more.

 The major IDE alternative is IntelliJ IDEA. The page at www.jetbrains.com/idea/
features/groovy_grails.html discusses its Groovy and Grails features. It even has Grif-
fon support, which is pretty unusual at this point. IntelliJ IDEA is the tool of choice of
most of the core Groovy, Grails, and Griffon team members, but it’s a commercial
product and therefore requires a license.5 If you participate in an open source project
or make presentations at your local Java/Groovy/Grails user group, you can get a free
license, which is one more reason to participate in the open source world.

 The web page at http://groovy.codehaus.org/IDE+Support lists plugins and sup-
port for other IDEs, ranging from Emacs to TextMate to UltraEdit. If you can’t find
the one you’re interested in, be sure to ask on the mailing lists. Somebody will know
and tell you where to find what you need.

A.5 Installing other projects in the Groovy ecosystem
The GVM tool currently will install and manage Groovy, Grails, Griffon, and Gradle
distributions, among other projects.6 That’s the easiest way to proceed if you’re on a
Mac or Unix distribution. Again, on Macs both HomeBrew and MacPorts have options
for the same set of projects. On Windows, Groovy has the installer mentioned earlier
in this chapter.

 Grails is always a ZIP file that you download and unzip. Then you set an environ-
ment variable (GRAILS_HOME in this case) and add the bin subdirectory to your path.
Griffon and Gradle work much the same way.

 Note that all of these projects have their own source code repositories on GitHub.
You can always clone the distribution and build it yourself, though that tends to get
involved. See the respective project pages for details. One of the best things about
GitHub is that you can browse the source code without downloading anything. It’s a
good idea to get familiar with the test cases contained in the various projects, because
they’re the executable documentation for each. Web pages can go out of date, but

5 There’s a community edition that didn’t used to offer Grails support, but that may be changing. Be sure to
check the website for current capabilities.
6 The current list of candidates is Groovy, Grails, Griffon, Gradle, Lazybones, Vertx, and Groovyserv.

www.it-ebooks.info

http://www.springsource.org/downloads/sts-ggts
http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.jetbrains.com/idea/features/groovy_grails.html
http://groovy.codehaus.org/IDE+Support
http://www.it-ebooks.info/

294 APPENDIX A Installing Groovy

continuous integration servers execute test cases all the time. When they break every-
body knows about it, and they get fixed right away.

 The only other project discussed extensively in this book is Spock. Spock is a
library rather than a framework and is usually installed as part of a Gradle (or Maven)
build. Its source code is on GitHub, too.
www.it-ebooks.info

http://www.it-ebooks.info/

appendix B
Groovy by feature

Some people learn by example. Some people learn by feature. In this book I’m try-
ing to satisfy both. If you’re a Java developer with only passing familiarity with
Groovy, hopefully either this appendix or chapter 2, “Groovy by example,” will
bring you up to speed on the Groovy language.

 This appendix walks through most of the major features of Groovy and provides
short snippets of code illustrating them. While this chapter does not claim to be an
exhaustive reference like Groovy in Action (Manning, 2007; called GinA in the rest of
this appendix), it has a couple of features that favor it over the more comprehen-
sive treatment: (1) it’s considerably shorter, and (2) it has the words “Don’t
Panic!” written in nice, friendly letters in the appendix (in this sentence, actually).1

More seriously, in this appendix I review the major features of the Groovy program-
ming language that are used throughout the book.

 Because this isn’t going to be a comprehensive treatment, I’ve chosen aspects
of Groovy to review based on two criteria: (1) how often they’re used in practice
and (2) how much they offer an advantage over corresponding features in Java
(assuming the corresponding feature in Java even exists). After getting the basics
of Groovy out of the way (like how to run Groovy programs and basic data types
like numbers and strings), I’ll move on to issues like collections, I/O, XML, and
more. Some topics, like SQL, are covered in other chapters, but you’ll find the
essentials here.

1 For those born too late, that was a Hitchhiker’s Guide to the Galaxy reference. I could go on to say that this
chapter “contains much that is apocryphal, or at least wildly inaccurate,” but that probably wouldn’t be
295

good for sales.

www.it-ebooks.info

http://www.it-ebooks.info/

296 APPENDIX B Groovy by feature

B.1 Scripts and the traditional example
Assuming you already have Groovy installed,2 I’ll start with the traditional “Hello,
World!” program, as shown here:

println 'Hello, Groovy!'

That’s the whole program. In Java, you need a main method inside a class, and inside
the main method you call System.out.println to write to the console. Java develop-
ers are used to it, but there are roughly 8 to 10 different object-oriented concepts
involved, depending on how you count them.3 In Groovy, the whole program is a sin-
gle line.

 To demonstrate, consider one of the two execution environments that come with
Groovy, the groovysh command, which starts the Groovy shell. The Groovy shell is a
REPL4 that allows you to execute Groovy code a line at a time. All of the lines in the
following listing produce the same result.

$ groovysh
Groovy Shell (2.1.5, JVM: 1.7.0_11)
Type 'help' or '\h' for help.
--
groovy:000> System.out.println("Hello, World!");
Hello, World!
===> null
groovy:000> System.out.println("Hello, World!")
Hello, World!
===> null
groovy:000> println("Hello, World!")
Hello, World!
===> null
groovy:000> println "Hello, World!"
Hello, World!
===> null
groovy:000> println 'Hello, World!'
Hello, World!
===> null
groovy:000>

In each case the println method prints to the console and returns null. When
there’s no ambiguity, the parentheses can be omitted. Semicolons work as in Java, but
they’re optional.

2 See appendix A for details.
3 A rough count includes classes, methods, strings, arrays, public access, static methods and attributes, void

return types, overloaded methods like println, and more. It’s no accident that Bruce Eckel’s Thinking in Java
(Prentice-Hall, 2002) takes over 100 pages just to get to his first “Hello, World” program.

Listing B.1 Running “Hello, World!” in the Groovy shell

Java syntax

Semicolons
are optional

Default Groovy
method

Optional
parentheses

Single-quoted
string
4 Read-Eval-Print Loop; see http://en.wikipedia.org/wiki/REPL for details.

www.it-ebooks.info

http://en.wikipedia.org/wiki/REPL
http://www.it-ebooks.info/

297Scripts and the traditional example

 This is an example of a Groovy script. A script is a code listing that doesn’t explicitly
include a class definition. In Java, everything has to be inside a class. Groovy is able to
work with both scripts and classes.

 A Groovy script is a form of syntactic sugar.5 A class is, in fact, involved. If I compile
this script and then run the javap command on it, I get the following response:

> groovyc hello_world.groovy
> javap hello_world
Compiled from "hello_world.groovy"
public class hello_world extends groovy.lang.Script{
 public static transient boolean __$stMC;
 public static long __timeStamp;
 public static long __timeStamp__239_neverHappen1309544582162;
 public hello_world();
 public hello_world(groovy.lang.Binding);
 public static void main(java.lang.String[]);
 public java.lang.Object run();
...

There are about 30 more lines of output from the javap command, mostly involving
superclass methods. The interesting part is that the groovy command generates a
class called hello_world, along with a pair of constructors and a main method. The
class is generated at compile time and extends a class from the Groovy library called
groovy.lang.Script. In effect, scripts in Groovy become classes in Java, where the
code in the script ultimately (after a few layers of indirection) is executed by the main
method. I don’t want to give the impression that Groovy is generating Java, however.
Groovy code is compiled directly into bytecodes for the JVM.

COMPILED GROOVY Groovy is compiled, not interpreted. It’s not a code gener-
ator; the compiler generates Java bytecodes directly.

Because the bytecodes run on the JVM, you can execute Groovy scripts using the java
command as long as you include the necessary JAR file in your classpath:

> java –cp .;%GROOVY_HOME%\embeddable\groovy-all-2.1.5.jar hello_world
Hello, World!

EXECUTING GROOVY At runtime, Groovy is just another JAR file. As long as the
groovy-all JAR file is in the classpath, Java is perfectly happy to execute com-
piled Groovy code.

The groovy command is used to execute Groovy programs. It can be used with either
the compiled code (similar to the java command) or Groovy source. If you use the
source, the groovy command first compiles the code and then executes it.

5 Syntactic sugar is syntax that simplifies writing code but doesn’t change anything under the hood. There may

be some evidence that an overuse of syntactic sugar leads to syntactic diabetes.

www.it-ebooks.info

http://www.it-ebooks.info/

298 APPENDIX B Groovy by feature

B.2 Variables, numbers, and strings
Groovy is an optionally typed language. Groovy uses classes to define data types, just as
Java does, but Groovy variables can either have a static type or use the def keyword.

 For example, I’m perfectly free to declare variables of type int, String, or
Employee, using the standard Java syntax:

int x
String name
Employee fred

If I don’t know the type of the variable, or I don’t care, Groovy provides the keyword def:

def arg

Moving on to data types themselves, Java makes a distinction between primitives and
classes. In Groovy there are no primitives. Numbers in Groovy are first-class objects,
with their own set of methods.

B.2.1 Numbers

Because in Groovy numbers are objects, I can determine their data types. For integer
literals, the data type depends on the value, as shown in this script:

x = 1
assert x.class == java.lang.Integer
x = 10000000000000000
assert x.class == java.lang.Long
x = 100000000000000000000000
assert x.class == java.math.BigInteger

There are a few points to be made about this script. First, the variable x doesn’t have a
declaration at all. This is only legal in a script, where the variable becomes part of the

Typed vs. untyped variables
When should you use def as opposed to the actual type? There’s no strict answer,
but recently I had a (very mild) Twitter debate about this issue with Dierk Koenig (lead
author of GinA), Andres Almiray (lead author of Griffon in Action and head of the Grif-
fon project), and Dave Klein (lead author of Grails: A Quick-Start Guide). Dierk had the
best recommendation I’ve ever heard on the subject. He said, “If I think of a type, I
type it (pun intended).”

My own experience is that as I get more experienced with Groovy, I tend to use def
less and less. I agree with Dierk’s recommendation, with the added advice that now
when I declare a type, I pause for a moment to see if any actual type occurs to me.
If so, I use it.

In some cases def is preferred, most notably when using mock objects in testing.
That subject is discussed in chapter 6.
script’s binding and can be set and accessed from outside. Details of this procedure

www.it-ebooks.info

http://www.it-ebooks.info/

299Variables, numbers, and strings

are shown in chapter 3 on integration with Java. Suffice it to say here that this is legal
in a script, but not in a class. If it makes you feel more comfortable, you’re free to add
the word def in front of x.

SCRIPT VARIABLES If a variable in a script is not declared, it becomes part of
the script’s binding.

As mentioned earlier, the script lacks semicolons. Semicolons as statement separators
are optional in Groovy and can be omitted if there’s no ambiguity. Again, you’re free
to add them in without a problem.

SEMICOLONS In Groovy, semicolons work but are optional.

Next, Groovy uses the method called assert extensively. The word assert can be writ-
ten without parentheses, as done here, or you can surround an expression with them.
The resulting expression must evaluate to a Boolean, but that’s a much looser require-
ment than in Java. In Java, the only available Booleans are true and false. In Groovy,
non-null references are true, as are nonzero numbers, non-empty collections, non-
empty strings, and the Boolean value true.

 That bears repeating and goes by the term The Groovy Truth.

THE GROOVY TRUTH In Groovy, non-null references, non-empty collections,
non-empty strings, nonzero numbers, and the Boolean value true are all true.

Finally, the default data type for floating-point values in Java is double, but in
Groovy it’s java.math.BigDecimal. The double type in Java has approximately 17
decimal places of precision, but if you want to get depressed about its accuracy, try
this tiny sample:

println 2.0d – 1.1d

The d appended to the literals makes them doubles. You would expect the answer
here to be 0.9, but in fact it’s 0.8999999999999999. That’s not much of a difference,
but I’ve only done a single subtraction and I’m already off. That’s not good. That’s
why any serious numerical calculations in Java require java.math.BigDecimal, but
that means you can’t use the standard operators (+, -, *, /) anymore and have to use
method calls instead.

