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Preface

We are in an age where data is the primary driver in decision-making. With storage
costs declining, network speeds increasing, and everything around us becoming
digital, we do not hesitate a bit to download, store, or share data with others around
us. About 20 years back, a camera was a device used to capture pictures on film.
Every photograph had to be captured almost perfectly. The storage of film negatives
was done carefully lest they get damaged. There was a higher cost associated with
taking prints of these photographs. The time taken between a picture click and to
view it was almost a day. This meant that less data was being captured as these
factors presented a cliff for people from recording each and every moment of their
life, unless it was very significant.

However, with cameras becoming digital, this has changed. We do not hesitate to
click a photograph of almost anything anytime. We do not worry about storage

as our externals disks of a terabyte capacity always provide a reliable backup. We
seldom take our cameras anywhere as we have mobile devices that we can use to
take photographs. We have applications such as Instagram that can be used to add
effects to our pictures and share them. We gather opinions and information about the
pictures, and we click and base some of our decisions on them. We capture almost
every moment, of great significance or not, and push it into our memory books. The
era of big data has arrived!

This era of Big Data has similar changes in businesses as well. Almost everything in a
business is logged. Every action taken by a user on the page of an e-commerce page is
recorded to improve quality of service and every item bought by the user are recorded
to cross-sell or up-sell other items. Businesses want to understand the DNA of their
customers and try to infer it by pinching out every possible data they can get about
these customers. Businesses are not worried about the format of the data. They are
ready to accept speech, images, natural language text, or structured data. These data
points are used to drive business decisions and personalize experiences for the user.
The more data, the higher the degree of personalization and better the experience for
the user.
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We saw that we are ready, in some aspects, to take on this Big Data challenge.
However, what about the tools used to analyze this data? Can they handle the
volume, velocity, and variety of the incoming data? Theoretically, all this data can
reside on a single machine, but what is the cost of such a machine? Will it be able

to cater to the variations in loads? We know that supercomputers are available,

but there are only a handful of them in the world. Supercomputers don't scale. The
alternative is to build a team of machines, a cluster, or individual computing units
that work in tandem to achieve a task. A team of machines are interconnected via a
very fast network and provide better scaling and elasticity, but that is not enough.
These clusters have to be programmed. A greater number of machines, just like a
team of human beings, require more coordination and synchronization. The higher
the number of machines, the greater the possibility of failures in the cluster. How do
we handle synchronization and fault tolerance in a simple way easing the burden on
the programmer? The answer is systems such as Hadoop.

Hadoop is synonymous with Big Data processing. Its simple programming model,
"code once and deploy at any scale" paradigm, and an ever-growing ecosystem make
Hadoop an inclusive platform for programmers with different levels of expertise and
breadth of knowledge. Today, it is the number-one sought after job skill in the data
sciences space. To handle and analyze Big Data, Hadoop has become the go-to tool.
Hadoop 2.0 is spreading its wings to cover a variety of application paradigms and
solve a wider range of data problems. It is rapidly becoming a general-purpose cluster
platform for all data processing needs, and will soon become a mandatory skill for
every engineer across verticals.

This book covers optimizations and advanced features of MapReduce, Pig, and Hive.
It also covers Hadoop 2.0 and illustrates how it can be used to extend the capabilities
of Hadoop.

Hadoop, in its 2.0 release, has evolved to become a general-purpose cluster-computing
platform. The book will explain the platform-level changes that enable this. Industry
guidelines to optimize MapReduce jobs and higher-level abstractions such as Pig and
Hive in Hadoop 2.0 are covered. Some advanced job patterns and their applications
are also discussed. These topics will empower the Hadoop user to optimize existing
jobs and migrate them to Hadoop 2.0. Subsequently, it will dive deeper into Hadoop
2.0-specific features such as YARN (Yet Another Resource Negotiator) and HDFS
Federation, along with examples. Replacing HDFS with other filesystems is another
topic that will be covered in the latter half of the book. Understanding these topics
will enable Hadoop users to extend Hadoop to other application paradigms and data
stores, making efficient use of the available cluster resources.

[2]
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This book is a guide focusing on advanced concepts and features in Hadoop.
Foundations of every concept are explained with code fragments or schematic
illustrations. The data processing flow dictates the order of the concepts in each chapter.

What this book covers

Chapter 1, Hadoop 2.X, discusses the improvements in Hadoop 2.X in comparison to
its predecessor generation.

Chapter 2, Advanced MapReduce, helps you understand the best practices and patterns
for Hadoop MapReduce, with examples.

Chapter 3, Advanced Pig, discusses the advanced features of Pig, a framework to script
MapReduce jobs on Hadoop.

Chapter 4, Advanced Hive, discusses the advanced features of a higher-level SQL
abstraction on Hadoop MapReduce called Hive.

Chapter 5, Serialization and Hadoop I/O, discusses the 10 capabilities in Hadoop.
Specifically, this chapter covers the concepts of serialization and deserialization
support and their necessity within Hadoop; Avro, an external serialization
framework; data compression codecs available within Hadoop; their tradeoffs;
and finally, the special file formats in Hadoop.

Chapter 6, YARN - Bringing Other Paradigms to Hadoop, discusses YARN
(Yet Another Resource Negotiator), a new resource manager that has been
included in Hadoop 2.X, and how it is generalizing the Hadoop platform to
include other computing paradigms.

Chapter 7, Storm on YARN - Low Latency Processing in Hadoop, discusses the opposite
paradigm, that is, moving data to the compute, and compares and contrasts it with
batch processing systems such as MapReduce. It also discusses the Apache Storm
framework and how to develop applications in Storm. Finally, you will learn how
to install Storm on Hadoop 2.X with YARN.

Chapter 8, Hadoop on the Cloud, discusses the characteristics of cloud computing and
Hadoop's Platform as a Service offering across cloud computing service providers.
Further, it delves into Amazon's managed Hadoop services, also known as Elastic
MapReduce (EMR) and looks into how to provision and run jobs on a Hadoop
EMR cluster.

[31]
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Chapter 9, HDFS Replacements, discusses the strengths and drawbacks of HDFS
when compared to other file systems. The chapter also draws attention to Hadoop's
support for Amazon's S3 cloud storage service. At the end, the chapter illustrates
Hadoop HDFS extensibility features by implementing Hadoop's support for S3's
native file system to extend Hadoop.

Chapter 10, HDFS Federation, discusses the advantages of HDFS Federation and its
architecture. Block placement strategies, which are central to the success of HDFS
in the MapReduce environment, are also discussed in the chapter.

Chapter 11, Hadoop Security, focuses on the security aspects of a Hadoop cluster.
The main pillars of security are authentication, authorization, auditing, and data
protection. We will look at Hadoop's features in each of these pillars.

Chapter 12, Analytics Using Hadoop, discusses higher-level analytic workflows,
techniques such as machine learning, and their support in Hadoop. We take
document analysis as an example to illustrate analytics using Pig on Hadoop.

Appendix, Hadoop for Microsoft Windows, explores Microsoft Window Operating
System's native support for Hadoop that has been introduced in Hadoop 2.0. In this
chapter, we look at how to build and deploy Hadoop on Microsoft Windows natively.

What you need for this book?

The following software suites are required to try out the examples in the book:

* Java Development Kit (JDK 1.7 or later): This is free software from Oracle
that provides a JRE (Java Runtime Environment) and additional tools
for developers. It can be downloaded from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

* The IDE for editing Java code: Intelli] IDEA is the IDE that has been used
to develop the examples. Any other IDE of your choice can also be used.
The community edition of the Intelli] IDE can be downloaded from
https://www.jetbrains.com/idea/download/.

* Maven: Maven is a build tool that has been used to build the samples in
the book. Maven can be used to automatically pull-build dependencies and
specify configurations via XML files. The code samples in the chapters can
be built into a JAR using two simple Maven commands:

mvn compile

mvn assembly:single

[4]
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These commands compile the code into a JAR file. These commands create
a consolidated Jar with the program along with all its dependencies. It is
important to change the mainclass references in the pom.xml to the driver
class name when building the consolidated JAr file.

Hadoop-related consolidated Jar files can be run using the command:

hadoop jar <jar file> args

This command directly picks the driver program from the mainClass that
was specified in the pom.xml. Maven can be downloaded and installed from
http://maven.apache.org/download.cgi. The Maven XML template file
used to build the samples in this book is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>MasteringHadoop</groupld>
<artifactId>MasteringHadoop</artifactId>
<version>1.0-SNAPSHOT</version>
<builds>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configurations>
<source>1l.7</source>
<target>1.7</target>
</configurations>
</plugin>
<plugin>
<versions>3.1l</version>
<groupId>org.apache.maven.plugins</groupIds>
<artifactIds>maven-jar-plugin</artifactIds>
<configurations>
<archives>
<manifest>
<mainClass>MasteringHadoop.MasteringHadoopTest</
mainClass>
</manifest>
</archives>
</configurations>
</plugin>

[51]
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<plugins>
<artifactId>maven-assembly-plugin</artifactIds>
<configurations>
<archives>
<manifest>

<mainClass>MasteringHadoop.MasteringHadoopTest</
mainClass>

</manifest>
</archive>
<descriptorRefss>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configurations>
</plugin>
</plugins>
<pluginManagement >
<pluginss>
<!--This plugin's configuration is used to store Eclipse
m2e settings

only. It has no influence on the Maven build
itself. --»>

<plugins>
<groupIds>org.eclipse.m2e</groupld>
<artifactIds>lifecycle-mapping</artifactIds>
<version>1.0.0</versions>
<configurations>
<lifecycleMappingMetadatas>
<pluginExecutions>
<pluginExecutions>
<pluginExecutionFilters>
<groupld>org.apache.maven.plugins</groupId>

<artifactId>maven-dependency-plugin</
artifactId>

<versionRange>[2.1,)</versionRange>
<goals>
<goal>copy-dependencies</goals>
</goals>
</pluginExecutionFilter>
<actions
<ignore />
</action>
</pluginExecutions>
</pluginExecutions>
</lifecycleMappingMetadatas>
</configurations>
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</plugin>
</plugins>
</pluginManagement >
</build>
<dependencies>
<!-- Specify dependencies in this section -->
</dependencies>
</project>

* Hadoop 2.2.0: Apache Hadoop is required to try out the examples in
general. Appendix, Hadoop for Microsoft Windows, has the details on Hadoop's
single-node installation on a Microsoft Windows machine. The steps are
similar and easier for other operating systems such as Linux or Mac, and
they can be found at http://hadoop.apache.org/docs/r2.2.0/hadoop-
project-dist/hadoop-common/SingleNodeSetup.html

Who this book is for

This book is meant for a gamut of readers. A novice user of Hadoop can use this
book to upgrade his skill level in the technology. People with existing experience

in Hadoop can enhance their knowledge about Hadoop to solve challenging data
processing problems they might be encountering in their profession. People who are
using Hadoop, Pig, or Hive at their workplace can use the tips provided in this book
to help make their jobs faster and more efficient. A curious Big Data professional

can use this book to understand the expanding horizons of Hadoop and how it is
broadening its scope by embracing other paradigms, not just MapReduce. Finally, a
Hadoop 1.X user can get insights into the repercussions of upgrading to Hadoop 2.X.
The book assumes familiarity with Hadoop, but the reader need not be an expert.
Access to a Hadoop installation, either in your organization, on the cloud, or on your
desktop/notebook is recommended to try some of the concepts.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The FileInputFormat subclass and
associated classes are commonly used for jobs taking inputs from HFDS."
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A block of code is set as follows:

return new CombineFileRecordReader<LongWritable,
Text> ( (CombineFileSplit) inputSplit, taskAttemptContext,
MasteringHadoopCombineFileRecordReader.class) ;

}

Any command-line input or output is written as follows:

14/04/10 07:50:03 INFO input.FileInputFormat: Total input paths to
process : 441

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The former is called
a Map-side join and the latter is called a Reduce-side join."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.
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Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

You can also download latest code bundles and sample files from https://github.
com/karanth/MasteringHadoop.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[o]
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"There's nothing that cannot be found through some search engine or on the
Internet somewhere."

-Eric Schmidt, Executive Chairman, Google

Hadoop is the de facto open source framework used in the industry for large scale,
massively parallel, and distributed data processing. It provides a computation
layer for parallel and distributed computation processing. Closely associated with
the computation layer is a highly fault-tolerant data storage layer, the Hadoop
Distributed File System (HDFS). Both the computation and data layers run on
commodity hardware, which is inexpensive, easily available, and compatible with
other similar hardware.

In this chapter, we will look at the journey of Hadoop, with a focus on the features
that make it enterprise-ready. Hadoop, with 6 years of development and deployment
under its belt, has moved from a framework that supports the MapReduce paradigm
exclusively to a more generic cluster-computing framework. This chapter covers the
following topics:

* An outline of Hadoop's code evolution, with major milestones highlighted

* Anintroduction to the changes that Hadoop has undergone as it has
moved from 1.X releases to 2.X releases, and how it is evolving into a
generic cluster-computing framework

* Anintroduction to the options available for enterprise-grade Hadoop,
and the parameters for their evaluation

* Anoverview of a few popular enterprise-ready Hadoop distributions

www.it-ebooks.info


http://www.it-ebooks.info/

Hadoop 2.X

The inception of Hadoop

The birth and evolution of the Internet led to World Wide Web (WWW), a huge set
of documents written in the markup language, HTML, and linked with one another
via hyperlinks. Clients, known as browsers, became the user's window to WWW.
Ease of creation, editing, and publishing of these web documents meant an explosion
of document volume on the Web.

In the latter half of the 90s, the huge volume of web documents led to discoverability
problems. Users found it hard to discover and locate the right document for their
information needs, leading to a gold rush among web companies in the space of web
discovery and search. Search engines and directory services for the Web, such as
Lycos, Altavista, Yahoo!, and Ask Jeeves, became commonplace.

These search engines started ingesting and summarizing the Web. The process

of traversing the Web and ingesting the documents is known as crawling. Smart
crawlers, those that can download documents quickly, avoid link cycles, and detect
document updates, have been developed.

In the early part of this century, Google emerged as the torchbearer of the search
technology. Its success was attributed not only to the introduction of robust,
spam-defiant relevance technology, but also its minimalistic approach, speed,
and quick data processing. It achieved the former goals by developing novel
concepts such as PageRank, and the latter goals by innovative tweaking and
applying existing techniques, such as MapReduce, for large-scale parallel and
distributed data processing.

PageRank is an algorithm named after Google's founder Larry Page.
It is one of the algorithms used to rank web search results for a user.
Search engines use keyword matching on websites to determine
relevance corresponding to a search query. This prompts spammers
to include many keywords, relevant or irrelevant, on websites to
trick these search engines and appear in almost all queries. For

S example, a car dealer can include keywords related to shopping
or movies and appear in a wider range of search queries. The user
experience suffers because of irrelevant results.

PageRank thwarted this kind of fraud by analyzing the quality and
quantity of links to a particular web page. The intention was that
important pages have more inbound links.

[12]
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In Circa 2004, Google published and disclosed its MapReduce technique and
implementation to the world. It introduced Google File System (GFS) that
accompanies the MapReduce engine. Since then, the MapReduce paradigm has
become the most popular technique to process massive datasets in parallel and
distributed settings across many other companies. Hadoop is an open source
implementation of the MapReduce framework, and Hadoop and its associated
filesystem, HDEFS, are inspired by Google's MapReduce and GFS, respectively.

Since its inception, Hadoop and other MapReduce-based systems run a diverse set
of workloads from different verticals, web search being one of them. As an example,
Hadoop is extensively used in http://www.last.fm/ to generate charts and track
usage statistics. It is used for log processing in the cloud provider, Rackspace.
Yahoo!, one of the biggest proponents of Hadoop, uses Hadoop clusters not only to
build web indexes for search, but also to run sophisticated advertisement placement
and content optimization algorithms.

The evolution of Hadoop

Around the year 2003, Doug Cutting and Mike Cafarella started work on a project
called Nutch, a highly extensible, feature-rich, and open source crawler and indexer
project. The goal was to provide an off-the-shelf crawler to meet the demands of
document discovery. Nutch can work in a distributed fashion on a handful of machines
and be polite by respecting the robots. txt file on websites. It is highly extensible

by providing the plugin architecture for developers to add custom components, for
example, third-party plugins, to read different media types from the Web.

Robot Exclusion Standard or the robots.txt protocol is an advisory
protocol that suggests crawling behavior. It is a file placed on website

roots that suggest the public pages and directories that can or cannot
’ be crawled. One characteristic of a polite crawler is its respect for the

advisory instructions placed within the robots . txt file.

Nutch, together with indexing technologies such as Lucene and Solr, provided

the necessary components to build search engines, but this project was not at web
scale. The initial demonstration of Nutch involved crawling 100 million web pages
using four machines. Moreover, debugging and maintaining it was tedious. In

2004, concepts from the seminal MapReduce and GFS publications from Google
addressed some of Nutch's scaling issues. The Nutch contributors started integrating
distributed filesystem features and the MapReduce programming model into the
project. The scalability of Nutch improved by 2006, but it was not yet web scale. A
few 100 million web documents could be crawled and indexed using 20 machines.
Programming, debugging, and maintaining these search engines became easier.

[13]
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In 2006, Yahoo hired Doug Cutting, and Hadoop was born. The Hadoop project was
part of Apache Software Foundation (ASF), but was factored out of the existing
Nutch project and allowed to evolve independently. A number of minor releases
were done between 2006 and 2008, at the end of which Hadoop became a stable

and web-scale data-processing MapReduce framework. In 2008, Hadoop won the
terabyte sort benchmark competition, announcing its suitability for large-scale,
reliable cluster-computing using MapReduce.

Hadoop's genealogy

The Hadoop project has a long genealogy, starting from the early releases in

2007 and 2008. This project that is part of Apache Software Foundation (ASF) will

be termed Apache Hadoop throughout this book. The Apache Hadoop project is the
parent project for subsequent releases of Hadoop and its distribution. It is analogous
to the main stem of a river, while branches or distributions can be compared to the
distributaries of a river.

The following figure shows the Hadoop lineage with respect to Apache Hadoop.
In the figure, the black squares represent the major Apache Hadoop releases, and
the ovals represent the distributions of Hadoop. Other releases of Hadoop are
represented by dotted black squares.
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Apache Hadoop has three important branches that are very relevant. They are:

e The 0.20.1 branch
e The 0.20.2 branch
e The 0.21 branch

The Apache Hadoop releases followed a straight line till 0.20. It always had a
single major release, and there was no forking of the code into other branches. At
release 0.20, there was a fan out of the project into three major branches. The 0.20.2
branch is often termed MapReduce v1.0, MRv1, or simply Hadoop 1.0.0. The 0.21
branch is termed MapReduce v2.0, MRv2, or Hadoop 2.0. A few older distributions
are derived from 0.20.1. The year 2011 marked a record number of releases across
different branches.

There are two other releases of significance, though they are not considered major
releases. They are the Hadoop-0.20-append and Hadoop-0.20-Security releases.
These releases introduced the HDFS append and security-related features into
Hadoop, respectively. With these enhancements, Apache Hadoop came closer

to becoming enterprise-ready.

Hadoop-0.20-append

Append is the primary feature of the Hadoop-0.20-append release. It allows users
to run HBase without the risk of data loss. HBase is a popular column-family store
that runs on HDFS, providing an online data store in a batch-oriented Hadoop
environment. Specifically, the append feature helps write durability of HBase logs,
ensuring data safety. Traditionally, HDFS supported input-output for MapReduce
batch jobs. The requirement for these jobs was to open a file once, write a lot of data
into it, and close the file. The closed file was immutable and read many times. The
semantics supported were write-once-read-many-times. No one could read the file
when a write was in progress.

Any process that failed or crashed during a write had to rewrite the file. In MapReduce,
a user always reran tasks to generate the file. However, this is not true for transaction
logs for online systems such as HBase. If the log-writing process fails, it can lead to data
loss as the transaction cannot be reproduced. Reproducibility of a transaction, and in
turn data safety, comes from log writing. The append feature in HDFS mitigates this
risk by enabling HBase and other transactional operations on HDFS.

[15]
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Hadoop-0.20-security

The Hadoop team at Yahoo took the initiative to add security-related features in

the Hadoop-0.20-Security release. Enterprises have different teams, with each team
working on different kinds of data. For compliance, client privacy, and security,
isolation, authentication, and authorization of Hadoop jobs and data is important.
The security release is feature-rich to provide these three pillars of enterprise security.

The full Kerberos authentication system is integrated with Hadoop in this release.
Access Control Lists (ACLs) were introduced on MapReduce jobs to ensure proper
authority in exercising jobs and using resources. Authentication and authorization
put together provided the isolation necessary between both jobs and data of the
different users of the system.

Hadoop's timeline

The following figure gives a timeline view of the major releases and milestones of
Apache Hadoop. The project has been there for 8 years, but the last 4 years has seen
Hadoop make giant strides in big data processing. In January 2010, Google was
awarded a patent for the MapReduce technology. This technology was licensed

to the Apache Software Foundation 4 months later, a shot in the arm for Hadoop.
With legal complications out of the way, enterprises —small, medium, and large —
were ready to embrace Hadoop. Since then, Hadoop has come up with a number

of major enhancements and releases. It has given rise to businesses selling Hadoop
distributions, support, training, and other services.

2004 - Google
MapReduce + 2006 - Hadoop Nov 2008 -  Sep 2009 - Aug 2010 - Dec 2011 - Aug 2013 -
GFS Paper Project Born Hadoop 0.19 Hadoop 0.20.1 Hadoop 0.21 Hadoop 1.0.0 Hadoop 1.2.1
April 2010
Google license
to ASF
2004-2006 Nutch
scaling on MapReduce
+ GFS concepts
2003 - Nutch QQOST' Hsdo"p
; wins Terabyte
Project started Sort Benchmark
April 2009 - Feb 2010 - Sep 2011 - Oct 2012 - Oct 2013 -
Hadoop 0.20.0 Hadoop 0.20.2  Hadoop Hadoop Hadoop-2.2.0
0.20.203  0.20.2-alpha
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Hadoop 1.0 releases, referred to as 1.X in this book, saw the inception and evolution
of Hadoop as a pure MapReduce job-processing framework. It has exceeded its
expectations with a wide adoption of massive data processing. The stable 1.X release
at this point of time is 1.2.1, which includes features such as append and security.
Hadoop 1.X tried to stay flexible by making changes, such as HDFS append, to
support online systems such as HBase. Meanwhile, big data applications evolved

in range beyond MapReduce computation models. The flexibility of Hadoop 1.X
releases had been stretched; it was no longer possible to widen its net to cater to

the variety of applications without architectural changes.

Hadoop 2.0 releases, referred to as 2.X in this book, came into existence in 2013.

This release family has major changes to widen the range of applications Hadoop can
solve. These releases can even increase efficiencies and mileage derived from existing
Hadoop clusters in enterprises. Clearly, Hadoop is moving fast beyond MapReduce
to stay as the leader in massive scale data processing with the challenge of being
backward compatible. It is becoming a generic cluster-computing and storage
platform from being only a MapReduce-specific framework.

Hadoop 2.X

The extensive success of Hadoop 1.X in organizations also led to the understanding
of its limitations, which are as follows:

* Hadoop gives unprecedented access to cluster computational resources to
every individual in an organization. The MapReduce programming model is
simple and supports a develop once deploy at any scale paradigm. This leads to
users exploiting Hadoop for data processing jobs where MapReduce is not a
good fit, for example, web servers being deployed in long-running map jobs.
MapReduce is not known to be affable for iterative algorithms. Hacks were
developed to make Hadoop run iterative algorithms. These hacks posed
severe challenges to cluster resource utilization and capacity planning.

* Hadoop 1.X has a centralized job flow control. Centralized systems are hard
to scale as they are the single point of load lifting. JobTracker failure means
that all the jobs in the system have to be restarted, exerting extreme pressure
on a centralized component. Integration of Hadoop with other kinds of
clusters is difficult with this model.

[17]
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* The early releases in Hadoop 1.X had a single NameNode that stored all
the metadata about the HDFS directories and files. The data on the entire
cluster hinged on this single point of failure. Subsequent releases had a cold
standby in the form of a secondary NameNode. The secondary NameNode
merged the edit logs and NameNode image files, periodically bringing in
two benefits. One, the primary NameNode startup time was reduced as
the NameNode did not have to do the entire merge on startup. Two, the
secondary NameNode acted as a replica that could minimize data loss on
NameNode disasters. However, the secondary NameNode (secondary
NameNode is not a backup node for NameNode) was still not a hot standby,
leading to high failover and recovery times and affecting cluster availability.

* Hadoop 1.X is mainly a Unix-based massive data processing framework.
Native support on machines running Microsoft Windows Server is not
possible. With Microsoft entering cloud computing and big data analytics
in a big way, coupled with existing heavy Windows Server investments in
the industry, it's very important for Hadoop to enter the Microsoft Windows
landscape as well.

* Hadoop's success comes mainly from enterprise play. Adoption of Hadoop
mainly comes from the availability of enterprise features. Though Hadoop
1.X tries to support some of them, such as security, there is a list of other
features that are badly needed by the enterprise.

Yet Another Resource Negotiator (YARN)

In Hadoop 1.X, resource allocation and job execution were the responsibilities

of JobTracker. Since the computing model was closely tied to the resources in

the cluster, MapReduce was the only supported model. This tight coupling led to
developers force-fitting other paradigms, leading to unintended use of MapReduce.

The primary goal of YARN is to separate concerns relating to resource management
and application execution. By separating these functions, other application paradigms
can be added onboard a Hadoop computing cluster. Improvements in interoperability
and support for diverse applications lead to efficient and effective utilization of
resources. It integrates well with the existing infrastructure in an enterprise.

Achieving loose coupling between resource management and job management
should not be at the cost of loss in backward compatibility. For almost 6 years,

Hadoop has been the leading software to crunch massive datasets in a parallel

and distributed fashion. This means huge investments in development; testing
and deployment were already in place.

[18]
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YARN maintains backward compatibility with Hadoop 1.X (hadoop-0.20.205+) APIs.
An older MapReduce program can continue execution in YARN with no code changes.
However, recompiling the older code is mandatory.

Architecture overview

The following figure lays out the architecture of YARN. YARN abstracts out resource
management functions to a platform layer called ResourceManager (RM). There is

a per-cluster RM that primarily keeps track of cluster resource usage and activity.

It is also responsible for allocation of resources and resolving contentions among
resource seekers in the cluster. RM uses a generalized resource model and is agnostic
to application-specific resource needs. For example, RM need not know the resources
corresponding to a single Map or Reduce slot.

Pig ’ ‘ Hive ‘ Other S
MapReduce Pig Hive Graph
MapReduce )
(Resource Management
+ YARN
Job Processing) ) (Resource Management)
e N |:|,> e 3\
HDFS HDFS
(Storage) (Storage)
N J N J
Hadoop 1.X Hadoop 2.X

Planning and executing a single job is the responsibility of Application Master (AM).
There is an AM instance per running application. For example, there is an AM for
each MapReduce job. It has to request for resources from the RM, use them to execute
the job, and work around failures, if any.

The general cluster layout has RM running as a daemon on a dedicated machine
with a global view of the cluster and its resources. Being a global entity, RM can
ensure fairness depending on the resource utilization of the cluster resources. When
requested for resources, RM allocates them dynamically as a node-specific bundle
called a container. For example, 2 CPUs and 4 GB of RAM on a particular node can
be specified as a container.

[19]
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Every node in the cluster runs a daemon called NodeManager (NM). RM uses

NM as its node local assistant. NMs are used for container management functions,
such as starting and releasing containers, tracking local resource usage, and fault
reporting. NMs send heartbeats to RM. The RM view of the system is the aggregate
of the views reported by each NM.

Jobs are submitted directly to RMs. Based on resource availability, jobs are scheduled
to run by RMs. The metadata of the jobs are stored in persistent storage to recover
from RM crashes. When a job is scheduled, RM allocates a container for the AM of
the job on a node in the cluster.

AM then takes over orchestrating the specifics of the job. These specifics include
requesting resources, managing task execution, optimizations, and handling tasks
or job failures. AM can be written in any language, and different versions of AM
can execute independently on a cluster.

An AM resource request contains specifications about the locality and the kind of
resource expected by it. RM puts in its best effort to satisfy AM's needs based on
policies and availability of resources. When a container is available for use by AM,
it can launch application-specific code in this container. The container is free to
communicate with its AM. RM is agnostic to this communication.

Storage layer enhancements

A number of storage layer enhancements were undertaken in the Hadoop 2.X releases.
The number one goal of the enhancements was to make Hadoop enterprise ready.

High availability

NameNode is a directory service for Hadoop and contains metadata pertaining

to the files within cluster storage. Hadoop 1.X had a secondary Namenode, a cold
standby that needed minutes to come up. Hadoop 2.X provides features to have a
hot standby of NameNode. On the failure of an active NameNode, the standby can
become the active Namenode in a matter of minutes. There is no data loss or loss
of NameNode service availability. With hot standbys, automated failover becomes
easier too.

[20]
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The key to keep the standby in a hot state is to keep its data as current as possible
with respect to the active Namenode. This is achieved by reading the edit logs of the
active NameNode and applying it onto itself with very low latency. The sharing of
edit logs can be done using the following two methods:

A shared NFS storage directory between the active and standby NameNodes:
the active writes the logs to the shared location. The standby monitors the
shared directory and pulls in the changes.

A quorum of Journal Nodes: the active NameNode presents its edits to a
subset of journal daemons that record this information. The standby node
constantly monitors these journal daemons for updates and syncs the state
with itself.

The following figure shows the high availability architecture using a quorum of
Journal Nodes. The data nodes themselves send block reports directly to both the

active and standby NameNodes:

% Zookeeper | | Zookeeper | | Zookeeper &
Zookeeper Failover Zookeeper Failover
Controller ControIIer
NameNode I:> Journal Journal Journal I:> NameNode
(Active) Node Node Node (Standby)

R& f

DataNode

DataNode

DataNode

Zookeeper or any other High Availability monitoring service can be used to track
NameNode failures. With the assistance of Zookeeper, failover procedures to
promote the hot standby as the active NameNode can be triggered.

[21]
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HDFS Federation

Similar to what YARN did to Hadoop's computation layer, a more generalized
storage model has been implemented in Hadoop 2.X. The block storage layer has
been generalized and separated out from the filesystem layer. This separation has
given an opening for other storage services to be integrated into a Hadoop cluster.
Previously, HDFS and the block storage layer were tightly coupled.

One use case that has come forth from this generalized storage model is HDFS
Federation. Federation allows multiple HDFS namespaces to use the same
underlying storage. Federated NameNodes provide isolation at the filesystem
level. In Chapter 10, HDFS Federation, we will delve into the details of this feature.

HDFS snapshots

Snapshots are point-in-time, read-only images of the entire or a particular subset of a
filesystem. Snapshots are taken for three general reasons:

* Protection against user errors
* Backup

* Disaster recovery

Snapshotting is implemented only on NameNode. It does not involve copying data
from the data nodes. It is a persistent copy of the block list and file size. The process
of taking a snapshot is almost instantaneous and does not affect the performance

of NameNode.

Other enhancements

There are a number of other enhancements in Hadoop 2.X, which are as follows:

* The wire protocol for RPCs within Hadoop is now based on Protocol
Buffers. Previously, Java serialization via Writables was used. This
improvement not only eases maintaining backward compatibility,
but also aids in rolling the upgrades of different cluster components.
RPCs allow for client-side retries as well.

* HDFS in Hadoop 1.X was agnostic about the type of storage being used.
Mechanical or SSD drives were treated uniformly. The user did not have any
control on data placement. Hadoop 2.X releases in 2014 are aware of the type
of storage and expose this information to applications as well. Applications
can use this to optimize their data fetch and placement strategies.

* HDFS append support has been brought into Hadoop 2.X.

[22]
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* HDFS access in Hadoop 1.X releases has been through HDFS clients. In
Hadoop 2.X, support for NFSv3 has been brought into the NFS gateway
component. Clients can now mount HDFS onto their compatible local
filesystem, allowing them to download and upload files directly to and
from HDFS. Appends to files are allowed, but random writes are not.

* A number of I/O improvements have been brought into Hadoop. For
example, in Hadoop 1.X, clients collocated with data nodes had to read data
via TCP sockets. However, with short-circuit local reads, clients can directly
read off the data nodes. This particular interface also supports zero-copy
reads. The CRC checksum that is calculated for reads and writes of data has
been optimized using the Intel SSE4.2 CRC32 instruction.

Support enhancements

Hadoop is also widening its application net by supporting other platforms and
frameworks. One dimension we saw was onboarding of other computational
models with YARN or other storage systems with the Block Storage layer.

The other enhancements are as follows:

* Hadoop 2.X supports Microsoft Windows natively. This translates to a huge
opportunity to penetrate the Microsoft Windows server land for massive
data processing. This was partially possible because of the use of the highly
portable Java programming language for Hadoop development. The
other critical enhancement was the generalization of compute and storage
management to include Microsoft Windows.

* As part of Platform-as-a-Service offerings, cloud vendors give out on-demand
Hadoop as a service. OpenStack support in Hadoop 2.X makes it conducive for
deployment in elastic and virtualized cloud environments.

Hadoop distributions

In the present day, Hadoop and its individual ecosystem components are complex
projects. As we saw earlier in this chapter, Hadoop has a number of different forks
or code branches over a large number of releases. There are also a lot of different
distributions of Hadoop. The distribution with the most activity and community
involvement is the one that resides as part of Apache Software Foundation. This
distribution is free and has a very large community behind it. The community
contributions to the Apache Hadoop distribution shape the general direction taken
by Hadoop. Support in the Apache Hadoop distribution is via online forums, where
questions are addressed to the community and answered by its members.
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Deployment and management of the Apache Hadoop distribution within an
enterprise is tedious and nontrivial. Apache Hadoop is written in Java and optimized
to run on Linux filesystems. This can lead to impedance mismatch between Hadoop
and existing enterprise applications and infrastructures. Integration between the
Hadoop ecosystem components is buggy and not straightforward.

To bridge these issues, a few companies came up with distribution models for
Hadoop. There are three primary kinds of Hadoop distribution flavors. One flavor
is to provide commercial or paid support and training for the Apache Hadoop
distribution. Secondly, there are companies that provide a set of supporting tools
for deployment and management of Apache Hadoop as an alternative flavor. These
companies also provide robust integration layers between the different Hadoop
ecosystem components. The third model is for companies to supplement Apache
Hadoop with proprietary features and code. These features are paid enhancements,
many of which solve certain use cases.

The parent of all these distributions is Apache Software Foundation's Hadoop
sources. Users of these other distributions, particularly from companies following
the third distribution model, might integrate proprietary code into Apache Hadoop.
However, these distributions will always stay in touching distance with Apache
Hadoop and follow its trends. Distributions are generally well tested and supported
in a deep and timely manner, saving administration and management costs for an
organization. The downside of using a distribution other than Apache Hadoop is
vendor lock-in. The tools and proprietary features provided by one vendor might not
be available in another distribution or be noncompatible with other third-party tools,
bringing in a cost of migration. The cost of migration is not limited to technology
shifts alone. It also involves training, capacity planning, and rearchitecting costs for
the organization.

Which Hadoop distribution?

There are a number of Hadoop distributions offered by companies since 2008.
Distributions excel in some or the other attribute. Decisions on the right distribution
for an enterprise or organization should be made on a case-by-case basis. There are
different criteria to evaluate distributions. We will inspect a few important ones.
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Performance

The ability of the Hadoop distribution running on a cluster to process data quickly
is obviously a desired feature. Traditionally, this has been the cornerstone for

all performance benchmarks. This particular performance measure is termed as
"throughput". A wide range of analysis workloads that are being processed on
Hadoop, coupled with the diversity of use cases supported by analytics, brings in
"latency" as an important performance criterion as well. The ability of the cluster
to ingest input data and emit output data at a quick rate becomes very important
for low-latency analytics. This input-output cost forms an integral part of the data
processing workflow.

Latency is the time required to perform an action. It is
measured in time units such as milliseconds, seconds,

% minutes, or hours.
s

Throughput is the number of actions that can be performed
in unit time. It gives a sense of the amount of work done for
every time unit.

Scaling up hardware is one way to achieve low latency independent of the Hadoop
distribution. However, this approach will be expensive and saturate out quickly.
Architecturally, low I/O latency can be achieved in different ways; one will be able
to reduce the number of intermediate data-staging layers between the data source or
the data sink and Hadoop cluster. Some distributions provide streaming writes into
the Hadoop cluster in an attempt to reduce intermediate staging layers. Operators
used for filtering, compressing, and lightweight data processing can be plugged into
the streaming layer to preprocess the data before it flows into storage.

The Apache Hadoop distribution is written in Java, a language that runs in its

own virtual machine. Though this increases application portability, it comes with
overheads such as an extra layer of indirection during execution by means of byte-code
interpretation and background garbage collection. It is not as fast as an application
directly compiled for target hardware. Some vendors optimize their distributions

for particular hardware, increasing job performance per node. Features such as
compression and decompression can also be optimized for certain hardware types.

[25]

www.it-ebooks.info


http://www.it-ebooks.info/

Hadoop 2.X

Scalability

Over time, data outgrows the physical capacity of the compute and storage
resources provisioned by an organization. This will require expansion of resources
in both the compute and storage dimensions. Scaling can be done vertically or
horizontally. Vertical scaling or scaling up is expensive and tightly bound to
hardware advancements. Lack of elasticity is another downside with vertical scaling.
Horizontal scaling or scaling out is a preferred mode of scaling compute and storage.

Ideally, scaling out should be limited to addition of more nodes and disks to the
cluster network, with minimal configuration changes. However, distributions might
impose different degrees of difficulty, both in terms of effort and cost on scaling a
Hadoop cluster. Scaling out might mean heavy administrative and deployment costs,
rewriting a lot of the application's code, or a combination of both. Scaling costs will
depend on the existing architecture and how it complements and complies with the
Hadoop distribution that is being evaluated.

Vertical scaling or scaling up is the process of adding more resources to
a single node in a system. For example, adding additional CPUs, memory,
or storage to a single computer comes under this bucket of scaling.
Vertical scaling increases capacity, but does not decrease system load.

% Horizontal scaling or scaling out is the process of adding additional
/=" mnodes to a system. For example, adding another computer to a distributed
system by connecting it to the network comes under this category of
scaling. Horizontal scaling decreases the load on a system as the new
node takes a part of the load. The capacity of individual nodes does not
increase.

Reliability

Any distributed system is subject to partial failures. Failures can stem from
hardware, software, or network issues, and have a smaller mean time when running
on commodity hardware. Dealing with these failures without disrupting services

or compromising data integrity is the primary goal of any highly available and
consistent system.

A distribution that treats reliability seriously provides high availability of its
components out of the box. Eliminating Single Point of Failures (SPOF) ensures
availability. The means of eliminating SPOFs is to increase the redundancy of
components. For a long time, Apache Hadoop had a single NameNode. Any failure
to the NameNode's hardware meant the entire cluster becoming unusable. Now,
there is the concept of a secondary NameNode and hot standbys that can be used
to restore the name node in the event of NameNode failure.
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Distributions that reduce manual tasks for cluster administrators are more reliable.
Human intervention is directly correlated to higher error rates. An example of this
is handling failovers. Failovers are critical periods for systems as they operate with
lower degrees of redundancy. Any error during these periods can be disastrous for
the application. Also, automated failover handling means the system can recover
and run in a short amount of time. Lower the recovery time from failure better is the
availability of the system.

The integrity of data needs to be maintained during normal operations and when
failures are encountered. Data checksums for error detection and possible recovery,
data replication, data mirroring, and snapshots are some ways to ensure data safety.
Replication follows the redundancy theme to ensure data availability. Rack-aware
smart placement of data and handling under or over replication are parameters

to watch out for. Mirroring helps recovery from site failures by asynchronous
replication across the Internet. Snapshotting is a desirable feature in any distribution;
not only do they aid disaster recovery but also facilitate offline access to data. Data
analytics involves experimentation and evaluation of rich data. Snapshots can be a
way to facilitate this to a data scientist without disrupting production.

Manageability

Deploying and managing the Apache Hadoop open source distribution requires
internal understanding of the source code and configuration. This is not a widely
available skill in IT administration. Also, administrators in enterprises are caretakers
of a wide range of systems, Hadoop being one of them.

Versions of Hadoop and its ecosystem components that are supported by

a distribution might need to be evaluated for suitability. Newer versions of
Hadoop support paradigms other than MapReduce within clusters. Depending
on the plans of the enterprise, newer versions can increase the efficiency of
enterprise-provisioned hardware.

Capabilities of Hadoop management tools are key differentiators when choosing

an appropriate distribution for an enterprise. Management tools need to provide
centralized cluster administration, resource management, configuration management,
and user management. Job scheduling, automatic software upgrades, user quotas, and
centralized troubleshooting are other desirable features.
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Monitoring cluster health is also a key feature in the manageability function.
Dashboards for visualization of cluster health and integration points for other tools
are good features to have in distribution. Ease of data access is another parameter
that needs to be evaluated; for example, support for POSIX filesystems on Hadoop
will make browsing and accessing data convenient for engineers and scientists
within any enterprise. On the flip side, this makes mutability of data possible,
which can prove to be risky in certain situations.

Evaluation of options for data security of a distribution is extremely important

as well. Data security entails authentication of a Hadoop user and authorization

to datasets and data confidentiality. Every organization or enterprise might have

its authentication systems such as Kerberos or LDAP already in place. Hadoop
distribution, with capabilities to integrate with existing authentication systems, is a
big plus in terms of lower costs and higher compliance. Fine-grained authorization
might help control access to datasets and jobs at different levels. When data is
moving in and out of an organization, encryption of the bits travelling over the wire
becomes important to protect against data snooping.

Distributions offer integration with development and debugging tools. Developers
and scientists in an enterprise will already be using a set of tools. The more overlap
between the toolset used by the organization and distribution, the better it is. The
advantage of overlap not only comes in the form of licensing costs, but also in a
lesser need for training and orientation. It might also increase productivity within
the organization as people are already accustomed to certain tools.

Available distributions

There are a number of distributions of Hadoop. A comprehensive list can be found
at http://wiki.apache.org/hadoop/Distributions%$20and%20Commercial%20
Support. We will be examining four of them:

* Cloudera Distribution of Hadoop (CDH)

* Hortonworks Data Platform (HDP)

* MapR

* Pivotal HD
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Cloudera Distribution of Hadoop (CDH)

Cloudera was formed in March 2009 with a primary objective of providing Apache
Hadoop software, support, services, and training for enterprise-class deployment of
Hadoop and its ecosystem components. The software suite is branded as Cloudera
Distribution of Hadoop (CDH). The company being one of the Apache Software
Foundation sponsors, pushes most enhancements it makes during support and
servicing of Hadoop deployments upstream back into Apache Hadoop.

CDH is in its fifth major version right now and is considered a mature Hadoop
distribution. The paid version of CDH comes with a proprietary management
software, Cloudera Manager.

Hortonworks Data Platform (HDP)

The Yahoo Hadoop team spurned off to form Hortonworks in June, 2011, a company
with objectives similar to Cloudera. Their distribution is branded as Hortonworks
Data Platform (HDP). The HDP suite's Hadoop and other software are completely
free, with paid support and training. Hortonworks also pushes enhancements
upstream, back to Apache Hadoop.

HDP is in its second major version currently and is considered the rising star in
Hadoop distributions. It comes with a free and open source management software
called Ambeari.

MapR

MapR was founded in 2009 with a mission to bring enterprise-grade Hadoop. The
Hadoop distribution they provide has significant proprietary code when compared
to Apache Hadoop. There are a handful of components where they guarantee
compatibility with existing Apache Hadoop projects. Key proprietary code for

the MapR distribution is the replacement of HDFS with a POSIX-compatible NFS.
Another key feature is the capability of taking snapshots.

MapR comes with its own management console. The different grades of the product
are named as M3, M5, and M7. M5 is a standard commercial distribution from the
company, M3 is a free version without high availability, and M7 is a paid version
with a rewritten HBase APL
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Pivotal HD

Greenplum is a marquee parallel data store from EMC. EMC integrated Greenplum
within Hadoop, giving way to an advanced Hadoop distribution called Pivotal HD.
This move alleviated the need to import and export data between stores such as
Greenplum and HDFS, bringing down both costs and latency.

The HAWQ technology provided by Pivotal HD allows efficient and low-latency
query execution on data stored in HDFS. The HAWQ technology has been found to
give 100 times more improvement on certain MapReduce workloads when compared
to Apache Hadoop. HAWQ also provides SQL processing in Hadoop, increasing its
popularity among users who are familiar with SQL.

Summary

In this chapter, we saw the evolution of Hadoop and some of its milestones and
releases. We went into depth on Hadoop 2.X and the changes it brings into Hadoop.
The key takeaways from this chapter are:

* MapReduce was born out of the necessity to gather, process, and index
data at web scale. Apache Hadoop is an open source distribution of the
MapReduce computational model.

* Inover 6 years of its existence, Hadoop has become the number one choice
as a framework for massively parallel and distributed computing. The
community has been shaping Hadoop to gear up for enterprise use. In
1.X releases, HDFS append and security, were the key features that made
Hadoop enterprise-friendly.

* MapReduce supports a limited set of use cases. Onboarding other paradigms
into Hadoop enables support for a wider range of analytics and can also
increase cluster resource utilization. In Hadoop 2.X, the JobTracker functions
are separated and YARN handles cluster resource management and
scheduling. MapReduce is one of the applications that can run on YARN.

* Hadoop's storage layer was enhanced in 2.X to separate the filesystem from
the block storage service. This enables features such as supporting multiple
namespaces and integration with other filesystems. 2.X shows improvements
in Hadoop storage availability and snapshotting.

* Distributions of Hadoop provide enterprise-grade management software,
tools, support, training, and services. Most distributions shadow Apache
Hadoop in their capabilities.

MapReduce is still an integral part of Hadoop's DNA. In the next chapter, we will
explore MapReduce optimizations and best practices.
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MapReduce is a programming model for parallel and distributed processing of data.
It consists of two steps: Map and Reduce. These steps are inspired from functional
programming, a branch of computer science that deals with mathematical functions
as computational units. Properties of functions such as immutability and statelessness
are attractive for parallel and distributed processing. They provide a high degree of
parallelism and fault tolerance at lower costs and semantic complexity.

In this chapter, we will look at advanced optimizations when running MapReduce
jobs on Hadoop clusters. Every MapReduce job has input data and a Map task per
split of this data. The Map task calls a map function repeatedly on every record,
represented as a key-value pair. The map is a function that transforms data from one
domain to another. The intermediate output records of each Map task are shuffled
and sorted before transferring it downstream to the Reduce tasks. Intermediate data
with the same keys go to the same Reduce task. The Reduce task calls the reduce
function for a key and all its associated values. Outputs are then collected and stored.

The Map step has the greatest degree of parallelism. It is used to implement
operations such as filtering, sorting, and transformations on data. The Reduce step
is used to implement summarization operations on data. Hadoop also provides
features such as DistributedCache as a side channel to distribute data and Counters
to collect job-related global statistics. We will be looking at their utility in processing
MapReduce jobs.

The advanced features and optimizations will be explained with the help of
examples of code. Hadoop 2.2.0 will be used throughout this chapter. It is assumed
that you have access to the Java development environment and a Hadoop cluster,
either in your organization, the cloud, or as a standalone/pseudo-distributed mode
installation on your personal computers. You need to have knowledge on how to
compile Java programs and run Hadoop jobs to try out the examples.
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In this chapter, we will look at the following topics:

* The different phases of a MapReduce job and the optimizations that can be
applied at each phase. The input, Map, Shuffle/Sort, Reduce, and the output
phases will be covered in depth with relevant examples.

* The application of useful Hadoop features such as DistributedCache
and Counters.

* The types of data joins that can be achieved in a MapReduce job and the
patterns to achieve them.

MapReduce input

The Map step of a MapReduce job hinges on the nature of the input provided to the
job. The Map step provides maximum parallelism gains, and crafting this step smartly
is important for job speedup. Data is split into chunks, and Map tasks operate on

each of these chunks of data. Each chunk is called InputsSplit. A Map task is asked
to operate on each InputsSplit class. There are two other classes, InputFormat and
RecordReader, which are significant in handling inputs to Hadoop jobs.

The InputFormat class

The input data specification for a MapReduce Hadoop job is given via the
InputFormat hierarchy of classes. The InputFormat class family has the
following main functions:

* Validating the input data. For example, checking for the presence of the file
in the given path.

* Splitting the input data into logical chunks (InputSplit) and assigning each
of the splits to a Map task.

* Instantiating a RecordReader object that can work on each InputSplit class
and producing records to the Map task as key-value pairs.

The FileInputFormat subclass and associated classes are commonly used for jobs
that take inputs from HFDS. The DBInputFormat subclass is a specialized class that
can be used to read data from a SQL database. CombineFileInputFormat is the
direct abstract subclass of the FileInputFormat class, which can combine multiple
files into a single split.
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The InputSplit class

The abstract Inputsplit class and its associated concrete classes represent
a byte view of the input data. An InputsSplit class is characterized by the
following main attributes:

* The input filename

* The byte offset in the file where the split starts

* The length of the split in bytes

* The node locations where the split resides
In HDFS, an Inputsplit class is created per file if the file size is less than the HDFS
block size. For example, if the HDFS block size is 128 MB, any file with a size less
than 128 MB resides in its own InputSplit class. For files that are broken up into
blocks (size of the file is greater than the HDFS block size), a more complex formula
is used to calculate Inputsplit. The InputSplit class has an upper bound of the

HDFS block size, unless the minimum size of a split is greater than the block size.
Such cases are rare and could lead to locality problems.

Based on the locations of the splits and the availability of resources, the scheduler
makes a decision on which node should execute the Map task for that split. The
split is then communicated to the node that executes the task.

InputSplitSize = Maximum(minSplitSize,
Minimum (blocksize, maxSplitSize))

minSplitSize :
mapreduce.input.fileinputformat.split.minsize

blocksize: dfs.blocksize

maxSplitSize -
mapreduce.input.fileinputformat.split.maxsize

. Inprevious releases of Hadoop, the minimum split size property
% was mapred.min. split.size and the maximum split size
s was given by the value of the property mapred.max.split.

size. These are deprecated now.
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The RecordReader class

Unlike Inputsplit, the Recordreader class presents a record view of the data to
the Map task. Recordreader works within each InputSplit class and generates
records from the data in the form of key-value pairs. The InputsSplit boundary

is a guideline for Recordreader and is not enforced. On one extreme, a custom
RecordReader class can be written to read an entire file (though this is not
encouraged). Most often, a Recordreader class will have to read from a subsequent
InputSplit class to present the complete record to the Map task. This happens
when records overlap InputSplit classes.

The reading of bytes from a subsequent Inputsplit class happens via the
FSDataInputStream objects. Though this reading does not respect locality in itself,
generally, it gathers only a few bytes from the next split and there is not a significant
performance overhead. But in some cases where record sizes are huge, this can have
a bearing on the performance due to significant byte transfers across nodes.

In the following diagram, a file with two HDFS blocks has the record R5 spanning
both blocks. It is assumed that the minimum split size is less than the block size. In
this case, RecordReader is going to gather the complete record by reading bytes off
the next block of data.

R1 R2 R3 R4 R5 R6 ; R7 ; R8 ; R9 ;R10

- N\ N

HDFS 1 HDFS 2

A AN /

File with two blocks and record R5 spanning blocks
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Hadoop's "small files” problem

Hadoop's problem with small files —files that are significantly smaller than the
HDFS block size —is well known. When dealing with small files as input, a Map
task is created for each of these files introducing bookkeeping overheads. The same
Map task is able to finish processing in a matter of a few seconds, a processing time
much smaller than the time taken to spawn and cleanup the task. Each object in the
NameNode occupies about 150 bytes of memory. Many small files will proliferate
in the presence of these objects and adversely affect NameNode's performance and
scalability. Reading a set of smaller files is also very inefficient because of the large
number of disk seeks and hops across DataNodes to fetch them.

Unfortunately, small files are a reality, but there are the following strategies to
handle small files:

* Combining smaller files into a bigger file as a preprocessing step before
storing it in HDFS and running the job. SequenceFile and TFile formats
are popular ways of combining smaller files into a bigger file. Using Hadoop
archive files (HAR) is another way of alleviating NameNode memory
pressures. HAR is a meta-filesystem that resides on top of HFDS.

* Using CombineFileInputFormat to combine multiple smaller files into
InputSplit. This also takes into consideration node and rack locality for
better performance. It may not relieve the memory requirements of the
NameNode though, as the number of files that need to be tracked still
remains the same.

To illustrate the working of CombineFileInputFormat, we have a public NSF grant
proposal abstracts dataset from the years 1990 to 2003 at https://archive.ics.
uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003. Though

the dataset has 130,000 grant proposals, we will consider a subset of 441 grants.

The standard output for a MapReduce Hadoop job that reads each line from the
proposals spawns 441 input splits, as shown in following snippet. In this sample job,
the number of reduce tasks has been set to zero:

14/04/10 07:50:03 INFO input.FileInputFormat: Total input paths to
process : 441

14/04/10 07:50:03 INFO mapreduce.JobSubmitter: number of splits:441

As we saw previously, inputs to a Hadoop MapReduce job are specified using the
InputFormat, InputSplit, and RecordReader classes. In this program, we will
combine all 441 proposals into a single split.
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CombineFileInputFormat is an abstract class that facilitates input specifications

to combine files. The only override that it expects the developer to fill is the
createRecordReader () method. This is a method that instantiates a custom
RecordReader class to read records. The CombineFileInputFormat class returns
the combineFileSplit object in the getSplits () method. Each split might be a
combination of blocks from different files. If the setMaxSplitSize () method is used
to set a maximum split size, local node files are combined in a split. Residue blocks
are combined with other blocks from the same rack. However, if this value is not set,
combining is not attempted at the node level; it is only attempted at the rack level. If
the setMaxSplitSize () method is used to set the maximum split size to the block
size in HDFS, default behavior is seen, that is, each block is a split.

The following code shows the concrete class based on this abstract class:

package MasteringHadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.util.LineReader;
import java.io.IOException;
public class MasteringHadoopCombineFileInputFormat extends
CombineFileInputFormat<LongWritable, Text>{
@Override
public RecordReader<LongWritable, Text>
createRecordReader (InputSplit inputSplit, TaskAttemptContext
taskAttemptContext) throws IOException {
return new CombineFileRecordReader<LongWritable,
Text> ( (CombineFileSplit) inputSplit, taskAttemptContext,
MasteringHadoopCombineFileRecordReader.class) ;
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Downloading the example code

M You can download the example code files for all Packt books you have
Q purchased from your account at http: //www. packtpub. com. If you

purchased this book elsewhere, you can visit ht tp: / /www.packtpub.

com/support and register to have the files e-mailed directly to you.

The CombineFileFormat class has an isSplitable ()
method. The default setting is true, but it can be made
false to ensure that a file is processed by a single Map task
in its entirety.

The following code shows the custom Recordreader class that is created to return
records from CombineFileSplit. The difference between CombineFileSplit and
FileSplit is the presence of multiple paths implying multiple offsets and lengths.
The custom RecordrReader class will be called for every file in the split. Therefore,
it is mandatory for the constructor of the custom Recordreader class to have an
Integer index that specifies the file that is being considered for record generation.

The second important method is nextKeyValue (), which generates the next

key-value pair. The getCurrentKey () and getCurrentValue () methods return
this generated key-value pair. In the following example, keys are byte offsets in
the file and values are lines of text. A LineReader object is used to read each line:

public static class MasteringHadoopCombineFileRecordReader extends

RecordRe

ader<LongWritable, Text>({

private LongWritable key;

private Text value;

private Path path;

private FileSystem fileSystem;

private LineReader lineReader;

private FSDataInputStream fsDataInputStream;

private Configuration configuration;

private int fileIndex;

private CombineFileSplit combineFileSplit;

private long start;

private long end;

publ

ic MasteringHadoopCombineFileRecordReader

(CombineFileSplit inputSplit, TaskAttemptContext
context, Integer index) throws IOException({

this.fileIndex = index;

this.combineFileSplit = inputSplit;

this.configuration = context.getConfiguration() ;
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this.path = inputSplit.getPath (index) ;
this.fileSystem =
this.path.getFileSystem(configuration) ;
this.fsDataInputStream = fileSystem.open (this.path) ;
this.lineReader = new
LineReader (this.fsDataInputStream,
this.configuration) ;

this.start = inputSplit.getOffset (index) ;

this.end = this.start + inputSplit.getLength (index) ;
this.key = new LongWritable(O0) ;

this.value = new Text ("");

}

@Override
public void initialize(InputSplit inputSplit,
TaskAttemptContext taskAttemptContext) throws
IOException, InterruptedException {

//Overloaded in the constructor.

@Override

public boolean nextKeyValue() throws IOException,
InterruptedException {

int offset = 0;

boolean isKeyValueAvailable = true;
if (this.start < this.end) {
offset = this.lineReader.readLine (this.value) ;

this.key.set (this.start) ;
this.start += offset;

if (offset == 0){
this.key.set (0);
this.value.set ("") ;
isKeyValueAvailable = false;

return isKeyValueAvailable;

@Override

public LongWritable getCurrentKey () throws IOException,
InterruptedException {
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return key;

@Override

public Text getCurrentValue () throws IOException,
InterruptedException {

return value;

@Override

public float getProgress () throws IOException,
InterruptedException {
this.combineFileSplit.getOffset (fileIndex) ;

long splitStart =

f(this.start < this.end)

}

return Math.min(1.0f, (this.start - splitStart)/
(float) (this.end - splitStart));

return O0;

}

@Override

public void close() throws IOException {
if (lineReader != null)

lineReader.close() ;

The Mapper class and the driver program are given in the following snippet. The
most important line in the driver is that which sets InputFormat as job.setInpu
tFormatClass (MasteringHadoop.MasteringHadoopCombineFileInputFormat.
class). When the program is executed, the standard output obtained is also given
after the snippet. The number of splits comes up as one. The size of the corpus in this
case is 5 MB while the HDFS block size is 128 MB.

package MasteringHadoop;

import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.

apache
apache
apache
apache
apache
apache
apache

.hadoop.
.hadoop.
.hadoop
.hadoop.
.hadoop.
.hadoop.
.hadoop

conf.Configuration;
fs.Path;

.mapreduce. *;

io.*;
mapreduce.lib.input.FileInputFormat;
mapreduce.lib.output.TextOutputFormat;

.util.GenericOptionsParser;
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import java.io.IOException;

public class CombineFilesMasteringHadoop

public static class CombineFilesMapper extends
Mapper<LongWritable, Text, LongWritable, Texts>{

@Override

protected void map (LongWritable key, Text value, Context
context) throws IOException, InterruptedException {
context.write (key, value);

}

public static void main(String args[]) throws IOException,
InterruptedException, ClassNotFoundException{

GenericOptionsParser parser = new
GenericOptionsParser (args) ;

Configuration config = parser.getConfiguration() ;
String[] remainingArgs = parser.getRemainingArgs () ;

Job job = Job.getInstance (config, "MasteringHadoop-
CombineDemo") ;

job.setOutputKeyClass (LongWritable.class) ;
job.setOutputValueClass (Text.class) ;
job.setMapperClass (CombineFilesMapper.class) ;
job.setNumReduceTasks (0) ;

job.setInputFormatClass (MasteringHadoop.MasteringHadoopCombineFile
InputFormat.class) ;

job.setOutputFormatClass (TextOutputFormat.class) ;
FileInputFormat.addInputPath(job, new
Path (remainingArgs [0])) ;
TextOutputFormat.setOutputPath (job, new
Path (remainingArgs[1])) ;
job.waitForCompletion (true) ;

}

The output is as shown as follows:

14/04/10 16:32:05 INFO input.FileInputFormat: Total input paths to
process : 441
14/04/10 16:32:06 INFO mapreduce.JobSubmitter: number of splits:1
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Filtering inputs

Filtering inputs to a job based on certain attributes is often required. Data-level
filtering can be done within the Maps, but it is more efficient to filter at the file
level before the Map task is spawned. Filtering enables only interesting files to be
processed by Map tasks and can have a positive effect on the runtime of the Map
by eliminating unnecessary file fetch. For example, files generated only within a
certain time period might be required for analysis.

Let's use the 441-grant proposal file corpus subset to illustrate filtering. Let's process
those files whose names match a particular regular expression and have a minimum
file size. Both of these are specified as job parameters—filter.name and filter.
min.size, respectively. Implementation entails extending the configured class

and implementing the pathFilter interface as shown in the following snippet.

The configured class is the base class for things that can be configured using
Configuration. The PathFilter interface is the interface that contains an accept ()
method. The accept () method implementation takes in a Path parameter and
returns true or false depending on whether the file has to be included in the input
or not. The outline of the class is shown in the following snippet:

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.IOException;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public static class MasteringHadoopPathAndSizeFilter extends
Configured implements PathFilter {

private Configuration configuration;
private Pattern filePattern;
private long filterSize;
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private FileSystem fileSystem;

@Override
public boolean accept(Path path) {
//Your accept override implementation goes here

@Override
public void setConf (Configuration conf) {
//Your setConf override implementation goes here

}

An important change is to override the setConf () method. This method is used

to set the private Configuration variable and read off any properties from it. In
the driver class, the job has to be informed about the presence of a filter using the
following line:

FileInputFormat.setInputPathFilter (job,
MasteringHadoopPathAndSizeFilter.class) ;

The implementation of the setconf () method is as follows:

@Override
public void setConf (Configuration conf){
this.configuration = conf;

if (this.configuration != null) {
String filterRegex =
this.configuration.get ("filter.name") ;

if (filterRegex != null){
this.filePattern =
Pattern.compile (filterRegex) ;

String filterSizeString =
this.configuration.get ("filter.min.size") ;
if (filterSizeString != null) {

this.filterSize =
Long.parselong (filterSizeString) ;

try{
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this.fileSystem =
FileSystem.get (this.configuration) ;
}
catch (IOException ioException) {
//Error handling

}

In the following code, the accept () method returns true for all directories.

The path of the current directory is one of the paths that will be provided to the
accept () method. It uses the Java regular expression classes such as pattern

and Matches to determine whether any of the file paths match the expression and
sets a Boolean variable appropriately. A second check is done to determine the

file size and compare it with the file size filter. The FileSystem object exposes a
getFileStatus () method that returns a FileStatus object, which can be examined
for its file attributes via getters.

@Override
public boolean accept(Path path) {
boolean isFileAcceptable = true;
try(
if (fileSystem.isDirectory (path)) {
return true;

if (filePattern != null) {
Matcher m =
filePattern.matcher (path.toString()) ;
isFileAcceptable = m.matches() ;

if (filterSize > 0)

long actualFileSize =
fileSystem.getFileStatus (path) .getLen() ;

if (actualFileSize > this.filterSize) {
isFileAcceptable &= true;

}

elsef
isFileAcceptable = false;
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catch (IOException ioException) {
//Error handling goes here.

return isFileAcceptable;

}

The following command line accepts files that have a999645 in their names and have
sizes greater than 2,500 bytes. If either parameter is omitted, no filter is applied for
that attribute.

hadoop jar MasteringHadoop-1.0-SNAPSHOT-jar-with-dependencies.jar
-D filter.name=.%*a999645.* -D filter.min.size=2500 grant-subset
grant-subset-filter

Three files pass the test and the output is shown as follows. The filtering happens
before the splits are decided.

14/04/10 21:34:38 INFO input.FileInputFormat: Total input paths to
process : 3
14/04/10 21:34:39 INFO mapreduce.JobSubmitter: number of splits:3

The Map task

The efficiency of the Map phase is decided by the specifications of the job inputs. We
saw that having too many small files leads to proliferation of Map tasks because of a
large number of splits. Another important statistic to note is the average runtime of a
Map task. Too many or too few Map tasks are both detrimental for job performance.
Striking a balance between the two is important, much of which depends on the
nature of the application and data.

M A rule of thumb is to have the runtime of a single Map
Q task to be around a minute to three minutes, based on
empirical evidence.
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The dfs.blocksize attribute

The default block size of files in a cluster is overridden in the cluster configuration
file, hdfs-site.xml, generally present in the etc/hadoop folder of the Hadoop
installation. In some cases, a Map task might take only a few seconds to process

a block. Giving a bigger block to the Map tasks in such cases is better. This can

be done in the following ways:

* Increasing the fileinputformat.split.minsize parameter to be greater
than the block size

* Increasing the block size of the input file stored in HDFS

The former leads to locality problems as InputSplit might have to import data
from blocks residing in other nodes. The latter method preserves locality, but might
require you to reload the file in HDFS. It can be done using the following command.
A file tiny.dat. txt is being uploaded into HDFS with a block size of 512 MB. The
default block size was 128 MB (in previous versions, it is 64 MB).

hadoop fs -D dfs.blocksize=536870912 -put tiny.dat.txt
tiny.dat.newblock.txt

3 The number of Map tasks should not exceed 60,000 or
70,000 for any application.

There could be situations where Map tasks are CPU bound, that is, I/O is an
insignificant part of the Map task runtime. In such cases, it is better to utilize all
available computing resources within the cluster. Decreasing the fileinputformat.
split.maxsize property to be less than the HDFS block size can help increase
cluster resource utilization.

