

High-Performance Java Persistence
Get the most out of your persistence layer

Vlad Mihalcea

© 2015 - 2016 Vlad Mihalcea

Tweet This Book!
Please help Vlad Mihalcea by spreading the word about this book on Twitter!

http://twitter.com

To my wife and kids

Contents

I Introduction . 1

1. Preface . 2
1.1 The database server and the connectivity layer . 3
1.2 The application data access layer . 3

1.2.1 The ORM framework . 3
1.2.2 The native query builder framework . 4

2. Performance and Scaling . 5
2.1 Response time and throughput . 5
2.2 Database connections boundaries . 7
2.3 Scaling up and scaling out . 8

2.3.1 Master-Slave replication . 9
2.3.2 Multi-Master replication . 10
2.3.3 Sharding . 11

II JDBC and Database Essentials 14

3. JDBC Connection Management . 15
3.1 DriverManager . 16
3.2 DataSource . 18

3.2.1 Why is pooling so much faster? . 21
3.3 Queuing theory capacity planning . 23
3.4 Practical database connection provisioning . 26

3.4.1 A real-life connection pool monitoring example 27
3.4.1.1 Concurrent connection request count metric 28
3.4.1.2 Concurrent connection count metric 29
3.4.1.3 Maximum pool size metric . 30
3.4.1.4 Connection acquisition time metric 30
3.4.1.5 Retry attempts metric . 31
3.4.1.6 Overall connection acquisition time metric 31
3.4.1.7 Connection lease time metric . 32

4. Batch Updates . 33

CONTENTS

4.1 Batching Statements . 33
4.2 Batching PreparedStatements . 36

4.2.1 Choosing the right batch size . 38
4.2.2 Bulk operations . 39

4.3 Retrieving auto-generated keys . 40
4.3.1 Sequences to the rescue . 43

5. Statement Caching . 45
5.1 Statement lifecycle . 45

5.1.1 Parser . 46
5.1.2 Optimizer . 46

5.1.2.1 Execution plan visualization . 47
5.1.3 Executor . 49

5.2 Caching performance gain . 49
5.3 Server-side statement caching . 50

5.3.1 Bind-sensitive execution plans . 52
5.4 Client-side statement caching . 56

6. ResultSet Fetching . 60
6.1 ResultSet scrollability . 61
6.2 ResultSet changeability . 63
6.3 ResultSet holdability . 64
6.4 Fetching size . 64
6.5 ResultSet size . 67

6.5.1 Too many rows . 67
6.5.1.1 SQL limit clause . 68
6.5.1.2 JDBC max rows . 69
6.5.1.3 Less is more . 71

6.5.2 Too many columns . 72

7. Transactions . 73
7.1 Atomicity . 74
7.2 Consistency . 76
7.3 Isolation . 78

7.3.1 Concurrency control . 78
7.3.1.1 Two-phase locking . 78
7.3.1.2 Multi-Version Concurrency Control 82

7.3.2 Phenomena . 85
7.3.2.1 Dirty write . 86
7.3.2.2 Dirty read . 87
7.3.2.3 Non-repeatable read . 88
7.3.2.4 Phantom read . 89
7.3.2.5 Read skew . 90

CONTENTS

7.3.2.6 Write skew . 91
7.3.2.7 Lost update . 92

7.3.3 Isolation levels . 93
7.3.3.1 Read Uncommitted . 94
7.3.3.2 Read Committed . 95
7.3.3.3 Repeatable Read . 97
7.3.3.4 Serializable . 98

7.4 Durability . 100
7.5 Read-only transactions . 102

7.5.1 Read-only transaction routing . 104
7.6 Transaction boundaries . 105

7.6.1 Distributed transactions . 109
7.6.1.1 Two-phase commit . 109

7.6.2 Declarative transactions . 110
7.7 Application-level transactions . 113

7.7.1 Pessimistic and optimistic locking . 114
7.7.1.1 Pessimistic locking . 114
7.7.1.2 Optimistic locking . 115

III JPA and Hibernate . 117

8. Why JPA and Hibernate matter . 118
8.1 The impedance mismatch . 119
8.2 JPA vs Hibernate . 120
8.3 Schema ownership . 122
8.4 Write-based optimizations . 124
8.5 Read-based optimizations . 129
8.6 Wrap-up . 132

9. Connection Management and Monitoring . 133
9.1 JPA connection management . 133
9.2 Hibernate connection providers . 134

9.2.1 DriverManagerConnectionProvider . 135
9.2.2 C3P0ConnectionProvider . 135
9.2.3 HikariConnectionProvider . 136
9.2.4 DatasourceConnectionProvider . 137
9.2.5 Connection release modes . 137

9.3 Monitoring connections . 139
9.3.1 Hibernate statistics . 141

9.3.1.1 Customizing statistics . 143
9.4 Statement logging . 146

9.4.1 Statement formatting . 147

CONTENTS

9.4.2 Statement-level comments . 148
9.4.3 Logging parameters . 149

9.4.3.1 DataSource-proxy . 149
9.4.3.2 P6Spy . 150

10. Mapping Types and Identifiers . 152
10.1 Types . 154

10.1.1 Primitive types . 154
10.1.2 String types . 154
10.1.3 Date and Time types . 155
10.1.4 Numeric types . 156
10.1.5 Binary types . 156
10.1.6 UUID types . 156
10.1.7 Other types . 157
10.1.8 Custom types . 157

10.2 Identifiers . 163
10.2.1 UUID identifiers . 164

10.2.1.1 The assigned generator . 166
10.2.2 The legacy UUID generator . 167

10.2.2.1 The newer UUID generator . 167
10.2.3 Numerical identifiers . 168

10.2.3.1 Identity generator . 168
10.2.3.2 Sequence generator . 170
10.2.3.3 Table generator . 171
10.2.3.4 Optimizers . 173

10.2.3.4.1 The hi/lo algorithm . 174
10.2.3.4.2 The default sequence identifier generator 176
10.2.3.4.3 The default table identifier generator 177
10.2.3.4.4 The pooled optimizer . 178
10.2.3.4.5 The pooled-lo optimizer . 180

10.2.3.5 Optimizer gain . 181
10.2.3.5.1 Sequence generator performance gain 181
10.2.3.5.2 Table generator performance gain 182

10.2.3.6 Identifier generator performance . 182

11. Relationships . 185
11.1 Relationship types . 186
11.2 @ManyToOne . 188
11.3 @OneToMany . 189

11.3.1 Bidirectional @OneToMany . 190
11.3.2 Unidirectional @OneToMany . 193
11.3.3 Ordered unidirectional @OneToMany . 195

11.3.3.1 @ElementCollection . 197

CONTENTS

11.3.4 @OneToMany with @JoinColumn . 199
11.4 @OneToOne . 201

11.4.1 Unidirectional @OneToOne . 201
11.4.2 Bidirectional @OneToOne . 204

11.5 @ManyToMany . 206
11.5.1 Unidirectional @ManyToMany . 206
11.5.2 Bidirectional @ManyToMany . 208
11.5.3 The @OneToMany alternative . 210

12. Inheritance . 215
12.1 Single table . 219
12.2 Join table . 223
12.3 Table-per-class . 227
12.4 Mapped superclass . 231

CONTENTS i

Publisher:

Vlad Mihalcea

Jupiter 9/27

900492 Cluj-Napoca

Romania

mihalcea.vlad@gmail.com

Copyright © 2015 Vlad Mihalcea

All rights reserved. No part of this publication may be reproduced, stored, or transmitted in any
form or by any means — electronic, mechanical, photocopying, recording, or otherwise — without
the prior consent of the publisher.

Many of the names used by manufacturers and sellers to distinguish their products are trademarked.
Wherever such designations appear in this book, andwewere aware of a trademark claim, the names
have been printed in all caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors and omissions, or for any damage resulting from the use of
the information contained herein. The book solely reflects the author’s views. This book was not
financially supported by any relational database system vendors mentioned in this work and no
database vendor has verified the content.

Cover design:

Dan Mihalcea danmihalcea@gmail.com

Cover photo:

Carlos ZGZ¹ - CC0 1.0²

¹https://www.flickr.com/photos/carloszgz/19980799311/
²https://creativecommons.org/publicdomain/zero/1.0/

mailto:mihalcea.vlad@gmail.com
mailto:danmihalcea@gmail.com
https://www.flickr.com/photos/carloszgz/19980799311/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.flickr.com/photos/carloszgz/19980799311/
https://creativecommons.org/publicdomain/zero/1.0/

I Introduction

1

1. Preface
In an enterprise system, a properly designed database access layer can have a great impact on the
overall application performance. According to Appdynamics¹

More than half of application performance bottlenecks originate in the database

Data is spread across various structures (table rows, index nodes), and database records can be
read and written by multiple concurrent users. From a concurrency point of view, this is a very
challenging task, and, to get the most out of a persistence layer, the data access logic must resonate
with the underlying database system.

Figure 1.1: Data access skill stack

A typical RDBMS (Relational Database Management System) data access layer requires mastering
various technologies, and the overall enterprise solution is only as strong as the team’s weakest
skills. Before advancing to higher abstraction layers such as ORM (Object-Relational Mapping)
frameworks, it’s better to conquer the lower layers first.

¹http://www.appdynamics.com/solutions/database-monitoring/

2

http://www.appdynamics.com/solutions/database-monitoring/
http://www.appdynamics.com/solutions/database-monitoring/

Preface 3

1.1 The database server and the connectivity layer

The database manual is not only meant for database administrators. Interacting with a database,
without knowing how it works, is like driving a racing car without taking any driving lesson. Getting
familiar with the SQL standard and the database specific features can make the difference between
a high performance application and one that barely crawls.

The fear of database portability can lead to avoiding highly effective features just because they are
not interchangeable across various database systems. In reality, it’s more common to end-up with a
sluggish database layer than having to port an already running system to a new database solution.

All data access frameworks rely on JDBC (Java Database Connectivity) API for communicating
to a database server. JDBC offers many performance optimization techniques, aiming to reduce
transaction response time and accommodate more traffic.

The first part of the book is therefore dedicated to JDBC, and it covers topics such as database
connection management, statement batching, result set fetching and database transaction essentials.

1.2 The application data access layer

There are data access patterns that have proven their effectiveness in many enterprise application
scenarios. Martin Fowler’s Patterns of Enterprise Application Architecture² is a must read for
every enterprise application developer. Beside the object-relational mapping pattern, most ORM
frameworks also employ techniques such as Unit of Work, Identity Map, Lazy Loading, Embedded
Value, Entity Inheritance or Optimistic and Pessimistic Locking.

1.2.1 The ORM framework

ORM tools can boost application development speed, but the learning curve is undoubtedly steep.
The only way to address the inherent complexity of bridging relational data with the application
domain model is to fully understand the ORM framework in use.

Sometimes even the reference documentation might not be enough, and getting familiar with the
source code is inevitable when facing performance related problems. JPA (Java Persistence API)
excels in writing data because all DML (Data Manipulation Language) statements are automatically
updated whenever the persistence model changes, therefore speeding up the iterative development
process.

The second part of this book describes various Hibernate-specific optimization techniques like
identifier generators, effective entity fetching and state transitions, application-level transactions
and entity caching.

²http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420

http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420

Preface 4

1.2.2 The native query builder framework

JPA and Hibernate were never meant to substitute SQL, and native queries are unavoidable in any
non-trivial enterprise application. While JPA makes it possible to abstract DML statements and
common entity retrieval queries, when it comes to reading and processing data, nothing can beat
native SQL.

JPQL (Java Persistence Querying Language) abstracts the common SQL syntax by subtracting
database specific querying features, so it lacks support for Window Functions, Common Table
Expressions, Derived tables or PIVOT. As opposed to JPA, jOOQ (Java Object Oriented Query)³
embraces database specific query features, and it provides a type-safe query builder which can
protect the application against SQL injection attacks even for dynamic native queries.

For this reason, the third part of the book is about advance querying techniques with jOOQ.

About database performance benchmarks
Throughout this book, there are benchmarks aimed to demonstrate the relative gain of a certain
performance optimization. The benchmarks results are always dependent on the underlying
hardware, operating system and database server configuration, database size and concurrency
patterns. For this reason, the absolute values are not as important as the relative optimization
gain. In reality, the most relevant benchmark results are the ones against the actual production
system anyway.

To prevent the reader from comparing one database against another and drawing a wrong
conclusion based on some use case specific benchmarks, the database names are obfuscated as
DB_A, DB_B, DB_C and DB_D.

All the source code, for every example that was used in this book, is available on GitHub.

³http://www.jooq.org/

http://www.jooq.org/
https://github.com/vladmihalcea/high-performance-java-persistence
http://www.jooq.org/

2. Performance and Scaling
An enterprise application needs to store and retrieve as much data and as fast as possible. In
application performance management, the two most important metrics are response time and
throughput.

The lower the response time, the more responsive an application becomes. Response time is therefore
the measure of performance. Scaling is about maintaining low latencies while increasing system
load, so throughput is the measure of scalability.

2.1 Response time and throughput

Because this book is focused on high-performance data access, the boundaries of the system under
test are located at the transaction manager level. The transaction response time is measured as the
time it takes to complete a transaction, and so it encompasses the following time segments:

• the database connection acquisition time
• the time it takes to send all database statements over the wire
• the execution time for all incoming statements
• the time it takes for sending the result sets back to the database client
• the time the transaction is idle due to application-level computations prior to releasing the
database connection.

T = tacq + treq + texec + tres + tidle

Throughput is defined as the rate of completing incoming load. In a database context, throughput
can be calculated as the number of transactions executed within a given time interval.

X =
transaction count

time

From this definition, we can conclude that by lowering the time it takes to execute a transaction,
the system can accommodate more requests.

Testing against a single database connection, the measured throughput becomes the baseline for
further concurrency-based improvements.

X (N) = X (1)× C (N)

5

Performance and Scaling 6

Ideally, if the system was scaling linearly, adding more database connections would yield a pro-
portional throughput increase. Due to contention on database resources and the cost of maintaining
coherency across multiple concurrent database sessions, the relative throughput gain follows a curve
instead of a straight line.

USL (Universal Scalability Law)¹ can approximate the maximum relative throughput (system
capacity) in relation to the number of load generators (database connections).

C (N) =
N

1 + α (N − 1) + βN (N − 1)

• C - the relative throughput gain for the given concurrency level
• α - the contention coefficient (the serializable portion of the data processing routine)
• β - the coherency coefficient (the cost for maintaining consistency across all concurrent
database sessions).

When the coherency coefficient is zero, USL overlaps with Amdahl’s Law². Contention has the
effect of leveling up scalability. On the other hand, coherency is responsible for the inflection point
in the scalability curve, and its effect becomes more significant as the number of concurrent sessions
increases.

The following graph depicts the relative throughput gain when the USL coefficients (α, β) are set to
the following values (0.1, 0.0001). The x-axis represents the number of concurrent sessions (N) and
the y-axis shows the relative capacity gain (C).

Figure 2.1: Universal Scalability Law

¹http://www.perfdynamics.com/Manifesto/USLscalability.html
²http://en.wikipedia.org/wiki/Amdahl%27s_law

http://www.perfdynamics.com/Manifesto/USLscalability.html
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://www.perfdynamics.com/Manifesto/USLscalability.html
http://en.wikipedia.org/wiki/Amdahl%27s_law

Performance and Scaling 7

The number of load generators (database connections), for which the system hits its maximum
capacity, depends on the USL coefficients solely.

Nmax =

√
(1− α)

β

The resulting capacity gain is relative to the minimum throughput, so the absolute system capacity
is obtained as follows:

Xmax = X (1)× C (Nmax)

2.2 Database connections boundaries

Every connection requires a TCP socket from the client (application) to the server (database).

The total number of connections offered by a database server depends on the underlying hardware
resources, and finding howmany connections a server can handle is possible through measurements
and proven scalability models.

SQL Server 2016 and MySQL 5.7 use thread-based connection handling.

PostgreSQL 9.5 uses one operating system process for each individual connection.

On Windows systems, Oracle uses threads, while on Linux, it uses process-based connections.
Oracle 12c comes with a thread-based connection model for Linux systems too.

https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/9.5/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm

A look into database system internals reveals the tight dependency on CPU, Memory and Disk
resources. Because I/O operations are costly, the database uses a buffer pool to map into memory
the underlying data and index pages. Changes are first applied in memory, and flushed to disk in
batches to achieve better write performance.

Even if all indexes are entirely cached inmemory, disk accessmight still occur (to fetch the associated
data pages into the memory buffer pool). To provide data consistency, locks (shared and exclusive)
are used to protect data blocks (rows and indexes) from being concurrently updated.

Using covering indexes, that fit into memory, can eliminate disk access because the
querying data can be fetched without accessing the disk.

https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/9.5/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm
https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/9.5/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm

Performance and Scaling 8

Thismeans that high-throughput database applicationswill experience contention onCPU,Memory,
Disk and Locks. When all the database server resources are in use, adding more work load will only
increase contention, therefore lowering throughput.

Resources might get saturated due to improper system configuration, so the first step to improving
a system throughput is to tune it according to the current data access patterns.

Lowering response time not only makes the application more responsive, but it can also
increase throughput.

But response time alone is not sufficient in a highly concurrent environment. To maintain
a fixed upper-bound response time, the system capacity must increase, relative to the
incoming request throughput. Adding more resources can improve scalability up to a
certain point, beyond which the capacity gain starts dropping.

At the Velocity conference, both Google Search and Microsoft Bing teams have concluded that
higher response times can escalate and even impact the business metrics.

Capacity planning is a feedback-driven mechanism, and it requires constant application monitor-
ing, and so, any optimization must be reinforced by application performance metrics.

http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

2.3 Scaling up and scaling out

Scaling is the effect of increasing capacity by adding more resources. Scaling vertically (scaling up)
means adding resources to a single machine. Increasing the number of available machines is called
horizontal scaling (scaling out).

Traditionally, adding more hardware resources to a database server has been the preferred way of
increasing database capacity. Relational databases have emerged in the late seventies, and, for two
and a half decades, the database vendors took advantage of the hardware advancements following
the trends in Moore’s Law.

Distributed systems are much more complex to manage than centralized ones, and that’s why
horizontal scaling is more challenging than scaling vertically. On the other hand, for the same price
of a dedicated high-performance server, one could buy multiple commodity machines whose sum
of available resources (CPU, Memory, Disk Storage) is greater than of the single dedicated server.
When deciding which scaling method is better suited for a given enterprise system, one must take
into account both the price (hardware and licenses) and the inherent developing and operational
costs.

http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

Performance and Scaling 9

Being built on top of many open source projects (e.g. PHP, MySQL), Facebook³ uses a horizontal
scaling architecture to accommodate its massive amounts of traffic.

StackOverflow⁴ is the best example of a vertical scaling architecture. In one blog post⁵, Jeff Atwood
explained that the price ofWindows and SQL Server licenses was one of the reasons for not choosing
a horizontal scaling approach.

No matter how powerful it might be, one dedicated server is still a single point of failure, and
throughput drops to zero if the system is no longer available. Database replication is therefore not
an option in most enterprise systems.

2.3.1 Master-Slave replication

For enterprise systems where the read/write ratio is high, a Master-Slave replication scheme is
suitable for increasing availability.

Figure 2.2: Master-Slave replication

The Master is the system of record and the only node accepting writes. All changes recorded by the
Master node are replayed onto Slaves as well. A binary replication uses the Master nodeWAL (Write
Ahead Log), while a statement-based replication replays on the Slave machines the exact statements
executed on Master.

Asynchronous replication is very common, especially when there are more Slave nodes to update.
The Slave nodes are eventual consistent as they might lag behind the Master. In case the Master
node crashes, a cluster-wide voting process must elect the new Master (usually the node with the
most recent update record) from the list of all available Slaves.

³https://www.facebook.com/note.php?note_id=409881258919
⁴http://stackexchange.com/performance
⁵http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/

https://www.facebook.com/note.php?note_id=409881258919
http://stackexchange.com/performance
http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/
https://www.facebook.com/note.php?note_id=409881258919
http://stackexchange.com/performance
http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/

Performance and Scaling 10

The asynchronous replication topology is also referred aswarm standby because the election process
doesn’t happen instantaneously.

Most database systems allow one synchronous Slave node, at the price of increasing transaction
response time (the Master has to block waiting for the synchronous Slave node to acknowledge
the update). In case of Master node failure, the automatic failover mechanism can promote the
synchronous Slave node to become the new Master.

Having one synchronous Slave allows the system to ensure data consistency in case of Master node
failures since the synchronous Slave is an exact copy of the Master. The synchronous Master-Slave
replication is also called a hot standby topology because the synchronous Slave is readily available
for replacing the Master node.

When only asynchronous Slave are available, the new elected Slave node might lag behind the
failed Master, in which case consistency and durability are traded for lower latencies and higher
throughput.

Aside from eliminating the single point of failure, database replication can also increase transaction
throughput. In a Master-Slave topology, the Slave nodes can accept read-only transactions, therefore
routing read traffic away from the Master node.

The Slave nodes increase the available read-only connections and reduce Master node resource
contention, which, in turn, can also lower read-write transaction response time. If the Master node
can no longer keep up with the ever increasing read-write traffic, a Multi-Master replication might
be a better alternative.

2.3.2 Multi-Master replication

In a Multi-Master replication scheme, all nodes are equal and can accept both read-only and read-
write transactions. Splitting the load amongmultiple nodes can only increase transaction throughput
and reduce response time as well.

But because distributed systems are all about trade-offs, ensuring data consistency is challenging in
a Multi-Master replication scheme because there is no longer a single source of truth. The same data
can be modified concurrently on separate nodes, so there is a possibility of conflicting updates. The
replication scheme can either avoid conflicts or it can detect them and apply an automatic conflict
resolution algorithm.

Performance and Scaling 11

Figure 2.3: Multi-Master replication

To avoid conflicts, the two-phase commit protocol can be used to enlist all participating nodes in one
distributed transaction. This design allows all nodes to be in-sync at all time, at the cost of increasing
transaction response time (by slowing down write operations).

If nodes are separated by a WAN (Wide Area Network), synchronization latencies can increase
dramatically. If one node is no longer reachable, the synchronization could fail, and the transaction
would roll back on all Masters.

Although avoiding conflicts is better from a data consistency perspective, synchronous replication
might incur high transaction response times. Asynchronous replication can provide better through-
put, at the price of having to resolve update conflicts. The asynchronous Multi-Master replication
requires a conflict detection and an automatic conflict resolution algorithm. When a conflict is
detected, the automatic resolution tries to merge the two conflicting branches, and, in case it fails,
manual intervention is required.

2.3.3 Sharding

When data size grows beyond the overall capacity of a replicated multi-node environment, splitting
data becomes unavoidable. Sharding means distributing data across multiple nodes so each instance
contains only a subset of the overall data.

Traditionally, relational databases have offered horizontal partitioning to distribute data across
multiple tables within the same database server. As opposed to horizontal partitioning, sharding
requires a distributed system topology so that data is spread over multiple machines.

Each shard must be self-contained because a user transaction can only use data from within a single
shard. Joining across shards is usually prohibited because the cost of distributed locking and the
networking overhead would lead to long transaction response times.

Performance and Scaling 12

By reducing data size per node, indexes will also require less space, and they can better fit into main
memory. With less data to query, the transaction response time can also get shorter too.

The typical sharding topology includes at least two separate data centers.

Figure 2.4: Sharding

Each data center can serve a dedicated geographical region, so load is balanced across geographical
areas. Not all tables need to be partitioned across shards, smaller size ones being duplicated on each
partition. To keep the shards in sync, an asynchronous replication mechanism can be employed.

In the previous diagram, the country table is mirrored from one data center to the other, and
partitioning happens on the user table only. To eliminate the need for inter-shard data processing,
each user along with all user-related data are contained in one data center only.

In the quest for increasing system capacity, sharding is usually a last resort strategy, employed after
exhausting all other available options, such as:

• optimizing the data layer to deliver lower transaction response times
• scaling each replicated node to a cost-effective configuration
• adding more replicated nodes until synchronization latencies start dropping below an accept-
able threshold.

Performance and Scaling 13

MySQL cluster auto-sharding
MySQL Cluster offers automatic sharding, so data is evenly distributed (using a primary key
hashing function) over multiple commodity hardware machines. Every node accepts both read and
write transactions and, just like Multi-Master replication, conflicts are automatically discovered
and resolved.

Figure 2.5: Auto-sharding

The auto-sharding topology is similar to theMulti-Master replication architecture as it can increase
throughput by distributing incoming load to multiple machines. While in aMulti-Master replicated
environment every node stores the whole database, the auto-sharding cluster distributes data so
that each shard is only a subset of the whole database.

Because the cluster takes care of distributing data, the application doesn’t have to provide a data
shard routing layer, and SQL joins are possible even across different shards. MySQL Cluster 7.3
uses the NDB storage engine, and so it lacks some features provided by InnoDB like multiple
transaction isolation levels or MVCC (Multi Version Concurrency Control).

https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html

https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html
https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html

II JDBC and Database Essentials

14

3. JDBC Connection Management
The JDBC (Java Database Connectivity) API provides a common interface for communicating to
a database server. All the networking logic and the database specific communication protocol are
hidden away behind the vendor-independent JDBCAPI. For this reason, all the JDBC interfacesmust
be implemented according to the database vendor specific requirements. The java.sql.Driver is
the main entry point for interacting with the JDBC API, defining the implementation version details
and providing access to a database connection.

Figure 3.1: JDBC plugin architecture

JDBC defines four driver types:

• Type 1: It’s only a bridge to an actual ODBC driver implementation
• Type 2: It uses a database specific native client implementation (e.g. Oracle Call Interface)
• Type 3: It delegates calls to an application server offering database connectivity support
• Type 4: The JDBC driver implements the database communication protocol solely in Java.

Being easier to setup and debug, the Type 4 driver is usually the preferred alternative.

To communicate to a database server, a Java program must first obtain a java.sql.Connection.
Although the java.sql.Driver is the actual database connection provider, it’s more convenient
to use the java.sql.DriverManager since it can also resolve the JDBC driver associated with the
current database connection URL.

15

JDBC Connection Management 16

Previously, the application required to load the driver prior to establishing a connection but, since
JDBC 4.0, the Service Provider Interfaces mechanism can automatically discover all the available
drivers in the current application class-path.

3.1 DriverManager

The DriverManager defines the following methods:

public static Connection getConnection(

String url, Properties info) throws SQLException;

public static Connection getConnection(

String url, String user, String password) throws SQLException;

public static Connection getConnection(

String url) throws SQLException;

Every time the getConnection() method is called, the DriverManager will request a new physical
connection from the underlying Driver.

Figure 3.2: DriverManager connection

The first version of JDBC was launched in 1997, and it only supported the DriverManager utility for
fetching database connections. Back then, Java was offering support for desktop applications which
were often employing a two-tier architecture:

JDBC Connection Management 17

Figure 3.3: Two-tier architecture

In a two-tier architecture, the application is run by single user, and each instance uses a dedicated
database connection. The more users, the more database connections are required, and based on the
underlying resources (hardware, operating system or licensing restrictions), each database server
can offer a limited number of connections.

Oracle mainframe legacy
Oracle has gained its popularity in the era of mainframe computers, when each client got a
dedicated database connection.

Oracle assigns a distinct schema for each individual user, as opposed to other database systems
where a schema is shared by multiple user accounts.

In PL/SQL, the Packaged public variables scope is bound to a session, instead of to the current
running transaction. The application developer must be extra cautious to unbind these variables
properly since connections are often reused and old values might leak into newer transactions.

JDBC Connection Management 18

3.2 DataSource

In 1999 J2EE was launched along with JDBC 2.0 and an initial draft of JTA (Java Transaction API)¹,
marking the beginning of Enterprise Java. Enterprise applications use a three-tier architecture, where
the middle tier acts as a bridge between user requests and various data sources (e.g. relational
databases, messaging queues).

Figure 3.4: Three-tier architecture

Having an intermediate layer between the client and the database server has numerous advantages.

In a typical enterprise application, the user request throughput is greater than the available database
connection capacity. As long as the connection acquisition time is tolerable (from the end-user
perspective), the user request can wait for a database connection to become available. The middle
layer acts as a database connection buffer that can mitigate user request traffic spikes by increasing
request response time, without depleting database connections or discarding incoming traffic.

Because the intermediate layer manages database connections, the application server can also
monitor connection usage and provide statistics to the operations team.

For this reason, instead of serving physical database connections, the application server provides

¹https://jcp.org/en/jsr/detail?id=907

https://jcp.org/en/jsr/detail?id=907
https://jcp.org/en/jsr/detail?id=907

JDBC Connection Management 19

only logical connections (proxies or handles), so it can intercept and register how the client API
interacts with the connection object.

A three-tier architecture can accommodate multiple data sources or messaging queue implementa-
tions. To span a single transaction over multiple sources of data, a distributed transaction manager
becomes mandatory. In a JTA environment, the transaction manager must be aware of all logical
connections the client has acquired as it has to commit or roll them back according to the global
transaction outcome. By providing logical connections, the application server can decorate the
database connection handles with JTA transaction semantics.

If the DriverManager is a physical connection factory, the javax.sql.DataSource interface is a
logical connection provider:

public Connection getConnection() throws SQLException;

public Connection getConnection(

String username, String password) throws SQLException;

The simplest javax.sql.DataSource implementation could delegate connection acquisition requests
to the underlying DriverManager, and the connection request workflow would look like this:

Figure 3.5: DataSource without connection pooling

1. The application data layer asks the DataSource for a database connection
2. The DataSource will use the underlying driver to open a physical connection
3. A physical connection is created, and a TCP socket is opened
4. The DataSource under test doesn’t wrap the physical connection, and it simply lends it to the

application layer
5. The application executes statements using the acquired database connection
6. When the connection is no longer needed, the application closes the physical connection along

with the underlying TCP socket.

JDBC Connection Management 20

Opening and closing database connections is a very expensive operation, so reusing them has the
following advantages:

• it avoids both the database and the driver overhead for establishing a TCP connection
• it prevents destroying the temporary memory buffers associated with each database connec-
tion

• it reduces client-side JVM object garbage.

To visualize the cumulated overhead of establishing and closing database connections, the following
test compares the total time it takes to open and close 1000 database connections of four different
RDBMS against HikariCP² (one of the fastest stand-alone connection pooling solutions in the Java
ecosystem).

Table 3.1: Database connection establishing overhead vs connection pooling

Metric Time (ms)
DB_A

Time (ms)
DB_B

Time (ms)
DB_C

Time (ms)
DB_D

Time (ms)
HikariCP

min 11.174 5.441 24.468 0.860 0.001230
max 129.400 26.110 74.634 74.313 1.014051
mean 13.829 6.477 28.910 1.590 0.003458
p99 20.432 9.944 54.952 3.022 0.010263

When using a connection pooling solution, the connection acquisition time is between two and four
orders of magnitude smaller. By reducing the connection acquisition interval, the overall transaction
response time gets shorter too. All in all, in an enterprise application reusing connections is a much
better choice than always establishing them on a transaction basis.