 Groovy handles that issue without a problem. Here’s the analogous Groovy script:

println 2.0 – 1.1

The answer in this case is 0.9, as expected. Because the calculations are done with
BigDecimal, the answer is correct. Groovy also has operator overloading, so the plus
operator can be used with the BigDecimal values. To summarize:

LITERALS Numbers without a decimal point are of type Integer, Long, or
java.math.BigInteger, depending on size. Numbers with a decimal point

are of type java.math.BigDecimal.

www.it-ebooks.info

http://www.it-ebooks.info/

300 APPENDIX B Groovy by feature

Because numbers are objects, they have methods as well. Listing B.2 shows a script
putting some numbers through their paces. Several of the expressions use closures,
which are the subject of section B.4. The simplest definition is to consider them a
block of code that’s executed as though it’s an anonymous method call.

assert 2**3 == 8
assert 2**-2 == 0.25 // i.e., 1/(2*2) = 1/4

def x = ""
3.times { x += "Hello" }
assert x == "HelloHelloHello"

def total = 0
1.upto(3) { total += it }
assert total == 1 + 2 + 3

def countDown = []
5.downto 1, { countDown << "$it ..." }
assert countDown == ['5 ...', '4 ...', '3 ...', '2 ...', '1 ...']

Groovy has an exponentiation operator, unlike Java. Numbers have methods like times,
upto, and downto. The times operation takes a single argument of type Closure. When
the last argument to a method is a closure, you can put it after the parentheses. Because
the method has no other arguments, you can leave out the parentheses altogether.

CLOSURE ARGUMENTS If the last argument to a method is a closure, it can be
placed after the parentheses.

The upto and downto methods take two arguments, so the parentheses are shown in
the former and a comma is used in the latter to indicate that both the number and the
closure are arguments to the method. The countDown variable is a list, which will be
discussed in section B.3. The left-shift operator has been overloaded to append to the
collection, and its argument here is a parameterized string. Groovy has two types of
strings, discussed in the next section.

B.2.2 Strings and Groovy strings

In Java, single quotes delimit characters (a primitive) and double quotes surround
instances of java.lang.String. In Groovy, both single and double quotes are used for
strings, but there’s a difference. Double-quoted strings are used for parameter
replacement. They’re not instances of java.lang.String, but rather instances of
groovy.lang.GString.

 Here are a couple of examples to show how they’re used:

def s = 'this is a string'
assert s.class == java.lang.String

def gs = "this might be a GString"
assert gs.class == java.lang.String

Listing B.2 numbers.groovy, showing method calls on numeric literals
assert !(gs instanceof GString)

www.it-ebooks.info

http://www.it-ebooks.info/

301Variables, numbers, and strings

gs = "If I put in a placeholder, this really is a GString: ${1+1}"
assert gs instanceof GString

Single-quoted strings are always instances of java.lang.String. Double-quoted
strings may or may not be Groovy strings, depending on whether parameter replace-
ment is done or not.

 Groovy also has multiline strings, with either single or double quotes. The differ-
ence again is whether or not parameter replacement is done:

def picard = '''
 (to the tune of Let It Snow)
 Oh the vacuum outside is endless
 Unforgiving, cold, and friendless
 But still we must boldly go
 Make it so, make it so, make it so!
'''

def quote = """
 There are ${Integer.toBinaryString(2)} kinds of people in the world:
 Those who know binary, and those who don't
"""
assert quote == '''
 There are 10 kinds of people in the world:
 Those who know binary, and those who don't
'''

There’s one final kind of string, used for regular expressions. Java has had regular-
expression capabilities since version 1.4, but most developers either aren’t aware of
them or avoid them.6 One particularly annoying part of regular expressions in Java is
that the backslash character, \, is used as an escape character, but if you want to use it
in a regular expression, you have to backslash the backslash. This leads to annoying
expressions where you have to double-backslash the backslashes, making the resulting
expressions almost unreadable.

 Groovy provides what’s called the slashy syntax. If you surround an expression with
forward slashes, it’s assumed to be a regular expression, and you don’t have to double-
backslash anymore.

STRINGS Groovy uses single quotes for regular strings, double quotes for
parameterized strings, and forward slashes for regular expressions.

Here’s an example that checks strings to see if they are palindromes: that is, if they are
the same forward and backward. To check for palindromes you first need to remove
any punctuation and ignore case before reversing the string:

def palindromes = '''
 Able was I ere I saw Elba
 Madam, in Eden, I'm Adam

6 Perl programmers love regular expressions. Ruby developers are fond of them, but reasonable about it. Java

developers take one look at the JavaDocs for the java.util.regex.Pattern class and recoil in horror.

www.it-ebooks.info

http://www.it-ebooks.info/

302 APPENDIX B Groovy by feature

 Sex at noon taxes
 Flee to me, remote elf!
 Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
'''
palindromes.eachLine {
 String str = it.trim().replaceAll(/\W/,'').toLowerCase()
 assert str.reverse() == str
}

Once again, a little Groovy code packs a lot of power. The method eachLine has been
added to the String class to break multiline strings at line breaks. It takes a closure as
an argument. In this case, no dummy variables were used in the closure, so each string
is assigned to the default variable called it.

THE IT VARIABLE In a closure, if no dummy name is specified the term it is
used by default.

The trim method is applied to the line to remove any leading and trailing spaces.
Then the replaceAll method is used to replace all non-word characters with an
empty string. Finally, the string is converted to lowercase.

 The assert test uses another method added by Groovy to String, called reverse.
Java has a reverse method in StringBuffer, but not String. Groovy adds the
reverse method to String for convenience.

 Groovy adds lots of methods to the Java standard libraries. Collectively these are
known as the Groovy JDK and are one of the best features of Groovy. The Groovy doc-
umentation includes GroovyDocs for both the Groovy standard library and the
Groovy JDK.

THE GROOVY JDK Through its metaprogramming capabilities, Groovy adds
many convenient methods to the standard Java libraries. These additional
methods are known as the Groovy JDK.

In summary, Groovy uses numbers and objects and has both regular and parameter-
ized strings with additional methods. Another area where Groovy greatly simplifies
Java is collections.

B.3 Plain Old Groovy Objects
Java classes with getters and setters for the attributes are often known as POJOs, or
Plain Old Java Objects. In Groovy, the same classes are Plain Old Groovy Objects,
or POGOs.7 POGOs have additional characteristics that are discussed in this section.

 Consider the following Person class in Groovy:

7 Python occasionally uses the term POPOs, which sounds vaguely disgusting. If you really want to annoy a Ruby

developer, refer to POROs. Ruby people hate anything that sounds like Java.

www.it-ebooks.info

http://www.it-ebooks.info/

303Collections

class Person {
 String firstName
 String lastName

 String toString() { "$firstName $lastName" }
}

POGOs don’t require access modifiers, because in Groovy attributes are private by
default and methods are public by default. The class is public by default, as well. Any
property without an access modifier automatically gets a public getter and setter
method. If you want to add public or private you can, and either on an attribute will
prevent the generation of the associated getter and setter.

GROOVY PROPERTIES In Groovy, property access is done through dynamically
generated getter and setter methods.

Here’s a script using the Person class:

Person mrIncredible = new Person()
mrIncredible.firstName = 'Robert'
mrIncredible.setLastName('Parr')
assert 'Robert Parr' ==
 "${mrIncredible.firstName} ${mrIncredible.getLastName()}"

Person elastigirl = new Person(firstName: 'Helen', lastName: 'Parr')
assert 'Helen Parr' == elastigirl.toString()

The script shows that you also get a default, map-based constructor, so called because it
uses the same property:value syntax used by Groovy maps.

 This idiom is so common in Groovy that getter and setter methods anywhere in the
standard library are typically accessed with the property notation. For example, Cal-
endar.instance is used to invoke the getInstance method on the Calendar class.

 Moving now to collections of instances, I’ll start with ranges, then move to lists,
and finally look at maps.

B.4 Collections
Since J2SE 1.2, the Java standard library has included the collections framework. The
framework defines interfaces for lists, sets, and maps, and provides a small but useful
set of implementation classes for each interface, as well as a set of polymorphic utility
methods in the class java.util.Collections.

 Groovy can use all of these collections but adds a lot:

■ Native syntax for lists and maps
■ A Range class
■ Many additional convenience methods

I’ll present examples of each in this section.
www.it-ebooks.info

http://www.it-ebooks.info/

304 APPENDIX B Groovy by feature

B.4.1 Ranges

Ranges are collections in Groovy consisting of two values separated by a pair of dots.
Ranges are normally used as parts of other expressions, like loops, but they can be
used by themselves.

 The class groovy.lang.Range has methods for accessing the boundaries of a range,
as well as checking whether it contains a particular element. Here’s a simple example:

Range bothEnds = 5..8
assert bothEnds.contains(5)
assert bothEnds.contains(8)
assert bothEnds.from == 5
assert bothEnds.to == 8
assert bothEnds == [5, 6, 7, 8]

Using two dots includes the boundaries. To exclude the upper boundary, use a less-
than sign:

Range noUpper = 5..<8
assert noUpper.contains(5)
assert !noUpper.contains(8)
assert noUpper.from == 5
assert noUpper.to == 7
assert noUpper == [5, 6, 7]

A range of numbers iterates over the contained integers. Other library classes can be
used in ranges. Strings go letter by letter:

assert 1..5 == [1,2,3,4,5]
assert 'A'..'E' == ["A","B","C","D","E"]

Dates iterate over the contained days, as shown in the next listing.

def cal = Calendar.instance
cal.set 2013, Calendar.FEBRUARY, 27
def now = cal.time
cal.set 2013, Calendar.MARCH, 1
def then = cal.time

def days = []
(now..then).each { day ->
 days << day.format('MMM dd, yyyy')
}
assert days == ['Feb 27, 2013', 'Feb 28, 2013', 'Mar 01, 2013']

For all its gifts, even Groovy can’t tame Java’s awkward java.util.Date and java.util
.Calendar classes, but it can make the code for using them a bit simpler. Calendar is
an abstract class with the factory method getInstance, so in Groovy I call it by access-
ing the instance property. The Groovy JDK adds the format method to Date, so it

Listing B.3 Using dates in a range with Java’s Calendar class

Invokes
getInstance()

Retrieve the
assigned Date

Iterate over
the range
isn’t necessary to separately instantiate SimpleDateFormat.

www.it-ebooks.info

http://www.it-ebooks.info/

305Collections

 In the listing, after setting the year, month, and day, the Date instance is retrieved
by invoking getTime.8 In this case, that’s equivalent to accessing the time property.
The dates are used as the boundaries of a range by the each method, which appends
each one to a list.

 In fact, any class can be made into a range if it includes three features:

■ A next() method, for forward iteration
■ A previous() method, for backward iteration
■ An implementation of the java.util.Comparable interface, for ordering

Here the range is used as the basis of a loop, where the dates are appended to a list.

B.4.2 Lists

Lists in Groovy are the same as lists in Java, except that the syntax is easier and there
are some additional methods available. Create a list in Groovy by including values
between square brackets:

def teams = ['Red Sox', 'Yankees']
assert teams.class == java.util.ArrayList

The default list is of type java.util.ArrayList. If you prefer to use a LinkedList,
instantiate it in the normal way.

 Groovy has operator overloading. The Groovy JDK shows that the plus, minus, and
left-shift operators have been defined to work with lists:

teams << 'Orioles'
assert teams == ['Red Sox', 'Yankees', 'Orioles']
teams << ['Rays', 'Blue Jays']
assert teams ==
 ['Red Sox', 'Yankees', 'Orioles', ['Rays', 'Blue Jays']]
assert teams.flatten() ==
 ['Red Sox', 'Yankees', 'Orioles', 'Rays', 'Blue Jays']
assert teams + 'Angels' - 'Orioles' ==
 ['Red Sox', 'Yankees', ['Rays', 'Blue Jays'], 'Angels']

Accessing elements of a list can be done with array-like syntax. Again, this is done by
overriding a method—in this case, the getAt method:

assert teams[0] == 'Red Sox'
assert teams[1] == 'Yankees'
assert teams[-1] == ['Rays','Blue Jays']

As shown in figure B.1, access to elements from the left end starts at index 0. Access
from the right end starts at index –1. You can use a range in the square brackets, too:

def cities = ['New York', 'Boston', 'Cleveland','Seattle']
assert ['Boston', 'Cleveland'] == cities[1..2]
8 Yes, you read that correctly. You get the date by calling … getTime. Hey, I didn’t write it.

www.it-ebooks.info

http://www.it-ebooks.info/

306 APPENDIX B Groovy by feature

ARRAY-LIKE ACCESS Linear collections support element access through an
index from either end, or even using a range.

