Th
Pra ematic
ogrammers

Pro %’ammin

roovy

Dynamic Productivity
for the Java Developer

Venkat Subramaniam
Foreword by Guillaume Laforge
Edited by Brian P. Hogan

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What readers are saying about
Programming Groovy 2

If you ever wondered why dynamic languages in general, and Groovy in particular,
are so popular and how you can leverage them in your own work, this is the book
for you.
» Joe McTee

Developer, JEKLsoft

Whether you're a Java developer starting to dabble with Groovy, an intermediate
Groovy developer looking to improve your understanding of the language, or an
experienced Groovy developer looking for an introduction to the latest features in
Groovy 2, this book is the perfect way to take your skills to the next level.
>» Peter Bell

hackNY

In this update for Groovy 2, Venkat has done a great job showing you both the
theory and the practice of using Groovy. From basic, everyday tasks to advanced
usage like compile-time metaprogramming and AST transforms, method intercep-
tion and synthesis, and creating DSLs, you'll find a ton packed into this relatively
thin book. Best, it won’t become a desk anchor since you’ll constantly refer to its
many great examples!

» Scott Leberknight

Co-founder and senior software architect, Near Infinity Corp.

www.it-ebooks.info

http://www.it-ebooks.info/

I'm delighted that Venkat has revised this essential Groovy tutorial to reflect the
developments in the language and ecosystem since the first edition. Everyone
learning Groovy should have this book in the library.
>» Tim Berglund

GitHub trainer and evangelist

Many other programming books assume too much. What makes Venkat’s books
unique is that they welcome various levels of readers without insulting their intel-
ligence. Programming Groovy 2 is no exception—it is crafted with small palatable
examples that guide the reader in a natural and incremental learning experience
from novice to expert.
» Daniel Hinojosa

Consultant, programmer, speaker, author of Testing in Scala

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Groovy 2

Dynamic Productivity for the Java Developer

Venkat Subramaniam

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC .
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-30-7

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—July 2013

www.it-ebooks.info

http://pragprog.com
http://www.it-ebooks.info/

To Mythili and Balu—for being much more
than an aunt and an uncle—for being there
when I needed them most.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Foreword to the Second Edition .

Introduction .

Part | — Beginning Groovy

Getting Started

1.1
1.2
1.3
1.4
1.5
1.6

Installing Groovy

Installing and Managing Groovy Versions
Test-Drive Using groovysh

Using groovyConsole

Running Groovy on the Command Line
Using an IDE

Groovy for Java Eyes

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

From Java to Groovy

JavaBeans

Flexible Initialization and Named Arguments
Optional Parameters

Using Multiple Assignments

Implementing Interfaces

Groovy Boolean Evaluation

Operator Overloading

Support of Java 5 Language Features

Using Groovy Code-Generation Transformations
Gotchas

Dynamic Typing .

3.1
3.2
3.3

Typing in Java

Dynamic Typing
Dynamic Typing != Weak Typing

www.it-ebooks.info

xiii

N O OO wow

11
19
22
24
25
26
30
31
33
40
46

53
53
54
55

http://www.it-ebooks.info/

3.4
3.5
3.6
3.7
3.8

Design by Capability

Optional Typing
Multimethods

Dynamic: To Be or Not to Be?
Switching Off Dynamic Typing

Using Closures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

The Convenience of Closures
Programming with Closures
Ways to Use Closures

Passing Parameters to Closures

Using Closures for Resource Cleanup
Closures and Coroutines

Curried Closure

Dynamic Closures

Closure Delegation

Programming with Tail Recursion
Improving Performance Using Memoization

Working with Strings

5.1
5.2
5.3
5.4
5.5

Literals and Expressions

GString Lazy-Evaluation Problem
Multiline Strings

String Convenience Methods
Regular Expressions

Working with Collections

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Using List

Iterating Over an ArrayList

Using Finder Methods

Other Convenience Methods on Lists
Using the Map Class

Iterating Over Map

Other Convenience Methods on Maps

Part Il — Using Groovy

Exploring the GDK .

7.1
7.2

7.3 Custom Methods Using the Extension Modules

Using Object Extensions
Other Extensions

www.it-ebooks.info

Contents ® viii

56
61
62
65
65

71
72
75
75
77
78
80
82
84
86
89
92

97
97
100
103
105
106

109
109
111
113
115
118
120
122

127
128
133
139

http://www.it-ebooks.info/

Working with XML .

8.1
8.2

Parsing XML
Creating XML

Working with Databases

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Setting Up the Database
Connecting to a Database
Database Select
Transforming Data to XML
Using DataSet

Inserting and Updating
Accessing Microsoft Excel

10. Working with Scripts and Classes

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

The Melting Pot of Java and Groovy

Running Groovy

Using Groovy Classes from Groovy

Intermixing Groovy and Java with Joint Compilation
Creating and Passing Groovy Closures from Java
Calling Groovy Dynamic Methods from Java

Using Java Classes from Groovy

Using Groovy Scripts from Groovy

Using Groovy Scripts from Java

Part Il — MOPping Groovy

11. Exploring Metaobject Protocol (MOP)

11.1
11.2
11.3

Groovy Object
Querying Methods and Properties
Dynamically Accessing Objects

12. Intercepting Methods Using MOP

12.1
12.2

Intercepting Methods Using GroovyInterceptable
Intercepting Methods Using MetaClass

13. MOP Method Injection

13.1
13.2
13.3
13.4
13.5

Injecting Methods Using Categones
Injecting Methods Using ExpandoMetaClass
Injecting Methods into Specific Instances
Injecting Methods Using Mixins

Decorating Classes with Multiple Mixins

www.it-ebooks.info

Contents *® ix

143
143
148

151
151
152
153
154
155
156
156

159
159
160
161
162
163
165
166
167
169

175
176
180
182

185
185
188

193
193
198
203
206
208

http://www.it-ebooks.info/

14.

15.

16.

17.

18.

19.

MOP Method Synthesis .

14.1 Method Synthesis Using methodMlssmg
14.2 Method Synthesis Using ExpandoMetaClass
14.3 Synthesizing Methods for Specific Instances

MOPping Up

15.1 Creating Dynamic Classes Wlth Expando
15.2 Method Delegation: Putting It All Together
15.3 Review of MOP Techniques

Applying Compile-Time Metaprogramming
16.1 Analyzing Code at Compile Time

16.2 Intercepting Method Calls Using AST Transformations

16.3 Injecting Methods Using AST Transformations

Part IV— Using Metaprogramming

Groovy Builders

17.1 Building XML

17.2 Building JSON

17.3 Building Swing

17.4 Custom Builder Using Metaprogramming
17.5 Using BuilderSupport

17.6 Using FactoryBuilderSupport

Unit Testing and Mocking .

18.1 Code in This Book and Automated Un1t Tests
18.2 Unit Testing Java and Groovy Code

18.3 Testing for Exceptions

18.4 Mocking

18.5 Mocking by Overriding

18.6 Mocking Using Categories

18.7 Mocking Using ExpandoMetaClass

18.8 Mocking Using Expando

18.9 Mocking Using Map

18.10 Mocking Using the Groovy Mock Library

Creating DSLs in Groovy
19.1 Context

19.2 Fluency

19.3 Types of DSLs

www.it-ebooks.info

Contents ® x

215
216
220
222

225
225
227
231

235
236
241
246

253
253
256
258
260
262
266

271
271
272
277
277
280
283
284
285
288
289

295
295
297
298

http://www.it-ebooks.info/

Al.

A2,

19.4 Designing Internal DSLs

19.5 Groovy and DSLs

19.6 Using Command-Chain Fluency

19.7 Closures and DSLs

19.8 Method Interception and DSLs

19.9 The Parentheses Limitation and a Workaround
19.10 Categories and DSLs

19.11 ExpandoMetaClass and DSLs

Web Resources .

Bibliography

Index

www.it-ebooks.info

Contents ® xi

298
299
299
301
302
303
305
307

309
315

317

http://www.it-ebooks.info/

Foreword to the Second Edition

As the saying goes, time flies. In the first edition of this book, Venkat guided
you through all the nice features of Groovy 1.5 and turned you into a proficient
“Groovy-ist,” but it’s now time to discover what Groovy 2 has in store. Of
course, your favorite author has you covered!

The Groovy team worked on three major themes for the 2.0 version. First of
all, we brought Groovy in line with JDK 7: we added the Java 7 “Project Coin”
syntax enhancements, and we also powered Groovy’s runtime with the “invoke
dynamic” bytecode instruction and APIs under the hood. That way, you can
use the latest syntax additions in Groovy even on older JDKs, but by running
JDK 7 you’'ll benefit from performance improvements.

Secondly, we broke up Groovy into smaller modules, a core and several API-
related ones, so you can pick the pieces you are interested in to compose your
application. We also extended the Groovy Development Kit to allow you to
create your own extension methods—just like Groovy does with its enriched
JDK with the famous DefaultGroovyMethods class!

Last but not least, we introduced a “static” theme with two key novelties: static
type-checking and static compilation. With the former, you can catch typos and
other errors easily at compile time and even allow your domain-specific languages
to be type-checked, while with the latter you can get the same performance as
Java for critical parts of your application that request the highest level of speed.

With all those additions to the language and APIs, Groovy continues to mature
like good wine, and just as a sommelier would share his expertise, Venkat
dispenses his knowledge of all the power features of Groovy through the nice
flavors of the chapters you are going to read, helping you get up to speed with
the language and transport you to the next level.

Guillaume Laforge
Groovy project manager

June 2013

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction

The Java platform is arguably one of the most powerful and widely adopted
ecosystems today. It has three significant pieces:

e The Java Virtual Machine (JVM), which has become increasingly powerful
and more performant over the years

e The Java Development Kit (JDK), the rich set of third-party libraries and
frameworks that help us effectively leverage the power of the platform

e The set of languages on the JVM—the Java language being the first—that
help us program the platform

Languages are like vehicles that let us navigate the platform. They let us
reach into various parts of this landscape with ease. The Java language has
come a long way; its libraries have been refactored and expanded. It’s gotten
us this far, but we need to look beyond the Java language to languages that
are lightweight and that can make us more productive. When used correctly,
dynamic languages, the functional style of programming, and metaprogram-
ming capabilities can help us navigate the landscape much faster. When
viewed as vehicles, these newer languages aren’t faster cars; they're flying
machines, giving us the capability to be several orders of magnitude more
productive.

The Java language has been flirting with metaprogramming and the functional
style of programming for a while and will support some of these features to
various degrees in future versions. We don’t have to wait for that day, however.
We can build performant JVM applications with all the dynamic capabilities
today, right now, using Groovy.

What's Groovy?

Merriam-Webster defines groovy as “marvelous, wonderful, excellent, hip,
trendy.” The Groovy language is all of that—it’s lightweight, low-ceremony,
dynamic, object-oriented, and runs on the JVM. Groovy is open sourced under

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction ® xvi

the Apache License, version 2.0. It derives strength from various languages,
such as Smalltalk, Python, and Ruby, while retaining a syntax familiar to
Java programmers. Groovy compiles into Java bytecode and extends the Java
API and libraries. It runs on Java 1.5 and newer. For deployment, all we need
is a Groovy Java archive (JAR) in addition to the regular Java stuff, and we're
all set.

»l
James Strachan

Groovy is a “language that has been reborn several times.
and Bob McWhirter started it in 2003, and it was commissioned into Java
Specification Request (JSR) 241 in March 2004. Soon afterward, it was almost
abandoned because of difficulties and issues. Guillaume Laforge and Jeremy
Rayner decided to rekindle the efforts and bring Groovy back to life. Their
first effort was to fix bugs and stabilize the language features. The uncertainty
lingered for a while. A number of people, including committers and users,
simply gave up on the language. Finally, a group of smart and enthusiastic
developers joined forces with Guillaume and Jeremy, and a vibrant developer

community emerged.

The release of Groovy version 1.0 was announced on January 2, 2007. It was
encouraging to see that, well before it reached 1.0, Groovy was put to use on
commercial projects in a handful of organizations in the United States and
Europe. Organizations and developers are beginning to use Groovy at various
levels on their projects, and the time is ripe for major Groovy adoption in the
industry. Groovy version 2.0 was released in mid 2012.

Groovy shines in tools and frameworks like Grails, CodeNarc, easyb, Gradle,
and Spock. Grails, a dynamic web-development framework based on “coding
by convention,” exploits Groovy metaprogramming.” Using Grails, we can
quickly build web applications on the JVM using Groovy, Spring, Hibernate,
and other Java frameworks.

Why Dynamic Languages?

Dynamic languages have the ability to extend a program at runtime, including
changing types, behaviors, and object structures. With these languages, we
can do things at runtime that static languages do at compile time; we can
even execute program statements that are created on the fly at runtime.

For example, if we want to compute a five percent raise on an $80,000 salary,
we could simply write the following:

1. See “A bit of Groovy history,” a blog post by Guillaume Laforge at http:/glaforge.free.fr/
weblog/index.php?itemid=99.
2. http://grails.org

www.it-ebooks.info

http://glaforge.free.fr/weblog/index.php?itemid=99
http://glaforge.free.fr/weblog/index.php?itemid=99
http://grails.org
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Why Dynamic Languages? ® xvii

5.percentRaise(80000)

Yes, that’s the friendly java.lang.Integer responding to our own dynamic method,
which we can add quite easily, like so:

Integer.metaClass.percentRaise = { amount -> amount * (1 + delegate / 100.0) }

As we see here, it’s easy to add dynamic methods to classes in Groovy. The
dynamic method we added to the Integer instance, referred using the delegate
variable, returns the dollar amount increased by the appropriate percentage.

The flexibility of dynamic languages gives us the advantage of evolving pro-
grams as the applications execute. This goes far beyond code generation. We
should consider code generation to be soooo twentieth century. In fact, gen-
erated code is like an incessant itch; if we keep scratching it, it turns into a
sore. With dynamic languages, there are better ways. Dynamic languages
make it easier to prefer code synthesis, which is in-memory code-creation at
runtime. The code is synthesized based on the flow of logic through the
application and becomes active just in time.

By carefully applying dynamic languages’ capabilities, we can be more pro-
ductive as application developers. This greater productivity means we can
easily create higher levels of abstractions in shorter amounts of time. We can
also use a smaller yet more capable set of developers to create applications.
In addition, greater productivity means we can create parts of our application
quickly and get feedback from our fellow developers, testers, domain experts,
and customer representatives. And all this leads to greater agility. Tim
O'Reilly observes the following about developing web applications: “Rather
than being finished paintings, they are sketches, continually being redrawn
in response to new data.” He also makes the point that dynamic languages
are better suited to web development in “Why Scripting Languages Matter”
(see Appendix 1, Web Resources, on page 309).

Dynamic languages have been around for a long time, so why is now a great
time to get excited about them? There are at least four reasons:

e Machine speed

e Availability

e Awareness of unit testing
e Killer applications

Let’s start by talking about machine speed. Doing at runtime what other
languages do at compile time raises a concern about dynamic languages’
speed. Interpreting code at runtime rather than simply executing compiled
code adds to that concern. Fortunately, machine speed has consistently

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction ® xviii

increased over the years—handhelds have more computing power and mem-
ory today than large computers had decades ago. Tasks that were quite
unimaginable using a 1980s processor are easy to achieve today. The perfor-
mance concerns of dynamic languages are greatly eased because of processor
speeds and other improvements in our field, including better just-in-time
compilation techniques and JVM support for dynamic languages.

Now let’s talk about availability. The Internet and active “public” community-
based development have made recent dynamic languages easily accessible
and available. Developers can now easily download languages and tools and
play with them. They can even participate in community forums to influence
the evolution of these languages. The Groovy users mailing list is very active,
with constant discussions from passionate users expressing opinions of, ideas
about, and criticisms of current and future features.® This is leading to greater
experimentation, learning, and adaptation of languages than in the past.

Next let’s look at awareness of unit testing. Most dynamic languages are
dynamically typed. The types are often inferred based on the context. There
are no compilers to flag type-casting violations at compile time. Since quite
a bit of code may be synthesized and our program can be extended at runtime,
we can’t rely upon coding-time verification alone. From the testing point of
view, writing code in dynamic languages requires greater discipline than
writing in statically typed languages. Over the past few years, we've seen
increased awareness among programmers (though not sufficiently greater
adoption yet) in the area of testing in general and unit testing in particular.
Most of the programmers who have taken advantage of these dynamic lan-
guages for commercial application development have also embraced testing
and unit testing.

Finally, many developers have in fact been using dynamic languages for
decades. However, for the majority of the industry to be excited about them,
we had to have killer applications—compelling stories to share with our
developers and managers. That tipping point, for Ruby in particular and for
dynamic languages in general, came in the form of Rails.” It showed struggling
web developers how they could quickly develop applications using Ruby’s
dynamic capabilities. In the same vein came Grails, a web framework written
in Groovy and Java that offers the same productivity and ease.’

3. Visit http://groovy.codehaus.org/Mailing+Lists and http://groovy.markmail.org to see.
4. http://rubyonrails.org
5. http://grails.org

www.it-ebooks.info

http://groovy.codehaus.org/Mailing+Lists
http://groovy.markmail.org
http://rubyonrails.org
http://grails.org
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Why Groovy? ® xix

These frameworks have caused enough stir in the development community
to make the industrywide adoption of dynamic languages highly probable.

Dynamic languages, along with metaprogramming capabilities, make simple
things simpler and hard things manageable. We still have to deal with the
inherent complexity of our application, but dynamic languages let us focus
our effort where it’s deserved. When I got into Java after years of C++, features
such as reflection, a good set of libraries, and evolving framework support
made me productive. The JVM, to a certain extent, provided me with the
ability to take advantage of metaprogramming. However, I had to use some-
thing in addition to Java to tap into that potential—heavyweight tools such
as Aspectd. Like several other productive programmers, I found myself left
with two options: use the exceedingly complex and not-so-flexible Java along
with heavyweight tools, or move on to using dynamic languages such as Ruby
that are object-oriented and have metaprogramming capabilities built in. (For
instance, it takes only a couple of lines of code to do aspect-oriented program-
ming—AOP—in Ruby and Groovy.) A few years ago, taking advantage of
dynamic capabilities and metaprogramming while being productive meant
leaving behind the Java platform. (After all, we use these features to be pro-
ductive and can’t let them slow us down, right?) That is not the case anymore.
Languages such as Groovy, JRuby, and Clojure are dynamic and run on the
JVM. Using these languages, we can take full advantage of both the rich Java
platform and dynamic-language capabilities.

Why Groovy?

As Java programmers, we don’t have to switch completely to a different
language. Groovy feels like the Java language we already know, with a few
augmentations.

Dozens of scripting languages can run on the JVM—Groovy, JRuby, BeanShell,
Scheme, Jaskell, Jython, JavaScript, and others. The list could go on and
on. Our language choice should depend on a number of criteria: our needs,
our preferences, our background, the projects we work with, our corporate
technical environment, and so on. In this section, we discuss when Groovy
is the right language to use.

Groovy is an attractive language for a number of reasons:

e It has a flat learning curve.
e It follows Java semantics.
e It bestows dynamic love.

e It extends the JDK.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction ® xx

Let’s explore these in detail. First, we can run almost any Java code as Groovy
(see Section 2.11, Gotchas, on page 46 for known problem areas), which means
a flat learning curve. We can start writing code in Groovy and, if we're stuck,
simply switch gears and write the Java code we’re familiar with. We can later
refactor that code and make it groovier.

For example, Groovy understands the traditional for loop. So, we can write
this:
// Java Style
for(int 1 = 0; i < 10; i++) {
/7. ..
}

As we learn Groovy, we can change that to the following code or one of the
other flavors for looping in Groovy (don’t worry about the syntax right now;
after all, we're just getting started, and very soon you’ll be a pro at it):

10.times {
Y
}

Second, when programming in Groovy we can expect almost everything we
expect in Java. Groovy classes extend the same good old java.lang.Object—Groovy
classes are Java classes. The object-oriented paradigm and Java semantics
are preserved, so when we write expressions and statements in Groovy, we
already know what those mean to us as Java programmers.

Here’s a little example to show that Groovy classes are Java classes:

Introduction/UseGroovyClass.groovy
println XmlParser.class
println XmlParser.class.superclass

If we run groovy UseGroovyClass, we’ll get the following output:

class groovy.util.XmlParser
class java.lang.0Object

Now let’s talk about the third reason to love Groovy. Groovy is dynamic, and
it is optionally typed. If we've enjoyed the benefits of other dynamically typed
languages, such as Smalltalk, Python, JavaScript, and Ruby, we can also
enjoy those in Groovy. For instance, if we want to add the method isPalindrome()
to String—a method that tells whether a word is spelled the same forward and
backward—we can add that easily with only a couple of lines of code (again,
don’t try to figure out all the details of how this works right now; we have the
rest of the book for that):

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/Introduction/UseGroovyClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

What's in This Book? ® xxi

Introduction/Palindrome.groovy
String.metaClass.isPalindrome = {->
delegate == delegate.reverse()

}

word = 'tattarrattat'

println "$word is a palindrome? ${word.isPalindrome()}"
word = 'Groovy'

println "$word is a palindrome? ${word.isPalindrome()}"

Let’s look at the output to see how the previous code works:

tattarrattat is a palindrome? true
Groovy is a palindrome? false

That’'s how easy it is to extend a class—even the sacred java.lang.String
class—with convenient methods, without intruding into its source code.

Finally, as Java programmers, we rely heavily on the JDK and the API to get
our work done. These are available in Groovy. In addition, Groovy extends
the JDK with convenience methods and closure support through the Groovy
JDK (GDK). Here’s a quick example of a GDK extension to the java.util.ArrayList
class:

lst = ['Groovy', 'is', 'hip']

println lst.join("' ')

println lst.getClass()

From the output of the previous code, we can confirm that the JDK is being
used, but in addition we’re able to use the Groovy-added join() method to
concatenate the elements in the ArrayList:

Groovy 1is hip
class java.util.ArraylList

Groovy augments the Java we know. If a project team is familiar with Java,
is using it for most of the organization’s projects, and has a lot of Java code
to integrate and work with, then Groovy is a nice path toward productivity
gains.

What’s in This Book?

This book is about programming with Groovy; it is aimed at Java programmers
who already know the JDK well but are interested in learning the Groovy
language and its dynamic capabilities. Throughout this book we’ll explore the
Groovy language’s features with many practical examples. The objective is to
make programmers quickly productive with this interesting and powerful
language.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/Introduction/Palindrome.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction ® xxii

The rest of this book is organized into four parts, as follows:

In the chapters in Part I, “Beginning Groovy,” we focus on the whys and whats
of Groovy—the fundamentals thatll help us get comfortable with general
programming in Groovy. This book is for experienced Java programmers, so
we won'’t spend any time with programming basics, like what an if statement
is or how to write it. Instead, we directly dive into the similarities of Groovy
and Java, and topics that are specific to Groovy.

In Part II, “Using Groovy,” we’ll see how to use Groovy for everyday cod-
ing—working with XML, accessing databases, and working with multiple
Java/Groovy classes and scripts—so we can put Groovy to use right away
for the day-to-day tasks. We'll also discuss the Groovy extensions and addi-
tions to the JDK so we can take advantage of both the power of Groovy and
the JDK at the same time.

In Part III, “MOPping Groovy,” we dive into Groovy’s metaprogramming
capabilities. We'll see Groovy really shine in these chapters and you’ll learn
how to take advantage of its dynamic nature. We'll start with the fundamentals
of the metaobject protocol (MOP), cover how to do AOP-like operations in
Groovy, and discuss dynamic method/property discovery and dispatching.
We will also explore the compile-time metaprogramming capability and see
how it can help extend and transform code during the compilation phase.

In the last part, “Using Metaprogramming,” we’ll apply Groovy metaprogram-
ming right away to create and use builders and domain-specific languages
(DSLs). Unit testing is not only necessary in Groovy because of its dynamic
nature, but it's also easy to do—we can use Groovy to unit-test Java and
Groovy code, as you'll see in this part of the book.

You're reading the introduction now, of course. Here’s what'’s in the rest of
the book:

In Chapter 1, Getting Started, on page 3, we’ll download and install Groovy
and take it for a test-drive using groovysh and groovyConsole. We'll also see how
to run Groovy without these tools—from the command line and within an
integrated development environment.

In Chapter 2, Groovy for Java Eyes, on page 11, we’ll start with familiar Java
code and refactor that to Groovy. After a quick tour of Groovy features that
improve our everyday Java coding, we’ll talk about Groovy’s support for Java
5 features. Groovy follows Java semantics, except in places it does not—we’ll
also discuss gotchas that’ll help avoid surprises.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

What's in This Book? ® xxiii

In Chapter 3, Dynamic Typing, on page 53, we’ll see how Groovy’s typing is
similar to and different from Java’s typing, what Groovy really does with the
type information we provide, and when to take advantage of dynamic typing
versus optional typing. We'll also cover how to take advantage of Groovy’s
dynamic typing, design by capability, and multimethods. For tasks that need
better performance than we can get from dynamic typing, we’ll see how we

can instruct Groovy to statically type parts of code.

In Chapter 4, Using Closures, on page 71, you'll learn all about the exciting
Groovy feature called closures, including what they are, how they work, and
when and how to use them. Groovy closures go beyond simple lambda
expressions; they facilitate trampoline calls and memoization.

In Chapter 5, Working with Strings, on page 97, we'll talk about Groovy strings,
working with multiline strings, and Groovy’s support for regular expressions.

In Chapter 6, Working with Collections, on page 109, we’ll explore Groovy’s
support for Java collections—lists and maps. We'll explore various convenience
methods on collections, and we’ll never again want to use collections the old

way.

Groovy embraces and extends the JDK. We'll explore the GDK and see the
extensions to Object and other Java classes in Chapter 7, Exploring the GDK,
on page 127.

Groovy has pretty good support for working with XML, including parsing and
creating XML documents, as we’ll see in Chapter 8, Working with XML, on
page 143.

Chapter 9, Working with Databases, on page 151, presents Groovy’s SQL
support, which will make our database-related programming easy and fun.
In this chapter, we’ll cover iterators, data sets, and how to perform regular
database operations using simpler syntax and closures. We'll also see how
to get data from Microsoft Excel documents.

One of Groovy’s key strengths is its integration with Java. In Chapter 10,
Working with Scripts and Classes, on page 159, we’ll investigate ways to

closely interact with multiple Groovy scripts, Groovy classes, and Java
classes from within our Groovy and Java code.

Metaprogramming is one of the biggest benefits of dynamic languages in
general, and Groovy in particular; with this feature we can inspect classes at
runtime and dynamically dispatch method calls. We'll explore Groovy’s support
for metaprogramming in Chapter 11, Exploring Metaobject Protocol (MOP), on

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction ® xxiv

page 175, beginning with the fundamentals of how Groovy handles method
calls to Groovy objects and Java objects.

With Groovy we can perform AOP-like method interceptions using GroovyInter-
ceptable and ExpandoMetaClass, as we’ll see in Chapter 12, Intercepting Methods
Using MOP, on page 185.

In Chapter 13, MOP Method Injection, on page 193, we’ll dive into Groovy
metaprogramming capabilities and learn how to inject methods at runtime.

In Chapter 14, MOP Method Synthesis, on page 215, we’ll go through how to
synthesize or generate dynamic methods at runtime.

Chapter 15, MOPping Up, on page 225, covers how to synthesize classes
dynamically, how to use metaprogramming to delegate method calls, and how
to choose between the metaprogramming techniques from the previous three
chapters.

Groovy goodness does not end with runtime metaprogramming. Groovy now
offers some of the same benefits at compile time, using abstract syntax tree
(AST) transformation techniques, as we'll see in Chapter 16, Applying Compile-
Time Metaprogramming, on page 235.

Groovy builders are specialized classes that help create fluent interfaces for
a nested hierarchy. We discuss how to use them and how to create our own
builders in Chapter 17, Groovy Builders, on page 253.

Unit testing is not a luxury or an “if we have time” practice in Groovy. Groovy’s
dynamic nature requires unit testing. Fortunately, Groovy facilitates writing
tests and creating mock objects, as we’ll cover in Chapter 18, Unit Testing
and Mocking, on page 271. We will play with techniques that will help us use
Groovy to unit-test our Java code and our Groovy code.

We can apply Groovy’s metaprogramming capabilities to build internal DSLs
using the techniques in Chapter 19, Creating DSLs in Groovy, on page 295.
We'll start with the basics of DSLs, including their characteristics, and
quickly jump into building them in Groovy.

Finally, in Appendix 1, Web Resources, on page 309, and Appendix 2, Bibliog-
raphy, on page 315, you'll find all the references to web articles and books
cited throughout this book.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Changes Since This Book’s First Edition ¢ xxv

Changes Since This Book’s First Edition

This book’s first edition covered Groovy version 1.5. Groovy has come a long
way since then. This second edition is up to date with Groovy 2.1. Here’s how
the updates in this edition will help you:

e You'll learn Groovy 2.x features.

e You'll learn about Groovy code-generation transformations like @Delegate,
@Immutable, and so on.

e You'll learn the benefits of the new Groovy 2.x static type-checking and
static compilation facilities.

e You will pick up tips for creating your own extension methods with the
new support for extension modules in Groovy 2.x.

¢ Closures in Groovy are quite exceptional, and you’ll learn about their new
support for tail-call optimization and memoization.

e You'll learn how to integrate Java and Groovy effectively, pass Groovy
closures from Java, and even invoke dynamic Groovy methods from Java.

* You'll find new examples to learn about the enhancements to the
metaprogramming API.

e You'll learn how to use Mixins and implement some elegant patterns with
them.

¢ In addition to runtime metaprogramming, you can grasp compile-time
metaprogramming and abstract syntax tree (AST) transformations.

* You'll see the details for building and reading JSON data.

¢ Additionally, you'll learn the Groovy syntax that facilitates fluent creation
of DSLs.

Who Is This Book For?

This book is for developers working on the Java platform. It is best suited to
programmers (and testers) who understand the Java language fairly well.
Developers who understand programming in other languages can use this
book as well, but they should supplement it with books that provide them
with an in-depth understanding of Java and the JDK. For example, Effective
Java [BloO8] and Thinking in Java [Eck06] are good resources for Java.

Programmers who are somewhat familiar with Groovy can use this book to
learn some tips and tricks that they may not have the opportunity to discover

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Introduction ® xxvi

otherwise. Finally, those already familiar with Groovy may find this book
useful for training or coaching fellow developers in their organizations.

Online Resources

Web resources referenced throughout the book are collected in Appendix 1,
Web Resources, on page 309. Here are two that will help you get started:

e The Groovy website for downloading the version of Groovy used in this
book: http://groovy.codehaus.org.

e The official homepage for this book at the Pragmatic Bookshelf website:
http://www.pragprog.com/titles/vsig2. From there you can download all the
example source code for this book. You can also offer feedback by submit-
ting errata entries or posting your comments and questions in the forum
for the book.

If you're reading the book in ebook form, you can click on the link above a
code listing to view or download the specific example.

Acknowledgments

It's been a real pleasure watching the Groovy ecosystem grow over the past
four years. I thank the Groovy committers for creating a language and a set
of tools that help programmers to be productive and have fun at the same
time.

I'd like to thank everyone who read the first edition of this book. Special
thanks to Norbert Beckers, Giacomo Cosenza, Jeremy Flowers, Ioan Le Gué,
Fred Janon, Christopher M. Judd, Will Krespan, Jorge Lee, Rick Manocchi,
Andy O’Brien, Tim Orr, Enio Pereira, David Potts, Srivaths Sankaran, Justin
Spradlin, Fabian Topfstedt, Bryan Young, and Steve Zhang for taking the
time to report errors on the book’s errata page.

My sincere thanks and appreciation go to the technical reviewers of the second
edition of this book. They were kind enough to give their time and attention
to read through the concepts, try out the examples, and provide me valuable
feedback, corrections, and encouragements along the way. Thank you, Tim
Berglund, Mike Brady, Hamlet D’arcy, Scott Davis, Jeff Holland, Michael
Kimsal, Scott Leberknight, Joe McTee, Al Scherer, and Eitan Suez.

A few more people deserve to be called out. I thank Guillaume Laforge for his
encouragement and for taking the time to write the foreword. Cédric Champeau
and Chris Reigrut were generous to quickly read through the beta of the
second edition and provide valuable feedback. I am indebted to you; thank

www.it-ebooks.info

http://groovy.codehaus.org
http://www.pragprog.com/titles/vslg2
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Acknowledgments ® xxvii
you. I also thank Thilo Maier for reporting errors on the errata page for the
second edition.

Special thanks to Brian Hogan, editor for the second edition, for his reviews,
comments, suggestions, and encouragement. He provided much-needed
guidance throughout the creation of this edition.

Thanks to the entire Pragmatic Programmers team for taking up this edition
and for their support throughout the production process.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Part I

Beginning Groovy

www.it-ebooks.info

http://www.it-ebooks.info/

1.1

CHAPTER 1

Getting Started

Before we can crank out some Groovy code, we need to get Groovy installed.
In this chapter you’ll learn how to quickly install Groovy and make sure
everything is working well. Taking care of these basics now will help us move
quickly to the fun things ahead.

Installing Groovy

Getting a stable working copy of Groovy is really simple: just visit the Groovy
home page at http://groovy.codehaus.org, and click the Download link. We can
download either the binary release or the source release. Download the source
release to build Groovy locally or to explore the source code. Otherwise,
download the binary release. For Windows, we can also get the Windows
Installer version. While we're there, let’'s also grab the documentation for
Groovy.

For programmers on the Groovy users mailing list who're bleeding-edge types,
the previously mentioned releases will not suffice. They’ll want the latest
prerelease version of the language implementation. We can get the snapshot
release from http://groovy.codehaus.org/Git.

We also need the JDK 1.5 or newer, so we need to make sure Java is installed
on the local system.'

Let’s get Groovy installed.

Installing Groovy on Windows

We can use the one-click installer for Windows—simply run it and follow the
instructions. Programmers who prefer more control over the installation can
use the binary distribution package.

1. http://java.sun.com/javase/downloads/index.jsp

www.it-ebooks.info

http://groovy.codehaus.org
http://groovy.codehaus.org/Git
http://java.sun.com/javase/downloads/index.jsp
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 1. Getting Started * 4

Next we have to set the GROOVY_HOME environment variable and the path. Edit
the system-environment variables (by going into Control Panel and opening
the System application). Create an environment variable named GROOVY_HOME,
and set it to the location of the Groovy directory (for example, I set it to
C:\programs\groovy\groovy-2.1.0). Also, add %GROOVY_HOME%\bin to the Path environment
variable to set the location of the Groovy bin directory in the path. Remember
to separate directories in the path using a semicolon (;).

Next, confirm that the environment variable JAVA_HOME is pointing to the location
of the Java Development Kit (JDK) directory (if it’s not present, set it).

That’s pretty much all we have to do. Remember to close any open command
window, because the changes to environment variables don’t take effect until
we reopen command windows. In a new command window, type groovy -v, and
make sure it reports the correct version.

Installing Groovy on Unix-like Systems

Unzip the downloaded binary distribution. Check http://groovy.codehaus.org/Download
to see if there are special distributions and instructions for different flavors
of Unix. Move the groovy-2.1.0 directory to a desired location. For instance, on
my Mac system, I have it in the /opt/groovy directory.

Next, set the GROOVY_HOME environment variable and the path. Depending on
the shell you use, you have to edit different profile files. You probably know
where to go—refer to the appropriate documentation if you need help figuring
out what to edit. I use bash on OS X, so I edited the ~/.bash_profile file. In that
file, I added an entry export GROOVY HOME="/opt/groovy/groovy-2.1.0" to set the
environment variable GROOVY_HOME. Also add $GROOVY_HOME/bin to the path envi-
ronment variable.

Next, confirm that the environment variable JAVA_HOME is pointing to the location
of the JDK directory (if it’s not present, set it). Is - “which java" should help
determine the location of the Java installation.

Installation of Groovy is complete and we're ready to use the language. Close
any open terminal windows—changes to environment variables don’t take
effect until we reopen the windows. We may source the profile file instead,
but it’s simple and easy to open a new terminal. In a new terminal window,
type the command groovy -v, and make sure it reports the correct version.
That’s all there is to it!

www.it-ebooks.info

http://groovy.codehaus.org/Download
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

1.2

1.3

Installing and Managing Groovy Versions ® 5

Installing and Managing Groovy Versions

We often have to work with multiple versions of the language for various
projects. The task of managing the right version for a project can quickly turn
into a time sink if we're not careful. GVM, the Groovy environment manager,
can manage not only the versions of the Groovy language, but also versions
of Groovy-related libraries and tools, like Grails, Griffon, Gradle, and so on.

The tool is a breeze to install and is supported on various flavors of xnix and
on Windows through Cygwin.” Once you install GVM, you can see a list of
available and installed versions of the language by simply running the com-
mand gvm list groovy. If you want to use a particular version of Groovy, say
version 2.1.1, you can specify that. For instance, to run the examples in this
book, we can type the command gvm install groovy 2.1.1. GVM will then download
the version and install it for use. If we have installed multiple versions of
Groovy and want to switch to version 2.1.1, for example, we can use the
command gvm use groovy 2.1.1.

Test-Drive Using groovysh

We've installed Groovy and checked the version—it’s time to take it for a test-
drive. Using the command-line tool groovysh is one of the quickest ways to play
with Groovy. Open a terminal window, and type groovysh; we’ll see a shell, as
shown next. Type some Groovy code to see how it works.

> groovysh

Groovy Shell (2.1.1, JVM: 1.7.0 04-ea)
Type 'help' or '\h' for help.
groovy:000> Math.sqrt(16)

===> 4.0

groovy:000> println 'Test drive Groovy'
Test drive Groovy

===> null
groovy:000> String.metaClass.isPalindrome = {
groovy:001> delegate == delegate.reverse()

groovy:002> }

===> groovysh evaluate$ run closurel@4b99636
groovy:000> 'mom'.isPalindrome()

===> true

groovy:000> 'mom'.1l

lastIndexOf(leftShift(length()
groovy:000> ‘mom'.1l

2. http://gvmtool.net

www.it-ebooks.info

http://gvmtool.net
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

1.4

Chapter 1. Getting Started * 6

groovysh is a good tool for interactively trying out small Groovy code examples.
It is also useful for experimenting with some code while we're in the middle
of coding. Be aware, however, that groovysh has some idiosyncrasies. If we run
into problems with it, we can use the save command to save the code to a file
and then try running from the command line using the groovy command to
get around any tool-related issues. The groovysh command compiles and exe-
cutes completed statements as soon as we press the Enter/Return key, and
prints the result of that statement execution along with any output from the
execution.

If we type Math.sqrt(16), for example, it prints the result, 4.0. However, if we type
printin 'Test drive Groovy', it prints the words in quotes followed by null, indicating
that printin() returned nothing.

We can also type code that spans multiple lines—simply use a semicolon at
the end of the line if it complains, as in the line defining the dynamic method
isPalindrome(). When we type a class, a method, or even an if statement, groovysh
waits until we finish to execute that code. Next to the groovy: prompt it tells
us how many lines it has accumulated for execution.

If we're not sure what command to type, we can type as much as we know
and press the Tab key. The shell will print methods that are available to us,
starting with the partial name we typed, as we can see in the previous snippet
of the groovysh interactive shell. If we type only a dot (.) and Press the Tab key,
it will ask if we want to display all methods that are available.

Type help to get a list of supported commands. We can use the up arrow to
view commands we have already typed, which is useful for repeating state-
ments or commands. It even remembers commands we typed in previous
invocations.

When done, type exit to exit from the tool.

Using groovyConsole

Groovy has those of us who prefer to use a GUI covered—simply double-click
groovyConsole.bat in Windows Explorer (look for it in the %GROOVY_HOME%\bin
directory). Users of Unix-like systems can double-click the groovyConsole exe-
cutable script using their favorite file/directory-browsing tool. We can also
type groovyConsole on the command line to bring up the console GUI tool. A
console GUI will pop up, as shown in the following figure.

Let’s type some Groovy code in the top window of the console. When ready to
execute the code, press Ctrl+R or Ctrl+Enter on a Windows system, or Command+R
or Command+Enter on a Mac system.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

1.5

Running Groovy on the Command Line ¢ 7

We can also click the appropriate toolbar button to execute the script. The
groovyConsole command has grown fancier over time—we can save the script,
open existing scripts, and so on, so take some time to explore the tool.

GroovyConsole

IETET8] alel [4mB]:] %] (e [B]x
1 1list = [1, 2, 3]
2 println list.size

list = [1, 2, 3]
println list.size

3

Execution complete. Result was null. 2:18

Figure 1—Using groovyConsole

Running Groovy on the Command Line

Of course, for some programmers nothing can give as much pleasure as getting
into the command line and running the program from there. We can do that
by typing the command groovy followed by the Groovy program filename, as
shown next.

> cat Hello.groovy
println "Hello Groovy!"
> groovy Hello

Hello Groovy!

>

To try a couple of statements directly on the command line, use the -e option.
Type groovy -e "println 'hello™ on the command line, and press Enter/Return. Groovy
will output “hello.”

Realistically, though, the groovy command is useful for executing large Groovy
scripts and classes. It expects us to either have some executable code outside
any class, or have a class with a static main(String[] args) method (the traditional
Java main() method).

We can skip the main() method if our class extends GroovyTestCase (for more
information see Section 18.2, Unit Testing Java and Groovy Code, on page
272) or if our class implements the Runnable interface. If the main() method is
pTesent in these cases, it takes precedence.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

1.6

Chapter 1. Getting Started ¢ 8

Using an IDE

As we start churning out more-complex Groovy code, we'll quickly graduate
from these tools and want a full-featured integrated development environment
(IDE). Fortunately, we have several to choose from. See http://groovy.codehaus.org/
IDE+Support for some choices. We can edit Groovy code, run it from within an
IDE, debug code, and a lot more, depending on which tool we pick.

IntelliJ IDEA

IntelliJ IDEA offers outstanding support for Groovy in the free-of-charge
community edition.’ Using it, we can edit Groovy code, take advantage of code
completion, get support for Groovy builders, use syntax and error highlighting,
use code formatting and inspection, jointly compile Java and Groovy code,
refactor and debug both Java and Groovy code, and work with and build Java
and Groovy code in the same project.

Eclipse Groovy Plug-In

Eclipse users can use the Groovy Eclipse plug-in.* We can edit Groovy classes
and scripts with this plugin, take advantage of syntax highlighting, and
compile and run the code and tests. Using the Eclipse debugger, we can step
into Groovy code or debug unit tests. In addition, we can invoke the Groovy
shell or Groovy console from within Eclipse to quickly experiment with Java
and Groovy code.

TextMate Groovy Bundle

Programmers on the Mac use the Groovy bundle extensively in TextMate; see
TextMate: Power Editing for the Mac [Gra07].%¢ (Windows users—take a look
at E Text Editor.” Also, for editing small code snippets, we can use Notepad2.®)
TextMate provides a number of time-saving snippets that allow code expansion
for standard Groovy code, such as closures. We can take advantage of syntax
highlighting and run Groovy code and tests quickly from within TextMate, as
shown in the following figure. See my blog entry at http://blog.agiledeveloper.com/
2007/10/tweaking-textmate-groovy-bundle.html for a minor tweak to quickly display

results without a pop-up window.

http://www.jetbrains.com/idea
http://groovy.codehaus.org/Eclipse+Plugin
http://docs.codehaus.org/display/GROOVY/TextMate
http://macromates.com
http://www.e-texteditor.com
http://www.flos-freeware.ch/notepad2.html

®» N TR W

www.it-ebooks.info

http://groovy.codehaus.org/IDE+Support
http://groovy.codehaus.org/IDE+Support
http://blog.agiledeveloper.com/2007/10/tweaking-textmate-groovy-bundle.html
http://blog.agiledeveloper.com/2007/10/tweaking-textmate-groovy-bundle.html
http://www.jetbrains.com/idea
http://groovy.codehaus.org/Eclipse+Plugin
http://docs.codehaus.org/display/GROOVY/TextMate
http://macromates.com
http://www.e-texteditor.com
http://www.flos-freeware.ch/notepad2.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Usingan IDE * 9

eoe _| Hello.groowy

1 |println "Hello Groowy!"
2

Hello Groowy!

Line: 2 Column: L Croovy & ¥ TabSize: 2 7 — 3t

Figure 2—Groovy code executed within TextMate

Many TextMate users are migrating to Sublime Text, the new kid on the block.
To run Groovy code from within Sublime Text we need a build file. If it’s not
in the Tools > Build System menu, simply select the New Build System...
menu item to create a file named groovy.sublime-build with a one-line command:

{ "cmd": ["/opt/groovy/bin/groovy", "$file"] }

This instructs the tool to run the groovy command in the specified path,
sending it the Groovy code-source filename as the parameter. The results will
be displayed in the output window. To run the code, either press F7 or
Command+B. For more details on configuring the build in Sublime Text, refer
to http://sublimetext.info/docs/en/reference/build_systems.html.

It’s nice to have a choice of command-line and IDE tools. However, we need
to decide which tool is right. I find it easiest to simply run Groovy code
directly from within the editor or IDE, letting the groovy tool take care of com-
piling and executing the code behind the scene. That helps with my “rapid
edit, code, and run my tests” cycle. At times, I find myself jumping over to
groovysh to experiment with code snippets. But you don’t have to do what I do.
The right tool for you is the one you're most comfortable with. Start with a
simple tool and the steps that work for you. Once you get comfortable, scale
up to something more sophisticated when there’s a need to do so.

In this chapter, we installed Groovy and took it for a quick test-drive. Along
the way we looked at a few command-line tools and IDE support. That means
we're all set to explore Groovy in the next chapter.

www.it-ebooks.info

http://sublimetext.info/docs/en/reference/build_systems.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.1

CHAPTER 2

Groovy for Java Eyes

Since Groovy supports Java syntax and preserves the Java semantics, we
can intermix Java style and Groovy style at will. In this chapter we’ll start on
familiar ground and transition to a more Groovy style of coding. We’ll begin
with tasks we're used to doing in Java, and as we transition them to Groovy
code we'll see how the Groovy versions are more concise and expressive. At
the end of this chapter, we’ll look at some “gotchas”—a few things that might
catch us off guard if we aren’t expecting them.

From Java to Groovy

Let’s start with a piece of Java code with a simple loop. We'll first run it
through Groovy. Then we’ll refactor it from Java style to Groovy style. As we
evolve the code, each version will do the same thing, but the code will be more
expressive and concise. It will feel like our refactoring is on steroids. Let’s
begin.

Hello, Groovy

Let’s start with a Java code example that’s also Groovy code, saved in a file
named Greetings.groovy.

// Java code
public class Greetings {
public static void main(String[] args) {
for(int i = 0; i < 3; i++) {
System.out.print("ho ");
}

System.out.println("Merry Groovy!");
}
}

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ® 12

Let’s execute this code using the command groovy Greetings.groovy and take a
look at the output:

ho ho ho Merry Groovy!

That’s a lot of code for such a simple task. Still, Groovy obediently accepted
and executed it.

Groovy has a higher signal-to-noise ratio than Java. Hence, less code, more
result. In fact, we can get rid of most of the code from the previous program
and still have it produce the same result. Let’s start by removing the line-
terminating semicolons. Losing the semicolons reduces noise and makes the
code more fluent.

Now let’s remove the class and method definitions. Groovy is still happy (or
is it happier?).

We don’t have to import all the common classes/packages when we write Groovy
code. For example, Calendar readily refers to java.util.Calendar. Groovy automatically
imports the following Java packages: java.lang, java.util, java.io, and java.net. It also imports
the classes java.math.BigDecimal and java.math.Biginteger. In addition, the Groovy packages
groovy.lang and groovy.util are imported.

GroovyForJavaEyes/LightGreetings.groovy
for(int i = 0; i < 3; i++) {
System.out.print("ho ")

}

System.out.println("Merry Groovy!")

We can go even further. Groovy understands printin() because it has been added
on java.lang.Object. It also has a lighter form of the for loop that uses the Range
object, and Groovy is lenient with parentheses. So, we can reduce the previous
code to the following:

GroovyForJavaEyes/LighterGreetings.groovy
for(i in 0..2) { print 'ho ' }

println 'Merry Groovy!'

The output from the previous code is the same as the Java code we started
with, but the code is a lot lighter. Simple things are simple to do in Groovy.

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/LightGreetings.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/LighterGreetings.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

From Java to Groovy ® 13

Ways to Loop

We're not restricted to the traditional for loop in Groovy. We already used the
range 0..2 in the for loop. Groovy provides quite a number of elegant ways to
iterate; let’s look at a few.

Groovy has added a convenient upto() instance method to java.lang.Integer; let’s
use that to iterate.

GroovyForJavaEyes/WaysToLoop.groovy
0.upto(2) { print "$it "}

Here we called upto() on 0, which is an instance of Integer. The output should
display each of the values in the range we picked.

012

So, what’s that $it in the code block? In this context, it represents the index
value through the loop. The upto() method accepts a closure as a parameter.
If the closure expects only one parameter, we can use the default name it for
it in Groovy. Keep that in mind, and move on for now; we’ll discuss closures
in more detail in Chapter 4, Using Closures, on page 71. The $ in front of the
variable it tells the method print() to print the value of the variable instead of
the characters “it"—using this feature we can embed expressions within
strings, as you’ll see in Chapter 5, Working with Strings, on page 97.

With the upto() method we can set both lower and upper limits. If we start at
0, we can also use the times() method, like in the next example.

GroovyForJavaEyes/WaysToLoop.groovy
3.times { print "$it "}

This version of code will produce the same output as the previous version,
as we can see:

012
By using the step() method, we can skip values while looping.

GroovyForJavaEyes/WaysToLoop.groovy
0.step(10, 2) { print "$it "}

The output from the code will show select values in the range:

024638

We can also iterate or traverse a collection of objects using similar methods,
as you'll see later in Chapter 6, Working with Collections, on page 109.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes * 14

To go further, we can rewrite the greetings example using the methods you
learned earlier. Look at how short the following Groovy code is compared to
the Java code we started with:

GroovyForJavaEyes/WaysToLoop.groovy
3.times { print 'ho ' }
println 'Merry Groovy!'

To confirm that this works, let’s run the code and take a look at the output.

ho ho ho Merry Groovy!

A Quick Look at the GDK

One of the Java Platform’s key strengths is its Java Development Kit (JDK).
To program in Groovy, we're not forced to learn a new set of classes and
libraries. Groovy extends the powerful JDK by adding convenience methods
to various classes. These extensions are available in the library called the
GDK, or the Groovy JDK (http://groovy.codehaus.org/groovy-jdk). We can leverage the
JDK even further in Groovy by using the Groovy convenience methods. Let’s
whet our appetites by making use of a GDK convenience method for talking
to an external process.

I spend part of my life maintaining version-control systems. Whenever a file
is checked in, back-end hooks exercise some rules, execute processes, and
send out notifications. In short, I have to create and interact with processes.
Let’s see how Groovy can help here.

In Java, we can use java.lang.Process to interact with a system-level process.
Suppose we want to invoke Subversion’s help from within our code; well,
here’s the Java code for that:

//Java code
import java.io.*;
public class ExecuteProcess {
public static void main(String[] args) {
try {
Process proc = Runtime.getRuntime().exec("svn help");
BufferedReader result = new BufferedReader (
new InputStreamReader(proc.getInputStream()));
String line;
while((line = result.readLine()) '= null) {
System.out.println(line);
}
} catch(IOException ex) {
ex.printStackTrace();
}
}
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WaysToLoop.groovy
http://groovy.codehaus.org/groovy-jdk
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

From Java to Groovy ® 15

java.lang.Process is very helpful, but we had to jump through some hoops to use
it in the previous code; in fact, all the exception-handling code and effort to
get to the output can make us dizzy. The GDK makes this insanely simple by
adding an execute() method on the java.lang.String class:

GroovyForJavaEyes/Execute.groovy
println "svn help".execute().text

Compare the two pieces of code. They remind me of the swordfight scene from
the movie Raiders of the Lost Ark; the Java code is pulling a major stunt like
the villain with the sword.' Groovy, on the other hand, like Indy, effortlessly
gets the job done. Don’t get me wrong—I am certainly not calling Java the
villain. We're still using Process and the JDK in Groovy code. Our enemy is the
unnecessary complexity that makes it harder and more time-consuming to
utilize the power of the JDK and the Java platform.

In one of the Subversion hooks I maintain, a refactoring session helped reduce
more than fifty lines of Java code to a mere three lines of Groovy code. Which
of the previous two versions would we prefer? The short and sweet one-liner,
of course (unless we're consultants who get paid by the number of lines of
code we write...).

When we called the execute() method on the instance of String, Groovy created
an instance that extends java.lang.Process, just like the exec() method of Runtime
did in the Java code. We can verify this by using the following code:

GroovyForJavaEyes/Execute.groovy
println "svn help".execute().getClass().name

When run on a Unix-like machine, the code will report as follows:
java.lang.UNIXProcess

On a Windows machine, we’ll get this:

java.lang.ProcessImpl

When we call text, we're calling the Groovy-added method getText() on the Process
to read the process’s entire standard output into a String. If we simply want
to wait for a process to finish, either waitFor() or the Groovy-added method
waitForOrKill() that takes a timeout in milliseconds will help. Go ahead—try the
previous code.

Instead of using Subversion, we can try other commands; simply substitute
svn help for some other program (such as groovy -v):

1. http://www.youtube.com/watch?v=anEuw8F8cpE

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://www.youtube.com/watch?v=anEuw8F8cpE
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ® 16

GroovyForJavaEyes/Execute.groovy
println "groovy -v".execute().text

The separate Groovy process we invoked from within our Groovy script will
report the version of Groovy.

GroovyForJavaEyes/Execute.output
Groovy Version: 2.1.1 JVM: 1.7.0 04-ea Vendor: Oracle Corporation 0S: Mac 0S X

This code sample works on Unix-like systems and on Windows. Similarly, on
a Unix-like system, to get the current-directory listing, we can call Is:

GroovyForJavaEyes/Execute.groovy
println "Is -1".execute().text

If we're on Windows, simply replacing Is with dir will not work. The reason is
that although Is is a program we're executing on Unix-like systems, dir is not
a program—it’s a shell command. So, we have to do a little more than call dir.
Specifically, we need to invoke cmd and ask it to execute the dir command:

GroovyForJavaEyes/Windows/ExecuteDir.groovy
println "cmd /C dir".execute().text

We've looked at how the GDK extensions can make our coding life much
easier, but we’'ve merely scratched the GDK’s surface. We’'ll look at more GDK
goodness in Chapter 7, Exploring the GDK, on page 127.

safe-navigation operator

Groovy has a number of little features that are exciting and help ease the
development effort. You'll find them throughout this book. One such feature
is the safe navigation operator (?.). It eliminates the mundane check for null,
as in the next example:

GroovyForJavaEyes/Ease.groovy

def foo(str) {
//if (str != null) { str.reverse() }
str?.reverse()

}

println foo('evil')
println foo(null)

The ?. operator in the method foo() (programming books are required to have
at least one method named “foo”) calls the method or property only if the
reference is not null. Let’s run the code and look at the output:

live
null

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.output
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Windows/ExecuteDir.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Ease.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

From Java to Groovy ¢ 17

The call to reverse() on the null reference using ?. resulted in a null instead of a
NullPointerException—another way Groovy reduces noise and effort.

Exception Handling

Groovy has less ceremony than Java. That’s crystal-clear in exception han-
dling. Java forces us to handle checked exceptions. Consider a simple case:
we want to call Thread’s sleep() method. (Groovy provides an alternate sleep()
method; see Using sleep, on page 130.) Java is adamant that we catch
java.lang.InterruptedException. What does a Java developer do when forced? Finds
a way around doing it. The result? Lots of empty catch blocks, right? Check
this out:

GroovyForJavaEyes/Sleep.java
// Java code
try {
Thread.sleep(5000);
} catch(InterruptedException ex) {
// eh? I'm losing sleep over what to do here.

}

Having an empty catch block is worse than not handling an exception. If we
put in an empty catch block, we're suppressing the exception. If we don’t
handle it in the first place, it is propagated to the caller, who either can do
something about it or can pass it yet again to its caller.

Groovy does not force us to handle exceptions that we don’t want to handle
or that are inappropriate at the current level of code. Any exception we don’t
handle is automatically passed on to a higher level. Here’'s an example of
Groovy’s answer to exception handling:

GroovyForJavaEyes/ExceptionHandling.groovy
def openFile(fileName) {
new FileInputStream(fileName)

}

The method openFile() does not handle the infamous FileNotFoundException. If the
exception occurs, it’s not suppressed. Instead, it’s passed to the calling code,
which can handle it, as in the next example:

GroovyForJavaEyes/ExceptionHandling.groovy

try {
openFile("nonexistentfile")

} catch(FileNotFoundException ex) {
// Do whatever you like about this exception here
println "Oops: " + ex

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Sleep.java
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes * 18

If we are interested in catching all Exceptions that may be thrown, we can
simply omit the exception type in the catch statement:

GroovyForJavaEyes/ExceptionHandling.groovy

try {
openFile("nonexistentfile")

} catch(ex) {
// Do whatever you like about this exception here
println "Oops: " + ex

}

With the catch(ex) without any type in front of the variable ex, we can catch
just about any exception thrown our way. Beware: this doesn’t catch Errors
or Throwables other than Exceptions. To catch all of them, use catch(Throwable
throwable).

As we can see, Groovy lets us focus on getting our work done rather than on
tackling annoying system-level details.

Groovy as Lightweight Java

Groovy has other features that make it lighter and easier to use. Here are
some:

e The return statement is almost always optional (see Section 2.11, Gotchas,
on page 46).

e The semicolon (;) is almost always optional, though we can use it to sepa-
rate statements (see The Semicolon Is Almost Always Optional, on page
51).

e Methods and classes are public by default.
e The ?. operator dispatches calls only if the object reference is not null.

e We can initialize JavaBeans using named parameters (see Section 2.2,
JavaBeans, on page 19).

e We're not forced to catch exceptions that we don’t care to handle. They
get passed to the caller of our code.

* We can use this within static methods to refer to the Class object. In the next
example, the learn() method returns the class so we can chain calls:

class Wizard {
def static learn(trick, action) {
//. ..
this
}
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.2

JavaBeans * 19

Wizard.learn('alohomora', {/*...*/})
.learn('expelliarmus', {/*...*/})
.learn('lumos', {/*...*/})

We've seen the expressive and concise nature of Groovy. Next we’ll look at
how Groovy reduces clutter in one of the most fundamental features of Java.

JavaBeans

It was exciting when the concept of JavaBeans was introduced—Java objects
would be considered JavaBeans if they followed certain conventions to expose
their properties. That raised a lot of hope, but we soon found that to access
these properties, calls to mere getters and setters were required. The excite-
ment came crashing down, and developers moved on to create thousands of
silly methods in their applications.” If JavaBeans were human, they’d be on
Prozac. To be fair, the intent of JavaBean is noble—it made component-based
development, application assembly, and integration practical and paved the
way for exceptional integrated development environment (IDE) and plug-in
development.

Groovy treats JavaBeans with the respect they deserve. In Groovy, a JavaBean
truly has properties. Let’s start with Java code and reduce it to Groovy so we
can see the difference.

GroovyForJavaEyes/Car.java

//Java code

public class Car {
private int miles;
private final int year;

public Car(int theYear) { year = theYear; }
public int getMiles() { return miles; }
public void setMiles(int theMiles) { miles = theMiles; }

public int getYear() { return year; }

public static void main(String[] args) {
Car car = new Car(2008);
System.out.println("Year: " + car.getYear());
System.out.println("Miles: " + car.getMiles());
System.out.println("Setting miles");
car.setMiles(25);
System.out.println("Miles:

+ car.getMiles());

2. http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Car.java
http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ¢ 20

That’s all-too-familiar Java code, isn’t it? Let’s take a look at the output of
the Car instance’s properties:

Year: 2008
Miles: 0
Setting miles
Miles: 25

The previous Java code will run in Groovy, but we can reduce the clutter
quite a bit if we rewrite it in Groovy:

GroovyForJavaEyes/GroovyCar.groovy
class Car {

def miles = 0

final year

Car(theYear) { year = theYear }
}

Car car = new Car(2008)

println "Year: $car.year"
println "Miles: $car.miles"
println 'Setting miles'
car.miles = 25

println "Miles: $car.miles"

That code does the same thing (as we see in the following output), but it has
less clutter and ceremony.

Year: 2008
Miles: ©
Setting miles
Miles: 25

def declared a property in this context. We can declare properties by either
using def as in the example or giving the type (and optional value) as in int
miles or int miles = 0. Groovy quietly created a getter and a setter method behind
the scenes (just like how a constructor is created in Java if we don’t write any
constructor). When we call miles in our code, we're not referencing a field;
instead, we're calling the getter method for the miles property. To make a
property read-only, we declare it final, just like in Java. Optionally, we can
add a type information to the declaration. Groovy provides a getter and no
setter in this case. Any attempt to change the final field will result in an
exception. We can mark fields as private, but Groovy does not honor that. So,
if we want to make a variable private, we’d have to implement a setter that
rejects any change. Let’s verify these concepts with the following code:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/GroovyCar.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

JavaBeans * 21

GroovyForJavaEyes/GroovyCar2.groovy
class Car {

final year

private miles = 0

Car(theYear) { year = theYear }

def getMiles() {
println "getMiles called"
miles

}

private void setMiles(miles) {
throw new IllegalAccessException("you're not allowed to change miles")

}

def drive(dist) { if (dist > 0) miles += dist }
}

We declared year as final and miles as private. From within the drive() instance
method we can’t change year, but we can change miles. The setter prevents
any change to the value of miles from outside the class. Let’s use this Car class
Nnow.

GroovyForJavaEyes/GroovyCar2.groovy
def car = new Car(2012)

println "Year: $car.year"
println "Miles: $car.miles"
println 'Driving'
car.drive(10)

println "Miles: $car.miles"

try {
print 'Can I set the year? '
car.year = 1900

} catch(groovy.lang.ReadOnlyPropertyException ex) {
println ex.message

}

try {
print 'Can I set the miles? '
car.miles = 12

} catch(IllegalAccessException ex) {
println ex.message

}

We can see in the following output that we're able to read the values for the
two properties, but we're not allowed to set either of them.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/GroovyCar2.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/GroovyCar2.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

23

Chapter 2. Groovy for Java Eyes ¢ 22

Year: 2012

getMiles called

Miles: 0

Driving

getMiles called

Miles: 10

Can I set the year? Cannot set readonly property: year for class: Car
Can I set the miles? you're not allowed to change miles

If we want to access properties, we don’'t need to use getters or setters anymore
in our call. The following code illustrates the elegance of this:

GroovyForJavaEyes/UsingProperties.groovy
Calendar.instance

// instead of Calendar.getInstance()
str = 'hello'

str.class.name

// instead of str.getClass().getName()

// Caution: Won't work for Maps, Builders, ...
// use str.getClass().name to be safe

Use caution with the class property, however—some classes, like Map, and
builders give special treatment to this property (see Section 6.5, Using the
Map Class, on page 118, for example). As a result, in general, use getClass()
instead of class to avoid any surprises.

Flexible Initialization and Named Arguments

Groovy gives us the flexibility to initialize a JavaBean class. When constructing
an object, simply give values for properties as comma-separated name-value
pairs. This is a post-construction operation if our class has a no-argument
constructor. We can also design our methods so they can take named argu-
ments. To take advantage of this feature, define the first parameter as a Map.
Let’s see these in action:

GroovyForJavaEyes/NamedParameters.groovy
class Robot {
def type, height, width
def access(location, weight, fragile) {
println "Received fragile? $fragile, weight: $weight, loc: $location"
}
}
robot = new Robot(type: 'arm', width: 10, height: 40)
println "$robot.type, $robot.height, $robot.width"

robot.access(x: 30, y: 20, z: 10, 50, true)

//You can change the order
robot.access(50, true, x: 30, y: 20, z: 10)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/UsingProperties.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/NamedParameters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Flexible Initialization and Named Arguments ® 23

Let’s exercise the previous code and take a look at the output.

arm, 40, 10
Received fragile? true, weight: 50, loc: [x:30, y:20, z:10]
Received fragile? true, weight: 50, loc: [x:30, y:20, z:10]

The instance of Robot took type, height, and width parameters as name-value
pairs. The flexible constructor the Groovy compiler created for us is used
here.

The access() method receives three parameters, but if the first parameter is a
Map we can float around the map’s key-values in the argument list. In the first
call to the access() method, we placed the values for the map, followed by the
value for weight and the value for fragile. The arguments for the map can be
moved further down in the arguments list if we desire, like in the second call
to the access() method.

If the number of arguments we send is greater than the number of parameters
the method expects and if the excess arguments are name-value pairs, then
Groovy assumes the method’s first parameter is a Map and groups all the
name-value pairs in the arguments together as values for the first parameter.
It then takes the rest of the arguments, in the presented order, as values for
the remaining parameters, as we saw in the output.

Although the kind of flexibility in the Robot example is powerful, it can get
confusing, so use it sparingly. If we desire named arguments, then it’s better
to simply accept one Map parameter and not mix different parameters. This
feature also leads to a problem when we pass three integer arguments, as in
our example. In this case, the arguments will be passed in order, no map is
created from the arguments, and the result is not what we desire.

We can avoid confusion like this by explicitly naming the first parameter as
a Map:

GroovyForJavaEyes/NamedParameters.groovy
def access(Map location, weight, fragile) {
print "Received fragile? $fragile, weight: $weight, loc: $location"

}

Now, if our arguments do not contain two objects plus arbitrary name-value
pairs, we will get an error.

As we can see, thanks to the makeover Groovy gave JavaBeans, they're quite
vibrant in Groovy.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/NamedParameters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

24

Chapter 2. Groovy for Java Eyes * 24

Optional Parameters

In Groovy we can make method and constructor parameters optional. In fact,
we can make as many parameters optional as we like, but they have to be
trailing. We can use this in evolutionary design to add new parameters to
existing methods.

To define an optional parameter, simply give it a value in the parameter list.
Here’s an example of a log() function with optional base parameter. If we don’t
provide that argument, Groovy assumes a value of 10:

GroovyForJavaEyes/OptionalParameters.groovy
def log(x, base=10) {

Math.log(x) / Math.log(base)
}

println log(1024)
println log(1024, 10)
println log(1024, 2)

Groovy fills the missing argument with the optional value, as we can see in
the output:

3.0102999566398116
3.0102999566398116
10.0

Groovy also treats the trailing array parameter as optional. So, in the following
example we can send zero or more values for the last parameter:

GroovyForJavaEyes/OptionalParameters.groovy
def task(name, String[] details) {
println "$name - $details"

}

task 'Call', '123-456-7890'
task 'Call', '123-456-7890', '231-546-0987'
task 'Check Mail'

We can see from the output that Groovy gathers the trailing arguments into
the array parameter:

Call - [123-456-7890]
Call - [123-456-7890, 231-546-0987]
Check Mail - []

Providing mundane arguments to methods can get tiring. Optional parameters
reduce noise and allow for sensible defaults.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/OptionalParameters.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/OptionalParameters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.5

Using Multiple Assignments ® 25

Using Multiple Assignments

Passing multiple arguments to methods is commonplace in many programming
languages. Returning multiple results from functions, on the other hand, is
not that common, though it can be quite convenient. We can return multiple
results from functions and assign them to multiple variables in one shot.
Simply return an array and use comma-separated variables wrapped in
parentheses on the left side of the assignment.

In the next example, we have a function that splits a full name into first and
last names. The split() function, as we’d expect, returns an array. We can assign
the result of the splitName() function to a pair of variables: firstName and lastName.
Groovy assigns the two values to the two variables, respectively.

GroovyForJavaEyes/MultipleAssignments.groovy
def splitName(fullName) { fullName.split(' ') }

def (firstName, lastName) = splitName('James Bond')
println "$lastName, $firstName $lastName"

We didn’t have to create temporary variables and write multiple assignment
statements to set the result into the two variables, as the output shows:

Bond, James Bond

We can also use this feature to swap variables without having to create an
intermediate variable to hold the values being swapped. Simply place the
variables to be swapped within parentheses on the left and place them in
reverse order within square brackets on the right.
GroovyForJavaEyes/MultipleAssignments.groovy

def namel = "Thomson"
def name2 = "Thompson"

println "$namel and $name2"
(namel, name2) = [name2, namel]
println "$namel and $name2"

The values of namel and name2 were swapped, as we can see in the following
output.

Thomson and Thompson
Thompson and Thomson

We've seen how Groovy takes care of multiple assignment when we have the
proper number of variables on the left to receive the values on the right.
Groovy can also deal with this gracefully when the number of variables and

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/MultipleAssignments.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/MultipleAssignments.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.6

Chapter 2. Groovy for Java Eyes ® 26

values don’t match. If we have excess variables, Groovy will set them to null,
and excess values will be discarded.

We can also specify types for individual variables being defined in the multiple
assignment, as in the next example. To illustrate this, let’s use the animals
from a famous cartoon series.

GroovyForJavaEyes/MultipleAssignments.groovy
def (String cat, String mouse) = ['Tom', 'Jerry', 'Spike', 'Tyke'l
println "$cat and $mouse"

On the left we only have two variables, and the dogs Spike and Tyke will be
lost.

Tom and Jerry

In the next example we only have two values on the right, but more variables
on the left.

GroovyForJavaEyes/MultipleAssignments.groovy
def (first, second, third) = ['Tom', 'Jerry']
println "$first, $second, and $third"

The value for the third variable is set to null.

Tom, Jerry, and null

If the excess variable is a primitive type, something that can’t be set to null,
then Groovy will throw an exception—this is a new behavior. int is treated as
a primitive where possible, and not as an Integer in Groovy 2.x.

As you can see, Groovy makes it quite easy to send and receive multiple
parameters.

Implementing Interfaces

In Groovy we can morph a map or a block of code into interfaces, which lets
us implement interfaces with multiple methods quickly. In this section, you’ll
see a Java way of implementing interfaces, and then you’ll learn how to take
advantage of Groovy’s facilities.

Here’s the all-too-familiar Java code to register an event handler to a Swing
JButton. The call to addActionListener() expects an instance that implements the
ActionListener interface. We create an anonymous inner class that implements
ActionListener, and we provide the required actionPerformed() method. This method
insists on taking ActionEvent as an argument even though we have no use for
it in this example.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/MultipleAssignments.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/MultipleAssignments.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Implementing Interfaces ® 27

// Java code
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
JOptionPane.showMessageDialog(frame, "You clicked!");

}
1)

Groovy presents a charming idiomatic difference here—mo need for that
actionPerformed() method declaration or that explicit new anonymous inner class
instance!

button.addActionListener(
{ JoptionPane.showMessageDialog(frame, "You clicked!") } as ActionListener
)

We call the addActionListener method and provide it with a block of code that
morphs itself to implement the ActionListener interface because of the as operator.

That’s it—Groovy takes care of the rest. It intercepts calls to any method on
the interface (actionPerformed(), in this case) and routes it to the block of code
we provided. To run this code we’ll need to create the frame and its compo-
nents; the full code listing is shown at the end of this section.

We don’t have to do anything different if we plan to provide one single imple-
mentation for all the methods of a multimethod interface.

Suppose we want to display the location of the mouse pointer as the mouse
is clicked and moved around in our application. In Java, we have to implement
a total of seven methods of the MouseListener and MouseMotionListener interfaces.
Since our implementation for all these methods is the same, Groovy makes
our life easy.

displayMouselLocation = { positionLabel.setText("$it.x, $it.y") }
frame.addMouselListener(displayMouseLocation as MouselListener)
frame.addMouseMotionListener(displayMouselLocation as MouseMotionListener)

In this code, we created the variable displayMouseLocation that refers to a block
of code. We then morphed it twice using the as operator—once for each of the
interfaces, MouseListener and MouseMotionListener. Once again, Groovy takes care
of the rest, and we can move on to focus on other things. It took three lines
of code instead of...—sorry, I'm still counting—in Java.

In the previous example, we see the variable it again. it represents the method
argument. If a method of the interface we're implementing takes multiple
arguments, we can define them either as discrete arguments or as a parameter
of type array—we’ll discuss how in Chapter 4, Using Closures, on page 71.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ¢ 28

Groovy does not force us to implement all the methods in an interface; we
can define only the methods we care about and leave out the rest. If the
methods left out are never called, then we didn’t waste any effort implementing
them. This technique is quite useful when implementing interfaces to mock
up some behavior during unit testing.