Oracle XE connection handling limitation
While the Enterprise Edition doesn’t entail any limitations, the Oracle 11g Express Edition throws
the following exception when running very short transactions without using a connection pooling
solution:

ORA-12516, TNS:listener could not find available handler with matching protocol
stack

A connection pooling solution can prevent these intermittent connection establishing failures and
reduce the connection acquisition time as well.

²http://brettwooldridge.github.io/HikariCP/

http://brettwooldridge.github.io/HikariCP/
http://brettwooldridge.github.io/HikariCP/

JDBC Connection Management 21

3.2.1 Why is pooling so much faster?

To understand why the connection pooling solution performs so much better, it’s important to figure
out the connection pooling mechanism:

Figure 3.6: Connection acquisition request flow

1. When a connection is being requested, the pool looks for unallocated connections
2. If the pool finds a free one, it handles it to the client
3. If there is no free connection, the pool tries to grow to its maximum allowed size
4. If the pool already reached its maximum size, it will retry several times before giving up with

a connection acquisition failure exception
5. When the client closes the logical connection, the connection is released and returns to the

pool without closing the underlying physical connection.

Most connection pooling solutions expose a DataSource implementation that either wraps an actual
database specific DataSource or the underlying DriverManager utility.

JDBC Connection Management 22

The logical connection lifecycle looks like this:

Figure 3.7: DataSource connection

The connection pool doesn’t return the physical connection to the client, but instead it offers a proxy
or a handle. When a connection is in use, the pool changes its state to allocated to prevent two
concurrent threads from using the same database connection. The proxy intercepts the connection
close method call, and it notifies the pool to change the connection state to unallocated.

Apart from reducing connection acquisition time, the pooling mechanism can also limit the number
of connections an application can use at once.

The connection pool acts as a bounded buffer for the incoming connection requests. If there is
a traffic spike, the connection pool will level it, instead of saturating all the available database
resources.

All these benefits come at a price since configuring the right pool size is not a trivial thing to do.
Provisioning the connection pool requires understanding the application-specific database access
patterns and also connection usage monitoring.

Whenever the number of incoming requests surpasses the available request handlers, there are
basically two options to avoid system overloading:

• discarding the overflowing traffic (affecting availability)
• queuing requests and wait for busy resources to become available (increasing response time).

Discarding the surplus traffic is usually a last resort measure, so most connection pooling solutions
first attempt to enqueue overflowing incoming requests. By putting an upper bound on the
connection request wait time, the queue is prevented from growing indefinitely and saturating
application server resources.

For a given incoming request rate, the relation between the queue size and the average enqueuing
time is given by one of the most fundamental laws of queuing theory.

JDBC Connection Management 23

3.3 Queuing theory capacity planning

Little’s Law³ is a general-purpose equation applicable to any queueing system being in a stable state
(the arrival rate is not greater than the departure rate).

According to Little’s Law, the average time for a request to be serviced depends only on the long-
term request arrival rate and the average number of requests in the system.

L = λ×W

• L - average number of requests in the system (including both the requests being serviced and
the ones waiting in the queue)

• λ - long-term average arrival rate
• W - average time a request spends in a system.

Assuming that an application-level transaction uses the same database connection throughout its
whole lifecycle, and the average transaction response time is 100 milliseconds,

W = 100ms = 0.1 s

if the average connection acquisition rate is 50 requests per second,

λ = 50
connection requests

s

then the average number of connection requests in the system is:

L = λ×W = 50× 0.1 = 5 connection requests

A pool size of 5 can accommodate the average incoming traffic without having to enqueue any
connection request. If the pool size is 3, then, on average, 2 requests are enqueued and waiting for
connections to become available.

Little’s Law operates with long-term averages and that might not be suitable when taking into
consideration intermittent traffic bursts. In a real-life scenario, the connection pool must adapt to
short-term traffic spikes, and so it’s important to consider the actual connection pool throughput.

In queueing theory, throughput is represented by the departure rate (μ), and, for a connection pool,
it represents the number of connections offered in a given unit of time:

µ =
Ls

Ws
=

pool size

connection lease time

³http://en.wikipedia.org/wiki/Little%27s_law

http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law

JDBC Connection Management 24

The following exercise demonstrates how queuing theory can help provisioning a connection pool
to support various incoming traffic spikes.

Reusing the previous example configuration, the connection pool under test is within the following
boundaries:

• there are at most 5 in-service requests (Ls), meaning that the pool can offer at most 5
connections

• the average service time (Ws) or the connection lease time is 100 milliseconds.

As expected, the connection pool can deliver up to 50 connections per second.

µ =
Ls

Ws
= 50

connection requests

s

When the arrival rate equals departure rate, the system becomes saturated, all connections being in
use.

λ = µ =
Ls

Ws

If the arrival rate outgrows the connection pool throughput, the overflowing requests must wait for
connections to become available.

A one second traffic burst of 150 requests is handled as follows:

• the first 50 requests can be served in the first second
• the following 100 requests are first enqueued and processed in the following two seconds.

µ =
Ls

Ws
=

5

0.1
=

Lq

Wq
=

10

0.2

Figure 3.8: Little’s Law queue

JDBC Connection Management 25

For a constant throughput, the number of enqueued connection requests (Lq) is proportional to the
connection acquisition time (Wq).

The total number of requests in any given spike is calculated as follows:

Lspike = λspike×Wspike

The total time required to process the spike is given by the following formula:

W =
Lspike

µ
=

λspike×Wspike

λ

The number of enqueued connection requests and the time it takes to process them is expressed by
the following equations:

Lq = Lspike− Ls

Wq = W − 1

Assuming there is a traffic spike of 250 requests per second, lasting for 3 seconds.

λspike = 250
requests

s

Wspike = 3 s

The 750 requests spike takes 15 seconds to be fully processed.

Lspike = 250
requests

s
× 3 s = 750 requests

W =
750 requests

50 requests
s

= 15 s

The queue size grows to 700 entries, and it requires 14 seconds for all connection requests to be
serviced.

Lq = Lspike− Ls = 700 requests

Wq = W − 1 = 14 s

JDBC Connection Management 26

3.4 Practical database connection provisioning

Even if queuing theory provides an insight into the connection pool behavior, the dynamics of
enterprise systems are much more difficult to express with general-purpose equations, and metrics
become fundamental for resource provisioning. By continuously monitoring the connection usage
patterns, it’s much easier to react and adjust the pool size when the initial configuration doesn’t
hold anymore.

Unfortunately, many connection pooling solutions only offer limited support for monitoring and
failover strategies, and that was the main reason for building FlexyPool⁴. Supporting the most
common connection pooling frameworks, this open source project offers the following connection
usage metrics:

Table 3.2: FlexyPool metrics

Name Description

concurrent connection requests How many connections are being requested at once

concurrent connections How many connections are being used at once

maximum pool size If the target DataSource uses adaptive pool sizing, this metric
shows how the pool size varies with time

connection acquisition time The time it takes to acquire a connection from the target
DataSource

overall connection acquisition time The total connection acquisition interval (including retries)

retry attempts The connection acquisition retry attempts

overflow pool size How much the pool size can grow over the maximum size until
timing out the connection acquisition request

connection lease time The duration between the moment a connection is acquired and
the time it gets released

While metrics are important for visualizing connection usage trends, in case of an unforeseen traffic
spike, the connection acquisition time could reach the DataSource timeout threshold.

The failover mechanism applies various strategies to prevent timed-out connection requests from
being discarded.While a batch processor can retry a failing request (although it increases transaction
response time), in a web application, the user is much more sensitive to unavailability or long-
running transactions.

⁴https://github.com/vladmihalcea/flexy-pool

https://github.com/vladmihalcea/flexy-pool
https://github.com/vladmihalcea/flexy-pool

JDBC Connection Management 27

FlexyPool comes with the following default failover strategies:

Table 3.3: FlexyPool failover strategies

Name Description

Increment pool size on timeout The connection pool has a minimum size and, on demand, it can grow
up to its maximum size.

This strategy will increment the target connection pool maximum size
on connection acquisition timeout.

The overflow is a buffer of extra connections allowing the pool to grow
beyond its initial maximum size, until it reaches the overflow size
threshold

Retrying attempts This strategy is useful for those connection pools lacking a connection
acquiring retry mechanism, and it simply reattempts to fetch a
connection for a given number of tries

3.4.1 A real-life connection pool monitoring example

The following example demonstrates how FlexyPool failover strategies can determine the right
connection pool size. The application under test is a batch processor using Bitronix transaction
manager⁵ as the database connection pooling provider.

The batch processor is given a certain data load, and the pool size automatically grows upon
detecting a connection acquisition timeout occurrence. The average and the maximum pool size
are determined experimentally, without the need of any prior mathematical calculations.

Prior to running the load testing experiment, it’s better to know the current application connection
pool settings. According to the Bitronix connection pool documentation⁶ the default acquisition-
Timeout (the maximum time a connection request waits before throwing a timeout exception) is 30
seconds.

A connection acquisition timeout threshold of one second is sufficient for the current experiment,
allowing the application to react more quickly to a traffic spike and apply a compensating failover
strategy.

The initial maxPoolSize is set to one connection, and, upon receiving a connection acquisition
timeout, it will grow until the maxOverflow threshold is reached.

The retryAttempts value is intentionally set to a reasonably large value because, for a batch
processor, dropping a connection request is a much bigger problem than some occasional transaction
response time spikes.

⁵https://github.com/bitronix/btm
⁶https://github.com/bitronix/btm/wiki/JDBC-pools-configuration

https://github.com/bitronix/btm
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/JDBC-pools-configuration
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/JDBC-pools-configuration

JDBC Connection Management 28

The experiment starts with the following initial connection pool settings:

Table 3.4: Initial connection pool settings

Name Value Description

minPoolSize 0 The pool starts with an initial size of 0

maxPoolSize 1 The pool starts with a maximum size of 1

acquisitionTimeout 1 A connection request will wait for 1s before giving up with a timeout
exception

maxOverflow 4 The pool can grow up to 5 connections (initial maxPoolSize +
maxOverflow)

retryAttempts 30 If the final maxPoolSize is reached, and there is no connection available, a
request will retry 30 times before giving up.

3.4.1.1 Concurrent connection request count metric

Figure 3.9: Concurrent connection requests

The more incoming concurrent connection requests, the higher the response time (for obtaining a
pooled connection) gets. This graph shows the incoming request distribution, making it ideal for
spotting traffic spikes.

JDBC Connection Management 29

The average value levels up all outliers, so it cannot reflect the application response to a given
traffic spike.

When the recorded values fluctuate dramatically, the average and the maximum value alone offer
only a limited view over the actual range of data, and that’s why percentiles are preferred in
application performance monitoring.

By offering the maximum value, relevant to only a percentage of the whole population, percentiles
make outliers visible while capturing the immediate effect of a given traffic change.

3.4.1.2 Concurrent connection count metric

Figure 3.10: Concurrent connections

The average concurrent connection metric follows a gradual slope up to 1.5 connections. Unfor-
tunately, this value is of little use for configuring the right pool size. On the other hand, the 99th
percentile is much more informative, showing that 3 to 5 connections are sufficient. The maximum
connections graph also confirms that the pool size should be limited to 5 connections (in case the
connection acquisition time is acceptable).

If the connection pool supports it, it’s very important to set the idle connection timeout threshold.
This way, the pool can release unused connections, so the database can provide them to other
clients as well.

JDBC Connection Management 30

3.4.1.3 Maximum pool size metric

Figure 3.11: Maximum pool size

According to the 99th percentile, the pool gets saturated soon after the job process starts.

3.4.1.4 Connection acquisition time metric

Figure 3.12: Connection acquisition time

The traffic spikes are captured by the maximum graph only. The timeout threshold is hit multiple
times as the pool either grows its size or it retries the connection acquisition request.

JDBC Connection Management 31

3.4.1.5 Retry attempts metric

Figure 3.13: Retry attempts

When limiting the connection pool to 5 connections, there are only three retry attempts.

3.4.1.6 Overall connection acquisition time metric

Figure 3.14: Overall connection acquisition Time

While the retry attempts graph only shows how the retry count increases with time, the actual effect
of reattempting is visible in the overall connection acquisition time.

JDBC Connection Management 32

3.4.1.7 Connection lease time metric

Figure 3.15: Connection lease time

The 99th percentile indicates a rather stable connection lease time throughout the whole job
execution. On the other hand, the maximum graph shows a long-running transaction lasting over
35 seconds.

Holding connections for a long periods of time can increase the connection acquisition time, and
fewer resources will be available to other incoming clients.

Most often, connections are leased for the whole duration of a database transaction. Long-running
transactions might hold database locks, which, in turn, might lead to increasing the serial portion
of the current execution context, therefore hindering parallelism.

Long-running transactions can be addressed by properly indexing slow queries or by splitting the
application-level transaction over multiple database transactions, like it’s the case in many ETL
(Extract, Transform and Load) systems.

4. Batch Updates
JDBC 2.0 introduced batch updates, so that multiple DML statements can be grouped into a single
database request. Sending multiple statements in a single request reduces the number of database
roundtrips, therefore decreasing transaction response time. Even if the reference specification used
the term updates, any insert, update or delete statement can be batched, and JDBC supports batching
for java.sql.Statement, java.sql.PreparedStatement and java.sql.CallableStatement too.

Not only each database driver is distinct, but even different versions of the same driver might require
implementation-specific configurations.

4.1 Batching Statements

For executing static SQL statements, JDBC defines the Statement interface and batching multiple
DML statements is as straightforward as the following code snippet:

statement.addBatch(

"INSERT INTO post (title, version, id) " +

"VALUES ('Post no. 1', 0, 1)");

statement.addBatch(

"INSERT INTO post_comment (post_id, review, version, id) " +

"VALUES (1, 'Post comment 1.1', 0, 1)");

int[] updateCounts = statement.executeBatch();

The numbers of database rows affected by each statement is included in the return value of the
executeBatch() method.

Oracle
For Statement and CallableStatement, the Oracle JDBCDriver doesn’t actually support batching
For anything but PreparedStatement, the driver ignores batching, and each statement is executed
separately.

http://docs.oracle.com/cd/E11882_01/java.112/e16548/oraperf.htm#JJDBC28752

33

http://docs.oracle.com/cd/E11882_01/java.112/e16548/oraperf.htm#JJDBC28752
http://docs.oracle.com/cd/E11882_01/java.112/e16548/oraperf.htm#JJDBC28752

Batch Updates 34

The following graph depicts how different JDBC drivers behave when varying batch size, the test
measuring the time it takes to insert 1000 post rows with 4 comments each:

Figure 4.1: Statement batching

Reordering inserts, so that all posts are inserted before the comment rows, gives the following results:

Figure 4.2: Reordered statement batching

Reordering statements doesn’t seem to noticeably improve performance, although some drivers (e.g
MySQL) might take advantage of this optimization.

Batch Updates 35

MySQL
Although it implements the JDBC specification, by default, the MySQL JDBC driver doesn’t send
the batched statements in a single request.

For this purpose, the JDBC driver defines the rewriteBatchedStatements connection property, so
that statements get rewritten into a single String buffer. In order to fetch the auto-generated row
keys, the batch must contain insert statements only.

For PreparedStatement, this property will rewrite the batched insert statements into a multi-
value insert. Unfortunately, the driver won’t be able to use server-side prepared statements when
enabling rewriting.

Without setting this property, the MySQL driver will simply execute each DML statement
separately, therefore defeating the purpose of batching.

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

The following graph demonstrate how statement rewriting performs against the default behavior of
the MySQL JDBC driver:

Figure 4.3: MySQL Statement Batching

Rewriting static statements seems to make a difference, as long as the batch size is not too large.
In practice, it’s common to use a relatively small batch size, to reduce both the client-side memory
footprint and to avoid congesting the server from suddenly processing a huge batch load.

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

Batch Updates 36

4.2 Batching PreparedStatements

For dynamic statements (a very common enterprise application requirement), the JDBC Statement

is a poor fit because the only option for varying the executing SQL statement is through String

manipulation. Using a String template or concatenating String tokens is risky as it makes the data
access logic vulnerable to SQL injection attacks.

To address this shortcoming, JDBC offers the PreparedStatement interface for binding parameters
in a safely manner. The driver must validate the provided parameter at runtime, therefore discarding
unexpected input values.

Because a PreparedStatement is associated with a single DML statement, the batch update can
group multiple parameter values belonging to the same prepared statement.

PreparedStatement postStatement = connection.prepareStatement(

"INSERT INTO Post (title, version, id) " +

"VALUES (?, ?, ?)");

postStatement.setString(1, String.format("Post no. %1$d", 1));

postStatement.setInt(2, 0);

postStatement.setLong(3, 1);

postStatement.addBatch();

postStatement.setString(1, String.format("Post no. %1$d", 2));

postStatement.setInt(2, 0);

postStatement.setLong(3, 2);

postStatement.addBatch();

int[] updateCounts = postStatement.executeBatch();

SQL injection
For an enterprise application, security is a very important technical requirement. The SQL Injection
attack exploits data access layers that don’t sanitize the incoming request parameters.

When input parameters are passed to the underlying database statement without a proper
validation, a rogue attacker might inject a malicious SQL routine.

This is usually done by ending the current statement with the ; character and continuing it
with a rogue SQL command, like modifying the database structure (deleting a table or modifying
authorization rights) or even extracting sensitive information.

Batch Updates 37

All DML statements can benefit from batching as the following tests demonstrate. Just like for the
JDBC Statement test case, the same amount of data (1000 post and 4000 comments) will be inserted,
updated and deleted while varying the batch size.

Figure 4.4: Insert PreparedStatement batch size

Figure 4.5: Update PreparedStatement batch size

Batch Updates 38

Figure 4.6: Delete PreparedStatement batch size

All database systems show a significant performance improvement when batching prepared state-
ments. Some database systems are very fast when inserting or updating rows, while others perform
very well when deleting data.

Compared to the previous Statement batch insert results, it’s clear that, for the same data load, the
PreparedStatement use case performs just better.

For dynamic statements, PreparedStatement provides better performance (when enabling batching)
and stronger security guarantees. Most ORM tools use prepared statements, and since entities are
inserted/update/deleted individually, they can take advantage of batching.

4.2.1 Choosing the right batch size

Finding the right batch size is not a trivial thing to do as there is no mathematical equation to solve
the appropriate batch size for any enterprise application.

Like any other performance optimization technique, measuring the application performance gain in
response to a certain batch size value remains the most reliable tuning option.

The astute reader has already figured out that even a low batch size can reduce the transaction
response time, and the performance gain doesn’t grow linearly with batch size. Although a larger
batch value can save more database roundtrips, the overall performance gain remains relatively flat
and can even drop for larger batch sizes.

As a rule of thumb you should always measure the performance improvement for various batch
sizes. In practice, a relatively low value (between 10 and 30) is usually a good choice.

Batch Updates 39

4.2.2 Bulk operations

Apart from batching, SQL offers bulk operations to modify all rows that satisfy a given filtering
criteria. Bulk update or delete statements can also benefit from indexing, just like select statements.

To update all records from the previous example, one would have to execute the following
statements:

UPDATE post SET version = version + 1;

UPDATE post_comment SET version = version + 1;

Table 4.1: Bulk update time

DB_A time (ms) DB_B time (ms) DB_C time (ms) DB_D time (ms)

26 13 58 9

The bulk alternative is one order of magnitude faster than batching, but, even so, batch updates are
more flexible since each row can take a different update logic. Batch updates can also prevent lost
updates if the data access logic employs an optimistic locking mechanism.

Like with updates, bulk deleting is also much faster than deleting in batches.

DELETE FROM post_comment WHERE version > 0;

DELETE FROM post WHERE version > 0;

Table 4.2: Bulk delete time

DB_A time (ms) DB_B time (ms) DB_C time (ms) DB_D time (ms)

3 12 1 2

Bulk processing caveats
Processing too much data in a single transaction can degrade application performance, especially
in a highly concurrent environment. Whether if using locks (two-phase locking) or MVCC
(Multiversion Concurrency Control), writes always block other conflicting writes. In case the bulk
updated records conflict with other concurrent transactions, then either the bulk update transaction
might have to wait for some row-level locks to be released or other transactions might wait for the
bulk updated rows to be committed.

Batch Updates 40

4.3 Retrieving auto-generated keys

It’s common practice to delegate the row identifier generation to the database system. This way,
the developer doesn’t have to provide a monotonically incrementing primary key since the database
takes care of this upon inserting a new record.

As convenient as this practice may be, it’s important to know that auto-generated database
identifiers might conflict with the batch insert process.

Like many other database features, setting the auto incremented identifier strategy is database
specific but basically the choice goes between an identity column or a database sequence generator.

Oracle
Prior to Oracle 12c, an auto incremented generator had to be implemented on top of a database
sequence.

CREATE SEQUENCE post_seq;

CREATE TABLE post (

id NUMBER(19,0) NOT NULL,

title VARCHAR2(255 CHAR),

version NUMBER(10,0) NOT NULL,

PRIMARY KEY (id));

CREATE OR REPLACE TRIGGER post_identity

BEFORE INSERT ON post

FOR EACH ROW

BEGIN

SELECT post_seq.NEXTVAL

INTO :NEW.id

FROM dual;

end;

Oracle 12c adds support for identity columns as well, so the previous example can be simplified as
follows.

CREATE TABLE post (

id NUMBER(19,0) NOT NULL GENERATED ALWAYS AS IDENTITY,

title VARCHAR2(255 CHAR),

version NUMBER(10,0) NOT NULL,

PRIMARY KEY (id));

Batch Updates 41

SQL Server
Traditionally, SQL Server offered identity column generators, but, since SQL Server 2012, it now
supports database sequences as well.

CREATE TABLE post (

id BIGINT IDENTITY NOT NULL,

title VARCHAR(255),

version INT NOT NULL,

PRIMARY KEY (id));

PostgreSQL
PostgreSQL 9.5 doesn’t support identity columns natively, although it offers the SERIAL column
type which can emulate an identity column.

CREATE TABLE post (

id SERIAL NOT NULL,

title VARCHAR(255),

version INT4 NOT NULL,

PRIMARY KEY (id));

The SERIAL (4 bytes) and BIGSERIAL (8 bytes) types are just a syntactic sugar expression as, behind
the scenes, PostgreSQL relies on a database sequence anyway.

The previous definition is therefore equivalent to:

CREATE SEQUENCE post_id_seq;

CREATE TABLE post (

id INTEGER DEFAULT NEXTVAL('post_id_seq') NOT NULL,

title VARCHAR(255),

version INT4 NOT NULL,

PRIMARY KEY (id));

);

Batch Updates 42

MySQL
MyQL 5.7 only supports identity columns through the AUTO_INCREMENT attribute.

CREATE TABLE post (

id BIGINT NOT NULL AUTO_INCREMENT,

title VARCHAR(255),

version INTEGER NOT NULL,

PRIMARY KEY (id));

Many database developers like this approach since the client doesn’t have to care about supplying
a database identifier upon inserting a new row.

INSERT INTO post (title, version) VALUES (?, ?);

To retrieve the newly created row identifier, the JDBC PreparedStatement must be instructed to
return the auto-generated keys.

PreparedStatement postStatement = connection.prepareStatement(

"INSERT INTO post (title, version) VALUES (?, ?)",

Statement.RETURN_GENERATED_KEYS

);

One alternative is to hint the driver about the column index holding the auto-generated key column.

PreparedStatement postStatement = connection.prepareStatement(

"INSERT INTO post (title, version) VALUES (?, ?)",

new int[] {1}

);

The column name can also be used to instruct the driver about the auto-generated key column.

PreparedStatement postStatement = connection.prepareStatement(

"INSERT INTO post (title, version) VALUES (?, ?)",

new String[] {"id"}

);

It’s better to know all these three alternatives because they are not interchangeable on all database
systems.

Batch Updates 43

Oracle auto-generated key retrieval gotcha
When using Statement.RETURN_GENERATED_KEYS, Oracle returns a ROWID instead of the actual
generated column value. A workaround is to supply the column index or the column name, and so
the auto-generated value can be extracted after executing the statement.

According to the JDBC 4.2 specification, every driver must implement the supportsGetGenerat-

edKeys() method and specify whether it supports auto-generated key retrieval. Unfortunately, this
only applies to single statement updates as the specification doesn’t make it mandatory for drivers
to support generated key retrieval for batch statements. That being said, not all database systems
support fetching auto-generated keys from a batch of statements.

Table 4.3: Driver support for retrieving generated keys

Returns
generated
keys after
calling

Oracle JDBC
driver

(11.2.0.4)

Oracle JDBC
driver

(12.1.0.1)

SQL Server
JDBC driver

(4.2)

PostgreSQL
JDBC driver
(9.4-1201-
jdbc41)

MySQL JDBC
driver (5.1.36)

executeUpdate() Yes Yes Yes Yes Yes
executeBatch() No Yes No Yes Yes

If the Oracle JDBC driver 11.2.0.4 cannot retrieve auto-generated batch keys, the 12.1.0.1 version
works just fine. When trying to get the auto-generated batch keys, the SQL Server JDBC driver
throws this exception: The statement must be executed before any results can be obtained.

4.3.1 Sequences to the rescue

As opposed to identity columns, database sequences offer the advantage of decoupling the identifier
generation from the actual row insert. To make use of batch inserts, the identifier must be fetched
prior to setting the insert statement parameter values.

private long getNextSequenceValue(Connection connection)

throws SQLException {

try(Statement statement = connection.createStatement()) {

try(ResultSet resultSet = statement.executeQuery(

callSequenceSyntax())) {

resultSet.next();

return resultSet.getLong(1);

}

}

}

Batch Updates 44

For calling a sequence, every database offers a specific syntax:

Oracle

SELECT post_seq.NEXTVAL FROM dual;

SQL Server

SELECT NEXT VALUE FOR post_seq;

PostgreSQL

SELECT NEXTVAL('post_seq');

Because the primary key is generated up-front, there is no need to call the getGeneratedKeys()

method, and so batch inserts are not driver dependent anymore.

try(PreparedStatement postStatement = connection.prepareStatement(

"INSERT INTO post (id, title, version) VALUES (?, ?, ?)")) {

for (int i = 0; i < postCount; i++) {

if(i > 0 && i % batchSize == 0) {

postStatement.executeBatch();

}

postStatement.setLong(1, getNextSequenceValue(connection));

postStatement.setString(2, String.format("Post no. %1$d", i));

postStatement.setInt(3, 0);

postStatement.addBatch();

}

postStatement.executeBatch();

}

Many database engines use sequence number generation optimizations to lower the sequence call
execution as much as possible. If the number of inserted records is relatively low, then the sequence
call overhead (extra database roundtrips) is insignificant.

For batch processors inserting large amounts of data, the extra sequence calls can add up. As an
optimization, the identifier generation process can be split among the database and the data access
logic. The database sequences can be incremented in steps (for a step of N the sequence numbers
are 1, N + 1, 2N + 1, 3N + 1, …). The data access logic can assign identifiers in-between the database
sequence calls (e.g. 2, 3, 4, …, N -1, N), and so it mitigates the extra network roundtrips penalty.

5. Statement Caching
Being a declarative language, SQL describes thewhat and not the how. The actual database structures
and the algorithms used for fetching and preparing the desired result set are hidden away from the
database client, which only has to focus on properly defining the SQL statement. This way, to deliver
the most efficient data access plan, the database can attempt various execution strategies.

5.1 Statement lifecycle

The main database modules responsible for processing an SQL statement are the Parser, the
Optimizer and the Executor.

Figure 5.1: Statement lifecycle

45

Statement Caching 46

5.1.1 Parser

The Parser checks the SQL statement and ensures its validity. The statements are verified both
syntactically (the statement keywords must be properly spelled and following the SQL language
guidelines) and semantically (the referenced tables and column do exist in the database).

During parsing, the SQL statement is transformed into a database internal representation, called
the syntax tree (also known as parse tree or query tree). If the SQL statement is a high-level
representation (being more meaningful from a human perspective), the syntax tree is the logical
representation of the database objects required for fulfilling the current statement.

5.1.2 Optimizer

For a given syntax tree, the database must decide the most efficient data fetching algorithm. Data is
retrieved by following an access path, and the Optimizer needs to evaluate multiple data traversing
options like:

• the access method for each referencing table (table scan or index scan)
• for index scans, it must decide which index is better suited for fetching this result set
• for each joining relation (e.g. table, views or Common Table Expression), it must choose the
best performing join type (e.g. Nested Loops Joins, Hash Joins, Sort Merge Joins)

• the joining order becomes very important especially for Nested Loops Joins.

The list of access path, chosen by the Optimizer, is assembled into an execution plan.

Because of the large number of all the possible action plan combinations, finding a good execution
plan is not a trivial task. The more time is spent on finding the best possible execution plan, the
higher the transaction response time will get, so the Optimizer has a fixed time budget for finding a
reasonable plan.

The most common decision-making algorithm is CBO (Cost-Based Optimizer). Each access method
translates to a physical database operation, and its associated cost in resources can be estimated.
The database stores various statistics like table sizes and data cardinality (how much the column
values differ from one row to the other) to evaluate the cost of a given database operation. Time is
the most common unit of cost, and the database estimates it based on the number of CPU cycles and
I/O operations required by a particular execution.

When finding an optimal execution plan, the Optimizer might evaluate multiple options, and, based
on their overall cost, it will choose the one requiring the least amount of time to execute.

By now, it’s clear that finding a proper execution plan is resource intensive, and, for this purpose,
some database vendors offer execution plan caching (to eliminate the time spent on finding the
optimal plan). While caching can speed up statement execution, it also incurs some additional
challenges (making sure the plan is still optimal across multiple executions).

Statement Caching 47

Each execution plan has a given memory footprint, and most database systems use a fixed-size cache
(discarding the least used plans to make room for newer ones). DDL (Data Definition Language)
statements might corrupt execution plans, making them obsolete, so the databasemust use a separate
process for validating the existing execution plans relevancy.

But the most challenging aspect of caching is to ensure that only a good execution plan goes in the
cache, since a bad plan, getting reused over and over, can really hurt application performance.

5.1.2.1 Execution plan visualization

Database tuning would not be possible without knowing the actual execution plan, a database
employs for any given SQL statement. Because the output may exceed the length of a page, some
execution plan columns were removed for brevity sake.