Groovy adds methods like pop, intersect, and reverse to collections. See the Groovy-
Docs for details.

 There are two ways to apply a function to each element. The spread-dot operator
(.*) makes it easy to access a property or apply a method to each element:

assert cities*.size() == [8, 6, 9, 7]

The collect method takes a closure as an argument and applies it to each element of
the collection, returning a list with the results. This is similar to the spread-dot opera-
tor, but can do more general operations:

def abbrev = cities.collect { city -> city[0..2].toLowerCase() }
assert abbrev == ['new', 'bos', 'cle', 'sea']

The word city here used before the arrow is like a dummy argument for a method
call. The closure extracts the first three letters of each element of the list and then
converts them to lowercase.

 One particularly interesting feature of collections is that they support type coer-
cion using the as operator. What does that mean? It’s not terribly difficult to convert a
Java list into a set, because there’s a constructor for that purpose. Converting a list into
an array, however, involves some awkward, counterintuitive code. Here’s Groovy’s take
on the process:

def names = teams as String[]
assert names.class == String[]

def set = teams as Set
assert set.class == java.util.HashSet

That was easy.9 A set in Groovy is just like a set in Java, meaning it doesn’t contain
duplicates and doesn’t guarantee order.

THE AS OPERATOR Groovy uses the keyword as for many purposes. One of
them is type coercion, which converts an instance of one class into an
instance of another.

1

–4

0

–5

3

–2

2

–3

4

–1

Forward

Reverse

Figure B.1 Access any linear collection using an
index from either end. The first element is at index 0.
The last element is at index –1. You can also use
subranges, as in mylist[-4..-2].
9 I know I say that a lot, but with Groovy I think it a lot, too.

www.it-ebooks.info

http://www.it-ebooks.info/

307Collections

One of the nicest features of Groovy collections is that they’re searchable. Groovy
adds both find and findAll methods to collections. The find method takes a closure
and returns the first element that satisfies the closure:

assert 'New Hampshire' ==
 ['New Hampshire','New Jersey','New York'].find { it =~ /New/ }

The findAll method returns all the elements that satisfy the closure. This example
returns all the cities that have the letter e in their name:

def withE = cities.findAll { city -> city =~ /e/ }
assert withE == ['Seattle', 'New York', 'Cleveland']

Groovy also supplies the methods any and every, which also take closures:

assert cities.any { it.size() < 7 }
assert cities.every { it.size() < 10 }

The first expression states that there’s at least one city whose name is less than 7
characters. The second expression says that all of the city names are 10 characters
or less.

 Table B.1 summarizes the searchable methods.

Finally, the join method concatenates all the elements of the list into a single string,
using the supplied separator:

assert cities.join(',') == "Boston,Seattle,New York,Cleveland"

The combination of native syntax and added convenience methods makes Groovy lists
much easier to work with than their Java counterparts. As it turns out, maps are
improved the same way.

B.4.3 Maps

Groovy maps are like Java maps, but again with a native syntax and additional helper
methods. Groovy uses the same square-bracket syntax for maps as for lists, but each
entry in the map uses a colon to separate the key from its corresponding value.

 You can populate a map right away by adding the elements when you declare the

Table B.1 Searchable methods added to Groovy collections

Method Description

any Returns true if any element satisfies closure

every Returns true if all elements satisfy closure

find Returns first element satisfying closure

findAll Returns list of all elements satisfying closure
map itself:

www.it-ebooks.info

http://www.it-ebooks.info/

308 APPENDIX B Groovy by feature

def trivialMap = [x:1, y:2, z:3]
assert 1 == trivialMap['x']
assert trivialMap instanceof java.util.HashMap

This defines a map with three entries. When adding elements to the map, the keys are
assumed to be strings, so you don’t need to put quotes around them. The values can
be anything.

MAP KEYS When adding to a map, the keys are assumed to be of type string,
so no quotes are necessary.

You can add to a map using either Java or Groovy syntax:

def ALEast10 = [:]
ALEast.put('Boston','Red Sox')
assert 'Red Sox' == ALEast.get('Boston')
assert ALEast == [Boston:'Red Sox']
ALEast['New York'] = 'Yankees'

Accessing values can be done with either the array-like syntax shown, or using a dot. If
the key has spaces in it, wrap the key in quotes:

assert 'Red Sox' == ALEast.Boston
assert 'Yankees' == ALEast.'New York'

I’ve been using def to define the map reference, but Groovy understands Java generics:

Map<String,String> ALCentral = [Cleveland:'Indians',
 Chicago:'White Sox',Detroit:'Tigers']
assert 3 == ALCentral.size()
assert ALCentral.Cleveland == 'Indians'

Maps have a size method that returns the number of entries. Actually, the size
method is universal.

SIZE In Groovy, the size method works for arrays, lists, maps, strings, and more.

Maps have an overloaded plus operation that combines the entries from two maps:

def both = ALEast + ALCentral
assert 5 == both.size()

Like Java maps, you can extract the set of keys from a map using the keySet method:

assert ALEast.keySet() == ['Boston','New York'] as Set

Maps also have a rather controversial method that lets you add a new element with a
default in case the element doesn’t exist:

assert 'Blue Jays' == ALEast.get('Toronto','Blue Jays')
assert 'Blue Jays' == ALEast['Toronto']

Here I’m trying to retrieve a value using a key that isn’t in the map (Toronto). If the
key exists, its value is returned. If not, it’s added to the map, with the second argument
10 For non-baseball people, ALEast is short for the Eastern division of the American League.

www.it-ebooks.info

http://www.it-ebooks.info/

309Closures

to the get method being its new value. This is convenient, but it means that if you acci-
dentally misspell a key when trying to retrieve it you don’t get an error; instead, you
wind up adding it. That’s not true when using the single-argument version of get.

 Finally, when you iterate over a map using a closure, the number of dummy argu-
ments determines how the map is accessed. Using two arguments means that the map
is accessed as keys and values:

String keys1 = ''
List<Integer> values1 = []
both.each { key,val ->
 keys1 += '|' + key
 values1 << val
}

The each iterator has two dummy variables, so the first represents the key and the sec-
ond the value. This closure appends the keys to a string, separated by vertical bars.
The values are added to a list.

 Alternatively, using a single argument assigns each entry to the specified argument,
or it if none:

String keys2 = ''
List<Integer> values2 = []
both.each { entry ->
 keys2 += '|' + entry.key
 values2 << entry.value
}

Because a single dummy argument was used in the closure, I need to access its key
and value properties (equivalent to invoking the getKey and getValue methods, as
usual) to do the same operation as in the previous example.

 Both mechanisms produce the same results:

assert keys1 == keys2
assert values1 == values2

Throughout this section I’ve used closures in examples without defining what they
are. That’s the subject of the next section.

B.5 Closures
Like many developers, I started out in the procedural world. I started my career as a
research scientist, studying unsteady aerodynamics and acoustics. Most of that
involved numerically solving partial differential equations.

 That meant that unless I wanted to write all my own libraries, I had to adopt For-
tran as my professional language of choice.11 My first assignment in my first job was to
take a 3000-line program my boss had written in Fortran IV12 and add functionality to

11 The fact that I seriously considered writing those libraries in a different language anyway was yet another sign
I was in the wrong profession.
12 Shudder. Holy arithmetic-if statements, Batman. The nightmares have stopped, but it took a while.

www.it-ebooks.info

http://www.it-ebooks.info/

310 APPENDIX B Groovy by feature

it. The best part was that the original program had only two subroutines in it: one that
was about 25 lines long, and the other 2975. Needless to say, I learned refactoring
long before I knew the actual term.

 I rapidly learned what at the time were considered good development practices,
meaning that I wrote structured programs that used existing libraries as much as pos-
sible. It was only in the mid-90s, when I first learned Java, that I was introduced to
object-oriented programming.

 That’s when I first encountered what influential blogger Steve Yegge has since
referred to as the subjugation of verbs in the kingdom of the nouns.13 In most OO lan-
guages, methods (verbs) can only exist as part of nouns (classes). Java certainly works
that way. Even static methods that don’t require objects still have to be defined inside
classes somewhere.

 The first language I learned that changed all that was JavaScript, which is an
object-based language rather than object-oriented. In JavaScript, even the classes
are functions. Then, because the methods in the classes are also functions, you wind
up with functions operating inside of functions, possibly passing around references
to still other functions, and suddenly everything gets confusing and difficult. Clo-
sures in JavaScript are confusing not because functions are difficult, but because a
closure includes the environment in which it executes. A closure may have refer-
ences to variables declared outside of it, and in JavaScript it’s easy to get lost deter-
mining the values.

 I had no idea how simple closures could be until I encountered Groovy.14 In Groovy,
it’s easy enough to treat a closure as a block of code, but it’s always clear where the non-
local variables are evaluated because there’s no confusion about the current object.

CLOSURES In practice, a closure is a block of code along with its execution
environment.

In Groovy, the term closure is used broadly to refer to blocks of code, even if they don’t
contain explicit references to external variables. Closures feel like methods and can be
invoked that way. Consider this trivial example, which returns whatever it’s sent:

def echo = { it }
assert 'Hello' == echo('Hello')
assert 'Hello' == echo.call('Hello')

The echo reference is assigned to the block of code (a closure) delimited by curly
braces. The closure contains a variable whose default name is it, whose value is supplied
when the closure is invoked. If you think of the variable like a method parameter,
you’ve got the basic idea.

 The closure can be invoked in one of two ways: either by using the reference as
though it’s a method call, or by explicitly invoking the call method on it. Because the

13 “Execution in the Kingdom of Nouns,” at http://mng.bz/E4MB

14 Others can say the same about Ruby or other JVM languages. This is my history, though.

www.it-ebooks.info

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.it-ebooks.info/

311Loops and conditionals

last value computed by a closure is returned automatically, both ways return the argu-
ment to the closure, which is why it was called echo in the first place.

CLOSURE RETURN VALUES The last evaluated expression in a closure is returned
automatically.

If a closure takes more than one argument, or if you don’t want to use the default
name, use an arrow to separate the dummy argument names from the body of the clo-
sure. Here’s a simple sum, once with the default and once with a named argument:

def total = 0
(1..10).each { num -> total += num }
assert (1..10).sum() == total

total = 0
(1..10).each { total += it }
assert (1..10).sum() == total

Closures are used throughout this book and fill an entire chapter in GinA. This little
amount of information is enough to make a lot of progress.

 Returning to the basic constructs of the language, I’ll now show how Groovy differs
from Java when using loops and conditional tests.

B.6 Loops and conditionals
In this section, I’ll discuss two features that appear in any programming language:
looping through a set of values and making decisions.

B.6.1 Loops

When Groovy was first created, and for some time afterward, it didn’t support the
standard Java for loop:

for (int i = 0; i < 5; i++) { ... }

In version 1.6, however, the core committers decided that it was more important to
support Java constructs than to try to keep the language free of that somewhat awk-
ward syntax that Java inherited from its predecessors. Many demonstrations of
Groovy start with a Java class, rename it with a .groovy extension, and show that it
still compiles successfully with the Groovy compiler. The result is far from idiomatic
Groovy, but it does illustrate a valid point: Groovy is the closest to Java of the new
family of JVM languages.

JAVA LOOPS Groovy supports the standard Java for loop and for-each loop, as
well as the while loop. It does not, however, support the do-while construct.

The for-each loop in Java was introduced in Java SE 1.5 and works for any linear col-
lection, including both arrays and lists:
for (String s : strings) { ... }

www.it-ebooks.info

http://www.it-ebooks.info/

312 APPENDIX B Groovy by feature

The for-each loop is helpful, because it means you don’t always need to get an itera-
tor to loop over the elements of a list. The price you pay is that there’s no explicit
index. Inside the loop, you know what element you’re currently on, but not where it
appears in the list. If you need to know the index, you can either keep track of the
index yourself or go back to the traditional for loop.

 Groovy supplies a variation on the for-each loop that avoids the colon syntax,
called a for-in loop:

def words = "I'm a Groovy coder".tokenize()
def capitalized = ''
for (word in words) {
 capitalized += word.capitalize() + ' '
}
assert capitalized == "I'm A Groovy Coder "

Note that unlike the for-each loop, the value variable is not declared to have a type:
not even def.