OK, that was nice, but in most realistic situations, we’d want a different imple-
mentation for each method of an interface. No worries; Groovy can handle that.
Simply create a map with each method name as a key and the method’s body as
the key’s value—using the simple Groovy style—separate the method names from
the code block using a colon (:). Also, we don’t have to implement all the methods.
We implement only those we really care about. If the methods we don’t implement
are never called, we didn’t waste any effort implementing dummy stubs. Of course,
if we fail to provide a method that’s called, we’ll get a NullPointerException. Let’s put
these to use in an example.

handleFocus = [
focusGained : { msglLabel.setText("Good to see you!") },
focusLost : { msgLabel.setText("Come back soon!") }

]

button.addFocusListener(handleFocus as FocuslListener)

Whenever the button in this example gains focus, the first block of code
associated with the key focusGained will be called. When the button loses focus,
the block of code associated with focusLost is called. The keys in this case cor-
respond to the methods of the FocusListener interface.

The as operator is good if we know the name of the interface we’re implementing,
but what if our application demands dynamic behavior and we’ll know the interface
name only at runtime? The asType() method comes to our rescue. We can use it to
morph either a block of code or a map to an interface by sending the Class
metaobject of the interface we want to implement as an argument to asType(). Let’s
look at an example.

Suppose we want to add an event handler for different events: WindowListener,
ComponentListener... the list may be dynamic. Also suppose our handler will
perform some common task to help with testing or debugging our application,
such as logging or updating a status bar. We can dynamically add handlers
for multiple events using a single block of code. Here’s how:

events = ['WindowListener', 'ComponentListener']

// Above list may be dynamic and may come from some input

handler = { msgLabel.setText("$it") }

for (event in events) {
handlerImpl = handler.asType(Class.forName("java.awt.event. ${event}"))
frame. "add${event}" (handlerImpl)

}

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Implementing Interfaces ® 29

The interfaces we want to implement—that is, the events we want to han-
dle—are in the list events. This list is dynamic; suppose it will be populated
with input during code execution. The common handler for the events is in
the code block the variable handler refers to. We loop through the events, and
for each event, we create an implementation of the interface using the asType()
method. This method is called on the block of code and is given the Class
metaobject of the interface obtained using the forName() method. Once we have
the implementation of the listener interface on hand, we can register it by
calling the appropriate add method (like addWindowListener()). The call to the add
method itself is dynamic. You'll learn more about such methods later, in
Section 11.2, Querying Methods and Properties, on page 180.

In the previous code, we used the asType() method. If we have different imple-
mentations for different methods, we’d have a map instead of a single block
of code. In that case, we can call the asType() method on the map in a similar
way. Finally, as promised, here is the full listing of the Groovy Swing code
developed in this section:

GroovyForJavaEyes/Swing.groovy
import javax.swing.*
import java.awt.*

import java.awt.event.*

frame = new JFrame(size: [300, 300],
layout: new FlowlLayout(),
defaultCloseOperation: javax.swing.WindowConstants.EXIT_ON_CLOSE)
button = new JButton("click")
positionLabel = new JLabel("")
msgLabel = new JLabel("")
frame.contentPane.add button
frame.contentPane.add positionLabel
frame.contentPane.add msglLabel

button.addActionListener(
{ JoptionPane.showMessageDialog(frame, "You clicked!") } as ActionListener

)

displayMouselLocation = { positionLabel.setText("$it.x, $it.y") }
frame.addMouselListener(displayMouseLocation as MouselListener)
frame.addMouseMotionListener(displayMouselLocation as MouseMotionListener)

handleFocus = [
focusGained : { msglLabel.setText("Good to see you!") },
focusLost : { msglLabel.setText("Come back soon!") }

]

button.addFocusListener(handleFocus as FocuslListener)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Swing.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.7

Chapter 2. Groovy for Java Eyes ¢ 30

events = ['WindowListener', 'ComponentListener']

// Above list may be dynamic and may come from some input

handler = { msgLabel.setText("$it") }

for (event in events) {
handlerImpl = handler.asType(Class.forName("java.awt.event.${event}"))
frame. "add${event}" (handlerImpl)

}

frame.show()

We've now covered the Groovy way to implement interfaces. It makes register-
ing for events and passing anonymous implementations of interfaces really
simple. The ability to morph blocks of code and maps into interface implemen-
tations is a real time-saver.

Groovy Boolean Evaluation

Boolean evaluation in Groovy is different than in Java. Depending on the
context, Groovy will automatically evaluate expressions as boolean.

Let’s see a specific example. The following Java code will not work:

//Java code

String obj = "hello";
int val = 4;

if (obj) {} // ERROR
if(val) {} //ERROR

Java insists that we provide a boolean expression for the condition part of the
if statement. It wants if(obj != null) and if(val > 0) in the previous example, for
instance.

Groovy is not that picky. It tries to infer, so we need to know what Groovy is
thinking.

If we place an object reference where a boolean expression is expected, Groovy
checks whether the reference is null. It considers null as false, and true otherwise,
as in the following code:

str = 'hello'
if (str) { println 'hello' }

Groovy evaluates the expression as Boolean, as we can see in the output:
hello

I must admit what I said about true earlier is not entirely true. If the object
reference is not-null, then the truth depends on the type of the object. For
example, if the object is a collection (like java.util.ArrayList), then Groovy checks
whether the collection is empty. So, in this case, the expression if (obj) evaluates

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.8

Operator Overloading ® 31

as true only if obj is not null and the collection has at least one element; look
at the following code example:

1st0 = null

println 1st0 ? 'Ist0@ true' : 'lstO false'
1stl = [1, 2, 3]

println 1stl ? 'lstl true' : 'lstl false'
1st2 = []

println lst2 ? 'Ist2 true' : 'lst2 false'

We can check our understanding of how Groovy handles boolean for Collections
with the following output:

1stO false
lstl true
1st2 false

Collections are not the only things that receive special boolean treatment. To see
the types that get special treatment and how Groovy evaluates their truth,
refer to the following table:

Type Condition for Truth

Boolean True

Collection Not empty

Character Value not O
CharSequence Length greater than O
Enumeration Has more elements
Iterator Has next

Number Double value not O
Map Not empty

Matcher At least one match
Object[] Length greater than O

Any other type Reference not null

Table 1—Types and Their Special Treatment for Boolean Evaluation

In addition to enjoying the built-in Groovy truth conventions, we can write
our own boolean conversions easily by implementing an asBoolean() method in
our classes.

Operator Overloading

We can use Groovy’s support for operator overloading—judiciously—to create
DSLs (see Chapter 19, Creating DSLs in Groovy, on page 295). When Java has

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ¢ 32

no support for operator overloading, how does Groovy get away with that?
It’s really simple: each operator has a standard mapping to methods.” In Java
we can use those methods, and on the Groovy side we can use either the
operators or their corresponding methods.

Here’s an example to show operator overloading in action:

GroovyForJavaEyes/OperatorOverloading.groovy

for(ch = 'a'; ch < 'd'; ch++) {
println ch

}

We're looping through the characters a through c using the ++ operator. This
operator maps to the next() method on the String class to produce this output:

a

C

We can use the concise for-each syntax in Groovy, but both implementations
use the next() method of String:

GroovyForJavaEyes/OperatorOverloading.groovy
for (ch in 'a'..'c') {

println ch
}

The String class has a number of operators overloaded, as you’ll see in Section
5.4, String Convenience Methods, on page 105. Similarly, the collection class-
es—ArrayList and Map—have operators overloaded for convenience.

To add an element to a collection, we can use the << operator, which translates
to the Groovy-added leftShift() method on Collection, as shown here:

GroovyForJavaEyes/OperatorOverloading.groovy
lst = ['hello']

1st << 'there'

println 1st

We can see the full collection, after the append, in the output:
[hello, there]

We can provide operators for our own classes by adding the mapping methods,
such as plus() for +.

Let’s add an operator-overloaded method to a class:

3. http://groovy.codehaus.org/Operator+Overloading

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://groovy.codehaus.org/Operator+Overloading
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

29

Support of Java 5 Language Features * 33

GroovyForJavaEyes/OperatorOverloading.groovy
class ComplexNumber {

def real, imaginary

def plus(other) {

new ComplexNumber(real: real + other.real,
imaginary: imaginary + other.imaginary)

}

String toString() { "$real ${imaginary > 0 ? '+' : ''} ${imaginary}i"}
}
cl = new ComplexNumber(real: 1, imaginary: 2)
c2 = new ComplexNumber(real: 4, imaginary: 1)
println cl + c2

We overloaded the + operator on the ComplexNumber class. Complex numbers
are useful for computing complex equations that involve the square root of
negative numbers—they have real and imaginary parts, like our actual income
and what we report on our tax returns. Because we added the plus() method
on the ComplexNumber class, we can use + to add two complex numbers to get
a resulting (more?) complex number:

5+ 3i

Operator overloading can make code expressive when used within a context.
We should overload only operators that will make things very obvious. For
example, overloading might not be a good choice if its not intuitive to someone
with knowledge of context or domain.

When overloading, we must preserve the expected semantics. For instance,
+ must not change any of the operands in the operation. If an operation must
be commutative, symmetric, or transitive, we have to make sure the imple-
mentation of the overloaded methods adhere to that.

Support of Java 5 Language Features

Java b language features like enums and annotations work in Groovy also.
This means we can mix Java and Groovy quite fluently. To refresh, the Java
5 language features are as follows:

e Autoboxing
¢ for-each

e enum

e Varargs

¢ Annotation

e Static import
e Generics

Let’s discuss the extent of the Groovy support for these features.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes * 34

Autoboxing

Groovy, because of its dynamic typing, supports autoboxing from the get-go.
In fact, Groovy automatically treats primitives as objects where necessary.
For instance, execute the following code:

GroovyForJavaEyes/Notint.groovy
int val = 5

println val.getClass().name

The type is reported as follows:

java.lang.Integer

In this code, we created an instance of java.lang.Integer and not a primitive int,
even though we specified int. Groovy decides to store the instance as an int or
Integer based on how we use it. Groovy’s handling of autoboxing is a notch
better than Java’s. In Java, autoboxing and unboxing involve constant casting.
Groovy, on the other hand, simply treats them as objects—so there’s no
repeated casting involved.

Prior to version 2.0 all primitive types were treated as objects in Groovy. To
improve performance and use more-direct bytecode for operations on primi-
tives, starting in version 2.0 Groovy does some optimization. Primitives are
treated as objects only where necessary—for instance, if we invoke methods
on them or pass them to object references. Otherwise, Groovy retains them
as primitive types at the bytecode level.

for-each

Groovy’s support for looping is superior to Java’s (see Ways to Loop, on page
13). We can still use the traditional for loop (that is, for(inti=0;i < 10; i++) {...})
gGroovy. Or, if we like the simpler form supported in Java 5, we can use
that. In Java 5, objects that implement the Iterable interface can be used in a
for-each loop, as in this example:

GroovyForJavaEyes/ForEach.java
// Java code
String[] greetings = {"Hello", "Hi", "Howdy"};

for(String greet : greetings) {

System.out.println(greet);
}

We can rewrite it in Groovy like this:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/NotInt.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ForEach.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Support of Java 5 Language Features * 35

GroovyForJavaEyes/ForEach.groovy
String[] greetings = ["Hello", "Hi", "Howdy"]
for(String greet : greetings) {

println greet

}

Groovy insists that we specify the type (String in the previous example) or def
in the Java style for-each. If we don’t want to specify the type, we use the in
keyword instead of a colon (), as in the next example:

GroovyForJavaEyes/ForEach.groovy
for(greet in greetings) {
println greet

}

In Groovy we prefer for with in over the Java-style for-each syntax. Alternatively,
we can use the each() internal iterator (see Chapter 6, Working with Collections,
on page 109).

enum

Groovy provides support for enum, which is the Java 5 feature that solves
problems with enumerations. It’s type-safe (we can distinguish between shirt
sizes and days of the week, for example), printable, serializable, and so on.

Here’s an example that defines different sizes of coffee drinks we can order:

GroovyForJavaEyes/UsingCoffeeSize.groovy
enum CoffeeSize { SHORT, SMALL, MEDIUM, LARGE, MUG }
def orderCoffee(size) {
print "Coffee order received for size $size: "
switch(size) {
case [CoffeeSize.SHORT, CoffeeSize.SMALL]:
println "you're health conscious"
break
case CoffeeSize.MEDIUM..CoffeeSize.LARGE:
println "you gotta be a programmer"
break
case CoffeeSize.MUG:
println "you should try Caffeine IV"
break
}
}
orderCoffee(CoffeeSize.SMALL)
orderCoffee(CoffeeSize.LARGE)
orderCoffee(CoffeeSize.MUG)
print 'Available sizes are:
for(size in CoffeeSize.values()) {
print "$size "

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ForEach.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ForEach.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/UsingCoffeeSize.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ® 36

The convenience of the switch statement and iteration on enums in the preceding
code produces this output:

Coffee order received for size SMALL: you're health conscious
Coffee order received for size LARGE: you gotta be a programmer
Coffee order received for size MUG: you should try Caffeine IV
Available sizes are: SHORT SMALL MEDIUM LARGE MUG

We can use enum values in case statements. Specifically, we can use a single
value, a list of values, or even a range of values. Examples of all these flavors
are in the previous code.

We can define constructors and methods for Java 5 enum, and Groovy supports
that too. See the next example:

GroovyForJavaEyes/AgileMethodologies.groovy
enum Methodologies {

Evo(5),

XP(21),

Scrum(30);

final int daysInIteration
Methodologies(days) { daysInIteration = days }

def iterationDetails() {
println "${this} recommends $daysInlteration days for iteration"
}
}

for(methodology in Methodologies.values()) {
methodology.iterationDetails()

}
Take a look at the output from iterating over the values in our enum:

Evo recommends 5 days for iteration
XP recommends 21 days for iteration
Scrum recommends 30 days for iteration

varargs

Remember, with Java 5 varargs we can pass a variable number of arguments
to methods, such as the printf() method. To use this feature in Java, we mark
the trailing parameter type of a method with an ellipsis, as in public static Object
max(Object... args). This is syntactic sugar—Java rolls all the arguments into an
array at call time.

Groovy supports Java 5 varargs in two ways. In addition to supporting
parameters marked with ellipses (...), we can pass variable arguments to
methods that accept an array as a trailing parameter.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/AgileMethodologies.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Support of Java 5 Language Features * 37

Let’s look at a Groovy example for these two ways:

GroovyForJavaEyes/VarArgs.groovy

def receiveVarArgs(int a, int... b) {
println "You passed $a and $b"

}

def receiveArray(int a, int[] b) {
println "You passed $a and $b"
}

receiveVarArgs(1l, 2, 3, 4, 5)
receiveArray(l, 2, 3, 4, 5)

Both the versions received a variable number of arguments, as we see in the
output:

You passed 1 and [2, 3, 4, 5]
You passed 1 and [2, 3, 4, 5]

We can send either an array or discrete values to methods that accept varargs
or an array as trailing parameters, and Groovy figures out what to do.

We must use caution when we send an array instead of discrete values. Groovy
treats the values wrapped in square brackets [] as an instance of ArrayList, not
of the plain vanilla array. So if we simply send, for example, [2, 3, 4, 5], we'll
get a MethodMissingException. To send an array, either define a reference of the
array type or use the as operator.

GroovyForJavaEyes/VarArgs.groovy

int[] values = [2, 3, 4, 5]

receiveVarArgs(1l, values)
receiveVarArgs(l, [2, 3, 4, 5] as int[])

For the most part, Groovy makes typing optional, but here we see that speci-
fying the type changes the semantics.

Annotations

We can use annotations in Java to express metadata, and Java 5 ships with a
few predefined annotations, such as @Override, @Deprecated, and @SuppressWarnings.

We can define and use annotations in Groovy. The syntax for defining in
Groovy is the same as in Java.

We use annotations most often for a framework or a tool to use; for example,
JUnit 4.0 uses the @Test annotation. If we're using frameworks like Hibernate,
JPA, Seam, Spring, and so on, we’ll find Groovy’s support for annotations
quite helpful.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/VarArgs.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/VarArgs.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ¢ 38

The Groovy compiler does not treat the Java compilation-related annotations
the same way the Java compiler does. For example, groovyc ignores @Override.

Static Import

Static import in Java helps import static methods of a class into our namespace
so we can refer to them without specifying the class name. For instance, if
we place

import static Math.random;

in our Java code, then instead of Math.random(), we can call it like this:

double val = random();

Static import in Java improves job security. If we define several static imports
or use * to import all static methods of a class, we're sure to confuse the heck
out of programmers trying to figure out where these methods come from.

Groovy extends that luxury of job security to us in two forms. First, it imple-
ments static import. We can use it just like in Java. Feel free to lose the
semicolon—that’s optional in Groovy. Second, we can define aliases in
Groovy—for both static methods and class names. To define an alias, use the
as operator in the import statement:

import static Math.random as rand
import groovy.lang.ExpandoMetaClass as EMC

double value = rand()
def metaClass = new EMC(Integer)
assert metaClass.getClass().name == 'groovy. lang.ExpandoMetaClass'

In the previous code, we created rand() as an alias for the Math.random() method.
We also created an alias EMC for the ExpandoMetaClass. Now we can use rand() and
EMC instead of Math.random() and ExpandoMetaClass, respectively.

Generics

Groovy is a dynamically typed language with optional typing. Since it’s a
superset of Java, it supports Generics. However, the Groovy compiler does
not perform type-checking the same way the Java compiler does (see Compile-
Time Type-Checking Is Off by Default, on page 47); don’t expect the Groovy
compiler to reject at the outset code with type violations, like the Java com-
piler does. Groovy’s dynamic typing will interplay here with generic types to
get our code running, if possible. To see the stark difference between the two
compilers, in the next example we’ll add a few values of different types to an
ArrayList of Integer.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Support of Java 5 Language Features * 39

Let’s start with Java code:

GroovyForJavaEyes/Generics.java
// Java code
import java.util.ArrayList;

public class Generics {
public static void main(String[] args) {
ArrayList<Integer> list = new ArraylList<Integer>();
list.add(1);
list.add(2.0);
list.add("hello");

System.out.println("List populated");
for(int element : list) { System.out.println(element); }
}
}

When we compile that Java code using the Java compiler, we get a compilation
error:

Generics.java:8: error: no suitable method found for add(double)
list.add(2.0);
method ArraylList.add(int,Integer) is not applicable
(actual and formal argument lists differ in length)
method ArraylList.add(Integer) is not applicable
(actual argument double cannot be converted to Integer
by method invocation conversion)
Generics.java:9: error: no suitable method found for add(String)
list.add("hello");
method ArraylList.add(int,Integer) is not applicable
(actual and formal argument lists differ in length)
method ArraylList.add(Integer) is not applicable
(actual argument String cannot be converted to Integer
by method invocation conversion)
2 errors

The Java compiler was not happy with us sending anything but an integer—or
int, which will be autoboxed to Intege—to the add() method because we specified
that the list will hold only Integers.

Let’s see how Groovy deals with this. Copy the previous code to a file named
Generics.groovy, and then run groovy Generics. Groovy will not prevent us from
running the code:

List populated

1

2

Caught: org.codehaus.groovy.runtime.typehandling.GroovyCastException:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Generics.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.10

Chapter 2. Groovy for Java Eyes ® 40

Cannot cast object 'hello' with class 'java.lang.String' to class 'int'
org.codehaus.groovy.runtime.typehandling.GroovyCastException:
Cannot cast object 'hello' with class 'java.lang.String' to class 'int'
at Generics.main(Generics.java:12)
at Generics.invokeMethod(Generics.java)
at RunGenerics.run(RunGenerics.groovy:1)

Groovy took the type information more as a suggestion during the calls to
the add() method. When we looped through the collection, Groovy tried to cast
the elements as an int. A runtime failure results when such casting is not
possible.

Groovy supports Generics while favoring dynamic behavior. The previous
code example shows quite an interesting interplay of the two concepts. This
dual nature of Groovy may be a surprise at first, but it will make sense when
you learn the benefits of Groovy metaprogramming (see Part III, MOPping
Groovy, on page 173).

The usefulness of Generics is not totally lost in Groovy. Groovy 2.x provides
rigorous type-checking on parts of the code if we're willing to compromise
metaprogramming capabilities—see Section 3.8, Switching Off Dynamic Typing,
on page 65.

Using Groovy Code-Generation Transformations

Groovy tactfully eases the tension that language designers often face between
a desire to evolve the language and a reluctance to modify the grammar due
to its impact on performance, complexity, and semantic correctness. Rather
than modifying the core syntax of the language, the Groovy compiler recognizes
select annotations and generates appropriate code. In this section you’ll learn
about a few such annotations. Chapter 16, Applying Compile-Time Metapro-
gramming, on page 235, covers how to create our own annotations for custom
transformations.

Groovy provides a number of code-generation annotations in the groovy.transform
package and a few other packages. We'll talk about a few of these annotations
in this section.

Using @Canonical

If we find ourselves writing a toString() method that simply displays select fields
values as comma-separated, we can let the Grooovy compiler work for us by
using the @Canonical transformation. By default it includes all the fields; how-
ever, we can ask it to include certain fields and exclude others, like in the
next example.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Groovy Code-Generation Transformations ® 41

GroovyForJavaEyes/Annotations.groovy
import groovy.transform.*

@Canonical(excludes="lastName, age")
class Person {

String firstName

String lastName

int age

}

def sara = new Person(firstName: "Sara", lastName: "Walker", age: 49)
println sara

Groovy excludes the fields we mentioned and prints the class name followed
by the values for the remaining field(s), as we can see in the output.

Person(Sara)

Using @Delegate

Inheritance must be savored only where the derived class is truly substitutable
and used in place of the base class. For most other purposes, delegation is
better than inheritance from pure code-reuse point of view. Yet in Java we're
reluctant to use delegation, as that leads to code duplication and more effort.
Groovy makes delegation quite easy, so we can make the proper design choice.

To better understand delegation, let’s start with a Worker class that has a few
methods in it. Expert has one method with the same name and signature as
the Worker class. Manager, as we'd expect, does nothing. But this manager is
smart at delegating work, so the two fields are marked with the @Delegate
annotation.

GroovyForJavaEyes/Annotations.groovy
class Worker {
def work() { println 'get work done' }

def analyze() { println ‘'analyze...' }

def writeReport() { println 'get report written' }
}
class Expert {

def analyze() { println "expert analysis..." }
}

class Manager {
@Delegate Expert expert = new Expert()
@Delegate Worker worker = new Worker()
}
def bernie = new Manager()
bernie.analyze()
bernie.work()
bernie.writeReport()

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Annotations.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Annotations.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ® 42

At compile time, Groovy examines the Manager class and brings in methods
from the delegated classes only if those methods don’t already exist. As a
result, it brings in the analyze() method of the Expert first. From the Worker class
it brings in only the work() and writeReport() methods. At this time, since the
analyze() method is present in the Manager, brought in from Expert, the one in
Worker is ignored.

For each of the methods that are brought in, Groovy simply routes a call to
the method on the instance, like so: public Object analyze() { expert.analyze() }. The
delegating class responds to the newly acquired methods, as we can see in
the following output.

expert analysis...
get work done
get report written

The Manager class is extensible thanks to the @Delegate annotation. If we add
or remove methods to the Worker or the Expert class, we don’t have to make any
changes to Manager for the corresponding change to take effect. Simply
recompile the code, and Groovy takes care of the rest.

Using @immutable

Immutable objects are inherently thread-safe, and it is a good practice to
mark fields as final. Groovy makes it easier to do the right thing by marking
the fields as final and, as a bonus, creating some convenience methods for us
if we mark a class with the @ mmutable annotation.

Let’s use this annotation in a CreditCard class.

GroovyForJavaEyes/Annotations.groovy
@Immutable
class CreditCard {

String cardNumber

int creditLimit

}
println new CreditCard("4000-1111-2222-3333", 1000)

Groovy rewards our gesture by providing us with a constructor where
parameters appear in the order of the fields. The fields can’t be changed after
the construction time. In addition, Groovy adds the hashCode(), equals(), and
toString() methods. Let’s look at the output from exercising the provided con-
structor and the toString() method.

CreditCard(4000-1111-2222-3333, 1000)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Annotations.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Groovy Code-Generation Transformations ¢ 43

We can use the @Immutable annotation to create lightweight immutable-value
objects easily. These are ideal instances to pass as messages in the actor-
based model in concurrent applications, where thread-safety is a big concern.

Using @Lazy

We want to defer the construction of time-consuming objects until we actually
need them. We can be lazy and productive at the same time, write less code,
and reap all the benefits of lazy initialization.

In the next example we want to postpone the creation of the instances of Heavy
until they’re needed. We can directly initialize instances at the point of decla-
ration or we can wrap the logic for creation within a closure.

GroovyForJavaEyes/Annotations.groovy
class Heavy {

def size = 10

Heavy() { println "Creating Heavy with $size" }
}

class AsNeeded {
def value

@Lazy Heavy heavyl new Heavy()
@Lazy Heavy heavy2 = { new Heavy(size: value) }()

AsNeeded() { println "Created AsNeeded" }
}

def asNeeded = new AsNeeded(value: 1000)
println asNeeded.heavyl.size
println asNeeded.heavyl.size
println asNeeded.heavy2.size

Groovy not only defers the creation, but also marks the field as volatile and
ensures thread safety during creation. The instances are created on the first
access to the fields, as we can see in the output.

Created AsNeeded
Creating Heavy with 10
10

10

Creating Heavy with 10
1000

The @Lazy annotation provides a painless way to implement the virtual proxy
pattern with thread safety as a bonus.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Annotations.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes * 44

Using @Newify

In Groovy we often follow the traditional Java syntax of using new to create
an instance. Losing this keyword will improve the fluency when creating DSLs,
however. The @Newify annotation can help us create Ruby-like constructors
where new is a method on the class. It can also help us create Python-like
constructors (and Scala-like applicators) where we can do away with new
entirely. To create the Python-like constructor, we must specify the list of
types to the @Newify annotation. The Ruby-style constructor is created for us
unless we set the value auto=false as a parameter to @Newify.

We can use the @Newify annotation in various scopes, such as classes or
methods, as in the next example.

GroovyForJavaEyes/Annotations.groovy

@Newify([Person, CreditCard])

def fluentCreate() {
println Person.new(firstName: "John", lastName: "Doe", age: 20)
println Person(firstName: "John", lastName: "Doe", age: 20)
println CreditCard("1234-5678-1234-5678", 2000)

}

fluentCreate()

The output indicates that with annotation we can create the instances using
the Ruby and Python styles.

Person(John)
Person(John)
CreditCard(1234-5678-1234-5678, 2000)

The @Newify annotation is quite helpful when creating DSLs, making instance
creation more of an implicit operation.

Using @Singleton

To implement the singleton pattern, normally we’d create a static field and a
static method to initialize that field, then return that singleton instance. We
have to ensure that this method is thread-safe and decide whether we want
a lazy creation of the singleton. We can eliminate this effort entirely by using
the @Singleton transformation, as in the following example.

GroovyForJavaEyes/Annotations.groovy
@Singleton(lazy = true)
class TheUnique {
private TheUnique() { println 'Instance created' }

def hello() { println 'hello' }
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Annotations.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Annotations.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Groovy Code-Generation Transformations ® 45

println "Accessing TheUnique"
TheUnique.instance.hello()
TheUnique.instance.hello()

When we run the code, the instance is created on the first call to the instance
property, which maps to the getinstance() method.

Accessing TheUnique
Instance created
hello

hello

We marked the TheUnique class with the annotation to generate the static
getinstance() method. Since we set the value for the lazy property to true, Groovy
delays the creation of the instance until requested. We can examine the gen-
erated code by copying and pasting the previous code into groovyConsole and
selecting the script | Inspect AST menu item.

public class TheUnique implements
groovy.lang.GroovyObject extends java.lang.0Object {

private static volatile TheUnique instance
/7. ..

private TheUnique() {
metaClass = /*BytecodeExpression*/
this.println('Instance created')

}

public java.lang.Object hello() {
return this.println('hello"')

}
public static TheUnique getInstance() {
if (instance != null) {
return instance
} else {
synchronized (TheUnique) {
if (instance !'= null) {
return instance
} else {

return instance = new TheUnique()

}

/7. ..

Groovy not only delays the instance creation until the last responsible moment,
but also makes the creation part thread-safe.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

2.11

Chapter 2. Groovy for Java Eyes ® 46

There’s one caveat to using the @Singleton annotation. It makes the constructor
of the target class private, as we’d expect, but since Groovy does not honor
privacy, we can still create instances using the new keyword from within
Groovy. We must take care to use the class properly and heed the warnings
from code-analysis tools and integrated development environments.

In addition to what we've seen so far, Groovy provides an annotation that
removes drudgery when extending classes with multiple constructors. Java
forces us to mundanely implement the multiple constructors even if we
merely want to route the calls back to the respective super constructors. If we
annotate the class with @InheritConstructors, Groovy generates these constructors
for us.

We've seen the beautiful side of Groovy, but as objective programmers, we
must also acknowledge things that may trip us up. Learning those now will
help us use caution where needed. We'll do that in the next section.

Gotchas

We'll see a number of nice Groovy capabilities throughout this book, but some
“gotchas” do exist, ranging from minor annoyances to potential surprises. In
the following sections, we’ll explore a few of them.

Groovy'’s ==Is Equal to Java’s equals

== and equals() are a source of confusion in Java, and Groovy adds to the
confusion. Groovy maps the == operator to the equals() method in Java. What
if we want to actually perform the reference equals (the original ==, that is)?
We have to use is() in Groovy for that. Let’s understand the difference via an
example:

GroovyForJavaEyes/Equals.groovy
strl = 'hello'

str2 = strl
str3 = new String('hello')
str4 = 'Hello'

println "strl == str2: ${strl == str2}"
println "strl == str3: ${strl == str3}"
println "strl == str4: ${strl == str4}"

println "strl.is(str2): ${strl.is(str2)}"
println "strl.is(str3): ${strl.is(str3)}"
println "strl.is(str4): ${strl.is(str4)}"

Let’s look at the behavior of the == operator in Groovy and the result of using
the is method:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Equals.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Gotchas * 47

strl == str2: true
strl == str3: true
strl == str4: false
strl.is(str2): true
strl.is(str3): false
strl.is(str4): false

The observation that Groovy == maps to equals() is only partially true—that
mapping happens only if the class does not implement the Comparable interface.
If it does, then it maps to the class’s compareTo() method.

The following example shows this behavior:

GroovyForJavaEyes/WhatsEquals.groovy
class A {
boolean equals(other) {
println "equals called"
false
}
}

class B implements Comparable {
boolean equals(other) {
println "equals called"
false

}

int compareTo(other) {
println "compareTo called"

0
}
}
new A() == new A()
new B() == new B()

We can see Comparable taking precedence in the output:

equals called
compareTo called

In the output we see that the operator picks the compareTo() method over the
equals() method for classes that implement the Comparable interface.

Use caution when comparing objects—first ask whether you're comparing

references or values, and then ask whether you're using the correct operator.

Compile-Time Type-Checking Is Off by Default

Groovy is optionally typed; however, for the most part the Groovy compiler,
groovyc, does not perform full type-checking. (Chapter 3, Dynamic Typing, on

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/WhatsEquals.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes * 48

page 53, shows how Groovy allows selective type-checking.) Instead it performs
casting when it encounters type definitions. Let’s assign a string to a variable
of the Integer type:

GroovyForJavaEyes/NoTypeCheck.groovy
Integer val = 4
val = 'hello’

The code will compile with no errors. When we try to run the Java bytecode
created, we will receive a GroovyCastException exception, as we see in the output:

org.codehaus.groovy.runtime.typehandling.GroovyCastException:
Cannot cast object 'hello' with class 'java.lang.String'
to class 'java.lang.Integer'

The Groovy compiler, instead of verifying the type, simply cast it and left it
to the runtime to deal with. We can verify this by digging into the generated
bytecode (we can use the javap - ClassFileName command to peek at the human-
readable form of the bytecode):

35: ldc #71 // String hello

37: astore 3

38: aload 3

39: ldc #65 // class java/lang/Integer

41: invokestatic #75 // Method ...castToType:(...)...
44: checkcast #65 // class java/lang/Integer

So, in Groovy, x =y is semantically equivalent to x = (ClassOfX)(y). Similarly, if
we call a method that does not exist (such as the method call to the nonexis-
tent method blah in the following example), we will get no compilation error:

GroovyForJavaEyes/NoTypeCheck.groovy
Integer val = 4
val.blah()

We will get a MissingMethodException at runtime, however:

groovy.lang.MissingMethodException:

No signature of method: java.lang.Integer.blah() is applicable

for argument types: () values: []

Possible solutions: each(groovy.lang.Closure), with(groovy.lang.Closure),
plus(java.lang.Character), plus(java.lang.String), plus(java.lang.Number),
wait()

This is actually an advantage, as you’ll see in Chapter 13, MOP Method
Injection, on page 193. Between when the code is compiled and when it is
executed, we can inject missing methods dynamically.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/NoTypeCheck.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/NoTypeCheck.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Gotchas ® 49

The Groovy compiler may appear relaxed, but this behavior is necessary for
the dynamic and metaprogramming strengths of Groovy.* In version 2.x we
can turn this dynamic typing feature off and enhance compile-time type-
checking, as we’ll explore in Section 3.8, Switching Off Dynamic Typing, on
page 65, and Static Type-Checking, on page 66.

Be Aware of New Keywords

def and in are among the new keywords in Groovy. def defines methods, prop-
erties, and local variables. in is used in for loops to specify the range for looping,
as in for(iin 1..10).

Using these keywords as variable names or method names may lead to
problems, especially when using existing Java code as Groovy code.

It is also not a smart idea to define a variable named it. Although Groovy will
not complain, if we use a field by that name within a closure, the name refers
to the closure parameter and not a field in our class—hiding variables is not
going to help us pay our technical debt.”

No Code Block
The following is valid Java code:

GroovyForJavaEyes/Block.java

// Java code

public void method() {
System.out.println("in methodl");

{
System.out.println("in block");

}
}

Code blocks in Java define a new scope, but Groovy gets confused. It thinks
we're defining a closure and complains. We can’t have arbitrary code blocks
like this within methods in Groovy.

Closures—Anonymous-Inner-Classes Conflict

Groovy closures are defined using curly braces—{...}—which we also use to
define the body for anonymous inner classes. We run into issues when our
constructor accepts a closure as a parameter, as in the next example.

4. http://groovy.codehaus.org/Runtime+vs+Compile+time, +Static+vs+Dynamic
5. http://martinfowler.com/bliki/TechnicalDebt.html

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Block.java
http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic
http://martinfowler.com/bliki/TechnicalDebt.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ¢ 50

GroovyForJavaEyes/Calibrator.groovy
class Calibrator {
Calibrator(calculationBlock) {
print "using..."
calculationBlock()
}
}

We normally pass a closure to functions by attaching a code block to the tail
end of the function call, like so: instance.method() {...}. Following that convention,
we can instantiate an instance of Calibrartor by passing a closure to its construc-
tor, as in the next piece of code.

GroovyForJavaEyes/AnonymousConflict.groovy
def calibrator = new Calibrator() {
println "the calculation provided"

}

In this example, we're calling the Calibrator class’s constructor, which accepts
a closure as a parameter. Contrary to our expectations, Groovy assumes we're
creating an anonymous inner class and results in an error.

org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:
.../code/GroovyForJavaEyes/AnonymousConflict.groovy:
2: unexpected token: println @ line 2, column 3.

println "the calculation provided"

A

1 error

To work around this gotcha, we have to break away from the call convention
and place the closure within the constructor-call parentheses. We can still
define the closure at the point of call or pass a variable that refers to the
closure.

GroovyForJavaEyes/AnonymousConflictResolved.groovy
def calibratorl = new Calibrator({
println "the calculation provided"
b
def calculation = { println "another calculation provided" }
def calibrator2 = new Calibrator(calculation)

Let’s run the code to verify this version does not confuse Groovy and produces
the desired result of passing the closure to the constructor.

using...the calculation provided
using...another calculation provided

This is a minor inconvenience; passing a reference to a closure is less noisy
than passing an inline closure.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/Calibrator.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/AnonymousConflict.groovy
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/AnonymousConflictResolved.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Gotchas ® 51

The Semicolon Is Almost Always Optional

Programmers of C-derived languages who have subjected their pinky fingers
to years of abuse will find relief in Groovy. We don’t have to place a semicolon
() at the end of statements. Losing semicolons is good—it helps in creating
DSLs. Semicolons are optional but still useful for placing multiple statements
on the same line. There’s at least one place where the semicolon is not
optional, though, as the following example illustrates:

GroovyForJavaEyes/SemiColon.groovy
class Semi {
def val = 3

{

println "Instance Initializer called..."
}
}

println new Semi()

We intend the code block to be an instance initializer for our class, but Groovy
gets confused, treats the instance initializer as a closure, and gives the follow-
ing error:
Caught: groovy.lang.MissingMethodException:
No signature of method: java.lang.Integer.call()
is applicable for argument types: (Semi$ closurel)
values: {Semi$ closurel@be513c}
at Semi.<init>(SemiColon.groovy:3)
at SemiColon.run(SemiColon.groovy:10)
at SemiColon.main(SemiColon.groovy)

If we replace def val = 3 with def val = 3;, the code will run fine. Now Groovy rec-
ognizes the block of code as an instance initializer, not as being attached to
the property definition.

If we have a static initializer instead of an instance initializer, we won’t have
this problem. If we have reason to use both static and instance initializers,
we can avoid the semicolon by placing the static initializer before the instance
initializer.

Different Syntax for Creating Primitive Arrays

To create a primitive array in Groovy, we can’t use the notation we're accus-
tomed to in Java.

In Java we can create an array of integers as follows:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/SemiColon.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 2. Groovy for Java Eyes ¢ 52

GroovyForJavaEyes/ArraylnJava.java
int[] arr = new int[] {1, 2, 3, 4, 5};

In Groovy, that will result in a compilation error. The Groovy way to define a
primitive array of int is as follows:

GroovyForJavaEyes/ArraylnGroovy.groovy
int[] arr = [1, 2, 3, 4, 5]

println arr
println "class is " + arr.getClass().name

The output shows that the instance type created is [I, which is the JVM rep-
resentation for int].

[1, 2, 3, 4, 5]
class is [I

If we omit the type int[] on the left side, then Groovy assumes we're creating
an instance of Arraylist (see varargs, on page 36), so it’s critical that we specify
the type in this case. Alternatively, we could use the as operator to create an

array:

def arr = [1, 2, 3, 4, 5] as int[]
println arr2
println "class is

+ arr2.getClass().name

Groovy makes it easier to create instances of ArrayList, but we have to put some
extra effort into creating an array.

We saw a few gotchas that can arise when programming in Groovy. Coming
from a Java background, we can benefit from knowing ways in which Groovy
is different from Java. Visit http://groovy.codehaus.org/Differences+from+Java for a nice
list of Groovy-Java differences.

We've covered a lot in this chapter. You now know how to write classes in
Groovy, you've picked up some Groovy idioms, and you know some Groovy
ways to write code. You also know that we can fall back on Java syntax if
necessary. You don’t have to wait until you've finished this book to start
experimenting and playing with Groovy. However, there is a lot of learning to
come. The terms dynamic typing and optional typing have arisen a few times,
so in the next chapter we’ll cover those topics and how to take advantage of
them in Groovy.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ArrayInJava.java
http://media.pragprog.com/titles/vslg2/code/GroovyForJavaEyes/ArrayInGroovy.groovy
http://groovy.codehaus.org/Differences+from+Java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

3.1

CHAPTER 3

Dynamic Typing

In dynamic typing, at runtime types are inferred and methods and their
arguments are checked. With this ability, we can inject behavior into classes
at runtime, making the code more extensible than with strict static typing.

In this chapter you’ll learn the benefits of dynamic typing and how to use it
in Groovy. With dynamic typing, as you'll see, we can create flexible design
with less code than in Java. With the ability to defer arguments’ type verifica-
tion to runtime, polymorphism in Groovy is on steroids. With the multimethods
tool, we can provide alternate behaviors to operations based on the arguments’
runtime types. We'll cover how to keep these powerful features under control
using the static compilation options in Groovy.

Typing in Java

We've all come to rely on the “safety” of compile-time type-checking. But,
safety in type safety is as comforting as security in Social Security.

Suppose we have a class Car with a year and an Engine class, and we want to
implement the ability to clone objects of this class. We'll ignore deeper issues
with cloning in Java—see my article “Why Copying an Object Is a Terrible
Thing to Do” in Appendix 1, Web Resources, on page 309. To clone, we imple-
ment the Cloneable interface and provide a public clone() method. Object’s clone()
can make a shallow copy of the object. However, we want different instances
of Car to have different Engines. Therefore, we clone the Car using the base
method but tweak it a little to have its own Engine, as in the following code.

TypesAndTyping/Car.java
//Java code
public Object clone() {

try {
Car cloned = (Car) super.clone();
cloned.engine = (Engine) engine.clone();

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Car.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

3.2

Chapter 3. Dynamic Typing ® 54

return cloned;
} catch(CloneNotSupportedException ex) {
return null; // Will not happen, but we need to please the compiler

}

That code is noisy—first, the compiler insists that we handle CloneNotSupport-
edException, right in the very method that’s implementing the clone. Second,
when we're calling super.clone() within the Car class’s instance method, we know
we're asking for another Car. Yet the compiler is adamant that we must cast
the result of that call. It's the same with the next statement, where we're
cloning the Engine. Furthermore, when we're ready to call the clone() method
on an instance of Car, we need to cast again to receive the result of that call
into a Car reference. Sometimes the static type-checking amounts to mere
annoyance and lowers our productivity. Good static type-checking should
work like a good government—do the essential things and stay out of our
way. However, the Java compiler is in our face most of the time.

Compile-time type-checking has its values. However, today’s integrated
development environments (IDEs) make developing code and running the
tests so easy that we often do those things, and leave it to the IDE to save
the relevant edited files and to compile the code as necessary. When our
attempt to run the tests fails, we address those issues. Thus, while repeating
our fast edit-run-test cycles, we don’t distinguish much between compilation
errors, runtime errors, and failures of the tests. Our focus is on getting the
code working and having all the tests pass at all times.

Dynamic Typing

Dynamic typing relaxes the typing requirements. We let the language figure
out the type based on the context.

What's the advantage of dynamic typing? Is it worth forgoing the benefit of
type verification or confirmation at compile time or code-editing time?
Dynamic typing provides two main advantages, and the benefits outweigh
the costs.

We can write calls to methods on objects without nailing down the details at that
moment. During runtime, objects dynamically respond to methods or messages.
We can achieve this dynamic behavior to a certain extent using polymorphism in
statically typed languages. However, most statically typed languages tie inheritance
to polymorphism. They force us to conform to a structure rather than to actual
behavior. True polymorphism does not care about types—send a message to an
object, and at runtime it figures out the appropriate implementation to use. So,
dynamic typing can help achieve a greater degree of polymorphism than traditional,
statically typed languages allow.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

33

Dynamic Typing != Weak Typing ® 55

The second advantage: we don’t fight the compiler with excessive casting
efforts, as in the examples from Section 3.1, Typing in Java, on page 53.

We feel like we're working with a language that’s intelligent and follows along
with us. We're more productive, partly because of less ceremony.

Working with static typing feels like having a nagging in-law standing next
to us as we work—scrutinizing our every move. It doesn’t give us the full
flexibility to defer some implementation to a later time (before the code is
executed). Working with dynamic typing, conversely, feels like having a kind
grandfather standing next to us as we work—letting us experiment, figure
things out, and be creative, but standing by to offer help when we need it.

The first advantage—true realization of polymorphism—significantly improves
the way we design applications, as we’ll discuss in Section 3.4, Design by
Capability, on page 56.

Dynamic Typing != Weak Typing

In a statically typed language, we specify the types of variables, references,
and so on at compile time—and many compilers insist that we do. Take C/C++
for example. We have to specify the variable type as a primitive type such as
int or double, or a specific class type. However, what if we cast the variable to
a wrong type? Will the compiler stop us? No. What's the fate of the program
when we run? It depends. If we're lucky, the program will crash. If not, it may
wait until that important demo to crash or misbehave. Depending on how the
memory is laid out, whether our call is polymorphic, and how the v-table
(some languages like C++ maintain a method dispatch table with addresses
of polymorphic methods—see Margaret A. Ellis and Bjarne Stroustrup’s The
Annotated C++ Reference Manual [ES90]) is organized, things may behﬁ
quite unpredictably. If we listen closely we may hear the compiler laugh for
our reliance on the type safety it pretends to provide. This is an example of
static typing with weak typing at runtime.

In the following figure, we classify some common languages based on static
versus dynamic and strong versus weak typing.

Java is a statically typed language, but it's strongly typed. The compiler checks
for the types, but if we're coercing to a wrong type, the runtime is there to
catch us.

Dynamically typed languages such as Groovy don’'t perform type-checking at
code-editing time or compile time. However, if we treat an object as a wrong
type, we’ll hear about it in no uncertain terms at runtime. We postpone the
actual verification until runtime; this helps us modify the structure of our

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

34

Chapter 3. Dynamic Typing ® 56

program between the time we write/compile the code and the time it executes.
The dynamically typed languages on the JVM show us that dynamic typing
does not mean weak typing.

Strong
Ruby/Groovy Java/C#
Dynamic Static
JavaScript/Perl C/C++
Weak

Figure 3—Classification of select languages: static vs. dynamic and strong vs. weak
typing

Design by Capability

As Java programmers we rely heavily on interfaces. We value “design by
contract,” where interfaces define contracts for communication and classes
implement and abide by these contracts—see Bertrand Meyer’s Object-Oriented
Software Construction [Mey97].

Business contracts are good; they help ensure that certain expectations will
be fulfilled. However, we don’t want contracts to be too restrictive. We want
the flexibility to meet and exceed the expectations in acceptable ways.

Software contracts must be similar. Interface-based programming, although
very powerful, tends to be restrictive. Let’s consider an example that highlights
the differences between using static typing and dynamic typing.

Using Static Typing

Say we need to move some heavy stuff. We ask a willing and able man to help
out. In Java, this would look like the following code:

TypesAndTyping/TakeHelp.java

public void takeHelp(Man man) {
/7. ..
man.helpMoveThings();
//. ..

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Design by Capability ® 57

Because of static typing, we ignored help from a willing and able woman
nearby. Let’s extend the code so we can seek the help of either a man or a
woman by creating a Human abstract class with the helpMoveThings() method. Man
and Woman will provide their own implementations for this method:

TypesAndTyping/Human.java
// Java code
public abstract class Human {
public abstract void helpMoveThings();

/]
}

Here’s code that takes the help of a Human:

TypesAndTyping/TakeHelp.java

public void takeHelp(Human human) {
//. ..
human.helpMoveThings();
/7. ..

}

OK, now any human can help us move things. However, if we're rangers in
the Serengeti, we’d fail to take advantage of that nice elephant who might be
able to help. We depend on Human, and an elephant does not conform to that
contract. It's time to extend again, this time with an interface Helper with the
method helpMoveThings():

TypesAndTyping/Helper.java
// Java code
public interface Helper {
public void helpMoveThings();
}

Then Human, Elephant, and any other helpers implement Helper. We now depend
on Helper and can accept help from instances that implement that interface:
TypesAndTyping/TakeHelp.java
public void takeHelp(Helper helper) {

/]

helper.helpMoveThings();

/]
}

Extending has required some effort so far. Using a wide variety of objects has
meant creating interfaces and modifying the code to depend on them.

Using Dynamic Typing
Let’s revisit the “take help” example using Groovy’s dynamic typing capabilities:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Human.java
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.java
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Helper.java
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

TypesAndTyping/TakeHelp.groovy

def takeHelp(helper) {
//. ..
helper.helpMoveThings ()
//. ..

}

Chapter 3. Dynamic Typing ® 58

The takeHelp() method accepts a helper but does not specify its type—it defaults
to an Object. We call, among other things, the helpMoveThings() method on it. This
is design by capability. Instead of asking the helper to conform to some
explicit interface, we're making use of the object’s capability—relying upon
an implicit interface. This is called duck typing, and is based on the sentiment
that “if it walks like a duck and quacks like a duck, it must be a duck.”

Classes that want that capability simply implement the method; we don’t
need to extend or implement anything. The result is low ceremony and high
productivity. If a machine has that capability, we can use it without any
change to the code. Let’s look at a few classes with the capability we want.

TypesAndTyping/TakeHelp.groovy
class Man {
void helpMoveThings() {
//. ..
println "Man's helping"
}
/7. ..
}

class Woman {
void helpMoveThings() {
/]
println "Woman's helping"
}
/]
}

class Elephant {
void helpMoveThings() {
//. ..
println "Elephant's helping"
}
void eatSugarcane() {
//. ..
println "I love sugarcanes..."
}
//. ..
}

1. http://c2.com/cgi/wiki?DuckTyping

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.groovy
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.groovy
http://c2.com/cgi/wiki?DuckTyping
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Design by Capability ® 59

Here is an example of calling the takeHelp() method:

TypesAndTyping/TakeHelp.groovy
takeHelp(new Man())
takeHelp(new Woman())
takeHelp(new Elephant())

Let’s look at the effect of exercising each of the helpers:

Man's helping
Woman's helping
Elephant's helping

The classes don’t extend from any common class or implement any common
interface, but with the dynamic nature of Groovy we were able to use all of
the classes in our takeHelp() method.

Coming from a Java background, we might have to expend some effort to get
used to the dynamic nature of Groovy, but once we get comfortable we can
put it to good use. For example, we can effortlessly substitute a credit-card
processor with a mock object in an order-processing system for fast automated
testing. We're not forced to make elaborate design decisions ahead of time.
That means we can accommodate design afterthoughts without much effort,
giving us more flexibility and power to create easily extensible code.

Dynamic Typing Needs Discipline

See how simple, elegant, and flexible the code is when we take advantage of
dynamic typing? But is this risky business?

e We might mistype the method name when creating one of the helpers.

e Without the type information, how do we know what to send to the
method?

e What if we send the method a nonhelper (an object that’s not capable of
moving stuff)?

These are valid concerns, but let’s not turn them into fears. In this section
we’ll look at ways to address each of them.

We often introduce typos when we write code. Also, our minds constantly fool
us; we tend to see what we want to see instead of what’s really there. Therefore,
we must ensure that the method names have the proper case and take
proper parameters. The compiler in a statically typed language does this for
us. In a dynamically typed language, either we don’t have the compiler or the
compiler does not check for these. We'll need to rely on unit testing (see Section
18.2, Unit Testing Java and Groovy Code, on page 272) to ensure that we have

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 3. Dynamic Typing ® 60

things correct. Writing unit tests only for this purpose is a rather outlandish
ceremony. However, the fact that a compiler produces bytecode does not mean
the code is right. We still need to verify that it meets our expectations—not
just doing what we typed, but doing what we really meant.

I rely on unit testing heavily when I program, even in statically typed lan-
guages. The lack of compiler support (or of a compiler) to verify these doesn’t
bother me. Unit testing is a good practice, and dynamic typing requires that
we do it with discipline. Programming with dynamic typing but not having
the discipline of unit testing is playing with fire.

To a certain extent, typing helps us figure out what objects or values we need
to send to a method. But that’s only half the story. Knowing that we must
send a double value to a method is hardly enough in practice (unless we want
to end up on the news for crashing orbiters.” Disciplined unit testing and
good naming conventions can help us a great deal.

If a method takes distance as a parameter, rather than naming the variable
d, dist, or even distance, we can name it to be very expressive, such as distanceln-
Miles. Sure, we can create a type DistancelnMiles, but we don’t need that much
ceremony if we follow good conventions and testing practices.

Finally, what about conformance—what if someone sends an object that does
not support the method we're expecting? There are two ways to look at it. We
can assume that the callers take the responsibility to make sure they send
only what'’s valid. If they send an invalid object, the code will fail, and an
exception will be thrown their way. Even in compiled code we have to deal
with precondition violations, and this is along the same lines, but broader.
In special cases, where we want to deal with some alternative or optional
behavior, we may ask the object whether it's capable of doing what we're
expecting. Groovy’s respondsTo() method can help here (see Section 11.2,
Querying Methods and Properties, on page 180). Assume we own a sugarcane
farm and want to share some sugarcane with our helper, but not all helpers
may eat raw sugarcane. We can ask whether our helper likes sugarcane:

TypesAndTyping/TakeHelp.groovy

def takeHelpAndReward(helper) {
//. ..
helper.helpMoveThings ()

if (helper.metaClass.respondsTo(helper, 'eatSugarcane'))

{

helper.eatSugarcane()

2. http://www.cnn.com/TECH/space/9909/30/mars.metric.02/

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/TakeHelp.groovy
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

3.5

Optional Typing ® 61

}
/7.

}

takeHelpAndReward(new Man())
takeHelpAndReward (new Woman())
takeHelpAndReward(new Elephant())

We're checking with the helper whether sugarcanes are OK, and if so, we
share some, as we see in the output:

Man's helping

Woman's helping

Elephant's helping

I love sugarcanes...

When used with discipline, design by capability can help us create highly
extensible and concise code. We will see less casting and noise in code, as
well as shorter class hierarchies. It will begin to feel like the compiler is
working for us rather than the other way around.

Optional Typing

Groovy is dynamically typed and optionally typed; we can adjust the dial of
typing all the way to one extreme, where we do not specify any type and let
Groovy figure things out, or we can move the dial all the way to the other
extreme, where we will precisely specify the types of variables or references
we use.

Remember that Groovy is a language that runs on top of the JVM. Optional
typing can help integrate Groovy code with Java libraries, frameworks, and
tools. Sometimes Groovy’s dynamic type-mapping doesn’t match what these
libraries, frameworks, or tools expect. Such a situation is not a showstopper
in Groovy—we can switch the typing mode readily and specify the type infor-
mation to get moving. Optional typing is useful in other situations, such as
when you need type information to generate database schema or to create
validators in GORM/Grails.

Consider that you're writing a JUnit test using Groovy (see Section 18.2, Unit
Testing Java and Groovy Code, on page 272). We can define methods using the
def keyword to indicate an Object return type. Since JUnit expects test methods
to be void, we’ll get an error if we try to run a test defined using def. Instead,
we’ll have to define the method as void to satisfy JUnit. Groovy’s optional
typing is useful here.

Looking at Figure 3, Classification of select languages: static vs. dynamic and

strong vs. weak typing, on page 56, we may wonder, if Groovy is optionally

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

3.6

Chapter 3. Dynamic Typing ® 62

typed, why is it not in the middle between static and dynamic typing? That’s
because the Groovy compiler—groovyc—does not do full type checking (for
details see Compile-Time Type-Checking Is Off by Default, on page 47). If we
write X obj = 2, where X is a class, it simply places a cast like X obj = (X) 2 and
lets the runtime dynamically determine whether that is valid. So, even though
Groovy allows typing, it’s still dynamically typed.

Multimethods

Dynamic typing and dynamic languages change how objects respond to
method calls.

Groovy supports polymorphism, like Java does, but it goes far beyond simply
dispatching methods based on the target object’s type. Let’s look at polymor-
phism in Java:

TypesAndTyping/Employee.java
// Java code
public class Employee {
public void raise(Number amount) {
System.out.println("Employee got raise");
}
}

The Employee class’s raise() method simply reports that it was called. Now look
at the Executive class:

TypesAndTyping/Executive.java
// Java code
public class Executive extends Employee {
public void raise(Number amount) {
System.out.println("Executive got raise");

}

public void raise(java.math.BigDecimal amount) {
System.out.println("Executive got outlandish raise");
}
}

The executive has overloaded raise() methods—what else could we expect? The
version that takes Number reports its call; the version that takes BigDecimal
announces the outlandish raise.

Finally, here’s Java code that puts these classes to use:

TypesAndTyping/GiveRaiseJava.java
// Java code
import java.math.BigDecimal;

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Employee.java
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Executive.java
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/GiveRaiseJava.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Multimethods ® 63

public class GiveRaiseJava {
public static void giveRaise(Employee employee) {
employee.raise(new BigDecimal(10000.00));
}

public static void main(String[] args) {
giveRaise(new Employee());
giveRaise(new Executive());
}
}

We create an Employee and an Executive and send them to the same giveRaise()
method, which calls the raise() method on these objects. The output is quite
as expected in Java:

Employee got raise
Executive got raise

The raise() method in Employee is polymorphic, meaning that at runtime the
method invoked depends not on the target reference’s type, but rather on the
type of the referenced object. There’s one restriction, however. The method
called at runtime has to take Number as a parameter because that's what
Employee—the base—has defined. So, the compiler treats the instance of
BigDecimal as Number.

That’s a standard, everyday operation in Java. Not a big deal, right? All that
changes when it comes to the dynamic nature of Groovy. Groovy knows that,
in the wise words of Tony Hoare, “premature optimization is the root of all
evil.”

When we call the raise() method in Groovy, it does not go through the previous
sequence as in Java. Instead, it walks up to the object and asks—figuratively
speaking, that is—*Hey, do we have a raise() method that takes a
java.math.BigDecimal()?” An Employee would say, “No, but I can take a Number.” On
the other hand, an Executive does have a raise() that takes a BigDecimal, and so
the call is routed to that implementation. Here’s the code that illustrates this
behavior—we’re still using the Java classes for Employee and Executive from
earlier, so there’s no change to those:

TypesAndTyping/GiveRaise.groovy

void giveRaise(Employee employee) {
employee.raise(new BigDecimal(10000.00))
// same as
//employee.raise(10000.00)

}

giveRaise new Employee()
giveRaise new Executive()

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/GiveRaise.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 3. Dynamic Typing ® 64

Groovy reports a different output than Java:

Employee got raise
Executive got outlandish raise

If we have overloaded methods in a class, Groovy smartly picks the correct
implementation based not only on the target object—the object on which the
method is invoked—but also on the parameter(s) we send to the call. Since
the method-dispatching is based on multiple objects—the target plus the
parameters—this is called multiple dispatch or multimethods.

Due to multimethods, Groovy does not suffer from the type-confusion problem
that Java does—thanks to Neal Ford for this Java example. Take a look at
the following Java code, which uses Generics. Ist refers to an instance of
ArrayList<String>, and col, which is of type Collection<String>, is referring to the
same instance. We added three elements to Ist and removed one. The removal
got rid of the first element in the list. Now we intend the call col.remove(0) to
remove another element. However, the remove() method in the Collection interface
expects an Object, so Java boxes the 0 into an Integer. And since an instance of
Integer is not part of the list, the method call did not remove anything.

TypesAndTyping/UsingCollection.java
//Java code
import java.util.*;

public class UsingCollection {
public static void main(String[] args) {
ArrayList<String> 1st = new ArrayList<String>();
Collection<String> col = 1lst;

lst.add("one");
lst.add("two");
lst.add("three");
lst.remove(0);
col.remove(0);

System.out.println("Added three items, removed two, so 1 item to remain.");
System.out.printin("Number of elements is: " + lst.size());
System.out.println("Number of elements is: " + col.size());
}
}

The output shows the code’s unpleasant behavior:

Added three items, removed two, so 1 item to remain.
Number of elements is: 2
Number of elements is: 2

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/UsingCollection.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

3.7

3.8

Dynamic: To Be or Not to Be? ® 65

Let’s see how this code behaves in Groovy. Without making any change to
the previous code, let’s simply copy and paste it into a file named UsingCollec-
tion.groovy. Let’s then run groovy UsingCollection and observe the output. We see
that the Groovy execution produces a different output than the Java version:
Added three items, removed two, so 1 item to remain.

Number of elements is: 1
Number of elements is: 1

Groovy’s dynamic and multimethod capabilities nicely handle this case. At runtime
Groovy figures we meant to remove the first element and did not go into the
unnecessary trouble of boxing that would lead to incorrect behavior here.

Dynamic: To Be or Not to Be?

Given that Groovy is a dynamically typed language that supports optional
typing, should we specify the type or rely on dynamic typing? There are no
real rules in this area, but we can certainly develop some preferences.

When programming in Groovy, I lean toward omitting the type and instead
making the parameter/variable names very expressive. Not specifying the
type has the added advantages of duck typing (Section 3.4, Design by Capa-
bility, on page 56) and the ease of applying mocks for testing (Section 18.2,
Unit Testing Java and Groovy Code, on page 272).

I opt to specify the type if I am forced to, like when JUnit requires test methods
to be void or when specificity provides a significant benefit, like when mapping
types to databases in Grails object-relational mapping (GORM).

If we're developing an API that’s intended for use by someone programming
in a statically typed language, then we specify the parameter types for methods
in the statically typed client-facing API.

From a usage point of view, the community has leaned toward always speci-
fying types in method signatures. The benefit here is knowing the types for
arguments during method calls and avoiding unnecessary runtime type-
checking within methods.

Switching Off Dynamic Typing

All the capabilities of metaprogramming we’ll see in this book rely on Groovy’s
dynamic typing, but it comes at a price. Mistakes that would otherwise be
found at compile time are pushed to the runtime. In addition, the dynamic
method-dispatch mechanism has overhead. Although Java 7 introduced the
dynamic invocation feature to ease this performance concern, we’ll still see
a performance impact on Groovy running on older versions of the JVM.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 3. Dynamic Typing ® 66

We can ask the Groovy compiler to tighten its type-checking from its
dynamic relaxed mode to the levels we’d expect from a statically typed com-
piler like javac. We can also trade in the benefits of dynamic typing and
metaprogramming capabilities, and ask the Groovy compiler to statically
compile code down to more-efficient bytecode.

In this section we’ll look at two features, one to ask that Groovy perform
more-rigorous checks at compile time and the other to ask that it create more-
efficient statically compiled bytecode.

Static Type-Checking

We can use Groovy’s dynamic nature to invoke methods and access properties
that don’t exist at compile time, with the assumption that these will be
injected into the application at runtime. On one hand, this gives great flexibil-
ity to provide advanced capabilities in applications, as we’ll see in the third
part of this book. On the other hand, silly typos could slip by and result in
annoying failures at runtime. Sure, these errors would surface quickly in our
unit tests; however, this is an unnecessary burden in areas of our program
where we're not making use of such dynamic capabilities.

We can ask Groovy to verify proper type and ensure that methods we call and
properties we access are valid on the type. We can instruct Groovy to check
for these kinds of errors with the special annotation @TypeChecked, which we
can place on classes or individual methods. If we place it on a class, then
type-checking is performed on all the methods, closures, and inner classes
in the class. If we place it on a method, the type-checking is performed only
on the members of the target method.

Let’s use this annotation in an example. First we’ll create a method with a
lurking error and no compile-time safeguard.

TypesAndTyping/NoCompiletimeCheck.groovy

def shout(String str) {
println "Printing in uppercase"
println str.toUpperCase()
println "Printing again in uppercase"
println str.toUppercase()

}

try {
shout('hello')

} catch(ex) {
println "Failed..."

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/NoCompiletimeCheck.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Switching Off Dynamic Typing ® 67

The shout() method takes a parameter of type String and invokes the toUpperCase()
method. In the second invocation of the method, there is a typo in the case.
Groovy will report an error at runtime.

Printing in uppercase

HELLO

Printing again in uppercase
Failed...

This code is not making use of any metaprogramming, and can benefit from
compile-time verification. Let’s add the @TypeChecked annotation to the method.

@groovy.transform.TypeChecked
def shout(String str) {
//. ..

Once Groovy sees this annotation, it will perform rigorous checks on the
targeted code. If we run this version of code, Groovy will not get as far as in
the previous version; it will produce an error during compilation.

Static type checking] - Cannot find matching method java.lang.String#toUppercase().
Please check if the declared type is right and if the method exists.
@ line 10, column 11.

println str.toUppercase()

A

1 error

For code marked with the @TypeChecked annotation, at compile time the com-
piler will verify if the method/property used belongs to the class. This prevents
us from using any metaprogramming capabilities. For example, in Groovy by
default we can inject methods into classes:

TypesAndTyping/Inject.groovy

def shoutString(String str) {

println str.shout()
}

str = 'hello'
str.metaClass.shout = {-> toUpperCase() }
shoutString(str)

We added the shout() method dynamically into the instance of String and were
able to call it from the shoutString() method, as we see in the output:

HELLO

If we annotate the shoutString() method with @TypeChecked, then the compiler will
prevent us from proceeding further.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Inject.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 3. Dynamic Typing ® 68

@groovy.transform.TypeChecked
def shoutString(String str) {
println str.shout() //Fails at compile time

}

Even though we can’t directly invoke dynamic methods when static type-
checking is in effect, there is a workaround; we can use a special invokeMethod()
on Groovy objects, as we’ll discuss in Section 10.6, Calling Groovy Dynamic
Methods from Java, on page 165.

The static type-checking restricts us from using dynamic methods. However,
it does not prevent us from using the methods that Groovy has added (see
Chapter 7, Exploring the GDK, on page 127) to the JDK classes. The static type-
checker checks for methods and properties in the class. It also checks a
special DefaultGroovyMethods class, which contains some useful and fluent
extension methods. Furthermore, it checks custom extensions that we as
Groovy programmers can add, as we discuss in Section 7.3, Custom Methods
Using the Extension Modules, on page 139. For example, we can freely call the
Groovy-added reverse() method on String.

TypesAndTyping/Reverse.groovy

@groovy.transform.TypeChecked

def printInReverse(String str) {
println str.reverse() //No problem

}

printInReverse 'hello'

To make use of the static type-checking, we have to specify the type of the
parameters to methods and closures. The methods we can invoke on the
parameters are restricted to the methods supported by the type known at
compile time. Groovy will infer the return type of closures and perform type-
checking accordingly, so we don’t have to worry about specifying that detail.

Groovy’s type-checking has one advantage over Java’s. If we check for the
type using instanceOf, then we don’t have to perform a cast on that instance to
use its specialized methods or properties, as the next example demonstrates.

TypesAndTyping/NoCast.groovy
@groovy.transform.TypeChecked
def use(Object instance) {
if(instance instanceof String)
println instance.length() //No need to cast
else
println instance
}
use('hello')
use(4)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Reverse.groovy
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/NoCast.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Switching Off Dynamic Typing ® 69

We've covered how to ask Groovy to type-check at compile time. If we annotate
an entire class for static type-checking, we can opt out specific methods from
static type-checking using the SKIP parameter:

TypesAndTyping/Optout.groovy
import groovy.transform.TypeChecked
import groovy.transform.TypeCheckingMode

@TypeChecked

class Sample {
//static type checking in effect here
def methodl() {
}

@TypeChecked (TypeCheckingMode.SKIP)
def method2(String str) {
str.shout()
}
}

Static type-checking will be performed in the entire class except for the code
within the method2(), which we opted out from compile-time checks.

The static type-checking is intended to help identify errors at compile time.
If the code has no errors, the type-checked and the non-type-checked versions
result in similar bytecode generated by the compiler. If we want efficient
bytecode generation we’ll have to use the static compilation option.

Static Compilation

Groovy metaprogramming and dynamic typing has significant benefits, but
they come at a performance cost. The degradation in performance depends
on the code, the number of methods invoked, and so on. The performance
hit can be as high as ten percent compared to equivalent Java code when
metaprogramming and dynamic capabilities are not needed. The Java 7
InvokeDynamic feature is intended to ease this pain, but for those of us using
prior versions of Java, static compilation can be a useful feature.

We can turn off dynamic typing, prevent metaprogramming, forgo multimeth-
ods, and ask Groovy to generate efficient bytecode that can be as performant
as Java’s bytecode.

We can ask Groovy to perform static compilation by using the @CompileStatic
annotation. The bytecode generated for the targeted code will be much like
the bytecode generated by the javac compiler. For example, let's compile a
sample code without this annotation.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/Optout.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 3. Dynamic Typing ® 70

TypesAndTyping/NoStaticCompile.groovy

def shoutl(String str) {
println str.toUpperCase()

}

If we compile the previous code using groovyc and then perform javac -p NoStatic-
Compile, we’ll see that the call to the method toUpperCase() goes through the
CallSite(), which takes care of Groovy’s dynamic invocation mechanism.

14: invokeinterface #57, 2; //InterfaceMethod
org/codehaus/groovy/runtime/callsite/CallSite.call:...

19: invokeinterface #61, 3; //InterfaceMethod
org/codehaus/groovy/runtime/callsite/CallSite.callCurrent:...

Let’s mark the method with the @CompileStatic annotation.

TypesAndTyping/StaticCompile.groovy

@groovy.transform.CompileStatic

def shoutl(String str) {
println str.toUpperCase()

}

Now the Groovy compiler generates a call to invokeVirtual, like the Java compiler
does.

2: invokevirtual #63; //Method java/lang/String.toUpperCase:()...
5: invokevirtual #67; //Method groovy/lang/Script.println:...

Static compilation is a good option for areas of code that deserve performance
comparable to Java’s. We can skip this for areas of code where performance
is not critical and in places where we want to gain from metaprogramming.

In this chapter we journeyed through the typing-related issues, benefits, and
features of Groovy. We saw how Groovy’s dynamic typing makes typing
implicit when we don’t care to specify. We also saw how easily we can use
the optional typing to reach for the type declaration when we need it. We
learned that method-dispatching is quite different and powerful in Groovy,
how to enjoy true polymorphism, and how to take advantage of design by
capability. Finally, we saw how in Groovy we can selectively turn off dynamic
typing and invoke the benefits of static typing in areas of code where we desire
more compiler checks or better performance. In the next chapter, we’ll walk
through one of the most interesting features in Groovy—closures.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/NoStaticCompile.groovy
http://media.pragprog.com/titles/vslg2/code/TypesAndTyping/StaticCompile.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

CHAPTER 4

Using Closures

We create anonymous inner classes in Java, where we define method argu-
ments to register event handlers and provide short local glue code. Back when
introduced in Java 1.1, anonymous inner classes seemed like a nice idea,
but soon we realized that they become verbose, especially for really short
implementations of single-method interfaces. Closures in Groovy are short
anonymous methods that remove that verbosity.

Closures are lightweight, short, concise, and one of the features we’ll employ
the most in Groovy. Where we used to pass instances of anonymous classes,
now we can pass closures.

Closures are derived from the lambda expressions from functional program-
ming, and “a lambda expression specifies the parameter and the mapping of
a function”™—see Robert Sebesta’s Concepts of Programming Languages [Seb04].
Closures are one of the most powerful features in Groovy, yet they are syntac-
tically elegant. Or as the computer scientist and functional-programming
pioneer Peter J. Landin put it, “A little bit of syntax sugar helps you to swallow
the A calculus.”

We'll use closures extensively through the Groovy JDK (GDK), which has
extended the Java Development Kit (JDK) with fluent and convenient methods
that take closures. Rather than being forced to create interfaces and a number
of small classes, we can design applications with small chunks of low-ceremo-
ny code. This means less code, less clutter, and more reuse.

In this chapter you’ll learn to create and use closures. We'll cover how to use
them to elegantly implement some design patterns. You’'ll learn that closures
don’t simply stand in as anonymous methods, but can turn into a versatile
tool to solve problems with high memory demands. So let’s roll up our sleeves
and get down to some code.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.1

Chapter 4. Using Closures ® 72

The Convenience of Closures

Closures in Groovy totally remove verbosity in code and help create lightweight
reusable pieces of code. To understand the convenience they offer, let's
contrast them with familiar traditional solutions for common tasks.

The Traditional Way

Let’s consider a simple example—assume we want to find the sum of even
values from 1 to a certain number, n.

Here is the traditional approach:

UsingClosures/UsingEvenNumbers.groovy
def sum(n) {
total = 0
for(int i = 2; i <=n; 1 +=2) {
total += i

}
total

}

println "Sum of even numbers from 1 to 10 is ${sum(10)}"

In the method sum(), we're running a for loop that iterates over even numbers
and sums them. Now, suppose instead of that we want to find the product of
even numbers from 1 to n.

UsingClosures/UsingEvenNumbers.groovy
def product(n) {

prod = 1

for(int i = 2; i <=n; i +=2) {

prod *= i

}

prod
}

println "Product of even numbers from 1 to 10 is ${product(10)}"

We again iterate over even numbers, this time computing their product. Now,
what if we want to get a collection of squares of these values? The code that
returns an array of squared values might look like the following:

UsingClosures/UsingEvenNumbers.groovy
def sqr(n) {
squared = []

for(int i = 2; i <=n; 1 +=2) {
squared << 1 ** 2

}

squared

}

println "Squares of even numbers from 1 to 10 is ${sqr(10)}"

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/UsingEvenNumbers.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/UsingEvenNumbers.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/UsingEvenNumbers.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

The Convenience of Closures ® 73

The code that does the looping is the same (and duplicated) in each of the
previous code examples. What’s different is the part dealing with the sum,
product, or squares. If we want to perform some other operation over the even
numbers, we'd be duplicating the code that traverses the numbers. Let’s find
ways to remove that duplication.