. Fewer Map tasks that exploit data locality are good for job
~ performance. But in the face of failures, they might increase the
Q job latency. A single Map task processes a significant chunk of
the data and failure might hold up the entire job.
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Sort and spill of intermediate outputs

The process of sending intermediate outputs from the Map tasks to the Reduce tasks
involves complexity on both the Map side (as shown in the following diagram) and
the Reduce side. Not only does the output of the Map tasks have to be partitioned
based on the key to send it to the right Reduce task, but the keys within each
partition have to be sorted as well. The partitioned data is then distributed to the
appropriate reducers.

Map Task

Key-Value Pairs

Partitioning

In-Memory Sort Spill Thread

( spill1 J ( Spill2 J ( Spill3 J ( Spill4 J
T~ /. }Merge Thread

[ Output J

The Map task output workflow

The intermediate output records emitted by the Map task are not directly written on
the disk. They are buffered in the local memory using a circular buffer before spilling
them onto the disk. The size of this circular buffer is configured by the mapreduce.
task.io.sort.mb property. The default value of this parameter is 100, that is, the
circular buffer has a capacity of 100 MB. This property is overridden in the mapred-
default.xml or mapred-site.xml file that is placed in the etc/hadoop directory of
the Hadoop installation. All the properties discussed in this section go in the same
config file. The buffered key-value records are serialized but not sorted.

Each key-value record is augmented with some accounting information. This
accounting information has a constant value of 16 bytes per record regardless
of the size of the actual key or value payload.
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The soft threshold for the percentage of buffer that is allocated for the actual output
record is given by the mapreduce.task.io.sort.spill.percent property. The
default for this parameter is 0.8, that is, the output records from the buffer will be
flushed to disk when the buffer becomes 80 percent full.

Before MAPREDUCE-64, the io.record. sort.percent property
was a soft threshold for the percentage of the buffer that is allocated
for accounting information. It had a default value of 0.05. Spills used
to be triggered if the accounting information reached this threshold.
L This used to cause more spills and underutilization of the buffer,
particularly for smaller records.

After this patch, the io.record. sort.percent property gets
auto-tuned based on the record size instead of being set manually.

The spilling happens on a background thread after reaching the soft threshold for
buffer occupancy. The Map task is not blocked to write onto the circular buffer when
the spilling is going on. However, if the circular buffer reaches a hard limit, the Map
task is blocked until the spill is complete. The spilling thread does a partition of the
records based on the key, sorts the keys in memory within each partition, and writes
them to a file. For every spill, there is a separate file that is written.

M The method map . sort . class determines the sorting algorithm
Q used for sorting keys. The default is QuickSort, implemented in
org.apache.hadoop.util.QuickSort.

The partitioner class is determined by the mapreduce.partitioner.class property.
The spill thread uses an instance of this class to determine which Reduce task partition
the record has to be assigned to.

Once the Map task is complete, the spill files are merged, with keys sorted in each
partition and written to a single output file. The mapreduce.cluster.local.dir
parameter contains the directories where the output files are placed. The number
of streams to merge simultaneously while writing the output is determined by the
value of the mapreduce. task.io.sort.factor parameter. The default number is
10, that is, 10 open file handles will be present at a time during this step.

Each time a spill happens onto disk, the I/O required is three times a normal

I/O operation. Once the spill file is written and the Map task has ended, it is read,
merged to form a single output file, and rewritten to disk. It is best to spill only once
at the very end of the Map task.
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time, don't bother optimizing the sort and spill step.

[ ‘\‘Q If the merge step at the end of a Map is taking very less ]

The sort and spill step can be made more efficient in the following ways:

* Increasing the size of the circular buffer by setting the mapreduce.task.
io.mb property is one way to avoid or reduce the number of spills. When
tweaking this parameter, it is good practice to monitor the Map task JVM
heap size as well and increase it if necessary.

* Increasing the mapreduce.task.io.sort.factor property by a factor of
100 or so. This will make the merge process faster and reduce disk access.

*  Writing efficient custom serializers for both keys and value types. The less
the space taken up by serialized data, the more efficient the buffer usage.

*  Writing Combiners to efficiently aggregate Map task outputs. This not only
reduces the data transferred over the network to the Reduce task, but also
helps in writing faster to the disk and lesser storage of the Map task spills and
output files. The subsequent subsection gives more details about Combiners.

*  Writing efficient key comparators and value grouping comparators can make
a difference to the runtime of the sorting process.

MapReduce-4039

Sorting of keys within a single partition might not be necessary in many
+ kinds of MapReduce applications. Termed as Sort Avoidance, it may
lead to significant performance gains. Reducers need not wait for the all
Map tasks to complete before starting off.

This enhancement is currently marked as open and could be coming in
future releases.

Node-local Reducers or Combiners

Combiners are node-local reducers used to aggregate intermediate map output
locally on individual mapper outputs. Combiners can help to reduce the amount

of data that needs to be transferred across to reducers. The base class used to derive
and implement a combiner is the same as that in the case of a reducer. However,
depending on the application, the developer may choose to have different logic

in the combiner and the reducer. The combiner is specified for a job using the call
setCombinerClass ().
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‘Q The JVM heap size for the Map task can be set using the mapreduce.

map . java.opts parameter. The default value is -Xmx1024m.

If specified, the Combiner can be possibly called in two places:

When the spills are being flushed onto disk by the spill thread

When the spill files are being merged into a single output file to be consumed
by the Reduce tasks

The former is called whenever a Combiner class is set for the job. The latter happens
only if the number of spills exceeds the configuration value mapreduce .map.combine.
minspills. The default value of this limit is three, that is, the Combiner is called
during a merge only if there are three or more spills.

The intermediate files from a Map task matching a regular
M . . . .
~ expression pattern can be preserved even after the job exits. This is
done by specifying the pattern in the mapreduce.task.files.
preserve.filepattern property.

Fetching intermediate outputs — Map-side

The Reducer needs to fetch Map task output files over the network to execute the
Reduce task. The network being a bottleneck in a distributed system, the following
Map-side optimizations can alleviate this:

The intermediate outputs of the Map tasks can be compressed using a
suitable Compression codec. The configuration property mapreduce.map.
output.compress can be set to true to enable compression. The type of
compression codec to be used can be specified by the property mapreduce.
map . output . compress . codec. There are many choices available for
compression, which are detailed in later chapters.

The Reduce tasks fetch the output partitions from the Map task using the
HTTP protocol. The mapreduce. tasktracker.http.threads property is
used to configure the number threads that can service Reduce task fetch
HTTP requests. Each fetch would need a single thread to service the request.
Setting this property to a very low value would increase latency in servicing
requests due of request queuing. The default value of this property is 40,
indicating 40 threads.
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The Reduce task

The Reduce task is an aggregation step. If the number of Reduce tasks is not
specified, the default number is one. The risk of running one Reduce task would
mean overloading that particular node. Having too many Reduce tasks would
mean shuffle complexity and proliferation of output files that puts pressure on the
NameNode. It is important to understand the data distribution and the partitioning
function to decide the optimal number of Reduce tasks.

N The ideal setting for each Reduce task to process is a
range of 1 GB to 5 GB.

The number of Reduce tasks can be set using the mapreduce. job.reduces
parameter. It can be programmatically set by calling the setNumReduceTasks ()
method on the Job object. There is a cap on the number of Reduce tasks that can
be executed by a single node. It is given by the mapreduce.tasktracker.reduce.
maximum property.

The heuristic to determine the right number of reducers is as follows:
0.95 * (nodes * mapreduce. tasktracker.reduce.maximum)
. Alternatively, you can use the following;:
% 1.75* (nodes * mapreduce. tasktracker.reduce . maximum)
ASS

At 0.95, each of the reducers can launch immediately after the Map
tasks are completed, and at 1.75, the faster nodes will finish their first
Reduce task and move onto the second one. This is a better setting for
load balancing.

Fetching intermediate outputs — Reduce-side

The Reduce task fetches relevant partitions from a Map task as and when they finish.
This is called the Copy phase. The number of Map tasks from whom a Reduce task
can fetch data in parallel is determined by the value of the mapreduce.shuffle.
reduce.parallelcopies parameter. The lower this value, the more the queuing on
the Reduce side. The Reduce task might have to wait for an available slot to fetch
data from a Map task.

In situations where a Reduce task cannot reach the output data of the Map task due
to network connectivity issues, it retries the fetch in an exponential backoff fashion.
The retries continue until the time value specified by the mapred.reduce. copy.
backoff property is reached. After that, the Reduce task is marked as failed.
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Merge and spill of intermediate outputs

Similar to the Map task's sort and spill, the Reduce task also needs to merge

and invoke the Reduce on files on multiple Map task outputs. The next diagram
illustrates this process. Depending on the size of the Map task output, they are either
copied to a memory buffer or to the disk. The mapreduce.reduce.shuffle.input.
buffer.percent property configures the size of this buffer as a percentage of the
heap size allocated to the task.

The value of the mapreduce.reduce.shuffle.merge.percent property determines
the threshold beyond which this buffer has to be spilt to disk. The default value of
this setting is 0.66. The mapreduce.reduce .merge.inmem. threshold property sets
the threshold for the number of map outputs that can reside in memory before a disk
spill happens. The default value of this property is 1000. When either threshold is
reached, the map outputs are written onto the disk.

Map Outputs
via HTTP

Does not fit in RAM

Disk Disk Disk
Spills Spills Spills

Fits in RAM

4

Reduce

A background thread continuously merges the disk files. After all the outputs are
received, the Reduce task moves into the Merge or Sort phase. Again, like the Map
task merge, the number of file streams that are merged simultaneously is determined
by the value of the mapreduce.task.io.sort.factor attribute. The tuning of

these parameters can be done in a fashion similar to the Map-side spill and merge
parameters. The key is to process as much as possible in the memory.
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In later versions of Hadoop, two parameters, mapreduce . reduce .merge . memtomem.
enabled and mapreduce.reduce.merge.memtomem. threshold, enable merging
within the memory.

Any compression used for Map task outputs gets reversed in the memory
during merging.

MapReduce output

The output is dependent on the number of Reduce tasks present in the job. Some
guidelines to optimize outputs are as follows:

* Compress outputs to save on storage. Compression also helps in increasing
HDFS write throughput.

* Avoid writing out-of-band side files as outputs in the Reduce task. If statistical
data needs to be collected, the use of Counters is better. Collecting statistics in
side files would require an additional step of aggregation.

* Depending on the consumer of the output files of a job, a splittable
compression technique could be appropriate.

*  Writing large HDFS files with larger block sizes can help subsequent
consumers of the data reduce their Map tasks. This is particularly useful when
we cascade MapReduce jobs. In such situations, the outputs of a job become
the inputs to the next job. Writing large files with large block sizes eliminates
the need for specialized processing of Map inputs in subsequent jobs.

Speculative execution of tasks

Stagglers are slow-running tasks that eventually complete successfully. A staggler
Map task might not allow a Reduce task to start, thus delaying the completion of
the job. Stagglers could be present because of hardware performance degradation
or possible software misconfiguration.

Hadoop cannot automatically correct a staggler task but has the capability of
identifying tasks that are running slower than normal. As a backup, it can spawn
another equivalent task and use the results from the task that finishes first. The
backup tasks can then be asked to terminate. This is termed speculative execution.

By default, Hadoop enables speculative execution. It can be turned off for Map tasks
by setting mapreduce .map. speculative to false and for Reduce tasks by setting
mapreduce.reduce.speculative to false.
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The mapreduce. job.speculative.speculativecap is a property with values
between 0 and 1, indicating the percentage of running tasks that can be speculatively
executed. The default value of this property is 0.1. The mapreduce. job.speculative.
slowtaskthreshold and mapreduce.job.speculative.slownodethreshold are
two other configurable parameters whose values default to 1. They indicate how much
slower the tasks should be executing than the average. They are measured in terms of
standard deviation with respect to the average task progress rates.

MapReduce job counters

Counters are entities that can collect statistics at a job level. They can help in quality
control, performance monitoring, and problem identification in Hadoop MapReduce
jobs. Since they are global in nature, unlike logs, they need not be aggregated to be
analyzed. Counters are grouped into logical groups using the CounterGroup class.
There are sets of built-in counters for each MapReduce job.

The following example illustrates the creation of simple custom counters to
categorize lines into lines having zero words, lines with less than or equal to five
words, and lines with more than five words. The program when run on the grant
proposal subset files gives the following output:

14/04/13 23:27:00 INFO mapreduce.Job: Counters: 23

File System Counters

FILE: Number of bytes read=446021466

FILE: Number of bytes written=114627807

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

HDFS: Number of bytes read=535015319

HDFS: Number of bytes written=52267476

HDFS: Number of read operations=391608

HDFS: Number of large read operations=0

HDFS: Number of write operations=195363
Map-Reduce Framework

Map input records=27862

Map output records=27862

Input split bytes=56007

Spilled Records=0

Failed Shuffles=0

Merged Map outputs=0

GC time elapsed (ms)=66

Total committed heap usage (bytes)=62037426176
MasteringHadoop.MasteringHadoopCounters$WORDS IN LINE COUNTER

LESS THAN FIVE WORDS=8449
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MORE THAN FIVE WORDS=19413
ZERO _WORDS=6766

File Input Format Counters
Bytes Read=1817707

File Output Format Counters
Bytes Written=189102

The first step in creating a counter is to define a Java enum with the names of the
counters. The enum type name is the counter group as shown in the following snippet:

public static enum WORDS IN LINE COUNTER/{
ZERO_WORDS,
LESS_THAN FIVE WORDS,
MORE_THAN FIVE_WORDS

}i

When a condition is encountered to increment the counter, it can be retrieved by
passing the name of the counter to the getCounter () call in the context object of the
task. Counters support an increment () method call to globally increment the value
of the counter.

1
‘Q An application should not use more than 15 to 20 custom

counters.

The getCounter () method in the context has a couple of other overloads. It can be
used to create a dynamic counter by specifying a group and counter name at runtime.

The Mapper class, as given in the following code snippet, illustrates incrementing
the WORDS_IN_LINE_ COUNTER group counters based on the number of words in
each sentence of a grant proposal:

public static class MasteringHadoopCountersMap extends
Mapper<LongWritable, Text, LongWritable, IntWritable>
private IntWritable countOfWords = new IntWritable(O0) ;
@Override
protected void map (LongWritable key, Text value,
Context context) throws IOException,
InterruptedException {

StringTokenizer tokenizer = new
StringTokenizer (value.toString()) ;
int words = tokenizer.countTokens () ;
if (words == 0)
context .getCounter (WORDS_IN LINE COUNTER.ZERO WORDS) .increment (1) ;
if (words > 0 && words <= 5)
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context .getCounter (WORDS IN LINE COUNTER.LESS THAN FIVE WORDS)
.increment (1) ;
else
context .getCounter (WORDS_IN LINE COUNTER.MORE THAN FIVE WORDS)
.increment (1) ;
countOfWords . set (words) ;
context.write (key, countOfWords) ;

}
}

Counters are global variables in a distributed setting and have to be used prudently.
The higher the number of counters, the more are the overheads on the framework
that keeps track of them. Counters should not be used to aggregate very fine-grained
statistics of an application.

Handling data joins

Joins are commonplace in Big Data processing. They occur on the value of a join
key and on a data type in the datasets that participate in a join. In this book, we
will refrain from explaining the different join semantics such as inner joins, outer
joins, and cross joins, and focus on inner join processing using MapReduce and the
optimizations involved in it.

In MapReduce, joins can be done in either the Map task or the Reduce task. The
former is called a Map-side join and the latter is called a Reduce-side join.

Reduce-side joins

Reduce-side joins are meant for more general purposes and do not impose too many
conditions on the datasets that participate in the join. However, the shuffle step is
very heavy on resources.

The basic idea involves tagging each record with a data source tag and extracting

the join key in the Map tasks. The Reduce task receives all the records with the same
join key and does the actual join. If one of the datasets participating in the join is very
small, it can be distributed via a side channel such as the DistributedCache to every
Reduce task.
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For the Reduce-side joins to work, there are the following requirements:

There needs to be a way of specifying the InputFormat and Mapper classes
for the different datasets participating in the join. The MultipleInputs class
is designed for this purpose. For a smaller file, the DistributedCache API can
be used. A Map-side join, which will be explained later, shows how to use
this side-file distribution channel.

Secondary sorting capability needs to be there for optimal Reduce-side joins.
The sorting of the join keys will happen, but it is important that the source

is also sorted for each matching join key. By secondary sorting, one source
occurs after the other, eliminating the need to hold all records for a particular
key in the memory.

The following example illustrates Reduce-side joins. The dataset contains world
cities and some information about the cities, the country code being one of them.
It is available at http://dev.maxmind.com/geoip/legacy/geolite/ ina CSV
format. Countries have a two-letter ISO code. The countrycodes. txt file was
taken from http://www.spoonfork.org/isocodes.html.

In this example and in subsequent examples of joins, the ISO code for the country is
the join key. This key is used to get the country name and the total population of that
country calculated by summing up the population of its individual cities. The join
can be done by the following steps:

1.

A custom Writable data type needs to be implemented to have the
dataset tag information within the key. The following code shows the
implementation of such a composite key:

package MasteringHadoop;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

import java.io.Datalnput;
import java.io.DataOutput;

import java.io.IOException;

public class CompositeJoinKeyWritable implements WritableComparabl
e<CompositeJoinKeyWritable> {

private Text key = new Text();
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private IntWritable source = new IntWritable() ;

public CompositeJoinKeyWritable () {

public CompositeJoinKeyWritable (String key, int source) {

this.key.set (key) ;
this.source.set (source) ;

public IntWritable getSource ()
return this.source;

public Text getKey ()
return this.key;

public void setSource (int source) {
this.source.set (source) ;

public void setKey(String key)
this.key.set (key) ;

@Override
public void write (DataOutput dataOutput) throws IOException

this.key.write (dataOutput) ;
this.source.write (dataOutput) ;
@Override

public void readFields (DataInput datalnput) throws IOException

this.key.readFields (dataInput) ;
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this.source.readFields (dataInput) ;

@Override

public int compareTo (CompositeJoinKeyWritable o) {
int result = this.key.compareTo (o.key) ;

if (result == 0){

return this.source.compareTo (o.source) ;

return result;
@Override
public boolean equals (Object obj) {
if (obj instanceof CompositeJoinKeyWritable) {

CompositeJoinKeyWritable joinKeyWritable =
(CompositeJoinKeyWritable)obj;

return (key.equals(joinKeyWritable.key) && source.
equals (joinKeyWritable.source)) ;

}

return false;
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2. A custom Partitioner class needs to be implemented. pPartitioner must
partition the data based on the natural join key only; in this case, it is the
ISO country code. This ensures that all the cities with the same country
code are processed by the same Reduce task. The following code gives
an implementation of a custom Partitioner class:

public static class CompositeJoinKeyPartitioner extends
Partitioner<CompositeJoinKeyWritable, Text>{

@Override

public int getPartition (CompositeJoinKeyWritable
key, Text value, int 1) {

return (key.getKey () .hashCode() % 1i);

}

3. A custom grouping comparator needs to be written. Again, like the
partitioner, the grouping has to be done on the natural key alone. The
following code shows the grouping comparator for the composite key:

public static class CompositeJoinKeyComparator extends
WritableComparator

protected CompositeJoinKeyComparator ()
super (CompositeJoinKeyWritable.class, true);

@Override
public int compare (Object a, Object b) {

CompositeJoinKeyWritable compositeKeyl =
(CompositeJoinKeyWritable) a;

CompositeJoinKeyWritable compositeKey2 =
(CompositeJoinKeyWritable) b;

return compositeKeyl.getKey ()
.compareTo (compositeKey2.getKey () ) ;
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4. The Mapper classes have to be written for each kind of input datasets. In the
following example, two Mapper classes are present: one for the city dataset
and the other for the country dataset. The country dataset has a number less
than the city dataset. This is done for efficiency. When a secondary sort is
done on the dataset keys, the country dataset record appears before the city
records at the Reducer:

public static class MasteringHadoopReduceSideJoinCountryMap
extends Mapper<LongWritable, Text,
CompositeJoinKeyWritable, Text>{

private static short COUNTRY CODE INDEX = 0;
private static short COUNTRY NAME INDEX = 1;

private static CompositedJoinKeyWritable
joinKeyWritable = new
CompositeJoinKeyWritable("", 1);
private static Text recordValue = new Text ("");

@Override
protected void map (LongWritable key, Text value,
Context context) throws IOException,
InterruptedException {

String[] tokens = value.toString() .split(",", -
1);

if (tokens != null) {
joinKeyWritable.setKey (tokens [COUNTRY CODE
INDEX]) ;
recordValue.set (tokens [COUNTRY NAME INDEX]) ;
context.write (joinKeyWritable,
recordvValue) ;

public static class
MasteringHadoopReduceSideJoinCityMap extends
Mapper<LongWritable, Text,
CompositeJoinKeyWritable, Text>{

private static short COUNTRY CODE INDEX = 0;

private static CompositedJoinKeyWritable
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joinKeyWritable = new
CompositeJoinKeyWritable("", 2);
private static Text record = new Text("");

@Override
protected void map (LongWritable key, Text value,
Context context) throws IOException,
InterruptedException {

String[] tokens = value.toString() .split(",", -
1);

if (tokens != null)
joinKeyWritable.setKey (tokens [COUNTRY CODE_ INDEX]) ;

record.set (value.toString()) ;
context.write (joinKeyWritable, record) ;

}

The Reducer class takes advantage of secondary sorting to emit the joined
records. The first value of the iterator is the country record. The name of the
country is stored away and the population is calculated based on other records.

public static class MasteringHadoopReduceSideJoinReduce
extends

Reducer<CompositeJoinKeyWritable, Text, Text,
LongWritables{

private static LongWritable populationValue = new
LongWritable (0) ;

private static Text countryValue = new Text ("");

private static short POPULATION INDEX = 4;

@Override
protected void reduce (CompositeJoinKeyWritable key,
Iterable<Text> values, Context context) throws
IOException, InterruptedException {

long populationTotal = 0;
boolean firstRecord = true;
String country = null;
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for (Text record : values) {

String[] tokens =
record.toString() .split(",", -1);
if (firstRecord)
firstRecord = false;
if (tokens.length > 1)
break;
else
country = tokens[O0];
}
else(
String populationString =
tokens [POPULATION INDEX] ;

if (populationString != null &&
populationString.isEmpty () ==
false) {

populationTotal +=
Long.parselong (populationString) ;

if (country != null) {
populationValue.set (populationTotal) ;
countryValue.set (country) ;

context.write (countryValue,
populationValue) ;
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The driver program specifies all the custom data types that are required to do
the Reduce-side join:

public static void main(String args[]) throws
IOException, InterruptedException, ClassNotFoundException{

GenericOptionsParser parser = new
GenericOptionsParser (args) ;

Configuration config = parser.getConfiguration() ;

String[] remainingArgs = parser.getRemainingArgs () ;

Job job = Job.getInstance (config, "MasteringHadoop-
ReduceSideJoin") ;

job.setMapOutputKeyClass (CompositeJoinKeyWritable.class) ;
job.setMapOutputValueClass (Text.class) ;
job.setOutputKeyClass (Text.class) ;
job.setOutputValueClass (LongWritable.class) ;

job.setReducerClass (MasteringHadoopReduceSideJoinReduce
.class) ;
job.setPartitionerClass (CompositedJoinKeyPartitioner.
class) ;
job.setGroupingComparatorClass (CompositeJoinKeyComparator
.class) ;
job.setNumReduceTasks (3) ;

MultipleInputs.addInputPath(job, new
Path (remainingArgs[0]), TextInputFormat.class,
MasteringHadoopReduceSideJoinCountryMap.class) ;
MultipleInputs.addInputPath(job, new
Path (remainingArgs[1]), TextInputFormat.class,
MasteringHadoopReduceSideJoinCityMap.class) ;

job.setOutputFormatClass (TextOutputFormat.class) ;

TextOutputFormat.setOutputPath (job, new
Path (remainingArgs[2])) ;

job.waitForCompletion (true) ;
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Map-side joins
Map-side joins, on the contrary, require either of two conditions satisfied in the
datasets they join. These conditions are as follows:

* Inaddition to the presence of join keys, all inputs must be sorted
using the join keys. The input datasets must have the same number of
partitions. All records with the same key must reside in the same partition.
Map-side joins are particularly attractive when operated on outputs of other
MapReduce jobs. Such conditions are automatically satisfied in these cases.
The compositeInputFormat class can be used to run Map-side joins on
such datasets. The configurations for inputs and join types can be specified
using properties.

* If one of the datasets is small enough, side file distribution channels such as
the DistributedCache can be used to do a Map-side join.

In the following example, the countries file is distributed across all nodes. During Map
task setup, it is loaded into the memory onto a TreeMap data structure. The setup ()
method of the Mapper class is overridden to load the smaller data set in memory:

package MasteringHadoop;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce. *;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import org.apache.hadoop.util.LineReader;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

import java.util.TreeMap;
public class MasteringHadoopMapSideJoin {

public static class MasteringHadoopMapSideJoinMap extends
Mapper<LongWritable, Text, Text, LongWritables {

private static short COUNTRY_CODE_INDEX = 0;
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private static short COUNTRY NAME INDEX = 1;
private static short POPULATION INDEX = 4;

private TreeMap<String, String> countryCodesTreeMap = new
TreeMap<String, String>();

private Text countryKey = new Text ("");

private LongWritable populationValue = new
LongWritable (0) ;

@Override

protected void setup(Context context) throws IOException,
InterruptedException {

URI[] localFiles = context.getCacheFiles() ;

String path = null;
for (URI uri : localFiles)
path = uri.getPath() ;
if (path.trim() .equals ("countrycodes.txt")) {
break;

if (path != null) {
getCountryCodes (path, context) ;

}

The getCountryCodes () private method, given as follows, is used to read the side
file from the DistributedCache. Each line is processed and stored in the TreeMap
instance. This method is a part of the Mapper class as well:

private void getCountryCodes (String path, Context context)
throws IOException{

Configuration configuration =
context.getConfiguration() ;
FileSystem fileSystem = FileSystem.get (configuration) ;

FSDataInputStream in = fileSystem.open (new
Path (path)) ;

Text line = new Text ("");
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LineReader lineReader = new LineReader (in,
configuration) ;

int offset
do{

0;
offset = lineReader.readLine (line) ;

if (offset > 0){
String[] tokens = line.toString() .split(",", -
1);
countryCodesTreeMap.put (tokens [COUNTRY CODE
INDEX] ,
tokens [COUNTRY NAME INDEX]) ;

}while (offset != 0);

}

The map override method of the Mapper is where the join takes place. Each key is
checked against the TreeMap data structure for a match. If a match exists, a joined
record is emitted:

@Override

protected void map (LongWritable key, Text value, Context
context) throws IOException, InterruptedException

String cityRecord = value.toString() ;
String[] tokens = cityRecord.split(",", -1);

String country = tokens [COUNTRY CODE INDEX] ;
String populationString = tokens [POPULATION INDEX] ;

if (country != null && country.isEmpty() == false) {
if (populationString != null &&
populationString.isEmpty () == false) {

long population =
Long.parselong (populationString) ;
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String countryName =
countryCodesTreeMap.get (country) ;

if (countryName == null) countryName = country;

countryKey.set (countryName) ;
populationValue.set (population) ;
context.write (countryKey, populationValue) ;

}

The Reduce task is a simple task that reduces on the join key and calculates the total
population in a country. The code is given as follows:

public static class MasteringHadoopMapSideJoinReduce extends
Reducer<Text, LongWritable, Text, LongWritable>{

private static LongWritable populationValue = new
LongWritable (0) ;
@Override

protected void reduce (Text key, Iterable<LongWritables
values, Context context) throws IOException,
InterruptedException {

long populationTotal = 0;

for (LongWritable population : values) {
populationTotal += population.get () ;
}
populationValue.set (populationTotal) ;
context.write (key, populationValue) ;
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Summary

In this chapter, you saw optimizations at different stages of the Hadoop MapReduce
pipeline. With the join example, we saw a few other advanced features available for
MapReduce jobs. Some key takeaways from this chapter are as follows:

Too many Map tasks that are I/ O bound should be avoided. Inputs dictate
the number of Map tasks.

Map tasks are primary contributors for job speedup due to parallelism.

Combiners increase efficiency not only in data transfers between Map tasks
and Reduce tasks, but also reduce disk I/ O on the Map side.

The default setting is a single Reduce task.
Custom partitioners can be used for load balancing among Reducers.

DistributedCache is useful for side file distribution of small files. Too many
and too large files in the cache should be avoided.

Custom counters should be used to track global job level statistics. But too
many counters are bad.

Compression should be used more often. Different compression techniques
have different tradeoffs and the right technique is application-dependent.

Hadoop has many tunable configuration knobs to optimize job execution.
Premature optimizations should be avoided. Built-in counters are your friends.

Higher-level abstractions such as Pig or Hive are recommended instead of
bare metal Hadoop jobs.

In the next chapter, we will look at Pig, a framework to script MapReduce jobs on
Hadoop. Pig provides higher-level relational operators that a user can employ to do
data transformations, eliminating the need to write low-level MapReduce Java code.
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Running Java MapReduce jobs on Hadoop provides the most flexibility with the
least abstraction. However, abstractions are necessary to infer patterns, accomplish
common data manipulation tasks, reduce complexity, and flatten the learning curve.
Pig is a platform that provides a framework and high-level abstractions to build
MapReduce programs for Hadoop. It has a scripting language called Pig Latin. Pig
Latin can be compared to SQL in terms of operator capabilities.

Developed at Yahoo! around the year 2006, Pig was used as a framework to specify
ad hoc MapReduce workflows. In the following year, it was moved to Apache
Software Foundation. The latest release of Pig is 0.12.1.

The official release of Pig is currently incompatible with Hadoop 2.2.0.
It expects libraries from Hadoop 1.2.1. Running any Pig script fails,
with the following exception:

Unexpected System Error Occured: java.lang.

~\l IncompatibleClassChangeError: Found interface org.
apache.hadoop.mapreduce.JobContext, but class was
expected.

Fixing this requires a recompile of the Pig binaries. Run the following
command and replace the newly generated pig.jar and pig-
withouthadoop. jar files:

ant clean jar-all -Dhadoopversion=23
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In this chapter, we will look at the advanced features of Pig by:

Looking at how Pig is different when compared to SQL
Analyzing how Pig Latin scripts are translated to MapReduce programs

Delving into the advanced relational operators that Pig supports; we will
delve deep into these relational operators and look at their applications
with examples

Studying ways to extend Pig beyond its off-the-shelf capabilities using
User-defined Functions or UDFs that can implement a variety of interfaces;
we will examine some of these interfaces

Pig versus SQL

SQL is a very popular query and data processing language. Any high-level language
for data processing deserves comparison with SQL. In this section, we will compare
Pig Latin with SQL. The comparison is as follows:

Pig Latin is primarily a procedural language. SQL, on the other hand, is
declarative in nature. The data pipeline in SQL is not expressed as the

data transformations happen. However, in Pig Latin, each step of the data
transformation in the pipeline is specified in order. It is possible to mimic this
behavior in SQL with the use of intermediate temporary tables, but creating,
managing, and cleaning up these intermediate tables can be cumbersome
and error-prone. Though Pig Latin scripts are specified procedurally, the
statements are executed lazily, that is, they are not executed until the value is
absolutely required.

Developers writing data flows in a declarative language such as SQL overly
depend on the query optimizer to choose the right implementation for the
data transformation step. SQL engines do provide hints, but the flexibility of
choosing or plugging in an implementation of choice is not present. Pig Latin
naturally comes with this flexibility.

SQL is ideal for linear data flows — transformations that yield a single result
set. However, data flows are often Directed Acyclic Graphs (DAGs), where
splitting data into streams, applying different transformation functions on each
stream, and joining these streams are common operations. Implementing such
DAGs in SQL require either repeating operations or materializing intermediate
results. Pig handles data flow DAGs efficiently by reducing the number of disk
reads and writes due to intermediate result materialization.
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* SQL is not an Extract-Transform-Load (ETL) tool. It acts on data that is
already present in a database. Pig facilitates UDFs, where users can specify
Java code in the data flow. It allows for streaming, that is, insertion of an
arbitrary executable in the data flow. Streaming can aid in the reuse of
existing tools and code within the data-flow pipeline. These features of Pig
make it a multiutility platform without the need for separate tools for ETL
and processing.

e The procedural nature of Pig allows it to store data at any point during
the data pipeline process. This can aid in introducing checkpoints manually
and prevent the re-execution of the entire query from scratch on failures.
This is particularly important when processing huge volumes of data,
where data load and processing times are significantly large. SQL does
not have this facility under the developers control, and it potentially
requires the re-execution of significant portions of the query.

Different modes of execution

Pig has the following three modes of execution:

* Interactive mode: In this mode, a grunt shell is provided to the user.
Users can type in Pig commands in an interactive session with Pig and
the Hadoop cluster.

* Batch mode: In this mode, the user can write a series of Pig statements into a
script file. The file can then be submitted for execution.

* Embedded mode: In this mode, any Java program can invoke Pig commands
by importing the Pig libraries.

Apart from these modes of execution, Pig can either be executed locally, in the

local mode using the local execution environment, or on a Hadoop cluster execution
environment in the mapreduce mode. In the former mode, all commands are executed
on a single system using the local filesystem. If the -x switch is not specified, Pig
defaults to running in the mapreduce mode. Specifying the -x switch gives the user
an option to run in the local or mapreduce mode and use the appropriate execution
environment. The HADOOP_CONF_DIR environment variable is used to determine the
Hadoop cluster for Pig to run MapReduce jobs.

The following code shows how to run Pig scripts in the 1ocal or mapreduce modes:

pig -x local ..
pig -x mapreduce .. OR pig ..
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Complex data types in Pig

Pig has primitive data types such as int, long, float, double, chararray, and
bytearray. In addition, Pig also supports complex data types. Inputs and outputs to
Pig's relational operators are specified using these complex data types. In some cases,
the behavior of the operators depends on the complex data type used. These complex
data types are as follows:

Map: This data type should not be confused with the map function of
MapReduce. The Map data type is an associative array data type that stores
a chararray key and its associated value. There is no restriction on the data
type of the value in a map. It can be a complex type too. If the type of the
value cannot be determined, Pig defaults to the bytearray data type. The
key and value association is syntactically done via the # symbol. The key
values within a map have to be unique:

[key#value, keyl#valuel..]

Tuple: A Tuple data type is a collection of data values. They are of fixed
length and are ordered. They can be compared to a record in a SQL table,
without restrictions on the column types. Each data value is called a field.
The ordering of values offers the capability to randomly access a value
within a tuple:

(valuel, value2, value3..)

Bag: A Bag data type is a container for tuples and other bags. They are
unordered, that is, a tuple or a bag within a bag cannot be accessed
randomly. There are no constraints on the structure of the tuples
contained in a bag. Duplicate tuples or bags are allowed within a bag:

{ (tuplel), (tuple2)..}

M The Bag data type in Pig can be spilt into disks, making it possible
Q to hold a large number of tuples that collectively might not fit in
memory. This is not the case with Map or Tuple data types.
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Compiling Pig scripts

The Pig architecture is layered to facilitate pluggable execution engines. Hadoop's
MapReduce is an execution platform that is plugged into Pig. There are three main
phases when compiling and executing a Pig script: preparing the logical plan,
transforming it into a physical plan, and finally, compiling the physical plan into a
MapReduce plan that can be executed in the appropriate execution environment.

The logical plan

The Pig statements are first parsed for syntax errors. Validation of the input files
and input data structures happens during parsing. Type checking in the presence

of a schema is done during this phase. A logical plan, a DAG of operators as nodes,
and data flow as edges are then prepared. The logical plan cannot be executed and is
agnostic of the execution layer. Optimizations based on in-built rules happen at this
stage. Some of these rules are discussed later in the chapter. The logical plan has a
one-to-one correspondence with the operators available. In the following script, two
text files are loaded as data inputs and stored in Pig variables, also called relations.
The inputs then go through transformations such as filtering out null values and a
join operation of the two data inputs. Finally, the transformed data is grouped on a
join key and aggregated over each group:

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;

ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,

region:int, population:long, lat:double, long:double) ;

filteredCcity = filter ccity by population is not null;

joinCountry = join cc by ccode, ccity by ccode;

generateRecords = foreach joinCountry generate cc::cname,
ccity::cityName, ccity::population;

groupByCountry = group generateRecords by cname;

populationByCountry = foreach groupByCountry generate group,
SUM (generateRecords.population) ;
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A logical plan block diagram for the script is as shown in the following figure:

Load Load Load Load
countrycodes.txt countrycodes.txt countrycodes.txt worldcitiespop.txt

Filter

Filter

Local Rearrange

Global Rearrange

|::> Package
v

v Local Rearrange
Group Global Rearrange

Package

[ —
Logical Plan Physical Plan

Logical and physical plans for Pig scripts

The physical plan

The physical plan is where the Pig compilation becomes aware of the execution
platform. A translation of each operator into the physical form of execution happens
during this stage. For the MapReduce framework, most operators have a one-to-one
correspondence with the physical plan, except for a few of them. In addition to the

logical operators, there are a few physical operators, which are the Local Rearrange
(LR), Global Rearrange (GR), and Package (P) operators.

[74]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Logical operators such as GROUP, COGROUP, or JOIN are translated into a sequence of
LR, GR, and P operators, as shown in the physical plan in the previous image. The LR
operator corresponds to the shuffle preparation stage, where partitioning takes place
based on the key. The GR operator corresponds to the actual shuffle between the Map
and Reduce tasks. The P operator is the partitioning operator on the Reduce side.

The MapReduce plan

The final stage of Pig compilation is to compile the physical plan to actual
MapReduce jobs. A Reduce task is required wherever an LR, a GR, and a P sequence
is present in the physical plan. The compiler also looks for opportunities to put in
Combiners wherever possible. The MapReduce plan for the physical plan in the
previous image has two MapReduce jobs, one corresponding to the JOIN operator
and the other to the GROUP operator in the logical plan. The following image shows
the MapReduce plan for the query. The MapReduce task corresponding to the GRoUP
operator has a Combiner as well. It must be noted that the GROUP operation occurs in
the Map task. This is possible because the output of Reducel in the following image
is sorted on the key:

4 N\
Countrycodes.txt H
filteredCcity Map 1
Worldcitiespop.txt
pop H\ )
v
g Y
generateRecords Reduce 1
A\ J
v
g Y
MapReduce Plan groupByCountry Map 2
A\ J
v
e Y
groupByCountry Combiner 2
A\ J
v
[ populationByCountry J Reduce 2
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Development and debugging aids

There are three important commands that can help develop, debug, and optimize
Pig scripts.

The DESCRIBE command

The DESCRIBE command gives the schema of a relation. This command is useful
when you are a Pig Latin beginner and want to understand how operators transform
the data. The output corresponding to the groupByCountry relation in the previous
script code to find the population of the country is given as follows:

groupByCountry: {group: chararray,generateRecords: { (cc::cname:
chararray,ccity::cityName: chararray,ccity::population: long) }}

The DESCRIBE output has the Pig syntax. In the preceding example, groupByCountry
is a Bag data type that contains a group element and another bag, generateRecords.

The EXPLAIN command

EXPLAIN, on a relation, shows how the Pig script will be executed. It is useful when
trying to optimize Pig scripts or debug errors. It shows the logical, physical, and
MapReduce plans of the relation. The following screenshot shows the MapReduce
plan for the second MapReduce job (corresponding to the GROUP operator) when
the EXPLAIN command was executed on populationByCountry. You can use the
EXPLAIN command to study the optimizations that went into the plans.
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The ILLUSTRATE command

ILLUSTRATE is perhaps the most important development aid. ILLUSTRATE, on

a relation, samples the data and applies the query on it. This can save a lot of
time when debugging. The sample is significantly smaller than the data. This
makes the code-test-debug cycle very fast. In many situations, the JOIN or
FILTER operators might not yield any output on a sample of data. In such cases,
ILLUSTRATE manufactures records that pass through these operators and inserts
them into the sample dataset. The partial result of executing ILLUSTRATE on the
populationByCountry relation is given in the following screenshot:

The advanced Pig operators

In this section, we will examine some of the advanced features and hints available in
Pig operators.

The advanced FOREACH operator

The FOREACH operator is primarily used to transform every record of the input
relation into a transformed record. A list of expressions is used to make this
transformation. There are situations where the FOREACH operator can increase
the number of output records. They are discussed in the following sections.
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The FLATTEN operator

The FLATTEN keyword is an operator, though it looks like a UDF in syntax. It is
used to un-nest nested tuples and bags. However, the semantics of the elimination
of nesting is different when it is used on tuples when compared to bags.

FLATTEN on a nested tuple yields a single tuple, as shown in the following snippet.
All the nested tuples are elevated to the topmost level.

Consider data of the following nature:

(1, (2, 3, 4))
X = FOREACH A GENERATE $0, FLATTEN(S1);

This will yield (1,2,3,4) as the resulting tuple.

For bags, the situation becomes more complicated. When we un-nest a bag, we create
new tuples. If we have a relation that is made up of tuples of the ({ (b,c), (d,e) })
form, and we apply GENERATE FLATTEN ($0), we end up with the two tuples (b, c)
and (d, e). In other words, FLATTEN does a cross-product, producing a row for every
element in the bag.

Let's consider worldcitiespop. txt as an example:

cCity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;
groupCcityByCcode = group cCity by ccode;

The groupCcityByCcode variable yields tuples with a nested bag, as shown in the
following snippet. The number of such tuples is equal to the number of groups, in
this case, the number of countries:

(ae, { (ae,ae,sharjah, Sharjah,6,543942,25.35731,55.403304) ,
(ae,ae,dubai,Dubai,3,1137376,25.258172,55.304717)y

The FLATTEN operator can be used on these tuples to ungroup them, yielding a
record per city for this particular country, using the following code:

unGroupCcityByCcode = foreach groupCcityByCcode generate group,
FLATTEN (cCity) ;

The result is a cross-product of the country code with each element of the nested bag,
as follows:

(ae,ae, sharjah, Sharjah,6,543942,25.35731,55.403304)
(ae,ae,dubai,Dubai,3,1137376,25.258172,55.304717)
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. FLATTEN called on nested empty bags and empty tuples will yield no
> output records. This is because, mathematically, a cross-product between
Q a nonempty and an empty set is an empty set. If this is not desired, it is
good practice to replace empty bags and tuples with a constant bag.

The nested FOREACH operator

Relational operators can be applied within each record of a FOREACH operator. This
is called a nested FOREACH or an inner FOREACH operator. Let's examine it with an
example on the worldcitiespop. txt file. We want to find the details of the most
populous city in each country. There can be many ways of solving this, but we will
use the nested FOREACH operator in this case. The code is as follows:

ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;
groupCcityByCcode = group cCity by ccode;
cityWithHighestPopulation = foreach groupCcityByCcode {
citiesWithPopulation = filter cCity by (population is
not null AND population > 0);
orderCitiesWithPopulation = order citiesWithPopulation by
population desc;
topPopulousCity = limit orderCitiesWithPopulation 1;
generate flatten (topPopulousCity); };

The steps performed are as follows:

1. The first step is to load worldcitiespop.txt based on a schema.

2. Then, group the data by country code. The nested FOREACH operator
is the next statement. Flower braces ({) syntactically signify a nested
FOREACH operator.

3. In the nested section, a variety of relational operators are applied to the
group bag:

1. A FILTER operator is applied on all the cities of the country to
eliminate missing population values. A more efficient way will be to
do the filtering before the FOREACH operator (refer to the Best Practices
section). In this example, we will do the filtering in the nested
FOREACH operator for illustration.

2. The filtered city bag is sorted in descending order on the population
of the city using the ORDER operators. Now, the first record is the
most populous city.
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We use the LIMIT operator to select the first record.

The last statement of a nested FOREACH operator is always the GENERATE
method. Here, we generate the record for the most populous city. The
FLATTEN operator is used to remove the bag nesting.

The tail of the final output is shown as follows:

(uz, tashkent, Tashkent,13,1978078,41.3166667,69.25)

(ve,kingstown, Kingstown, 4,17995,13.1333333,-61.2166667)
(ve,maracaibo,Maracaibo,23,1948269,10.6316667,-71.6405556)
(vg,road town,Road Town,0,8449,18.4166667,-64.6166667)

(vn,ho chi minh city,Ho Chi Minh City,20,3467426,10.75,106.666667)
(vu,vila,Vvila,8,35903,-17.7333333,168.3166667)
(wf,alele,Alele,0,901,-13.2333333,-176.15)
(
(
(
(
(
(

<

ws,apia,Apia,0,40407,-13.8333333,-171.7333333)
ye,aden,Aden,2,550744,12.7794444,45.0366667)
yt,mamoudzou, Mamoudzou, 0,54837,-12.7794444,45.2272222)
za,cape town,Cape Town,11,3433504,-33.925839,18.423218)
zm, lusaka, Lusaka, 9,1267458,-15.4166667,28.2833333)

zw, harare,Harare,4,2213701,-17.8177778,31.0447222)

M Cunfnﬂy,LIMIT,ORDER,DISTINCT,CROSS,FOREACH,and
Q FILTER are the relational operators supported within a nested
FOREACH operator in Pig.

The COGROUP operator

This operator is similar to a GROUP operation. Instead of collecting records of one
input based on a key, it collects records of n inputs based on the key. The Group
operator works on a single input relation, but a COGROUP operator can work on many
input relations. COGROUP can be thought of as the first phase of a join—a COGROUP
operator followed by a FOREACH operator that flattens the bags is an inner join. The
following code shows a join between the worldcitiespop.txt and countrycodes.
txt files using COGROUP:

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;
ccity = load 'worldcitiespop.txt' using PigStorage(',') as

(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;
groupedCity = cogroup cc by ccode, ccity by ccode;
flattendGroupedCity = foreach groupedCity generate flatten(cc),
flatten (ccity);
filteredGroup = filter flattendGroupedCity by cc::ccode ==
ccity::ccode;
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\
‘Q The maximum number of relations a COGROUP

operator can group together is 127.

Operations such as semi-joins can be performed using the COGROUP operator.

% Semi-joins between two relations are the records in the first relation
%= that have one or more matches on the join key in the second relation.

The UNION operator

The UNION operator is used to concatenate two or more datasets. Unlike SQL, the
UNION operator in Pig does not impose any restrictions on the schema of the two
datasets. If they are the same, the result will have the same schema. If one schema
can be forced into the other schema by means of casts, the result will have this
schema. Otherwise, the result will have no schema.

The UNION operator does not preserve the ordering of the tuples, and it does not
eliminate any duplicate tuples. The UNION operator has an ONSCHEMA qualifier that is
used to give a schema to the result. This schema is a set union of all the named fields
between the datasets. The oNscHEMA qualifier requires all the input relations to have
a schema.

In our countrycodes.txt and worldcitiespop.txt files, the schemas do not
match, and the result is without any schema. However, when we use the ONSCHEMA
keyword along with the UNION operator, we see a schema. This schema is the union
of the schemas of both relations. The following code illustrates this:

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;
ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;

unionCountryCity = union cc, ccity;
unionOnSchemaCountryCity = union onschema cc, ccity;
describe unionCountryCity;

describe unionOnSchemaCountryCity;
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The schema comparison includes the names of the fields. The result
M of applying a UNION operator on datasets whose fields have different
Q names will not have a schema. The workaround in such cases will
be to introduce a FOREACH operator that renames fields to common
names before the UNION statements.

The result of the Describe statements is as follows:

Schema for unionCountryCity unknown.

unionOnSchemaCountryCity: {ccode: chararray,cname:
chararray,cityName: chararray,cityFullName: chararray,region:
int,population: long,lat: double,long: double}

The CROSS operator

The CrROSS operator performs the cross-set operations on two relations. The cross
operator in Pig is implemented in parallel by constructing an artificial join key and
then replicating records. This makes the CROSS operator very expensive, particularly
in the shuffle and sort phases, as the records are replicated in each of the relations
participating in the join for each artificial join key that was created.

However, there are situations where a CROSS operator is necessary. One such situation
is a theta-join. Inner joins are based on equality of keys, that is, the equals-to operation
is used to join the records across relations. However, there can be a need for inequality
to determine record joins. This can be done by a crRoss operator followed by a FILTER
operation on the join keys. The following hypothetical example illustrates using the
CROSS operator for a theta-join. The join happens only if the value of a1 is less than the
value of b1:

A = LOAD 'inputA.txt' AS (alO:chararray, al:int);
B = LOAD 'inputB.txt' AS (b0:chararray, bl:int);
ACrossB = CROSS A, B;

thetadoin = FILTER ACrossB BY al < bl;

Fuzzy joins are another variant of the join operation that can be done using the cross
operator. An example is to self-join worldcitiespop.txt on cities within the same
region code.

Specialized joins in Pig
Pig supports join optimizations that can be used out of the box depending on the

dataset and nature of the join. These join optimizations increase the performance
of Pig scripts and are highly recommended.
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The Replicated join

In Chapter 2, Advanced MapReduce, we implemented Map-side joins and
Reduce-side joins as MapReduce jobs. When an input dataset for a join can be
made to fit in-memory, the join can take place Map-side by replicating the smallest
dataset across all the Map tasks. This is called a Fragment-Replicate join in Pig. It is
Pig's implementation of the Map-side join. Some of the key points to remember in a
Fragment-Replicate join are as follows:

* If the smaller file cannot be fit into memory, Pig throws an error and fails to
execute. Pig also throws an error if the smaller file is greater than the value I
for the pig.join.replicated.max.bytes property.

* The Fragment-Replicate join can be used to join more than two datasets.
However, all datasets, except the first, will be loaded into memory.

* This replication of the input files across the different Map tasks happens via
the DistributedCache, very similar to the implementation we discussed in
Chapter 2, Advanced MapReduce.

* The Fragment-Replicate join can only be used to do an inner join and a
left-outer join. Right-outer and full-outer joins are not possible. This is
because the left relation is fragmented and the right relation is replicated
entirely. When the join processor gets a record from the right relation, it
has only a local view of the left relation and does not know if a matching
key exists in some other split of the left relation.

Using the replicated keyword specifies a Fragment-Replicate join. In the following
example, countrycodes. txt and worldcitiespop.txt are joined using this join. It
must be noted that countrycodes. txt is the smaller relation and comes later in the

join specification:

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;
ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;
joinCountryCity = join ccity by ccode, cc by ccode using
'replicated’';
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Skewed joins

The presence of skews in data can hurt join performances by overloading a single
Reduce task. Skews are statistical quirks, where a single or small number of keys
have a significantly large number of records. Pig helps alleviate such a situation by
providing Skewed joins. The idea here is to sample one of the input relations to a
join and plot a histogram of the records for each key.

The histogram is then analyzed, and keys that have a large number of records are
split. Each split is sent to a different Reduce task. In this way, load balancing of the
records on the Reduce end is achieved. However, this also requires replicating the
other input relation so that each of these load-balanced Reduce tasks has all the
relevant records for a successful join.

Some of the key points to remember when executing a Skewed join are as follows:

* Skewed joins work only with two datasets. If there are more than two
datasets that need to be joined, the responsibility is on the developer
to break it down into multiple two-way joins.

* Sampling and constructing a histogram adds a performance overhead when
using this join type. The average overhead observed is around 5 percent.

* The second relation of the join is the dataset that will be sampled.

* Pigis influenced by the value of the pig. skewedjoin.reduce.memusage
Java parameter to decide how many additional Reduce tasks need to
spawned to process a skewed key. The default value of this attribute is 0.5,
that is, 50 percent of the JVM heap is available for the Reduce task to perform
the join.

The skewed keyword is used to indicate a Skewed join. The following example
shows its usage:

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;
ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;
joinCountryCity = join cc by ccode, ccity by ccode using 'skewed';
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The Merge join
Again, as we saw in Chapter 2, Advanced MapReduce, it is possible to do a Map-side

join if both the inputs are sorted on the join key. Pig has an implementation of this
kind of join, which is known as a Sort join or Merge join.

The join algorithm works by making the second relation a side file and the first
relation the input to Map tasks. The side file is sampled for the keys, and an index
is built using a MapReduce job. The index is a mapping between the key and
offset, where the key records the start in the file. Once this index is built, another
MapReduce job is started with the first relation as the input file. Each record is
read and looked up in the index for the corresponding offset in the second file.
The records are read from the second relation, and the join is done.

The following example shows a Merge join using countrycodes. txt and
worldcitiespop.txt. Again, note that countrycodes. txt is the file for which
the index will be built. The merge keyword is used to indicate a Merge join:

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;
ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray, cityFullName:chararray,
region:int, population:long, lat:double, long:double) ;
joinCountryCity = join cc by ccode, ccity by ccode using 'merge';

A variant of a Merge join is a Merge-sparse join. This is used when one of the
relations is very sparse, that is, only a small number of records are matched during
a join. This join type is still under experimentation. Currently, only inner joins are
supported using the Merge-sparse join algorithm.

User-defined functions

User-defined functions or UDFs, are functions that can be implemented by the
developer to extend the functionality of Pig and add custom processing. These
functions can be called in almost all Pig operators. UDFs are written in Java. From
Pig 0.8 onwards, Python UDFs are supported. In the latest version of Pig, in addition
to Python and Java, UDFs can be written in Jython, JavaScript, Ruby, and Groovy.

Other than Java, the rest of the language bindings do not support all interfaces of Pig.
For example, the load and store interfaces are not supported by the other language
bindings. In this book, we will use Java to build and illustrate the power of UDFs.

There is a repository of Java UDFs called piggy bank. This is a public repository
where you can take advantage of UDFs written by others and contribute your
own UDFs to the community.
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Before using a UDF in Pig, it is necessary to register the JAR file in the Pig script.
The registration is done using the REGISTER command. In addition to an instance
of the UDF class per Map or Reduce task, Pig creates an instance where the logical
and physical plans for the script are created. This is done mainly for validation.

M Each Map and Reduce task gets its own copy of UDF. States
Q cannot be shared across Map and Reduce tasks; however, it
can be shared within the same Map or Reduce task.

Pig UDFs can be broadly classified into the following types:

¢ Evaluation functions
¢ Load functions

e Store functions

Let's examine each one of them in detail.

The evaluation functions

As the name suggests, these are functions used for evaluation. The following
example shows a custom upper UDF and its usage within a Pig script. All evaluation
functions are extended from the org.apache.pig.EvalFunc base class. The most
important method to override is the exec method. The EvalFunc class takes a
generic type that signifies the return type of UDFs. The input to the exec method

is a Tuple type. This Tuple has to be unwrapped using the get () method, and the
resulting data item has to be processed by the exec method. The simplest of UDFs
only has to override the exec method:

package MasteringHadoop;

import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
import java.io.IOException;

public class UPPER extends EvalFunc<Strings{

@Override
public String exec(Tuple objects) throws IOException {

if (objects == null || objects.size() == 0){
return null;
1

try{

[86]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

String inputString = (String) objects.get (0);
return inputString.toUpperCase() ;

}

catch (Exception ex) {

throw new IOException ("Error processing input ", ex);

}

register MasteringHadoop-1.0-SNAPSHOT-jar-with-dependencies.jar;

cc = load 'countrycodes.txt' using PigStorage(',6') as
(ccode:chararray, cname:chararray) ;

ccCapitalized = foreach cc generate
MasteringHadoop .UPPER (cc.cname) ;

The aggregate functions

These UDFs are evaluation functions that are applied on groups. The in-built functions
such as suM and COUNT are functions of this kind. Aggregate UDFs take in a bag of
values and return a scalar.

The entire record can be passed into UDFs by using *. When the
M entire record is passed, it is wrapped within another tuple. For
Q example, to get the second element of a record, input .get (0) .
get (1) has to be executed. The first get () call unwraps the
record from the tuple.

The Algebraic interface

Aggregate functions that implement the Algebraic interface can be used for local
aggregation via Combiners. In Chapter 2, Advanced MapReduce, we studied how
Combiners can help reduce data flow from Map tasks to Reduce tasks and also
speed up the query by reducing the amount of IO.

An algebraic function is any function that can be divided into three functions: the
initial function, the intermediate function, and the final function. If these three
functions are applied in a cascading fashion, it is marked as an algebraic function. In
other words, the data is divided into fragments, and the initial function is applied on
it, followed by the intermediate function on its results, and finally, the final function
on the results of the intermediate function. The cOUNT function is an example of an
algebraic function, where the initial function is count; the intermediate and final
functions are both sums of the results.
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A distributive function is a special case of an algebraic function where all three
subfunctions do the same computation. SuM is an example of a distributive function.

Pig provides the org.apache.pig.Algebraic interface, which can be implemented
to make the UDF algebraic. The following example shows a COUNT aggregate UDF
implementing an algebraic interface.

Using an algebraic function translates to using Combiners on the Map task to execute
the Initial and Intermediate static class exec functions. The Reduce task will
execute the Final class' exec function:

package MasteringHadoop;

import org.apache.pig.Algebraic;

import org.apache.pig.EvalFunc;

import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.DataBag;

import org.apache.pig.data.Tuple;

import java.io.IOException;
import java.util.Iterator;

public class COUNT extends EvalFunc<Long> implements Algebraic

protected static Long count (Tuple input) throws
ExecException{

DataBag dataBag = (DataBag) input.get(0) ;
return dataBag.size() ;

protected static Long sum(Tuple input) throws ExecException({

long returnSum = 0;
DataBag dataBag = (DataBag) input.get(0) ;
for (Iterator<Tuple> it = dataBag.iterator () ;
it.hasNext () ;) {
Tuple tuple = it.next();
returnSum += (long)tuple.get (0);

}

return returnSum;

}

static class Initial extends EvalFunc<Longs{

@Override
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public Long exec(Tuple objects) throws IOException {
return count (objects) ;

static class Intermediate extends EvalFunc<Longs{

@Override
public Long exec (Tuple objects) throws IOException (
return sum(objects) ;

static class Final extends EvalFunc<Longs{

@Override
public Long exec (Tuple objects) throws IOException (
return sum(objects) ;

@Override
public Long exec (Tuple objects) throws IOException (
return count (objects) ;

@Override
public String getInitial() {
return Initial.class.getName () ;

@Override
public String getIntermed()
return Intermediate.class.getName () ;

@Override
public String getFinal() {
return Final.class.getName() ;
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The Accumulator interface

In many cases, when a GROUP or COGROUP operator is used, all the bags of tuples for
a particular key might not fit in memory. Also, the UDF might not need to see all the
tuples at one go. Pig allows UDFs to implement the Accumulator interface to handle
these situations. Instead of passing the entire record set at once, Pig incrementally
passes subsets of the records for a given key through this interface.

Though the Algebraic interface alleviates the memory problem by aggregating
early, there are many functions that are not algebraic. These functions might still
be able to aggregate by accumulation and might not need to see the entire dataset.

Let's implement the UDF LongMax, which finds the biggest value in a bag using the
Accumulator interface. As shown in the following snippet, the three methods that
need to be implemented are accumulate, getValue, and cleanup. The accumulate
method is called whenever an intermediate set of records is passed to UDFs. The
cleanup method is called after each key is processed:

package MasteringHadoop;

import org.apache.pig.Accumulator;

import org.apache.pig.EvalFunc;

import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.DataBag;

import org.apache.pig.data.Tuple;

import java.io.IOException;
import java.util.Iterator;

public class LONGMAX extends EvalFunc<Long> implements
Accumulator<Long> {

private Long intermediateMax = null;

@Override
public Long exec (Tuple objects) throws IOException ({
return max (objects) ;

@Override
public void accumulate(Tuple objects) throws IOException {
Long newIntermediateMax = max (objects) ;

if (newIntermediateMax == null) {

return;
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if (intermediateMax == null) {

intermediateMax = Long.MIN VALUE;

intermediateMax = Math.max (intermediateMax,
newIntermediateMax) ;

@Override
public Long getValue() ({
return intermediateMax;

@Override
public void cleanup() {
intermediateMax = null;

protected static Long max (Tuple input) throws ExecException({

long returnMax = Long.MIN VALUE;
DataBag dataBag = (DataBag) input.get(0);

for(Iterator<Tuple> it = dataBag.iterator();
it.hasNext () ;) {

Tuple tuple = it.next();
Long currentValue = (Long)tuple.get(0) ;
if (currentValue > returnMax) {

returnMax = currentValue;

}

return returnMax;

The filter functions

Filter functions are also evaluation functions, but return a Boolean value. They can
be used anywhere a Boolean expression is being evaluated. They are most commonly

used as part of the FILTER operator. They implement the FilterFunc interface.
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The load functions

These are functions that do input handling in Pig scripts. They implement the
LoadFunc abstract class and are used along with the LoAD statement. The following
example is a simple CSV file loader UDF. The methods that need to be overridden
are setLocation, getInputFormat, prepareToRead, and getNext.

The setLocation function is used to inform the load location. The loader should in
turn communicate this to InputFormat. The setLocation method might be called
many times by Pig.

The prepareTorRead method gets the Recordreader object of the InputFormat
class. This Recordreader can then be used to read and parse records in the getNext
function. The getNext method does the actual record parsing into Pig complex
types. In the following example, it takes each line and parses record tuples.

The get InputFormat method gives Pig the InputFormat class used by the loader.
Pig calls InputFormat in the same manner as a MapReduce Hadoop job. The
following code snippet illustrates the CSV file loader UDF:

If files have to be read recursively from directories in HDFS,
o PigFileInputFormat and PigTextInputFormat can be used.
S These Pig-specific Input Format classes are found in the org.apache.
CIE pig.backend.hadoop.executionengine.mapReducelayer
package. Text InputFormat and FileInputFormat, present natively
in Hadoop, can only read files one level deep in the directory structure.

package MasteringHadoop;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.InputFormat;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.pig.LoadFunc;

import org.apache.pig.backend.hadoop.executionengine
.mapReducelayer.PigSplit;

import org.apache.pig.data.DataByteArray;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;

import java.io.IOException;
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import java.util.ArrayList;

public class CsvLoader extends LoadFunc
private RecordReader recordReader = null;

private TupleFactory tupleFactory =
TupleFactory.getInstance() ;

private static byte DELIMITER = (byte)',';
private ArrayList<Object> tupleArrayList = null;

@Override
public void setLocation(String s, Job job) throws IOException {
FileInputFormat.setInputPaths (job, s);

@Override
public InputFormat getInputFormat() throws IOException {
return new TextInputFormat () ;

@Override

public void prepareToRead (RecordReader recordReader, PigSplit
pigSplit) throws IOException {
this.recordReader = recordReader;

@Override
public Tuple getNext() throws IOException {
try(

if (recordReader.nextKeyValue ()) {

Text value = (Text)
recordReader.getCurrentValue () ;

byte[] buffer = value.getBytes() ;
tupleArrayList = new ArrayList<Objects>() ;

int start = 0;
int 1 = 0;
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int len = value.getLength() ;
while (i < len) {
if (buffer[i] == DELIMITER) {
readFields (buffer, start,
start = 1 + 1;

i++;

readFields (buffer, start, len);

Tuple returnTuple =

tupleFactory.newTupleNoCopy (tupleArrayList) ;

tupleArrayList = null;

return returnTuple;

}

catch(InterruptedException ex) {
//Error handling

}

return null;

private void readFields (byte[] buffer, int start, int i){

if (start == i) {
//Null field
tupleArrayList.add (null) ;
}
else(
//Read from start to i

i);
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tupleArrayList.add (new DataByteArray (buffer, start,
i));

The store functions

Store UDFs are similar to load UDFs. They extend the abstract class, StoreFunc,

and deal with Hadoop's outputFormat family of classes and Recordwriter. The
methods to override in the StoreFunc abstract class are putNext, getOutputFormat,
setStoreLocation, and prepareToWrite.

Pig performance optimizations

In this section, we will look at different performance parameters and how to tune
them for optimized Pig script execution.

The optimization rules

Pig applies optimization rules on the generated logical plan for a Pig script. By
default, all rules are enabled. The pig.optimizer.rules.disabled property can

be used to disable rules. The -optimizer off command-line option can also be used
when executing a Pig script to disable rules. Some rules are mandatory and cannot
be disabled. The a1l option disables all the non-mandatory rules:

set pig.optimizer.rules.disabled <comma-separated rules list>
Alternatively, you can use the following command:
pig -t|-optimizer off [rule name | alll

s FilterLogicExpressionSimplifier is turned off by default. Setting

Q the property pig.exec.filterLogicExpressionSimplifier to
true can turn it on.

[95]

www.it-ebooks.info


http://www.it-ebooks.info/

Advanced Pig

Most of the optimization rules discussed in the following section are simple and
borrowed from database query optimizations:

PartitionFilterOptimizer: This rule pushes all filtering upstream to
the +er. Many loaders are partition-aware and will be instructed to load
a partition with the filter predicate.