 Still, none of those loops are the most common way of iterating in Groovy. Rather
than write an explicit loop, as in the previous examples, Groovy prefers a more direct
implementation of the Iterator design pattern. Groovy adds the each method, which
takes a closure as an argument, to collections. The each method then applies the clo-
sure to each element of the collection:

(0..5).each { println it }

Again, because the closure is the last argument of the method, it can be placed after
the parentheses. Because there are no other arguments to the each method, the
parentheses can be eliminated entirely.

EACH The each method is the most common looping construct in Groovy.

The Iterator design pattern recommends separating the way you walk through the ele-
ments of a collection from what you plan to do with those elements. The each method
does the iterating internally. The user determines what to do with the elements by
supplying a closure, as shown. Here the closure prints its argument. The each method
supplies each value in the range, one by one, to the closure, so the result is to print
the numbers from zero to five.

 Like the for-in loop, inside the closure you have access to each element, but not
to the index. If you want the index, though, there’s an additional method available
called eachWithIndex:

def strings = ['how','are','you']
def results = []
strings.eachWithIndex { s,i -> results << "$i:$s" }
assert results == ['0:how', '1:are', '2:you']

The closure supplied to the eachWithIndex method takes two dummy arguments.

The first is the value from the collection, and the second is the index.

www.it-ebooks.info

http://www.it-ebooks.info/

313Loops and conditionals

 I should mention that although all these loops work correctly, there can be differ-
ences in how much time each of them takes. If you’re dealing with a collection of a
few dozen elements or less, the differences will probably not be noticeable. If the
number of iterations is going to be in the tens of thousands or more, you probably
should profile the resulting code.

B.6.2 Conditionals

Java has two types of conditional statements: the if statement and its related con-
structs, like if-else and switch statements. Both are supported by Groovy. The if
statement works pretty much the same way it does in Java. The switch statement, how-
ever, has been taken from Java’s crippled form and restored to its former glory.

 Groovy’s version of the if statement is similar to Java’s, with the difference being
the so-called Groovy Truth. In Java, the argument to an if statement must be a Bool-
ean expression, or the statement won’t compile. In Groovy, lots of things evaluate to
true other than Boolean expressions.

 For example, nonzero numbers are true:

if (1) {
 assert true
} else {
 assert false
}

The result is true. This expression wouldn’t work in Java. There you would have to
compare the argument to another value, resulting in a Boolean expression.

Returning to decision statements, Java also supports a ternary operator, and Groovy
does the same:

String result = 5 > 3 ? 'x' : 'y'

Return to C?
The Groovy Truth is a case where Java restricted something C supported (non-
Boolean expressions in decision statements), but Groovy brought it back. That can
certainly lead to bugs that Java would avoid.

From a philosophical point of view, why do it? By restricting what was allowed, Java
made certain types of bugs much less likely. Groovy, by restoring those features,
increases the possibility of those bugs again. Is the gain worth it?

My opinion is that this is a side effect of the increased emphasis on testing that has
swept through the development community. If you’re going to have to write tests to
prove your code is correct anyway, why not take advantage of the greater power?
Sure, you’ve introduced the possibility of getting some bugs past the compiler, but
just because it compiles doesn’t mean it’s right. The tests prove correctness, so why
not use shorter, more powerful code when you can?
assert result == 'x'

www.it-ebooks.info

http://www.it-ebooks.info/

314 APPENDIX B Groovy by feature

The ternary expression reads, is five greater than three? If so, assign the result to x,
otherwise use y. It’s like an if statement, but shorter.

 There’s a reduced form of the ternary operator that highlights both Groovy’s help-
fulness and its sense of humor: the Elvis operator.

B.6.3 Elvis

Consider the following use case. You’re planning to use an input value, but it’s optional.
If the client supplies it, you’ll use it. If not, you plan to use a default instead.

 I’ll use a variable called name as an example:

String displayName = name ? name : 'default'

This means if name is not null, use it for displayName. Otherwise, use a default. I’m
using a standard ternary operator to check whether name is null or not. The way this is
written has some repetition in it. After all, I want to use name if it’s available, so why do
I have to repeat myself?

 That’s where the Elvis operator comes in. Here’s the revised code:

String displayName = name ?: 'default'

The Elvis operator is the combination of a question mark and a colon formed by leav-
ing out the value in between them in the ternary operator. The idea is that if the vari-
able in front of the question mark is not null, use it. The ?: operator is called Elvis
because if you turn your head to the side, the result looks vaguely like the King:

def greet(name) { "${name ?: 'Elvis'} has left the building" }
assert greet(null) == 'Elvis has left the building'
assert greet('Priscilla') == 'Priscilla has left the building'

The greet method takes a parameter called name and uses the Elvis operator to deter-
mine what to return. This way it still has a reasonable value, even if the input argu-
ment is null.15

B.6.4 Safe de-reference

There’s one final conditional operator that Groovy provides that saves many lines of
coding. It’s called the safe de-reference operator, written as ?..

 The idea is to avoid having to constantly check for nulls. For example, suppose you
have classes called Employee, Department, and Location. If each employee instance
has a department, and each department has a location, then if you want the location
for an employee, you would write something like this (in Java):

Location loc = employee.getDepartment().getLocation()

But what happens if the employee reference is null? Or what happens if the employee
hasn’t been assigned a department, so the getDepartment method returns null?
Those possibilities mean the code expands to
15 Thank you, thank you very much.

www.it-ebooks.info

http://www.it-ebooks.info/

315File I/O

if (employee == null) {
 loc = null;
} else {
 Department dept = employee.getDepartment();
 if (dept == null) {
 loc = null;
 } else {
 loc = dept.getLocation();
 }
}

That’s quite an expansion just to check for nulls. Here’s the Groovy version:

Location loc = employee?.department?.location

The safe de-reference operator returns null if the reference is null. Otherwise it proceeds
to access the property. It’s a small thing, but the savings in lines of code is nontrivial.

 Continuing on the theme of simplifying code over the Java version, consider
input/output streams. Groovy introduces several methods in the Groovy JDK that help
Groovy simplify Java code when dealing with files and directories.

B.7 File I/O
File I/O in Groovy isn’t fundamentally different from the Java approach. Groovy adds
several convenience methods and handles issues like closing your files for you. A few
short examples should suffice to give you a sense of what’s possible.

 First, Groovy adds a getText method to File, which means that by asking for the
text property you can retrieve all the data out of a file at once in the form of a string:

String data = new File('data.txt').text

Accessing the text property invokes the getText method, as usual, and returns all the
text in the file. Alternatively, you can retrieve all the lines in the file and store them in
a list using the readLines method:

List<String> lines = new File("data.txt").readLines()*.trim()

The trim method is used in this example with the spread-dot operator to remove lead-
ing and trailing spaces on each line. If your data is formatted in a specific way, the
splitEachLine method takes a delimiter and returns a list of the elements. For exam-
ple, if you have a data file that contains the following lines

1,2,3
a,b,c

then the data can be retrieved and parsed at the same time:

List dataLines = []
new File("data.txt").splitEachLine(',') {
 dataLines << it
}

assert dataLines == [['1','2','3'],['a','b','c']]

www.it-ebooks.info

http://www.it-ebooks.info/

316 APPENDIX B Groovy by feature

Writing to a file is just as easy:

File f = new File("$base/output.dat")
f.write('Hello, Groovy!')
assert f.text == 'Hello, Groovy!'

In Java, it’s critical to close a file if you’ve written to it, because otherwise it may not
flush the buffer and your data may never make into the file. Groovy does that for
you automatically.

 Groovy also makes it easy to append to a file:

File temp = new File("temp.txt")
temp.write 'Groovy Kind of Love'
assert temp.readLines().size() == 1
temp.append "\nGroovin', on a Sunday afternoon..."
temp << "\nFeelin' Groovy"
assert temp.readLines().size() == 3
temp.delete()

The append method does what it sounds like, and the left-shift operator has been over-
ridden to do the same.

 Several methods are available that iterate over files, like eachFile, eachDir, and
even eachFileRecurse. They each take closures that can filter what you want.

 Finally, I have to show you an example that illustrates how much simpler Groovy
I/O streams are than Java streams. Consider writing a trivial application that does
the following:

1 Prompts the user to enter numbers on a line, separated by spaces
2 Reads the line
3 Adds up the numbers
4 Prints the result

Nothing to it, right? The next listing shows the Java version.

package io;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class SumNumbers {
 public static void main(String[] args) {
 System.out.println("Please enter numbers to sum");
 BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));
 String line = "";
 try {
 line = br.readLine();
 } catch (IOException e) {
 e.printStackTrace();

Listing B.4 SumNumbers.java, an application to read a line of numbers and add them

Must be
in a class

Has readLine
method

try/catch for
checked exception
 }

www.it-ebooks.info

http://www.it-ebooks.info/

317XML

 String[] inputs = line.split(" ");
 double total = 0.0;
 for (String s : inputs) {
 total += Double.parseDouble(s);
 }
 System.out.println("The sum is " + total);
 }
}

That’s nearly 30 lines to do something extremely simple. All Java code has to be in a
class with a main method. The input stream System.in is available, but I want to read
a full line of data, so I wrap the stream in an InputStreamReader and wrap that in a
BufferedReader, all so I can call readLine. That may throw an I/O exception, so I
need a try/catch block for it. Finally, the incoming data is in string form, so I need to
parse it before adding up the numbers and printing the results.

 Here’s the corresponding Groovy version:

println 'Please enter some numbers'
System.in.withReader { br ->
 println br.readLine().tokenize()*.toBigDecimal().sum()
}

That’s the whole program. The withReader method creates a Reader implementation
that has a readLine method and automatically closes it when the closure completes.
Several similar methods are available for both input and output, including with-
Reader, withInputStream, withPrintWriter, and withWriterAppend.

 That was fun, but here’s another version that has more capabilities. In this case,
the code has a loop that sums each line and prints its result until no input is given:

println 'Sum numbers with looping'
System.in.eachLine { line ->
 if (!line) System.exit(0)
 println line.split(' ')*.toBigDecimal().sum()
}

The eachLine method repeats the closure until the line variable is empty.
 Groovy’s contribution to file I/O is to add convenience methods that simplify the

Java API and ensure that streams or files are closed correctly. It provides a clean façade
on the Java I/O package.

 Groovy makes input/output streams much simpler to deal with than in Java, so if I
have a Java system and I need to work with files, I try to add a Groovy module for that
purpose. That’s a savings, but nothing compared to the savings that result from using
Groovy over Java when dealing with XML, as shown in the next section.

B.8 XML
I’ve saved the best for last. XML is where the ease-of-use gap between Groovy and Java
is the largest. Working with XML in Java is a pain at best, while parsing and generating
XML in Groovy is almost trivial. If I ever have to deal with XML in a Java system, I

Convert strings
to doubles
always add a Groovy module for that purpose. This section is intended to show why.

www.it-ebooks.info

http://www.it-ebooks.info/

318 APPENDIX B Groovy by feature

B.8.1 Parsing and slurping XML

Some time ago, I was teaching a training course on XML and Java. One of the exer-
cises started by presenting an XML file similar to this one:

<books>
 <book isbn="9781935182443">
 <title>Groovy in Action (2nd edition)</title>
 <author>Dierk Koenig</author>
 <author>Guillaume Laforge</author>
 <author>Paul King</author>
 <author>Jon Skeet</author>
 <author>Hamlet D'Arcy</author>
 </book>
 <book isbn="9781935182948">
 <title>Making Java Groovy</title>
 <author>Ken Kousen</author>
 </book>
 <book isbn="1933988932">
 <title>Grails in Action</title>
 <author>Glen Smith</author>
 <author>Peter Ledbrook</author>
 </book>
</books>

The goal of the exercise was to parse this file and print out the title of the second book.
Because this file is small, you might as well use a DOM parser to read it. To do that in Java
you need a factory, which then yields the parser, and then you can invoke a parse
method to build the DOM tree. Then, to extract the data, there are three options:

■ Walk the tree by getting child elements and iterating over them.
■ Use the getElementById method to find the right node, and then get the first

text child and retrieve its value.
■ Use the getElementsByTagName method, iterate over the resulting NodeList to

find the right node, and then retrieve the value of the first text child.

The first approach runs into problems with whitespace. This document has carriage
returns and tabs in it, and because no DTD or schema is provided, the parser doesn’t
know which whitespace elements are significant. Traversing the DOM is complicated
by the fact that methods like getFirstChild will return whitespace nodes as well as
elements. It can be done, but you’ll need to check the node type of each element to
make sure you are working with an element rather than a text node.