The Groovy Way

Each of the previous three examples produced different results, but all three
of them have a common task—picking even numbers from a given collection.
Let’s start with a function for that common task. Instead of returning a list
of even numbers, let’s write the function so that when an even number is
picked, the function immediately sends it to a code block for processing. Let
the code block simply print that number for now:

UsingClosures/PickEven.groovy
def pickEven(n, block) {
for(int i = 2; i <=n; 1 +=2) {
block(1i)
}
}

pickEven(10, { println it })

The pickEven() method is a higher-order function—a function that takes functions
as arguments or returns a function as a result.' The method is iterating over
values (like before), but this time it yields, or sends, the value over to a block
of code. In Groovy we refer to the anonymous code block as a closure—Groovy
programmers use a relaxed definition of the term.”

The variable block holds a reference to a closure. Much like the way we can
pass objects around, we can pass closures around. The variable name does
not have to be named block; it can be any legal variable name. When calling
the method pickEven(), we can now send a code block as shown in the earlier
code. The block of code (the code within {}) is passed for the parameter block,
like the value 10 for the variable n. In Groovy, we can pass as many closures
as we want. So, the first, third, and last arguments for a method call, for
example, may be closures. If a closure is the last argument, there is an elegant
syntax, as we see here:

UsingClosures/PickEven.groovy
pickEven(10) { println it }

1. See http://c2.com/cgi/wiki?HigherOrderFunction.
2. See http://groovy.codehaus.org/Closures+-+Formal+Definition.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/PickEven.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/PickEven.groovy
http://c2.com/cgi/wiki?HigherOrderFunction
http://groovy.codehaus.org/Closures+-+Formal+Definition
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 4. Using Closures ® 74

If the closure is the last argument to a method call, we can attach the closure
to the method call. The code block, in this case, appears like a parasite to the
method call. Unlike Java code blocks, Groovy closures can't stand alone;
they’re either attached to a method or assigned to a variable.

What's that it in the block? If we're passing only one parameter to the code
block, then we can refer to it with a special variable name it. We can give an
alternate name for that variable if we like, as in the next example:

UsingClosures/PickEven.groovy
pickEven(10) { evenNumber -> println evenNumber }

The variable evenNumber now refers to the argument that’s passed to this closure
from within the pickEven() method.

Now let’s revisit the computations on even numbers. We can use pickEven() to
compute the sum, like so:

UsingClosures/PickEven.groovy

total = 0

pickEven(10) { total += it }

println "Sum of even numbers from 1 to 10 is ${total}"

We started out simply printing the even numbers generated by pickEven(), but
now we're totaling those values, without any change to the function. Rather
than duplicating the code, as in the traditional-way examples, we have concise
code with greater reuse. The function is not limited to totaling the values; we
can use it, for example, to compute the product, as in the next code:
UsingClosures/PickEven.groovy

product =1

pickEven(10) { product *= it }
println "Product of even numbers from 1 to 10 is ${product}"

Other than the syntactic elegance, closures provide a simple and easy way
for a function to delegate part of its implementation logic.

The block of code in the previous example does something more than the
block of code we saw earlier. It stretches its hands and reaches out to the
variable product in the scope of the caller of pickEven(). This is an interesting
characteristic of closures. A closure is a function with variables bound to a
context or environment in which it executes.

We know how to create closures; next let’s discuss how to use them in
applications.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/PickEven.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/PickEven.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/PickEven.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.2

4.3

Programming with Closures ¢ 75

Programming with Closures

We're talking about the power and elegance of closures in this chapter, but
first let’s discuss how to approach them in our projects. We need to decide
whether we want to implement a certain functionality or task as a regular
function/method or whether we should use a closure.

Closures augment, refine, or enhance another piece of code. For example, a
closure may be useful to express a predicate or condition that will refine the
selection of objects. We can use closures to take advantage of coroutines such
as the control flow like in iterators or loops.

Closures are very helpful in two specific areas. They can help manage resource
cleanup (see Section 4.5, Using Closures for Resource Cleanup, on page 78)
and they can help create internal domain-specific languages (DSLs)—see
Chapter 19, Creating DSLs in Groovy, on page 295.

To implement a certain well-identified task, a regular function is better than
a closure. A good time to introduce closures is during refactoring.

Once we get the code working, we can revisit it to see whether closures would
make it better and more elegant. Let a closure emerge from this effort rather
than forcing a use to begin with.

We should keep closures small and cohesive. These are intended to be small
chunks of code, only a few lines, that are attached to method calls. When
writing a method that uses a closure, it's better not to overuse dynamic
properties of closures, like determining the number and types of parameters
at runtime. It must be very simple and obvious to implement a closure when
calling methods.

We saw the convenience and benefits of using closures. Next, let’s look at a
couple of different ways to use closures.

Ways to Use Closures

We covered how to create a closure just in time, at the point of defining
arguments in a method call. We can also assign them to variables and reuse
them, as we’ll do here.

In the following example, totalSelectValues() accepts a closure to help decide the
set of values used in a computation:

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 4. Using Closures ® 76

UsingClosures/Strategy.groovy
def totalSelectValues(n, closure) {
total = 0
for(i in 1..n) {
if (closure(i)) { total += i }

}
total

}

print "Total of even numbers from 1 to 10 is "
println totalSelectValues(10) { it % 2 == 0 }

def is0dd = { it % 2 != 0}
print "Total of odd numbers from 1 to 10 is "
println totalSelectValues(10, isOdd)

The method totalSelectValues() iterates from 1 to n. For each value it calls the
closure to determine whether the value must be used in the computation,
and it delegates the selection process to the closure.

return is optional even in closures; the value of the last expression (possibly
null) is automatically returned to the caller if we don’t have an explicit return.

We've defined inline the closure attached to the first call to totalSelectValues(),
and it selects only even numbers. On the other hand, we've predefined the
closure passed to the second call. This closure, referred by the variable isOdd,
selects only odd numbers. Unlike the just-in-time-created closures, this pre-
defined closure can be used in multiple calls. As an aside, in this example
we effortlessly implemented the Strategy pattern.’

We went from just-in-time creation of closures to predefining closures. This
approach can be useful for caching closures for later use, as we’ll see next.

Assume we're creating a simulator that allows us to plug in different calcula-
tions for equipment. We want to perform some computation but want to use
the appropriate calculator. Here’s an example of how to do that:

UsingClosures/Simulate.groovy
class Equipment {
def calculator
Equipment(calc) { calculator = calc }
def simulate() {
println "Running simulation"
calculator() // We may send parameters as well

}

3. See Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95] for details
about the pattern.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/Strategy.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/Simulate.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.4

Passing Parameters to Closures ® 77

def eql = new Equipment({ println "Calculator 1" })
def aCalculator = { println "Calculator 2" }

def eq2 = new Equipment(aCalculator)

def eq3 = new Equipment(aCalculator)

egl.simulate()
eg2.simulate()
eq3.simulate()

Equipment’s constructor takes a closure as a parameter and caches that in a
property called calculator. In the simulate() method, we call the closure to perform
the calculations. When an instance eql of Equipment is created, a calculator is
provided to it inline as a closure (see Closures—Anonymous-Inner-Classes
Conflict, on page 49, for limitations on the syntax). What if we need to reuse
that code block? We can save the closure into a variable—like the aCalculator
in the previous code. We've used this in the creation of two other instances
of Equipment—namely, eq2 and eq3. The output shows the equipment using the
cached calculators:

Running simulation
Calculator 1
Running simulation
Calculator 2
Running simulation
Calculator 2

The Collections classes, which make extensive use of closures, are a great place
to look for closure examples. For details refer to Section 6.2, Iterating Over
an ArrayList, on page 111.

We covered how to create and reuse closures; next we’ll see how to pass
parameters to closures.

Passing Parameters to Closures

In the previous sections, we saw how to define and use closures. In this sec-
tion, we’ll talk about how to send multiple parameters to closures.

it is the default name for a single parameter passed to a closure. We can use
it as long as we know that only one parameter is passed in. If we have more
than one parameter passed, we need to list those by name, as in this example:

UsingClosures/ClosureWithTwoParameters.groovy
def tellFortune(closure) {
closure new Date("09/20/2012"), "Your day is filled with ceremony"
}
tellFortune() { date, fortune ->
println "Fortune for ${date} is '${fortune}'"
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/ClosureWithTwoParameters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.5

Chapter 4. Using Closures ® 78

The method tellFortune() calls its closure with two parameters, namely an
instance of Date and a fortune message String. The closure refers to these two
with the names date and fortune. The symbol -> separates the closure’s
parameter declarations from its body. Let’s exercise this code and take a look
at the output:

Fortune for Thu Sep 20 00:00:00 MST 2012 is 'Your day is filled with ceremony'

Since Groovy supports optional typing, we can define the types of parameters
in the closure, as in the next example:

UsingClosures/ClosureWithTwoParameters.groovy
tellFortune() { Date date, fortune ->

println "Fortune for ${date} is '${fortune}'"
}

We can generally avoid defining the types if we use expressive names for
parameters. In metaprogramming, as we’ll see later, we can use closures to
override or replace methods, and in that situation the type information is
quite important to ensure proper implementation.

Using Closures for Resource Cleanup

Java’s automatic garbage collection is a mixed blessing. We don’t have to
worry about resource deallocation, provided we release references. But there’s
no guarantee of when the resource will actually be cleaned up, because it's
at the discretion of the garbage collector. In certain situations, we might want
the cleanup to happen straightaway. This is the reason we see methods such
as close() and destroy() on resource-intensive classes.

One problem, though, is that the users of our class may forget to call these
methods. Closures can help ensure that the methods get called. In the follow-
ing code we create a FileWriter and write some data, but ignore the call to close()
on it. If we run this code, the file output.txt will not have the data or characters
we wrote.

UsingClosures/FileClose.groovy

writer = new FileWriter('output.txt')
writer.write('!")

// forgot to call writer.close()

Let’s rewrite this code using the Groovy-added withWriter() method. withWriter()
flushes and closes the stream automatically when we return from the closure.

UsingClosures/FileClose.groovy

new FileWriter('output.txt').withWriter { writer ->
writer.write('a"')

} // no need to close()

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/ClosureWithTwoParameters.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/FileClose.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/FileClose.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Closures for Resource Cleanup ® 79

Now we don’t have to worry about closing the stream; we can focus on getting
our work done. We can implement such convenience methods for our own
classes also, making our class’s users happy and productive. For example,
suppose we expect users of our class Resource to call open() before calling any
other instance methods, and then call close() when done.

Here is an example of the Resource class:

UsingClosures/ResourceCleanup.groovy
class Resource {

def open() { print "opened..." }
def close() { print "closed" }
def read() { print "read..." }
def write() { print "write..." }
//. ..

Here is a usage of this class:

UsingClosures/ResourceCleanup.groovy
def resource = new Resource()
resource.open()
resource.read()
resource.write()

Sadly, our class’s user failed to use the close(), and the resource was not closed,
as we can see in the following output:

opened...read...write...

Closures can help here—we can use the Execute Around Method pattern (see
Execute Around Method, on page 80) to tackle this problem.

Let’s create a static method named use():

UsingClosures/ResourceCleanup.groovy
def static use(closure) {
def r = new Resource()
try {
r.open()
closure(r)
} finally {
r.close()
}
}

In the static method, we create an instance of Resource, call open() on it, invoke
the closure, and, finally, call close(). We guard the call with a try-finally, so we’ll
close() even if the closure call throws an exception.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/ResourceCleanup.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/ResourceCleanup.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/ResourceCleanup.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.6

Chapter 4. Using Closures * 80

If we have a pair of actions that have to be performed together—such as open and
close—we can use the Execute Around Method pattern, a Smalltalk pattern discussed
in Kent Beck’s Smalltalk Best Practice Patterns [Bec96]. We write an “execute around”
method that takes a block as a parameter. In the method, we sandwich the call to
the block in between calls to the pair of methods; that is, call the first method, then
invoke the block, and finally call the second method. Users of our method don’t have
to worry about the pair of actions; they’re called automatically. We can even take care
of exceptions within the “execute around” method.

Let’s look at how our class’s users can use it:

UsingClosures/ResourceCleanup.groovy
Resource.use { res ->
res.read()
res.write()

}

Here’s the output from invoking the use() method, with the closure happening
automatically:

opened...read...write...closed

Thanks to the closure, now the call to close() is automatic, deterministic, and
right on time. We can focus on the application domain and its inherent com-
plexities and let the libraries handle system-level tasks such as guaranteed
cleanup in file I/0, and so on.

We've learned how to create closures and pass them around to functions and
classes. Next let’s look at how functions and closures interact.

Closures and Coroutines

Calling a function or method creates a new scope in a program’s execution
sequence. We enter the function at one entry point (top). After we complete
the method, we return to the caller’s scope.

Coroutines, on the other hand, support multiple entry points, each following the
place of the last suspended call. We can enter a function, execute part of it, sus-
pend, and go back to execute some code in the context or scope of the caller. We
can then resume execution of the function from where we suspended. As Donald
E. Knuth says, “In contrast to the unsymmetric relationship between a main
routine and a subroutine, there is complete symmetry between coroutines, which

call on each other.™

4. The Art of Computer Programming: Fundamental Algorithms [Knu97]

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/UsingClosures/ResourceCleanup.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Closures and Coroutines ® 81

Coroutines are handy for implementing some special logic or algorithms, such
as in a producer-consumer problem. A producer receives some input, does
initial processing on it, and notifies a consumer to take that processed value
for further computation and output or storage. The consumer does its part
and, when done, notifies the producer to get more input.

In Java, wait() and notify() help implement coroutines when combined with
multithreading. Closures give the impression (or illusion) of coroutines in a
single thread.

For example, take a look at this:

UsingClosures/Coroutine.groovy
def iterate(n, closure) {
l.upto(n) {
println "In iterate with value ${it}"
closure(it)
}
}

println "Calling iterate"

total = 0

iterate(4) {
total += it
println "In closure total so far is ${total}"
}

println "Done"

In this code, the control transfers back and forth between the iterate() method
and the closure:

Calling iterate

In iterate with value 1

In closure total so far is 1
In iterate with value 2

In closure total so far is 3
In iterate with value 3

In closure total so far is 6
In iterate with value 4

In closure total so far is 10
Done

In each call to the closure, we're resuming with the value of total from the
previous call. The execution sequence feels like the one shown in Figure 4,
Execution sequence of a coroutine, on page 82—we're switching between two

functions’ context.

We've looked at how functions and closures interact. Next we’ll look at how
we can morph closures and transform their parameters.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/Coroutine.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.7

Chapter 4. Using Closures ® 82

= |
rre— ——
— \‘—-——.-..._ r—
— P L —
T ---H_h""-‘--q___ —_—
L —
— —
— H._ e
— B T

Figure 4—Execution sequence of a coroutine

Curried Closure

Closures may receive zero or more parameters. Each time we call a closure,
we're expected to pass arguments for each of these parameters. However, this
can get tedious if one or more arguments are the same between multiple calls
to a closure. We can ease this pain by prebinding some closure parameters.

Closures with prebound parameters are called curried closures—despite the
name, it has nothing to do with my favorite Indian dish. (The term curry comes
from the name Haskell B. Curry, famed mathematician who contributed to
lambda calculus, and was coined by Christopher Strachey, Moses Schonfinkel,
and Friedrich Ludwig. Gottlob Frege invented the concept.) When we curry() a
closure, we're asking the parameters to be prebound. Once we prebind a
parameter, we don’'t have to send it repeatedly to calls on closures. The method
call can now take fewer parameters, as illustrated in Figure 5, Currying a
closure, on page 83. This can help remove redundancy or duplication in
method calls, as we can see in the next example.

UsingClosures/Currying.groovy

def tellFortunes(closure) {
Date date = new Date("09/20/2012")
//closure date, "Your day is filled with ceremony"
//closure date, "They're features, not bugs"
// We can curry to avoid sending date repeatedly
postFortune = closure.curry(date)
postFortune "Your day is filled with ceremony"
postFortune "They're features, not bugs"

}

tellFortunes() { date, fortune ->
println "Fortune for ${date} is '${fortune}'"

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/Currying.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Curried Closure * 83

Closure Curried
call(a, b) n
CUI"rY(a) ;- . Er_ea_t_e_ _ __bm_d(g) .
.-
call(b) :

Figure 5—Currying a closure

The tellFortunes() method calls a closure multiple times. The closure takes two
parameters. So, tellFortunes() would have to send the first parameter date in each
call. Alternatively, we can curry that parameter using a call to the curry()
method with date as an argument. postFortune holds a reference to the curried
closure, which prebinds the value of date.

We can now call the curried closure and pass only the second parameter
(fortune) that’s intended for the original closure. The curried closure takes care
of sending fortune along with the prebound parameter date to the original
closure:

Fortune for Thu Sep 20 00:00:00 MST 2012 is 'Your day is filled with ceremony'
Fortune for Thu Sep 20 00:00:00 MST 2012 is 'They're features, not bugs'

We can curry any number of parameters, but we can curry only leading
parameters using the curry() method. So if we have n parameters, we can curry
any of the first k parameters, where 0 <=k <=n.

If we’d like to curry the trailing parameters, we can use the rcurry() method. If
we need to curry values in the middle of the parameter list, we can use the
ncurry() method that takes the order of the parameter we’d like to curry, along
with the value.

Currying is a transformation from a function that takes multiple parameters
to a function that takes fewer (typically one). The curry function on the
function f(X,Y) -> Z is defined as curry(f): X -> (Y -> Z). Currying helps reduce and

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.8

Chapter 4. Using Closures * 84

simplify methods for mathematical proofs. For our purpose, in Groovy, curry-
ing can reduce the noise in code.

Continuing on the topic of parameters, next we’ll see how to explore a closure’s
presence, and the number and types of parameters a closure may receive.

Dynamic Closures

We can determine whether a closure has been provided to us. Otherwise, we
may decide to use a default implementation for, say, an algorithm in place of
a specialized implementation the caller failed to provide. Here’s an example
to figure out whether a closure is present:

UsingClosures/MissingClosure.groovy
def doSomeThing(closure) {
if (closure) {
closure()
} else {
println "Using default implementation"
}
}

doSomeThing() { println "Use specialized implementation" }

doSomeThing()

The code determines if a closure is provided and responds accordingly:

Use specialized implementation
Using default implementation

We also have quite a bit of flexibility in passing parameters. We can dynami-
cally determine the number and types of parameters a closure expects. Assume
we use a closure to compute the tax for a sale. The tax amount depends on
the sale amount and the tax rate. Also assume that the closure may or may
not need us to provide the tax rate. Here’s an example to examine the number
of parameters:

UsingClosures/QueryingClosures.groovy
def completeOrder(amount, taxComputer) {
tax = 0
if (taxComputer.maximumNumberOfParameters == 2) {// expects tax rate
tax = taxComputer(amount, 6.05)
} else {// uses a default rate
tax = taxComputer(amount)
}
println "Sales tax is ${tax}"
}
completeOrder(100) { it * 0.0825 }
completeOrder(100) { amount, rate -> amount * (rate/100) }

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/MissingClosure.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/QueryingClosures.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Dynamic Closures ® 85

The maximumNumberOfParameters property (or getMaximumNumberOfParameters() method)
tells us the number of parameters the given closure accepts. Using this
method, in the computeOrder() method we determine the number of parameters
the given closure takes, using this to decide whether to send the tax rate.
This helps us invoke the given closure with exactly the number of parameters
it expects, as we see in the output:

Sales tax is 8.2500
Sales tax is 6.0500

In addition to the number of parameters, we can find the types of these
parameters using the parameterTypes property (or the getParameterTypes() method).
Here is an example examining the parameters of the closures provided:

UsingClosures/ClosuresParameterTypes.groovy

def examine(closure) {
println "$closure.maximumNumberOfParameters parameter(s) given:"
for(aParameter in closure.parameterTypes) { println aParameter.name }

println "--"
}
examine() { }
examine() { it }
examine() {-> }
examine() { vall -> }
examine() {Date vall -> }
examine() {Date vall, val2 -> }
()

examine {Date vall, String val2 -> }

Let’s run the code and take a look at the number of parameters and their
reported types:

1 parameter(s) given:
java.lang.Object
1 parameter(s) given:
java.lang.0Object

0 parameter(s) given:
1 parameter(s) given:
java.lang.Object

1 parameter(s) given:
java.util.Date

2 parameter(s) given:
java.util.Date
java.lang.Object

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/ClosuresParameterTypes.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.9

Chapter 4. Using Closures ® 86

2 parameter(s) given:
java.util.Date
java.lang.String

Even when a closure is not using any parameters, as in {} or { it }, it takes
one parameter (whose name defaults to it). If the caller does not pass any
values to the closure, then the first parameter (it) refers to null. If we want our
closure to take absolutely no parameters, then we have to use the syntax
{-> }—the lack of a parameter before -> indicates that our closure takes 0
parameters.

Using the maximumNumberOfParameters and parameterfypes properties, we can
examine the given closures dynamically and implement logic with greater
flexibility.

Speaking of examining objects, what does this mean within a closure? We will
look at that next.

Closure Delegation

Closures in Groovy go far beyond being simple anonymous methods; they
have some powerful capabilities, as we’ll see in the rest of this chapter. Groovy
closures support method delegation, and provide capabilities for method-
dispatching—much like JavaScript’s support for prototypal inheritance. Let’s
understand the magic behind this and how to put this to good use.

Three properties of a closure—this, owner, and delegate—determine which object
handles a method call from within a closure. Generally, the delegate is set to
owner, but changing it lets us exploit Groovy for some really good metaprogram-
ming capabilities. Let’s examine these properties for closures:

UsingClosures/ThisOwnerDelegate.groovy
def examiningClosure(closure) {
closure()

}

examiningClosure() {
println "In First Closure:"
println "class is " + getClass().name
println "this is " + this + ", super:" + this.getClass().superclass.name
println "owner is " + owner + ", super:" + owner.getClass().superclass.name
println "delegate is " + delegate +
", super:" + delegate.getClass().superclass.name

examiningClosure() {
println "In Closure within the First Closure:"

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/ThisOwnerDelegate.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Closure Delegation ® 87

println "class is " + getClass().name
println "this is " + this + ", super:" + this.getClass().superclass.name
println "owner is " + owner + ", super:" + owner.getClass().superclass.name
println "delegate is " + delegate +

", super:" + delegate.getClass().superclass.name

}
}

Within the first closure, we fetch the details about the closure, finding out
what this, owner, and delegate refer to. Then within the first closure, we call the
examiningClosure() method and send it another closure defined within the first
closure, making the first closure the owner of the second closure. Within this
second closure, we print those details again. Here’s the output from the code:

In First Closure:

class is ThisOwnerDelegate$ run closurel

this is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

owner is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

delegate is ThisOwnerDelegate@55e6¢cb2a, super:groovy.lang.Script

In Closure within the First Closure:

class is ThisOwnerDelegate$ run closurel closure2

this is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

owner is ThisOwnerDelegate$ run closurel@l5c330aa, super:groovy.lang.Closure
delegate is ThisOwnerDelegate$ run closurel@l5c330aa, super:groovy.lang.Closure

The previous code example and the corresponding output show that closures
are created as inner classes. They also show that the delegate is set to owner.
Certain Groovy functions—such as with()}—modify delegate to perform dynamic
routing. this within a closure refers to the object to which the closure is bound
(the executing context). Variables and methods referred to within the closure
are bound to this—it has dibs on handling any methods calls or access to any
properties or variables. The owner stands in next, followed by the delegate. This
sequence is illustrated in the following figure.

closure I

foo()

delegate

Figure 6—Order of method resolution on method calls from closures

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 4. Using Closures * 88

Let’s examine the method resolution further with an example:

UsingClosures/MethodRouting.groovy
class Handler {
def f1() { println "f1 of Handler called ..."}
def f2() { println "f2 of Handler called ..."}
}

class Example {
def f1() { println "fl1 of Example called ..."}
def f2() { println "f2 of Example called ..."}

def foo(closure) {
closure.delegate = new Handler()
closure()

}
}

def f1() { println "f1 of Script called..." }

new Example().foo {
f1()
f2()

}

In this code, calls to methods within the closure are first routed to the context
object—this—for the closure. If they’re not found, they’re routed to the delegate:

fl of Script called...
f2 of Handler called ...

In the previous example we set the delegate property on a closure. This has
side effects, especially if the closure can be used in other functions or in
other threads. If we're absolutely sure that the closure is not used elsewhere,
we can set the delegate. If it is used elsewhere, avoid the side effect—clone the
closure, set the delegate on the clone, and use the clone. Groovy provides a
convenient method to achieve this. Rather than performing

def clone = closure.clone()
clone.delegate = handler
clone()

we can perform those three steps in one shot using a special with() method:
handler.with closure

Section 19.7, Closures and DSLs, on page 301, covers how the concepts from
this section are used to build DSLs. Also refer to Section 7.1, Using Object
Extensions, on page 128, and Section 13.2, Injecting Methods Using

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/MethodRouting.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.10

Programming with Tail Recursion ¢ 89

ExpandoMetaClass, on page 198. ExpandoMetaClass uses delegate to proxy methods
of classes.

Groovy closures go beyond being just glue code. In addition to dynamic
method-dispatching abilities, Groovy closures have some interesting conve-
nience methods, as we’ll see next.

Programming with Tail Recursion

Closures in Groovy provide a way to reap the benefits of recursion and at the
same time avoid some of the common problems we run into when using
recursions.

With recursion, we solve a problem using solutions to its subproblems.
Recursive solutions have charm—they’re concise, and how cool is it that we
can compose the solution using the solutions to the same problem but with
smaller input size. In spite of these benefits, programmers often shy away
from recursive solutions. The threat of a potential StackOverflowError for large
input size can dissuade even the geekiest programmers among us.

Here’s the all-too-familiar overly simplified factorial function implemented as
a simple recursion.

UsingClosures/simpleFactorial.groovy
def factorial(BigInteger number) {
if (number == 1) 1 else number * factorial(number - 1)

}

try {

println "factorial of 5 is ${factorial(5)}"

println "Number of bits in the result is ${factorial(5000).bitCount()}"
} catch(Throwable ex) {

println "Caught ${ex.class.name}"

}

The factorial for 5 is a small value, but the factorial for 5000 is a large number.
If the computation is successful, we should see the result of 120 and the
number of bits in the large factorial for 5000. When we run the program we’ll
notice that the JVM chokes on the large number of recursive calls:

factorial of 5 is 120
Caught java.lang.StackOverflowError

If we write the function as an iteration, then we won’t run into resource con-
straints like this. But recursions are so cool and expressive! If only they were
kind on resource utilization....

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/simpleFactorial.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 4. Using Closures ® 90

In the wonderful book Structure and Interpretation of Computer Programs
[AS96], the authors discuss an elegant way to deal with this. They suggest
via compiler-optimization techniques and language support, recursive pro-
grams can be translated into iterative processes. Using such transformations,
we can write highly expressive elegant code and reap the efficiency benefits
of simple iteration. The Groovy language offers this technique through a
special trampoline() method on closures.

To use this feature, we'll first have to implement the factorial function as a
closure:

UsingClosures/trampolineFactorial.groovy
def factorial

factorial = { int number, BigInteger theFactorial ->
number == 1 ? theFactorial :
factorial.trampoline(number - 1, number * theFactorial)
}.trampoline()

println "factorial of 5 is ${factorial(5, 1)}"
println "Number of bits in the result is ${factorial(5000, 1).bitCount()}"

We define a variable named factorial and assign it to a closure that takes two
parameters—the number, which is a candidate for which we want to determine
the factorial-——and theFactorial, which stands for the partial result being comput-
ed through the recursion. In the closure, if the given number is 1, we return
the value of theFactorial as the result. Otherwise, we invoke the closure recur-
sively using a call to the trampoline() method. To this method we pass as the
first parameter one less than the given number, narrowing down the compu-
tation range. The second parameter is the partial factorial result computed
so far.

The factorial variable itself is assigned the result of a call to the method trampo-
line() on the closure.

The implementation of tail recursion in Groovy is just brilliant, done without
any change to the language itself. When we invoke the trampoline() method, the
closure immediately returns an instance of a special class TrampolineClosure.
When we pass parameters to this instance, like in factorial(5, 1), we invoke this
instance’s call() method. This method uses a simple for loop to invoke the call
method on closure until it no longer yields an instance of TrampolineClosure. This
simple technique turns our recursive invocation into a simple iteration under
the hood.

This kind of recursion is called tail recursion because the last expression in
the method either terminates the recursion or calls itself back. In contrast,

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/trampolineFactorial.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Programming with Tail Recursion ® 91

in the straight recursion for computing the factorial, for example, the last
expression was a call to *, the multiplication operation.

Let’s exercise the new tail-recursive version of factorial() to see that it does not
have the drawbacks of the straight recursion:

factorial of 5 is 120
Number of bits in the result is 24654

The trampoline() method helps us enjoy the power of recursion without the
associated drawbacks. It is a significant step forward, but we also lost
simplicity in the process. Rather than a simple call to the method, such as
factorial(5), we're forced to send an additional argument, such as factorial(5, 1).
In addition to the added burden, this is error-prone if we pass some value
other than 1 to the second parameter.

As a quick fix to this problem, we can define a default value to the closure’s
second parameter, like so: Biginteger theFactorial = 1. The caller can now skip the
second parameter, but this does not prevent sending a wrong value. We can
eliminate this problem by encapsulating the closure within a function.

UsingClosures/trampoline.groovy
def factorial(int factorialFor) {
def tailFactorial
tailFactorial = { int number, BigInteger theFactorial =1 ->
number == 1 ? theFactorial :
tailFactorial.trampoline(number - 1, number * theFactorial)
}.trampoline()
tailFactorial(factorialFor)

}
println "factorial of 5 is ${factorial(5)}"
println "Number of bits in the result is ${factorial(5000).bitCount()}"

We defined a function factorial() and defined the tail-recursive closure within
that function. Finally we invoked the trampoline() closure, passing it the number
for which we want to compute the factorial. The default value of 1 is passed
to the closure’s second parameter.

Unlike some languages, where tail-call optimization is realized through com-
pilation techniques, Groovy realizes it through a simple convenience method
on closure. The entire impact on the language and its grammar is avoided
this way, providing programming elegance while reducing the memory foot-
print. There’s one catch, however, in using the trampoline() feature—it is slower
performancewise than the simple recursion or pure iteration. For a large input
size, this could be a huge limitation. (An implementation without any compiler
tricks is nice to see, but not with a performance impact.) For trampoline() to be
useful for large a input size, either the implementation has to significantly

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/trampoline.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

4.11

Chapter 4. Using Closures ® 92

improve in performance or we need a compiler transformation to improve
efficiency.

In the next section we’ll see how closures impact the runtime of a specialized
type of recursive algorithms.

Improving Performance Using Memoization

I once attended a bird show where a performer challenged a teenager to
compete against a parrot in arithmetic. To the chagrin of the young fellow
and the amusement of the viewers, the parrot swiftly replied to “what’s 200
times 50?" After the parrot aced the next few questions, the performer revealed
the secret—the parrot simply repeated memorized answers to scripted ques-
tions. In this section we’ll use a similar technique, but rather than calling it
memorization, we’ll term it memoization, continuing the tradition in our field
of giving odd names to concepts.

In the previous section you learned a technique to make recursive calls
memory-efficient. Recursion in essence is a way to solve a problem using
solutions to its subproblems. In a variation of this technique, oddly named
dynamic programming, we break the problem into parts that are redundantly
solved several times over. During execution, we save results of the subprob-
lems, and when the redundant computation is invoked, we simply use the
saved result—avoiding the rerun and thus greatly reducing the computation
time. Memoization can reduce some algorithms’ computational time complex-
ity from exponential (0(k~n)) to mere linear order (0(n)) on the input size (n).

To help understand this concept and the memoization facility in Groovy, let’s
get into the business of selling rods. Rods of different length are sold at retail
for different prices. We are in the business of buying wholesale rods of a
particular length—for example, 27 inches—and selling them in pieces of var-
ious length to maximize our revenue.

We will first use simple recursion to solve this problem. Then we’ll use mem-
oization to solve it again. Since memoization is about reducing computation
time, we need a way to measure the time taken; let’s start with a little function
that will help with that.

UsingClosures/rodCutting.groovy
def timeIt(length, closure) {
long start = System.nanoTime()
println "Max revenue for $length is ${closure(length)}"
long end = System.nanoTime()
println "Time taken ${(end - start)/1.0e9} seconds"
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/rodCutting.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Improving Performance Using Memoization ¢ 93

The timelt() method reports the time the given closure takes to run, and reports
the maximum revenue we can expect to receive for the given length of rod,
as reported by the closure.

Define a sample of retail prices for various lengths of rods, from O inches to
30 inches in an array—the size O is included to offset the zero-based array
indexing:

UsingClosures/rodCutting.groovy

def rodPrices = [0, 1, 3, 4, 5, 8, 9, 11, 12, 14,

15, 15, 16, 18, 19, 15, 20, 21, 22, 24,
25, 24, 26, 28, 29, 35, 37, 38, 39, 40]

def desiredLength = 27

The rodPrices variable refers to a list with the prices for various lengths, and
the variable desiredLength holds the length of rod we're interested in selling to
maximize the revenue.

Based on the given retail prices, if we sell a rod of 27 inches as is, we’d make
$38. If we cut it into two pieces of lengths 1 and 26 inches, we’'d make the
same amount, so that’s really not worth it. We’d lose money if we split it into
two pieces of 4 and 23 inches. We can make more than $38 for the 27-inch
rod if we split it into six pieces—five pieces of 5 inches each, and the last
piece of 2 inches will bring a total of $43. Figuring that out manually will take
an awfully long time. If we're given an arbitrary length and prices, we’d want
a program that quickly computes an optimal split that maximizes our revenue.

The code we’ll create next will tell us both the maximum revenue for a given
length and the lengths into which to cut the rod for maximum revenue.

Let’s start with a class RevenueDetails to hold the price and the pieces’ lengths.

UsingClosures/rodCutting.groovy
@groovy.transform.Immutable
class RevenueDetails {

int revenue

ArrayList splits
}

Finding an optimal maximum revenue requires trying out various combina-
tions. The maximum revenue for a given length is the maximum of the
revenues of splitting it various ways. For example, we can start by splitting
the rod into a 2-inch piece and a 25-inch piece. The maximum revenue this
split can produce is not the total of the price for these two lengths, however.
It’s the total of maximum revenue for the 2 inches and the maximum revenue
for the 25 inches. We can see the recursive structure emerge in the solution.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/rodCutting.groovy
http://media.pragprog.com/titles/vslg2/code/UsingClosures/rodCutting.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 4. Using Closures ® 94

To determine the maximum revenue for the 25 inches, we’d split that into
smaller pieces, and in turn have to repeatedly compute maximum revenues
for smaller pieces, such as 2 inches. This is the redundancy we can memoize
to save time, as we’ll see soon.

First let’s implement the simple recursion for the rod-cutting problem.

UsingClosures/rodCutting.groovy
def cutRod(prices, length) {

if(length == 0)
new RevenueDetails(0, [])
else {

def maxRevenueDetails = new RevenueDetails(Integer.MIN VALUE, [1)
for(rodSize in 1..length) {
def revenueFromSecondHalf = cutRod(prices, length - rodSize)
def potentialRevenue = new RevenueDetails(
prices[rodSize] + revenueFromSecondHalf.revenue,
revenueFromSecondHalf.splits + rodSize)
if (potentialRevenue.revenue > maxRevenueDetails.revenue)
maxRevenueDetails = potentialRevenue

}

maxRevenueDetails
}
}

timeIt desiredLength, { length -> cutRod(rodPrices, length) }

The cutRod() method takes two parameters, prices and length, and returns an
instance of RevenueDetails with the maximum revenue for the given length and
a possible lengths of pieces. If the length is O, the recursion ends. Given a
length, we try as many combinations as possible of split: 1 and length-1, 2 and
length - 2, 3 and length - 3, and so on, and pick the maximum value from those
combinations. For each length pair, we recursively invoke the cutRod() method.

This is a simple recursion and each call to the method will do the entire cal-
culation. Repeated calls to the method for the same length will redundantly
recalculate the results. Run the code for a rod length of 27 inches and note
the maximum revenue, optimal split lengths, and the time the code takes to
arrive at the results.

Max revenue for 27 is RevenueDetails(43, [5, 5, 5, 5, 5, 21])
Time taken 162.89431500 seconds

For a maximum profit of $43 we’d have to split our rod into six pieces. The
program took well over two minutes to figure that out. We can improve this
speed using memoization. Surprisingly we’ll have to make only a few changes
to realize this—we convert the function into a closure and invoke the memoize()
method on it:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/rodCutting.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Improving Performance Using Memoization ¢ 95

UsingClosures/rodCutting.groovy

def cutRod
cutRod = { prices, length ->
if(length == 0)
new RevenueDetails(0, [])
else {

def maxRevenueDetails = new RevenueDetails(Integer.MIN VALUE, [1)
for(rodSize in 1..length) {
def revenueFromSecondHalf = cutRod(prices, length - rodSize)
def potentialRevenue = new RevenueDetails(
prices[rodSize] + revenueFromSecondHalf.revenue,
revenueFromSecondHalf.splits + rodSize)
if (potentialRevenue.revenue > maxRevenueDetails.revenue)
maxRevenueDetails = potentialRevenue

}

maxRevenueDetails

}

}.memoize()

timeIt desiredLength, { length -> cutRod(rodPrices, length) }

After converting the function and invoking the memoize() method on it, we saved
the result to the cutRod variable. Using these steps we created a specialized
instance of a Memoize class. This has a reference to the closure we provided,
and a cache of results. When we invoke the closure, this instance will cache
the response before returning the result. Subsequent calls will return the
appropriate cached values based on the parameters, if present.

Let’s run the modified version of this code and ensure the maximum revenue
and the pieces’ lengths are the same as in the previous version. This version
should take a lot less time:

Max revenue for 27 is RevenueDetails(43, [5, 5, 5, 5, 5, 2])
Time taken 0.01171600 seconds

The memoized version produces the same results but takes only 1/100 of a
second compared to more than two minutes the simple recursion took.

The memoization technique trades space for speed. We saw the speed improve.
The amount of space this takes depends on the number of times the recursive
method is called with unique parameters. For a large problem size, the
memory demand can drastically increase. Groovy is quite sensitive to this
and gives us a few options. A simple call to memoize() uses an unlimited cache.
We can limit the cache size by instead using the memoizeAtMost() method. This
method limits the size of the cache and when the limit is reached, the least-
recently used values are removed from the cache to accommodate new values.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingClosures/rodCutting.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 4. Using Closures ® 96

We can also use variations such as memoizeAtLeast() to set a lower limit on the
cache size, and memoizeAtLeastBetween() to set a lower and an upper limit.

In addition to managing the cache, the implementations of the memoize()
functions provide thread safety; we can safely access the cache from multiple
threads.

We've seen how Groovy, which is dynamically typed, makes dynamic program-
ming trivial to implement.

In this chapter we covered one of the most important concepts in Groovy—one
that we’ll use repeatedly. We now know how to work with closures in a
dynamic context. We also understand how closures dispatch method calls.
In the following chapters, we’ll see several examples where closures stand
out, so we'll have plenty of opportunity to appreciate their charm.

Strings are commonplace in programming and Groovy provides great conve-
nience and flexibility to work with them. In the next chapter we’ll discuss the
facilities that Groovy provides, from creating strings to formatting expressions
with them.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

5.1

CHAPTER 5

Working with Strings

We all know it’s a pain to work with strings in Java. As fundamental as strings
are in programming, we would think it would be easier. But no, it takes effort
to do basic string manipulation, to evaluate multiple variables or expressions
into a string representation, and even to do something as simple as create a
string that spans multiple lines. Groovy to the rescue! Groovy takes away the
pain of dealing with strings on these fronts. It also makes pattern-matching
of strings with regular expressions much easier by providing special operators.
We'll go through the basics of Groovy strings in this chapter.

Literals and Expressions

We can create literals in Groovy using single quotes—Ilike 'hello’. In Java, 'a' is
a char, while "a" is a String. Groovy makes no such distinction; both of these
are instances of String in Groovy. If we want to explicitly create a character,
we simply type 'a' as char. Of course, Groovy may implicitly create Character
objects if any method calls demand it.

Groovy is also flexible about what we can put into a literal. For example, we
can have double quotes in our string if we want:

WorkingWithStrings/Literals.groovy
println 'He said, "That is Groovy"'

Groovy handled that fairly well, as we can see in the output:
He said, "That is Groovy"

Let’s examine the type of the object that was created using the single quotes:

WorkingWithStrings/Literals.groovy
str = 'A string'
println str.getClass().name

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Literals.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Literals.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 5. Working with Strings * 98

From the output we can see the object is the popular String:

java.lang.String

Groovy treats a String created using single quotes as a pure literal. So, if we
put any expressions in it, Groovy won’t expand them; instead, it will use them
literally as we provided them. We’ll have to use double quotes to evaluate the
expressions in a String, as we’ll see soon.

WorkingWithStrings/Literals.groovy
value = 25
println 'The value is ${value}'

From the output we can see that Groovy did not evaluate or expand the value:

The value is ${value}

Java Strings are immutable, and Groovy honors that immutability. Once we
create an instance of String, we can’t modify its content by calling setters and
so on. We can read a character using the [] operator; however, we can’t mod-
ify it, as we can see from the following code:

WorkingWithStrings/Literals.groovy
str = 'hello'
println str[2]
try {
str[2] = 'I'
} catch(Exception ex) {
println ex

}
Our effort to modify the String results in an error:

1

groovy.lang.MissingMethodException: No signature of method:
java.lang.String.putAt() is applicable for argument types:
(java.lang.Integer, java.lang.String) values: [2, !]

We can create an expression with either double quotes (") or slashes (//).
However, double quotes are often used to define string expressions, and for-
ward slashes are used for regular expressions. Here’s an example for creating
an expression:

WorkingWithStrings/Expressions.groovy
value = 12
println "He paid \$${value} for that."

Groovy evaluates the expression, as we can see in the output:

He paid $12 for that.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Literals.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Literals.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Expressions.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Literals and Expressions ® 99

The variable value was expanded within the string. We use the escape character
() to print the $ symbol because Groovy uses that symbol for embedding
expressions. We don’t have to escape the $ if we use slashes instead of double
quotes to define the string. The {} around expressions are optional if the
expression is a simple variable name like value or a simple accessor to a
property. So, we could write the statement println "He paid \$${value} for that." as
printin "He paid \$$value for that." or printin (/He paid $$value for that/). Try leaving out the
{} in expressions and see whether Groovy complains. We can always add it
if needed.

We can store an expression in a string and print it later—Groovy uses lazy
evaluation. Let’s look at an example:

WorkingWithStrings/Expressions.groovy

what = new StringBuilder('fence')

text = "The cow jumped over the $what"
println text

what.replace(0, 5, "moon")
println text

Let’s look at the output to see how Groovy resolved that expression:

The cow jumped over the fence
The cow jumped over the moon

When we print the string expression in text, the current value in the object
that what refers to is used. So, the first time we printed text, we got “The cow
jumped over the fence.” Then, after changing the value in the StringBuilder when
we reprinted the string expression—we did not modify the content of text—we
got a different output, this time the phrase “The cow jumped over the moon”
from the popular rhyme “Hey Diddle Diddle.“

From this behavior we see that strings created using single quotes are different
from those created using double quotes or slashes. Strings created using
single quotes are regular java.lang.Strings. However, those created using double
quotes and slashes are special. The authors of Groovy have a weird sense of
humor—they called them GStrings, short for Groovy strings. Let’s look at the
types of the objects created using different string syntax:

WorkingWithStrings/Expressions.groovy
def printClassInfo(obj) {
println "class: ${obj.getClass().name}"
println "superclass: ${obj.getClass().superclass.name}"

}

val = 125

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Expressions.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/Expressions.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

5.2

Chapter 5. Working with Strings ® 100

printClassInfo ("The Stock closed at ${val}")
printClassInfo (/The Stock closed at ${val}/)
printClassInfo ("This is a simple String")

From the output we can see the types of the objects created:

class: org.codehaus.groovy.runtime.GStringImpl
superclass: groovy.lang.GString

class: org.codehaus.groovy.runtime.GStringImpl
superclass: groovy.lang.GString

class: java.lang.String

superclass: java.lang.Object

Groovy does not readily create an instance of GString simply because we use
double quotes or slashes. It intelligently analyzes the string to determine
whether it can get away with a simple regular String. In the example, the
argument to the last call of printClassinfo() is an instance of String even though
we used double quotes to create it.

It’s easy to get too comfortable with the seamless interplay of different string
types in Groovy. As we’ll see in the next section, we must use some caution
when working with them.

GString Lazy-Evaluation Problem

The result we get from GString expressions depends on whether we use values
or references in the expression. The result may lead to some surprises if we're
not careful how we compose the expression. Learning this now will help avoid
stumbling like your humble author did when learning about string manipu-
lation in Groovy. Here’s the example that worked well in the previous section:
WorkingWithStrings/LazyEval.groovy

what = new StringBuilder('fence')

text = "The cow jumped over the $what"
println text

what.replace(0, 5, "moon")
println text

The output from the code looks pretty reasonable:

The cow jumped over the fence
The cow jumped over the moon

The GString (text) contains the variable what. The expression is evaluated just
in time each time we print it—when the toString() method is called on it. If we
change the value in the StringBuilder object that what refers to, the expression
reflects it when printed. That seems reasonable, right?

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/LazyEval.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

GString Lazy-Evaluation Problem ® 101

Unfortunately, this is not the behavior we’ll see if we modify the reference
what instead of changing the referenced object’s properties—that’s what we’d
naturally do if the object were immutable. Here’s an example that shows the
problem:

WorkingWithStrings/LazyEval.groovy

price = 684.71

company = 'Google'

quote = "Today $company stock closed at $price"
println quote

stocks = [Apple : 663.01, Microsoft : 30.95]

stocks.each { key, value ->
company = key
price = value
println quote

}

We stored an expression in the variable quote with the embedded variables
company and price. When we print it the first time, it correctly prints Google
and its stock price. We have the stocks of a few other companies, and we want
to use the expression we created before to print the quote for these companies
as well. To do that, we iterate over the stocks map—within the closure we have
the company as the key and the price as the value. However, when we print
the quote, the result (shown next) is not what we expect. We have to fix this
problem before our colleagues start another “Google has taken over the world”
debate.

Today Google stock closed at 684.71
Today Google stock closed at 684.71
Today Google stock closed at 684.71

First let’s figure out why it did not work as expected, and then we can figure
out a solution. When we defined the GString—quote—we bound the variables
company and price to a String holding the value Google and an Integer holding that
obscene stock price, respectively. We can change the company and price refer-
ences all we want (both of these are referring to immutable objects) to refer
to other objects, but we’re not changing what the GString instance has been
bound to.

“The cow jumping over...” example worked because we modified the object
that the GString was bound to; however, in this example we don’'t. We can’t
because of immutability. The solution? We need to ask the GString to reevaluate
the reference—after all, as computer scientist David Wheeler said, “Any
problem in computer science can be solved with another level of indirection.”

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/LazyEval.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 5. Working with Strings ¢ 102

Before we fix the problem, let’s take a moment to understand how GString
expressions are evaluated. When evaluating a GString, if we have a variable,
its value is simply printed to a writer, typically a StringWriter. However, if we
have a closure instead of a variable, the closure is invoked. If our closure
takes a parameter, then GString sends the Writer object as an argument to the
closure. If our closure takes no parameters at all, then GString simply calls our
closure and prints the result we return to the writer. If our closure takes more
than one parameter, then the call fails with an exception; let’s not go there.

Let’s put that knowledge to use to solve our expression-evaluation problem.
Here’s the first attempt:

WorkingWithStrings/LazyEval.groovy
companyClosure = { it.write(company) }
priceClosure = { it.write("$price") }
quote = "Today ${companyClosure} stock closed at ${priceClosure}"
stocks.each { key, value ->
company = key
price = value
println quote

}
Let’s run the code to see the output:

Today Apple stock closed at 663.01
Today Microsoft stock closed at 30.95

We got the output we desire, but the code does not look very groovy. Even
though we don’'t want to implement our final code this way, seeing this
example will help in two ways. First, we can see what’s really going on—the
GString is calling our closure at the time when the expression needs to be
evaluated/printed. Second, if we need to do some computations that are more
than merely displaying a property’s value, we know how to do that.

Let’s get rid of that it parameter. Like we discussed earlier, if our closure has
no parameters, then GString uses what we return. We know how to create a
closure with no parameters—define it with the syntax {-> . So, let’s refactor
the previous code:

WorkingWithStrings/LazyEval.groovy
companyClosure = {-> company }
priceClosure = {-> price }
quote = "Today ${companyClosure} stock closed at ${priceClosure}"
stocks.each { key, value ->
company = key
price = value
println quote

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/LazyEval.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/LazyEval.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

5.3

Multiline Strings ® 103

Here’s the output of the refactored version:

Today Apple stock closed at 663.01
Today Microsoft stock closed at 30.95

That’s a notch better, but we don’t want to define the closures separately.
Instead, we want our code to be self-contained for simple cases, and we're
willing to write a separate closure if we have more code to compute the values.
Here’s the self-contained code that solves the problem (we’ll call it the “Google
and Apple trying to take over the world” problem):

WorkingWithStrings/LazyEval.groovy
quote = "Today ${-> company } stock closed at ${-> price }"

stocks.each { key, value ->
company = key
price = value
println quote

}
This concise version produces the same output as the previous version:

Today Apple stock closed at 663.01
Today Microsoft stock closed at 30.95

GString’s lazy evaluation is a very powerful concept. However, use caution not
to trip over that string. If we expect our references used in expressions to
change and we want their current value to be used in the lazy evaluation, we
must remember not to place them directly in the expressions, but rather
within a no-parameter closure.

We've seen the elegance of Groovy’s string manipulation and formatting, but
we’ve merely scratched the surface of this capability. In the next section we’ll
discuss ways in which Groovy simplifies the dreadful and cumbersome process
of creating multiline strings in Java.

Multiline Strings

When we want to create a multiline string in Java, we have to use code like
str += ..., concatenated multiple lines using the + operator, or multiple calls
to the append() method of StringBuilder or StringBuffer.

We’d have to use a lot of escape characters, and that usually is followed by
a complaint that “there’s gotta be a better way to do that.” In Groovy there
is. We can define a multiline literal by enclosing the string within three single
quotes ("..."")—that’s Groovy’s support of here documents, or heredocs:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/LazyEval.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 5. Working with Strings ® 104

WorkingWithStrings/MultilineStrings.groovy

memo = '''Several of you raised concerns about long meetings.

To discuss this, we will be holding a 3 hour meeting starting

at 9AM tomorrow. All getting this memo are required to attend.

If you can't make it, please have a meeting with your manager to explain.

println memo

Here’s the multiline string created from the code:

Several of you raised concerns about long meetings.

To discuss this, we will be holding a 3 hour meeting starting

at 9AM tomorrow. All getting this memo are required to attend.

If you can't make it, please have a meeting with your manager to explain.

Just as we can create GStrings that can hold expressions using double-quoted
strings, we can create multiline expressions using three double quotes.

WorkingWithStrings/MultilineStrings.groovy
price = 251.12

message = """We're very pleased to announce
that our stock price hit a high of \$${price} per share
on December 24th. Great news in time for...

println message

Groovy evaluates the expression in the multiline string, as we see in the
output:

We're very pleased to announce
that our stock price hit a high of $251.12 per share
on December 24th. Great news in time for...

I write a monthly newsletter, and a couple of years ago I decided to convert
to Groovy the program I use to send email notifications. Groovy’s ability to
create multiline strings with embedded values came in handy. Groovy even
makes it easy to spam! (Just kidding.)

Let’s look at an example using the feature we just covered. Assume we have
a map of languages and authors and want to create an XML representation
of it. Here is a way to do that:

WorkingWithStrings/CreateXML.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']
content = "'
langs.each { language, author ->

fragment = """

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/MultilineStrings.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/MultilineStrings.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/CreateXML.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

5.4

String Convenience Methods ® 105

<language name="${language}">
<author>${author}</author>
</language>

content += fragment

}
xml = "<languages>${content}</languages>"
println xml

This is impressive, but wait until we see the XML builders in Section 17.1,
Building XML, on page 253! Here’s the XML output produced using the multiline
string expressions:

<languages>
<language name="C++">
<author>Stroustrup</author>
</language>

<language name="Java">
<author>Gosling</author>
</language>

<language name="Lisp">
<author>McCarthy</author>
</language>
</languages>

We're using the multiline string with embedded expressions to create the
desired content. The content is generated by iterating over the map that
contains the data.

We've seen ways to create strings, and in the next section we’ll talk about the
convenience functions Groovy provides to manipulate strings.

String Convenience Methods

We already praised String’s execute method. In fact, it helped us create a Process
object so we can execute system-level processes with only a couple of lines
of code; see A Quick Look at the GDK, on page 14.

We can get fancier with String using other methods. For example, take a look
at the following code, which uses an overloaded operator of String:

WorkingWithStrings/StringConvenience.groovy
str = "It's a rainy day in Seattle"
println str

str -= "rainy "
println str

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/StringConvenience.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

5.5

Chapter 5. Working with Strings ® 106

The output shows the effect of the overloaded operator:

It's a rainy day in Seattle
It's a day in Seattle

The -= operator is useful for manipulating a string, it removes part of the left-
side string that matches the string on the right side. The Groovy-added minus()
method on the String class makes this possible (see Section 2.8, Operator
Overloading, on page 31). Groovy adds other convenience methods to String:
plus() (+), multiply() (*), next() (++), replaceAll(), and tokenize(), to mention a few.!

We can iterate over a range of Strings as well, as shown here:

WorkingWithStrings/StringRange.groovy

for(str in 'held'..'helm') {
print "${str} "

}

println ""

The sequence generated by the code is as follows:

held hele helf helg helh heli helj helk hell helm

Here we're still using the same java.lang.String; however, all these added facilities
help us get our work done quickly.

Now we know how to extract parts of a string. Hardcore programmers often
reach out to regular expressions, and Groovy makes that easy, as well, as
we’ll see next.

Regular Expressions

The JDK package java.util.regex contains the API for pattern-matching with
regular expressions (RegEx). For a detailed discussion of RegEx, refer to Jeffrey
Friedl’s Mastering Regular Expressions [Fri97]. String’s replaceFirst() and replaceAll()
methods, among other methods, make good use of RegEx pattern-matching.
Groovy adds operators and symbols to make it easier to program with RegEx.

Groovy provides the operator ~ to easily create a RegEx pattern. This operator
maps to String’s negate() method:

WorkingWithStrings/RegEx.groovy
obj = ~"hello"
println obj.getClass().name

The output shows the type of the instance created:

java.util.regex.Pattern

1. http://groovy.codehaus.org/groovy-jdk/java/lang/String.html

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/StringRange.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/RegEx.groovy
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Regular Expressions ¢ 107

The previous example shows that ~ applied to String creates an instance of
Pattern. We can use slashes or single or double quotes to create a RegEx. The
slashes have an advantage: we don’t have to escape backslashes. So, N\d¥\w*/
is an equivalent and elegant cousin of "\d¥\w*".

Groovy provides a couple of operators to facilitate matching regular expres-
sions: =~ and ==~. Let’s explore the differences between and capabilities of
these operators:

WorkingWithStrings/RegEx.groovy
pattern = ~"(G|g)roovy"
text = 'Groovy is Hip'
if (text =~ pattern)
println "match"
else
println "no match"

if (text ==~ pattern)
println "match"
else

println "no match"

Let’s run the code and see the difference between the two operators.

match
no match

The =~ performs a RegEx partial match, whereas the ==~ performs a RegEx
exact match. So, in the previous code example, the first pattern match reports
a “match,” while the second one reports a “no match.”

The =~ operator returns a Matcher object, which is an instance of
java.util.regex.Matcher. Groovy handles boolean evaluation of Matcher differently than
Java; it returns true if there’s at least one match (see Section 2.7, Groovy
Boolean Evaluation, on page 30). If the match results in multiple matches,
then the matcher contains an array of the matches. This helps quickly get
access to parts of the text that match the given RegEx.

WorkingWithStrings/RegEx.groovy

matcher = 'Groovy is groovy' =~ /(G|g)roovy/

print "Size of matcher is ${matcher.size()} "

println "with elements ${matcher[0]} and ${matcher[1]}."

The previous code reports the details of the Matcher, as follows:

Size of matcher is 2 with elements [Groovy, G] and [groovy, gl.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/RegEx.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/RegEx.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 5. Working with Strings ® 108

We can replace matching text easily using the replaceFirst() method (for replacing
only the first match, as the name indicates) or the replaceAll() method (for
replacing all matches).

WorkingWithStrings/RegEx.groovy

str = 'Groovy is groovy, really groovy'
println str

result = (str =~ /groovy/).replaceAll('hip"')
println result

The original text and the replaced text are as follows:

Groovy is groovy, really groovy
Groovy is hip, really hip

To summarize, here are the Groovy operators related to RegEx:

e To create a pattern from a string, use the ~ operator.

¢ To define a RegEx, use forward slashes, as in /[G|g]roovy/.
e To determine whether there’s a match, use =~.

e For an exact match, use ==~.

In this chapter, we saw how Groovy makes creating and using strings so
much easier than in Java. It is a breeze to create multiline strings, as well as
strings with expressions. We also saw how Groovy simplifies the effort required
to work with RegEx. Groovy strings will make us feel turbocharged when we
get down to regular string manipulations and working with regular
expressions.

Collections of objects are as fundamental in programming as working with
strings is. Groovy has enhanced the JDK collections API with the convenience
and fluency closures offer, as we’ll see in the next chapter.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/RegEx.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.1

CHAPTER 6

Working with Collections

We use collections extensively when programming. The Java Development
Kit (JDK) has a number of useful collections, and Groovy extends those col-
lections, making them more convenient to use. For example, we can use
internal iterators, which are concise, easier to use, and less error-prone than
the traditional for loop. We can use a different specialized iterator, find, to pick
an element from a collection. To pick several matching elements we simply
change find to findAll, and the rest of the code remains the same—concise, no
extra baggage of the new collection to carry around. Once we get used to the
collections in Groovy, it’s pretty hard to go back and use the Java API for
these collections. You've been warned!

In this chapter we’ll use the JDK collections, but will learn to use the
lightweight, fluent methods available in Groovy. We will start by looking at
various iterators and convenience methods on List, which are ordered collec-
tions. After that we’ll look at similar methods provided for the Maps, the
associative collections with key-value pairs.

Using List

Creating an instance of java.util.ArrayList is easier in Groovy than in Java. We
don’t have to use new or specify the class name. We can simply list the initial
values we want in the List, as shown here:
WorkingWithCollections/CreatingArrayList.groovy

st = [1, 3, 4, 1, 8, 9, 2, 6]

println 1st
println lst.getClass().name

Let’s look at the ArrayList's contents and its type, as reported by Groovy:

[1, 3, 4,1, 8, 9, 2, 6]
java.util.ArraylList

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CreatingArrayList.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 6. Working with Collections ® 110

When we declare a list in Groovy, the reference Ist refers to an instance of
java.util.ArrayList, as we can see from the previous output.

We can fetch the elements of the List by using the [] operator, as shown in the
next example:
WorkingWithCollections/CreatingArrayList.groovy

println 1st[0]
println lst[lst.size() - 1]

The output shows the values of the first and last elements in the list:

1
6

But we don’t have to jump through that many hoops to get to the last element
of the list—Groovy has a simpler way. We can use negative index values, and
Groovy will traverse from the right instead of the left:
WorkingWithCollections/CreatingArrayList.groovy

println lst[-1]
println lst[-2]

The previous code gets the last two elements of the list, as we see in the
output:

6
2

We can even get contiguous values from the collection using the Range object:

WorkingWithCollections/CreatingArrayList.groovy
println 1st[2..5]

The four contiguous values in the list, starting from the element at position
2, are as follows:

(4, 1, 8, 9]

We can even use a negative index in the range, as in the following code, which
produces the same result as the previous code:

WorkingWithCollections/CreatingArrayList.groovy
println lst[-6..-3]

Let’s quickly examine what Ist[2..5] actually returned:

WorkingWithCollections/CreatingArrayList.groovy
subLst = 1st[2..5]

println subLst.dump()

subLst[0] = 55

println "After subLst[0]=55 lst = $lst"

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CreatingArrayList.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.2

Iterating Over an ArrayList ® 111

We can see the instance’s details as reported by the dump() method and the
list after the change:
<java.util.ArrayList$SubList@fedbf parent=[1, 3, 4, 1, 8, 9, 2, 6]

parentOffset=2 offset=2 size=4 this$0=[1, 3, 4, 1, 8, 9, 2, 6] modCount=1>
After subLst[0@]=55 1st = [1, 3, 55, 1, 8, 9, 2, 6]

If we use a range like 2..5 as the index, java.util.ArrayList returns an instance that
refers to part of the the original list. So be aware—we did not get a copy; if
we change an element using one list, we're affecting the other.

We can see how Groovy has made the application programming interface (API)
for List much simpler. We are using the same, good old ArrayList, but when seen
through our Groovy eyes, it looks a lot prettier and lighter.

The convenience Groovy offers continues far beyond creating lists, as we’ll
see in the next section.

Iterating Over an ArrayList

We often navigate or iterate over a list of values. Groovy provides elegant ways
to iterate, and to perform operations on the values as we iterate over lists.
Using List’s each Method

As we saw in Chapter 4, Using Closures, on page 71, Groovy provides conve-
nient ways to iterate collections. This iterator, the method named each(), is

also known as an internal iterator. For more information, see Internal vs.
External Iterators, on page 112.

Let’s create an ArraylList and iterate over it using the each() method.

WorkingWithCollections/IteratingArrayList.groovy
st = [1, 3, 4, 1, 8, 9, 2, 6]

lst.each { println it }

We printed each element as we iterated over it, as we can see in the output:

ONOOORF AW

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/IteratingArrayList.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 6. Working with Collections ® 112

We're used to external iterators in languages like C++ and Java. These iterators allow
their user or client to control the iteration. We have to check whether we're at the
end of iteration and explicitly move to the next element.

Internal iterators are popular in languages that support closures—the iterator’s user
or client does not control the iteration, but rather sends a block of code that will be
executed for each element in the collection.

Internal iterators are easier to use—we don’t have to control the iteration. External
iterators are more flexible—we can take control of the iteration sequence, skip ele-
ments, terminate, restart iteration, and so on more easily.

Let’s not let this apparent lack of flexibility dissuade us. Implementors of internal
iteration often take extra effort to provide us with more flexibility and convenience.
In the case of a List, the flexibility to control iteration comes in the form of different
convenience methods we’ll see in this chapter.

We can use the reverseEach() to iterate elements in the reverse order. To keep
a tab of the count or index during iteration, we can use the eachWithindex()
method.

We can do other operations (see Section 4.3, Ways to Use Closures, on page
75), such as summing the elements of the collection, as we see here:

WorkingWithCollections/IteratingArrayList.groovy
total = 0

lst.each { total += it }

println "Total is $total"

The following is the result of executing the code:
Total is 34

Suppose we want to double each element of the collection. Let’s take a stab
at it using the each() method:

WorkingWithCollections/IteratingArrayList.groovy
doubled = []
lst.each { doubled << it * 2 }

println doubled

Here is the result:

[2, 6, 8, 2, 16, 18, 4, 12]

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/IteratingArrayList.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/IteratingArrayList.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.3

Using Finder Methods * 113

We create an empty ArrayList named doubled to hold the result. While iterating
through the collection, we double each element and push the value into the
result using the << operator (leftShift()).

If we want to perform some operations on each element in a collection, the
each() method is our friend, but if we want the operation to yield some result,
we can turn to other methods.

Using List’s collect Method

Groovy provides a simple solution when we want to operate on each element
in a collection and return a resulting collection—it’s the collect() method, which
we see here:

WorkingWithCollections/IteratingArrayList.groovy
println lst.collect { it * 2 }

The collect() method, like each(), invokes the closure for each element of the
collection. However, it collects the return value from the closure into a collec-
tion and finally returns that resulting collection. The closure in the previous
example is returning double the value it’'s given—there’s an implicit return in
the closure. We get back an ArrayList with the input values doubled, as we see
in the output:

[2, 6, 8, 2, 16, 18, 4, 12]

If we want to perform operations on each element of a collection, we use each();
however, if we want a collection of the result of such a computation, we use
the collect() method.

We're not limited to these two internal iterators, as we’ll see next.

Using Finder Methods

We know how to iterate over a collection and perform operations on each
element. However, if we want to search for a particular element, each() or collect()
is not convenient. Instead, we should use find(), like so:

WorkingWithCollections/Find.groovy
st =1[4, 3,1, 2, 4, 1, 8, 9, 2, 6]

println lst.find { it == 2 }

The code picks up the first element, which equals 2, as we see from the output:

2

In this code, we're looking for an object that matches value 2 in the collection.
find() gets the first occurrence of the matching object. In this case, it returns

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/IteratingArrayList.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/Find.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 6. Working with Collections * 114

the object at position 3. Just like the each() method, the find() method iterates
over the collection, but only until the closure returns a true. On receiving a
true, find() breaks from the iteration and returns the current element. If it
never receives a true, then find() returns a null.

We can specify any condition in the closure we attach to find(). For example,
here’s how we’d look for the first element greater than 4:

WorkingWithCollections/Find.groovy
println 1st.find { it > 4 }

The code reports the first number in the list that’s greater than 4:
8

We can also find all occurrences of 2. Just as the find() method behaves like
each(), the findAll() method behaves like collect():

WorkingWithCollections/Find.groovy
println 1st.findAll { it == 2 }

We can see all the 2s that were found in the list:
[2, 2]

In this example, we looked for 2s, and the findAll() method is returning the
objects and not the positions. If we want to find the position of the first
matching object, we can use the findindexOf() method.

In the simplest case, picking all 2s does not sound very useful. However, in
general if we're looking for objects that match some criteria, we will get those
objects. For example, if we look for all cities with populations greater than a
certain number, the result will be a list of the appropriate cities. Returning
to the previous example, if we want all numbers that are greater than 4, here’s
how to get them:

WorkingWithCollections/Find.groovy
println lst.findAll { it > 4 }

All elements greater than 4 are reported:
[8, 9, 6]

You learned how to iterate and to select elements from collections. Because
things we can do with collections go far beyond these operations, Groovy
extends its fluency with more convenience methods, as we’ll see next.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/Find.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/Find.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/Find.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.4

Other Convenience Methods on Lists ® 115

Other Convenience Methods on Lists

Groovy adds a number of convenience methods to Collections. (For a list, refer
to http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html.) Let’s implement an
example using the method we're already familiar with—each(). Then we’ll

refactor that example using methods that will make our code self-contained
and expressive. Along the way, we'll see how Groovy treats code blocks as
first-class citizens, like functional programming languages do.

Suppose we have a collection of strings and want to count the total number
of characters. Here’s a way to do that using the each() method:

WorkingWithCollections/CollectionsConvenienceMethods.groovy
lst = ['Programming', 'In', 'Groovy']

count = 0
lst.each { count += it.size() }
println count

The number of characters found is as follows:
19

Groovy often gives us more than one way to accomplish a task. Here’s
another way using collect() and sum() (both are Groovy-added methods on
Collections):

WorkingWithCollections/CollectionsConvenienceMethods.groovy
println lst.collect { it.size() }.sum()

We're calling the sum() method on the Collection the collect() method returns, and
the code produces the same output as the previous version:

19

The code is a bit terse, but is self-contained: each() is useful to work on every
individual element of a collection and get a cumulative result. However, collect()
is useful if we want to apply some computation on each element of a collection
but retain the result as a collection. We can take advantage of this to apply
other operations (such as the sum() method) that can cascade down on the
collection.

We can do the same using the inject() method:

WorkingWithCollections/CollectionsConvenienceMethods.groovy
println lst.inject(0) { carryOver, element -> carryOver + element.size() }

The output is as follows:

19

www.it-ebooks.info

http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 6. Working with Collections ® 116

inject() calls the closure for each element of the collection. The element is rep-
resented, in this example, by the element parameter. inject() takes as a parameter
an initial value that it will inject, through the carryOver parameter, into the
first call to the closure. It then injects the result from the closure into the
subsequent call to the closure. We'll prefer the inject() method over the collect()
method if we want a cumulative result of applying a computation on each
element of a collection.

Suppose we want to concatenate the elements of the collection into a sentence.
We can do that easily with join():

WorkingWithCollections/CollectionsConvenienceMethods.groovy
println lst.join("' ')

Here is the result of joining the elements:
Programming In Groovy

join() iterates over each element, concatenating every element with the character
given as the input parameter. In this example, the whitespace character is
given as the input parameter, so join() returns the string “Programming In
Groovy.” The join() method comes in handy when we want to concatenate a
collection of paths—for instance, using a colon (:) to form a classpath—using
one simple call.

We can replace an element of a List by assigning it to an index. In the following
code, we're setting ['Be', 'Productive'] to element 0:

WorkingWithCollections/CollectionsConvenienceMethods.groovy
1st[0] = ['Be', 'Productive']
println 1lst

This results in a List within the collection, as we see here:
[[Be, Productive], In, Groovy]
If that’s not what we want, we can flatten the List with the flatten() method:

WorkingWithCollections/CollectionsConvenienceMethods.groovy
1st = lst.flatten()
println 1lst

The result is a flattened single List of objects:
[Be, Productive, In, Groovyl
We can also use the - operator (minus() method) on List, like so:

WorkingWithCollections/CollectionsConvenienceMethods.groovy
println 1st - ['Productive', 'In']

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Other Convenience Methods on Lists ® 117

The elements in the right operand are removed from the collection on the left.
If we provide a nonexistent element, no worries—it’s simply ignored. The -
operator is flexible, so we can provide either a list or a single value for the
right operand. The list that results from the minus operation is as follows:

[Be, Groovy]

We can use the reverse() method to get a copy of the list with the elements in
reverse order.

Here’s another convenience in Groovy: we can easily perform an operation
on each element without explicitly using an iterator:

WorkingWithCollections/CollectionsConvenienceMethods.groovy
println lst.size()
println lst*.size()

The code prints the number of elements and the size of each element:

4
[2, 10, 2, 6]

The first call to size() is on the list, so it returns 4, the current number of ele-
ments in the list. The second call—known as the spread operator because of
the influence of *—is on each element (String in this example) of the list, so it
returns a List with each element holding the size of corresponding elements
in the original collection. The effect of Ist*.size() is the same as Ist.collect { it.size() }.

Finally, let’s see how to use an ArrayList in method calls. If a method takes a
number of parameters, instead of sending individual arguments, we can
explode an Arraylist as arguments; that is, split the collection into individual
objects using the * operator (the spread operator), as we’ll see next. For this
to work correctly, the size of the ArrayList must be the same as the number of
parameters the method expects.

WorkingWithCollections/CollectionsConvenienceMethods.groovy
def words(a, b, ¢, d) {

println "$a $b $c $d"
}

words (*1st)

The following is the result of using the spread operator:

Be Productive In Groovy

We've explored the Groovy facilities to work with a List of objects. Next we’ll
see how to use a Map in Groovy.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.5

Chapter 6. Working with Collections ® 118

Using the Map Class

Java’s java.util.Map is useful when we want to work with an associative set of
key and value pairs. Groovy makes working with Maps simple and elegant with
the use of closures. Creating an instance of Map is also simple, because we
don’t need to use new or specify any class names. Simply create pairs of values:

WorkingWithCollections/UsingMap.groovy
langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

println langs.getClass().name

Let’s confirm in the output the class of the collection we created:

java.util.LinkedHashMap

This example creates a hash map of some languages as keys, and their authors
as values. The keys are separated from their values using a colon (), and the
entire map is placed in a []. This simple Groovy syntax creates an instance
of java.util.LinkedHashMap. We can see that by calling getClass() and getting its name
property. We used the verbose call to the getClass() method instead of favoring
the JavaBean convention and directly accessing the class property. Read further
to see the reason for that little gotcha.