Oracle
Oracle uses the EXPLAIN PLAN FOR syntax, and the output goes into the dbms_xplan package:

SQL> EXPLAIN PLAN FOR SELECT COUNT(*) FROM post;

SQL> SELECT plan_table_output FROM table(dbms_xplan.display());

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 5 (0)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| SYS_C007093 | 5000 | 5 (0)| 00:00:01 |

PostgreSQL
PostgreSQL reserves the EXPLAIN keyword for displaying execution plans:

EXPLAIN SELECT COUNT(*) FROM post;

QUERY PLAN

--

Aggregate (cost=99.50..99.51 rows=1 width=0)

-> Seq Scan on post (cost=0.00..87.00 rows=5000 width=0)

Statement Caching 48

SQL Server
The SQL Server Management Studio provides an execution plan viewer:

Another option is to enable the SHOWPLAN_ALL setting prior to running a statement:

SET SHOWPLAN_ALL ON;

GO

SELECT COUNT(*) FROM post;

GO

SET SHOWPLAN_ALL OFF;

GO

| Stmt Text | Est. Rows | Est. IO | Est. CPU | Subtree Cost |

--

| select count(*) from post; | 1 | NULL | NULL | 0.0288 |

| Compute Scalar | 1 | 0 | 0.003 | 0.0288 |

| Stream Aggregate | 1 | 0 | 0.003 | 0.0288 |

| Clustered Index Scan | 5000 | 0.020 | 0.005 | 0.0258 |

MySQL
The plan is displayed using EXPLAIN or EXPLAIN EXTENDED:

mysql> EXPLAIN EXTENDED SELECT COUNT(*) FROM post;

+----+--------+-------+-------+---------+-----+------+----------+-------------+

| id | select | table | type | key | key | rows | filtered | Extra |

| | type | table | type | | len | | | |

+----+--------+-------+-------+---------+-----+------+----------+-------------+

| 1 | SIMPLE | post | index | PRIMARY | 8 | 5000 | 100.00 | Using index |

+----+--------+-------+-------+---------+-----+------+----------+-------------+

Statement Caching 49

5.1.3 Executor

From the Optimizer, the execution plan goes to the Executor where it is used to fetch the associated
data and build the result set. The Executor makes use of the Storage Engine (for loading data
according to the current execution plan) and the Transaction Engine (to enforce the current
transaction data integrity guarantees).

Having a reasonably large in-memory buffer allows the database to reduce the I/O contention,
therefore reducing transaction response time. The consistency model also has an impact on the
overall transaction performance since locks may be acquired to ensure data integrity, and the more
locking, the less the chance for parallel execution.

5.2 Caching performance gain

Before jumping into more details about server-side and client-side statement caching, it’s better to
visualize the net effect of reusing statements on the overall application performance. The following
test calculates the number of queries a database engine can execute within one minute time span.
To better emulate a non-trivial execution plan, the test executes a statement combining both table
joining as well as query nesting.

SELECT p.title, pd.created_on

FROM post p

LEFT JOIN post_details pd ON p.id = pd.id

WHERE EXISTS (

SELECT 1

FROM post_comment

WHERE post_id = p.id AND version = ?

)

Running it on four different database systems, the following throughput numbers are collected.

Table 5.1: Statement caching performance gain

Database System No Caching Throughput
(Statements Per Minute)

Caching Throughput
(Statements Per Minute)

Percentage Gain

DB_A 419 833 507 286 20.83%
DB_B 194 837 303 100 55.56%
DB_C 116 708 166 443 42.61%
DB_D 15 522 15 550 0.18%

Most database systems can clearly benefit from reusing statements and, in some particular use cases,

Statement Caching 50

the performance gain is quite substantial.

Statement caching plays a very important role in optimizing high-performance OLTP
(Online transaction processing) systems.

5.3 Server-side statement caching

Because statement parsing and the execution plan generation are resource intensive operations,
some database providers offer an execution plan cache. The statement string value is used as input
to a hashing function, and the resulting value becomes the execution plan cache entry key. If the
statement string value changes from one execution to the other, the database cannot reuse an already
generated execution plan. For this purpose, dynamic-generated JDBC Statement(s) are not suitable
for reusing execution plans.

Forced Parameterization
Some database systems offer the possibility of intercepting SQL statements at runtime, so that all
value literals are replaced with bind variables. This way, the newly parametrized statement can
reuse an already cached execution plan.

To enable this feature, each database system offers a vendor-specific syntax.

Oracle

ALTER SESSION SET cursor_sharing=force;

SQL Server

ALTER DATABASE high_performance_java_persistence SET PARAMETERIZATION FORCED;

Server-side prepared statements allow the data access logic to reuse the same execution plan for
multiple executions. A PreparedStatement is always associated with a single SQL statement, and
bind parameters are used to vary the runtime execution context. Because PreparedStatement(s)

take the SQL query at creation time, the database can precompile the associated SQL statement prior
to executing it.

Statement Caching 51

During the precompilation phase, the database validates the SQL statement and parses it into
a syntax tree. When it comes to executing the PreparedStatement, the driver sends the actual
parameter values, and the database can jump to compiling and running the actual execution plan.

Figure 5.2: Server-Side prepared statement workflow

Because of index selectivity, in the absence of the actual bind parameter values, the Optimizer cannot
compile the syntax tree into an execution plan. Since a disk access is required for fetching every
additional row-level data, indexing is suitable when selecting only a fraction of the whole table
data. Most database systems take this decision based on the index selectivity of the current bind
parameter values.

A covering index bypasses disk access if all requesting columns are scanned by the index.

Because each disk access requires reading a whole block of data, accessing to many disparate blocks
can actually perform worse than scanning the whole table (random access is slower than sequential
scans).

For prepared statements, the execution plan can either be compiled on every execution or it can be
cached and reused. Recompiling the plan can generate the best data access paths for any given bind
variable set while paying the price of additional database resources usage. Reusing a plan can spare
database resources, but it might not be suitable for every parameter value combination.

Statement Caching 52

5.3.1 Bind-sensitive execution plans

Assuming a task table has a status column with three distinct values: TO_DO, DONE and FAILED.
The table has 100 000 rows, of which 1000 are TO_DO entries, 95 000 areDONE and 4000 are FAILED
records.

In database terminology, the number of rows returned by a given predicate is called cardinality and,
for the status column, the cardinality varies from 1000 to 95 000.

C = {1000, 4000, 95 000}

By dividing cardinality with the total number of rows, the predicate selectivity is obtained:

S =
C

N
× 100 = {1%, 4%, 95%}

The lower the selectivity, the less rows will be matched for a given bind value, and the more
selective the predicate gets. The Optimizer tends to prefer sequential scans over index lookups for
high selectivity percentages, to reduce the total number of disk-access roundtrips (especially when
data is scattered among multiple data blocks).

When searching for DONE entries, the Optimizer chooses a sequential scan access path (the
estimated number of selected rows is 95 080):

SQL> EXPLAIN SELECT * FROM task WHERE status = 'DONE' LIMIT 100;

Limit (cost=0.00..1.88 rows=100 width=13)

-> Seq Scan on task (cost=0.00..1791.00 rows=95080 width=13)

Filter: ((status)::text = 'DONE'::text)

Otherwise, the search for TO_DO or FAILED entries is done through an index lookup:

SQL> EXPLAIN SELECT * FROM task WHERE status = 'TO_DO' LIMIT 100;

Limit (cost=0.29..4.25 rows=100 width=13)

-> Index Scan using task_status_idx on task (cost=0.29..36.16 rows=907)

Index Cond: ((status)::text = 'TO_DO'::text)

SQL> EXPLAIN SELECT * FROM task WHERE status = 'FAILED' LIMIT 100;

Limit (cost=0.29..3.86 rows=100 width=13)

-> Index Scan using task_status_idx on task (cost=0.29..143.52 rows=4013)

Index Cond: ((status)::text = 'FAILED'::text)

Statement Caching 53

So, the execution plan depends on bind parameter value selectivity. If the selectivity is constant
across the whole bind value domain, the execution plan is no longer sensitive to parameter values.
A generic execution plan is much easier to reuse than a bind-sensitive one.

The following section describes how some well-known database systems implement server-side
prepared statements in relation to their associated execution plans.

Oracle
Every SQL statement goes through the Parser, where it is validated both syntactically and
semantically. Next, a hashing function takes the SQL statement, and the resulting hash key is used
for searching the Shared Pool for an existing execution plan.

In Oracle terminology, reusing an execution plan is called a soft parse. To reuse a plan, the
SQL statement must be identical with a previously processed one (even the case sensitivity and
whitespaces are taken into consideration).

If no execution plan is found, the statement undergoes a hard parse. The Optimizer evaluates
multiple execution plans and chooses the one with the lowest associated cost, which is further
compiled into a source tree by the Row Source Generator. Whether reused (soft parse) or generated
(hard parse), the source tree goes to the Executor, which fetches the associated result set.

Bind peeking
As previously mentioned, the Optimizer cannot determine an optimal access path in the absence
of the actual bind values. For this reason, Oracle uses bind peeking during the hard parse phase.

The first set of bind parameter values determines the selectivity of the cached execution plan. By
now it’s clear that this strategy is feasible for uniformly distributed data sets, and a single execution
plan cannot perform consistently for bind-sensitive predicates.

As of 11g, Oracle has introduced adaptive cursor sharing, so a statement can utilize multiple
execution plans. The behavior is reactive to execution times, and bad plans are substituted with
optimal ones for certain bind value combinations.

Both the execution plan cache and the adaptive cursor sharing are enabled by default, and, for
highly concurrent OLTP systems, hard parsing should be avoided as much as possible. During
execution plan generation, the database uses a latch to avoid multiple concurrent statements from
accessing the same database objects. Latches introduce a serial execution, which, in turn, increases
contention and decreases concurrency and scalability.

PreparedStatement(s) optimize the execution plan cache hit rate and are therefore preferred over
plain JDBC Statement(s).

https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
https://docs.oracle.com/database/121/TGSQL/tgsql_cursor.htm#TGSQL848

https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
https://docs.oracle.com/database/121/TGSQL/tgsql_cursor.htm#TGSQL848
https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
https://docs.oracle.com/database/121/TGSQL/tgsql_cursor.htm#TGSQL848

Statement Caching 54

SQL Server
SQL Server always caches execution plans for both JDBC Statement(s) and PreparedStatement(s).
The execution plans are stored in the procedure cache region and they are evicted only when the
in-memory storage starts running out of space.

Even if SQL Server supports plain statements forced parametrization, preparing statements remains
the most effective way to increase the likelihood of an execution plan cache hit.

The catch is that all prepared statements should use the qualified object name, thus the
schema must always precede the table name.

So, instead of a query like this:

SELECT * FROM task WHERE status = ?;

the data access layer should always append the schema to all table names:

SELECT * FROM etl.task WHERE status = ?;

Without specifying the database object schema, the cache cannot determinewhich statistics
to consider when analyzing the effectiveness of a given execution plan.

SQL Server inspects the actual parameter values during the first execution of a prepared statement.
This process is called parameter sniffing, and its effectiveness is relative to predicate value
distribution.

The database engine monitors statement execution times, and if the existing cached plan doesn’t
perform efficiently or if the underlying table structure or data distribution statistics undergo
a conflicting change, then the database recompiles the execution plan according to the new
parameter values.

For skewed data, reusing plans might be suboptimal, and recompiling plans on every execution
could be a better alternative. To address the parameter sniffing limitations, SQL Server offers the
OPTION (RECOMPILE) query hint, so the statement can bypass the cache and generate a fresh plan
on every execution.

SELECT * FROM task WHERE status = ? OPTION(RECOMPILE);

https://technet.microsoft.com/en-us/library/ms181055%28v=sql.100%29.aspx
https://msdn.microsoft.com/en-us/library/ms181714.aspx

https://technet.microsoft.com/en-us/library/ms181055%28v=sql.100%29.aspx
https://msdn.microsoft.com/en-us/library/ms181714.aspx
https://technet.microsoft.com/en-us/library/ms181055%28v=sql.100%29.aspx
https://msdn.microsoft.com/en-us/library/ms181714.aspx

Statement Caching 55

PostgreSQL
Prior to 9.2, a prepared statement was planned and compiled entirely during the prepare phase,
so the execution plan was generated in the absence of the actual bind parameter values. Although
it attempted to spare database resources, this strategy was very sensitive to skewed data. Since
PostgreSQL 9.2, the prepare phase only parses and rewrites a statement, while the optimization
and the planning phase are deferred until execution time. This way, the rewritten syntax tree
is optimized according to the actual bind parameter values, and an optimal execution plan is
generated.

For a singular execution, a plain statement requires only a one database roundtrip, while a prepared
statement needs two (a prepare request and an execution call). To avoid the networking overhead,
by default, JDBC PreparedStatement(s) do both the prepare and the execute phases over a single
database request.

A client-side prepared statement must run at least 5 times for the driver to turn it into a server-side
statement. The default execution count value is given by the prepareThreshold parameter, which
is configurable as a connection property or through a driver-specific API.

After several executions, if the performance is not sensitive to bind parameter values, the Optimizer
might choose to turn the plan into a generic one and cache it for reuse.

https://jdbc.postgresql.org/documentation/publicapi/org/postgresql/PGStatement.html

MySQL
When preparing a statement, the MySQL Parser generates a syntax tree which is further validated
and pre-optimized by a resolution mechanism. The syntax tree undergoes several data-insensitive
transformations and the final output is a permanent tree.

Since MySQL 5.7.4, all permanent transformations (rejoining orders or subquery optimizations)
are done in the prepare phase, so the execution phase only applies data-sensitive transformations.
MySQL doesn’t cache execution plans, so every statement execution is optimized for the current
bind parameter values, therefore avoiding data skew issues.

Because of some unresolved issues, since version 5.0.5, the MySQL JDBC driver only emu-
lates server-side prepared statements. To switch to server-side prepared statements, both the
useServerPrepStmts and the cachePrepStmts connection properties must be set to true.

Before activating this feature, it’s better to check the latest Connector/J release notes and validate
this feature is safe for using.

http://mysqlserverteam.com/mysql-performance-schema-prepared-statements-instrumentation/
http://dev.mysql.com/doc/relnotes/connector-j/en/news-5-0-5.html

https://jdbc.postgresql.org/documentation/publicapi/org/postgresql/PGStatement.html
https://jdbc.postgresql.org/documentation/publicapi/org/postgresql/PGStatement.html
http://mysqlserverteam.com/mysql-performance-schema-prepared-statements-instrumentation/
http://dev.mysql.com/doc/relnotes/connector-j/en/news-5-0-5.html
http://mysqlserverteam.com/mysql-performance-schema-prepared-statements-instrumentation/
http://dev.mysql.com/doc/relnotes/connector-j/en/news-5-0-5.html

Statement Caching 56

5.4 Client-side statement caching

Not only the database side can benefit from caching statements, but also the JDBC driver can reuse
already constructed statement objects. The main goals of the client-side statement caching can be
summarized as follows:

• reducing client-side statement processing, which, in turn, lowers transaction response time
• sparing application resources by recycling statement objects along with their associated
database-specific metadata.

In high-performance OLTP applications, transactions tend to be very short, so even aminor response
time reduction can make a difference on the overall transaction throughput.

Oracle implicit statement caching
Unlike server-side plan cache, the client one is confined to a database connection only. Since the
SQL String becomes the cache entry key, PreparedStatement(s) and CallableStatement(s) have
a better chance of getting reused, therefore the Oracle JDBC driver supports caching only for these
two statement types. When enabling caching (it is disabled by default), the driver returns a logical
statement, so when the client closes it, the logical statement goes back to the cache.

From a development point of view, there is an implicit statement caching mechanism as well as
an explicit one. Both caching options share the same driver storage, which needs to be configured
according to the current application requirements.

The implicit cache can only store statement metadata, which doesn’t change from one execution
to the other. Although it can be set for each individual Connection, it’s convenient to configure it
at the DataSource level (all connections inheriting the same caching properties):

connectionProperties.put("oracle.jdbc.implicitStatementCacheSize",

Integer.toString(cacheSize));

dataSource.setConnectionProperties(connectionProperties);

Setting the implicitStatementCacheSize also enables the cache. By default, all executing state-
ments are being implicitly cached, and this might not be desirable (some occasional queries might
evict other frequently executed statements). To control the statement caching policy, JDBC defines
the isPoolable() and setPoolable(boolean poolable) Statement methods:

if (statement.isPoolable()) {

statement.setPoolable(false);

}

Statement Caching 57

Oracle explicit statement caching
The explicit cache is configurable and managed through an Oracle-specific API. Prior to using it,
it must be enabled and resized using the underlying OracleConnection reference.

OracleConnection oracleConnection = (OracleConnection) connection;

oracleConnection.setExplicitCachingEnabled(true);

oracleConnection.setStatementCacheSize(cacheSize);

When using the explicit cache, the data access controls which statements are cacheable, so there is
no need for using the setPoolable(boolean poolable)method anymore. The following example
demonstrates how to make use of the explicit caching mechanism.

PreparedStatement statement = oracleConnection

.getStatementWithKey(SELECT_POST_REVIEWS_KEY);

if (statement == null)

statement = connection.prepareStatement(SELECT_POST_REVIEWS);

try {

statement.setInt(1, 10);

statement.execute();

} finally {

((OraclePreparedStatement) statement).closeWithKey(SELECT_POST_REVIEWS_KEY);

}

The explicit caching relies on two main operations, which can be summarized as follows:

1. the getStatementWithKey(String key) method loads a statement from the cache. If no
entry is found, the PreparedStatementmust be manually created using standard JDBC API

2. the closeWithKey(String key) method pushes the statement back into the pool.

The vendor-specific API couples the data access code to the Oracle-specific API which
hinders portability and it require a more complex data access logic (when accommodating
multiple database systems).

Aside from caching metadata, the explicit cache also stores execution state and data. Although
reusing more client-side constructs might improve performance even further, this strategy poses
the risk of mixing previous and current execution contexts, so caution is advised.

Statement Caching 58

SQL Server
Although the Microsoft SQL Server JDBC driver defines a disableStatementPooling property, as
of writing (the 4.2 version), the statement cache cannot be enabled.

On the other hand, jTDS (the open source JDBC 3.0 implementation) offers statement caching
on a per connection basis. Being a JDBC 4.0 specific API, The setPoolable(boolean poolable)

Statementmethod is not implemented in the 1.3.1 jTDS release. The cache has a default size of 500
entries which is also adjustable.

((JtdsDataSource) dataSource).setMaxStatements(cacheSize);

Even if jTDS has always focused on performance, the lack of a steady release schedule is a major
drawback compared to the Microsoft driver.

https://msdn.microsoft.com/en-us/library/ms378988%28v=sql.110%29.aspx

PostgreSQL
Since the PostgreSQL JDBC driver 9.4-1202 version, the client-side statements are cached, and their
associated server-side statement keys are retained even after the initial PreparedStatement(s)
is closed. As long as the current connection cache contains a given SQL statement, both the
client-side PreparedStatement and the server-side object can be reused. The setPoolable(boolean
poolable) method has no effect, and caching cannot be disabled on a per statement basis.

The statement cache is controlled by the following connection properties:

• preparedStatementCacheQueries - the number of statements cached for each database
connection. A value of 0 disables the cache, and server-side prepared statements are no
longer available after the PreparedStatement is closed. The default value is 256.

• preparedStatementCacheSizeMiB - the statement cache has an upper memory bound, and
the default value is 5 MB. A value of 0 disables the cache.

These properties can be set both as connection parameters or as DataSource properties:

((PGSimpleDataSource) dataSource).setPreparedStatementCacheQueries(cacheSize);

((PGSimpleDataSource) dataSource).setPreparedStatementCacheSizeMiB(cacheSizeMb);

https://jdbc.postgresql.org/documentation/changelog.html#version_9.4-1202
https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters

https://msdn.microsoft.com/en-us/library/ms378988%28v=sql.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms378988%28v=sql.110%29.aspx
https://jdbc.postgresql.org/documentation/changelog.html#version_9.4-1202
https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters
https://jdbc.postgresql.org/documentation/changelog.html#version_9.4-1202
https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters

Statement Caching 59

MySQL
The statement caching is associated with a database connection, and it applies to all executing
statements. In the 5.1.36 Connector/J driver version, the setPoolable(boolean poolable)method
can disable caching for server-side statements only, the client-side ones being unaffected by this
setting.

The client-side statement cache is configured using the following properties:

• cachePrepStmts - enables the client-side statement cache as well as the server-side state-
ment validity checking. By default, the statement cache is disabled.

• prepStmtCacheSize - the number of statements cached for each database connection. The
default cache size is 25.

• prepStmtCacheSqlLimit - the maximum length of an SQL statement allowed to be cached.
The default maximum value is 256.

These properties can be set both as connection parameters or at DataSource level:

((MysqlDataSource) dataSource).setCachePrepStmts(true);

((MysqlDataSource) dataSource).setPreparedStatementCacheSize(cacheSize);

((MysqlDataSource) dataSource).setPreparedStatementCacheSqlLimit(maxLength);

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

6. ResultSet Fetching
Having discussed the SQL statement optimizations (batching and caching), it’s time to move on to
the response part of a query processing. Unlike the insert, update and delete statements, which only
return the affected row count, a JDBC select query returns a ResultSet instead.

The database Executor takes an execution plan and fetches data into a result set. Rows may be either
extracted at once or upon being requested by the database client.

The SQL Standard defines both the result set and the cursor descriptor through the following
properties:

• scrollability (the direction in which the result set can be iterated)
• sensitivity (when should data be fetched)
• updatability (available for cursors, it allows the client to modify records while traversing the
result set)

• holdability (the result set scope in regard to a transaction lifecycle).

Following the standard specification, the JDBC ResultSet offers support for all the aforementioned
properties.

Table 6.1: JDBC ResultSet properties

Property Name Description

TYPE_FORWARD_ONLY The result set can only be iterated from the first to the last
element. This is the default scrollability value.

TYPE_SCROLL_INSENSITIVE The result set takes a loading time snapshot which can be iterated
both forward and backwards.

TYPE_SCROLL_SENSITIVE The result set is fetched on demand, while being iterated without
any direction restriction.

CONCUR_READ_ONLY The result set is just a static data projection which doesn’t allow
row-level manipulation. This is the default changeability value.

CONCUR_UPDATABLE The cursor position can be used to update or delete records, or
even insert a new one.

CLOSE_CURSORS_AT_COMMIT The result set is closed when the current transaction ends.

HOLD_CURSORS_OVER_COMMIT The result set remains open even after the current transaction is
committed. 60

ResultSet Fetching 61

6.1 ResultSet scrollability

The JDBC ResultSet can be traversed using an application-level cursor. The fetching mechanism
is therefore hidden behind an iterator API which decouples the application code from the data
retrieval strategy. Some database drivers prefetch the whole result set on the client-side, while other
implementations retrieve batches of data on a demand basis.

By default, the ResultSet uses a forward-only application-level cursor, which can be traversed only
once, from the first position to last one. Although this is sufficient for most applications, JDBC also
offers scrollable cursors, therefore allowing the row-level pointer to be positioned freely (in any
direction and on every record).

The main difference between the two scrollable result sets lays in their selectivity. An insensitive
cursor offers a static view over the current result set, so the data needs to be fetched entirely prior
to being iterated. A sensitive cursor allows the result set to be fetched dynamically, so it can reflect
concurrent changes.

Oracle
Since the database engine doesn’t offer support for scrollable result sets, the JDBC driver emulates
it on top of a client-side caching mechanism. As a consequence, the result set shouldn’t be too
large as otherwise it can easily fill the client application memory.

A sensitive scrollable result set is limited to selecting data from a single table only.

https://docs.oracle.com/database/121/JJDBC/resltset.htm#JJDBC28615

SQL Server
All three cursor types are supported. An insensitive scroll generates a server-side database
snapshot, which the client fetches in batches. The sensitive scroll uses a server-side updatable
window and changes are synchronized only for the current processing window.

The driver suggests using read-only cursors when there is no intent on updating the result
set. The forward-only scroll delivers the best performance for small result sets.

https://docs.oracle.com/database/121/JJDBC/resltset.htm#JJDBC28615
https://docs.oracle.com/database/121/JJDBC/resltset.htm#JJDBC28615
https://msdn.microsoft.com/en-us/library/aa342344%28v=sql.110%29.aspx

ResultSet Fetching 62

PostgreSQL
By default, the result set is fetched entirely and cached on the client-side. Only the forward-only
and the insensitive scroll are supported. For large result sets, fetching all records at once can put a
lot of pressure on both the database server resources and the client-side memory. For this purpose,
PostgreSQL allows associating a result set to a database cursor, so records can be fetched on
demand.

PreparedStatement statement = connection.prepareStatement(

"SELECT title FROM post WHERE id BETWEEN ? AND ?"

);

statement.setFetchSize(100);

Only the forward-only result set type can benefit from database-side cursors, and the
statement fetch size must be set to a positive integer value.

https://jdbc.postgresql.org/documentation/head/query.html

MySQL
Only the insensitive scroll type is supported, even when explicitly specifying a forward-only result
set. Because MySQL doesn’t support database cursors, the driver retrieves the whole result set and
caches it on the client-side. Large result sets can be streamed only if the statement type is both
forward-only and read-only and the fetch size value is set to the lowest java.lang.Integer value.

PreparedStatement statement = connection.prepareStatement(

"SELECT title FROM post WHERE id BETWEEN ? AND ?",

ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY

);

statement.setFetchSize(Integer.MIN_VALUE);

Streaming requires fetching one row at a time, which might incur multiple database
roundtrips. Until the stream is closed, the connection cannot execute any other statement.

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html

https://jdbc.postgresql.org/documentation/head/query.html
https://jdbc.postgresql.org/documentation/head/query.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html

ResultSet Fetching 63

6.2 ResultSet changeability

By default, the result set is just a read-only view of the underlying data projection. Inspired by
database cursors, the JDBC standard offers updatable result sets, so the data access logic can modify
records while iterating the application-level cursor.

Mixing reading andwriting logic into a single database transaction reminds of two-tier architectures,
where holding the result set, even in the user think time, was both common and acceptable.

For web applications, requests should be as short as possible, and most application-level transactions
span over multiple web requests. The former request may use a read-only database transaction to
fetch data and render it to the user, while the latter might use a read-write transaction to apply data
modifications. In such scenario, an updatable result set is of little use, especially because holding
it open (along with the underlying database connection) over multiple requests can really hurt
application scalability.

The following test case verifies if a forward-only and read-only cursor performs better than a
sensitive and updatable one. The test executes 10 000 statements, fetching 100 posts along with
details and their associated 1000 comments.

Figure 6.1: ResultSet cursor type

Every database system under test showed a slight improvement when using forward-only and read-
only result sets.

As a rule of thumb, if the current transaction doesn’t require updating selected records,
the forward-only and read-only default result set type is the most efficient option. Even
if it is a reminiscence from JDBC 1.0, the default result set is still the right choice in most
situations.

ResultSet Fetching 64

6.3 ResultSet holdability

The JDBC 3.0 version added support for result set holdability and, unlike scrollability and updata-
bility, the default value is implementation specific.

Oracle
The default and the only supported holdability value is HOLD_CURSORS_OVER_COMMIT. An exception
is thrown when trying to change this setting to any other value.

SQL Server
By default, the result set is kept open even after the current transaction is committed or rolled back.
SQL Server supports the CLOSE_CURSORS_AT_COMMIT setting as well.

PostgreSQL
Unlike other database systems, the default holdability value is CLOSE_CURSORS_AT_COMMIT, but the
driver also supports the HOLD_CURSORS_OVER_COMMIT setting.

MySQL
The default and the only supported holdability value is HOLD_CURSORS_OVER_COMMIT.

In a typical enterprise application, database connections are reused from one transaction to another,
so holding a result set after a transaction ends is risky. Depending on the underlying database system
and on the cursor type, a result set might allocate system resources, which, for scalability reasons,
need to be released as soon as possible.

Although the CLOSE_CURSORS_AT_COMMIT holdability option is not supported by all database
engines, the same effect can be achieved by simply closing all acquired ResultSet(s) and
their associated Statement objects.

6.4 Fetching size

The JDBC ResultSet acts as an application-level cursor, so whenever the statement is traversed,
the result must be transferred from the database to the client. The transfer rate is controlled by the
Statement fetch size.

statement.setFetchSize(fetchSize);

A custom fetch size gives the driver a hint as to the number of rows needed to be retrieved in a
single database roundtrip. The default value of 0 leaves each database choose its own driver-specific
fetching policy.

ResultSet Fetching 65

Oracle
The default fetch size is set to 10 records, as a consequence of the JDBC driver memory model.

The Oracle 10i and 11g drivers pre-allocate a byte[] and a char[] buffers at statement creation
time, whose lengths are given by the multiplication of the fetch size by the maximum memory
footprint of each selected column. A VARCHAR2(N) column can accommodate at most N characters
(or 2N bytes). Storing a field with a maximum size of 5 characters into a VARCHAR2(4000) column
would pre-allocate 8000 bytes on the client-side, which is definitely a waste of memory.

Avoiding memory allocation, by reusing existing buffers, is a very solid reason for
employing statement caching. Only when using the implicit statement cache, the 10i and
11g drivers can benefit from recycling client-side memory buffers.

The 12c implementation defers the buffer allocation until the result set is ready for fetching. This
driver version uses two byte[] arrays instead, which are allocated lazily. Compared to the previous
versions, the 12c memory footprint is greatly reduced since, instead of allocating the maximum
possible data storage, the driver uses the actual extracted data size.

Although the optimal fetch size is application-specific, being influenced by the data size and the
runtime environment concurrency topology, the Oracle JDBC driver specification recommends
limiting the fetch size to at most 100 records.

Like with any other performance optimization, these indications are suggestions at best, and
measuring application performance is the only viable way of finding the right fetch size.

http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf

SQL Server
The SQL Server JDBC driver uses adaptive buffering, so the result set is fetched in batches, as
needed. The size of a batch is therefore automatically controlled by the driver.

Although enabled by default, adaptive buffering is limited to forward-only and read-only
cursors. Both scrollable and updatable result sets operate on a single block of data, whose
length is determined by the current statement fetch size.

https://msdn.microsoft.com/en-us/library/bb879937%28v=sql.110%29.aspx

http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf
http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf
https://msdn.microsoft.com/en-us/library/bb879937%28v=sql.110%29.aspx
https://msdn.microsoft.com/en-us/library/bb879937%28v=sql.110%29.aspx

ResultSet Fetching 66

PostgreSQL
The entire result set is fetched at once into client memory. The default fetch size requires only one
database roundtrip, at the price of increasing the driver memory consumption. By changing fetch
size, the result set is associated with a database cursor, allowing data to be fetched on demand.

https://jdbc.postgresql.org/documentation/head/query.html

MySQL
Because of the network protocol design consideration, fetching the whole result set is the most
efficient data retrieval strategy. The only streaming option requires processing one row at a time,
which, for large result sets, it implies many database roundtrips.