 The second approach only works if the elements have an attribute of type ID, and
that’s not the case here.

 You’re left with the getElementsByTagName method, which results in the follow-
ing code:

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

www.it-ebooks.info

http://www.it-ebooks.info/

319XML

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;

public class ProcessBooks {
 public static void main(String[] args) {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 Document doc = null;
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 doc = builder.parse("books.xml");
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 NodeList titles = doc.getElementsByTagName("title");
 Element titleNode = (Element) titles.item(1);
 String title = titleNode.getFirstChild().getNodeValue();
 System.out.println("The second title is " + title);
 }
}

Parsing the document can throw all sorts of exceptions, as shown. Assuming nothing
goes wrong, after parsing, the code retrieves all the title elements. After getting the
proper element out of the NodeList and casting it to type Element, you then have to
remember that the character data in the element is in the first text child of the ele-
ment rather than the element itself.

 Here’s the Groovy solution:

root = new XmlSlurper().parse('books.xml')
assert root.book[1].title == 'Making Java Groovy'

Wow. Groovy includes the XmlSlurper class, which is in the groovy.util package (no
import required). XmlSlurper has a parse method that builds the DOM tree and
returns the root element. Then it’s a question of walking the tree, using the dot nota-
tion for child elements. Elements that appear multiple times form a collection that
can be accessed with an index in the normal way. The contrast in both size and com-
plexity between the Groovy version and the Java version is clear.

 The next listing demonstrates working with the XML file.

String fileName = 'books.xml'
def books = new XmlSlurper().parse(fileName)

assert books.book.size() == 4

Listing B.5 Slurping XML
assert books.book[0].title == "Groovy in Action"

www.it-ebooks.info

http://www.it-ebooks.info/

320 APPENDIX B Groovy by feature

assert books.book.find {
 it.@isbn == "9781935182948"
}.title == "Making Java Groovy"

def prices = []
books.book.price.each {
 prices << it.toDouble()
}
assert prices == [39.99, 35.99, 35.99, 27.50]
assert prices.sum() == 139.47

Groovy uses two different classes for working with XML. The previous example used
an XmlSlurper. Groovy also includes an XmlParser. The XmlParser creates a tree of
Node instances, so if you need to approach the file from a node point of view, use the
parser. The result is that you’ll need to invoke a text method on each node to retrieve
the text data, but otherwise the two approaches are virtually the same.

 Parsing XML is therefore quite easy. What about generating XML? That’s the sub-
ject of the next subsection.

B.8.2 Generating XML

So far, most of the Groovy capabilities presented are similar to what Java can do, just
simpler or easier. In this section I’ll show a Groovy builder, which uses Groovy’s
metaprogramming to go beyond what Java can do.

 To generate XML, Groovy provides a class called groovy.xml.MarkupBuilder. You
use a MarkupBuilder by invoking methods that don’t exist, and the builder interprets
them by generating XML elements and attributes.

 That sounds strange, but is simple in practice. The next listing shows an example.

def builder = new groovy.xml.MarkupBuilder()
def department = builder.department {
 deptName "Construction"
 employee(id:1) {
 empName "Fred"
 }
 employee(id:2) {
 empName "Barney"
 }
}

After instantiating the MarkupBuidler I invoke the department method on it, omit-
ting the optional parentheses. There’s no department method on MarkupBuilder, so
what does Groovy do?

 If this was Java, I would fail with something like a MissingMethodException. Every
class in Groovy has an associated meta class, however, and the meta class has a
method called methodMissing. The meta class is the key to Groovy’s code generation

Listing B.6 Generating XML using a MarkupBuilder
capabilities. When the methodMissing method in MarkupBuilder is called, the

www.it-ebooks.info

http://www.it-ebooks.info/

321XML

implementation ultimately is to generate an XML element with the method name as
the element name.

 The braces that follow are interpreted to mean a child element is next. The name
of the child element will be deptName, and its character data will be the supplied
string. The next element is an employee, and the map-like syntax for the id implies an
attribute on the employee element is needed, and so on.

 The result of executing this script is

<department>
 <deptName>Construction</deptName>
 <employee id='1'>
 <empName>Fred</empName>
 </employee>
 <employee id='2'>
 <empName>Barney</empName>
 </employee>
</department>

The MarkupBuilder generates the XML. It’s hard to imagine a simpler way to solve
that problem.

 I want to illustrate one final aspect of XML processing with Groovy, which involves
validating a document.

B.8.3 Validation

XML documents are validated in one of two ways: through either a Document Type
Definition (DTD) or an XML schema. The DTD system is older, simpler, and much less
useful, but the Java parsers have been able to validate against them almost from the
beginning. Schema validation came much later but is far more important, especially
when dealing with, for example, web services.

 Validating XML with Groovy is an interesting demonstration both of what Groovy
provides, and what to do if Groovy doesn’t provide anything.

 First, consider validation against a DTD. Here’s a DTD for the library XML shown earlier:

<!ELEMENT library (book+)>
<!ELEMENT book (title,author+,price)>
<!ATTLIST book
 isbn CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT price (#PCDATA)>

The idea is that a library element contains one or more books. A book element con-
tains a title, one or more author elements, and a price, in that order. The book ele-
ment has an attribute called isbn, which is a simple string but is required. The title,
author, and price elements all consist of simple strings.

 To tie the XML file to the DTD, I add the following line before the root element:
<!DOCTYPE library SYSTEM "library.dtd">

www.it-ebooks.info

http://www.it-ebooks.info/

322 APPENDIX B Groovy by feature

Validating the XML file against the DTD is then almost trivial. The XmlSlurper class
has an overloaded constructor that takes two arguments, both of which are Booleans.
The first is to trigger validation, and the second is namespace awareness. Namespaces
aren’t relevant when discussing a DTD, but it doesn’t hurt to turn on both properties:

def root = new XmlSlurper(true, true).parse(fileName)

That’s all that’s needed to do the validation. If the XML data doesn’t satisfy the DTD,
errors will be reported by the parsing process.

 Validation against an XML schema has always been more of a challenge. Schemas
understand namespaces and namespace prefixes, and there are many things you can
do in a schema that you can’t do in a DTD.

 Consider the next listing, which shows a schema for the library.

<?xml version="1.0" encoding="UTF-8"?>
<schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.kousenit.com/books"
 xmlns:tns="http://www.kousenit.com/books"
 elementFormDefault="qualified">

 <element name="library" type="tns:LibraryType" />
 <complexType name="LibraryType">
 <sequence>
 <element ref="tns:book" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 <element name="book">
 <complexType>
 <sequence>
 <element name="title" type="string" />
 <element name="author" type="string"
 maxOccurs="unbounded" />
 <element name="price" type="tns:PriceType" />
 </sequence>
 <attribute name="isbn" type="tns:ISBNtype" />
 </complexType>
 </element>
 <simpleType name="PriceType">
 <restriction base="decimal">
 <fractionDigits value="2" />
 </restriction>
 </simpleType>
 <simpleType name="ISBNtype">
 <restriction base="string">
 <pattern value="\d{10}|\d{13}" />
 </restriction>
 </simpleType>
</schema>

Listing B.7 An XML schema for the library XML
www.it-ebooks.info

http://www.it-ebooks.info/

323JSON support

This is the same as the DTD, except that it says that price elements have two deci-
mal places, and isbn attributes are composed of either 10 or 13 decimal digits.
Tying the XML document to this schema can be done by modifying the root ele-
ment as follows:

<library
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.kousenit.com/books"
 xsi:schemaLocation="
 http://www.kousenit.com/books
 books.xsd">

The rest of the library is the same as before. Here’s the code used to validate the
XML document against the schema:

String file = "books.xml"
String xsd = "books.xsd"
SchemaFactory factory = SchemaFactory.newInstance(
 XMLConstants.W3C_XML_SCHEMA_NS_URI)
Schema schema = factory.newSchema(new File(xsd))
Validator validator = schema.newValidator()
validator.validate(new StreamSource(new FileReader(file)))

This looks relatively simple, but here’s the interesting part: the mechanism used is
Java. If I was to write this code in Java, it would look almost identical. Unlike the
XmlSlurper used for DTD validation, Groovy doesn’t add anything special to do
schema validation. So you fall back on the Java approach and write it in Groovy.
Because Groovy didn’t add anything, these lines could be written in either language,
depending on your needs. Still, Groovy normally does help, as most of the code in this
appendix shows.

 Whenever the issue of XML comes up these days, someone always asks about JSON
support. I’ll address that issue in the next section.

B.9 JSON support
The trend in the industry has been away from XML and toward JavaScript Object
Notation, known as JSON. If your client is written in JavaScript, JSON is a natural,
because JSON objects are native to the language. Java doesn’t include a JSON parser,
but several good libraries are available.

 As of Groovy 1.8, Groovy includes a groovy.json package, which includes a JSON
slurper and a JSON builder.

B.9.1 Slurping JSON

The groovy.json package includes a class called JsonSlurper. This class is not quite
as versatile as the XmlSlurper class because it has fewer methods. It contains a parse
method that takes a Reader as an argument, as well as a parseText method that takes
a String.
www.it-ebooks.info

http://www.it-ebooks.info/

324 APPENDIX B Groovy by feature

 A JSON object looks like a map inside curly braces. Parsing it results in a map
in Groovy:

import groovy.json.JsonSlurper;

def slurper = new JsonSlurper()
def result = slurper.parseText('{"first":"Herman","last":"Munster"}')
assert result.first == 'Herman'
assert result.last == 'Munster'

Instantiate the slurper and call its parseText method, and the result is a map that can
be accessed in the usual way, as shown. Lists work as well:

result = slurper.parseText(
 '{"first":"Herman","last":"Munster","kids":["Eddie","Marilyn"]}')
assert result.kids == ['Eddie','Marilyn']

The two children wind up in an instance of ArrayList. You can also add numbers and
even contained objects:

result = slurper.parseText(
'{"first":"Herman","last":"Munster","address":{"street":"1313 Mockingbird

Lane","city":"New York","state":"NY"},"wife":"Lily",
 "age":34,"kids":["Eddie","Marilyn"]}')

result.with {
 assert wife == 'Lily'
 assert age == 34
 assert address.street == '1313 Mockingbird Lane'
 assert address.city == 'New York'
 assert address.state == 'NY'
}

The age becomes an integer. The address object is also parsed into a map, whose
properties are also available in the standard way. Here, by the way, I used the with
method, which prepends whatever value it’s invoked on to the contained expressions.
wife is short for result.wife, and so on.

 If parsing is easy, building is also a simple operation, much like using MarkupBuilder.

B.9.2 Building JSON

I discussed builders earlier, and I use them throughout the book. In various chapters I
use MarkupBuilder (shown in this chapter), SwingBuilder, and AntBuilder. Here I’ll
illustrate the builder for generating JSON, called JsonBuilder.

 The JsonBuilder class can be used with lists, maps, or methods. For example,
here’s a trivial list:

import groovy.json.JsonBuilder;

def builder = new JsonBuilder()
def result = builder 1,2,3
assert result == [1, 2, 3]
www.it-ebooks.info

http://www.it-ebooks.info/

325JSON support

This builder takes a list of numbers as an argument and builds a JSON object contain-
ing them. Here’s an example of using a map:

result = builder {
 first 'Fred'
 last 'Flintstone'
}
assert builder.toString() == '{"first":"Fred","last":"Flintstone"}'

The result is a standard JSON object (contained in braces), whose properties are the
strings provided in the builder.