We can access the value for a key using the [] operator, as in the following
code:

WorkingWithCollections/UsingMap.groovy
println langs['Java']
println langs['C++']

The following are the values for the two keys we requested:

Gosling
Stroustrup

If we're expecting something fancier here, Groovy is sure not going to let us
down. We can access the values by using the key as if it were a property of
the Map:

WorkingWithCollections/UsingMap.groovy
println langs.Java

Groovy will return the value for the key used as a property:
Gosling

That is neat—it’s convenient to send a key as if it were a property of the object,
and the Map smartly returns the value. Of course, an experienced programmer
immediately asks, “What’s the catch?” We already saw a catch or gotcha:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/UsingMap.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using the Map Class ® 119

we’re not able to call the class property on the Map; the Map assumes that the
name class refers to a (nonexistent) key and returns a null value. The subsequent
call to the name property on null fails, obviously. Instances of Map and a few
other classes don’t return the Class metaobject when we call the class property.
To avoid surprises, always use the getClass() method instead of the class prop-
erty on instances.

So, we had to call the getClass() method. But what about the key C++? Let’s
try that:

WorkingWithCollections/UsingMap.groovy
println langs.C++ // Invalid code

Here’s the output we get:

java.lang.NullPointerException: Cannot invoke method next() on null object

What the...? We may discard this example code by saying C++ is always a
problem, no matter where we go.

But this problem is actually because of interference from another Groovy
feature—operator overloading (see Section 2.8, Operator Overloading, on page
31). Groovy took the previous request as a get with key “C,” which doesn’t
g{ist. Therefore, it returned a null and then tried to call the next() method (the
operator ++ maps to it). Luckily, there is a workaround for special cases like
this. Simply present the key with offending characters as a String.

WorkingWithCollections/UsingMap.groovy
println langs.'C++'

Now we can celebrate—we get the proper output:
Stroustrup

Groovy adds another convenience to creating maps. When defining a Map, we
can skip the quotes around well-behaved key names. For instance, let’s rewrite
the map of languages and their authors without the quotes around the keys:

WorkingWithCollections/UsingMap.groovy
langs = ['C++' : 'Stroustrup', Java : 'Gosling', Lisp : 'McCarthy']

We know how to create a map and access individual values in the collection.
Next we’ll see how to iterate over collections.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/UsingMap.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.6

Chapter 6. Working with Collections ® 120

Iterating Over Map

Groovy has added quite a few convenience methods to maps.' We can iterate
over a Map, just like how we iterated over an ArrayList (see Section 6.2, Iterating
Over an ArrayList, on page 111).

Map has a flavor of the each() and collect() methods.

Map’s each Method
Let’s look at an example of using the each() method:

WorkingWithCollections/NavigatingMap.groovy
langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

langs.each { entry ->
println "Language $entry.key was authored by $entry.value"

}
The output from the previous code is as follows:

Language C++ was authored by Stroustrup
Language Java was authored by Gosling
Language Lisp was authored by McCarthy

If the closure we attach to each() takes only one parameter, then each() sends
an instance of MapEntry for that parameter. If we want to get the key and the
value separately, we simply provide two parameters in the closure, as in the
following example:

WorkingWithCollections/NavigatingMap.groovy
langs.each { language, author ->
println "Language $language was authored by $author"

}
Here is the output from iterating over the map using two-parameter closure:

Language C++ was authored by Stroustrup
Language Java was authored by Gosling
Language Lisp was authored by McCarthy

This code example iterates over the langs collection using the each() method,
which calls the closure with a key and value. We refer to these two parameters
in the closure using the variable names language and author, respectively.

Similarly, for other methods—such as collect(), find(), and so on—we use one
parameter if we want only the MapEntry and two parameters if we want the key
and the value separately.

1. http://groovy.codehaus.org/groovy-jdk/java/util/Map.html

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://groovy.codehaus.org/groovy-jdk/java/util/Map.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Iterating Over Map * 121

Map's collect Method

Let’s next examine the collect() method in Map. First, it’s similar to the method
in ArrayList in that both methods return a list. However, if we want Map’s collect()
to send our closure a MapEntry, we define one parameter; otherwise, we define
two parameters, one for the key and one for the value, respectively, as shown
here:

WorkingWithCollections/NavigatingMap.groovy

println langs.collect { language, author ->

language.replaceAll("[+]", "P")
}

The code returns the following list:
[CPP, Java, Lispl

In the previous code, we created a list of keys with all occurrences of + replaced
with the character P.

We can easily transform the data in a Map into other representations. For
example, in Section 17.1, Building XML, on page 253, we’ll see how easy it is
to create an XML representation.

Map’s find and findAll Methods
Groovy also adds the find() and findAll() methods to Map. Let’s look at an example:

WorkingWithCollections/NavigatingMap.groovy
println "Looking for the first language with name greater than 3 characters"
entry = langs.find { language, author ->

language.size() > 3

}
println "Found $entry.key written by $entry.value"

The output from using the find() method is as follows:

Looking for the first language with name greater than 3 characters
Found Java written by Gosling

The find() method accepts a closure that takes the key and value (again, use
a single parameter to receive a MapEntry). Similar to its counterpart in ArrayList,
it breaks from the iteration if the closure returns true. In the previous example
code, we're finding the first language with more than three characters in its
name. The method returns null if the closure never returns a true. Otherwise,
it returns an instance of a matching entry in the Map.

We can use the findAll() method to get all elements that match the condition
we're looking for, as in the following example:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

6.7

Chapter 6. Working with Collections ® 122

WorkingWithCollections/NavigatingMap.groovy
println "Looking for all languages with name greater than 3 characters"
selected = langs.findAll { language, author ->
language.size() > 3
}
selected.each { key, value ->
println "Found $key written by $value"

}
The code reports all languages that satisfy the given condition:

Looking for all languages with name greater than 3 characters
Found Java written by Gosling
Found Lisp written by McCarthy

In addition to the internal iterators, Groovy provides powerful convenience
functions to select and group elements in a map, as we’ll see next.

Other Convenience Methods on Maps

Let’s wrap up our discussion of collections by looking at a few convenience
methods of Map.

We saw how the find() method is useful for fetching an element that satisfies
a given condition. However, instead of getting the element, if we're simply
interested in determining whether any elements in the collection satisfy some
condition, we can use the any() method.

Let’s continue with the example of languages and authors from Section 6.6,
Iterating Over Map, on page 120. We can use the any() method to determine
whether any language name has a nonalphabetic character:

WorkingWithCollections/NavigatingMap.groovy
print "Does any language name have a nonalphabetic character? "
println langs.any { language, author ->
language =~ "["A-Za-z]"
}

With C++ among the key values, our code reports the following:
Does any language name have a nonalphabetic character? true

any() takes a closure with two parameters, just like the other methods of Map
we've discussed. The closure in this example uses a regular-expression com-
parison (see Section 5.5, Regular Expressions, on page 106) to determine
whether the language name has a nonalphabetic character.

While the method any() looks for at least one element of the Map to satisfy the
given condition (predicate), the every() method checks whether all elements
satisfy the condition:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Other Convenience Methods on Maps ® 123

WorkingWithCollections/NavigatingMap.groovy
print "Do all language names have a nonalphabetic character? "
println langs.every { language, author ->
language =~ "["A-Za-z]"
}

The output tells us if all elements satisfy the given condition:

Do all language names have a nonalphabetic character? false

If we want to group the elements of a map based on some criteria, we don’t
bother iterating or looping through the map—groupBy() does that. We only have
to specify our criteria as a closure. Here’s an example: friends refers to a map
of some friends (many of whom have the same first name). If we want to group
friends by first name, we can do that with just one call to groupBy(), as shown
in the following code. In the closure attached to groupBy(), we specify what we
like to group—in this example, we strip out the first name from the full name
and return it. In general, we can simply return the property we're interested
in grouping by. For example, if we store friends’ names in a Person object with
the properties firstName and lastName instead of a simple String, we can write the
closure as { itfirstName }. In the following code, groupByFirstname is a map with
the first names as the keys, and the value for each key is itself another map
of first names and the corresponding full names. Finally, we iterate over the
result and print the values.

WorkingWithCollections/NavigatingMap.groovy

friends = [briang : 'Brian Goetz', brians : 'Brian Sletten',
davidb : 'David Bock', davidg : 'David Geary',
scottd : 'Scott Davis', scottl : 'Scott Leberknight',
stuarth : 'Stuart Halloway']

groupByFirstName = friends.groupBy { it.value.split(' ')[0] }

groupByFirstName.each { firstName, buddies ->

println "$firstName : ${buddies.collect { key, fullName -> fullName }.join(',

}
Here is the result in each group:

Brian : Brian Goetz, Brian Sletten
David : David Bock, David Geary

Scott : Scott Davis, Scott Leberknight
Stuart : Stuart Halloway

We have two final conveniences to remember: Groovy’s use of Map for named
parameters—we discussed this in Section 2.2, JavaBeans, on page 19—and
the use of Maps to implement interfaces (see Section 2.6, Implementing Inter-
Jaces, on page 26).

www.it-ebooks.info

|)}u

http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithCollections/NavigatingMap.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 6. Working with Collections * 124

In this chapter, we saw the power of closures mixed into the Java collections
API. As we apply these concepts on our projects, we’ll find that working with
collections is easier and faster, our code is shorter, and it’'s fun. Yes, the
Groovy way brings excitement into what otherwise is a mundane task of
traversing and manipulating collections.

We've taken a tour of the Groovy language capabilities and the fluency Groovy
adds to different APIs. We're ready to move beyond the basic features of the
language. In the next part we’ll cover how to put this language to good use
for operations such as processing XML and accessing databases.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Part II

Using Groovy

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Exploring the GDK

Groovy not only brings the strength of dynamic languages onto the Java Vir-
tual Machine (JVM), but also enhances the good old Java Development Kit
(JDK). When programming with Groovy, we're productive because we enjoy
a better, lighter, and fancier Java APIL

We've seen already in this book that Groovy enhances the JDK with conve-
nience methods, quite a few of which make extensive use of closures. This
extension is called the Groovy Java Development Kit (Groovy JDK) or the
GDK.'

Let’s look at the relationship between the JDK and the GDK in the following
figure. The GDK sits on top of the JDK, so when we pass objects between our
Java code and Groovy code, we are not dealing with any conversions. It’s the
same object on both sides of the languages when we're within the same JVM.
However, what we see on the Groovy side is an object that looks hip, thanks
to the methods Groovy adds to make it convenient to use and to make us
more productive.

(5_’“;;'1: 10/ ARGgAUUIANETANa Uiy Q:JJ)

JDK

Figure 7—The JDK and the GDK

1. http://groovy.codehaus.org/groovy-jdk

www.it-ebooks.info

http://groovy.codehaus.org/groovy-jdk
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

7.1

Chapter 7. Exploring the GDK * 128

We'll find extensions to several classes from the JDK. We discuss a number
of these in various chapters in this book. In this chapter, we’ll focus on two
areas—extensions to the java.lang.Object class and various other extensions to
popular classes.

Using Object Extensions

In this section, we’ll explore some additions to the mother of all classes, the
java.lang.Object class. In Chapter 6, Working with Collections, on page 109, we
saw Groovy-added methods on Collections: each(), collect(), find(), findAll(), any(), and
every(). These are not only available on Collections; we can also use these
methods on any object. This gives us a consistent API to work with individual
objects and collections alike—one of the benefits elicited in the Composite
pattern (see Design Patterns: Elements of Reusable Object-Oriented Software
[GHJV95]). Groovy has added non-collections-related convenience methods
to Object, as well. We won’t go over all of those in this section—we don’t want
this chapter to turn into a complete reference to the GDK library. Instead,
we’ll focus on methods that are likely to pique our interest and those that
we’ll find useful for our everyday tasks.

Using the dump and inspect Methods

If we're curious about what makes an instance of our class, we can easily
find that at runtime using the dump() method:

ExploringGDK/ObjectExtensions.groovy
str = 'hello'

println str
println str.dump()

Let’s look at the details of the object the code prints:

hello
<java.lang.String@5e918d2 value=hello offset=0 count=5 hash=99162322>

dump() lets us take a peek into an object. We can use it for debugging, logging,
and learning. It tells us about the class of the target instance, its hash code,
and its fields.

Groovy also adds another method, inspect(), to Object. This method is intended
to tell what input would be needed to create an object. If unimplemented on
a class, the method simply returns what toString() returns. If our object takes
extensive input, this method will help our class’s users figure out at runtime
what input they should provide.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ObjectExtensions.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Object Extensions ® 129

Using the Context with() Method

JavaScript and VBScript have a nice feature called with that lets us create a
context. Any method called within the scope of with is directed to the context
object, removing redundant references to the instance. In Groovy the Object’s
with() method provides the same capability. (The with() method in Groovy was
introduced as a synonym to identity(), so we can use them interchangeably.) It
accepts a closure as a parameter. Any method call we make within the closure
is automatically resolved to the context object. Let’s look at an example,
starting with code that does not make use of this conciseness:

ExploringGDK/Identity.groovy
1st = [1, 2]
lst.add(3)

lst.add(4)

println lst.size()
println lst.contains(2)

In the preceding code we're calling methods on Ist, which refers to an instance
of ArrayList. There’s no implicit context, and were repeatedly (redundantly)
using the object reference Ist. In Groovy we can set a context using the with()
method, so we can change the code to the following:

ExploringGDK/Identity.groovy
1st = [1, 2]
lst.with {
add(3)
add(4)
println size()
println contains(2)

}
The code is less noisy and produces the following output:

4
true

How does the with() method know to route calls within the closure to the context
object? The magic happens because of the closure’s delegate property (for more
information, see Section 4.9, Closure Delegation, on page 86). Let’s examine
the delegate property along with the this and owner properties within the closure
attached to with():

ExploringGDK/Identity.groovy

lst.with {
println "this is ${this},"
println "owner is ${owner},"
println "delegate is ${delegate}."

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/Identity.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringGDK/Identity.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringGDK/Identity.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 7. Exploring the GDK * 130

The output shows the details of the references we're curious about:

this is Identity@ce56f8,
owner is Identity@ce56f8,
delegate is [1, 2, 3, 4].

When we invoke the with() method, it sets the closure’s delegate property to the
object on which with() is called. As discussed in Section 4.9, Closure Delegation,
on page 86, the delegate has dibs on methods that this doesn’t pick up.

We can benefit from the with() method if we need to call multiple methods on
an object. Take advantage of the context and reduce clutter. We'll find this
method very useful when building domain-specific languages (DSLs). We can
implement scriptlike calls to be implicitly routed to our instance behind the
scenes, as we’ll see in Chapter 19, Creating DSLs in Groovy, on page 295.

Using sleep

The sleep() method added to Object should be called soundSleep, as it ignores
interrupts while sleeping for the given number of milliseconds (approximately).

Let’s look at an example of the sleep() method:

ExploringGDK/Sleep.groovy
thread = Thread.start {
println "Thread started"
startTime = System.nanoTime()
new Object().sleep(2000)
endTime = System.nanoTime()
println "Thread done in ${(endTime - startTime)/10**9} seconds"
}
new Object().sleep(100)
println "Let's interrupt that thread"
thread.interrupt()
thread.join()

The output shows that the thread ignored the interrupts and completes:

Thread started
Let's interrupt that thread
Thread done in 2.000272 seconds

We're using the Groovy-added Thread.start() method here. It’'s a convenient way
to execute a piece of code in a different thread. The difference between calling
sleep() on Object and using the Java-provided Thread.sleep() is that the former
suppresses the InterruptedException if it’s ever raised. If we do care to be inter-
rupted, we don’t have to endure try-catch. Instead, we can use a variation on
the previous sleep() method that accepts a closure to handle the interruption:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/Sleep.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Object Extensions ® 131

ExploringGDK/Sleep.groovy
def playWithSleep(flag)
{
thread = Thread.start {
println "Thread started"
startTime = System.nanoTime()
new Object().sleep(2000) {
println "Interrupted... " + it
flag
}

endTime = System.nanoTime()
println "Thread done in ${(endTime - startTime)/10**9} seconds"

}

thread.interrupt()
thread.join()
}

playWithSleep(true)
playWithSleep(false)

We see in the output how the closure handles the interruption:

Thread started

Interrupted... java.lang.InterruptedException: sleep interrupted
Thread done in 0.00437 seconds

Thread started

Interrupted... java.lang.InterruptedException: sleep interrupted
Thread done in 1.999077 seconds

Within the interrupt handler, we can take any appropriate actions. If we need
to access the InterruptedException, we can—it is available as a parameter to our
closure. If we return a false value from within the closure, sleep() will continue
as if uninterrupted, as we can see in the second call to playWithSleep() in the
previous example.

Accessing Properties Indirectly

We know that Groovy makes it easy to access properties. For example, to get
the property miles of a Car class’s car instance, we can simply call car.miles.
However, this syntax is not helpful if we don’t know the property name at
coding time, such as if the property name depends on user input and we don’t
want to hard-code a branch for all possible input. We can use the [] opera-
tor—the Groovy-added getAt() method maps to this operator—to access
properties dynamically. If we use this operator on the left side of an assign-
ment, then it maps to the putAt() method.

Let’s see an example:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/Sleep.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 7. Exploring the GDK * 132

ExploringGDK/IndirectProperty.groovy
class Car {
int miles, fuellLevel

}
car = new Car(fuellLevel: 80, miles: 25)

properties = ['miles', 'fuellLevel']
// the above list may be populated from some input or
// may come from a dynamic form in a web app

properties.each { name ->
println "$name = ${car[name]}"

}
car[properties[1]] = 100
println "fuellLevel now 1is ${car.fuellLevel}"

We're able to interact with the instance indirectly, as the output shows:

miles = 25
fuellLevel = 80
fuellLevel now is 100

Here we're accessing the miles and fuelLevel properties using the [] operator. We
can use this approach if we receive property names as input; we can
dynamically create and populate web forms, for example. We can easily write
a high-level function that takes a list of property names and an instance and
outputs the names and values in XML, HTML, or any other format we desire.
We can get a list of all an object’s properties by using its properties property;
namely, the getProperties() method.

Invoking Methods Indirectly

If we receive the method name as a String and we want to call that method,
we know how to use reflection to do that—we have to first fetch the Class
metaobject from the instance, call getMethod() to get the Method instance, and,
finally, call the invoke() method on it. And, oh yeah—don't forget those excep-
tions we’ll be forced to handle.

No, we don’'t have to do all that in Groovy; we simply have to call the
invokeMethod() method. All objects support this method in Groovy. Here’s an
example:

ExploringGDK/IndirectMethod.groovy

class Person {

def walk() { println "Walking..." }
def walk(int miles) { println "Walking $miles miles..." }

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/IndirectProperty.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringGDK/IndirectMethod.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

7.2

Other Extensions ® 133

def walk(int miles, String where) { println "Walking $miles miles $where..." }

}
peter = new Person()

peter.invokeMethod ("walk", null)
peter.invokeMethod("walk", 10)
peter.invokeMethod("walk", [2, 'uphill'] as Object[])

Here’s the output of calling the methods indirectly:

Walking...
Walking 10 miles...
Walking 2 miles uphill...

So if we don’t know the method names at coding time but we receive the
names at runtime, we can turn that into a dynamic call on our instance with
a single line of code.

Groovy also provides getMetaClass() to get the metaclass object, which is a key
object for taking advantage of dynamic capabilities in Groovy, as we’ll see in
later chapters.

Groovy’s extension API reaches far beyond the most fundamental class in the
JDK, the Object class, as we’ll see next.

Other Extensions

The GDK extensions go beyond the Object class. Several other JDK classes
and interfaces have been enhanced in the GDK. Again, the list is vast and
we’ll look at only a subset of extensions in this section. These are the exten-
sions we're likely to put to regular use.

Array Extensions

We can use the Range object as an index on all the array types (for the syntax
for creating arrays, see Different Syntax for Creating Primitive Arrays, on page
51), such as int[], double[], and char[]. Here’s how we can access contiguous
values in an int array using the range of index:

ExploringGDK/Array.groovy
int[] arr = [1, 2, 3, 4, 5, 6]

println arr[2..4]

The output shows the values in the given range:

[3, 4, 5]

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/Array.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 7. Exploring the GDK * 134

We're already familiar with a number of convenience methods that the GDK
added to Lists, Collections, and Maps (see Chapter 6, Working with Collections,
on page 109).

Using java.lang Extensions

One of the noticeable additions to the primitive type wrappers like Character,
Integer, and so on is the overloaded operator-mapping methods. These are
methods such as plus() for operator +, next() for operator ++, and so on. We'll
find these methods—operators, we should say—useful when creating DSLs.

Number (which Integer and Double extend) has picked up the iterator methods
upto() and downto(). It also has the step() method (see Ways to Loop, on page 13).
These help iterate over a range of values.

We looked at a few examples to interact with system-level processes in A
Quick Look at the GDK, on page 14. The Process class has convenience methods
to access the stdin, stdout, and stderr commands—the out, in, and err properties,
respectively. It also has the text property that can give us the entire standard

output or response from the process. If we want to read the entire standard
error in one shot, we can use err.text on the process instance. We can use the
<< operator to pipe into a process. (A pipe—|—on Unix-like systems is used
to chain the output from one process into the input of another process.) Here’s
an example to illustrate communicating with a process—the wc program is a
popular utility on Unix-like systems that prints to the standard output the
number of words, lines, and characters it finds in its standard input:

ExploringGDK/UsingProcess.groovy
process = "wc".execute()

process.out.withWriter {
// Send input to process
it << "Let the World know...\n"
it << "Groovy Rocks!\n"

}

// Read output from process
println process.in.text

// or

//println process.text

The output from the preceding code is the result returned by wc—two lines,
six words, and thirty-six characters:

2 6 36

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/UsingProcess.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Other Extensions ® 135

In this code, first we obtain an instance of the process by calling String’s execute()
method. We want to write to wc’s standard input, so we need an OutputStream
from our program. We can obtain that from the process by calling the out
property.

To write content, we can use the << operator. However, once we write to the
stream, we want to flush and close it. We can handle both with one method:
withWriter(). This method attaches an OutputStreamWriter to the OutputStream and
hands it to the closure. When we return from the closure, it flushes and
closes the stream automatically (see Section 4.5, Using Closures_for Resource
Cleanup, on page 78).

Try implementing the previous code using Java, and appreciate not only the
time savings but also the elegance Groovy provides.

If we want to send command-line parameters to the process, we have two
options. We can format the parameters as one string or create a String array
of parameters. String[] supports the execute() method, as well; the first element
is treated as the command to execute, and the remaining elements are con-
sidered command-line arguments to that command. Instead, we can use List’s
execute() method.

Here’s an example of passing command-line parameters to the groovy command:

ExploringGDK/ProcessParameters.groovy

String[] command = ['groovy', '-e', '"“print \'Groovy\'"']
println "Calling ${command.join(' ')}"

println command.execute().text

The preceding code’s executed command and output are as follows:

Calling groovy -e "print 'Groovy'"
Groovy

We can start a process, send parameters, and interact with the process fairly
easily in Groovy. It takes only a couple of lines of code.

If we have to create threads and assign tasks to execute in those separate
threads, Groovy will save us quite a bit of typing. We can start a Thread and
provide it a closure that will be run in a separate thread using the start()
method. If we want that thread to be a daemon thread, we can use the
startDaemon() method instead. A daemon thread quits if there are no active
nondaemon threads currently running—kind of like employees who work only
when the boss is around. Let’s take a look at an example that shows these
two methods in action:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ProcessParameters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 7. Exploring the GDK * 136

ExploringGDK/ThreadStart.groovy
def printThreadInfo(msg) {
def currentThread = Thread.currentThread()
println "$msg Thread is ${currentThread}. Daemon? ${currentThread.isDaemon()}"

}
printThreadInfo 'Main'

Thread.start {
printThreadInfo "Started"
sleep(3000) { println "Interrupted" }
println "Finished Started"

}

sleep(1000)

Thread.startDaemon {

printThreadInfo "Started Daemon"

sleep(5000) { println "Interrupted" }

println "Finished Started Daemon" // Will not get here
}

Here’s the output showing thread information:

Main Thread is Thread[main,5,main]. Daemon? false

Started Thread is Thread[Thread-1,5,main]. Daemon? false
Started Daemon Thread is Thread[Thread-2,5,main]. Daemon? true
Finished Started

The daemon thread in the previous example was aborted as soon as the main
thread and the nondaemon thread we created quit. We can see that to create
threads in Groovy, we don’t need to work with instances of Thread or Runnable.
It's very simple and easy to get going with thread creation.

Using java.io Extensions

A lot of methods have been added to the File class in the java.io package. It has
methods such as eachFile() and eachDir() (and variations of these) that accept
closures and provide easy navigation or iteration through directories and files.

Suppose we want to read the contents of a file. Here’s the Java code for that:

// Java code
import java.io.*;
public class ReadFile {
public static void main(String[] args) {
try {
BufferedReader reader = new BufferedReader (
new FileReader("thoreau.txt"));

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ThreadStart.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Other Extensions ® 137

String line = null;
while((line reader.readLine()) != null) {
System.out.println(line);

}

} catch(FileNotFoundException ex) {
ex.printStackTrace();

} catch(IOException ex) {
ex.printStackTrace();

}

}
}

That’s quite an effort to read a file. Groovy makes this much simpler by adding
a text property to BufferedReader, InputStream, and File so we can read the entire
content of the reader into a String. This is useful if we want to take the entire
output for processing or printing. Here’s the previous code rewritten in Groovy:

ExploringGDK/ReadFile.groovy
println new File('thoreau.txt').text

The output from the previous code—the content of my file thoreau.txt—is as
follows:

"I went to the woods because I wished to live deliberately,
to front only the essential facts of life, and see if I could
not learn what it had to teach, and not, when I came to die,
to discover that I had not lived..."

- Henry David Thoreau

Instead of reading the entire file in one shot, if we want to read and process
one line at a time, we can use the eachLine() method, which calls a closure for
each line of text read:

ExploringGDK/ReadFile.groovy
new File('thoreau.txt').eachLine { line ->
println line // or do whatever you like with that line here

}

If we want to fetch only those lines of text that meet a certain condition, we
can use filterLine(), as shown here:

ExploringGDK/ReadFile.groovy
println new File('thoreau.txt').filterLine { it =~ /life/ }

The filtered lines of text extracted by the previous code look like this:

to front only the essential facts of life, and see if I could

We filtered only the line(s) in the input file that contained the word “life.”

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ReadFile.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ReadFile.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ReadFile.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 7. Exploring the GDK * 138

If we want to automatically flush and close an input stream when we're done
using it, we can use the withStream() method. This method calls the closure it
accepts as a parameter and sends the instance of InputStream as a parameter.
It then flushes and closes the stream as soon as we return from the closure.
The Writer has a similar method, named withWriter(); we saw an example of this
earlier in this section.

InputStream’s withReader() method creates a BufferedReader that’s attached to the
input stream and sends it to the closure that it accepts as a parameter. We
can also obtain a new instance of BufferedReader by calling the newReader() method.

We can iterate over the stream of input in InputStream and DatalnputStream using
an lterator we obtain by calling the iterator() method. Speaking of iterating, we
can conveniently iterate over objects in an ObjectinputStream, as well.

If we want to use a Reader instead, we can. The convenience methods added
to InputStream are still available on it.

We can easily write contents to a file or stream in Groovy. The OutputStream,
ObjectOutputStream, and Writer classes have received a face-lift via the leftShift()
method (the << operator). The following code example uses that operator to
write to a file:

ExploringGDK/ShiftOperator.groovy
new File("output.txt").withWriter{ file ->
file << "some data..."

}

Several other extensions to classes in the java.io package make our life easier
and coding time shorter.

Using java.util Extensions

We discussed Groovy extensions to the collection classes in Chapter 6,
Working with Collections, on page 109. In this section, we’ll check out a few
other extensions to classes in the java.util package.

List, Set, SortedMap, and SortedSet have gained the method asimmutable() to obtain
an immutable instance of their respective instances. They also have a method
asSynchronized() to create an instance that is thread-safe.

The lterator supports the inject() method we discussed in Section 6.4, Other
Convenience Methods on Lists, on page 115.

A runAfter() method has been added to the java.util.Timer class. The syntax is
easier to use because this method accepts a closure that will run after a given
delay, in milliseconds.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringGDK/ShiftOperator.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

7.3

Custom Methods Using the Extension Modules ® 139

As we've discussed in this chapter, Groovy adds a number of methods at the
java.lang.Object level. There are methods that let us peek into an object for
debugging, logging, or informational purposes, and methods that let us treat
a single object and a collection of objects using a consistent interface, such
as the Composite pattern.

Object also supports methods for metaprogramming to dynamically access
properties and invoke methods. The high level of abstraction that these
methods have collectively built reduces our application-code size and the time
we need for routine tasks.

We also can use specialized methods on different classes—Groovy enhances
the API for several classes and interfaces—Matcher, Writer, Reader, List, Map,
Socket...the list goes on. The GDK has extensions for several JDK classes and
interfaces. The GDK is far too large for us to cover entirely in this book; visit
http://groovy.codehaus.org/groovy-jdk for a comprehensive and updated list of the
GDK API.

When we're programming in Groovy, we need to refer to both the JDK and
the GDK. If we don’t find what we're looking for in the JDK, we must
remember to check the GDK to see if it supports the feature.

Custom Methods Using the Extension Modules

Groovy 2.x helps us move quickly beyond the privilege of using methods added
to the GDK. Using the extension-modules feature, we can add our own
instance or static methods to existing classes at compile time and use them
throughout the application at runtime. Let’s take a look at the simple steps
we have to follow for this using an example.

We need two things for this feature to work: First, a method we want to add
must be defined in an extension-module class. Second, we need a descriptor
file in the manifest file to tell the Groovy compiler what extension-module
classes to look for.

Let’s create two extension methods—an instance method and a static
method—both on the String class, to get the price for a given stock. Once we
introduce these extension methods, anyone who includes, in their classpath,
the jar file containing these classes can invoke these methods as if they were
provided in the JDK or the GDK.

Both types of extension methods have to be defined as static, and the first
parameter should be of the type on which the method is expected to be added.
The definition provides as additional parameters any arguments the extension
method is expected to take.

www.it-ebooks.info

http://groovy.codehaus.org/groovy-jdk
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 7. Exploring the GDK * 140

Here’s an instance extension method on the String class, written in a extension
helper class PriceExtension (here we write it as a Groovy class, but it could be
in any JVM language, including Java).

Extension/com/agiledeveloper/PriceExtension.groovy
package com.agiledeveloper;

class PriceExtension {
public static double getPrice(String self) {
def url = "http://ichart. finance.yahoo.com/table.csv?s=$self".toURL()

def data = url.readLines()[1].split(",")
Double.parseDouble(data[-1])
}
}

The getPrice() method is defined as static, and the first parameter tells to which
class this method will be added. The code does not quite tell what type of
method this will be added as, instance or static; that information goes in the
manifest declaration, as we’ll see soon.

Let’s define a static extension method for the same purpose.

Extension/com/agiledeveloper/PriceStaticExtension.groovy
package com.agiledeveloper;

class PriceStaticExtension {
public static double getPrice(String selfType, String ticker) {
def url = "http://ichart.finance.yahoo.com/table.csv?s=$ticker".toURL()

def data = url.readLines()[1].split(",")
Double.parseDouble(datal-1])
}
}

This getPrice() method takes two parameters, the first one to tell which class
this method will be added to, and the second for the actual value of the stock
to get the price for. In the first version of the method the stock was implicitly
contained in the instance; however, in this version it has to be passed in as
a parameter since the method will be run in the static context of the String
class.

We have the helper classes with the extension methods ready. We need to
declare their presence and bundle that declaration into a jar file along with
the compiled classes. Here’'s the declaration, in the file named org.code-
haus.groovy.runtime.ExtensionModule, under the directory META-INF/services:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/Extension/com/agiledeveloper/PriceExtension.groovy
http://media.pragprog.com/titles/vslg2/code/Extension/com/agiledeveloper/PriceStaticExtension.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Custom Methods Using the Extension Modules ¢ 141

Extension/manifest/META-INF/services/org.codehaus.groovy.runtime.ExtensionModule
moduleName=price-module

moduleVersion=1.0-test
extensionClasses=com.agiledeveloper.PriceExtension
staticExtensionClasses=com.agiledeveloper.PriceStaticExtension

The declaration file contains four key-value pairs of information. moduleName
is a logical name we give for the module. moduleVersion is useful to check if the
version is already loaded. extensionClasses is a comma-separated name of the
helper classes with instance extension methods. Finally, staticExtensionClass is
a comma-separated name of the helper classes with static extension methods.

Let’s use the following command to compile the two helper classes and create
the necessary jar file:

$ groovyc -d classes com/agiledeveloper/*.groovy
$ jar -cf priceExtensions.jar -C classes com -C manifest .

The priceExtensions.jar file contains the compiled helper classes along with the
manifest file.

Let’s create an example Groovy file to use these extension methods:

Extension/FindPrice.groovy
def ticker = "ORCL"

println "Price for $ticker using instance method is ${String.getPrice(ticker)}"
println "Price for $ticker using static method is ${ticker.getPrice()}"

We invoke both the instance and the static extension methods. To bring these
in we have to include the priceExtensions.jar file in the classpath, like in the com-
mand below:

$ groovy -classpath priceExtensions.jar FindPrice.groovy

Groovy will seamlessly bring in the extension methods, based on the informa-
tion we provided in the manifest. The following output shows the result of
calling these extension methods:

Price for ORCL using instance method is 34.75
Price for ORCL using static method is 34.75

We saw the Groovy extensions to the JDK methods and how to add custom
extensions. Groovy also offers its own powerful set of libraries for various
tasks. In the next chapter you'll learn how Groovy elegantly handles the
otherwise-mundane task of processing XML.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/Extension/manifest/META-INF/services/org.codehaus.groovy.runtime.ExtensionModule
http://media.pragprog.com/titles/vslg2/code/Extension/FindPrice.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

8.1

CHAPTER 8

Working with XML

Working with XML can be tedious. Working with traditional Java APIs and
libraries to create and parse XML documents tends to lower our spirits. And
navigating the document hierarchy using the DOM API is sure to drive us
insane.

Groovy brings relief for both parsing and creating XML documents. We already
saw a few ways to create XML documents. We'll revisit that topic in this
chapter and learn to use three different facilities to parse XML documents,
with varying degrees of convenience and efficiency. We will also browse
Groovy’s support for creating XML documents.

Parsing XML

In Groovy we can use the Java-based parsing approaches and tools we are
already familiar with if we have some special need or reasons to depend on
the older APIs or have legacy code that already uses them. If we have working
Java code to parse XML documents, we can reuse those readily in Groovy.
Groovy does not force us to duplicate our efforts.

If we're creating new code to parse XML, though, we can benefit from the
Groovy facilities.

On a recent project, I had to populate an application with data from some
400 XML documents. At first glance, that task was intimidating; the sheer
volume of files to deal with was enough to dissuade me. After quickly browsing
through several files, I decided to use Groovy to process the files, parse the
XML documents, and populate the application. The XmlSlurper class, along with
about 30 lines of Groovy code, was enough to get the job done.

Groovy parsers are fairly powerful, they’re convenient to use, and they support
namespaces, as we'll see in this section.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 8. Working with XML ¢ 144

For the examples in the rest of this chapter, we’ll work with an XML document
(shown next) with a list of languages and authors:

WorkingWithXML/languages.xml
<languages>
<language name="C++">
<author>Stroustrup</author>
</language>
<language name="Java">
<author>Gosling</author>
</language>
<language name="Lisp">
<author>McCarthy</author>
</language>
<language name="Modula-2">
<author>Wirth</author>
</language>
<language name="Oberon-2">
<author>Wirth</author>
</language>
<language name="Pascal">
<author>Wirth</author>
</language>
</languages>

Using DOMCategory

We can use Groovy categories to define dynamic methods on classes. We'll
discuss categories in detail in Section 13.1, Injecting Methods Using Categories,
on page 193. Groovy provides a category for working with the Document Object
Model (DOM)—DOMCategory. Groovy simplifies the DOM application programming
interface (API) by adding convenience methods.

We can use DOMCategory to navigate the DOM structure using GPath-like
notation.

We can access all child elements simply using the child name. For example,
instead of calling getElementsByTagName('name'), use the property name to get it,
as in rootElement.language. That is, given the root element, languages, a simple call
rootElement.language will get all the language elements. The DOM parser gives the
rootElement; in the following example, we’ll use the DOMBuilder’s parse() method to
get the document loaded in memory.

We can obtain the value for an attribute by placing an @ before the attribute
name, as in language.@name.

In the following code, we use DOMCategory to fetch language names and authors
from the document:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithXML/languages.xml
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Parsing XML ¢ 145

Much like how XPath helps navigate the hierarchy of an XML document, GPath helps
navigate the hierarchy of objects (plain old Java objects and plain old Groovy objects
—POJOs and POGOs, respectively)—and XML. We can traverse the hierarchy using
the . (dot) notation. For example, the notation car.engine.power will help access an engine
property of a car instance using its getEngine() method. The notation will then help get
to a power property of the engine instance using its getPower() method. Instead of being
an object, if we're dealing with a XML document, the notation will help us obtain a
child element power of an element engine, which in turn is a child element of an element
car. Instead of accessing an element, we can access a year attribute of a car, using the
notation car.'@year' (or car.@year). The @ symbol indicates an attribute instead of a child
element.

WorkingWithXML/UsingDOMCategory.groovy
document = groovy.xml.DOMBuilder.parse(new FileReader('languages.xml'))

rootElement = document.documentElement

use(groovy.xml.dom.DOMCategory) {
println "Languages and authors"
languages = rootElement.language

languages.each { language ->
println "${language. '@name'} authored by ${language.author[O].text()}"
}

def languagesByAuthor = { authorName ->
languages.findAll { it.author[0].text() == authorName }.collect {
it.'@name' }.join(', ")

}

println "Languages by Wirth:" + languagesByAuthor('Wirth')
}

Here’s data extracted using the previous code:

Languages and authors

C++ authored by Stroustrup

Java authored by Gosling

Lisp authored by McCarthy

Modula-2 authored by Wirth

Oberon-2 authored by Wirth

Pascal authored by Wirth

Languages by Wirth:Modula-2, Oberon-2, Pascal

DOMCategory is useful for parsing an XML document using the DOM API with
the convenience of GPath queries and Groovy’s dynamic elegance.

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/WorkingWithXML/UsingDOMCategory.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 8. Working with XML * 146

To use the DOMCategory, we must place the code within the use() block. The
other two approaches we’ll see in this chapter don’t have that restriction. In
the previous example, we extracted the desired details from the document
using the GPath syntax. We also wrote a custom method or filter to get only
those languages written by Wirth.

Using XMLParser

The class groovy.util.XMLParser exploits Groovy’s dynamic typing and metapro-
gramming capabilities. We can access the members of our document directly
by name. For example, we can access an author’s name using it.author[0].

Let’s use the XMLParser to fetch the desired data from the language’s XML
document:

WorkingWithXML/UsingXMLParser.groovy
languages = new XmlParser().parse('languages.xml')

println "Languages and authors"

languages.each {
println "${it.@name} authored by ${it.author[0].text()}"
}

def languagesByAuthor = { authorName ->
languages.findAll { it.author[0].text() == authorName }.collect {
it.@name }.join(', ')

println "Languages by Wirth:" + languagesByAuthor('Wirth')

The code is much like the example we saw in Using DOMCategory, on page
144. The main difference is the absence of the use() block. XMLParser has added
the convenience of iterators to the elements, so we can navigate easily using
methods such as each(), collect(), and find().

Using XMLParser has a couple of downsides: it does not preserve the XML
InfoSet, and it ignores the XML comments and processing instructions in
documents. The convenience it provides makes it a great tool for most common
processing needs. However, if we have other specific needs, we have to explore
more-traditional parsers.

Using XMLSlurper

For large document sizes, the memory usage of XMLParser might become pro-
hibitive. The class XMLSlurper comes to rescue in these cases. It is similar to

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithXML/UsingXMLParser.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Parsing XML ¢ 147

XMLParser in usage. The following code is almost the same as the code in Using
XMLParser, on page 146:

WorkingWithXML/UsingXMLSlurper.groovy
languages = new XmlSlurper().parse('languages.xml')
println "Languages and authors"

languages.language.each {
println "${it.@name} authored by ${it.author[0].text()}"
}

def languagesByAuthor = { authorName ->
languages.language.findAll { it.author[0].text() == authorName }.collect {
it.@name }.join(', ')
}
println "Languages by Wirth:" + languagesByAuthor('Wirth')

We can parse XML documents with namespaces in them, as well. Namespaces
remind me of when I got a call from a company in Malaysia interested in
training that involved extensive coding to emphasize test-driven development.
I asked, in the middle of the conversation, what language I would be using.
After a pause, the gentleman said reluctantly, “English, of course. Everyone
on my team speaks English well.” What I had actually meant was “What
computer language would I be using?” This is an example of context and
confusion in daily conversations. XML documents have the same issue, and
namespaces can help deal with name collisions.

Remember that namespaces are not URLs, but they are required to be unique.
The prefixes we use for namespaces in our XML document are not unique.
We can make them up as we please (well, with some naming restrictions). So,
to refer to a namespace in our query, we need to associate a prefix with it.
We can do that using the declareNamespaces() method, which takes a map of
prefixes as keys and namespaces as values. Once we define the prefixes, our
GPath queries can contain prefixes for names, as well. element.name will return
all child elements with name, independent of the namespace; however,
element.'ns:name' will return only elements with the namespace that ns is asso-
ciated with. Let’s look at an example. Suppose we have an XML document
with names of computer and natural languages, as shown here:

<languages xmlns:computer="Computer" xmlns:natural="Natural">
<computer:language name="Java"/>
<computer:language name="Groovy"/>
<computer:language name="Erlang"/>
<natural:language name="English"/>
<natural:language name="German"/>
<natural:language name="French"/>
</languages>

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithXML/UsingXMLSlurper.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

8.2

Chapter 8. Working with XML * 148

The element name language falls into either a “Computer” namespace or a
“Natural” namespace. The following code shows how to fetch both all language
names and only “Natural” languages:

WorkingWithXML/UsingXMLSlurperWithNS.groovy
languages = new XmlSlurper().parse(
'computerAndNaturallLanguages.xml').declareNamespace(human: 'Natural')

print "Languages: "
println languages.language.collect { it.@name }.join(', ')

print "Natural languages:
println languages. 'human:language'.collect { it.@name }.join(', ')

The following data is extracted using the code:

Languages: Java, Groovy, Erlang, English, German, French
Natural languages: English, German, French

For large XML documents, we’d want to use the XMLSlurper. It performs a lazy
evaluation, so it’s kind on memory usage and has low overhead.

In addition to the nice parsing APIs, Groovy makes it easy to go in the opposite
direction, to create XML documents—we’ll glance at different ways in the next
section.

Creating XML

When creating business applications, we often have a number of reasons to
present data in XML format—as a way to store the state of an application, to
communicate with web services, to represent some configuration data, and
so on. Whatever the need, Groovy makes it quite easy to create XML
documents.

We can use the full power of Java APIs to generate XML. If we have a partic-
ular favorite Java-based XML processor, such as Xerces, we can use it with
Groovy as well.' This might be a good approach if we already have working
code in Java to create XML documents in a specific format and want to use
it in our Groovy projects.

If we want to create an XML document using a pure-Groovy approach, we
can use GString’s ability to embed expressions into a string, along with Groovy’s
facility for creating multiline strings. This facility is useful for creating small
XML fragments that we may need in code and tests. Here’s a quick example
(refer to Section 5.3, Multiline Strings, on page 103 for more details):

1. http://xerces.apache.org/xerces-j

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithXML/UsingXMLSlurperWithNS.groovy
http://xerces.apache.org/xerces-j
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

WorkingWithStrings/CreateXML.groovy
langs = ['C++' : 'Stroustrup', 'Java'
content = "'
langs.each { language, author ->
fragment = """
<language name="${language}">
<author>${author}</author>
</language>

content += fragment

}

'Gosling', 'Lisp'

xml = "<languages>${content}</languages>"

println xml

Here is the XML document produced:

<languages>
<language name="C++">
<author>Stroustrup</author>
</language>

<language name="Java">
<author>Gosling</author>
</language>

<language name="Lisp">
<author>McCarthy</author>
</language>
</languages>

Creating XML * 149

'McCarthy']

Alternatively, we can use the MarkupBuilder or StreamingMarkupBuilder to create XML-
formatted data output from an arbitrary source. This is the preferred approach
in Groovy applications because the convenience the builders provide makes
it easy to create XML documents. We don’t have to mess with complex APIs
or string manipulation; it’s all plain, simple Groovy. Again, here’s a quick
example (refer to the discussion in Section 17.1, Building XML, on page 253,

for details of using both the MarkupBuilder and StreamingMarkupBuilder):

UsingBuilders/BuildUsingStreamingBuilder.groovy
langs = ['C++' : 'Stroustrup', 'Java'

xmlDocument = new groovy.xml.StreamingMarkupBuilder().bind {

mkp.xmlDeclaration()

'Gosling', 'Lisp'

mkp.declareNamespace(computer: "Computer")

languages {

comment << "Created using StreamingMarkupBuilder"

langs.each { key, value ->
computer.language(name: key) {

www.it-ebooks.info

'McCarthy']

http://media.pragprog.com/titles/vslg2/code/WorkingWithStrings/CreateXML.groovy
http://media.pragprog.com/titles/vslg2/code/UsingBuilders/BuildUsingStreamingBuilder.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 8. Working with XML * 150

author (value)
}
}
}
}

println xmlDocument

The XML document produced by the code is as follows:

<?xml version="1.0"7>
<languages xmlns:computer="'Computer'>
<!--Created using StreamingMarkupBuilder-->
<computer:language name='C++'>
<author>Stroustrup</author>
</computer:language>
<computer:language name='Java'>
<author>Gosling</author>
</computer:language>
<computer:language name='Lisp'>
<author>McCarthy</author>
</computer:language>
</languages>

If our data resides in a database or a Microsoft Excel file, we can mix that
with the techniques we’ll look at in Chapter 9, Working with Databases, on
page 151. Once we fetch the data from the database, we can insert it into the
document using any of the approaches we have discussed.

In this chapter, we saw how Groovy helps parse XML documents. Groovy can
make working with XML bearable. If our users don’t like maintaining XML
configuration files (who does?), they can create and maintain Groovy-based
DSLs that we can transform to the XML formats our underlying frameworks
or libraries expect. If we're on the receiving end of the XML documents, we
can rely on Groovy to give us an object representation of the XML data.

Once we have the data on hand, we know how to use Groovy to present it in
XML format. We discuss these topics in depth throughout this book, and we’ll
see more-detailed code examples. In the next chapter you’ll learn how to fetch
the data from a database right from our Groovy code.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

9.1

CHAPTER 9

Working with Databases

I have a remote database that I update frequently. Accessing it through the
browser was rather slow, but I had put away the task to automate the update
process. I was simply not inclined to write mundane Java code for that
task—nothing exciting or new to learn in that. That was before I came across
Groovy SQL (GSQL). Now my updates are automated, fast, and totally effort-
less. With GSQL I have more data than code in my update script—that’s a
great signal-to-noise ratio.

Working with databases is common, but can get tedious and boring really
quickly. GSQL is a wrapper around Java Database Connectivity (JDBC) that
provides a number of convenience methods to easily access data. We can
quickly create SQL queries and then use built-in iterators to traverse the
results, all using Groovy syntax.

In this chapter we’ll explore the power of GSQL. You'll learn to write SQL
select queries, generate XML data from the results, perform insertions and
updates of data, and see ways to access data from an Excel file.

Setting Up the Database

We'll use MySQL in the examples in this chapter; however, we can use any
database that we can access using JDBC. First let’s set up the database we’ll
use in the examples, with a table named weather. The table contains names
of and temperature values for some cities.

It's easier to set up the database using an automated script than to do it
manually. So, let’s create a SQL script to build the database:

create database if not exists weatherinfo;
use weatherinfo;

drop table if exists weather;

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

9.2

Chapter 9. Working with Databases ® 152

create table weather (
city varchar(100) not null,
temperature integer not null

);

insert into weather (city, temperature) values ('Austin', 48);

((

insert into weather (city, temperature) values ('Baton Rouge', 57);
insert into weather (city, temperature) values ('Jackson', 50);
insert into weather (city, temperature) values ('Montgomery', 53);
insert into weather (city, temperature) values ('Phoenix', 67);
insert into weather (city, temperature) values ('Sacramento', 66);
insert into weather (city, temperature) values ('Santa Fe', 27);
insert into weather (city, temperature) values ('Tallahassee', 59);

In the script, we defined the schema for a table named “weather” and popu-
lated the table with some sample data. Let’s save this script to a file named
createdb.sgl and run the script to create the database using the command mysq|
--user=root < createdb.sql.

Now the database is ready; let’s look at different ways to access it from Groovy
code.

Connecting to a Database

To connect to a database, simply create an instance of groovy.sql.5ql by calling
the static method newlInstance(). One version of this method accepts the database
URL, user ID, password, and database-driver name as parameters. If we
already have a java.sql.Connection instance or a java.sql.DataSource, then instead of
using newlnstance(), we can use one of the constructors for Sql that accepts
those.

We can obtain the information about the connection by calling the Sq
instance’s getConnection() method (the connection property). When we're finished,
we can close the connection by calling the close() method. Here is an example
of connecting to the database we created for this chapter:

WorkingWithDatabases/Weather.groovy
def sql = groovy.sql.Sql.newInstance('jdbc:mysql://localhost:3306/weatherinfo’,
userid, password, 'com.mysql.jdbc.Driver")

println sql.connection.catalog

The preceding code reports the name of the database as follows:

weatherinfo

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

9.3

Database Select ® 153

Database Select

We can use the Sql object to conveniently iterate through data in a table.
Simply call the eachRow() method, provide it with a SQL query to execute, and
give it a closure to process each row of data, thusly:

WorkingWithDatabases/Weather.groovy

println "City Temperature"

sql.eachRow('SELECT * from weather') {
printf "%-20s%s\n", it.city, it[1]

}

The data fetched using the previous code is as follows:

City Temperature
Austin 48
Baton Rouge 57
Jackson 50
Montgomery 53
Phoenix 67
Sacramento 66
Santa Fe 27
Tallahassee 59

We asked eachRow() to execute the SQL query on the weather table to process
all its rows. We then iterated (as the name each indicates) over each row.
There’s more grooviness here—we can use the GroovyResultSet object that eachRow()
provides to access the columns in the table either directly by name (as in
it.city) or using the index (as in it[1]).

In the previous example, we hard-coded the header for the output. It would
be nice to get this from the database instead. Another overloaded version of
eachRow() will do that. It accepts two closures—one for metadata and the other
for data. The closure for metadata is called only once (after the execution of
the SQL statement) with an instance of ResultSetMetaData, and the other closure
is called once for each row in the result. Let’s give that a try in the following
code:

WorkingWithDatabases/Weather.groovy
processMeta = { metaData ->
metaData.columnCount.times { i ->
printf "%-21s", metaData.getColumnLabel(i+1)
}
println ""

}

sql.eachRow('SELECT * from weather', processMeta) {
printf "%-20s %s\n", it.city, it[1]
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

9.4

Chapter 9. Working with Databases ® 154

The output shows the header created using the metadata, followed by the
rows of data:

city temperature
Austin 48
Baton Rouge 57
Jackson 50
Montgomery 53
Phoenix 67
Sacramento 66
Santa Fe 27
Tallahassee 59

If we want to process all the rows but don’t want to use an iterator, we can
use the rows() method on the Sql instance. It returns an ArraylList instance of
result data, as shown here:

WorkingWithDatabases/Weather.groovy
rows = sql.rows('SELECT * from weather')

println "Weather info available for ${rows.size()} cities"

The code reports this:

Weather info available for 8 cities

Call the firstRow() method instead to get only the first row of results.

We can perform stored-procedure calls using the call() methods of Sql. Use the
withStatement() method to set up a closure that will be called before the execution
of queries. This will help if we want to intercept and alter the SQL queries
before execution.

Transforming Data to XML

We can get the data from the database and create different representations
using Groovy builders. Here is an example that creates an XML representation
(see Section 17.1, Building XML, on page 253) of the data in the weather table:

WorkingWithDatabases/Weather.groovy
bldr = new groovy.xml.MarkupBuilder()

bldr.weather {
sql.eachRow('SELECT * from weather') {
city(name: it.city, temperature: it.temperature)
}
}

The code produces this XML output:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

9.5

Using DataSet ® 155

WorkingWithDatabases/Weather.output

<weather>
<city name='Austin' temperature='48' />
<city name='Baton Rouge' temperature='57' />
<city name='Jackson' temperature='50' />
<city name='Montgomery' temperature='53"' />
<city name='Phoenix' temperature='67' />
<city name='Sacramento' temperature='66' />
<city name='Santa Fe' temperature='27' />
<city name='Tallahassee' temperature='59' />

</weather>

With hardly any effort, Groovy and GSQL help us create an XML representation
of data from the database.

Using DataSet

In Section 9.3, Database Select, on page 153, we saw how to process the results
set obtained from executing a SELECT query. If we want to receive only a filtered
set of rows, such as only cities with temperature values below 32, we can set
up the query accordingly. Alternatively, we can receive the result as a
groovy.sql.DataSet to filter data. Let’s examine this further.

The dataSet() method of the Sql class takes a table’s name and returns a virtual
proxy—it does not fetch the actual rows until we iterate. We can then iterate
over the rows using the each() method of the DataSet (like the eachRow() method
of Sql). In the following code, however, we’ll use the findAll() method to filter the
results to obtain only cities with below-freezing temperatures. When we invoke
findAll(), the DataSet is further refined with a specialized query based on the
select predicate we provide. The actual data is still not fetched until we call
the each() method on the resulting object. As a result, DataSet is highly efficient,
extracting only data that is selected.

WorkingWithDatabases/Weather.groovy
dataSet = sql.dataSet('weather')
citiesBelowFreezing = dataSet.findAll { it.temperature < 32 }
println "Cities below freezing:"
citiesBelowFreezing.each {
println it.city
}

The output from the code using the previous DataSet is as follows:

Cities below freezing:
Santa Fe

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.output
http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

9.6

9.7

Chapter 9. Working with Databases ® 156

Inserting and Updating

We can use the DataSet object to add data, not just filter data. The add() method
accepts a map of data to create a row, as shown in the following code:

WorkingWithDatabases/Weather.groovy

println "Number of cities : " + sql.rows('SELECT * from weather').size()
dataSet.add(city: 'Denver', temperature: 19)
println "Number of cities : " + sql.rows('SELECT * from weather').size()

The following output shows the effect of executing that code:

Number of cities : 8
Number of cities : 9

More traditionally, however, we can insert data using the Sql class’s execute()
or executelnsert() method, as shown here:

WorkingWithDatabases/Weather.groovy
temperature = 50
sql.executeInsert("""INSERT INTO weather (city, temperature)
VALUES ('Oklahoma City', ${temperature})""")
println sql.firstRow(
"SELECT temperature from weather WHERE city='0Oklahoma City'")

The output from the previous code is as follows:
[temperature:50]

We can perform updates and deletions in a similar way by issuing the
appropriate SQL commands.

Accessing Microsoft Excel

We can use the Sql class to access Microsoft Excel, as well. For information
on interacting with COM or ActiveX, take a look at Groovy’s Scriptom applica-
tion programming interface (API)." In this section we’ll create a really simple
example using things we've seen already, except that we’ll be talking to Excel
instead of MySQL. Let’s first create an Excel file named weather.xIsx (or weather.xls
in older versions of Excel).

Create it in the c:\temp directory. The file will contain a worksheet with the
name temperatures (see the bottom of the worksheet) and the content shown in
Figure 8, An Excel file that we will access using GSQL, on page 157.

The code to access Excel is as follows:

1. http://groovy.codehaus.org/COM+Scripting

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Weather.groovy
http://groovy.codehaus.org/COM+Scripting
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Accessing Microsoft Excel ® 157

o £l weather.xlsx - Microsoft Excel ™ x
g8
nme | I Pagﬁvout Formulas ia @ - = x
: H !
= ﬁ =
P_ t = Font | Ali t |Mumb Styl Cell j ﬂﬂ'
aste an Iignmen umber es ells
= 7 = - = = = 7
Clipboard M= Editing
| A5 [& | ¥
A B - D E F G
1 City Temperature i
2 |Denver 19 I
3 |Boston 12
4 New York 22
5
L]
1]
M 4 » M| temperatures -~ Sheet? - Sheet3|l I |
Ready £ |31/ [{y20088 ()

Figure 8—An Excel file that we will access using GSQL

WorkingWithDatabases/Excel/Windows/AccessExcel.groovy

def sql = groovy.sql.Sql.newInstance(
"""jdbc:odbc:Driver=

{Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb)};
DBQ=C:/temp/weather.xlsx; READONLY=false""", '', '')

println "City\t\tTemperature"
sql.eachRow('SELECT * FROM [temperatures$]') {
println "${it.city}\t\t${it.temperature}"

}

Here’s the data obtained from the Excel file using the previous code:

City Temperature
Denver 19.0
Boston 12.0
New York 22.0

In the call to newlnstance(), we've specified the driver for Excel and the location
of the Excel file. Instead of this, we could set up a data-source name (DSN)
for the Excel file and use the good old Java Database Connectivity-Open
Database Connectivity (JDBC-ODBC) driver bridge if we want.

If we do that, we won’t put the file location in the code. Instead, we’ll configure
the data source name (DSN) on Windows. The rest of the code to execute the
query and process the result is familiar.

www.it-ebooks.info

report erratum -

discuss

http://media.pragprog.com/titles/vslg2/code/WorkingWithDatabases/Excel/Windows/AccessExcel.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 9. Working with Databases ® 158

In this chapter, we used GSQL to access relational data. We can benefit from
this API's simple yet powerful capability for our data access. It takes only a
few lines of code and a few minutes before our application can read and write
real data.

We've come a long way and picked up quite a few APIs and Groovy program-
ming techniques. One of Groovy’s key strengths is its ability to integrate and
coexist with Java. In the next chapter we’ll talk about how to integrate code
between these two languages.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.1

cHAPTER 10

Working with Scripts and Classes

Java is one of the most (if not the most) popular mainstream enterprise lan-
guages. Although we can use Groovy standalone, it’s highly likely that we’ll
intermix it with Java. Groovy and Java code evolving side by side is a common
usage scenario in projects that use Groovy. Learning how to intermix code
written in these languages will help us to adopt Groovy quickly in our
applications.

Calling Java code from within Groovy is quite trivial and straightforward. At
first glance, the reverse of this does not appear simple. Groovy methods may
accept closures and Groovy classes may have dynamic methods—methods
that come to life at runtime. Is it even possible to access these, and if so, how
hard would it be? Questions race through our minds. In this chapter we will
answer these questions.

We will see how to jointly compile Java and Groovy code, use Groovy code
from within Java, and create Groovy closures from within Java; we’ll even
explore how to call Groovy dynamic methods from within Java code—all
without breaking a sweat.

The Melting Pot of Java and Groovy

In our applications, we can implement a certain functionality in a Java class,
a Groovy class, or a Groovy script. Then we can call this functionality from
within Java classes, Groovy classes, or Groovy scripts. Figure 9, Ways to mix
Java classes, Groovy classes, and scripts, on page 160 shows the various

options for mixing Java classes, Groovy classes, and Groovy scripts.

To use Groovy classes from Groovy code, we don’t have to do anything. It just
works. We simply make sure the classes we depend on are in the classpath,
either as source or as bytecode. To pull a Groovy script into our Groovy code,
we can use GroovyShell. To use it from within our Java classes, we can use the

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.2

Chapter 10. Working with Scripts and Classes ® 160

ScriptEngine API provided by JSR 223. If we want to use a Groovy class from
within a Java class, or vice versa, we can take advantage of the Groovy joint-
compilation facility. All these are really simple, as we’ll see in the rest of this
chapter.

W Groovy Script %

It just works It just works/
Groovy Code —J—>/t. Groovy Class «j—=-2r compllation] V2 Code
Todust y,
Oint g om Orks/
Pilaticn~ Java Class

Figure 9—Ways to mix Java classes, Groovy classes, and scripts

First we’ll look at the options for running Groovy. Then we’ll see how to mix
Groovy classes and scripts with both Java and Groovy.

Running Groovy

We have two options for running Groovy code. First, we can use the groovy
command on our source code. Then Groovy automatically compiles code in
memory and executes it. We don’t have to take an explicit step to compile it.

Second, if we want to take a more traditional Javalike approach of explicitly
compiling code to create bytecode—the .class file—we can do that using the
groovyc compiler. To execute the bytecode, we’ll use the java command just like
we would to execute our compiled Java code. The only difference is that we
need to have the groovy-all-2.1.0.jar file in the classpath. Remember to add a dot (.)
to the classpath so java can find your classes in the current directory. This Java
archive (JAR) is located in the embeddable directory under GROOVY_HOME. As an
example, suppose we have the following Groovy code in a file named Greet.groovy:

ClassesAndScripts/Greet.groovy
println (['Groovy', 'Rocks!'l.join("' '))

If we want to run it, we can simply type groovy Greet. However, if we want to
explicitly compile this into Java bytecode, we type groovyc Greet.groovy to create
a file named, as we’d expect, Greet.class. If our code has a package declaration,
then the file will be created in the appropriate directory following the Java
package-directory format. Unlike Groovy classes, Groovy scripts usually don’t
have package declarations. Use the -d option to specify a destination directory
other than the current directory. We can run the bytecode by typing this:

java -classpath $GROOVY HOME/embeddable/groovy-all-2.1.0.jar:. Greet

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/Greet.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.3

Using Groovy Classes from Groovy ® 161

On Windows, use %GROOVY_HOME% instead of $GROOVY_HOME. Here’s the output:
Groovy Rocks!

These steps show that we can compile and distribute our Groovy code as
bytecode, much like we would compile and distribute our Java code. We can
release it as .class files or JAR it up. java sees no difference. We can use this
approach to distribute our Groovy code as bytecode along with rest of our
bytecode if our deployment settings demand it.

Next we’ll see some options to intermix Groovy scripts and classes.

Using Groovy Classes from Groovy

To use a Groovy class from within our Groovy code, we only have to make
sure the Groovy class is in our classpath. We can use the Groovy source code
as is, or we can compile it into a .class file and use it—it’s our choice. When
our Groovy code references a Groovy class, Groovy looks for the .groovy file
with the name of the class in our classpath; if it does not find it, it looks for a
class file with the same name.

Suppose we have Groovy source code Cargroovy, shown here, in a directory
named src:

ClassesAndScripts/src/Car.groovy
class Car

{
int year = 2008
int miles

String toString() { "Car: year: $year, miles: $miles" }

}
Also suppose we're using this class in a file named useCar.groovy, like so:

ClassesAndScripts/useCar.groovy
println new Car()

To use this class, we type groovy -classpath src useCar. This will automatically fetch
the Car class source, compile it, create an instance, and produce the output:

Car: year: 2008, miles: 0

If instead of source code we have bytecode for the Car, the steps are the
same—Groovy can readily use classes from .groovy or .class files.

If we plan to intermix Groovy and Java in our projects, we’ll benefit from the
joint compilation facility that Groovy offers, as we’ll see next.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/src/Car.groovy
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/useCar.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 10. Working with Scripts and Classes ® 162

10.4 Intermixing Groovy and Java with Joint Compilation

If the Groovy classes are precompiled, then we can use the .class files or JARs
readily from Java. Java sees no difference between the bytecode from Java
and Groovy; we'll have to add the Groovy JAR (discussed earlier) in our classpath,
much like how we’ll have JARs for Spring, Hibernate, or other frame-
works/libraries we use.

What if we have Groovy source code instead of bytecode? Remember, when
our Java class depends on other Java classes, javac will compile any Java
classes it deems necessary if it does not find their bytecode. However, javac
does not extend that kindness to Groovy. Fortunately, groovyc supports joint
compilation. When we compile Groovy code, it determines whether any Java
classes need to be compiled and takes care of compiling them. So, we can
freely mix Java source code and Groovy source code in a project. We don’t
have to go through separate compilation steps; instead, we can simply call
groovyc.

To take advantage of joint compilation, we need to use the -j compilation flag.
Use the -] prefix to pass flags to the Java compiler. For example, suppose we
have a Java class in a file named AJavaClass.java:

ClassesAndScripts/AJavaClass.java
//Java code
public class AlJavaClass {

{

System.out.println("Created Java Class");

}

public void sayHello() { System.out.println("hello"); }
}

We also have a Groovy script in a file UseJavaClass.groovy that uses that Java
class:

ClassesAndScripts/UseJavaClass.groovy
new AJavaClass().sayHello()

To compile these two files jointly, we issue the command groovyc -j AJavaClass.java
UseJavaClass.groovy -Jsource 1.6. The option -Jsource 1.6 sends the optional option
source = 1.6 to the Java compiler. Examine the bytecode generated using javap
and notice that AJavaClass, as a regular Java class, extends java.lang.Object,
whereas UseJavaClass extends groovy.lang.Script.

Execute the code to confirm all went well. Try the following command:

java -classpath $GROOVY HOME/embeddable/groovy-all-2.1.0.jar:. UseJavaClass

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/AJavaClass.java
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/UseJavaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.5

Creating and Passing Groovy Closures from Java ® 163

We should see the following output:

Created Java Class
hello

We can intermix Groovy and Java seamlessly in our project, making Groovy
a fantastic language for clean Java integration in our enterprise applications.
We can focus on leveraging the advantages of each language without having
to fight any integration battles.

The ease of integration goes beyond simple cases; we can invoke from Java
into Groovy code that uses features with no direct support in Java, as we’ll
see in the next section.

Creating and Passing Groovy Closures from Java

Groovy has supported closures from day one, but Java is still toying with the
idea. Surprisingly, creating closures in Java and invoking Groovy methods
that take them is quite simple thanks to Groovy’s dynamic nature. Whereas
Java insists that we send methods instances of the proper type, Groovy is
quite friendly and is happy that we use its features.

Upon close examination, we’ll discover that when Groovy invokes a closure
it simply uses a special method named call(). To create a closure in Java, we
need only a class that has this method. If the Groovy code will pass arguments
to the closure, we must make sure our call() method accepts those arguments
as parameters.

It's very simple to create closures and pass them from Java, as we’ll see in
the next example. Let’s create a Groovy class, AGroovyClass, with two methods
that accept closures:

ClassesAndScripts/AGroovyClass.groovy
class AGroovyClass {
def useClosure(closure) {
println "Calling closure"
closure()

}

def passToClosure(int value, closure) {
println "Simply passing $value to the given closure"
closure(value)
}
}

The useClosure() method prints a message and calls the closure provided. The
passToClosure() method passes the first parameter it receives to the closure
provided.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/AGroovyClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 10. Working with Scripts and Classes ® 164

To invoke the useClosure() method from Java, we need to provide an instance
that implements the call() method, like this:

ClassesAndScripts/UseAGroovyClass.java
//Java code
public class UseAGroovyClass {
public static void main(String[] args) {
AGroovyClass instance = new AGroovyClass();
Object result = instance.useClosure(new Object() {
public String call() {
return "You called from Groovy!";
}
1)

System.out.println("Received: " + result);
}
}

We can compile the Java and Groovy code either jointly or separately. To
compile jointly, we use the command groovyc -j UseAGroovyClass.java AGroovy-
Class.groovy. We can then run the Java code using the command java -classpath
$GROOVY_HOME/embeddable/groovy-all-2.1.0.jar:. UseAGroovyClass. The instance of the
anonymous class we created in Java is passed seamlessly to Groovy, which,
in turn, calls back into the anonymous class:

Calling closure
Received: You called from Groovy!

Invoking a closure that takes parameters is not very different, as we see in
the call to the passToClosure() method:

ClassesAndScripts/UseAGroovyClass2.java
//Java code
System.out.println("Received: " +
instance.passToClosure(2, new Object() {
public String call(int value) {
return "You called from Groovy with value " + value;

1);

This version of the call() method in Java takes a parameter to which the
passToClosure() method assigns a value on the Groovy side, as we can see in the
output:

Simply passing 2 to the given closure
Received: You called from Groovy with value 2

We must make sure the call() methods take the appropriate number and type
of parameters. Groovy takes care of the rest of the details for us.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/UseAGroovyClass.java
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/UseAGroovyClass2.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.6

Calling Groovy Dynamic Methods from Java ® 165

In this section we discussed calling into Groovy closures from within Java.
Going the opposite direction is just as simple. At http://www.jroller.com/melix/entry/
coding_a_groovy closure_in, Cédric Champeau shows how to treat a Java method
like it’s a closure on the Groovy side.

We've seen how to invoke methods with closures; next we’ll see how to invoke
Groovy dynamic methods from Java.

Calling Groovy Dynamic Methods from Java

In Groovy we can create methods at runtime, as we’ll see in Part III, MOPping
Groovy, on page 173. We can't directly call these methods from Java, because
at compile time these methods don’t exist in the bytecode. They come to life
at runtime, but if we're calling them from Java we’d write the calls at compile
time (or use reflection). To invoke the dynamic methods, we have to get past
the Java compiler so the runtime can do the dispatching. That sounds com-
plicated, but we can rely on Groovy!

Every Groovy object implements the GroovyObject interface, which has a special
method named invokeMethod(). This method accepts the name of the method to
invoke and the arguments to pass. We can use the invokeMethod() method on
the Java side to invoke methods that are defined dynamically using
metaprogramming in Groovy.

To see this in action, create a Groovy class that has a special method,
methodMissing(), that will step in anytime a nonexistent method is called.

ClassesAndScripts/DynamicGroovyClass.groovy
class DynamicGroovyClass {
def methodMissing(String name, args) {
println "You called $name with ${args.join(', ')}."
args.size()
}
}

This class is entirely dynamic; it has no real methods other than methodMissing().
Since this class accepts any method call, we can pretty much invoke any
methods on it. To invoke the methods we desire from the Java side, call the
invokeMethod() and pass the method name followed by an array of arguments,
as in the next example.

ClassesAndScripts/CallDynamicMethod.java
public class CallDynamicMethod {
public static void main(String[] args) {
groovy.lang.GroovyObject instance = new DynamicGroovyClass();

Object resultl = instance.invokeMethod("squeak", new Object[] {});

www.it-ebooks.info

http://www.jroller.com/melix/entry/coding_a_groovy_closure_in
http://www.jroller.com/melix/entry/coding_a_groovy_closure_in
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/DynamicGroovyClass.groovy
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/CallDynamicMethod.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.7

Chapter 10. Working with Scripts and Classes ® 166

System.out.println("Received: " + resultl);

Object result2 =
instance.invokeMethod("quack", new Object[] {"like", "a", "duck"});
System.out.println("Received: " + result2);
}
}

We created an instance of DynamicGroovyClass and assigned it to a reference of
type GroovyObject, which all Groovy objects support. Using this reference, we
can invoke any methods on the class, both dynamic and predefined. Once
Groovy receives the methods, it takes the call through the regular Groovy
method-dispatching process that we’ll cover in Section 11.1, Groovy Object,
on page 176. Groovy responds to our call from the Java side, as we see in the
next output. The invokeMethod() returns any response from the invoked method
is returned to the Java side.

You called squeak with .

Received: 0

You called quack with like, a, duck.
Received: 3

If Groovy could not execute the invoked method for some reason or if the
method blows up, the call to invokeMethod() will fail. Be prepared to handle the
exception that this method may throw our way.

There are no restrictions on using any Groovy class from Java, no matter how
dynamic they are. Next we’ll look at using Java classes from Groovy.

Using Java Classes from Groovy

Using Java classes from Groovy is simple and direct. If the Java classes we
want to use are part of the JDK, we import the classes or their packages in
Groovy just like in Java. By default Groovy imports a number of packages
and classes (see Section 2.1, From Java to Groovy, on page 11), so if the class
we want to use is imported already (such as java.util.Date), then we just use
it—no import is needed.