FilterLogicExpressionSimplifier: Filter statement expressions are
simplified by turning on this rule. Some of the simplifications done are
as follows:

[e]

Constant Pre-calculations: Any expression that evaluates to a
constant is precalculated:

X = FILTER A BY $0 > 2*5; is simplified toX = FILTER A BY $0
> 10;

Eliminations of negations: Any negations in filter expressions are
removed without a change in logic:

X = FILTER A BY NOT(NOT ($0 > 10) OR $0 > 20); is simplified
toX = FILTER A BY $0 > 10 AND $0 <= 20;

Elimination of implied expressions in AND: Any redundant logical
conditions in an AND expression is eliminated:

X = FILTER A BY $0 > 5 AND $0 > 10; is simplified to
X = FILTER A BY $0 > 10;

Elimination of implied expression in OR: Any redundant logical
conditions in an OR expression is eliminated:

X = FILTER A BY $0 > 5 OR $0 > 15; is simplified to
X = FILTER A BY $0 > 5;

Elimination of equivalence: Any equivalence in an expression
is simplified:

X = FILTER A BY $0 != 5 AND $0 > 5; is simplified to
X = FILTER A BY $0 > 5;

Elimination of filtering in presence of complementary expressions
in OR: Filtering is not done when there are complementary
expressions in OR:

No filtering is done in the case of X = FILTER A BY $0 <= 5 OR $0
> 5;
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° Elimination of 'always' true expressions: Any filtering expression
that always results in a true logical evaluation is eliminated:

X = FILTER A BY 1 == 1;

splitFilter: This optimizer rule tries to split filter statements. The
SplitFilter optimization, when combined with other filter optimizations,
can be very effective in terms of performance. In the following example, the
SplitFilter optimization will split the joinCountryFilter relation into
two filters:

joinCountryFilterl = filter joinCountry by
INDEXOF (cc::ccode, 'a', 0) == 0;
joinCountryFilter = filter joinCountryFilterl by population > 0;

cc = load 'countrycodes.txt' using PigStorage(',') as
(ccode:chararray, cname:chararray) ;

ccity = load 'worldcitiespop.txt' using PigStorage(',') as
(ccode:chararray, cityName:chararray,
cityFullName:chararray, region:int,
population:long, lat:double, long:double) ;
joinCountry = join cc by ccode, ccity by ccode;
store joinCountry into 'country-code-join-pig' using

PigStorage (', ') ;
joinCountryFilter = filter joinCountry by
INDEXOF (cc::ccode, 'a', 0) == 0 and population > 0;

pushUpFilter: The idea behind this optimization is to push filter statements
upstream in the data pipeline. The effect of such a move is the reduction

of records that are to be processed. In the SplitFilter example, once

the filters are split, PushUpFilter moves joinCountryFilterl and
joinCountryFilter before the JOIN statement and directly after the

LOAD statements.

MergeFilter : The MergeFilter rule is the exact complement of
SplitFilter. The splitFilter rule is applied before pushUpFilter,
but MergeFilter is applied after the application of PushUpFilter.
Multiple filters on the same dataset are combined as a single filter:

X = FILTER A BY $0 > 10;and
Y = FILTER X BY $1 > 10; will be combined as
Y = FILTER A BY ($0 > 10 AND $1 > 10);
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PushDownForEachFlatten: The FLATTEN operation within a FOREACH
statement generally produces more tuples than the input. Adhering to the
principle of processing the least number of records in the data pipeline, the
PushDownForEachFlatten optimization pushes these FOREACH statements
downstream. In the following example, the FOREACH statement will be moved
after the JOIN statement:

X = FOREACH A GENERATE FLATTEN ($0), $1;
Y = JOIN X BY $1, B BY $1;

LimitOptimizer: Similar to PushUpFilter, the idea here is to move the
LIMIT operator statements upstream. This reduces the number of records
processed downstream.

ColumnMapKeyPrune: The idea behind this optimization is to get the loader
to load only the required columns of data. If the loader is unable to do this, a
FOREACH statement is inserted just after the load call. This optimization works
on map keys as well.

AddForEach: The AddForEach optimization is used to prune columns as
soon as the script does not require it. In the following example, column1
is no longer used after the ORDER statement:

A = LOAD 'input.txt' AS (columnl, column2) ;

X = ORDER A by columnl;
Y = FILTER X by column2 > 0;

A FOREACH operator is added in between the ORDER and FILTER statements:

X1 = FOREACH X GENERATE column2;
Y = FILTER X1 by column2 > 0;

MergeForEach: This optimization merges multiple FOREACH statements

into one FOREACH statement. This saves iterating over the dataset multiple
times. This optimization is only possible if the following three preconditions
are satisfied:

° The FOREACH has no FLATTEN operator within it.
° The FOREACH statements are consecutive.
° The subsequent FOREACH statement is not nested. This is not

applicable for the first FOREACH in the sequence.

GroupByConstParallelSetter: In a statement executing GROUP ALL, even
if PARALLEL is used to set the number of Reduce tasks, only one Reduce task
is used. The rest of the Reduce tasks return empty results. This optimization
automatically sets the number of Reduce tasks to one.
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Measurement of Pig script performance

UDFs are developer-written functions that might require performance profiling to
identify hotspots. Pig gives a couple of statistics on UDFs using Hadoop counters.

A setting called pig.udf.profile can be set to true. With this setting enabled, Pig
tracks the time taken to execute a particular UDF, and also the frequency of UDF
invocation. The approx._microsecs function measures the approximate time spent
in UDFs, and approx._invocations gives the developer the number of times UDFs
were called during execution.

o By setting pig.udf .profile, counters are enabled during Hadoop
~ job executions. As we saw in the previous chapter, counters are
Q global, and they add overhead on the tracking of Hadoop jobs. This
setting should be judiciously used, preferably in test settings only.

Combiners in Pig

In the previous chapter, we saw how Combiners reduce disk I/O and save on the
amount of data sent over the network from the Map to the Reduce tasks. In Pig,
Combiners are invoked based on the structure of the script. The following are

a few conditions under which Combiners are invoked:

¢ A non-nested FOREACH statement is used

* All the projections in a FOREACH statement are expressions on the grouped
columns, or any UDFs used are algebraic functions, that is, they implement
the Algebraic interface

1
5 Combiners are used in nested FOREACH statements as long as
DISTINCT is the only operator used within the nesting.

A Combiner is not used under the following conditions:

» If the script fails the rules explained previously

* If there is any statement present between a GROUP and FOREACH statement;
post Pig 0.9, the LIMIT operator is an exception to this rule

M The logical optimizer might push any FILTER operators that
Q come after FOREACH using the PushupFilter optimizer. This
might prevent the use of Combiners.
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Memory for the Bag data type

Bags are the only complex data types that are spilt into disks if they don't fit in
memory. The pig. cachedbag.memusage setting determines the percentage of
memory allocated to bags. The default setting is 0.2, that is, 20 percent of the
memory is shared between all bags in the application.

Number of reducers in Pig

Unlike bare metal MapReduce, Pig determines the number of Reduce tasks
automatically based on the size of the inputs. The input data size is divided by the
value in the pig.exec.reducers.bytes.per.reducer parameter to figure out the
number of Reduce tasks. The default value for the parameter is 1000000000 (1GB).
However, the maximum number of Reduce tasks is capped by the value in setting
pig.exec.reducers.max. Its default value is 999.

The class that implements the algorithm used to calculate the number of Reduce
tasks is in value of setting pig.exec.reducer.estimator. A custom algorithm

can override this as long as the class implements the org.apache .pig.backend.
hadoop . executionengine . mapReducelLayer.PigReducerEstimator interface and
the full class name is assigned to the setting. Arguments can be passed to this custom
algorithm by providing a value to the pig.exec.reducer.estimator.arg setting.
This value will be passed to the constructor as a string parameter.

The multiquery mode in Pig

By default, Pig executes in the multiquery mode. All the statements in a Pig script are
executed as one Pig job. One such query is as follows:

#Multi-query execution can be turned off explicitly by the -M or -
no_multiquery switch.

pig -M <script> or pig -no multiquery <script>

DUMP should be avoided as it disables multiquery execution, resulting
s . . . . . .. ..
~ in the revaluation of relations and making the Pig script inefficient.
Instead, a good practice is to use STORE. The interactive command
DUMP forces the Pig compiler to avoid multiquery executions.
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When a multiquery execution takes place, it is important for the user to distinguish
between successful and failed executions of jobs. The STORE command outputs
will have different paths, and the result of execution can be discerned by looking
at the files. Also, at the end of execution, Pig gives out a result code indicating the
status of the script execution. The following table gives the different result codes
and their meaning;:

Return code Meaning

0 Success

1 Retrievable errors
2 Failure (all)
3 Failure (partial)

Best practices

The optimization rules in the previous section change the logical plan of a Pig script
to enhance performance. We know that these rules will help develop efficient scripts.
There are a few other practices that can speed up Pig scripts. These best practices
cannot be made into rules as they are application and data specific. Also, the
optimization rules tend to be conservative and might not guarantee the application
of the rule.

The explicit usage of types

Pig supports many types, both primitive and complex. Type usages can speed up
your scripts, sometimes up to 2X. For example, in Pig, all numerical computations
without type specifications are considered as double computations. The double
type in Pig takes up 8 bytes of storage, while an int type takes up 4 bytes. The
computation using int is faster than the computation involving the double type.

Early and frequent projection

As we saw with the AddForEach and ColumnMapKeyPrune optimizers, it is a good
practice to project only fields that are absolutely necessary downstream. This helps
in reducing the overall data that needs to be transferred and processed downstream.
It is also good practice to check your scripts for unused fields. Projecting only the
necessary fields after each operation using a FOREACH statement can eliminate
unused fields. Projecting early and often is a Pig best practice.
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Early and frequent filtering

Similar to early projection, it is efficient to filter early and often. Again, filtering
reduces the amount of data being transferred and processed downstream. Filtering
reduces data by reducing the number of records, while projection reduces data by
reducing the number of fields in the dataset.

o If filtering removes an insignificant number of records, and the
~ operation of filtering is expensive, it might not be efficient to
Q filter early and often. Understanding your data is important
when implementing this practice.

The usage of the LIMIT operator

Very often, we are interested in sampling or perusing the top few records
of our results. The LIMIT operator can be used to do this. As we saw in the
LimitOptimizer rule, LIMIT operations will be pushed upstream, reducing
the overall processing time.

The usage of the DISTINCT operator

There are two ways of finding the number of distinct elements in a field: one is to use
the GROUP operator and generate the group key, and the other is to use the DISTINCT
operator available in Pig. The latter is more efficient than the former.

The reduction of operations

MergeForEach and MergeFilter merge consecutive FOREACH and FILTER statements
to a single FOREACH or FILTER statement. Look out for such opportunities where
combining multiple operations is possible. Reducing the number of operators in the
data pipeline increases the performance of a Pig script.

The usage of Algebraic UDFs

When UDFs are developed and the nature of the processing is algebraic, it is good
practice to write UDFs that implement the Algebraic interface. Combiners are called
when algebraic UDFs work on grouped data. The usage of Combiners enhance the
job performance in MapReduce.
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The usage of Accumulator UDFs

Accumulator UDFs can be used to reduce the amount of memory required by UDFs
by taking the input in chunks.

Eliminating nulls in the data

A JOIN or GROUP operation on relations send all NULL keys to a single Reduce task.
If FLATTEN is used to unwrap the grouping, all NULL records will be eliminated.
However, this elimination happens after the Reduce task is executed. Actively
filtering for nulls before a JOIN or GROUP/COGROUP operator can improve the script
performance significantly by getting rid of Reduce tasks on the NULL keys.

The usage of specialized joins

The second input of a regular join is streamed instead of bringing it to memory.
This is a regular join optimization that exists in Pig. When joining datasets of
different sizes, it is more efficient to get the dataset with a larger number of
records as the last input to the join:

C = JOIN small_file BY s, large_file by F;

As we saw in the Specialized joins in Pig section, a number of other join optimizations
can be leveraged in Pig.

Compressing intermediate results

A Pig script might get compiled into a number of MapReduce jobs. Each job
might produce intermediate output. The output can be compressed using the
LZO compression codec. This will not only help save on HDFS storage but will
also help in faster job execution by reducing load times.

The pig.tmpfilecompression property determines whether intermediate

file compression is switched on or off. By default, the value is false. The pig.
tmpfilecompression.codec property value is the codec used for compression.
Currently, Pig accepts gz and 1zo as possible values for this parameter. Though the
GZIP compression codec provides better compression, it is not preferred because of
it slowing down during execution times.
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Combining smaller files

In Chapter 2, Advanced MapReduce, we saw the problems associated with small

files and the usage of CombineFileInputFormat. Pig now has in-built support for
combining smaller files. This reduces the number of splits, and in turn, the number
of Map tasks.

The pig.splitCombination property can be set to true to combine smaller files.
The size of each split is given by pig.maxCombinedsplitSize. This property value
takes the suggested size in bytes of the input to each Map task. Smaller files are
combined until this limit is reached.

Combining small files works well for the in-built PigStorage
M loader. If you are writing a custom loader, the loader must be
Q stateless across invocations to the prepareToRead method.
Also, the loader must not implement the IndexableLoadFunc,
OrderedLoadFunc, and CollectablelLoadFunc interfaces.

Summary

In this chapter, we went through the advanced features of Pig. We looked into
the optimizations that Pig has to offer. The following are a few key takeaways
from this chapter:

* Asarule, try to use Pig in as many situations as you can. Pig's abstractions,
development aids, and flexibility can save you both time and money. Stretch
Pig's capabilities before reverting to MapReduce jobs.

* Thelogical plan optimizations might change the order of statement
execution. Use EXPLAIN and ILLUSTRATE extensively to study Pig scripts.

* Help Pig to execute your script faster by following some of the guidelines
mentioned in this chapter. Try to make your UDFs implement the Algebraic
or Accumulator interface, ideally both.

* Understand the data you are trying to process. Specialized support is
available for some kinds of data quirks, such as Skewed joins for joins
on skewed data.

In the next chapter, we will look at advanced features of a higher-level SQL
abstraction on Hadoop MapReduce called Hive.
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SQL is a popular data-processing language that has been around for four decades.
There are scores of people who are already familiar with Relational Data Stores and
SQL. A natural step in onboarding more users onto Hadoop is to flatten the learning
curve by bringing in concepts they are well versed with. Hive introduces relational
and SQL concepts into Hadoop MapReduce. In the chapter on Pig, you saw the
advanced usage of Pig scripts to author MapReduce workflows. In this chapter,

we will delve into the advanced usage of Hive.

Apache Hive is often described as a data warehouse infrastructure. Traditionally,
business intelligence is gathered from a data warehouse, a database that stores
data from many sources within an enterprise. This database stores both historical
and current data in an enterprise. This data store is primarily queried for reporting
and analytics. Traditionally, infrastructure that made data warehouses consisted of
Relational Databases (RDBMS), and the query language used to perform analysis
and generate reports was SQL. Data warehouse infrastructure used to be made of
Relational Data Stores and queried using SQL. Special star or snowflake schemas
were used to model these data stores. Apache Hive continues this tradition of SQL,
but it changes the underlying data store to HDFS. The queries are translated into
MapReduce jobs. The variant of SQL used in Hive queries is called HiveQL.

In this chapter, we will discuss the following topics:

* The architecture of Hive on a Hadoop cluster

* The data types supported by Hive, underlying file formats, and data model

e The different query plan optimizers available with Hive and their significance
* The extensibility options provided by Hive, such as UDFs, UDAFs, and UDTFs
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The Hive architecture

The following diagram shows the Hive architecture. We will look at each component
in detail:
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The Hive metastore

The metastore is a database for system-related metadata. It stores details about the
tables, partitions, schemas, column types, and table locations. It can be accessed via
the Thrift interface, making it possible to read this data using clients written in many
different programming languages. The data is stored in a relational database system
and uses an Object-relational mapping (ORM) layer to read and write data into

the store. The choice of using an RDBMS for the metastore was made to reduce the
latency when serving this information to the Hive query compiler.

The ORM layer of the metastore allows a pluggable model where any RDBMS can
be plugged into Hive. The default RDBMS used is Apache Derby, an open source
relational data store. In practice, organizations use MySQL and other popular
RDBMS suites to host the metastore. The data in the metastore imposes structures on
otherwise raw HDFS files. This makes it critical to protect the metastore from crashes
by regular backups or replication. The metastore is only accessed during compilation
and never when MapReduce jobs are run.
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The Hive compiler

The compiler takes a HiveQL query and translates it into MapReduce jobs. A parser
parses the query and builds an abstract syntax tree (AST). The AST is checked for
types and semantic consistencies. Metadata from the metastore is used to achieve
this step. The output of the checks is an operator DAG. A series of optimization
transformations are then applied on the DAG. The transformations are chained,
and the output is an optimized operator tree. Users are allowed to add their
transformations by implementing the Transform interface. We will discuss

some of the optimizations later in this chapter.

The optimized DAG is then translated into a physical plan. The physical plan is a set of
MapReduce and HDEFS jobs. A HDFS job is used to read and write data from HDFS.

The Hive execution engine

The execution engine takes the plan generated by the compiler and executes the job
strictly in order of their dependencies. The plan is communicated to each task in the
Hadoop cluster via a plan.xml file. This file is distributed across the cluster using

a side channel such as DistributedCache. The job outputs are stored in temporary
locations. On the completion of the entire query, if a store location is specified, these
tiles are moved to appropriate locations as specified by the Data Manipulation
Language (DML). In the case of a query without a store location, the results are
served directly from the temporary location.

The supporting components of Hive

The Hive infrastructure has a number of supporting components, which are as follows:

* A Driver is the component that handles query submissions. It is responsible
for orchestrating the life cycle of a query by invoking the components in the
correct order to fulfill it. The Driver also spawns sessions and keeps track of
session statistics.

* There are many client components that are used to submit queries to Hive.
The notable ones are Command Line Interface (CLI), a web interface, and
JDBC/ODBC connectors. Thrift serialization is used extensively as the
serialization library in Hive.

* Extensibility components, such as the SerDe and ObjectInspector interfaces,
are present to help users integrate with different data types and legacy data.
User-defined Functions (UDFs) and User-defined Aggregate Functions
(UDAFs) are custom functions that can be written by the user to extend
Hive's capabilities.
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Data types

Hive supports all the primitive numeric data types such as TINYINT, SMALLINT, INT,
BIGINT, FLOAT, DOUBLE, and DECIMAL. In addition to these primitive data types, Hive
also supports string types such as CHAR, VARCHAR, and STRING data types. Like SQL,
the time indicator data types such as TIMESTAMP and DATE are present. BOOLEAN and
BINARY miscellaneous types are available too.

A number of complex types are also available. Complex types can be composed from
other primitive or complex types. The complex types available are as follows:

* sTRUCTS: These are groupings of data elements similar to a C-struct. The dot
notation is used to dereference elements within a struct. A field within column
C defined as STRUCT {x INT, y STRING} can be accessed asA.xorAa.y.

The syntax for this is STRUCT<field name : data_type>
» MAPS: These are key-value data types; providing the key within square braces
can access a value. A value of a map column M that maps from key x to value

y can be accessed by M[x].There is no restriction on the type stored by the
value, though the key needs to be of a primitive type.

The syntax for this is MAP<primitive_ type, data_type>
* ARRAYS: These are lists that can be randomly accessed through their position.

The syntax to access an array element is the same as a map. However, what
goes in the square braces is a zero-based index of the element.

The syntax for this is ARRAY<data_type>

* uNIONS: This is a union-type available in Hive. It can hold an element of one
of the data types specified in the union.
Syntax: UNIONTYPE<data_typel, data_type2..>

[ Q Functions and data types in Hive are case insensitive. ]

Hive Version >= 0.7.0 - UNIONTYPE complex data type is available.
Hive Version >= 0.8.0 - TIMESTAMP and BINARY data types are

available.

%%‘ Hive Version >=0.11.0 - DECIMAL data type is available.
Hive Version >=0.12.0 - DATE and VARCHAR data types are available.
Hive Version >=0.13.0 - CHAR data type is available.
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File formats

Hive supports a number of file formats out of the box. In this section, we will inspect
some of these file formats and their utilities.

Compressed files

For some use cases, storing files in a compressed format within HDFS is advantageous.
This strategy not only uses less storage, it also can reduce query times. Hive provides
importing files stored in GZIP and BZIP2 formats directly into tables. During query
execution, these files are decompressed and given as inputs to Map tasks. However,
files compressed with GZIP and BZIP2 compression schemes cannot be split and are
processed within a single Map task.

In practice, files stored in these compressed file formats are loaded into a table whose
underlying data format is a Sequence file. Sequence files can be split and distributed
to different Map tasks.

u The io.segfile.compression. type property tells Hive how the
~ compression of the Sequence file should happen. It can take two values,
Q RECORD, where each record is compressed and, BLOCK, where 1MB of
the file is buffered before compressing it.

Lempel-Ziv-Oberhumer (LZO) compression is a lossless compression codec that
trades compression for speed. If a Hadoop cluster needs to use the LZO compression,
it has to be installed on each node within the cluster. By setting mapreduce . output.
fileoutputformat.compress.codec to the LZO codec and mapreduce . output .
fileoutputformat.compress to true for the Hadoop cluster, we can enable LZO
compression for the output files. Setting the Hive property hive.exec.compress.
output to true makes Hive query outputs to be stored in the LZO compressed format.

ORC files

ORC stands for Optimized Row Columnar files. This is a file format particularly
attractive for Hive. These files are similar to RCFiles (Row Columnar Files), but
have additional optimizations.

The following diagram shows the structure of an ORC file. It contains groups of row
data called stripes. These stripes are typically 250MB in size. At the end of the file

is a file footer and postscript section. The file footer contains information such as

the stripe metadata, the number of rows in each stripe, and statistics such as count,
minimum, maximum, and sum of data in each stripe.
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Each stripe also has a footer that contains local statistics for an individual stripe.
The key characteristic of an ORC file is that it stores records in a columnar format.
Each column is contiguously stored for all rows. This increases the I/O efficiency
for aggregate queries. The following diagram is a schematic of an ORC file:

Index Data
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Stream 3.1
Stream 3.2

Row Data

Stripe Footer

Index Data

Column 1
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Column 3
Column 4

Row Data

Stripe Footer
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The Parquet files

Parquet is another wide columnar store for Hive. From Hive 0.10.0 to 0.12.0, Parquet
was available as an external package that needed to be explicitly installed. However,
in Hive 0.13.0, it is natively available in Hive. Parquet is interesting when there is a
need to store nested information in records.

SerDe stands for Serialization and Deserialization. They are used
to read and write the rows in a Hive table. The SerDe module sits in
between the file format and object representation of the row:

% HDEFS File -> InputFileFormat -> <key,value> -> DeSerializer ->
A .
Row Object

Row Object -> Serializer -> <key,value> -> OutputFileFormat ->
HDFS file

[110]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

The data model

Hive data is organized as databases. A database is a logical collection of Hive
tables. A database within Hive assigns a namespace for its tables. If no namespace

is assigned to Hive tables, it belongs to the default namespace. The creation of a
database results in the creation of an HDFS directory for the files in the database.
This directory serves as the namespace for the tables. The CREATE DATABASE
MasteringHadoop command creates a MasteringHadoop database. When we list
the HDFS directory structure, we see a directory created for this database, as shown:

drwxr-xr-x - sandeepkaranth supergroup 0 2014-05-15 08:55
/user/hive/warehouse/masteringhadoop.db

A table is the basic unit of data storage similar to traditional RDBMS. It logically
groups records of the same type. Records are rows corresponding to typed columns.
A table maps to a single directory within HDFS. Hive also allows imposing
structures on existing data locations via external tables. Metadata stored within
Hive for each table includes the column types and list of columns. It also includes
other information such as the owner of the table, serialization and deserialization
information (SerDe) for the columns, data storage formats, and bucketing-related
metadata. Databases and tables are stored in the HDFS location specified by the
hive.metastore.warehouse.dir property. These properties are defined in the
hive-default.xml or hive-site.xml file in the Hive installation configuration
(conf) directory.

\
~ When specifying the LOCATION for an EXTERNAL table in
HDFS, Hive expects the data files to be in a directory.

Partitions are divisions of the table based on distinct column values. When
partition columns are specified, all the records corresponding to distinct values or
value combinations of the columns are stored in a subdirectory within the table
directory. Partitions are used as prefilters to prune unnecessary records from
getting processed, helping decrease the query latency and I/O. It must be noted that
partitions also increase the number of files in HDFS, correspondingly the number

of Map tasks and intermediate outputs. The right number of partitions has to be
worked out for best performance.

\
~ A DROP table on an EXTERNAL table does not delete
the data in HDFS.
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Buckets or clusters are files in the leaf-level directories that correspond to records that
have the same column-value hash. A Hive user can specify the number of buckets per
partition, or per table if partitions are not present. Each record is placed in this bucket,
generally by taking the hash of the bucketed column modulo to the number of buckets
specified. Buckets are useful to sample data.

Let's take the worldcitiespop.txt file and create a table out of it. The following
Data Definition Language (DDL) query shows how a schema can be imposed on
an external table:

CREATE EXTERNAL TABLE MasteringHadoop.worldcities external (code
VARCHAR (5) , name STRING, fullName STRING, region INT, population
BIGINT, lat FLOAT, long FLOAT)

COMMENT 'This is the world cities population table'

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

STORED AS TEXTFILE

LOCATION '/user/sandeepkaranth/worldcitiespop';

The keyword, EXTERNAL, is used to indicate an existing table. There are keywords
associated with every bit of metadata that is stored in the Metastore. ROW FORMAT

is used to specify the serialization and deserialization semantics of a table. If Row
FORMAT is not specified, or Row FORMAT DELIMITED is specified, a Hive native SerDe
is used to produce the table rows. The STORED AsS clause specifies the underlying
file format used by the table, and LocaTION indicates the place where the table data
is stored within HDFS. When the EXTERNAL keyword is used, no additional HDFS
directories are created.

o In Hive, it is mandatory that each table maps to an HDFS directory,

S including an EXTERNAL table. In the example, worldcitiespop
Q is an HDFS directory that contains the worldcitiespop. txt file.
Hive disallows the imposing of the table structure directly on a file.

Now, let's create a table that is not external using the following DDL query:

CREATE TABLE MasteringHadoop.worldcities (code VARCHAR(5), name
STRING, fullName STRING, region INT, population BIGINT, lat FLOAT,
long FLOAT)

COMMENT 'This is the world cities population table'

PARTITIONED BY (region p INT)

CLUSTERED BY (code) SORTED BY (code) INTO 2 BUCKETS

ROW FORMAT DELIMITED FIELDS TERMINATED BY ', '

STORED AS SEQUENCEFILE;
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This table definition specifies a partition column within the table. It also indicates
the number of buckets, that is, two, within each partition. The underlying file format
of the table is the SEQUENCEFILE format. A partition column cannot have the same
name as any other column. When loading data into the table, the partition column
must be treated as a separate column.

Bucketing information is specified by the CLUSTERED keyword. In the preceding
example, we cluster the data based on the country code and specify a sort column
within each bucket. The number of buckets is specified as two. When bucketing,

it is very important to set the number of Reduce tasks to be equal to the number
of buckets to populate the right number of buckets. This can be done in a couple
of ways. One of the ways is to set the number of Reduce tasks explicitly for every
job. The other way is to let Hive automatically bucket the data by setting the hive.
enforce.bucketing property to true.

Using the following DML query, we will populate the previous table using the
external table we created:

set hive.enforce.bucketing = true;

set hive.enforce.sorting = true;

set hive.exec.dynamic.partition = true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

FROM MasteringHadoop.worldcities external

INSERT OVERWRITE TABLE MasteringHadoop.worldcities

PARTITION (region_ p)

SELECT code, name, fullName, region, population, lat, long, region
WHERE region IS NOT NULL;

. A table definition that has a column with the same
% name as the partition column throws the error FAILED :
e SemanticException [Error 10035]: Column
repeated in partitioning columns.
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The end result is a table with partitions based on the distinct value of the region code.
Each partition has two buckets that are sorted on the country code. The underlying
HDFS directory structure for the partitions is given below. Each partition is a separate
directory. The distinct value of the column that is stored in the partitioned column is
part of the directory name.

On inspecting a partition directory, we see the buckets as files. Each of the partitions
has two files, indicating two buckets.

Dynamic partitions

Partitioning can be of three types: static, dynamic, and hybrid. If the partition
information for a column is available during compile time, it is termed a statically
partitioned column. The user, when defining the tables, specifies the values taken
up by the column. In contrast, for dynamically partitioned columns, the partitions
are defined and determined during a query execution.

Partitions are HDFS directories and can be directly added to HDFS
using the hdfs put command. However, the metastore has the master
M information for all the tables. It will not be aware of any partition that
Q is directly added to HDFS. Hive provides a command to automatically
update the metastore and recover the partition. The command is MSCK
REPAIR TABLE tableName;.On Amazon EMR, the command is
ALTER TABLE tableName RECOVER PARTITIONS;.

[114]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

The DML query to populate the MasteringHadoop.worldcities table is
dynamically partitioned. The values for the region_p column are determined when
this table is populated from the MasteringHadoop.worldcities external table.

In the INSERT. . SELECT DML query as the previous one, all dynamically partitioned
columns should come at the end of the SELECT statement and appear in the same
order as they appear in the PARTITION directive. The region_p partition column
value comes from the region column of the EXTERNAL table and is specified last in the
SELECT statement.

Semantics for dynamic partitioning

Some key semantics when using the dynamic partitioning feature in Hive are
as follows:

* By default, dynamic partitioning is turned off in Hive. It can be enabled
by setting the value of hive.exec.dynamic.partition to true in the
hive-default.xml or hive-site.xml configuration file.

* If partitions with the same values as the dynamically loaded data already
exist, the existing partitions will be overwritten.

* A NULL or empty partition column will be sent to a partition determined by
the value of the hive.exec.default.partition.name property. The default
value of this property is _HIVE_DEFAULT PARTITION_ .

* Dynamic partitions are governed and limited by the following three
important properties:

[e]

The hive.exec.max.dynamic.partitions property imposes a limit
on the total number of partitions that can be created by a DML query.
The default value is 1,000. If the number of partitions exceeds 1,000,
an exception is raised by the MapReduce job.

The hive.exec.max.dynamic.partitions.pernode property
imposes a limit on the total number of partitions that can be created
by a single Map or Reduce task. The default value is 100. A fatal error
is raised if a task exceeds this limit.
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[e]

The hive.exec.max.created. files property imposes a limit on the
number of files created by all Map and Reduce tasks globally when a
DML query is executed. The default value is 100,000.

The following fatal error is displayed when a Reduce task exceeds the
number of dynamic operations:

2014-05-15 08:46:27,647 FATAL [Thread-17]: ExecReducer
(ExecReducer.java:reduce (282)) -
3 org.apache.hadoop.hive.gl.metadata.HiveFatalException:

% [Error 20004]: Fatal error occurred when node tried to
create too many dynamic partitions. The maximum number
of dynamic partitions is controlled by
hive.exec.max.dynamic.partitions and
hive.exec.max.dynamic.partitions.pernode. Maximum was
set to: 100

* By default, a query with all dynamically partitioned columns is not allowed.
This is because the value of the hive.exec.dynamic.partition.mode
property is set to strict. In the preceding example, we have no statically
partitioned columns. In order for the query to work, the dynamic partition
mode property has to be set to nonstrict.

Indexes on Hive tables

In an RDBMS, indexing is used for a faster lookup of data, which in turn relates to
faster queries. Indexes are data structures that enable random and efficient access of
database records based on keys. An index itself might not store the entire record, but
only a pointer to the record. Hive indexes are similar to nonclustered indexes from
traditional databases. They keep track of mapping between the data and relevant
HDFS blocks they reside in. This enables a MapReduce job to figure out only the
relevant blocks to process queries.

In the following example, an index is created using two different handlers, compact
and bitmap. A Hive index is nothing but a table in HDFS. The DEFERRED REBUILD
directive is used to instruct Hive to populate the index at a later stage. An ALTER
INDEX command can be issued to build the index at a later point of time:

USE MasteringHadoop;

CREATE INDEX worldcities idx compact ON TABLE worldcities (name)
AS 'COMPACT' WITH DEFERRED REBUILD;

CREATE INDEX worldcities idx bitmap ON TABLE worldcities (name) AS
'BITMAP' WITH DEFERRED REBUILD;

DESCRIBE masteringhadoop worldcities worldcities idx compact ;
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The output of the DESCRIBE operation on the compact index tables is shown as
follows. For each partition and bucket, the index table holds an array of offsets.
These offsets can be used to directly get the block of data:

hive> DESCRIBE
masteringhadoop worldcities worldcities idx compact ;

OK

name string
_bucketname string
_offsets array<bigints>
region p int

# Partition Information
# col name data_type comment

region p int
Time taken: 0.078 seconds, Fetched: 9 row(s)

Bitmap indexes are used when the number of possible values taken by the indexed
column is less. The index table structure for a Bitmap index is also similar, but the
information encoded is different. The bitmaps field stores a bit for each record in

the table. If the value is present in the record, this particular bit is turned on, otherwise
it is turned off. The index table structure of a bitmap index is shown as follows:

hive> DESCRIBE masteringhadoop worldcities worldcities idx bitmap_ ;

OK

name string
_bucketname string
_offset bigint
_bitmaps array<bigints>
region p int

# Partition Information

# col_name data_type comment

region p int
Time taken: 0.083 seconds, Fetched: 10 row(s)
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Hive query optimizers

After type checking and semantic analysis of the query, a number of rule-based
transformations are applied to optimize the query. We will discuss some of these
optimizations here. Custom optimizations can be written by implementing the
org.apache.hadoop.hive.ql.optimizer.Transform interface. This interface
has one method that takes in a ParseContext object and returns another after the
transformation. The ParsecContext object has the current operator tree, among
other information.

The following are the few optimizations that are already available with Hive 0.13.0:

ColumnPruner: This operator tree is walked to determine the minimal
number of columns in the base table that are required to fulfill the query.
Any additional columns in the base table are pruned away by inserting a
SELECT statement when reading the base tables. This reduces the amount
of data read, processed, and written.

GlobalLimitOptimizer: When a LIMIT operator is used in a query, this
particular optimizer sets GlobalLimitCtx. This assists other optimizer rules
that appear downstream to take smarter and efficient decisions.

GroupByOptimizer: When the GROUP BY key is a superset of the bucketing
and sorting keys, the grouping can be done on the Map side. This optimizer
takes care of modifying the plan accordingly. The ordering of the keys must
be the same too.

JoinReorder: Based on user-specified hints, tables that are to be streamed
are processed last in a join operation.

PredicatePushdown: This is a term carried forward from the RDBMS world.
It is a misnomer and is actually Predicate Pushup. The idea here is to move
predicates that filter out data upstream close to the data source. This will
enable less record processing downstream, saving both I/O and network
bandwidth costs. A significant query speed can be achieved with this. By
default, PredicatePushdown is switched off. Setting the hive.optimize.ppd
property to true enables PredicatePushdown.

PredicateTransitivePropagate: This optimization rule propagates a
predicate to other relations in a join. When two tables are joined and the join
key of one table is filtered, the filtering predicate can be used on the other
table as well.
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* BucketingSortingReduceSinkOptimizer: If the source and destination
tables are bucketed and sorted on the same keys in the same order, no
Reduce task is required to conduct join or insert operations on these tables.
For example, in the INSERT OVERWRITE A SELECT * FROM B; query, if
the A and B keys are bucketed and sorted on the same table, Map tasks are
sufficient to fulfill the query completely. Eliminating Reduce means making
the query faster as there is no need for the shuffle/sort step.

* LimitPushdownOptimizer: If no filter operators are present in a statement
having the LIMIT operator, the Map tasks of the query can be optimized
to retrieve a top K result. This top K result can then be passed to the LIMIT
operator. This greatly reduces the number of records flowing through the
shuffle/sort stage.

* NonBlockingOpDeDupProc: This optimization merges projections and filters
them into single statements.

* PartitionPruner: To prevent the metastore from memory issues, partition
names are fetched first, and then, each partition information is retrieved
based on the need.

* ReduceSinkDeDuplication: If two Reduce tasks have the same partition
columns and order, they can be merged into a single task.

* RewriteGBUsingIndex: A GROUP BY operation can be conducted by
conducting a table scan on the index table rather than on the base table. This
is possible if the key columns have an index over them. For example, SELECT
COUNT (k) FROM A GROUP BY k can be written as SELECT SUM(_count_
of_k) FROM index_table GROUP BY k;. This optimization might not be
applicable for all GROUP BY queries.

* StatsOptimizer: There can be many queries that can be answered
directly from the metastore statistics. Queries involving MIN, MAX, and
COUNT are some examples of queries that can potentially be answered
without spawning any MapReduce task. This optimizer detects this
possibility and optimizes the query.

Advanced DML

The Data Manipulation Language provided by Hive is equivalent in features to any
state-of-the-art SQL system. They provide standard operations such as the JOIN,
GROUP BY, and UNION operations. The semantics might vary marginally depending
on the operation. Different kinds of optimization hints are also present.
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The GROUP BY operation

The GROUP BY operation is the same as in standard SQL, except for a few
advanced features:

*  Multi-Group-By Inserts: It is possible to have multiple GROUP BY clauses
within a single query. The output can be written to multiple tables or HDFS
files. For example, the following query is possible:

FROM src_table INSERT OVERWRITE TABLE id_count SELECT id,

COUNT (id) GROUP BY id INSERT OVERWRITE TABLE id_ sum SELECT id,
SUM (id_value) GROUP BY id;

* Map-side aggregation for GROUP BY: By setting the hive .map.aggr
property to true, it is possible to enforce one level of aggregation on
the Map tasks. This will yield a better-performing query.

ORDER BY versus SORT BY clauses

Hive has both an ORDER BY and a SORT BY clause to sort the output of a query. The
difference between the two is that ORDER BY imposes a total order on query results,
but SORT BY imposes order only on the rows in a Reduce task. If there are multiple
Reduce tasks, the output data will only have a partial order when SORT BY is used.

It is easy to see that the ORDER BY clause requires a single Reduce task to achieve
total order on the query, a bottleneck to sort large datasets. Hive enforces the

need for a LIMIT operator by default when an ORDER BY clause is used. This is
governed by the hive.mapred.mode setting. The default value is strict. By setting
it to nonstrict, the compiler does not impose the mandatory LIMIT restriction.
However, this is not recommended.

The JOIN operator and its types

The JoIN operators are very important to process data on multiple datasets or tables.
A number of JOIN operator variants are facilitated in Hive. Hive provides a number
of join optimization options based on the nature of the data. The following are some
important properties and optimizations in the JOIN operator:

* Hive supports inner joins, outer joins, and the left semi-join. All joins are
based on the equality operator. Fuzzy and theta joins are not supported.

* A multitable join is allowed. The number of MapReduce jobs depends on the
number of key columns participating in the join. If the same key columns are
used to join multiple tables, a single MapReduce job will be used.
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* By default, the last table participating in the join is streamed to the Reduce
task. The rest of the tables are buffered. It is important to place the biggest
table at the end when conducting a join for better performance. The user can
explicitly specify a STREAMTABLE hint to override the default. For example,
consider the SELECT /*+ STREAMTABLE (A)*/ A.x, B.x, C.x FROM A
JOIN B ON (A.key = B.key) JOIN C ON (B.key = C.key); query.The
STREAMTABLE hint instructs the Hive compiler to stream table A. By default,
it will have streamed table C.

* A WHERE clause appearing in a JOIN statement filters rows after the JOIN
operator is executed. It is good practice to colocate the WHERE clause filters
in the Jo1N itself with the oN clauses, where the JOIN keys are specified.

Map-side joins

When one of the tables participating in a join is small, the join operation can be
conducted directly on the Map task. This can be specified by the MAPJOIN hint in
Hive. For example, SELECT /*+ MAPJOIN(A) */ A.x, B.x FROM A JOIN B ON
(A.key = B.key) hints that A being a smaller table can be loaded into memory
and a Map-side join can be performed.

If the tables participating in a join are bucketized on the join columns, and the
number of buckets of one table is equal or a multiple of the number of buckets in
the other table, a Map-side join can be done. Though this is not the default behavior,
it can be enabled by setting the hive.optimize.bucketmapjoin property to true.
This is also known as the bucketized map-side join.

If the tables participating in a join are bucketized on the join columns, have the same
number of buckets, and the buckets are sorted on the join columns, a sort-merge
operation can be done to join the two tables. However, this is again not the default
behavior. In addition to setting the hive.optimize.bucketmapjoin property to
true, the hive.optimize.bucketmapjoin.sortedmerge property has to be set to
true, and hive.input.format has to be set to org.apache.hadoop.hive.ql.io.
BucketizedHiveInputFormat. This is also known as the bucketized sort-merge join.

Setting the hive.auto.convert.join property to true automatically converts a
join to a Map-side join. The MAPJOIN hint is no longer required. However, the hint
is mandatory for the bucketized map-side and sort-merge joins.
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Advanced aggregation support

The primary use case of Hive is analytics on data warehouses. This calls for advanced
aggregation support to collect and report statistics from data on different dimensions.

Hive supports GROUPING SETS, where more than one GROUP BY operation can be
done on a single table. It is equivalent to executing two different GROUP BY queries
and then applying un1ON on them. The following command shows the usage of
GROUPING SET:

SELECT x, y, SUM(z) FROM X GROUP BY x, y GROUPING SETS( (x,y), y);

This query is equivalent to UNION of the SELECT x, y, SUM(z) FROM X GROUP BY
X,Y; and SELECT null, y, SUM(z) FROM X GROUP BY vy; queries.

Cubes are multidimensional data structures used to drill down, roll up, and
aggregate facts. Hive simulates cubes' queries by aggregating facts over all
combinations of dimensions. For example, SELECT x, y, z, SUM(a) FROM X
GROUP BY x, y, z WITH CUBE; is equivalent to the SELECT x,y,z, SUM(a) FROM
X GROUP BY x,y,x GROUPING SETS ((x,y,z), (x,v), (y,z), (x,z), (%),
(y). (z), ()); query.

Hive also supports the ROLLUP command to compute aggregates at each hierarchy
level. A query of the SELECT x, y, z, SUM(a) FROM X GROUP BY x,y,z WITH
ROLLUP; form is equivalent to SELECT x,y,z, SUM(a) FROM X GROUP BY x,y,z
GROUPING SETS ((x,y,z) , (x,¥), (x), ());.

There is an implicit assumption of the x hierarchy being drilled down to y, and y
can in turn being drilled down to z. The ROLLUP directive creates a number of rows
for every single input row. In the preceding example, for every input row, four
output rows are generated with three group keys. The higher the cardinality of the
group keys, the worse it gets at the Map and Reduce task boundaries. In these cases,
it is better to spawn multiple MapReduce jobs. The cardinality threshold, beyond
which an additional job is launched, is given by the hive.new.job.grouping.set.
cardinality setting.
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Other advanced clauses

There are many other clauses for the advanced usage of Hive queries:

The ExPLODE user-defined table generation function can be used to produce
multiple rows for a single input row. For example, EXPLODE on an array type
column produces a row for each element of the array.

A bucket can be sampled by the TABLESAMPLE keyword. The query syntax is
SELECT cols FROM table name TABLESAMPLE (i OUT OF n).Here, the i
bucket is sampled in a total of n buckets. The TABLESAMPLE directive can also
be used to sample at a block level. Giving a percentage value for sampling

in the TABLESAMPLE directive does this. It must be noted that the granularity
of sampling is a block in this case. TABLESAMPLE can be used to sample data
based on the input split size and number of rows as well.

Hive provides a few virtual columns that can be used in specialized queries.
INPUT__FILE__NAME gives the Map tasks an input filename, and BLOCK__
OFFSET__INSIDE__FILE gives the global position of the file.

The EXPLAIN command for a query gives the AST, execution DAG with the
dependencies, and description of each stage within the DAG.

UDF, UDAF, and UDTF

Like in Pig, UDFs are one of the most important extensibility features in Hive.
Writing a UDF in Hive is simpler, but the interfaces do not define every override
method that is needed to make the UDF complete. This is because UDFs can take any
number of parameters, and it is difficult to provide a fixed interface. Hive uses Java
reflection under the hood when executing the UDF to figure out the parameter list
for the function.

These are the following three kinds of UDFs in Hive:

Regular UDFs: These UDFs take in a single row and produce a single row
after application of the custom logic.

UDAFs: These are aggregators that take in multiple rows but output a single
row. SUM and COUNT are examples of in-built UDAFs.

UDTFs: These are generator functions that take in a single row and produce
multiple rows as outputs. The ExPLODE function is a UDTF.
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The following code example shows how a simple UDF is written. Every UDF

is extended from the UDF class present in org.apache.hadoop.hive.gl.exec
package. It has no override methods, but at least one evaluate method has to be
part of the class. The following UDF takes in a String type and returns another by
converting the input string to uppercase. Any number of evaluate methods can be
written, and the correct one is chosen by Hive during runtime:

package MasteringHadoop;
import org.apache.hadoop.hive.qgl.exec.UDF;
public class TOUPPER extends UDF{

public String evaluate (String input) {

return input.toUpperCase() ;

}

The following Hive statements show how to deploy and run this UDF. The JAR file
containing the UDF must be registered, and the Hive metastore has to be instructed
on the presence of this UDF. After this, the UDF can be used as any other built-in
function within Hive:

add jar MasteringHadoop-1.0-SNAPSHOT-jar-with-dependencies.jar;
CREATE TEMPORARY FUNCTION MASTERINGHADOOPTOUPPER AS
'MasteringHadoop.TOUPPER' ;

SELECT MASTERINGHADOOPTOUPPER (name) FROM
MasteringHadoop.worldcities;

A UDAF is slightly more complicated to implement. As we saw in the previous two
chapters, aggregations can happen either in the Map or Reduce tasks or both. The
UDAF has to be ready to handle all these possibilities. The following code shows a
UDAF that finds the maximum of a set of BIGINT numbers. As with the UDF, the
UDAF extends the UDAF class. Instead of an evaluate method, the evaluator classes
have to be declared in a UDAF. At runtime, Hive reflects on the UDAF extension and
calls the methods on the evaluator classes.

Any number of evaluator classes can be present within a UDAF. They all have

to extend the UDAFEvaluator base class. The only override the UDAFEvaluator
base class provides is the init () method. In the following example, we create a
MaximumBigIntEvaluator class to compare and select the maximum value of the
BIGINT value.
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The init ()

method is used to initialize the internal state of the evaluator. Other

than the init () method, there is an iterator () method that will be called for each
value that needs aggregation. The iterator () method has to update the state of the
evaluator. Null values are ignored. The terminatePartial () method is called by
the Hive runtime whenever it wants a partial result. This generally happens when
Map-side aggregations are done. The evaluator has to return the aggregation state
so far. The merge () function is called by Hive when two partial aggregations need
to be aggregated. It generally happens on the Reduce side, where partial results
from Maps are merged. Finally, the terminate () method is called to get the final
aggregation result:

package MasteringHadoop;

import
import

import

public

org.apache.hadoop.hive.ql.exec.UDAF;
org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
org.apache.hadoop.io.LongWritable;

class BIGINTMAX extends UDAF {

public static class MaximumBigIntEvaluator

implements UDAFEvaluator{

private Long max;

private boolean empty;

public MaximumBigIntEvaluator(){
super () ;
init () ;

@Override

public void init()
max = (long)oO0;
empty = true;

public boolean iterate (LongWritable value)
if (value != null){

long current = value.get();
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if (empty) {
max = current;
empty = false;

}

else(

max = Math.max (current, max) ;

}

return true;

public LongWritable terminatePartial () {
return empty ? null : new LongWritable (max) ;

public LongWritable terminate () {
return empty ? null : new LongWritable (max) ;

public boolean merge (LongWritable value) {
iterate (value) ;
return true;
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These methods are mandatory for a UDAF to work properly. The following diagram

shows the application of the evaluator methods:

Iterate(8) Iterate(4)
MaximumBiglntEvaluator Iterate(5) Iterate(8) MaximumBiglntEvaluator
Iterate(11) Iterate(16)

8 4
5 Table 8
11 16

Init() Init()

terminateParital() terminateParital()

Init()
merge(11)
merge(16)
Terminate()

MaximumBigIntEvaluator

Summary

Hive, through its query language HiveQL, brings in SQL and Relational database
concepts to Hadoop. The primary use case for Hive is data warehousing and
analytical querying for applications such as Business Intelligence. The supporting
components of Hive are built to assist this use case. For example, row-columnar file
formats are very efficient when performing aggregations on columns.

The key takeaways from this chapter are as follows:

In Hive, a close look has to be kept on the file format used by the underlying
table. Text files can be inefficient. Sequence files are better off as they are
compressed. Specialized files such as RC and ORC are more suited both in
terms of I/O and query performance.

Compression brings in efficiency. Both intermediate and final outputs can
be compressed. It is better to avoid compression techniques such as GZIP
that cannot be split. Snappy is an alternative compression technique that
can be split.
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Partitioning large tables is good practice. This helps pre-filter relevant data
when processing queries. However, too many partitions put pressure on HDFS.

Use Map-side joins wherever possible. Order smaller tables to the left-hand
side of your join. Settings such as hive.auto. convert.join help optimize
joins automatically without hints. The hive .mapjoin.smalltable.filesize
property can be set appropriately to keep the entire small table in memory.
However, care has to be taken to see that the JVM has enough memory to fit
the table.

ORDER statements should be avoided as they use a single reducer. All the
optimizations from Chapter 2, Advanced MapReduce, can be applied on the
Hadoop cluster running Hive queries. This will have a positive influence
on the performance of the query.

In the next chapter, we will look at Hadoop I/O in detail, particularly file compression
and serialization/ deserialization of data to and from Hadoop-based files.
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Hadoop is about big data, and whenever data is handled, discussion and detailing of
IO becomes an integral part of the setup. Data needs to be ingested via the network
or loaded from an external persistent media. The ingested data needs to be staged
during the extraction and transformation steps. Finally, the results need to be stored
for consumption by downstream analysis processes for serving data, reporting,

and visualization. Each of these stages involves understanding the underlying data
storage structure, data formats, and data models. These aspects help in tuning the
entire data-handling pipeline for efficiency of storage and speed.

In this chapter, we will look into the IO features and capabilities of Hadoop.
Specifically, we will cover the following topics:
* Serialization and deserialization support and their necessity within Hadoop
* Avro—an external serialization framework
* Data compression codecs available within Hadoop and their tradeoffs

* Special file formats in Hadoop and their features

Data serialization in Hadoop

Though we see data in a structured form, the raw form of data is a sequence or
stream of bits. This raw form of data is the one that travels over the network and

is stored in RAM or any other persistent media. Serialization is the process of
converting structured data into its raw form. Deserialization is the reverse process
of reconstructing structured forms from the data's raw bit stream form.
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In Hadoop, different components talk to each other via Remote Procedure Calls
(RPCs). A caller process serializes the desired function name and its arguments as a
byte stream before sending it to the called process. The called process deserializes this
byte stream, interprets the function type, and executes it using the arguments that were
supplied. The results are serialized and sent back to the caller. This workflow naturally
calls for fast serialization and deserialization. Network bandwidth is at a premium
and requires the serialized representation of the function name and its arguments to
have the smallest possible payload. Different processes might evolve differently, and
the entire serialization-deserialization process might need to be backward compatible
and extensible. Processes running on different machines might have different
configurations and leverage different platform components, making interoperability

a desired feature of the serialization-deserialization library. These properties of
serialization and deserialization are not limited to network data, but extend to storage,
both volatile and persistent.

Writable and WritableComparable

Serialization and deserialization in Hadoop is done via the writable interface.
This interface has two methods, void write (DataOutput out) and void
readFields (DataInput in).The write method serializes the object into a byte
stream. The readFields method is the deserialization method that reads off of an
input byte stream and converts it into an object.

Inherited from the writable interface is the WritableComparable interface.

This interface is a combination of the Writable and Comparable interfaces.

Classes implementing this interface not only facilitate serializing and deserializing,
but also comparison of values. Having a Hadoop data type implement this interface
can come in very handy to sort and group data objects. An example was seen in
Chapter 2, Advanced MapReduce, when the join operator was implemented using a
custom WritableComparable type.

Out of the box, Hadoop supports a number of WwritableComparable wrappers.
Each writableComparable wrapper wraps a Java primitive type. For example,
an IntWritable wrapper class wraps an int data point, and a BooleanWritable
wrapper wraps a boolean type.
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Hadoop supports the VIntWritable and VLongWritable
classes. These are the variable length equivalents of the fixed length
. IntWritable and LongWritable types. A value between -112 and
% 127 is encoded as a single byte using a variable-length number type.

L However, larger values are encoded in a way that the first byte indicates
the sign and the number of bytes that follow. Variable-length Writable
types save space, on average, when the distribution of the numeric value
has a high variance. Lesser values need lesser storage.

In Chapter 2, Advanced MapReduce, we implemented a custom WritableComparable
class for the Reduce-side join operation. The CompositeJoinKeyWritable class
was a composite key of the country code of the data source. Other than the write
and readFields overrides, the compareTo function was overridden to provide a
comparison of these custom types.

As we saw in the CompositeJoinKeyWritable class, under the hood, Writable types
serialize their payload in a specific way. Let's take the Intwritable, LongWritable,
VIntWritable, and VLongWritable classes as examples and see the raw bytes that
their values are serialized to.

The following method takes a writable type and serializes it as a stream of bytes.
It uses the write method to write the payload of the writable type into a byte
stream. The byte stream is converted into a hexadecimal string for display on the
console. The org.apache.hadoop.util.StringUtils utility class has some static
functions that help us convert a byte array to a hexadecimal string;:

public static String serializeToByteString(Writable writable)
throws IOException {

ByteArrayOutputStream outputStream = new
ByteArrayOutputStream() ;

DataOutputStream dataOutputStream = new
DataOutputStream(outputStream) ;

writable.write (dataOutputStream) ;

dataOutputStream.close () ;

byte[] byteArray = outputStream.toByteArray() ;

return StringUtils.byteToHexString (byteArray) ;

}

[131]

www.it-ebooks.info


http://www.it-ebooks.info/

Serialization and Hadoop 1/O

The following code instantiates each of the four classes we consider in this example
to study Hadoop serialization. We will take three numbers (100 representing a small
integer, 1048576 a normal integer, and 4589938592L a long integer) as the payload for
these objects:

public static void main(String[] args) throws IOException(

IntWritable intWritable = new IntWritable();
VIntWritable vIntWritable = new VIntWritable() ;
LongWritable longWritable = new LongWritable() ;
VLongWritable vLongWritable = new VLongWritable() ;

int smallInt = 100;
int mediumInt = 1048576;
long bigInt = 4589938592L;

System.out.println("smallInt serialized value using
IntWritable") ;

intWritable.set (smalllInt) ;

System.out.println(serializeToByteString (intWritable)) ;

System.out.println("smallInt serialized value using
VIntWritable") ;

vIntWritable.set (smalllInt) ;

System.out.println(serializeToByteString (vIntWritable)) ;

System.out.println ("mediumInt serialized value using
IntWritable") ;

intWritable.set (mediumInt) ;

System.out.println(serializeToByteString (intWritable)) ;

System.out.println ("mediumInt serialized value using
VIntWritable") ;

vIntWritable.set (mediumInt) ;

System.out.println(serializeToByteString (vIntWritable)) ;

System.out.println("bigInt serialized value using
LongWritable") ;

longWritable.set (bigInt) ;

System.out.println(serializeToByteString (longWritable)) ;

System.out.println("bigInt serialized value using
VLongWritable") ;

vLongWritable.set (bigInt) ;

System.out.println(serializeToByteString (vLongWritable)) ;
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The program uses IntWritable and VIntWritable as the wrapper classes for the
small and medium integers. LongWritable and VLongWritable are used for the
large integer. The output when these numbers are serialized into a byte array is
shown as follows:

smallInt serialized value using IntWritable

00000064

smallInt serialized value using VIntWritable
64

mediumInt serialized value using IntWritable
00100000

mediumInt serialized value using VIntWritable
84100000

bigInt serialized value using LongWritable
000000011194e7a0

bigInt serialized value using VLongWritable
8b011194e7a0

The Intwritable class uses a fixed length of four bytes to represent an integer
regardless of the value stored within it. The vIntWritable class is smarter, and
the number of bytes it uses depends on the value of the payload. For the number
100, vIntWritable uses only a single byte. There is a similar difference in the
LongWritable and VLongWritable serialized values too.

M Text isaWritable version of the String type. It
Q represents a collection of UTF-8 characters. Hadoop's Text
class is mutable when compared to Java's String class.

Hadoop versus Java serialization

A question that pops up at this point is why Hadoop uses the Wwritable interface
and does not rely on Java serialization. Let's try to serialize the values in the previous
example using Java data types and serialization. For Java serialization, we will use
the following static method:

public static String javaSerializeToByteString(Object o) throws
IOException{
ByteArrayOutputStream outputStream = new
ByteArrayOutputStream() ;
ObjectOutputStream objectOutputStream = new
ObjectOutputStream (outputStream) ;
objectOutputStream.writeObject (o) ;
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objectOutputStream.close() ;

byte[] byteArray = outputStream.toByteArray() ;
return StringUtils.byteToHexString (byteArray) ;

}

Java provides the objectoutputStream class to serialize an object into a byte stream.
The objectOutputStream class supports a writeObject method. The three numbers
are serialized using the following code:

System.out.println("smallInt serialized value using Java
serializer") ;
System.out.println(javaSerializeToByteString (new
Integer (smalllInt))) ;

System.out.println("mediumInt serialized value using Java
serializer") ;
System.out.println(javaSerializeToByteString (new
Integer (mediumInt))) ;

System.out.println("bigInt serialized value using Java
serializer") ;
System.out.println(javaSerializeToByteString (new Long(bigInt))) ;

The output is as follows:

smallInt serialized value using Java serializer
aced0005737200116a6176612e6c61l6e672e496e746567657212e2a0a4£7818738
02000149000576616c7565787200106a6176612e6c6l6e672e4e756d62657
286ac951d0b94e08b020000787000000064
mediumInt serialized value using Java serializer
aced0005737200116a6176612e6c61l6e672e496e746567657212e2a0a4£7818738
02000149000576616c7565787200106a6176612e6c6l6e672e4e756d6265
7286ac951d0b94e08b020000787000100000
bigInt serialized value using Java serializer
aced00057372000e6a6176612e6c6l6e672e4c6f£6e673b8bed490cc8£23dE020001
4a000576616c7565787200106a6176612e6c6lbe672e4e756d62657286ac9
51d0b94e08b0200007870000000011194e7a0

Very clearly, the serialized value is way bigger than the serialized values of a
Writable class. Hadoop is all about serializing and deserializing either on disk
or on the wire, and compactness is highly valued. Java serialization takes way
more bytes to represent an object.
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Java serialization's inefficiency stems from the fact that Java does not make any
assumption about the class of the serialized value. This entails tagging every
serialized value with class-related metadata. writable classes, on the other hand,
read the fields from the byte stream and assume that the byte stream is of its type.
This leads to higher performance due to the compactness of the representation. The
cost is a steeper learning curve for the Hadoop newbie. Another downside is that
Writable classes are locked into the Java programming language.

Creating custom writable classes is tedious as the developer has to take care of the
class format on the wire. Briefly, Record IO was introduced within Hadoop. This
feature came with a record definition language and a compiler that could translate
record specifications to Writable classes. Eventually, this has been deprecated, and
Avro has been suggested as the alternative.

Before Hadoop 0.17, any MapReduce program had to use Writable
classes for Map and Reduce task keys and values. However, post
> this release, any serialization framework can be integrated with
% MapReduce jobs in Hadoop. This has led to the usage of a number
"~ of alternate serialization frameworks. Each framework brought in
performance gains either in terms of representation compactness or
speed of serialization and deserialization, or both.

Avro serialization

Avro is a popular data serialization framework that is part of Apache Software
Foundation. Its key features are as follows:

* It supports a number of data structures for serialization.

* Itisneutral to particular programming languages and provides fast and
compact binary serialization.

* Code generation is optional in Avro. Data can be read, written, or used in
RPCs without having to generate classes or code.

Avro uses schemas during the reading and writing of data. Schemas make the
compact representation of the serialized object conducive. The self-describing
capability of schemas makes it possible to get rid of object-type metadata to be
present along with the serialized byte stream, the method used in Java serialization.
The schemas are described in the Javascript Object Notation (JSON) format that has
evolved as a popular object description notation on the Web. Schema changes can be
handled by having both the old and new schema available when processing data.
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The following are two schema files used in Avro. The first file is the schema
of the worldcitiespop.txt file, and the second file is the schema of the
countrycodes. txt file:

{"namespace": "MasteringHadoop.avro",
"type": "record",
"name": "City",
"fields": [
{"name": "countryCode", "type": "string"},
{"name": "cityName", "type": "string"},
{"name": "cityFullName", "type": "string"},
{"name": "regionCode", "type": ["int","null"]},
{"name": "population", "type": ["long", "null"]},
{"name": "latitude", "type": ["float", "null"]},
{"name": "longitude", "type": ["float", "null"]}
]
}
{"namespace": "MasteringHadoop.avro",
"type": "record",
"name": "Country",
"fields": [
{"name": "countryCode", "type": "string"},
{"name": "countryName", "type": "string"}

]
}

Schema files are self-explanatory and the JSON notation makes them readable.
Avro supports all the standard primitive data types. In addition, Avro also supports
complex data types such as unions. Null value fields are unions of the null and field
types. Unions are syntactically represented as JSON arrays.

Let's take the worldcitiespop.txt file, a file in CSV text format, and convert it

into an Avro file using the city schema specified previously. The following code
gives the important steps to write Avro files. Most of the conversion happens in

the static method, csvToAvro. This method takes in csvFilepath, the output of
avroFilePath, and the path to schemaFile. There is a special Schema class in Avro,
and parsing the schema file initializes an object of this class. The schema is not code
generated, so we use the GenericRecord class to initialize the schema and write the
data points. If the schema is used to generate code, the result will be a city class that
can be imported directly in the following code, like any other Java class.
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The DataFileWriter class is used to write the actual records into the file. It has

a create method that creates the output Avro file. Using a Buf feredreader object,
we read each city record from the CSV file one line at a time. The getcity helper
method takes the line, splits it into tokens separated by a comma, and generates a
GenericRecord object. The GenericData.Record class is used to instantiate an
Avro record. This class constructor takes in a Schema object.

Writing to a GenericRecord object requires a put method that takes in the name

of the record field and the corresponding value. The isNumeric method is used to
validate the tokenized String to see whether it is a number or not. Bad records are
skipped and not written into the Avro file. If put is not used on a field, this particular
field is assumed to be null:

public static void CsvToAvro (String csvFilePath, String
avroFilePath, String schemaFile) throws IOException{

//Read the schema

Schema schema = (new Schema.Parser()) .parse (new
File (schemaFile)) ;

File avroFile = new File (avroFilePath) ;

DatumWriter<GenericRecord>datumWriter = new
GenericDatumWriter<> (schema) ;

DataFileWriter<GenericRecord>dataFileWriter = new
DataFileWriter<> (datumWriter) ;

dataFileWriter.create (schema,avroFile) ;

BufferedReader bufferedReader = new BufferedReader (new
FileReader (csvFilePath)) ;
String commaSeparatedLine;
while ( (commaSeparatedLine = bufferedReader.readLine()) != null){

GenericRecord city = getCity(commaSeparatedLine, schema) ;

dataFileWriter.append(city) ;

}

dataFileWriter.close() ;

private static GenericRecord getCity (String commaSeparatedLine,
Schema schema) {

GenericRecord city = null;
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String[] tokens = commaSeparatedLine.split(",");

//Filter out the bad tokens
if (tokens.length == 7)
city = new GenericData.Record (schema) ;
city.put ("countryCode", tokens[0]) ;
city.put ("cityName", tokens[1]);
city.put ("cityFullName", tokens[2]);

if (tokens[3] != null && tokens[3].length() > 0 &&isNumeric (tokens[3]))

{

city.put ("regionCode", Integer.parselnt (tokens[3]));

}

if (tokens[4] != null && tokens[4].length() > 0
&&isNumeric (tokens [4])) {
city.put ("population", Long.parselLong (tokens[4])) ;

}

if (tokens[5] != null && tokens[5].length() > 0
&&isNumeric (tokens [5])) {
city.put ("latitude", Float.parseFloat (tokens[5])) ;

}

if (tokens[6] != null && tokens[6].length() > 0
&&isNumeric (tokens[6])) {
city.put ("longitude", Float.parseFloat (tokens[6])) ;

}
!
return city;

}

public static boolean isNumeric (String str)

{

try

{

double d = Double.parseDouble(str) ;

}

catch (NumberFormatException nfe)

{

return false;

}

return true;

}
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Avro and MapReduce

There is extensive support for Avro serialization and deserialization in a Hadoop
MapReduce job. In Hadoop 1.X, there were the AvroMapper and AvroReducer
specialized classes that needed to be used. However, in Hadoop 2.X, the built-in
Mapper and Reducer classes can be reused. AvroKey can be used as the input or
output types to both the Mapper and Reducer classes.

There is a special InputFormat class called AvroKeyInputFormat, which can be
used to read Avrokey from the input files. The following code finds the population
of each country using the worldcitiespop.avro file that was generated using the
previous program. The Mapper code is given in the following code. We pass the
schema as a string using a side channel. In the following code, it is passed through
the configuration object by setting a key on it. DistributedCache can also be used
to pass the schema file around. The setup method is overridden to read the schema
in the Map task.