 In the builder syntax you can use parentheses to build a contained object, so let’s
continue on with the example:

result = builder.people {
 person {
 first 'Herman'
 last 'Munster'
 address(street:'1313 Mockingbird Lane',
 city:'New York',state:'NY')
 wife 'Lily'
 age 34
 kids 'Eddie','Marilyn'
 }
}
assert builder.toString() ==
 '{"people":{"person":{"first":"Herman","last":"Munster",' +
 '"address":{"street":"1313 Mockingbird Lane",' +
 '"city":"New York","state":"NY"},"wife":"Lily","age":34,' +
 "kids":["Eddie","Marilyn"]}}}'

The generated JSON can get difficult to read, so the class adds a toPrettyString()
method:

println builder.toPrettyString()

This results in nicely formatted output, as shown:

{
 "people": {
 "person": {
 "first": "Herman",
 "last": "Munster",
 "address": {
 "street": "1313 Mockingbird Lane",
 "city": "New York",
 "state": "NY"
 },
 "wife": "Lily",
 "age": 34,
 "kids": [
 "Eddie",
www.it-ebooks.info

http://www.it-ebooks.info/

326 APPENDIX B Groovy by feature

 "Marilyn"
]
 }
 }
}

JSON data is therefore almost as easy to manage as XML, both when creating it and
when managing it.
www.it-ebooks.info

http://www.it-ebooks.info/

index
Symbols

@Aspect annotation
definition 180
Spring bean configuration 181

@Autowired annotation 172
@Bean annotation

definition 186
example 189

@Before annotation 180
@Category annotation 261
@Configuration annotation

bean definition 186
example 188

@Delegate annotation 222, 240
example 75
JUnit test 75
purpose 74

@Delete annotation 232
@GET annotation 232
@Grab annotation 114, 116
@GrabConfig annotation 116
@Grapes annotation 116
@Immutable annotation

collection 78–79
example 76
limitations 77, 80
property 77

@Pointcut annotation 184
@POST annotation

example 234
HTTP request 232

@Produces annotation
MIME type 232
syntax 240

@Scope annotation 189
@Singleton annotation 240
@Test annotation

expected property 132
Java test 131
JUnit 4 132

@TestFor annotation 284
@Transactional annotation

function 174
Grails 219
purpose 172

@Unroll annotation 160
@XmlRootElement annotation 239

A

Abstract Syntax Tree (AST) transformations
@Immutable annotation 80
@Singleton annotation 81
definition 74
example 222, 240
Groovy class 90
Integrated Development Environment

80
Spock testing framework 164

access modifier 29
Account class

design 170
java.math.BigDecimal class 169

AccountDAO interface 170
action controller 283
action map 283
addressable resource

REST architecture 229
327

@PUT annotation 232 Richardson Maturity Model 245

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX328

advice
definition 179
example 184
inline scripted Groovy bean 186

Almiray, Andres 298
ampersand 23
annotations

common 210
HTTP request 232

Ant
advantage of use 98
build 96–97
characteristics 95
dependency management 104
Gradle, work with 123
Groovy, work with 97
Hello World 95
limitations 104
source 93

AntBuilder class
example 100
Gant 97
Gradle 97, 123
script 101

aop namespace 181
AOP. See aspect-oriented programming
Apache HTTP Client library 242
architecture, layered 285
arrays 6

Groovy 73
Java 73
length 136

arrow notation 22
artifact

Gradle 124
Maven 106

as keyword
closure 145
map 66
purpose 25, 306

aspect
BeanBuilder class 196
definition 179
example 180
Groovy vs Java 183
JUnit test 182
Spring configuration 181

aspect-oriented programming (AOP)
characteristics 179
example 179
Spring restrictions 181

Assert class 132
assert keyword

Boolean expression 23, 299

private properties 66
purpose 23

assert statement
example 34
script test 138

AST. See Abstract Syntax Tree transformations
attribute privacy

access 11, 303
Groovy 29, 303
Java 5
POGO 45, 303

attributes 260

B

basic authentication
HTTP 71
process 71
security 72

bean configuration
annotations 186
example 187, 193
Groovy 190
Java 189
lang namespace 177
Spring 190

BeanBuilder class
aspect 196
example 192
Grails 190
process 193
Spring library 191
test case 192

BeanBuilderTests class 192
beans

deployment 177
dynamic language 178
Grails 190
Groovy namespace 177
inline scripted Groovy bean 16, 185
Java configuration option in Spring 186
refreshable bean 16, 175
relationship 194
Spring bean files 16, 169, 190

BeanShell 177
Beck, Kent 128
behavior-driven development 236
belongsTo property

definition 215
example 281
Grails 215

BigDecimal class
example 176
operator 169
debugging output 134 round-off error 169

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 329

bin folder
Groovy 290
Java 289

binary JSON (BSON) 220
binding

definition 52
groovy.lang.GroovyShell class 57–58
purpose 62
script 138
undeclared variables 53
variable 139

Blazing Saddles 220
Boolean expression

assert keyword 23, 299
flag 147

boundary 304
Brown, Jeff 146
browser user interface 277
BSON (binary JSON) 220
build

Ant 13
AntBuilder class 101
Gradle 13, 172, 191, 271
Groovy 13
process 94

build successful message 97
build technologies 95
builder class 26, 193–194, 324

AST transformations 74
metaprogramming 24
Swing builder 24

build.xml 96

C

C language 4
C++ language 4
Calendar class 73
caller 143
Canoo WebTest 276
cascade-delete relationship 215
category

documentation 259
method addition 259
static method 259, 261

chaining 68
Chart API. See Google Chart Tools Image API
chart data 20
chart label 20
chart size 20
chart tools 19
chart type 20
chd parameter 20
chs parameter 20

class
class vs script 61
database table 215
Groovy vs Java 19, 194
instantiation 25
method 5, 7
test in isolation 142

classpath 50, 275
Client class

getLink method 248–249
getUri method 249
RESTful web service 242

Clojure 46
closure

coerced closure 144, 171, 197
definition 10, 21–22, 26, 300
delegate property 115, 207
dummy argument 21, 31, 311
map 146
placement with parentheses 22
value returned 40, 45, 133, 311

collaborator 143
collect method

map 54
purpose 21, 26, 306

collection
@Immutable annotation 78–79
findAll method 67
Groovy 9, 67, 306
Groovy methods added to Java 71, 303, 306–307
Java 7
overload 66

colon
@Grab annotation 114
basic authentication 71
Gradle 119–120
map creation 21

com.gmongo.GMongo class 221
Comparator interface 8
compareTo method 7
compile

Groovy 19, 297
Groovy and Java 63
Java 19, 297
refreshable bean 175

compiled language 19
Complex class

content 115
definition 115
metaclass 115
pow method 116

concurrency 76
conditional statement 313
const keyword 76
cht parameter 20 constant 201

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX330

constructor
attribute setting 45
auto-generation 30
Groovy vs Java 29
map-based constructor 65, 303
sequential 80

contains method 23
content negotiation 229
continuous delivery 95
controllers 282–283
conversion 54, 207, 224
create method 233
crosscutting 179
curly brace 87, 240
cyclical dependency 63
Cygwin 291

D

DAG. See Directed Acyclic Graph
DAO interface 231
data type 299
database connection 203
database name 222
database population 221
database schema 217
database table

class 211
map 215
primary key 201, 211

databases
Groovy 219
population script 29
stadium locations 29

date manipulation 304
calculation 73
example 73
Groovy 72

decision statement 313
declare type 20
def keyword

advantage of use 7, 150
def vs type 20, 298
definition 20
Spock testing framework 157

delegation 74
DELETE request

example 237
Groovy 242
idempotent 229
Richardson Maturity Model 245
safe 229

dependency injection 284
dependency management

Gradle 13, 120
Grape 114
Maven 105

deployment, Grails 279
design pattern

DAO design pattern 278
Iterator 312
Singleton design pattern 81

detached object 219
Directed Acyclic Graph (DAG)

task sequence 273
tasks 119

documentation
category 259
Chart API 19
Groovy API 71
Groovy JDK 71
open source project 192
tests 126

domain class
constraint 280
Grails 214, 279, 287
primary key 214

domain model
Groovy 67
Java 67

domain-specific language (DSL)
Gant 102
Gradle 118
Grails 279

DTD (Document Type Definition)
321

duck typing 6
dummy argument

arrow notation 22
closure 21, 31, 309

dummy variable 309
dynamic finder method

generation 217
object state 219

E

eachWithIndex method 312
Eclipse 292
edt method 25
EJB. See Enterprise JavaBeans
Elvis operator 147, 314
Emacs 293
embedded database

Spock test 188
Spring 210

<embedded database> tag 172
encode 72
declare 121 encrypt 72

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 331

Enterprise JavaBeans (EJB)
Hibernate vs Enterprise JavaBeans

209
history 208
process 208
Spring 209

entity relationship diagram (ERD) 217
environment variable 50, 289–290
ERD. See entity relationship diagram
Euler, Leonhard 116
evaluate method

GroovyShell class 138
overload 58

exception
Groovy 45
Java 11
JDBC 202
Spock testing framework 158

execute method 204
executeInsert method 204
Expando class 146

characteristics 155
test object 151

expected property
@Test annotation 136
test result 132

Extensible Markup Language (XML)
Ant 98, 104
conversion 86, 267
Groovy 15, 30–31, 84
groovy.xml.MarkupBuilder class 85
history with Java 82
Maven 105
parsing 32, 35, 318
processing 39

F

factory
classpath 50
definition 50
detection 51
embedded 50
environment variable 50
immutability 80
logger 141
method argument 50

feature method 158
Fielding, Roy

Representational State Transfer 229
Richardson Maturity Model 245

file I/O
appending 316
closing 316

Groovy 317
Java 315–316

final keyword 5
financial calculations 169
find method

collection 307
MongoDB 223
typed language 223

findAll method 67, 307
fixture 157
for-in loop 312
Fowler, Martin 208
frame method 25

G

Gamma, Erich 128
Gant

AntBuilder class 97
domain-specific language 102
example 102
Grails 102, 104
target 103

Geb web testing framework 276
geocoder

definition 30
documentation 53
Google 53
Groovy 84
mapping plugin 285
mixed classes 59
script 60

GET request
example 242
idempotent 229
integration test 275
Richardson Maturity Model 245
safe 229

getter
auto-generation 30, 45
conversion 54
dynamic generation 11
joinpoint 182
property access 66, 303

getText() method
calling 24
data retrieved from web page 23

GGTS (Groovy and Grails Tool Suite) 293
GitHub 293
GMaven

archetype 111, 113
definition 110
Java stub 112
structure 111
getText method 315 GMongo 200, 220

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX332

Google Chart Tools Image API 19
Google geocoder

access 54
Groovy 84
process 53
version 2 53

Google Geocoding API 30
Google Maps API

example 286
map creation 27
mapping plugin 285
marker addition 27

Google Visualization plugin 285
GORM. See Grails Object-Relational Mapping
Gradle

AntBuilder class 97, 101, 104, 123
basic build 119
build 13, 172, 191, 271
dependency 13, 120, 122–123
Groovy, inclusion of 118, 121
installation 118
integration test 270
repository 120
source folder 122
Spock testing framework 156, 164
tasks skipped 122
Wrapper task 124

Gradle plugin 271
Grails

BeanBuilder class 16, 190
characteristics 279
commands 102
dynamic finder method generation 217
Gant 102, 104
GGTS 293
GORM 200, 219
Groovy, inclusion of 15, 118
GVM 291
JAX-RS 255
RESTful web service 255
underscore 103
web application 279

Grails Object-Relational Mapping (GORM)
domain 214
example 280
purpose 213

GRAILS_HOME environment variable 293
Grails-Spring JAR 191
Grape

@Grab annotation 114
@GrabConfig annotation 116
characteristics 114, 117

Griffon 291
groovlet

deployment 264
example 44
Hello World 264
integration test 264
JavaScript Object Notation 267
purpose 17
RESTful web service 253
script 44
unit test 265
XML 267

Groovy
advantage of use 14
Ant 97
call from Java 62
call to Java 62
dynamic generation 11
Groovy-Eclipse compiler plugin 106
installation 289–291
Java integration 13–14, 47, 64, 260
Java stub 112
JAX-RS 239
methods added to Java 71
testing 127, 291
version compatibility 118

Groovy Adaptable/Advanced Packaging Engine.
See Grape

Groovy and Grails Tool Suite (GGTS) 293
Groovy API documentation 71
Groovy Baseball web application 26, 266
groovy command

execution 48
JUnit runner 136

Groovy console 292
Groovy enVironment Manager (GVM)

Grails 291
Griffon 291
Groovy installation 291
Groovy version 291

Groovy JDK
content 71
definition 10, 23
documentation 71, 90
methods 26, 302

Groovy metaprogramming
category 258
Grails 283
Groovy JDK 302

Groovy namespace 177
Groovy shell 296
Groovy Truth

advantage of use 313
example 61
processing 39, 299
when/then block 158
definition 43, 45, 263 GROOVY_HOME environment variable 290