If we want to use one of our own Java classes, or classes that are not part of
the standard JDK, we can import them in Groovy just like we would in Java.
Make sure to import the necessary packages or classes, or refer to the classes
by their fully qualified names. When running groovy, specify the path to the
.class files or JARs using the -classpath option. If the class files are in the same
directory where our Groovy code is, there’s no need to specify that directory
using the classpath option.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.8

Using Groovy Scripts from Groovy ® 167

Let’s look at an example. Say we have a Java class named Greetjava that belongs
to the package com.agiledeveloper and has a static method called sayHello(), as
shown here:

ClassesAndScripts/GreetJava.java
// Java code
package com.agiledeveloper;

public class GreetJava {
public static void sayHello() {
System.out.println("Hello Java");
}
}

We want to call this method from a Groovy script, so first we compile the Java
class Greetjava so the class file Greetjava.class is located in the directory
.Jcom/agiledeveloper, where . is the current directory. Then we create a Groovy
script in a UseGreetJava.groovy file with the following:

ClassesAndScripts/UseGreetJava.groovy
com.agiledeveloper.GreetJava.sayHello()

To run this script, simply type groovy UseGreetjava. The script runs with no
trouble and uses the sayHello() method in class Greetjava, as shown in the follow-
ing output:

Hello Java

If the class file is not under the current directory, we can still use it, but we
need to remember to set the classpath option. Assume that the class file GreetJa-
va.class is located under ~/release/com/agiledeveloper, where ~ is our home directory.

To run the previously mentioned Groovy script (UseGreetava.groovy), use the
following command:

$groovy -classpath ~/release UseGreetJava

In this example, we compiled the Java code explicitly and then used the
bytecode with our Groovy script. If we intend to explicitly compile our Groovy
code, then we don’t have to use a separate compilation step for Java and
Groovy. Use the joint compilation facility instead.

Not all Groovy code needs explicit compilation. Groovy scripts are used as is
via the groovy command. Next we’ll cover how to intermix Groovy scripts.

Using Groovy Scripts from Groovy

Groovy scripts hold statements and expressions not necessarily confined to
a particular class in the source code. We can directly exercise these using

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/GreetJava.java
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/UseGreetJava.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 10. Working with Scripts and Classes ® 168

the groovy command. We can also invoke them from other Groovy scripts and
classes using the GroovyShell class. Let’s look at an example:

ClassesAndScripts/Script1.groovy
println "Hello from Scriptl"

Here we have a file named Scriptl.groovy, and we want to execute that script as
part of executing another Groovy script, Script2.groovy, shown here:
ClassesAndScripts/Script2.groovy

println "In Script2"

shell = new GroovyShell()
shell.evaluate(new File('Scriptl.groovy'))

// or simply
evaluate(new File('Scriptl.groovy'))

The output from the previous code is as follows:

In Script2
Hello from Scriptl
Hello from Scriptl

Using the GroovyShell, we can evaluate() script in any file (or string). That was
easy. But (and there is always a “but”), what if we want to pass some
parameters to the scripts?

ClassesAndScripts/Script1a.groovy
println "Hello ${name}"
name = "Dan"

This script is expecting a variable name. We can use an instance of Binding to
bind variables, as shown here:

ClassesAndScripts/Script2a.groovy
println "In Script2"

name = "Venkat"

shell = new GroovyShell(binding)
result = shell.evaluate(new File('Scriptla.groovy'))

println "Scriptla returned : $result"
println "Hello $name"

In the calling script, we created a variable name (the same variable name as
in the called script). When we create the instance of GroovyShell, we pass the
current Binding object to it (each script execution has one of these). The called
script can now use (read and set) variables that the calling script knows about.
The output from the previous code is as follows:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/Script1.groovy
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/Script2.groovy
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/Script1a.groovy
http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/Script2a.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

10.9

Using Groovy Scripts from Java * 169

In Script2

Hello Venkat

Scriptla returned : Dan
Hello Dan

If the script returns a value, we can receive that from the evaluate() method as
the return value as well, as we saw in the previous example.

In the previous example, we passed the Binding of the calling script to GroovyShell.
If we don’t want our current binding to be affected and we want to keep the
called script’s binding separate, we simply create a new instance of Binding,
call setProperty() on it to set variable names and values, and provide it as an
argument when creating an instance of GroovyShell, as shown here:

ClassesAndScripts/Script3.groovy
println "In Script3"

bindingl = new Binding()
bindingl.setProperty('name', 'Venkat')
shell = new GroovyShell(bindingl)
shell.evaluate(new File('Scriptla.groovy'))

binding2 = new Binding()
binding2.setProperty('name', 'Dan')
shell.binding = binding2
shell.evaluate(new File('Scriptla.groovy'))

The output from the previous code is as follows:

In Script3
Hello Venkat
Hello Dan

If we want to pass some command-line arguments to the script, we use the
GroovyShell class’s run() methods instead of the evaluate() methods.

We can easily load arbitrary scripts and execute them as part of our Groovy
code using the GroovyShell. This feature is very useful to not only run routine
tasks that may be saved in reusable scripts, but also to build and execute
DSLs.

We know how to invoke Groovy scripts from Groovy code. Next we’ll run
through how to do that from within Java code.

Using Groovy Scripts from Java
If we want to use Groovy script as is in Java, we can use JSR 223.

Java Specification Request (JSR) 223 bridges the Java Virtual Machine (JVM)
and scripting languages (see the Java Scripting Programmer’s Guide in

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ClassesAndScripts/Script3.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 10. Working with Scripts and Classes ® 170

Appendix 1, Web Resources, on page 309). It provides a standard way to
interact between Java and several languages with implementations of the
JSR 223 scripting-engine API. We can download and use JSR 223 with Java
5. It is included by default in Java 6.

JSR 223 is an option more suited to other languages on the JVM than to
Groovy. Groovy'’s ability to jointly compile Java and Groovy lessens the need
for something like JSR 223.

To call a (not-precompiled) script from Java, use the script engine. We can
obtain it from ScriptEngineManager by calling the getEngineByName() method. To
execute our scripts from within our Java code, call its eval() method. To use
Groovy scripts, we need to make sure .../jsr223-engines/groovy/build/groovy-engine.jar
is in our classpath.

Let’s look at an example to execute a little Groovy script from within Java.
(With Java comes the pleasure of handling exceptions we don’t care about.
The rest of the examples in this chapter don’'t show the exception-handling
code, but remember to put it where needed.)

MixingJavaAndGroovy/CallingScript.java
// Java code

package com.agiledeveloper;
import javax.script.*;

public class CallingScript {
public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("groovy");
System.out.println("Calling script from Java");
try {
engine.eval("println 'Hello from Groovy'");
} catch(ScriptException ex) {
System.out.println(ex);
}
}
}

The output from the preceding code is as follows:

Calling script from Java
Hello from Groovy

In this example, our Groovy script is embedded in the string parameter to
the eval() method. Unlike in this example, in reality the script may not be hard-
coded. It may be in a file, an input stream, a dialog box, and so on. In that
case we'll find other overloaded versions of the eval() method that make a
Reader useful.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MixingJavaAndGroovy/CallingScript.java
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using Groovy Scripts from Java ® 171

If the script returns any result to the calling Java program, we can receive it
from the eval() method’s Object return value.

Using this approach, we can call any arbitrary Groovy script from within our
Java application. If we want to pass some parameters to the script—a Java
object, created in Java but accessed from Groovy—we can use Bindings.

Bindings are an implementation of Map<String, Object> that makes objects available
through a named value. ScriptContext allows the script engines to connect to
the Java objects, such as Bindings, in the hosting application. We can either
explicitly get access to these objects and interact with them, or simply use
get() and put() on the ScriptEngine instance. If we want to execute the same script
but with a different set of values for the variables, we'll create different contexts
and use them in a call to eval().

Let’s look at an example of passing parameters to Groovy scripts from Java:

MixingJavaAndGroovy/ParameterPassing.java

engine.put("name", "Venkat");

engine.eval("println \"Hello ${name} from Groovy\"; name += 'I' ");
String name = (String) engine.get("name");
System.out.println("Back in Java:" + name);

The output from the previous code is as follows:

Hello Venkat from Groovy
Back in Java:Venkat!

We're sending a String object (with value Venkat) to the engine using the put()
method. We've given the name name for the variable binding. Within the script,
we use that variable (hame). We can also change its value. We can obtain the
variable’s current value on the Java side by calling the get() method on the
engine.

JSR 223 provides the capability to call instance methods, plus functions not
associated with any particular class. We can use the invokeMethod() and invoke-
Function() of the Invocable for that. If we plan to use a script repeatedly, we’ll use
the Compilable interface to avoid repeatedly recompiling the script.

Instead of using the ScriptEngineManager, we can use the GroovyScriptEngine from
within Java, much like how we used the GroovyShell from within Groovy."' The
GroovyScriptEngine’s run() method takes a script filename and a binding variable
that maps parameters the script expects. It can even reload and rerun the
scripts if they change, making it a great candidate for embedding in Java
server applications.

1. http://groovy.codehaus.org/Embedding+Groovy

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MixingJavaAndGroovy/ParameterPassing.java
http://groovy.codehaus.org/Embedding+Groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 10. Working with Scripts and Classes ® 172

We typically compile our Java code into .class files and JAR them up. To use
other Java classes, we need only the .class files or the JARs that contain those
files to be in our classpath. Groovy pretty much expects the same if we call into
Java classes from Groovy. Groovy also makes our life easy by providing joint
compilation. With this facility we can use Groovy and Java code side by side,
plus debug and work seamlessly with the two languages on the same project.

We discussed how easily we can mix and work with Groovy scripts.
Throughout this book we've seen examples of using Java classes from the
JDK. In this chapter we figured out how to use our own Java classes and
Groovy classes with our application. There’s no impediment to creating
enterprise applications mixing Java and Groovy.

Speaking of enterprise applications, in the next chapter we’ll see that the
dynamic, flexible Groovy language has chops for heavy lifting in the area of
metaprogramming.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Part III

MOPping Groovy

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Exploring Metaobject Protocol (MOP)

In Java, we can use reflection at runtime to explore our program’s structure,
plus its classes, their methods, and the parameters they take. However, we're
still restricted to the static structure we’ve created. We can’t change an object’s
type or let it acquire behavior dynamically at runtime—at least not yet.
Imagine if we could add methods and behavior dynamically based on the
current state of our application or the inputs it receives. This would make
our code flexible, and we could be creative and productive. Well, we don’t
have to imagine that anymore—metaprogramming provides this functionality
in Groovy.

How extensible can we design applications to be with these features? Quite.
I recently had the opportunity to consult with a company that transitioned
from creating Java-based web applications to using Groovy and Grails. Their
product required certain customization in the field after deployment. In their
existing system, this took them weeks of effort and the time of a few program-
mers and testers. Working closely with their key developers, we managed to
automate the customization using Groovy metaprogramming and some back-
end services. Immediately, the organization realized higher throughput and
productivity.

Metaprogramming means writing programs that manipulate programs,
including themselves. Dynamic languages such as Groovy provide this capa-
bility through the metaobject protocol (MOP). Creating classes, writing unit
tests, and introducing mock objects are all easy with Groovy’s MOP.

In Groovy, we can use MOP to invoke methods dynamically and synthesize
classes and methods on the fly. This can give us the feeling that our object
favorably changed its class. Grails/GORM uses this facility, for example, to
synthesize methods for database queries. With MOP we can create internal
domain-specific languages (DSLs) in Groovy (see Chapter 19, Creating DSLs

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

11.1

Chapter 11. Exploring Metaobject Protocol (MOP) ® 176

in Groovy, on page 295). Groovy builders (see Chapter 17, Groovy Builders, on
page 253) rely on MOP as well. So, MOP is one of the most important concepts
to learn and exploit. We'll investigate several concepts in MOP across this
and the next few chapters.

In this chapter, we will explore MOP by looking at what makes a Groovy object
and how Groovy resolves method calls for Java objects and Groovy objects.
We'll then look at ways to query for methods and properties and, finally, see
how to access objects dynamically.

Once you've absorbed the fundamentals in this chapter, you’ll be ready to
learn how to intercept method calls in Chapter 12, Intercepting Methods Using
MOP, on page 185. We'll then look at how to inject and synthesize methods
into classes at runtime in Chapter 13, MOP Method Injection, on page 193, and
Chapter 14, MOP Method Synthesis, on page 215. Finally, we’ll wrap up the
discussion on MOP in Chapter 15, MOPping Up, on page 225.

Groovy Object

The flexibility Groovy offers can be confusing at first, so if we want to take
full advantage of MOP, we need to understand Groovy objects and Groovy’s
method handling.

Groovy objects are Java objects with additional capabilities. Groovy objects
have a greater number of dynamic behaviors than do compiled Java objects
in Groovy. Also, Groovy handles method calls to Java objects differently than
to Groovy objects.

In a Groovy application we’ll work with three kinds of objects: POJOs, POGOs,
and Groovy interceptors. Plain old Java objects (POJOs) are regular Java
objects—we can create them using Java or other languages on the Java Vir-
tual Machine (JVM). Plain old Groovy objects (POGOs) are classes written in
Groovy. They extend java.lang.Object but implement the groovy.lang.GroovyObject
interface. Groovy interceptors are Groovy objects that extend Groovylinterceptable
and have a method-interception capability, which we’ll soon discuss. Groovy
defines the GroovyObject interface like this:

//This is an excerpt of GroovyObject.java from Groovy source code
package groovy.lang;
public interface GroovyObject {

Object invokeMethod(String name, Object args);

Object getProperty(String property);

void setProperty(String property, Object newValue);

MetaClass getMetaClass();

void setMetaClass(MetaClass metaClass);

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Groovy Object ® 177

invokeMethod(), getProperty(), and setProperty() make Groovy objects highly dynamic.
We can use them to work with methods and properties created on the fly.
getMetaClass() and setMetaClass() make it very easy to create proxies to intercept
method calls on POGOs, as well as to inject methods on POGOs. Once a class
is loaded into the JVM, we can’t change the metaobject Class for it. However,
we can change its MetaClass by calling setMetaClass(). This gives us a feeling that
the object changed its class at runtime.

Let’s look at the Groovyinterceptable interface next. It's a marker interface that
extends GroovyObject, and all method calls—both existing methods and nonex-
istent methods—on an object that implements this interface are intercepted
by its invokeMethod().

//This is an excerpt of GroovylInterceptable.java from Groovy source code

package groovy.lang;

public interface GroovyInterceptable extends GroovyObject {

}

Groovy allows metaprogramming for POJOs and POGOs. For POJOs, Groovy
maintains a MetaClassRegistry class of MetaClasses, as the following figure shows.
POGOs, on the other hand, have a direct reference to their MetaClass.

MetaClassRegistry O—) Map — MetaClass

Class (for POJO) GroovyObject (POGO)

Figure 10—PO0JOs, POGOs, and their MetaClass

When we call a method, Groovy checks whether the target object is a POJO
or a POGO. Groovy’s method handling is different for each of these types.

For a POJO, Groovy fetches its MetaClass from the application-wide MetaClassReg-
istry and delegates method invocation to it. So, any interceptors or methods
we've defined on its MetaClass take precedence over the POJO’s original method.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 11. Exploring Metaobject Protocol (MOP) * 178

For a POGO, Groovy takes a few extra steps, as illustrated in the following
figure. If the object implements GroovyInterceptable, then all calls are routed to
its invokeMethod(). Within this interceptor, we can route calls to the actual
method, making aspect-oriented-programming-like operations possible.

class implements
Groovylnterceptable?

(call its invokeMethod ())

yes

method exists
inMetaClass or
class?

yes

Call interceptor or
original method

has a property
with method name

that property
is of type Closure?

GII closure’s call () methca

(call itsmethodMissing ())
has

invokeMethod () ?
Grow MlssingMcthodExccptionD (call its invokeMethod ())

Figure 11—How Groovy handles method calls on a POGO

no

If the POGO does not implement Groovylnterceptable, then Groovy looks for the
method first in the POGO’s MetaClass and then, if it’s not found, on the POGO
itself. If the POGO has no such method, Groovy looks for a property or a field
with the method name. If that property or field is of type Closure, Groovy invokes
that in place of the method call. If Groovy finds no such property or field, it
makes two last attempts. If the POGO has a method named methodMissing(), it
calls it. Otherwise, it calls the POGO’s invokeMethod(). If we've implemented this
method on our POGO, it’s used. The default implementation of invokeMethod()
throws a MissingMethodException, indicating the failure of the call.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Groovy Object ® 179

Let’s see in code the mechanism discussed earlier, using classes with different
options to illustrate Groovy’s method handling. Study the code, and try to
figure out which methods Groovy executes in each of the cases (while walking
through the following code, refer to Figure 11, How Groovy handles method
calls on a POGO, on page 178):

ExploringMOP/TestMethodInvocation.groovy
class TestMethodInvocation extends GroovyTestCase {
void testInterceptedMethodCallonP0JO() {
def val = new Integer(3)
Integer.metaClass.toString = {-> 'intercepted' }

assertEquals "intercepted", val.toString()

}

void testInterceptableCalled() {
def obj = new AnInterceptable()
assertEquals 'intercepted', obj.existingMethod()
assertEquals 'intercepted', obj.nonExistingMethod()

}

void testInterceptedExistingMethodCalled() {
AGroovyObject.metaClass.existingMethod2 = {-> 'intercepted' }
def obj = new AGroovyObject()
assertEquals 'intercepted', obj.existingMethod2()

}

void testUnInterceptedExistingMethodCalled() {
def obj = new AGroovyObject()
assertEquals 'existingMethod', obj.existingMethod()

}

void testPropertyThatIsClosureCalled() {
def obj = new AGroovyObject()
assertEquals 'closure called', obj.closureProp()

}

void testMethodMissingCalledOnlyForNonExistent() {
def obj = new ClassWithInvokeAndMissingMethod()
assertEquals 'existingMethod', obj.existingMethod()
assertEquals 'missing called', obj.nonExistingMethod()

}

void testInvokeMethodCalledForOnlyNonExistent() {
def obj = new ClassWithInvokeOnly()
assertEquals 'existingMethod', obj.existingMethod()
assertEquals 'invoke called', obj.nonExistingMethod()

}

void testMethodFailsOnNonExistent() {

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringMOP/TestMethodInvocation.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 11. Exploring Metaobject Protocol (MOP) ® 180

def obj = new TestMethodInvocation()
shouldFail (MissingMethodException) { obj.nonExistingMethod() }
}
}

class AnInterceptable implements GroovyInterceptable {
def existingMethod() {}
def invokeMethod(String name, args) { 'intercepted' }

class AGroovyObject {
def existingMethod() { 'existingMethod' }
def existingMethod2() { 'existingMethod2' }
def closureProp = { 'closure called' }

class ClassWithInvokeAndMissingMethod {
def existingMethod() { 'existingMethod' }
def invokeMethod(String name, args) { 'invoke called' }
def methodMissing(String name, args) { 'missing called' }

}

class ClassWithInvokeOnly {
def existingMethod() { 'existingMethod' }
def invokeMethod(String name, args) { 'invoke called' }

}

The following output confirms that all the tests pass and Groovy handles the
method as discussed:

0K (9 tests)

11.2 Querying Methods and Properties

At runtime, we can query an object’s methods and properties to find out if
the object supports a certain behavior. This is especially useful for behavior
we add dynamically at runtime. We can add behavior not only to classes, but
also to select instances of a class.

We can use MetaObjectProtocol’s getMetaMethod() (MetaClass extends MetaObjectProtocol)
to get a metamethod. We can use getStaticMetaMethod() if we're looking for a
static method. To get a list of overloaded methods, we use the plural forms
of these methods—getMetaMethods() and getStaticMetaMethods(). Similarly, we can
use getMetaProperty() and getStaticMetaProperty() for a metaproperty. If we want
simply to check for existence and not get the metamethod or metaproperty,
we use respondsTo() to check for methods and hasProperty() to check for properties.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Querying Methods and Properties ® 181

MetaMethod “represents a Method on a Java object a little like Method except
without using reflection to invoke the method,” according to the Groovy doc-
umentation. If we have a method name as a string, we can call getMetaMethod()
and use the resulting MetaMethod to invoke our method, like so:
ExploringMOP/UsingMetaMethod.groovy

str = "hello"

methodName = 'toUpperCase'
// Name may come from an input instead of being hard coded

methodOfInterest = str.metaClass.getMetaMethod(methodName)

println methodOfInterest.invoke(str)

The dynamically invoked method produces this output:

HELLO

We don’t have to know a method name at coding time. We can get it as input
and invoke the method dynamically.

To find out whether an object would respond to a method call, we can use
the respondsTo() method. It takes as parameters the instance we're querying,
the name of the method we're querying for, and an optional comma-separated
list of arguments intended for that method. It returns a list of MetaMethods for
the matching methods. Let’s use that in an example:

ExploringMOP/UsingMetaMethod.groovy
print "Does String respond to toUpperCase()? "

println String.metaClass.respondsTo(str, 'toUpperCase')? 'yes' 'no'
print "Does String respond to compareTo(String)? "

println String.metaClass.respondsTo(str, 'compareTo', "test")? 'yes' 'no'
print "Does String respond to toUpperCase(int)? "

println String.metaClass.respondsTo(str, 'toUpperCase', 5)? 'yes' : 'no'

Here’s the output from the code:

Does String respond to toUpperCase()? yes
Does String respond to compareTo(String)? yes
Does String respond to toUpperCase(int)? no

getMetaMethod() and respondsTo() offer a nice convenience. We can simply send
these methods the arguments for a method we’re looking for. getMetaMethod()
and respondsTo() don’t insist on an array of the arguments’ Class like the getMethod()
method in Java reflection. Even better, if the method we're interested in does
not take any parameters, don’'t send any arguments, not even a null. This is

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringMOP/UsingMetaMethod.groovy
http://media.pragprog.com/titles/vslg2/code/ExploringMOP/UsingMetaMethod.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

11.3

Chapter 11. Exploring Metaobject Protocol (MOP) * 182

because the last parameter to these methods is an array of parameters and
Groovy treats it as optional.

There was one more magical thing taking place in the previous code: we used
Groovy’s special treatment of boolean (for more information, see Section 2.7,
Groovy Boolean Evaluation, on page 30). The respondsTo() method returns a list
of MetaMethods, and since we used the result in a conditional statement (the ?:
operator), Groovy returned true if there were any methods, and false otherwise.
So, we don’t have to explicitly check whether the size of the returned list is
greater than zero—Groovy does that for us.

Dynamically Accessing Objects

We've looked at ways to query for methods and properties, and at ways to
invoke them dynamically. There are other convenient ways to access properties
and call methods in Groovy. We will look at them now using an instance of
String as an example. Suppose we get the names of properties and methods
as input at runtime and want to access these dynamically. Here are some
ways to do that:

ExploringMOP/AccessingObject.groovy

def printInfo(obj) {
// Assume user entered these values from standard input
usrRequestedProperty = 'bytes'
usrRequestedMethod = 'toUpperCase'

println obj[usrRequestedProperty]
//or
println obj."$usrRequestedProperty"

println obj."$usrRequestedMethod" ()
//or
println obj.invokeMethod(usrRequestedMethod, null)

}
printInfo('hello")

Here’s the output from the previous code:

[164, 101, 108, 108, 111]
[1064, 101, 108, 108, 111]
HELLO
HELLO

To invoke a property dynamically, we can use the index operator [] or use the
dot notation followed by a GString evaluating the property name, as shown in
the previous code. To invoke a method, use the dot notation or call the

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringMOP/AccessingObject.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Dynamically Accessing Objects ® 183

invokeMethod on the object, giving it the method name and list of arguments
(null in this case).

To iterate over all of an object’s properties, we can use the properties property
(or the getProperties() method), as shown here:
ExploringMOP/AccessingObject.groovy

println "Properties of 'hello' are:
'hello' .properties.each { println it }

The output is as follows:

Properties of 'hello' are:
class=class java.lang.String
bytes=[B@74f2ff9b
empty=false

In this chapter, we looked at the fundamentals for metaprogramming in
Groovy. With this foundation, we’re well equipped to explore MOP further,
understand how Groovy works, and take advantage of the MOP concepts we’ll
see in the next few chapters.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/ExploringMOP/AccessingObject.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

12.1

CHAPTER 12

Intercepting Methods Using MOP

In Groovy we can implement aspect-oriented programming (AOP)—such as
method interception or method advice—fairly easily.' There are three types
of advice. And, no, they’re not the good advice, the bad advice, and the
unsolicited advice we receive every day. We'll focus on the before, after, and
around advice. The before advice is code for a concern we’d want to execute
before a certain operation. The after advice is executed after an operation’s
execution. The around advice is executed instead of the intended operation.
We can use MOP to implement these advice types or interceptors. We don’t
need any complex tools or frameworks to do that in Groovy.

Here we’ll discuss two approaches in Groovy to intercept method calls: either
let the object do it or let its MetaClass do it. If we want the object to handle it,
we need to implement the GroovyInterceptable interface. This is not desirable if
we’re not the author of the class, if the class is a Java class, or if we want to
introduce interception dynamically. The second approach is better in these
cases. We'll look at both of these approaches in this chapter. There’s one more
way to intercept methods, using categories, but we’ll defer discussing that
until Section 13.1, Injecting Methods Using Categories, on page 193.

Intercepting Methods Using Groovylinterceptable

If a Groovy object implements Groovylnterceptable, then its invokeMethod() is called
when any of its methods are called—both existing methods and nonexistent
methods. That is, Groovylnterceptable’s invokeMethod() hijacks all calls to the object.

If we want to perform an around advice, we simply implement our logic in
this method, and we're done. However, if we want to implement the before or
after advice (or both), we first implement our before/after logic, then route

1. For a thorough discussion of AOP, see AspectJ in Action [Lad03], by Ramnivas Laddad.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Line 1

Chapter 12. Intercepting Methods Using MOP * 186

the call to the actual method at the appropriate time. To route the call, we’ll
use the MetaMethod for the method we can obtain from the MetaClass (see Section
11.2, Querying Methods and Properties, on page 180).

If a Groovy object implements the Groovylnterceptable interface, then its invokeMethod() is
called for all its method calls. For other Groovy objects, it is called only for methods
that are nonexistent at call time. The exception to this is if we implement invokeMethod()
on an object’s MetaClass. In that case, it is called always for both types of methods.

Suppose we want to run filters—such as validation, login verification, logging,
and so on—before we run some methods of a class. We don’t want to manu-
ally edit each method to call the filters, because such effort is redundant,
tedious, and error-prone. We don’t want to ask callers of our methods to
invoke the filters, either, because there’s no guarantee they’ll call. Intercepting
method calls to apply the filters is a good option. It'll be seamless and auto-
matic.

We use System.out.printin() instead of printin() in the examples in this chapter to
avoid the interception of informational print messages. Whereas printin() is a
Groovy-injected method in Object, calls to which the code we write will intercept,
System.out.printin() is a static method on the PrintStream class that’s not affected by
our interceptions.

Let’s look at an example in which we want to run a filter method check() on a
Car before any other method is executed. Here’s the code that uses GroovylInter-
ceptable to achieve this:

InterceptingMethodsUsingMOP/InterceptingCalls.groovy
class Car implements GroovyInterceptable {

def check() { System.out.println "check called..." }
def start() { System.out.println "start called..." }
def drive() { System.out.println "drive called..." }

def invokeMethod(String name, args) {

System.out.print("Call to $name intercepted... ")
if (name !'= 'check') {
System.out.print("running filter... ")

Car.metaClass.getMetaMethod('check').invoke(this, null)
}

def validMethod = Car.metaClass.getMetaMethod(name, args)

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/InterceptingMethodsUsingMOP/InterceptingCalls.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

20

-}

25

Intercepting Methods Using GroovyInterceptable ¢ 187

if (validMethod !'= null) {
validMethod.invoke(this, args)
} else {
Car.metaClass.invokeMethod(this, name, args)
}
}

car = new Car()

- car.start()
- car.drive()
- car.check()

30

try {
car.speed()

- } catch(Exception ex) {

-}

println ex

The output shows the proper interception of methods:

Call to start intercepted... running filter... check called...
start called...
Call to drive intercepted... running filter... check called...

drive called...
Call to check intercepted... check called...
Call to speed intercepted... running filter... check called...
groovy.lang.MissingMethodException:
No signature of method: Car.speed()
is applicable for argument types: () values: []

Since Car implements Groovylnterceptable, all method calls on an instance of Car
are intercepted by its invokeMethod(). In that method, if the method name is not
check, we invoke the before filter, which is the check() method. With the help of
the MetaClass’s getMetaMethod(), we determine whether the method called is a
valid existing method. If it is, we call that method using the MetaMethod’s invoke()
method, as on line number 18.

If the method is not found, we simply route the request to the MetaClass, as on
line number 20. This creates an opportunity for the method to be synthesized
dynamically, as we’ll see in Section 14.1, Method Synthesis Using methodMiss-
ing, on page 216. If the method does not exist, MetaClass’s invokeMethod() will throw
a MissingMethodException.

In this example, we created a before advice. We can easily create an after
advice by placing the desired code after line number 18. If we want to imple-
ment around advice, then we can eliminate, or replace with an alternate code,
the code on line number 18.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

12.2

Line 1

-}

Chapter 12. Intercepting Methods Using MOP ¢ 188

Intercepting Methods Using MetaClass

We used Groovylnterceptable to intercept method calls in Section 12.1, Intercepting
Methods Using Groovylnterceptable, on page 185. That approach is good if we're
the author of the class whose methods we want to intercept. However, that
approach won't work if we don’t have the privileges to modify the class source
code or if it is a Java class. Furthermore, we may decide at runtime to start
intercepting calls based on some condition or application state. In these cases,
we can intercept methods by implementing the invokeMethod() method on the
MetaClass.

Let’s rewrite the example from Section 12.1, Intercepting Methods Using
Groovylnterceptable, on page 185, this time using the MetaClass. In this version,
the Car does not implement GroovylInterceptable and does not have the invokeMethod().
Even if it has invokeMethod(), the invokeMethod() we add to MetaClass takes precedence
if Car does not implement GroovyInterceptable. Here’s the code:

InterceptingMethodsUsingMOP/InterceptingCallsUsingMetaClass.groovy
class Car {

def check() { System.out.println "check called..." }
def start() { System.out.println "start called..." }
def drive() { System.out.println "drive called..." }
- Car.metaClass.invokeMethod = { String name, args ->
System.out.print("Call to $name intercepted... ")
if (name != 'check') {
System.out.print("running filter... ")

20

25

-}

Car.metaClass.getMetaMethod('check').invoke(delegate, null)
}

def validMethod = Car.metaClass.getMetaMethod(name, args)
if (validMethod != null) {

validMethod.invoke(delegate, args)
} else {

Car.metaClass.invokeMissingMethod(delegate, name, args)

}

- car = new Car()

- car.start(

30

)
- car.drive()
)

car.check(

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InterceptingMethodsUsingMOP/InterceptingCallsUsingMetaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Intercepting Methods Using MetaClass ® 189

- try {

car.speed()

-} catch(Exception ex) {

35

}

println ex

Let’s observe the method interceptions in the output:

Call to start intercepted... running filter... check called...
start called...
Call to drive intercepted... running filter... check called...

drive called...
Call to check intercepted... check called...
Call to speed intercepted... running filter... check called...
groovy.lang.MissingMethodException:
No signature of method: Car.speed()
is applicable for argument types: () values: []

On line number 9, we implemented, in the form of a closure, the invokeMethod()
and set it on Car’'s MetaClass. This method will now intercept all calls on an
instance of Car. There are two differences between this version of invokeMethod()
and the version we implemented on Car in Section 12.1, Intercepting Methods
Using Groovylnterceptable, on page 185. The first difference is the use of delegate
instead of this (see line number 14, for example). The delegate within the inter-
cepting closure refers to the target object whose methods are being intercepted.
The second difference is on line number 21, where we call invokeMissingMethod()
on the MetaClass instead of calling invokeMethod. We're already in invokeMethod(),
so we should not call it recursively here.

As we saw earlier, one nice aspect of using the MetaClass to intercept calls is
that we can intercept calls on POJOs as well. To see this in action, let's
intercept calls to methods on an Integer and perform AOP-like advice:

InterceptingMethodsUsingMOP/Interceptinteger.groovy
Integer.metaClass.invokeMethod = { String name, args ->
System.out.println("Call to $name intercepted on $delegate... ")

def validMethod = Integer.metaClass.getMetaMethod(name, args)
if (validMethod == null) {
Integer.metaClass.invokeMissingMethod(delegate, name, args)
} else {
System.out.println("running pre-filter... ")

result = validMethod.invoke(delegate, args) // Remove this for around-advice

System.out.println("running post-filter... ")
result

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InterceptingMethodsUsingMOP/InterceptInteger.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 12. Intercepting Methods Using MOP ¢ 190

println 5.floatValue()
println 5.intValue()
try {
println 5.empty()
} catch(Exception ex) {
println ex

}
The output shows the interception of methods on an Integer:

Call to floatValue intercepted on 5...

running pre-filter...

running post-filter...

5.0

Call to intValue intercepted on 5...

running pre-filter...

running post-filter...

5

Call to empty intercepted on 5...

groovy.lang.MissingMethodException:
No signature of method: java.lang.Integer.empty()
is applicable for argument types: () values: []

The invokeMethod() we added on Integer's MetaClass intercepts method calls on 5,
an instance of Integer. To intercept calls on any Object and not only Integers, we
should add the interceptor to Object’s MetaClass.

If we're interested in intercepting calls only to nonexistent methods, then we
should use methodMissing() instead of invokeMethod(). You’ll learn about this in
Chapter 14, MOP Method Synthesis, on page 215.

We can provide both invokeMethod() and methodMissing() on MetaClass. invokeMethod|()
takes precedence over methodMissing(). However, by calling invokeMissingMethod(),
we're letting methodMissing() handle nonexistent methods.

The ability to intercept method calls using MetaClass was influenced by Grails.
It was originally introduced in Grails and was later moved into Groovy.” Take
a minute to examine the MetaClass that’s giving us so much power:

InterceptingMethodsUsingMOP/ExamineMetaClass.groovy
Integer.metaClass.invokeMethod = { String name, args -> /* */ }
println Integer.metaClass.getClass().name

Here is the class the output reports:

groovy.lang.ExpandoMetaClass

2. http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InterceptingMethodsUsingMOP/ExamineMetaClass.groovy
http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Intercepting Methods Using MetaClass ® 191

ExpandoMetaClass is an implementation of the MetaClass interface and is one of
the key classes responsible for implementing dynamic behavior in Groovy.
We can add methods to this class to inject behavior into our class, and we
can even specialize individual objects using this class.

There is a gotcha here, depending on ExpandoMetaClass. It is one among many
different implementations of MetaClass. By default, Groovy currently does not
use ExpandoMetaClass. When we add a method to the metaClass, the default metaClass
is replaced with an instance of ExpandoMetaClass.

Here’s an example that shows this behavior. We'll examine an instance’s
metaclass before and after dynamically adding a method.

InterceptingMethodsUsingMOP/MetaClassUsed.groovy

def printMetaClassInfo(instance) {
print "MetaClass of ${instance} is ${instance.metaClass.class.simpleName}"
println " with delegate ${instance.metaClass.delegate.class.simpleName}"

}

printMetaClassInfo(2)

println "MetaClass of Integer is ${Integer.metaClass.class.simpleName}"
println "Adding a method to Integer metaClass"
Integer.metaClass.someNewMethod = { -> /* */ }

printMetaClassInfo(2)

println "MetaClass of Integer is ${Integer.metaClass.class.simpleName}"

@groovy.transform.Immutable
class MyClass {
String name

}
objl = new MyClass("obj1")

printMetaClassInfo(objl)
println "Adding a method to MyClass metaClass
MyClass.metaClass.someNewMethod = { -> /* */}
printMetaClassInfo(objl)

println "obj2 created later"
obj2 = new MyClass("obj2")
printMetaClassInfo(obj2)

From the output we can see that Groovy switched the default metaClass it
started with.

MetaClass of 2 is HandleMetaClass with delegate MetaClassImpl
MetaClass of Integer is HandleMetaClass

Adding a method to Integer metaClass

MetaClass of 2 is HandleMetaClass with delegate ExpandoMetaClass
MetaClass of Integer is ExpandoMetaClass

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InterceptingMethodsUsingMOP/MetaClassUsed.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 12. Intercepting Methods Using MOP ¢ 192

MetaClass of MyClass(objl) is HandleMetaClass with delegate MetaClassImpl
Adding a method to MyClass metaClass

MetaClass of MyClass(objl) is HandleMetaClass with delegate MetaClassImpl
obj2 created later

MetaClass of MyClass(obj2) is HandleMetaClass with delegate ExpandoMetaClass

To begin with, the metaclass that an instance of Integer used was an instance
of HandleMetaClass with an underlying instance of MetaClassimpl it delegated the
calls to. When we added a method to the Integer's metaClass, an instance of
ExpandoMetaClass replaced it. When we queried after this addition, we saw that
the instance’s metaClass delegated to an ExpandoMetaClass instead of the original
MetaClassimpl. For our own Groovy classes, the MetaClass used for instances cre-
ated before the query for metaClass on our class is different from the instances
created after we added a method. This behavior has caused some surprises
when working with metaprogramming. We can find examples in Section 13.2,
Injecting Methods Using ExpandoMetaClass, on page 198, and in Section 14.1,
Method Synthesis Using methodMissing, on page 216. It would be nice if Groovy
consistently used ExpandoMetaClass as the default implementation. There are
discussions about this change in the Groovy community.

In this chapter, we saw how to intercept methods calls to realize AOP-like
method advice capabilities. We'll find this feature useful to mock up methods
for the sake of testing, to temporarily replace problem methods, to study
alternate implementations for algorithms without having to modify existing
code, and more. We can go further with MOP by adding methods dynamically.
We'll explore that in the next chapter.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

13.1

CHAPTER 13

MOP Method Injection

We've heard groans like, “It would be so convenient if the String class supported
an encrypt() method.” Object-oriented programming is about extensibility, but
languages often limit how far we can extend. What if we could open any class
and add methods we desire, based on the needs of the application on hand?
This would give us unbounded extensibility—make it easy to write expressive
code. In Groovy we can do just that, with little effort.

In Groovy we can open a class at any time. That is, we can add methods to
classes dynamically, allowing them to change behavior at runtime. Rather
than working with a static structure and a predefined set of methods, objects
can be agile and flexible, and assimilate behavior based on what’s going on
in our application. We can add a method based on a certain input we receive,
for example. The ability to modify the behavior of our classes is central to
metaprogramming and Groovy’s metaobject protocol (MOP).

Using Groovy’s MOP, we can inject behavior using any of the following:

e Categories
e ExpandoMetaClass
e Mixins

In this chapter we’ll discuss MOP facilities for method injection using these
techniques.

Injecting Methods Using Categories

Groovy categories provide a controlled way to inject methods—the effect of
method injection is contained within a block of code. A category is an object
that has the ability to alter a class’s MetaClass. It does so within the scope of
the block and the executing thread. It reverses the change when we exit the
block. Categories can be nested, and we can also apply multiple categories

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection * 194

in a single block. We will explore the behavior and use of categories using
examples in this section.

Suppose we have a Social Security number in a String or StringBuilder. We want
to inject a method toSSN() that will return the string in the format xxx-xx-xxxx.
Let’s discuss some ways to achieve this.

Say the first plan of attack is to create a class, SSNStringBuilder, that extends
StringBuilder and write the method toSSN() in it. Unfortunately, users of StringBuilder
won’'t have this method. It’s available only on SSNStringBuilder. Also, we can’t
extend the final class String, so we don’t have this method in it.

Instead, we can take advantage of Groovy’s categories by creating a class
StringUtil and adding a static method toSSN() in it. This method takes one
parameter, the target object on which the method is to be injected. The method
checks the size of the string and returns a string in the intended format. To
use the new method, call a special method, use(), that takes two parameters:
a category and a closure code block within which the injected methods are
in effect.

The code is as follows:

InjectionAndSynthesisWithMOP/UsingCategories.groovy
class StringUtil {
def static toSSN(self) { //write toSSN(String self) to restrict to String
if (self.size() == 9) {
"${self[0..2]}-${self[3..4]1}-${self[5..8]}"
}
}
}
use(StringUtil) {
println "123456789".t0oSSN()
println new StringBuilder("987654321").toSSN()
}

try {
println "123456789".t0SSN()

} catch(MissingMethodException ex) {
println ex.message

}
Let’s exercise the injected methods and view the output:

123-45-6789

987-65-4321

No signature of method: java.lang.String.toSSN()
is applicable for argument types: () values: []

Possible solutions: toSet(), toSet(), toURI(),
toURL(), toURL(), toURI()

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using Categories ® 195

The methods we injected are available only within the use block. When we
called toSSN() outside the block, we got a MissingMethodException.

The calls to toSSN() on instances of String and StringBuilder within the block are
routed to the static method in the category StringUtil. toSSN()’s self parameter is
assigned to the target instance. Since we did not define the self parameter’s
type, its type defaults to Object, and toSSN() is available on any object. If we
want to restrict the method to only Strings and StringBuilders, we will have to
create two versions of toSSN() with explicit parameter types, one with String self
and the other with StringBuilder self.

If we use the syntax in the previous example, Groovy categories will require
the injection method to be static and take at least one parameter. The first
parameter (called self in this example) refers to the method call’s target. Any
parameters that our injected method takes will trail. The parameters can be
any legal Groovy parameters—objects and closures.

Groovy also provides an alternative syntax for categories. Rather than writing
static methods, we can ask the Groovy compiler to convert instance methods
of a class to static methods with the format discussed previously. We can do
this using a special @Category annotation. We can implement the StringUtil using
this annotation, like this:

InjectionAndSynthesisWithMOP/UsingCategories.groovy
@Category(String)
class StringUtilAnnotated {
def toSSN() {
if (size() == 9) {
"${this[0..2]}-${this[3..4]1}-${this[5..8]}"
}
}
}
use(StringUtilAnnotated) {
println "123456789".t0oSSN()

}

The @Category annotation converts the toSSN() method of the newly defined
StringUtilAnnotated class to public static toSSN(String self) {...} based on the parameter
String we passed to the annotation. The way to use the category is still the
same, and the output from the previous code is shown here:

123-45-6789
The annotated syntax reduces ceremony. We don’t have to declare the methods
of the category class static, and we don’t have to pass the additional first

parameter. However, if we use the annotation syntax, we're restricting the
method to only the type specified in the parameter (String in this example),

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection * 196

and it is not reusable for other types, such as StringUtil, unless we make the
parameter more general, like Object.

Let’s take a moment to understand the magic that happened when we called
use() in the previous examples. Groovy routes the use() method call in our script
to the public static Object use(Class categoryClass, Closure closure) method of the GroovyCat-
egorySupport class. This method defines a new scope—a fresh property/method
list on the stack for the target objects’ MetaClass. It then examines each of the
static methods in the given category class and adds its static methods with at
least one parameter to the property/method list. Finally, it calls the closure
attached. Any method calls from within the closure are intercepted and sent
to the implementation provided by the category, if present. This is true for
new methods we add and for existing methods that we're intercepting. Finally,
upon return from the closure, use() ends the scope created earlier, discarding
the injected methods in the category.

Injected methods can take objects and closures as parameters. Here is an
example to show that. Let’s write another category, FindUtil. Here we are pro-
viding a method called extractOnly() that will extract part of a string specified
by a closure parameter:

InjectionAndSynthesisWithMOP/UsingCategories.groovy
class FindUtil {
def static extractOnly(String self, closure) {
def result = ''
self.each {
if (closure(it)) { result += it }
}
result
}
}
use(FindUtil) {
println "121254123".extractOnly { it == '4' || it == '5' }
}

The result of the previous call is as follows:

54

Groovy comes with a couple of categories to make our lives easier. DOMCategory (see
Using DOMCategory, on page 144) helps treat DOM objects like JavaBeans and use Groovy

path expressions (GPath) (see Using XMLParser, on page 146). ServletCategory provides
Servlet API objects’ attributes using the JavaBeans convention.

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using Categories ® 197

We can apply more than one category at the same time—to bring in multiple
sets of methods. use() takes either one category or a list of categories. Here’s
an example to use both the categories we created earlier:

InjectionAndSynthesisWithMOP/UsingCategories.groovy
use(StringUtil, FindUtil) {

str = "123487651"

println str.toSSN()

println str.extractOnly { it == '8' || it == 'I' }
}

The output from the previous code is as follows:

123-48-7651
181

Even though use() takes a List of Class instances, Groovy is quite happy to accept
a comma-separated list of class names. This is because Groovy turns the
name of a class, once defined, into a reference to the Class metaobject. String,
for example, is equivalent to String.class; in other words, String == String.class.

When we mix multiple categories, the obvious question is about the order in
which method calls get resolved when there is a method-name collision. The
last category in the list takes the highest precedence.

We can nest calls to use. That is, we can call use() from within a closure of
another call to use(). An inner category takes precedence over an outer one.

So far, we've seen how to inject new methods into an existing class. In
Chapter 12, Intercepting Methods Using MOP, on page 185, we saw ways to
intercept existing methods. We can use categories for that, as well. Suppose
we want to intercept calls to toString() and pad the response with two exclama-
tion points on each side. Here’s how to do that using categories:

InjectionAndSynthesisWithMOP/UsingCategories.groovy
class Helper {
def static toString(String self) {
def method = self.metaClass.methods.find { it.name == 'toString' }
"I''" + method.invoke(self, null) + 'I/!I'
}
}

use(Helper) {
println 'hello'.toString()
}

The output from the previous code is as follows:

I'Thello!!

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

13.2

Chapter 13. MOP Method Injection * 198

The Helper’s toString() is used to intercept calls to that method on String “hello.”
However, within this interceptor, we want to call the original toString(). We get
access to it using the MetaClass of String.

Using categories for method interception is not as elegant as the other ap-
proaches we saw in Chapter 12, Intercepting Methods Using MOP, on page 185.
We can’t use it for filtering all method calls to an instance. We would have to
write separate methods for each method we wanted to intercept. Also, when
we have nested categories, we can’t reach into the interception of the top-
level categories. Use categories for method injection, but not for method
interception.

Categories provide a nice method-injection protocol. Their effect is contained
within the flow of control in the use block. We leave the block, and the injected
methods disappear. When we receive a parameter on our methods, we can
apply our own categories to that parameter. It feels like we augmented the
type of the object we received. When we leave our method, we're returning
the object with its class unaffected. We can implement different versions of
intercepted/injected methods by using different categories.

Categories have some limitations, however. Their effect is contained within
the use() block, and therefore limited to the executing thread. So, injected
methods are restricted. Existing methods can be called from anywhere, but
injected methods have to be called within the block. If we enter and exit the
block multiple times, there is overhead. Each time we enter, Groovy has to
examine static methods and add them to a method list in the new scope. At
the end of the block, it has to clean up the scope.

If the calls are not too frequent and we want the isolation that controlled
method-injection categories provide, we can use them. If those features turn
into limitations, we can use ExpandoMetaClass for injecting methods. We'll discuss
that next.

Injecting Methods Using ExpandoMetaClass

To create domain-specific languages (DSLs), we need to be able to add arbitrary
methods to different classes and even hierarchies of classes. We need to inject
instance methods and static methods, manipulate constructors, and convert
a method to a property for the sake of fluency. We'll want these capabilities
for creating mock objects to stand in for collaborators. In this section, we’ll
discuss the techniques to alter and enhance a class’s structure.

We can inject methods into a class by adding methods to its MetaClass. The
methods we inject are available globally. We're not restricted to a block like

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using ExpandoMetaClass ® 199

in categories. We discussed ExpandoMetaClass in Section 12.2, Intercepting
Methods Using MetaClass, on page 188. Using ExpandoMetaClass, we can add
methods, properties, constructors, and static methods; borrow methods from
other classes; and even inject methods into POGOs and POJOs.

Let’s look at an example of using ExpandoMetaClass to inject a method called
daysFromNow() into Integer. We want the statement 5.daysFromNow() to return the
date five days from today. Here’s the code:

InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
Integer.metaClass.daysFromNow = { ->
Calendar today = Calendar.instance
today.add(Calendar.DAY_OF MONTH, delegate)
today.time

}
println 5.daysFromNow()

The previous code reports the following:

Thu Sep 20 13:16:03 MST 2012

In this code, we implemented daysfromNow() using a closure and introduced
that into Integer’s MetaClass. (To inject the method on any object, add it to MetaClass
of Object.) Within the closure, we need to get access to Integer's target object.
The delegate refers to the target. See Section 4.9, Closure Delegation, on page
86, and Section 7.1, Using Object Extensions, on page 128, for discussions on
Elegates and closures.

We could drop the parentheses at the end of the method call to make it fluent
(see Section 19.2, Fluency, on page 297) so we can call 5.daysFromNow. However, this
requires a little trick (see Section 19.9, The Parentheses Limitation and a
Worlcaround, on page 303). We need to set up a property instead of a method
because without the parentheses Groovy thinks the method is a property. To
define a property named daysfromNow, we have to create a method named
getDaysFromNow(), so let’s do that:

InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.getDaysFromNow = { ->
Calendar today = Calendar.instance
today.add(Calendar.DAY OF MONTH, delegate)
today.time

}

println 5.daysFromNow

The output from the previous code is shown next. The call to the property
daysFromNow is now routed to the method getDaysFromNow().

Thu Sep 20 13:16:03 MST 2012

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection * 200

We injected a method on Integer, but what about its cousins Short and Long?
The previous method is not available on these classes. We certainly don’t
want to redundantly add the method to those classes. One idea is to store
the closure in a variable and then assign it to these classes, as shown here:

InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy
daysFromNow = { ->
Calendar today = Calendar.instance
today.add(Calendar.DAY OF MONTH, (int)delegate)
today.time

}

Integer.metaClass.daysFromNow = daysFromNow
Long.metaClass.daysFromNow = daysFromNow

println 5.daysFromNow()
println 5L.daysFromNow()

The output is as follows:

Thu Sep 20 13:26:43 MST 2012
Thu Sep 20 13:26:43 MST 2012

Alternatively, we can provide the method in the base class Number of Integer.
Let’s add a method named someMethod() on Number and see whether it’s available
on Integer and Long:

InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy
Number.metaClass.someMethod = { ->
println "someMethod called"

}

2.someMethod ()
2L.someMethod ()

The output from the previous code, shown here, confirms that the methods
are available on the derived classes:

someMethod called
someMethod called

We saw how to inject a method into a class hierarchy. We might also want to
introduce methods into an interface hierarchy so the methods are available
on all classes implementing that interface. We'll take a look at adding a method
to an interface in Section 19.11, ExpandoMetaClass and DSLs, on page 307.

We can inject static methods into a class, as well, by adding them to the Meta-
Class’s static property.

Let’s add a static method isEven() to Integer:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using ExpandoMetaClass ® 201

InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
Integer.metaClass. 'static'.isEven = { val -> val %$ 2 == 0 }

println "Is 2 even? " + Integer.isEven(2)
println "Is 3 even? " + Integer.isEven(3)

Exercising the code will produce the following output:

Is 2 even? true
Is 3 even? false

We figured out how to inject instance methods and static methods. The third
type of method a class can have is the constructor. We can add constructors
by defining a special property with the name constructor. Since we're adding a
constructor and not replacing an existing one, we use the << operator. Use
caution; if we use << to override existing constructors or methods, we’ll get
an error. Let’s introduce a constructor for Integer that accepts a Calendar so the
instance will hold the number of days in the year as of that date:

InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.constructor << { Calendar calendar ->
new Integer(calendar.get(Calendar.DAY OF YEAR))

}

println new Integer(Calendar.instance)

The output from the previous code is as follows:

349

In the injected constructor we are using the existing constructor of Integer that
accepts an int. We could have returned the result of the call to Calendar’s get()
instead of creating a new instance of Integer. In that case, autoboxing will take
care of creating an Integer instance. Make sure that the implementation doesn’t
recursively call itself, leading to a StackOverflowError.

Instead of adding a new constructor, if we want to replace (or override, though
strictly speaking constructors are not overrideable) a constructor, we can do
that by using the = operator instead of the << operator.

InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
Integer.metaClass.constructor = { int val ->
println "Intercepting constructor call"
constructor = Integer.class.getConstructor(Integer.TYPE)
constructor.newInstance(val)

}

println new Integer(4)
println new Integer(Calendar.instance)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection ® 202

The output from the previous code is as follows:

Intercepting constructor call
4

Intercepting constructor call
349

From within the constructor override, we can still call the original implemen-
tation using reflection. As we can see, other constructors—predefined and
injected—are still intact. So, when we create an Integer using a Calendar instance,
it uses the constructor injected earlier, which in turn now uses the constructor
override we provided previously.

Adding methods to the metaclass using the syntax ClassName.metaClass.method =
{..} is simple and convenient if we want to add one or two methods. If we
want to add a bunch of methods, the declaration and setup will soon feel like
a burden. Groovy provides a way to group these methods into a convenient
syntax called an ExpandoMetaClass (EMC) DSL. In the previous example we
added a few methods to the Integer metaClass individually. Instead we can group
them, as we see next.

InjectionAndSynthesisWithMOP/UsingEMCDSL.groovy
Integer.metaClass {
daysFromNow = { ->
Calendar today = Calendar.instance
today.add(Calendar.DAY OF MONTH, delegate)
today.time

}

getDaysFromNow = { ->
Calendar today = Calendar.instance
today.add(Calendar.DAY OF MONTH, delegate)

today.time
}
'static' {

isEven = { val -> val %$ 2 == 0 }
}

constructor = { Calendar calendar ->
new Integer(calendar.get(Calendar.DAY OF YEAR))
}

constructor = { int val ->
println "Intercepting constructor call"
constructor = Integer.class.getConstructor(Integer.TYPE)
constructor.newInstance(val)

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/UsingEMCDSL.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

13.3

Injecting Methods into Specific Instances ® 203

We group methods we’d like to inject into a class’s metaClass in a closure we
pass to ClassName.metaClass. Wrap the code for each instance method in a closure
and assign it to the method name we’d like to inject. To inject static methods,
define a closure with the word 'static' prefixed and place our definition for
static methods within that closure, as in the example. To define a constructor,
we use the word “constructor,” as before.

The EMC DSL reduces code noise and makes it easier to see in one place the
bunch of methods we’re adding to a class.

ExpandoMetaClass is very flexible for injecting methods. We can use the injected
methods from anywhere in our application. We invoke injected methods just
like we invoke regular methods. With ExpandoMetaClass, we can inject methods
into plain old Java objects and plain old Groovy objects (POJOs and POGOs).
So, we can enjoy the dynamic capabilities for all classes.

ExpandoMetaClass has some limitations, however. The injected methods are
available only for calls within Groovy code. We can’t use these methods from
within compiled Java code. They can’t be used with reflection from Java code,
either. For a workaround to invoke them from Java, see Section 10.6, Calling
Groovy Dynamic Methods from Java, on page 165.

Injecting Methods into Specific Instances

We saw ways to inject methods into a class dynamically. We can add behavior
to specific instances of a class much like how we added behavior to the class.
Suppose we receive a Person and, based on a certain condition or state, we
want to perform some operations on it. We figure it would be easier to inject
a set of reusable methods or utility functions on it; however, we don’t want
to apply those globally on all Persons. Groovy makes it fairly simple to inject
instances with methods.

The MetaClass is per-instance. If we want an instance to have a different
behavior than the other objects instantiated from the same class, we inject
the methods into the metaClass obtained from the specific instance. Alternatively,
we can create an instance of ExpandoMetaClass, add the desired methods to it
(including the methods we’d like to preserve from the instance’s current
metaClass), initialize it (required to indicate the completion of method/property
additions), and attach it to the instance we desire to enhance. Here is an
example of adding a method to an instance of Person:

InjectionAndSynthesisWithMOP/Injectinstance.groovy
class Person {

def play() { println 'playing...' }
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/InjectInstance.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection * 204

def emc = new ExpandoMetaClass(Person)
emc.sing = { ->

'oh baby baby...'
}

emc.initialize()

def jack = new Person()
def paul = new Person()

jack.metaClass = emc
println jack.sing()

try {
paul.sing()

} catch(ex) {
println ex

}
The previous code reports the following:

oh baby baby...
groovy.lang.MissingMethodException:
No signature of method: Person.sing()
is applicable for argument types: () values: []
Possible solutions: find(), find(groovy.lang.Closure),
is(java.lang.Object), any(), print(java.lang.Object),
print(java.io.PrintWriter)

We injected sing() on our courageous friend jack by setting the instance of
MetaClass on it. We can now invoke sing() on jack. However, if we try to call it on
any other instance of Person, it will fail.

We added the method sing() to jack, but if his vocal abilities are like mine, we'd
want him to sing only in the bathroom. Groovy provides a convenient way to
strip these injected methods off the instances—simply set the metaClass prop-
erty to null.

InjectionAndSynthesisWithMOP/Injectinstance.groovy
jack.metaClass = null
try {
jack.play()
jack.sing()
} catch(ex) {
println ex

}

Now that we've removed the method we added, any call to it will fail, as we
can see in the following output. Only injected methods are affected—any
predefined methods, such as play(), are still available.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/InjectInstance.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods into Specific Instances ® 205

playing...
groovy.lang.MissingMethodException:
No signature of method: Person.sing() is applicable ...

We took a few steps to create the ExpandoMetaClass, add methods to it, and then
initialize it. We don’t have to go through that much trouble. We can simply
set the methods on the instance’s metaClass property, as we see here:

InjectionAndSynthesisWithMOP/InjectinstanceMetaClass.groovy
class Person {
def play() { println 'playing...' }
}
def jack new Person()
def paul = new Person()

jack.metaClass.sing = { ->
‘oh baby baby...'

}
println jack.sing()

try {
paul.sing()

} catch(ex) {
println ex

}

jack.metaClass = null
try {
jack.play()
jack.sing()
} catch(ex) {
println ex

}

We eliminated quite a bit of noise in this version of code to inject a method.
The output from this code is the same as from the previous version.

We can inject multiple methods into an instance individually, like we injected
the sing() method, or we can group them using the EMC DSL as we did in
Section 13.2, Injecting Methods Using ExpandoMetaClass, on page 198. The
syntax to group methods is as follows:

jack.metaClass {
sing = { ->
'oh baby baby...'
}
dance = { ->
'start the music...'

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/InjectInstanceMetaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

13.4

Chapter 13. MOP Method Injection * 206

Using the ExpandoMetaClass we can inject methods into both Groovy and Java
classes. We can also inject methods into specific instances as we saw in this
section. If we want to inject a group of methods into multiple classes, the
ExpandoMetaClass offers yet another convenience through mixins, as we’ll see next.

Injecting Methods Using Mixins

In Java we can inherit from multiple interfaces, but we're allowed to extend
from only one class. Groovy carries the Java semantics, but in addition offers
the flexibility to pull in implementations from multiple classes.

The issues surrounding multiple interfaces in languages like C++ prompted
the restrictions in Java. When multiple implementations are pulled together,
the implementations can collide and cause a great deal of confusion. Groovy
avoids those issues by allowing methods to compose and collaborate rather
than collide, as we’ll see in this section.

Groovy mixins are a runtime capability that we can use to bring in or mix in
implementations from multiple classes. If we mix a class into another, Groovy
will chain the instances of these classes in memory. When we invoke a method,
Groovy will first route the call to the mixed-in class, if present. If the method
does not exist in that class, the main class will handle it. We can also mix
multiple classes into a class, and the last-added mixin takes precedence.

We can mix a class into multiple classes and mix multiple classes into a single
class. We'll create a Friend class and inject its methods into a few classes as a
way to learn about mixins.

InjectionAndSynthesisWithMOP/mixin.groovy
class Friend {
def listen() {
"$name 1is listening as a friend"
}
}

The class Friend looks like a regular class. It has a listen() method to represent
the behavior of a friend—a good friend is someone who listens. In this method
we simply print the value of the name property along with a small message.
The property itself is not defined anywhere in this class; the class this is
mixed into will provide it.

Here we’ll examine the options Groovy provides for mixing in classes.

First, inject the mixin into a Person class using the @Mixin annotation syntax illus-
trated in the following code. Alternatively, we could introduce the mixin into the
class using a static initializer, like so: class Person { static { mixin Friend} ...}.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/mixin.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using Mixins ® 207

InjectionAndSynthesisWithMOP/mixin.groovy
@Mixin(Friend)
class Person {

String firstName

String lastName

String getName() { "$firstName $lastName"}
}

john = new Person(firstName: "John", lastName: "Smith")
println john.listen()

The @Mixin annotation adds the methods of the class provided as an argument
to the annotated class. In this example, the methods of Friend are added to
the Person class. We can mix in more than one class by providing a list of class
names to the annotation, like so: @Mixin([Friend, Teacher]).

We can invoke the methods injected using the mixin on any instance of the
Person class, as in the previous example. The next output shows the person
responding to the mixed-in listen method.

John Smith is listening as a friend

The syntax for a mixin is quite elegant and concise, but the use of an annota-
tion limits it to only the authors of the class. We can’t use this approach if
we don’t have the source code for the class or if we don’t want to modify it.

We can mix behavior into existing classes to inject methods into both Groovy
and Java classes. We don’t need the source code for the class to mix in
classes. Let’s look at the syntax to dynamically mix in at runtime, create a
Dog class—man’s best friend—and then mix the Friend class into it.

InjectionAndSynthesisWithMOP/mixin.groovy
class Dog {
String name

}
Dog.mixin Friend

buddy = new Dog(name: "Buddy")
println buddy.listen()

Instead of using the annotation, we called the mixin() method on the class and
passed it the name of the class we’d like to mix in. The methods of this mixed-
in class are now available to all instances of Dog. The next output shows the
result of calling the listen() method.

Buddy is listening as a friend

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/mixin.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/mixin.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

13.5

Chapter 13. MOP Method Injection * 208

We saw how to mix in classes using annotation and then using the special
mixin() method. We can also selectively mix into specific instances of a class.
Write a Cat class to see how this works:

InjectionAndSynthesisWithMOP/mixin.groovy

class Cat {
String name

}

try {

rude = new Cat(name: "Rude")
rude.listen()

} catch(ex) {
println ex.message

}

The instance of Cat named rude does not support any of the methods of Friend,
as cats in general aren’t friendly, at least not the way we expect. So, our
attempt to call the listen() method on it ended up...well, catastrophic. Check
out the output:

No signature of method: Cat.listen() is applicable
for argument types: () values: []
Possible solutions:

Not all cats are the same, and we can genetically alter specific instances to
our liking. In the next example we create another instance of the Cat class,
but socks is special; using the mixin() method on its metaClass, we mixed in the
Friend behavior.

InjectionAndSynthesisWithMOP/mixin.groovy

socks = new Cat(name: "Socks")

socks.metaClass.mixin Friend
println socks.listen()

Our newfound friend socks purrs on call to listen().
Socks is listening as a friend

We've seen how to mix behavior into classes and specific instances. We can
mix in multiple behaviors as well, as we’ll see next.

Decorating Classes with Multiple Mixins

When we mix in multiple classes, all of those classes’ methods are available
in the target class. By default, methods hide on collision. That is, if two or
more classes being mixed in have methods with the same name and parame-
ters’ signature, the method in the latest-added mixin hides the method that
has already been injected.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/mixin.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/mixin.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Decorating Classes with Multiple Mixins ® 209

We can program these methods to instead collaborate in a way that the call
can result in a chain of methods calls. Let’s create a chain of filters to trans-
form the parameters they receive; we’ll see how mixins can provide such a
design option.

An application needs different types of writers; the target may be a file, a
socket, a web service, a simple string, and so on. We've generalized these into
an abstract base class named Writer.

InjectionAndSynthesisWithMOP/Filters.groovy
abstract class Writer {
abstract void write(String message)

}

One specific implementation of this class is a StringWriter that writes the given
message in the write() method to a StringBuilder.

InjectionAndSynthesisWithMOP/Filters.groovy
class StringWriter extends Writer {
def target = new StringBuilder()

void write(String message) {
target.append(message)

}

String toString() { target.toString() }
}

We can write other implementations of the Writer as we please. Let’s use the
StringWriter we created to write some stuff into, using the methods shown next.

InjectionAndSynthesisWithMOP/Filters.groovy

def writeStuff(writer) {
writer.write("This is stupid")
println writer

}

def create(theWriter, Object[] filters = []) {
def instance = theWriter.newInstance()
filters.each { filter -> instance.metaClass.mixin filter }
instance

}
writeStuff(create(StringWriter))

In the writeStuff() method we receive an instance of the Writer, write an intelligent
message using the write() method, and, right after that, print the content the
Writer holds. We use the create() method to create an instance of a specific Writ-
er-derived class provided as the first parameter. We then mix an optional list
of classes into this instance and return the mixed-in instance.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection ® 210

Here’s result of calling the writeStuff() method with an instance of StringWriter
without any behavior mixed in:

This is stupid

We now have the code to merely write the given message to the targets, such
as StringWriter or one of the other Writer specializations we could implement. In
the meantime, our requirements have evolved and we’re asked to write the
value of the given parameter in uppercase.

We don’t want to change any of the concrete writers, such as StringWriter or the
base Writer class. The request to print in uppercase may be a harbinger of
more such transformations or filtering to follow, and any change to these
classes would render them nonextensible when such requests emerge.

To see how mixins can help achieve a flexible design here, create a separate
UpperCaseFilter class:

InjectionAndSynthesisWithMOP/Filters.groovy
class UppercaseFilter {

void write(String message) {
def allUpper = message.toUpperCase()

invokeOnPreviousMixin(metaClass, "write", allUpper)
}
}

In UpperCasefFilter's write() method, we transform the given parameter message to
all uppercase and invoke a yet-to-be-written method invokeOnPreviousMixin(). This
write() method is focused on its piece of responsibility, to filter and transform
the message. It then promptly passes the modified message to the next object
or filter to its left in the chain of mixins it’s part of.

Now we need the invokeOnPreviousMixin() method. We could write this as a stan-
dalone method or inject this into the Object base class so it’s available as an
instance method on any class. In this method we need to fetch the previous
mixin in the list of mixins for the instance we're working with.

We use the mixin() method to add one or more mixins to a class or an instance.
Groovy provides a property named mixedin that holds an ordered list of mixins
for an instance.

Remember that the mixins we add form a chain leading to the target we mixed
into. We can walk the list of mixins to find the mixin or the final target instance
ahead in the list, as we’ll see next.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Decorating Classes with Multiple Mixins ¢ 211

InjectionAndSynthesisWithMOP/Filters.groovy
Object.metaClass.invokeOnPreviousMixin = {
MetaClass currentMixinMetaClass, String method, Object[] args ->
def previousMixin = delegate.getClass()
for(mixin in mixedIn.mixinClasses) {
if(mixin.mixinClass.theClass ==
currentMixinMetaClass.delegate.theClass) break
previousMixin = mixin.mixinClass.theClass

}

mixedIn[previousMixin]."$method" (*args)

}

The type of the leftmost instance in the chain is the target instance, which
we obtain using delegate.getClass(). We then walk through the list of classes held
in the mixedin LinkedHashSet until we reach the mixin prior to the current mixin.
Finally, from the context of a mixin we invoke the given method on the mixin
or target ahead in the list.

To see the fruit of these efforts, invoke the writeStuff() method with an instance
of StringWriter that’s mixed in with an UpperCaseFilter.

InjectionAndSynthesisWithMOP/Filters.groovy
writeStuff(create (StringWriter, UppercaseFilter))

To the writeStuff() method in the previous call we send an instance of StringWriter
chained with an instance of UpperCasefFilter, as in the following figure.

StringWriter |<¢——— UpperCaseFilter

- “\\ .
AR - = write(...)

~ -

write(....)

Figure 12—Chaining of the UpperCaseFilter mixin to a StringWriter instance

The call to the write() method on this instance of StringWriter is first routed to
the chained instance of UpperCaseFilter. This transforms the given parameter
and forwards the call to the target instance, as we can see here:

THIS IS STUPID

Our efforts to devise this extensible design are quickly rewarded—we’ve been
asked to filter out profanity in the messages being written. Removing profane
words can be one hell of a task, so in this first version we will simply remove
the word “stupid,” which responsible parents often advise their children to
avoid.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 13. MOP Method Injection ® 212

InjectionAndSynthesisWithMOP/Filters.groovy
class ProfanityFilter {
void write(String message) {
def filtered = message.replaceAll('stupid', 's*¥***!')
invokeOnPreviousMixin(metaClass, "write", filtered)
}
}

writeStuff(create (StringWriter, ProfanityFilter))

The ProfanityFilter's write() method replaces all lowercase occurrences of the
offending word and forwards it to the method on the instance to its left in the
chain. The target receives the appropriate filtered message, as the next output
shows.

This is gk****

The flexibility and extensibility of our design with mixins shines in the next
example, where we chain both the filters in sequence.
InjectionAndSynthesisWithMOP/Filters.groovy

writeStuff(create(StringWriter, UppercaseFilter, ProfanityFilter))
writeStuff(create(StringWriter, ProfanityFilter, UppercaseFilter))

In the first call we created a chain of UpperCaseFilter followed by the ProfanityFilter.
In the second call we reversed the order of these two filters, as in the following
figure.

StringWriter |« UpperCaseFilter ProfanityFilter
“_,/’/ ‘_,/’/ T~ write(...)
write(...) write(...)
StringWriter |« ProfanityFilter UpperCaseFilter
- - i(- - =~ -~ .
“\,_/’ ST = write(...)
write(...) write(...)

Figure 13—Chaining the UpperCaseFilter mixin to a StringWriter instance

The order we use to mix in the behavior matters. Method calls propagate right
to left in the chain, as we see in the output:

THIS IS Skx***
THIS IS STUPID

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/Filters.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Decorating Classes with Multiple Mixins ® 213

Since our kiddie version of the ProfanityFilter looked for only a lowercase word,
when the first filter in line was UpperCaseFilter the word escaped in bold. We can
use this idiosyncrasy to observe the order of execution.

In this section we saw the power of mixins, how to create them at the class
and instance level, and how to design for extensibility by chaining them. If
we're design-pattern aficionados, we’ll recognize this as an implementation
of the Decorator pattern. Dynamically injecting methods into classes is quite
powerful, but we're ready to take the Groovy metaprogramming flexibility up
a notch with method synthesis. We’ll cover that next.

In this chapter, we saw how to intercept and inject methods. Groovy MOP
makes it easy to perform AOP-like activities. We can create code that is
highly dynamic, and we can create highly reusable code that takes only a few
lines. In the next chapter we’ll up the dynamic behavior one more notch—we’ll
see how to synthesize or generate methods dynamically.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

CHAPTER 14

MOP Method Synthesis

We can separate ways of adding behavior into two types: injection and syn-
thesis.

We'll use the term method injection to refer to the case in which, at code-
writing time, we know the names of methods we want to add to one or more
classes. With method injection we can add behavior dynamically into classes.
We can add to any number of classes a set of reusable methods—like utility
functions—that represent a certain functionality. We can inject methods by
using categories, by using ExpandoMetaClass, or through the Groovy Mixin facil-
ity. We saw these techniques in Chapter 13, MOP Method Injection, on page
193.

On the other hand, method synthesis will refer to the case in which we want
to dynamically figure out the behavior for methods upon invocation. Groovy’s
invokeMethod(), methodMissing(), and GroovyInterceptable are useful for method synthe-
sis. For example, Grails/GORM synthesizes finder methods like findByFirstName()
and findByFirstNameAndLastName() for domain objects upon invocation.

A synthesized method may not exist as a separate method until we call it.
When we call a nonexistent method, Groovy can intercept the call, allow our
application to implement it on the fly, let us cache that implementation for
future invocation, and then invoke it—Graeme Rocher, the creator of Grails,
calls it the “Intercept, Cache, Invoke” pattern.

In this chapter, we’ll add dynamic methods to both classes and specific
instances. Rather than having a prescribed set of methods (and behavior)
defined at compile time, we can make classes assimilate behavior based on
the execution path through the application or their current state. Our objects
will appear to be active and intelligent, acquiring new behavior as they evolve.
The techniques we learn in this chapter will help us quickly relate to how

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

14.1

Chapter 14. MOP Method Synthesis ® 216

dynamic methods are used in Groovy related tools. For example, these tech-
niques will help us see how the persistent objects (GORM) are implemented
in Grails and how build tools like Gradle provide such flexible, dynamic
behaviors with so little code.

Method Synthesis Using methodMissing

So far we've been able to inject specific methods into a class or an instance.
In this section, we’ll synthesize methods with flexible and dynamic names.
We don’t decide the names ahead of time. In fact, we can let the users of our
class decide the names as long as they follow conventions we set. When they
call a nonexistent method, we can intercept it and create an implementation
on the fly. The implementation is made to measure. In other words, it is cre-
ated only when the users ask for it.