The map method reads the GenericRecord datum object based on the schema passed
to it:

package MasteringHadoop;

import org.apache.avro.Schema;

import org.apache.avro.generic.GenericRecord;

import org.apache.avro.mapred.AvroKey;

import org.apache.avro.mapreduce.AvroJob;

import org.apache.avro.mapreduce.AvroKeyInputFormat;
import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce. *;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.File;

import java.io.IOException;

import java.net.URI;

import java.net.URISyntaxException;

public class MasteringHadoopAvroMapReduce

private static String citySchema = "{\"namespace\":
\"MasteringHadoop.avro\",\n" +
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n \"type\": \"record\",\n" +
n \uname\u: \"City\",\n" +

" \"fields\": [\n" +
n {\"name\": \"countryCode\", \"type\":
\"string\"},\n" +
" {\"name\": \"cityName\", \"type\":
\"string\"},\n" +
n {\"name\": \"cityFullName\", \"type\":
\"string\"},\n" +

n {\"name\": \"regionCode\", \"type\":
(\"int\",\"null\"]1},\n" +

" {\"name\": \"population\", \"type\": [\"long\",
\"null\"]1},\n" +

" {\"name\": \"latitude\", \"type\": [\"float\",
\"null\"]1},\n" +

" {\"name\": \"longitude\", \"type\": [\"float\",
\"null\"]}\n" +

" I\n" +

ll}ll’.

public static class MasteringHadoopAvroMapper extends
Mapper<AvroKey<GenericRecord>, NullWritable, Text,
LongWritables>{

private Text ccode = new Text () ;
private LongWritable population = new LongWritable() ;
private String inputSchema;

@Override
protected void setup (Context context) throws IOException,
InterruptedException {
inputSchema = context.getConfiguration() .get ("citySchema") ;

}

@Override

protected void map (AvroKey<GenericRecords> key, NullWritable wvalue,
Context context) throws IOException, InterruptedException {

GenericRecord record = key.datum() ;
String countryCode = (String)
record.get ("countryCode") ;
Long cityPopulation = (Long) record.get ("population") ;

if (cityPopulation != null) {

[140]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

ccode.set (countryCode) ;
population.set (cityPopulation.longValue()) ;
context.write (ccode, population) ;

}

The following Reducer code reduces on the country code and sums up the population.
The main function sets up the Job configuration. There is a specialized AvroJob class
that can be used to specify Avro-specific properties on the Job configuration:

public static class MasteringHadoopAvroReducer extends
Reducer<Text, LongWritable, Text, LongWritables{

private LongWritable total = new LongWritable() ;

@Override

protected void reduce (Text key, Iterable<LongWritables> wvalues,
Context context) throws IOException, InterruptedException {
long totalPopulation = 0;

for (LongWritable pop : values) {
totalPopulation += pop.get();

}

total.set (totalPopulation) ;
context.write (key, total);

}

public static void main(String args[]) throws IOException,
InterruptedException, ClassNotFoundException,
URISyntaxException{

GenericOptionsParser parser = new GenericOptionsParser (args) ;
Configuration config = parser.getConfiguration() ;
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String[] remainingArgs = parser.getRemainingArgs () ;
config.set ("citySchema", citySchema) ;

Job job = Job.getInstance (config, "MasteringHadoop-
AvroMapReduce") ;

job.setMapOutputKeyClass (AvroKey.class) ;
job.setMapOutputValueClass (Text.class) ;
job.setOutputKeyClass (Text.class) ;
job.setOutputValueClass (LongWritable.class) ;

job.addCacheFile (new URI (remainingArgs[2]));

job.setMapperClass (MasteringHadoopAvroMapper.class) ;
job.setReducerClass (MasteringHadoopAvroReducer.class) ;
job.setNumReduceTasks (1) ;

Schema schema = (new Schema.Parser()) .parse (new
File (remainingArgs[2]));
AvroJdob.setInputKeySchema (job, schema) ;

job.setInputFormatClass (AvroKeyInputFormat.class) ;
job.setOutputFormatClass (TextOutputFormat.class) ;

AvroKeyInputFormat.addInputPath(job, new Path(remainingArgs[0])) ;
TextOutputFormat .setOutputPath (job, new Path(remainingArgs[1]));

job.waitForCompletion (true) ;

Avro and Pig
Pig has been extended to support Avro. AvroStorage implements both the LoadFunc
and storeFunc interfaces to support loading from and writing to Avro files. However,
Pig's Avro integration has some limitations and assumptions, which are as follows:

* Nested record types are not supported in AvrosStorage.

*  Union support is only for nulls.

* Itis assumed that all files in a directory and subdirectories have the
same schema.
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*  When avroStorage is used to store data in the Avro format, all fields will be
null-valued unions. This is because there are no non-null-valued fields in Pig.

* TUPLE wrappers might be present in the Avro file when STORE is called on a
Pig relation.

* JSON-encoded Avro files are not supported.

* AvroStorage does not implement map data types.

* The column-pruning optimization is not present when AvroStorage is used.
The following example shows the loading of the countrycodes.avro file into a Pig

relation. It is important to register a number of JAR files for AvroStorage to work
well in Pig:

REGISTER avro-1.4.0.jar

REGISTER json-simple-1.1.jar

REGISTER piggybank.jar

avroCountry = LOAD 'countrycodes.avro' USING

AvroStorage('{"namespace": "MasteringHadoop.avro",
"type": "record",
"name": "Country",
"fields": [
{"name": "countryCode", "type": "string"},
{"name": "countryName", "type": "string"}

Yoy

Avro and Hive

Hive has a SerDe module called AavroSerde, which can read and write Hive tables
using Avro. It automatically infers the schema of the Hive table from the Avro input.
For most Avro types, there are corresponding Hive table types. If some Avro types do
not exist in Hive, they are automatically converted to a type that is available in Hive.

Avro has the concept of enums, while Hive does not. All enum
types in Avro are converted to a string type in Hive.

Let's build a Hive table on the external Avro file with the country.avschema
schema. The Hive DDL statement is as follows:

CREATE EXTERNAL TABLE avrocountry
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS
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INPUTFORMAT
'org.apache.hadoop.hive.qgl.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.qgl.io.avro.AvroContainerOutputFormat'
LOCATION '/user/sandeepkaranth/avrocountrydata'

TBLPROPERTIES ( 'avro.schema.literal'='
{"namespace": "MasteringHadoop.avro",
"type": "record",
"name": "Country",
"fields": [
{"name": "countryCode", "type": "string"},
{"name": "countryName", "type": "string"}

J R

The key pieces of the DDL statement are as follows:

* The usage of AvroContainerInputFormat as InputFormat of the table.
* The usage of AvroContainerOutputFormat as OutputFormat of the table.

* The specification of the schema in TBLPROPERTIES. The schema can be
specified in a file either by a link to the schema file or literally, as shown in
the DDL statement. If specified by a link or URL, the property name changes
to avro.schema.url instead of avro.schema.literal.

The describe of the avrocountry table shows the interpreted Hive table schema from
the Avro schema, as shown:

hive> describe avrocountry;

OK
countrycode string from deserializer
countryname string from deserializer

Time taken: 0.155 seconds, Fetched: 2 row(s)

M When writing tables, all null-valued columns should be
Q specified as a union of the column type and null in the
Avro-schema definition.
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Comparison — Avro versus Protocol
Buffers / Thrift

Avro has its share of competing serialization/deserialization libraries. The popular
libraries among them are Thrift and Protocol Buffers. Avro differs from these
frameworks in the following ways:

* Avro supports dynamic typing and can support static typing if performance
is the need of the hour. Protocol Buffers and Thrift have Interface Definition
Languages (IDLs) to specify schemas and their types. These IDLs are used to
generate code for serialization and deserialization. Using IDLs brings down
the flexibility in building generic data-processing pipelines.

* Avro is built into Hadoop, while the rest are not. The Hadoop ecosystem
components also support Avro, as we saw in the case of Hive and Pig.

* Avro's schema definition is in JSON and not in any proprietary IDL. This
makes it popular among developers as JSON has evolved as the object
notation for the Web. It also makes Avro a language neutral.

File formats

There are a number of file formats that are data structures by themselves. In the
chapter on Hive, we saw ORC files, an optimized form of record columnar file
storage. There are a few other popular file container formats supported by Hadoop.
We will look at them in this section.

The Sequence file format

A Sequence file is a container format for binary key-value pairs. Each record in

a Sequence file contains a key and its associated value. Sequence files are used to
combine smaller files into a single large file to alleviate the small file problem in
Hadoop. In this situation, the filename forms the key and the file contents are the
values associated with the key. Sequence files have a broader applicability as they can
be split into configurable blocks. They can be combined with fast compression methods
such as LZO or Snappy and can provide speed as well as storage and bandwidth.
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The next image shows the format of a Sequence file. The start of the file has a magic
number, a binary representation of the letters SEQ. A version byte and header follow
it. The header stores the metadata of the file, such as the key and value class names,
as a string. If the key or value is of the Text class, a org.apache.hadoop.io.Text
string is embedded in the header. The class names are followed by Booleans that
indicate whether compression is enabled, and block compression is enabled in this
order. The compression codec class name to be used is then specified, followed

by user-related metadata as key-value pairs. The header ends with a sync marker
to denote the end of the header. These sync markers are allowed to get a record
boundary in the file. They are randomly generated markers. The overhead due

to the sync markers is kept below 1 percent of the total file size. This means the
markers appear at the end of a group of records.

Uncompressed Sequence File

Record Key
Compressed Value

On Record Compression

Block Compressed Sequence File

Record | Compressed | Compressed Con\wlglrﬁgsed Compressed
Count key lengths keys lengths Values

Record format

Block format

Each record contains record-related metadata, such as the record and key lengths.
The actual key and value bytes follow the metadata. The lengths are 4-byte integer
values serialized using the Intwritable class. When record compression is enabled,
the value bytes are compressed using the codec specified in the header. There is no
change to the record structure.
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a1

Q The keys are not compressed when compression is enabled.

During block compression, records are grouped into blocks. The minimum block
size is determined by the property io.seqgfile.compress.blocksize parameter.
A sync marker is written at the beginning of each block. The sync marker is 16-bytes
long, and is generated by taking a hash of the (UID() + '@' + time or internet
address) expression. Block compression compresses the keys too. Blocks use a
VIntWritable serialization to store the counts, key lengths, and keys.

Reading and writing Sequence files

The following code illustrates reading and writing using the SequenceFile format.
The writeSequenceFile method takes a path to the file to be converted and the
output file path. The SequenceFile class has a createwWriter static method to
create a writer handle. The append method on the writer takes in a key and value
and appends it to the file. The following code takes in a CSV file and writes a line
number as the key and line string as the value:

package MasteringHadoop

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.*;

import org.apache.hadoop.util.ReflectionUtils;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;

public class MasteringHadoopSequenceFile {

public static void writeSequenceFile (String textFile, String
segFile) throws IOException({

Path readPath = new Path(textFile) ;
Path writePath = new Path(seqgFile) ;
Configuration conf = new Configuration (false);
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FileSystem fs = FileSystem.get (URI.create(textFile), conf);
BufferedReaderbufferedReader = null;
SequenceFile.WritersequenceFileWriter = null;

try(

bufferedReader = new BufferedReader
(newInputStreamReader
(fs.open (readPath))) ;

sequenceFileWriter = SequenceFile.createWriter (conf,
SequenceFile.Writer.file (writePath),
SequenceFile.Writer.keyClass (LongWritable.class),
SequenceFile.Writer.valueClass (Text.class)) ;

String line = null;
LongWritable key = new LongWritable() ;

Text value = new Text () ;
long lineCount = 0;

while((line = bufferedReader.readLine()) != null) {
key.set (1lineCount) ;
lineCount++;
value.set (line) ;
sequenceFileWriter.append (key, value) ;

}

catch (IOException 1i0Ex) {
ioEx.printStackTrace () ;

}
finally({
if (sequenceFileWriter != null)
sequenceFileWriter.close() ;

if (bufferedReader != null)
bufferedReader.close () ;

}
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The following function reads the Sequence file using SequenceFile.Reader.
From the Sequence file headers, we can infer the type of the key and value.

ReflectionUtils has some utility methods to create objects based on these types.
The syncseen method gives an indication about the sync markers within the file as

the file is being read:

public static void readSequenceFile (String seqFile) throws
IOException{

Path readPath = new Path(seqgFile) ;
Configuration conf = new Configuration (false) ;
FileSystem fs = FileSystem.get (URI.create(seqFile), conf);

SequenceFile.Reader reader = null;

try(
reader = new SequenceFile.Reader (conf,
SequenceFile.Reader.file (readPath)) ;
Writable key =

(Writable)ReflectionUtils.newInstance (reader.getKeyClass (),

conf) ;
Writable value =

(Writable)ReflectionUtils.newInstance (reader.getValueClass(),

conf) ;

while(reader.next(key,value)){
System.out.println("key: " + key.toString()) ;
if (reader.syncSeen()) {
System.out.println("sync: ");

}

}
}

catch (IOException ioEx) {
ioEx.printStackTrace () ;

}

finally({
if (reader != null)({
reader.close() ;

}

public static void main (Stringl[] args){

try(
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writeSequenceFile (args[0], args[l]);
readSequenceFile (args[1]) ;

}

catch (IOException io0Ex) {
ioEx.printStackTrace () ;

}

}
A Sequence file can also be read using the following Hadoop command:

hadoop fs -text /user/sandeepkaranth/countrycodes.seq

The MapFile format

MapFile is the same as SequenceFile in structure. Additionally, it provides an
index for the keys in the file. MapFile keys have to be of the WritableComparable
type and values have to be of the Wwritable type. In SequenceFile, any serialization
framework can be used to serialize the keys and values.

When MapFile is created, it has two associated files, one for the data and another
for the index. Both these files are of the SequenceFile type. The data SequenceFile
contains all the data records sorted by the key. The index SequenceFile contains
the key and the file offset where the key is present. The keys in the index file are
sampled. Not every key occurs in the index file. The interval of the sample is given
by the value in the io.map.index. interval property. The following example
illustrates the data and index files in the countrycodes . map file:

hadoop fs -1ls countrycodes.map/

Found 2 items

-rw-r--r-- 3 sandeepkaranth supergroup 10033 2014-06-08 14:20
countrycodes.map/data

-rw-r--r-- 3 sandeepkaranth supergroup 166 2014-06-08 14:35
countrycodes.map/index

hadoop fs -text countrycodes.map/index

127 5088

hadoop fs -text countrycodes.map/data
241 wvi,Virgin Islands (USA)

242 wvn,Vietnam
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243 wvu,Vanuatu

244 wf,Wallis and Futuna Islands
245 ws,Samoa

246 ye,Yemen

247 yt,Mayotte

248 vyu,Yugoslavia

249 za,South Africa

250 zm,Zambia

251 zr,Zaire

252 zw,Zimbabwe

The MapFile format can be useful to process Map-side joins. The sorted nature of
the data and index files can be used to force splits of the datasets participating in a
join into a single Map task. The APIs to create files in the MapFile format are similar
to the APIs for SequenceFile creation.

The following code shows how sequenceFile can be converted into MapFile. The
MapFile.fix () static method shown in the following code is used to achieve this:

public static void writeMapFile (String seqFile) throws
IOException {

Path readPath = new Path(seqgFile) ;
Path mapPath = new Path(readPath, MapFile.DATA FILE NAME) ;

Configuration conf = new Configuration (false);
FileSystem fs = FileSystem.get (URI.create (seqFile), conf);

SequenceFile.Reader reader = null;

try{
reader = new SequenceFile.Reader (conf,
SequenceFile.Reader.file (mapPath)) ;

Class keyClass = reader.getKeyClass() ;
Class valueClass = reader.getValueClass() ;

MapFile.fix (fs, readPath, keyClass, valueClass, false,
conf) ;

}

catch (IOException 1i0Ex) {
ioEx.printStackTrace () ;
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catch (Exception ex) {
ex.printStackTrace () ;
}
finally({
if (reader != null){
reader.close () ;

}

Other data structures

Hadoop also supports other persistent data structures that are variants of MapFile.
Some of them are as follows:

* getFile: This file format stores a set of keys and allows set operations on the
keys. The key difference in the setFile API when compared to the MapFile
APl is that the append method of setFileWriter takes in only a key and no
value. Under the hood, the value is Nullwritable. The file structure remains
the same, as in, it has both the index and the data SequenceFile methods.

* ArrayFile: This particular file format can be thought of as the complement
of setFile. It stores only values and no keys. Like an array, the key for a
particular value is LongWritable, which contains a record number. The
API method, append, takes in only a value.

* BloomMapFile: This file format is a variant of MapFile. In addition to the
index and data files, it has a bloom file. This bloom file is a file that encodes
a Dynamic Bloom filter. For large files in the key-value format with sparse
keys, the lookup of the key on the index might not be fast enough. A Bloom
filter is a probabilistic data structure that encodes the presence of keys in a
few bits and can provide quick answers to the MapFileget () method.

Compression

A recurring theme that appears in this book is the need to save storage and network
data transfer. When dealing with large volumes of data, anything that reduces these
two properties gives an efficiency boost both in terms of speed and cost. Compression
is one such strategy that can help make a Hadoop-based system efficient.
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All compression techniques are a tradeoff between speed and space. The higher

the space savings, the slower the compression technique, and vice versa. Each
compression technique is also tunable for this tradeoff. For example, the gzip
compression tool has options -1 to -9, where -1 optimizes for speed and -9 for space.

The following figure shows the different compression algorithms in the speed-space
spectrum. The gzip tool does a good job of balancing out both storage and speed.
Techniques such as LZO, LZ4, and Snappy are very fast, but their compression
ratio is not very good. Bzip2 is a slower technique, but has the best compression.

Snappy Gzip Bzip2

Higher Speed Higher Compression

Lz4 LZ0

Codecs are concrete implementations of these compression techniques. All
compression codecs in Hadoop have to implement the CompressionCodec
interface in their implementing classes. Codecs are found in the org.apache.
hadoop.io.compress package. There is a default codec in Hadoop, the
compression of which is based on the DEFLATE algorithm.

The DEFLATE compression is similar to gzip, but does
s not contain additional headers and footers.

Splits and compressions

Map tasks act on each split of data, generally a file block stored in HDFS. However,
the majority of the compression algorithms do not allow you to read the file at
arbitrary points. Though implementations such as gzip are block-based compression
techniques, these blocks are no way related to or aware of HDFS blocks. In these
situations, Hadoop does not try to split the file, and it provides the entire file to a
single Map task. This can turn unwieldy in many situations.
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For some compression formats such as LZO, there are indexing tools that can process
the LZO file and build an index of the compressed blocks. This index can be used

by an appropriate InputFormat method to determine the number of splits and their
offsets. For example, LzoTextInputFormat has the capability to read a LZO-based
file index and decide the Map task input splits.

However, compression techniques such as bzip2 support splitting natively. These
split points are indicated by means of synchronization markers. Hadoop recognizes
the different compression formats of files using the extension of the file.

There are a number of strategies that can be used when compression is enabled:

The application can split the files as a preprocessing step and use well-known
compression techniques such as gzip on each file split. These compressed file
chunks can be stored in HDFS. For optimality, the post-compressed size of a
file chunk has to be nearly equal to the HDFS block size. In this case, it does
not matter whether the compression algorithm is splittable or not.

Splittable compressions such as bzip2 can be applied on the file. However,
this technique is the slowest of the supported compression codecs. An
alternative is to use LZO, and then build an index on top of it.

There are a number of file formats, such as SequenceFile, MapFile,
and rcFile. These file formats support splitting natively. They can be
compressed as well, as we saw in the File Formats section of this chapter.

The preferred method in the industry is to store data in specialized file
formats. They provide a balanced view between speed and compression.

Scope for compression

In Chapter 2, Advanced MapReduce, we saw a number of places in the MapReduce
pipeline where compression increases job speed and reduces storage needs.
We will summarize it in this subsection:

All compressed inputs are decompressed and processed within the Map task.
The codec to be used is determined by the file extension. In some cases, such
as LZO compression with indexing, appropriate Input Format classes should
be used to supply the appropriate splits.

The mapreduce.map. output . compress property can be set to true to enable
compression of intermediate outputs. The codec to be used for compression
can be set using the mapreduce .map.output . compress. code property. The
default is org.apache.hadoop . compress .DefaultCodec.
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The compression of job outputs can be enabled by setting the mapreduce.
output.fileoutputformat.compress property to true. The codec can be
specified by setting mapreduce.output . fileoutputformat.compress.
codec. For SequenceFile outputs, there is a special mapreduce.output.
fileoutputformat.compress.type property, which determines the
granularity at which the compression should happen. The default value
for this is RECORD, indicating that each record will be compressed. Record
groupings can also be compressed by setting this value to BLOCK.

Summary

Big data processing involves data representation either in storage or in transit
over the network. Compact representation, fast transformations, extensibility,
and backward compatibility of the data representation are desired properties.
Some key takeaways from this chapter related to data representation are as follows:

Hadoop provides inbuilt serialization/ deserialization mechanisms using the
Writable interface. The Wwritable classes are serialized more compactly than
Java serialization.

Avro is a flexible and extensible data serialization framework. It serializes
data in binary and is supported by Hadoop, MapReduce, Pig, and Hive.

Avro provides dynamic typing, eliminating the need for code generation.
The schema can be stored with the data and read by any subsystem.

Compression techniques trade speed and storage savings. Hadoop supports
many compression codecs along this tradeoff spectrum. Compression is a
very important optimization parameter for big data processing.

Hadoop supports specialized container file formats such as sequenceFile
and MapFile. These formats support splitting and compression. Hadoop
also supports persistence of specialized data structures such as ArrayFile,
SetFile, and BloomMapFile.

In the next chapter, we will look at YARN, the heart of resource management in
Hadoop 2.X, and how it generalizes the Hadoop platform.
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YARN — Bringing Other
Paradigms to Hadoop

Yet Another Resource Negotiator (YARN) is a cluster resource management layer
that was introduced in Hadoop 2.0. As we saw briefly in Chapter 1, Hadoop 2.X,
YARN separates out the responsibilities of the JobTracker daemon. JobTracker
was responsible for:

* Resource arbitration within a Hadoop cluster

* MapReduce job management

The problem with the JobTracker model was that it became the single point of failure
in the compute layer of a Hadoop cluster. Any failure in JobTracker meant trashing
the running jobs and starting all over again. JobTracker's singular nature also became
a scaling bottleneck. All job communications, scheduling, and resource management
were controlled by the JobTracker master daemon.

The tightly coupled functions of JobTracker made it rigid, allowing a single
computing paradigm, MapReduce, to be onboarded onto the cluster. MapReduce
is not suitable for a variety of emerging applications and force-fitting solutions to
all problems using this paradigm is not prudent.

YARN takes care of cluster resource management and application scheduling. It is
agnostic to the kind of application that is executing or any of its internals. Resource
negotiation happens strictly through protocols. MapReduce becomes an application
in YARN. Like MapReduce, other applications can be written to run on a cluster that
can request for CPU, memory, and other resources from YARN via defined protocols
and execute.
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In this chapter, we will be:

Delving into the architecture of YARN
Building a simple YARN non-MapReduce application and looking at:
°  The modules that constitute a YARN application

o

The core steps to build out each module

o

The protocols used to communicate with YARN components

Discussing YARN scheduling variants
Glancing at YARN commands

The YARN architecture

The following figure illustrates the architecture of a YARN-based cluster. There are
five major component types in a YARN cluster. They are as follows:

Resource Manager (RM): This is a per-cluster daemon that is solely
responsible for allocating and managing resources available within the cluster.

Node Manager (NM): This is a per-node daemon that is responsible for local
resource management. It is also the node-local representative of the RM.

Application Master (AM): This is a per-application daemon that
encapsulates all application-specific logic and libraries. The AM is
responsible for negotiating resources from the RM and working with
the NM to execute them to completion.

Container: This is an abstract representation of a resource set that is given
to a particular application. The AM is a specialized container that is used to
bootstrap and manage the entire application's life cycle.

Client: This is the entity in the cluster that can submit applications to
the RM and specify the type of AM that needs to be spawned to execute
the application.

Resource Manager (RM)

The Resource Manager has the following two main components:

Scheduler
ApplicationsManager
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The Scheduler is responsible for allocating resources to the various applications that
are running in the cluster. It is a pure entity and does not have any insight into the
status of the application. The Scheduler does not guarantee restarts on application or
hardware failures. Scheduling is done based on the global model of the cluster the RM
is aware of. It uses queues and capacity parameters during the allocation process.

The scheduling policy can be plugged into the Scheduler. The two popular
scheduling policies in Hadoop 1.X were CapacityScheduler and FairScheduler.
These policies continue to exist in Hadoop 2.X.

The ApplicationsManager is the component responsible for handling application
submissions made by clients. In addition, it also bootstraps applications by

negotiating the container on behalf of the application for the Application Master. The
ApplicationsManager also provides the services of restarting the Application Master in
case of failures. The following image illustrates the architecture of a YARN-based cluster:

| Scheduler |
| App Management I

Resource Manager

v

| Client 2

v

——

,,,,,,,,,

-----
_______

\
\
\ [}
A —————— )
: Container 1 . Container 2

Node Manager Node Manager ]/ [ Node Manager [ Node Manager
Node 1 Node 2 Node 3 Node 4

The RM is loosely coupled and interacts via a couple of public interfaces and one
private interface. It has the following interfaces:
* A public interface for clients to submit jobs (Application-Client Protocol)

* A public interface for AMs to request for resources
(Application-Master Protocol)

e An internal interface for NM interactions
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Resource allocation is dynamic and is agnostic to the internals of the application or
its optimizations. This makes efficient resource utilization within clusters possible.
AMs send resource requests with the following parameters:

*  Number of containers that will be required, for example, 100 containers

* The specifications of resources in each container, for example, 2 CPUs and
4GB RAM

* The locality preferences for the container at the node or rack level

* Priorities of requests within an application

The RM's Scheduler gets these requests, and based on the cluster state image it has
built using heartbeats from NMs, it allocates containers to AMs. The container exits
are relayed back to the AMs. In the case of scarcity of cluster resources, the RM
might request AMs to give back a few containers. If no containers are released after a
certain timeout, the RM might terminate the container. The RM's request for resource
release can be treated as a warning to save any critical data and work state that the
AM might be executing.

Application Master (AM)

On application submission, the ApplicationsManager negotiates a container with the
Scheduler. The container is used to bootstrap the AM for this particular application.
Once spawned, the AM will periodically send heartbeats to the RM. The heartbeats
are used to perform the following actions:

* Report whether the AM is alive

* Request resources for the application

In response to these heartbeats, the RM allocates containers and the AM is free
to use them. The onus to interpret and handle container terminations and other
application-related faults is completely up to the AM.

The AM interacts with the RM using the Application-Master protocol. The AM
gathers the status of its containers directly from the NM. It can also start and stop
containers allocated to it by interacting with the NM. The NM-related interactions
are done via the ContainerManager protocol.

In YARN, the resource model follows the concept of late binding. The container
spawned might not be related to the AM's request. It is only bound to a lease sought
out by the AM. The state at which the AM requests resources might change by the
time the resource is allocated. The allocated resource can be used for purposes other
than what it is originally intended for.
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Let's illustrate late binding by means of a hypothetical example using the
MapReduce Application Master. We know that HDFS replicates each block of a
file among nodes in a cluster. A Map task preferably runs on the same node as the
input block. When the MR AM requests for containers, it assigns a Map task to the
container whose data is local or close to the allocated container node. The decision
happens only after the AM receives the containers, and in a dynamic fashion.

M Hadoop 1.X had a web interface for the JobTracker. This
Q web interface (generally listening on port 50030) is no longer
available in Hadoop 2.X because the JobTracker is absent.

Node Manager (NM)

The NMs are per-node daemons that do local container management, ranging from
authentication to resource monitoring. They report to the RM using heartbeats. A
Container Launch Context (CLC) record is used to specify container metadata such
as dependencies, data file paths, and environment variables. Based on the values in
the CLC, an NM spawns a container.

Resources might be shared between containers by the same tenant. Download of
resources and dependencies from external sources is also possible by providing their
URLSs. NMs are responsible for termination of containers, either on request by the
AM or on decree from the RM. An NM has the authority to terminate a container if
the container breaches its lease. Termination includes cleanup, such as deletion of
any local data that the container might have.

Monitoring of local physical resources such as CPU, memory, and disk health falls in
the NM's purview. It reports these parameters to the RM. The RM scheduler can take
decisions on container scheduling based on the load or health of the node.

The NM provides services such as log aggregation to the application. Standard
output and error logs spewed by an application are uploaded to HDFS upon
application completion. NMs can also be configured to have pluggable auxiliary
services. For example, an auxiliary service to persist local data until an application's
termination, rather than container termination, can be useful in some scenarios.

In the MapReduce use case, map outputs need to be transferred to the reducers.
Auxiliary services can be used to achieve this. Any additional configuration required
for these services can be specified by the CLC.
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YARN clients

The YARN client is responsible for submitting an appropriate CLC for the AM.
As we discussed earlier, the AM itself runs in a container whose resources are
negotiated by the RM. Registering the AM is also the responsibility of the client.
The client is free to provide other services to its consumers.

Developing YARN applications

YARN can bring in other computing paradigms to Hadoop. In Hadoop 2.X,
MapReduce, Pig, and Hive are all Application Master libraries and their corresponding
clients. Developers can write their own applications using the YARN API and leverage
the existing infrastructure running Hadoop. Also, enterprises can have lots of data
assets in HDFS already, and writing custom applications can leverage this without a
need to provision new clusters or migrate the existing data.

Storm is a real-time stream-processing engine that has been ported onto YARN,
bringing in the paradigm of moving data to compute nodes. Spark is another
project that is on YARN and can leverage the existing Hadoop infrastructure to
provide in-memory data transformations, including MapReduce. There are a
number of projects in development that exhibit Hadoop's capability as a generic
cluster-computing platform.

In this section, let's look at how to write a simple YARN application. The
application takes in a shell command and executes it on a predefined number
of nodes on the Hadoop cluster. We will need to write both the Application
Master and Client programs.

Writing YARN clients

YARN clients submit applications to the RM via ApplicationClientProtocol.

The result is the assignment of ApplicationId to the client. The client then needs to
communicate the specifications of the container that deploys the Application Master.
The Application Master is like a program that needs to be started and executed
independently. These specifications include the location of the Application Master
libraries, any environment variables required for the execution of the Application
Master, and arguments to actually run the program.
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The following code is a snippet from the shell command application. We write a

run method that will be called from the DistributedShellClient main method.
Arguments are passed to the main method from the command line. The arguments

are the Application Master JAR path, shell command, and number of containers that
execute this command. Let us see how to write a YARN client with the following steps:

1.

The first step is to create a YarnConfiguration object. The
YarnConfiguration class is the subclass of the configuration class
that is used in Hadoop MapReduce. The successful creation of the
YarnConfiguration object means that the application is able to read the
necessary config files, such as the yarn-site.xml file. The defaults of
properties are present in the yarn-default.xml file. The yarn-site.xml
file is generally found in the etc/hadoop folder relative to the Hadoop
installation directory.

The application client now has to initialize a Yarnclient object. This is
done via a factory method called createvarnclient. The YarnClient
object is initialized using the configuration that was created earlier. Based
on the configuration passed, the Yarnclient object resolves the RM

end point. During initialization, YarnClient creates a proxy for the RM.
All communication happens via the proxy. The proxy encapsulates the
ApplicationClientProtocol object. A start call on the YyarnClient object
is called to get the client machinery up and running.

An alternative approach will be for developers to create the proxies by
themselves and manage it. The ApplicationClientProtocol objectis a
proxy type that can be created and used. However, it is recommended to
use the former method.

The YarnClient has a createApplication method that is used to get the
YarnClientApplication object. Since YarnClient encapsulates a proxy
for the RM, it also contains methods to retrieve properties about the RM
and manage applications submitted to the RM.

The code is as follows:

package MasteringYarn;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileStatus;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.yarn.api.ApplicationConstants;
import org.apache.hadoop.yarn.api.records.*;

import org.apache.hadoop.yarn.client.api.YarnClient;
import
org.apache.hadoop.yarn.client.api.YarnClientApplication;
import org.apache.hadoop.yarn.conf.YarnConfiguration;
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import org.apache.hadoop.yarn.exceptions.YarnException;
import org.apache.hadoop.yarn.util.Apps;

import org.apache.hadoop.yarn.util.ConverterUtils;
import org.apache.hadoop.yarn.util.Records;

import java.io.File;

import java.io.IOException;

import java.util.Collections;

import java.util.HashMap;

import java.util.Map;

public class DistributedShellClient
private Configuration conf = new YarnConfiguration() ;

public void run(String[] args) throws YarnException,
IOException, InterruptedException {

YarnConfiguration yarnConfiguration = new
YarnConfiguration() ;
YarnClient yarnClient = YarnClient.createYarnClient () ;
yarnClient.init (yarnConfiguration) ;
yarnClient.start () ;

YarnClientApplication yarnClientApplication =
yarnClient.createApplication() ;

5. Once varnClientApplication is created, the next step is to request
a container in order to bootstrap the Application Master. Container
specifications are described in a ContainerLaunchContext class in YARN.
In the org.apache.hadoop.yarn.util package, there is a special Records.
newRecord static factory method that instantiates different classes.

6. Going through the documentation of the ContainerLaunchContext
class will give a glimpse of the properties that can be specified when
launching a container. ACLs, commands, environment variables, local
resources, binary service data, and security token setters are present
in any ContainerLaunchContext object. In the following code, the
ContainerLaunchContext object is instantiated and the set Commands
method is called to set the list of commands that need to be executed upon
the container launch. In our case, we will specify the command to launch the
Application Master present in the DistributedShellApplicationMaster
class that we will define later.
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Launching the Application Master requires the necessary classes or JAR files
to be present locally. The next step is to specify the JAR file containing the
logic of the Application Master using the setLocalResources method on
the ContainerLaunchContext object. In this example, the HDFS path to the
JAR file will be taken as the local resource. The path of this file is specified as
a command-line argument. Other side channels can also be used to distribute
resources locally to containers.

Similarly, if any environment variables need to be set up for the smooth
functioning of the container, it can be set up using the setEnvironment
method on the ContainerLaunchContext object.

The most important pieces of specification needed by the RM to launch any
container are CPU and memory requirements of the container. In this example,
the Application Master container needs around 100MB of memory and a
single core to execute. This is specified using a Resource object. The Resource
object is an abstract representation of the container's compute requirements.
The Resource object can currently model CPU and memory. CPU is modeled
in units called virtual cores. It is an integer value, and the configuration has

to map a virtual core to the actual physical core. Usually, this mapping is

1:1. The memory is modeled in megabytes (MB). The setVirtualCores and
setMemory methods on the Resource object are used to specify them:

//container launch context for application master
ContainerLaunchContext applicationMasterContainer =
Records.newRecord (ContainerLaunchContext.class) ;
applicationMasterContainer.setCommands (
Collections.singletonList ("$JAVA HOME/bin/java
MasteringYarn.DistributedShellApplicationMaster " +

args[2] +
n n +
args[3] +
n n +
n 1 > n +

ApplicationConstants.
LOG_DIR_EXPANSION VAR + "/stdout " +

"2>|l +
ApplicationConstants.LOG_DIR_EXPANSION VAR + "/stderr")

)i

LocalResource applicationMasterdJar =
Records.newRecord (LocalResource.class) ;
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setupdarFileForApplicationMaster (new Path(args[1]),
applicationMasterJar) ;

applicationMasterContainer.setLocalResources (

Collections.singletonMap ("MasteringYarn.jar",
applicationMasterJar)

)i

Map<String, String> appMasterEnv = new HashMap<>() ;
setupEnvironmentForApplicationMaster (appMasterEnv) ;
applicationMasterContainer.setEnvironment (appMasterEnv) ;

Resource resources = Records.newRecord (Resource.class) ;
resources.setVirtualCores (1) ;
resources.setMemory (100) ;

10. The final step is to submit the application to the ApplicationManager
in the RM. The submission parameters are bundled in an
ApplicationSubmissionsContext Object. The YarnClientApplication
class holds a reference to this context. The ApplicationSubmissionContext
object is given the container specifications, the submission queue, a friendly
name for the application, and the Resource object needed to bootstrap
the container. The ApplicationSubmissionContext object also gives
ApplicationId. This ApplicationId object can be used to reference
the application in the management APIs. In the following example, we
will set the application to be in the default queue with a friendly name,
MasteringYarn. Finally, the Yarnclient object is used to submit the
application. Internally, the proxy is used to post the application request
to the RM. The Scheduler then kicks in and schedules the application on the
cluster. The Application Master is the first container that will be spawned:
ApplicationSubmissionContext submissionContext =

yarnClientApplication.getApplicationSubmissionContext () ;

submissionContext.setAMContainerSpec (applicationMaster
Container) ;

submissionContext.setQueue ("default") ;
submissionContext.setApplicationName ("MasteringYarn") ;
submissionContext.setResource (resources) ;

ApplicationId applicationId =
submissionContext.getApplicationId() ;
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System.out.println("Submitting " + applicationId) ;
yarnClient.submitApplication (submissionContext) ;

System.out.println("Post submission " +
applicationId) ;

Once the submission of the application finishes, the progress of the application can
be monitored using the getApplicationReport method on the Yarnclient object.
The ApplicationReport object contains useful information about the application
that can be used to determine the success or failure of the application. It also contains
a diagnostic field that can help the developer gain insight in the case of failures.

The ApplicationReport object has the getYarnApplicationState method

that gives the current state of the application. In the following code, we poll the
application state every 1 second and see whether it is terminated. An application

is terminated if it is in the KILLED, FINISHED, or FAILED state. The getDiagnostics
function is used to print diagnostic information in the event of failures:

ApplicationReport applicationReport;
YarnApplicationState applicationState;

do{
Thread.sleep(1000) ;
applicationReport =
yarnClient.getApplicationReport (applicationId) ;

applicationState =
applicationReport.getYarnApplicationState() ;

System.out.println("Diagnostics " +
applicationReport.getDiagnostics()) ;

}while (applicationState != YarnApplicationState.FAILED &&
applicationState != YarnApplicationState.FINISHED
&&
applicationState != YarnApplicationState.KILLED ) ;

System.out.println ("Application finished with " +
applicationState + " state and id " + applicationId);

[167]

www.it-ebooks.info


http://www.it-ebooks.info/

YARN - Bringing Other Paradigms to Hadoop

A couple of helper methods complete the client. The first method,
setJarFileForApplicationMaster, sets up the Application Master JAR file with
appropriate properties, most of which are self-explanatory. Similarly, all the necessary
environment variables are packaged in the setEnvironment ForApplicationMaster
method. This method also illustrates the use of YarnConfiguration to read

off of the yarn-site.xml file. Finally, the main driver method instantiates the
DistributedShellClient object and calls the run method on it:

private void setupJarFileForApplicationMaster (Path jarPath,
LocalResource localResource) throws IOException {
FileStatus jarStat = FileSystem.get (conf) .getFileStatus(jarPath) ;
localResource.setResource (ConverterUtils
.getYarnUrlFromPath (jarPath)) ;

localResource.setSize (jarStat.getlLen()) ;
localResource.setTimestamp (jarStat.getModificationTime()) ;
localResource.setType (LocalResourceType.FILE) ;
localResource.setVisibility (LocalResourceVisibility.PUBLIC) ;

private void setupEnvironmentForApplicationMaster (Map<String,
String> environmentMap) {
for (String c : conf.getStrings(
YarnConfiguration.YARN APPLICATION CLASSPATH,
YarnConfiguration.DEFAULT YARN APPLICATION_ CLASSPATH) )

Apps.addToEnvironment (environmentMap,
ApplicationConstants.Environment . CLASSPATH.name (),

c.trim()) ;
Apps .addToEnvironment (environmentMap,
ApplicationConstants.Environment . CLASSPATH.name (),

ApplicationConstants.Environment.PWD.$ () +
File.separator + "*");

public static void main(String[] args) throws Exception {
DistributedShellClient shellClient = new DistributedShellClient () ;
shellClient.run(args) ;
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Writing the Application Master entity

Application Master is the leader of the application. This entity encapsulates all

the logic for the application and requests for resources from the RM as and when it
is appropriate. Unlike the Client, Application Master has to keep contact with the
following two entities:

* ResourceManager: This is used for communications regarding the global
state of the application. This is also known as ApplicationMasterProtocol.

* NodeManager: This is used for communications regarding containers
allocated to the application. This protocol is also called ContainerManager.

Writing the Application Master is similar to writing a client. We start off creating a
YarnConfiguration object. To facilitate communication with the RM, AMRMClient

is created. This client encapsulates the proxy object that is needed to talk to the RM.
Again, the proxy can be explicitly created, though this is a simpler and recommended
way to do it. AMRMClient has many methods; the most important methods deal with
the registration of the AM (registerApplicationMaster) and container allocation
request (addContainerRequest) methods.

To communicate with the NM, an NMClient object is created that encapsulates the
communication proxy. The important methods on NMClient are the startContainer
and stopContainer methods that are used to launch and terminate containers on
nodes. The following code snippet illustrates this:

package MasteringYarn;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.yarn.api.ApplicationConstants;
import
org.apache.hadoop.yarn.api.protocolrecords.AllocateResponse;
import org.apache.hadoop.yarn.api.records. *;

import org.apache.hadoop.yarn.client.api.AMRMClient;

import org.apache.hadoop.yarn.client.api.NMClient;

import org.apache.hadoop.yarn.conf.YarnConfiguration;

import org.apache.hadoop.yarn.exceptions.YarnException;
import org.apache.hadoop.yarn.util.Records;

import java.io.IOException;
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import java.util.Collections;
public class DistributedShellApplicationMaster {
public static void main(String[] args) throws YarnException,
IOException, InterruptedException {
Configuration configuration = new YarnConfiguration() ;
int numberOfContainers = Integer.parselnt (argsl([1l]);
String command = args[0];
System.out.println("Starting Application Master");
AMRMClient<AMRMClient.ContainerRequest>
resourceManagerClient = AMRMClient.createAMRMClient () ;

resourceManagerClient.init (configuration) ;
resourceManagerClient.start () ;

System.out.println("Started AMRMClient") ;
NMClient nodeManagerClient = NMClient.createNMClient () ;
nodeManagerClient.init (configuration) ;

nodeManagerClient.start () ;

System.out.println("Started NMClient") ;
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Both the AMRMClient and NMClient classes have corresponding
asynchronous versions. Asynchronous APIs are resource efficient as
threads don't block themselves waiting for responses. After the method
call is invoked, threads are free to take up some other task. When the
results of the APIs are ready, registered callback handler methods are
called based on the nature of the result.

The following code outline illustrates the usage of the
AMRMClientAsync class for communication with the RM:
class AMRMClientCallbackHandler implements
AMRMClientAsync.CallbackHandler {
public void onContainersAllocated(List<Containers
containers)
//the container is allocated and relevant tasks
can
be executed.

}

public void onContainersCompleted(List<ContainerStatuss>
statuses) {

//the container has completed. The application
status needs to be updated.
}
public void onNodesUpdated (List<NodeReport> updated) {}

public void onReboot () {}

}

AMRMClientAsync asyncClient = AMRMClientAsync.
createAMRMClientAsync (appId, 1000, new
AMRMClientCallbackHandler ());

//init the client with the configuration and start the
Proxy.

asyncClient.addContainerRequest (container)

The AMRMClientCallbackHandler object is passed on async client
creation. The appropriate methods on this handler are called whenever
an event happens on the container. For example, when a container is
allocated, the onContainersAllocated callback method is called. A
similar API is present for the NMClient object as well.
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The AMRMC1ient class is used to register the AM with the RM. On successful
registration, the AM starts a heartbeat thread that periodically informs the RM that
it is alive. The registerApplicationMaster method also supplies the host and port
on which the Application Master is listening. Clients can use the AM's host and port
to get information about the application.

Containers now have to be allocated based on the arguments specified when starting
our DistributedShell application. The two important properties that need to be set is the
priority of the container and the amount of resources to be allocated for the container.

The priority class is instantiated to set the priority of the container. In the following
example, we use the priority of 0. The priority object is applicable within this
particular application only.

As we did for the Application Master, we set the resource requirements for each
worker container using the Resource class. To recall, the setMemory method sets
the memory requirement of the container in MB, and setvirtualCores sets the
number of cores required.

The Priority and Resource objects are then assigned to an AMRMClient .
ContainerRequest object to be dispatched to the RM for resource allocation. The
second and third parameters of the constructor are null. These correspond to any
nodes and racks we would like the containers to be allocated on. This is particularly
useful for applications such as MapReduce, where data locality needs to be exploited.
The data type of these parameters is String[].The racks corresponding to any nodes
that are listed in the second parameter are automatically added to the list of racks.

The containerRequest objects are now added to the AMRMClient proxy object using
the addContainerRequest method on the client:

resourceManagerClient.registerApplicationMaster ("localhost",
80010, "myappmaster") ;

System.out.println("Registration done") ;

// Priority for worker containers - priorities are intra-
application

Priority priority = Records.newRecord (Priority.class) ;

priority.setPriority(0) ;

// Resource requirements for worker containers

Resource capability = Records.newRecord(Resource.class) ;
capability.setMemory (128) ;
capability.setVirtualCores (1) ;

for(int i=0; i < numberOfContainers; i++)
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AMRMClient.ContainerRequest containerRequest = new
AMRMClient.ContainerRequest (capability, null,
null, priority);
resourceManagerClient.addContainerRequest (containerReque
st);

}

The allocate method on the AMRMC1ient class indicates to the RM to allocate
containers. It also acts like a heartbeat to the RM. The return value of this method is

an AllocateResponse object. This object contains information about newly allocated
containers, completed containers, and cluster-related information. It also indicates the
remainder resources that are available for this particular application within the cluster.

AllocateResponse also has ResponseId that can be used to disambiguate duplicate
requests. The parameter in the allocate method is a progress indicator of the float
type. The AM can indicate the progress of the application via this parameter.

In the following code snippet, we use the getAllocatedContainers method to get
the entire Container object corresponding to the newly allocated containers. For
each of these containers, we have to launch the shell command that was specified
in the command line.

a1

~ Concurrent allocate request calls should be avoided.
This might lead to request loss.

Container launch is always done using the ContainerLaunchContext object. It is
very similar to the launch of the AM container where we specify the commands,
environment variables, local resources, and other parameters that are needed by
the program to execute in the container.

The container is then launched using the NMClient object. This informs NodeManager
to launch the container and execute the relevant commands. The startContainer
also takes in the container object that was returned by the RM. The container
object contains identifiers, tokens, and the node where the container is allocated:

int completedContainers = 0;
int containerId = 0;
while (completedContainers < numberOfContainers){

AllocateResponse allocateResponse = resourceManagerClient.
allocate (containerId) ;
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containerId++;

for (Container container : allocateResponse.getAllocatedContainers())

ContainerLaunchContext shellContainerContext = Records.newRecord (C
ontainerLaunchContext.class) ;

shellContainerContext .setCommands (
Collections.singletonList (command +

n 1>|l +
ApplicationConstants.LOG DIR_EXPANSION VAR + "/stdout " +
n 2>ll +

ApplicationConstants.LOG DIR EXPANSION VAR + "/stderr")
)i

nodeManagerClient.startContainer (container,
shellContainerContext) ;

}

Once the containers are launched, the allocate call can be used to monitor the completed
containers, as shown in the next code snippet. The getCompletedContainersStatuses
method on the AllocateResponse object gives the status of each completed

container. On completion, the AM can unregister from the RM by calling the
unregisterApplicationMaster call using the AMRMClient object. The status of the
application can be communicated to the RM. This in turn can be reported back to the
client or any other process that monitors the application.

The FinalApplicationStatus enum has the FAILED, KILLED, SUCCEEDED, and
UNDEFINED values. The unregister call also take in any diagnostic message that needs
to be communicated and any new URL the client can use to get information about
the Application Master on termination:

for (ContainerStatus containerStatus : allocateResponse.
getCompletedContainersStatuses () ) {

completedContainers++;

System.out.println("Completed Container " +
completedContainers + " " + containerStatus) ;

Thread.sleep(1000) ;
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resourceManagerClient.unregisterApplicationMaster (FinalApplica
tionStatus.SUCCEEDED, "", "");

}

The application can now be executed using the following commands. The date
command will be run on two containers in the cluster:

hadoop fs -copyFromLocal MasteringYarn-1.0-SNAPSHOT.jar

hadoop jar MasteringYarn-1.0-SNAPSHOT.jar
MasteringYarn.DistributedShellClient
hdfs://localhost/user/sandeepkaranth/MasteringYarn-1.0-SNAPSHOT.jar
date 2

Monitoring YARN

The RM provides a friendly web interface to view the cluster and its resources.

The home page of this interface gives details about the cluster, such as the RM state,
number of applications, the total memory available, total number of nodes, and node
status, among other details. The next screenshot shows the home page.

On the left-hand side of the screen, there are links to navigate and get different kinds
of details of the cluster.

. (& localhost: BOBE /cluster/cluster By =
i Logged in as: dr.wha
@adagp About the Cluster
* Clustar Cluster Matrics
About Apps Apps Apps Apps. Containers  Mamory  Mamory Mamaory Active  Decommissioned Los!t  Unheathy Rebooted
Nodes Submitted Panding Running Completed Running Usad Total Reserved Nodes Nodes Nodes Nedes Nodes
Applications 1 o o 1 o oB 408 oB 1 ] 1] 1] 2

H—Eﬁ SAVING Cluster overview
SUBMITTED Cluster ID: 1403316861928

ACCEPTED ResourceManager state: STARTED
NI ResourceManager started on:  21-Jun-2014 07:44:21
:\EMC_’_‘;'WG_' ResourceManager version: 2.2.0 from 1520768 by SOUNCH 134797 f 0n 2013-10-07TOB:342
R Hadoop version: 2.2.0 from 1520768 by source 79053007394 tetald on 2013-10-07TDE:262
FAILED
Scheduler
Tools
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Clicking on the Nodes link on the left-hand pane gives the details of the nodes in the
YARN cluster. The following screenshot shows an example of a single node cluster.
For each node in the cluster, the screen gives details on the rack it belongs to, the
node state, resource consumption (memory for now) on the node, HTTP address of
the node, and last heartbeat details of the node, among other details.

The last-health update column in the nodes grid tells when the RM received the last
heartbeat from the NM.

€« c localhost B08E [cluster/nodes 2 B 9 =
s » Lagged in as: &r.wha
(CrTiEREEs Nodes of the cluster
= Cluster Cluster Metrics
About Apps Apps Apps Apps Containers ~ Memory  Memary Memary Active Decommissioned Lost  Unhealthy Aebooted
Nedes Submitted Pending Running Complated Running Used Total Resarved Nodes Nodes Nodeg Nodes Nodes
Applications 1 o o 1 o (1! 4068 0B 1 Q o g o
A sAviNG Show 20 : entries Search;
SUBMITTED o Atain :
ACCEPTED Rach = e 5|a:._.e Mode Address & i ns_:s Last health-update < Health-rapaort & Conta ‘"f i bse._u Lk q\‘a."
MS MOVING idatault-rack RUNNING  182.168.0.106:62487 182 168.0.105:8042  21-Jun-2014 23:10:25 /] (1] 4 GH
% Shawing 116 1 of 1 entries
EAILED:
KILLED
Scheduler
+ Tools

The Applications link on the left-hand pane gives details of all the applications,
as shown in the following screenshot. Applications can be filtered based on the
state they are in. The list of filters, such as NEW, NEW_SAVING, SUBMITTED,
ACCEPTED, RUNNING, REMOVING, FINISHING, FINISHED, FAILED, and
KILLED are present on the left-hand pane. By clicking on each filter, applications
present in a particular state will be visible.

Application details such as the kind of application, the queue it belongs to, its state
and final state, start and end times, and progress, among other details, are visible.
Though the Web UI does not give any way to actually execute a command, the
application ID can be used to execute commands using the YARN script.

We will look at some of the YARN commands to manipulate applications in the
following sections in this chapter.

[176]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

« C [ localhost:B086 cluster/apps ay 3 9 =
£ Logged i as: dewh
sﬁ'hadaap All Applications
= Cluster Cluster Metrics
About Apps Apps Appe Appe Cartairars Memory  Mamory Memcry Active  Decommissioned Lost Unhaalthy Retooted
Nodes Submiticd ~ Ponding  Funning  Complotod Punning Usnd Tatal Rnsorvd Nadas: Nockss Mados: Mol Nados:
icati 1 (1] [ 1 0 08 4063 0B 1 0 9 0 2
‘HEW
REW_SAVING Show 0 : entdes Search:
TR o - se  ©  Neme & Meplicaion Quews StaiTime FinighTme o, . FealSlas | oo Tracking Ul
RUNNING i Type 5 i g i 5
REMONING Bpp 1 0001 MasteringYam YARN delaul  Sat, 21 Sat, 21 Jun  FIMISHED SUCCEEDED Higteey
TR Jun 2014 2014
i 02AT07 T
EAILED GMT GMT
Scheguler Shewing 1 to 1 of 1 entrias
Tools

Clicking on the Scheduler link shows the details of the scheduler being used by

the RM. The Web Ul shows the hierarchy of queues and color-codes the capacity,
maximum capacity, used capacity, and used capacity (over capacity) for each queue.
The next section on scheduling gives a better sense of these application queues.

The details of any running applications are also given here. The heading of the
page gives details on the states of applications that are shown on this page. Only
NEW, NEW_SAVING, SUBMITTED, ACCEPTED, RUNNING, and FINISHING
applications are shown.

The cluster metrics section is a common Ul section across all the pages of the Web Ul
that RM exposes. The following screenshot shows an example scheduler page:

&« € | [ localhost- 8088/ cluster/scheduler 3, 1 9 =

1 @ha dﬂﬂp Logard in as: de.uha

NEW,NEW_SAVING,SUBMITTED,ACCEPTED,RUNNING,FINISHING

Applications
= Cluster Cluster Matrics
About Apps Apps Apps Apps Corfainers  Memory  Memory Memary Aclive  Docommissioned  Lost  Unhealtty  Reboolod
Nodes Submitted  Pending  Rumning  Complated Rurning Utnad Total Resenvad Modes Modes Nades Nedes Modes
Applications 1 [ 0 1 [ 0B 4GB LL:] 1 [ [ 2 ]
NEW
HEW SAVING Application Queues
SUBHITTED : s - . -
AP Legend:  Capacity - Used Used (over capacity) Max Capacity
ALMOVLNG .~ roat B1.0% usnd
FINISHING
. En b 5 defaul 0.0% used
KILLED
Scheduler Show 20 3 enirles Search:
+ Tools D Uger & Name Application Type Cupue StarTime ¢  FinshTime ¢ Stale @ FinalStalus Progress & Tracking Ul

o data available in table
Showing 0 10 0 of 0 eniries
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There is a Tools link on the left-hand pane, as shown in the following screenshot. On
expansion, it has a few menu items. These are the tools that help an administrator
and developer of a YARN cluster and application to debug.

'hadaap All Applications EEm

» Cluster Cluster Metrics
* Tools Apps Apps Apps Apps Containara Mamaory Memaory Mamaory Active Decommissioned Lost Unhaalthy HRebooted
i Submitted Pending Running Complated Running Used Total Reserved Nodes Nodes Modes MNodes Modes
fanliguae ] o o [1} o 08 4GB 08 1 1} 1] [} 0
Server stacks Show 70 : entries Search:
Server metrics T b oy s
= “'[ mna Application Type ¢ Queve ¢ StariTime ¢ FinlshTime ¢ . FinaiStatus © Progress 2 Tracking Ul

No data available in lable
Showing 0 to 0 of 0 antries

The Configuration hyperlink takes the user to the configuration that is used by
YARN. This provides a quick-and-easy way to go through the values of different
properties in the YARN cluster. The following screenshot shows the configuration
page. The configuration is displayed in XML.

« € [ localhest:5088 conf pcdll - ]

“Thiis XML file docs ot appear 1o have any style with it. The wee is shown below.

el - job - ubarbask onab o/ names
<value>falas</valoe>
<gsourcesmapred-default.xmle/scurces

</propecky>

¥ opropestys
<namesy, . leted licationg</names
value>10000</valaes
<sourceyarn-default.xmle/source>

</property>
¥ <property>

¥enanes
dee d.del tivn-token.removal-interval-ms

YaILn.
</namo>
<value>30000</value>
<sourse>yarn-default.xmle/source>

e B

</property>
¥eproperty®

<nane>mapreduce.client.submit.file.replication</name>
<value>10</value>
egourcesmapred-default.xnle/sources
</property>
veproperty>
<namermapreduce. jobhistory.oleaner. intorval-mac/names
£va) {valugs
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The Local logs link opens up the local log directory. Clicking on each log opens up
the log in the browser. The following screenshot shows the local logs on a single
machine cluster deployment:

- C [ localhost:B08E logs/ B9 =
.
Directory: /logs/
SecuritvAuth-hadoopaudit Obywes B Apr, 2014 7:04:13 PM
Sesunty Auth-sandeephamnthaudit. 0 bytes 9 Apr, 2014 3:56:03 PM
hadoop-hadoop-datanode-Sandecps-MacBook-Proocal log 97201 bytes 9 Apr, 2014 3:43:01 PM
hadoop-hadoop-datanode-Sandecps-MacBook-Pro.Jocal.out 510 bytes 9 Apr. 2014 2: PM
-hadoop-datanade-Sandecps-MacBook- 510 bywes 8 Apr, 2014 PM
510 byws B Apr, 2014 T:10:51 PM

597 byles 8 Apr, 2014 706:51 PM
597 bytes 8 Apr, 2014 7:04:28 PM
231034 bytes 9 Apr, 2014 3:42:56 PM
510 byes 9 Apr, 2014 2:20:10 PM

had Juach Prodocal.out. 1
hadoop-hadoop pa-MacBook-ProJocil oul.2
hadoog-h 507 bytes 8 Apr, 2014 7:06:47 PM
hadoop-adoop- namenode-Sandecps: al.ou 510 bytes 8 Apr, 2014 704:15 PM
hadoop-had de-Sands MacBook-ProJocal log 189030 bywes 9 Apr, 2014 34307 PM
hadoco-tud Sand Pro.Josal.out 74382 bytes 9 Apr, 2014 3:43:04 PM
hadoop-hudoop-secongur Jeep Proocal out,l 510 bytes 8 Apr, 2014 7:11:56 PM
hadooo-hadoan-secondar de-Sandeeps- MacBook-Pro Jocal out.2 510 bytes 8 Apr, 2014 PM
hadoop-hadoop-secondar de-Sandeeps-MacBook-Pro Jocal our,3 597 bywes B Apr, 2014 707:22 PM
i d clio-5: Prodocallog 13093073 bywes 24 Jun, 2014 2:40:37 PM
hadoop datanods MacBook-Pro Jocal out 518 bytes 21 Jun, 2014 7:44:02 AM
hadoop-sandecpkaranth-datanode-Sandeeps-MacBook-Fro Jocal out.| S18 bytes 20 Jun, 2014 11:10:24 PM

The Server stacks link opens up the exception stacks the server throws along with
the threading information. The screenshot of the server stack link is as follows:

& = @ [ localhost:8088/stacks b P =

Process Thread Dump:
184 active threads
Thread 193 (824885167@qtp-1138341688-2):
State: RUNNABLE
Blocked count: 19
Waited count: 157
Stack:
sun.management.ThreadTmpl.getThreadInfol (Native Method)
sun.management.ThreadTmpl.getThreadInfo(ThreadImpl.java:174)
sun.management .ThreadImpl.getThreadInfo(ThreadImpl.java:139)
org.apache.hadoop.util.ReflectionUtils.printThreadInfo(ReflectionUtils. java:165)
org.apache.hadoop.http.HttpServer§sStackserviet.doGet (HttpServer.java:950)
javax.servlet.http.HttpServlet.service (EttpServlet.java:707)
javax.servlet.http.HttpServlet.service (HEttpServlet.java:B20)
org.mortbay.jetty.servlet.ServlietEolder.handle(ServietHolder.java:511)
org.mortbay. jetty.servlet.ServlietEandler§CachedChain.doFilter(ServletHandler.java:1221)
com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:66)
com.sun.jersey.spi.container.servlet.ServlietContainer.doFilter (ServletContainer.java:900)
com.sun.jersey.spi.container.servlet.ServlietContainer.doFilter (ServletContainer.java:834)
com.sun.jersey.spi.container.servlet.ServlietContainer.doFilter(ServletContainer.java:795)
.google.inject.servlet.FilterDefinition.doFilter(FilterDefinition.java:163)
.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:58)
.servlet.ManagedPilterPipeline.dispatch(ManagedFilterPipeline.java:118)
.google.inject.servlet.GuiceFilter.doFilter(CuiceFilter. java:113)
org.mortbay. jetty.servlet.ServletBandler§CachedChain.doFilter(ServletHandler.java:1212)
org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter.doFilter (StaticUserWebFilter.java:109)
org.mortbay. jetty.servlet.ServletBandler§CachedChain.doFilter(ServletHandler.java:1212)
Thread 192 (DestroyJavav):
State: RUNNABLE
Blocked count: 0
Waited count: 0
Stack:
Thread 15 (ApplicationMaster Launcher):
State: WAITING
Blocked count: 0
Waited count: 1
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There is a Server metrics link that opens up the metrics page. Clicking on a node
host takes the user to the NodeManager section. The left-hand pane of the page
is now introduced with NodeManager-related links, as shown in the following
screenshot. This screen gives the information of a particular node.

a9 =

i C' | [ 192.168.1.2:8042/node
G [1E]a[a]a]s)
+ ResourceManager
Total Vmem allocated for Conlalners  B.40 GB
- r
NUdEMBnte, Vmem enforcement enabled  true
Hode Informatien Total Pmem allocated for Container 4 GB
M i Pmem enforcement enabled true
W‘—“ﬂ’i ) ModeHealthyStatus true
List of Containers
LastNodeHealthTime Tue Jun 24 16:56:48 IST 2014
» Tools NodeHealthReport
Mode Manager Version: 2.2.0 from 1529788 by sgurce 1347007
Hadoop Version: 2.2.0 from 1529768 by source T3e53ceTa94d

Logged in as: dr.who

ModeManager information

0 on 2013-10-07T08:34Z
1e1aM on 2013-10-07T06:20Z

Clicking on the List of Applications link takes the user to a screen that looks
something like the following one. Here, the list of applications running on this
node is displayed with its application state.

. c 192.168.1.2:8042 /node/allApplications

@9 =

ChErREED

Showing 110 1 of 1 antries.

Applications running on this node

- ResourceManager |Show 20 : enires
BM Homa
Applicationid ApplicationState
» NoedeManager
» Tools appication 1403608965485 0001 FLUNNING

Logged in as: dr.who

Clicking on the List of Containers link in the NodeManager menu item gives the
details of the containers currently running on the NodeManager, with the state of
each container. There is a link to open the logs directory as well.

« C [} 192.168.1.2:8042 /node allContainers p P =
“ Logged in as: dr.who
@hadamp All containers running on this node
~ ResourceManager  Show :0 ¢ enlriés Search:
RM Home
Containarid = ContainarState :  loge
* NodeManager
» Toals ingr 14 AUNNING oga
Showing 110 1 of 1 entries
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Job scheduling in YARN

Most cluster resources are multitenant in nature, that is, a number of teams or people
share the cluster resources. Allocation of resources to satisfy the needs of all these
tenants becomes important and is the responsibility of the scheduler. Individual
clusters per team or person is not viable as they render poor utilization.

YARN provides a pluggable model to schedule policies. The initial versions of
Hadoop had a simple First in First Out (FIFO) scheduler. However, FIFO was found
to be inadequate in dealing with the complexities of multitenancy. We will discuss
two other scheduling strategies that are used in Hadoop today, CapacityScheduler
and FairScheduler.

CapacityScheduler

The concept behind CapacityScheduler is to guarantee a tenant-promised capacity
on a shared cluster. If other tenants utilize less than the requested capacity, the
scheduler allows the tenant to tap into these unused resources. The number one
goal of CapacityScheduler is not to allow a single application or user to hog the
cluster resources. The scheduler enforces strict limits on the resource usage of
tenants sharing the cluster.

CapacityScheduler manages scheduling based on queues. Administrators configure
these queues based on the requirements of the tenants. Hierarchical queues are used
to share the underutilized part of the cluster. Hierarchies ensure that first preference
is given to the tenant who has requested for the capacity before others can use it.

Each queue has a capacity that the administrator can configure. The sum of the
capacities of all the queues in the cluster determines the cluster's capacity. The
capacity of a queue is elastic, so the scheduler can transfer the unused capacity
from one queue to another. This redistributed capacity can be reclaimed to satisfy
the capacity guarantee made on a queue. A maximum capacity for a queue can also
be enforced. In addition, each queue can also support per-user limits.

In addition to queues and their hierarchies, CapacityScheduler also has the
following features:

* CapacityScheduler has a set of security features. Each queue has ACLs that
authorize users to submit jobs into the queue. User jobs are isolated, preventing
other users from modifying jobs other than their own. The scheduler also
introduces the concept of per-queue and system administrator roles.

* CapacityScheduler is dynamic, that is, its properties, such as queue
definitions and ACLs, can be changed at runtime. Delete operations
on the queues are not permitted. Adding new queues is allowed.
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Administrators are allowed to stop queues, preventing new jobs from getting
submitted onto the queue and its children queues. Existing jobs are allowed
to continue, though without pre-emption. The administrator is allowed to
start the queues once the jobs from the queue have drained.

Applications that require higher resources such as multiple maps and reduce
slots for a job, are allowed by CapacityScheduler. CapacityScheduler does

a resource-based scheduling of the jobs as long as they do not exceed the
capacity constraints that are set on the queues.

In YARN, CapacityScheduler can be plugged in using following methods:

The ResourceManager can be directed to use CapacityScheduler by
%ﬂﬁngtheyarn.resource.manager.scheduler.classFmoperqlk)org.
apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.
CapacityScheduler. This setting is declared in the yarn-site.xml config file.

Queues can be set up by adding entries to the capacity-scheduler.xml file.
This is the configuration file of CapacityScheduler. A predefined queue called
as the root is present. Any queue that is created is a child of the root queue.

The yarn.scheduler.capacity.root.queues property is used to define

additional queues. Queues are specified as comma-separated lists of queue

names. Queue paths specify hierarchies of queues. Queue paths are special

property names that start from the root queue and list the tree path using a

dot notation. The following configuration file snippet describes two levels of

queues. The x, y, and z queues are under the root queue. The x1 and x2 queues

are under the x queue. The queue path for x1 and x2 is given by root .x:

<propertys

<names>yarn.scheduler.capacity.root.queues</name>

<value>x, vy, z</value>

<description>The queues at the this level (root is the root
queue) . </description>

</propertys>

<propertys

<names>yarn.scheduler.capacity.root.x.queues</name>

<value>x1l,x2</value>

<description>The queues at the this level (root is the root
queue) . </description>

</propertys>
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* The resource allocation characteristics for each queue is characterized by the
following properties:

o

yarn.scheduler.capacity.<queue-paths.capacity: This
property is used to set the capacity of each queue as a percentage
of the cluster capacity. The property is of the float type. At each
level in the queue hierarchy, these queue values must add up to be
a 100 percent. This is a soft limit. If unused capacity is available, the
jobs in the queue can use it, providing elasticity to the queue.

yarn.scheduler.capacity.<queue-path>.maximum-capacity:
This property is used to set a hard limit on the capacity used by a
queue. This hard limit on the queue capacity is a float value and
limits the elasticity of the queue. The default value is -1, that is,
there is no limit on the elasticity.

yarn.scheduler.capacity.<queue-path>.minimum-user-
limit-percent: This is an integer value property that enforces

the percentage of resources allocated to a single user in the queue.
The limit kicks in only when there is a demand for resources. For
example, if we set this value to 50, a single user can be allocated

100 percent of the capacity, and two users can be allocated 50 percent
of the capacity. However, beyond two users, the scheduler waits for
the existing user applications to complete before scheduling the next
one. The default value for this property is 100.

yarn.scheduler.capacity.<queue-path>.user-limit-
factor:This property dictates multiple queue capacities that can be
used by the user. For example, if this property has a value 2, a user
on this queue can be allocated twice as many resources as the queue
capacity. This can happen only if the cluster has the capacity and is
idle. This is a £1oat value type and the default is 1.

* CapacityScheduler supports the following properties to control the
properties of running applications:

o

yarn.scheduler.capacity.maximum-applications: This property
determines the maximum number of active applications in the cluster.
This is a hard limit and submissions of applications beyond this limit
are not allowed. The default value is 10,000.

yarn.scheduler.capacity.<queue-path>.maximum-
applications: This property is a per-queue override for the
preceding property. Both these properties are of integer type.
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° yarn.scheduler.capacity.maximum-am-resource-percent: This

property determines the percentage of resources in the cluster that
is allocated for Application Masters alone. The default value is 0.1,
that is, Application Master containers can utilize 10 percent of the
cluster resources.

yarn.scheduler.capacity.<queue-path>.maximum-am-
resource-percent: This property is a per-queue setting for
resources allocated to AMs.

* CapacityScheduler supports the following properties that help in setting
cluster authorization and queue runtime parameters:

o

yarn.scheduler.capacity.<queue-path>.state: This property
sets the queue state. It can be in the RUNNING or STOPPED state.
In the STOPPED state, application submissions to this queue or any
of its child queues are not allowed. In the STOPPED state, existing
applications are allowed to execute and finish.

yarn.scheduler.capacity.<queue-path>.acl submit
applications: This property determines the users who can submit
applications to the queue and all its children. ACLs are inherited
from parent queues. ACLs are comma-separated lists of users or
groups. A * wildcard can be used to specify anyone.

yarn.scheduler.capacity.<queue-path>.acl administer_
queue: This property determines the users who can administer
the queue and all its children queues.

* The yarn rmadmin command can be used to refresh the ResourceManager
(RM) with the new properties. The refresh happens without having to restart
the ResourceManager.

FairScheduler

As the name suggests, the concept behind FairScheduler is to provide, on an average,
equal resources to all running applications over time. FairScheduler organizes
applications into pools or queues and shares time between the different application
pools. Periodically, the scheduler checks each application for the compute time it

has received in the cluster and the amount of time it would have received under
ideal conditions.

The applications are sorted in descending order of deficits. The next application to be
scheduled will be the one with the largest deficit. The concept of hierarchical pools
exists in FairScheduler as well.
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To configure FairScheduler in YARN, the following points needs to be considered:

The RM can be made to use FairScheduler by setting the yarn.
resourcemanager.scheduler.class property to org.apache.hadoop.

yarn.server.resourcemanager.scheduler.fair.FairScheduler.
This configuration value is set in the yarn-site.xml config file.

The other properties can be set in two files:

o

o

The yarn-site.xml file is used to define global scheduler properties.

An allocation file is used to specify properties such as weights and
capacities for each queue or pool. This file is loaded every 10 seconds.
Changes to this file take effect whenever the file is loaded.

The important global properties that can be placed in the yarn-site.xml file
are as follows:

o

yarn.scheduler.fair.allocation.file: This property contains
the path to the allocation file. This file is in the XML format and
specifies the properties of each pool or queue. The value defaults to
the fair-scheduler.xml file.

yarn.scheduler.fair.use-as-default-queue: This property has a
Boolean value. If set to true, it uses the username associated with the
allocation as the pool or queue name. If set to false, there is a shared
queue called default, and all jobs are allocated to this queue. The
default value is true.

yarn.scheduler.fair.sizebasedweight: This is a Boolean
property that suggests whether all apps have to be given equal share.
It defaults to false, that is, all apps are given equal share. If set to
true, the applications are weighted by the logarithm to base two of
one plus the requested memory of the application.

yarn.scheduler.fair.locality.threshold.node: This property
is of the £1loat type between 0 and 1. When requesting containers

on specific nodes to exploit locality, the app might want to delay
allocation if containers cannot be allocated on these specific nodes.
This particular property value determines the amount of delay before
allocating the container on a nonlocal node. The value is the fraction
of the cluster size. It defaults to -1.0, indicating to the scheduler to
allocate containers without any delay.

yarn.scheduler.fair.locality.threshold.rack: This property is
very similar to the previous property. However, unlike the previous
property, this one deals with the rack-local placement of containers.
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[e]

yarn.scheduler.fair.allow-undeclared-pools: This is a Boolean

property that determines whether new queues can be created when
the application is submitted to the RM. If it is set to false, any
application that does not belong to a pool specified by the allocations
file will reside in the default pool.

e The allocation file defines the

pools or queues in the cluster. It is an XML

manifest file that has the following elements:

Queue element

Description

minResources

This is the value is of the form A mb, B vcores,
indicating the minimum number of resources

for this particular queue. If this condition cannot
be satisfied, resources from parent pools are
reallocated.

maxResources

This is the value corresponding to this tag gives
the maximum resources a queue can consume. No
containers are allocated to the queue if it is deemed
to use more resources.

maxRunningApps

This is the upper limit on the number of
applications that can run simultaneously from this
particular queue.

weight

This defines the proportion of resources this queue
can use when compared to the default. The default
is 1. If the weight is 2, it can use twice the number
of resources when compared to the default.

schedulingPolicy

The allowed values are £ifo, drf, or fair.

aclSubmitApps

This is the ACL for the users and groups that can
submit jobs to this queue. The ACL format is the
same as in the case of CapacityScheduler.

aclAdministerApps

This is the ACL description for the list of users and
groups that can do administrative functions on this
queue.

minSharePreemptionTimeout

In conditions where the queue is not given its
due share of resources (ninResources), it
waits for the time defined by this property. After
this timeout, it pre-empts containers from other
queues.
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User Element Description

maxRunningApps This is the upper limit on the number of
applications that can be run by a single user in the
queue.

queuePlacementPolicy element Description

rule This particular node in the XML file contains the

rules on how a submitted application should be
placed within the queue. There can be a number
of rules, and each rule is executed in the order of
declaration. For example, the rule specified places
the application in the queue that was specified
during submission. If no queue is specified, it is
placed in the default queue. The "user" rule places
the app in the queue with the username.

The outline XML of the allocation file is given as follows:

<?xml version="1.0"?>
<allocationss>
<qgueue name="">
<minResources></minResources>
<maxResources>A mb, B vcores</maxResourcess>
<maxRunningApps></maxRunningApps>
<weight>1.0</weight>
<schedulingPolicy>fair</schedulingPolicy>
<queue name="sub_gqueue name">
<aclSubmitApps>username</aclSubmitApps>
<!—other queue properties can appear a
</queue>
</queue>

<user name="username">
<maxRunningApps></maxRunningApps>
</user>
<queuePlacementPolicy>
<rule name="specified" />
<rule name="user" />
<rule name="primaryGroup" create="false" />
<rule name="default" />
<rule name="reject" />
</queuePlacementPolicy>
</allocations>
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YARN commands

Like Hadoop, YARN has a script that provides commands to manage YARN.
The commands are of the following two kinds:

e User commands: These are commands for the cluster user

e Administration commands: These are commands for the cluster administrator

In Hadoop deployment, the YARN script is found in the same directory as the
Hadoop scripts. The general syntax of the YARN script is as follows:

yarn [--config <config directory>] command [options]

The -config option can be used to override the default configuration. The
default configuration directory is picked up from the environment variable
SHADOOP_PREFIX/conf.

User commands

The following are the important user commands in YARN:

* The jar command is used to run a custom, user-built JAR file. In the
previous distributed shell example, we use the following command
to run the YARN job. The syntax for the command is:

yarn jar <jar file path> [main class name] [arguments..]

* The application command is used to manipulate a running application in
YARN. It has three verbs: to list all the running applications in the cluster,
to get the status of the application, and to kill a running application. The list
verb can be filtered on the application state and application type:
yarn application -list [-appStates <state identifierss> | -

appTypes <type identifiers>] | -status <application id> | -
kill <application id>

* The node command is used to report the status on the nodes in a cluster. It has
two verbs: to list all the status and to find the status of a particular node. The
list command can also be used to filter nodes that are in particular states:

yarn node -list [-all | -states <state identifiers> | -status
<node id>
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The 1ogs command is used to dump logs of completed applications.

It has two verbs: to dump logs of a particular user or to dump based on
container identifier and node address values. The application ID is the
mandatory parameter:

yarn logs -applicationId <application Id> -appOwner <appOwner>
| (-nodeAddress <node address> & -containerId <container Id>)

Administration commands

The important administration commands in YARN are as follows:

The resourcemanager, nodemanager, and proxyserver parameters start the
respective daemons:

yarn resourcemanager | nodemanager | proxyserver
The administrator can manipulate the ResourceManager by using the
rmadmin command. This command has the following verbs:

° -refreshQueues: This refreshes all the queue ACLs, states, and
scheduler properties

° -refreshNodes: This refreshes node-specific information in the
ResourceManager

° -refreshUserToGroupMappings: This refreshes all mappings about
user memberships in groups

-refreshSuperUserGroupsConfiguration: This refreshes

superuser-specific mappings

° -refreshAdminAcls: This refreshes ACLs, determining the RM
administrator access

° _refreshServiceacl: This reloads the authorization file in the RM

The administrator uses the daemonlog command to get and set the log levels
of the YARN daemons:

yarn [-getLevel <daemon host:port> <name>| -setLevel <daemon
host:port> <name> <level>]
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Summary

YARN has opened up the Hadoop ecosystem to a wide range of applications. It has not
only alleviated scaling bottlenecks that were present in traditional MapReduce-based
Hadoop but also aided in improving infrastructure efficiency in an organization. This
was made possible by:

* Separating out application-specific logic from resource management. The
ResourceManager is solely responsible for cluster resource management
and is agnostic of any application.

* Providing common and generic abstractions for resource specifications.
Resources are specified in terms of cores and memory.

* Maintaining backward compatibility with existing Hadoop APIs.
Existing Hadoop programs work on YARN on recompilation,
without any code changes.

* Providing a variety of pluggable scheduling policies such as FairScheduler
and CapacityScheduler. Pluggable policies make it easy for other paradigms
to come onboard.

Development of newer computing paradigms on Hadoop is as simple as
implementing a client and Application Master. These components interact with
the ResourceManager and NodeManager to achieve their goals. Like MapReduce,
applications such as Spark and Storm aspire to become first-class citizens in the
Hadoop ecosystem. YARN has made this aspiration a reality.

In the next chapter, we will look at Storm and how it can be integrated with Hadoop.
Storm is a real-time stream processing cluster-based engine that can operate on
streaming data.
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Latency Processing
In Hadoop

Hadoop MapReduce builds on the concept of moving computation to data. Data

is significantly larger than the instructions to manipulate it. The network is the
slowest component in any distributed data processing system, so it is natural to
move the smaller piece around, that is, the program itself. With assistance from the
NameNode, Hadoop knows exactly how the data resides in a cluster of computers.
It uses this data locality information to schedule tasks on appropriate nodes, putting
in the best effort to locate the task very close to the data needed by the task.

In this chapter, we will discuss the opposite paradigm, that is, moving data to the
compute, also known as the streaming paradigm. There are many frameworks that
facilitate streaming, Apache Storm being a popular one. Apache Storm integrates
with Hadoop YARN, bringing the streaming paradigm to Hadoop. In this chapter,
we will cover the following topics:

* Comparing and contrasting a batch-processing paradigm such as
MapReduce with the streaming paradigm

* The key concepts of Apache Storm

* Walking through application development using Apache Storm

*  Walking through Apache Storm installation on Hadoop by running YARN
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Batch processing versus streaming

MapReduce is a batch-processing model. The data is allowed to accumulate before
processing is done on it. This leads to larger turnaround times. It can also lead to
pressures on storage, memory, and compute resources of the system. A batch of data
needs to be staged till analysis begins and ends, thus occupying storage resources.
Analyzing a large piece of data will mean a peak load for a short amount of time on
the nodes of the compute cluster.

Batch models also lead to poor utilization of the cluster resources. During data
accumulation, the cluster compute and memory are idle. However, during analysis,
they have peak load. Provisioning of the cluster must cater to the peak load.

The disadvantages of batch-processing systems are overcome by using streaming
computation models. Instead of moving the computation to the data, data is
streamed through computation nodes. Each compute node operates on the data
point or a small window of data to analyze and output a result or update its internal
state. The computation nodes form a topology that can be viewed as a continuously
executing query. The turnaround time is now smaller because analysis is not done at
the end of the batch, but continuously. Also, the analysis is done on very small sets
of data. These systems provide near real-time analysis, that is, analysis as soon as the
data is received by the system.

Let's illustrate this with an example. Let's say we are given a task to bucket vehicles
passing at a point on the interstate based on the color of the vehicle and report the
count of vehicles per color in one hour. In the batch approach, this will involve
stopping all the vehicles that come in during the hour and parking them in a
chartered parking lot nearby. At the end of one hour, we get to the parking lot

and take the count of the vehicles for each color.

By contrast, the streaming approach will involve determining the color of the vehicle
passing by and incrementing a counter based on the color. At the end of the hour,
we have the counts per color. On the downside, if we make an error in counting or
determining the color, we cannot recover from it. In the batch approach, we have the
opportunity to double-check our computation.

Streaming systems thrive in applications where low latency is one of the primary
goals. However, they come with a set of tradeoffs when accomplishing this goal.
The ability to make decisions by seeing a few points makes accuracies of the results
suffer. Also, not every analysis algorithm can be implemented using the streaming
model. Streaming models are not suitable for algorithms that make multiple passes
over the data and cannot be used if a decision can be made only by looking at the
entire dataset.
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The following diagrams contrast batch and stream processing of data. The first
diagram shows batch processing;:

Batch Jobs

Store and Process

The following is a figure for stream processing of data:

Continuous Query

S

Results

Compute Topology

Apache Storm

Apache Storm is one of the most popular open source streaming engines and
provides real-time analytics on unbounded streams of data. It is a distributed
framework that can work on multiple nodes, providing both fault tolerance and
horizontal scalability. Another primary feature of Apache Storm is that it provides
guaranteed event processing, that is, every event that enters the system is processed
without a loss of events. Apache Storm applications can be deployed with any
programming language of the developer's choice, making it extremely attractive for
usage in low-latency analytics.
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MapReduce provides the Map and Reduce function primitives to build batch
applications. Similarly, Storm provides its own set of primitives to support real-time
analytics. If a framework such as Apache Storm is not available, writing real-time
applications will mean a lot of complexity. It will involve adding and maintaining
processing queues to guarantee processing of all events in the system. It will also
involve writing worker programs that can read off the queue, do processing, and then
enqueue the program elsewhere for downstream processing. Failure handling and
synchronization between the workers and queues will be the onus of the developer.

Maintaining queues and workers will involve much greater effort than the data
processing logic itself. Partitioning of the data stream when the throughput is
extremely high will add additional overhead on the developer's time and effort,
posing a threat on the scalability of the system. Providing fault tolerance is not an
easy task too. Apache Storm tries to abstract these complexities and provide features
that improve the reliability and availability of a real-time system.

Architecture of an Apache Storm cluster

A Storm cluster runs long-standing queries instead of jobs. Batch-processing systems,
on the other hand, have jobs as their basic units. The key difference is that jobs finish
executing eventually, but long-standing queries do not finish (unless explicitly
killed). These long-standing queries are called topologies.

These are the two different kinds of nodes in a Storm cluster:
¢ Master node: This runs the Nimbus daemon, similar in function to a
JobTracker in Hadoop MRv1
*  Worker node: This runs the Supervisor daemon, similar in function to a

TaskTracker in Hadoop MRv1

The Master node is the central node that takes care of three key functions. They are
as follows:

* Distributing the code across the different worker nodes in the cluster
for execution

* Scheduling by assigning tasks to available worker nodes within the Apache
Storm cluster

* Monitoring for failures within the cluster and taking actions on them
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The Supervisor daemon is present per node in the cluster. Its responsibilities are
as follows:

* Listening to directions from the Master Nimbus daemon

* Starting and stopping worker processes based on the directions from
Nimbus; each worker process executes a subset of the topology

The actual coordination between the Nimbus and Supervisor daemons happens
through a Zookeeper cluster.

Zookeeper is an open source service that takes care of
+  configuration management, synchronization of nodes, and naming
%“ services within a distributed system. Though it was under the
g Hadoop project initially, it is now a top-level project within the
Apache Software Foundation.

The following diagram shows a high-level view of an Apache Storm cluster:

Y
— Supervisor
Supervisor
) Zookeeper
<::> Cluster <::>
Supervisor
— Supervisor
./
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Computation and data modeling in Apache
Storm

The computation is modeled as topologies, a graph of computations. Each node in this
graph of computations contains logic to process data. The links between these compute
nodes in the topology indicate the nature of data transfers between the nodes.

Topologies are defined as Thrift structs. In Chapter 5, Serialization and Hadoop I/O,
we saw that Avro schemas can be defined in a data definition language such as
JSON, making it agnostic to any programming language. Similarly, Thrift allows
for topologies to be defined using its own Interface Definition Language (IDL),
making the Apache Storm language agnostic.

Data abstraction used in Apache Storm is known as a stream. A Stream is a sequence
of tuples that is unbounded. The Apache Storm cluster takes in one Stream and
produces another Stream. For example, if a vehicle passing along the interstate is
encoded as a tuple, in the example we used to compare batch and stream processing,
the input stream contains a sequence of vehicle tuples. The output stream is a set of
tuples giving us the count of vehicles per color. The output stream is unbounded, but
the tuples come out of the cluster every hour. The Storm cluster transforms the input
stream to produce an output stream. The number of streams that are ingested or
egested to and from Apache Storm can be many.

There are three abstractions in Storm: spouts, bolts, and topologies, which are
explained as follows:

* Spouts: A spout can be visualized as a data adapter, which converts the data
source into a Stream that can be processed by Storm. A spout is the source
for all the streams used within Storm. For example, a spout can connect to
the Twitter API and produce a stream of tweets, or it can connect to a Kafka
queue and produce a stream of system logs where each log entry is a tuple.

* Bolts: A bolt is a primitive that consumes multiple streams from the spouts
and other bolts to emit new streams of data. A single topology in a Storm
cluster might require a number of interconnected bolts to achieve the
desired transformation. Bolts can do many kinds of transformations such as
filtering, aggregation, stream joins, writing to data stores, or simple function
execution. A bolt can subscribe to a set of streams from spouts or other bolts.
This subscription sets up the links in the topology.

* Topology: A topology represents a network of spouts and bolts, with each
edge in the network representing a bolt subscribing to the output stream of
some other spout or bolt. A topology is an arbitrarily complex multistage
stream computation. Topologies run indefinitely when deployed.
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The following diagram illustrates a possible topology. Bolt A subscribes to Spout
A and Bolt C subscribes to Bolt A. Bolt B is an example of a bolt subscribing to
two streams, one stream from Spout B and another from Bolt A. Again, Bolt D
subscribes to streams from Bolt C and Bolt B:

Use cases for Apache Storm

Streaming frameworks such as Apache Storm has a number of use cases. Some of the
practical ones are as follows:

Algorithmic trading in stock markets: Algorithmic trading requires
low-latency decisions based on the performance of the stock, the market,
and even external conditions such as events. Storm can parallelize
decision-making and deliver distributed low-latency results.

Analytics from social network feeds: Social networks such as Twitter and
Facebook have a continuous stream of updates flowing into the system. A lot
of analysis needs to be done at real time. For example, trending topics from
Twitter feeds are low-latency applications. Trends change quickly and need
to be reported as it happens.

Smart advertising: Advertising is a major revenue generator for Internet
companies and search engines. Advertisements have higher click-through
rates if they are relevant to the user's browsing context. Smart selections and
placements of advertisements is another application where frameworks such
as Apache Storm can add a lot of value. Smart ads involve inferring the users'
intent in real time.
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Location-based applications: A user's location can be used to target
advertising, promotions, and services. This is a low-latency application
as the target user might be at a location briefly. Storm can gather location
data and make targeting happen in real time.

Sensor network-based applications: Explosions of sensors in areas such
as manufacturing, disaster monitoring, security, and so on has made it
necessary to react and respond to anomalous events in real time. A sensor
that can sense a disaster, such as an earthquake, can notify officials in real
time, which can help save lives by timely evacuations and safety measures.

Developing with Apache Storm

Now, let's develop an Apache Storm topology using Java. Let's take worldcitiespop.
txt, a CSV file containing city information along with the country code, population,
and latitude/longitude information of each city. Though the example might not be

an ideal streaming application, as the stream is bounded, it illustrates two patterns

of stream filtering and grouping;:

1.

Let's develop a simple spout that reads each line from the worldcitiespop.
txt CSV file and emits records as a stream of tuples. All spouts implement the
IRichsSpout interface. The abstract class, BaseRichSpout, also implements
this interface. We will extend this class and override the abstract methods,

as shown in the following code snippet. The three main methods to be
overridden are:

°  open: This method is used to initialize and start the spout. In our
case, we open the file and store a handle to the output collector.
The spoutoutputCollector object is used to emit the tuples into
the output stream. The key feature of the SpoutOutputCollector
object is that the messages can be tagged with IDs to acknowledge
or fail the messages. The configuration information is also available
in this method.

° nextTuple: This method is called repeatedly to request the spout to
emit tuples. This is a nonblocking call, that is, if there is no tuple to be
emitted, the call will return. In the following example, we read one
line of the file and emit it to the SpoutOutputCollector object. A
Values object is used to package the tuple.
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declareOutputFields: This method is used to specify the schema
and IDs for the message. In the following example, we indicate that
our tuple has a single field, city, through the Fields object:

package MasteringStorm;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;

import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Map;

public class ReadCitySpout extends BaseRichSpout

private SpoutOutputCollector spoutOutputCollector;
private BufferedReader cityFileReader;

@Override

public void open (Map map, TopologyContext
topologyContext, SpoutOutputCollector
spoutOutputCollector) {

this.spoutOutputCollector = spoutOutputCollector;

try{
cityFileReader = new BufferedReader (new
FileReader ((String)map.get ("city.file")));

}

catch (Exception ex) {
ex.printStackTrace () ;

@Override
public void nextTuple() {

String city = null;
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if (cityFileReader != null) {

try {
city = cityFileReader.readLine() ;
}

catch (Exception ex) {
ex.printStackTrace () ;

}

if (city != null)
spoutOutputCollector.emit (new Values (city)) ;

}

@Override
public void declareOutputFields (OutputFieldsDeclarer
outputFieldsDeclarer) {
outputFieldsDeclarer.declare (new Fields ("city"));

}

2. Now that we have a stream of city tuples, we want to filter tuples that contain
a valid population entry. If the worldcitiespop.txt file is observed closely,
many cities do not have a population entry. We will filter out these records
using bolts. The preceding code snippet illustrates the filtering pattern.

All bolts have to implement the IRichBolt interface. The abstract
BaseRichBolt class is extended, and three methods are overridden
here too, which are as follows:

° prepare: This method is used to initialize the bolt and make it ready
to accept streams. We store the OutputCollector object so that we
can write to the output stream.

° execute: This method is the override where all the processing logic for
the tuple goes. In the preceding code, we extract the city field from the
tuple and split it on the comma character. We check for the population
tield of the record. If it is empty or throws NumberFormatException,
we discard the tuple by not emitting anything.
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declareOutputFields: This method is again used to specify the
schema of the output tuple. This time, our tuple has two fields,
countryCode and city. The former contains the country code,
and the latter contains the entire city record.

package MasteringStorm;

import backtype.storm.task.OutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Tuple;

import backtype.storm.tuple.Values;

import java.util.Map;

public class FilterCityBolt extends BaseRichBolt
OutputCollector collector;
@Override
public void prepare (Map map, TopologyContext

topologyContext, OutputCollector outputCollector) {
this.collector = outputCollector;

@Override

public void execute (Tuple tuple)
String city = tuple.getString(0) ;
String[] tokens = city.split(",");

//Filter cities that have a population number.

if (tokens != null && tokens.length >= 7 &&
tokens[4] != null && tokens[4].length() > 0) {
try {

Long population =
Long.parselong (tokens [4]) ;

}

catch (NumberFormatException ex) {
city = null;

if (city != null)
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collector.emit (new Values (tokens[0],city)) ;

@Override
public void declareOutputFields (OutputFieldsDeclarer
outputFieldsDeclarer) {
outputFieldsDeclarer.declare (new
Fields ("countryCode", "city™")) ;

}

3. Our next bolt is one that sums up all the city populations to get the country's
population. The following code snippet exhibits this. As before, we extend
the BaseRichBolt abstract class. In the prepare method, we initialize
HashMap to store intermediate population values for each country. The
execute method updates these intermediate population values and emits a
tuple with the country code and the intermediate population value:

package MasteringStorm;

import backtype.storm.task.OutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Tuple;

import backtype.storm.tuple.Values;

import java.util.HashMap;

import java.util.Map;

public class SumPopulationForCountryBolt extends
BaseRichBolt {
private HashMap<String, Long> countryCodePopulationMap;

private OutputCollector outputCollector;

@Override
public void prepare (Map map, TopologyContext
topologyContext, OutputCollector outputCollector) {

this.outputCollector = outputCollector;
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this.countryCodePopulationMap = new HashMap<> () ;

@Override
public void execute (Tuple tuple) {

String countryCode = tuple.getString(0) ;
String city = tuple.getString(l) ;

String[] tokens = city.split(",");

Long population = Long.parselLong (tokens[4]) ;

if (countryCodePopulationMap.containsKey (countryCode)) {
Long savedPopulation =
countryCodePopulationMap.get (tokens [0]) ;
population += savedPopulation;
countryCodePopulationMap .remove (countryCode) ;

countryCodePopulationMap.put (countryCode,
population) ;

outputCollector.emit (new Values (countryCode,
population)) ;

@Override
public void declareOutputFields (OutputFieldsDeclarer
outputFieldsDeclarer) {
outputFieldsDeclarer.declare (new
Fields ("countryCode", "population")) ;

Now that we have a spout that emits tuples, a bolt to filter out bad tuples,
and an aggregation bolt that sums up the population, let's build a topology.
As we saw previously, building a topology is to set up links between the
spouts and bolts. The following code illustrates the way to construct and
submit a topology of spouts and bolts.

The topology is built using the TopologyBuilder object. It has the methods
setSpout and setBolt to set the spouts and bolts in the topology. The
names of the spouts and bolts can be specified. The setBolt method returns
a TopologyBuilder.BoltGetter object. This object permits different kinds
of groupings. Groupings can be thought off as stream-partitioning directives.
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In the preceeding code snippet, we use the shuf fleGrouping method to link
FilterCityBolt to ReadCitySpout. However, we use the fieldsGrouping
method to link sumPopulationForCountryBolt to FilterCityBolt. Thisis
because we want to aggregate the population by country and will like tuples
of the same country to arrive at the same bolt task.

The stormSubmitter helper class is then used to submit the topology to

the Apache Storm cluster. We use the config object to specify any additional
configuration values. In this case, we set debugging and the filename that we
got from the command line.

These are the following seven stream-partitioning schemes that are
native to Apache Storm:

*  Shuffle grouping: Each tuple is randomly distributed to the
Bolt tasks. This scheme tries to guarantee that each Bolt task
gets an equal number of tuples.

* Fields grouping: Based on the value of a particular field,
tuples will be sent to a single Bolt task. In the code used in this
section, we group based on the countryCode field, which
guarantees that tuples that share the same country code are
sent to the same task.

4 * All grouping: Every generated tuple is duplicated and sent to
%;%‘ all the Bolt tasks.

*  Global grouping: The entire stream goes to a single Bolt task.
This is useful when calculating global metrics.

* None grouping: This defaults to Shuffle grouping for now. In
the future, this will give a provision to push down to execute
in the same thread of the Bolt or Spout.

* Direct grouping: In this case, the Bolt or Spout generating the
tuple decides the Bolt it goes to.

* Local or Shuffle grouping: If the Bolt receiving the tuple
happens to have some tasks in the same worker process as the
producer, the tuples will be shuffled in-process. If this is not
the case, it will fallback to the Shuffle grouping.

package MasteringStorm;

import backtype.storm.Config;
import backtype.storm.StormSubmitter;
import backtype.storm.topology.TopologyBuilder;
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import backtype.storm.tuple.Fields;
public class MasteringStormTopology {
public static void main(String[] args)

Config config = new Config();
config.setDebug (true) ;

if (args != null) {
System.out.println(args.length) ;

System.out.println(args[0]) ;
config.put ("city.£file", args([0]);

TopologyBuilder topologyBuilder = new
TopologyBuilder () ;

topologyBuilder.setSpout ("cities", new
ReadCitySpout (), 3);
topologyBuilder.setBolt ("filter", new
FilterCityBolt (), 3).shuffleGrouping("cities");
topologyBuilder.setBolt ("group", new
SumPopulationForCountryBolt (),
3) .fieldsGrouping ("filter", new
Fields ("countryCode")) ;

try {
StormSubmitter.submitTopology ("test-filtering-
storm", config,
topologyBuilder.createTopology () ) ;

}

catch (Exception ex) {
ex.printStackTrace () ;
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The topology can be submitted into a Storm cluster using a command line similar to
the following;:

storm jar MasteringStormOnYarn-1.0-SNAPSHOT-jar-with-dependencies.jar
MasteringStorm.MasteringStormTopology worldcitiespop.txt

If you use Maven to build your topology JAR file, use the
<scope>provided</scope> tag when specifying the Apache
Storm dependency. If this is not used, the Apache Storm JAR files
and default.yaml file are packaged into the JAR file. This leads to
duplicate default .yaml files, which results in a runtime error. The
N following code snippet shows the dependency section in pom.xml:

~
<dependenciess>
<dependency>
<grouplds>storm</grouplds>
<artifactIdsstorm-core</artifactIds>
<version>0.9.0</version>
<scope>provided</scope>

</dependency>
</dependencies>

Apache Storm 0.9.1

Apache Storm 0.9.1 was released in February, 2014. It brings in a number of
enhancements when compared to the older versions of Storm. The latest releases
of Apache Storm can be found at http://storm.apache.org/downloads.html.
The important enhancements are as follows:

Netty-based transport: Previously, Apache Storm came with OMQ as its
transport. 0MQ needed native binaries to be installed on the cluster, which was
tedious. Netty is a Java-based transport that ensures good portability across
nodes in the cluster. It also comes with superior performance characteristics,
providing almost two times more improvement in message throughput.

Windows support: Apache Storm can now be run on the Windows platform.
This is significant for the number of clusters running on Windows.

Apache Software Foundation: Apache Storm is an incubator project within
the Apache Software Foundation. This ensures greater community reach and
provides distribution and licensing structure to the software.
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* Maven Integration: Apache Storm is primarily written in a JVM-based
Lisp language called Clojure. Leiningen used to be a popular build tool for
Clojure and Storm builds as they used to be based on Leiningen. However,
as Apache Storm moved as an incubator project within the Apache Software
Foundation, the choice of build tool became an important feature for release
management. Apache Storm now uses the Maven build system, which makes
it easy to release early and often.

Storm on YARN

In Chapter 6, YARN - Bringing Other Paradigms to Hadoop, we built a YARN application
that executes distributed shell commands. Storm is one such application that has been
brought to YARN by Yahoo!. Any Hadoop cluster running YARN can now execute
streaming workloads for low-latency real-time applications. The Application Master
and client program to execute Storm are available for deployment. It is open sourced
on GitHub at https://github.com/yahoo/storm-yarn.

Installing Apache Storm-on-YARN

Apache Storm-on-YARN can currently be installed from GitHub. This section
assumes that the Hadoop 2.2.0 cluster is available.

Prerequisites

The following prerequisites are necessary to install Storm-on-YARN:

e Java7

* Maven: This needs to be installed on the gateway machine to help compile
and deploy the Storm-on-YARN Application Master and client:

°  wget http://mirror.symnds.com/software/Apache/maven/
maven-3/3.1.1/binaries/apache-maven-3.1.1-bin.tar.gz

tar -zxvf apache-maven-3.1.1-bin.tar.gz
mkdir -p /usr/lib/maven
mv apache-maven-3.1.1 /usr/lib/maven

° wvi ~/.bash profile and add S$PATH=$PATH:/usr/lib/maven/
bin
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Installation procedure

Perform the following steps for installation:

1.

A copy of the Storm-YARN repository can be downloaded from GitHub.
If you have Git installed, the repository can be cloned locally:

wget https://github.com/yahoo/storm-yarn/archive/master.zip

The downloaded master. zip file needs to be decompressed:

unzip master.zip

Now, the Maven config file, pom.xm1, has to be edited to reflect the Hadoop
version being used. We are using 2.2.0, so mention it in the hadoop . version
XML tag:

<properties>
<storm.version>0.9.0-wip2l</storm.version>
<hadoop.version>2.2.0</hadoop.version>
<!--hadoop.version>2.1.0.2.0.5.0-67</hadoop.version-->

</properties>

The Storm-YARN project comes with Storm binaries in the 1ib directory of
the downloaded project files:

mkdir ~/working-dir

Go to the storm-yarn-master directory:
cd storm-yarn-master

cp lib/storm.zip ~/working-dir

The storm. zip file has to be placed within HDFS so that it can be deployed
on all the nodes of the Hadoop cluster. For now, this path is hardcoded to
/1lib/storm/<storm-version> within the Storm-YARN AM:

hadoop fs -mkdir /1lib

hadoop fs -mkdir /lib/storm

hadoop fs -mkdir /lib/storm/0.9.0-wip2l

hadoop fs -put storm.zip /lib/storm/0.9.0-wip21l
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10.

11.

12.

The storm. zip file has to be unpacked in the working directory and added
to the path:

unzip storm.zip

vi ~/.bash profile

Add the storm-yarn-master and storm bin paths into the PATH
environment variable:

export STORM HOME="<your path>/working-dir/storm-0.9.0-wip21"
export STORM YARN HOME="<your path>/storm-yarn-master"
export PATH=$PATH:$STORM HOME/bin:$STORM YARN HOME/bin

Go to storm-yarn-master and execute the Maven package command:
cd storm-yarn-master

mvn package

The Maven package command will build the Application Master and Client.
Additionally, it will run tests to verify that everything went well. It is highly
recommended that tests be run to catch any issues early. You can skip tests
by running the following command:

mvn package -DskipTests

As we saw in the section on Storm architecture, Zookeeper is used to
coordinate communication between the Nimbus and Supervisor daemons.
It is important to install a Zookeeper cluster before starting off on Storm:
wget

http://www.gtlib.gatech.edu/pub/apache/zookeeper/zookeeper-
3.4.6/zookeeper-3.4.6.tar.gz

You need to unzip and untar the package and store it in a location of
your choice:

tar zxvf zookeeper-3.4.6.tar.gz
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13. Zookeeper stores all configuration information on disk. Go to the conf folder
of the Zookeeper installation, create a zoo . c£g file from the template that is
given to you, and check the settings. Most importantly, the directory pointed
by the databDir setting must exist:

cd conf
cp zoo_sample.cfg zoo.cfg

vi zoo.cfg

The Zookeeper configuration on my machine is given as follows:

# The number of milliseconds of each tick
tickTime=2000

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

# The number of ticks that can pass between

# sending a request and getting an acknowledgement
syncLimit=5

# the directory where the snapshot is stored.

# do not use /tmp for storage, /tmp here is just
# example sakes.

dataDir=/data/zookeeper

# the port at which the clients will connect
clientPort=2181

To start Zookeeper, go to the bin folder and execute the following command:

cd bin

./zkServer.sh start

Once Zookeeper is started, it is time to submit the Apache Storm application to our
Hadoop YARN cluster. This can be done using the following command:

storm-yarn launch

It can take a few minutes to launch. To check if all the necessary services are running,
you can execute the jps command:

jps
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The following screenshot shows all the necessary services that need to run:

eerMain

nimbus
re

The QuorumPeerMain service is the Zookeeper service. Since the cluster I am
running on has a single node, we see a single supervisor. The Nimbus daemon is
also visible. The MasterServer is the Application Master for Storm. It is the container
that spawns Nimbus. There are a number of worker processes. These are the actual
topologies that run in Storm. We will shortly see how to run a topology. For now,
you might not be able to see the worker processes.

You can check to see the application ID within YARN using the following command:
yarn application -list

The following screenshot gives the output of the 1ist command from YARN RM.
The application ID for the Storm application is application 1404566721714_0004
in this case:

Queue 5 Final-5State

default W Ll UNDEFINED
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You can also check the application ID by connecting to the RM web UI, as shown in
the following screenshot:

€ & C [ localhost:B08B/cluster Qw9 =
L Logged in as: dr.whe
" . .
-@hadﬂmp All Applications
= Cluster Cluster Matrics
Aboyt Apps Apps Apps Apps Containers Memory  Mamory Mesmiory Active  Decommissioned  Lost Urihaalthy Rebooted
Nodes Submitted  Pending  Funning  Completed Running Used Totad Resarved Nodes Nodos. Nodes Nodes Modes
Applications 1 1] 1 o 2 4GB 4GB oB 1 ] o o o
NEW
BEW_SAVING Show 0 : eniries Search:
ACCEPTED o = User 5 | Mamo Application Quous  StanTime  FinishTimae Siale & FinalStatus. P A Tracking Ul &
> 5 Type  ° 8 3 g 8 o
BEMOVING 0001 Storm-  YARN dedault Sat, 19 Jul  NA RUNNING UNDEFINED Applicationasier
EINISHING - 2014
Yam 05:35:22
FAILED aMT
Scheduler Showing 110 1 of 1 onlries

» Tools

The Apache Storm configuration can be stored with the . storm directory in the
user's home. In this way, whenever topologies are submitted to the cluster, Storm
can automatically pick the configuration from this place:

storm-yarn getStormConfig -appId <appId from YARN> -output ~/.storm/
storm.yaml

The storm.yaml file has the configuration of the Apache Storm cluster. It is
important to review it for the correct information. For example, the nimbus.host
property shows the host where the Nimbus daemon is running. All the Zookeeper
configurations, timeouts, and other properties can be set in this config file.

Now that the Apache Storm cluster is up and running, it is time to submit some
topologies for testing. Storm YARN comes with a couple of test topologies, such as
storm.starter.WordCountTopology and storm. starter.ExclamationTopology.
These can be run to check whether the cluster is deployed correctly.

[212]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

To run the topologies, use the following command:

storm jar storm-starter-0.0.1-SNAPSHOT.jar
storm.starter.WordCountTopology

Also run the following command:

storm jar storm-starter-0.0.1-SNAPSHOT.jar
storm.starter.ExclamationTopology

Apache Storm comes with its Web UI to monitor topologies. The web endpoint is on
the gateway machine at port 7070. The following screenshot shows a Storm cluster
running both topologies.

The jps command execution on each node can be used to check whether worker
processes are running on the nodes.

&« = @ [ localhost:7070 el Q =
Storm Ul
ICluster Summary
Version Nimbus uptime Supervisors Used slots Free slots Total slots Executors Tasks
0.9.0-wip21 10m 23s 1 4 0 4 46 46

Topology summary

Name Id Status ~ Uptime Num workers Num executors Num tasks
WordGountTopology WordCountTopology-1-1404577224 ACTIVE 3m 43s 3 28 28
logy-2-1404577440 ACTIVE s 1 18 18
Supervisor summary
Id a Host Uptime Slots Used slots
17a10ec2-27c9-476e-b2d2- 192.168.1.38 10m 18s 4 4

INimbus Configuration

Key a Value

dev.zookeeper.path Amp/dev-storm-zookeeper
drpc.childopts -Xmx768m
drpe.invocations. port 3773

drpo.port arr2

drpc.queus.size 128
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Clicking on a particular topology gives us its details. The following screenshot gives

the details of ExclamationTopology running on the cluster. It provides the details of
the number of bolts and spouts that are running. Actions can be taken on a particular
topology as well. The currently permitted actions are to activate/deactivate, kill, and

rebalance the topology.

+ -+ € | [I localhost: 7070 ftopology/ExclamationTopology-2- 1404577440

w B9

Storm Ul

Topology summary
Name d Status Uptima

ExclamationTopalogy ExciamationTapelogy-2-1404577440 ACTNVE 1d 12h 40m 158

Topology actions

Actvare || Deactivare || Rebalance || gill
Topology stats
Window - Emitted Transforred Complats latency (ms)
10m O 11540 TEB0 0,000
3h Om Os 11640 TRED 0.000
1d Oh Om 0= 11540 TEB0 0,000

A tima 11540 680 0000

Spouts (All time)
id - Exccutors Tasks Emitted Transferred Compilate latency (ms}

word 10 10 3&20 3620 £.000

Bolts (All time)
Id + Executors Taslks Emitted Transferred Capacity (last 10m) Executs lntency (ms)
exclgmi 3 a 3880 3680 0.009 0.268

axclam@ & 2 3650 [} 0.006 0,130

Num workens

8

Exscuted o

18

Process lstency (ms}
0.260

o11E

Num axecutors Num taska

18

Failed Last error
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The following screenshot gives a snapshot of the logs from ExclamationTopology.
These logs were gathered from a container that was running the topology.
ExclamationTopology adds the string ! !! to every word that was generated by
the spout. The spout, in this case, selects a word randomly from a list of words and
sends it to the bolts. The exclaimi bolt adds the three exclamation marks to the
word and forwards it to the exclaim2 bolt that adds three more marks.

In the logs, the exclaiml output always has three exclamations, while the exclaim2
output has six exclamations. The word spout emits the word randomly from a set of
words defined in the spout.

=20 ._\‘. 192.168.1.38:8042 /node fcontainerlogs/container_1404566721714_0005_01_000002 /sandeepkaranth /worker-6703.log.1/?start=-4096 w8 =

‘hadgﬂp ] Logs for Logged in as: dewho

container_1404566721714_0005_01_000002

- Showing 4098 byles. Chek hare for full log
Remu“:e"‘aﬂager ecutor [INFO| Processing received message scurce: exclaiml:d, stream: defaule, id: {}, [bertelsiil]
AM Home 2004-07-07 12:15:28 b.w.d.vask [INFO] Emicting: exclaimd dofanlt (bercelsiiiiii]
2004-07-07 12:15:28 B, |:xm1 Emiering: word dofaule [jaciksan)

2014-07-07
+ NodeManager 2014-07-07
+ Tools 2014-07-07 .. . 18t {}; (3acksentie]
7 task |n-m] Eaitting: exclala? defaclt |jacksontliLi]
2014 : ing recoived mewssge source: exclaisiif, stress: default, id: (), [mikelitl]
iﬂll ﬂl’ Q'.‘ llllSlﬂl bus.d.task mnvo] lhitth!n exclaisd default [lihlllll”]
12:15:28 b.s.d [ ] i received sessage source: exclaislif, streas: default, idi (), [jacksonilil)
iﬂll ﬂl’ Q'.‘ 12:15:28 b.s.d.task mnvo] lhitth!wl In:lll-? default [jacksoalilill)
12:15:28 b.s.d [1HF0] P received message sources wordid, stream: default, ids (), [jackson]
2014-07-07 12513128 b.s.d.task [INFO] Emitting: exclaiml default |jacksomiil]
12115128 bus.d tor | INPD] received message sources sxclaimlid, stresam: default, idi {}, [jackecnili)

2014=07-07 12115128 b.
2014=07=07 12115128 b.

aak [INFO] Emitting: exclais? cefault [jackscalilill]

ecutor [INFO] Processing received message scurce: exclaimlis, stream: default, id: {}. [jackscalil]
2014-07-07 12113128 b.s.d.task [INFO] Emitting: exclais? default [jacksoalilill]

2014-07-07 12112129 b. [INFO] Emitting: word default [nathan]

2014-07-07 12113129 b. [INFO] Emitting: word default [bertels]

2014=07-07 12113129 b. 1I8F0) Emirting: word default [bertels)

2014-07-07 12:15:29 b.s.d.executor [INFO) Processing received message source: word:1), seream: default, id: (1. [nathan]
2014-07-07 12:15:29 b.s.d.zank [INFO] Emicring: exelaiml default [nathaniit]

2014-07-07 12:15:29 B. peutor (INFO) Pracessing recoived message ssures: word:10, seream: defasle, ids (}, [bertels)
2014-07-07 12:15:29 b.s.d.zank [INFO] Emicring: exelaiml default [boreslsitil)

2014-07-07 12:15:29 b.a.d.executor |INFO) Processing recoived message source: sxclaiml:d, stream: defsult, id: {}, (bertelstit]
2014-07-07 12:15:29 b.s.d.task [INFO] Emicring: exclaimd default [bortelsiiiiil]

2014-07-87 12:15:29 bos.d tor (THPO] Pr ing received message source: exclaiml:s, streas: default, id: {}, [=ikelll]
2014-07-87 13:15:20 bos.d.task [INFO] Emitting: exclaimd default [mikellilil]
2014-07-87 13:15:29 b.s.d tor (TNFO] P ing received sessage source: exclaimlif, streas: defaslt, id: {}, [bertelsill]

[ TWr0)
12115129 b.s.d.task Ilm] lhinh!n In:lll-? default [bertelsiilill])

a7 12515129 bos.d [ ] received sessage sources word:®, streas: defsult, ids (), [jacksen)

ﬂll—ﬂl’-ﬂ'.‘ 12115129 b.s.d.task Ilm] lhinhwi In:lll.l default [jacksomiil]

12113129 b ing received message source: exclaimli®, streas: defsult, ids {}, [bertelsiii)
12115129 b 3 |1m1 exclaisd default [bertelsiiiiii]
12115129 b (e received measage source: exclaimlid, stresm: default, id
2014=07=07 12115129 b. ask [INFO] Emitting: exclaim? default [jacksoaliiili)
2014=07=07 12:1%129 b.8.d.executor [INFO] Processing received message source: exclaimli®, stream: default, idr {b. [jackscnlll)
2014=07=07 12113129 b. a8k [INFO] Emitting: exclaim? default [jacksoalilili]
2014=07=07 121153129 b. a8k [INFO] Emitting: word default [jackson)
2014=07=07 12115129 b.s.d.task [INFO] Emitting: word cdefault [nathan]
2014=07=07 12115129 D.8.d.vask [INFO] word default [mike)

{he [fackscaiit)
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There are Apache Storm commands to kill a topology instead of using the Web UL
The killing process takes place in several steps. First, the spouts in the topology
are deactivated. Then, Apache Storm waits for a timeout before it can terminate
the workers and clean up all the states. During this interval, workers can complete
processing the tuples they have received. The -w flag can be used to vary this
particular timeout:

storm kill <topology-name> [-w wait for seconds]

Similarly, Apache Storm provides other commands to manage the topologies.
We previously encountered the jar command that can be used to instantiate
topologies within the cluster. The key here is that it automatically picks up the
Storm configuration from the . storm directory within home.

The entire Apache Storm application can be stopped on the cluster using the
Storm-YARN shutdown command. The usage is given as follows:

storm-yarn shutdown -appId <application id>

Both Apache Storm and Storm-YARN have many other commands. The Apache
Storm commands manage a deployed instance of Storm, while the Storm-YARN
command talks to the RM to manage the Storm application with YARN.

A comprehensive set of Apache Storm commands is given using the
following command:

storm help [commandl]

For a comprehensive set of Storm-YARN commands and options, you can run the
following command:

storm-yarn help
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Some important Storm commands are as follows:

activate: This command activates a spout. It is analogous to
turning on a faucet at a sink to get a stream of water. Activating a
spout starts the stream of tuples.

deactivate: This command deactivates a spout. It is analogous
to turning off the faucet. This command stops the stream of
tuples.

dev-zookeeper: This particular command can be used to
instantiate a Zookeeper cluster during development, debugging,
and testing. It is used when we do tests on the Storm-on-YARN
package. The properties of this transient cluster are given by the
dev.zookeeper.path property that specifies the path for the
Zookeeper data directory and the storm. zookeeper. port
property that specifies the port of the Zookeeper process.

drpc: This command launches a distributed RPC daemon. The
distributed RPC is a special pattern that is possible via Storm.
RPC calls that are intensive can be parallelized using an Apache
Storm topology. The function name and arguments form the
tuple in the input stream.

list: This command lists the topologies running in the Apache
Storm cluster.

localconfvalue: This command prints out the configuration
value for a specified property. This value is taken from the
storm.yaml file in the . storm directory merged with the
properties from the default.yaml file.

logviewer: This command launches a web endpoint from
where logs can be viewed.

nimbus: This command launches a Nimbus daemon.
rebalance: Addition of nodes to the cluster might call for
redistributing the workload in the cluster. This can be done in
two ways; the first is to kill and restart the topology, and the
second is to use the rebalance command. The rebalance
command first deactivates the spouts in the system, then
redistributes the workload and activates the spouts. The
rebalance command can also be used to modify the parallelism
of the workers in the cluster.

remoteconfvalue: This command prints the configuration
value for a property on a cluster machine. The path to the
storm.yaml file is $STORM-PATH/conf/storm.yaml. Again,
it merges the properties with the default .yaml file.
supervisor: This command launches the supervisor daemon.
ui: This command launches the Ul daemon. The port number of
the endpoint is given in the storm. yaml file.
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Summary

The number one goal of the streaming paradigm is to cater to low-latency
applications. The Storm-on-YARN project has brought this paradigm to Hadoop.
Stakeholders can now multiplex streaming and batch processing on a single Hadoop
cluster and cater to different kinds of applications.

There are a number of streaming frameworks available, such as Microsoft SQL
Server StreamlInsight, S4, and Apache Storm, among others. Apache Storm is open
source, part of the Apache Software Foundation, Hadoop integrated, and has a large
community behind it, making it attractive for distributed stream processing.

Some key takeaways from this chapter are as follows:

The basic data model in Apache Storm is an unbounded sequence of tuples
called Streams.

Long-standing queries are modeled as computational topologies. The data
stream flows through these topologies.

Apache Storm provides the following primitives:
°  Spouts: They convert input data into streams
° Bolts: They take an input stream, do some processing on the stream,
and output another stream
Apache Storm provides guaranteed message delivery and fault tolerance in a
distributed setting.
Apache Storm uses Thrift to specify topologies, making it language-agnostic.

Storm-on-YARN is an open source under-development project initiated by
Yahoo! to bring Apache Storm to Hadoop clusters running YARN.

In the next chapter, we will look at Hadoop's cloud support, particularly the one by
Amazon, which is one of the biggest cloud vendors.
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Cloud computing is the paradigm that has made computing a utility. Just like
electricity grids and water supply channels bring electricity and water, to individual
homes, cloud computing allows individuals and businesses —small, medium, and
large — to tap into pooled computing resources connected via a network to execute
desired tasks and run their applications.

In this chapter, we will be:

Looking at the characteristics and advantages of cloud computing

Comparing and contrasting the Hadoop on the cloud offering by Amazon
AWS and Microsoft Azure, two of the leading players in the cloud
computing space

Delving into the details of Amazon's managed Hadoop service called Elastic
MapReduce (EMR)

Looking at how to provision an EMR cluster within minutes and run
MapReduce jobs

Cloud computing characteristics

The National Institute of Standards and Technology (NIST) (www.nist .gov) defines
the following five important characteristics as the essence of cloud computing:

On-demand self service: Consumers of computing utility can provision

and deprovision resources on the fly. The provisioning action can happen
unilaterally in a self-serve manner without any human intervention with the
service provider. For example, cloud computing has made it possible for an
organization to provision a Hadoop cluster of a desired configuration from a
console in their office, without having to call Amazon and letting them know
about it.
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Broad network access: The self-service part of cloud computing is facilitated
via the Internet, allowing heterogeneous clients ranging from mobile phones
to desktop computers to interact with the cloud computing service. Standard
communication protocols such as HTTP are used to allow communication
between these diverse sets of clients and the service provider.

Resource pooling: The entire setup is multitenant, that is, a number of
consumers operate their workloads on a pooled set of computing resources
of the service provider. Dynamic adjustments of physical resources among
the consumers happen as the demand varies.

Rapid elasticity: The resources utilized by a single consumer can be scaled
outward and inward as demanded in a very short amount of time. Most
cloud computing providers also provide an auto-scaling feature, where the
resources scale outwards or inwards based on a set of conditions defined by
the consumer. A feeling of infinite capacity is given to the consumer using
the cloud-based service.

Measured service: The cloud service provider measures, monitors, and
reports the usage of each of its tenants. The measurement is transparent to
the consumer and is used for billing. The cloud computing service always
follows a pay-as-you-go model, where the consumer pays only for what has
been used. For example, if a consumer provisions a Hadoop cluster of three
nodes, runs a MapReduce job for one hour, and turns the cluster off once the
job is done, the cloud computing service provider bills the consumer only for
one hour of compute time on three nodes.

The reasons why the cloud makes sense to run Hadoop clusters are as follows:

Lower costs: Operationalizing analytic workloads in an organization is
always the last step in the data processing pipeline. Before operationalizing,
iterations of refinements happen in the analyses and trials on different
datasets. During the pre-operationalization phase, it is not prudent to
provision an in-house Hadoop cluster, which involves a huge capital
expenditure. Any in-house cluster that is provisioned will either be
overprovisioned or underprovisioned at this stage. With the cloud, this
situation is alleviated as organizations can lease out clusters based on
their needs, without having to pay for the capital costs of the cluster. Also,
traditionally, it will take months to set up the hardware and software for
such a cluster. With the cloud model, this can happen in minutes.

Elasticity: Experimentation and prototyping involves variable workloads.
The cloud infrastructure is known for its elasticity. Hadoop clusters of
different sizes can be provisioned, and nodes added or removed based on
the requirement of the job. The inward or outward expansion of the cluster
can be done dynamically too.
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Administration: The self-service model of the cloud makes it easy to
administer and maintain a cluster. This has significant bearing not only
in terms of administrative costs but also in terms of time taken to recover
from failures.

Cloud-based software can be categorized into three service models:

Infrastructure as a Service (IaaS): This cloud service provider provides
physical or virtual machines as a service.

Platform as a Service (PaaS): This cloud service provider provides
a computing platform as a service. A computing platform can be an
execution runtime, a database, a Hadoop cluster, or a web server.

Software as a Service (SaaS): This cloud service provider provides a
software application as a service.

As we move from laaS to SaaS, the flexibility of application configuration decreases
with the decreasing cost of service. Hadoop on the cloud is a PaaS offering. It

is sometimes termed Hadoop as a Service (Haa$S). This distributed computing
framework along with HDFS is available for a consumer as a service.

Hadoop on the cloud

All major cloud service providers have Hadoop as a PaaS offering. Amazon with
Elastic MapReduce, Microsoft with their HDInsight offering, and Google with their
Hadoop on the Google Cloud platform are the frontrunners in this space. The first to
offer Hadoop on the cloud, way back in 2009, was Amazon.

We will briefly compare and contrast EMR and HDInsight in the following table:

Amazon AWS EMR Microsoft Azure HDInsight

It was released in 2009. It has more than five | It was released in 2012. It has around two

years of service and technology maturity. years of service and technology maturity.

The popularity of AWS makes the learning Microsoft Azure is picking up, but it's

curve less steep for a new user. EMR is not yet as popular as AWS. HDInsight

integrated with the popular AWS console. is also integrated with Microsoft Azure
dashboards.

It has the ability to deploy clusters with the Hadoop distribution is limited to
MapR Hadoop distribution. Microsoft's distribution in partnership

with Hortonworks.

No Microsoft Windows support is available. | Hadoop distribution is tailored to run on

Microsoft Windows.
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Amazon AWS EMR

Microsoft Azure HDInsight

It is marginally less expensive.

It is slightly more expensive when
compared to EMR.

It lags behind in end-user tooling.

It integrates better with the Microsoft
Office suite. For example, it provides a
Hive ODBC driver and Hive Excel add-on
for frontend analysis and visualization.

It provides native support for Java, Pig,
and Hive. Other executables/scripts can be
executed using Hadoop Streaming.

It provides native support for C#,

Java, Javascript, Pig, and Hive. Other
executables/scripts can be executed using
Hadoop Streaming.

Amazon Elastic MapReduce (EMR)

Amazon AWS offers Hadoop as a PaaS. Organizations and individuals can provision
Hadoop clusters on the fly, run their workloads, and download results. Provisioning
a Hadoop cluster using EMR takes a few minutes and is a few clicks away.

Usage of any Amazon Web Service requires an Amazon account. Visit
*  http://aws.amazon.com and register for a free account. A credit
card is mandatory to register for an Amazon account. However, it will
g be charged only on usage beyond the free tier offered by Amazon. The
registered e-mail is subsequently used as the username.

The general steps to create and run workloads on EMR are as follows:

1. The application is developed locally in Java using Hadoop's MapReduce
APIs, Hive, Pig, or a language of the user's choice. Non-Java-based languages
can be executed in a Hadoop cluster using Hadoop Streaming. A developer
guide can be found at http://docs.aws.amazon.com/ElasticMapReduce/
latest/DeveloperGuide/emr-what-is-emr.html.

2. The application and relevant data are stored in Amazon S3. S3 is a scalable
storage service provided by Amazon. There are many ways of placing data
in Amazon S3. A number of clients for data upload are available, or a web
interface can also be used. Data can directly be written to HDFS on the EMR

cluster as well.
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3. Using the management console, the cluster configuration is specified and
launched. The cluster configuration includes the kind of machines in the
cluster, the version of Hadoop to use, and additional applications that need
to be installed on the cluster. The actions to be performed once the cluster is
provisioned are also part of this step.

4. The cluster is then launched, the data processing is done, and the results are
either moved into S3 or can be read directly off HDFS on the cluster.

Provisioning a Hadoop cluster on EMR

To provision a Hadoop cluster on EMR, perform the following steps:

1. Once you have procured an Amazon account, visit https://console.aws.
amazon.com and log in with your Amazon account credentials. The following
screenshot shows an AWS console page. It lists all the different cloud services
Amazon has to offer. The services of interest to us will be S3, a scalable storage
service on the cloud, and Elastic MapReduce, a managed Hadoop service.

Amazon Web Services

Compute & Networking
= Direct Connect
= Dedicated Metwork Connection to AWS

i 2

Virtual Servers in the Cloud

Route 53

I~ Scalable Domain Name System

= VPC
WP Isolated Cloud Resources

Storage & Content Delivery

o CloudFront
"® Gicbal Content Delivery Network

Glacier
Archive Storage in the Cloud

e 32
Scalable Storage in the Cloud
. Storage Gateway

Integrates On-Premises [T Environments with Cloud
Storage

Database

. DynamoDB
Predictable and Scalable NoSQL Data Store

<= ElastiCache
s |n-Memory Cache

RDS

Managed Relational Database Service

Redshift

Managed Petabyte-Scale Data Warehouse Service

Deployment & Management
CloudFormation
Templated AWS Resource Creation

CloudTrail
User Activity and Change Tracking

CloudWatch

Resource and Application Monitoring
Elastic Beanstalk

AWS Application Container

1AM

Secure AWS Access Control

‘ OpsWorks

DevOps Application Management Service

Analytics
<= Data Pipeline

= Orchestration for Data-Driven Workflows

& Elastic MapReduce

LT Managed Hadoop Framework
i, Kinesis
S Realtime Processing of Streaming Big Data

Mobile Services

r: Cognito
J User Identity and App Data Synchronization
== Mobile Analytics

Understand App Usage Data at Scale

SNS

Push Notffication Service

App Services

&= AppStream
L Low Latency Application Streaming

CloudSearch
Managed Search Service

«m Elastic Transcoder
wyy' Easy-to-use Scalable Media Transcoding

q SES
Email Sending Service

< SQS
Message Queue Service

u I SWF
Workflow Service for Coordinating Application
Components

Applications

WorkSpaces
Desktops in the Cloud

Zocalo

Secure Enterprise Storage and Sharing Service
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2. Clicking on the Elastic MapReduce link takes the user to the EMR service

T

management page. The following screenshot shows the EMR page. It gives
you a brief introduction to EMR and the main steps to launch a cluster. The
Create cluster button is used to launch the Hadoop cluster wizard.

Services v

Welcome to Amazon Elastic MapReduce

Amazon Elastic MapReduce (Amazon EMR) is a web service that enables businesses, researchers, data
analysts, and developers to easily and cost-effectively process vast amounts of data.

You do not appear to have any clusters. Create one now:

Create cluster

How Elastic MapReduce Works

Upload Create Monitor
. M
N |

Upload your data and processing Configure and create your cluster by Monitor the health and progress of

application to 83. specifying data inputs, outputs, your cluster. Retrieve the output in
cluster size, security settings, etc. S3.

Learn more Learn more Learn more

Before launching the cluster, we have to upload the data and corresponding
application onto S3. Using the Services dropdown on the top navigation bar,
a user can quickly navigate to the management console of any of Amazon's
cloud services. S3 can be chosen to go to the S3 management console. The
following screenshot shows the S3 management console:
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Create Buckat J.-T-il:] 0

All Buckets
Name

@, masteringhadoop

4. Itis mandatory to have a bucket in S3 before any file can be uploaded. Files
can be uploaded to S3 using the Upload button once a particular bucket is
selected. There is a button to create folders within the bucket. The Actions
dropdown lists many other actions, such as copy, move, download, and
setting access control on the file or folder. The files display metadata
properties such as size, its storage class, and the last modified date and
time of a particular file. It must be noted that the folders do not have these
metadata properties as they do not have any underlying structure. Files can
be uploaded to S3 using a number of file manager programs available for S3,
or via the web interface shown in the following screenshot:

Create Folder = Actions v

All Buckets / masteringhadoop

Name Storage Cla
D countrycodes.avro Standard
[ BES

E masteringhadoop
-
i songs

-
I wordcount
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the region.
VS

S3 stores files in containers called buckets. A bucket can be part of
a single account and needs to be unique. Buckets can be assigned to
different regions to cater to low-latency serving of files for users close to

Buckets can contain folders and files. Folders are pseudo-structures and
are used to prefix the filenames. A bucket is a flat container and does
not contain any folder hierarchies. The following screenshot shows the
MasteringHadoop bucket with folders and files in an S3 account.

Amazon EMR provides a number of sample jobs that can be run on the
provisioned clusters. One such JAR is a Hadoop Streaming program for
word count. The program is written in Python and counts the words in a
document. The files whose words need to be counted, and the program, are
already on a public bucket on S3 and can be used by anyone to test out EMR.

Hadoop Streaming is a utility that comes with every Hadoop
distribution. It can be used to run Hadoop jobs with any executable
+  or script. The executable can be written in any language of the
% developer's choice. Hadoop Streaming is particularly useful for
’ executing legacy applications in a Hadoop environment. Hadoop
Streaming should not be confused with the Stream computing
paradigm we saw in the previous chapter.

5. We will start off by going back to the EMR console using the Services

navigation dropdown. The next step is to click on the Create cluster
button on the console.

The Create Cluster page has multiple sections. Each section configures a
particular aspect of the cluster.

The first section is the Cluster Configuration section where the cluster
properties are mentioned. The next screenshot shows this section on the
Create Cluster page. Some of the properties are as follows:

o

Cluster name: This is a friendly name for the cluster. This name
will help identify and manage a cluster based on the name. In the
example, it has been set to MasteringHadoopWordCount.
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° Termination protection: This is set to Yes, as shown in the next
screenshot. When turned on, it prevents the cluster from terminating
when failures are encountered. If the cluster needs to be terminated,
it has to be explicitly set to No before termination. It is recommended
to turn on this property as it might be necessary to back cluster
instance data before terminating the cluster. All cluster instance data
will be lost otherwise.

° Logging: Logging can be turned on and a S3 path can be specified to
dump the logs. Logs are written on the /mnt /var/log directory of
the Master Node. These are copied onto S3 at intervals of 5 minutes.

° Debugging: By enabling debugging, an index of the logfiles is
created in SimpleDB.

7. The next section is the Tags section. Up to 10 key-value strings can be
associated with the EMR cluster. These tags are persisted in the underlying
EC2 instances that run the Hadoop cluster. Tags can be powerful metadata
that can help classify and manage EMR clusters and EC2 instances.

Conﬂgure sample application
Cluster Configuration

Cluster name |masteringHadoopWordCount

Termination protection @ Yes Prevents accidental termination of the cluster: to shut
down the cluster, you must turn off termination
No protection. Learn more
Logging @ Enabled Copy the cluster's log files automatically to S3. Learn

more

Log folder S3 location

53 Hmasterlnghadoopa’mastermghadoon| B
53.//<bucket-name>/<folder>/

Debugging @ Enabled Index logs to enable console debugging functionality
(requires logging). Learn more

Tags

@ Optional: Add up to 10 tags to your EMR cluster. A tag consists of a case-sensitive key-value pair. Tags on EMR clusters are
propagated to the underlying EC2 instances. Learn more about tagging your Amazon EMR clusters.

Key Value (optional)

Add a key to create a tag
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8.

The next sections configure the software and hardware of the EMR
cluster we want to provision. The next screenshot shows the page
with both these sections.

In the Software Configuration section, the fields are as follows:

o

Hadoop distribution: The Hadoop distribution to be used in the
cluster can be set here. Amazon has its own Hadoop distribution.
This distribution is optimized to run on Amazon's EC2 instances. It
also supports MapReduce's Hadoop distribution. The AMI version
dropdown gives the versions of Hadoop that are present within

the distribution. Hadoop versions 2.4.0, 2.2.0, 1.0.3, and 0.20.205 are
present. Each version of Hadoop has different AMIs corresponding
to it. In the preceding screenshot, we choose Hadoop 2.2.0 that is
installed on AMI Version 3.0.4 to be consistent throughout the book.

Additional applications: Additional applications can be added to the
cluster. By default, Hive and Pig are installed. If it is not required for
your workloads, they can be removed. HBase, Impala, and Ganglia are
three other applications that are available with this version of Hadoop.

In the Hardware Configuration section, the fields are as follows:

o

Network: A Virtual Private Cloud (VPC) can be used to connect
to a private cloud to process sensitive data. As shown in the next
screenshot, we will choose a default VPC.

EC2 Subnet: The EC2 subnet can be chosen using the dropdown. All
subnets available within your region are shown. There is an option to
choose a random subnet, as shown in the next screenshot.

Instance Information: There are three types of EC2 instances that can
be specified:

Master: This EC2 instance is responsible for assigning tasks to the
different cores and task nodes. There mandatorily has to be one
master instance.
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°  Core: These are the nodes that execute tasks as well as the ones that act
as data nodes. In the example, we set the number of Core instances to
2. We choose the smallest possible VM, m1l.medium. Amazon offers
many other VMs with different CPU and memory parameters.

© Task: These are nodes that can only execute tasks. They do not have
the DataNode component, and therefore, are not part of the HDFS.

Software Configuration

Hadoop distribution @ Amazon Use Amazon's Hadoop distribution. Learn more
AMI version
[3.0.4 + | Determines the base configuration of the Instances in
your cluster, including the Hadoop version. Learn more
MapR Use MapR's Hadoop distribution. Learn more

Applications to be installed Version
Hive 0.11.0.2 S X O
Pig 0.11.141 rae -]

Additional applications | select an application

Configure and add

Hardware Configuration

@ Specify the networking and hardware configuration for your cluster. If you need more than 20 EC2 instances, complete this form.
Request Spot instances (unused EC2 capacity) to save money.

Network | vpc-2a968d48 (172.31.0.0/16) (default) +| UseaVirtual Private Cloud (VPC) to process sensitive data
or connect to a private network. Create aVPC
EC2 Subnet | no preference (random subnet) ;| CreateaSubnet
Request
EC2 instance type Count eq
spot
Master | mil.medium s 1 The Master instance assigns Hadoop tasks to core and

B — task nodes, and monitors thelr status.

Core | mimedium PP Core instances run Hadoop tasks and store data using the
_— Hadoop Distributed File System (HDFS).

Task | mi.medium s [o Task instances run Hadoop tasks.

[229]

www.it-ebooks.info


http://www.it-ebooks.info/

Hadoop on the Cloud

9. The next section is the Security and Access section. It allows the user to set
access control on the cluster and specify the keys for access. If you want
to securely log in into any of the EC2 instances, it requires an Amazon
EC2 key pair. The PEM file associated with this key pair is used when
connecting to EC2 via ssh. The instructions on how to set up a key pair are
given at https://docs.aws.amazon.com/ElasticMapReduce/latest/
DeveloperGuide/emr-plan-access-ssh.html. In the example, we use the
MasteringHadoop key pair to access the cluster via ssh. Also, we don't allow
access to any other AWS user by selecting No Other IAM users in the IAM
user access subsection. EMR allows role-based access control, and there are
two access control grants that can be specified.

10. Setting a role in the EMR role dropdown allows the application using this
role to access other AWS services such as EC2. Similarly, setting a role in
EC2 instance profile allows EC2 instances within EMR to access other
AWS services:

Security and Access

EC2 key pair [ MasteringHadoop +] Usean existing key pair to SSH into the master node of the
Amazon EC2 cluster as the user "hadoop". Learn more

1AM user access All other 1AM users Control the visibility of this cluster to other IAM
users. Learn more
@ No other |IAM users

IAM Roles

€ An IAM role for the EMR service and an EC2 instance profile for instances in an EMR cluster are recommended. You can create and
assign these roles to limit the permissions of the EMR service and applications running on a cluster.

EMR role | No roles found s | Allows EMR to access other AWS Services such as EC2 on
your behalf. Learn more
Create Default Role

EC2 instance profile | No roles found | Allows EC2 instances in an EMR cluster to access other
AWS services such as S3. Learn more
Create Default Role
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11. The next section shows how to set Bootstrap Actions for the cluster. The next
screenshot shows an image of this section. Setup scripts can be specified here
to instruct any special configuration that will be required before starting the
cluster. The Bootstrap action dropdown has options to configure Hadoop,
configure daemons, execute scripts on predicates, or conduct some custom
actions. In the example, we will omit having any bootstrap actions.

12. The final section is the Steps section. This is the section where jobs can be
submitted to the Hadoop cluster. In the example, the dropdown has options
to execute a Hive program, Pig program, Streaming program, Impala
program, or a custom MapReduce Java JAR file. We will see how we can add
a streaming program from the AWS EMR samples that are already available.
This section also has an autoterminate action that terminates the cluster once
the last step has been executed. In the example, we set the Auto-terminate
radio button to No as we wish to explicitly terminate the cluster.

Bootstrap Actions

€ Bootstrap actions are scripts that are executed during setup before Hadoop starts on every cluster node. You can use them to install
additional software and customize your applications. Learn more

Bootstrap action type Name $3 location Optional arguments

Add bootstrap action | select a bootstrap action

Steps

€ Astepis a unit of work you submit to the cluster. A step might contain one or more Hadoop jobs, or contain instructions to install or
configure an application. You can submit up to 256 steps to a cluster. Learn more

Name Action on failure JAR S3 location Arguments

Add step | selecta step

Auto-terminate Yes Automatically terminate cluster after the last step is
completed.
® No Keep cluster running until you terminate it.
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In the example, let's select a Hadoop Streaming program step by choosing it
from the dropdown. Clicking on the Configure and add button opens up the
Add step wizard, as shown in the following screenshot. We enter a friendly
name for the step. The Mapper task is set to the Python program given by
the S3 path, s3://us-west-2.elasticmapreduce/samples/wordcount/

wordSplitter.py.

The Reducer field is set to aggregate. This is a built-in reducer that sums

the values corresponding to each key. The folder containing the files on
which we run the word count is given by the S3 path, s3://us-west-2.
elasticmapreduce/samples/wordcount/input. This is specified in

the Input S3 location path. The output S3 path is specified by the s3://
masteringhadoop/wordcount /output/2014-07-15/15-28-19 path. The
word count output is put in this folder. Any additional arguments can be
specified in the Arguments box. We can also specify the steps to be undertaken
if a failure is encountered. In the example, we have chosen to terminate the
cluster on any failure. The other options are to continue executing subsequent
steps or cancel and wait for user intervention. We then click on the Save
button. We are now ready to review the cluster before running it.

Add Step

Step type
MName*

Mapper*
Reducer*

Input S3 location*

Output S3 location*

Arguments

Action on failure

Streaming program

T
Word count

53 location of the map function or the name of the Hadoop

[s3 1 fus-west-2.elasticmapreduce /samples /'wordcount/wordSp |
streaming command to run.

| 53 location of the reduce function or the name of the

Iaggreg ate
Hadoop streaming command to run.

[s3 1 fus-west-2.elasticmapreduce /samples /'wordcountfinp | ‘
53://<bucket-name>/<folder>/

[s3 :/ fmasteringhadoop/wordcount/output/2014-07-15/ 1 ‘
53://<bucket-name>/<folder>/

| Terminate cluster s ‘What to do if the step falls.

Cancel m
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13. The Steps section now looks similar to what is shown in the following
screenshot. Clicking on the Create cluster button starts provisioning the cluster:

Steps

6 Astep is a unit of work you submit to the cluster. A step might contain one or more Hadoop jobs, or contain instructions to install or
configure an application. You can submit up to 256 steps to a cluster. Learn more

Name Action on failure JAR 53 location Arguments

-files s3://us-west-
2.elasticmapreduce/samples/
wordcount/wordSplitter.py -

mapper wordSplitter.py -

reducer aggregate -input
s3://us-west- S X
2.elasticmapreduce/samples/
wordcount/input -output
s3://masteringhadoop/wordc
ount/output/2014-07-15/15-

/home/hadoop/contrib/strea

Word count Terminate cluster .
ming/hadoop-streaming.jar

28-19
Add step | Custom JAR
Configure and add
Auto-terminate @ Yes Automatically terminate cluster after the last step Is
completed.
No Keep cluster running until you terminate it.

came

14. The EMR dashboard now shows the list of clusters that are running. Clicking
on a cluster of interest shows the details of the cluster. The following screenshot
shows the status of the executing cluster. The configuration status and state
of each cluster component are given. In the screenshot, the Master Node is
Bootstrapping while the two core nodes are in the Provisioning state.

Elastic MapReduce ~ Cluster List > Cluster Details EMR Help
Add step Rasiza Clans Tarminats
Cluster: MasteringHadoop WordCount  Starting Configuring cluster software c
Master public DMNS: ec2-54-191-123-207 us-west-2 compute.amazonaws.com
Tags: - Wiew All / Edit
Summary Configuration Details Becurity/Network Hardware
10: -KOZOQPIAKIWG AMI version: 3.0.4 Availability us-west-2a Master: Bootstrapping 1 mi.medi
Creation date: 2014-07-15 15:32 Hadoop Amazon 2.2.0 zone: um
(UTC+5:30) distribution: Subnet ID: subnet-dB32d3h3 Core: Frovisioning 2 m1.mediu
Elapsed time: 4 minutes Applications: - Key name: MasteringHadoop m
Auto- Yes Log URE: s3://masteringhadoopima EC2 Instance — Task: -
terminate: staringhadocp profile:
Termination On  Change EMRA role: —
protection: Visible to all None Change
users:
» Monitoring
» Steps
» Bootstrap Actions
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15.

The page has expandable sections that can be expanded to see the details of
each section. When we expand the Steps section, the details are as shown
in the following screenshot. It can be seen that the Hadoop setup step is
completed, and word count streaming is currently being executed.

~ Steps

Steps View all interactive jobs | View all jobs
Filter: | as steps 2 || Fitver steps 2 steps (all loaded)
1] Name Status Start time (UTC+5:30} Elapsed time Log files Actions
» @ =-0IBIS0S0XTRT Werd count  Running 2014-07-15 1547 2 minutas Mo logs created Yet C View jabe
Satup
» a-KEGISMEIWXIT hadoop Complated 20140715 15:37 32 seconds Viaw logs View jobe
‘dabugging

16.

The link to the right gives details on the jobs being executed in the step.
Clicking on the View jobs link of the currently executing step shows the
details of the job and its tasks, as shown in the following screenshot. Three
Reduce tasks were executed along with twelve Map tasks to complete the
program. The attempts by the tasks can be analyzed by clicking on the View
attempts link. The status of each task is also given.

Steps > Jobs > Tasks View all interactive jobs | View all jobs
Tasks for: s-QJB19050XTRT, Job 1405418724813_0001
Task summary: 15 total tasks - 15 completed, 0 running, O failed, 0 pending, 0 cancelled.

Filter: (&)
Task Type State Start time (UTC+5:30) Actions
r_000002 REDUCE COMPLETED 2014-07-15 15:40:07 View attempts
r_000001 REDUCE COMPLETED 2014-07-15 15:38:46 View attempts
r_000000 REDUCE COMPLETED 2014-07-15 15:39:34 View attempts
m_000011 MAP COMPLETED 2014-07-15 15:38:44 View attempts
m_000010 MAP COMPLETED 2014-07-15 15:39:21 View attempts
m_000009 MAP COMPLETED 2014-07-15 15:38:17 View attempts
m_000008 MAP COMPLETED 2014-07-1515:39:17 View attempts
m_000007 MAP COMPLETED 2014-07-15 15:38:04 View attempts
m_000006 MAP COMPLETED 2014-07-15 15:38:48 View attempts
m_000005 MAP COMPLETED 2014-07-15 15:38:46 View attempts
m_000004 MAP COMPLETED 2014-07-15 15:38:46 View attempts
m_000003 MAP COMPLETED 2014-07-15 15:38:31 View attempts
m_000002 MAP COMPLETED 2014-07-15 15:38:11 View attempts
m_000001 MAP COMPLETED 2014-07-15 15:38:11 View attempts
m_000000 MAP COMPLETED 2014-07-15 15:38:11 View attempts
17. Expanding the cluster information on the EMR dashboard can give a

quick summary of the cluster. Details such as elapsed time are given
here. A step-by-step breakdown of the elapsed time is also visible.
The following screenshot gives this view:

[234]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Filter: | Al clusters 1 cluster (all loaded) Gy
Name {[+] Status Creation time (UTC+5:30) . Elapsed time Mormalized
Instance hours
= MasteringHadoop WordGount HOZOQP3OKIWG I"“'r‘;:"‘;?dk i 2014-07-15 15:32 9 minutes 5
Summary Stegs View all imaractive jobs Bootstrap Actions.
MBS 6c2-54-161-123-207 us-west- Mame Status Start time (UTC4830) ,  Elapsed time Name
public DNS: 2 compute AMAPONREWS.COm
Termination Woed eount Completsa  2014-07-15 1537 3 minutes
protection: Cn
PR Setup hdoop débugging Compioted  2014-07-15 1537 2 seconds i oG SOl Bickalie
Hardware

tod 1 m1.medium
8d 2 mimedium

View cluster detalls

18. Finally, when the job is complete, the output files can be seen in S3. The
output folder was specified when initiating the job. The following screenshot
shows the output folder in S3. We had three Reduce tasks in the job, and it
promptly has three output files in S3, one file per Reduce task.

Create Folder = Actions

All / masterir / wordcount / output / 2014-07-15 / 15-28-19
Name Storage Class
[ _success Standard
[ part-00000 Standard
[ par-00001 Standard
® [ part-o0002 Standard

None Properties Transfers ol
Size Last Modified

0 bytes TueJul 15 15:40:24 GMT+530 2014

97.3KB TueJul 15 15:40:11 GMT+530 2014

98.6 KB TueJul 15 16:40:12 GMT+530 2014

897.1 KB TueJul 15 15:40:24 GMT+530 2014

We can also run Hive and Pig scripts via the management console. The scripts need
to be uploaded in S3. During the software configuration step, we need to specify
the install of Hive and/or Pig, based on the requirement. The following screenshot
shows the Software Configuration section of a cluster with Hive and Pig installed.
Based on the AMI chosen, an appropriate version of Hive and Pig are available:

Software Configuration

Additional applications | Select an application

Hadoop distribution @ Amazon Use Amazon's Hadoop distribution. Learn more
AMI version
[ 304 . Determines the base configuration of the instances in

your cluster, including the Hadeop version. Learn more

MapR Use MapR's Hadoop distribution. Learn more
Applications to be installed Version
Hive 0.11.0.2 &S R e
Pig 0.11.1.1 S X0
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We will look at how to run Hive and Pig interactively on EMR, instead of a batch
mode, via the management console. Once the cluster is provisioned with Hive

and Pig installed, we can securely log in to the Master Node. To reiterate, it is very
important to get a key-value pair from Amazon and assign it to the cluster. If this is
not done, it is not possible to securely log in to the cluster.

The following screenshot shows how to securely log in to the cluster. The DNS name of
the Master Node can be copied from the cluster status page. In the example, the Master
Node DNS name is ec2-54-191-39-199.us-west-2.compute.amazonaws . com.

It is also important to provide a username when logging in. All Hadoop services run
under the hadoop user.

Providing the respective program names on the command line of the Master Node
can start the Hive and Pig (Grunt) shells. The following screenshots illustrate this:
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Interactive commands can now be executed at these prompts. File locations can
be specified with the s3://<bucket name>/<folder name> paths to read them
from S3.

Summary

Cloud is a cost-efficient and effective way of developing pre-operationalized
analytics. The self-serve, pay-as-you-go, and elastic deployment features of the
cloud are reasons for the cost benefits. Many companies such as Yelp and Netflix
run massive analytic workloads using the cloud infrastructure. Apache Hadoop is
available as a PaaS offering on all major cloud service providers.

Some key takeaways from this chapter are as follows:

* Amazon's Hadoop offering is called Elastic MapReduce (EMR), and it has
been around since 2009. Microsoft launched its Hadoop offering in 2012,
which is known as HDInsight on Microsoft Azure.

* Using an AWS account, a Hadoop cluster can be launched in a matter of
minutes. The number of EC2 instances in the Hadoop cluster is currently
limited to 20. For more instances, a special request needs to be mailed to
Amazon. Here's a word of caution for you: remember to terminate your
Hadoop EMR cluster after use. If this is not done, charges will be incurred
even if the cluster is idle.

* EMR provides many Hadoop versions, the latest being 2.4. It also provides
the MapR Hadoop distribution.

* For now, in EMR, a custom JAR, Hive queries, Pig scripts, and Hadoop
Streaming programs can be run. The input and the MapReduce program are
generally stored in S3, the scalable storage offering from Amazon AWS.

* EMR provides granular access control to Hadoop clusters. Roles can be
defined and assigned appropriately.

In the next chapter, we will see how HDFS can be replaced with other filesystems.
With HDFS replacement strategies, the file load time before job execution can be
brought down significantly, thus bringing down the latency of the job.
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The parallelism and scalability of the MapReduce computing paradigm are greatly
influenced by the underlying filesystem. HDFS is the default filesystem that comes
with most Hadoop distributions. The filesystem automatically chunks files into
blocks and stores them in a replicated fashion across the cluster. The information of
the distribution pattern is supplied to the MapReduce engine that can then smartly
place tasks so that movement of data over the network is minimized.

However, there are many use cases where HDFS may not be ideal. In this chapter,
we will look at the following topics:

The strengths and drawbacks of HDFS when compared to other
POSIX filesystems.

Hadoop's support for other filesystems. One of them is Amazon's cloud
storage service known as Simple Storage Service (S3). Reading and writing
files from and to the S3 services is permitted within Hadoop.

Hadoop HDFS has extensibility features. Extending the framework can be
of two kinds: by providing a new object storage interface or by providing
a drop-in replacement for HDFS. The former would mean changing the
MapReduce layer by providing the ability to read via the new interface,
while the latter requires no change to existing jobs.

How to extend HDFS to support S3's native filesystem.
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HDFS — advantages and drawbacks

HDEFS has its advantages and drawbacks. Some of its advantages are as follows:

HDFS is inexpensive because of two reasons. Firstly, the filesystem relies on
commodity storage disks that are much less expensive than the storage media
used for enterprise grade storage. Secondly, the filesystem shares the hardware
with the computation framework as well, in this case, MapReduce. Also, HDFS
is open source and does not levy licensing fee on the user.

HDFS has been around for more than 7 years and is considered mature
technology. There is a large community behind it and a broad range of
organizations that are storing petabytes of data on HDFS.

HDFS is optimized for MapReduce workloads. It provides very high
performance for sequential reads and writes, which is the typical access
pattern in MapReduce jobs.

But, HDFS does not cater to all the data needs that may arise in an enterprise.
The main drawback of HDFS is that it is not POSIX compliant. This means:

HDFS is immutable, that is, files cannot be modified. They rather need to
be created from scratch. The append action is the only action possible on
the files and was introduced much later in the evolution of HDFS.

HDFS is not mountable. Unlike POSIX-compliant filesystems, HDFS cannot
be mounted and operated upon. This eliminates the employment of many
familiar and popular filesystem tools that are used to search, browse, and
manipulate data.

HDFS is optimized for streaming reads and not for random access of files.
This feature of HDFS in combination with the preceding two properties
makes it tedious for the user to get a holistic view of the files in HDFS.

Though HDFS is optimized for MapReduce jobs, Hadoop has moved on to
become a generic cluster compute framework with the introduction of YARN.
Other computing paradigms might have different expectations from the
underlying filesystem, and HDFS falls short of meeting these expectations.

Amazon AWS S3

S3, short for Simple Storage Service, is Amazon's storage as a service offering.

It provides reliable storage for data by providing redundancy. The consumer

is charged for storage of data on S3 based on the amount of storage used. Any
download of data from S3 is also charged, but data upload and transfer of data
between AWS properties are free of charge. This makes it extremely attractive for
the user to run EMR (Elastic Map Reduce) on AWS and have data stored on S3.
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S3 can be used as the input and output data store for MapReduce jobs. The
intermediate files can be stored on local disks or the HDFS of the EMR cluster.
This also allows easy sharing of input and results among different people in the
organization without fearing data loss, with high data security. If an EMR cluster
gets terminated accidentally, all of the HDFS data will be lost unless it is moved
out. Using S3 for input and output mitigates such risks.

However, S3 is significantly slower because it does not provide data locality and
should be used wisely. The best practice is to get the initial dataset for MapReduce
jobs from S3 and move the final results back to S3. All intermediate output from the
cascaded MapReduce job should be kept within HDFS.

Hadoop support for S3

Hadoop supports transfers to and from a cluster and S3. Two kinds of file storage
support are provided by Hadoop, which are as follows:

* S3native filesystem (s3n): The native S3 filesystem object within Hadoop
allows reading and writing of files as S3 objects. The files are stored in
S3's native form. This makes it possible to read files using other S3 tools.
However, S3 imposes a limit of 5 TB on the file objects.

* S3 block filesystem (s3): This is similar to how a file is stored in HDFS.
The file is broken into blocks and all the blocks are stored using S3. S3
is purely a storage layer for the file blocks. Though the block-based
filesystem on S3 allows storage of files greater than 5 TB, it imposes a
requirement of dedicating an entire bucket as the Hadoop store. Storage
of other non-block-based file types is not permitted. Unlike the S3 native
filesystem, it does not allow reading data from other standard S3 tools.

The S3 block filesystem comes close to being a drop-in replacement for HDFS.
However, it has some limitations. The biggest limitation other than data locality is
the problem of eventual consistency that is inherent to a distributed store. Changes
made to the filesystem might not be visible immediately and might take an indefinite
time to converge.

A few configuration changes such as providing the credentials for the S3 bucket are
needed to connect and move files to and from the S3 bucket using the mentioned
filesystem drivers. The core-site.xml file in the Hadoop conf directory can be
modified as shown in the following XML snippet:

<property>
<name>fs.s3n.awsAccessKeyId</names>
<value><Your access ids></value>
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</property>

<property>
<name>fs.s3n.awsSecretAccessKey</name>
<value><Your secret key></value>
</property>

The preceding code tells Hadoop's S3 native filesystem driver to use the specified
credentials to connect to S3. If the S3 block-based filesystem driver is being used, the
property names change to f£s.s3.awsAccessKeyIdand fs.s3.awsSecretKeyId.

Any HDFS command can now be executed with the s3 or s3n scheme in the URL
to conduct file operations on the specified S3 path. For example, the following
command lists all the files in the masteringhadoop AWS bucket:

hadoop fs -1ls s3n://masteringhadoop/

The output of this command is as follows:

Found 10 items

-IW-YwW-Yw- 1 43736787 2014-07-31 16:44
s3n://masteringhadoop/HDFSReplacements-1.0-SNAPSHOT-jar-with-
dependencies.jar

-TW-YW-TW- 1 3875 2014-06-08 20:06
s3n://masteringhadoop/countrycodes.avro
-YW-YW-Yw- 1 3787 2014-07-19 10:18
s3n://masteringhadoop/countrycodes. txt
AdrwXTrwXrwx - 0 1970-01-01 05:30
s3n://masteringhadoop/jars

AdrwXTrwXrwx - 0 1970-01-01 05:30
s3n://masteringhadoop/logs

AdrwXTrwXrwx - 0 1970-01-01 05:30
s3n://masteringhadoop/masteringhadoop
AdrwXTrwXrwx - 0 1970-01-01 05:30
s3n://masteringhadoop/songs

AdrwXTrwXrwx - 0 1970-01-01 05:30
s3n://masteringhadoop/user

AdrwXTrwXrwx - 0 1970-01-01 05:30
s3n://masteringhadoop/wordcount

The key part to note here is that Hadoop is able to connect to S3 out of the
box because the S3 credentials were specified in the core-site.xml file.
The S3 filesystem is addressed by a scheme, s3n, indicating that we are
using Hadoop's S3 native filesystem driver. The scheme can be changed
to s3 if we use the S3 block filesystem driver.
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Instead of specifying the access and secret key in core-site.xml, it can be directly
specified in the path of the file as follows:

s3n://AWS-ACCESS-ID:AWS-SECRET-KEY@masteringhadoop/

The AWS secret key and access key can be obtained in the accounts section of the
AWS management console.

Implementing a filesystem in Hadoop

Based on the situation, it might be a necessity to replace HDFS with a filesystem of
your choice. Hadoop provides out-of-the-box support for a few filesystems such as
S3. HDEFS replacement can be done either as a drop-in replacement or, as in the case
with S3, seamless integration with the S3 file store for input and output.

In this section, we will re-implement the S3 native filesystem and extend Hadoop.
The code in this section illustrates the steps on how HDEFS replacement can be done.
Error handling and other features related to S3 have been omitted for brevity.

The major steps in implementing a filesystem for Hadoop are as follows:

1. The org.apache.hadoop.fs.FileSystem abstract class needs to
be extended and all the abstract methods need to be overridden.
There are out-of-the-box implementations for FilterFileSystem,
NativeS3FileSystem, S3FileSystem, RawLocalFileSystem,
FTPFileSystem, and ViewFileSystem.

2. The open method returns an FsDataInputStream object. A backing
InputStream object that can read from the underlying filesystem whose
support the user wishes to incorporate in Hadoop needs to be created.

3. The create and append methods return an FsDataOutputStream object.
A backing outputStream object that can write to the underlying filesystem
whose support the user wishes to incorporate within Hadoop needs to
be created.

4. Anorg.apache.hadoop.fs.FileStatus object needs to be created
whenever the status of a particular file given by a Path object is specified.

5. The JAR file containing this implementation has to be placed in the $HADOOP
HOME/share/hadoop/hdfs/1ib directory so that it can be picked up when
the distributed filesystem is started. The core-site.xml file must have the
fs.<scheme>.impl property value set to the fully-qualified class name for
the filesystem implementation. Additional properties can also be provided to
configure the filesystem.
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Implementing an S3 native filesystem in
Hadoop

Let's first create InputStreamand OutputStream for the filesystem. In our example,
we have to connect to the AWS to read and write files to S3.

Hadoop provides us with the FSInputStream class to cater to custom filesystems.

We extend this class and override a few methods in the example implementation. A
lot of private variables are declared along with the constructor and helper methods to
initialize the client as illustrated in the following code snippet. The private variables
contain objects that are used to configure and retrieve data from the filesystem. In this
example, we use objects such as Amazons3client to call REST web APIs on AWS,
S30bject as a representation of the remote object on S3, and S30bjectInputStream
representing the object stream to perform the read operation. All the AWS-related
classes are present in the com.amazonaws . services.s3 and com.amazonaws .
services.s3.model packages. There are a few other private variables such as the S3
bucket name and the S3 key. The Hadoop Configuration object is passed to help read
any configuration properties the user might have defined.

The constructor ensures that all the private variables are correctly initialized. In
the example, we open the S3 object stream lazily. Therefore, there are no stream
initialization calls in the constructor. To lazily initialize the object and the object
stream, we have the openobject and opens3stream calls. If the object is not
initialized, openobject calls opens3stream by setting the stream to the beginning
of the file. The opens3stream call aborts any open stream and reinitializes a new
object and stream:

private class S3NFsInputStream extends FSInputStream{

private AmazonS3Client s3Client;
private Configuration configuration;
private String bucket;

private String key;

private long length;

private S30bjectInputStream s30bjectInputStream;
private S30bject s30bject;
private long position;

public S3NFsInputStream(AmazonS3Client s3, Configuration
conf, String bucket, String key, long length) ({

super () ;

this.s3Client = s3;
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this.configuration = conf;
this.bucket = bucket;
this.key = key;
this.length = length;

this.s30bject = null;

private void openObject () {

if (s30bject == null)
openS3Stream(0) ;

private void openS3Stream(long position) {

if (s30bjectInputStream != null) {
s30bjectInputStream.abort () ;

GetObjectRequest objectRequest = new
GetObjectRequest (this.bucket, this.key);

objectRequest.setRange (position, length - 1);

this.s30bject =
this.s3Client.getObject (objectRequest) ;

this.s30bjectInputStream =
this.s30bject.getObjectContent () ;

this.position = position;

}

In the preceding example, we go ahead and implement the methods that mandatorily
have to be overridden. The code snippet that follows gives the override methods

and their implementations. The read override method is used to read a byte from

the input stream. The position of the input stream is incremented. The read override
is overloaded with another variant that fills a byte buffer and returns the number

of read bytes. All these methods call the openobject call before reading from

S30bjectInputStrean to lazily initialize the stream.
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The close method is used to clean up and the seek method is used to get to
a particular position in the file. We do not support any markers in this simple
implementation. You can recall markers as points in the file that can be used
for splittable compression:

@Override
public int read() throws IOException {

openObject () ;
int readByte = this.s30bjectInputStream.read() ;

if (readByte >= 0){
this.position++;

return readByte;

@Override
public int read(bytel[] b, int off, int len) throws
IOException {

openObject () ;
int readByte = this.s30bjectInputStream.read
(b, off, 1len);

if (readByte >= 0){
this.position+=readByte;

}

return readByte;

@Override
public void close() throws IOException {
super.close () ;

if (s30bject != null)
s30bject.close() ;

@Override
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public boolean markSupported() {
return false;

}

@Override
public void seek(long 1) throws IOException

if (this.position == 1) {
return;

}

openS3Stream(l) ;

@Override
public long getPos() throws IOException {
return this.position;

}

@Override

public boolean seekToNewSource (long 1) throws IOException

{

return false;

}

}

Next, we will implement the output stream to write files to the object. We extend

the java.io.OutputStream package and override the abstract methods. As with
the input stream, we have a bunch of private variables such as Amazons3Client,

the Hadoop configuration, and the backing outputStream object. The strategy
here is to write to a local file, and when the stream is closed, the file is uploaded onto
S3. To facilitate writing to the local file, we create the BufferedoutputStream and
LocalDirAllocator objects.

When the client writes to this outputStream object, a temporary file is created and
written into using the Buf feredoutputStream object. The file is created in a local
directory based on the specification in the configuration. We use the temporary
directory given by the value hadoop. tmp.dir in the configuration. The example
code is for illustrating the concepts behind extending HDFS and cannot be used as
is in production. For example, cleanup of the temporary directories has to be done
manually. Also, we use the same backing filename, temp, which may lead to thread
safety issues in multithreaded environments.
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A constructor is used to create the temporary file in the local directory.

Buf feredOutputStream is also initialized. The write and flush overrides are
operations on Buf feredoutputStream. The close method override is where
we upload the file from the local store to S3. The PutObjectRequest S3 class is
used to specify the properties of the object that needs to be uploaded to S3. The
AmazonS3Client object is then used to upload the local file:

private class S3NFsOutputStream extends OutputStream(

private OutputStream localFileStream;

private AmazonS3Client s3Client;

private LocalDirAllocator localDirAllocator;
private Configuration configuration;

private File backingFile;

private BufferedOutputStream bufferedOutputStream;
private String bucket;

private String key;

public S3NFsOutputStream(AmazonS3Client s3, Configuration
conf, String bucket, String key) throws IOException({
super () ;
this.s3Client = s3;
this.configuration = conf;
this.localDirAllocator = new
LocalDirAllocator ("${hadoop.tmp.dir}/s3mh") ;

this.backingFile =
localDirAllocator.createTmpFileForWrite ("temp",
LocalDirAllocator.SIZE UNKNOWN, conf) ;

this.bufferedOutputStream = new
BufferedOutputStream (new
FileOutputStream(this.backingFile)) ;
this.bucket = bucket;
this.key = key;

@Override
public void write(int b) throws IOException {
this.bufferedOutputStream.write (b) ;

@Override
public void write (byte[] b) throws IOException (
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this.bufferedOutputStream.write (b) ;

@Override

public void write(byte[] b, int off, int len) throws
IOException {
this.bufferedOutputStream.write (b, off, len);

@Override
public void flush() throws IOException {
if (this.bufferedOutputStream != null) {

this.bufferedOutputStream.flush() ;

@Override
public void close() throws IOException {

if (this.bufferedOutputStream != null) {
this.bufferedOutputStream.close() ;

try {
PutObjectRequest putObjectRequest = new
PutObjectRequest (bucket, key, backingFile) ;
putObjectRequest.setCannedAcl (CannedAccessControllList.

Private) ;

s3Client.putObject (putObjectRequest) ;

}

catch (AmazonServiceException ase) {
ase.printStackTrace() ;
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Now we can extend the FileSystem class and implement the override methods.
The following code snippet gives the class declaration and the initialize method
override. The initialize method takes in the URT of the file or directory and the
Hadoop configuration object. It then constructs the Amazons3client based on the
access and secret keys present within the configuration. To recall, the configuration
values are taken from core-site.xml and its override files.

We define fs.s3mh.access. key as the property name that contains the access key
and fs.s3mh.secret.key as the property name whose value contains the secret
key. We use the BasicAWSCredentials object to encapsulate the credentials before
constructing the AmazonsS3Client object.

The getScheme and getUri methods are overridden. We use the scheme for
our filesystem implementation as s3mh. Our filesystem class itself is called
S3NFileSystem, indicating that we will use the Amazon S3 native object model:

package MasteringHadoop;

import com.amazonaws.AmazonServiceException;

import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.*;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.fs.permission.FsPermission;
import org.apache.hadoop.util.Progressable;

import java.io.*;
import java.net.URI;
import java.util.ArraylList;

public class S3NFileSystem extends FileSystem
private URI uri;
private AmazonS3Client s3Client;
private Configuration configuration;
private String bucket;
public S3NFileSystem() {

super () ;

@Override
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public void initialize (URI name, Configuration conf) throws
IOException {

super.initialize (name, conf);
this.uri = URI.create (name.getScheme() + "://" +
name.getAuthority()) ;

String accessKey conf.get ("fs.s3mh.access.key") ;

String secretKey conf.get ("fs.s3mh.secret.key") ;

System.out.println("Access Key: " + accessKey);

s3Client = new AmazonS3Client (new
BasicAWSCredentials (accessKey, secretKey)) ;

this.bucket = name.getHost () ;

if (!s3Client.doesBucketExist (this.bucket)) {
throw new IOException ("Bucket " + this.bucket + " does
not exist!");

this.configuration = conf;

@Override
public String getScheme() {
return "s3mh";

@Override
public URI getUri() {
return uri;
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Next, we override the open, create, and delete methods. We do not support
append and rename. In S3, rename is implemented by doing a copy followed by the
delete operation. The open method returns the FsbDataInputStream object, whose
class implementation we saw previously. S3 has a concept of folders, but folders

do not translate into actual objects in the filesystem and will have a length of 0. The
length parameter for the custom implementation of the FSDataInputStream object is
obtained from the getFileStatus method. The delete method deletes a file object
from S3. For directories, the delete call is ignored, as they are pseudo-objects:

@Override
public FSDataInputStream open (Path path, int i) throws
IOException {
FileStatus fs = getFileStatus (path) ;
return new FSDataInputStream(new
S3NFsInputStream(this.s3Client, this.configuration,
this.bucket, pathToKey(path), fs.getLen()));

@Override
public FSDataOutputStream create(Path path, FsPermission
fsPermission, boolean b, int i, short i2, long 1,
Progressable progressable) throws IOException {
String key = pathToKey (path) ;
return new FSDataOutputStream(new
S3NFsOutputStream(this.s3Client, this.configuration,
this.bucket, key), null);

@Override
public FSDataOutputStream append(Path path, int i,
Progressable progressable) throws IOException {
throw new IOException ("Append functionality is not
supported") ;

@Override

public boolean rename (Path path, Path path2) throws
IOException {

throw new IOException ("Rename is copy followed by
delete") ;

@Override
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public boolean delete(Path path, boolean b) throws IOException

{

FileStatus fs = getFileStatus (path) ;

if (b) {
throw new PathIOException ("Recursive delete is not
supported") ;
}
if (1fs.isDirectory()) {

s3Client.deleteObject (this.bucket, pathToKey (path)) ;

return false;

}

The 1iststatus override lists all the objects at a given path as illustrated

in the following code snippet. A ListObjectRequest object is created and
AmazonS3Client is used to retrieve the object summaries. The metadata is extracted
and then stored in a FileStatus object before it is returned. AWS can list objects

in batches. In this example, we use a batch file of size 1,000. If the number of objects
is greater than this number, the first 1,000 objects are fetched. In actual production
code, all objects are retrieved in batches.

The other important override method is the getFileStatus method. It takes in a
path and returns a single FileStatus object for that path. The path can be a folder or
a file. Helper methods are also used, such as pathToKey, which returns keys from a
path object, and isaDirectory, which checks whether an object is a directory or not
based on its name and size:

@Override

public FileStatus[] listStatus(Path path) throws
FileNotFoundException, IOException {

ArrayList<FileStatus> returnList = new ArrayList<>();
String key = pathToKey (path) ;

FileStatus fs = getFileStatus (path) ;

if (fs.isDirectory()) {

if (lkey.isEmpty ()) {
key - key + ll/ll,.
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ListObjectsRequest listObjectsRequest = new
ListObjectsRequest (this.bucket, key,
null, "/", 1000);
ObjectListing objectListing =
s3Client.listObjects (listObjectsRequest) ;

for (S30bjectSummary summary
objectListing.getObjectSummaries ()) {

FileStatus fileStatus;
if (isADirectory (summary.getKey (),
summary.getSize ())) {
fileStatus = new FileStatus (summary.getSize(),
true, 1, 0, 0, new Path("/" + key));
}
else(
fileStatus = new FileStatus (summary.getSize(),
false, 1, 0, 0, new Path("/" + key));

returnList.add(fileStatus) ;

}

elsef
returnList.add (fs) ;

return returnList.toArray (new
FileStatus [returnList.size()]) ;

@Override
public void setWorkingDirectory (Path path) {}
@Override
public Path getWorkingDirectory() {return null; }
@Override
public boolean mkdirs (Path path, FsPermission fsPermission)
throws IOException { return false;}
@Override
public FileStatus getFileStatus (Path path) throws IOException

{
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String key = pathToKey (path) ;
System.out.println("Key : " + key);
System.out.println("Bucket : " + this.bucket) ;
if (key.isEmpty ()) {

throw new IOException("File not found.");
}

ObjectMetadata objectMetadata =
s3Client.getObjectMetadata (this.bucket, key);

if (isADirectory(key, objectMetadata.getContentLength())) {
return new FileStatus (0, true, 1, 0, 0, path);

}

return new FileStatus (0, false, 1, O,
objectMetadata.getLastModified () .getTime (), path);

}

private String pathToKey (Path path)
return path.toUri () .getPath() .substring(1) ;

private boolean isADirectory(String name, long size) {
return !name.isEmpty ()
&& name.charAt (name.length() - 1) == '/’
&& size == 0L;

}

Once all the code snippets are compiled and made into a JAR file, the JAR file can be
placed in the HDFS library directory. The following snippet shows the configuration
information that needs to go into the core-site.xml file in order to indicate the JAR
file for the filesystem driver, as well as other credential information required by the
implementation. Any HDFS command can now be executed, with the path indicating
the s3mh scheme used to invoke this FileSystem implementation:

<!-- omit for IAM role based authentication -->
<property>

<name>fs.s3mh.access.key</name>

<value><!-- Your Amazon AWS key --></value>
</property>
<!-- omit for IAM role based authentication -->
<property>

<name>fs.s3mh.secret.key</name>
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<value><!—Your Amazon AWS Secret a</value>
</property>

<!-- necessary for Hadoop to load our filesystem driver -->
<property>
<name>fs.s3mh.impl</name>
<value>MasteringHadoop.S3NFileSystem</value>
</property>

Summary

HDEFS is a great filesystem for MapReduce workloads. But its sequential access
pattern and non-compliance with POSIX interfaces make it tedious to work with
in certain situations. Hadoop allows its users to extend HDFS or provide drop-in
replacements. The key takeaways from this chapter are as follows:

* There are a number of implementations that extend or provide drop-in
replacements for HDFS. CephFS, MapRFS, GPFES from IBM, and Cassandra
by DataStax are some examples of such extensions.

* Interface to the Amazon S3 storage service is available out of the box in
Hadoop. Both a native-storage S3 filesystem interface and a block-storage
filesystem interface are available.

* Extending Hadoop to incorporate other filesystems is done by extending
the FileSystem abstract base class. The FSDataInputStream and
FSDataOutputStream objects are used to wrap the input and output
streams of the underlying filesystem respectively.

* The security and access control mechanisms of the underlying filesystem can
be left intact within Hadoop by allowing configurations to be specified via
the Hadoop configuration files and classes.

In the next chapter, we will continue our study of HDFS by looking at the federation
aspects of HDFS and how it changed when it moved from Hadoop 1.X to 2.X.
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HDFS Federation

The NameNode component of HDFS was the central point of failure in the initial
versions of Hadoop. In the later versions, a secondary NameNode was introduced as
a backup for the primary NameNode. Until Hadoop 2.X, the NameNode component
could only handle a single namespace, making it less scalable and difficult to isolate
in a multitenant HDFS environment. Scalability and isolation were the two most
desired requirements for Hadoop enterprise deployments. Most organizations
shared infrastructure among their different teams with varying degrees of
availability and authorization aspirations.

HDFS Federation is a feature that enables Hadoop to have multiple namespaces,
making it easy to use for shared cluster scenarios. This feature brings about a
separation between the storage and namespace management. Similar to YARN,
this separation helps onboard other applications and use cases on to HDFS,
making Hadoop move away from a MapReduce-only platform to a more
generic cluster-computing platform.

In this chapter, we will be:

* Looking at the necessity behind HDFS Federation

* Studying HDEFS Federation and its architecture

* Understanding the steps to deploy federated NameNodes

* Understanding backup and recovery options for the active NameNode

* Studying the strategies and commands that support NameNode
high availability

* Looking into some useful tools and commands in HDFS

* Looking into HDFS block placement strategies in the MapReduce environment
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Limitations of the older HDFS
architecture

The older HDFS architecture had two main components, which are as follows:

* Namespace: This is the HDFS component that handles building blocks such
as directories, files, and the actual file blocks. The Namespace component
supports the create, delete, list, and update/ modify operations on these
building blocks. The Namespace component is within the NameNode daemon.

* Block Storage Service: This is the HDFS component that handles file
block management. The block storage component is divided between the
NameNode and DataNode. The DataNode part of the block storage service
takes care of block storage on the local machine in a cluster. It provides read
and write services for the blocks. The NameNode part of the block storage
performs the following actions:

o

Taking care of DataNode registrations, monitoring, and health reports.

° Digesting block reports from DataNodes and storing the location of

the file blocks in memory.

Dealing with the create, delete, list, and update operations at the
block level. As we saw earlier, at the file level, the Namespace
component performs these operations.

Facilitating replica placement algorithms and heuristics. It can
manage the placement of replicated blocks. It can also replicate
underreplicated blocks and delete overreplicated ones.

The following diagram illustrates the older HDFS architecture:

Namespace

Block Management
NamegNode
| Block Storage
Service
...Data Nodes...
Storage
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This architecture has a number of limitations, which are as follows:

From the figure, it is apparent that the block storage service component
intrudes into the NameNode. This leads to tight coupling between the
Namespace and Block Management Service components. All block
management functions need to go through the NameNode. The DataNodes
are not capable of being an independent block storage service.

The architecture allows for a single NameNode. This NameNode stores

all directories, files, and block-level metadata in memory. Unlike the
DataNodes, the NameNode cannot be scaled horizontally. It has to be scaled
vertically by adding more memory to the machine where the NameNode
runs. The memory of the NameNode becomes the limiting factor behind the
scalability of the cluster.

With a single NameNode, about 60K tasks can be managed within the
cluster. However, with changes in the Hadoop stack and the introduction of
YARN, this can go up to 100K tasks and beyond. This kind of task explosion
puts a lot of pressure on the request servicing capabilities of the NameNode.
A single NameNode might not be able to handle so many requests without
adversely affecting the performance of the tasks.

Larger organizations require a certain degree of isolation between the different
teams within them. The reasons for isolation can be for confidentiality,
performance, or availability reasons. A single Namespace will not satisfactorily
guarantee any of the three reasons. A shared Namespace requires rigorous
security measures. Performance and availability depend a lot on the other
workloads that are already running on the cluster.

The preceding limitations call for the separation of the Namespace from the Block
Storage service component. They also call for a capability to run many instances of
the NameNode, particularly in multitenant environments. Horizontal scaling of the
NameNode will also help in performance by load balancing.

Architecture of HDFS Federation

The crux of the HDFS Federation feature is that it allows for multiple NameNodes
to run on a cluster. These NameNodes are independent and do not have any
dependency on each other. However, the DataNodes are shared between all the
NameNodes in the system. The NameNodes are said to be federated because they
can be run independently without coordination.
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Each DataNode sends heartbeats and block report information to all the NameNodes
in the cluster. DataNodes also receive instructions from all the NameNodes. They
are the common shared storage resource in the cluster and still run on commodity
hardware. However, they cater to different NameNodes, and in turn, facilitate
different Namespaces. These independent Namespaces provide isolation guarantees
in a multitenant environment. By running many NameNodes, the cluster can be
horizontally scaled and requests can be load-balanced among these NameNodes.

The following diagram shows the architecture of a federated HDFS cluster:

[ Namespace ] [ Namespace ] [ Namespace ]
1 Kk n
N
Block|Pools
AV )4
NameNode 1 NamelNode k NameNode n
| Block Storage
Y Service

Shared Data Nodes...

Storage

A concept called block pools is used to provide block federation. A block pool is

a set of blocks that belong to a single NameNode. DataNodes store blocks that can
potentially belong to different block pools. Each block pool is independent and
management of one block pool does not affect any other block pools. The Namespace
based on its block pool can independently generate Block IDs.

A Namespace, along with its block pool, is termed as the Namespace Volume. When
a NameNode is decommissioned or a Namespace is deleted, DataNodes delete all
the blocks related to the block pool that belongs to the Namespace Volume.

Another parameter, ClusterId, is used to identify all the nodes in the cluster. Any
new NameNode joining the cluster is given a Cluster ID to correctly identify the
cluster to which it belongs. This parameter can either be specified manually or
generated automatically. The default behavior is to automatically generate this ID.
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Benefits of HDFS Federation

HDFS Federation overcomes the limitations of a single NameNode and provides the
following benefits:

The most important benefit is the horizontal scalability it provides for the
NameNode. Clusters with a large number of smaller files benefit immensely
from this. Every file occupies memory in the NameNode to store its
metadata. The Namespace can now be divided into many Namespaces,
either based on function or organizational divisions. The load can now be
distributed across many NameNodes rather than a single NameNode.

Read-and-write throughput scaling is a benefit that is hindered with a single
NameNode. Organizations can now divide the Namespace among different
NameNodes and keep the throughputs at a desirable level. Information about
the kind of workloads that run on the cluster can be used to determine the
number of NameNodes that will be required in a federated HDFS deployment.

Having different NameNodes and Namespaces makes it natural and easy
for isolation. Organizations can now isolate different organizational datasets.
NameNodes can also be divided based on functions such as development,
test, or production. All of the data can be multiplexed onto a bunch of
DataNodes promoting efficient sharing. The isolation property ensures that
the NameNode does not become the performance bottleneck when jobs of
varying needs are executed on the cluster. For example, a job that overloads
the NameNode need not affect another job if the data required by them
reside in different Namespaces.

The Federation feature also makes it possible to treat the Block Storage
Service as a generic block store. The block pool abstraction can be used to
build newer filesystems or HDFS APIs with different characteristics. This
generic nature of storage can save costs for the enterprise by increasing the
efficiency of existing hardware in their clusters.

A side effect of the HDFS Federation architecture's simplicity is the backward
compatibility of the feature. Existing single-NameNode deployments do not
break. They are a special case of the federated approach. Most of the code
that change to the Hadoop implementation to support this feature actually
happened on the DataNode. This helped in keeping the entire NameNode
stable from a Hadoop testing perspective. The DataNode has an additional
level of indirection, indicating the block pool where the block belongs.
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Deploying federated NameNodes

In this section, we'll see how to deploy multiple NameNodes. To try out these steps,
you will need at least two machines with different addresses. The configuration for
federated deployment is backward compatible. It supports previous installations
with a single NameNode.

To support federation, NameServiceld is introduced. The secondary backup and
checkpoint nodes belong to a particular NameServiceld. The NameServiceld is
suffixed to all the properties of the NameNode and its associated components
when specifying in the configuration.

The important configuration steps are as follows:

1. Specifying the NameServicelds for the different NameNodes in a cluster. This
is specified by adding the dfs.nameservices property to the configuration.
The value of this property is a comma-separated list of all the NameServicelds.

2. All the other properties that are specified for a particular NameNode should
be prefixed with an appropriate NameServiceld. This should be one of the
NameServicelds specified in the dfs.nameservices property.

3. A NameNode can be formatted using bin/hdfs namenode -format
[-clusterid clustered].If no clusterId is specified, an ID is
automatically generated.

4. All additional NameNodes can be formatted using the same command as
the preceding one, but the clusterid parameter becomes mandatory. If
the clusterid parameter is not specified, then the NameNodes will not be
federated. Now, the command is bin/hdfs namenode -format -clusterid
<specify clusterid that was given in the previous steps.

5. Older releases of Hadoop can be upgraded to the newer release. After
upgrading, the NameNode can be started using bin/hdfs namenode -config
<new configuration directorys> -upgrade -clusterid <clusterids.

6. Adding another NameNode to the system is simply adding the new
configuration parameters for the new NameNode and propagating it
throughout the cluster. The important parameters are the NameServicelds
and related NameNode properties using the NameServiceld suffix. The
NameNodes are then started. Now, the DataNodes have to be informed
about the new NameNode. This is done by the bin/hdfs dfadmin -
refreshNameNode <datanode host and ports command. This command
must be executed for all DataNodes that form the block storage layer for the
new NameNode.
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The following snippet shows a sample hdfs-site.xml configuration file that
supports two NameNodes. The NameServicelds are ns1 and ns2:

<property>
<name>dfs.namenode.name.dir.nsl</name>
<value> [path to namenode store]</value>
<description>Path on the local filesystem where the NameNode

stores the namespace and transaction logs
persistently.</description>

</property>

<property>
<name>dfs.namenode.name.dir.ns2</name>
<value> [path to namenode store]</value>
<description>Path on the local filesystem where the NameNode

stores the namespace and transaction logs
persistently.</descriptions>

</property>

<property>
<name>dfs.nameservices</names
<values>nsl,ns2</value>

</property>

<property>
<name>dfs.namenode.rpc-address.nsl</name>
<value>[ip:port]</value>

</property>

<property>
<name>dfs.namenode.http-address.nsl</name>
<value>[ip:port]</value>

</property>

<property>
<name>dfs.namenode.secondaryhttp-address.nsl</name>
<value>[ip:port]</value>

</property>

<property>
<name>dfs.namenode.rpc-address.ns2</name>
<value>[ip:port]</value>

</property>

<property>
<name>dfs.namenode.http-address.ns2</name>
<value>[ip:port]</value>

</property>

<property>
<name>dfs.namenode.secondaryhttp-address.ns2</name>
<value>[ip:port]</value>

</property>
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HDFS high availability

NameNodes are the heart of an HDFS Namespace. The availability of any cluster
using HDFS is directly related to the availability of the NameNode.

Secondary NameNode, Checkpoint Node, and
Backup Node

In Hadoop 1.X, the concept of a Secondary NameNode was introduced.

The Secondary NameNode is a shield against disasters. On the failure of a
NameNode, the Secondary NameNode can be used to recover the NameNode.

The term Secondary NameNode is a misnomer. It is a cold standby and cannot
service requests on its own. The NameNode can, however, read from the Secondary
NameNode when encountered with failures.

The NameNode writes all HDFS updates to the edits log in the native filesystem.
The log is written in an append-only fashion. The NameNode owns another file
called the £simage file that contains the image of HDFS. A NameNode starting
up, reads the edits file and applies all the edits one by one to the fsimage file.
During this time, no writes are allowed on HDFS. The NameNode is said to be in
Safe Mode. The Safe Mode ends once the NameNode receives block reports from
the DataNodes about the health of the blocks. Writes are allowed only after the
NameNode is confident about the health of HDFS. Before starting normal service,
the NameNode begins with an empty edits file and an updated £simage file.

The longer a NameNode runs, the bigger its edits file. This directly translates

to longer startup times for the NameNode when it is restarted. The Secondary
NameNode periodically takes the £simage and edits files and merges them.
Generally, to maximize the probability of recovery from a disaster, the Secondary
NameNode is run on a different machine. The NameNode can query the Secondary
NameNode for the £simage and edits files when recovering from a failure. The
Secondary NameNode mimics the directory structure of the NameNode when
storing checkpoints. This makes it easy for the NameNode to read data when
recovering from failures.

The concept of a Checkpoint Node is also introduced. It is very similar in function to
the Secondary NameNode, with an additional function. Periodically, the Checkpoint
Node not only gets the £simage and edits file updates from the NameNode, but
also folds the edits into the £simage file and uploads it back on to the NameNode.
This helps the NameNode to recover fast from failures. The Checkpoint Node can be
considered as the Secondary NameNode with a feature to upload the updates back
to the NameNode. Again, the checkpoints are stored in the same directory structure
as the NameNode.
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The Checkpoint Node is started using the following command:

hdfs namenode -checkpoint

The dfs.namenode .backup.address and dfs.namenode .backup.http-address
properties in the configuration are used to specify the location of the Checkpoint
Node and its HTTP endpoint.

A Backup Node is more live than the Checkpoint Node and the Secondary
NameNode. It streams in updates from the NameNode and updates its own

copy of the fsimage and edits files. The Checkpoint Node and the Secondary
NameNode, on the other hand, download the fsimage and edits files from the
active NameNode. A Checkpoint Node is not allowed to run along with a Backup
Node. The memory requirements of the Backup Node are the same as that of the
NameNode as it stores all information that a NameNode would store.

The Backup Node is started using the following command:

hdfs namenode -backup

The configuration parameters for the Backup Node are the same as that of the
Checkpoint Node.

High availability — edits sharing

In Chapter 1, Hadoop 2.X, we briefly saw how to provide NameNode high availability
using the Quorum Journal Manager and the NFS strategy. Having a hot standby,

a NameNode that can instantly switch over to becoming an active NameNode, is

the key to ensure High Availability (HA). The standby node maintains enough
information about the active NameNode so that it can provide fast failover. The
standby can also perform check-pointing to aid in disaster recovery.

The general strategy behind HA of the NameNode is to share the edits file between
the active and standby NameNodes. The Quorum Journal Manager is a way to do
this using an array of Journal nodes. An NFS share can also be used to achieve the
same result.
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Hadoop supports the following two failover modes:

Manual failover: Here, the administrator of the Hadoop cluster can execute
commands to make the standby active. Since this is a deterministic action,
the time for the standby to become active is a matter of about 5 seconds.
The command used is as follows:

hdfs haadmin -failover <standby-namenode> <active-namenode>

Automatic failover: When there are systems in place to monitor the health of
the active NameNode, the monitoring system might find enough evidence to
do an automatic switch between the active and standby NameNodes. This is
based on heuristics, and the failover process might take a few seconds longer
(order of tens of seconds). Zookeeper is a tool that can help in automatic
failover along with the ZKFailoverController module.

If there is a failure in the ZKFailoverController module, there is a possibility that
both NameNodes, active and standby, will think that they are in the active state.
This scenario is called the split-brain scenario. A split-brain scenario can leave the
Namespace in an inconsistent state as both NameNodes can make conflicting
changes. The solution to this problem is to have the active NameNode stop making
changes to the system. The QJM strategy for failover has fencing built in as there is
an array of Journal nodes that allow writing only from a single NameNode.

Useful HDFS tools

A number of useful tools are provided to check the health of HDFS. These tools are
as follows:

Rebalancer: The distribution of blocks among the DataNodes might not
be uniform. These skews in distribution appear when new DataNodes are
commissioned in the cluster. To help administrators view the distribution
and redistribute the blocks, a balancer option is available in the Hadoop
command, as shown:

hadoop balancer [-threshold threshold]

fsck: Like the native filesystem, the £sck command goes through the files

in the filesystem and provides a report on the health of the blocks and files.
Unlike the £sck utility of the native filesystem, the Hadoop £sck tool takes no
action. It is purely a reporting tool. Most of the errors in HDFS are generally
taken care of by Hadoop:

hadoop fsck
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* Import checkpoint: It is possible for the NameNode to import checkpoints
from the Backup or Checkpoint Node. All these nodes store the checkpoints
in the same directory structure as the NameNode. This can be achieved by
configuring the dfs.namenode . checkpoint .dir property to the directory
where the checkpoint resides, and using the -importcheckpoint flag when
starting the NameNode.

Three-layer versus four-layer network
topology

Traditionally, Hadoop topologies follow a three-layer architecture, as shown in the
following diagram. The leaves of the hierarchy are the data nodes. Data nodes are
combined into racks and racks form the data center. A Hadoop cluster can also
span multiple data centers connected via a WAN.

Node Node Node

Node ]

B
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With the advent of virtualization, a single physical machine can now run multiple
nodes as virtual machines. This leads to an additional layer in the Hadoop topology.
This layer is called the Nodegroup layer. All virtual machines running on the same
physical machine belong to a single Nodegroup. In other words, a Nodegroup is
per hypervisor. Communication between nodes in a Nodegroup does not have to go
through the network and can give rise to some interesting block placement policies.
The following diagram illustrates the four-layer architecture:

Data Data
Center Center

y 4 \

N\ A4

y 2
Node ] t Node Node ] [ Node t Node ]

Node Group Node Group Node Group

HDFS block placement

Replication is an important feature in HDFS; it ensures data reliability against loss
and high availability in the face of failures. The default replication factor is 3, though
this parameter can be tuned using the dfs.replication configuration parameter.
HDFS does not replicate the file as a whole; rather, it chunks the file into fixed size
blocks and stores it across the cluster.

The replication factor can be specified at file creation time. It can be changed as and
when desired. The salient feature of HDFS is the smart placement of blocks, and this
feature distinguishes it from other distributed filesystems. The placement policy is
said to be rack-aware, that is, it is cognizant of the physical location of where the
block resides. This not only aids in fault tolerance but can also be instrumental in
making network bandwidth utilization efficient. Any computing paradigm running
on HDFS can make use of this information to minimize the amount of data that
needs to be moved across the network.
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A rack is a bunch of machines stacked up. Generally, a single switch serves all the
machines in a single rack. A data center is made of many such racks. The intra-rack
network bandwidth is higher than the inter-rack network bandwidth. Therefore, it is
potentially faster to move data within the same rack than between racks.

The NameNode is aware of the rack on which the DataNode resides. When placing
replicas of a single block, the NameNode can decide which rack each block should
reside in. To increase fault tolerance, the NameNode might decide to place each
replica of a block in a separate rack. This helps in load balancing and data loss on
rack failures. However, writing a block can take additional time as it has to span
different racks.

The default rack placement policy, when the replication factor is 3, is to place a
replica on a node in a rack, the second replica on a different node on the same rack,
and the third replica on a node in a separate rack altogether. Generally, during a
write, the first block is written on the same node as the client (for clients within the
cluster). The next two blocks are written on the same random node off-rack. This
helps in increasing write throughput as the writes are local. It does suffer a certain
amount of skew as two-thirds of the replicas reside on the same rack. However, it
again does not affect reliability and availability as the probability of rack failure is
much less than the probability of a node failure. In the rare scenario of a rack failure,
there is an additional copy on a different rack that can come to the rescue. If the
client is not present on the cluster, a random first node is chosen to write the first
copy of the block.

When a read is initiated, the NameNode tries to point the reader to the node that is
closest to it. The hierarchy of selection in order of preference is to first try something
on the same node as the reader first; if it is not present, it tries to get a read replica
from the same rack as the reader. If it is not present in the same rack, it goes to
another rack in the same data center, before moving on to another data center.

The block placement policies are now pluggable in Hadoop 2.X. This enhancement
was done as a fix for ticket HDFS-385.
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Pluggable block placement policy

HDFS now provides a pluggable block placement policy. This can be achieved by
overriding the BlockPlacementPolicy abstract class in the org. apache . hadoop.
hdfs.server.blockmanagement package. This abstract class has a few override
methods. The chooseTarget override tells HDFS the placement choices. The
chooseReplicaToDelete override is used to decide whether deleting a specific
replica makes all the blocks conform to the block placement policy. There is a third
override, verifyBlockPlacement, which verifies whether the block is present in
minRacks. An initialize method is also provided to set up private variables of
the BlockPlacementPolicy object.

Once the class derived by BlockPlacementPolicy is created, it is built into a JAR.
The JAR can be placed in the Hadoop classpath. Hadoop then needs to be informed
about the new block-placement policy. Introducing a property in the hdfs-site.
xml file does this. A configuration property with the dfs.block.replicator.
classname key is created, whose value contains the fully qualified class name of the
BlockPlacementPolicy custom class, as shown in the following config file snippet:

<property>
<name>dfs.block.replicator.classname</name>

<value><Fully qualified class name of the custom block
placement implementation class</values>
</property>

Out of the box, Hadoop has two block-placement-policy-derived classes that can be
used. They are as follows:

* The BlockPlacementPolicyDefault class that provides a policy as
discussed in this section

* The BlockPlacementPolicyWithNodeGroup class that deals with topologies
that have the Nodegroup layer

[270]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Summary

Hadoop is made of the compute and storage layers. The compute layer has been
replaced by YARN in Hadoop 2.X, helping other paradigms to co-exist on the
Hadoop cluster hardware. The storage layer is making rapid progress towards a
similar goal. Features such as HDFS Federation are one step closer in making the
storage layer generic. By loosely coupling Block Storage from the Namespace, this
can become a reality soon.

The key takeaways from this chapter are as follows:

*  With HDFS Federation, it is possible to run multiple NameNodes. This not
only helps in isolation, but it can also aid in performance by load balancing.
Horizontal scaling of the NameNode is easier.

* Block pools are the abstractions that facilitate federation. Blocks from
a single Namespace belong to a single pool. Each pool is given an
identifier for addressability. The DataNodes remain shared among
the different NameNodes.

* In Hadoop 2.X, there are a number of different options to ensure NameNode
recovery from failures. Secondary NameNodes were the only option
previously. Now, there are Checkpoint and Backup Nodes. All three
strategies preserve the NameNodes directory structure and can be used by
the NameNode to recover.

* The modern virtualized data center takes a four-layered approach for the
Hadoop network topology. Communication between different nodes on the
same physical hardware does not need to go over the network and can help
optimize block placements.

* HDFS allows for pluggable block-placement strategies by overriding the
BlockPlacementPolicy abstract class.

Hadoop and data security are important aspects of Hadoop. In this chapter, we
saw isolation as one way to ensure separation of concerns. However, this does not
suffice in large organizations with regulatory compliance requirements on data.
More rigorous data security safeguards are required. We will look at Hadoop
security in the next chapter.
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Hadoop Security

Data is an asset to any organization. In this millennium, large companies such as
Google have shown that gathering data and analyzing it can in itself be a product that
can lead to an extremely successful business. This demonstration led to an explosion
in data-driven decision-making for businesses and personalized experiences for the
consumer. Data essentially became a high-value property for an organization. Just like
any other asset, data needs to be protected.

Data security is the area that looks into protection of data. Security threats to data
can come from outside the organization or from within it. Data theft is one of the
highest reported cyber crimes. Recent studies have shown that data security threats
are more common from within the organization, either by disgruntled personnel or
inadvertently by benign users. A security feature such as authorization has become a
baseline security feature for any data product.

In this chapter, we will look at the following topics:

* The security pillars

* Authentication in Hadoop

* Authorization in Hadoop

* Data confidentiality in Hadoop
* Auditlogging in Hadoop
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The security pillars

The four pillars of data security are as follows:

Authentication: This refers to challenging a system or user to prove their
identity. Only authenticated identities are allowed to gain access into the
data system. Authentication in Hadoop can be of two major kinds, simple
authentication and pseudo-authentication. The former is a loose kind of
security where trust is placed on the user's assertion about their identity. In
the latter, systems such as Kerberos are used for authenticating a user. In the
industry, the latter is recommended as a best practice. Hadoop even supports
seamless integration with a number of user stores such as LDAP and Active
Directory. With the help of these stores, Kerberos can be implemented as an
authentication mechanism.

Authorization: Authorization refers to granting authenticated users access to
data resources. In a multitenant system, or a multiteam organization sharing a
single data cluster, policies, compliance, and regulatory norms might prohibit
one team from accessing data belonging to another team. In such situations,

it is very important to fence sensitive data resources from inadvertent or
malicious access. Hadoop supports authorization at different levels. In HDFS,
Hadoop provides fine-grained access control at the file level. The access control
is very similar to any UNIX-based filesystem. The MapReduce compute layer
also has Access Control Lists (ACLs) at a resource level. Hadoop services are
allowed to have their own authorization features. For example, Hive tables can
be protected using coarse-grained access control mechanisms, as in SQL.

Auditing: Auditing is a mechanism to look into the usage patterns of a data
system. A fundamental requirement to conduct any audit is to provide an
accounting feature. All accesses and manipulations need to be recorded in
an audit log to audit at a later point in time. Auditing is important to ensure
compliance within an enterprise. Routine audits are conducted to ensure
compliance with data policies. Some situations might call for ad hoc auditing,
particularly when a security breach has happened in the system. Auditing
can reveal forensic information that can help penalize the guilty and estimate
the extent of damage caused by the breach. At the platform level, Hadoop
supports auditing. At a service level, services such as Hive record all
user-related actions in the metastore.
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* Data protection: Big data systems are distributed across a number of machines.
This mandates for the movement of data from one node to another. It might
also involve storing data in untrusted domains, such as the cloud, for example.
These two scenarios can lead to compromises in privacy and confidentiality.
During transit, a man in the middle can sniff out the data that is being sent
across the wire. An extremely malicious attacker can even manipulate the data.
At rest, an untrusted party can snoop the data or modify it. Protection against
such attacks can be done through cryptographic techniques. Data can be
encrypted during transit and when at rest. Digital signatures can be generated
to protect the data against modifications. Hadoop transports can be encrypted
to ensure confidentiality over the wire. OS-level encryption can be used to
protect confidentiality of HDFS data when at rest.

Hadoop addresses all these pillars to a satisfactory extent. We will look at some of
these pillars in depth.

Authentication in Hadoop

Authentication in Hadoop can either be simple or in Kerberos. Hadoop also allows
you to have your custom authentication scheme. In this section, we will look at
Kerberos authentication and how the HTTP Hadoop interfaces can be secured

via authentication.

Kerberos authentication

Kerberos is a network authentication protocol. It uses cryptography to provide a
highly secure authentication mechanism. This authentication mechanism is popular
because of its features, which are as follows:

* Mutual authentication: Both the client and server can mutually authenticate
each other before proceeding with a session.

* Single login per session: Once a login happens, tokens with certain time
validities are issued for usage. The duration of token validity defines the
maximum length of the session.

* Protocol message encryption: All protocol messages during authentication
are encrypted. It is not possible to conduct any man-in-the-middle or replay
attacks by an adversary.
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The Kerberos architecture and workflow
Central to Kerberos is the Kerberos Key Distribution Center (KDC). The KDC has

the following two important components:
* The Authentication Server (AS)
* The Ticket Granting Server (TGS)
The Authentication Server is responsible for authenticating the validity of clients.

The Ticket Granting Server is the one that issues tokens or tickets that are time-bound
cryptographic messages, which can be used by the grantee to authenticate itself.

The following diagram shows the general protocol workflow when a client
authenticates using Kerberos:

a "

Authentication Server (AS)

2. TGT + Session key Key Distribution Center

Ticket Granting Server (TGS)

4. Ticket + Server

1. TGT Request Session Keys

3. Encrypted
Authenticator

Client Server

5. Server Session
Authenticator
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The authentication steps are as follows:

1.

The protocol starts with the client requesting a Ticket Granting Ticket
(TGT) with the AS in Kerberos.

The AS checks for the client in its database and sends back two messages.
The first message is a session key, and the second is a TGT. Both messages
are encrypted using the client's password as the key. The client can use the
session key and the TGT only if the passwords match with what is stored by
the AS.

A client wanting to access a service has to first go to the TGS with its identity.
To prove its authenticity, the client has to send an authenticator encrypted by
the session key that was received by it from the AS.

The TGS receives this request, decrypts it, and checks for validity of the client
and request. On successful validation, the TGS grants a ticket with a validity
period. A server session key is also returned to the client. The server session
key comes in two copies —one encrypted with the client's secret and the other
with the server's secret.

The client now presents the ticket, server session keys, and authenticator to
the service that it needs access to. The server hosting the service validates the
session key and grants access based on the result of the validation. If mutual
authentication is desired, the server too sends back an authenticator that the
client can check for validity. This is possible because the session key comes in
two copies encrypted using the server and client secrets.

Kerberos authentication and Hadoop

An authenticating client within Hadoop requires a password to conduct the Kerberos
authentication workflow. This might not be feasible for long-running MapReduce jobs
that extend beyond the ticket validity time period. The kinit command can be used to
initialize a client with a password in Hadoop. Though a ticket validity might be for a
few hours, it is better to put the password in a keytab file for long-running jobs.

A keytab file can be created using the ktutil command. The keytab file can be
given to the kinit command using the -t option. The k1ist command can be used
to see the different tickets owned by a user. The kdestroy command can be used to
expire tickets that are no longer in use.
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Authentication via HTTP interfaces

By default, all HTTP web endpoints within a Hadoop cluster do not have
authentication enabled. This means that anyone who knows the endpoint address
can browse through the different services in the cluster. HTTP web interfaces can be
explicitly configured to require Kerberos authentication using the HTTP SPNEGO
protocol. This protocol is well supported on all major browsers.

Simple authentication can also be enabled. This involves appending the
username in the web endpoint address as a query string parameter. The value

of this parameter is the identity name of the user. Custom authentication schemes
are also possible. All web endpoints within Hadoop support this extensibility as
long as the AuthenticatorHandler class is overridden appropriately.

To configure HTTP authentication, the following properties in the core-site.xml
file can be used:

* hadoop.http.filter.initializers: The org.apache.hadoop.security.
AuthenticationInitializer class name needs to be put as the value of
this property.

* hadoop.http.authentication.type: This property defines the authentication
type. It can take the values simple or kerberos, or the class name of the custom
AuthenticatorHandler derived class. By default, this is set to simple.

* hadoop.http.authentication.token.validity: The value of this property
indicates the duration of validity of an authentication token. The value is in
seconds, and the default is 36,000. After this duration, the token has to be
renewed and presented.

* hadoop.http.authentication.signature.secret.file: The web
endpoint secrets are kept in this file. The secret key is used to provide
a digital signature for the authentication tokens.

* hadoop.http.authentication.cookie.domain: This is the whitelist of
domains from where authentication tokens can be presented via cookies.
There is no default value for this property.

* hadoop.http.authentication.simple.anonymous.allowed: This permits
anonymous users to connect to the HTTP endpoint when set to true. The
default value is true, and this works only when the authentication type
is set to simple.

* hadoop.http.authentication.kerberos.principal: This value indicates
the Kerberos principal name to be used when the authentication type is set
to kerberos.

* hadoop.http.authentication.kerberos.keytab: This is the keytab file
location for the Kerberos principal that is used in the HTTP endpoint.
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Authorization in Hadoop

Authorization involves restricting access to resources. Hadoop provides
authorization for both HDFS and all Hadoop services. In this section, we will look
at how authorization can be enabled in Hadoop to secure shared resources against
illegitimate access.

Authorization in HDFS

The HDFS authorization model is very similar to the authorization model in a POSIX
system. In POSIX, each resource —files and directories —is associated with an owner
user and a group. HDEFS is similar to this. Permissions are given to each of these
identities separately. There are separate permissions for:

* The owner of the resource
* The users of the group that are associated with the resource

* All other users within the system

There are two permissions levels, read and write. In contrast with POSIX, there is
no execute permission on files in HDFS as files are not executables. Any user, or a
user belonging to a group that has the read permission r, is only allowed to read
the contents of a file from HDFS. Similarly, any user, or a user belonging to a group
that has write permissions w, is allowed to write or append to existing files. A user
or group can be given both read and write permissions rw.

For directories, the semantics change a bit. A read permission allows the user or
users belonging to the group to list the contents of the directory. Write permissions
allow the users or groups to create files and directories or append to files residing
within the directory. Directories have a special execute permission x. This allows the
user or group to access the children of a directory.

HDFS files do not have the concept of setuid and setgid, which are present in
POSIX. Again, HDFS files are not executables, and it does not make sense to have
these operations. In this case, even directories do not have setuid and setgid.
HDFS directories do allow setting the sticky bit. This prevents any other user, other
than the superuser, from manipulating the directory or its contents. However, setting
the sticky bit on a file has no effect.
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Like in any UNIX-based operating system, permissions are encoded as three octal
numbers. The first octal number indicates the rwx bits for the owner, the second for the
group, and the third for all other users. For example, the following command gives all
permissions to the owner, read permissions to the group, and no permissions to other
users in the system:

hadoop fs -chmod 740 masteringhadoop

The set of permissions for a file or directory is called a mode. It can be manipulated
using the chmod command, which means change mode. When a process creates a
file or directory in HDFS, it automatically assumes the identity of the process owner.
However, the group is inherited from the parent directory.

A client operating on an HDFS file or directory presents the username and groups
the user belongs to. HDEFS first matches the username with the owner of the file

or directory. If it matches, then a permissions check is done on the resource. If it
does not match, a check is done to find out whether the user belongs to the group
that is specified by checking the list of groups presented with the group associated
with the resource. Again, a match makes a permission check against the requested
operation. If both these matches fail, other permissions are checked for the user. If
the permissions don't permit the operation in any of the three cases, the operation
is rejected.

Identity of an HDFS user

As seen in the overview, Hadoop supports two mechanisms to authenticate a user.
This is determined by the value in the hadoop . security.authentication property.
The values can be of two kinds, which are as follows:

* Simple: This indicates that the identity of the user is determined and
presented by the OS that runs the client process

* kerberos: This indicates that the identity of the user is determined by its
Kerberos credentials

A key point to note is that HDFS cannot create, modify, or delete any identities.

All identity management happens outside HDFS, either in the OS, as with simple
authentication, or with Kerberos. HDFS simply uses the identity presented to it and
performs authorization checks on the identity.
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Group listings for an HDFS user

The user to group mapping services is determined by the value in the hadoop.
security.group.mapping property. By default, this value is org. apache . hadoop.
security.ShellBasedUnixGroupsMapping. When this particular implementation
of the group mapping is used, the username is sent to a UNIX shell command to
determine the list of groups the user belongs to. For example, with the bash shell,
it is as follows:

bash -c groups

Enterprises can have their own user profile stores such as Lightweight Directory
Access Protocol (LDAP) or Active Directory. In such cases, groups can be determined
by asking these directory services for the group members. Hadoop has a built-in
group-mapping service to connect to LDAP data stores to determine groups. Setting
the hadoop . security.group.mapping property to the org.apache .hadoop.
security.LdapGroupsMapping class does this.

The NameNode is responsible for invoking the appropriate API to determine the
groups listing for a particular user. It is then presented to the data nodes. Also, all
groups and usernames are stored as strings and not as numbers when compared to
UNIX-based systems.

M Revoking permissions in the middle of a client operation
Q lets the client access the blocks of the file that are already
known to it.

HDFS APIs and shell commands

All HDFS APIs throw an AccessControlException exception on the failure

of permission checks. The FsPermission class in the org. apache.hadoop.
fs.permission package is used to encapsulate the necessary permission-related
information for a file or directory. FileStatus includes the Fspermission object.
The getFileStatus method can be used to get the status of the files.

Additionally, the FileSystem class provides a couple of methods to set the mode
and owner/group of a file or directory. The signature of the setPermission method
is given as follows:

public void setPermission(Path path, FsPermission permission)
throws IOException
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It takes in the Path object to the file or directory and the permissions that need to go
on it. Similarly, the signature of the setowner method is given as follows:

public void setOwner (Path p, String username, String group)
throws IOException

The setowner method takes in the owner and group that need to be set on the file or
directory specified in the Path object.

A few Shell commands are also present to change the authorization parameters for
files and directories. Consider the following command:

hdfs chmod [-R] <octal mode> <file path>

This command can be used to change the mode of the file or directory. The octal
mode parameter is given to specify the desired permissions for the owner, group, and
others. The -r flag can be used to recursively apply the mode on all descendent files
and directories until the leaf files or directories. Strictly, the owner or superuser is
allowed to change the mode of a particular file or directory.

Similarly, there is a chown command that can be used to set the owner or the group
for a particular file or directories. The command is as follows:

hdfs chown [-R] [owner] [: [group]l] <filepath>

The owner name and group can be specified along with the file path. The owner of
the file can only be changed by the superuser and no one else. Again, the -Rr flag can
be used to recursively change the owner of a directory and all its descendents.

The chgrp command can also be used to change the group a file belongs to. The
command is specified as follows:

hdfs chgrp [-R] <group> <filepath>

Only an owner of the file or directory who belongs to the specified group is allowed
to change the group. The superuser is also allowed to conduct this operation.

Specifying the HDFS superuser

In Hadoop, the HDFS superuser is the user under whom the NameNode runs.
The superuser has ultimate privileges in HDFS. No permission checks fail for
the superuser, and the superuser identity is allowed to execute all operations.

There is no permanent superuser identity. It is strictly determined by the identity
that starts the NameNode service. It is not necessary for the superuser identity to
be the administrator of the host that runs the NameNode though.
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However, the administrator might also specify a group of users as superuser identities,
though they might not be running the NameNode. Setting the configuration property
dfs.permissions. superusergroup to the group of users that need to have superuser
privileges does this.

HDFS provides a web interface to browse the filesystem. The web server hosting
this interface runs under an identity. This identity is specified by the dfs.web.ugi
configuration property. The value is a comma-separated list of the user and group
that run the web interface. The user specified in this property can be the superuser
as well. If the web server runs under superuser privileges, it has access to view the
entire namespace. If it is set to a user and group that is not a superuser, access might
be limited based on the permissions that are granted to the specified user or group.
More than one group can also be specified in the comma-separated list.

Turning off HDFS authorization

The entire authorization feature is controlled by the dfs.permissions property. If
it is set to true, all the permission-related rules and checks apply on each operation.
If set to false, authorization is disabled. Turning off permissions does not alter the
mode, user, or groups for the files and directories in the filesystem.

However, the chmod, chown, and chgrp commands that were discussed previously
are not affected by turning permissions off. When these commands are executed,
permissions are checked mandatorily.

Limiting HDFS usage

Even with adequate authentication and authorization setup, there is a possibility that
a user or a group of users exceeds their fair share of resource usage. This can either
be inadvertently due to faulty processes or through a compromised user trying to
mount a denial of service on the Hadoop cluster.

HDFS provides quotas to limit usage. Quotas are imposed on the number of names
and amount of space that can be used. These quotas are fixed at a directory level and
applied to all files and directories that are descendants of the directory.
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Name quotas in HDFS

The number of directories and filenames within a directory can be limited using

the name quota. The name quota with a value 1 at a directory implies that no files
or directories can be created below this particular directory. By default, a directory
that has been created has no quota associated with it. The maximum quota that can
be associated is Long.Max_vValue. Setting a quota on a directory will succeed even if
the directory violates the quota. The following command is used to set a quota on a
directory or set of directories:

hdfs dfsadmin -setQuota <Quota> <dirl>...<dirn>

A quota can be removed from a directory or set of directories using the -c1lrQuota
command. Its usage is as follows:

hdfs dfsadmin -clrQuota <dirl> .... <dirn>

Space quotas in HDFS

The space usage under each directory can be limited using the space quota. The unit
of space quota is in bytes. If the block allocation of a file within a directory exceeds
this quota, the write fails. A zero quota allows a file to be created, but the file cannot
be filled. This is because the metadata of files do not come under the quota. Even
directories are exempt from being counted within space quotas. The maximum
number of bytes that can be specified in the quota is the Long.Max_value value.

File replications are accounted within quotas. A 1 TB file with a replication factor
of three accounts for 3 TB of the quota. This has to be kept in mind when setting
up quotas.

The space quotas in HDFS can be set using the following command:

hdfs dfsadmin -setSpaceQuota <Quota> <dirls>...<dirn>

Space quotas can be reset using the -clrSpaceQuota command, as shown:
hdfs dfsadmin -clrSpaceQuota <dirl>... <dirn>

The count command on HDFS can be used with the -g switch to list all the quotas
for the files and directories. If no quotas are set, the command displays none for the
name quota value for this directory and inf (infinity) for the space quota value:

hdfs -count -q <dirls>..<dirn>
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Service-level authorization in Hadoop

Hadoop has many services running in tandem, processing submitted applications
and jobs. YARN has the Resource Manager (RM) that can run submitted applications.
Application Masters (AMs) that take jobs as inputs and process them can be spawned.
Similarly, HDFS has the NameNode service that provides a metadata store and
directory service for HDFS. Authorization to access services is a mandatory security
component in any framework.

In the Hadoop configuration directory, the hadoop-policy.xml file describes the
authorization policies for service access. Authorization is defined by the use of
ACLs that define the user or group and the type of access granted or denied to the
user or group. These ACLs are checked at the beginning, much before the other
authorization permission checks, such as the HDFS authorization.

Service-level authorization can be enabled by setting the hadoop . security.
authorization property in the core-site.xml file to true. The Hadoop service-level
authorization feature has a number of ACLs that can be defined to grant or restrict
access to services. They are as follows:

* security.client.protocol.acl: This property determines the permissions
on usage of the distributed filesystem client via the Hadoop APIs. A user or
group who is granted access via an access control entry (ACE) can make calls
to the NameNode service.

* security.client.datanode.protocol.acl: This property determines the
users and groups who can access the DataNode within the Hadoop cluster.
A user or group who is granted access via an ACE can call APIs on the
DataNode. This is generally done in block recovery scenarios.

* security.datanode.protocol.acl: This property determines the
ACEs that grant permissions for the DataNodes to communicate and
access the NameNode.

* security.inter.datanode.protocol.acl: This property determines the
ACE:s that grant permissions for the DataNodes to communicate with other
DataNodes. They are generally used to update generation timestamps.
Generation timestamps are used in block write failure scenarios.

* security.namenode.protocol.acl: This property determines the kind of
permissions the secondary NameNode has when communicating with the
primary NameNode.

* security.inter.tracker.protocol.acl: This property determines the
kind of permissions the task tracker has when communicating with the
job tracker.
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* security.job.submission.protocol.acl: This property determines the
permissions job submission clients have. These clients are used to submit jobs
or query job statuses.

* security.task.umbilical.protocol.acl: This property determines the
permissions the Map or Reduce tasks have when communicating with the
parent TaskTracker process.

* security.refresh.policy.protocol.acl: This property determines the
permissions on the dfsadmin and mradmin commands for policy refresh.

* security.ha.service.protocol.acl: This property determines
the permissions on the HA Admin for active and standby NameNode
management. This protocol ACL deals with NameNode high availability only.

Each ACL is a list of users followed by a list of groups. Each user list is comma
separated. Each group list is comma separated as well. The user and group lists are
separated by a space. For example, ul, u2 g1, g2 represents an ACL for users ul
and u2 and groups g1 and g2. A * can be specified as a wildcard for all users.

Any service-level authorization can be refreshed without having to restart the
NameNode or any other daemons. Both the dfsadmin and mradmin commands
have the -refreshServiceAcl option to reload the configuration.

The following XML is a snippet from a sample hadoop-policy.xml file:

<propertys>
<name>security.job.submission.protocol.acl</name>
<value>ul,u2 gl</value>
</propertys>
<propertys>
<name>security.client.protocol.acl</name>
<value>* </value>
</propertys>

The first ACL permits the users u1l and u2 to submit jobs in the cluster. In addition,
all users belonging to group g1 can also submit jobs. The second ACL grants all users
to access HDFS.

Data confidentiality in Hadoop

Hadoop is a distributed system. All distributed systems are interconnected via a
network. Networks are vulnerable to malicious sniffing of data. Data at rest can
also be read if they are not protected via encryption.
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Data confidentiality for data at rest is delegated to the OS that hosts the DataNode.
Most modern OSes provide encryption schemes to protect data on disks under their
purview. In this section, we will look at confidentiality over the wire and how to
enable encryption when data is in transit.

HTTPS and encrypted shuffle

Encrypted shuffle is a feature that facilitates data confidentiality in the shuffle process.
To recap, the shuffle step is where data moves from the Map to the Reduce tasks in a
MapReduce job life cycle. The movement of data occurs across machines through the
network. The transport used to move this data across the network is HTTP.

HTTP, by itself, sends data in clear text, that is, in an unencrypted form. This can
lead to information leak when an adversary snoops in the network. HTTPS is the
secure form of HTTP, where all packet payloads between the HTTP endpoints are
encrypted using Secure Socket Layer (SSL). Hadoop allows for encrypted shuffle
by facilitating HTTPS communication between the Map and Reduce task nodes.

Optionally, Hadoop also allows for client authentication. Encrypted shuffle
comprises configuration settings to achieve:

* Switching off the shuffle process between HTTP and HTTPS
* Specification of a keystore and truststore to facilitate HTTP encryption

¢ Reload of trust stores when nodes are added or decommissioned

SSL configuration changes

The encrypted shuffle configuration requires SSL. To enable SSL, the changes
required are as follows:

* Inthe core-site.xnl file, the hadoop.ssl.require.client.cert property
is set to true if client certificates are used. By default, this value is false.

* The hadoop.ssl.hostname.verifier property is used to specify the level of
strictness when making an SSL connection. The Ht tpsUrlConnection class
in Java uses this value to determine whether connections should be allowed
to go through. The framework compares the identity of the server in the
authentication scheme with the actual server identity to decide granting or
rejecting the connection. This property can take the values DEFAULT, STRICT,
STRICT 16, DEFAULT AND LOCALHOST, and ALLOW_ALL. The default value
is DEFAULT. ALLOW_ALL is the weakest form of verification. This value is
specified in core-site.xml.
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The hadoop . ssl.keystores. factory.class property indicates the class
name to be used to implement and manage keystores. By default, the value
is org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory. This
value is specified in core-site.xml.

The hadoop . ssl.server. conf property indicates the configuration file that
is used to configure SSL on the server side. The default value is ss1-server.
xml. This file is looked in the class path for availability. The values of this
configuration file configure the keystore and other SSL properties. This value
is specified in core-site.xml.

The hadoop.ssl.client.conf property is similar to the preceding property,
but defines the client-side SSL properties. The default value is ss1-client.
xml, and it needs to be present in the class path.

All of the previous properties have to be marked as £inal, indicating that they
cannot be overridden in any other configurations either by the framework or the
user. The previous properties have to be set on all the nodes of the cluster.

The following configuration snippet shows a sample core-site.xml configuration:

<property>

<name>hadoop.ssl.require.client.cert</name>
<values>false</values>
<finalstrue</final>

</property>
<property>

<name>hadoop.ssl.hostname.verifier</names>
<value>DEFAULT</value>
<finalstrue</final>

</property>
<property>

<name>hadoop.ssl.keystores.factory.class</name>
<values>org.apache.hadoop.security.ssl

.FileBasedKeyStoresFactory</values>
<finalstrue</final>

</property>
<property>

<name>hadoop.ssl.server.conf</name>
<valuesssl-server.xml</value>
<finalstrue</final>

</property>
<property>

<name>hadoop.ssl.client.conf</name>
<valuesssl-client.xml</value>
<finalstrue</final>

</property>
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The preceding properties set up SSL between the nodes so that HTTPS can be used as
the transport for communication. To enable HTTPS in the encrypted shuffle process,
the mapreduce.shuffle.ssl.enabled property can be set to true in mapred-site.
xml. By default, this property is set to false. Again, this property is not overridable
and has to be set as £inal. The following code snippet shows the default configuration
for this property in mapred-site.xml:

<property>
<name>mapreduce.shuffle.ssl.enabled</name>
<valuestrue</value>
<finalstrue</final>

</property>

Configuring the keystore and truststore

FileBasedKeyStoreFactory is the only keystore implementation available in
Hadoop out of the box. The settings for truststores and keystores are in the files
specified as values for the properties hadoop.ssl.server.conf and hadoop.ssl.
client.conf.

Keystores and truststores have very similar structures. They are used

to store private keys and certificates. Functionally, though, they serve

different goals. A keystore is used to store credentials that need to be

presented during an SSL connection. Generally, a keystore is used

to store private keys and public key certificates that can be used to

initiate a secure remote connection. If an SSL server is being launched
* ora server does client authentication, a keystore is a must to store the

% necessary keys and certificates.

A truststore, in contrast, is used to verify credentials when a
connection is established. They generally contain third-party
certificates such as root certificates or certificates that are signed by
certificate authorities that identify and endorse endpoints.

The keystore and truststore can be the same file. However, generally,
it is good practice to keep them separate.
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The ss1-server.xml file can be configured with the properties listed in the

following table:

Property name

Description

ssl.server.keystore.type

This is the type of keystore file. Java
keystores are of type jks. The default
value for this parameter is jks.

ssl.server.keystore.location

This is the location of the keystore file
on the local node. The user running
any MapReduce jobs needs at least
read access to this file.

ssl.server.keystore.password

Each keystore and truststore file is
password protected. The password for
the keystore is specified here.

ssl.server.truststore.type

This is the type of truststore file. The
default value is jks.

ssl.server.truststore.location

This is the file path of the truststore.

ssl.server.truststore.password

This is the truststore password.

ssl.server.truststore.reload.interval

This is the number of milliseconds
after which a reload of the certificates
must happen from the truststore. The
default value is 1,000, indicating 10
seconds.

A sample ssl-server.xml configuration is given as follows:

<configuration>

<!-- Keystore Configurations -->

<propertys>

<name>ssl.server.keystore.type</name>

<value>jks</value>
</propertys>
<propertys

<name>ssl.server.keystore.location</name>

<value>${user.home}/keystores/certstore.jks</value>

</property>
<propertys

<name>ssl.server.keystore.password</name>

<value><your keystore passwords></value>

</propertys>

<!-- Truststore configurations -->

<propertys>
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<name>ssl.server.truststore.type</names>
<value>jks</value>

</property>

<property>
<name>ssl.server.truststore.location</name>
<va1ue>${user.home}/keystores/castore.jks</va1ue>

</property>

<property>
<name>ssl.server.truststore.password</name>
<value><your truststore passwords></value>

</property>

<property>
<names>ssl.server.truststore.reload.interval</name>
<value>10000</value>

</property>

</configurations>

The ss1-client.xml file can be configured with the properties in the given
following table:

Property name Comments

ssl.client.keystore.type This is the type of keystore file. Java
keystores are of type jks. The default
value for this parameter is jks.

ssl.client.keystore.location This is the location of the keystore file
on the local node. A user running any
MapReduce jobs needs at least read
access to this file.

ssl.client.keystore.password Each keystore and truststore file is
password protected. The password for
the keystore is specified here.

ssl.client.truststore.type This is the type of truststore file. The
default value is jks.

ssl.client.truststore.location This is the file path of the truststore.

ssl.client.truststore.password This is the truststore password.

ssl.client.truststore.reload.interval | This is the number of milliseconds
after which a reload of the certificates
must happen from the truststore. The
default value is 1,000, indicating 10
seconds.
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A sample ssl-client.xml configuration file is given as follows:

<configurations>

<!—Keystore configuration settings -->

<propertys>
<name>ssl.client.keystore.type</name>
<value>jks</value>

</propertys>

<propertys>
<name>ssl.client.keystore.location</name>
<value>${user.home}/keystores/clientcertstore.jks</values>

</propertys>

<propertys>
<name>ssl.client.keystore.password</name>
<values><your keystore passwords></value>

</propertys>

<!—Truststore configuration settings -->

<propertys>
<name>ssl.client.truststore.type</names>
<value>jks</value>

</propertys>

<propertys>
<name>ssl.client.truststore.location</name>
<value>${user.home} /keystores/clientcastore.jks</values>

</propertys>
propertys
<name>ssl.client.truststore.password</name>
<value><Your truststore passwords></value>

</propertys>

<propertys>
<name>ssl.client.truststore.reload.interval</names>
<value>10000</value>

</propertys>

</configurations>
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Once the settings are in place, the encrypted shuffle can be activated by restarting
all the NodeManagers (NMs) in the cluster. Encrypted shuffle will add processing
overheads as the shuffle steps will have to do encryption and decryption in addition
to its existing duties.

The SSL connections can be debugged on the Reduce task nodes. This is done by
setting the mapreduce.reduce.child. java.opts property value to the javax.net.
debug=all Java option. This can be done on a per-job basis or in mapred-site.xml,
so all the jobs in the cluster can be debugged. The following snippet shows how this
option can be set in mapred-site.xml:

<propertys>
<name>mapred.reduce.child. java.opts</name>
<value>-Djavax.net.debug=all</value>
</propertys>

The debug property should be used prudently only for debugging. When used,
it slows down the job executing with this option. Debugging can also be enabled
on the NodeManager by setting the following environment variable:

YARN_NODEMANAGER_OPTS="-Djavax.net.debug=all"

Audit logging in Hadoop

Audit logging is an accounting process that logs all operations happening in
Hadoop. HDFS and the MapReduce engine logging are already present in Hadoop
via the log4j properties. Audit logs use the same framework, but they log more
events and give higher resolution into Hadoop operations. The file that is used to
configure logging is the 1og4j .properties file.

By default, the 1og4j .properties file has the log threshold set to wARN. By setting
this level to INFO, audit logging can be turned on. The following snippet shows
the 1og4j.properties configuration when HDFS and MapReduce audit logs

are turned on:

#

# hdfs audit logging

#
hdfs.audit.logger=INFO,NullAppender
hdfs.audit.log.maxfilesize=256MB
hdfs.audit.log.maxbackupindex=20

log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem
.audit=${hdfs.audit.logger}
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log4j.additivity.org.apache.hadoop.hdfs.server.namenode
.FSNamesystem.audit=false
log4j.appender.RFAAUDIT=0rg.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${hadoop.log.dir}/hdfs-audit.log
log4j.appender.RFAAUDIT. layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT. layout.ConversionPattern=%d{IS08601} %p
$c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${hdfs.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${hdfs.audit.log

.maxbackupindex}
#
# mapred audit logging
#

mapred.audit.logger=INFO,NullAppender
mapred.audit.log.maxfilesize=256MB
mapred.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.mapred.AuditLogger=${mapred.
audit.logger}
log4j.additivity.org.apache.hadoop.mapred.AuditLogger=false
log4j.appender .MRAUDIT=o0rg.apache.log4j.RollingFileAppender
log4j.appender .MRAUDIT.File=${hadoop.log.dir}/mapred-audit.log
log4j.appender .MRAUDIT. layout=org.apache.log4j.PatternLayout
log4j.appender.MRAUDIT. layout.ConversionPattern=%d{IS08601} %p
$c{2}: %m%n
log4j.appender .MRAUDIT.MaxFileSize=${mapred.audit.log.maxfilesize}
log4j.appender .MRAUDIT.MaxBackupIndex=${mapred.audit.log
.maxbackupindex}

The hdfs.audit.logger and mapred.audit.logger properties are turned on by
setting the level to INFO. These properties are then assigned to 1og4j properties such
as log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.
audit. Other properties can be set appropriately to control the logging.
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Summary

Security becomes a primary feature in a multitenant and distributed environment.
Networks and resource sharing can potentially lead to information leaks via
unauthorized access, malicious modifications, or even denial of service. Preempting
attacks on Hadoop clusters can be done by enabling security features such as
authentication, authorization, data protection, and data auditing.

The key takeaways from this chapter are as follows:

Post 0.20, Yahoo! introduced Hadoop security-related features for
compliance, confidentiality, and fair usage in shared enterprise clusters.

Hadoop can now be configured for Kerberos-based authentication or simple
authentication based on the topology and compliance requirements. User
information can be retrieved from enterprise user stores such as LDAP or
Active Directory.

Hadoop has both service-level and resource-level authorization built in. HDFS
authorization is very similar to the UNIX-based file authorization model.

Hadoop provides data confidentiality by facilitating HTTPS in MapReduce
shuffle and web endpoints. HTTPS can be turned on by tweaking a few
parameters. Data confidentiality for data at rest is delegated to the node's
operating system.

Accounting is very important for compliance and forensics in an enterprise.
Hadoop uses the log4j logging framework to provide audit logs.

In the next chapter, we will look at Hadoop applications, particularly in the field of
big data analytics.
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Hadoop has come to the fore because of its capability to aid in data analytics. As
data grows in the dimensions of volume, velocity, and variety, there needs to be
systems that are capable of analyzing this data efficiently and effectively. Vertically
scaling hardware to handle this data is not viable because it is expensive and difficult
to manage. Distributed computing and horizontal scaling are good options, and
frameworks such as Hadoop automatically cater to the fault tolerance, scaling,

and distribution needs of such a system.

Analytics is all about data. A question that frequently arises is when does Hadoop
become overkill? Typically, it is recommended that you use Hadoop for datasets of
1 TB and upwards. However, when it becomes difficult to predict the rate of data
growth, it may be a good idea to use Hadoop MapReduce because of its attractive
"code once, deploy at any scale" characteristic.

There are organizations that use Hadoop to analyze a few hundreds of gigabytes
of data as well. The smaller the dataset the better, since the user has to take into
account latency costs due to long startup times and disk access associated with
Hadoop jobs. The functional aspect of Hadoop MapReduce makes it easy to code
and port over complex analytics functions. In some situations, when datasets are
smaller and traditional SQL becomes unwieldy due to the nature of the analysis, it
may be prudent to use Hadoop and directly interact with the filesystem.

In this chapter, we will look at the following topics:

* The workflow for data analytics
* A brief introduction to machine learning
* The basics of Apache Mahout

* Document analysis as a data analytics case study using Pig and Mahout
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http://www.it-ebooks.info/

Analytics Using Hadoop

Data analytics workflow

Data analytics involves transforming and inspecting data to figure out the inherent
meaningful information from it. The information extracted is used in decision making
or suggesting conclusions. The analytics workflow is shown in the following diagram:

N\ 4 N\ 4
. Data Collection,
lEEmiey i > representation, > Data Cleansing
problem
storage and access
J S J AN

A4

Data

Data Processing Transformation

Visual Validation Decision Making

The steps involved in the analytics workflow are as follows:

1.

The first step is to identify the problem to be solved. This is important as
the decisions in the rest of the steps hinge on it. For example, the problem
statement will dictate what kind of data to collect and what the important
features that represent the solution to the problem are. A lot of domain
expertise is required in data analytics, and a problem space where expertise
is accessible is almost mandatory.

Once the problem is identified, appropriate data needs to be collected. The
collected data needs to be represented in a format that optimizes on space
without losing resolution in information. Enterprises now need to be aware
of compliance and security. Access to the data might need to be restricted to
authorized personnel and data could be confidential in some cases.

The stored data needs to be cleansed. Cleansing involves removal of outliers,
missing values, and bad records. The result of the data analysis depends
much on cleansing of the data. Data that is not cleansed might lead to
skewed analysis.
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The cleansed data is transformed into a representation that can be used
for analysis. One example of transformation is normalization of data to a
range between 0 and 1. Another example is changing the scale of the data
to ease computation.

The transformed data is then analyzed using algorithms. Machine learning
algorithms are a class of analysis algorithms that offer solutions based on
previously known empirical evidence.

Once the data is transformed and results are obtained, they need to be
validated. Validation can occur by either consulting with domain experts or
by deploying it to a test set of users. Post-validation, if the results can be used
to make meaningful decisions, it ends the process of analysis. Otherwise, the
data scientist and associates get back to the drawing board and tweak the
parameters in the pipeline.

The validated results are visually represented for the stakeholders (which
could include users) to validate. The apt visual representation is decided at
this stage.

Finally, the results are used to drive decisions.

Machine learning

Machine learning is about programming computers to optimize a function based
on previous experience. The computer is given empirical data to analyze and build
a model function that can predict the output on unseen data that it might encounter
in the real world. The computer builds a function based on the parameters and the
empirical data supplied to it. This function evolves as more empirical data is given
or when there is a change in the data characteristics. When this function is applied
on unseen data at a later point, it predicts the output based on the model function.
The empirical data supplied to learn this function is termed as training data.

The following are the kinds of machine learning algorithms:

Supervised learning: The training data supplied to supervised learning
methods is labeled. Each data point in the training dataset is a pair of objects,
the actual data point representing the situation, which is generally a vector

of values, and the desired output value for this situation. An expert who
understands the domain of the data annotates the desired output value for

the situation. This desired output is also called a label or a supervisory signal.
The algorithm runs on the set of training data to infer a mathematical function.
The function is as generalized as possible and is termed as a model. When this
function is applied on any unseen data, it gives an output value. This model
function's accuracy in prediction determines its strength.
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Unsupervised learning: The training data supplied to unsupervised
learning methods is unlabeled. The learning algorithm is asked to
determine the underlying structure in the data. Clustering is an example
of an unsupervised learning method, where groups are determined from
unlabeled data based on a distance metric between the data points.

Semi-supervised learning: This takes a hybrid approach wherein unlabeled
empirical data is given to the computer along with a few labeled data points.

The following diagram shows the machine learning process:

Determine what Gather training data Determine the

constitutes training . input features that
from the domain o
data model the situation

Validate by Tune parameters
measuring and run the learning Choose a learing
accuracies on s algorithm on the algorithm
training data / training data
—/ /I
) )
Test by measuring Operationalize the
accuracies on a test model on unseen
data set data
~ @@ @@

The steps in machine learning process are as follows:

1.

The first step in machine learning is to determine a problem to be solved
and what constitutes training data for the problem in hand. This involves
figuring out how granular a training data point should be and also the
number of points. Expertise in the domain of the problem can be very
useful in determining the granularity and size of the training data set.

Once it is determined, the next step would be to actually gather the training
data from the real world. Training data gathered may need to be annotated
or labeled by an expert in the case of supervised learning. The optimal size of
the labeled training data might become crucial in determining the accuracies
of the modeling function. In general, getting an expert to label training data
is very expensive and needs proper planning. Also, because of the manual
nature of labeling, it does not scale well to a large number of data points.
Semi-supervised techniques are becoming popular because of problems
associated with getting labeled training data.
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The training data point now needs to be broken down into a set of features.
These are characteristics of the data point that accurately represent the
situation when the data point was collected. Selection of the right features
is critical to get good model functions. A lot of features could mean slower
processing and too little features may lead to less accuracy.

The next step is to choose a good learning algorithm to learn the function.
Depending on the nature of the problem, there are a number of algorithms.
Classification algorithms output model functions that can determine the
class to which a particular data point belongs. A clustering algorithm takes
a set of data points and groups them into a number of groups based on a
measure of distance.

Once a suitable algorithm is chosen, it is fed with the training data and
parameters. The output of a learning algorithm is the model function.

The learning parameters can be used to tune the characteristics of the
model function. For example, a regularization parameter can be used

to generalize the model function to solve the problem of overfitting.

In a clustering scenario, a parameter can determine the number of

clusters that need to be determined as the output of the learning algorithm.

Validation is one of the most important steps in machine learning workflows.
It involves determining the strengths and weaknesses of the learned model.
Using the learned model function to predict on random subsets of the training
dataset itself does validation. In a supervised setting, since we know the labels
beforehand, this information can be used to evaluate the accuracies of the
learned model. If it is found to be less accurate, we can go back to step 4 or 5 to
either change the algorithm or tune the parameters for a better model function.

A validated machine learning model is then used to predict the output on

a test dataset. This is also a labeled dataset outside the training dataset.
Operating parameters and characteristics of the model can be determined

on this dataset. The operating parameters can then be used to predict unseen
data points in the real world.

The final step is to deploy and operationalize the learned model so that it
operates with the operating parameters determined in step 7. Unseen data is
supplied to the learned model function and it is asked to predict the output.
The predicted output can be used to drive business decisions.

Periodically, the models are updated either using newly gained knowledge
from the field or in the form of feedback from users and stakeholders. Newer
training data could be collected and steps 1 through 8 can be performed to
update the model.
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Often, the terms machine learning and data mining appear in the
same context. Data mining is a field that involves discovering
patterns from large sets of data. The differences between machine
learning and data mining are as follows:

*  Machine learning methods can be used as tools in the data

Q mining process
s

*  Machine learning solves specific tasks while data mining is
exploratory in nature

*  Machine learning deals with accurately identifying known
information on unseen data, while data mining deals with
discovering unknown information on data

Apache Mahout

Apache Mahout is a scalable machine learning library. It is an open source library
under the Apache Software Foundation. It supports algorithms for clustering,
classification, and collaborative filtering on distributed platforms. Apache Mahout
welcomes contributors to contribute any algorithm to the library. The algorithm
coded may not always be distributed and can run on a single machine as well.

M As Apache Mahout allows developers to introduce single-machine
Q algorithms, it is recommended that you study the implementation
before running it on Hadoop.

Apache Mahout has a few algorithms that are implemented as MapReduce. These
algorithms can be run in Hadoop to exploit the parallelism on a distributed cluster.
Again, a word of caution for you is to study the implementation of an algorithm
before using it in your Hadoop deployments. A non-MapReduce algorithm may
not yield any speedup when run on a Hadoop cluster.

In a recent change, since April 2014, Mahout has stopped
M accepting algorithms that are programmed in the MapReduce
Q model. However, Mahout has made a commitment to support
all the algorithms that are already in its library and programmed
using the MapReduce model.
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The following is a list of use cases supported by Apache Mahout and the algorithms
that can be run on Hadoop and exploit the parallelism provided by any Hadoop
cluster categorized by the use case:

Classification: This is a supervised method that learns how to place data
points in different classes. Unseen data is then put into one of these classes. In
the classification use case, Mahout supports parallelized implementation for
the Bayesian classifier and the Random Forest classifier. The Bayesian classifier
uses the Bayes rule and conditional probabilities to do binary classification.
The Random Forest classifier is a decision-tree-based classifier at its core, but
uses a collection or ensemble of decision trees.

Clustering: This is an unsupervised method that categorizes training data
points into coherent groups. Mahout supports distributed implementations
of many clustering algorithms. K-means, a very popular clustering algorithm,
has an implementation that is parallel and distributed. The core of K-means
is to group data points such that the mean distance between the points

is minimum. The fuzzy k-means clustering algorithm is also compatible
with Hadoop. In this clustering method, the clusters are soft and allow
multiple cluster memberships for a particular data point. Hierarchical,
Latent Dirichlet Allocation (LDA), Mean shift, MinHash, Dirichlet Process,
Canopy, and Spectral clustering have got distributed implementations in the
Mahout library.

Collaborative filtering: This makes recommendations based on the user
data that is available. Distributed-item-based collaborative filtering and
parallel-matrix-factorization-based collaborative filtering algorithms have
Hadoop-compatible implementations. The former uses the user's preferences
for other items to predict the preference for a similar item. The latter predicts
the preference of the user from a matrix of unseen items.

Frequent itemset mining: This is also called market-basket analysis where
the algorithm analyzes which other item typically appears along with the
item in hand. There is a parallel implementation of the Parallel FP growth
algorithm to determine item associations.
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Document analysis using Hadoop and
Mahout

In this section, we will take an example of document analysis to illustrate analytics using
Hadoop and Mahout. We will be using Pig as the higher-level abstraction for Hadoop
MapReduce. We will be calculating the distance between documents using a score called
Tf-idf. This distance metric is very popular in the field of information retrieval and text
analytics. It is based on the statistics of words occurring in a document.

Tf-idf is used to rank documents based on query terms. It is extensively used in
text search scenarios. The distance between the query terms and the document
terms determines how close the query is with respect to the document. This
distance can be used to rank documents.

For this particular example, we will be using the NSF grants abstracts that are
available at http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html.
The dataset consists of about 120,000 abstracts and comes in three parts. Each
grant abstract is a separate text file.

Tf-idf stands for Term Frequency - Inverse Document Frequency. It is the product
of two metrics: term frequency (tf) and inverse of the document frequency (df).

Term frequency

As the words suggest, term frequency is the number of times a word occurs in

a particular document. The more the occurrences of a word in a document, the
stronger the association of that word with the document. For example, if the word
"Hadoop" appears 10 times in document A and 15 times in document B, document
B is more relevant in the context of the word Hadoop. This simple intuition drives
the calculation of the term frequency metric.

Documents may have varying numbers of words in them. A larger document,

say of 1,000 words, may have the word "Hadoop" appear 10 times, while a smaller
document, say of 100 words, may have it five times. It might be unfair to say that
the term Hadoop is more relevant in the larger document, because the percentage of
occurrences of the term Hadoop relative to all the terms in the smaller document is
larger. Therefore, when the term frequency is calculated, dividing it by the number
of terms in the document normalizes it.
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In essence, the term frequency for a term t and document d is given by the
following formula:

Term Frequency (t,d) = Number of times t appears in d / Number of
terms in d

Document frequency

Using the term frequency alone might not do justice in determining the importance
of a term relative to a document. There are terms in the English lexicon that occur
very frequently in documents. For example, terms such as "and", "the", and "in" occur
very often compared to other words. These words are called stop words.

There could be other words that occur frequently based on where the document
repository is coming from. For example, documents coming from an organization
might have the name of the organization appearing all over them. These terms, like
the stop words, do not contribute to any signal when comparing the importance of a
set of terms with a document.

Document frequency is used to eliminate or reduce the effect of these frequently
occurring terms from the calculation of the distance measure. Calculating the
number of documents in which a term appears in the entire document corpus or
repository does this. More the value, less is the signal the term adds in differentiating
the document. Therefore, the inverse of the document frequency is taken to reduce
the effect of such terms appearing very frequently within the document.

In essence, the inverse document is calculated as follows:

inverse document frequency (t) = log(number of documents in the
corpus/number of documents the term t appears in)

The document frequency is divided by the number of documents in the corpus to
normalize the values and make it a number between 0 and 1. The logarithm of the
entire score is taken to keep the value within a reasonable range as the number of
documents could be huge, like in a web corpus.
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Term frequency - inverse document
frequency

The product of the term frequency and the inverse document frequency for a given
term and document gives the importance of the term in that particular document:

Tf-idf for term t and document d = tf for term t and document d *
idf for term t

It is important to understand that there is a Tf-idf score for each term and each
document of a document corpus. These Tf-idf scores are stored in inverted indexes of
full-text search engines and are used to measure distances between the query terms
and the documents. The inverted index stores these values in sparse format, that is,

a Tf-idf score is associated with a document only if a term is present in it. A term

not appearing in a document has a Tf-idf score of zero as the term frequency in the
document is zero. These zero-valued Tf-idf scores are not stored within the index.

Tf-Idf in Pig

The following steps illustrate how to calculate Tf-idf for the NSF grants abstract
document corpus that was described previously:

1. The prerequisites are loading all the documents into the HDFS. This can
be done using the hadoop fs -cp command. The next step will be to
load the files into a Pig relation so that we can run data calculations and
transformations on the relation. The PigStorage class is used to read a
document into a relation that has the filename and the sentence in the
document as chararray (file_and_sentence). We use the -tagsource
directive to inform the PigStorage class to tag the filename along with the
tuple in the relation. This is needed to identify a particular document. Since
the Tf-idf scores are term and document dependent, the filename acts as the
document identifier.

2. Once the relation is loaded, the next step is to tokenize the sentence into its
words. These words are used as terms for further calculations. We use the
TOKENIZE Pig function to split the sentence into words. A more sophisticated
regular expression can also be used to tokenize the sentence. The output is
another relation, file and words, that contains the filename and the terms
associated with that sentence in the file. We will get a number of such tuples
for a single file depending on the number of sentences that are present in
that file.
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These tuples are now passed through a filter statement to remove all
words that don't contain alphanumeric characters. The regular expression
\w+ is used to do this filtering. In reality, a stop words list is also used to
filter out commonly occurring words.

Next, all the remaining terms are converted to lowercase strings so that

the same terms are uniformly represented. This is a very simplistic kind of
transformation on the terms. In practice, operations such as stemming and
lemmatization that help in representing variants of a word as the same word
or term are done at this stage. For example, swimmers or swimmer can be
represented as a single word, that is, swimmer. There are many stemming
algorithms, and most well-known natural language processing libraries have
built-in stemmers. Porter Stemmer is a very popular stemmer:

/* This is a Pig template file to get tf-idf calculated for
all the NSF grants. Before starting off,

* 1) Unzip the zip file in your local directory

* 2) Use bin/hadoop fs -cp

*/

/* We have to load all the files in hdfs grants directory.
This can be done using the command below. *The nice thing
about the PigStorage class is that it helps us get the file
name along with the *sentence in the file. At the end of
this command, you will have (file name, sentence) tuples to
go *further. Please take care to change the hdfs load
directory if necessary*/

file and sentence = load 'grants/*' using PigStorage('\t',
'-tagsource') as (file name: chararray, sentence:
chararray) ;

/*We now split each sentence using the TOKENIZE Pig
function and flatten out the tokens we get from the split.
At the end of this step, we get (filename, wordl,
word2,...) . The tuple of words are broken down from the
sentence.

*/

file_and words = foreach file_and_ sentence generate
file_name as file name,flatten (TOKENIZE (sentence)) as
words;

filtered file and words = filter file_and words by (words
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matches '"\\w+');

/*We now group each file and the words of the sentence that

it follows. A group operation in Pig gives us (group,

{members of the group}). A flatten on the group will

produce more tuples. Please refer to this document for the
details. We are doing the following step for us to get neat
tuples of the form (filename, word, count of

word) . http://pig.apache.org/docs/r0.9.1/basic.html#flatten

*/

lowercased file_and word = foreach filtered file and words
generate file name as file name, LOWER (words) as word;

5. Once we have cleansed and transformed the data appropriately, the
GROUP BY operator in Pig is used to group on filename and the term. This
yields a grouping of all terms in a particular file. The key to this grouping
is the filename and is represented by the relation file_and _words_groups
in the following Pig code snippet.

6. We now take the term counts per document by counting the number of terms
in the grouping. The file and_word_and_count relation represents this.
The relation has tuples that have the filename, the word, and the number of
times the word appears in the file. These are the term frequencies.

7. By grouping file_and word and_count differently, that is, by the filename,
we can get the number of terms in a particular document. Summing up
the counts for the terms in each and every group does this calculation. The
unnormalized_term_counts relation gives the number of terms or words
in each file.

8. These term counts in each document can then be used to normalize and
calculate the term frequencies. In the example, the term_frequencies
relation represents the term frequencies. It is calculated by dividing the
term frequency by the number of terms in the document:

file and words_groups = group lowercased file and word by
(file _name, word) ;

file_and word and count = foreach file and words_groups
generate flatten(group) as (file name:chararray,
word:chararray) ,
COUNT_STAR (lowercased_file and word) as count;

/* Now that we have the data massaged in the form of
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10.

11.

(filename, word, count). I will let you proceed with the
rest of the exercise*/

/* We can now group appropriately and get different
statistics. For example, we are getting the number of terms
per document using the Pig commands below. JOINS maybe
important things to take note of when trying to normalise
the tf or the idf scores*/

group file and word and count = group
file and word and count by file name;

/* Add doc sizes to the term count tuple */
unnormalized term counts = foreach
group file and word and count generate group as
file name, flatten(file and word and count. (word,

count)) as (word, count),
SUM(file and word and count.count) as
doc_size;

/* Generate the tf scores */

term frequencies = foreach unnormalized term counts
generate file name as file name, word as term,
((double)count / (double)doc size) as term freq;

By grouping term_frequencies by each term and counting the number

of elements in the group, we get the document frequency for that particular
term. In the next code snippet, the relation doc_term_count represents the
number of documents containing the term.

The document frequencies now have to be normalized by the number of
documents in the corpus. Grouping the file and_sentence relation by the
filename does this. The count of the groups represents the number of files in
the corpus.

The final Tf-idf scores are then calculated per term and per file using the
formula discussed previously. We then order the scores to validate our
calculations. The term-document pairs with the highest scores are the most
relevant terms for the document:

/* Generate the document frequencies */
group_term frequencies = group term frequencies by term;

doc_term count = foreach group term frequencies generate
FLATTEN (term frequencies) as (file name, term,
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term freq), COUNT STAR(term frequencies) as
doc_freq;

/* Generate the doc count in the corpus */
doc _groups = foreach (group file and sentence by file name)
generate group as file name;

doc_count = foreach(group doc groups all) generate
COUNT (doc_groups) as n_docs;

/* Generate the final tf-idf scores */

scores = foreach doc term count generate file name as
file name, term as term, term freqg *
LOG ( (double)doc_count.n docs/ (double)doc_freq)
as tf idf;

ordered scores = order scores by tf idf ;

Cosine similarity distance measures

In the previous section, we saw how Tf-idf scores are calculated. A document
can be represented as a vector of Tf-idf scores for each term that occurs in it. For
non-occurring terms, the Tf-idf score is zero. Given this vector representation of
a document, a question arises as to how we can find the distance between two
documents or, in the case of a search engine, the distance between a document
and a query. The least distance between two documents or a document and a
query deems them most similar or relevant.

There are many distance measures. A commonly used distance measure involves
finding the Euclidean distance or the vector difference between the two documents
or the document and the query. The resultant vector is dependent on the length

of the two vectors involved in the subtraction. Euclidean distance leads to longer
documents being closer to each other than documents of different sizes. This

might not be a very accurate way of measuring distance between two documents,
particularly in the text analytics setting:

|D1 - D2
or
|[p1 - Q|
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By taking into consideration the angle between the two vectors, document distance can
be represented more correctly. In text analytics, document distances are calculated as
the cosine of the angle between the two Tf-idf document vectors. The same calculation
is made for the distance between a query and a document as the query is treated as a
small document.

From elementary trigonometry, we know that two documents are similar if the cosine
of the angle between their vectors is large. The cosine of zero is one, representing
documents that are the same or very similar. Documents represented by orthogonal
vectors have a value close to zero as the cosine of 90 degrees is equal to zero.

The cosine of two vectors can be calculated by the inner product of the two vectors as
shown in the following formula:

Cosine similarity of document i and j = dli * dlj + d2i * d2j..... +
dki * dkj

Dividing it by the length of the two vectors normalizes the cosine similarity.

Clustering using k-means

k-means is a popular clustering algorithm. It is built into the Apache Mahout library
and can be run on a Hadoop cluster. It is an unsupervised learning method that
groups data points by minimizing their distance from the cluster center.

The k-means algorithm is as follows when it is specified that the points have to be
put into k-clusters:

1. The first step is to initialize k cluster centers. These centers are generally
initialized randomly. In some cases, if prior knowledge of the clusters is
available, then these clusters can be placed intelligently to bring down the
computation time of the algorithm.

2. Each data point—in our example, the Tf-idf vector for a document—is
assigned the closest cluster center. This notion of closeness is via different
distance or similarity measures. We studied two distance measures in the
previous section — the Euclidean distance and the cosine similarity distance.

3. Once all the data points are assigned, the next step is to readjust the cluster
centers. The cluster centers are readjusted by taking the average of all the
points that were assigned to the cluster center in step 2.

4. The steps 2 and 3 are repeated till convergence is reached or a preset number
of iterations happen.
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K-means clustering using Apache Mahout

In this section, we will see how to run k-means clustering using Hadoop and
Apache Mahout. We will be running it on the grant proposal extracts discussed
in the previous section.

Installing Apache Mahout involves downloading the binaries from the
site http://mahout . apache.org. The downloaded archive file is
- extracted. The following environment variables are set to inform Mahout
% about the Hadoop installation:
~ export HADOOP_HOME=<Path to Hadoop installation folders
export MAHOUT_ HOME=<Path to Mahout installation folders>
export PATH=$PATH:$HADOOP_HOME/bin:$MAHOUT HOME/bin

The Mahout binary has a number of interesting command-line options.

We will examine the different steps and options that are provided by Mahout by
executing the following commands:

#Convert the grant proposals into a sequence file. It combines all

the files into a single file

bin/mahout seqgdirectory -i /user/hadoop/grants -o
/user/hadoop/grants-seqdir -c¢ UTF-8 -chunk 5

#Use seqdumper to visualize the sequence files. Observe the
combining of all the files
bin/mahout seqgdumper -i /user/hadoop/grants-segdir/part-m-00000

#Generate all statistics like tf, df and tf-idf from the corpus.
Generate ids for each term and construct the dictionary. All the
vectors are in a sparse format
bin/mahout seg2sparse -i /user/hadoop/grants-seqdir/ -o
/user/hadoop/grants-seqgdir-sparse --maxDFPercent 85 --
namedVector

#Examine the tf-idf vectors

bin/mahout seqgdumper -i /user/hadoop/grants-seqdir-sparse/tfidf-
vectors/part-r-00000

# Examine the dictionary file termid to term mappings

bin/mahout seqgdumper -i /user/hadoop/grants-seqdir-
sparse/dictionary.file-0

# Run kmeans for 3 clusters with cosine of tf-idf as the distance
metric
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bin/mahout kmeans -i /user/hadoop/grants-seqdir-sparse/tfidf-
vectors/ -c¢ /user/hadoop/grants-kmeans-clusters -o
/user/hadoop/grants-kmeans -dm
org.apache.mahout .common.distance.CosineDistanceMeasure
-x 10 -k 3 -ow --clustering

# Use cluster dump to get metrics about the cluster

bin/mahout clusterdump -i /user/hadoop/grants-kmeans/clusters-*-
final -o clusterdump -d /user/hadoop/grants-seqgdir-
sparse/dictionary.file-0 -dt sequencefile -b 100 -n 20 --
evaluate -dm
org.apache.mahout .common.distance.
CosineDistanceMeasure -sp 0 --
pointsDir /user/hadoop/grants-kmeans/clusteredPoints

The steps to run K-means clustering using Apache Mahout are as follows:

1. The Mahout binary has an option to create SequenceFile from a directory.
The seqdirectory option can be used to create it. The seqdirectory
command has many options such as the encoding to be used, the chunk size in
MB, and the class name for file parsing. In the following example, we create a
grants-seqgdir sequence file using UTF-8 encoding and a chunk size of 5 MB.

2. The segdumper command in the Mahout binary is a very useful tool for
visualizing the sequence file. In the following example, we observe one of
the parts of the sequence file. The filename forms the key of each record and
the contents of the file form its value in the sequence file. An example grants
proposal looks similar to the following snippet:

Key: /a9996416.txt: Value: Title : Inverse Diffraction
Problems in Optics

Type : Award

NSF Org : DMS

Latest

Amendment

Date : September 13, 1999

File : a9996416

Award Number: 9996416
Award Instr.: Standard Grant
Prgm Manager: Deborah Lockhart

DMS DIVISION OF MATHEMATICAL SCIENCES

MPS DIRECT FOR MATHEMATICAL & PHYSICAL SCIEN
Start Date : August 16, 1999
Expires : June 30, 2001 (Estimated)
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3.

The seg2sparse command is another useful utility that creates vectors
from the supplied sequence files. There are two kinds of vectors that are
output by this command. The first is a sequence file with the document ID
and a vector of tokenized document terms. The second is a sequence file
containing the document ID and a vector of Tf-idf scores. The seg2sparse
command eliminates the need for calculating the Tf-idf scores separately.
The command has many options such as -namedvector that creates a named
vector, -maxDFPercent that sets a limit on the maximum percentage of
documents that should considered for document frequency measurements,
and -minDF that sets the minimum document frequency for a term. In the
following example, we create vectorized representations of the grants files
using named vectors and a maxDFPercent value of 85. The following is a
listing of the grants-seqdir-sparse directory in HDFS:

Found 2 items

-Yw-r--r-- 3 sandeepkaranth supergroup 0 2014-09-09
15:14 grants-seqdir-sparse/df-count/ SUCCESS
-Yw-r--r-- 3 sandeepkaranth supergroup 159253 2014-09-09

15:14 grants-seqdir-sparse/df-count/part-r-00000

Found 1 items
-Yw-r--r-- 3 sandeepkaranth supergroup 162107 2014-09-09
15:14 grants-seqdir-sparse/dictionary.file-0

Found 1 items
-Yw-r--r-- 3 sandeepkaranth supergroup 159233 2014-09-09
15:14 grants-seqdir-sparse/frequency.file-0

Found 2 items

-Yw-r--r-- 3 sandeepkaranth supergroup 0 2014-09-09
15:14 grants-seqdir-sparse/tf-vectors/ SUCCESS
-Yw-r--r-- 3 sandeepkaranth supergroup 646642 2014-09-09

15:14 grants-seqdir-sparse/tf-vectors/part-r-00000

Found 2 items
-Yw-r--r-- 3 sandeepkaranth supergroup 0 2014-09-09
15:14 grants-seqdir-sparse/tfidf-vectors/ SUCCESS

-Yw-r--r-- 3 sandeepkaranth supergroup 646642 2014-09-09
15:14 grants-seqdir-sparse/tfidf-vectors/part-r-00000
Found 2 items

-Yw-r--r-- 3 sandeepkaranth supergroup 0 2014-09-09
15:14 grants-seqdir-sparse/tokenized-documents/ SUCCESS
-Yw-r--r-- 3 sandeepkaranth supergroup 884092 2014-09-09

15:14 grants-seqdir-sparse/tokenized-documents/part-m-00000

Found 2 items

-Yw-r--r-- 3 sandeepkaranth supergroup 0 2014-09-09
15:14 grants-seqdir-sparse/wordcount/ SUCCESS
-Yw-r--r-- 3 sandeepkaranth supergroup 193944 2014-09-09

15:14 grants-seqdir-sparse/wordcount/part-r-00000
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We examine the created files using the seqdumper command. Both the Tf-idf
vectors and the dictionary file that contains the term ID for terms mapping
are examined using the seqdumper command. The following outputs give the
Tt-idf vectors for a single file and a sample dictionary file snippet:

Key: /a9996454.txt: Value: /a9996454.txt:{3050:4.144606113433838,2
77:2.0784096717834473,501:3.9535505771636963,190:1.200166940689087
,6974:2.745239496231079,998:3.8460910320281982,6977:1.971051096916
1987,2819:2.483874797821045,2496:1.2779039144515991,1185:4.5240955
3527832,2039:1.704549789428711,4493:2.9781711101531982,4418:3.8701
69162750244 ,4868:3.5626842975616455,5574:4.786459922790527,5556:6.
918078899383545,5802:4.449987411499023,779:5.297285556793213,1037:
3.028601884841919,5024:3.655057668685913,6496:2.589235305786133,12
46:5.009603500366211,7356:3.793208122253418,4662:3.541300296783447
3,6829:3.756840467453003,4325:2.8123786449432373,2121:4.4499874114
99023,6497:5.292787075042725,2640:3.2604033946990967,1045:4.316456
317901611,1542:5.075188636779785,643:5.143134593963623,2411:4.3164
56317901611,5123:7.907101154327393,5565:6.330745697021484,4773:2.5
56445360183716,7500:3.1770219802856445,6687:5.080615043640137,2683
:4.211770057678223,321:5.143134593963623,850:3.451458692550659,580
7:3.1000609397888184,7750:5.479607105255127,6370:3.157219171524048
,2868:5.9904327392578125,5561:2.276860475540161,3510:4.95756196975
708,7066:4.691149711608887,5721:3.655057668685913,2673:4.786459922
790527,2397:4.604138374328613,5208:2.784979820251465,195:1.6337237
358093262,7737:3.3048553466796875,1856:8.246277809143066,1854:5.47
9607105255127,3564:4.449987411499023,1402:3.451458692550659,7533:2
.2746293544769287,1881:5.297285556793213,5236:2.493925094604492,55
95:3.756840467453003,4947:2.589235305786133,5707:3.081711769104004
,6532:5.9904327392578125,4031:4.144606113433838,7249:2.84054970741
27197,4208:2.252763032913208,1902:4.997402191162109,5624:4.8918204
30755615,4676:1.9650808572769165,7765:2.4770045280456543,1638:12.7
9179573059082,1637:4.604138374328613,2995:2.930161714553833,4099:3
.157219171524048,2778:5.143134593963623,5874:2.930161714553833,248
3:8.76198959350586,574:5.143134593963623,3847:3.2199668884277344,6
704:4.786459922790527,3485:2.9146575927734375,3529:7.0053181648254
395,7574:5.143134593963623,7608:3.4781270027160645,2697:4.19867324
8291016,3597:2.84804368019104,5083:1.8686890602111816,2435:3.91099
09534454346,2896:3.756840467453003,7386:5.479607105255127,6678:5.9
904327392578125,4613:4.255831718444824,1526:4.691149711608887,4517
:5.26334810256958,4218:7.2734904289245605,2561:2.5044660568237305,
2425:2.611708164215088,7065:4.255831718444824,387:5.14313459396362
3,6800:3.687847375869751,6244:2.635207414627075,3846:3.68784737586
9751,5904:2.352846384048462,3954:4.144606113433838,197:2.406913757
3242188,6774:4.604138374328613,3235:3.756840467453003,7205:5.14313
4593963623,1224:4.38099479675293,6898:2.473924398422241,32:1.26304
47149276733,601:5.143134593963623,3943:5.9904327392578125,2509:4.8
91820430755615,7181:3.4781270027160645,3337:4.188774108886719,3860
:2.6702041625976562,6963:4.198673248291016,7216:3.5336968898773193
,3925:4.152933120727539,1863:5.7027506828308105}
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Input Path: /user/sandeepkaranth/grants-seqdir-sparse/dictionary.
file-0

Key: zirconia: Value: 7871
Key: znati: Value: 7872

Key: zoe: Value: 7873

Key: zone: Value: 7874

Key: zones: Value: 7875

Key: zooplankton: Value: 7876
Key: zygotes: Value: 7877
Key: zygotic: Value: 7878

5. Once we have the vectorized representations of our grants files, we then
run k-means clustering. The Mahout binary has the kmeans command
that is used to run this clustering algorithm. The distance metric we
choose is the cosine distance measure and can be specified by the -dm
option. It is implemented by the org.apache .mahout .common.distance.
CosineDistanceMeasure class. In the following example, we specify the
number of clusters as 3 with the -k switch. The -x switch can be used to
specify the maximum number of iterations. In our case, we have set it to 10.

6. We can view the cluster output by the k-means clustering using the
clusterdump command supported by Mahout. The clusterdump command
has some elaborate options such as the -b option that allows the user to
choose the number of characters in the file to be displayed, the -n option
that shows the topmost # terms based on the Tf-idf scores, and an-evaluate
option to evaluate the input. The following snippet shows the output of the
clusterdump command:

14/09/09 15:45:51 INFO evaluation.ClusterEvaluator: Scaled
Inter-Cluster Density = 0.6053257638783347

14/09/09 15:45:51 INFO evaluation.ClusterEvaluator: Intra-
Cluster Density[277] = 0.6828160148795702

14/09/09 15:45:51 INFO evaluation.ClusterEvaluator: Intra-
Cluster Density[423] = 0.6729720492208191

14/09/09 15:45:51 INFO evaluation.ClusterEvaluator: Intra-
Cluster Density[97] = 0.6610114589088609

14/09/09 15:45:51 INFO evaluation.ClusterEvaluator: Average
Intra-Cluster Density = 0.6722665076697502

14/09/09 15:45:51 INFO clustering.ClusterDumper: Wrote 3
clusters
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RHadoop

R is a programming language used for statistics, data science, and visualization. It has
a number of packages that can be imported to perform some specialized or custom
tasks. It has more than 5,000 data analysis algorithms implemented as libraries. These
algorithms can be used to facilitate a wide variety of data analysis tasks, much more
than those supported by Apache Mahout. The community using R as a language is
very big and vibrant.

However, R has two drawbacks: it executes in memory and its support for
multithreading is minimal. These drawbacks make R unsuitable for big data
crunching where disk-based analysis and distribution are mandatory. One
alternative would be using R programs by using Hadoop Streaming. But this is

a tedious proposition, and RHadoop had to be envisioned. RHadoop also uses
Hadoop Streaming as its underlying mechanism to run R scripts in Hadoop, but
alleviates some of the pain points that native streaming has. Some of the advantages
of RHadoop are as follows:

* It eliminates the need to script R functions manually in the MapReduce
paradigm. In-built library functions do this automatically for the user.

* Itallows access —both reading and writing data from and to HDFS.

* It allows the same R script to run locally and on cluster environments.

RHadoop is a set of five R packages that can be used to analyze data in Hadoop.
The following are the constituents of RHadoop:

* ravro: This is the R package that helps in serializing and deserializing data
that is present in the Avro data format.

* rmr: This is the R package that provides Hadoop MapReduce functionality
within R.

* rhdfs: This is the R package that provides functions to manage the data
resident in HDFS from within R.

* rhbase: This is the R package that provides functions to manage an HBase
database from within R.

* plyrmr: This is the R package used for structured data processing similar to
plyr. This package uses rmr as the underlying framework.
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Summary

Hadoop is a very useful tool for big data transformation and processing. It can come
in handy at almost all the stages of the data analytics workflow. Data analytics is not
about the algorithms but more about the data. Larger data can yield almost two-fold
improvements in prediction. A data scientist should worry more about the cleansing,
transformation, feature engineering, and validation of results rather than the actual
algorithm that will be used to do the analysis. This does not mean that the analysis
algorithm choice is not important. Instead, it means that there are other players that
are equally important and vital for healthy decision making.

In this chapter, the key takeaways are as follows:

Hadoop is generally used for analytics on data sizes of 1 TB and above.
However, the ease of use brought about by functional programming concepts
in Hadoop tempts people to use it for smaller data sizes. There is nothing
wrong with this approach as long as they are cognizant of the fact about
higher latency in doing so.

Data mining is the branch that deals with discovering patterns and
knowledge from data. Machine learning provides the tools for data mining.

Machine learning algorithms are of the supervised, unsupervised, and the
semi-supervised kind. Supervised learning requires labeling from domain
experts and can be expensive. There are newer crowd-sourced methods
that can gather labeled data. One such approach is to use Mechanical Turk
by Amazon.

Apache Mahout and RHadoop are popular data analysis libraries that
have extensive support on Hadoop. Apache Mahout has stopped accepting
algorithms in the MapReduce paradigm since April 2014. However, the
older entries in the library still support Hadoop. It is important for the
individual using these algorithms to check whether the implementation is
parallelized or not as these libraries accept non-parallelized single-machine
implementations as well.

Tf-1df is a popular metric used in text analytics. It takes into account both the
popularity of a term in a document and penalizes non-differentiating terms
by looking at the corpus that the documents come from. Cosine distance

is used to measure similarity between documents. Euclidean distances fail
because of variations in document lengths.
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Traditionally, Hadoop has been supported on Unix-based operating systems.
Installation on Microsoft Windows was tedious and not consistent. It involved
installing Unix-based emulators such as Cygwin and carrying out installation steps
similar to Hadoop installations on Unix systems. Other alternatives were to run a
Linux virtual machine on Windows hosts and install Hadoop on them. But Hadoop
was still not natively available on the Microsoft Windows operating system until
Hadoop 2.0 arrived.

With all major players moving into the cloud, the Hadoop as a Service (Haa$S)
offering is becoming popular. It offers an easy and cost-efficient way of analyzing big
data on the cloud. Microsoft also joined the cloud bandwagon with the Azure suite
of services on the cloud. The Microsoft Azure cloud not only supports Linux Virtual
Machines, but also provides Hadoop as a service. Players such as Hortonworks
collaborated with Microsoft to bring Hadoop to Windows.
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Hadoop's native support on Microsoft Windows becomes immensely
important because:

Microsoft Windows is known for having excellent tooling for business
intelligence. Microsoft Excel, PowerPivot for Excel, and PowerView are a few
examples of tools that can facilitate powerful decision making by analyzing
and visualizing data from enterprise data sources. The power of these native
Windows tools can be unleashed on big data stored and processed by Hadoop.

SQL Server and related technologies are native Windows database solutions
that are widely deployed in many enterprises. They cater to the enterprise
needs of storing and managing structured data. With Hadoop on Windows
natively, unstructured data can also be added into the mix for insightful
decision making. This involves almost zero migration and learning costs for
the enterprise.

In this chapter, we will look at single-node deployment of Hadoop on
Microsoft Windows.

Deploying Hadoop on Microsoft Windows

In this section, we will look in detail as to how we can build and install Hadoop
natively on a Windows system. We will be using Windows 8 to install Hadoop.
The same steps can be employed to install Hadoop on Windows Server 2008 or

Windows 7. We will be installing Hadoop on a 64-bit Windows OS running on

64-bit hardware.
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Prerequisites

Installing Hadoop on Windows requires the following platforms, software, and
tools installed:

Java JDK: Java is the soul of Hadoop and requires it to be installed on the
machine. Java from Oracle comes with the Java Runtime Environment (JRE)
and the Java Development Kit (JDK). Hadoop installation requires the

JDK. The JDK can be obtained from Oracle's website. To reiterate, it is very
important to choose the JDK that is higher than 1.6. We will choose the latest—
JDK 1.8. The following screenshot shows the page from where the JDK can be
downloaded. In this example, we choose the Windows x64 product. A 32-bit
user can choose the Windows x86 product. The download is about 170 MB in
size. Once downloaded, it can be installed using the installer in the package.
It is very important to choose the right processor architecture and OS for the
JDK. Otherwise, there could be undesirable results.

Java SE Development Kit 8u20
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.

Thank you for accepting the Oracle Binary Code License Agreement for Java SE; you may now
download this software.

Product / File Description ‘ File Size ‘ Download
Linux x86 13524 MB  # jdk-Bu20-inux-i586.rpm
Linux x84 154.87 B # jdk-8u20-linux-i586.tar.gz
Linux xG4 135.6 MB ¥ jdk-8u20-linux-x64.rpm
Linux xG4 153.42 B # jdk-8u20-linux-x64.tar.oz
Mac QS X x64 20911MB  # jdk-Su20-macosx-x64.dmg
Solaris SPARC 64-hit (SVR4 package) 137.02MB  # jdk-Su20-solaris-sparcv9.tar.Z
Solaris SPARC G4-bit 97.09 MB # jdk-8u20-solaris-sparcvi.tar.gz
Solaris x64 (SVR4 package) 13716 B # jdk-8u20-solaris-x64.tar.Z
Solaris x64 9422 MB ¥ jdk-8u20-solaris-x64.tar.gz
Windows x88 161.08 MB % jdk-8u20-windows-i586.exe
Windows x54 173.08 MB ¥ jdk-8u20-windows-x64.exe

Java SE Development Kit 8u20 Demos and Samples Downloads

Java SE Development Kit 8u20 Demos and Samples Downloads are released under the Oracle
BSD License.

Product / File Description File Size Download
Linux x84 58.65MB ¥ jdk-8u20-inux-i586-demos.rpm
Linux x84 568.48MB ¥ jdk-8u20Jinux-i586-demos.tar.gz
Linux xG4 5871 MB  # jdk-8u20-inux-x64-demos.rpm
Linux x&4 58.56 MB  # jdk-Bu20-linux-x64-demos.tar.gz
Mac O3S X 5922MB ¥ jdk-Su20-macosx-x86_64-demos.zip
Solaris SPARC 64-bit 1357 MB  # jdk-8u20-solaris-sparcvd-demos.tar.Z
Solaris SPARC G4-hit 928 MB # jdk-Su20-solaris-sparcv9-demos.tar.gz
Solaris xG64 13.5 MB ¥ jdk-8u20-solaris-x64-demos.tar.Z
Solaris xG64 9.22 MB # jdk-8u20-solaris-x64-demos.tar.oz
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* Setting the Path variable: Now the Windows Path environment variable has
to be set so that the command-line tools can directly pick the Java executable

from the path. In the Windows Control Panel, under System Properties, a

button is provided for Environment Variables. Clicking on this button opens
up the Environment Variables dialog. The appropriate environment variable
can be chosen for editing if it is already present, or a new one can be created.
We use the existing path variable and add the bin folder for the Java binaries.
In the preceding example, it is C: \Program Files\Java\jdk1.8.0_20\bin\.
It is very important to separate the paths using a semicolon. The path can be

tested by opening the command prompt and typing java -version. This

should give the version number of the installed Java software. The following

screenshot shows the setting of the Path environment variable:

C\Windows\system32\cmd.exe

System Properties

Computer Name | Hardware | Advanced | System Protection | Remote

“You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processor scheduling, memery usage, and virtual memary

User Profiles
Desktop settings related to your signin

Startup and Recovery

System startup, system failure, and debugging infformation

Settings

Settings

Settings

Environment Variables

OK

Cancel

Variable name:

Variable value:

Environment Variables

Edit System Variable

Path

0% C:\Program Files\Javaljdk1.8.0_20\hinY

System variables

Variable Value =
05 Windaws_NT

Path C:\ProgramData\Crade\Javaljavapath;...
PATHEXT .COM;.EXE; .BAT;.CMD; . VBS; VEE;.J5;....
PROCESSOR_A... AMD&4 e

New... Edit... Delete
oK Cancel
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* Setting the JAVA_HOME environment variable: All Hadoop binaries choose
the version of Java by looking up the JavA_HOME directory. It is important to set
this variable before starting off with Hadoop deployment and usage. Again, we
use the Environment Variables dialog to do this. This time, instead of editing,
we click on the New button to add a variable. In the following example, we
set JAVA_HOME as C: \Progra~1\Jdava\jdkl.8.0_20. Itis important to note
that the Program Files folder has been shortened to a 8-letter path called
Progra~1. This is because Hadoop does not handle spaces in the paths.
Windows OS understands this 8-letter scheme, as it is a legacy feature.

The following screenshot shows the actual setting of the JaAvA_ HOME

environment variable:

System Properties

Computer Name I Hardware | Advanced |Sy5tem Protection I Hemote|

You must be logged on as an Administrator to make most of these changes

Performance

Visual effects, processor scheduling, memory usage, and virtual memony

User Profiles
Desktop settings related to your sign-in

Startup and Recovery
System startup, system failure, and debugging information

Environment Variables...

[ ok |[ cancd | pply

Environment Variables

User variables for Sandeepkaranth

Variable Value
Edit System Variable

Variable name: [ 1avA_HomE |

Variable value:

asl.log Destination=file

ComSpec C:\Windows\system32\cmd. exe

FP_NO_HOST_C... NO

JAVA_HOME C:'Progra~1\avayjdk1.8.0_20 hd
[ mvew.. || Edt. || Deer |

| oK | | Cancel |

* Downloading Hadoop sources: We download the Hadoop sources from the
nearest mirror site. It is important to download the sources, compile them,
and then deploy Hadoop on Windows for native support. Using the binaries
as is throws an error when deploying Hadoop on Windows. At a later point
of time, there could be support to install Hadoop from binaries. We choose
the latest version of Hadoop to install, Hadoop 2.5.0. As in the following
screenshot, we download only the source tar file, hadoop-2.5.0-src.tar.
gz. The sources can then be extracted into a local folder. The download is

about 15 MB in size.
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In the example, we download and extract the sources to the ¢: \hdp\hdp
directory. It will save you a lot of pain if the directory names are short.
Windows has some restrictions on the maximum number of characters
in the directory name.

bt
1]

<« C' [ mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.5.0/

Index of /apache/hadoop/common/hadoop-2.5.0

Hame Last modified Size QDescription

: Parent Director -
&

doop—2.5.0-8rc.tar.gz 06-Bug-2014 13:51 15M

hadoop-2.5.0-8rc.tar.gz.mds 06-Aug-2014 16:54 1.2K

ﬁ hadoop—2.5.0.tar.qz 12-Bug-2014 08:00 297TM
hadoop-2.5.0.tar.gz.mds 12-Aug-2014 08:04 1.1K

ldpache Server at mirrors.ibiblio.org Port 80

* Protobuf compiler: Protobuf is a serialization format and the Hadoop
build requires this compiler to be available during the build process. The
Windows version of the compiler binary needs to be downloaded. In this
example, we choose protoc-2.5.0-win32.zip and download it as shown
in the following screenshot. Once we download and extract it, we use the
Environment Variables dialog to add the bin directory of the protobuf
compiler to the path.

<« C | 8 httpsi//code.google.com/p/protobuf/downloads/detailZname=protoc-2.5.0-win32.zip&can=2&q= e =

My favorites v | Signin  *|

.0’ protobuf

Protocal Buffers - Google's data interchange format |Search projects|

Project Home | Downloads | Wiki  Issues  Source

Search | Current downloads v | for | Search |
Download: Protocol Buffers 2.5.0 compiler -- Windows binary

75 people starred this download

Uploaded by: xiaof...@google.com File: - -
Released:  Feb 27,2013 protoc-2.5.0-win32.zip 637 KB
Uploaded. Feb 27,2013 Description:

Downloads: 81543
Type-Executable
OpSys-Windows
Featured

SHA1 Checksum: 398d9c5af7c42e94828f30bb1b79ed 15abedd67f What's this?
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* Maven Build System: Hadoop is built using the Maven build system. The
build system uses specifications specified in the pom.xm1 file, which is found in
the root directory of the Hadoop sources. To install Maven on the Windows
machine, we can go to the Maven project page and download the latest Apache
Maven binaries. We choose the version 3.2.3. Once downloaded, the ZIP file
is extracted and the bin folder is again appended in the path environment
variable for ease of use.

+ + € |[3 mavenapacheara/downloadcai =

= Apache Maven Project.

— i A
Aoscha » Maven » Download Ansche Maven Last Bublishad: 2014-09 06

*Main Download Apache Maven 3.2.3

Welenrmn

Maven is distributed in several formats for your convenience, Use a source archive i you intend to buld Maven yourself. Otherwise, simply pick 3 ready-made binary distribution
and follow the installation instructions given at the end of this document.

You will be prompted for a mirror - of the file 13 not found on yours, please be pabient, as it may take 24 hours bo reach all mirors,

Habass e (5:2:2) In order ta guard against comupted it is highly ta werify the signature of the release bundies against the public KEYS used by the Apache
R o ) Maven developers.

Al Refease Note:

lcarms Maven is drstributed under the Apache License, version 2.0,

Sedunty

We strongly encouage our users to configure @ Maven reposstory meror closer ko ther Jucation, please read How to Use Marors for Repositones.,
-10C Integration Be aure to chack the campatibility nates before LSIng this version to avaid sumrises. While Maven 3 aims to be hackward-compatible with Maven 2.x ta the extont possible, thers

Eulipen are still 2 faw sigrificant changes.

BetBrars

* Alsoat Maven ——

What is Maven? | Cmirror

Features

Fh) (offical) The currently selected mirror is hitp: / fapache. mirrors.lucidnetwarks.net /. 1f yru encounter a problem with this mimor, please select ancther mirrar. 1 all mimors are fading,
FAQ (uncfficial) there are backup mirrors (at the end of the mimors list) that shoukd be avaiable.

Other merrors: | http:/fapache mirrors uodnetworks.net/ ¥ | [ Change

You may also consult the complete hst of murors,

Phugin Developer Centre

Maven Repostory
Centre

Download page for Apache Maven 3.2.3

* The next important thing is to download the Windows SDK. If you are using
an x86 machine, it is important to get the x86 build tools. Otherwise, the user
needs to get the x64 build tools. Installing a high SKU of Visual Studio may
install all the necessary tools. In this example, we will install Visual Studio
Express for C++ 2010, which is a free Visual Studio download. This Visual
Studio SKU does not come with the Windows SDK. We must separately
install the Windows SDK. The version of the Windows SDK installed is 7.1.
To verify that the SDK is installed, you can navigate to C: \Program Files\
Microsoft SDKs\Windows on your computer. For x86 machines, it will be
present in C:\Program Files (x86) \Microsoft SDKs\Windows. Also, it is
important to include the SDKs bin folder in the path environment so that
the build process can automatically pick it up. An alternative to using the
Windows build tools is installing CMake, but this requires the user to change
a few configurations within the pom. xml files in the Hadoop sources.
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Building Hadoop

Once all the pre-requisites are in place, Hadoop can be built and packaged. To do the
build, you can open the Microsoft Visual Studio command prompt. It sets some of
the necessary environment settings. Additionally:

1. Itisimportant to set the Plat form environment variable to x64 or Win32
depending on the Hadoop deployment desired. This can be done using
the following command:

set Platform=x64

For Win32, use the following command:

set Platform=Win32

2. Itis very important to ensure that the environment variable has the right
name. This variable is case sensitive and instructs the Visual Studio project
files to use the appropriate build configuration.

3. The next step is to actually issue the Maven build command. The command
mvn package -Pdist,native-win -DskipTests -Dtar is used to start the
build. Using the newer JDK can cause some parse issues when generating
Javadocs. This can be solved by either using an older JDK such as 1.7 or
skipping Javadocs generation. The latter is done by adding the -Dmaven.
javadocs.skip=true option in the Maven package command.

The following screenshot shows the end of the build process. The summary
of the standard output shows the status of each build step. Once a failure is
encountered, the rest of the steps are skipped. It is also important to have
the computer connected to the Internet during the build process. Maven
automatically downloads dependencies from configured binary repositories
during the build process:
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fipache Hadoop SUCCESS
Apache Hadoop R SUCCESS
fipache Hadoop HDFE BookKeeper Journal . SUCCESS
fApache Hadoop HDFS-NES . SUCCESS
Apache Hadoop HDFS Project R SUCCESS
hadoop—yarn . SUCCESS
hadoop—varn—api . R SUCCESS
hadoop—vyarn—conmo SUCCESS
hadoop—yarn—server . SUCCESS
hadoop—vyarn—servewr I R SUCCESS
hadoop—yarn—server—nodemanager . SUCCESS
hadoop—varn—server—uwebh—proxy SUCCESS
hadoop—vyarn—server—applicationhistoryservice SUCCESS
hadoop-yarn—server—resourcemanager

hadoop—vyarn—server—tests

hadoop—vyarn—client

hadoop—varn—applications
hadoop—vyarn—applications—distributedshell
hadoop—yarn—applications—unmanaged—am—launcher .
hadoop—vyarn—site

hadoop—yarn—project

hadoop—mapreduce—client ...

hadoop—mapreduce—client—core ..
hadoop—mapreduce—client—common .
hadoop—mapreduce—client—shuff le

hadoop—mapreduce—client—app .

hadoop—mapreduce—client—hs .

hadoop—mapreduce—client—johc .
hadoop—mapreduce—client—hs-plugins

Apache Hadoop MapReduce Examples .

hadoop—mapreduce

Apache Hadoop MapReduce Streaming R SUCGCESS
fipache Hadoop Distributed Copy ... . SUCCESS
fApache Hadoop Archives . SUCCESS
Apache Hadoop Rumen R SUCCESS
fipache Hadoop Gridmix . . SUCCESS
Apache Hadoop Data Join R SUCGCESS
fipache Hadoop Extras .. . SUCCESS
Apache Hadoop . SUCCESS
Apache Hadoop R SUCCESS
fipache Hadoop i . SUCCESS
Apache Hadoop Mini—Cluster _.._. R SUCGCESS
fipache Hadoop Scheduler Load Simulator . SUCCESS
Apache Hadoop Tools Dist .. o SUCCESS
Apache Hadoop Tools SUCCESS
fipache Hadoop Dist SUCCESS

I R R R R R R R R R R R R R R R I R I

O N S S S A A i) Wi S g}

Total time: B92:33 min
Finished at: 2814-@9-13T80:08:36-87:08
Final Memory: 91M~-/482M

4. The build yields a target directory. Inside the target directory, Hadoop
binaries, samples, and configuration files are bundled in a zipped TAR file.
In this example, a hadoop-2.5.0.tar.gz file is generated. We extract the
contents of the file to the C: \hdp\hdp path.
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Configuring Hadoop

In this section, we will see the different configuration settings for single-node
deployment of Hadoop on Windows:

1. The Hadoop-env.cnd file is present in the etc\hadoop directory at the root
of the Hadoop installation. This is the configuration directory for Hadoop.
The hadoop-env. cmd command file needs to be modified to set the right
environment to execute the Hadoop daemons correctly. The most important
configuration is the setting of the JAVA_HOME environment variable. We
also set HADOOP_HOME to the root of the Hadoop installation, that is, the path
from where we extracted the Hadoop binaries and configuration files. The
HADOOP_CONF DIR and YARN CONF DIR environment variables are set to the
configuration directories of Hadoop and YARN respectively. The YARN
configuration directory is the same as the Hadoop configuration directory in
our example. We also add the Hadoop directories to the path variable. The
following script snippet is a sample hadoop-env.cmd script file:

@rem The java implementation to use. Required.

set JAVA HOME=%JAVA HOME%
set HADOOP_ HOME=c:\hdp\hdp

@rem The jsvc implementation to use. Jsvc is required to run
secure datanodes.

@rem set JSVC HOME=%JSVC_ HOME%
set HADOOP CONF DIR=%HADOOP HOME%\etc\hadoop

set YARN CONF DIR=%HADOOP CONF DIR%
set PATH=%PATHS;%HADOOP HOME%\bin

@rem Extra Java CLASSPATH elements. Automatically insert
capacity-scheduler.

if exist %HADOOP_ HOME%\contrib\capacity-scheduler (
if not defined HADOOP CLASSPATH (

set HADOOP_ CLASSPATH=%HADOOP HOME%\contrib\capacity-
scheduler\*.jar

) else (

set HADOOP CLASSPATH=%HADOOP CLASSPATHS%; SHADOOP HOMES$%
\contrib\capacity-scheduler\*.jar
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@rem The maximum amount of heap to use, in MB. Default is
1000.

@rem set HADOOP HEAPSIZE=
@rem set HADOOP NAMENODE INIT HEAPSIZE=""

@rem Extra Java runtime options. Empty by default.

@rem set HADOOP OPTS=%HADOOP OPTS% -
Djava.net.preferIPv4Stack=true

@rem Command specific options appended to HADOOP OPTS when
specified

if not defined HADOOP SECURITY LOGGER (
set HADOOP_ SECURITY LOGGER=INFO,RFAS

)

if not defined HDFS AUDIT LOGGER (
set HDFS AUDIT LOGGER=INFO,NullAppender

set HADOOP NAMENODE OPTS=-
Dhadoop.security.logger=%HADOOP SECURITY LOGGER% -

Dhdfs.audit.logger=%HDFS AUDIT LOGGER% %HADOOP NAMENODE OPTS%

set HADOOP DATANODE OPTS=-Dhadoop.security.logger=ERROR, RFAS
%SHADOOP DATANODE OPTS%

set HADOOP SECONDARYNAMENODE OPTS=-
Dhadoop.security.logger=%HADOOP SECURITY LOGGER% -
Dhdfs.audit.logger=%HDFS_AUDIT LOGGER%
%$HADOOP SECONDARYNAMENODE OPTS%

@rem The following applies to multiple commands (fs, dfs,
fsck, distcp etc)

set HADOOP CLIENT OPTS=-Xmx512m %HADOOP CLIENT OPTS%

@rem set HADOOP JAVA PLATFORM OPTS="-XX:-UsePerfData
%SHADOOP JAVA PLATFORM OPTS%"

@rem On secure datanodes, user to run the datanode as after
dropping privileges

set HADOOP SECURE DN USER=%HADOOP SECURE DN USER%

@rem Where log files are stored. %HADOOP HOME%/logs by
default.
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@rem set HADOOP LOG DIR=%HADOOP LOG DIR%\%USERNAME%

@rem Where log files are stored in the secure data environment.

set
HADOOP SECURE DN LOG DIR=%HADOOP LOG DIR%\%HADOOP HDFS USER%

@rem The directory where pid files are stored. /tmp by
default.

@rem NOTE: this should be set to a directory that can only be
written to by

@rem the user that will run the hadoop daemons.
Otherwise there is the

@rem potential for a symlink attack.
set HADOOP PID DIR=%HADOOP PID DIR%
set HADOOP SECURE DN PID DIR=%HADOOP PID DIR%

@rem A string representing this instance of hadoop. %USERNAMES%
by default.

set HADOOP IDENT STRING=%USERNAMES%

2. Next we configure the core-site.xml file. The most important configuration
is setting the f£s.default.name property to the HDFS NameNode host and
port. In our case, since it is a single node deployment, it points to localhost
on port 19000. The following configuration snippet illustrates this setting:

<configurations>
<property>
<name>fs.default.name</names>
<value>hdfs://0.0.0.0:19000</value>
</property>
</configurations>

3. We then configure the hdfs-site.xml file. Here we set the replication factor
to 1 as we are doing a single-node deployment of Hadoop. The following
configuration snippet illustrates this setting:

<configurations
<propertys>
<name>dfs.replication</name>
<values>l</value>
</property>
</configurations>
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The mapred-site.xml file needs to be configured and pointed to YARN in
Hadoop 2.X. The $USERNAME% element can be replaced by the username of the
entity submitting the jobs. The following configuration snippet illustrates a
sample mapred-site.xml file. If the file is not present, it can be copied from
the mapred-site.xml.template file present in the configuration directory:

<configurations>
<propertys>
<name>mapreduce.job.user.name</name>
<value>%USERNAMES</value>
</propertys>
<propertys>
<name>mapreduce. framework .name</name>
<values>yarn</value>
</propertys>
<propertys>
<names>yarn.apps.stagingDir</name>
<value>/user/%$USERNAMES /staging</value>
</propertys>
<propertys>
<name>mapreduce.jobtracker.address</name>
<values>local</value>
</propertys>
</configurations>

The yarn-site.xml file is configured for the settings on the ResourceManager
and NodeManager daemons. The configurations include setting the daemon
endpoints and the log directories, and specifying the shuffle handlers. The
following configuration snippet illustrates a sample configuration for the
YARN daemons:

<configuration>
<property>
<name>yarn.server.resourcemanager .address</names>
<value>0.0.0.0:8020</value>
</property>
<property>
<names>yarn.server.resourcemanager.application
.expiry.interval</name>
<value>60000</values>
</property>
<property>
<name>yarn.server.nodemanager .address</name>
<value>0.0.0.0:45454</value>
</property>
<property>
<name>yarn.nodemanager .aux-services</name>
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<value>mapreduce shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-
services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred
.ShuffleHandler</value>
</property>
<property>
<name>yarn.server.nodemanager.remote-app-log-
dir</name>
<value>/app-logs</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/dep/logs/userlogs</value>
</property>
<property>
<name>yarn.server.mapreduce-appmanager.attempt-
listener.bindAddress</name>
<value>0.0.0.0</value>
</property>
<property>
<names>yarn.server.mapreduce-appmanager.client-
service.bindAddress</name>
<value>0.0.0.0</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<valuestrue</value>

</property>

<property>
<name>yarn.log-aggregation.retain-seconds</names>
<value>-1l</value> </property>

<property>

<name>yarn.application.classpath</name>

<Value>%HADOOP_CONF_DIR%,%HADOOP_COMMON_HOME%/Share/
hadoop/
common/*, $HADOOP _COMMON_HOME$%/share/hadoop/common/1ib/*, $HA
DOOP_HDFS HOME%/share/hadoop/hdfs/*, $HADOOP HDFS_ HOME$%/shar
e/hadoop/hdfs/1ib/*, $HADOOP MAPRED HOME%/share/hadoop/mapre
duce/*, $HADOOP MAPRED HOME$%/share/hadoop/mapreduce/lib/*, $H
ADOOP_YARN HOME$%/share/hadoop/yarn/*, $HADOOP_YARN HOMES$/sha
re/hadoop/yarn/lib/*</value>

</property>

</configurations>
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Deploying Hadoop
Once the configurations are complete, it is time to start the Hadoop daemons. This is
done by performing the following steps:

1.

Before starting the daemons, we can format the NameNode by issuing the

following command:

hdfs namenode -format

The following screenshot shows the output of the format command. Now

the HDEFS is formatted and ready to use. Since we have not specified a
particular directory name, the NameNode uses the C: \tmp directory to
store all of the metadata.

14-09,13 B4:27:21

148913 B4:27:31

alsze
148913 B4:27:31
= 1888
148913 B4:27:31
h {auth:SIMPLE>
148913 B4:27:31
148913 B4:27:31
14-89-13 B4:27:31
140913 B4:27:31
140913 B4:27:31
140913 B4:27:31
140913 B4:27:31
148913 B4:27:31
148913 B4:27:31
A times
14-089-13 B4:27:31
148913 B4:27:31
148913 B4:27:31
148913 B4:27:31

14,089,113 B4:27:31 INFO
= B.9990AAA128746A33

148913 B4:27:31 INFO

1408913 B4:27:31 INFO
= 38PRA

148913 B4:27:31 INFO

14-8%-13 B4:27:31 INFO

Visual Studio Command Prompt (2010) - g

blockmanagement .BlockManager: shouldCheckForEnocughRacks

blockmanagement .BlockManager: replicationRecheckInterval

blockmanagement .BlockManager: encryptDatalransfer

blockmanagement .BlockManager: maxMumBlocksToLog

namenode .FSHamesystem: fsOuner = SandeepXaran

namenode .FSMamesystem: supergroup

namenode .FSMamesystem: isPermissionEnabled
namenode .FSHamesystem: HA Enabled: false
namenode .FSNamesystem: Append Enabled: true
util.GSet: Computing capacity for map INodeMap
util.G8et: UM type bd-hit

util.GEet: 1.8x max memory 889 MB = 8.9 MB

util.G8et: capacity 24280 = 1048576 entries
namenode . NameMode : Cachlng file names occuring more than

SUpergroup
true

util.GSet: Computing capa61gz ior map cachedBlocks
i t

B.25x max memory a89 HB = 2.2 HB

capacity 2~18 262144 entries
namenode .FEHamesystem: dfg.namenode.gafemode threshold-pc
namenode .FENamezystem: dfs.namenode.zafemode.min.datanode
namenode .FENamezsystem: dfs.namenode.zafemode.extension

namenode .FiMamesystem:- Retry cache on namenode iz enabled

namenode . FSHamedyﬁtem- Retry cache will use B.83 of total

heap and retry cache entry expiry time is 6BEEAA millis

3 B4:27:31 INFO

14-09-13 B4:27:31
14,8913 04:27:31

KB
1480913 B4:27:31
140913 B4:27:32
140913 B4:27:32
14-07-,13 B4:27:32

Sﬁmputlng capa01ty for map MameModeRetrylache
it
util.GSet: 8. 329999999329447?46/ max memory 889 MB = 273.

util.GSet: capacity = 2715 = 32768 entries
namenode .NNConf : ACLs enahled? false

namenode .NNConf : EAttrs enabhled? true

namenode .NNConf : Maximum size of an xattr: 16384

e—format filesystem in Storage Directory “tmprhadoop-SandeepKaranth dfswname 7

<Y or N ¥

B4:27:56 INFO namenode.NameNode: SHUTDOWN_MSG:
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2. We then start the HDFS daemons, the NameNode, and the DataNode.
This is done by issuing start-dfs.cmd. This command script is present
in the $HADOOP_HOME$%\sbin folder. The Windows firewall may pop up a
notification asking the user to allow the daemons to open a listening port in
the firewall. It is important to allow the firewall to be reconfigured so that the
DataNode and NameNode can communicate with each other. The following
screenshot shows the Windows Firewall screen offering to allow access:

ﬁ Apache Hadoop Distribution - hadoop datanode - B

B lldp\] i Windows Security Alert
;1 e~hadoopmapr:
N

Windows Firewall has blocked some features of Java(TM) Platform SE binary on all public and
private networks.

& MName: lava Platform SE binar:

=

== Publisher: Orade Corparation

Path: C:\program files\javaYjdk1.8.0_20'bin'java.exe
- O “
Allow Java(TM) Platform SE binary to commuricate on these networks: PIEy (EmEile
[]Private networks, such as my home or wark network 2l SECRIZUENgentriss
ahled? true
-1 f an xattr: 16384
[ Public networks, such as thase in airports and coffee shops (not recommended dzelorgany
because these netiarks often have litte or no security) neshadeop-Sandeepkaranthhdfsina

er: Recovering unfinalized segme

4 t
LU TS T S el kb e hat are the risks of allowing an app through & firewall?

en successfully formatted.
HFO namenode .NHStorageRetention

log streams selected.
lode: Loading 1 IModes.
ohuf : Loaded F8Image in @ secon

) Allow access
NEQ util.ExitUtil: Exiting with image for txid B from “tmp\hadoo
NFO namenode .NameNode: SHUTDOWN I = : PEBHGO L]
i A 4/&9/13 84:29:43 INFO nanenode . FSNames H to _save fs image? false (stal
ing down MameMode at skaranth—win-192.168.56.1 haEnahled=false, isRoll
S 3 36 PP B P I MMM R 3 INFO namenode . FSEditLs i log segment at 1

INFO namenode -NameCache: initialized with @ entries B lookups

n

s .cmd 148913 INFO namenode.FSNamesystem: Finished loading FSImage in 7131

not recognized as an internal or external command.
bhatch file.

ecs
H4,09,13 =29: INFO namenode .NameNode: RPC server is bhinding to 8.0.08.0:17600|
rt—dfs.cnd

H4-09-13 INFO ipc.CallQueueManager: Using callQueue class java.util.con|
urrent . LlnkedﬂluckmgQueue

Once access has been granted, the NameNode and DataNode start in two
separate command windows, as shown in the following screenshot. The
standard output of each HDFS operation can be examined in these two
windows. Issuing HDFS commands on the filesystem once both the daemons
are up and running can conduct tests to validate HDFS. You might have to
create the user directories using the mkdir command before starting off though.
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Visual Studio Command Prompt (2010)

a isual C++ 2010 Express

INFO
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o 16 g bdps hasehadnopanipredus o]
hdp-hdp\sharenhadoopsmapreduce\hadoo
“hdp\share\hadoopnapreduce \hadoop-mapre

“hdp\hdp~share\hadoopinapreducehadoop-mapreduce—c Lien|

ak “hdp\share~hadoop\napreduce“hadoop-napreduce—c1i}
T hdphips hAravhadeopsnapredue e hadoo p-napreduee -oxample
Unknown —r on 2014

8.0_2

Unknown; compiled by ‘SandeepKaranth’

3
inpl.MetricsConfig: loaded properties from hadoop-metrics|
inpl.MetricsSystenInpl: Scheduled snapshot period at 18 s|

inpl.MetricsSystenlnpl: DataNode metrics system started

.GSe Cnmput)ng tapal:n:y fnr map NameNodd
B4139:31 INFg urillgee
84:27:31 INFO 8655599999329 1477461

util.GSet-

util.GSet: capacity = 2”15 32768 entrie:
namenode .NNConf: ACLs enabled? false

nanenode .NNConf: XAttrs enabled? true

namenode .NNConf: Maxinun size of an xatt.

©pax memory 88

namenode.FSImage: Allocated new BlockPoolld: B

75037
£ TN ranman. Storage: Storage directors \tnpshadoon
th df,‘\nam: has been successfully formatte
GEN 56 _INFO nanenode.NNStorageRetentionManager: Going to ry
[
56 INFO util.Exitltil: Exiting with status @
B413915¢ INF nanenods HumeNode s SHOTHOUN HEGe

H 4/89/13

rt—dfs.cmd
is not recognized as an internal or external command.
pperable program or hatch file.
:\hdpshdp>shinNstart-dfs.cnd

:\hdpshdp>

A 4/E9/13

4/37/13 84:29:51

Apache Hadoop Distribution - hadoop namenode -

INFO
INFO
INFO
INFO
INFO
invalid, ove
B4:29:51 INFO
INFO

INFO

INFO

nitor with
29 51 INFO

operat

@4:29:51
a
@4:29:51
=a
@4:29:51
a

4/E9/13 E4 29 51 lNFO hlnckmanayement GCacheReplicationMonitor:
liue{s> and @ hlo (s>,

ckis)

blockmanagement.BlockManager: Total numher of hlocks

bleckmanagement .BlockManager: Mumber of invalid blocks

blockmanagement . BlockManager: Number of under-replicated

blockmanagement .BlockManager: Number of ouer-replicated

blockmanagement . BlockManager: Number of blocks being urit I
hdfs.StateChange: STATE= Replication Queue initialization
splicated blocks complotod in 29 mecc
IPC Berver listener on starting
: IPC Server Responder: ,tartln
nhnenode.NameNode : NameNodb RPC up at: B.5.8.0/8.0.8.8:19
required for act]

namenode .FSNanmesysten: Starting services

blocknanagement . CacheReplicationMonitor: Starting CacheRe|
interval nillisecon
 blocknanagement CacheReplicationMonitox: Rescanning hecau
Scanned B direct]
in 1 millisecon

The NameNode and DataNode command windows

Next we need to start the YARN to run MapReduce jobs. This can be

done by the start-yarn.cmd file present in the sbin folder. Again, the
ResourceManager and the NodeManager start off in two separate command
windows as illustrated in the following screenshot. The standard output can
be examined to see the trace on the ResourceManager and NodeManager.

Apache Hadoop Distribution - yam  resourcemanager =

Apache Hadoop Dustribution - hadoop  datanode =

The ResourceManager and NodeManager command windows
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4. By navigating to localhost:50070 on the browser, the user should now
be able to see the web endpoint for HDFS. The home page is shown in the
following screenshot. It gives an overview of the health of HDFS and the
different parameters that were used to configure it.

) Namenode information % | = F%
€ = € | [ localhost50070/dishealthhtmivtab-overview =

Startup Progress L ililies

Overview 0.0.0.0:19000" (active)

Started: Sat Sep 13 04:20:39 PDT 2014
Version: 250 rUnknown
Compiled: 2014-09-13TDE 527 by Sandeepkaranth from Unknown
Cluster ID: CiD-425840a7-Meb-40a6-0087-266Ta1ce0bal
Block Pool ID: BP-1822145361-192 168 56 1-1410607675037
Summary
Security is off

Satemode 15 off
19 files and direciones, B DIocks = 25 1otal mesystem obecl(s)

Heap Memory used 43 54 MB of 103 MB Heap Mamary Max Heap Memory is BE9 MB

Hon Heap Memory used 37.37 MB of 36.21 MB Commited Non Heap Memory. Max Non Heap Memory is -1 B.

5. Selecting the Datanodes link on the top bar gives the different DataNodes
present in HDFS and the health of each DataNode, as shown in the
following screenshot:

dishealth html#tab-datanode

Overview  Dalanodes  Snapshol  Starup Progress  Utimies

Datanode Information

In operation

Node Lastcontact  Admin Slate  Capacity Used NonDFSUsed  Remaming  Blocks  Block pool used Faled Volumes Version

skarani-win (192 168 56 150010) 2 In Sendce WBE2T 08 45893 KB 437108 15808 6 346 93 KB (0%) o 250
Decomissioning

Under Replicated Biocks
Node Last contact Under rephcated blocks BIocks with g Iive replicas I Tiles under constrection

Hadoog. 2014
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Appendix

6. The startup progress link in the top bar shows the health of HDFS during
startup. This includes statistics about the £simage and edits file during
NameNode startup. It also indicates whether HDFS went into safe mode
or not.

/[ Hamenode information = Y - 0
& = € [ localhost50070/dfshe

alth.himi#tab-startup-progress e

Hadoop  Overvew  Daanodes  Snapshol  Slartup Progress  Uties
Startup Progress
Elapsed Time: 8 sec, Percent Compiete 100%
Phase Cempletion Elapsed Time
Loading fsimage P P e X E Y] 100% 0see
inades (D) 100%
diegation tokens (00) 100%
£ache paails (VD) 100%
Loading edits 100% 0 sec
Saving chackpeint 1% LR
Sate mode 100% 0 sec
awaning reposted blocks (0/0) 100%
Hadoop. 2014

7. The utilities link gives two options: one to browse HDFS and the other to
view the logfiles. The browse functionality is based on a search box that
can be used to search the HDFS directory structure. Each listing for a file is
similar to executing the hdfs dfs -1s command on the directory. It also
gives statistics about the block size and a deep link to peek into the contents

of the file.
[ Browsing HDFS % \: - a n
€ = C | [ localhost50070/explorerhtml#/user/SandeepKaranth o =

Browse Directory

Juser/SandeepKaranth Go!
Permission Owner Group size Replication Block Size Name
-PW-r—r— SandeepKaranin supergroup 7B 1 128 MB test it
adoop 2014
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Summary

With cloud computing becoming a focus for its elasticity and cost-effectiveness,
Microsoft has moved into the arena to compete with existing players. To maintain
parity with competition, Microsoft Azure not only offers Linux-based Virtual
Machines, but has also embraced open source big data systems such as Hadoop.
HDInsight offers HaaS on Microsoft Azure.

The key takeaways from this chapter are as follows:
* Hadoop is now natively available on Windows. Installing Unix emulators or

Linux VMs on Windows OS is no longer necessary.

* Hadoop support on Windows natively has two missing features: Security
features and short-circuit HDFS reads are not yet integrated with this system.

* Hadoop on Windows requires building the Hadoop distribution from scratch.
Direct download of Hadoop binaries for Windows is not yet available.

* HDInsight, Hadoop as a service offering on Microsoft Azure, provides
seamless Excel integration and integration with platforms such as the
Hortonworks Data Platform.
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_bitmaps field 117
-config option 188

A

abstract syntax tree (AST) 107
access control entry (ACE) 285
Access Control Lists (ACLs) 16, 274
Accumulator UDFs
usage 103
activate command 217
Active Directory 281
administration commands 188, 189
advanced aggregation support 122
advanced FOREACH operator
about 77
COGROUP 80, 81
CROSS 82
FLATTEN 78,79
nested FOREACH 79, 80
UNION 81, 82
advanced Pig operators
about 77
advanced FOREACH operator 77
specialized joins 82
aggregate functions
about 87
Accumulator interface 90
Algebraic interface 87
algebraic function 87
Algebraic UDFs
usage 102
all grouping 204
allocate method 173

Index

ALTER INDEX command 116
Amazon

URL, for creating account 222
Amazon AWS S3. See S3
Amazon Elastic MapReduce. See EMR
AMRMClient class 172
Apache Hadoop. See Hadoop
Apache Hive 105
Apache Mahout

about 302

URL 312

use cases 303

used, for document analysis 304

used, for K-means clustering 312-316
Apache Software Foundation (ASF) 14
Apache Storm

about 193

abstractions 196

architecture 194

bolts 196

computation 196

data modeling 196

developing 198-206

enhancements 206

features 193

high-level view 195

reference link, for releases 206
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Supervisor daemon 195

topologies 196

use cases 197
Apache Storm 0.9.1 206
Application-Client Protocol 159
application command 188
Application Master (AM) 19, 158, 160, 161
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ApplicationMaster entity
NodeManager 169
ResourceManager 169
writing 169-175

ApplicationMasterProtocol 159, 169

ApplicationReport object 167

ApplicationsManager 159

architecture, Apache Storm
about 194
Master node 194
topologies 194
Worker node 194

architecture, HDFS
limitations 258, 259
architecture, HDFS Federation
about 259
block pools 260
Clusterld 260
Namespace Volume 260

architecture, Kerberos 276, 277

ArrayFile format 152

ARRAYS, complex types 108

auditing 274

audit logging 293, 294

authentication
about 274
in Kerberos 275
via HTTP interfaces 278

Authentication Server (AS) 276

authorization
about 274, 279
HDFS usage, limiting 283
in HDFS 279, 280
service-level authorization 285, 286

automatic failover 266

Avro
about 135
and Hive 143, 144
and MapReduce 139, 141
and Pig 142
features 135
versus Protocol Buffers 145
versus Thrift 145

AvroSerde module 143

Avro serialization 136, 137

B

Backup Node 264, 265

Bag data type, Pig 72

batch mode 71

batch processing
diagrammatic representation 193
disadvantages, overcoming 192
versus, streaming 192

best practices, Pig
about 101
early and frequent filtering 102
early and frequent projection 101
explicit usage, of types 101
intermediate results, compressing 103
nulls, eliminating in data 103
reduction of operations 102
smaller files, combining 104
usage, of Accumulator UDFs 103
usage, of Algebraic UDFs 102
usage, of DISTINCT operator 102
usage, of LIMIT operator 102
usage, of specialized joins 103

bitmap 116

Bitmap indexes 117

block placement, HDFS
about 268, 269
pluggable block placement policy 270

block pools 260

Block Storage Service,

HDFS architecture 258

BloomMapFile format 152

bolt 196

bucketized map-side join 121

bucketized sort-merge join 121

buckets 112, 226

C

CapacityScheduler
about 181-184
features 181, 182
methods 182
Checkpoint Node 264, 265
classes, Hadoop
VIntWritable 131
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VLongWritable 131
classification, Apache Mahout 303
clauses

using 123
client 158
cloud computing

about 219

service models 221
cloud computing, benefits

administration 221

elasticity 220

lower costs 220
cloud computing, characteristics

broad network access 220

measured service 220

on-demand self service 219

rapid elasticity 220

resource pooling 220
Cloudera Distribution of Hadoop (CDH) 29
Clusterld 260
clustering

K-means, using 311
clustering, Apache Mahout 303
clusters 112
COGROUP operator 80, 81
collaborative filtering, Apache Mahout 303
Combiners 48,49
Combiners, Pig 99
Command Line Interface (CLI) 107
compact 116
compiler, Hive 107
complex data types, Pig

Bag 72

Map 72

Tuple 72
complex types

ARRAYS 108

MAPS 108

STRUCTS 108

UNIONS 108
compressed files 109
compression

about 152

and splits 153

DEFLATE compression 153

enabling, strategies 154

scope 154

computation, Apache Storm 196
constituents, RHadoop
plyrmr 317
ravro 317
rhbase 317
rhdfs 317
rmr 317
container 19,158
Container Launch Context (CLC) 161
ContainerManager 160, 169
Container object 173
Copy phase 50
core-site.xml file, properties
hadoop.http.authentication.
cookie.domain 278
hadoop.http.authentication.
kerberos.keytab 278
hadoop.http.authentication.kerberos.
principal 278
hadoop.http.authentication.signature.secret.
file 278
hadoop.http.authentication.simple.
anonymous.allowed 278
hadoop.http.authentication.
token.validity 278
hadoop.http.authentication.type 278
hadoop.http filter.initializers 278
cosine similarity distance measures 310, 311
counters 31, 53, 54
countrycodes.txt file
URL 56
crawling 12
CROSS operator 82
cubes 122

D

daemonlog command 189
data analytics
about 298
workflow 299
database 111
data confidentiality
about 286
encrypted shuffle 287
HTTPS 287
Data Definition Language (DDL) 112
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Data Manipulation Language. See DML
data mining 302
data model
about 111-114
dynamic partitions 114, 115
indexes, on Hive tables 116, 117
data modeling, Apache Storm 196
data protection 275
data security
security pillars 274
data serialization, Hadoop
about 129, 130
WritableComparable interface 130-133
Writable interface 130-133
data types 108
deactivate command 217
declareOutputFields method 199, 201
DEFERRED REBUILD directive 116
DESCRIBE command 76
deserialization 129
development and debugging aids, Pig
DESCRIBE 76
EXPLAIN 76
ILLUSTRATE 77
dev-zookeeper command 217
dfs.blocksize attribute 45
Directed Acyclic Graphs (DAGs) 70
direct grouping 204
DISTINCT operator
usage 102
DistributedCache 31
distributive function 88
DML
about 119
advanced aggregation support 122
clauses, using 123
GROUP BY operation 120
JOIN operator 120
ORDER BY clause, versus SORT BY
clause 120
document analysis
clustering, with K-means 311
cosine similarity distance measures 310
document frequency 305
Hadoop, using 304
Mahout, using 304
term frequency 304

TE-Idf 306
document frequency 305
Driver 107
drpc command 217
dynamic counter 54
dynamic partitions
about 114, 115
semantics 115, 116

E

embedded mode 71
EMR
about 222
comparing, with HDInsight 221
Hadoop cluster, provisioning on 223-237
URL, for developer guide 222
workloads, creating 222
workloads, executing 222
encrypted shuffle
about 287
keystore, configuring 289-293
SSL configuration, modifying 287-289
truststore, configuring 289-293
enhancements, Apache Storm
Apache Software Foundation 206
Maven Integration 207
Netty-based transport 206
Windows support 206
Euclidean distance 310
evaluation criteria, Hadoop distributions
manageability 27, 28
performance 25
reliability 26
scalability 26
evaluation functions
about 86
aggregate functions 87
filter functions 91
execute method 200
execution engine, Hive 107
execution modes, Pig
batch 71
embedded 71
interactive 71
EXPLAIN command 76
EXTERNAL keyword 112
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external tables 111
Extract-Transform-Load (ETL) 71

F

failover modes, Hadoop
automatic failover 266
manual failover 266
FairScheduler
about 184-187
configuring 185
federated NameNodes
deploying 262, 263
field 72
fields grouping 204
FileBasedKeyStoreFactory 289
file formats
about 109, 145
ArrayFile 152
BloomMapFile 152
compressed files 109
MapFile 150, 151
ORC files 109
Parquet files 110
Sequence file 145-147
SetFile 152
filesystem
implementing, in Hadoop 243
filter functions 91
filtering, MapReduce input 41-44
FilterLogicExpressionSimplifier
optimization rule
simplifications, performing 96, 97
First in First Out (FIFO) 181
FLATTEN operator 78,79
four-layer network topology

Global Rearrange (GR) operator 74
Google File System (GFS) 13
Greenplum 30
GROUP BY operation
Map-side aggregation for GROUP BY 120
Multi-Group-By Inserts 120

H

Hadoop
building 326, 327
configuring 328-331
deploying 333-337
deploying, on Microsoft Windows 320
evolution 13,14
filesystem, implementing 243
genealogy 14,15
Hadoop-0.20-append 15
Hadoop-0.20-security 16
inception 12,13
S3 native filesystem (s3n),
implementing 244-255
timeline 16,17
used, for document analysis 304
versus Java serialization 133-135
Hadoop-0.20-append 15
Hadoop-0.20-security 16
Hadoop 1.X
limitations 17, 18
Hadoop 2.X
other enhancements 22, 23
storage layer enhancements 20
support enhancements 23
YARN 18
Hadoop archive files (HAR) 35
Hadoop as a Service (HaaS) 221, 319

versus three-layer network topology 267 Hadoop, branches

Fragment-Replicate join
about 83
considerations 83
frequent itemset mining,
Apache Mahout 303
fsck 266

G

getDiagnostics function 167
global grouping 204

0.20.1 branch 15
0.20.2 branch 15
0.21 branch 15
Hadoop cluster
provisioning, on EMR 223-237
HADOOP_CONF_DIR environment
variable 71
Hadoop deployment, on Microsoft
Windows
about 320
Hadoop, building 326, 327
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Hadoop, configuring 328-331
Hadoop, deploying 333-337
Hadoop sources, downloading 323
importance 320
JAVA_HOME environment variable,
setting 323
JavaJDK 321
Maven Build System 325
Path variable, setting 322
prerequisites 321-324
Protobuf compiler 324
Hadoop Distributed File System. See HDFS
Hadoop distributions
about 23
CDH 28,29
evaluation criteria 24
HDP 28
MapR 29
Pivotal HD 29, 30
URL 28
hadoop.security.authentication property
kerberos value 280
Simple value 280
Hadoop sources
downloading 323, 324
Hadoop Streaming 226
Hadoop support, S3
about 241-243
S3 block filesystem (s3) 241
S3 native filesystem (s3n) 241
HDFS
about 11
advantages 240
block placement 268, 269
drawbacks 240
high availability 264
name quotas 284
space quotas 284
HDFS APIs
using 281
HDEFS architecture
Block Storage Service component 258
limitations 259
Namespace component 258
HDFS authorization
about 279, 280
group listings, for HDFS user 281

HDFS APIs 281, 282
HDFS superuser, specifying 282
HDEFS user, identifying 280
Shell commands 281
turning off 283
HDEFS Federation
about 22, 257-259
architecture 259, 260
benefits 261
federated NameNodes, deploying 262, 263
HDInsight
comparing, with EMR 221
high availability, Hadoop 20, 21
High Availability (HA) 265
high availability, HDFS
about 264
Backup Node 264, 265
Checkpoint Node 264, 265
edits file, sharing 265, 266
Secondary NameNode 264, 265
Hive architecture
about 106
compiler 107
execution engine 107
metastore 106
supporting components 107
hive.exec.max.created.files property 116
hive.exec.max.dynamic.partitions.
pernode property 115
hive.exec.max.dynamic.partitions
property 115
Hive index 116
HiveQL 105
Hive query optimizers
about 118,119
BucketingSortingReduceSinkOptimizer 119
ColumnPruner 118
GlobalLimitOptimizer 118
GroupByOptimizer 118
JoinReorder 118
LimitPushdownOptimizer 119
NonBlockingOpDeDupProc 119
PartitionPruner 119
PredicatePushdown 118
PredicateTransitivePropagate 118
ReduceSinkDeDuplication 119
RewriteGBUsingIndex 119
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StatsOptimizer 119
horizontal scaling 26
Hortonworks Data Platform (HDP) 29
HTTP interfaces
used, for authentication 278
HTTPS 287

ILLUSTRATE command 77
import checkpoint 267
indexes, on Hive tables 116,117
Infrastructure as a Service (IaaS) 221
init() method 125
InputFormat class

about 32

functions 32
InputSplit class

attributes 33
installation

Apache Storm-on-YARN 207
interactive mode 71
Interface Definition

Language (IDL) 145, 196

io.seqfile.compression.type property 109
iterator() method 125

J

jar command 188
Java Development Kit (JDK) 321
JAVA_HOME environment variable
setting 323
Java JDK 321
Java Runtime Environment (JRE) 321
Javascript Object Notation (JSON) 135
Java serialization
versus Hadoop 133-135
job scheduling, in YARN
about 181
CapacityScheduler 181-184
FairScheduler 184-187
JOIN operator
about 120
Map-side joins 121
joins
about 55
Map-side joins 55, 64-67

Reduce-side joins 55-63

K

Kerberos
architecture 276, 277
workflow 276, 277
Kerberos authentication
about 275
and Hadoop 277
mutual authentication 275
protocol message encryption 275
single login per session 275
Key Distribution Center (KDC)
about 276
Authentication Server (AS) 276
Ticket Granting Server (TGS) 276
keystore
about 289
configuring 289-293
keytab file 277
K-means clustering
Apache Mahout, using 312-316

L

label 299

latency 25

Latent Dirichlet Allocation (LDA) 303

lemmatization 307

Lempel-Ziv-Oberhumer (LZO) 109

Lightweight Directory Access

Protocol (LDAP) 281

LIMIT operator
usage 102

list command 217

LoadFunc abstract class
getInputFormat method 92
prepareToRead method 92
setLocation function 92

load functions 92

localconfvalue command 217

local mode 71

local or shuffle grouping 204

Local Rearrange (LR) operator 74

logical plan, Pig scripts compilation 73

logs command 189

logviewer command 217
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LZO compression format 154

machine learning
about 299
process, steps 300, 301
machine learning, types
semi-supervised learning 300
supervised learning 299
unsupervised learning 300
manual failover 266
Map data type, Pig 72
MapkFile format 150, 151
MapR 29
MapReduce
about 31,192
and Avro 139-141
Map 31
Reduce 31
MapReduce input
about 32
filtering 41-44
Hadoop's small files, dealing 35-40
InputFormat class 32
InputSplit class 33
RecordReader class 34
mapreduce mode 71
MapReduce output
optimizing 52
speculative execution, of tasks 52
MapReduce plan, Pig scripts compilation 75
MAPS, complex types 108
Map-side aggregation for GROUP BY 120
Map-side joins
about 64-67,121
considerations 64
Map task
about 31,44
Combiners 48, 49
dfs.blocksize attribute 45
intermediate outputs, fetching 49
intermediate outputs, sorting 46-48
intermediate outputs, spilling 46-48
Master node, Apache Storm
about 194
key functions 194

MasterServer 211

Maven Build System 325

merge() function 125

Merge join 85

Merge-sparse join 85

metastore, Hive 106

Microsoft Azure HDInsight. See HDInsight
Multi-Group-By Inserts 120

multiquery mode, Pig 100

N

name quotas 284

NameServiceld 262

Namespace, HDFS architecture 258
Namespace Volume 260

nested FOREACH operator 79, 80
nextTuple method 198

nimbus command 217

node command 188

node-local reducers. See Combiners
NodeManager (NM) 20, 158, 161, 169
none grouping 204

Nutch 13

(0

Object-relational mapping (ORM) 106
open method 198
optimization rules, Pig
AddForEach 98
FilterLogicExpressionSimplifier 96
GroupByConstParallelSetter 98
LimitOptimizer 98
MergeFilter 97
MergeForEach 98
PartitionFilterOptimizer 96
PushDownForEachFlatten 98
PushUpkFilter 97
SplitFilter 97
Optimized Row Columnar files
(ORC files) 109
ORDER BY clause
versus SORT BY clause 120
outputs, Map task
fetching 49
sorting 46-48
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spilling 46-48
outputs, Reduce task
fetching 50
merging 51
spilling 51
overfitting 301

P

Package (P) operator 74
PageRank 12
Parquet files 110
partitions 111
Path variable
setting 322
performance optimizations, Pig
conditions, for invoking Combiners 99
memory, for Bag data type 100
multiquery mode 100
number of reducers 100
optimization rules 95
script performance, measuring 99
physical plan, Pig scripts compilation 74
Pig
and Avro 142
best practices 101
complex data types 72
development and debugging aids 76
performance optimizations 95
primitive data types 72
specialized joins 82
Tf-idf, calculating 306-309
versus SQL 70, 71
piggy bank 85
Pig Latin 69
Pig script performance
measuring 99
Pig scripts compilation
about 73
logical plan 73
MapReduce plan 75
physical plan 74
Pivotal HD 30
Platform as a Service (PaaS) 221
pluggable block placement policy,
HDEFS 270
plyrmr 317

Porter Stemmer 307
prepare method 200
primitive data types, Pig 72
Priority class 172
Protobuf compiler 324
Protocol Buffers

about 22,145

versus Avro 145

Q

queuePlacementPolicy element, cluster
rule 187

queues, cluster
aclAdministerApps 186
aclSubmitApps 186
maxResources 186
maxRunningApps 186
minResources 186
minSharePreemptionTimeout 186
schedulingPolicy 186
weight 186

QuorumPeerMain service 211

R

R
about 317
drawbacks 317
ravro 317
rebalance command 217
rebalancer 266
Record 10 135
RecordReader class 34
Reduce-side joins
about 55-63
reference link 56
requisites 56
Reduce task
about 31, 50
intermediate outputs, fetching 50
intermediate outputs, merging 51
intermediate outputs, spilling 51
registerApplicationMaster method 172
Regular UDFs 123
Relational Databases (RDBMS) 105
remoteconfvalue command 217
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Remote Procedure Calls (RPCs) 130
Replicated join 83
replicated keyword 83

security.client.protocol.acl property 285
security.datanode.protocol.acl property 285
security.ha.service.protocol.acl property 286

resource allocation 160

ResourceManager (RM)
about 19, 158-160, 169
ApplicationsManager 159
Scheduler 159

Resource object 165

RHadoop
about 317
advantages 317
constituents 317

rhbase 317

rhdfs 317

rmadmin command
-refreshAdminAcls 189
-refreshNodes 189
-refreshQueues 189
-refreshServiceAcl 189
-refreshSuperUserGroups

Configuration 189

-refreshUserToGroupMappings 189
about 189

rmr 317

Robot Exclusion Standard 13

robots.txt protocol 13

root 182

S

S3

about 239-241

Hadoop support 241-243
S3 block filesystem (s3) 241
S3 native filesystem (s3n)

about 241

implementing, in Hadoop 244-255
Safe Mode 264
scaling out. See horizontal scaling
scaling up. See vertical scaling
Scheduler 159
schemas 135
Secondary NameNode 264, 265
Secure Socket Layer (SSL) 287
security.client.datanode.protocol.acl

property 285

security.inter.datanode.protocol.acl
property 285
security.inter.tracker.protocol.acl
property 285
security.job.submission.protocol.acl
property 286
security.namenode.protocol.acl
property 285
security pillars, data security
about 274
auditing 274
authentication 274
authorization 274
data protection 275
security.refresh.policy.protocol.acl
property 286
security.task.umbilical.protocol.acl
property 286
semi-supervised learning 300
seq2sparse command 314
seqdumper command 313
Sequence files
about 145, 146
reading 147-150
writing 147-150
serialization 129
Serialization and Deserialization
(SerDe) 107,110
service-level authorization 285, 286
service models, cloud computing
Infrastructure as a Service (IaaS) 221
Platform as a Service (PaaS) 221
Software as a Service (SaaS) 221
SetFile format 152
setMemory method 172
Shell commands
using 281
shuffle grouping 204
Simple Storage Service. See S3
Single Point of Failures (SPOF) 26
Skewed joins
about 84
considerations 84
skewed keyword 84
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small files, Hadoop
dealing with 35-40

snapshots, HDFS 22

Software as a Service (SaaS) 221

Sort Avoidance 48

SORT BY clause
versus ORDER BY clause 120

Sort join 85

space quotas 284

Spark 162

specialized joins, Pig
Merge join 85
Replicated join 83
Skewed join 84
usage 103

speculative execution 52

split-brain scenario 266

splits
and compressions 153
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