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 333

groovy-all JAR
Ant 98
classpath 297
definition 49
example 49
Spring 174

Groovyc class 99
groovyc command

example 49
purpose 19

groovyc compiler 63
Groovy-Eclipse compiler plugin

archetype 106
build section 109
dependency 109
example 106
execution 110
installation 292
Maven 113
source directories 110

groovy.lang.GroovyShell class
binding 57–58
example 58
parse method 58
purpose 56
script execution 57

groovy.lang.Script 19
GroovyObject interface 112
GroovyServlet class

configuration 263
script 264

groovysh command 296
groovy.sql.Sql class

advantage of use 34, 208
DAO interface 231
database connection 203
purpose 33, 45, 203
query 205
raw SQL 200
resource management 204

GroovyTestCase class
definition 128
features 136
logger 136
subclass 139, 141

groovy.util.Eval class
call from Java 57
call script 62
JUnit test 56
purpose 56
static method 56

groovy.xml.MarkupBuilder class
builder 42
XML generation 85, 320

H

H2 driver 173, 210
h2database dependency 173
Hamcrest matchers 128
hasMany property

example 282
Grails 215
relationship 216

HATEOAS (Hypermedia as the Engine of Applica-
tion State). See hypermedia

Hello World
Ant 95
groovlet 264
Groovy 19, 296
Groovy installation, test of 291
Groovy script 20, 138
Spring 168

Hibernate
database schema 217
definition 199
example 210
GORM API 219
Hibernate vs Enterprise JavaBeans 209
history 208
Java Persistence API 199

Hibernate session
database 218
detached object 219
object state 218
Open Session in View 219
session factory 209

HomeBrew 290
HTML parsing 40
HTTP library 242
HTTP request

annotations 232
Grails 219
groovlet 45, 253
JAX-RS 232
test client 236

HTTPBuilder library 275
HttpBuilder project 242
HTTPClient library, Apache 275
hypermedia

definition 241
implementation guidelines 253
JAX-RS 252
links 246
Richardson Maturity Model 245

hyphen 197
GString 21, 300

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX334

I

IDE build 94
IDE. See Integrated Development Environment
idempotent

definition 229
DELETE request 229
GET request 229
POST request 229
PUT request 229

if statement 313
immutable object 76
ImmutableLine class 78
ImmutablePoint instance 78
implicit variable 266
importing

classes 25
java.lang package 24

inline scripted Groovy bean
configuration file 197
example 185
purpose 186

insert method 233
instantiation

bean 188
BeanBuilder class 193
class 172
Plain Old Java Object 182
servlet 270
Spring 189

Integrated Development Environment (IDE)
AST transformations 80
Groovy 19
static typing 5
support 292

integration test
definition 142
example 152
Gradle 270
groovlet 264
integration test vs unit test 149
source tree 274

IntelliJ IDEA 293
interface implementation 144

closure 146
table structure 201

isolation class testing 142
it variable 31, 302
iterator 7
Ivy

Ant 104
Grape 114

J

Jackson JSON parser 239
Java

bean definition 186, 189
call to Groovy 59, 62
characteristics 5
collection 7
history 4
installation 289
library 15
static typing 5
verbosity 10

Java API for RESTful Services 230
Java API for XML Binding (JAXB) 239
Java API for XML Processing (JAXP) 83
Java Database Connectivity (JDBC)

connection 208
definition 200
example 200
SQLException 202
verbosity 203

Java Development Kit (JDK) 289
Java EE specification 230
Java interface

AccountDAO interface 170
example 129
Groovy, work with 172, 240

Java Management Extensions (JMX) 179
Java Native Interface (JNI) 46
Java Persistence API (JPA)

entity bean 209
example 211
Hibernate 199
test case 212

Java Runtime Environment (JRE) 289
Java Specification Request (JSR)

call to Groovy script 62
creation 47
Groovy and Java 50
history 48
Java SE 6 50
purpose 49

Java Virtual Machine (JVM)
definition 3
Groovy installation 289
Groovy script 297
languages 46

JAVA_HOME environment variable 289
javac command 19
Javadoc 71
java.lang package 24
java.lang.String conversion 23
java.lang.String type 20–21
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 335

java.math.BigDecimal class
Account class 169
round-off error 169, 299

java.math.BigInteger class 169, 299
javap command 297
JavaScript Object Notation (JSON)

external library 84
geocoder access 30
Groovy, work with 15
Jackson JSON parser 239
JSON data generation 89
JsonSlurper class 89, 323

JAXB. See Java API for XML Binding
JAXP. See Java API for XML Processing
JAX-RS

client-side technologies 228
Groovy 239
hypermedia 239, 252
hypermedia technologies 228
response header 233
server-side technologies 228

JDBC. See Java Database Connectivity
JdbcTemplate class

example 170
query method 171
vs Groovy 203

jetty plugin
automation 272
configuration 272
war plugin 272
web application 271

JMX. See Java Management Extensions
JNI. See Java Native Interface
join method

advantage of use 23
query string creation 22

join table 217
joinpoint

access 182
definition 179

joint compilation 99
JPA. See Java Persistence API
JRE. See Java Runtime Environment
JRuby 46, 177
JSON. See JavaScript Object Notation
JsonBuilder class 90, 250, 324
JsonSlurper class

example 89, 222, 324
parseText method 90, 252, 324
structural link 251

JSR. See Java Specification Request
JUnit test

annotations 75, 128
characteristics 128

Groovy implementation, test of 131
Groovy test 42, 133–134
Java implementation 133–134
Java test 131
JSR 223 55
JUnit dependency 119
overload 57
source 128
static method 56

JVM. See Java Virtual Machine
Jython 46

K

key=value pairs 22
King, Paul 276
Klein, Dave 298
Koenig, Dierk

def vs type 21, 298
Liquid Heart 48
refreshable bean 179

L

lang namespace
example 177
Groovy aspect 181
Spring configuration file 177

<lang:groovy> 177
latitude

Groovy 85
retrieval 55

left-shift operator 273
length property 78
Link class 246
LinkBuilder class 246
Liquid Heart 48
list 26, 305
literal 299
local variable 20
Location class 60
locking 217
logger

default logger 141
example 51
getLogger method 141
GroovyTestCase class 136
Java logging classes 141
script 141

longitude
Groovy 85
retrieval 55

loop
each method 312
example 41 for-each loop 311

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX336

M

Macintosh
Groovy installation 290
Groovy installation, test of 292
JDK installation 290

MacPorts 290
main method 19
map

attribute 147
cache 149
closure 146, 309
creation 21, 307
database table 215
element addition 308
Groovy syntax 26, 307
parameter 222, 265
syntax 21, 307

Map class 205
MarkupBuilder class

conversion 87
XML production 45

Maven
archetype 106
characteristics 13, 105
exec:java task 113
GMaven 110
Groovy-Eclipse compiler plugin 106, 113
Java project 107
project structure 105
source 93
XML 105

metaclass 24
Complex class 115
Expando class 115
getMetaClass method 207
Groovy 71, 320
MethodMissing method 71, 320

metaprogramming 100
AST transformation 74
builder class 24
documentation 90
example 87, 114
Expando class 151
Groovy 15
text format 207
See also Groovy metaprogramming

method argument 50
method public

Groovy 29
POGO 45

methodMissing method
invocation 24
metaclass 71

methods
addition of 71–72
classes 5, 7
Groovy operator 90, 260
missing 24
privacy of 5

minus method 67
mock class 6, 262, 277

mock vs stub 153
MockFor class 155
org.springframework.mock.web package 269
Spock testing framework 161–162
use of 270

Model-View-Controller (MVC) architecture
Grails 279
principles 278
structure 278

MongoDB
binary JSON 222
database name 222
definition 220
find method 223
GMongo 200, 220
MonjaDB 223
population 221

MonjaDB 223
MVC. See Model-View-Controller architecture
MySQL database 29

N

name property 183
newInstance method 204
Niederwieser, Peter 156
NoSQL database

Java API 200, 225
popularity 220

nullable 281
NullPointerException avoidance 202
number 298

O

object state 218
object-relational mapping (ORM)

function 213
interface 199

Open Session in View (OSIV) 219
open source project 192
operator

Groovy method 68, 90, 260
Java 68
name 69
overrides 70
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 337

operator overload
advantage of use 6
implementation 67, 305
Java 5, 90

optimistic locking 217
optional type 6, 20
OPTIONS request 245
Oracle source, download 289
order, SQl keyword 215
org.springframework.mock.web package 269
ORM. See object-relational mapping
OSIV (Open Session in View) 219
overload

collection 66
evaluate method 58
Groovy 67
Java 67
JUnit test 57
operator overload 67
String class 57

P

pack method 25
parameter 52, 265
params variable 21
parentheses

lack of 88
needed 23
optional 19, 296
placement of closure 22
use of 19

parse method 58
parser 26
password

authentication 71
example 72

Perl script 48
persistence layer 65, 170
persistent state 219
Person class 206
pessimistic locking 217
Plain Old Groovy Object (POGO)

characteristics 302
class 29
Groovy vs Java 30
POGO vs. POJO 65, 107
RESTful web service 230
setter 184

Plain Old Java Object (POJO)
class 29
example 65
Java Resource class 234
POJO vs. POGO 65, 107

plugin system
example 285
Grails 279
plugin installation 285

plus method 67
POGO. See Plain Old Groovy Object
Poiati, Paulo 220
pointcut

@Before annotation 180
definition 179
example 184
inline scripted Groovy bean 186
name 184
Spring restrictions 181

POJO. See Plain Old Java Object
polymorphism 5
POST request

example 237
Groovy 242
idempotent 229
Richardson Maturity Model 245
safe 229

pretended method
definition 42
example 43

primary key
example 201
Grails 214
JAX-RS 233
URL 233

prime meridian 55
primitive 5, 298
production code 127
property

access 24
conversion 54
environment 289
hyphen 197
name 183

propertyMissing method
invocation 24
metaclass 71

PUT request
example 237
Groovy 242
idempotent 229
Richardson Maturity Model 245
safe 229

Python 46

Q

queries
Grails 218
Plain old XML over HTTP 245 Hibernate 218

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX338

queries (continued)
JdbcTemplate class 171
object state 219

query string
build 31, 222
write vs generate 21

quotes
BeanBuilder class 197
double 21, 33, 300
single 21, 33, 300

R

range 304
Ratpack 255
ReadOnlyPropertyException property 77
refreshable bean

deployment 177
example 175
Spring 175
system modification 197
use case 179

refresh-check-delay time period 177
regular expression 301
relational database 199
relationship

entity relationship diagram 217
hasMany property 216

repository
Gradle 120
syntax 270

representation 245
Representational State Transfer (REST)

definition 229
flexibility 241

resource management 204
ResourceConfig class 235
Response class 233
response header 233
REST alternatives

characteristics 243
Grails 255
groovlet 253
JAX-RS 230
Ratpack 255
RestEasy 230
Restfulie 230
Restlet 230

REST. See Representational State Transfer
RESTClient class

example 242
HttpBuilder project 242
test 236

RestEasy 230

Restfulie 230
Restlet 230
return closure 133
return loop 133
Richardson Maturity Model (RMM) 245
Richardson, Leonard 245
Rocher, Graeme 192
RoR. See Ruby on Rails
Rotten Tomatoes

links section 245
query and response 244
web service 220

rows method 205
Ruby 46
Ruby on Rails (RoR)

characteristics 277
Grails 279
Java 277

RunDemo class 112
runtime 48

S

safe dereference operator 10, 229, 236, 314
scaffold property 282
Scala 46
scalability 229
script engine

call to Groovy script 62
example 51
test 57

ScriptEngine class 59
ScriptEngineManager class 51
scripting, interactive 279
scripts

assert statement 137
binding 138, 299
execution 48
groovlet 44
Groovy 19, 297
invocation 62
JSR 223 47, 50
script vs class 61, 137
test 137, 140

Selenium 276
semicolon 19, 296, 299
server

safe dereference operator 236
Spock test 235, 237
test 236

server access 243
service class

business logic 283
dependency injection 284
RESTful web service 242 transactional boundary 278