Method synthesis is implemented in Grails/GORM for domain classes. Sup-
pose we have a domain class (a class that represents information persistent
in a database table) Person with a number of fields (columns in the table), such
as firstName, lastName, cityOfResidence, and so on. Assume other fields can be added
at any time. GORM allows users of our Person class to call methods such as
findByFirstName(), findByLastName(), findByFirstNameAndLastName(), or even findByFirstName-
AndAge() if age is a field on Person. Our Person class will not have any of these
methods precreated. Each method is synthesized at runtime on the first call.
In the rest of this chapter, we’ll discuss how to synthesize methods in Groovy.

We can intercept calls to nonexistent methods in Groovy by implementing
methodMissing(). Likewise, we can intercept access to nonexistent properties by
implementing propertyMissing(). Within these methods we can implement the
logic for the method or property dynamically. We infer the semantics based
on certain conventions we define. For instance, method names that start with
find might imply a query, method names that start with update may imply a
save, and so on.

Let’s look at an example of synthesizing methods. We are going to turn jack,
a boring, all-work-no-play Person, into a multiathlete. He’ll play all kinds of
sports.

InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing.groovy
class Person {

def work() { "working..." }

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

def methodMissing(String name, args) {
System.out.println "methodMissing called for $name"

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Method Synthesis Using methodMissing ® 217

def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList) {

"playing ${name.split('play')[1]1}..."

} else {

throw new MissingMethodException(name, Person.class, args)

}
}
}

jack = new Person()

println jack.work()

println jack.playTennis()
println jack.playBasketBall()
println jack.playVolleyBall()
println jack.playTennis()

try {
jack.playPolitics()

} catch(Exception ex) {
println "Error: " + ex

}

The output from the previous code is as follows:

working. ..

methodMissing called for playTennis

playing Tennis...

methodMissing called for playBasketBall

playing BasketBall...

methodMissing called for playVolleyBall

playing VolleyBall...

methodMissing called for playTennis

playing Tennis...

methodMissing called for playPolitics

Error: groovy.lang.MissingMethodException:
No signature of method: Person.playPolitics()
is applicable for argument types: () values: []

work() is the only predefined domain method on Person. The call to work() went
to that method directly. However, calls to nonexistent methods are routed to
the methodMissing() method. In methodMissing(), we accept a call if it starts with
play and ends with one of the names in the plays array, and we can dynami-
cally modify this list to add other sports we want, giving the impression that
jack is assimilating new skills. If the method is not one we support (such as
playPolitics()), we throw a MissingMethodException.

From the caller’s point of view, there is no difference between calling a regular
method and a synthesized method.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 14. MOP Method Synthesis ® 218

The previous implementation is quite dynamic, but there’s a catch. Repeated
calls to a nonexistent method, such as playTennis(), involve identical performance
hits to evaluate. We can make this efficient by injecting the method on first
invocation. Again, Graeme Rocher calls this technique the “Intercept, Cache,
Invoke” pattern. We're going to synthesize the method on first call, inject it
into the MetaClass (cache it), and then invoke this injected method. Here is the
code for that:

InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing2.groovy
class Person {
def work() { "working..." }

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

def methodMissing(String name, args) {
System.out.println "methodMissing called for $name"
def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList) {
def impl = { Object[] vargs ->
"playing ${name.split('play')[1]}..."

}
Person instance = this
instance.metaClass."$name" = impl //future calls will use this
impl(args)
} else {

throw new MissingMethodException(name, Person.class, args)
}
}
}

jack = new Person()
println jack.playTennis()
println jack.playTennis()

The output from the previous code shows that the synthesized method is
cached on first call:

methodMissing called for playTennis
playing Tennis...
playing Tennis...

The methodMissing() method is called only on the first call to a supported
nonexistent method. The second call (and subsequent ones) to the same
supported method goes directly to the implementation (closure) we injected
into the instance’s MetaClass.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing2.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Method Synthesis Using methodMissing ® 219

Unlike invokeMethod(), which is called for all methods on objects that implement
Groovylnterceptable, methodMissing() is called only for methods that are nonexistent at the
time of call. If an object implements Groovyinterceptable, its invokeMethod() is called (if
present). Only if the object forwards control to its MetaClass’s invokeMethod() does method-
Missing() get called.

In Section 12.2, Intercepting Methods Using MetaClass, on page 188, we inter-
cepted calls using GroovyInterceptable. We can mix that with methodMissing() to
intercept calls to both existing methods and synthesized methods, as shown
here:

InjectionAndSynthesisWithMOP/InterceptingMissingMethods.groovy
class Person implements GroovyInterceptable {
def work() { "working..." }
def plays = ['Tennis', 'VolleyBall', 'BasketBall']
def invokeMethod(String name, args) {
System.out.println "intercepting call for $name"

def method = metaClass.getMetaMethod(name, args)

if (method) {
method.invoke(this, args)
} else {
metaClass.invokeMethod(this, name, args)
}
}

def methodMissing(String name, args) {
System.out.println "methodMissing called for $name"
def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList) {
def impl = { Object[] vargs ->
"playing ${name.split('play')[1]}..."

}
Person instance = this
instance.metaClass."$name" = impl //future calls will use this
impl(args)
} else {

throw new MissingMethodException(name, Person.class, args)
}
}

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/InterceptingMissingMethods.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

14.2

Chapter 14. MOP Method Synthesis ® 220

jack = new Person()
println jack.work()
println jack.playTennis()
println jack.playTennis()

The output from the previous code is as follows:

intercepting call for work
working. ..

intercepting call for playTennis
methodMissing called for playTennis
playing Tennis...

intercepting call for playTennis
playing Tennis...

Method synthesis is one of the most powerful features of Groovy. This feature
is widely used in libraries and frameworks written on top of Groovy, like easyb
and GORM. I've used this feature quite a bit to write extensible code for
complex business-logic processing with only a few lines of code.

Method Synthesis Using ExpandoMetaClass

In Section 14.1, Method Synthesis Using methodMissing, on page 216, we saw
how to synthesize methods. However, if we don’t have the privilege of editing
the class source file or if the class is not a POGO, that approach will not work.
We can synthesize methods using the ExpandoMetaClass in these cases.

We already saw how to interact with MetaClass in Section 12.2, Intercepting
Methods Using MetaClass, on page 188. Instead of providing an interceptor for
a domain method, we implement the methodMissing() method on it. Let’s take
the Person class (and the boring jack) from Section 14.1, Method Synthesis Using
methodMissing, on page 216, but instead ExpandoMetaClass, as shown here:

InjectionAndSynthesisWithMOP/MethodSynthesisUsingEMC.groovy
class Person {

def work() { "working..." }
}

Person.metaClass.methodMissing = { String name, args ->
def plays = ['Tennis', 'VolleyBall', 'BasketBall']

System.out.println "methodMissing called for $name"
def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList) {
def impl = { Object[] vargs ->
"playing ${name.split('play')[1]}..."
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/MethodSynthesisUsingEMC.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Method Synthesis Using ExpandoMetaClass ® 221

Person.metaClass."$name" = impl //future calls will use this
impl(args)
} else {
throw new MissingMethodException(name, Person.class, args)
}
}
jack = new Person()
println jack.work()
println jack.playTennis()
println jack.playTennis()

try {
jack.playPolitics()
} catch(ex) {
println ex

}
The output from the previous code is as follows:

working. ..

methodMissing called for playTennis

playing Tennis...

playing Tennis...

methodMissing called for playPolitics

groovy.lang.MissingMethodException:
No signature of method: Person.playPolitics()
is applicable for argument types: () values: []

The MetaClass’s methodMissing() will take precedence over methodMissing() if present
in our class. Methods of our class’s MetaClass override the methods in our class.

When we called work() on jack, Person’s work() was executed directly. If we call a
nonexistent method, however, it is routed to the Person’s MetaClass’s methodMissing().
In this method we implement logic similar to the solution in Section 14.1,
Method Synthesis Using methodMissing, on page 216. Repeated calls to sup-
ported nonexistent methods do not incur overhead, as we can see in the
preceding output for the second call to playTennis(). We cached the implemen-
tation on the first call.

In Section 12.2, Intercepting Methods Using MetaClass, on page 188, we inter-
cepted calls using ExpandoMetaClass’s invokeMethod(). We can mix that with
methodMissing() to intercept calls to both existing methods and synthesized
methods, as shown here:

InjectionAndSynthesisWithMOP/MethodSynthesisAndInterceptionUsingEMC.groovy
class Person {

def work() { "working..." }
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/MethodSynthesisAndInterceptionUsingEMC.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 14. MOP Method Synthesis ® 222

Person.metaClass.invokeMethod = { String name, args ->
System.out.println "intercepting call for ${name}"

def method = Person.metaClass.getMetaMethod(name, args)

if (method) {
method.invoke(delegate, args)
} else {
Person.metaClass.invokeMissingMethod(delegate, name, args)
}
}

Person.metaClass.methodMissing = { String name, args ->
def plays = ['Tennis', 'VolleyBall', 'BasketBall']

System.out.println "methodMissing called for ${name}"
def methodInList = plays.find { it == name.split('play')[1l]}

if (methodInList) {
def impl = { Object[] vargs ->
"playing ${name.split('play')[1]}..."

}
Person.metaClass."$name" = impl //future calls will use this
impl(args)
} else {
throw new MissingMethodException(name, Person.class, args)

}
}

jack = new Person()
println jack.work()
println jack.playTennis()
println jack.playTennis()

The output from the previous code is as follows:

intercepting call for work
working. ..

intercepting call for playTennis
methodMissing called for playTennis
playing Tennis...

intercepting call for playTennis
playing Tennis...

14.3 Synthesizing Methods for Specific Instances

We saw how to inject methods into specific instances of a class in Section
13.3, Injecting Methods into Specific Instances, on page 203. We can dynamically

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Synthesizing Methods for Specific Instances * 223

invokeMethod() is a method of GroovyObject. methodMissing() was introduced later in Groovy
and is part of the MetaClass-based method handling. If our objective is to handle calls
to nonexistent methods, we implement methodMissing() because this involves low over-
head. If our objective is to intercept calls to both existing and nonexistent methods,
we use invokeMethod().

synthesize methods into specific instances, as well, by providing the instance(s)
with a specialized MetaClass. Here is an example:

InjectionAndSynthesisWithMOP/Synthesizelnstance.groovy
class Person {}

def emc = new ExpandoMetaClass(Person)
emc.methodMissing = { String name, args ->
"I'm Jack of all trades... I can $name"

}

emc.initialize()

def jack = new Person()
def paul = new Person()

jack.metaClass = emc

println jack.sing()
println jack.dance()
println jack.juggle()

try {
paul.sing()

} catch(ex) {
println ex

}
That code reports the following:

I'm Jack of all trades... I can sing
I'm Jack of all trades... I can dance
I'm Jack of all trades... I can juggle
groovy.lang.MissingMethodException:
No signature of method: Person.sing()
is applicable for argument types: () values: []

This ability to synthesize methods at the instance level is quite useful. We
can alter the behavior of a select instance, in tests or particular web requests
in a web application, without affecting the related class within the Java Virtual
Machine.

www.it-ebooks.info report erratum -« discuss

http://media.pragprog.com/titles/vslg2/code/InjectionAndSynthesisWithMOP/SynthesizeInstance.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 14. MOP Method Synthesis ® 224

The ability to create dynamic methods or behavior on objects based on the
current state of the instances and input received is quite powerful and paves
the way to creating and implementing highly dynamic DSLs, as we'll see later.

In this chapter, we covered how to synthesize methods. In the next chapter
we’ll talk about how to create classes dynamically and get a feel for which of
the metaprogramming techniques to use.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

15.1

CHAPTER 15

MOPping Up

We've seen how to synthesize methods, and in this chapter we’ll see how to
synthesize an entire class. Rather than creating explicit classes ahead of time,
we can create classes on the fly, which gives us more flexibility. Delegation
is better than inheritance, yet it has been hard to implement in Java. We'll
see how Groovy’s metaobject protocol (MOP) allows method delegation with
only one line of code. We'll wrap up this chapter by reviewing the MOP tech-
niques we've seen in the preceding chapters.

Creating Dynamic Classes with Expando

In Groovy we can create a class entirely at runtime. Suppose we’re building
an application that will configure devices. We don’t have a clue what these
devices are—we know only that devices have properties and configuration
scripts. We don’t have the luxury of creating an explicit class for each device
at coding time. So, we’ll want to synthesize classes at runtime to interact with
and configure these devices. In Groovy, classes can come to life at runtime
based on our command.

The Groovy Expando class gives us the ability to synthesize classes dynamically.
It got its name because it is dynamically expandable. We can assign properties
and methods to it either at construction time using a Map or at any time
dynamically. Let’s start with an example to synthesize a class Car. We'll see
two ways to create it using Expando.

MOPpingUp/UsingExpando.groovy

carA = new Expando()

carB = new Expando(year: 2012, miles: 0)

carA.year = 2012
carA.miles = 10

println "carA: " + carA
println "carB: " + carB

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MOPpingUp/UsingExpando.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 15. MOPping Up * 226

The output from the previous code is as follows:

carA: {year=2012, miles=10}
carB: {year=2012, miles=0}

We created carA, the first instance of Expando, without any properties or meth-
ods. We injected the year and miles later. On the other hand, we created carB,
the second instance of Expando, with the year and miles initialized at construction
time.

We're not restricted to properties. We can define methods as well, and invoke
them like we would invoke any method. Let’s give that a try. Once again, we
can define a method at construction time or inject it later at will:
MOPpingUp/UsingExpando.groovy
car = new Expando(year: 2012, miles: 0, turn: { println 'turning..."' })
car.drive = {

miles += 10

println "$miles miles driven"

}

car.drive()
car.turn()

The output from the previous code is as follows:

10 miles driven
turning...

Suppose we have an input file with some data for Cars, as shown here:

MOPpingUp/car.dat

miles, year, make
42451, 2003, Acura
24031, 2003, Chevy
14233, 2006, Honda

We can easily work with Car objects without explicitly creating a Car class, as
in the following code. We parse the file’s content, first extracting the property
names. Then we create instances of Expando, one for each line of data in the
input file, and populate those instances with values for the properties. We
even add a method, in the form of a closure, to compute the average miles
driven per year until 2008. Once the objects are created, we can access the
properties and call methods on them dynamically. We can also address the
methods/properties by name, as shown in the end of the following code.

MOPpingUp/DynamicObjectsUsingExpando.groovy
data = new File('car.dat').readlLines()

props = data[0].split(", ")

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MOPpingUp/UsingExpando.groovy
http://media.pragprog.com/titles/vslg2/code/MOPpingUp/car.dat
http://media.pragprog.com/titles/vslg2/code/MOPpingUp/DynamicObjectsUsingExpando.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

15.2

Method Delegation: Putting It All Together ¢ 227

data -= data[0]
def averageMilesDrivenPerYear = { miles.tolLong() / (2008 - year.tolLong()) }

cars = data.collect {
car = new Expando()
it.split(", ").eachWithIndex { value, index ->
car[props[index]] = value

}

car.ampy = averageMilesDrivenPerYear

car

}

props.each { name -> print "$name " }
println " Avg. MPY"

ampyMethod = 'ampy'

cars.each { car ->
for(String property : props) { print "${car[property]} " }
println car."$ampyMethod" ()

}

// You may also access the properties/methods by name
car = cars[0]
println "$car.miles $car.year $car.make ${car.ampy()}"

The output from that code is as follows:

miles year make Avg. MPY
42451 2003 Acura 8490.2
24031 2003 Chevy 4806.2
14233 2006 Honda 7116.5
42451 2003 Acura 8490.2

We can use Expando whenever we want to synthesize classes on the fly. It’s
lightweight and flexible. For example, this feature shines when we create
mock objects for unit testing, as we’ll see in Section 18.8, Mocking Using
Expando, on page 285.

Method Delegation: Putting It All Together

We use inheritance to extend a class’s behavior. On the other hand, we use
delegation to rely upon contained or aggregated objects to provide a class’s
behavior. We should choose inheritance if we intend to use an object in place
of another object, and delegation if we intend to simply use an object. Reserve
inheritance for is-a or kind-of relationships; we should prefer delegation over
inheritance most of the time (see Effective Java [BloO8]). However, it’s easy to

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 15. MOPping Up * 228

program inheritance—it takes only one keyword, extends. But it’s hard to pro-
gram delegation, because we have to write all those methods that route the
call to the contained objects. Groovy helps us do the right thing. By using
MOP, we can easily implement delegation with a single line of code, as we’ll
see in this section.

In the following example, a Manager wants to delegate work to either a Worker
or an Expert. We're using methodMissing() and ExpandoMetaClass to realize this. If a
method called on the instance of Manager does not exist, its methodMissing() routes
it to either the Worker or the Expert, whichever successfully evaluates the
respondsTo() method (see Section 11.2, Querying Methods and Properties, on
page 180). If there are no takers for a method among the delegates and the
Manager does not handle the method.

MOPpingUp/Delegation.groovy

class Worker {
def simpleWorkl(spec) { println "worker does workl with spec $spec" }
def simpleWork2() { println "worker does work2" }

}

class Expert {
def advancedWorkl(spec) { println "Expert does workl with spec $spec" }
def advancedWork2(scope, spec) {
println "Expert does work2 with scope $scope spec $spec"
}
}

class Manager {
def worker = new Worker()
def expert = new Expert()
def schedule() { println "Scheduling ..." }
def methodMissing(String name, args) {
println "intercepting call to $name..."
def delegateTo = null

if(name.startsWith('simple')) { delegateTo = worker }
if(name.startsWith('advanced')) { delegateTo = expert }
if (delegateTo?.metaClass.respondsTo(delegateTo, name, args)) {
Manager instance = this
instance.metaClass."${name}" = { Object[] varArgs ->
delegateTo.invokeMethod(name, varArgs)
}
delegateTo.invokeMethod(name, args)
} else {
throw new MissingMethodException(name, Manager.class, args)
}
}
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MOPpingUp/Delegation.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

peter =
peter.schedule()

peter.simpleWorkl
peter.simpleWorkl
peter.
peter.

simpleWork2()
simpleWork2()

Method Delegation: Putting It All Together ¢ 229

new Manager ()

'fast')
'quality')

peter.advancedWorkl('fast')
peter.advancedWorkl('quality')

peter.advancedWork2('prototype',
peter.advancedWork2('product',

try {

'fast')
'quality')

peter.simpleWork3()

} catch(Exception
println ex

}

ex) {

The output from the previous code is as follows:

Scheduling ...

intercepting call
worker does workl
worker does workl
intercepting call
worker does work2
worker does work2
intercepting call
Expert does workl
Expert does workl
intercepting call
Expert does work2
Expert does work2
intercepting call

to simpleWorkl...
with spec fast

with spec quality
to simpleWork2...

to advancedWorkl...

with spec fast

with spec quality

to advancedWork2...

with scope prototype spec fast
with scope product spec quality
to simpleWork3...

groovy.lang.MissingMethodException:
No signature of method: Manager.simpleWork3()

is applicable for argument types: () values: []

We figured out a way to delegate calls, but that’s a lot of work. We don’t want
to put in so much effort each time we want to delegate. We can refactor this
code for reuse. Let’s look at how the refactored code will look when used in
the Manager class:

MOPpingUp/DelegationRefactored.groovy

class Manager {
{ delegateCallsTo Worker, Expert, GregorianCalendar }

def schedule() { println "Scheduling ...
}

"}

That is short and sweet. In the initializer block we call a yet-to-be-implemented
method named delegateCallsTo() and send the names of classes to which we want

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MOPpingUp/DelegationRefactored.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 15. MOPping Up * 230

to delegate unimplemented methods. If we want to use delegation in another
class, all it takes now is that code in the initialization block. Let’s look at the
fancy delegateCallsTo() method:

MOPpingUp/DelegationRefactored.groovy
Object.metaClass.delegateCallsTo = {Class... klassOfDelegates ->
def objectOfDelegates = klassOfDelegates.collect { it.newInstance() }
delegate.metaClass.methodMissing = { String name, args ->
println "intercepting call to $name..."
def delegateTo = objectOfDelegates.find {
it.metaClass.respondsTo(it, name, args) }
if (delegateTo) {
delegate.metaClass."${name}" = { Object[] varArgs ->
delegateTo.invokeMethod(name, varArgs)

}
delegateTo.invokeMethod(name, args)
} else {
throw new MissingMethodException(name, delegate.getClass(), args)

}
}
}

When we call delegateCallsTo() from within our class’s instance initializer, it adds
a methodMissing() to the class, which is known within this closure as delegate. It
takes the Class list provided as an argument to delegateCallsTo() and creates a
list of delegates, which are the candidates to implement delegated methods.
In methodMissing(), the call is routed to an object among the delegates that will
respond to the method. If there are no takers, the call fails. The list of classes
given to delegateCallsTo() also represents the order of precedence; the first one
has the highest precedence. Of course, we have to see all this in action, so
here is the code to exercise the previous example:

MOPpingUp/DelegationRefactored.groovy
peter = new Manager()
peter.schedule()
peter.simpleWorkl('fast"')
peter.simpleWorkl('quality")
peter.simpleWork2()
peter.simpleWork2()
peter.advancedWorkl('fast')
peter.advancedWorkl('quality"')
peter.advancedWork2('prototype', 'fast')
peter.advancedWork2('product', 'quality')
println "Is 2008 a leap year? " + peter.islLeapYear(2008)
try {

peter.simpleWork3()
} catch(Exception ex) {

println ex

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/MOPpingUp/DelegationRefactored.groovy
http://media.pragprog.com/titles/vslg2/code/MOPpingUp/DelegationRefactored.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Review of MOP Techniques ® 231

That code produces the following output:

Scheduling ...

intercepting call
worker does workl
worker does workl
intercepting call
worker does work2
worker does work2
intercepting call
Expert does workl
Expert does workl
intercepting call
Expert does work2
Expert does work2
intercepting call

to simpleWorkl...
with spec fast

with spec quality
to simpleWork2...

to advancedWorkl...

with spec fast

with spec quality

to advancedWork2...

with scope prototype spec fast
with scope product spec quality
to isLeapYear...

Is 2008 a leap year? true
intercepting call to simpleWork3...
groovy.lang.MissingMethodException:

No signature of method: Manager.simpleWork3()

is applicable for argument types: () values: []

We can build on this idea to meet our needs. For instance, if we want to mix
in some precreated objects, we can send them as an array to the first
parameter of delegateCallsTo() and have those objects used along with the ones
created from the delegate classes. The previous example shows how we can
use Groovy’s MOP to implement dynamic behavior such as method delegation.

We can learn from the example in this section how to dynamically change an
instance’s behavior at runtime. If we like, we can modify the delegation based
on the current state of the object. If the delegation is static, that is decided
ahead of time and no runtime change is necessary. Then we can simply use
the @Delegate annotation (a compile-time metaprogramming technique), as
we saw in Using @Delegate, on page 41.

15.3 Review of MOP Techniques

We've seen a number of options to intercept, inject, and synthesize methods.
In this section, we’ll figure out which option is right for us.

Options for Method Interception

We discussed method interception in Chapter 12, Intercepting Methods Using
MOP, on page 185, and Section 13.1, Injecting Methods Using Categories, on
page 193. We can use Groovylnterceptable, ExpandoMetaClass, or categories.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 15. MOPping Up ® 232

If we have the privileges to modify the class source, we can implement
Groovylnterceptable on the class we want to intercept method calls. The effort is
as simple as implementing invokeMethod().

If we can’t modify the class or if the class is a Java class, then we can use
ExpandoMetaClass or categories. ExpandoMetaClass clearly stands out in this case
because a single invokeMethod() can take care of intercepting any methods of
our class. Categories, on the other hand, would require separate methods,
one per intercepted method. Also, if we use categories we're restricted by the
use() block.

Options for Method Injection

We discussed method injection in Section 13.1, Injecting Methods Using Cat-
egories, on page 193. We can use categories or ExpandoMetaClass.

Categories compete well with ExpandoMetaClasses for method injection. If we use
categories, we can control the location where methods are injected. We can
easily implement different versions of method injection by using different
categories. We can easily nest and mix multiple categories, as well. The control
that categories offer—that method injection takes effect only within the use()
blocks and is limited to the executing thread—may also be considered a
restriction. If we want to use the injected methods at any location and also
want to inject static methods and constructors, ExpandoMetaClass is a better
choice. Beware, though, that ExpandoMetaClass is not the default MetaClass in
Groovy.

Using the ExpandoMetaClass, we can inject methods into specific instances of a
class instead of affecting the entire class.

Options for Method Synthesis

We discussed method injection in Section 14.1, Method Synthesis Using
methodMissing, on page 216. We can use methodMissing() on a Groovy object or
ExpandoMetaClass.

If we have the privileges to modify the class source, we can implement the
methodMissing() method on the class for which we want to synthesize methods. We
can improve performance by injecting the method on the first call. If we need to
intercept our methods at the same time, we can implement GroovyInterceptable.

If we can’t modify the class or if the class is a Java class, then we can add
the method methodMissing() to the class’s ExpandoMetaClass. If we want to intercept
method calls at the same time, we can implement invokeMethod() on the
ExpandoMetaClass.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Review of MOP Techniques ® 233

Using the ExpandoMetaClass, we can synthesize methods into specific instances
of a class instead of affecting the entire class.

Metaprogramming is a key feature that makes Groovy really shine. It gives
us the ability to extend programs at runtime and reap the language’s
dynamic capabilities. The metaprogramming techniques we’ve picked up so
far provide us the ability to alter the behavior of programs at runtime. Groovy
also allows us to alter the behavior of a program, just in time, during compi-
lation. We'll talk about compile-time metaprogramming in the next chapter.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

CHAPTER 16

Applying Compile-Time Metaprogramming

Unlike some dynamically typed languages with only runtime capabilities,
Groovy offers both runtime and compile-time metaprogramming.

With runtime metaprogramming, explored in the previous chapters, we can
postpone to runtime the decisions to intercept, inject, and even synthesize
methods of classes and instances. For the most part, that’s all we need for
metaprogramming. Compile-time metaprogramming is an advanced feature
that’s useful in some special situations and is mostly used by framework/tool
writers.

With Groovy we can analyze and modify a program’s structure at compile
time. This can help make applications highly extensible, allowing us to add
new cross-cutting features. For example, we can inspect classes for thread
safety, log messages, or perform pre- and postcheck operations in different
parts of the code without explicitly modifying the source code.

Compile-time metaprogramming is the magic behind some powerful features
and Groovy-based tools. For example, the type checker in Groovy 2 is imple-
mented as an abstract syntax tree (AST) transformation. The elegant
unit-testing tool Spock uses this approach to facilitate fluent test cases.' It’s
also used extensively in the code-analysis tool CodeNarc to detect potential
errors and code smells.” This feature powers Groovy annotations, such as
@Delegate and @Immutable that we saw in Section 2.10, Using Groovy Code-
Generation Transformations, on page 40.

In this chapter we’ll cover how to use of compile-time metaprogramming to
analyze code structure, to intercept methods, and to inject behavior.

1. http://spockframework.org
2. http://codenarc.sourceforge.net

www.it-ebooks.info

http://spockframework.org
http://codenarc.sourceforge.net
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ® 236

16.1 Analyzing Code at Compile Time

Senior developers and software architects often champion coding standards,
and they try to ensure consistent practices are followed in their teams. We
can use Groovy’s power to automate code review for smells and poor practices.
We'll see here how to use compile-time metaprogramming to detect smells.

Naming variables is difficult and takes effort, but using single-letter variables
is morally wrong. Rather than manually policing the code, we’ll leverage
compile-time metaprogramming to inspect poor variable and method names.

AST/CodeAnalysis/smelly.groovy
def canVote(a) {
a > 17 ? "You can vote" : "You can't vote"

}

def p(instance) {
//code to print the instance...

}

The canVote() method takes a parameter a that represents an age, and decides
if a person of that age can vote. We'd like to automatically detect the smelly
parameter a and the odd name p() for a method in the code. The earliest
opportunity to do this is during the compilation of code. Since the code is
syntactically correct, the compiler will not detect these smells, but we can.
We'll instruct the compiler to fail when compiling this smelly code, even though
it’s syntactically correct.

Understanding the Code Structure

To detect code smells, we need to traverse the code structure and analyze
class names, method names, field names, parameter names, and so on. We
could write a parser, but the compiler already parses and analyzes the code,
so we might as well ride on that to minimize our efforts.

The Groovy compiler allows us to step into its compilation phases and peek
at the AST it's working with. The AST tree structure, which depicts the
expressions and statements in a program, is represented using nodes. As the
code is compiled, the program’s AST is transformed—nodes are inserted,
removed, or rearranged. We can review the AST as it evolves during compila-
tion, make changes to it, and instruct the compiler to flag warnings or errors.

canVote() is a short method that just returns the result of the ternary operator,
but its AST is quite rich, with fine-grained details (see the following figure).

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/CodeAnalysis/smelly.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Analyzing Code at Compile Time ® 237

MethodNode

<

ParameterNode

(a)

BlockStatement

Y

ReturnStatement

v

Ternary
Expression

¥

Constant Constant
(You can vote) (You can't vote)

Boolean

v

Binary

PN

Variable Constant (17)

v

Parameter(a)

Figure 14—AST for the canVote() method

To use compile-time metaprogramming, we have to understand and work
with the AST. This is a complex task, but fortunately we have help. The
groovyConsole tool has a nice feature to display the AST of our code. Open the
Groovy source code in this tool and select the Script | “Inspect AST” menu
item. See the AST structure that the groovyConsole tool displays for the smelly
code in Figure 15, groovyConsole’s AST Browser view for the canVote method,
on page 238.

Navigating the Code Structure

Now that we have a grasp of the AST for the smelly code, it’s time to navigate
through this structure to inspect the code. The AST-transformation application
programming interface (API) provided in Groovy makes this task approachable.
To navigate the code, let’s create a class called CodeCheck and implement the
ASTTransformation interface.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ® 238

¥ [MethodNode - canVote
> Parameter - a
¥ [BlockStatement - (1)
¥ [ReturnStatement - return ((a > 17)) ? You can vote : You can't vote
¥ [TernaryExpression
¥ [Boolean - (a > 17)
¥ [Binary - (a > 17)
¥ [Variable - a : java.lang.Object
' Parameter - a
» Constant - 17 : int
' Constant - You can vote : java.lang.String
» Constant - You can't vote : java.lang.String

Figure 15—groovyConsole’s AST Browser view for the canVote() method

AST/CodeAnalysis/com/agiledeveloper/CodeCheck.groovy
@GroovyASTTransformation(phase = CompilePhase.SEMANTIC ANALYSIS)
class CodeCheck implements ASTTransformation {
void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
sourceUnit.ast.classes.each { classNode ->
classNode.visitContents(new OurClassVisitor(sourceUnit))
}
}
}

We first tell the compiler, using the annotation GroovyASTTransformation, when
we’d like to inspect the AST. The Groovy compiler is multiphased and allows
us to intervene between any of the phases: initialization, parsing, conversion,
semantic analysis, canonicalization, instruction selection, class generation,
output, and finalization. The first logical opportunity to intervene is after the
semantic-analysis phase, when the AST is formed. We can intervene in later
stages if we want to work with a denser AST. In our example we indicated
that the AST transformation must be applied right after the semantic-analysis
phase.

As the compiler reaches the indicated phase, it will invoke our class’s visit()
method, providing it a list of ASTNode instances and a reference to the SourceUnit
that represents the code being compiled. Within the visit() method we can
iterate over the nodes to inspect various elements, or even alter the nodes if
we desire.

In this example, we want to visit the entire structure and look for code smells.
The AST-transformation API makes our life simple by providing a visitor

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/CodeAnalysis/com/agiledeveloper/CodeCheck.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Analyzing Code at Compile Time ® 239

named GroovyClassVisitor. For each class node, method node, field node, and so
on, the visitor’s methods will be invoked with the appropriate node information.
Rather than having to step through the hierarchy of classes and methods,
we can sit back and take the appropriate actions in these methods, allowing
the API to do the tough job of navigation.

Within the visit() method we register an implementation of the GroovyClassVisitor
with each of the class nodes we find in the given source unit.

Let’s implement the GroovyClassVisitor interface.

AST/CodeAnalysis/com/agiledeveloper/CodeCheck.groovy
class OurClassVisitor implements GroovyClassVisitor {
SourceUnit sourceUnit
OurClassVisitor(theSourceUnit) { sourceUnit = theSourceUnit }
private void reportError(message, lineNumber, columnNumber) {
sourceUnit.addError(new SyntaxException(message, lineNumber, columnNumber))

}

void visitMethod(MethodNode node) {
if(node.name.size() == 1)
reportError "Make method name descriptive, avoid single letter names",
node.lineNumber, node.columnNumber

node.parameters.each { parameter ->
if(parameter.name.size() == 1)
reportError "Single letter parameters are morally wrong!",
parameter.lineNumber, parameter.columnNumber

}
}

void visitClass(ClassNode node) {}

void visitConstructor(ConstructorNode node) {}
void visitField(FieldNode node) {}

void visitProperty(PropertyNode node) {}

}

The AST-transformation API will invoke the visitor’s methods as it navigates
down the class elements of a class—the constructor, fields, methods, and so
on. Since we're working to detect smells, in the visitMethod() method we check
for a single-letter method name and add an error message if found. The
compiler, in turn, reports this error and fails the compilation. Instead of
reporting an error, we could report it as a warning.

In addition to detecting a smell in the method name, we examine the method’s
parameter names. We can expand this to detecting smells in field names,
property names, and so on by implementing code in the other methods (such
as visitField() and visitProperty()).

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/CodeAnalysis/com/agiledeveloper/CodeCheck.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ¢ 240

We're almost finished with the implementation of our little smell-checker, but
we have to help the compiler find and apply this AST transformation during
compilation. Here we’ll use an approach called global transformation in which
the transformation can be applied to any piece of code without the need for
any special markers on the code. The Groovy compiler will look for such
global transformations in each of the JAR files in the classpath. To make this
search efficient, it expects us to declare the transformation class name in a
special manifest file in the respective JAR files. Here’s the content of this
special file, manifest/META-INF/services/org.codehaus.groovy.transform.ASTTransformation, for
the code-checker example:

com.agiledeveloper.CodeCheck

Let’s summarize what we have seen so far. The manifest file tells the compiler
the name of the transformation class. The transformation class is annotated
to indicate the compilation phase during which it should be invoked. The
transformation class’s visit() method takes care of the appropriate actions,
using the help of a visitor in this example.

We need to compile the CodeCheck class and create a JAR file with the class
files and the manifest file. The Groovy compiler will then apply the smell-
checker whenever that JAR file is in the classpath. Let’s look at the steps for
accomplishing this:

$ groovyc -d classes com/agiledeveloper/CodeCheck.groovy

$ jar -cf checkcode.jar -C classes com -C manifest .
$ groovyc -classpath checkcode.jar smelly.groovy

Let’s run the commands to check for smells in the example we created. The
compiler will output a few error messages and fail the compilation due to the
detected code smells.

org.codehaus.groovy.control.MultipleCompilationErrorsException:
startup failed:

smelly.groovy: 1: Single letter parameters are morally wrong! @
line 1, column 13.
def canVote(a) {

A

smelly.groovy: 5: Make method name descriptive, avoid single letter names @
line 5, column 1.
def p(instance) {

~

2 errors

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

16.2

Intercepting Method Calls Using AST Transformations ® 241

The code inspection happens during the compilation phase, not during the
runtime. This takes a bit of getting used to. Play with the example, place some
output messages as we navigate the AST, and take time to learn how and
when the transformation gets applied.

We saw how to use the AST transformations to inspect code. If we're simply
looking for some common code smells, we don’t have to go to such lengths.
Instead we can use CodeNarc, a Groovy code-quality tool. We can readily use
the standard code-quality checks that come with CodeNarc and even extend
the rules to check for code smells we desire to keep an eye on. The example
we looked at helps us see the power of AST transformations, and can come
in handy if we want to perform domain-specific constraint checks in the code.

The power of AST transformation goes well beyond the ability to analyze code.
We can intercept method calls and even inject code into programs at compile
time, as we will see next.

Intercepting Method Calls Using AST Transformations

Imagine we're in the middle of developing some banking software and the
businesspeople throw a curveball at us. They want every $S10K-plus deposit,
withdrawal, or transfer involving a checking account to be audited. We want
to respond to this request quickly, so let’s consider some options.

Our least favorable option would have us hunt for all places we perform a
transaction on any checking account. Even with our favorite high-octane
integrated development environment, finding and modifying the calls would
not be fun. Furthermore, each time we call one of the methods, we would
have to remember to perform the audit operation.

Another option is to modify the methods of the checking-account class to
perform the additional operation. This is more reliable and requires less effort
than the first option. However, it would lead to code duplication and we would
have to keep an eye out for the new functions we add.

Chapter 12, Intercepting Methods Using MOP, on page 185 covered how to use
runtime metaprogramming to intercept method calls. That technique prevails
over the preceding two options by a great margin. There will be no code
duplication, and the solution extends nicely for addition of new methods in
the class. The method interception itself happens only at runtime and incurs

a slight penalty during execution. In this section we will learn how to avoid
that by intercepting the methods at compile time.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ® 242

Let’s look at the CheckingAccount class with the newly added audit() method. We
want this method to be invoked at the appropriate time when one of the other
methods of the class is called.

AST/InterceptingCalls/UsingCheckingAccount.groovy
class CheckingAccount {

def audit(amount) { if(amount > 10000) print "auditing..." }

def deposit(amount) { println "depositing ${amount}..." }

def withdraw(amount) { println "withdrawing ${amount}..." }
}

def account = new CheckingAccount()
account.deposit(1000)
account.deposit(12000)
account.withdraw(11000)

We'll use AST transformations to add a call to the audit() method in each of
the CheckingAccount class’s methods (except the audit() method itself). Let’s write
a transformation class for this:

AST/InterceptingCalls/com/agiledeveloper/InjectAudit.groovy
@GroovyASTTransformation(phase = CompilePhase.SEMANTIC ANALYSIS)
class InjectAudit implements ASTTransformation {
void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
def checkingAccountClassNode =
astNodes[0].classes.find { it.name == 'CheckingAccount' }
injectAuditMethod(checkingAccountClassNode)
}

The InjectAudit class implements the ASTTransformation interface and provides the
necessary visit() method. Using the annotation, we've indicated to the compiler
to apply this transformation at the end of the semantic-analysis phase.

Since this is a global transformation, the compiler will trigger it for all nodes
it finds in the code being compiled. Within the visit() method we extract, using
the find() method, only the node that represents the CheckingAccount class. We
then use a helper method, injectAuditMethod(), to take the appropriate action:

AST/InterceptingCalls/com/agiledeveloper/InjectAudit.groovy
static void injectAuditMethod(checkingAccountClassNode) {
def nonAuditMethods =
checkingAccountClassNode?.methods.findAll { it.name != 'audit' }
nonAuditMethods?.each { injectMethodWithAudit(it) }
}

Using the findAll() method, we extract all methods except audit(). We then add,
using the helper method injectMethodWithAudit(), a call to the audit() method at the
top of each selected method.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/InterceptingCalls/UsingCheckingAccount.groovy
http://media.pragprog.com/titles/vslg2/code/AST/InterceptingCalls/com/agiledeveloper/InjectAudit.groovy
http://media.pragprog.com/titles/vslg2/code/AST/InterceptingCalls/com/agiledeveloper/InjectAudit.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Intercepting Method Calls Using AST Transformations ® 243

injectMethodWithAudit() is where the real action is. We want to place a call to the
audit() method at the beginning. Unfortunately, the steps are not a simple call
to the method. We have to create the AST for the method call and insert it
into the list of expressions in the method’s AST. Let’s do that next.

AST/InterceptingCalls/com/agiledeveloper/InjectAudit.groovy
static void injectMethodWithAudit(methodNode) {
def callToAudit = new ExpressionStatement(
new MethodCallExpression(
new VariableExpression('this'),
'audit',
new ArgumentListExpression(methodNode.parameters)
)
)

methodNode.code.statements.add(0, callToAudit)
}
}

To understand the AST we created for the method call, use the groovyConsole
to view the internal AST structure for the call. This will help you relate to and
figure out what needs to be created. A simple call like audit(amount) can take
quite a few lines of code and a number of expression objects, as we see in
this example.

The MethodCallExpression represents the call at the AST level. Its first argument,
the VariableExpression, indicates that the method call is on the current object in
the execution context (this). The second argument indicates the name of the
method to be called, and the third argument represents the parameter to be
passed to the method—in this example, an ArgumentListExpression with the
parameters of the containing method node.

Finally, we add the created expression node into the list of statements for the
method.

One last step before we can put this transformation to use—we must make
it known to the compiler. Create the manifest file META-INF/services/org.code-
haus.groovy.transform.ASTTransformation to list the transformation class name.

com.agiledeveloper.InjectAudit
Let’s compile the transformation and JAR it first.

$ groovyc -d classes com/agiledeveloper/InjectAudit.groovy
$ jar -cf injectAudit.jar -C classes com -C manifest .

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/InterceptingCalls/com/agiledeveloper/InjectAudit.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ® 244

The transformation is ready to add the method calls into the CheckingAccount
class. To study the effect of this transformation, let’'s run UsingCheckingAc-
count.groovy without the transformation:

$ groovy UsingCheckingAccount.groovy

The calls to the three methods simply result in direct calls:

depositing 1000...
depositing 12000...
withdrawing 11000...

Let’s use the transformation to modify this behavior—include injectAudit.jar in
the classpath.

$ groovy -classpath injectAudit.jar UsingCheckingAccount.groovy

The compiler will recognize the transformation in injectAuditjar and add calls
to the audit() method:

depositing 1000...
auditing...depositing 12000...
auditing...withdrawing 11000...

Each call to a method on the CheckingAccount class is preceded by a call to audit(),
but the transformation will not affect any direct call to the audit() method.

We ran the code as a script, so each time we run it we’ll have to include
injectAudit.jar in the classpath for this behavior to take effect. We can avoid this
by precompiling the code. Simply compile the script using groovyc and include
the injectAudit.jar in the classpath. The bytecode created will include the
appropriate calls to audit(). We can then run the bytecode using either the
groovy or the java command.

We used AST transformation to add method calls at compile time. This can
give better performance than runtime metaprogramming. However, it took a
lot more effort. Next we will see ways to alleviate that.

Easing the Pain of Creating AST Nodes

A simple call like this.audit() took multiple objects and a few lines of code to
create during transformation. For more-complex calls, this is daunting and
can quickly dissuade even the most enthusiastic coders. Thankfully, there’s
an ASTBuilder class to ease the burden.

The ASTBuilder provides three different ways to create an AST subtree: buildFrom-
Spec(), buildFromString(), and buildFromCode(). Let’s use these to implement the
injectMethodWithAudit() method.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Intercepting Method Calls Using AST Transformations ® 245

The buildFromSpec() method helps reduce the noisy new operations to instantiate
instances of expressions and such. We can simply use a methodCall block to
create an instance of MethodCallExpression and a variable to define a variable, as
in the next version of injectMethodWithAudit():

AST/EasingThePain/com/agiledeveloper/InjectAudit.groovy
static void injectMethodWithAudit(methodNode) {
List<Statement> statements = new AstBuilder().buildFromSpec {
expression {
methodCall {
variable 'this'
constant 'audit'
argumentlList {
methodNode.parameters.each { variable it.name }
}
}
}
}
def callToCheck = statements[0]
methodNode. code.statements.add(0, callToCheck)
}
}

The creation of the AST is fluent with the buildFromSpec() method, but this
approach introduces some complexities. We have to get familiar with the DSL
syntax this API expects. We must know the structure of the AST we're creating;
this API only makes the syntax fluent.

Rather than going through so much effort, we can simply use the buildFromString()
method to get an AST transformation from a piece of code embedded in a
string. Let’s rewrite the injectMethodWithAudit() method using this builder method.
AST/EasingThePain2/com/agiledeveloper/InjectAudit.groovy

static void injectMethodWithAudit(methodNode) {

def codeAsString = 'audit(amount)'
List<Statement> statements = new AstBuilder().buildFromString(codeAsString)

def callToAudit = statements[0].statements[0].expression
methodNode.code.statements.add(0, new ExpressionStatement(callToAudit))

}

We simply dropped into a string the code we want inserted, and let the builder
take care of the rest. The buildFromString() saved us quite a bit of effort in creating
the AST, but the result it delivered, unfortunately, is wrapped in a return
statement. We have to put forth some effort to extract what we need, and
then place that into an ExpressionStatement before inserting it into the target
method’s statements.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/EasingThePain/com/agiledeveloper/InjectAudit.groovy
http://media.pragprog.com/titles/vslg2/code/AST/EasingThePain2/com/agiledeveloper/InjectAudit.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ® 246

The buildFromString() method has one more problem—it requires us to place the
code in a string. Dealing with escape characters and multiple lines of code
can get messy. Even with the help of heredocs syntax (see Section 5.3, Multiline
Strings, on page 103), this can get difficult.

The buildFromCode() prevails over the other approaches. We can write code like
we naturally do and place it in to a code block. The buildfromCode() takes this
block, like a good samaritan, and produces the AST transformation. Let’s use
that facility to rewrite the injectMethodWithAudit() method:

AST/EasingThePain3/com/agiledeveloper/InjectAudit.groovy
static void injectMethodWithAudit(methodNode) {
List<Statement> statements = new AstBuilder().buildFromCode { audit(amount) }
def callToAudit = statements[0].statements[0].expression
methodNode. code.statements.add (0, new ExpressionStatement(callToAudit))
}
}

This approach helped us quite a bit:
e We didn’t struggle with the AST structure for the code we created.

e We don’t have to worry if the AST structure changes in future versions of
Groovy; the AstBuilder will evolve with that, sparing us the effort of modifying
the AST structure.

e We can clearly see the code we're generating without being lost in the
details of the AST structure.

The buildFromCode() method is quite appealing, but there are a few caveats to
its use. It does not totally absolve us of the need to know the AST structure.
We still have to extract the appropriate parts from the produced AST and
know where to place them. There are limits to code we can generate with this
facility. The code we generate is carried as is in the transformation’s compiled
bytecode, and not hidden from prying eyes. Finally, the ASTBuilder's build
methods themselves go through a compile-time AST transformation. This
restricts us to using Groovy to write the transformation code. Transformations
not using the ASTBuilder can be written in any JVM language.

We saw how to intercept methods and add behavior into them at compile
time. We can also use this technique to add new methods and fields to
classes, as we’ll see next.

16.3 Injecting Methods Using AST Transformations

We saw how to inject code into existing methods. We can also inject new
methods and fields into classes by using AST transformations. This gives us

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/EasingThePain3/com/agiledeveloper/InjectAudit.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using AST Transformations © 247

the full power of aspect-oriented programming (AOP) at compile time without
the need for any third-party libraries.

In the Execute Around Method pattern from Section 4.5, Using Closures for
Resource Cleanup, on page 78, a static method helped create and clean up
instances. This method yielded the instance for arbitrary use in between these
two operations. Let’s implement that pattern using AST transformations.
Rather than asking the programmer to implement the use() method by hand,
we can create it; the programmer just has to ask—nicely.

The AST transformations we've seen so far in this chapter are all global
transformations. They were applied on all pieces of code being compiled.
Within the transformations we decided whether to perform some transforma-
tion action or simply skip performing any transformation. That approach is
nonintrusive; the code being transformed is oblivious to the transformation
and doesn’t need anything special.

That approach, though, is too sweeping for the problem at hand. We need to
know which class to inject the use() method into. This is where the asking
nicely part comes in. We’ll write a local transformation, one that is applied
only in select places the programmer marks with special annotations we
provide. Local transformations provide an advantage; we don’t have to create
the extra manifest file.

Let’s create that transformation-triggering annotation.

AST/EAM/com/agiledeveloper/EAM.groovy

@Retention(RetentionPolicy.SOURCE)

@Target([ElementType.TYPE])
@GroovyASTTransformationClass("com.agiledeveloper.EAMTransformation")

public @interface EAM {
}

Using the Target, we specified that this annotation can be placed only on
classes. Using the GroovyASTTransformationClass, we indicated to the compiler that
the mentioned transformation com.agiledeveloper.EAMTransformation should be
applied on any class with this EAM annotation.

We will insert the static use() method into the annotated class. That could sound
a bit scary, but writing a local transformation is not much different from
writing a global transformation, and we know how to do that. This transfor-
mation is invoked only on the targeted class, so we can start working with it
directly in the visit() method:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/EAM/com/agiledeveloper/EAM.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Line 1

Chapter 16. Applying Compile-Time Metaprogramming ® 248

AST/EAM/com/agiledeveloper/EAMTransformation.groovy
@GroovyASTTransformation(phase = CompilePhase.SEMANTIC ANALYSIS)

- class EAMTransformation implements ASTTransformation {

20

25

void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
astNodes.findAll { node -> node instanceof ClassNode }.each { classNode -

def useMethodBody = new AstBuilder().buildFromCode {
def instance = newlInstance()
try {
instance.open()
instance.with block
} finally {
instance.close()
}
}

def useMethod = new MethodNode (
'use', ACC PUBLIC | ACC STATIC, ClassHelper.OBJECT TYPE,
[new Parameter(ClassHelper.OBJECT TYPE, 'block')] as Parameter[],
[1 as ClassNode[], useMethodBody[0])

classNode.addMethod (useMethod)

}

At the center of the EAM pattern is the special use() method we want to inject
into the class. In this method we need to pass the instance to a closure that
will use it. The invocation of the closure itself needs to be wrapped in a try-finally
block. We'll invoke the cleanup code in the finally block.

Within the visit() method we’ll use ASTBuilder’s buildFromCode() method to create
the use() method and inject it into the class. We'll assume the targeted class
has an open() and a close() method. If these methods are absent, a runtime
error will result. We can also raise a compile-time error if we desire. For this
we’ll have to walk the AST node for the class, and if we don’t find the methods,
report into the errors object as we did in Section 16.1, Analyzing Code at
Compile Time, on page 236.

In the visit() method, using buildfromCode() we created only the body of the use()
method on line number 7. We have to attach that body to a method node that
represents the use() method. On line number 17 we create an instance of
MethodNode and attach the body to it.

Let’s take a closer look at the MethodNode’s creation. We indicate the name of
the method (use) in the first parameter. We use the second parameter to
indicate that the method should have both the public and the static modifiers.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/EAM/com/agiledeveloper/EAMTransformation.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Injecting Methods Using AST Transformations ® 249

We indicate the return type (Object) using the third parameter. Methods gener-
ally take parameters, but our use() method expects a closure. We indicate that,
using the fourth parameter, with a list of parameter types and names. The
fifth parameter helps indicate the exceptions that a method will throw—none
in this example. Finally, the last parameter refers to the body of the created
method.

As the last step, let’s add this created method to the class using the addMethod()
method.

Quite a bit went on in that concise code, and we've devised a way to inject a
use() method into any class annotated with our EAM annotation. Let’s try this
on a class—but first we need to compile the transformation code and bundle
it up into a JAR.

$ groovyc -d classes \
com/agiledeveloper/EAM.groovy \
com/agiledeveloper/EAMTransformation.groovy
$ jar -cf eam.jar -C classes com

We'll create a Resource class that can benefit from the method injection.

AST/EAM/resource.groovy
@com.agiledeveloper.EAM
class Resource {

private def open() { print "opened..." }
private def close() { print "closed" }
def read() { print "read..." }

def write() { print "write..." }

}
println "Using Resource"
Resource.use {

read()

write()

}

The Resource class has the expected open() and close() methods. We're calling
the anticipated use() method. Don’t worry that the method doesn’t exist; our
transformation will inject it because we’'ve marked the Resource class with the
EAM annotation. As a final step, lets make sure eam.jar is in the classpath when
we compile the Resource class:

$ groovy -classpath eam.jar resource.groovy

The output from the command should show the EAM pattern in action,
implemented through compile-time metaprogramming.

Using Resource
opened...read...write...closed

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/AST/EAM/resource.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 16. Applying Compile-Time Metaprogramming ¢ 250

In Section 4.5, Using Closures for Resource Cleanup, on page 78, we manually
created the use() method. In this section we injected that method into the
Resource class, or any class annotated with @EAM, using an AST transformation.
Once we get a handle on AST transformations, we can do quite powerful
transformations with them.

There’s a caveat to using such a powerful tool—we need to ensure that the
transformations actually behave as we intend. Thankfully, there’s some help
in this area. Groovy ships with an AST transformation, invoked using the
@ASTTest annotation, to help test other AST transformation and assert expec-
tations on various AST nodes.’

Metaprogramming is one of the most powerful concepts. When used properly,
it can help create highly extensible software. Frameworks like Grails make
extensive use of it. Groovy is special because it provides both runtime and
compile-time metaprogramming capabilities. In this chapter we discussed
how this capability enables us to not just use the language, but also to flex
it to inject behavior into existing code.

In Part III of this book we've covered how to create classes, methods, and
properties on the fly. We can intercept calls to existing methods and even
method that don’t exist. The extent to which we use metaprogramming
depends on our application-specific needs. We know, however, that when our
application demands metaprogramming, we can implement it quickly. In Part
IV we’ll see several scenarios in which metaprogramming plays a vital
role—when unit-testing with mock objects, creating builders, and creating
DSLs.

3. See http://groovy.codehaus.org/gapi/groovy/transform/ASTTest.html.

www.it-ebooks.info

http://groovy.codehaus.org/gapi/groovy/transform/ASTTest.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Part IV

Using Metaprogramming

www.it-ebooks.info

http://www.it-ebooks.info/

17.1

CHAPTER 17

Groovy Builders

Builders are internal DSLs that provide ease in working with certain types of
problems. For instance, if we need to work with nested, hierarchical structures,
such as tree structures, XML, HTML, or JavaScript Object Notation (JSON)
representations, we’ll find builders to be very useful. They provide syntax that
does not tie us tightly to the underlying structure or implementation. They
don’t replace the underlying implementation; instead, they provide an elegant
way to work with it.

We can use Groovy builders for a number of everyday tasks, including working
with XML, JSON, HTML, DOM, SAX, Swing, and even Ant. In this chapter
we’ll look at a few tasks to get a feel for builders. We'll then explore two
techniques to create our own builders.

Building XML

Most of us love to hate XML. Working with XML gets harder as the document
size increases, and the tools and API support are not pleasant. My theory is
that XML is like a human: it starts out cute when it’s small and gets annoying
when it becomes bigger.

XML may be a fine format for machines to handle, but it's rather unwieldy
to work with directly. No one really wants to do it, but we're forced to. Groovy
alleviates this a great deal by making working with XML almost fun.

Let’s look at an example of creating XML documents in Groov using a builder:

UsingBuilders/UsingXMLBuilder.groovy
bldr = new groovy.xml.MarkupBuilder()
bldr.languages {
language(name: 'C++') { author('Stroustrup')}
language(name: 'Java') { author('Gosling')}
language(name: 'Lisp') { author('McCarthy')}
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingXMLBuilder.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 17. Groovy Builders ® 254

This code uses the groovy.xml.MarkupBuilder to create an XML document. When
we call arbitrary methods or properties on the builder, it kindly assumes that
we're referring to either an element name or an attribute name in the resulting
XML document, depending on the context of the call. Here’s the output from
the previous code:
<languages>
<language name='C++'>
<author>Stroustrup</author>
</language>
<language name='Java'>
<author>Gosling</author>
</language>
<language name='Lisp'>
<author>McCarthy</author>
</language>
</languages>

We called a method named languages() that does not exist on the instance of
the MarkupBuilder class. Instead of rejecting it, the builder smartly assumed our
call meant to define a root element of our XML document, which is a rather
nice assumption.

The closure attached to that method call now provides an internal context.
Domain-specific languages are context-sensitive. Any nonexistent method
called within that closure is assumed to be a child element name. If we pass
Map parameters to the method calls (such as language(name: value)), they're
treated as attributes of the elements. Any single parameter value (such as
author(value)) indicates element content instead of attributes. We can study the
previous code and the related output to see how the MarkupBuilder inferred the
code.

In the previous example, the data that went into the XML document was hard-
coded, and the builder wrote to the standard output. In a real project, neither
of those conditions may be usual. We’d want data to come from a collection
that can be populated from a data source or input stream. Also, we’d want
to write the XML content out to a Writer instead of to the standard output.

The builder can readily attach to a Writer that it can take as a constructor
argument. So, attach a StringWriter to the builder. The data may come from
arbitrary source—for example, from a database. See Section 9.3, Database
Select, on page 153. The following example takes data from a map, creates an
XML document, and writes the document into a StringWriter:

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Building XML ® 255

UsingBuilders/BuildXML.groovy
langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

writer = new StringWriter()
bldr = new groovy.xml.MarkupBuilder(writer)
bldr.languages {

langs.each { key, value ->

language(name: key) {
author (value)
}

}

}

println writer

The output from the previous code is as follows:

<languages>
<language name='C++'>
<author>Stroustrup</author>
</language>
<language name='Java'>
<author>Gosling</author>
</language>
<language name='Lisp'>
<author>McCarthy</author>
</language>
</languages>

The MarkupBuilder is quite adequate for small to medium-sized documents.
However, if our document is large (a few megabytes), we can use StreamingMarkup-
Builder, which is kinder in terms of memory usage. Let’s rewrite the previous
example using the StreamingMarkupBuilder, but to add some flavor let’s also include
namespaces and XML comments:

UsingBuilders/BuildUsingStreamingBuilder.groovy
langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

xmlDocument = new groovy.xml.StreamingMarkupBuilder().bind {
mkp.xmlDeclaration()
mkp.declareNamespace(computer: "Computer")
languages {
comment << "Created using StreamingMarkupBuilder"
langs.each { key, value ->
computer.language(name: key) {
author (value)
}
}
}
}

println xmlDocument

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/BuildXML.groovy
http://media.pragprog.com/titles/vslg2/code/UsingBuilders/BuildUsingStreamingBuilder.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

17.2

Chapter 17. Groovy Builders ® 256

Here’s the output this new version produces:

<?xml version="1.0"7>
<languages xmlns:computer='Computer'>
<!--Created using StreamingMarkupBuilder-->
<computer:language name='C++'>
<author>Stroustrup</author>
</computer:language>
<computer:language name='Java'>
<author>Gosling</author>
</computer:language>
<computer:language name='Lisp'>
<author>McCarthy</author>
</computer:language>
</languages>

Using StreamingMarkupBuilder, we can declare namespaces, XML comments, and
so on, using the builder-support property mkp. Once we define a namespace,
to associate an element with a namespace we can use the dot notation on
the prefix, such as computer.language, where computer is a prefix.

The builders for XML make the syntax easy and elegant. We don’t have to
deal with the XML'’s pointy syntax to create XML documents. Creating XML
output is easy. If we need to create JSON output instead, Groovy still has us
covered, as we'll see next.

Building JSON

Groovy provides convenient solutions for when we're creating web services
and need to generate a JSON-formatted object.' Its as simple as sending our
instances to groovyjson.JsonBuilder's constructor, and the builder takes care of
the rest. We can write the generated JSON format to a Writer by calling the
writeTo() method, as in the next example.

UsingBuilders/BuildJSON.groovy
class Person {

String first

String last

def sigs
def tools
}
john = new Person(first: "John", last: "Smith",
sigs: ['Java', 'Groovy'l, tools: ['script': 'Groovy', 'test': 'Spock'])

bldr = new groovy.json.JsonBuilder(john)
writer = new StringWriter()
bldr.writeTo(writer)

println writer

1. http://www.json.org/

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/BuildJSON.groovy
http://www.json.org/
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Building JSON ¢ 257

The builder uses the field names and their values as keys and values in the
JSON format, as we can see here:

{"first":"John","last":"Smith","tools":{"script":"Groovy", "test":"Spock"},
"sigs":["Java","Groovy"]}

It took little effort to produce that output. Customizing the output takes only
a few more steps. We can use the builder’s fluency to create the desired output,
as in the next example.

UsingBuilders/BuildJSON.groovy
bldr = new groovy.json.JsonBuilder()
bldr {
firstName john.first
lastName john.last
"special interest groups" john.sigs
"preferred tools" {
number0fTools john.tools.size()
tools john.tools
}
}
writer = new StringWriter()
bldr.writeTo(writer)
println writer

Rather than using the instance’s property names directly, we chose different
names for each property. We can also add new properties, such as numberOfTools
in this example. The builder uses the DSL syntax we provided to create the
next output:

{"firstName":"John", "lastName":"Smith",
"special interest groups":["Java","Groovy"],
"preferred tools":{"numberO0fTools":2,
"tools":{"script":"Groovy", "test":"Spock"}}}

The JsonBuilder can produce JSON-formatted output from JavaBeans, hashmaps,
and lists. The JSON output is stored in memory, and we can later write it to
a stream or use it for further processing. Instead of storing it in memory, if
we want to directly stream the data as it’s created, we can use StreamingjsonBuilder
instead of the JsonBuilder.

Groovy also makes it easy to go the opposite direction; it provides a JsonSlurper
to create a HashMap from JSON data. We can use the parseText() method to read
the JSON data contained in a String. We can also read JSON data from a
Reader, or a file, using the parse() method.

Let’s parse the JSON output we created in the earlier example, now stored
in the file person.json.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/BuildJSON.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

17.3

Chapter 17. Groovy Builders ® 258

UsingBuilders/person.json
{"first":"John","last":"Smith","tools":{"script":"Groovy", "test":"Spock"},
"sigs":["Java","Groovy"]}

The JSON data, rather than coming from a file, may come from a web service.
Once we get access to the data stream, as an instance of Reader, we can pass
it to the parse() method like in the next example. Here’s the code to process
the JSON data in the file person.json:

UsingBuilders/ParseJSON.groovy
def sluper = new JsonSlurper()
def person = sluper.parse(new FileReader('person.json'))

println "$person.first $person.last is interested in ${person.sigs.join(', ')}"

We create a FileReader to fetch the data in the file. We then pass that to the
parse() method, which returns an instance of HashMap with the data. We can
either use the key-values in the HashMap as is, or create a Groovy object from
the data—remember, we can create Groovy objects using the HashMap as con-
structor parameter (see Section 2.2, JavaBeans, on page 19).

Here’s the output from the code to parse the JSON data:

John Smith is interested in Java, Groovy

It took little effort to parse the JSON data; the convenience is embarrassingly
simple.

Groovy builders go beyond merely producing data; they can even make our
Swing programming experience pretty hip, as we’ll see next.

Building Swing

The elegance of builders is not restricted to XML structure. Groovy provides
a builder for creating Swing applications, as well. When working with Swing,
we need to perform some mundane tasks such as creating components (like
buttons), registering event handlers, and so on. Typically, to implement an
event handler we write an anonymous inner class and, in the implementation
handler methods, we receive parameters (such as ActionEvent) even if we don’t
care for them. SwingBuilder, along with Groovy closures, eliminates the drudgery.

We can use the builder-provided nested or hierarchical structure to create a
container (such as Jframe) and its components (such as buttons, text boxes,
and so on). Initialize components by using Groovy’s flexible key-value pair
initialization facility. Defining an event handler is trivial. Simply provide it a
closure. We're building the familiar Swing application, but we will find the
code is smaller than when writing this in Java. This helps us quickly make

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/person.json
http://media.pragprog.com/titles/vslg2/code/UsingBuilders/ParseJSON.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Building Swing ® 259

changes, experiment, and get feedback. We're still using the underlying Swing
API, but the syntax is a lot different. We're using the Groovy idioms to talk
to Swing.” Now let’s create a Swing application using the SwingBuilder class:

UsingBuilders/BuildSwing.groovy
bldr = new groovy.swing.SwingBuilder()

frame = bldr.frame(
title: 'Swing',
size: [50, 1l00],
layout: new java.awt.FlowlLayout(),
defaultCloseOperation:javax.swing.WindowConstants.EXIT ON CLOSE
) {
1bl label(text: 'test')
btn button(text: 'Click me', actionPerformed: {
btn.text = 'Clicked'
1bl.text = "Groovy!"
)

}

frame.show()

The following figure shows the output from the previous code.

O O O Swing ® O O Swing
PR Groovy!
test (Click me) mow.
| Clicked |
& ~——

Figure 16—A little Swing application created using SwingBuilder

We initialized an instance of JFrame, assigned its title, size, and layout, and set
the default close operation, all in one simple statement. This is equivalent to
five separate statements in Java. Also, registering the event handler was as
simple as providing a closure to the actionPerformed property of button (for JButton).
This eliminated the effort in Java to create an anonymous inner class and
implement the actionPerformed() method with the ActionEvent parameter. Sure,
there was a lot of syntax sugar, but the elegance and reduced code size make
it easier to work with the Swing API.

The SwingBuilder builder shows us Groovy’s expressive power. It's charming,
but to create any nontrivial Swing application, check out the Griffon project.’

2. http://blog.agiledeveloper.com/2007/05/its-not-languages-but-their-idioms-that.html
3. http://griffon.codehaus.org

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/BuildSwing.groovy
http://blog.agiledeveloper.com/2007/05/its-not-languages-but-their-idioms-that.html
http://griffon.codehaus.org
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

17.4

Chapter 17. Groovy Builders * 260

Griffon is a framework built on Groovy to create Swing applications using the
convention-over-configuration principle. It not only eases the pain of creating
the GUI, but also can take care of handling events properly across multiple
threads.

Custom Builder Using Metaprogramming

As we saw earlier, builders provide a way to create an internal DSL for spe-
cialized complex tasks that use a nested or hierarchical structure or format.
When working with a specialized task in our application, we can check for a
builder that can solve the problem. If we don’t find any builders, we can create
our own.

We have two ways to create a custom builder: take the entire effort on our
shoulders by using Groovy’s metaprogramming capabilities, as we’ll see in
this section, or use the BuilderSupport (Section 17.5, Using BuilderSupport, on
page 262) or FactoryBuilderSupport (Section 17.6, Using FactoryBuilderSupport, on
page 266) Groovy provides.

To help understand the BuilderSupport’s benefits, let’s build a to-do list. Here’s
the code that’s using the builder we’ll create:

UsingBuilders/UsingTodoBuilder.groovy
bldr = new TodoBuilder()

bldr.build {

Prepare Vacation (start: '02/15', end: '02/22') {
Reserve Flight (on: '01/01', status: 'done')
Reserve Hotel(on: '01/02')

Reserve Car(on: '01/02')

}

Buy New Mac {
Install_QuickSilver
Install _TextMate
Install Groovy {

Run_all tests
}
}
}

The output of that code (once we create the ToDoBuilder) is as follows:

To-Do:
- Prepare Vacation [start: 02/15 end: 02/22]
x Reserve Flight [on: 01/01]
- Reserve Hotel [on: 01/02]
- Reserve Car [on: 01/02]
- Buy New Mac
- Install QuickSilver

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingTodoBuilder.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Custom Builder Using Metaprogramming ® 261

- Install TextMate
- Install Groovy
- Run all tests

Completed tasks are marked with an x. Indentation shows nesting of tasks,
and task parameters such as start date appear next to the tasks’ names.

In the preceding DSL for the to-do list, we created item names such as “Reserve
Car” using an underscore instead of a space so we can use them as method
names in Groovy. The only known method is build(). The rest of the methods
and properties are handled using methodMissing() and propertyMissing(), as shown
next.

UsingBuilders/TodoBuilder.groovy
class TodoBuilder {
def level = 0
def result = new StringWriter()
def build(closure) {
result << "To-Do:\n"
closure.delegate = this
closure()
println result

}

def methodMissing(String name, args) {
handle(name, args)

}

def propertyMissing(String name) {
Object[] emptyArray = []
handle(name, emptyArray)

}

def handle(String name, args) {
level++
level.times { result << " "}
result << placeXifStatusDone(args)
result << name.replaceAll(" ", " ")

result << printParameters(args)
result << "\n"

if (args.length > 0 && args[-1] instanceof Closure) {
def theClosure = args[-1]
theClosure.delegate = this
theClosure()

}

level--

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/TodoBuilder.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

17.5

Chapter 17. Groovy Builders * 262

def placeXifStatusDone(args) {
args.length > 0 && args[0] instanceof Map &&
args[0]['status'] == 'done' ? "x " : "- "

}

def printParameters(args) {
def values = ""
if (args.length > 0 && args[0] instanceof Map) {
values += " ["
def count = 0
args[0].each { key, value ->

if (key == 'status') return
count++
values += (count > 1?2 " " : "")
values += "${key}: ${value}"
}
values += "]"
}
values

}
}

The result is mostly standard straightforward Groovy code with a good use
of metaprogramming. When a nonexistent method or property is called, we
assume it’s an item. To check whether a closure is attached, we test the last
parameter in args, obtained using the index -1. We then set the delegate of the
presented closure to the builder and invoke the closure to traverse down the
nested tasks.

Creating our own custom builder is not difficult. Do not hesitate to do it. For
very complex cases with deeper nesting and extensive use of Map and regular
parameters, BuilderSupport, which we’ll see next, will help.

Using BuilderSupport

We saw how to create a custom builder using methodMissing() and propertyMissing().
If we're creating more than one builder, chances are we’ll refactor some of
the method-recognition code into a common base class. That has been done
for us; the class BuilderSupport provides convenience methods that recognize
the node structure. Instead of writing the logic to deal with the structure, we
simply listen to calls as Groovy traverses the structure and takes appropriate
action. Extending the abstract class BuilderSupport feels like working with Simple
API for XML (SAX)—a popular event-driven parser for XML. It triggers events
on a handler we provide as it parses and recognizes elements and attributes
in a document.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using BuilderSupport * 263

Let’s look at what the builder does before we explore how to implement it:

UsingBuilders/UsingTodoBuilderWithSupport.groovy
bldr = new TodoBuilderWithSupport()

bldr.build {

Prepare Vacation (start: '02/15', end: '02/22') {
Reserve Flight (on: '01/01', status: 'done')
Reserve Hotel(on: '01/02"')

Reserve Car(on: '01/02"')

}

Buy New Mac {

Install QuickSilver
Install TextMate
Install Groovy {
Run_all_tests
}
}
}

The output of running the previous code (once we create the ToDo-BuilderWithSup-
port) is as follows:

To-Do:
- Prepare Vacation [start: 02/15 end: 02/22]
x Reserve Flight [on: 01/01]
- Reserve Hotel [on: 01/02]
- Reserve Car [on: 01/02]
- Buy New Mac
- Install QuickSilver
- Install TextMate
- Install Groovy
- Run all tests

BuilderSupport expects us to implement two specific sets of methods: setParent()
and overloaded versions of createNode(). Optionally, we can implement other
methods, such as nodeCompleted(). Remember the options we have in calling a
method; we can call a method with no parameters (foo()), call it with some
value (foo(6)), call it with a map (foo(name:'Brad', age: 12)), or call it with a map
and a value (foo(name:'Brad', age:12, 6)). BuilderSupport provides four versions of
createNode(), one for each of the previous options. The appropriate method is
called when we invoke methods on an instance of the builder. The setParent()
is called to let the builder’s author know the parent of the current node being
processed. Whatever we return from createNode() is considered to be a node, and
the builder support sends that as a parameter to nodeCompleted().

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingTodoBuilderWithSupport.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 17. Groovy Builders * 264

The BuilderSupport does not handle missing properties like it handles missing
methods. However, we can still use the propertyMissing() method to handle those
cases.

Next we’ll look at the code for the TodoBuilderWithSupport that extends the Builder-
Support. The format for the to-do list chosen supports only method calls with
no parameters (and properties) and method calls that accept a Map. So in the
versions of createNode() that accept an Object parameter, we throw an exception
to indicate an invalid format. In the other two versions of that method, and
in the propertyMissing() method, we keep track of the level of nesting by incre-
menting the level variable. We decrement level in the nodeCompleted() method
since that’s called when we leave a nesting level. In the createNode() methods,
we return the name of the node created so we can compare that to nodeComplet-
ed() to find when we exit the topmost node build. If our need is more complex,
we can return an instance of our own custom class that represents different
nodes. If we need to perform some other operations when a node is creat-
ed—such as attaching the child nodes to their parent—we can use setParent()
to do so. This method receives the instances of Node for the parent and the
child—the node object that createNode() returns when those nodes are created.
The rest of the code for the TodoBuilderWithSupport is processing the nodes found
and creating the desired output.

Play around to see which methods get called in which order. We can insert a
few println statements in these methods to understand the sequence.