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 339

servlet
creation 269
example 258
JUnit test 269

ServletBinding class 277
ServletCategory methods

example 262
Java integration 260
scope 259

session factory 209
setter

auto-generation 30, 45
conversion 54
dynamic generation 11
Plain Old Groovy Object 184
property access 66, 303
property name 183

setupSpec method 235
shutdownSpec method 235
signature property 183
Singleton design pattern

creation 81
Hibernate 209
Spring 209

size method 308
SmartPhone class 75
source tree

classpath 275
integration test 274
live mode 276

split method 54
splitEachLine method 147
Spock testing framework

@Unroll annotation 160
behavior-driven development 236
characteristics 157
DAO interface 231
data-driven specifications 159
definition 156
example 12, 69
exception 158, 163
Gradle 156, 164
ImmutableLine class 78
installation 294
Mock method 161–162
RESTful API 235
server 235
source 156
Spring testing framework 174, 197
stub 162
version 156
wiki 164

spock.lang.Specification superclass 157
spock-spring dependency 173

spread-dot operator
assert statement 67
jetty plugin 272
size method 9
text format 207

Spring
bean configuration 190
bean files

BeanBuilder class 191
configuration file 174

characteristics 167, 268
configuration file 177
Enterprise JavaBeans 209
Groovy, work with 168
refreshable bean 175
Spock test 173
testing framework 173

function 212
Spock test 174

spring-context dependency 173
spring-jdbc dependency 173
SQLException 202
square bracket 21, 240, 305, 307
Srkoc, Dinko 206
stateless services 229
static method

argument 259
category 259, 261
groovy.util.Eval class 56

static reference 6
static typing

definition 5
dynamic binding 5
Integrated Development Environment 5

String class
Expando class 149
overload 57
sorting 7–8
toURL method 54

strings
definition of 6
duck typing 6
sorting 7–8
use of 300

structural link
definition 249
example 246
hypermedia 246
JsonBuilder class 250
JsonSlurper class 251
serializer 249–250
string conversion 251
value 249

structural link test 249–250, 252–253
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX340

stubs
example of 154
Spock testing framework 162
stub vs mock 153
StubFor class 154–155

superclass
JUnit test 132
shouldFail method 136

Swing builder 24
Swing user interface script 25
syntaxes 19

T

table structure
interface implementation 201
readability 204

target 103
task sequence 273
ternary operator 313
test automation

advantage of use 126, 268
integration test 275
JUnit 12, 128
source tree 275

test case
bean properties 193
BeanBuilder class 192
open source project 192

testing 268
advantage of use 126
binding variable 139
conversion 225
database reinitialization 174
embedded test 274
Groovy vs Java 11
print 138–139
scope 195
Spock testing framework 69
technologies 128

TextMate 293
tokenize method 159
toString method 108
toURL method

example 242
purpose 23
string conversion 54

TRACE request 245
transient state 219
transitional link test

addition of 247
creation of 246
example 246
heading conversion 248

JUnit test 248
link access 247
Link class 246, 252
LinkBuilder class 246
setting 247

Twitter 242
types

declaring 20
def vs type 298
Groovy variable 26
optional 20, 298

U

UltraEdit 293
undeclared variable 53
uniform interface

REST architecture 229
Richardson Maturity Model 245

unit test
class 142
Grails 284
groovlet 265
unit test vs integration test 149

Unix
Groovy installation 290, 292
JDK installation 290

UriBuilder class 233
URL

discovery 243
legal values 31
pattern 234, 264
primary key 233

use block
category 259
example 262

username
authentication 71
example 72

UtilityMethods interface
Groovy implementation 130
Java implementation 129

V

variables
addition to script 52
binding 139
declaring 61
Groovy 298
implicit variable 266
local to script 20
setting 62
types 26, 298
hypermedia 246 undeclared 53, 299

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 341

W

war plugin
build 271
jetty plugin 272
Maven structure 271
web application 271

web application
application architecture 277
Grails 279
MVC architecture 278
project structure 271
user interface 277

WebTarget class 242
when/then block 158
Windows

Groovy installation 290, 292
JDK installation 289

with method 207
withWriter method 147
Wrapper task 124

X

XML generation 320
XML schema 322
XML. See Extensible Markup Language
XML validation

Document Type Definition 321
XML schema 322

XmlParser class
example 87
XML parsing 32, 320
XmlSlurper class, comparison 32

XmlSlurper class
example 40, 87, 153, 319
Maven 108
XML parsing 32, 45, 319
XMLParser class, comparison 32

Y

Yahoo! Weather 106
Yates, Tim 207
Yegge, Steve 7, 310
www.it-ebooks.info

http://www.it-ebooks.info/

Kenneth A. Kousen

Y
ou don’t need the full force of Java when you’re writing
a build script, a simple system utility, or a lightweight
web app—but that’s where Groovy shines brightest. Th is

elegant JVM-based dynamic language extends and simplifi es Java
so you can concentrate on the task at hand instead of managing
minute details and unnecessary complexity.

Making Java Groovy is a practical guide for developers who want
to benefi t from Groovy in their work with Java. It starts by
introducing the key diff erences between Java and Groovy and
how to use them to your advantage. Th en, you’ll focus on the
situations you face every day, like consuming and creating
RESTful web services, working with databases, and using the
Spring framework. You’ll also explore the great Groovy tools
for build processes, testing, and deployment and learn how to
write Groovy-based domain-specifi c languages that simplify
Java development.

What’s Inside
● Easier Java
● Closures, builders, and metaprogramming
● Gradle for builds, Spock for testing
● Groovy frameworks like Grails and Griff on

Written for developers familiar with Java. No Groovy experience
required.

Ken Kousen is an independent consultant and trainer specializing
in Spring, Hibernate, Groovy, and Grails.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/MakingJavaGroovy

$44.99 / Can $47.99 [INCLUDING eBOOK]

Making Java Groovy

JAVA

M A N N I N G

“Focuses on the tasks
that Java developers

 must tackle every day.”—From the Foreword by
Guillaume Laforge

Groovy Project Manager

“Th oroughly researched,
highly informative, and
mightily entertaining.”

—Michael Smolyak
Next Century Corporation

“A comprehensive tour
through the Groovy

 development ecosystem.”—Sean Reilly
Equal Experts in the UK

“I measured this book’s ROI
in Revelations per Minute.”—Tim Vold, Minnesota State

Colleges and Universities

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who are you?
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1—Up to speed with Groovy
	1 Why add Groovy to Java?
	1.1 Issues with Java
	1.1.1 Is static typing a bug or a feature?
	1.1.2 Methods must be in a class, even if you don’t need or want one
	1.1.3 Java is overly verbose
	1.1.4 Groovy makes testing Java much easier
	1.1.5 Groovy tools simplify your build

	1.2 Groovy features that help Java
	1.3 Java use cases and how Groovy helps
	1.3.1 Spring framework support for Groovy
	1.3.2 Simplified database access
	1.3.3 Building and accessing web services
	1.3.4 Web application enhancements

	1.4 Summary

	2 Groovy by example
	2.1 Hello, Groovy
	2.2 Accessing Google Chart Tools
	2.2.1 Assembling the URL with query string
	2.2.2 Transmitting the URL
	2.2.3 Creating a UI with SwingBuilder

	2.3 Groovy Baseball
	2.3.1 Database data and Plain Old Groovy Objects
	2.3.2 Parsing XML
	2.3.3 HTML builders and groovlets

	2.4 Summary

	3 Code-level integration
	3.1 Integrating Java with other languages
	3.2 Executing Groovy scripts from Java
	3.2.1 Using JSR223 scripting for the Java Platform API
	3.2.2 Working with the Groovy Eval class
	3.2.3 Working with the GroovyShell class
	3.2.4 Calling Groovy from Java the easy way
	3.2.5 Calling Java from Groovy

	3.3 Summary

	4 Using Groovy features in Java
	4.1 Treating POJOs like POGOs
	4.2 Implementing operator overloading in Java
	4.3 Making Java library classes better: the Groovy JDK
	4.4 Cool AST transformations
	4.4.1 Delegating to contained objects
	4.4.2 Creating immutable objects
	4.4.3 Creating singletons

	4.5 Working with XML
	4.6 Working with JSON data
	4.7 Summary

	Part 2—Groovy tools
	5 Build processes
	5.1 The build challenge
	5.2 The Java approach, part 1: Ant
	5.3 Making Ant Groovy
	5.3.1 The <groovy> Ant task
	5.3.2 The <groovyc> Ant task
	5.3.3 Writing your build in Groovy with AntBuilder
	5.3.4 Custom build scripts with Gant
	5.3.5 Ant summary

	5.4 The Java approach, part 2: Maven
	5.4.1 The Groovy-Eclipse plugin for Maven
	5.4.2 The GMaven project
	5.4.3 Maven summary

	5.5 Grapes and @Grab
	5.6 The Gradle build system
	5.6.1 Basic Gradle builds
	5.6.2 Interesting configurations

	5.7 Summary

	6 Testing Groovy and Java projects
	6.1 Working with JUnit
	6.1.1 A Java test for the Groovy implementation
	6.1.2 A Groovy test for the Java implementation
	6.1.3 A GroovyTestCase test for a Java implementation

	6.2 Testing scripts written in Groovy
	6.2.1 Useful subclasses of GroovyTestCase: GroovyShellTestCase
	6.2.2 Useful subclasses of GroovyTestCase: GroovyLogTestCase

	6.3 Testing classes in isolation
	6.3.1 Coerced closures
	6.3.2 The Expando class
	6.3.3 StubFor and MockFor

	6.4 The future of testing: Spock
	6.4.1 The Search for Spock
	6.4.2 Test well, and prosper
	6.4.3 Data-driven specifications
	6.4.4 The trouble with tribbles
	6.4.5 Other Spock capabilities

	6.5 Summary

	Part 3—Groovy in the real world
	7 The Spring framework
	7.1 A Spring application
	7.2 Refreshable beans
	7.3 Spring AOP with Groovy beans
	7.4 Inline scripted beans
	7.5 Groovy with JavaConfig
	7.6 Building beans with the Grails BeanBuilder
	7.7 Summary

	8 Database access
	8.1 The Java approach, part 1: JDBC
	8.2 The Groovy approach, part 1: groovy.sql.Sql
	8.3 The Java approach, part 2: Hibernate and JPA
	8.4 The Groovy approach, part 2: Groovy and GORM
	8.4.1 Groovy simplifications
	8.4.2 Grails Object-Relational Mapping (GORM)

	8.5 Groovy and NoSQL databases
	8.5.1 Populating Groovy vampires
	8.5.2 Querying and mapping MongoDB data

	8.6 Summary

	9 RESTful web services
	9.1 The REST architecture
	9.2 The Java approach: JAX-RS
	9.2.1 JAX-RS resource and tests

	9.3 Implementing JAX-RS with Groovy
	9.4 RESTful Clients
	9.5 Hypermedia
	9.5.1 A simple example: Rotten Tomatoes
	9.5.2 Adding transitional links
	9.5.3 Adding structural links
	9.5.4 Using a JsonBuilder to control the output

	9.6 Other Groovy approaches
	9.6.1 Groovlets
	9.6.2 Ratpack
	9.6.3 Grails and REST

	9.7 Summary

	10 Building and testing web applications
	10.1 Groovy servlets and ServletCategory
	10.2 Easy server-side development with groovlets
	10.2.1 A “Hello, World!” groovlet
	10.2.2 Implicit variables in groovlets

	10.3 Unit- and integration-testing web components
	10.3.1 Unit-testing servlets with Spring
	10.3.2 Integration testing with Gradle
	10.3.3 Automating Jetty in the Gradle build
	10.3.4 Using an integration-test source tree

	10.4 Grails: the Groovy “killer app”
	10.4.1 The quest for the holy Grails

	10.5 Summary

	appendix A—Installing Groovy
	A.1 Installing a JDK
	A.2 Installing Groovy
	A.3 Testing your installation
	A.4 IDE support
	A.5 Installing other projects in the Groovy ecosystem

	appendix B—Groovy by feature
	B.1 Scripts and the traditional example
	B.2 Variables, numbers, and strings
	B.2.1 Numbers
	B.2.2 Strings and Groovy strings

	B.3 Plain Old Groovy Objects
	B.4 Collections
	B.4.1 Ranges
	B.4.2 Lists
	B.4.3 Maps

	B.5 Closures
	B.6 Loops and conditionals
	B.6.1 Loops
	B.6.2 Conditionals
	B.6.3 Elvis
	B.6.4 Safe de-reference

	B.7 File I/O
	B.8 XML
	B.8.1 Parsing and slurping XML
	B.8.2 Generating XML
	B.8.3 Validation

	B.9 JSON support
	B.9.1 Slurping JSON
	B.9.2 Building JSON

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