UsingBuilders/TodoBuilderWithSupport.groovy

class TodoBuilderWithSupport extends BuilderSupport {
int level = 0
def result = new StringWriter()
void setParent(parent, child) {}

def createNode(name) {
if (name == 'build') {
result << "To-Do:\n"
'buildnode’
} else {
handle(name, [:])
}
}
def createNode(name, Object value) {
throw new Exception("Invalid format")

}

def createNode(name, Map attribute) {
handle(name, attribute)

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/TodoBuilderWithSupport.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using BuilderSupport ® 265

def createNode(name, Map attribute, Object value) {
throw new Exception("Invalid format")

}

def propertyMissing(String name) {
handle(name, [:])

level--
}
void nodeCompleted(parent, node) {
level--
if (node == 'buildnode') {
println result
}
}
def handle(String name, attributes) {
level++
level.times { result << " "}
result << placeXifStatusDone(attributes)
result << name.replaceAll(" ", " ")

result << printParameters(attributes)
result << "\n"
name

}

def placeXifStatusDone(attributes) {
attributes['status'] == 'done' ? "x " : "- "

}

def printParameters(attributes) {
def values = ""
if(attributes.size() > 0) {
values += " ["
def count =0
attributes.each { key, value ->

if (key == 'status') return
count++
values += (count > 1?2 " " : "")
values += "${key}: ${value}"
}
values += "]"
}
values

}
}

We saw the advantage of refactoring common code into the BuilderSupport, but
we can take advantage of another level of refactoring, as we’ll see next.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 17. Groovy Builders * 266

17.6 Using FactoryBuilderSupport

We'll use FactoryBuilderSupport if we’re working with well-defined node names
such as button, checkbox, label, and so on, in the SwingBuilder. The BuilderSupport
we saw in Section 17.5, Using BuilderSupport, on page 262, is good for working
with hierarchical structures. However, it's not convenient for dealing with
different types of nodes. Suppose we have to work with twenty different node
types. Our implementation of createNode() will get complicated. Based on the
node name, we'll create different nodes, which leads to a messy switch state-
ment. Chances are we’ll quickly lean toward an abstract factory (see Design
Patterns: Elements of Reusable Object-Oriented Software [GHJV95]) approach
to create these nodes. That’s what FactoryBuilderSupport does. Based on the node
name, it delegates the node creation to different factories. We only have to
map the names to the factories.

FactoryBuilderSupport was inspired by the SwingBuilder, and later SwingBuilder was
modified to extend FactoryBuilderSupport instead of BuilderSupport. Let’s see an
example of implementing and using a builder that extends FactoryBuilderSupport.

Let’s create a builder named RobotBuilder that we can use to create and program
a robot. As a first step, think about how we will use it:

UsingBuilders/UsingFactoryBuilderSupport.groovy
def bldr = new RobotBuilder()

def robot = bldr.robot('iRobot') {
forward(dist: 20)
left(rotation: 90)
forward(speed: 10, duration: 5)

}
robot.go()

We’d like RobotBuilder produce this output from the code:

Robot iRobot operating...

move distance... 20
turn left... 90 degrees
move distance... 50

Now let’s look at the builder. RobotBuilder extends FactoryBuilderSupport. In its
instance initializer, we map the node names robot, forward, and left to the corre-
sponding factories using FactoryBuilderSupport’s registerfactory() method. That’s all
we have in RobotBuilder. FactoryBuilderSupport does all the hard work of traversing
the hierarchy of nodes and calling the appropriate factory. The factories and
nodes, which we’ll see soon, take care of the rest of the details:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using FactoryBuilderSupport * 267

UsingBuilders/UsingFactoryBuilderSupport.groovy
class RobotBuilder extends FactoryBuilderSupport {
{

registerFactory('robot', new RobotFactory())
registerFactory('forward', new ForwardMoveFactory())

registerFactory('left', new LeftTurnFactory())
}i
}
The classes Robot, ForwardMove, and LeftTurn, shown next, represent the nodes
robot, forward, and left, respectively.

UsingBuilders/UsingFactoryBuilderSupport.groovy
class Robot {

String name

def movements = []

void go() {
println "Robot $name operating..."
movements.each { movement -> println movement }
}
}

class ForwardMove {

def dist

String toString() { "move distance... $dist"}
}

class LeftTurn {

def rotation

String toString() { "turn left... $rotation degrees"}
}

The Robot has a name property and an ArrayList of movements. Its go() method tra-
verses each movement and prints the details. The other two classes, ForwardMove
and LeftTurn, have one property each. Even though the class ForwardMove has
only one property named dist, in the code shown at the beginning of this section
we've assigned the properties speed and duration for the left node. The factory
will take care of working with these properties, as we’ll see soon.

Take a look at the factories. FactoryBuilderSupport relies upon the Factory interface.
This interface provides methods to control the creation of a node, handles
setting the node’s properties, sets the parent and child relationships between
nodes, and determines whether the node is a leaf node. A default implemen-
tation of Factory called AbstractFactory is already provided in Groovy, as shown
here:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 17. Groovy Builders * 268

// Excerpt of AbstractFactory.java - part of Groovy
public abstract class AbstractFactory implements Factory

{

public boolean isLeaf() { return false; }

public boolean onHandleNodeAttributes(FactoryBuilderSupport builder,
Object node, Map attributes) { return true; }

public void onNodeCompleted(FactoryBuilderSupport builder,
Object parent, Object node) { }

public void setParent(FactoryBuilderSupport builder,
Object parent, Object child) { }

public void setChild(FactoryBuilderSupport builder,
Object parent, Object child) { }
}

The default implementation of isLeaf() returns false to indicate that the node
can have a closure with subnodes. onHandleNodeAttributes() is a good place for
any special handling of properties, like the duration and speed of the left node.
Within this method, we’ll remove from attributes any property that we have
processed. If we return true, as in the default implementation, FactoryBuilderSupport
will populate into the node instance any remaining properties found in attributes.
The method onNodeCompleted() is called when the node-processing is completed,
and we can perform any final operations at the end of node creation. setParent()
is called on the child node’s factory, so we can set up any parent-child rela-
tionship. Similarly, setChild() is called on the parent node’s factory. The only
method from Factory that’s missing in AbstractFactory is the newlnstance() method
responsible for instantiating the actual node.

In this example, we need a factory for Robot, ForwardMove, and LeftTurn. The
classes RobotFactory, ForwardMoveFactory, and LeftTurnFactory are as follows:

UsingBuilders/UsingFactoryBuilderSupport.groovy
class RobotFactory extends AbstractFactory {
def newInstance(FactoryBuilderSupport builder, name, value, Map attributes) {
new Robot(name: value)

}

void setChild(FactoryBuilderSupport builder, Object parent, Object child) {
parent.movements << child
}
}

class ForwardMoveFactory extends AbstractFactory {
boolean islLeaf() { true }

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Using FactoryBuilderSupport * 269

def newInstance(FactoryBuilderSupport builder, name, value, Map attributes) {
new ForwardMove()

}

boolean onHandleNodeAttributes(FactoryBuilderSupport builder,
Object node, Map attributes) {
if (attributes.speed && attributes.duration) {
node.dist = attributes.speed * attributes.duration
attributes.remove('speed')
attributes.remove('duration')

true
}
}

class LeftTurnFactory extends AbstractFactory {
boolean isLeaf() { true }

def newInstance(FactoryBuilderSupport builder, name, value, Map attributes) {
new LeftTurn()
}
}

In each factory’s newlnstance() method, we instantiate the appropriate node. In
the RobotFactory’s setChild(), we add the movement node to Robot’s list of movements.
Since forward and left are leaf nodes, in their factory’s isLeaf() method we return
true. We support the forward node’s special properties in the ForwardMoveFactory’s
onHandle-NodeAttributes().

Let’s take a minute to see the benefit of the isLeaf() methods. In the following
example, we provide a closure to the forward node:

UsingBuilders/UsingFactoryBuilderSupport.groovy

def robotBldr = new RobotBuilder()

robotBldr.robot('bRobot') {
forward(dist: 20) { }

}

The FactoryBuilderSupport class realizes that the forward node can’'t have nested
levels and so rejects it, as shown here:

java.lang.RuntimeException: 'forward' doesn't support nesting.

The implementation of a builder to deal with multiple well-defined nodes is
a lot cleaner with FactoryBuilderSupport than with BuilderSupport. FactoryBuilderSupport
provides other convenience methods to intercept the life cycle of node creation,
so we can take more control of the node traversal if we want. For example,
we can use the prelnstantiate() method to perform actions before the factory

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 17. Groovy Builders * 270

creates a node, or we can override postNodeCompletion() to perform actions after
anode is completed. If we need to perform other tasks while building, we can
use convenience methods such as FactoryBuilderSupport’s getCurrentNode() and
getParentNode() to easily work with the hierarchical structure we're creating.
Refer to http://groovy.codehaus.org/FactoryBuilderSupport as well as http://groovy.codehaus.org/
api/groovy/util/FactoryBuilderSupport.htm| for more details on the builder and its API.

In this chapter we saw how to use Groovy’s builders. Builders provide us with
DSL syntax to perform mundane tasks such as creating an XML or HTML
document. We can use one of the builders provided or create a custom builder.
And if we create a useful builder, we should consider contributing it to the
community!

We've come to realize and appreciate Groovy’s power. The dynamic nature of
Groovy does require discipline on our part—automated testing of our code is
important. In the next chapter we’ll explore how to write unit tests.

www.it-ebooks.info

http://groovy.codehaus.org/FactoryBuilderSupport
http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.1

CHAPTER 18

Unit Testing and Mocking

Unit testing is essential for metaprogramming. However weak the checks
performed by a compiler might be in a statically typed language, we don’t
have even that level of support in a dynamic language. That’s why unit testing
is necessary in dynamic languages. (See Test Driven Development: By Example
[Bec02], Pragmatic Unit Testing in Java with JUnit [THO3], and JUnit Recipes:
Practical Methods for Programmer Testing [RaiO4].) Although we can easily
take advantage of dynamic capabilities and metaprogramming in these lan-
guages, we have to take the time to make sure our program is doing what we
expect and not just what we typed.

There has been greater awareness of unit testing among developers in the
past few years; unfortunately, though, the adoption is not sufficient. Unit
testing is the software equivalent of exercise: most developers would agree
that it improves the health of their code, yet they offer various excuses for
not doing it.

Unit testing is not only critical for programming Groovy; it is also easy and
fun in Groovy. JUnit is built into Groovy. Metaprogramming capabilities make
it easy to create mock objects. Groovy also has a built-in mock library. Let’s
take a look at how we can use Groovy to unit-test our Java and Groovy
applications.

Code in This Book and Automated Unit Tests

Unit testing is not something I provide as abstract advice. I have used auto-
mated unit tests for all the code in this book because I'm working with an
evolving language. Groovy features change, its implementations change, bugs
are being fixed, new features are added, and so on. I updated my installation
of Groovy on my machines quite a few times as I was writing these chapters
and code examples. If an update broke an example because of a feature or

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.2

Chapter 18. Unit Testing and Mocking ® 272

implementation change, I needed to know that quickly without expending too
much effort. Furthermore, I refactored several examples in this book as the
writing process progressed. The automated unit tests helped me sleep better
at night because I knew the examples were still working as expected after a
language update or my own refactoring.

Soon after writing the first few examples, I decided to take a break and figure
out a way to automate the testing of all examples while keeping them inde-
pendent and in isolated files. Some of the examples are functions and some
are stand-alone programs or scripts. Groovy’s metaprogramming capabilities,
along with the ExpandoMetaClass and the ability to load and execute scripts,
made it a breeze to create and execute automated unit tests.

It took me a couple of hours to figure out how to get going. Whenever I write
a new example, I spend about two minutes at most to get the test written for
that example. That effort and time paid off within the first few days, and
several times since. A handful of examples failed as [upgraded Groovy. More
important, these tests gave me assurance that the other examples are working
and are valid.

These tests benefitted me in at least five ways:
e Furthered my understanding of Groovy features

e Raised questions in the Groovy users mailing list that helped fix a few
Groovy bugs

Helped find and fix an inconsistency in Groovy documentation

e Assisted me in ensuring that all my examples are valid and working well
with the most recent version of Groovy

e Gave me the courage to refactor any example at will, at any time, with
full confidence that my refactoring improved the code structure but did
not affect its intended behavior

Unit Testing Java and Groovy Code

Thanks to excellent Java-Groovy integration, we can use any Java-based
testing framework and mock-objects framework (such as EasyMock, JMock,
and Mockito), with Groovy. We're not limited to those, however. When we
install Groovy, we automatically get a unit-testing framework built on JUnit.
We can use it to test any code on the Java Virtual Machine—our Java code,
our Groovy code, and so on. We simply extend our test class from GroovyTestCase
and implement our test methods, and we'’re all set to run our tests.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Unit Testing Java and Groovy Code * 273

Unit Tests Must be FAIR

When we write unit tests, keep in mind that the tests must be FAIR—that is, fast,
automated, isolated, and repeatable.

Tests must be fast. As we evolve our code and refactor, we want to quickly get feedback
that the code continues to meet our expectations. If the tests are slow, our developers
won’t bother to run them. We want a very quick edit-and-run cycle.

Tests must be automated. Manual testing is tiring, is error-prone, and will take our
time away from important tasks. Automated tests are like angels on our shoulder—they
watch quietly as we write code, and whisper in our ears if our code violates set
expectations. They give us early feedback if our code begins to fall apart. We’d prob-
ably agree that we’d much rather hear from our computer that our code sucks than
from our coworker. Automated unit tests make us look good and dependable. When
we say we're done, we know our code works as intended.

Tests must be isolated. If we get 1,031 compilation errors, the usual problem is a
missed semicolon, right? That’s not helpful; there’s no point in one small error cas-
cading into several reported errors. We want a direct correlation between a creeping
bug or error and a failed test case. That will help us identify and fix problems quickly
rather than being overwhelmed by large failed tests. Isolation ensures that one test
does not leave behind a residual state that may affect another test. It also lets us run
the tests in any order and to run all tests, one test, or a select few.

Tests must be repeatable. We must be able to run the tests any number of times and
get deterministic predictable results. The worst kind of test is the one that fails on
one run and passes on a following run without there having been any change to the
code. Threading issues may bring about some of these problems. As another example,
if a test inserts into a database data with unique column constraints, then a subse-
quent run of the same test without our having cleaned up the database will fail. If
the test rolls back the transaction, though, this will not happen and the test will be
repeatable. The repeatability of tests is key to staying sane while we rapidly evolve
our application code.

Let’s start by writing a simple test:

UnitTestingWithGroovy/ListTest.groovy
class ListTest extends GroovyTestCase {
void testListSize() {
def 1st = [1, 2]
assertEquals "ArraylList size must be 2", 2, lst.size()
}
}

Even though Groovy is dynamically typed, JUnit expects the return type of
test methods to be void. That means we had to explicitly use void instead of
def when defining the test method. Groovy’s optional typing helped here. To

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/ListTest.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking * 274

run the preceding code, we simply execute it like we would execute any Groovy
program. Type the following command:

groovy ListTest

The output is as follows:

Time: 0.006
0K (1 test)

If we're familiar with JUnit, we already understand this output—one test was
executed successfully.

If we're fans of the red-green bar, we can run our unit tests from within our
integrated development environment (IDE) if it supports running tests.

We can also call junit.swingui.TestRunner’s run() method and provide it our Groovy
test’s class name to run our tests within the Swing GUI to see those red-green
bars.

We may use any of the assert methods we're already familiar with in JUnit.
Groovy adds more assert methods for our convenience: assertArrayEquals(),
assertLength(), assertContains(), assertToString(), assertinspect(), assertScript(), and shouldFail(),
to mention a few.

When writing unit tests, consider writing three types of tests: positive, negative,
and exception. Positive tests help ensure that code is behaving as expected.
We can call this the test of the happy path. For instance, we deposit $100 in
an account and check whether the balance went up by $100. Negative tests
check whether the code handles, as we expect, the failure of preconditions,
invalid input, and so on. We make the deposit amount negative and see what
the code does. What if the account is closed? Exception tests help determine
whether the code is throwing the correct exceptions and behaving as expected
when exceptional situations arise. What if an automated withdrawal kicks in
after an account is closed? Trust me on this one—I had a creative bank that
provided just that scenario. Situations like this can benefit from exception
tests.

Thinking about tests in these terms helps us think through the logic we're
implementing. We not only handle code that implements logic, but also con-
sider boundary conditions and edge cases that often get us into trouble.

We can easily implement positive tests by using the asserts provided in Groovy
and JUnit. Implementing negative tests and exception tests requires a bit

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Unit Testing Java and Groovy Code * 275

more work, but Groovy has a mechanism to help, as we’ll see in Section 18.3,
Testing for Exceptions, on page 277.

Even if our main project code is in Java, we should consider writing our test
code in Groovy. Since Groovy is lightweight, we’ll find it is easier, faster, and
more fun to write our tests in Groovy while our main code is in Java. This is
also a nice way to practice Groovy on our Java-intense projects.

Suppose we have a Java class Car, as shown in the following code, in the src
directory. Also suppose that we've compiled it into the classes directory using
javac.

Car.class resides in the classes/com/agiledeveloper directory.

UnitTestingWithGroovy/src/Car.java
// Java code
package com.agiledeveloper;

public class Car
{
private int miles;
public int getMiles() { return miles; }
public void drive(int dist)
{
miles += dist;
}
}

We can write a unit test for this class in Groovy, and we don’t have to compile
the test code to run it. Here are a few positive tests for the Car. These tests
are in a file named CarTest.groovy in the test directory.

UnitTestingWithGroovy/test/CarTest.groovy
class CarTest extends GroovyTestCase
{
def car
void setUp()
{
car = new com.agiledeveloper.Car()
}
void testInitialize()
{
assertEquals 0, car.miles
}
void testDrive()
{
car.drive(10)
assertEquals 10, car.miles
}
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/src/Car.java
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/test/CarTest.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking * 276

The setUp() method and the corresponding tearDown() method (not shown in the
previous example) sandwich each test call. We can initialize objects in setUp()
and optionally clean up or reset in tearDown(). These two methods help avoid
duplicating code and, at the same time, help isolate the tests from each other.

To run this test, type the command groovy -classpath classes test/CarTest. We should
see the following output:

Time: 0.003
0K (2 tests)

This output shows that two tests were executed, and both, not surprisingly,
passed. The first test confirmed that the Car has zero miles on the odometer
to begin with, and driving a certain distance increases the miles by that dis-
tance. Now write a negative test:

void testDriveNegativeInput()

{
car.drive(-10)
assertEquals 0, car.miles

}

We set the parameter for drive() to the negative value -10. We decide that the
Car must ignore our drive request in this case, so we expect the miles value
to be unchanged. The Java code, however, does not handle this condition. It
modifies the miles without checking the input parameter. When we run the
previous test, we will get an error:

...F

Time: 0.004

There was 1 failure:

1) testDriveNegativeInput(CarTest)
junit.framework.AssertionFailedError:
expected:<0> but was:<-10>

FAILURES!!!
Tests run: 3, Failures: 1, Errors: 0

This output shows that the two positive tests passed, but the negative test
failed. We can now fix the Java code to handle this case property and rerun
our test. We can see that using Groovy to test our Java code is pretty
straightforward and simple.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.3

18.4

Testing for Exceptions ® 277

Testing for Exceptions

Let’s now look at writing exception tests. We could wrap the method in try-catch.
If the method throws the expected exception—that is, if we land in the catch
block—all is well.

If the code does not throw any exceptions, we’ll invoke fail() to indicate the
failure of the test, as shown here:

UnitTestingWithGroovy/ExpectException.groovy
try {
divide(2, 0)
fail "Expected ArithmeticException ...
} catch(ArithmeticException ex) {
assertTrue true // Success

}

The previous code is Java-style JUnit testing and works with Groovy, as well.
However, Groovy makes it easier to write exception tests by providing a method
shouldFail() that elegantly wraps up the boilerplate code. Let’s use that to write
an exception test:

UnitTestingWithGroovy/ExpectException.groovy
shouldFail { divide(2, 0) }

The method shouldFail() accepts a closure. It invokes the closure in a guarded
try-catch block. If no exception is thrown, it raises an exception by calling the
fail() method. If we're interested in catching a specific exception, we can spec-
ify that information to the shouldFail() method:

UnitTestingWithGroovy/ExpectException.groovy
shouldFail(ArithmeticException) { divide(2, 0) }

In this case, shouldfail() expects the closure to throw ArithmeticException. If the
code throws ArithmeticException or something that extends it, it is happy. If some
other exception is thrown or if no exception is thrown, then shouldFail() fails.
We can take advantage of Groovy’s flexibility with parentheses (see Section
19.9, The Parentheses Limitation and a Workaround, on page 303) and write
the previous call as follows:

UnitTestingWithGroovy/ExpectException.groovy
shouldFail ArithmeticException, { divide(2, 0) }

Mocking

It’s very hard, if not impossible, to unit-test a large piece of code that has
dependencies. (What’s large? Any code we can’t see entirely without scrolling
down in an editor—no, don’t make the font size smaller now.) One advantage

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/ExpectException.groovy
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/ExpectException.groovy
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/ExpectException.groovy
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/ExpectException.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking * 278

of unit testing is that it forces us to make the unit of code smaller. Smaller
code is cohesive code. It also forces us to decouple the code from its surround-
ings. This means less coupling. Higher cohesion and lower coupling are
qualities of good design. In this section we’ll discuss ways to deal with
dependencies; ways to unit-test code with dependencies are covered in the
rest of this chapter.

Coupling comes in two forms: code that depends on our code, and code that
our code depends on. We need to address both types before we can unit-test
our code.

The code being tested has to be separated or decoupled from where it is used
within an application. Suppose we have some logic in a button handler
within the GUI. It’s hard to unit-test that logic. Therefore, we have to separate
this code into a method for unit testing.

Suppose we have logic that depends heavily on some resource. That resource
may be slow to respond, expensive to use, unpredictable, or currently under
development. Thus, we have to separate that dependency from our code before
we can effectively unit-test our code. Stubs and mocks help.

Stubs vs. Mocks

A stub stands in for a real object. It simply reciprocates the coached expected response
when the code being tested calls it. The response is set up to satisfy the needs for
the test to pass. A mock object does a lot more than a stub. It helps us ensure our
code is interacting with its dependencies, the collaborators, as expected. It can keep
track of the sequence and number of calls our code makes on the collaborator it
stands in for. It ensures proper parameters are passed in to method calls. Whereas
stubs verify state, mocks verify behavior. When we use a mock in our test, it verifies
not only the state, but also the behavior of our code’s interaction with its dependen-
cies.?

Groovy provides support for creating both stubs and mocks, as we will see in Section
18.10, Mocking Using the Groovy Mock Library, on page 289.

a. In the article “Mocks Aren’t Stubs,” Martin Fowler discusses the difference
between stubs and mocks. See http://martinfowler.com/articles/mocksArentStubs.html.

The code that our code depends on is called a collaborator—our code collabo-
rates with it to get its work done. The collaborator can be a component, an
object, a layer, or a subsystem. It can be local, it can be kept internal to our
object, it can be passed in as a parameter, or it can even be remote. Our

www.it-ebooks.info

http://martinfowler.com/articles/mocksArentStubs.html
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Mocking * 279

object can’t function without the collaborator. However, we need to replace
it for the sake of testing.

A mock stands in for the collaborator (see Stubs vs. Mocks, on page 278). It
does not do any real work. It simply gives expected responses to calls from
our code in order to get the test working.

When running our application, we want our code to depend on the real object
it needs (the collaborator). This is also the case when integration-testing our
application. However, when unit-testing, we want our code to instead depend
on the mock. So, we need to find a way to switch our code’s dependency
between a mock and a real object.

In a statically typed language like Java, we can achieve this by using an
interface, as shown in the following figure. Frameworks in Java—such as
EasyMock, JMock, Mockito, and so on—make mocking easier. Some of these
even let us mock a class without having to create an interface. Using a proxy-
based mechanism, they intercept our call and route our request to the mock
instead of the real dependent object.

Code
Under — Interface

Test

Code
You
Depend
On

Mock

Figure 177—Mocking during unit testing

Groovy’s dynamic nature and metaprogramming capabilities provide a great
advantage in this area. There are a few ways to create mocks in Groovy. We
can use the following:

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.5

Chapter 18. Unit Testing and Mocking * 280

¢ Method overriding

¢ Categories

¢ ExpandoMetaClass

e Expando

* Map

¢ Groovy’s mock library

In the rest of this chapter we’ll discuss techniques to create and use mocks
in Groovy.

Mocking by Overriding

Suppose we have a class that depends on a method that does some significant
work and takes substantial time and resources, such as the following
myMethod():

UnitTestingWithGroovy/com/agiledeveloper/CodeWithHeavierDependencies.groovy
package com.agiledeveloper

public class CodeWithHeavierDependencies

{
public void myMethod()

{

def value = someAction() + 10

println(value)

}

int someAction()

{

Thread.sleep(5000) // simulates time consuming action

return Math.random() * 100 // Simulated result of some action
}
}

We're interested in testing myMethod() (which belongs to CodeWith-HeavierDependen-
cies). However, the method depends on someAction(), which simulates a time-
and resource-consuming operation.

If we simply write a unit test for myMethod(), it will be slow. There is yet
another problem—we can’t assert any result from a call to myMethod(), because
it doesn’t return anything. Instead, it prints a value to standard output. We
need to figure out a way to capture what it prints and assert that. So, we have
a method that is hard to test; it’s slow and complicated.

To address these concerns, let’s override the offending methods:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/com/agiledeveloper/CodeWithHeavierDependencies.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Mocking by Overriding ¢ 281

UnitTestingWithGroovy/TestByOverriding.groovy
import com.agiledeveloper.CodeWithHeavierDependencies

class TestCodeWithHeavierDependenciesUsingOverriding extends GroovyTestCase {
void testMyMethod() {
def testObj = new CodeWithHeavierDependenciesExt()

testObj.myMethod()

assertEquals 35, testObj.result
}
}

class CodeWithHeavierDependenciesExt extends CodeWithHeavierDependencies {
def result

int someAction() { 25 }

def println(text) { result = text }
}

Let’s run the code and ensure the test passes fairly quickly:

Time: 0.015
0K (1 test)

In this code, we created a new class called CodeWithHeavierDependenciesExt—a
mock—that extends class CodeWithHeavierDependencies. In this class, we mocked
the methods someAction and printin(). (We took advantage of the Groovy convention
to call System.out.printin() simply as printin() and provided a local implementation
of printin()—savvy?) Run this test code and see how it succeeds. There’s no
delay in running the test and no messing with standard output.

We are still testing behavior, but by making the non-deterministic behavior
deterministic, we're able to write an assertion against it. We must find a clever
way to mock out dependencies so we can focus on unit-testing the behavior
of our code.

In the previous example, we tested a method in a Groovy class. We can use
this approach for testing Java classes, as well.

Mocking by overriding our own Java methods, such as someAction(), is not a
problem. However, unlike the Groovy code that called printin(), the Java code
would be calling System.out.printin(). So, creating a printin() in our derived class,
which is the mock, will not help. However, we can extend PrintStream and replace

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestByOverriding.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking ® 282

System.out. Let’s look at a Java class that is equivalent to the previous Groovy
code we tested:

UnitTestingWithGroovy/com/agiledeveloper/JavaCodeWithHeavierDependencies.java
package com.agiledeveloper;

public class JavaCodeWithHeavierDependencies

{

public int someAction()

{
try

{

Thread.sleep(5000); // simulates time consuming action

}

catch(InterruptedException ex) {}

return (int) (Math.random() * 100); // Simulated result of some action

}

public void myMethod()
{

int value = someAction() + 10;

System.out.println(value);
}
}

The Groovy code to test the preceding Java code is as follows:

UnitTestingWithGroovy/TestJavaByOverride.groovy
import com.agiledeveloper.JavaCodeWithHeavierDependencies

class TestCodeWithHeavierDependenciesUsingOverriding extends GroovyTestCase {
void testMyMethod() {
def testObj = new ExtendedJavaCode()

def originalPrintStream = System.out
def printMock = new PrintMock()
System.out = printMock

try {
testObj.myMethod()
} finally { System.out = originalPrintStream }

assertEquals 35, printMock.result

class ExtendedJavaCode extends JavaCodeWithHeavierDependencies {
int someAction() { 25 }
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/com/agiledeveloper/JavaCodeWithHeavierDependencies.java
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestJavaByOverride.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.6

Mocking Using Categories ¢ 283

class PrintMock extends PrintStream {
PrintMock() { super(System.out) }

def result

void println(int text) { result = text }
}

The output from the preceding code is the expected result of the test passing:

Time: 0.026
0K (1 test)

myMethod(), the method being tested, is part of the JavaCodeWithHeavierDependencies
class. We created ExtendedjavaCode to extend that class and overrode the some-
Action() method. We also created a class PrintMock that extends PrintStream, and
assigned an instance of that to System.out. This helps intercept the call to
System.out.printin() and directs it to our mock implementation.

Mocking Using Categories

In Section 13.1, Injecting Methods Using Categories, on page 193, we discussed
how categories provide controlled aspect-oriented programming (AOP) in
Groovy. In this section we’ll see how we can use it to create mocks.

UnitTestingWithGroovy/TestUsingCategories.groovy
import com.agiledeveloper.CodeWithHeavierDependencies

class TestUsingCategories extends GroovyTestCase {
void testMyMethod() {

def testObj = new CodeWithHeavierDependencies()

use(MockHelper) {
testObj.myMethod()

assertEquals 35, MockHelper.result

class MockHelper {
def static result

def static println(self, text) { result = text }

def static someAction(CodeWithHeavierDependencies self) { 25 }

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingCategories.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.7

Line 1

Chapter 18. Unit Testing and Mocking * 284

MockHelper has two static methods, one for each method we want to mock—
someAction() and printin(). Within the test, we ask the category to intercept calls
to methods and substitute these two methods where appropriate by using
use(MockHelper). This is much like the advice used in AOP.

The output from the previous bit of code is a reassuring pass of the test, as
shown here:

Time: 0.027
0K (1 test)

Categories are useful only with Groovy code. They does not help to mock
methods called from within compiled Java code.

The override approach we saw in Section 18.5, Mocking by Overriding, on
page 280, is useful for both Java and Groovy code. However, we can’t use that
approach if the class being tested is final. The categories approach shines in
that case.

Mocking Using ExpandoMetaClass

We can intercept method calls in Groovy in another way, using the
ExpandoMetaClass (see Section 13.2, Injecting Methods Using ExpandoMetaClass,
on page 198, and Section 13.3, Injecting Methods into Specific Instances, on
page 203). We don’t have to create a separate class as in the two approaches
we’'ve seen so far. Instead, we can create a closure for each method we want
to mock, and set that into MetaClass for the instance being tested. Let’s look at
an example.

Create a separate instance of ExpandoMetaClass for the instance being tested.
This MetaClass will carry the mock implementation of collaborator methods.

In this example, shown in the following code, we create a closure for mocking
printin() and set that into an instance of ExpandoMetaClass for ClassWithHeavierDepen-
dencies in line number 7. Similarly, we create a closure for mocking someAction()
in line number 8. The advantage of creating an instance of ExpandoMetaClass
specifically for the instance under test is that we don’t globally affect the
metaclass for CodeWithHeavierDependencies. That means if we have other tests,
the method we mock does not affect them (remember to keep the tests isolated
from each other).

UnitTestingWithGroovy/TestUsingExpandoMetaClass.groovy
import com.agiledeveloper.CodeWithHeavierDependencies

- class TestUsingExpandoMetaClass extends GroovyTestCase {

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingExpandoMetaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

-}

18.8

Mocking Using Expando ® 285

void testMyMethod() {
def result
def emc = new ExpandoMetaClass(CodeWithHeavierDependencies, true)
emc.println = { text -> result = text }
emc.someAction = { -> 25 }
emc.initialize()

def testObj = new CodeWithHeavierDependencies()
testObj.metaClass = emc

testObj.myMethod()

assertEquals 35, result

}
The output from the previous code confirms that the test passes:

Time: 0.031
0K (1 test)

In this example, when myMethod() calls the two methods printin() and someAction(),
the ExpandoMetaClass intercepts those calls and routes them to our mock
implementation. Again, this is similar to the advice in AOP.

Creating the mock, setting up its expectations, and using it in the test are
nicely contained within the test method in this case. There are no additional
classes to create. If we have other tests, we can create in a concise way the
mocks necessary to satisfy those tests.

This approach of using ExpandoMetaClass for mocking is useful only with Groovy
code. It does not help to mock methods called from within precompiled Java
code.

Mocking Using Expando

So far in this chapter we've looked at ways to mock instance methods called
from within another instance method. In the rest of this chapter, we’ll look
at ways to mock other objects on which our code depends.

Let’s take a look at an example. Suppose the methods of a class we're inter-
ested in testing depend on a File. That’ll make it hard to write a unit test. We
need to find ways to mock this object so our unit tests on our class can be
quick and automated:

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking * 286

UnitTestingWithGroovy/com/agiledeveloper/ClassWithDependency.groovy
package com.agiledeveloper

public class ClassWithDependency

{
def methodA(val, file)
{
file.write "The value is ${val}."
}
def methodB(val)
{
def file = new java.io.FileWriter("output.txt")
file.write "The value is ${val}."
}
def methodC(val)
{
def file = new java.io.FileWriter("output.txt")
file.write "The value is ${val}."
file.close()
}
}

In this code, we have three methods with different flavors of dependency.
methodA() receives an instance of what appears to be a File. The other two
methods, methodB() and methodC(), instantiate an instance of FileWriter internally.
The Expando class will help us with the first method only. Given that, we’ll
consider only methodA() in this section. We'll see how to test the other two
methods in Section 18.10, Mocking Using the Groovy Mock Library, on page
289.

methodA() writes a message to the given File object using its write() method. We
want to test methodA(), but without actually having to write to a physical file
and then read its contents back to assert.

We can take advantage of Groovy’s dynamic typing here because methodA()
does not specify the type of its parameter. So, we can send any object that
can fulfill the intended parameter’s capability, such as having the write() method
(see Section 3.4, Design by Capability, on page 56). Let’'s do that now. We’ll
create a class HandTossedFileMock with the write() method. We don’t have to worry
about all the properties and methods that the real File class has. All we care
about is what the method being tested really calls. The code is as follows:

UnitTestingWithGroovy/TestUsingAHandTossedMock.groovy
import com.agiledeveloper.ClassWithDependency
class TestWithExpando extends GroovyTestCase {
void testMethodA() {
def testObj = new ClassWithDependency()

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/com/agiledeveloper/ClassWithDependency.groovy
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingAHandTossedMock.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Mocking Using Expando ® 287

def fileMock = new HandTossedFileMock()
testObj.methodA(1, fileMock)

assertEquals "The value is 1.", fileMock.result
}
}

class HandTossedFileMock {
def result
def write(value) { result = value }

}

The output from the previous code confirms a passing test:

Time: 0.015
0K (1 test)

In this code, the mock implementation of write() that we created within Hand-
TossedFileMock simply saves the parameter it receives into a result property. We're
sending an instance of this mock class to methodA() instead of the real File.
methodA() is quite happy to use the mock, thanks to dynamic typing.

That was not too bad; however, it would be great if we did not have to hand-
toss that separate class. This is where Expando comes in (see Section 15.1,
Creating Dynamic Classes with Expando, on page 225).

Simply tell an instance of Expando to hold a property called text and a mock
implementation of the write() method. Then pass this instance to methodA().
Let’s look at the code:

UnitTestingWithGroovy/TestUsingExpando.groovy
import com.agiledeveloper.ClassWithDependency

class TestUsingExpando extends GroovyTestCase {
void testMethodA() {
def fileMock = new Expando(text: '', write: { text = it })

def testObj = new ClassWithDependency()
testObj.methodA(1, fileMock)
assertEquals "The value is 1.", fileMock.text

}
}

The output is as follows:

Time: 0.022

0K (1 test)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingExpando.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

18.9

Chapter 18. Unit Testing and Mocking * 288

In both of the previous examples, no real physical file was created when we
called methodA(). The unit test runs quickly, and we don’t have any files to read
or clean up after the test.

Expando is useful when we pass the dependent object to the method being
tested. If, on the other hand, the method is creating the dependent object
internally (such as the methods methodB() and methodC()), it is of no help. We'll
address this in Section 18.10, Mocking Using the Groovy Mock Library, on
page 289.

Mocking Using Map

We saw an example of using Expando as a mock object. We can also use a Map.
A map, as we know, has keys and associated values. The values can be objects
or even closures. We can take advantage of this to use a Map in place of a
collaborator.

Here’s a rewrite of the example using Expando from Section 18.8, Mocking Using
Expando, on page 285, this time using a Map:

UnitTestingWithGroovy/TestUsingMap.groovy
import com.agiledeveloper.ClassWithDependency

class TestUsingMap extends GroovyTestCase {
void testMethodA() {
def text = "'
def fileMock = [write : { text = it }]

def testObj = new ClassWithDependency()
testObj.methodA(1, fileMock)

assertEquals "The value is 1.", text
}
}

The output is as follows:

Time: 0.029
0K (1 test)

Just like Expando, Map is useful when we pass the dependent object to the
method being tested. It does not help if the collaborator is created internally
in the method being tested. We’'ll address this case next.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingMap.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Mocking Using the Groovy Mock Library ® 289

18.10 Mocking Using the Groovy Mock Library

Line 1

Groovy’s mock library implemented in the groovy.mock.interceptor package is
useful for mocking deeper dependencies—that is, instances of collabora-
tors/dependent objects created within the methods we're testing. StubFor and
MockFor are the two classes that take care of this. Let’s look at them one at a
time.

StubFor and MockFor are intended to intercept calls to methods like categories
do (see Section 18.6, Mocking Using Categories, on page 283). However, unlike
with categories, we don’t have to create separate classes for mocking. We
introduce the mock methods on instances of StubFor or MockFor, and these
classes take care of replacing the MetaClass for the object we’re mocking.

In Stubs vs. Mocks, on page 278, we discussed the difference between stubs
and mocks. Let’'s start with an example using StubFor to understand the
strengths and weaknesses of stubs. Then we’ll use MockFor to look at the
advantage mocks offer.

Using StubFor
Let’s use Groovy’s StubFor to create stubs for the File class:

UnitTestingWithGroovy/TestUsingStubFor.groovy
import com.agiledeveloper.ClassWithDependency

- class TestUsingStubFor extends GroovyTestCase {

-}

void testMethodB() {
def testObj = new ClassWithDependency()

def fileMock = new groovy.mock.interceptor.StubFor(java.io.FileWriter)
def text

fileMock.demand.write { text = it.toString() }

fileMock.demand.close {}

fileMock.use {
testObj.methodB(1)
}

assertEquals "The value is 1.", text

}

When creating an instance of StubFor, we provided the class we're interested
in stubbing—in this case, the java.io.FileWriter. We then created a closure for
the write() method’s stub implementation. On line number 12, we called the
use() method on the stub. At this time, it replaces the MetaClass of FileWriter with

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingStubFor.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking ® 290

a ProxyMetaClass. Any call to an instance of FileWriter from within the attached
closure will be routed to the stub.

Stubs and mocks, however, do not help intercept calls to constructors. In the
previous example, FileWriter's constructor is called, and it ends up creating a
file named output.txt on the disk.

StubFor helped us test whether our method, methodB(), is creating a proper
instance of FileWriter and writing the expected content to this instance. However,
it has one limitation. It failed to test whether the method was well-behaved
by closing the file. Even though we demanded the close() method on the stub,
it ignored checking whether close() was actually called. The stub simply stands
in for the collaborator and verifies the state. To verify behavior, we have to
use a mock (see Stubs vs. Mocks, on page 278)—specifically, the MockFor class.

Using MockFor
Let’s make one change to the previous test code:

UnitTestingWithGroovy/TestUsingMockFor.groovy
//def fileMock = new groovy.mock.interceptor.StubFor(java.io.FileWriter)
def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)

We replaced StubFor with MockFor—that’s the only change. When we run the
test now, it fails, as shown here:

.F

Time: 0.093

There was 1 failure:

1) testMethodl(TestUsingStubFor)junit.framework.AssertionFailedError:
verify[1l]: expected 1..1 call(s) to 'close' but was never called.

Unlike the stub, the mock tells us that even though our code produced the
desired result, it did not behave as expected. That is, it did not call the close()
method that was set up in the expectation using demand.

methodC() does the same thing as methodB(), but it calls close(). Let’s test that
method using MockFor:

UnitTestingWithGroovy/TestMethodCUsingMock.groovy
import com.agiledeveloper.ClassWithDependency

class TestMethodCUsingMock extends GroovyTestCase {
void testMethodC() {
def testObj = new ClassWithDependency()

def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)

def text
fileMock.demand.write { text = it.toString() }

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestUsingMockFor.groovy
http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TestMethodCUsingMock.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Mocking Using the Groovy Mock Library ® 291

fileMock.demand.close {}
fileMock.use {
testObj.methodC(1)
}
assertEquals "The value is 1.", text
}
}

In this case, the mock tells us that it is quite happy with the collaboration.
The test passes, as shown here:

Time: 0.088
0K (1 test)

In the previous examples, the method under test created only one instance
of the object being mocked—FileWriter. What if the method creates more than
one of these objects? The mock represents all of them, and we have to create
the demands for each one. Let’s look at an example of using two instances of
FileWriter. The useFiles() method in the following code copies the given parameter
to the first file and writes the parameter’s size to the second:

class TwoFileUser {
def useFiles(str) {
def filel = new java.io.FileWriter("outputl.txt")
def file2 = new java.io.FileWriter("output2.txt")
filel.write str
file2.write str.size()
filel.close()
file2.close()
}
}

Here’s the test for that code:

UnitTestingWithGroovy/TwoFileUserTest.groovy
class TwoFileUserTest extends GroovyTestCase {
void testUseFiles() {
def testObj = new TwoFileUser()
def testData = 'Multi Files'
def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)
fileMock.demand.write() { assertEquals testData, it }
fileMock.demand.write() { assertEquals testData.size(), it }
fileMock.demand.close(2..2) {}
fileMock.use {
testObj.useFiles(testData)
}
}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TwoFileUserTest.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking ® 292

void tearDown() {
new File('outputl.txt').delete()
new File('output2.txt').delete()
}
}

The output from running the previous test is as follows:

UnitTestingWithGroovy/TwoFileUserTest.output
Time: 0.091
0K (1 test)

The demands we created are to be satisfied collectively by both of the objects
created in the method being tested. The mock is flexible to support more than
one object. Of course, if we have a lots of objects being created, the mock can
get hard to implement. The ability to specify multiplicity of calls, discussed
next, may help.

The MockFor was quite capable of mocking the FileWriter class’s methods, but it
did not prevent the actual constructor from running, so unfortunately, empty
files named outputl.txt and output2.txt will be created when the tests run. We
clean it up in the tearDown() method.

The mock keeps track of the sequence and number of calls to a method, and
if the code being tested does not exactly meet the expectation we have
demanded, the mock raises an exception, failing the test.

We can easily set up expectations for multiple calls to the same method. Here
is an example:

def someWriter() {
def file = new FileWriter('output.txt"')
file.write("one")
file.write("two")
file.write(3)
file.flush()
file.write(file.getEncoding())
file.close()

}

(
(
(
(

Suppose we care only to test the interaction between our code and the collab-
orator. We need to set up an expectation for three calls to write(), followed by
a call to flush(), a call to getEncoding(), a call to write(), and, finally, a call to close().

We can specify the cardinality or multiplicity of a call using a range with the
demand. For example, mock.demand.write(2..4) {...} says that we expect the method
write() to be called at least two times, but no more than four times. Let’s write

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/UnitTestingWithGroovy/TwoFileUserTest.output
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Mocking Using the Groovy Mock Library ® 293

a test for the previous method to see the ease with which we can express the
expectations for multiple calls and the return values, and also assert that the
parameter values received are as expected.

void testSomeWriter() {
def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)
fileMock.demand.write(3..3) {} // If you want to say upto 3 times, use 0..3
fileMock.demand. flush {}
fileMock.demand.getEncoding { return "whatever" } // return is optional
fileMock.demand.write { assertEquals 'whatever', it.toString() }
fileMock.demand.close {}

fileMock.use {
testObj.someWriter()
}
}

In this example, the mock asserts that write() was called three times; however,
it failed to assert the parameters passed in. We can modify the code to assert
for parameters, as shown here:

def params = ['one', 'two', 3]
def index = 0
fileMock.demand.write(3..3) { assert it == params[index++] }

// If you want to say upto 3 times, use 0..3

In this chapter we saw the unit-testing and mocking facilities that are baked
into the Groovy library. Some powerful and fluent third-party libraries make
unit testing easier and more fun. For mocking, check out gmock.' The testing
tool Spock provides greater fluency and ease for writing and expressing unit
tests.” In Spock, we can write assertions using simple expect: expected ==
expression, provide a table of data values of input and expectations, and easily
create mocks.

Unit testing takes quite a bit of discipline. However, the benefits outweigh
the cost. Unit testing is critical in dynamic languages that offer greater flexi-
bility than statically typed languages.

We've explored techniques for managing dependencies via stubs and mocks.
We can use Groovy to unit-test our Java code. We can use our existing unit-
testing and mock frameworks, and override methods to mock our Groovy and
Java code. To unit-test our Groovy code, we can use categories and
ExpandoMetaClass. Both let us mock by intercepting method calls. ExpandoMetaClass
makes it so we don’t have to create extra classes and our tests are concise.

1. http://code.google.com/p/gmock/
2. http://code.google.com/p/spock

www.it-ebooks.info

http://code.google.com/p/gmock/
http://code.google.com/p/spock
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 18. Unit Testing and Mocking * 294

For simple mocking of parameter objects, we use Maps or Expando. If we want
to set up expectations for multiple methods and mock dependencies that are
internal to methods being tested, we use StubFor. To test the state as well as
the behavior, we use MockFor.

We saw how Groovy’s dynamic nature along with its metaprogramming
capability makes unit testing a breeze. As we evolve our code, refactor it, and
get a better understanding of our application requirements, unit testing with
Groovy can help maintain our velocity of development. It’ll give us confidence
that our application is continuing to meet our expectations—we can use it
as a carabiner as we ascend through the application-development complexities.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.1

CHAPTER 19

Creating DSLs in Groovy

Domain-specific languages (DSLs) are “targeted at a particular type of prob-
lem.”—see the reference to Martin Fowler’s discussions on DSLs in Appendix
1, Web Resources, on page 309. Their syntax is focused on the intended domain
or problem. We don’t use them for general-purpose programming like we use
Java, Groovy, or C++, because DSLs have a very limited scope and capability.

A DSL is small, simple (it may not be simple to design, though), expressive,
and focused on a problem area or domain. DSLs have two characteristics:
they’re context-driven and fluent.

DSLs have been around for a long time. Chances are we've worked with them
in applications with special keyword input files used to communicate with
external applications. Ant and Gant (see Appendix 1, Web Resources, on page
309, for the latter) are examples of DSLs. Specifically, Gant is a wrapper around
Ant that uses Groovy instead of XML to specify build tasks.

Groovy’s dynamic nature and its metaprogramming capabilities makes it
attractive for building DSLs. In this chapter, we’ll talk about DSLs and how
to use Groovy to build them.

Context

Context is one of the characteristics of a DSL. As humans, we rely heavily on
context when we communicate. We're efficient, and context provides for con-
tinuity in our conversations. The other day I heard my friend Neal holler,
“Venti latte with two extra shots!” He was using the Starbucks DSL. Nowhere
did he mention the word “coffee,” but he sure got one, at a high price. That’s
context-driven.

Let’s look at Java code to order pizza. This code lacks context. The reference
joesPizza is used repeatedly:

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 19. Creating DSLs in Groovy ® 296

CreatingDSLs/OrderPizza.java
//Java code
package com.agiledeveloper;

public class OrderPizza {
public static void main(String[] args) {
PizzaShop joesPizza = new PizzaShop();
joesPizza.setSize(Size.LARGE);
joesPizza.setCrust(Crust.THIN);
joesPizza.setTopping("Olives", "Onions", "Bell Pepper");
joesPizza.setAddress("101 Main St., ...");
int time = joesPizza.setCard(CardType.VISA, "1234-1234-1234-1234");
System.out.printf("Pizza will arrive in %d minutes\n", time);
}
}

The same code written in Groovy is less cluttered, thanks to the with() method
(see Section 7.1, Using Object Extensions, on page 128):

CreatingDSLs/OrderPizza.groovy
import com.agiledeveloper.*

PizzaShop joesPizza = new PizzaShop()

joesPizza.with {
setSize(Size.LARGE)
setCrust(Crust.THIN)
setTopping("Olives", "Onions", "Bell Pepper")
setAddress("101 Main St., ...")
int time = setCard(CardType.VISA, "1234-1234-1234-1234")
printf("Pizza will arrive in %d minutes\n", time)

}

Since typing is optional and parentheses are almost always optional in Groovy
(see Section 19.9, The Parentheses Limitation and a Workaround, on page 303),
we can make the previous code a tad lighter:

CreatingDSLs/OrderPizza2.groovy
import com.agiledeveloper.*

PizzaShop joesPizza = new PizzaShop()

joesPizza.with {
setSize Size.LARGE
setCrust Crust.THIN
setTopping "Olives", "Onions", "Bell Pepper"
setAddress "101 Main St., ..."
time = setCard(CardType.VISA, "1234-1234-1234-1234")
printf "Pizza will arrive in %d minutes\n", time

}

Context makes things terse (in a good way), less cluttered, and more effective.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/OrderPizza.java
http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/OrderPizza.groovy
http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/OrderPizza2.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Fluency * 297

19.2 Fluency

Fluency is another characteristic of a DSL. It helps make code readable and
naturally flowing. It’s not easy to design for fluency, but we should do it for
our users. We'll now discuss some examples of fluency and explore a few
ways to write loops in Groovy:

CreatingDSLs/FluentLoops.groovy

// Traditional Looping

for(int i = 0; i < 10; i++) {
println(i);

}

// Groovy ways

for(i in 0..9) { println i }

0.upto(9) { println it }
10.times { println it }

All the previous loops produce the same result. Groovy provides fluency for
looping, among other things. Fluency is not restricted to Groovy, though.
EasyMock (which inspired the Groovy mock library) exhibits fluency in setting
up the mock expectations in Java:

//Java code

expect(alarm.raise()).andReturn(true);
expect(alarm.raise()).andThrow(new InvalidStateException());

The previous code indicates that the alarm mock should return true on the
first call and throw an exception on the second.

We can find another good example of a DSL in Grails/GORM. For example,
we can specify data constraints on an object’s properties using the following
Groovy syntax:

class State

{
String twoletterCode
static constraints = {
twoLetterCode unique: true, blank: false, size: 2..2
}
}

Grails smartly recognizes this fluent and expressive syntax for expressing the
constraints and generates the validation logic for both the front end and the
back end.

Groovy builders (see Chapter 17, Groovy Builders, on page 253) are good
examples of DSLs. They're fluent and built on context.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/FluentLoops.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.3

19.4

Chapter 19. Creating DSLs in Groovy ® 298

Types of DSLs

When designing a DSL, we have to decide between two types—external and
internal.

An external DSL defines a new language. We have the flexibility to choose the
syntax. We then parse the commands in our new language to take actions.
When [started my first job, the company asked me to maintain a DSL that
needed extensive use of lex and yacc. (I first thought they asked me to do it
because I was good. I later understood they don’t ask new employees to do
stuff because they’re good, but rather because no one else wants to do it!)
The parsing was a lot of “fun.” We can use languages such as C++ and Java,
and the support of extensive parsing capabilities and libraries, to do the heavy
lifting for us. For example, we can use ANTLR to build DSLs (see Terence
Parr’s The Definitive ANTLR Reference: Building Domain-Specific Languages
[Par07]).

An internal DSL, also called an embedded DSL, defines a new language, but
within the syntactical confines of an existing language. We don’t use any
parsers, but we have to construe the syntax by tactfully mapping to constructs
such as methods and properties in the underlying language. Our internal
DSL’s users might not realize they're using syntax of a broader language.
However, creating the internal DSL takes significant design effort and clever
tricks to make the underlying language work for us.

I mentioned Ant and Gant earlier. Ant, which uses XML, is an example of an
external DSL. Gant, on the other hand, uses Groovy to solve the same problem
and is an example of an internal DSL.

Designing Internal DSLs

Dynamic languages are well suited to designing and implementing internal
DSLs. They have good metaprogramming capabilities and flexible syntax, and
we can easily load and execute code fragments.

Not all dynamic languages are created equal, however.

I find it very easy to create DSLs in Ruby, for example. It is dynamically typed,
parentheses are optional, the colon symbol (}) can be used instead of double
quoting strings, and so on. Ruby’s elegance heavily favors creating internal
DSLs.

Creating internal DSLs in Python can be a bit of a challenge. The significant
whitespace can be a hindrance.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.5

19.6

Groovy and DSLs ¢ 299

Groovy’s dynamic typing and metaprogramming capabilities help a great deal
in creating internal DSLs. However, it’'s picky about parentheses and does
not have the elegant colon symbol that Ruby does. We will have to work
around some of these restrictions, as we’ll see later.

It takes significant time, patience, and effort to design an internal DSL. We
must be creative, work around issues tactfully, and be willing to compromise
to succeed in our design efforts.

Groovy and DSLs

Groovy has a number of key capabilities to help create internal DSLs,
including the following:

e Dynamic and optional typing (Section 3.5, Optional Typing, on page 61)

¢ The flexibility to load scripts dynamically, plus manipulate and execute
them (Section 10.8, Using Groovy Scripts_from Groovy, on page 167)

¢ Open classes, thanks to categories and ExpandoMetaClass (see Chapter 13,
MOP Method Injection, on page 193)

¢ Closures that provide a nice context for execution (Chapter 4, Using Clo-

sures, on page 71)

e Operator overloading helps freely define operators (Section 2.8, Operator
Overloading, on page 31).

e Builder support (Chapter 17, Groovy Builders, on page 253)

¢ Flexible parentheses

Groovy’s handling of flexible parentheses is useful and annoying at the same
time. Groovy requires no parentheses for calling methods that take parameters,
but insists on having them for methods with no parameters. See Section 19.9,
The Parentheses Limitation and a Workaround, on page 303, for a simple trick
to work around this annoyance.

In the rest of this chapter, we’ll look at examples of creating DSLs in Groovy
using these capabilities.

Using Command-Chain Fluency

We can achieve some level of fluency simply using a Groovy feature that allows
commands, or method calls, to be chained. Groovy does not require parenthe-
ses when methods take arguments. Also, if a method returns a result, we can
make subsequent calls on that instance without using a dot (.). Using simple

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 19. Creating DSLs in Groovy ® 300

plain-vanilla Groovy code, with no metaprogramming magic, we can execute
fluent code like the following:

CreatingDSLs/CommandChain.groovy
move forward and then turn left
jump fast, forward and then turn right

That looks like a data file, but it's 100 percent executable Groovy code. Let’s
analyze it and figure out the Groovy code needed to execute it.

In the first line, we don’t have any commas. Groovy will read the words move
and forward and assume we're calling a move() method with forward as an argu-
ment. We define a move() method and also a variable named forward with a
desired value like “forward.” Once Groovy reduces the first two words, it
expects to have an object on which to call the and() method. To facilitate this,
from the move() method we return an instance that will support this method.
Since a comma is used on the second line, the jump() method will take two
parameters. We can continue to analyze along these lines to figure out what
methods, variables, and parameters we’d need. To process the previous fluent
datalike code, we need to create a bunch of variables and methods like the
following:

CreatingDSLs/CommandChain.groovy

def (forward, left, then, fast, right) =
['forward', 'left', '', 'fast', 'right']

def move(dir) {
println "moving $dir"
this

}

def and(then) { this }

def turn(dir) {
println "turning $dir"
this

}

def jump(speed, dir) {
println "jumping $speed and $dir"
this

}

We used multiple assignments to define the needed variables. The methods
move(), and(), turn(), and jump() each return this, the object on which they're
invoked. This allows the methods to be nicely chained in those two lines.

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/CommandChain.groovy
http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/CommandChain.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.7

Closures and DSLs ® 301

Place the previous code and the fluent two lines in the same file and execute
it using the groovy command to produce the output:

moving forward

turning left

jumping fast and forward
turning right

The command-chaining feature in Groovy makes it quite easy to create simple
DSLs with fairly good fluency. To create more-complex DSLs and to execute
them within a context, we’ll have to go beyond this capability, which we’ll do
next.

Closures and DSLs

The with() method helps delegate calls within a closure, giving us an execution
context. We can take advantage of this approach to create our own methods
with context and fluency.

Let’s revisit the pizza-ordering example. Say we want to create a syntax that
flows naturally. We don’t want to create an instance of PizzaShop because that
is more of an implementation detail. We want the context to be implicit. Let’s
look at the following code (in the next section we’ll see how to make this more
fluent and context-driven):

CreatingDSLs/ClosureHelp.groovy
time = getPizza {
setSize Size.LARGE
setCrust Crust.THIN
setTopping "Olives", "Onions", "Bell Pepper"
setAddress "101 Main St., ..."
setCard(CardType.VISA, "1234-1234-1234-1234")
}

printf "Pizza will arrive in %d minutes\n", time

The getPizza() method accepts a closure within which we call methods to order
pizza using the instance methods of a PizzaShop class. However, the instance
of that class is implicit. The delegate (see Section 4.9, Closure Delegation, on
page 86) takes care of routing the methods to the implicit instance, as we can
see in the implementation of the following getPizza() method:

CreatingDSLs/ClosureHelp.groovy

def getPizza(closure) {
PizzaShop pizzaShop = new PizzaShop()
closure.delegate = pizzaShop
closure()

}

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/ClosureHelp.groovy
http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/ClosureHelp.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.8

Chapter 19. Creating DSLs in Groovy ® 302

The output from executing the call to the getPizza() code is as follows:

Pizza will arrive in 25 minutes

Wait a second; how did we get the time value printed in the output? Because
the last statement in getPizza() was a call to the closure, whatever it returned,
getPizza() returned. The last statement within the closure is setCard(), so its
result was returned to the caller. This DSL imposes ordering: the setCard()
must be the last method called to order pizza. We can work on improving the
interface so the ordering is more obvious. Also, we can replace calls to set
methods like setSize Size.LARGE with assignment statements such as size =
Size.LARGE.

Method Interception and DSLs

We can implement the DSL for ordering pizza without really using a PizzaShop
class. We can do that by purely intercepting method calls. Let’s start with the
code to order pizza (stored in a file named orderPizza.dsl):

CreatingDSLs/orderPizza.dsl

size large

crust thin

topping Olives, Onions, Bell Pepper
address "101 Main St., ..."

card visa, '1234-1234-1234-1234'

It hardly looks like code. It looks more like a data file. However, that’s pure
Groovy code, and we're going to execute it (everything we see in that file,
except the strings in double quotes, is either method names or variable names).
But before that, we have to perform a few tricks...er, I mean design our DSL.

Let’s create a file named GroovyPizzaDSL.groovy, and in it define the variables large,
thin, and visa (we can define other variables, such as small, thick, and masterCard,
at will). Now define a method acceptOrder() to call into a closure that will even-
tually execute our DSL. Also implement the methodMissing() method that will be
called for any method that does not exist (pretty much all methods called in
our DSL file orderPizza.dsl).

CreatingDSLs/GroovyPizzaDSL.groovy

def large = 'large'
def thin = 'thin'

def visa = 'Visa'
def Olives = 'Olives'
def Onions = 'Onions'

def Bell Pepper = 'Bell Pepper'

orderInfo = [:]

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/orderPizza.dsl
http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/GroovyPizzaDSL.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.9

The Parentheses Limitation and a Workaround ® 303

def methodMissing(String name, args) {
orderInfo[name] = args

}

def acceptOrder(closure) {
closure.delegate = this
closure()
println "Validation and processing performed here for order received:"
orderInfo.each { key, value ->
println "${key} -> ${value.join(', ')}"
}
}

We have to figure out a way to put these two files together and execute. We
can do that quite easily (see Section 10.8, Using Groovy Scripts _from Groovy,
on page 167), as shown next. Invoke GroovyShell, load the previous two scripts,
form them into a cohesive script, and evaluate it.

CreatingDSLs/GroovyPizzaOrderProcess.groovy
def dslDef = new File('GroovyPizzaDSL.groovy').text
def dsl = new File('orderPizza.dsl').text

def script = """

${dslDef}

acceptOrder {
${ds1}

}

new GroovyShell().evaluate(script)

Here is the output from the previous code:

Validation and processing performed here for order received:
size -> large

crust -> thin

topping -> Olives, Onions, Bell Pepper

address -> 101 Main St.,

card -> Visa, 1234-1234-1234-1234

As we can see, designing and executing a DSL in Groovy (as we did in orderpiz-
za.dsl) is pretty easy if we know how to exploit Groovy’s metaobject protocol
capabilities.

The Parentheses Limitation and a Workaround

Let’s leave the pizza example behind and look at a simple register. This section
will show how to create a DSL for a simple register, the device that lets us
total amounts. Here is the first attempt to create that:

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/GroovyPizzaOrderProcess.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 19. Creating DSLs in Groovy ® 304

CreatingDSLs/Total.groovy

value = 0

def clear() { value = 0 }

def add(number) { value += number }

def total() { println "Total is $value" }

clear()
add 2
add 5
add 7
total()

The output from the previous code is as follows:

Total is 14

In this code, we wrote total() and clear() instead of total and clear, respectively.
Let’s drop the parentheses and try to call total:

CreatingDSLs/Total.groovy

try {
total

} catch(Exception ex) {
println ex

}
Executing the previous code gives the following result:

groovy.lang.MissingPropertyException:
No such property: total for class: Total

Groovy thinks that the call to total refers to a (nonexistent) property. Working with
a language to design a DSL is like playing with a two-year-old—we don’t fight
with the kid when he gets cranky; we go along a little bit. So, in this case, tell
Groovy that it’s OK and work with it. Simply create the properties it wants:

value = 0

def getClear() { value = 0 }

def add(number) { value += number }

def getTotal() { println "Total is $value" }

We wrote properties with the names total and clear by writing the methods
getTotal() and getClear(). Now Groovy is quite happy (like the kid) to play with
us, and we can call these properties without parentheses:

clear
add 2
add 5
add 7
total
clear
total

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/Total.groovy
http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/Total.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Categories and DSLs * 305

The output from the previous code is as follows:

Total is 14
Total is 0

We've seen ways to create fluent syntax. Next we’ll discuss how to intercept
and synthesize method calls in a DSL.

19.10 Categories and DSLs

Using categories, we can intercept method calls in a controlled fashion (see
Section 13.1, Injecting Methods Using Categories, on page 193). We can put
that to use in creating a DSL. Let’s figure out ways to implement the following
fluent call: 2.days.ago.at(4.30).

2 is an instance of Integer, and we know that days is not a property on it. We'll
inject that, using categories, as a property (the getDays() method). The days is
just noise here, but in another context it may be useful to differentiate between
five days ago and five minutes ago. It provides connectivity in the sentence
“two days ago at 4.30.” We can implement the method getDays() that accepts
Integer and returns the received instance. In the getAgo() method (for the ago
property), we accept an instance of Integer and return so many days before the
current date using the operations on the Calendar class. Finally, in the at()
method, we set the time on that date to the time given as the parameter (4.30),
and return an instance of Date. We can perform all this within the use() block,
as shown in the following code. (We're not performing error checking on the
time we provide, so we can send 4.70 if we’d like instead of 5:10; it’s an
undocumented feature. Also, we may want to clone the instance of Calendar
on which the at() method is called and modify the clone to avoid any side
effects.)

CreatingDSLs/DSLUsingCategory.groovy
class DateUtil {
static int getDays(Integer self) { self }

static Calendar getAgo(Integer self) {
def date = Calendar.instance
date.add(Calendar.DAY OF MONTH, -self)
date

}

static Date at(Calendar self, Double time) {
def hour = (int) (time.doubleValue())
def minute = (int) (Math.round((time.doubleValue() - hour) * 100))
self.set(Calendar.HOUR OF DAY, hour)
self.set(Calendar.MINUTE, minute)
self.set(Calendar.SECOND, 0)

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/DSLUsingCategory.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 19. Creating DSLs in Groovy ® 306

self.time
}
}

use(DateUtil) {
println 2.days.ago.at(4.30)
}

The output from the previous code is as follows:

Thu Jan 31 04:30:00 MST 2008

A final concern with the DSL syntax created here is that we used
2.days.ago.at(4.30). It’'s more natural to use 4:30 instead of 4.30, so it would be
nice to instead use 2.days.ago.at(4:30). Groovy can accept a Map as a parameter
to methods.

By defining the at() method’s parameter as Map instead of Double, we can achieve
that:

CreatingDSLs/DSLUsingCategory2.groovy
class DateUtil {
static int getDays(Integer self) { self }

static Calendar getAgo(Integer self) {
def date = Calendar.instance
date.add(Calendar.DAY OF MONTH, -self)
date

}

static Date at(Calendar self, Map time) {
def hour = 0
def minute = 0
time.each {key, value -> hour = key.toInteger()

minute = value.toInteger()

}
self.set(Calendar.HOUR OF DAY, hour)
self.set(Calendar.MINUTE, minute)
self.set(Calendar.SECOND, 0)
self.time

}

}

use(DateUtil) {
println 2.days.ago.at(4:30)
}

The output from the previous code is as follows:

Thu Jan 31 04:30:00 MST 2008

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/DSLUsingCategory2.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

19.11

ExpandoMetaClass and DSLs ® 307

The only restriction in this categories approach is that we can employ the
DSL only within the use() blocks. This restriction might actually be beneficial,
because the method injection is controlled. Once we leave the block of code,
the methods injected are forgotten from the context and are no longer avail-
able, which might be desirable. In Section 19.11, ExpandoMetaClass and
DSLs, on page 307, we will see how to implement the same syntax using
ExpandoMetaClass.

ExpandoMetaClass and DSLs

Categories apply only within the use blocks, and their effect is fairly limited
in scope. If we want the method injection to be effective throughout our
application, we can use the ExpandoMetaClass instead of categories. Let’s use the
ExpandoMetaClass to implement the DSL syntax we saw in the previous section:

CreatingDSLs/DSLUsingExpandoMetaClass.groovy
Integer.metaClass{
getDays = { ->
delegate
}

getAgo = { ->
def date = Calendar.instance
date.add(Calendar.DAY OF MONTH, -delegate)
date
}
}

Calendar.metaClass.at = { Map time ->
def hour =0
def minute = 0
time.each {key, value ->
hour = key.toInteger()
minute = value.toInteger()

}

delegate.set(Calendar.HOUR_OF DAY, hour)
delegate.set(Calendar.MINUTE, minute)
delegate.set(Calendar.SECOND, 0)
delegate.time

}
println 2.days.ago.at(4:30)

We added the desired methods to the ExpandoMetaClasses of the Integer class and
the Calendar class. The calls to these fluent methods get routed to the methods
we added, as we can see here:

Fri Feb 03 04:30:00 MST 2012

www.it-ebooks.info

http://media.pragprog.com/titles/vslg2/code/CreatingDSLs/DSLUsingExpandoMetaClass.groovy
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Chapter 19. Creating DSLs in Groovy ® 308

The solution to add methods using the ExpandoMetaClass is a lot cleaner than
writing static methods with categories.

We now know that creating an internal DSL in Groovy is fairly easy. The
dynamic nature and optional typing helps us create a fluent interface. Closures
help us create context. Groovy’s categories and ExpandoMetaClass are helpful to
inject, intercept, and synthesize method calls and properties. Finally, Groovy’s
ability to load and execute arbitrary scripts comes in handy for executing the
DSLs.

I hope you enjoyed your journey through the capabilities of this powerful and
dynamic language. I've used Groovy in everything from small scripts in per-
forming automated routine tasks on my systems to scripts that run enterprise
applications. Groovy’s conciseness and ease of integration with Java drew
me in. The productivity gain I realized kept me there. I sincerely hope the
concepts in this book will help you program responsibly and reap the
dynamic productivity of this incredibly powerful language on the Java Virtual
Machine. I wish you all the best!

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

APPENDIX 1

Web Resources

A Bit of Groovy History http://glaforge.free.fr/weblog/index.php?itemid=99
A blog by Guillaume Laforge on Groovy history.

API for FactoryBuilderSupport
......... http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
API for the FactoryBuilderSupport class, which is the new base class for SwingBuilder.

ASTTest Annotation . . http://groovy.codehaus.org/gapi/groovy/transform/ASTTest.html
Groovy annotation for testing and debugging AST transformations.

Clip from Raiders of the Lost Ark . . http://www.youtube.com/watch?v=Epw-LSC3L2U
Swordfight scene from the movie Raiders of the Lost Ark.

CodeNarc. http://codenarc.sourceforge.net
CodeNarc is a Groovy-based static code-analysis tool.

Crash of the Mars Orbiter . . http://www.cnn.com/TECH/space/9909/30/mars.metric.02
CNN coverage of the crash of the Mars Orbiter.

Duck Typing. http://c2.com/cgi/wiki?DuckTyping
What's duck typing?

E Text Editor. http://www.e-texteditor.com
TextMate-like editor for Windows.

easyb. L e http://www.easyb.org

easyb is a automated testing tool with nice fluency for functional and integra-
tion testing.

www.it-ebooks.info

http://glaforge.free.fr/weblog/index.php?itemid=99
http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
http://groovy.codehaus.org/gapi/groovy/transform/ASTTest.html
http://www.youtube.com/watch?v=Epw-LSC3L2U
http://codenarc.sourceforge.net
http://www.cnn.com/TECH/space/9909/30/mars.metric.02
http://c2.com/cgi/wiki?DuckTyping
http://www.e-texteditor.com
http://www.easyb.org
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Appendix 1. Web Resources ® 310

Eclipse Plug-in for Groovy http://groovy.codehaus.org/Eclipse+Plugin
Plug-in for Groovy development on the Eclipse IDE.

FactoryBuilderSupport http://groovy.codehaus.org/FactoryBuilderSupport
Groovy’s FactoryBuilderSupport class, which is the new base class for SwingBuilder.

Gant Home http://gant.codehaus.org
A site for Gant, which is like Ant but uses Groovy instead of XML.

The GDK. http://groovy.codehaus.org/groovy-jdk
List of the methods that are part of the Groovy JDK—Groovy extensions to
the JDK.

Getting Started with Grails. http://www.infog.com/minibooks/grails
Jason Rudolph’s book on working with Grails.

Good, Bad, and Ugly of Java Generics
............. http://www.agiledeveloper.com/articles/GenericsinJavaPartl.pdf
An article discussing the good, the bad, and the ugly of Java Generics.

GPars http://gpars.codehaus.org
GPars is a library that provides a variety of concurrent programming options
a great deal of Groovy fluency.

Gradle e e e e http://gradle.org
Gradle is a lightweight build-management tool to help programmers easily

configure builds with little configuration and no XML.

Grails Home http://grails.org/
Home of the Grails project for documentation and downloads.

Griffon Project L. http://griffon.codehaus.org
Groovy-based framework to build desktop applications.

Groovy APIJavadoc http://groovy.codehaus.org/api
Javadoc for the Groovy API.

Groovy Closures Definition . . http://groovy.codehaus.org/Closures+-+Formal+Definition
Discussions and definition of Groovy closures.

www.it-ebooks.info

http://groovy.codehaus.org/Eclipse+Plugin
http://groovy.codehaus.org/FactoryBuilderSupport
http://gant.codehaus.org
http://groovy.codehaus.org/groovy-jdk
http://www.infoq.com/minibooks/grails
http://www.agiledeveloper.com/articles/GenericsInJavaPartI.pdf
http://gpars.codehaus.org
http://gradle.org
http://grails.org/
http://griffon.codehaus.org
http://groovy.codehaus.org/api
http://groovy.codehaus.org/Closures+-+Formal+Definition
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Appendix 1. Web Resources ® 311

Groovy Collections Support . . http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
Extensions and features Groovy has added to collections.

Groovy Daily Build. http://build.canoo.com/groovy
Place to download current builds of the Groovy project (for those who like to
stay on the bleeding edge).

Groovy Download Page. http://groovy.codehaus.org/Download
Direct link to the Groovy download page for latest released version and previ-
ous versions.

Groovy Home http://groovy.codehaus.org
Home of the Groovy project for documentation and downloads.

Groovy Looping http://groovy.codehaus.org/Looping
Shows different ways to loop in Groovy.

Groovy Mailing Lists. http://groovy.codehaus.org/Mailing+Lists
List and details of Groovy mailing lists.

Groovy Operator Overloading . . . http://groovy.codehaus.org/Operator+Overloading
Groovy operator overloads and their method mapping.

Groovy Scriptom API. http://groovy.codehaus.org/COM+Scripting
Groovy API that allows you to interact with Windows ActiveX and COM.

Groovy String Support . . http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
Extensions and support for Strings in Groovy.

Groovy’s Support for java.math Classes . . http://groovy.codehaus.org/Groovy+Math

Groovy support of java.math classes to provide better accuracy.
............... http://groovy.codehaus.org/groovy-jdk/java/util/Map.html

Extensions and features Groovy has added to Java’s Map.

GVM e e http://gvmtool.net

The Groovy Environment Manager, a tool to manage multiple versions of
Groovy and related tools.

www.it-ebooks.info

http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
http://build.canoo.com/groovy
http://groovy.codehaus.org/Download
http://groovy.codehaus.org
http://groovy.codehaus.org/Looping
http://groovy.codehaus.org/Mailing+Lists
http://groovy.codehaus.org/Operator+Overloading
http://groovy.codehaus.org/COM+Scripting
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://groovy.codehaus.org/Groovy+Math
http://groovy.codehaus.org/groovy-jdk/java/util/Map.html
http://gvmtool.net
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Appendix 1. Web Resources ® 312

Higher-Order Function. http://c2.com/cgi/wiki?HigherOrderFunction
Discussions on higher-order functions.

Intellid IDEA http://www.jetbrains.com/idea
Popular Java IDE with exceptional Groovy support.

Java Download . . http://www.oracle.com/technetwork/java/javase/downloads/index.html
Download page for Java and JDK.

JRubyHome http://jruby.codehaus.org
Home of the JRuby project for documentation and downloads.

Languages and Idioms
. . http://blog.agiledeveloper.com/2007/05/its-not-languages-but-their-idioms-that.html
A blog entry discussing languages and idioms.

Markmail for Groovy Mailing List. http://groovy.markmail.org
Convenient place to search for any topics discussed in the Groovy users
mailing list.

MetaClass and Method Interception.

. . http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html
A blog by Graeme Rocher on Groovy’s metaprogramming capabilities and
open classes.

Mocks Aren’'t Stubs. http://martinfowler.com/articles/mocksArentStubs.html
Martin Fowler discussing the similarities and differences between mocks and
stubs.

No Fluff Just Stuff. http://www.nofluffjuststuff.com
A popular traveling Java conference.

The Official Website for the Book http://pragprog.com/titles/vslg2
Official website for this book, with links to download all the example source

code from this book, file errata, and provide feedback.

The Pragmatic Programmers. http://pragprog.com
Website of the publisher of this book.

www.it-ebooks.info

http://c2.com/cgi/wiki?HigherOrderFunction
http://www.jetbrains.com/idea
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://jruby.codehaus.org
http://blog.agiledeveloper.com/2007/05/its-not-languages-but-their-idioms-that.html
http://groovy.markmail.org
http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html
http://martinfowler.com/articles/mocksArentStubs.html
http://www.nofluffjuststuff.com
http://pragprog.com/titles/vslg2
http://pragprog.com
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Appendix 1. Web Resources ® 313

Runtime vs. Compile Time/Static vs. Dynamic
...... http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic
Discussions and rationale for Groovy’s support of dynamic typing.

Selenium 000, http://seleniumhq.org/download
Automation tool that facilitates testing web applications.

Some Differences Between Java and Groovy
.................. http://groovy.codehaus.org/Differences+from+Java
List and details of some differences between Java and Groovy.

Spock Library. http://spockframework.org
Home of the Spock testing library.

State of IDE Support for Groovy http://groovy.codehaus.org/IDE+Support
Different IDEs that support Groovy development and their current state.

Sun/Java Scripting Project Home https://scripting.dev.java.net
Details about scripting languages and JSR 223: Scripting for the Java Plat-
form.

Technical Debt. http://martinfowler.com/bliki/TechnicalDebt.html
Martin Fowler discussing the term technical debt.

TextMate i e e http://macromates.com
TextMate, a popular editor on the Mac.

TextMate Groovy Bundle http://docs.codehaus.org/display/GROOVY/TextMate
Groovy bundle for TextMate, a popular editor on the Mac.

Treating a Java Methodasa Closure

............ http://www.jroller.com/melix/entry/coding_a_groovy_closure_in
Cédric Champeau shows how to treat a Java method as a closure on the
Groovy side.

Tweaking the Groovy Bundle for TextMate Editor . . . http://tinyurl.com/ywotsj

Venkat’s blog on a tweak to the Groovy bundle for easy/quick display of
output.

www.it-ebooks.info

http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic
http://seleniumhq.org/download
http://groovy.codehaus.org/Differences+from+Java
http://spockframework.org
http://groovy.codehaus.org/IDE+Support
https://scripting.dev.java.net
http://martinfowler.com/bliki/TechnicalDebt.html
http://macromates.com
http://docs.codehaus.org/display/GROOVY/TextMate
http://www.jroller.com/melix/entry/coding_a_groovy_closure_in
http://tinyurl.com/ywotsj
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Appendix 1. Web Resources ® 314

Unit tests that illustrate the build from Spec DSL
. . http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/src/test/org/code-
haus/groovy/ast/builder/AstBuilderFromSpecificationTest.groovy
A series of test cases that illustrate the use of the build from specification
DSL.

Using JUnit 4 with Groovy . . http://groovy.codehaus.org/Using+JUnit+4+with+Groovy
Steps to use JUnit 4.0 with Groovy.

Using Notepad2 http://tinyurl.com/yqgfucf
A blog entry showing how to use Notepad2 to edit and run Groovy on Windows.

Why Copying an Object Is a Terrible ThingtoDo
.............. http://www.agiledeveloper.com/articles/cloning072002.htm
An article that addresses issues with object-copying in Java.

Why Getter and Setter Methods Are Evil
......... http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html
An article by Allen Holub.

Why Scripting Languages Matter. http://www.oreillynet.com/pub/wlg/3190
Tim O’Reilly discussing the nature of applications and the role played by

scripting languages.

Xerces XML Parser. http://xerces.apache.org/xerces-j
Popular Java-based XML parser.

www.it-ebooks.info

http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/src/test/org/codehaus/groovy/ast/builder/AstBuilderFromSpecificationTest.groovy
http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/src/test/org/codehaus/groovy/ast/builder/AstBuilderFromSpecificationTest.groovy
http://groovy.codehaus.org/Using+JUnit+4+with+Groovy
http://tinyurl.com/yqfucf
http://www.agiledeveloper.com/articles/cloning072002.htm
http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html
http://www.oreillynet.com/pub/wlg/3190
http://xerces.apache.org/xerces-j
http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

[AS96]

[Bec02]

[Bec96]

[Blo08]

[ES90]

[Eck06]

[Fri97]

[GHJV95]

[Gra07]

[Knu97]

[Lad03]

[Mey97]

APPENDIX 2

Bibliography

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA, 2nd, 1996.

Kent Beck. Test Driven Development: By Example. Addison-Wesley, Reading,
MA, 2002.

Kent Beck. Smalltalic Best Practice Patterns. Prentice Hall, Englewood Cliffs,
NJ, 1996.

Joshua Bloch. Effective Java. Addison-Wesley, Reading, MA, 2008.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley Longman, Reading, MA, 1990.

Bruce Eckel. Thinking in Java. Prentice Hall, Englewood Cliffs, NJ, Fourth,
2006.

Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates,
Inc., Sebastopol, CA, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

James Edward Gray II. TextMate: Power Editing for the Mac. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2007.

Donald Ervin Knuth. The Art of Computer Programming: Fundamental
Algorithms. Addison-Wesley Longman, Reading, MA, Third, 1997.

Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, 2003.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ, Second, 1997.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

Appendix 2. Bibliography ® 316
[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2007.

[RaiO4] J. B. Rainsberger. JUnit Recipes: Practical Methods for Programmer Testing.
Manning Publications Co., Greenwich, CT, 2004.

[Seb04] Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley,
Reading, MA, 2004.

[THO3] David Thomas and Andrew Hunt. Pragmatic Unit Testing In Java with JUnit.
The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2003.

www.it-ebooks.info

http://pragprog.com/titles/vslg2/errata/add
http://forums.pragprog.com/forums/vslg2
http://www.it-ebooks.info/

SYMBOLS

$ character
escaping, 99
variables, 13
+ operator, 103, 134
++ operator, 32, 134
- operator, 116
-= operator, 106
-> symbol, 78
. character
GPath notation, 145
invoking methods dynam-
ically, 182
listing methods in
groovysh, 6
XML builders, 256
/I expression, 98
: character, implementing in-
terfaces, 28
; character
multiple lines in groovysh,
6
optional, 18, 51
removing, 12
<< operator
injection, 201
iterating over ArrayList, 113
operator overloading, 32
piping into a process, 134
= operator, 201
== operator, 46-47
==~ operator, 107
=~ operator, 107
?. safe-navigation operator,
16, 18

@ character, parsing XML,
144

[] operator
accessing properties indi-
rectly, 131
invoking properties dy-
namically, 182
List elements, 110
reading characters, 98
\ character
escaping with, 99
regular expressions, 107
{->} syntax, 86, 102
{} in expressions, 99
~ operator, 106

A
abstract syntax tree, see AST
AbstractFactory, 267
access() method, initializing
JavaBeans, 23
ActionListener, implementing in-
terfaces example, 26
add() method, 156
addMethod() method, 249
advice, method, 185, 187, see
also interception
after advice, 185, 187
algorithms
coroutines, 81
memoization, 92-96

aliases, static import, 38

The Annotated C++ Reference
Manual, 55
annotations
AST, 250
compile-time metapro-
gramming, 235

www.it-ebooks.info

Index

converting instance
methods to static
methods, 195

delegation, 41, 231

Java, 37, 40-46

local transformations,
247-250

mixins, 206

static compilation, 69

static type-checking, 66—
69

support for Java 5, 37

transformations, 40-46

anonymous code blocks,
see closures

anonymous inner classes
conflict in closures, 49—
50
disadvantages, 71
anonymous interfaces, imple-
menting, 26-30
anonymous methods,
see closures
Ant, 295, 298
ANTLR, 298
any() method, 122
AOP (aspect-oriented program-
ming), 185, 246
append() method, multiline
strings, 103
ArgumentListExpression, 243
arguments
deferring type verifica-
tion, 53
initializing JavaBeans, 22
varargs, 36
around advice, 185, 187
ArrayList
collections, 109-113

http://www.it-ebooks.info/

database iteration, 154
iterating over, 111-113
spread operator, 117

arrays
cautions, 51
extensions, 133
multiple assignments, 25
varargs, 36

The Art of Computer Program-
ming: Fundamental Algo-
rithms, 80

as operator

array creation, 52

implementing interfaces,
27-28

static import, 38

varargs, 37

asBoolean() method, 31

asimmutable() method, 138

asSynchronized() method, 138

asType() method, 28

aspect-oriented programming
(AOP), 185, 246

AspectJ in Action, 185

assert methods and JUnit
testing, 274

assignments, DSLs and com-
mand-chain fluency, 300

AST

builders, 244-246

compile-time metapro-
gramming, 235-250

method injection, 246—
250

method interception,
241-246

navigating code struc-
ture, 237-241

resources, 309

type checker as, 235

viewing, 236, 238, 243

ASTBuilder, 244-246, 248

ASTNode, 238

@ASTTest annotation, 250

ASTTransformation interface
method interception, 242
navigating code struc-

ture, 237-241

attributes, parsing XML, 144
audit() method, 242-244

authors and languages exam-
ples
any() method, 122
creating XML, 148-150

iterating over Map, 120-
122
multiline strings, 104
parsing XML, 144-148
using Map, 118-119
XML builders, 253-256
autoboxing, 34, 201

automating unit testing, 272-
273

B

backslashes
escaping with, 99
regular expressions, 107
banking examples of intercep-
tion with AST transforma-
tions, 241-246
Beck, Kent, 80
before advice, 185, 187
Binding, 168, 171
binding
in GString expressions, 101
parameters in curried
closures, 82-84
in scripts, 168, 171
blocks, lack of code, 49
Boolean evaluation, 30-31,
107, 182

BufferedReader, 137-138

buildFfromCode() method, 244,
246, 248

buildFromSpec() method, 244

buildFromString() method, 244-
245
builders
about, 253
AST nodes, 244-246
BuilderSupport, 262-265
custom, 260-270
designing DSLs, 299
as DSLs, 270, 297
FactoryBuilderSupport, 266—
270
JSON, 256-258
metaprogramming, 260-
262
MOP, 175
Swing, 258-260
transforming data to
XML, 154
XML, 253-256

BuilderSupport, 262-270

www.it-ebooks.info

Index * 318

buttons
implementing interfaces
example, 26-30
Swing builder example,
258

bytecode
compiling to, 160
Java, 48
primitives, 34
static compilation, 66, 69

C

C/C++, as statically typed
language, 55-56
caching
closures, 76, 95
memoization, 95
nonexistent methods and
method synthesis,
215, 218, 221
calculator simulator example
of closures, 76

calendar examples
injection with ExpandoMeta-
Class, 199, 201
interception and DSLs,
305-307
method injection and
DSLs, 307
call() method, 154, 163
@Canonical transformation, 40

car examples
accessing properties indi-
rectly, 131
cloning and type-check-
ing, 53
dynamic classes with Ex-
pando, 225-227
intercepting methods
with MOP, 186, 188-
190
JavaBeans, 19-23
unit testing with JUnit,
275
using Groovy classes
from Groovy, 161
cartoon characters example
of multiple assignments, 26
case statements in enum val-
ues, 36
casting, see also type-check-
ing
autoboxing and unbox-
ing, 34
type definitions, 47
cat example of injection with
mixins, 208

http://www.it-ebooks.info/

catch block, exceptions, 17
catch(Throwable throwable), 18
catch(ex), 18
categories
built-in, 196
DSLs and, 305-307
injection with, 193-198,
232, 307
interception, 197, 231,
305-307
mocking using, 283-284
when to use, 198
@Category annotation, 195
chaining
DSLs and command-
chain fluency, 299
methods with mixins,
208-213
with this, 18
Champeau, Cédric, 165, 313
characters
counting example, 115
literals and regular ex-
pressions, 97-98

check() method, 186

child elements, XML parsing,
144

Class objects, referring to, 18

class property, cautions, 22,
118

class synthesis with Expando,
225-227

classes

conflict in closures, 49—
50

decorating with multiple
mixins, 208-213

default import, 12, 166

designing DSLs, 299

dynamic typing, 58

extending, xx

Groovy classes from
Groovy, 159, 161

Java classes as Groovy,
XX

Java classes from Groovy,
159, 166

method synthesis, 215

mixing Java and Groovy,
159, 162, 166

mocking by overriding,
281

mocking using Expando,
285-288

operator overloading, 32

public as default, 18
synthesis with Expando,
225-227

classpath, 159-160, 166
ClassWithHeavierDependencies, 284
clone() method, 53

Cloneable interface, 53

cloning
closure delegation, 88
type-checking, 53
close() method
databases, 152
mocking using MockFor,
290, 292
mocking using StubFor,
290
resource cleanup, 78-80

closures

anonymous inner classes
conflict, 49-50

benefits, 72, 75

caching, 76, 95

collect() method, 113

context with() method, 129

coroutines, 75, 80

creating, 73-74

curried, 82-84

custom builders, 262

defined, 71, 73-74

delegation, 86-89, 129,
301

detecting, 84

DSLs, 75, 254, 299, 301-
302

dynamic, 84-86

EAM pattern, 248

encapsulating in a func-
tion, 91

exception testing, 277

extending with, xxi

File class extensions, 136

GString expressions, 102

inject() method, 116

injection, 196, 199

internal iterators, 112

interruptions, 130

it variable, 49, 74, 77

Map, 118-120, 122

memoization, 92-96

metaprogramming, 78

parameter names, 13

without parameters, 86,
102

passing Groovy closures
from Java, 163-165

passing parameters, 77,
84, 90

www.it-ebooks.info

Index * 319

programming with tail
recursion, 89-92

resource cleanup, 75, 78—
80, 138, 248

resources, 313

reusing, 77

saving to a variable, 77,
200

static type-checking, 68

thread extensions, 135

timer, 138

using, 75-77

when to use, 75

code analysis

AST structure, 236

compile-time, 236-241

navigating code struc-
ture, 237-241

code blocks, lack of, 49

code blocks, anonymous,
see closures

code generation
dynamic languages, xvii
transformations, 40-46
code synthesis, dynamic lan-
guages, xvii
CodeNarc, 235, 241, 309
CodeWithHeavierDependencies, 280

CodeWithHeavierDependenciesExt,
281

coffee-size example of enum,
35

collaborators
defined, 278
mocking using ExpandoMeta-
Class, 284
mocking using StubFor and
MockFor, 289

collect() method, 113, 115, 121

Collections
Boolean expression, 31
closure examples, 77
listing convenience meth-
ods, 115
collections
ArrayList, 109-113
concatenating, 116
convenience methods,
115-117, 122-123
finder methods, 113, 121
Groovy benefits, 109
iterating over ArrayList,
111-113
Map, 118-123
operator overloading, 32
resources, 311

http://www.it-ebooks.info/

colons, implementing inter-
faces, 28
command-chain fluency, 299

command-line
groovysh, 5, 9
listing shell commands,
6
parameters to a process,
135
passing arguments to
scripts, 169
running Groovy from, 7
tools, 5, 9
comments, XML builders, 255
comparing objects, cautions,
46-47
Compilable interface, 171
compilation, see also compile-
time; joint-compilation
explicit, 167
static options, 53, 69
compile time
static type-checking, 69
type-checking, 53
compile-time
code analysis, 236-241
injection using AST
transformations, 246—
250
interception using AST
transformations, 241-
246
metaprogramming, 235-
250
type-checking, 47-49
@CompileStatic annotation, 69

complex numbers example of
overloading operators, 33

Composite pattern, 128, 139

computation time, measuring,
92

computeOrder() method, parame-
ters in dynamic closures,
85
concatenating
ArrayList elements, xxi
collections, 116
Concepts of Programming
Languages, 71
conformance and dynamic
typing, 60
constructors

enum, 36
injection, 198, 201-203

optional parameters, 24
transformations, 44, 46
containers, event handlers,
258
context
DSLs, 254, 295, 301
with() method, 129
convenience methods
BuilderSupport, 262
collections, 115-117,
122-123
DOM API, 144
extending with GDK, xxi,
14-16
FactoryBuilderSupport, 269
GSQL, 151
Map, 120, 122-123
Process class, 134
resource cleanup with
closures, 79
String class, 105
tail-recursion program-
ming, 91
conversions
Boolean, 31
instance methods to stat-
ic methods, 195
coroutines and closures, 75,
80
coupling, 277
cow examples
of lazy evaluation, 100-
101
string literals and expres-
sions, 99
create() method, 209
createNode() method, 263
credit card examples of
transformations, 42, 44
curried closures, 82-84
curry() method, 82-84
Curry, Haskell B., 83
custom builders
with BuilderSupport, 262-
265
with FactoryBuilderSupport,
266-270
with metaprogramming,
260-262
custom extensions, static
type-checking, 68
custom methods, from exten-
sion modules, 139-141

www.it-ebooks.info

Index * 320

D

-d option, 160
daemon threads, 135
dataSet() method, 155

databases

connecting, 152

convenience methods,
151

dataSet() method, 155

Excel, 150, 156

inserting and updating,
156

optional typing, 61

select, 153-154

setting up, 151

specifying type, 65

transforming data to
XML, 154

XML, 150, 254

DatalnputStream, 138
DataSet, 155-156

decorating classes with multi-
ple mixins, 208-213
Decorator pattern, 213
decoupling in unit testing,
278
def keyword
cautions, 49
JavaBean properties, 20
specifying types in for-
each loops, 35
default imports, 12, 166
DefaultGroovyMethods class, 68

The Definitive ANTLR Refer-
ence: Building Domain-Spe-
cific Languages, 298

delegate property

closures, 86-89

custom builders, 262

DSLs, 301

injection with ExpandoMeta-
Class, 199

interception, 189

with() method, 129

@Delegate transformation, 41,
231

delegate.getClass(), 211

delegateCallsTo() method, 229

delegation

closures, 86-89, 129, 301

DSLs, 301

vs. inheritance, 225, 227

intercepting methods
with MetaClass, 189, 192

http://www.it-ebooks.info/

MOP, 227-231
transformations, 41

dependencies
mocking by overriding,
280-283
mocking using Expando,
286, 288
mocking using Map, 288
mocking using StubFor and
MockFor, 289
design
by capability and dynam-
ic typing, 56-61
internal DSLs, 298
Design Patterns: Elements of
Reusable Object-Oriented
Software, 76, 128, 266
destroy() method, resource
cleanup, 78
dir command, listing directo-
ries with, 16
directories
compile option, 160
listing, 16
dog example of injection with
mixins, 207
domain classes, method syn-
thesis, 216
domain-specific languages,
see DSLs
DOMCategory
about, 196
parsing XML, 144-146

dot notation
GPath, 145
invoking methods dynam-
ically, 182
XML builders, 256

DSLs, see also builders

about, 295

categories and, 305-307

closures, 75, 254, 301-
302

context, 254, 295, 301

designing, 298

ExpandoMetaClass, 202, 205

external vs. internal, 298

fluency, 297, 299, 301

Groovy support, 299

interception, 305-307

method injection, 198,
202, 307

method interception, 302

MOP, 175, 302

@Newify transformation,
44

parentheses, 299, 303
reusable scripts, 169
syntax, 245, 257, 270,
295, 298, 306
DSN, accessing Excel, 157
duck typing, 58, 65, 309
dump() method, 128
duplication, removing with
curried closures, 82

dynamic classes with Expando,
225-227
dynamic closures, 84-86
dynamic languages
advantages, xv-xix
code synthesis, xvii
designing DSLs, 298
Groovy as, xx, 56
metaprogramming, Xix
unit testing, xviii
dynamic lists, implementing
interfaces, 28
dynamic methods, see al-
so MOP
calling from Java, 165
invoking when static
type-checking, 68
dynamic programming and
memoization, 92-96
dynamic routing, 87
dynamic typing, see also dy-
namic languages
about, 53
benefits, 53-54
design by capability, 56—
61
designing DSLs, 299
discipline, 59
duck typing, 58
Generics, 38-40
mocking, 65, 286
multimethods, 53, 62-65
optional typing, 61
performance, 65, 69
strong vs. weak, 55
switching off, 65-70
when to use, 65
XMLParser, 146

dynamically accessing ob-
jects, 182

dynamically typed languages
strong vs. weak, 55
unit testing, xviii, 271
DynamicGroovyClass, 166

www.it-ebooks.info

Index ® 321

E
-e, for groovy, 7
E Text Editor, 8, 309

each() method

character-counting exam-
ple, 115

DataSet, 155

iterating over ArrayList,
111-118

iterating over Map, 120-
122

eachLine() method, 137
eachRow() method, 153
eachWithindex() method, 112

EAM pattern, see Execute
Around Method pattern

easyb, 309
EasyMock, 279, 297
Eclipse, 8, 310
editors, text, 8, 313
ellipsis in varargs, 36
Ellis, Margaret A., 55
embedded DSLs, 298
embedding scripts, 171
EMC DSL, 202, 205
enum, 35-36
equals() method, cautions, 46—
47
err property, 134
escape characters
multiline strings, 103
string literals and expres-
sions, 99
using Map, 119
eval() method, 170
evaluate() method, 168

evaluation, lazy, see lazy
evaluation
even-number examples
closures, 72-75
injection with ExpandoClass,
200
event handlers
implementing interfaces
example, 26-30
Swing builders, 258-260
events, implementing inter-
faces, 29

every() method, 122
examiningClosure() method, 87

http://www.it-ebooks.info/

Excel
accessing, 156
creating XML documents,
150

Exception class, catching, 18
exception testing, 274, 277,
308, see also unit testing
exceptions
Execute Around Method
pattern, 80
Java, 17
unit testing, 274, 277
Execute Around Method pat-
tern, 79-80, 247-250

execute() method
extending methods with,
15
sending command-line
parameters to a pro-
cess, 135
SQL, 156
executelnsert() method, 156

Expando
class synthesis, 225-227
mocking using, 285-288
ExpandoMetaClass
DSLs, 307
injection into specific in-
stances, 203-206
injection review, 232
injection with, 198-213,
307
injection with mixins,
206-213
interception, 191-192,
231
method delegation, 228-
231
method synthesis, 220-
222, 232
mocking using, 284
explicit compilation, 167
extends keyword, 227
extensionClasses, 141

extensions, see also injection
custom, 68, 139-141
ease of, xx
object, 128-133
other GDK, xxi, 14-16,
133-138
static type-checking, 68
external DSLs, 298
external iterators, 112

extractOnly() method, 196

F

factorial example of tail-recur-
sion programming, 89-91
Factory interface, 267
FactoryBuilderSupport, 266-270,
309
fail() method, exception test-
ing, 277
FAIR testing principles, 273
false, Boolean expressions, 30
File class
extensions, 136
mocking using Expando,
285-288
mocking using StubFor,
289
FileReader, parsing JSON, 258
filterLine() method, 137
filtering
chaining methods with
mixins, 209-213
databases, 155-156
intercepting methods
with MOP, 186
lines, 137
final, read-only properties, 20
find() method
collections, 113
Map, 121
method interception with
AST transformations,
242
findAll() method, 114, 121, 155
findindexOf() method, 114
finder methods
collections, 113, 121
Map, 121
method synthesis, 215
firstRow() method, 154
flatten() method, 116
fluency
AST, 245
command chain, 299
DSLs, 297, 299, 301
injection with ExpandoMeta-
Class, 199
flush() method, 292
for-each loop, 34
Ford, Neal, 64
fortune-teller examples
binding parameters in
curried closures, 82-84
passing parameters, 77
Fowler, Martin, 278, 295, 313

www.it-ebooks.info

Index ® 322

frameworks
dynamic languages, xviii
Java annotations sup-
port, 37
metaprogramming, 250
method synthesis, 220
Frege, Gottlob, 83
Friedl, Jeffrey, 106
friend example of injection
with mixins, 206-208
functional programming
advantages, xv
lambda expressions, 71
functions
vs. closures, 75
coroutines, 80
curried closures, 83
encapsulating closures,
91
higher order, 73, 312

G
Gant, 295, 298, 310

garbage collection, 78, see al-
so resource cleanup

GDK

custom methods, 139-
141

extending methods with,
xxi, 14-16

java.lang extensions, 14—
16, 134

object extensions, 128-
133

other extensions, 133-
138

relationship to JDK, 127
resources, 310

Generics, 38-40, 64, 310
get() method, 171, 201

getAt() method, 131

getClass() method, 22, 118
getCurrentNode() method, 269
getEncoding() method, 292
getEngineByName() method, 170

getMaximumNumberOfParameters()
method, 85

getMetaClass() method, 133, 177

getMetaMethod() method, 180,
187

getMetaProperty() method, 180
getParameterTypes() method, 85
getParentNode() method, 269
getPrice() method, 140

http://www.it-ebooks.info/

getProperties() method, 132, 183
getProperty() method, 177

getStaticMetaProperty() method,
180

getStaticMethod() method, 180
getText() method, 15

global transformations, 240,
242, 247

gmock, 293

Google stock example of
GString, 101-103
GORM
fluency, 297
method synthesis, 215-
216
MOP, 175
optional typing, 61
specifying type, 65
GPars, 310
GPath, 144-147, 196
Gradle, 310
Grails
about, xvi
dynamic capabilities, xviii
fluency, 297
interception, 190
metaprogramming, xvi
method synthesis, 215—
216
MOP, 175
optional typing, 61
resources, 310
Griffon, 259, 310

Groovy
advantages, xix-xxi
bytecode, 160
defined, xvi
as dynamically typed
language, xx, 56
gotchas, 46-52
history, xv
IDEs, 8-9
installing, 3-5
Java features, 18
mixing with Java, 159,
162, 166
resources, xviii, xxvi, 52,
311-312
versions, xvi, 3, 5
groovy, using, 7
groovy Greet, 160
groovyConsole
AST display, 237, 243
using, 6
GroovyASTTransformation, 238

GroovyASTTransformationClass, 247
groovyc
annotations, 38
bytecode, 160
Java classes, 162
joint compilation, 160,
164
precompiling scripts, 244
type-checking, 47, 61
GroovyClassVisitor, 238
Groovylnterceptable interface
defined, 177
interception, 185-187,
231
method synthesis, 215,
219
GroovyObject interface, 165, 176
GroovyScriptEngine, 171
groovysh
using, 5
when to choose, 9
GroovyShell, 159, 167
GroovyTestCase, 272-276
groupBy() method, 123
GSQL, 151-156
GString
creating, 99
creating XML documents,
148
lazy evaluation, 100-103
GVM
managing versions with,
5
resources, 311

H

handler variable, implementing
interfaces, 29

HandTossedFileMock, 286
hasProperty() method, 180

hashmaps, JSON builders
and parsers, 257

headers, database, 153
help, groovysh, 6
helper examples
dynamic typing, 57-59
static typing, 56-57
heredocs, 103, 246

higher-order functions, 73,
312

Holub, Allen, 314

www.it-ebooks.info

Index ® 323

I

[I, array creation, 52
identify() method, 129
IDEs, 8-9
idioms, 259, 312
if statement, Boolean expres-
sions, 30
immutability
in GString expressions, 101
List, 138
strings, 98
transformations, 42
@Immutable transformation, 42
import, static, 38
importing
classes, 166
default packages and
classes, 12, 166
in keyword
cautions, 49
specifying types in for-
each loops, 35
in property, 134
index operator, see [] operator
inheritance
vs. delegation, 225, 227
polymorphism, 54
@InheritConstructors transforma-
tion, 46
initializing
during unit testing with
JUnit, 276
event handlers, 258
instances and semicolon,
51
JavaBeans with named
parameters, 18, 22
lazy, 43, 45
method delegation, 229
mixins, 206
transformations, 45

inject() method, 115, 138

injection, see also method
synthesis

about, 193

with AST transforma-
tions, 246-250

with categories, 193-
198, 232, 307

closures, 116

defined, 215

with ExpandoMetaClass, 198—
203, 232, 307

with mixins, 206-213

http://www.it-ebooks.info/

proxies, 177
specific instances, 203-
206, 232
InputStream, 137-138
inserting, databases, 156
inspect() method, 128
inspecting, code at compile-
time, 236-241
installing Groovy, 3-5
instance initializer
method delegation, 229
semicolon, 51
instance methods
converting to static
methods, 195
example of custom meth-
ods, 139-141

instanceOf, static type-checking,
68
instances
ASTNode, 238
immutable, 138
injection into specific,
203-206, 232
JSON builders, 257
method synthesis and
specific, 215, 222, 233
mocking, 284
int(], array creation, 52
IntelliJ IDEA, 8, 312

Intercept, Cache, Invoke pat-
tern, 215, 218
interception
with AST transforma-
tions, 241-246
categories, 197, 231,
305-307
DSLs, 302, 305-307
with MetaClass, 188-192
method synthesis, 215
with MOP, 185-192,
197, 231
proxies, 177
resources, 312
interceptors, 176-177

interfaces
-based programming vs.
design by capability, 56
implementing, 26-30
injection with mixins,
206-213
internal DSLs
designing, 298-299
vs. external, 298
internal iterators, 111-112

interruptions, ignoring, 130
Invocable class, 171
invokeFunction() method, 171
invokeMethod() method
indirect, 132
interception, 232
Java, 165
method synthesis, 215,
219
vs. methodMissing(), 223
MOP, 177, 182, 185-192
scripts, 171
static type-checking, 68
invokeMissingMethod() method,
189
invokeOnPreviousMixin() method,
210
is() method and == operator,
46-47
isLeaf() method, 268-269
isolation, unit testing, 273,
276, 284
it variable
cautions, 49
closures, 74, 77
GString, 102
implementing interfaces,
27
looping with, 13
passing parameters to
closures, 77
iterating
ArrayList, 111-113
databases, 153-154
enum, 36
internal vs. external, 112
loops, 13
over Map, 120-122
over properties, 183
over streams, 138
XML parsing, 146
iterator() method, 138

J
-j compilation flag, 162

-) prefix, 162

Jack examples
method synthesis of spe-
cific instances, 223
method synthesis with
ExpandoMetaClass, 220-
222
method synthesis with
methodMissing(), 216-220
Java
== operator, 46-47

www.it-ebooks.info

Index * 324

about, xv

advantages of Groovy,
Xix—xxi

annotations, 37, 40-46

ArrayList, 109-111

arrays, 51

autoboxing, 34

Boolean evaluation, 30—
31

classes from Groovy,
159, 162, 166

classes in Groovy, xx

compiling to bytecode
from Groovy, 160

coroutines, 81

creating XML, 148

default imports, 12, 166

dynamic methods from,
165

embedding in Java server
applications, 171

enum, 35-36

exception handling, 17

extending with GDK, 14-
16

fluency, 297

for-each, 34

garbage collection, 78

Generics, 38-40, 64, 310

Groovy features, 18

Groovy gotchas, 46-52

Groovy scripts, 169-172

interfaces, 26-30

Java 7, 69

java.io extensions, 136-
138

java.lang extensions, 14—
16, 134-136

java.util extensions, 138

Javab support, 33-40

JavaBeans, 18-23, 257

loop example, 11-14

method as a closure, 165

mixing with Groovy, 159,
162, 166

mocking by overriding,
281

mocking frameworks, 279

multiline strings, 103

multiple assignments, 25

operator overloading, 31—
33

optional parameters, 24

optional typing, 61

passing Groovy closures
from, 163-165

polymorphism, 62

resources, 310, 312-313

http://www.it-ebooks.info/

safe-navigation operator,
16
static import, 38
as statically typed lan-
guage, 55
strings, 97-98
transformations, 40-46
type confusion, 64
type-checking, 53
unit testing, 272-276
varargs, 36
java command, 160
Java Development Kit (JDK)
about, xv
extension by Groovy, xix,
xxi, 14-16
relationship to GDK, 127
versions, 3
Java Virtual Machine (JVM)
about, xv
languages, xix
java.io extensions, 136-138
java.lang extensions, 14-16,
134-136
java.math, 311
java.util extensions, 138
Javab, 33-40
JavaBeans
initializing with named
parameters, 18, 22
JSON builders, 257
using, 19-23
javac, 162
JavaScript, 56
JavaScript Object Notation,
see JSON
JButton, implementing inter-
faces example, 26
JDBC, 151-156
JDBC-ODBC driver bridge,
157
JDK, see Java Development
Kit (JDK)
JFrame, Swing builder example,
258
JMock, 279
join() method, xxi, 116
joint compilation
mixing Java and Groovy
classes, 159, 162
passing closures, 164
jointcompilation, scripts, 172
JRuby, resources, 312
JSON, builders, 256-258

JsonSlurper, 257
JSR 223
resources, 313
ScriptEngine API, 159
using Groovy scripts from
Java, 169-172
JUnit, see also unit testing
assert methods, 274
exception testing, 277
optional typing, 61
resources, 314
specifying type, 65
using, 272-277
JUnit Recipes: Practical Meth-
ods for Programmer Testing,
271
JVM, see Java Virtual Ma-
chine (JVM)

K
key-value pairs
custom methods with ex-
tension modules, 141
JSON, 257-258
using Map, 118, 120, 288
keywords, cautions, 49
Knuth, Donald E., 80

L
Laddad, Ramnivas, 185
Laforge, Guillaume, xvi

lambda expressions, closures,
71
Landin, Peter J., 71
languages, see also authors
and languages examples;
DSLs; dynamic languages;
Java
for JVM, xix
resources, 312
scripting, 314
lazy evaluation
GString, 100-103
string literals and expres-
sions, 99
XMLSlurper, 148
lazy initialization, transforma-
tions, 43, 45
@Lazy transformation, 43
leaf nodes, determining, 267
learn() method, chaining calls,
18
legacy code, parsing XML,
143
level variable, BuilderSupport, 264

www.it-ebooks.info

Index ® 325

libraries
GPars, 310
method synthesis, 220
mock libraries, 289-293
lines
filtering by, 137
multiple in groovysh, 6
reading by, 137
LinkedHashSet, 211
List
collections, 109-111
convenience methods,
115-117
immutable instance, 138
iterating, 111-113
thread safety, 138
listener example of injection
with mixins, 206-208
listing
collections, 109-111
convenience methods on
Collections, 115
directories, 16
iterating over an ArrayList,
111-113
overloaded methods, 180
shell commands, 6
lists
JSON builders, 257
reverse() method, 117
literals, 97-100, 103
local transformations, injec-
tion with AST, 247-250
log function example of option-
al parameters, 24
for loop, Groovy from, 12
loops
fluency and DSLs, 297
with for-each, 34
resources, 311
simple from Java to
Groovy, 11-14
Is, listing directories with, 16
Ludwig, Friedrich, 83

M
mailing list, Groovy, xviii
main() method, running Groovy
on the command line, 7
manager/worker examples,
see Worker/Manager exam-
ples
Map
convenience methods,
120, 122-123

http://www.it-ebooks.info/

initializing JavaBeans, 22
iterating over, 120-122
mocking using, 288
parameters as methods,
306
resources, 311
using, 118-119
MapEntry, 121
maps, XML builders, 254
Markmail, 312
MarkupBuilder, 149, 254-256
Mars orbiter, 60, 309
Mastering Regular Expres-
sions, 106
Matcher object, 107
matching, patterns, 97, 106
math examples
calculator simulator, 76
closures, 72-74
iterating over ArrayList, 112
random math, 38
maximumNumberOfParameters
property, 85
McWhirter, Bob, xvi
meeting example of multiline
strings, 103
memoization, 92-96
memoize() method, 94-96
memoizeAtLeast() method, 95

memoizeAtLeastBetween() method,
95
memoizeAtMost() method, 95
memory, see also perfor-
mance
JSON builders, 257
memoization, 95
XML parsing, 146, 148
Merry Groovy example, 11, 14
MetaClass
changing an object’s, 177
ExpandoMetaClass and, 191-
192
injection into specific in-
stances, 203-206
injection with ExpandoMeta-
Class, 198-203
injection with categories,
193-198
intercepting methods
with MOP, 188-192
invoking methods indi-
rectly, 133
resources, 312

MetaClassRegistry, 177

MetaMethod, 185

metaobject protocol (MOP),
see MOP
MetaObjectProtocol, 180
metaprogramming, see al-
so MOP
advantages, xv
closures, 78
code analysis, 236-241
compile-time, 235-250
custom builders, 260—
262
defined, 175
designing DSLs, 299
dynamic languages, xix
dynamic methods from
Java, 165
Grails, xvi
injection using AST
transformations, 246-
250
interception using AST
transformations, 241-
246
Object, 139
resources, 312
XMLParser, 146
method delegation, see al-
so delegation
closures, 86-89
MOP, 227-231
method order
decorating classes with
multiple mixins, 208
213
mocking using MockFor,
292
multiple categories, 197
method synthesis
defined, 215
dynamic, 187
with ExpandoMetaClass, 220-
222, 232
with GroovyInterceptable,
215, 219
with methodMissing(), 216—
220, 232
for specific instances,
215, 222, 233
method-dispatching, 86
methodCall block, 245

methodMissing() method
about, 165
custom builders, 260-
262
interception, 190
vs. invokeMethod(), 223

www.it-ebooks.info

Index ® 326

method delegation, 228-
231

method interception and
DSLs, 302

method synthesis, 215-
220, 232

POGOs, 178

MethodCallExpression, 243, 245

methods, see also closures;
injection; inspection;
method order; method syn-
thesis; MOP; multimethods;
nonexistent methods
assert methods in JUnit
testing, 274
calling dynamic from Ja-
va, 165
class synthesis, 226
custom methods, 139-
141
delegation, 86-89, 227-
231
dispatching, 86
dynamic typing, 59
enum, 36
Execute Around pattern,
79-80, 247-250
extending, xxi, 14-16
implementing interfaces,
27, 29
invoking indirectly, 132
listing in groovysh, 6
names and compile-time
code analysis, 236
operator overloading, 31—
33
optional parameters, 24
overloaded, 64, 180
overriding, 280-283
parameters as, 306
public as default, 18
querying, 180
specifying type, 65
static import, 38
static type-checking, 66—
69
type-checking, 48, 66-69
unit testing with optional
typing, 61
varargs, 36
Meyer, Bertrand, 56

Microsoft Excel
accessing, 156
creating XML documents,
150
minus() method, 106, 116

mixedin property, 210

http://www.it-ebooks.info/

@Mixin annotation, 206
mixin() method, 207, 210
mixins, injection, 206-213
mkp property, 256
MockFor, 289-293
MockHelper, 284
mocking
with categories, 283-284
diagram, 279
with Expando, 285-288
with ExpandoMetaClass, 284
fluency, 297
Java frameworks, 279
with Map, 288
with mock libraries, 289-
293
with MockFor, 290-293
need for, 279
with overriding, 280-283
with StubFor, 289-290
Mockito, 279

mocks
dynamic typing, 65
vs. stubs, 278, 312
"Mocks Aren’t Stubs", 278,
312

moduleName, 141
moduleVersion, 141

MOP, see also metaprogram-
ming

accessing objects dynam-
ically, 182

benefits, 175

class synthesis with Ex-
pando, 225-227

DSLs, 175, 302

injection into specific in-
stances, 203-206, 232

injection with ExpandoMeta-
Class, 198-203, 232

injection with categories,

193-198

injection with mixins,
206-213

interception, 185-192,
197, 231-232

method delegation, 227-
231

method synthesis for
specific instances,
215, 222, 233

method synthesis review,
232

method synthesis with
ExpandoMetaClass, 220-
222, 232

method synthesis with
methodMissing(), 216-220
querying methods and
properties, 180
review, 231
understanding Groovy
objects, 176-180
mouse implementing inter-
faces example, 27
moving examples
dynamic typing, 57-59
static typing, 56-57
multiline strings, 103-105,
148
multimethods
context with() method, 130
dynamic typing, 53, 62—
65
injecting into specific in-
stances, 205
multiple assignments, 25,
300
multiple categories, 197
multiple constructors, trans-
formations, 46
multiple dispatch, see multi-
methods
multiple interfaces, injection
with mixins, 206-213
multiple lines, in groovysh, 6
multiple mixins, injection
with, 208-213
multiple parameters, passing
to closures, 77
multiply() method, 106
multithreading and corou-
tines, 81
myMethod() method
mocking by overriding,
280-283
mocking using ExpandoMeta-
Class, 285
MySQL, 151-156

N
name property, XML parsing,
144
names examples
groupBy() method, 123
multiple assignments, 25
namespaces, XML, 147, 255
naming
accessing properties indi-
rectly, 131

www.it-ebooks.info

Index ® 327

compile-time code analy-
sis, 236

conventions and dynamic
typing, 60

invoking methods dynam-
ically, 181

invoking methods indi-
rectly, 133

method synthesis, 216

parameters, 13, 65

variables in closures, 73

navigating code structure,
237-241

ncurry() method, 83
negate() method, 106
negative index values, 110
negative tests, 274, 276
nesting
BuilderSupport, 264
calls and categories, 197
custom builders with
metaprogramming, 261

newConnection() method, con-
necting to databases, 152
newlInstance() method
accessing Excel, 157
connecting to databases,
152
FactoryBuilderSupport, 268
newReader() method, 138
@Newify transformation, 44

next() method, operator over-
loading, 32, 106

nodeCompleted() method, 263

nodes, see also AST
BuilderSupport, 263
FactoryBuilderSupport, 266—
270
nonexistent methods
calling dynamic methods
from Java, 165
custom builders, 262
interception, 177, 190
method synthesis, 215-
217, 221
type-checking, 48
nonexistent properties
method synthesis, 216
parentheses workaround,
304

Notepad2, 8, 314
notify() method, coroutines, 81

null
Boolean expressions, 30

http://www.it-ebooks.info/

Map class, 118
safe-navigation operator,
16

(@)
O'Reilly, Tim, xvii, 314
Object class
extensions, 128-133
metaprogramming, 139
object references, Boolean
expressions, 30
Object-Oriented Software
Construction, 56

ObjectOutputStream, 138

objects
accessing dynamically,
182
as parameters in injected
methods, 196
comparing, 46-47
extensions, 128-133
JSON parsing, 258
MOP and, 176-180
persistent, 215
querying methods and
properties, 180
odd-number example of clo-
sures, 76
onHandleNodeAttributes() method,
268-269
onNodeCompleted() method, 268
open() method, resource
cleanup with closures, 79
openFile() method, exception
handling, 17
operator overloading
DSLs, 299
Java, 31-33
Map, 119
resources, 311
String, 105
strings, 32
optional parameters, 24
optional return statement, 18,
76
optional typing
about, 61
defining parameters, 78
designing DSLs, 299
dynamic tying and, 65
optionally typed languages,
Groovy as, xx
orbiter crash, 60, 309
out property, 134
OutputStream, 135, 138

OutputStreamWriter, 135
overloaded methods
listing, 180
multimethods, 64
overloaded operators, see op-
erator overloading

overriding
constructors, 201
mocking by, 280-283

owner property, 86-89, 129
P

palindrome example, xx
parameterTypes property, 85

parameters

binding in curried clo-
sures, 82-84

compile-time code analy-
sis, 236

detecting type, 85

dynamic typing, 59

GString expressions, 102

initializing JavaBeans
with named, 18, 22

inject() method, 116

injection with categories,
194-197

Map for named, 123

as methods, 306

multimethods, 64

naming, 13, 65

optional, 24

passing Groovy closures
from Java, 164

passing to closures, 77,
84, 90

passing to scripts, 168,
171

sending command-line to
a process, 135

specifying type, 65

specifying zero in clo-
sures, 86, 102

static type-checking, 68

tail-recursion program-

ming, 90
trailing, 24, 36, 83
varargs, 36
XML builders, 254

parentheses

DSLs, 299, 303

exception testing, 277

injection with ExpandoMeta-
Class, 199

lenience with, 12

workaround, 303

Parr, Terence, 298

www.it-ebooks.info

Index * 328

parse() method, 144
parseText() method, 257
parsing
class synthesis, 226
DSLs, 298
JSON, 257
XML, 143-148, 150, 314
passToClosure() method, 163
passing
Groovy closures from Ja-
va, 163-165
parameters in tail-recur-
sion programming, 90
parameters to closures,
77, 84, 90
parameters to scripts,
168, 171

patterns
Composite, 128, 139
Decorator, 213
Execute Around Method,
79-80, 247-250
Intercept, Cache, Invoke,
215, 218
matching with regular
expressions, 106
matching with strings, 97
Smalltalk, 80
Strategy, 76
virtual proxy, 43
performance
dynamic typing, 65, 69
interception with AST
transformations, 244
memoization, 92-96
metaprogramming, 69
tail-recursion program-
ming, 91
Perl, as weak dynamically
typed language, 56
persistent objects, method
synthesis, 215
pizza examples of DSLs, 295,
301-302
Plain Old Groovy Objects,
see POGOs
Plain Old Java Objects,
see POJOs

playWithSleep() method, 131
plus() method, operator over-
loading, 33, 106
POGOs
injection, 198
understanding, 176-180
POJOs
injection, 198

http://www.it-ebooks.info/

intercepting methods
with MOP, 189
understanding, 176-180
polymorphism
defined, 63
dynamic typing, 53-54,
62-65
static typing, 55
positive tests, 274-275
postNodeCompletion() method,
269

Pragmatic Unit Testing In Java
with JUnit, 271
prelnstantiate() method, 269
precompiling scripts, 244
prefixes, XML, 147, 256
PriceExtension, 140
primitives
arrays, 51
autoboxing, 34
multiple assignments, 26
printing
and intercepting methods
with MOP, 186
string expressions, 99—
100
variable values, 13
printing examples
chaining methods with
mixins, 210-213
static type-checking, 66—
69
printin() method
mocking by overriding,
281, 283
mocking using ExpandoMeta-
Class, 284
mocking using categories,
284
PrintStream, 281
private instances, 46
private variables in Jav-
aBeans, 20
Process class, convenience
methods, 134
producer-consumer problems
and coroutines, 81
productivity
dynamic languages, xvii
dynamic typing, 55
static type-checking, 54
profanity filter example of
mixins, 211

programming, see al-
so metaprogramming
aspect-oriented, 185, 246
functional, xv, 71
memoization and dynam-
ic, 92-96
with tail recursion, 89-92
properties
accessing dynamically,
182
accessing indirectly, 131
BuilderSupport, 264
class synthesis, 226
closures, 86-89, 129
injection, 198
interception, 189
iterating over, 183
JavaBeans, 19-23
JSON builders, 257
method synthesis, 216
mocking using Expando,
287
nonexistent, 216, 304
querying and MOP, 180
read-only, 20
syntax and DSLs, 304
properties property, 132, 183
propertyMissing() method, 216,
261, 264
proxies
interception and injenc-
tion, 177
virtual proxy pattern, 43
ProxyMetaClass, 289
public, default, 18
public clone() method, 53
put() method, 171

putAt() method, 131
Python
designing DSLs, 298
@Newify transformation,
44

Q

querying, methods and prop-
erties, 180
quotes
literals and regular ex-
pressions, 97-100, 107
multiline strings, 103
using Map, 119

R

Raiders of the Lost Arlc, 15,
309

Rails, xviii

www.it-ebooks.info

Index ® 329

raise examples
dynamic languages, xvi
multimethods, 62-64
random math example, 38
Range object
collections, 110
extensions, 133
looping, 12
Rayner, Jeremy, xvi
rcurry() method, 83
read-only properties, 20
Reader class, 138
readers, extensions, 137
recursion
simple, 92-94
tail programming, 89-92
refactoring, closures, 75
references, GString expressions,
100
register example of parenthe-
sis workaround, 303
registerFactory() method, 266
registering
event handlers, 259
factories, 266
regular expressions
Map, 122
strings, 97-100, 106-108
replaceAll() method, 106, 108
replaceFirst() method, 106, 108
replacing, constructors, 201
resource cleanup
closures, 75, 78-80, 248
writing to a stream, 135,
138
resources
GDK, 127, 139, 310
Groovy, xviii, xxvi, 52,
311-312
respondsTo() method, 180
conformance and dynam-
ic typing, 60
return statement, 18, 76
reusing
closures, 77
scripts, 169
reverse() method
lists, 117
safe-navigation operator,
17

reverseEach() method, 112

http://www.it-ebooks.info/

robot examples
custom builders with Fac-
toryBuilderSupport, 266—
270
initializing JavaBeans, 22
Rocher, Graeme, 215, 218,
312
rod-cutting example of memo-
ization, 92-96
rows() method, 154
Ruby
designing DSLs, 298
@Newify transformation,
44
Rails and dynamic lan-
guages, Xviii
as strong dynamically
typed language, 56
run() method
scripts, 169
unit testing with JUnit,
274
runAfter() method, 138
runtime
dynamic languages, xvi-
xvii
dynamic typing, 53

S

safe-navigation operator, 16,
18
safety, type, 53, 55
sales tax example of dynamic
closures, 84
save command, in groovysh, 6
SAX, 262
Schénfinkel, Moses, 83
ScriptContext, 171
ScriptEngine API, 159
ScriptEngineManager, 170
scripting languages, 314
Scriptom API, 156, 311
scripts
designing DSLs, 299
method interception and
DSLs, 303
mixing Java and Groovy,
159, 172
precompiling, 244
reusing, 169
using Groovy, 159, 167-
168
using Groovy from Java,
169-172

searching, see finder meth-
ods; querying
Sebesta, Robert, 71
Selenium, 313
semicolon
multiple lines in groovysh,
6
optional, 18, 51
removing, 12
server applications, embed-
ding, 171
Servlet API, 196
ServletCategory, 196
Set class, 138
setChild() method, 268
setMetaClass() method, 177
setParent() method, 263, 268
setProperty() method, 169, 177
setUp() method, unit testing
with JUnit, 276
shell, see command-line
shouldFail() method, 277
shout examples
chaining methods with
mixins, 210-213
static type-checking, 66—
69
Simple API for XML (SAX),
262
simulator example of clo-
sures, 76
singer example of injection
into specific instances,
203-206
@Singleton transformation, 44
size() method, 117
SKIP parameter, 69
slashes, expressions, 98, 107
sleep() method
exception handling, 17
object extensions, 130
Smalltalk Best Practice Pat-
terns, 80
Smalltalk pattern, 80
Social Security number exam-
ple of injection with cate-
gories, 194-197
someAction() method
mocking by overriding,
280

www.it-ebooks.info

Index * 330

mocking using ExpandoMeta-
Class, 285
mocKing using categories,
284
SortedMap class, 138
SortedSet class, 138
SourceUnit, 238

specific instances
injection into, 203-206,
232
method synthesis, 215,
222, 233

speed, see also performance
dynamic languages, xvii
memoization, 95
unit testing, 273
split() function, multiple assign-
ments, 25
Spock, 235, 293, 313
sports examples
method synthesis of spe-
cific instances, 223
method synthesis with
ExpandoMetaClass, 220-
222
method synthesis with
methodMissing(), 216-220
spread operator, 117
SQL, 151-156
start() method, 130, 135
startDaemon() method, 135
static compilation, 53, 69
static import, 38
static initializer
mixins, 206
semicolon, 51

static methods
converting to instance
methods, 195
example of custom meth-
ods, 139-141
injection, 198, 200, 203
querying, 180
referring to Class objects,
18
static type-checking, 54, 66—
69
static typing
polymorphism, 55
using, 56
staticExtensionClass, 141

statically typed languages
disadvantages, 54
mocking frameworks, 279
polymorphism, 54

http://www.it-ebooks.info/

specifying type, 65
strong vs. weak, 55
step() method, skipping values
with, 13
stock examples
custom methods, 139-
141
GString, 99, 101-103
storing
closures in a variable,
77, 200
database procedure calls,
154
expressions in a string,
99

Strachan, James, xvi
Strachey, Christopher, 83
Strategy pattern, 76
StreamingJsonBuilder, 257
StreamingMarkupBuilder, 149, 255
streams, iterating, 138

String class

convenience methods,
105

literals and regular ex-
pressions, 98

operator overloading, 32

reader content, 137

resources, 311

sending command-line
parameters to a pro-
cess, 135

strings

convenience methods,
105

creating XML documents,
148

extracting, 196

immutablity, 98

Java, 97-98

lazy evaluation, 100-103

literals, 97-100

multiline, 103-105, 148

pattern matching, 97

regular expressions, 97—
100, 106-108

sending command-line
parameters to a pro-
cess, 135

StringWriter
example of XML builder,
254
example of chaining
methods with mixins,
209-213

Stroustrup, Bjarne, 55

Structure and Interpretation of
Computer Programs, 90

StubFor, 289-290
stubs
vs. mocks, 278, 312
StubFor, 289-290
Sublime Text, 9
Subversion example, 14

sugarcane farm example of
conformance, 60
sum examples
closures, 72-75
iterating over ArrayList, 112

sum() method, 115

Sun/Java Scripting Project,
313
swapping variables, 25
Swing
builders, 258-260, 266
implementing interfaces
example, 26-30
SwingBuilder, 258-260, 266
SwingBuilder, 258-260, 266
switch statement, and enum, 36
syntax
AST, 245
builders, 270
DSLs, 257, 270, 295,
298, 306
Grails, 297
injection into specific in-
stances, 205
injection with ExpandoMeta-
Class, 202, 205
injection with categories,
195
XML builders, 256
synthesis, class with Expando,
225-227

synthesis, method,
see method synthesis

System.out.printin(), 186
T

tail-recursion programming,
89-92

tax example of dynamic clo-
sures, 84

tearDown() method
mocking using MockFor,
292
unit testing with JUnit,
276

technical debt, 313

www.it-ebooks.info

Index ® 331

Test Driven Development: By
Example, 271

testing, see also unit testing
AST transformations, 250
exceptions, 274, 277
text editors, 8, 313
text property
File class, 137
mocking using Expando,
287
Process class, 134
text variable
extending methods with
GDK, 15
string expressions, 99
TextMate, 8, 313
this property, 18, 86-89, 129
Thoreau example, 137
Thread class, sleep() method,
130
thread safety
asSynchronized() method,
138
memoization, 96
transformations, 43-44
threads
daemon, 135
GDK extensions, 135
Throwable class, exception
handling, 18

timelt() method, 93

timeouts, waitFor() and wait-
ForOrKill() methods, 15
timers, runAfter() method, 138
times() method, 13
to-do list examples
custom builders from
metaprogramming,
260-262
custom builders with
BuilderSupport, 263-265

toString() method
@Canonical transformation,
40, 42
GString expressions, 100
interception with cate-
gories, 197
tokenize() method, 106
tools
choosing, 9
command-line, 5
groovyConsole GUI, 6
IDEs, 8-9
unit testing, 235

http://www.it-ebooks.info/

trailing parameters
curried closures, 83
optional, 24
varargs, 36
trampoline() method, 90-92
transformations
AST, 235, 238, 240, 242,
250
code generation, 40-46
delegation, 41, 231
global, 240, 242, 247
local, 247-250
true, Boolean expressions, 30
try-catch, exception testing, 277
try-finally, 79, 248
type confusion and multimeth-
ods, 64
type-checking
as AST transformation,
235
compile-time, 47-49, 69
dynamic typing, 53
Generics, 38
Groovy vs. Java, 38
Java, 53
optional typing, 61
static, 54, 66-69
@TypeChecked annotation, 66
types
Boolean evaluation, 31
detecting parameter, 85
Generics, 38
specifying in for-each
loops, 35
typing, see duck typing; dy-
namic typing; optional typ-
ing; static typing; type-
checking
typos
dynamic typing, 59
static type-checking, 66

U
unboxing, 34

unit testing
advantages, 277
assert methods, 274
automated, 272-273
benefits, 272
coupling, 277
dynamic typing, 59, 271
dynamically typed lan-

guages, xviii, 271

exceptions, 274, 277
FAIR principles, 273
isolation, 273, 276, 284

Java and Groovy code
with JUnit, 272-276

mocking, 279

mocking by overriding,
280-283

mocking using Expando,
285-288

mocking using ExpandoMeta-
Class, 284

mocking using Map, 288

mocking using MockFor,
290-293

mocking using StubFor,
289-290

mocking using categories,
283-284

mocking using mock li-
braries, 289-293

need for, 271

optional typing, 61

repeatable, 273

resources, 314

speed, 273

tools, 235

types, 274

Unix-like systems, Groovy in-
stallation, 4

updating, databases, 156

uppercase printing examples
chaining methods with
mixins, 210-213
static type-checking, 66—
69
upto() method, looping with,
13
use() method
injection with AST trans-
formations, 247-250
injection with categories,
194, 196-197, 305
mocking using StubFor,
289
parsing XML, 146
useClosure() method, 163

A\
validators, optional typing, 61
values, see also key-value
pairs
collections, 110
GString expressions, 100
parsing XML, 144
varargs, 37
variables, 13, 171
varargs, 36
VariableExpression, 243

www.it-ebooks.info

Index ® 332

variables

binding in GString expres-
sions, 101

binding in scripts, 168,
171

closure delegation, 87

closures, 73, 75

multiple assignments,
25, 300

naming, 60, 73, 236

parameters, 65

private in JavaBeans, 20

saving closures to, 77,
200

string literals and expres-
sions, 99

swapping, 25

tail-recursion program-
ming, 90

values, 13, 171

version control example, 14

versions
Groovy, xvi, 3, 5
JDK, 3
virtual proxy pattern, 43
visit() method
injection with AST trans-
formations, 247
method interception with
AST transformations,
242
navigating code struc-
ture, 238-239
visitors, navigating code
structure, 238
void, unit testing with JUnit,
273
voting example of analyzing
code at compile-time, 236-
237

\W%

wait() method, coroutines, 81

waitFor() method, 15

waitForOrKill() method, 15

walking mileage example of
indirectly invoking meth-
ods, 132

wc program, 134

weather database example,
151, 153-156

web forms, accessing proper-
ties indirectly, 132

what variable, 99-100
Wheeler, David, 101

http://www.it-ebooks.info/

Windows
E Text Editor, 8
Groovy installation, 3
with() method
closure delegation, 87
context, 129, 296
DSLs, 296, 301
withReader() method, 138
withStatement() method, 154
withStream() method, 138
withWriter() method, 78, 135,
138
worker/manager examples
method delegation, 228-
231
multimethods, 62-64
transformations, 41

write() method

filter example of mixins,

212

method injection, 209

mocking using Expando,
286

mocking using MockFor,
292

mocking using StubFor,
289

writeStuff() method, 209

writeTo() method, JSON
builders, 256-258
Writer class, 138
writer examples
chaining methods with
mixins, 209-213
JSON, 256-258
resource cleanup with
closures, 78

www.it-ebooks.info

Index ® 333

X
Xerces, 314
XML
builders, 253-256
creating, 148-150, 253-
256
multiline strings, 104,
148
namespaces, 147, 255
parsing, 143-148, 150,
314
SAX, 262
transforming data to, 154
XML InfoSet, 146
XMLParser, 146
XMLSlurper, 146-148
XmlSlurper class, 143

http://www.it-ebooks.info/

Long Live the Command Line!

Use tmux and vim for incredible mouse-free productivity.

Your mouse is slowing you down. The time you spend e
context switching between your editor and your con-
soles eats away at your productivity. Take control of

your environment with tmux, a terminal multiplexer thX
that you can tailor to your workflow. Learn how to Productive

.) ,) s Mouse-Free
customize, script, and leverage tmux’s unique abilities Development

and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
http://pragprog.com/book/bhtmux

P. Hogan

Edited by Susanna a on alzer

Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS—if you master the techniques in

this book, you’ll never need another text editor. In more Practical
than 100 Vim tips, you'll quickly learn the editor’s core Vim
functionality and tackle your trickiest editing and Edil Text at the

writing tasks. Speed of Thought)
Drew Neil

(346 pages) ISBN: 9781934356982. $29
http://pragprog.com/book/dnvim

Drew Neil
Foreword by Tim Pope
Edited by Kay Keppler

www.it-ebooks.info

http://pragprog.com/book/bhtmux
http://pragprog.com/book/dnvim
http://www.it-ebooks.info/

Seven Databases, Seven Languages

There’s so much new to learn with the latest crop of NoSQL databases. And instead of

learning a language a year, how about seven?

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

Sk

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
and Jim R. Wilson

Edited by Jacquelyn Carier

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’'ll learn
something new from each, and best of all, you'll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

www.it-ebooks.info

Seven Languages
in Seven Weeks

A Pragmatic
Guide to

Learning
Programming
Languages

Bruce A.Tate

‘Bdted by Jacquelyn Carter

http://pragprog.com/book/rwdata
http://pragprog.com/book/btlang
http://www.it-ebooks.info/

The Joy of Math and Programming

Rediscover the joy and fascinating weirdness of pure mathematics, or get your kids started
programming in JavaScript.

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand

years of mathematics: from Egyptian fractions to Tur- Good Math

ing machines; from the real meaning of numbers to Nombern Loie oo Conmiation

proof trees, group symmetry, and mechanical compu- -

tation. If you've ever wondered what lay beyond the e,'-" \
. . 7

proofs you struggled to complete in high school geom- W/ B 4

etry, or what limits the capabilities of the computer on e B B: vy ¢

your desk, this is the book for you.

Mark C. Chu-Carroll

Mark C. Chu-Carroll dted by John Osborn
(250 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

You know what’s even better than playing games?
Creating your own. Even if you're an absolute beginner,

this book will teach you how to make your own online 3D Game Prog Ting

for Kids Srate
games with interactive examples. You'll learn program- I“{STE‘}“?"E “S”Orlf‘j
1th Javasceripl

ming using nothing more than a browser, and see cool,
3D results as you type. You'll learn real-world program-
ming skills in a real programming language: Java-
Script, the language of the web. You'll be amazed at
what you can do as you build interactive worlds and
fun games.

Chris Strom Chris Str

1ris Strom
(250 pages) ISBN: 978 1937785444 $36 Edtted by Fahmida Y. Rashid
http://pragprog.com/book/csjava

www.it-ebooks.info

http://pragprog.com/book/mcmath
http://pragprog.com/book/csjava
http://www.it-ebooks.info/

Tinker, Tailor, Solder, and DIY!

Get into the DIY spirit with Raspberry Pi or Arduino. Who knows what you’ll build next...

The Raspberry Pi is a $35, full-blown micro computer
that runs Linux. Use its video, audio, network, and
digital I/O to create media centers, web servers, inter-

faces to external hardware—you name it. And this book Ras be
gives you everything you need to get started. A Quick-Start Guide [
New Updates

The Raspberry Pi’s greatest feature is its creative and
amazingly productive community, which releases up-
dates and new products on a daily basis. It’s hard to
keep up with the pace, but thanks to our Pragmatic
eXpress series you'll always get the latest and most

Maik Schmidt
Edlted by Jacquelyn Carter

accurate information about your favorite mini comput-
er. This book now contains an all-new chapter about
sensors. It explains how to use digital and analog
sensors with the Pi—even though the Pi doesn’t have
analog input ports! We've added a small section about
the new PiStore and we've updated the GPIO chapter
to cover the differences between the different revisions
of the Pi boards. And, even more updates are coming
soon for this book!

Maik Schmidt
(149 pages) ISBN: 9781937785048. $17
http://pragprog.com/book/msraspi

Arduino is an open-source platform that makes DIY s %
electronics projects easier than ever. Even if you have
no electronics experience, you'll be creating your first
gadgets within a few minutes. Step-by-step instructions Arduino
show you how to build a universal remote, a motion- A QuickStart Guide

sensing game controller, and many other fun, useful
projects. This book has now been updated for Arduino
1.0, with revised code, examples, and screenshots
throughout. We've changed all the book’s examples
and added new examples showing how to use the Ar-

duino IDE’s new features.
Maik Shmi(lt

Maik Schmidt e el
(272 pages) ISBN: 9781934356661. $S35
http://pragprog.com/book/msard

www.it-ebooks.info

http://pragprog.com/book/msraspi
http://pragprog.com/book/msard
http://www.it-ebooks.info/

Kick Your Career Up a Notch

Ready to blog or promote yourself for real? Time to refocus your personal priorities? We've

got you covered.

Technical Blogging is the first book to specifically teach
programmers, technical people, and technically-orient-
ed entrepreneurs how to become successful bloggers.
There is no magic to successful blogging; with this
book you'll learn the techniques to attract and keep a
large audience of loyal, regular readers and leverage
this popularity to achieve your goals.

Antonio Cangiano
(288 pages) ISBN: 9781934356883. $33
http://pragprog.com/book/actb

Technical
Blogging
Turn Your Expertise

into a Remarkable
Online Presence

Antonio Cangiano

Edited by Michael Suaine

You're already a great coder, but awesome coding chops
aren’t always enough to get you through your toughest
projects. You need these 50+ nuggets of wisdom. Vet-
eran programmers: reinvigorate your passion for devel-
oping web applications. New programmers: here’s the
guidance you need to get started. With this book, you’ll
think about your job in new and enlightened ways.

Ka Wai Cheung
(160 pages) ISBN: 9781934356791. $29
http://pragprog.com/book/kcdc

The ,
Developer's Code
‘What Real
Programmers Do

. Ka Wai Cheung
9§ Eauted by Brian P. Hogan

fad

>

www.it-ebooks.info

http://pragprog.com/book/actb
http://pragprog.com/book/kcdc
http://www.it-ebooks.info/

Put the “Fun” in Functional

Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,

industrial-strength environment of Erlang.

You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

;The
5
e

Prggramming

Functional

|> Concurrent
|> Pragmatic
|>Fun

Dave Thomas

Foreword by A 4
José Valim, P e
Creator of Elixir i

edited by Lynn Beighley

A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(510 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

www.it-ebooks.info

The

P mers

Programmin,
Er%ang =

Software for a Concurrent World

Second Edition ‘

& =
Joe Armstrow
Edited by Susannah Davidson Pfal:

L

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2
http://www.it-ebooks.info/

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/book/vslg2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http.//pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http:/pragprog.com/book/vsig2

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com

International Rights: translations@pragprog.com

Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us
Or Call: +1 800-699-7764

www.it-ebooks.info

http://pragprog.com/book/vslg2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/vslg2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Foreword to the Second Edition
	Introduction
	What's Groovy?
	Why Dynamic Languages?
	Why Groovy?
	What's in This Book?
	Changes Since This Book's First Edition
	Who Is This Book For?
	Online Resources
	Acknowledgments

	Part I—Beginning Groovy
	1. Getting Started
	Installing Groovy
	Installing and Managing Groovy Versions
	Test-Drive Using groovysh
	Using groovyConsole
	Running Groovy on the Command Line
	Using an IDE

	2. Groovy for Java Eyes
	From Java to Groovy
	JavaBeans
	Flexible Initialization and Named Arguments
	Optional Parameters
	Using Multiple Assignments
	Implementing Interfaces
	Groovy Boolean Evaluation
	Operator Overloading
	Support of Java 5 Language Features
	Using Groovy Code-Generation Transformations
	Gotchas

	3. Dynamic Typing
	Typing in Java
	Dynamic Typing
	Dynamic Typing != Weak Typing
	Design by Capability
	Optional Typing
	Multimethods
	Dynamic: To Be or Not to Be?
	Switching Off Dynamic Typing

	4. Using Closures
	The Convenience of Closures
	Programming with Closures
	Ways to Use Closures
	Passing Parameters to Closures
	Using Closures for Resource Cleanup
	Closures and Coroutines
	Curried Closure
	Dynamic Closures
	Closure Delegation
	Programming with Tail Recursion
	Improving Performance Using Memoization

	5. Working with Strings
	Literals and Expressions
	GString Lazy-Evaluation Problem
	Multiline Strings
	String Convenience Methods
	Regular Expressions

	6. Working with Collections
	Using List
	Iterating Over an ArrayList
	Using Finder Methods
	Other Convenience Methods on Lists
	Using the Map Class
	Iterating Over Map
	Other Convenience Methods on Maps

	Part II—Using Groovy
	7. Exploring the GDK
	Using Object Extensions
	Other Extensions
	Custom Methods Using the Extension Modules

	8. Working with XML
	Parsing XML
	Creating XML

	9. Working with Databases
	Setting Up the Database
	Connecting to a Database
	Database Select
	Transforming Data to XML
	Using DataSet
	Inserting and Updating
	Accessing Microsoft Excel

	10. Working with Scripts and Classes
	The Melting Pot of Java and Groovy
	Running Groovy
	Using Groovy Classes from Groovy
	Intermixing Groovy and Java with Joint Compilation
	Creating and Passing Groovy Closures from Java
	Calling Groovy Dynamic Methods from Java
	Using Java Classes from Groovy
	Using Groovy Scripts from Groovy
	Using Groovy Scripts from Java

	Part III—MOPping Groovy
	11. Exploring Metaobject Protocol (MOP)
	Groovy Object
	Querying Methods and Properties
	Dynamically Accessing Objects

	12. Intercepting Methods Using MOP
	Intercepting Methods Using GroovyInterceptable
	Intercepting Methods Using MetaClass

	13. MOP Method Injection
	Injecting Methods Using Categories
	Injecting Methods Using ExpandoMetaClass
	Injecting Methods into Specific Instances
	Injecting Methods Using Mixins
	Decorating Classes with Multiple Mixins

	14. MOP Method Synthesis
	Method Synthesis Using methodMissing
	Method Synthesis Using ExpandoMetaClass
	Synthesizing Methods for Specific Instances

	15. MOPping Up
	Creating Dynamic Classes with Expando
	Method Delegation: Putting It All Together
	Review of MOP Techniques

	16. Applying Compile-Time Metaprogramming
	Analyzing Code at Compile Time
	Intercepting Method Calls Using AST Transformations
	Injecting Methods Using AST Transformations

	Part IV—Using Metaprogramming
	17. Groovy Builders
	Building XML
	Building JSON
	Building Swing
	Custom Builder Using Metaprogramming
	Using BuilderSupport
	Using FactoryBuilderSupport

	18. Unit Testing and Mocking
	Code in This Book and Automated Unit Tests
	Unit Testing Java and Groovy Code
	Testing for Exceptions
	Mocking
	Mocking by Overriding
	Mocking Using Categories
	Mocking Using ExpandoMetaClass
	Mocking Using Expando
	Mocking Using Map
	Mocking Using the Groovy Mock Library

	19. Creating DSLs in Groovy
	Context
	Fluency
	Types of DSLs
	Designing Internal DSLs
	Groovy and DSLs
	Using Command-Chain Fluency
	Closures and DSLs
	Method Interception and DSLs
	The Parentheses Limitation and a Workaround
	Categories and DSLs
	ExpandoMetaClass and DSLs

	A1. Web Resources
	A2. Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –