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html

The following graph captures the response time of four database systems when fetching 10 000 rows
while varying the fetch size of the forward-only and read-only ResultSet.

Figure 6.2: ResultSet fetch size

Fetching one row at a time requires 10 000 roundtrips, and the networking overhead impacts response
time. Up to 100 rows, the fetch size plays an important role in lowering retrieval time (only 100

https://jdbc.postgresql.org/documentation/head/query.html
https://jdbc.postgresql.org/documentation/head/query.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html

ResultSet Fetching 67

roundtrips), but beyond this point the gain becomes less noticeable.

6.5 ResultSet size

Setting the appropriate fetching size can undoubtedly speed up the result set retrieval, as long as a
statement fetches only the data required by the current business logic. All too often, unfortunately,
especially with the widespread of ORM tools, the statement might select more data than necessary.
This issue might be caused by selecting too many rows or too many columns, which are later
discarded in the data access or the business layer.

6.5.1 Too many rows

Tables tend to grow in size (especially if the application gains more traction), and, with time, a
moderate result set might easily turn into a performance bottleneck. This issues are often discovered
in production systems, long after the application code was shipped.

A user interface can accommodate just as much info as the view allows displaying. For this reason,
it’s inefficient to fetch a result set entirely if it cannot fit into the user interface. Pagination or
dynamic scrolling are common ways of addressing this issue, and partitioning data sets becomes
unavoidable.

Limiting result sets is common in batch processing as well. To avoid long-running transactions
(which might put pressure on the database undo/redo logs), and to also benefit from parallel
execution, a batch processor divides the current work load into smaller jobs. This way, a batch
job can take only a subset of the whole processing data.

When the result set size is limited by external factors, it makes no sense to select more data
than necessary.

Without placing upper bounds, the result sets grow proportionally with the underlying
table data. A large result set requires more time to be extracted and to be sent over the
wire too.

Limiting queries can therefore ensure predictable response times and database resource
utilization. The shorter the query processing time, the quicker the row-level locks are
released, and the more scalable the data access layer becomes.

There are basically two ways of limiting a result set.

The former and the most efficient strategy is to include the row restriction clause in the SQL
statement. This way, the Optimizer can better come up with an execution plan that’s optimal for
the current result set size (like selecting an index scan instead of a full scan).

The latter is to configure a maximum row count at the JDBC Statement level. Ideally, the driver can
adjust the statement to include the equivalent result set size restriction as an SQL clause, but, most
often, it only hints the database engine to use a database cursor instead.

ResultSet Fetching 68

6.5.1.1 SQL limit clause

SQL:2008
Although the SQL:2008 added support for limiting result sets, only starting from Oracle 12c, SQL
Server 2012 and PostgreSQL 8.4, the standard syntax started being supported.

SELECT pc.id AS pc_id, p.title AS p_title

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

ORDER BY pc_id

OFFSET ? ROWS

FETCH FIRST (?) ROWS ONLY

Surrounding the row count placeholder with parentheses is a workaround for a PostgreSQL
database issue. On SQL Server it works with or without the enclosing parentheses.

Older database versions or other database systems (e.g. MySQL 5.7) still rely on a vendor-specific
syntax to restrict the result set size.

https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://technet.microsoft.com/en-us/library/gg699618%28v=sql.110%29.aspx
http://www.postgresql.org/docs/current/static/sql-select.html#SQL-LIMIT

Oracle
Unlike other relational databases, Oracle doesn’t have a reserved keyword for restricting a query
result set, but because each record is attributed a result set entry order number (given by the ROWNUM
virtual column), the syntax for limiting a result set becomes:

SELECT *

FROM (

SELECT pc.id AS pc_id, p.title AS p_title

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

ORDER BY pc_id

)

WHERE ROWNUM <= ?

https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://technet.microsoft.com/en-us/library/gg699618%28v=sql.110%29.aspx
https://technet.microsoft.com/en-us/library/gg699618%28v=sql.110%29.aspx
http://www.postgresql.org/docs/current/static/sql-select.html#SQL-LIMIT
http://stackoverflow.com/questions/32782524/limiting-results-with-the-sql2008-standard-on-postgresql-using-prepared-stateme/32783367#32783367
http://stackoverflow.com/questions/32782524/limiting-results-with-the-sql2008-standard-on-postgresql-using-prepared-stateme/32783367#32783367
https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://technet.microsoft.com/en-us/library/gg699618%28v=sql.110%29.aspx
http://www.postgresql.org/docs/current/static/sql-select.html#SQL-LIMIT

ResultSet Fetching 69

SQL Server
The TOP keyword has been the de facto way of restricting the result set size:

SELECT TOP (?) pc.id AS pc_id, p.title AS p_title

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

ORDER BY pc_id

PostgreSQL and MySQL
The LIMIT keyword places an upper bound on the result set size:

SELECT pc.id AS pc_id, p.title AS p_title

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

ORDER BY pc_id

LIMIT ?

6.5.1.2 JDBC max rows

The JDBC specification defines themaxRows¹ attributewhich limits all ResultSet(s) for the current
statement.

statement.setMaxRows(maxRows);

Unlike the SQL construct, the JDBC alternative is portable across all driver implementations. This
can be very handy especially when the application needs to support multiple database systems.

According to the JDBC documentation, the driver is expected to discard the extra rows when the
maximum threshold is reached.

From a data access performance perspective, dropping extra rows is a poor strategy because it wastes
both database resources (CPU, I/O, Memory) as well as networking bandwidth.

¹http://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html#setMaxRows-int-

http://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html#setMaxRows-int-
http://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html#setMaxRows-int-

ResultSet Fetching 70

Oracle
When a ResultSet is being traversed, the client-side cursor fetches data in chunks (the fetch size
attribute controlling the number of records in a chunk).

After each new batch retrieval, the total number of records is checked against the maxRows upper
bound, and if the threshold is reached, the driver closes the networking stream.

The maxRows upper bound can therefore prevent the database and the client-side driver from
wasting resources on fetching records the client doesn’t even need.

SQL Server
When the Statement.setMaxRows(int maxRows) method is called, the driver calls the SET

ROWCOUNT SQL command:

SET ROWCOUNT N

Unlike the TOP or FETCH SQL directives, the ROWCOUNT command is taken into consideration only
during the execution phase, and it doesn’t influence the plan generation. Because of this, the
execution plan might not be optimized for the given result set size, so a table scan might be chosen
over an index.

The SQL Server documentation recommends using the SQL directives over the SET

ROWCOUNT command.

https://msdn.microsoft.com/en-us/library/ms378838%28v=sql.110%29.aspx

PostgreSQL
The JDBC driver takes the maxRows statement attribute and sends it along with the query being
executed. With this info, the Optimizer can choose an execution plan that is tailored for the given
result set size, and it might even avoid some expensive operations like sorting the whole projection.
The Extractor can also close the database cursor right after it fetched the desired number of records,
therefore sparing both database and networking resources.

https://msdn.microsoft.com/en-us/library/ms378838%28v=sql.110%29.aspx
https://technet.microsoft.com/en-us/library/ms189463.aspx
https://msdn.microsoft.com/en-us/library/ms378838%28v=sql.110%29.aspx

ResultSet Fetching 71

MySQL
The maxRows attribute is not sent to the database server, so neither the Optimizer nor the Extractor
can benefit from this hint. While the JDBC driver would normally fetch all rows, by placing an
upper bound on the result set size, the client-side can spare some networking overhead.

6.5.1.3 Less is more

The following test is going to demonstrate the performance improvement of limiting the result set
size. The test data set consists of 100 000 post and 1 000 000 comments entries. In the first round, the
entire result set is being fetched, and the response time is going to be proportional to the projection
size. By limiting the result set to 100 records, either by using SQL or the JDBC maxSize setting, the
response time is going to drop significantly.

Figure 6.3: ResultSet size

The test results confirm the previous assumptions and the SQL level restriction proves to be the
optimal strategy for limiting a result set. The maxRows driver implementation yields a surprisingly
good result, especially when taking into consideration the JDBC specification on dropping extra
records. Fetching a large result set puts a lot of pressure on database resources, which doesn’t only
affect the current processing unit of work. Other concurrent transactions can also exhibit longer
processing times, as a consequence of database resources shortage.

ResultSet Fetching 72

6.5.2 Too many columns

Not only fetching too many rows can cause performance issues, but even extracting too many
columns can increase the result set processing response time. The next test case is going to select
100 posts with details and their associated 1000 comments, using one of following two statements:

SELECT *

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

INNER JOIN post_details pd ON p.id = pd.id

SELECT pc.version

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

INNER JOIN post_details pd ON p.id = pd.id

The following graph depicts the execution times of fetching all columns, as opposed to extracting
only a subset of the whole column projection.

Figure 6.4: ResultSet projection size

This situation is more prevalent among ORM tools, as for populating entities entirely, all columns
are needed to be selected. This might pass unnoticed when selecting just a few entities, but, for large
result sets, this can turn into a noticeable performance issue.

If a business case requires only a subset of all entity properties, fetching extra columns
becomes a waste of database and application resources (CPU, Memory, I/O, Networking).

7. Transactions
A database system must allow concurrent access to the underlying data. But shared data means that
read and write operations must be synchronized to ensure that data integrity is not compromised.

To control concurrent modifications, the Java programming language defines the synchronized

keyword for two purposes:

• it can restrict access to a shared Object (to preserve invariants), so only a Thread can execute
a routine at any given time

• it propagates changes from the current Thread local memory to the global memory, that’s
available to all running threads of executions.

This behavior is typical for other concurrent programming environments and database systems are
no different. In a relational database, the mechanism for ensuring data integrity is implemented on
top of transactions.

A transaction is a collection of read and write operations that can either succeed or fail together, as
a unit. All database statements must execute within a transactional context, even when the database
client doesn’t explicitly define its boundaries.

In 1981, Jim Gray has first defined the properties of a database transaction in his famous paper:
The transaction concept: virtues and limitations¹. Both this paper and the first versions of the
SQL standard (SQL-86 and SQL-89) only used three properties for defining a database transaction:
Atomicity, Consistency and Durability*.

Along with other relation database topics, the transaction research has continued ever since, and
so the SQL-92 version introduced the concept of Isolation Levels. These four properties have been
assembled in the well-known ACID (Atomicity, Consistency, Isolation and Durability) acronym that
soon became synonym with relation database transactions.

Knowing how database transactions work is very important for two main reasons:

• effective data access (data integrity shouldn’t be compromised when aiming for high-
performance)

• efficient data access (reducing contention can minimize transaction response time which, in
turn, increases throughput).

The next sections will detail each transaction property in relation to high-performance data
processing.

¹http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf

73

http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf

Transactions 74

7.1 Atomicity

Atomicity is the property of grouping multiple operations into an all-or-nothing unit of work, which
can succeed only if all individual operations succeed. For this reason, the database must be able to
roll back all actions associated with every executed statement.

Figure 7.1: Atomic units of work

Write-write conflicts
Ideally, every transaction would have a completely isolated branch which could be easily discarded
in case of a rollback. This scenario would be similar to how a Version Control System (e.g. git)
implements branching. In case of conflicts, the Virtual Control System aborts the commit operation,
and the client has to manually resolve the conflict. But unlike VCS tools, the relational database
engine must manage conflicts without any human intervention.

For this reason, the database prevents write-write conflict situations and only one transaction can
write a record at any given time.

All statements are executed against the actual data structures (tables, indexes, in-memory buffers),
only to be materialized at commit time. In case of rollback, the database must revert any pending
changed datum to its previous state.

Oracle
The undo tablespace stores the previous data versions in undo segments. Upon rolling back, the
database engine searches the associated undo segments that can recreate the before image of every
datum that was changed by the current running transaction.

https://docs.oracle.com/database/121/ADMIN/undo.htm#ADMIN11460

https://docs.oracle.com/database/121/ADMIN/undo.htm#ADMIN11460
https://docs.oracle.com/database/121/ADMIN/undo.htm#ADMIN11460

Transactions 75

SQL Server
The transaction log stores details about the current running transactions and their associated
modifications. The rollback process scans the transaction log backward to find the associated undo
records. When the record is found, the database engine restores the before image of the affected
datum.

To prevent the transaction log from filling up, the log must be truncated on a regular basis.
Long-running transactions can delay the truncation process, so that’s another reason to
avoid them as much as possible.

https://msdn.microsoft.com/en-us/library/ms190925.aspx

PostgreSQL
Unlike other database systems, PostgreSQL doesn’t use a dedicated append-only undo log. Because
of its multi-version nature, every database object maintains its own version history. In the absence
of the log seek-up phase, the rollback process becomes much lighter as it only requires to switch
from one version to the other.

The downside is that the previous version space is limited in size, and so it must be reused. The
process of reclaiming the storage occupied by old versions is called VACUUMING.

Each transaction has an associated XID and newer transactions must have a greater XID
number than all previous ones.

The transaction XID is a 32-bit number, so it can accommodate over 4 billion transactions.
In a high-performance application, the transaction lifespan is very short, and if the
VACUUM process is disabled, this threshold can be reached.When the XID counter reaches
its maximum value, it wraps around and start again from zero.

The transactions issued prior to the XID wraparound will have their identifiers greater
than newer transactions started after the XID counter reset. This anomaly can cause the
system to perceive older transactions as they were started in the future, which can lead to
very serious data integrity issues.

https://msdn.microsoft.com/en-us/library/ms190925.aspx
https://msdn.microsoft.com/en-us/library/ms190925.aspx
http://www.postgresql.org/docs/9.4/static/routine-vacuuming.html

Transactions 76

MySQL
The undo log is stored in the rollback segment of the system tablespace.

Each undo log is split into two sections, one responsible for rolling back purposes and the other for
reconstructing the before image. The first section can be wiped out right after the transaction is
ended, while the other needs to linger for as long as any current running query or other concurrent
transactions need to see a previous version of the records in question.

Behind the scenes, MySQL runs a purge process that cleans up the storage occupied by deleted
records, and it also reclaims the undo log segments that are no longer required.

Long-running transactions delays the purge process execution, causing the undo log to
grow very large, especially in write-heavy data access scenarios.

https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html

7.2 Consistency

A modifying transaction can be seen like a state transformation, moving the database from one
valid state to another. The relational database schema ensures that all primary modifications
(insert/update/delete statements), as well as secondary ones (issued by triggers), obey certain rules
on the underlying data structures:

• column types
• column length
• column nullability
• foreign key constraints
• unique key constraints
• custom check constraints.

Consistency is about validating the transaction state change, so that all committed transactions leave
the database in a proper state. If only one constraint gets violated, the entire transaction is rolled
back and all modifications are going to be reverted.

Although the application must validate user input prior to crafting database statements, the
application-level checks cannot span over other concurrent requests, possibly coming from different
web servers. When the database is the primary integration point, the advantages of a strict schema
become even more apparent.

https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html

Transactions 77

MySQL
Traditionally, MySQL constraints are not strictly enforced, and the database engine replaces
invalid values with predefined defaults:

• out of range numeric values are set to either 0 or the maximum possible value
• String values are trimmed to the maximum length
• Incorrect data values are permitted (e.g. 2015-02-30)
• NOT NULL constraints are only enforced for single INSERT statements. For multi-row
inserts, 0 replaces a null numeric values, and the empty value is used for a null String.

Since the 5.0.2 version, strict constraints are possible if the database engine is configured to use a
custom sql mode:

SET GLOBAL sql_mode='POSTGRESQL,STRICT_ALL_TABLES';

Because the sql_mode resets on server startup, it’s better to set it up in the MySQL configuration
file:

[mysqld]

sql_mode = POSTGRESQL,STRICT_ALL_TABLES

https://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

Consistency as in CAP Theorem
According to the CAP theorem, when a distributed system encounters a network partition, the
system must choose either Consistency (all changes are instantaneously applied to all nodes)
or Availability (any node can accept a request), but not both. While in the definition of ACID,
consistency is about obeying constraints, in the CAP theorem context, consistency refers to
linearizability, which is an isolation guarantee instead.

https://en.wikipedia.org/wiki/CAP_theorem
http://www.bailis.org/blog/linearizability-versus-serializability/

https://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
https://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
https://en.wikipedia.org/wiki/CAP_theorem
http://www.bailis.org/blog/linearizability-versus-serializability/
https://en.wikipedia.org/wiki/CAP_theorem
http://www.bailis.org/blog/linearizability-versus-serializability/

Transactions 78

7.3 Isolation

If there were only one user accessing the database, there wouldn’t be any risk of data conflicts.
According to the Universal Scalability Law, if the sequential fraction of the data access patterns is
less than 100%, the database system can benefit from parallelization.

By offering multiple concurrent connections, the transaction throughput can increase and the
database system can accommodate more traffic. But parallelization imposes additional challenges
as the database must interleave transactions in such a way that conflicts don’t compromise data
integrity. The execution order of all the current running transaction operations is said to be
serializable when its outcome is the same as if the underlying transactions were executed one after
the other.

The serializable execution is therefore the only transaction isolation level that doesn’t compromise
data integrity, while allowing a certain degree of parallelization. In 1981, Jim Gray described the
largest airlines and banks as having 10 000 terminals and 100 active transactions, which explains
why, up until SQL-92, serializable was the de facto transaction isolation level.

7.3.1 Concurrency control

Tomanage data conflicts, several concurrency control mechanisms have been developed throughout
the years. There are basically two strategies for handling data collisions:

• avoiding conflicts (e.g. two-phase locking) requires locking to control access to shared
resources

• detecting conflicts (e.g. Multi-Version Concurrency Control) provides better concurrency, at
the price of relaxing serializability and possibly accepting various data anomalies.

7.3.1.1 Two-phase locking

In 1976, Kapali Eswaran and Jim Gray (et al.) published The Notions of Consistency and Predicate
Locks in a Database System² paper, which demonstrated that serializability can be obtained if all
transactions use the two-phase locking (2PL) protocol.

Initially all database systems employed 2PL for implementing serializable transactions, but, with
time, many vendors have moved towards an MVCC (Multi-Version Concurrency Control) architec-
ture. By default, SQL Server still uses locking for implementing the Serializability isolation level.

Because 2PL guarantees transaction serializability, it’s very important to understand the price of
maintaining strict data integrity on the overall application scalability and transaction performance.

But locking isn’t used only in 2PL implementations, and, to address both DML and DDL statement
interaction and tominimize contention on shared resources, relational database systems useMultiple
granularity locking³.

²http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%
20a%20Database%20System%20CACM.pdf

³https://en.wikipedia.org/wiki/Multiple_granularity_locking

http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
https://en.wikipedia.org/wiki/Multiple_granularity_locking
https://en.wikipedia.org/wiki/Multiple_granularity_locking
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
https://en.wikipedia.org/wiki/Multiple_granularity_locking

Transactions 79

Database objects are hierarchical in nature, a logical tablespace being mapped to multiple database
files, which are built of data pages, each page containing multiple rows. For this reason, locks can
be acquired on different database object types.

Locking on lower-levels (e.g. rows) can offer better concurrency as it reduces the likelihood of
contention. Because each lock takes resources, holding multiple lower-level locks can add up, so
the database might decide to substitute multiple lower-level locks into a single upper-level one. This
process is called lock escalation and it trades off concurrency for database resources.

Each database system comes with its own lock hierarchy but the most common types (even
mentioned by the 2PL initial paper) remain the following ones:

• shared (read) lock, preventing a record from being written while allowing concurrent reads
• exclusive (write) lock, disallowing both read and write operations.

Locks alone are not sufficient for preventing conflicts. A concurrency control strategy must
define how locks are being acquired and released because this also has an impact on transaction
interleaving.

For this purpose, the 2PL protocol defines a lock management strategy for ensuring serializability.
The 2PL protocol splits a transaction in two sections:

• expanding phase (locks are acquired and no lock is released)
• shrinking phase (all locks are released and no other lock is further acquired).

In a locking-based concurrency control implementation, all currently interleaved transactions
must follow the 2PL protocol as otherwise serializability might be compromised, resulting in data
anomalies.

Transaction schedule
To provide recovery from failures, the transaction schedule (the sequence of all interleaved
operations) must be strict. If a write operation, in a first transaction, happens before a conflict
occurring in a subsequent transaction, in order to achieve transaction strictness, the first transaction
commit event must also happen before the conflict.

Because operations are properly ordered, strictness can prevent cascading aborts (one transaction
rollback triggering a chain of other transaction aborts, to preserve data consistency). Releasing all
locks only after the transaction has ended (either commit or rollback) is a requirement for having
a strict schedule.

Transactions 80

The following diagram shows how transaction interleaving is coordinated by 2PL:

Figure 7.2: Two-phase locking

• both Alice and Bob select a post record, both acquiring a shared lock on this record
• when Bob attempts to update the post entry, his statement is blocked by the Lock Manager
because Alice is still holding a shared lock on this database row

• only after Alice’s transaction ends and all locks are being released, Bob can resume his update
operation

• Bob’s update will generate a lock upgrade, so the shared lock is replaced by an exclusive lock,
which will prevent any other concurrent read or write operation

• Alice starts a new transaction and issues a select query for the same post entry, but the
statement is blocked by the Lock Manager since Bob owns an exclusive lock on this record

• after Bob’s transaction is committed, all locks are released and Alice’s query can be resumed,
so she will get the latest value of this database record.

Transactions 81

Deadlocks
Using locking for controlling access to shared resources is prone to deadlocks, and the transaction
scheduler alone cannot prevent their occurrences.

A deadlock happens when two concurrent transactions cannot make progress because each one
waits for the other to release a lock. Because both transactions are in the lock acquisition phase,
neither one will release a lock prior to acquiring the next one.

Figure 7.3: Dead lock

Preserving the lock order becomes the responsibility of the data access layer, and the database can
only assist in recovering from a deadlock situation.

The database engine runs a separate process that scans the current conflict graph for lock-wait
cycles (which are caused by deadlocks). When a cycle is detected, the database engine picks
one transaction and aborts it, causing its locks to be released, so the other transaction can make
progress.

Transactions 82

7.3.1.2 Multi-Version Concurrency Control

Although locking can provide a serializable transaction schedule, the cost of lock contention can
undermine both transaction response time and scalability. The response time can increase because
transactions must wait for locks to be released, and long-running transactions can slow down the
progress of other concurrent transactions aswell. According to bothAmdahl’s Law and the Universal
Scalability Law, concurrency is also affected by contention.

To address these shortcomings, the database vendors have opted for optimistic concurrency control
mechanisms. If 2PL prevents conflicts, Multi-Version Concurrency Control (MVCC) uses a conflict
detection strategy instead.

The promise of MVCC is that readers don’t block writers and writers don’t block readers.
The only source of contention comes fromwriters blocking other concurrent writers, which
otherwise would compromise transaction rollback and atomicity.

To prevent blocking, the database can rebuild previous versions of a database record, so an
uncommitted change can be hidden away from incoming concurrent readers. The lack of locking
makes it more difficult to implement a serializable schedule, so the database engine must analyze
the current interleaving operations and detect anomalies that would compromise serializability.

Oracle
Oracle doesn’t implement 2PL at all, relying on MVCC mechanism for managing concurrent data
access. Every query gets a point in time data snapshot and, depending on the isolation level, the
timestamp reference can be relative to the current statement or to the current transaction start
time.

To rebuild previous record versions, Oracle uses the undo segments, which already contain all the
necessary data required for rolling back an uncommitted change. The point in time is based on the
System Change Number (SCN), which is a logical timestamp reference and, unlike physical time,
it is guaranteed to be incremented monotonically.

Apart from MVCC, Oracle also supports explicit locking as well, using the SELECT FOR UPDATE

SQL syntax.

https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT221

https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT221
https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT221

Transactions 83

SQL Server
By default, SQL Server uses locks for implementing all the isolation levels stipulated by the SQL
standard.

For the Read Committed isolation level to take advantage of the MVCC model, the following
configuration must be first set:

ALTER DATABASE high_performance_java_persistence

SET READ_COMMITTED_SNAPSHOT ON;

For a higher-level isolation, SQL Server offers the Snapshot isolation mode, which must be
activated at the database level:

ALTER DATABASE high_performance_java_persistence

SET ALLOW_SNAPSHOT_ISOLATION ON;

Because Snapshot is a custom isolation level, it must also be set at the connection level prior to
starting a new transaction:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

GO

BEGIN TRANSACTION;

GO

COMMIT TRANSACTION;

GO

After enabling row versioning, the database can track record changes in the tempdb database.

When a row is either updated or deleted, the current row entry will hold a reference back to the
previous version, which is recorded in the version store, in the tempdb database. Rows are not
deleted right away but only marked for deletion, the actual removal being done by the Ghost
cleanup task. Old versions must be kept for as long as a current running transaction might need
them, which is specified by the transaction isolation level.

The Ghost cleanup task runs periodically and reclaims storage from old versions that are no longer
necessary.

A long-running transaction would require the database engine to keep some old version
for a very long time, and, because version changes are chained in a linked list structure,
restoring previous version might becomes resource intensive.

Transactions 84

PostgreSQL
Unlike all other database systems, PostgreSQL stores both the current rows and their previous
versions (even the ones for the aborted transactions) in the actual database table. Like Oracle,
PostgreSQL embraces the MVCC data access model, and it doesn’t offer a 2PL transaction isolation
implementation at all.

Each table row has two additional columns (xmin and xmax), which are used to control the
visibility of various row versions. When a row is inserted, the current transaction identifier is
stored in the xmin column.

Both the update and the delete operations end up creating a new row entry with an xmax column
storing the current transaction identifier.

The Vacuum cleaner process runs regularly and reclaims storage occupied by deleted entries (and
successfully committed) or by previous versions that are no longer required by the current running
transactions.

Although PostgreSQL is seen as a pure MVCC model, locking is still required to prevent
write-write conflicts or for explicit locking. SELECT FOR UPDATE is used to acquire an
exclusive row-level lock, while SELECT FOR SHARE is for applying a shared lock instead.

MySQL
The InnoDB storage engine offers support for ACID transactions and uses MVCC for controlling
access to shared resources. The InnoDB MVCC implementation is very similar to Oracle, and
previous versions of database rows are stored in the rollback segment as well.

When a transaction demands a previous row version, MySQL must reconstruct it from rollback
segments. Delete operations just mark an entry as being ready for deletion, and the purge thread
is going to do the actual physical cleanup.

Both the transaction rollback and the previous row version restoring processes (required by a given
transaction visibility guarantees) are very much the same thing.

Like other database systems, MySQL also offers explicit locking for when MVCC is no
longer satisfactory. A shared lock is acquired using SELECT LOCK IN SHARE MODE, while
for exclusive locks the much more common SELECT FOR UPDATE syntax is being used.

http://www.postgresql.org/docs/9.5/static/explicit-locking.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html

Transactions 85

7.3.2 Phenomena

For reasonable transaction throughput values, it makes sense to imply transaction serializability.
As the incoming traffic grows, the price for strict data integrity becomes too high, and this is the
primary reason for having multiple isolation levels. Relaxing serializability guarantees may generate
data integrity anomalies, which are also referred as phenomena.

The SQL-92 standard introduced three phenomena that can occur when moving away from a
serializable transaction schedule:

• dirty read
• non-repeatable read
• phantom read.

In reality, there are other phenomena that can occur due to transaction interleaving, as the famous
paper A Critique of ANSI SQL Isolation Levels⁴ describes:

• dirty write
• read skew
• write skew
• lost update.

Choosing a certain isolation level is a trade-off between increasing concurrency and acknowledging
the possible anomalies that might occur.

Scalability is undermined by contention and coherency costs. The lower the isolation level, the less
locking (or multi-version transaction abortions), and the more scalable the application will get.

But a lower isolation level allows more phenomena, and the data integrity responsibility is shifted
from the database side to the application logic, which must ensure that it takes all measures to
prevent or mitigate any such data anomaly.

Before jumping to isolation levels, it’s better to understand what’s behind each particular phe-
nomenon and how it can affect data integrity. When choosing a given transaction isolation level,
understanding phenomena becomes fundamental to taking the right decision,

⁴http://research.microsoft.com/apps/pubs/default.aspx?id=69541

http://research.microsoft.com/apps/pubs/default.aspx?id=69541
http://research.microsoft.com/apps/pubs/default.aspx?id=69541

Transactions 86

7.3.2.1 Dirty write

A dirty write happens when two concurrent transactions are allowed to modify the same row at
the same time. As previously mentioned, all changes are applied against the actual database object
structures, which means that the second transaction simply overwrites the first transaction pending
change.

Figure 7.4: Dirty write

If the two transactions commit, one transaction will silently overwrite the other transaction, causing
a lost update. Another problem arises when the first transaction wants to roll back. The database
engine would have to choose one of the following action paths:

• it can restore the row to its previous version (as it was before the first transaction changed it),
but then it will overwrite the second transaction uncommitted change

• it can acknowledge the existence of a newer version (issued by the second transaction), but
then, if the second transaction has to roll back, it’s previous version becomes the uncommitted
change of the first transaction.

If the database engine didn’t prevent dirty writes, guaranteeing rollbacks would not be possible.
Because atomicity cannot be implemented in the absence of reliable rollbacks, all database systems
must therefore prevent dirty writes.

Although the SQL standard doesn’t mention this phenomenon, even the lowest isolation level (Read
Uncommitted) is able to prevent it.

Transactions 87

7.3.2.2 Dirty read

As previously mentioned, all database changes are applied against the actual data structures
(memory buffers, data blocks, indexes). A dirty read happens when a transaction is allowed to read
the uncommitted changes of some other concurrent transaction. Taking a business decision on a
value that hasn’t been committed is risky because uncommitted changes might get rolled back.

Figure 7.5: Dirty read

This anomaly is only permitted by the Read Uncommitted isolation level, and, because of the serious
impact on data integrity, most database systems offer a higher default isolation level.

To prevent dirty reads, the database engine must hide uncommitted changes from all the concurrent
transactions (but the one that authored the change). Each transaction is allowed to see its own
changes because otherwise the read-your-own-writes consistency guarantee is compromised.

A naive approach would be to lock uncommitted rows but this wouldn’t be practical at all (if a long-
running transaction acquired such a lock, no other transaction would be able to read that record
until the lock is released). Locks incur contention and contention affects scalability.

Since the undo log already captures the previous version of every uncommitted record, the database
engine can use it to restore the previous value in other concurrent transaction queries. Because this
mechanism is used by all other isolation levels (Read Committed, Repeatable Read, Serializable),
most database systems optimize the before image restoring process (lowering its overhead on the
overall application performance).

Cases for using Read Uncommitted are seldom (non-strict reporting queries where dirty reads are
acceptable), so Read Committed is usually the lowest practical isolation level.

Transactions 88

7.3.2.3 Non-repeatable read

If one transaction reads a database row without applying a shared lock on the newly fetched record,
then a concurrent transaction might change this row before the first transaction has ended.

Figure 7.6: Non-repeatable read

This phenomenon is problematic when the current transaction makes a business decision based on
the first value of the given database row (a client might order a product based on a stock quantity
value that’s no longer a positive integer).

Most database systems havemoved to aMulti-Version Concurrency Control model, and shared locks
are no longer mandatory for preventing non-repeatable reads. By verifying the current row version,
a transaction can be aborted if a previously fetched record has changed in the meanwhile.

Repeatable Read and Serializable prevent this anomaly by default. With Read Committed, it’s
possible to avoid non-repeatable (fuzzy) reads if the shared locks are acquired explicitly (e.g. SELECT
FOR SHARE).

Some ORM frameworks (e.g. JPA/Hibernate) offer application-level repeatable reads. The first
snapshot of any retrieved entity is cached in the current running Persistence Context. Any successive
query returning the same database row is going to use the very same object that was previously
cached. This way, the fuzzy reads may be prevented even in Read Committed isolation level.

Transactions 89

7.3.2.4 Phantom read

If a transaction makes a business decision based on a set of rows satisfying a given predicate, without
predicate locking, a concurrent transaction might insert a record matching that particular predicate.

Figure 7.7: Phantom read

Phantom rows can lead a buyer into purchasing a product without being aware of a better offer that
was added right after the user has finished fetching the offer list.

Traditionally, the Serializable isolation prevented phantom reads through predicate locking. Other
MVCC implementations can detect phantom rows by introspecting the transaction schedule and
aborting any transaction whose serializability guarantees were violated.

If explicit locking could prevent non-repeatable reads even in Read Committed isolation
level, there isn’t such SQL construct to permit range locks to be acquired explicitly.

Transactions 90

7.3.2.5 Read skew

Read skew is a lesser known anomaly that involves a constraint on more than one database tables.
In the following example, the application requires the post and the post_details be updated in sync.
Whenever a post record changes, its associated post_details must register the user who made the
current modification.

Figure 7.8: Read skew

In between selecting the post and the post_details rows, a second transaction sneaks in and manages
to update both records. The first transaction will see an older version of the post row and the latest
version of the associated post_details. Because of this read skew, the first transaction will assume
that this particular post was updated by Bob, although, in fact, it is an older version updated by
Alice.

Like with non-repeatable reads, there are two ways to avoid this phenomenon:

• the first transaction can acquire shared locks on every read, therefore preventing the second
transaction from updating these records

• the first transaction can be aborted upon validating the commit constraints (when using an
MVCC implementation of the Repeatable Read or Serializable isolation levels).

Transactions 91

7.3.2.6 Write skew

Like read skew, this phenomenon involves disjoint writes over two different tables that are
constrained to be updated as a unit. Whenever the post row changes, the client must update the
post_details with the user making the change.

Figure 7.9: Write skew

BothAlice and Bobwill select the post and its associated post_details record. If write skew is allowed,
Alice and Bob can update these two records separately, therefore breaking the constraint.

Like with non-repeatable reads, there are two ways to avoid this phenomenon:

• the first transaction can acquire shared locks on both entries, therefore preventing the second
transaction from updating these records

• the database engine can detect that another transaction has changed these records, and so it
can force the first transaction to roll back (under an MVCC implementation of Repeatable
Read or Serializable).

Transactions 92

7.3.2.7 Lost update

This phenomenon happens when a transaction reads a row while another transaction modifies it
prior to the first transaction to finish. In the following example, Bob’s update is silently overwritten
by Alice, who is not aware of the record update.

Figure 7.10: Lost update

This anomaly can have serious consequences on data integrity (a buyer might purchase a product
without knowing the price has just changed), especially because it affects Read Committed, the
default isolation level in many database systems.

Traditionally, Repeatable Read protected against lost updates since the shared locks could prevent
a concurrent transaction from modifying an already fetched record. With MVCC, the second
transaction is allowed to make the change, while the first transaction is aborted when the database
engine detects the row version mismatch (during the first transaction commit).

Most ORM tools, such as Hibernate, offer application-level optimistic locking, which automatically
integrates the row version whenever a record modification is issued. On a row version mismatch,
the update count is going to be zero, so the application can roll back the current transaction, as the
current data snapshot is stale.

Transactions 93

7.3.3 Isolation levels

As previously stated, Serializable is the only isolation level to provide a truly ACID transaction
interleaving. But serializability comes at a price as locking introduces contention, which, in turn,
limits concurrency and scalability. Even in multi-version concurrency models, serializability may
require aborting too many transactions that are affected by phenomena.

For this purpose, the SQL-92 version introduced multiple isolation levels, and the database client has
the option of balancing concurrency against data correctness. Each isolation level is defined in terms
of the minimum number of phenomena that it must prevent, and so the SQL standard introduces
the following transaction isolation levels:

Table 7.1: Standard isolation levels

Isolation Level Dirty read Non-repeatable read Phantom read

Read Uncommitted Yes Yes Yes
Read Committed No Yes Yes
Repeatable Read No No Yes
Serializable No No No

Without an explicit setting, the JDBC driver uses the default isolation level, which can be intro-
spected using the getDefaultTransactionIsolation()⁵ method of the DatabaseMetaData object:

int level = connection.getMetaData().getDefaultTransactionIsolation();

The default isolation level can be changed using the setTransactionIsolation(int level)⁶
Connection method.

connection.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

Even if ACID properties imply a serializable schedule, most relational database systems use a lower
default isolation level instead:

• Read Committed (Oracle, SQL Server, PostgreSQL)
• Repeatable Read (MySQL).

The following sections will go through each particular transaction isolation level and demonstrate
the actual list of phenomena that are prevented by a given database system.

⁵http://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html#getDefaultTransactionIsolation--
⁶http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setTransactionIsolation-int-

http://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html#getDefaultTransactionIsolation--
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setTransactionIsolation-int-
http://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html#getDefaultTransactionIsolation--
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setTransactionIsolation-int-

Transactions 94

7.3.3.1 Read Uncommitted

Table 7.2: Read Uncommitted phenomena occurrence

Phenomena SQL Server PostgreSQL MySQL

Dirty Write No No No
Dirty Read Yes No Yes
Non-Repeatable Read Yes Yes Yes
Phantom Read Yes Yes Yes
Read Skew Yes Yes Yes
Write Skew Yes Yes Yes
Lost Update Yes Yes Yes

Oracle
Dirty reads are not allowed, and so the lowest isolation level is Read Committed.

The JDBC driver even throws an exception if the client tries to set the Read Uncommitted
isolation on the current Connection.

SQL Server
Read Uncommitted only protects against dirty writes, all other phenomena being allowed. When
using Read Uncommitted, there is no exclusive lock associated with a given SQL modification,
so uncommitted changes are available to other concurrent transactions even before they get
committed. If the risk of dirty reads can be assumed, avoiding exclusive locks can speed up
reporting queries, especially when scanning large amounts of data.

For locking-based concurrency control mechanisms, Read Uncommitted is worth consid-
ering if the risk of dirty reads is a much smaller issue than locking a large portion of a
database table. Because MVCC avoids reader-writer and writer-reader locking, it might
not exhibit a considerable performance enhancement from permitting dirty reads.

Transactions 95

PostgreSQL
Like Oracle, PostgreSQL doesn’t allow dirty reads, the lowest isolation level being Read Committed.

When choosing Read Uncommitted, the JDBC driver silently falls back to Read Committed.

MySQL
Although it uses MVCC, InnoDB implements Read Uncommitted so that dirty reads are permitted.
As an optimization, each query is spared from rebuilding the previous committed versions (using
the rollback segments) of the currently scanned records (in case they have been recently modified).

7.3.3.2 Read Committed

Read Committed is one of the most common isolation level, and it behaves consistently across
multiple relational database systems or various concurrency control models.

Many database systems choose Read Committed as the default isolation level because it delivers
the best performance, while preventing fatal anomalies such as dirty writes and dirty reads. But
performance has its price as Read Committed permits many anomalies that might lead to data
corruption.

Table 7.3: Read Committed phenomena occurrence

Phenomena Oracle SQL Server SQL Server MVCC PostgreSQL MySQL

Dirty Write No No No No No
Dirty Read No No No No No
Non-Repeatable Read Yes Yes Yes Yes Yes
Phantom Read Yes Yes Yes Yes Yes
Read Skew Yes Yes Yes Yes Yes
Write Skew Yes Yes Yes Yes Yes
Lost Update Yes Yes Yes Yes Yes

Transactions 96

Oracle
Every statement has a start timestamp, which is used to create a database snapshot relative to
this particular point in time. This way, writers can still update the current selected records, and
the database can simply reconstruct the previous versions that were available when the query
started. Subsequent query executions can return different row versions, so non-repeatable reads
are permitted.

When two transactions attempt to update the same record, the first one will lock the record to
prevent dirty writes. The second transaction must wait until the first transaction releases the lock
(either commit or rollback), and the statement filtering criteria is reevaluated against latest data.

PostgreSQL
Like Oracle, every query sees a database snapshot as of the beginning of the current running query.
Because shared locks are not used to protect previously read records from being modified, Read
Committed allows a large spectrum of data anomalies.

Exclusive locks prevent write-write conflicts, so when two transactions update the same record,
the second one waits for the first transaction to release its locks. When the second transaction
resumes its execution, if the filtering criteria is still relevant, it might overwrite the first transaction
modifications, therefore causing lost updates.

MySQL
Query-time snapshots are used to isolate statements from other concurrent transactions. When
explicitly acquiring shared or exclusive locks or when issuing update or delete statements (which
acquire exclusive locks to prevent dirty writes), if the selected rows are filtered by unique search
criteria (e.g. primary key), the locks can be applied to the associated index entries.

Prior to 5.7, if the modifying statements used a range filter and the search criteria took
advantage of a unique index scan, then the database could use a gap or a next-key lock
(therefore protecting against phantom reads as well). Statement-based replication is not
available for Read Committed, so the application must use the row-based binary logging
instead.

https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html#idm140311316367072

Transactions 97

SQL Server
By default, SQL statements use shared locks to prevent other transactions from modifying the
currently fetched records. The locks are released by the time the query finishes executing. When
activating Read Committed Snapshot Isolation, the database will not use shared locks anymore,
and each query will select the row version as it was when the query started.

7.3.3.3 Repeatable Read

One of the least compliant isolation levels, Repeatable Read implementation details leak into its
phenomena prevention spectrum:

Table 7.4: Repeatable Read phenomena occurrence

Phenomena SQL Server PostgreSQL MySQL

Dirty Write No No No
Dirty Read No No No
Non-Repeatable Read No No No
Phantom Read Yes No No
Read Skew No No No
Write Skew No Yes Yes
Lost Update No No Yes

Oracle

The Repeatable Read isolation is not supported at all, and the JDBC driver throws an
exception if the client tries to set it explicitly.

SQL Server
For every row the client reads, the current transaction acquires a shared lock that prevents any other
transaction from concurrently modifying it. The shared locks are released when the transaction
either commits or rolls back.

Transactions 98

PostgreSQL
The Repeatable Read is implemented using Snapshot Isolation, so not only fuzzy reads are
prevented but even phantom reads are prohibited as well. Instead of using locking, the PostgreSQL
MVCC implementation allows conflicts to occur, but it will abort any transactionwhose guarantees
don’t hold anymore.

https://en.wikipedia.org/wiki/Snapshot_isolation

MySQL
Every transaction can only see rows as if they were when the current transaction started. This
prevents non-repeatable reads, but it still allows lost updates and write skews.

7.3.3.4 Serializable

Serializable is supposed to provide a transaction schedule, whose outcome, even in spite of statement
interleaving, is equivalent to a serial execution.

Even if the concurrency control mechanism is locking-based or it manages multiple record versions,
it must prevent all phenomena to ensure serializable transactions. Preventing all phenomena
mentioned by the SQL standard (dirty reads, non-repeatable reads and phantom reads) is not enough,
and Serializable must protect against lost update, read skew and write skew as well.

In practice, the concurrency control implementation details leak, and not all relational database
systems provide a truly Serializable isolation level (some data integrity anomalies might still occur).

Table 7.5: Serializable phenomena occurrence

Phenomena Oracle SQL Server SQL Server MVCC PostgreSQL MySQL

Dirty Write No No No No No
Dirty Read No No No No No
Non-Repeatable Read No No No No No
Phantom Read No No No No No
Read Skew No No No No No
Write Skew Yes No Yes No No
Lost Update No No No No No

https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation

Transactions 99

Oracle
The Serializable isolation level is in fact an MVCC implementation of the Snapshot Isolation
concurrency control mechanism. Like the Repeatable Read isolation in PostgreSQL, Oracle cannot
prevent write skews, meaning it cannot provide a truly serializable transaction.

SQL Server
The Serializable isolation level is based on 2PL, and all phenomena are therefore prevented. The
MVCC-based Snapshot isolation is close to Oracle Serializable and PostgreSQL Repeatable Read,
and so it allows write skews.

PostgreSQL
To overcome the Snapshot Isolation limitations, PostgreSQL has developed the Serializable Snap-
shot Isolation (SSI), which provides true serializable transactions. Because SSI is still an MVCC
implementation, PostgreSQL monitors the transaction schedule and detects possible serializability
anomalies.

The current implementation may detect false positives, and some transactions might get
aborted even if they didn’t really break transaction serializability. Only the Precisely
Serializable Snapshot Isolation (PSSI) model can eliminate all false positives, but the
performance penalty being too high, the database implementers stuck to SSI instead.

MySQL
The Serializable isolation builds on top of Repeatable Read with the difference that every record
that gets selected is protected with a shared lock as well. The locking-based approach allows
MySQL to prevent the write skew phenomena, which is prevalent among many Snapshot Isolation
implementations.

http://drkp.net/papers/ssi-vldb12.pdf

Transactions 100

7.4 Durability

When purchasing an airline ticket, the money is withdrawn from the bank account and a seat is
reserved for the given buyer. Assuming that, right after the ticket is purchased, the airline reservation
system crashes, all the previously processed transactions must hold true even after the system
restarts. If the system doesn’t enforce this requirement, the registered ticket might vanish, and the
buyer is possibly left with a debited account and no ticket at all.

Durability ensures that all committed transaction changes become permanent.

Durability allows system recoverability, and, to some extent, it’s similar to the rolling back
mechanism.

What about undo logs?
To support transaction rollbacks and to rebuild previous versions in MVCC systems, the database
system already records the current modifications (including uncommitted changes) in the undo
log. But recoverability needs committed changes only, and, because the obsolete undo segments
might be frequently recycled, the undo log alone is not suitable for recoverability.

When a transaction is committed, the database persists all current changes in an append-only,
sequential data structure commonly known as the redo log.

Oracle
The redo log consists of multiple redo records, each one containing change vectors, which capture
the actual data block changes. For performance reasons, the redo records are stored in a buffer and
the LogWriter flushes the in-memory records to the current active redo log file. At any given time,
Oracle has at least two redo files, but only one of them is active and available for collecting the
log buffer entries. When a transaction is committed, the database flushes the buffer, and changes
become persisted.

If the buffer fills, Oracle flushes it along with any uncommitted changes, which can be
removed if their associated transaction is rolled back.

https://docs.oracle.com/database/121/ADMIN/onlineredo.htm#ADMIN11302

https://docs.oracle.com/database/121/ADMIN/onlineredo.htm#ADMIN11302
https://docs.oracle.com/database/121/ADMIN/onlineredo.htm#ADMIN11302

Transactions 101

SQL Server
Unlike Oracle, SQL Server combines both the undo log and the redo long into a single data structure
(transaction log). By default, when a transaction is committed, all the associated transaction log
entries are flushed to the disk before returning the control back to the client.

SQL Server 2014 added support for configurable durability. The log entry flushing can be
delayed, which can provide better I/O utilization and lower transaction response times. If
the system crashes, all the unflushed log entries arewiped out frommemory. Asynchronous
flushing is therefore appropriate only when data loss is tolerated.

PostgreSQL
Statement changes are captured in the Write-Ahead Log (WAL). The log entries are buffered in
memory and flushed on every transaction commit.

The cached data pages and index entries need not be flushed for every transaction
(therefore optimizing I/O utilization), because their state can be restored from the WAL
during recovery. Ever since 9.1, PostgreSQL supports configurable durability, so the WAL
can also be flushed asynchronously.

http://www.postgresql.org/docs/9.5/static/wal-intro.html

MySQL
All the redo log entries associated with a single transaction are stored in themini transaction buffer
and flushed at once into the global redo buffer. The global buffer is flushed to disk during commit.
By default, there are two log files which are used alternatively.

Flushing is done synchronously by default, but it can be switched to an asynchronousmode
via the innodb_flush_log_at_trx_commit parameter.

https://msdn.microsoft.com/en-us/library/dn449490.aspx
http://www.postgresql.org/docs/9.5/static/wal-intro.html
http://www.postgresql.org/docs/9.5/static/non-durability.html
http://www.postgresql.org/docs/9.5/static/wal-intro.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Transactions 102

Since durability is very important for business operations, it’s better to stick to the
synchronous flushing mechanism.

Delaying durability guarantees becomes a valid option only when data loss is tolerated by
business requirements and the redo log flushing is a real performance bottleneck.

7.5 Read-only transactions

The JDBC Connection defines the setReadOnly(boolean readOnly)⁷ method which can be used to
hint the driver to apply some database optimizations for the upcoming read-only transactions. This
method shouldn’t be called in the middle of a transaction because the database system cannot turn
a read-write transaction into a read-only one (a transaction must start as read-only from the very
beginning).

Oracle
According to the JDBC driver documentation the database server does not support read-only
transaction optimizations. Even when the read-only Connection status is set to true, modifying
statements are still permitted, and the only way to restrict such statements is to execute the
following SQL command:

connection.setAutoCommit(false);

try(CallableStatement statement = connection.prepareCall(

"BEGIN SET TRANSACTION READ ONLY; END;")) {

statement.execute();

}

The SET TRANSACTION READ ONLY command must run after disabling the auto-commit status as
otherwise it will only be applied for this particular statement only.

https://docs.oracle.com/database/121/JJDBC/apxtips.htm#JJDBC28956

⁷http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setReadOnly%28boolean%29

http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setReadOnly%28boolean%29
https://docs.oracle.com/database/121/JJDBC/apxtips.htm#JJDBC28956
https://docs.oracle.com/database/121/JJDBC/apxtips.htm#JJDBC28956
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setReadOnly%28boolean%29

Transactions 103

SQL Server
Like Oracle, the read-only Connection doesn’t propagate to the database engine, and the only way
to disable SQL modifications is to use a separate account, restricted to viewing data only.

Setting the ApplicationIntent=ReadOnly connection property doesn’t prevent the JDBC driver
from executing modifying statements on a read-only Connection. This property has the purpose
of routing read-write and read-only connections to replica nodes instead.

https://msdn.microsoft.com/en-us/library/gg471494.aspx

PostgreSQL
An exception is thrown when executing a modifying statement on a Connection whose read-only
status was set to true.

The database engine optimizes read-only transactions so the false-positives anomaly rate is reduced
for the Serializable isolation level, and it allows deferrable serializable snapshots. A deferrable
snapshot is activated when executing SET TRANSACTION SERIALIZABLE READ ONLY DEFERRABLE.
The current transaction must wait for a safe snapshot to become available, which can be
executed without the risk of being aborted by a non-serializable anomaly. If the default read-
write Serializable transactions are problematic when accessing large volumes of data, the deferrable
snapshots might be a better alternative for long-running transactions.

http://arxiv.org/pdf/1208.4179.pdf

MySQL
If a modifying statement is executed when the Connection is set to read-only, the JDBC driver
throws an exception.

InnoDB can optimize read-only transactions because it can skip the transaction ID generation as
it’s not required for read-only transactions.

https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-ro-txn.html

https://msdn.microsoft.com/en-us/library/gg471494.aspx
https://msdn.microsoft.com/en-us/library/gg471494.aspx
http://arxiv.org/pdf/1208.4179.pdf
http://arxiv.org/pdf/1208.4179.pdf
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-ro-txn.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-ro-txn.html

Transactions 104

7.5.1 Read-only transaction routing

Setting up a database replication environment is useful for both high-availability (a Slave can replace
a crashing Master) and traffic splitting. In a Master-Slave replication topology, the Master node
accepts both read-write and read-only transactions, while Slave nodes only take read-only traffic.

Oracle
The Oracle ADG (Active Data Guard) allows an enterprise application to distribute read-write
traffic to the Primary node and read-only transactions to a Standby database. WebLogic Server
GridLink Data Source provides failover and load balancing capabilities over Oracle ADG.

http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212

SQL Server
The database Availability Group must be configured to use read-only routing, in which case the
redirection is based on the ApplicationIntent connection property. This means that the applica-
tion requires separate DataSource(s) for read-write and read-only connections, and transaction
routing must initiate in the application service layer.

PostgreSQL
The JDBC driver defines two connection properties for load balancing purposes: loadBalanceHosts
(which is disabled by default) and targetServerType (master or preferSlave). To enable transac-
tion routing, the application must do the routing itself using separate DataSource(s).

https://jdbc.postgresql.org/documentation/head/connect.html

MySQL
The com.mysql.jdbc.ReplicationDriver supports transaction routing on a Master-Slave topol-
ogy, the decision being made on the Connection read-only status basis.

https://dev.mysql.com/doc/connector-j/en/connector-j-master-slave-replication-connection.html

http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212
https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html
https://dev.mysql.com/doc/connector-j/en/connector-j-master-slave-replication-connection.html
https://dev.mysql.com/doc/connector-j/en/connector-j-master-slave-replication-connection.html

Transactions 105

Even if the JDBC driver doesn’t support Master-Slave routing, the application can do it using
multiple DataSource instances. This design cannot rely on the read-only status of the underlying
Connection since the routing must take place before a database connection is fetched.

Figure 7.11: Transaction routing

If the transaction manager supports declarative read-only transactions, the routing decision can
be taken based on the current transaction read-only preference. Otherwise, the routing must be
done manually in each service layer component, and so a read-only transaction uses a read-only
DataSource or a read-only JPA PersistenceContext.

7.6 Transaction boundaries

Every database statement executes in the context of a database transaction, even if the client doesn’t
explicitly set transaction boundaries. While there might be single statement transactions (usually a
read-only query), when the unit of work consists of multiple SQL statements, the database should
wrap them all in a single unit of work.

By default, every Connection starts in auto-commit mode, each statement being executed in a
separate transaction. Unfortunately, it doesn’t work for multi-statement transactions as it moves
atomicity boundaries from the logical unit of work to each individual statement.

Auto-commit should be avoided as much as possible, and, even for single statement
transactions, it’s good practice to mark the transaction boundaries explicitly.

Transactions 106

In the following example, a sum of money is transferred between two bank accounts. The balance
must always be consistent, so if an account gets debited, the other one must always be credited with
the same amount of money.

try(Connection connection = dataSource.getConnection();

PreparedStatement transferStatement = connection.prepareStatement(

"UPDATE account SET balance = ? WHERE id = ?"

)) {

transferStatement.setLong(1, Math.negateExact(cents));

transferStatement.setLong(2, fromAccountId);

transferStatement.executeUpdate();

transferStatement.setLong(1, cents);

transferStatement.setLong(2, toAccountId);

transferStatement.executeUpdate();

}

Because of the auto-commit mode, if the second statement failed, only those particular changes can
be rolled back, the first statement being already committed cannot be reverted anymore.

The default auto-commit mode must be disabled and the transaction will have to be managed
manually. The transaction is committed if every statement runs successfully and a rollback is
triggered on a failure basis. With this in mind, the previous example should be rewritten as follows:

try(Connection connection = dataSource.getConnection()) {

connection.setAutoCommit(false);

try(PreparedStatement transferStatement = connection.prepareStatement(

"UPDATE account SET balance = ? WHERE id = ?"

)) {

transferStatement.setLong(1, Math.negateExact(cents));

transferStatement.setLong(2, fromAccountId);

transferStatement.executeUpdate();

transferStatement.setLong(1, cents);

transferStatement.setLong(2, toAccountId);

transferStatement.executeUpdate();

connection.commit();

} catch (SQLException e) {

connection.rollback();

throw e;

}

}

Transactions 107

The astute reader will notice that the previous example breaks the Single responsibility principle
since the Data Access Object (DAO) method mixes both transaction management and data access
logic. Transaction management is a cross-cutting concern, making it a good candidate for being
moved to a separate common library. This way, the transaction management logic will reside in one
place, and a lot of duplicated code can be removed from the DAO methods. One way to extract the
transaction management logic is to use the Template method pattern:

public void transact(Consumer<Connection> callback) {

Connection connection = null;

try {

connection = dataSource.getConnection();

callback.accept(connection);

connection.commit();

} catch (Exception e) {

if (connection != null) {

try {

connection.rollback();

} catch (SQLException ex) {

throw new DataAccessException(e);

}

}

throw (e instanceof DataAccessException ?

(DataAccessException) e : new DataAccessException(e));

} finally {

if(connection != null) {

try {

connection.close();

} catch (SQLException e) {

throw new DataAccessException(e);

}

}

}

}

Transactions should never be abandoned on failure, and it’s mandatory to initiate a
transaction rollback (to allow the database to revert any uncommitted changes and release
any lock as soon as possible).

Transactions 108

With this utility in hand, the previous example can be simplified to:

transact((Connection connection) -> {

try(PreparedStatement transferStatement = connection.prepareStatement(

"UPDATE account SET balance = ? WHERE id = ?"

)) {

transferStatement.setLong(1, Math.negateExact(cents));

transferStatement.setLong(2, fromAccountId);

transferStatement.executeUpdate();

transferStatement.setLong(1, cents);

transferStatement.setLong(2, toAccountId);

transferStatement.executeUpdate();

} catch (SQLException e) {

throw new DataAccessException(e);

}

});

Although better than the first code snippet, separating data access logic and transactionmanagement
is not sufficient.

The transaction boundaries are still rigid, and, to include multiple data access method in a single
database transaction, the Connection object has to be carried out as a parameter to every single
DAO method.

Declarative transactions can better address this issue by breaking the strong coupling between
the data access logic and the transaction management code. Transaction boundaries are marked
with metadata (e.g. annotations) and a separate transaction manager abstraction is in charge of
coordinating transaction logic.

Java EE and JTA
Declarative transactions become a necessity for distributed transactions. When Java EE (Enterprise
Edition) first emerged, application servers hosted both web applications and middleware integra-
tion services, whichmeant that the Java EE container needed to coordinatemultiple DataSource(s)
or even JMS (Java Messaging) queues.

Following the X/Open XA architecture, JTA (Java Transaction API) powers the Java EE distributed
transactions requirements.

Transactions 109

7.6.1 Distributed transactions

The difference between local and global transactions is that the former uses a single resource
manager, while the latter operates on multiple heterogeneous resource managers. The ACID
guarantees are still enforced on each individual resource, but a global transaction manager is
mandatory to orchestrate the distributed transaction outcome.

All transactional resource adapters are registered by the global transaction manager, which decides
when a resource is allowed to commit or rollback. The Java EEmanaged resources become accessible
through JNDI (Java Naming and Directory Interface) or CDI (Contexts and Dependency Injection).

Spring provides a transaction management abstraction layer which can be configured to either use
local transactions (JDBC or RESOURCE_LOCAL⁸ JPA) or global transactions through a stand-alone
JTA transaction manager. The dependency injection mechanism auto-wires managed resources into
Spring beans.

7.6.1.1 Two-phase commit

JTA makes use of the two-phase commit (2PC) protocol to coordinate the atomic resource commit-
ment in two steps: a prepare and a commit phase.

Figure 7.12: Transaction boundaries

In the former phase, a resource manager takes all the necessary actions to prepare the transaction for
the upcoming commit. Only if all resource managers successfully acknowledge the preparation step,
the transaction manager will proceed with the commit phase. If one resource doesn’t acknowledge
the prepare phase, the transaction manager proceeds to rolling back all current participants.

If all resource managers acknowledge the commit phase, the global transaction ends successfully. If
one resource fails to commit (or times out), the transaction manager will have to retry this operation
in a background thread until it succeeds or reports the incident for manual intervention.

⁸http://docs.oracle.com/javaee/7/api/javax/persistence/spi/PersistenceUnitTransactionType.html#RESOURCE_LOCAL

http://docs.oracle.com/javaee/7/api/javax/persistence/spi/PersistenceUnitTransactionType.html#RESOURCE_LOCAL
http://docs.oracle.com/javaee/7/api/javax/persistence/spi/PersistenceUnitTransactionType.html#RESOURCE_LOCAL

Transactions 110

The one-phase commit (1PC) optimization
Because Java EE uses JTA transactions exclusively, the extra coordination overhead of the addi-
tional database roundtrip may hurt performance in a high-throughput application environment.
When a transaction enlists only one resource adapter (designating a single resource manager),
the transaction manager can skip the prepare phase, and either execute the commit or the
rollback phase. With this optimization, the distributed transaction behaves similarly to how JDBC
Connection(s) manage local transactions.

The XAResource.commit(Xid xid, boolean onePhase method takes a boolean flag,
which the transaction manager will set to true to hint the associated resource adapter to
initiate the 1PC optimization.

7.6.2 Declarative transactions

Transaction boundaries are usually associated with a Service layer, which uses one or more DAO
to fulfil the business logic. The transaction propagates from one component to the other within the
service-layer transaction boundaries.

Figure 7.13: Transaction boundaries

The declarative transaction model is supported by both Java EE and Spring. Transaction boundaries
are controlled through similar propagation strategies, which define how boundaries are inherited
or disrupted at the borderline between the outermost component (in the current call stack) and the
current one (waiting to be invoked).

https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html#commit-javax.transaction.xa.Xid-boolean-

Transactions 111

Propagation
To configure the transaction propagation strategy for EJB components, Java EE defines the
@TransactionAttribute annotation. Since Java EE 7, even non-EJB components can now be
enrolled in a transactional context if they are augmented with the @Transactional annotation.

In Spring, transaction propagation (like any other transaction properties) is configurable via the
@Transactional annotation.

http://docs.oracle.com/javaee/7/api/javax/ejb/TransactionAttribute.html
http://docs.oracle.com/javaee/7/api/javax/transaction/Transactional.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#

propagation--

Table 7.6: Transaction propagation strategies

Propagation Java EE Spring Description

REQUIRED Yes Yes this is the default propagation strategy, and it only starts a
transaction unless the current thread isn’t already associated
with a transaction context

REQUIRES_NEW Yes Yes any current running transaction context is suspended and
replaced by a new transaction

SUPPORTS Yes Yes if the current thread already runs inside a transaction, this
method will use it, otherwise it will execute outside of a
transaction context

NOT_SUPPORTED Yes Yes any current running transaction context is suspended, and the
current method is run outside of a transaction context

MANDATORY Yes Yes the current method runs only if the current thread is already
associated with a transaction context

NESTED No Yes the current method is executed within a nested transaction if
the current thread is already associated with a transaction,
otherwise a new transaction is started.

NEVER No Yes the current method must always run outside of a transaction
context, and, if the current thread is associated with a
transaction, an exception is thrown.

http://docs.oracle.com/javaee/7/api/javax/ejb/TransactionAttribute.html
http://docs.oracle.com/javaee/7/api/javax/transaction/Transactional.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#propagation--
http://docs.oracle.com/javaee/7/api/javax/ejb/TransactionAttribute.html
http://docs.oracle.com/javaee/7/api/javax/transaction/Transactional.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#propagation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#propagation--

Transactions 112

Declarative exception handling
Since the transaction logic wraps around the underlying service and data access logic call chain,
the exception handling must also be configured declaratively. By default, both Java EE and Spring
roll back on system exceptions (any RuntimeException) and commit on application exceptions
(checked exceptions).

In Java EE, the rollback policy can be customized using the @ApplicationException annotation.

Spring allows each transaction to customize the rolling back policy by listing the exception types
triggering a transaction failure.

http://docs.oracle.com/javaee/7/api/javax/ejb/ApplicationException.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#

rollbackFor--

Declarative read-only transactions
Java EE doesn’t support read-only transactions to be marked declaratively.

Spring offers the transactional read-only attribute, which can propagate to the underlying JPA
provider (to optimize the EntityManager flushing mechanism) and to the current associated JDBC
Connection.

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#
readOnly--

Declarative isolation levels
The Java EE doesn’t offer support for configurable isolation levels, so it’s up to the underlying
DataSource to define it for all database connections.

Spring supports transaction-level isolation levels when using the JPATransactionManager. For
JTA transactions, the JTATransactionManager follows the Java EE standard and disallows overrid-
ing the default isolation level. As a workaround, the Spring framework provides extension points,
so the application developer can customize the default behavior and implement a mechanism to
set isolation levels on a transaction basis.

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#
isolation--

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html

http://docs.oracle.com/javaee/7/api/javax/ejb/ApplicationException.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#rollbackFor--
http://docs.oracle.com/javaee/7/api/javax/ejb/ApplicationException.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#rollbackFor--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#rollbackFor--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#readOnly--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#readOnly--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#readOnly--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#isolation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#isolation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#isolation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html

Transactions 113

7.7 Application-level transactions

So far, the book focused on database transactions to enforce ACID properties. But from the applica-
tion perspective, a business workflow might span over multiple physical database transactions, in
which case the database ACID guarantees will not be sufficient anymore.

A logical transaction may be composed of multiple web requests, including user think time, for
which reason it can be visualized as a long conversation.

In the following example, both Alice and a background batch process are concurrently modifying
the same database record.

Figure 7.14: Stateless conversation loosing updates

Because Alice logical transaction encloses two separate web requests, each one associated with
a separate database transaction, without an additional concurrency control mechanism, even the
strongest isolation level cannot prevent the lost update phenomena.

Spanning a database transaction over multiple web requests is prohibitive since locks would be
held during user think time, therefore hurting scalability. Even withMVCC, the cost of maintaining
previous versions (that can lead to a large version graph) can escalate and affect both performance
and concurrency.

In a highly concurrent environment, database transactions are bound to be as short
as possible. Application-level transactions require application-level concurrency control
mechanisms.

Transactions 114

HTTP is stateless by nature and, for very good reasons, stateless applications are easier to scale than
stateful ones. But application-level transactions cannot be stateless as otherwise newer requests
would not continue from where the previous request was left. Preserving state across multiple
web requests allows building a conversational context, providing application-level repeatable reads
guarantees.

In the next diagram, Alice uses a stateful conversational context, but, in the absence of a record
versioning system, it’s still possible to lose updates.

Figure 7.15: Stateful conversation loosing updates

Without Alice to notice, the batch process resets the product quantity. Thinking the product version
hasn’t changed, Alice attempts to purchase one item which decreases the previous product quantity
by one. In the end, Alice has simply overwritten the batch processor modification and data integrity
has been compromised.

So the application-level repeatable reads are not self-sufficient (this argument is true for database
isolation levels as well). To prevent lost updates, a concurrency control mechanism becomes
mandatory.

7.7.1 Pessimistic and optimistic locking

Isolation levels entail implicit locking, whether it involves physical locks (like 2PL) or data anomaly
detection (MVCC). To coordinate state changes, application-level concurrency control makes use of
explicit locking, which comes in two flavors: pessimistic and optimistic locking.

7.7.1.1 Pessimistic locking

As previously explained, most database systems already offer the possibility of manually requesting
shared or exclusive locks. This concurrency control is said to be pessimistic because it assumes that
conflicts are bound to happen, and so they must be prevented accordingly.

Transactions 115

As locks can be released in a timely fashion, exclusive locking is appropriate during the last database
transaction of a given long conversation. This way, the application can guarantee that, once locks
are acquired, no other transaction can interfere with the currently locked resources.

Acquiring locks on critical records can prevent non-repeatable reads, lost updates, as well
as read and write skew phenomena.

7.7.1.2 Optimistic locking

Undoubtedly a misnomer (albeit rather widespread), optimistic locking doesn’t incur any locking
at all. A much better name would be optimistic concurrency control since it uses a totally different
approach to managing conflicts than pessimistic locking.

MVCC is an optimistic concurrency control strategy since it assumes that contention is unlikely to
happen, and so it doesn’t rely on locking for controlling access to shared resources. The optimistic
concurrency mechanisms detect anomalies and resort to aborting transactions whose invariants no
longer hold.

While the database knows exactly which row versions have been issued in a given time interval, the
application is left to maintaining a happens-before event ordering. Each database row must have an
associated version, which is locally incremented by the logical transaction. Every modifying SQL
statement (update or delete) uses the previously loaded version as an assumption that the row hasn’t
been changed in the meanwhile.

Because even the lowest isolation level can prevent write-write conflicts, only one transaction is
allowed to update a row version at any given time. Since the database already offers monotonic
updates, the row versions can also be incremented monotonically, and the application can detect
when an updating record has become stale. The optimistic locking concurrency algorithm looks like
this:

• when a client reads a particular row, its version comes along with the other fields
• upon updating a row, the client filters the current record by the version it has previously
loaded.

UPDATE product

SET (quantity, version) = (4, 2)

WHERE id = 1 AND version = 1

• if the statement update count is zero, the version was incremented in the meanwhile, and the
current transaction now operates on a stale record version.

Transactions 116

The previous example can be adjusted to take advantage of this optimistic concurrency control
mechanism. This time, the product is versioned, and both the web application and the batch
processor data access logic are using the row versions to coordinate the happens before update
ordering.

Figure 7.16: Stateful conversation preventing lost updates

Both Alice and the batch processor try to increment the product version optimistically. The batch
processor can successfully update the product quantity since the SQL statement filtering criteria
matches the actual database record version. When Alice tries to update the product, the database
returns a zero update count, and, this way, she is notified about the concurrent update that happened
in the meanwhile. The lost update can be prevented because the application can abort the current
transaction when being notified of the stale record versions.

Using timestamps to order events is rarely a good idea. System time is not always mono-
tonically incremented, and it can even go backwards, due to network time synchronization.
Time accuracy across different database systems varies from nanoseconds (Oracle), to 100
nanoseconds (SQL Server), to microseconds (PostgreSQL and MySQL 5.6.4 and even to
seconds (previous versions of MySQL). In distributed systems, logical clocks (e.g. vector
clocks or Lamport timestamps) are always preferred to physical timestamp (wall clocks)
when it comes to ordering events.

For this reason, employing a numerical record version is more appropriate than assigning
timestamps to row updates.

http://docs.oracle.com/database/121/LNPCB/pco04dat.htm#LNPCB269
https://msdn.microsoft.com/en-us/library/bb677335.aspx
http://www.postgresql.org/docs/9.5/static/datatype-datetime.html
http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html

III JPA and Hibernate

117

8. Why JPA and Hibernate matter
Although JDBC does a very good job of exposing a common API that hides the database vendor-
specific communication protocol, it suffers from the following shortcomings:

• the API is undoubtedly verbose, even for trivial tasks
• batching is not transparent from the data access layer perspective, requiring a specific API
than its non-batched statement counterpart

• lack of built-in support for explicit locking and optimistic concurrency control
• for local transactions, the data access is tangled with transaction management semantics.
• fetching joined relations requires additional processing to transform the ResultSet into
Domain Models or DTO (Data Transfer Object) graphs.

Although the primary goal of an ORM (Object-Relational Mapping) tool is to automatically translate
object state transitions into SQL statements, this chapter aims to demonstrate that Hibernate can
address all the aforementioned JDBC shortcomings.

Java persistence history
The EJB 1.1 release offered a higher-level persistence abstraction through scalable enterprise
components, known as Entity Beans. Although the design looked good on paper, in reality, the
heavyweight RMI-based implementation proved to be disastrous from a performance perspective.
Neither the EJB 2.0 support for local interfaces could revive the Entity Beans popularity, and, due
to high-complexity and vendor-specific implementation details, most projects chose JDBC instead.

Hibernate was born out of all the frustration of using the Entity Bean developing model. As an
open-source project, Hibernate managed to gain a lot of popularity, and so it soon became the de
facto Java persistence framework.

In response to all the criticism associatedwith Entity Bean persistence, the Java Community Process
advanced a lightweight POJO-based approach, and the JDO specification was born. Although JDO
is data source agnostic, being capable of operating with both relation databases as well as NoSQL or
even flat files, it never managed to hit mainstream popularity. For this reason, the Java Community
Process decided that EJB3 will be based on a new specification, inspired by Hibernate and TopLink,
and JPA (Java Persistence API) became the standard Java enterprise persistence technology.

The morale of this is that persistence is a very complex topic, and it demands a great deal of
knowledge of both the database and the data access usage patterns.

118

Why JPA and Hibernate matter 119

8.1 The impedance mismatch

When a relational database is manipulated through an object-oriented program, the two different
data representations start conflicting.

In a relational database, data is stored in tables and the relational algebra defines how data
associations are formed. On the other hand, an object-oriented programming (OOP) language allows
object to have both state and behavior, and bidirectional associations are permitted.

The burden of converging those two distinct approaches has generated a lot of tension, and it has
been haunting enterprise systems for a very long time.

Figure 8.1: Object/Relational Mapping

The above diagram portrays the two different schemas, the data access layer needs to correlate.
While the database schema is driven by the SQL standard specification, the Domain Model comes
with an object-oriented schema representation as well.

The Domain Model encapsulates the business logic specifications and captures both data structures
and the behavior that governs business requirements. OOP facilitates Domain Modelling and many
modern enterprise systems are implemented on top of an object-oriented programming language
(e.g. Java, C#).

Why JPA and Hibernate matter 120

Because the underlying data resides in a relational database, the Domain Model must be adapted to
the database schema and the SQL-driven communication protocol. The ORM design pattern helps
bridging these two different data representations and close the technological gap between them.
Every database row is associated with a Domain Model object (Entity in JPA terminology), and so
the ORM tool can translate the entity state transitions into DML statements.

From an application development point of view, this is very convenient since it’s much easier
to manipulate Domain Model relationships rather than visualizing the business logic through its
underlying SQL statements.

8.2 JPA vs Hibernate

JPA is only a specification. It describes the interfaces that the client operates with and the
standard object-relational mapping metadata (Java annotations or XML descriptors). Beyond the
API definition, JPA also explains (although not exhaustively) how these specifications are ought
to be implemented by the JPA providers. JPA evolves with the Java EE platform itself (Java EE 6
featuring JPA 2.0 and Java EE 7 introducing JPA 2.1).

Hibernate was already a full-featured Java ORM implementation by the time the JPA specification
was released for the first time. Although it implements the JPA specification, Hibernate retains its
native API for both backward compatibility and to accommodate non-standard features.

Even if it’s best to adhere to the JPA standard, in reality, many JPA providers offer additional features
targeting a high-performance data access layer requirements. For this purpose, Hibernate comeswith
the following non-JPA compliant features:

• extended identifier generators, implementing a HiLo optimizer that’s interoperable with other
database clients

• transparent prepared statement batching
• customizable CRUD (@SQLInsert, @SQLUpdate, @SQLDelete) statements
• static or dynamic collection filters (e.g. @FilterDef, @Filter, @Where)
• entity filters (e.g. @Where)
• mapping properties to SQL fragments (e.g. @Formula)
• immutable entities (e.g. @Immutable)
• more flush modes (e.g. FlushMode.MANUAL, FlushMode.ALWAYS)
• querying the second-level cache by the natural key of a given entity
• entity-level cache concurrency strategies (e.g. Cache(usage = CacheConcurrencyStrategy.READ_-

WRITE))
• versioned bulk updates through HQL
• exclude fields from optimistic locking check (e.g. @OptimisticLock(excluded = true))
• version-less optimistic locking (e.g. OptimisticLockType.ALL, OptimisticLockType.DIRTY)
• support for skipping (without waiting) pessimistic lock requests.

Why JPA and Hibernate matter 121

If JPA is the interface, Hibernate is one implementation and implementation details always
matter from a performance perspective.

The JPA implementation details leak and ignoring them might hinder application performance or
even lead to data inconsistency issues. As an example, the following JPA attributes have a peculiar
behavior, which can surprise someone who’s familiar with the JPA specification only:

• the FlushModeType.AUTO¹ doesn’t trigger a flush for native SQL queries, like it does for JPQL
or Criteria API

• the FetchType.EAGER² might choose an SQL join or a secondary select, whether the entity is
fetched directly from the EntityManager or through a JPQL (Java PersistenceQuery Language)
or a Criteria API query.

That’s why this book is focused on how Hibernate manages to implement both the JPA specification
and its native non-standard features (that are relevant from an efficiency perspective).

Portability concerns
Like other non-functional requirements, portability is a feature and there is still a widespread fear
of embracing database-specific or framework-specific features. In reality, it’s more common to
encounter enterprise applications facing data access performance issues than having to migrate
from one technology to the other (be it a relation database or a JPA provider).

The lowest common denominator of many RDBMS is a superset of the SQL-92 standard (although
not entirely supported either). SQL-99 supports Common Table Expressions, but MySQL 5.7 does
not. SQL-2003 introduced MERGE, but PostgreSQL 9.4.5 doesn’t implement it, and 9.5 will support
UPSERT instead. By adhering to an SQL-92 syntax, one could achieve a higher degree of database
portability, but the price of giving up database-specific features can take a toll on application
performance. Portability can be addressed either by subtracting non-common features or through
specialization. By offering different implementations, for each supported database system (like the
jOOQ framework does), portability can still be achieved.

The same argument is valid for JPA providers too. By layering the application, it’s already much
easier to swap JPA providers, if there’s even a compelling reason for switching one mature JPA
implementation with another.

¹https://docs.oracle.com/javaee/7/api/javax/persistence/FlushModeType.html
²https://docs.oracle.com/javaee/7/api/javax/persistence/FetchType.html#EAGER

https://docs.oracle.com/javaee/7/api/javax/persistence/FlushModeType.html
https://docs.oracle.com/javaee/7/api/javax/persistence/FetchType.html#EAGER
https://docs.oracle.com/javaee/7/api/javax/persistence/FlushModeType.html
https://docs.oracle.com/javaee/7/api/javax/persistence/FetchType.html#EAGER

Why JPA and Hibernate matter 122

8.3 Schema ownership

Because of data representation duality, there has been a rivalry between taking ownership of the
underlying schema. Although, theoretically, both the database and the Domain Model could drive
the schema evolution, for practical reasons, the schema belongs to the database.

An enterprise system might be too large to fit into a single application, so it’s not uncommon to
split in into multiple subsystems, each one serving a specific goal. As an example, there can be
front-end web applications, integration web-services, email schedulers, full-text search engines and
back-end batch processors that need to load data into the system. All these subsystems need to use
the underlying database, whether it is for displaying content to the users, or dumping data into the
system.

Figure 8.2: Database-centric integration

Although it might not fit any enterprise system, having the database as a central integration point
can still be a choice for many reasonable size enterprise systems.

The relational database concurrency models offer strong consistency guarantees, therefore hav-
ing a significant advantage to application development. If the integration point doesn’t provide
transactional semantics, it’s much more difficult to implement a distributed concurrency control
mechanism.

Most database systems already offer support for various replication topologies, which can provide
more capacity for accommodating an increase in the incoming request traffic. Even if the demand
for more data continues to grow, hardware is always getting better and better (and cheaper too), and
database vendors keep on improving their engines to cope with more data.

For these reasons, having the database as an integration point is still a relevant enterprise system
design consideration.

Why JPA and Hibernate matter 123

The distributed commit log
For very large enterprise systems, where data is split among different providers (relational database
systems, caches, Hadoop, Spark), it’s no longer possible to rely on the relational database to
integrate all disparate subsystems.

In this case, Apache Kafka offers a fault-tolerant and scalable append-only log structure, which
every participating subsystem can read and write concurrently.

Figure 8.3: Distributed commit log integration

The commit log becomes the integration point, each distributed node individually traversing it
and maintaining client-specific pointers in the sequential log structure. This design resembles a
database replication mechanism, and so it offers durability (the log is persisted on disk), write
performance (append-only logs don’t require random access) and read performance (concurrent
reads don’t require blocking) as well.

http://kafka.apache.org/

No matter what architecture style is chosen, there is still a need to correlate the transient Domain
Model with the underlying persistent data.

The data schema evolves along the enterprise system itself, and so the two different schema
representations must remain congruent at all times.

Even if the data access framework can auto-generate the database schema, the schema must
be migrated incrementally and all changes need to be traceable in the VCS (Version Control
System) as well. Along with table structure, indexes and triggers, the database schema is therefore
accompanying the Domain Model source code itself. A tool like Flywaydb³ can automate the
database schema migration, and the system can be deployed continuously, whether it’s a test or
a production environment.

³http://flywaydb.org/

http://kafka.apache.org/
http://kafka.apache.org/
http://flywaydb.org/
http://flywaydb.org/

Why JPA and Hibernate matter 124

The schema ownership goes to the database and the data access layer must assist the
Domain Model to communicate with the underlying data.

8.4 Write-based optimizations

JPA shifts the developer mindset from SQL statements to entity state transitions. An entity can be
in one of the following states:

Table 8.1: JPA entity states

State Description

New (Transient) A newly created entity, that is not mapped to any database row, is considered to
be in the New or Transient state. Once it becomes managed, the Persistence
Context will issue an insert statement at flush-time.

Managed (Persistent) A Persistent entity is associated with a database row and it’s being managed by
the current running Persistence Context. State changes are detected by the dirty
checking mechanism and propagated to the database as update statements at
flush-time.

Detached Once the current running Persistence Context is closed, all the previously
managed entities become detached. Successive changes will no longer be tracked,
and no automatic database synchronization is going to happen.

Removed A removed entity is only scheduled for deletion and the actual database delete
statement is executed during Persistence Context flushing.

The Persistence Context captures entity state changes, and, during flushing, it translates them to
SQL statements. The JPA EntityManager⁴ and the Hibernate Session⁵ (which includes additional
methods for moving an entity from one state to the other) interfaces are gateways towards the
underlying Persistence Context, and they define all the entity state transition operations.

⁴http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html#persist-java.lang.Object-
⁵https://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/Session.html

http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html#persist-java.lang.Object-
https://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/Session.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html#persist-java.lang.Object-
https://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/Session.html

Why JPA and Hibernate matter 125

Figure 8.4: JPA entity state transitions

Figure 8.5: Hibernate entity state transitions

Why JPA and Hibernate matter 126

SQL injection prevention
By managing the SQL statement generation, the JPA tool can assist in minimizing the risk of
SQL injection attacks. The less the chance of manipulating SQL String statements, the safer the
application can get. The risk is not completely eliminated because the application developer can
still recur to concatenating SQL or JPQL fragments, so rigour is advised.

Hibernate uses PreparedStatement(s) exclusively, so not only it protect against SQL
injection, but the data access layer can better take advantage of server-side and client-side
statement caching as well.

Auto-generated DML statements
The enterprise system database schema evolves with time, and the data access layer must mirror
all these modifications as well.

Because the JPA provider auto-generates insert and update statements, the data access layer can
easily accommodate database table structure modifications. By updating the entity model schema,
Hibernate can automatically adjust the modifying statements accordingly.

This applies to changing database column types as well. If the database schema needs to migrate a
postal code from an INT database type to a VARCHAR(6), the data access layer needs only to change
the associated Domain Model property type from an Integer to a String, and all statements are
going to be automatically updated. Hibernate defines a highly customizable JDBC-to-database type
mapping system, and the application developer can override a default type association, or even add
support for new database types (that are not currently supported by Hibernate).

The entity fetching process is automatically managed by the JPA implementation, which auto-
generates the select statements of the associated database tables. This way, JPA can free the
application developer from maintaining entity selection queries as well.

Hibernate allows customizing all the CRUD statements, in which case the application
developer is responsible for maintaining the associated DML statements.

Although it takes care of the entity selection process, most enterprise systems need to take
advantage of the underlying database querying capabilities. For this reason, whenever
the database schema changes, all the native SQL queries need to be updated manually
(according to their associated business logic requirements).

Why JPA and Hibernate matter 127

Write-behind cache
The Persistence Context acts as a transactional write-behind cache, deferring entity state flushing
up until the last possible moment.

Figure 8.6: Persistence context

Because every modifying DML statement requires locking (to prevent dirty writes), the write
behind cache can reduce the database lock acquisition interval, therefore increasing concurrency.

But caches introduce consistency challenges, and the Persistence Context requires a flush
prior to executing any JPQL or native SQL query (as otherwise it might break the read-
your-own-write consistency guarantee).

As it will be detailed in the following chapters, Hibernate doesn’t automatically flush
pending changes when a native query is about to be executed, and the application developer
must explicitly instruct what database tables are needed to be synchronized.

Why JPA and Hibernate matter 128

Transparent statement batching
Since all changes are being flushed at once, Hibernate may benefit from batching JDBC statements.
Batch updates can be enabled transparently, even after the data access logic has been implemented.
Most often, performance tuning is postponed until the system is already running in production,
and switching to batching statements should not require a considerable development effort.

With just one configuration, Hibernate can execute all prepared statements in batches.

Application-level concurrency control
As previously explained, no database isolation level can protect against losing updates when
executing a multi-request long conversation. JPA supports both optimistic and pessimistic locking.

The JPA optimistic lockingmechanism allows preventing lost updates because it imposes a happens
before event ordering. But in multi-request conversations, optimistic locking requires maintaining
old entity snapshots, and JPA makes it possible through Extended Persistence Contexts or detached
entities.

A Java EE application server can preserve a given Persistence Context across several web
requests, therefore providing application-level repeatable reads. But this strategy is not free
since the application developer must make sure the Persistence Context is not bloated with
toomany entities, which, apart from consumingmemory, it can also affect the performance
of the Hibernate default dirty checking mechanism.

Even when not using Java EE, the same goal can be achieved using detached entities, which provide
a fine-grained control over the amount of data needed to be preserved from one web request
to the other. JPA allows merging detached entities, which rebecome managed and automatically
synchronized with the underlying database system.

JPA also supports a pessimistic locking query abstraction, which comes in handywhen using lower-
level transaction isolation modes.

Hibernate has a native pessimistic locking API, which brings support for timing out lock
acquisition requests or skipping already acquired locks.

Why JPA and Hibernate matter 129

8.5 Read-based optimizations

Following the SQL standard, the JDBC ResultSet is a tabular representation of the underlying
fetched data. The Domain Model being constructed as an entity graph, the data access layer must
transform the flat ResultSet into a hierarchical structure.

Although the goal of the ORM tool is to reduce the gap between the object-oriented Domain Model
and its relational counterpart, it’s very important to remember that the source of data is not an
in-memory repository, and the fetching behavior influences the overall data access efficiency.

The database cannot be abstracted out of this context, and pretending that entities
can be manipulated just like any other plain objects is very detrimental to application
performance. When it comes to reading data, the impedance mismatch becomes even more
apparent, and, for performance reasons, it’s mandatory to keep in mind the SQL statements
associated with every fetching operation.

In the following example, the posts records will be fetched along with all their associated comments.
Using JDBC, this task can be accomplished using the following code snippet:

doInJDBC(connection -> {

try (PreparedStatement statement = connection.prepareStatement(

"SELECT * " +

"FROM post AS p " +

"JOIN post_comment AS pc ON p.id = pc.post_id " +

"WHERE " +

" p.id BETWEEN ? AND ? + 1"

)) {

statement.setInt(1, id);

statement.setInt(2, id);

try (ResultSet resultSet = statement.executeQuery()) {

List<Post> posts = toPosts(resultSet);

assertEquals(expectedCount, posts.size());

}

} catch (SQLException e) {

throw new DataAccessException(e);

}

});

Why JPA and Hibernate matter 130

When joiningmany-to-one or one-to-one associations, each ResultSet record corresponds to a pair
of entities, so both the parent and the child can be resolved in each iteration. For one-to-many or
many-to-many relationships, because of how the SQL join works, the ResultSet will contain a
duplicated parent record for each associated child.

Constructing the hierarchical entity structure requires manual ResultSet transformation, and, to
resolve duplicates, the parent entity references are stored in a Map structure.

List<Post> toPosts(ResultSet resultSet) throws SQLException {

Map<Long, Post> postMap = new LinkedHashMap<>();

while (resultSet.next()) {

Long postId = resultSet.getLong(1);

Post post = postMap.get(postId);

if(post == null) {

post = new Post(postId);

postMap.put(postId, post);

post.setTitle(resultSet.getString(2));

post.setVersion(resultSet.getInt(3));

}

PostComment comment = new PostComment();

comment.setId(resultSet.getLong(4));

comment.setReview(resultSet.getString(5));

comment.setVersion(resultSet.getInt(6));

post.addComment(comment);

}

return new ArrayList<>(postMap.values());

}

The JDBC 4.2 PreparedStatement supports only positional parameters, and the first ordinal starts
from 1. JPA allows named parameters as well, which are especially useful when a parameter needs
to be referenced multiple times, so the previous example can be rewritten as follows:

doInJPA(entityManager -> {

List<Post> posts = entityManager.createQuery(

"select distinct p " +

"from Post p " +

"join fetch p.comments " +

"where " +

" p.id BETWEEN :id AND :id + 1", Post.class)

.setParameter("id", id)

.getResultList();

assertEquals(expectedCount, posts.size());

});

Why JPA and Hibernate matter 131

In both examples, the object-relation transformation takes place either implicitly or explicitly. In the
JDBC use case, the associations must be manually resolved, while JPA does it automatically (based
on the entity schema).

The fetching responsibility
Besides mapping database columns to entity properties, the entity associations can also be
represented in terms of object relationships. More, the fetching behavior can be hard-wired to
the entity schema itself, which is most often a terrible thing to do.

Fetching multiple one-to-many or many-to-many associations is even more problematic because
they might require a Cartesian Product, and performance becomes tied to the children count.
Controlling the hard-wired schema fetching policy is cumbersome as it prevents overriding an
eager retrieval with a lazy loading mechanism.

Each business use case has different data access requirements, and one policy cannot
anticipate all possible use cases, so the fetching strategy should always be set up on a
query basis.

Prefer projections for read-only views
Although it is very convenient to fetch entities along with all their associated relationships, it’s
better to take into consideration the performance impact as well. As previously explained, fetching
too much data is not suitable because it increases the transaction response time.

In reality, not all use cases require loading entities anyway, and not all read operations need to
be served by the same fetching mechanism. Sometimes a custom projection (selecting only a few
columns from an entity) is much more suitable, and the data access logic can even take advantage
of database specific SQL constructs that might not be supported by the JPA query abstraction.

As a rule of thumb, fetching entities is suitable when the logical transaction requires
modifying them, even if that will only happen in a successive web request. With this is
mind, it is much easier to reason on which fetching mechanism to employ for a given
business logic use case.

Why JPA and Hibernate matter 132

The second-level cache
If the Persistence Context acts as a transactional write-behind cache, its lifetime is bound to that of
a logical transaction. For this reason, the Persistence Context is also known as the first-level cache,
and so it cannot be shared by multiple concurrent transactions.

On the other hand, the second-level cache is associated with an EntityManagerFactory, and
all Persistence Contexts have access to it. The second-level cache can store entities as well as
entity associations (one-to-many and many-to-many relationships) and even entity query results.
Because JPA doesn’t make it mandatory, each provider takes a different approach to caching (as
opposed to EclipseLink, by default, Hibernate disables the second-level cache).

Most often, caching is a trade-off between consistency and performance. Because the cache
becomes another source of truth, inconsistencies might occur, and they can be prevented only
when all database modifications happen through a single EntityManagerFactory or through a
synchronized distributed caching solution. In reality, this is not practical since the application
might be clustered on multiple nodes (each one with its own EntityManagerFactory) and the
database might be accessed by multiple applications.

Although the second-level cache can mitigate the entity fetching performance issues, it
requires a distributed caching implementation, which might not elude the networking
penalties anyway.

8.6 Wrap-up

Bridging two highly-specific technologies is always a difficult problem to solve. When the enterprise
system is built on top of an object-oriented language, the object-relational impedance mismatch
becomes inevitable. The ORM pattern aims to close this gap although it cannot completely abstract
it out.

In the end, all the communication flows through JDBC and every execution happens in the database
engine itself. A high-performance enterprise applicationmust resonate with the underlying database
system, and the ORM tool must not disrupt this relationship.

Just like the problem it tries to solve, Hibernate is a very complex framework with many subtleties
that require thorough knowledge of both database systems, JDBC and the framework itself. This
chapter is only a summary, meant to present JPA and Hibernate into a different perspective than
what the reader might have been previously used to. There is no need to worry if some topics are
not entirely clear because the upcoming chapters will analyze all these concepts in greater detail.

9. Connection Management and
Monitoring

As previously explained in the JDBC Connection Management chapter, for performance reasons,
database connections are better off reused. Because JPA providers generate SQL statements on behalf
of users, it’s very important to monitor this process and acknowledge its outcome. This chapter will
explain the Hibernate connection provider mechanism and ways to monitor statement execution.

9.1 JPA connection management

Like the whole Java EE suite, the JPA 1.0 specification was very much tied to enterprise application
servers. In a Java EE container, all database connections aremanaged by the application server which
provides connection pooling, monitoring and JTA capabilities.

Once configured, the Java EE DataSource can be located through JNDI. In the persistence.xml

configuration file, the application developer must supply the JNDI name of the associated JTA or
RESOURCE_LOCAL DataSource. The transaction-type attribute must also match the data source
transaction capabilities.

<persistence-unit name="persistenceUnit" transaction-type="JTA">

<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

<jta-data-source>java:global/jdbc/flexypool</jta-data-source>

</persistence-unit>

A RESOURCE_LOCAL transaction must use a non-jta-data-source DataSource.

<persistence-unit name="persistenceUnit" transaction-type="RESOURCE_LOCAL">

<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

<non-jta-data-source>java:/comp/env/jdbc/hsqldb</non-jta-data-source>

</persistence-unit>

While for a Java EE application it’s perfectly fine to rely on the application server for providing a full-
featured DataSource reference, stand-alone applications are usually configured using dependency
injection rather than JNDI.

From the JPA implementation perspective the DataSource can be either configured externally or
by the JPA provider itself. Most often, configuring an external DataSource is still the preferred

133

Connection Management and Monitoring 134

alternative as it gives more flexibility in decorating the connection providing mechanism (e.g.
logging, monitoring).

JPA providers can fetch connections through the underlying JDBC Driver since JPA 2.0 has
standardized the database connection configuration properties:

Table 9.1: JPA connection properties

Property Description

javax.persistence.jdbc.driver Driver full class name (e.g. org.hsqldb.jdbc.JDBCDriver)

javax.persistence.jdbc.url Driver Url (e.g. jdbc:hsqldb:mem:test)

javax.persistence.jdbc.user Database user’s name

javax.persistence.jdbc.password Database user’s password

Unfortunately, these properties alone are not sufficient because most enterprise applications need
connection pooling and monitoring capabilities anyway. For this reason, JPA connection man-
agement is still an implementation specific topic, and the upcoming sections will dive into the
connection provider mechanism employed by Hibernate.

9.2 Hibernate connection providers

Hibernate needs to operate both in Java EE and stand-alone environments, and the database connec-
tivity configuration can be done either declaratively or programmatically. To accommodate JDBC
Driver connections as well as RESOURCE_LOCAL and JTA DataSource configurations, Hibernate
defines its own connection factory abstraction, represented by the org.hibernate.engine.jdbc.connections.spi.ConnectionProvider
interface:

public interface ConnectionProvider extends Service, Wrapped {

public Connection getConnection() throws SQLException;

public void closeConnection(Connection connection) throws SQLException;

public boolean supportsAggressiveRelease();

}

Because the connection provider might influence transaction response time, each provider will be
analyzed from a high-performance OLTP system perspective.

Connection Management and Monitoring 135

9.2.1 DriverManagerConnectionProvider

Hibernate picks this provider when being given the aforementioned JPA 2.0 connection properties
or the Hibernate-specific configuration counterpart:

• hibernate.connection.driver_class

• hibernate.connection.url

• hibernate.connection.username

• hibernate.connection.password.

Although it fetches database connections through the underlying DriverManager,
this provider tries to avoid the connection acquisition overhead by using a trivial
pooling implementation. The Hibernate documentation doesn’t recommend using the
DriverManagerConnectionProvider in a production setup.

9.2.2 C3P0ConnectionProvider

C3p0¹ is a mature connection pooling solution that has proven itself in many production environ-
ments, and, using the underlying JDBC connection properties, Hibernate can replace the built-in
connection pool with a c3p0 DataSource. To activate this provider, the application developer must
supply at least one configuration property starting with the hibernate.c3p0 prefix:

<property name="hibernate.c3p0.max_size" value="5"/>

C3p0 (released in 2001) and Apache DBCP (released in 2002) are the oldest and the most
deployed stand-alone Java connection pooling solutions. Later in 2010, BoneCP emerged
as a high-performance alternative for c3p0 and Apache DBCP. Nowadays, the BoneCP
GitHub page says it’s been deprecated in favor of HikariCP.

¹http://www.mchange.com/projects/c3p0/

http://www.mchange.com/projects/c3p0/
https://commons.apache.org/proper/commons-dbcp/
https://github.com/wwadge/bonecp
http://www.mchange.com/projects/c3p0/

Connection Management and Monitoring 136

As of writing, the most attractive Java connection pools are HikariCP, Vibur DBCP and
Apache DBCP2. HikariCP and Vibur DBCP offer built-in Hibernate connection providers.

9.2.3 HikariConnectionProvider

HikariCP is one of the fastest Java connection pool, and, although not natively supported by
Hibernate, it also comes with its own ConnectionProvider implementation. By specifying the hi-
bernate.connection.provider_class property, the application developer can override the default
connection provider mechanism:

<property

name="hibernate.connection.provider_class"

value="com.zaxxer.hikari.hibernate.HikariConnectionProvider"/>

Unlike DriverManagerConnectionProvider or C3P0ConnectionProvider, HikariCP doesn’t recog-
nize the JPA or Hibernate-specific connection properties. The HikariConnectionProvider requires
framework-specific properties² like the following ones:

Table 9.2: HikariCP connection properties

Property Description

hibernate.hikari.dataSourceClassName Driver full class name

hibernate.hikari.dataSource.url Driver Url

hibernate.hikari.dataSource.user Database user’s name

hibernate.hikari.dataSource.password Database user’s password

hibernate.hikari.maximumPoolSize Maximum pool size

²https://github.com/brettwooldridge/HikariCP

https://github.com/brettwooldridge/HikariCP
https://github.com/vibur/vibur-dbcp
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP

Connection Management and Monitoring 137

9.2.4 DatasourceConnectionProvider

This provider is chosen when the JPA configuration file defines a non-jta-data-source or a
jta-data-source element, or when supplying a hibernate.connection.datasource configuration
property.

Unlike other providers, this one is compatible with JTA transactions, which are mandatory
in Java EE.

Spring works with both stand-alone JTA transaction managers (e.g. Bitronix or Atomikos)
and Java EE DataSource(s), and, because it offers the best control over the actual
DataSource configuration, the DatasourceConnectionProvider is the preferred choice
(even for HikariCP) .

9.2.5 Connection release modes

Hibernate defers the database connection acquisition until the current transaction has to execute
its first SQL statement (either triggered by a read or a write operation). This optimization allows
Hibernate to reduce the physical transaction interval, therefore increasing the chance of getting a
connection from the pool.

The connection release strategy is controlled through the hibernate.connection.release_mode

property which can take the following values:

Table 9.3: Connection release modes

Value Description

after_transaction Once acquired, the database connection is release only after the current
transaction either commits or rolls back.

after_statement The connection is released after each statement execution and reacquired prior to
running the next statement. Although not required by either JDBC or JTA
specifications, this strategy is meant to prevent application servers frommistakenly
detecting³ a connection leak between successive EJB (Enterprise Java Beans) calls

auto This is the default value, and for RESOURCE_LOCAL transactions it uses the
after_transaction mode, while for JTA transactions it falls back to
after_statement.

³http://lists.jboss.org/pipermail/hibernate-dev/2006-December/000903.html

http://lists.jboss.org/pipermail/hibernate-dev/2006-December/000903.html
http://lists.jboss.org/pipermail/hibernate-dev/2006-December/000903.html
http://lists.jboss.org/pipermail/hibernate-dev/2006-December/000903.html

Connection Management and Monitoring 138

For JTA transactions, the default mode might be too strict since not all Java EE application servers
exhibit the same behavior for managing transactional resources. This way, it’s important to check
if database connections can be closed outside of the EJB component that triggered the connection
acquisition event. Spring-based enterprise systems don’t use Enterprise Java Beans, and, even when
using a stand-alone JTA transaction manager, the after_transaction connection release mode
might be just fine.

It’s somehow intuitive that the after_statementmode incurs some performance penalty associated
with the frequent acquisition/releasing connection cycles. For this reason, the following test
measures the connection acquisition overhead when using Bitronix in a Spring application context.
Each transaction executes the same statement (fetching the current timestamp) for a given number
of times (represented on the x-axis). The y-axis captures the recorded transaction response times for
both after_statement and after_transaction connection release modes.

Figure 9.1: Connection release mode

The more statements a transaction will execute, the greater the penalty of reacquiring the associated
database connection from the underlying connection pool. To better visualize the connection
acquisition overhead, the test runs up to 10 000 statements, even if this number is probably too
high for the typical OLTP transaction.

Ideally, database transactions should be as short as possible, and the number of statements shouldn’t
be too high either. This requirement stems from the fact that the number of pooled connections is
limited and locks are better released sooner than later.

Connection Management and Monitoring 139

The after_transaction connection release mode is more efficient than the default JTA
after_statement strategy, and so it should be used if the JTA transaction resource
management logic doesn’t interfere with this connection releasing strategy.

9.3 Monitoring connections

As previously concluded, using an externally configured DataSource is preferred because the actual
DataSource can be decorated with connection pooling, monitoring and logging capabilities. Because
that’s exactly how FlexyPool⁴ works too, the following diagram captures the DataSource proxying
mechanism:

Figure 9.2: DataSource proxy

Instead of getting the actual DataSource instance, the data access layer gets a proxy reference. The
proxy intercepts connection acquisition and releasing requests, and, this way, it can monitor its
usage.

When using Spring, setting up FlexyPool is fairly easy because the application has total control over
the DataSource configuration.

In Java EE, database connections should always be fetched from a managed DataSource, and one
simple way of integrating FlexyPool is to extend the default DatasourceConnectionProviderImpl
and substitute the original DataSource with the FlexyPoolDataSource.

⁴https://github.com/vladmihalcea/flexy-pool

https://github.com/vladmihalcea/flexy-pool
https://github.com/vladmihalcea/flexy-pool

Connection Management and Monitoring 140

For this reason, FlexyPool comes with the following Hibernate connection provider:

public class FlexyPoolHibernateConnectionProvider

extends DatasourceConnectionProviderImpl {

private transient FlexyPoolDataSource<DataSource> flexyPoolDataSource;

@Override

public void configure(Map props) {

super.configure(props);

flexyPoolDataSource = new FlexyPoolDataSource<>(getDataSource());

}

@Override

public Connection getConnection() throws SQLException {

return flexyPoolDataSource.getConnection();

}

@Override

public boolean isUnwrappableAs(Class unwrapType) {

return super.isUnwrappableAs(unwrapType) ||

getClass().isAssignableFrom(unwrapType);

}

@Override

public void stop() {

flexyPoolDataSource.stop();

super.stop();

}

}

To use the FlexyPoolHibernateConnectionProvider, the application must configure the hiber-

nate.connection.provider_class property:

<property

name="hibernate.connection.provider_class"

value="com.vladmihalcea.flexypool.adaptor.FlexyPoolHibernateConnectionProvider"

/>

Connection Management and Monitoring 141

9.3.1 Hibernate statistics

Hibernate has a built-in statistics collector which gathers notifications related to database con-
nections, Session transactions and even second-level caching usage. The StatisticsImplementor
interface defines the contract for intercepting various Hibernate internal events:

Figure 9.3: Hibernate StatisticsImplementor interface

There is a great variety of metrics Hibernate can collect on user’s behalf, but, for performance
reasons, the statistics mechanism is disabled by default.

Connection Management and Monitoring 142

To enable the statistics gathering mechanism, the following property must be configured first:

<property name="hibernate.generate_statistics" value="true"/>

Once statistics are being collected, in order to print them into the current application log, the
following logger configuration must be set up:

<logger

name="org.hibernate.engine.internal.StatisticalLoggingSessionEventListener"

level="info" />

With these two settings in place, whenever a Hibernate Session (Persistence Context) ends, the
following report will be displayed in the current running log.

37125102 nanoseconds spent acquiring 10000 JDBC connections;

25521714 nanoseconds spent releasing 10000 JDBC connections;

95242323 nanoseconds spent preparing 10000 JDBC statements;

923615040 nanoseconds spent executing 10000 JDBC statements;

The default statistics collector just counts the number of times a certain callback method was called,
and, if that’s not satisfactory, the application developer can supply its own custom StatisticsIm-

plementor implementation.

Dropwizard Metrics
In a high-throughput transaction system, the amount of metric data needed to be recorded can be
overwhelming, so storing all these values into memory is not really practical at all.

To reduce the memory footprint, the Dropwizard Metrics project uses various reservoir sampling
strategies, that either employ a fixed-size sampler or a time-based sampling window.

Not only it supports a great variety of metrics (e.g. timers, histograms, gauges), but Dropwizard
Metrics can use multiple reporting channels as well (e.g. SLF4J, JMX, Ganglia, Graphite).

For all these reasons, it’s better to use a mature framework such as Dropwizard Metrics
instead of building a custom implementation from scratch.

https://github.com/dropwizard/metrics
https://en.wikipedia.org/wiki/Reservoir_sampling

https://github.com/dropwizard/metrics
https://en.wikipedia.org/wiki/Reservoir_sampling
https://github.com/dropwizard/metrics
https://en.wikipedia.org/wiki/Reservoir_sampling

Connection Management and Monitoring 143

9.3.1.1 Customizing statistics

Although the built-in metrics are rather informative, Hibernate is not limited to the default statistics
collector mechanism which can be completely customized.

In the upcoming example, the statistics collector will also provide the following metrics:

• the distribution of physical transaction time (the interval between the moment a connection
is first acquired and when it gets released)

• a histogram of the number of connections acquisition requests during the lifespan of any given
transaction (due to the after_statement release mode).

The StatisticsReport class provides metric storage and report generation features on top of
Dropwizard Metrics:

public class StatisticsReport {

private final Logger LOGGER = LoggerFactory.getLogger(getClass());

private MetricRegistry metricRegistry = new MetricRegistry();

private Histogram connectionCountHistogram = metricRegistry.

histogram("connectionCountHistogram");

private Timer transactionTimer = metricRegistry.

timer("transactionTimer");

private Slf4jReporter logReporter = Slf4jReporter

.forRegistry(metricRegistry)

.outputTo(LOGGER)

.build();

public void transactionTime(long nanos) {

transactionTimer.update(nanos, TimeUnit.NANOSECONDS);

}

public void connectionsCount(long count) {

connectionCountHistogram.update(count);

}

public void generate() {

logReporter.report();

}

}

Connection Management and Monitoring 144

The StatisticsImplementor interface defines the contract between the Hibernate internal API
and the various custom statistics gathering implementations. For simplicity sake, the following
StatisticsImplementor interface implementation extends the default ConcurrentStatisticsImpl
class, as it only needs to override the connect() and the endTransaction(boolean success)

callback methods.

public class TransactionStatistics extends ConcurrentStatisticsImpl {

private ConcurrentMap<Long, Long> transactionStartNanos =

new ConcurrentHashMap<>();

private ConcurrentMap<Long, AtomicLong> connectionCounter =

new ConcurrentHashMap<>();

private StatisticsReport report = new StatisticsReport();

@Override public void connect() {

long threadId = Thread.currentThread().getId();

AtomicLong counter = connectionCounter.get(threadId);

if(counter == null) {

counter = new AtomicLong();

connectionCounter.put(threadId, counter);

}

counter.incrementAndGet();

transactionStartNanos.putIfAbsent(threadId, System.nanoTime());

super.connect();

}

@Override public void endTransaction(boolean success) {

long threadId = Thread.currentThread().getId();

Long startNanos = transactionStartNanos.remove(threadId);

if (startNanos != null)

report.transactionTime(System.nanoTime() - startNanos);

AtomicLong connectionCounter = this.connectionCounter.remove(threadId);

if (connectionCounter != null)

report.connectionsCount(connectionCounter.longValue());

report.generate();

super.endTransaction(success);

}

}

Because the StatisticsImplementor is a singleton instance, therefore being accessed by multiple
concurrent running Sessions(s), the context correlation is done based on the current running
Thread identifier. When a transaction ends, the report is generated, and both the physical transaction
time and the number of connections (issued during a particular transaction) are flushed to the log.

Connection Management and Monitoring 145

The report is not generated at the end of each transaction, and not in the logSummary() callback
which only gets called when the Hibernate Session gets closed, because a Persistence Context can
run multiple successive transactions.

To use a custom StatisticsImplementor instance, Hibernate requires a StatisticsFactory sup-
plied as a configuration property. Taking a SessionFactoryImplementor parameter, the Statistic-
sImplementor building process has access to the Hibernate configuration data as well.

public class TransactionStatisticsFactory implements StatisticsFactory {

@Override public StatisticsImplementor buildStatistics(

SessionFactoryImplementor sessionFactory) {

return new TransactionStatistics();

}

}

The hibernate.stats.factory configuration property must contain the fully qualified name of the
StatisticsFactory implementation class:

<property name="hibernate.stats.factory" value="com.vladmihalcea.book.hpjp.hiber\

nate.statistics.TransactionStatisticsFactory" />

When running the previous JTA connection release mode example along with this custom statistics
collector, the following output is being displayed:

type=HISTOGRAM, name=connectionCounterHistogram, count=107,

min=1, max=10000, mean=162.41, stddev=1096.69,

median=1.0, p75=1.0, p95=50.0, p98=1000.0, p99=5000.0, p999=10000.0

type=TIMER, name=transactionTimer, count=107,

min=0.557524, max=1272.75, mean=27.16, stddev=152.57,

median=0.85, p75=1.24, p95=41.25, p98=283.50, p99=856.19, p999=1272.75,

mean_rate=36.32, rate_unit=events/second, duration_unit=milliseconds

For a high-performance data access layer, statistics and metrics becomes mandatory
requirements. The Hibernate statistics mechanism is a very powerful tool, allowing the
development team to get a better insight into Hibernate inner workings.

Connection Management and Monitoring 146

9.4 Statement logging

An ORM tool can automatically generate DML statements, and it is the application developer
responsibility to validate both their effectiveness as well as their overall performance impact.
Deferring the SQL statement validation until the data access layer starts showing performance issues
is risky, and it can even impact development cost. For this reason, SQL statement logging becomes
relevant from the early stages of application development.

When a business logic is implemented, the Definition of Done should include a review of
all the associated data access layer operations. Following this rule can save a lot of hassle
when the enterprise system is deployed into production.

Although the JPA 2.1 doesn’t feature a standard configuration property for logging SQL statements,
most JPA implementations support this feature through framework-specific setups. For this purpose,
Hibernate defines the following configuration properties:

Table 9.4: Connection release modes

Property Description

hibernate.show_sql Prints SQL statements to the console

hibernate.format_sql Formats SQL statements before being logged or printed to the console

hibernate.use_sql_comments Adds comments to the automatically generated SQL statement

Using the System console for logging is bad practice, a logging framework (e.g. Logback or Log4j)
being a better alternative for it supports configurable appenders and logging levels.

Because it prints to the console, the hibernate.show_sql property should be avoided.

Hibernate logs all SQL statements on a debug level in the org.hibernate.SQL logging hierarchy.

Connection Management and Monitoring 147

To enable statement logging, the following Logback logger must be added in the associated
configuration file:

<logger name="org.hibernate.SQL" level="debug"/>

Because Hibernate uses PreparedStatement(s) exclusively, the bind parameter values are not
available when the statement gets printed into the log:

INSERT INTO post (title, version, id) VALUES (?, ?, ?)

Although bind parameters might be logged separately (e.g.
org.hibernate.type.descriptor.sql), the most straight-forward way of logging
SQL statements along with their runtime bind parameter values is to use an external
DataSource proxy. Because the proxy intercepts all statement executions, the bind
parameter values can be introspected and printed as well.

9.4.1 Statement formatting

By default, every SQL statement, no matter how long, is written as a single line of text. To increase
readability, Hibernate can transform SQL statements in a human-readable format that spans over
multiple log lines. This feature can be activated by setting the following configuration property:

<property name="hibernate.format_sql" value="true" />

With this setting in place, the previous statement can be formatted as follows:

insert

into

post

(title, version, id)

values

(?, ?, ?)

Although formatting statements can improve readability, this setting is only suitable during the
development phase. In a production system, logs are often parsed and aggregated in a centralized sys-
tem, and the multi-line statement format can impact the log parsing mechanism. Once aggregated,
logged queries can be formatted prior to being displayed in the application performance monitoring
user interface.

Connection Management and Monitoring 148

The hibernate.format_sql property applies to logged statements only and it doesn’t
propagate to the underlying JDBC Driver (SQL statements are still sent as single lines
of text).

This way, the statement formatting doesn’t have any effect when statements are logged
through an external DataSource proxy.

9.4.2 Statement-level comments

Besides formatting, Hibernate can explain the statement generation process by appending SQL-level
comments into the statement body. This feature allows the application developer to get a better
understanding of the following processes:

• the entity state transition that triggered the current executing statement
• the reason for choosing a join when fetching a given result set
• the explicit locking mechanism employed by the current statement.

By default, Hibernate doesn’t append any SQL comment in the automatically generated statements,
and, to enable this mechanism, the following Hibernate property must be configured:

<property name="hibernate.use_sql_comments" value="true" />

When persisting a Post entity, Hibernate explains the entity state transition associated with this
particular statement through the following comment:

/* insert com.vladmihalcea.book.hpjp.util.providers.BlogEntityProvider$Post */

INSERT INTO post (title, version, id) VALUES (?, ?, ?)

As opposed to SQL statement formatting, SQL comments are not only generated during
logging, and they propagate to the underlying Driver as well.

Connection Management and Monitoring 149

Although it might be a useful technique for debugging purposes, in a production environ-
ment, it’s better to leave it disabled, to reduce the database request networking overhead.

9.4.3 Logging parameters

Either the JDBC Driver or the DataSource must be proxied to intercept statement executions
and log them along with the actual parameter values. Besides statement logging, a JDBC proxy
can provide other cross-cutting features like long-running query detection or custom statement
execution listeners.

9.4.3.1 DataSource-proxy

A lesser-known JDBC logging framework, datasource-proxy⁵ provides support for custom JDBC
statement execution listeners. In Java EE, not all application servers allow configuring an external
DataSource, as they rely on their own custom implementations that bind the user supplied JDBC
Driver. Because it can only decorate a DataSource, datasource-proxy might not be suitable in all
Java EE environments.

Figure 9.4: DataSource-Proxy Architecture

On the other hand, the programmatic configuration support fits the Java-based configuration
approach taken by most modern Spring applications:

@Bean

public DataSource dataSource() {

SLF4JQueryLoggingListener loggingListener = new SLF4JQueryLoggingListener();

loggingListener.setQueryLogEntryCreator(new InlineQueryLogEntryCreator());

return ProxyDataSourceBuilder

.create(actualDataSource())

.name(DATA_SOURCE_PROXY_NAME)

.listener(loggingListener)

.build();

}

⁵https://github.com/ttddyy/datasource-proxy

https://github.com/ttddyy/datasource-proxy
https://github.com/ttddyy/datasource-proxy

Connection Management and Monitoring 150

In the following example datasource-proxy is used to log a batch insert of three PreparedState-

ment(s). Although normally a batch is printed in a single line of log, the output was split into
multiple lines to fit the current page layout.

Name:DATA_SOURCE_PROXY, Time:6, Success:True,

Type:Prepared, Batch:True, QuerySize:1, BatchSize:3,

Query:["insert into post (title, version, id) values (?, ?, ?)"],

Params:[(Post no. 0, 0, 0), (Post no. 1, 0, 1), (Post no. 2, 0, 2)]

Not only the bind parameter values are now present, but, because they are grouped altogether, it’s
very easy to visualize the batching mechanism too.

With the custom statement listener support, datasource-proxy allows building a query
count validator to assert the auto-generated statement count, and therefore prevent N+1
query problems during development phase.

9.4.3.2 P6Spy

P6Spy⁶ was released in 2002, in an era when J2EE application servers were ruling the world of
enterprise systems. Because Java EE application servers don’t allow programmatic DataSource

configuration, P6Spy supports a declarative configuration approach (through a spy.properties file).

P6Spy offers support for proxying both a JDBC Driver (which is suitable for Java EE applications)
or a JDBC DataSource (supported by some Java EE containers and common practice for Spring
enterprise applications).

Figure 9.5: P6Spy Architecture

⁶https://github.com/p6spy/p6spy

https://github.com/p6spy/p6spy
https://github.com/p6spy/p6spy

Connection Management and Monitoring 151

Running the previous example gives the following output (formatting was also applied):

p6spy - 1448122491807|0|batch|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 0', 0, 0)

p6spy - 1448122491807|0|batch|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 1', 0, 1)

p6spy - 1448122491807|0|batch|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 2', 0, 2)

p6spy - 1448122491812|5|statement|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 2', 0, 2)

In the order of their occurrence, the output is built out of the following columns:

Table 9.5: P6Spy output

Field Description

Timestamp The statement execution timestamp

Execution time The statement execution duration (in milliseconds)

Category The current statement category (e.g. statement, batch)

Connection The database connection identifier (as assigned by P6Spy)

Original statement The original statement that was intercepted by P6Spy

Formatted statement The statement with all parameter placeholders replaced with the actual bind
values

The first three lines are associated with adding statements to the batch, while the fourth line is
logging the actual batch execution (which also explains the execution time column value).

One very useful configuration is the outagedetection property, which can detect long-
running statements.

10. Mapping Types and Identifiers
JPA addresses the Object/Relational mismatch by associating Java object types to database structures
Assuming there is a task database table having four columns (e.g. id,created_by, created_on and
status), the JPA provider must map it to Domain Model consisting of two Java class (e.g. Task and
Change).

Figure 10.1: Type Mapping

JPA uses three main Object-Relational mapping elements: type, embeddable and entity. In the
previous diagram, the Task object is an entity, while the Change object is an embeddable type.

Both the entity and the embeddable group multiple Domain Model properties by relying on
Hibernate Type(s) to associate database column types with Java value objects (e.g. String, Integer,
Date). The major difference between an entity and an embeddable is the presence of an identifier,
which is used to associate a database table unique key (usually the primary key) with a Domain
Model object property.

152

Mapping Types and Identifiers 153

Although it’s common practice to map all database columns, this is not a strict requirement.
Sometimes it’s more practical to use a root entity and several sub-entities, so each
business case fetches just as much info as needed (while still benefiting from entity state
management).

Identifiers are mandatory for entity elements, and an embeddable type is forbidden to have an
identity of its own. Knowing the database table and the column that uniquely identifies any given
row, Hibernate can correlate database rows with Domain Model entities.

An embeddable type groups multiple properties in a single reusable component.

@Embeddable

public class Change {

@Column(name = "changed_on")

private Date changedOn;

@Column(name = "created_by")

private String changedBy;

}

The Domain Model can share state between multiple entities either by using inheritance
or composition. Embeddable types can reuse state through composition.

The composition association¹, defined by UML, is the perfect analogy for the relationship between
an entity and an embeddable. When an entity includes an embeddable type, all its properties become
part of the owner entity.

The embeddable object cannot define its own identifier because otherwise the entity will have more
than one identities. Lacking an identifier, the embeddable object cannot be managed by a Persistence
Context, and its state is controlled by its parent entity.

Because they can have a significant impact on the overall application performance, the rest of the
chapter discusses types and identifiers in great detail.

¹https://en.wikipedia.org/wiki/Object_composition

https://en.wikipedia.org/wiki/Object_composition
https://en.wikipedia.org/wiki/Object_composition

Mapping Types and Identifiers 154

10.1 Types

For every supported database type, JDBC defines a java.sql.JDBCType enumeration. Since it
builds on top of JDBC, Hibernate does the mapping between JDBC types and their associated Java
counterparts (primitives or Objects).

10.1.1 Primitive types

Table 10.1: Primitive Types

Hibernate type JDBC type Java type

BooleanType BIT boolean, Boolean
NumericBooleanType INTEGER (e.g. 0, 1) boolean, Boolean
TrueFalseType CHAR (e.g. 'F', 'f', 'T', 't') boolean, Boolean
YesNoType CHAR (e.g. 'N', 'n', 'Y', 'y') boolean, Boolean
ByteType TINYINT byte, Byte
ShortType SMALLINT short, Short
CharacterType CHAR char, Character
CharacterNCharType NCHAR char, Character
IntegerType INTEGER int, Integer
LongType BIGINT long, Long
FloatType FLOAT float, Float
DoubleType DOUBLE double, Double
CharArrayType VARCHAR char[], Character[]

From one database system to another, the boolean type can be represented either as a BIT, BYTE,
BOOLEAN or CHAR database type, so defines four Type(s) to resolve the boolean primitive type.

Only non-nullable database columns can be mapped to Java primitives (boolean, byte,
short, char, int, long, float, double). For mapping nullable columns, it’s better to use the
primitive wrappers instead (Boolean, Byte, Short, Char, Integer, Long, Float, Double).

10.1.2 String types

A Java String can consume as much memory as the Java Heap has available. On the other hand,
database systems define both limited-size types (VARCHAR and NVARCHAR) and unlimited ones (TEXT,

Mapping Types and Identifiers 155

NTEXT, BLOB and NCLOB). To accommodate this mapping discrepancy, Hibernate defines the following
Type(s):

Table 10.2: String Types

Hibernate type JDBC type Java type

StringType VARCHAR String

StringNVarcharType NVARCHAR String

TextType LONGVARCHAR String

NTextType LONGNVARCHAR String

MaterializedClobType CLOB String

MaterializedNClobType NCLOB String

10.1.3 Date and Time types

When it comes to time, there are multiple Java or database representations, which explains the vast
number of time-related Hibernate Type(s).

Table 10.3: Date and Time Types

Hibernate type JDBC type Java type

DateType DATE Date

TimeType TIME Time

TimestampType TIMESTAMP Timestamp, Date
DbTimestampType TIMESTAMP Timestamp, Date
CalendarType TIMESTAMP Calendar, GregorianCalendar
CalendarDateType DATE Calendar, GregorianCalendar
CalendarTimeType TIME Calendar, GregorianCalendar
TimeZoneType VARCHAR TimeZone

Handling time is tricky because of various time zones, leap seconds and day-light saving
conventions. Storing timestamps in UTC (Coordinated Universal Time) and doing time
zone transformations in the data layer is common practice.

Mapping Types and Identifiers 156

10.1.4 Numeric types

Oracle can represent numbers up to 38 digits, therefore only fitting in a BigInteger or a BigDecimal
(Long and Double can only store up to 8 bytes).

Table 10.4: Numeric Types

Hibernate type JDBC type Java type

BigIntegerType NUMERIC BigInteger

BigDecimalType NUMERIC BigDecimal

10.1.5 Binary types

For binary types, most database systems offer multiple storage choices (e.g. RAW, VARBINARY, BYTEA,
BLOB, CLOB). In Java, the data access layer can use an array of byte(s), a JDBC Blob or Clob, or even
a Serializable type, if the Java object was marshaled prior to being saved to the database.

Table 10.5: Binary Types

Hibernate type JDBC type Java type

BinaryType VARBINARY byte[], Byte[]
BlobType BLOB Blob

ClobType CLOB Clob

NClobType NCLOB Clob

MaterializedBlobType BLOB byte[], Byte[]
ImageType LONGVARBINARY byte[], Byte[]
SerializableType VARBINARY Serializable

SerializableToBlobType BLOB Serializable

10.1.6 UUID types

There are various ways of persisting a Java UUID (Universally Unique Identifier), and, based on the
memory footprint, the most efficient storage types are the database-specific UUID column types.

Table 10.6: UUID Types

Hibernate type JDBC type Java type

UUIDBinaryType BINARY UUID

UUIDCharType VARCHAR UUID

PostgresUUIDType OTHER UUID

Mapping Types and Identifiers 157

When not natively supported, a BINARY type requires less bytes than a VARCHAR, so the
associated index will have a smaller memory footprint too.

10.1.7 Other types

Hibernate can also map Java Enum(s), Class, URL, Locale and Currency too.

Table 10.7: Other Types

Hibernate type JDBC type Java type

EnumType CHAR, LONGVARCHAR, VARCHAR Enum

INTEGER, NUMERIC, SMALLINT, TINYINT, BIGINT, DECIMAL, DOUBLE, FLOAT

ClassType VARCHAR Class

CurrencyType VARCHAR Currency

LocaleType VARCHAR Locale

UrlType VARCHAR URL

10.1.8 Custom types

Not only that it has a very rich set of data types, but PostgreSQL allows adding custom types as
well (using the CREATE DOMAIN² DDL statement). Choosing the appropriate database type for each
Domain Model field can really make a difference in terms of data access performance. Although
there is a great variety of built-in Type(s), the application developer is not limited to the off-the-
shelf ones only, and new Type(s) can be added without too much effort.

In the following example, the business logic requires monitoring access to an enterprise application.
For this purpose, the data access layer stores the IP (Internet Protocol) addresses of each logged-in
user.

Assuming this internal application uses the IPv4 protocol only, the IP addresses are stored in
the Classless Inter-Domain Routing format (e.g. 192.168.123.231/24). PostgreSQL can store IPv4
addresses either in a cidr or inet type, or it can use a VARCHAR(18) column type.

The VARCHAR(18) column requires 18 characters, and, assuming a UTF-8 encoding, each IPv4

²http://www.postgresql.org/docs/9.5/static/sql-createdomain.html

http://www.postgresql.org/docs/9.5/static/sql-createdomain.html
http://www.postgresql.org/docs/9.5/static/sql-createdomain.html

Mapping Types and Identifiers 158

address needs at most 18 bytes. The smallest size address (e.g. 0.0.0.0/0) taking 9 characters, the
VARCHAR(18) approach requires between 9 and 18 characters for each IPv4 address.

The inet type is specially designed for IPv4 and IPv6 network addresses, and it also supports various
network address specific operators (e.g. <, >, &&), as well as other address transforming functions (e.g.
host(inet), netmask(inet)). As opposed to the VARCHAR(18) approach, the inet type requires only
7 bytes for each IPv4 address.

For it has a more compact size (the index can better fit into memory) and supporting many specific
operators, the inet type is a much more attractive choice. Although, by default, Hibernate doesn’t
support inet types, adding a custom Hibernate Type is a straightforward task. The IPv4 address is
encapsulated in its own wrapper, which can also define various address manipulation functions too.

public class IPv4 implements Serializable {

private final String address;

public IPv4(String address) {

this.address = address;

}

public String getAddress() {

return address;

}

@Override public boolean equals(Object o) {

if (this == o) return true;

if (o == null || getClass() != o.getClass()) return false;

return Objects.equals(address, IPv4.class.cast(o).address);

}

@Override public int hashCode() {

return Objects.hash(address);

}

public InetAddress toInetAddress() throws UnknownHostException {

return Inet4Address.getByName(address);

}

}

When an entity wants to change an IPv4 field, it must provide a new object instance. An immutable
type is much easier to handle since its internal state doesn’t change throughout the current running
Persistence Context.

Mapping Types and Identifiers 159

All custom types must implement the UserType interface, and, since the ImmutableType takes care of
most UserType implementation details, the IPv4Type can focus on type specific conversation logic.

public class IPv4Type extends ImmutableType<IPv4> {

public IPv4Type() {

super(IPv4.class);

}

@Override public int[] sqlTypes() { return new int[]{ Types.OTHER}; }

@Override public IPv4 get(ResultSet rs, String[] names,

SessionImplementor session, Object owner) throws SQLException {

String ip = rs.getString(names[0]);

return (ip != null) ? new IPv4(ip) : null;

}

@Override public void set(PreparedStatement st, IPv4 value, int index,

SessionImplementor session) throws SQLException {

if (value == null) {

st.setNull(index, Types.OTHER);

} else {

PGobject holder = new PGobject();

holder.setType("inet");

holder.setValue(value.getAddress());

st.setObject(index, holder);

}

}

}

The get() method is used to map the inet field to an IPv4 object instance, while the set() is used
for transforming the IPv4 object to the PostgreSQL JDBC driver inet equivalent.

Types.OTHER is used for mapping database types not supported by JDBC.

Mapping Types and Identifiers 160

public abstract class ImmutableType<T> implements UserType {

private final Class<T> clazz;

protected ImmutableType(Class<T> clazz) { this.clazz = clazz; }

@Override public Object nullSafeGet(ResultSet rs, String[] names,

SessionImplementor session, Object owner) throws SQLException {

return get(rs, names, session, owner);

}

@Override public void nullSafeSet(PreparedStatement st, Object value,

int index, SessionImplementor session) throws SQLException {

set(st, clazz.cast(value), index, session);

}

@Override public Class<T> returnedClass() { return clazz; }

@Override public boolean equals(Object x, Object y) {

return Objects.equals(x, y);

}

@Override public int hashCode(Object x) { return x.hashCode(); }

@Override public Object deepCopy(Object o) { return o; }

@Override public boolean isMutable() { return false; }

@Override public Serializable disassemble(Object o) {

return (Serializable) o;

}

@Override public Object assemble(Serializable o, Object owner) { return o; }

@Override

public Object replace(Object o, Object target, Object owner) { return o; }

protected abstract T get(ResultSet rs, String[] names,

SessionImplementor session, Object owner) throws SQLException;

protected abstract void set(PreparedStatement st, T value, int index,

SessionImplementor session) throws SQLException;

}

Mapping Types and Identifiers 161

The @Type annotation instructs Hibernates to use the IPv4Type for mapping the IPv4 field.

@Entity

public class Event {

@Id @GeneratedValue

private Long id;

@Type(type = "com.vladmihalcea.book.hpjp.hibernate.type.IPv4Type")

@Column(name = "ip", columnDefinition = "inet")

private IPv4 ip;

public Event() {}

public Event(String address) {

this.ip = new IPv4(address);

}

public Long getId() {

return id;

}

public IPv4 getIp() {

return ip;

}

public void setIp(String address) {

this.ip = new IPv4(address);

}

}

GiST operators
PostgreSQL 9.4 added GiST operator support for inet and cidr column types. To enable this
feature, a GiST index with the inet_ops operator class must be created on the associated inet

columns.

CREATE INDEX ON event USING gist (ip inet_ops)

http://www.postgresql.org/docs/9.4/static/gist-builtin-opclasses.html

http://www.postgresql.org/docs/9.4/static/gist-builtin-opclasses.html
http://www.postgresql.org/docs/9.4/static/gist-builtin-opclasses.html

Mapping Types and Identifiers 162

Managing Event(s) is easy when Hibernate takes care of the underlying type conversation.

final AtomicReference<Event> eventHolder = new AtomicReference<>();

doInJPA(entityManager -> {

entityManager.persist(new Event());

Event event = new Event("192.168.0.231");

entityManager.persist(event);

eventHolder.set(event);

});

doInJPA(entityManager -> {

Event event = entityManager.find(Event.class, eventHolder.get().getId());

event.setIp("192.168.0.123");

});

Running the previous example generates the following SQL statements:

INSERT INTO event (ip, id) VALUES (NULL(OTHER), 1)

INSERT INTO event (ip, id) VALUES (`192.168.0.231`, 2)

SELECT e0_.id as id1_0_0_, e0_.ip as ip2_0_0_

FROM event e0_

WHERE e0_.id = 2

UPDATE event SET ip=`192.168.0.123` WHERE id = 2

One of the best aspects of using database-specific types is getting access to advanced querying
capabilities. Because the GiST index allows inet_ops operators, the following query can be used
to check if an Event was generated for a given subnetwork:

Event matchingEvent = (Event) entityManager.

createNativeQuery(

"SELECT {e.*} " +

"FROM event e " +

"WHERE " +

" e.ip && CAST(:network AS inet) = TRUE", Event.class).

setParameter("network", "192.168.0.1/24").

getSingleResult();

assertEquals("192.168.0.123", matchingEvent.getIp().getAddress());

Mapping Types and Identifiers 163

10.2 Identifiers

All database tables must have a primary key column, so each row can be uniquely identified (the
primary key must be both UNIQUE and NOT NULL).

Although the SQL standard doesn’t impose primary keys to be immutable, it’s more
practical to avoid changing them.

The primary key can have a meaning in the real world, in which case it’s a natural key, or it can be
generated synthetically, in which case it’s called a surrogate identifier.

For natural keys, unicity is enforced by a real-world unique sequence generator (e.g. National
IdentificationNumbers, Social Security Numbers, Vehicle IdentificationNumbers). In reality, natural
unique numbers might pose problems when the unique constraints do not hold true anymore. For
example, a National Identification Number might yield unique numbers, but if the enterprise system
must accommodate users coming from multiple countries, it’s possible that two different countries
assigned the same identifier.

The natural key can be composed of one or multiple columns. Compound natural keys might incur
an additional performance penalty because multi-column joins are slower than single-column ones,
and multi-column indexes have a bigger memory footprint too.

Natural keys must be sufficiently long to accommodate as many identifiers as the system needs
throughout its lifecycle. Because primary keys are often indexed, the longer the key, the more
memory an index entry will require. Each joined table will include a foreign key mirroring the
parent primary key, and foreign keys are frequently indexed as well.

Index memory impact
Fixed-size non-numerical keys (e.g. CHAR, VARCHAR) are less efficient than numerical ones (e.g.
INTEGER, BIGINT) both for joining (a simple key performs better than a compound one) or indexing
(the more compact the data type, the less memory space is required by an associated index).

A CHAR(17) natural key (e.g. Vehicle Identification Number) requires 17 characters (17 bytes when
using ASCII characters and a UTF-8 encoding) as opposed to 4 bytes (32 bit INTEGER) or 8 bytes
(64 bit BIGINT).

https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5773459616034
https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5773459616034

Mapping Types and Identifiers 164

Surrogate keys are generated independently of the current row data, so table column constraints may
evolve with time (changing a user birthday or email address). The surrogate key can be generated
by a numerical sequence generator (e.g. a database identity column or a sequence), or it can be
constructed by a pseudorandom number generator (e.g GUID³ or UUID⁴). Both the numerical and
UUID keys have both pros and cons.

The UUID is defined by the RFC 4122⁵ standard and it is stored as a 128 bit sequence. The GUID term
refers to any globally unique identifier, which might comprise other non-standard implementations.
For consistency, this chapter will further refer to unique identifiers as UUID.

A UUID takes 128 bits, which is four times more than an INTEGER and twice as as BIGINT. On the
other hand, a UUID number has less chance of a conflict in a Multi-Master database replication
topology. To avoid such conflicts, many relational database systems increment the identity or
sequence numbers in steps, each node getting its own offset. Because UUIDs are not sequential,
they induce fragmentation and that can really affect the performance of clustered indexes.

Requiring less space and being more index-friendly, numerical sequences are preferred
over UUID keys.

10.2.1 UUID identifiers

Nevertheless, some enterprise systems use UUID primary keys, so it’s worth knowing what
Hibernate types work best for this task. The UUID key can either be generated by the application
using the java.util.UUID class or it can be assigned by the database system.

If the database system doesn’t have a built-in UUID type, a BINARY(16) column type is
preferred. Although a CHAR(32) column could also store the UUID textual representation,
the additional space overhead makes it a less favorable pick.

³http://en.wikipedia.org/wiki/Globally_Unique_Identifier
⁴http://en.wikipedia.org/wiki/Universally_Unique_Identifier
⁵https://www.ietf.org/rfc/rfc4122.txt

http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
https://www.ietf.org/rfc/rfc4122.txt
http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
https://www.ietf.org/rfc/rfc4122.txt

Mapping Types and Identifiers 165

Oracle
There is no UUID type in Oracle, so a RAW(16) column must be used instead. The SYS_GUID()
database function can generate a globally unique identifier.

http://docs.oracle.com/database/121/SQLRF/functions202.htm#SQLRF06120

SQL Server
The uniqueidentifier data type is used for storing GUID identifiers. The NEWID() function can
generate a UUID compatible with the RFC 4122 standard.

Because by default SQL Server uses clustered indexes for primary keys, to avoid the frag-
mentation effect, the NEWSEQUENTIALID() function can assign pseudo-sequential UUID
numbers (greater than previously generated ones). This guarantee is kept as long as the
Windows server is not restarted.

https://msdn.microsoft.com/en-us/library/ms187942.aspx
https://msdn.microsoft.com/en-us/library/ms190348.aspx

PostgreSQL
The UUID type can store RFC 4122 compliant unique identifiers. The database doesn’t offer a built-
in UUID generation function, so the identifier must be generated by the data access layer.

http://www.postgresql.org/docs/9.5/static/datatype-uuid.html

MySQL
The UUID must be stored in a BINARY(16) column type. The UUID() functions can generate a
128 bit unique identifier. Because the UUID() function might cause problems for statement-based
replication, passing the generated identifier as a variable is a workaround to this limitation.

http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/replication-features-functions.html

http://docs.oracle.com/database/121/SQLRF/functions202.htm#SQLRF06120
http://docs.oracle.com/database/121/SQLRF/functions202.htm#SQLRF06120
https://msdn.microsoft.com/en-us/library/ms187942.aspx
https://msdn.microsoft.com/en-us/library/ms190348.aspx
https://msdn.microsoft.com/en-us/library/ms189786.aspx
https://msdn.microsoft.com/en-us/library/ms187942.aspx
https://msdn.microsoft.com/en-us/library/ms190348.aspx
http://www.postgresql.org/docs/9.5/static/datatype-uuid.html
http://www.postgresql.org/docs/9.5/static/datatype-uuid.html
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/replication-features-functions.html
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/replication-features-functions.html

Mapping Types and Identifiers 166

For generating UUID identifiers, Hibernate offers three generators (assigned, uuid, uuid2), which
we’ll be discussed in great detail in the following sections.

10.2.1.1 The assigned generator

By simply omitting the @GeneratedValue⁶ annotation, Hibernate will fall back to the assigned
identifier, which allows the data access layer to control the identifier generation process. The
following example maps a java.util.UUID identifier to a BINARY(16) column type:

@Entity @Table(name = "post")

public class Post {

@Id @Column(columnDefinition = "BINARY(16)")

private UUID id;

public Post() {}

public Post(UUID id) {

this.id = id;

}

}

When persisting a post, Hibernate generates the following insert statement:

INSERT INTO post (id) VALUES

([86, 10, -104, 26, 60, -115, 79, 78, -118, -45, 64, 94, -64, -40, 66, 100])

The UUIDBinaryType translates the java.util.UUID to an array of byte(s) that’s stored in the
associated BINARY(16) column type.

Because the identifier is generated in the data access layer, the database server is freed from
this responsibility, and so it can allocate its resources for other data processing tasks.

Hibernate can also generate a UUID identifier on behalf of the application developer, as described
in the following two sections.

⁶https://docs.oracle.com/javaee/7/api/javax/persistence/GeneratedValue.html

https://docs.oracle.com/javaee/7/api/javax/persistence/GeneratedValue.html
https://docs.oracle.com/javaee/7/api/javax/persistence/GeneratedValue.html

Mapping Types and Identifiers 167

10.2.2 The legacy UUID generator

The UUID hex generator⁷ is registered under the uuid name and generates hexadecimal UUID string
representations. Using a 8-8-4-8-4 byte layout, the UUID hex generator is not compliant with the
RFC 4122 standard, which uses a 8-4-4-4-12 byte format. The following code snippet depicts the
UUIDHexGenerator mapping and the associated insert statement.

@Entity @Table(name = "post")

public class Post {

@Id @Column(columnDefinition = "CHAR(32)")

@GeneratedValue(generator = "uuid")

@GenericGenerator(name = "uuid", strategy = "uuid")

private String id;

}

INSERT INTO post (id) VALUES (402880e451724a820151724a83d00000)

10.2.2.1 The newer UUID generator

The newer UUID generator⁸ is RFC 4122 compliant (variant 2) and is registered under the uuid2

name (working with java.lang.UUID, byte[] and String Domain Model object types). Compared
to the previous use case, the mapping and the test case look as follows:

@Entity @Table(name = "post")

public class Post {

@Id @Column(columnDefinition = "BINARY(16)")

@GeneratedValue(generator = "uuid2")

@GenericGenerator(name = "uuid2", strategy = "uuid2")

private UUID id;

}

INSERT INTO post (id) VALUES

([77, 2, 31, 83, -45, -98, 70, 40, -65, 40, -50, 30, -47, 16, 30, 124])

⁷http://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/id/UUIDHexGenerator.html
⁸http://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/id/UUIDGenerator.html

http://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/id/UUIDHexGenerator.html
http://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/id/UUIDGenerator.html
http://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/id/UUIDHexGenerator.html
http://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/id/UUIDGenerator.html

Mapping Types and Identifiers 168

Being RFC 4122 compliant and able to operate with BINARY column type, the
UUIDGenerator is preferred over the legacy UUIDHexGenerator.

10.2.3 Numerical identifiers

As previously explained, a numerical surrogate key is usually preferred since it takes less space and
indexes work better with sequential identifiers. To generate numerical identifiers, most database
systems offer either identity (or auto_increment) columns or sequence objects.

JPA defines the GenerationType⁹ enumeration for all supported identifier generator types:

• IDENTITY is for mapping the entity identifier to a database identity column
• SEQUENCE allocates identifiers by calling a given database sequence
• TABLE is for relational databases that don’t support sequences (e.g MySQL 5.7), the table
generator emulating a database sequence by using a separate table

• AUTO decides the identifier generation strategy based on the current database dialect.

As explained in the JDBC part, database sequences work better with batch updates and
allow various application-side optimization techniques as well.

10.2.3.1 Identity generator

The identity column type (included in the SQL:2003¹⁰ standard) is supported by Oracle 12c¹¹, SQL
Server¹² and MySQL (AUTO_INCREMENT)¹³, and it allows an integer or a bigint column to be
auto-incremented on demand.

The incrementation process is very efficient since it uses a lightweight locking mechanism, as
opposed to the more heavyweight transactional course-grain locks. The only drawback is that the
newly assigned value can only be known after executing the actual insert statement.

⁹https://docs.oracle.com/javaee/7/api/javax/persistence/GenerationType.html
¹⁰http://en.wikipedia.org/wiki/SQL:2003
¹¹http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm#CJAHJHJC
¹²http://msdn.microsoft.com/en-us/library/ms186775.aspx
¹³http://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html

https://docs.oracle.com/javaee/7/api/javax/persistence/GenerationType.html
http://en.wikipedia.org/wiki/SQL:2003
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm#CJAHJHJC
http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html
https://docs.oracle.com/javaee/7/api/javax/persistence/GenerationType.html
http://en.wikipedia.org/wiki/SQL:2003
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm#CJAHJHJC
http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html

Mapping Types and Identifiers 169

Batch updates
Because Hibernate separates the id generation from the actual entity insert statement, entities using
the identity generator may not participate in JDBC batch updates. Hibernate issues the insert
statement during the persist() method call, therefore breaking the transactional write-behind
caching semantic used for entity state transitions.

Even if some JDBC drivers allow fetching the associated generated keys when executing a batch
update, Hibernate still needs an improvement in this regard.

The identity generator can be mapped as follows:

@Entity @Table(name = "post")

public class Post {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)

private Long id;

}

The following example demonstrates how the transaction write-behind caching model is circum-
vented by the identity column semantics. Although disabled by default, JDBC batching was enabled
to compare results between identity and sequence generators.

doInJPA(entityManager -> {

for (int i = 0; i < batchSize; i++) {

entityManager.persist(new Post());

}

LOGGER.debug("Flush is triggered at commit-time");

});

Executing the previous test case generates the following output.

INSERT INTO post (id) VALUES (DEFAULT)

INSERT INTO post (id) VALUES (DEFAULT)

DEBUG - Flush is triggered at commit-time

Because the associated entity identifier can only be known after the insert statement is executed,
Hibernate will trigger the entity state transition prior to flushing the current running Persistence
Context.

Mapping Types and Identifiers 170

10.2.3.2 Sequence generator

A sequence is a database object that generates consecutive numbers. Defined by the SQL:2003
standard, database sequences are supported by Oracle, SQL Server 2012 and PostgreSQL, and,
compared to identity columns, sequences offer the following advantages:

• the same sequence can be used to populate multiple columns, even across tables
• values may be preallocated to improve performance
• allowing incremental steps, sequences can benefit from application-level optimization tech-
niques

• because the sequence call can be decoupled from the actual insert statement, Hibernate doesn’t
disable JDBC batch updates

To demonstrate the difference between the identity and the sequence identifier generators, the
previous example will be changed to use a database sequence this time.

@Entity @Table(name = "post")

public static class Post {

@Id

@GeneratedValue(strategy=GenerationType.SEQUENCE)

private Long id;

}

Running the previous test case generates the following output:

CALL NEXT VALUE FOR hibernate_sequence

CALL NEXT VALUE FOR hibernate_sequence

DEBUG - Flush is triggered at commit-time

INSERT INTO post (id) VALUES (1, 2)

When executing the persist()method, Hibernate calls the associated database sequence and fetches
an identifier for the newly persisted entity. The actual insert statement is postponed until flush-time,
which allows Hibernate to take advantage of JDBC batching.

Mapping Types and Identifiers 171

10.2.3.3 Table generator

Because of the mismatch between the identifier generator and the transactional write-behind cache,
JPA offers an alternative sequence-like generator that works even when sequences are not natively
supported.

A database table is used to hold the latest sequence value and row-level locking is employed to
prevent two concurrent connections from acquiring the same identifier value.

Escaping transactional row-level locking
A database sequence is a non-transactional object because the sequence value allocation happens
outside of the transactional context associated with the database connection requesting a new
identifier. Database sequences use dedicated locks to prevent concurrent transactions from ac-
quiring the same value, but locks are released as soon as the counter is incremented. This design
ensures minimal contention even when the sequence is used concomitantly by multiple concurrent
transactions.

Using a database table as a sequence is challenging, as, to prevent two transactions from getting the
same sequence value, row-level lockingmust be used. But unlike the sequence object locks, the row-
level lock is transactional, and, once acquired, it can only be released when the current transaction
ends (either committing or rolling back). This would be a terrible scalability issue because a long-
running transaction would prevent any other transaction from acquiring a new sequence value.

To cope with this limitation, a separate database transactions is used for fetching a new sequence
value. This way, the row-level lock associated with incrementing the sequence counter value can
be released as soon as the sequence update transaction ends.

For local transactions, a new transaction means fetching another database connection and com-
mitting it after executing the sequence processing logic. This can put additional pressure on the
underlying connection pool, especially if there is already a significant contention for database
connections.

In a JTA environment, the current running transaction must be suspended, and the sequence value
is fetched in a separate transaction. The JTA transaction manager has to do additional work to
accommodate the transaction context switch, and that can also have an impact on the overall
application performance.

Without any application-level optimization, the row-level locking approach can become a
performance bottleneck if the sequence logic is called way too often.

Mapping Types and Identifiers 172

To continue the previous example, the post will use the table generator this time:

@Entity @Table(name = "post")

public class Post {

@Id

@GeneratedValue(strategy=GenerationType.TABLE)

private Long id;

}

The following output is obtained when inserting a new post :

SELECT tbl.next_val

FROM hibernate_sequences tbl

WHERE tbl.sequence_name=default

FOR UPDATE

INSERT INTO hibernate_sequences (sequence_name, next_val)

VALUES (default, 1)

UPDATE hibernate_sequences SET next_val=2

WHERE next_val=1 AND sequence_name=default

SELECT tbl.next_val

FROM hibernate_sequences tbl

WHERE tbl.sequence_name=default

FOR UPDATE

UPDATE hibernate_sequences SET next_val=3

WHERE next_val=2 AND sequence_name=default

DEBUG - Flush is triggered at commit-time

INSERT INTO post (id) values (1, 2)

The table generator benefits from JDBC batching, but every table sequence update incurs three steps:

• the lock statement is executed to ensure that the same sequence value is not allocated for two
concurrent transactions

• the current value is incremented in the data access layer
• the new value is saved back to the database and the secondary transaction is committed to
release the row-level lock.

Mapping Types and Identifiers 173

Unlike identity columns and sequences, which can increment the sequence in a single request,
the table generator entails a significant performance overhead. For this reason, Hibernate comes
with a series of optimizers which can improve performance for both database sequences and table
generators.

Although it is a portable identifier generation strategy, the table generator introduces
a serializable execution (the row-level lock), which can hinder scalability. Compared
to this application-level sequence generation technique, identity columns and sequences
are highly optimized for high-concurrency scenarios and should be the preferred choice
anyway.

10.2.3.4 Optimizers

As previously mentioned, both the sequence and the table identifier generator have multiple
implementations which can improve the performance of the identifier generation process. The
sequence and table generators can be split into two categories:

• legacy implementations (being deprecated since Hibernate 5.0) like SequenceGenerator,
SequenceHiLoGenerator and MultipleHiLoPerTableGenerator

• newer and more efficient implementations such as SequenceStyleGenerator and TableGen-

erator.

These two categories are not compatible, and the application developer must either choose the
legacy identifiers or the enhanced ones. Prior to Hibernate 5.0, the legacy identifier generators were
provided by default and the application developer could switch to the newer ones by setting the
following configuration property:

<property name="hibernate.id.new_generator_mappings" value="true"/>

Hibernate 5 has decided to drop support for the legacy identifiers and to use the enhanced ones by
default.

Among the legacy identifier generators, the SequenceGenerator didn’t offer any optimization,
as every new identifier value would require a call to the underlying database sequence. On the
other hand, the SequenceHiLoGenerator and the MultipleHiLoPerTableGenerator offered a hi/lo
optimization mechanism aimed to reduce the number of calls to a database server. Although these
generators are deprecated, the legacy hi/lo algorithm is still a valid optimizer even for the newer
identifier generators.

Mapping Types and Identifiers 174

10.2.3.4.1 The hi/lo algorithm

The hi/lo algorithms splits the sequences domain into hi groups. A hi value is assigned syn-
chronously, and every hi group is given a maximum number of lo entries, that can by assigned
off-line without worrying about identifier value conflicts.

Figure 10.2: The hi/lo algorithm

1. The hi token is assigned either by the database sequence or the table generator, so two
consecutive calls are guaranteed to see monotonically increasing values

2. Once a hi token is retrieved, the increment size (n - the number of *lo* entries) defines the
range of identifier values a transaction can safely allocate. The identifiers range is bounded by
the following interval: Id = [n× (hi− 1) + 1, n× hi] and the allocation is done as follows:

• the current group values start from n× (hi− 1) + 1
• the lo value is taken from the following interval: {$$} [0, n - 1] {$$}
• by adding the lo value to the initial group value, a unique identifier number is obtained.

3. When all lo values are used, a new hi value is fetched and the cycle continues.

Mapping Types and Identifiers 175

The following example shows how the hi/lo algorithm works in practice. The entity is mapped as
follows:

@Entity

public class Post {

@Id

@GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "hilo")

@GenericGenerator(

name = "hilo",

strategy = "org.hibernate.id.enhanced.SequenceStyleGenerator",

parameters = {

@Parameter(name = "sequence_name", value = "sequence"),

@Parameter(name = "initial_value", value = "1"),

@Parameter(name = "increment_size", value = "3"),

@Parameter(name = "optimizer", value = "hilo")

}

)

private Long id;

}

Because the increment size is 3, the following test will insert 4 entities to show the number of
database sequence calls.

doInJPA(entityManager -> {

for(int i = 0; i < 4; i++) {

Post post = new Post();

entityManager.persist(post);

}

});

Running the previous test generates the following output:

CALL NEXT VALUE FOR hilo_seqeunce

CALL NEXT VALUE FOR hilo_seqeunce

INSERT INTO Post (id) VALUES (1)

INSERT INTO Post (id) VALUES (2)

INSERT INTO Post (id) VALUES (3)

INSERT INTO Post (id) VALUES (4)

Mapping Types and Identifiers 176

The first sequence call is for the first three values, while the second one is generated when reaching
the forth entity that needs to be persisted. The more inserts a transaction requires, the better the
performance gain from reducing the number of database sequence calls.

Unfortunately, this optimizer has a major limitation. Because the database sequence only
assigns group values, all database clients must be aware of this algorithm. If the DBA must
insert a row in the aforementioned table, he must use the hi/lo algorithm to determine the
range of values that she can safely use.

For this reason, Hibernate offers other optimizer algorithms that are interoperable with
external clients, unaware of the application-level optimization technique in-use.

10.2.3.4.2 The default sequence identifier generator

The JPA identifier generator strategy only specifies the identifier type and not the algorithm used
for generating such identifiers.

For the sequence generator, considering the following JPA mapping:

@Id

@GeneratedValue(generator = "sequence", strategy=GenerationType.SEQUENCE)

@SequenceGenerator(name = "sequence", allocationSize = 3)

private Long id;

Hibernate will choose the SequenceHiLoGenerator when the hibernate.id.new_generator_map-

pings configuration property is false. This was the default setting for Hibernate 3 and 4. The legacy
SequenceHiLoGenerator uses the hi/lo algorithm, and, if the allocation size is greater than one,
database interoperability could be compromised (every insert must be done according to the hi/lo
algorithm rules).

If the aforementioned configuration property is true (the default setting for Hibernate 5), then the
JPA mapping above will use the SequenceStyleGenerator instead.

Unlike its previous predecessor, the SequenceStyleGenerator uses configurable identifier optimizer
strategies, and the application developer can even supply its own optimization implementation.

Mapping Types and Identifiers 177

10.2.3.4.3 The default table identifier generator

Just like with sequences, the JPA table generator mapping can use a legacy or an enhanced generator,
depending on the current Hibernate configuration settings:

@Id

@GeneratedValue(generator = "table", strategy=GenerationType.TABLE)

@TableGenerator(name = "table", allocationSize = 3)

private Long id;

If the hibernate.id.new_generator_mappings configuration property is false, then Hibernate
chooses the MultipleHiLoPerTableGenerator. This generator requires a single table for managing
multiple identifiers, and just like SequenceHiLoGenerator, it also uses the hi/lo algorithm by default.

When the enhanced identifier generators are activated, Hibernate will use the TableGenerator

instead, which can also take configurable optimizer strategies.

For both the enhanced sequence and the table identifier generator, Hibernate comes with the
following built-in optimizers:

Table 10.8: Hibernate identifier optimizers

Optimizer type Implementation class Description

none NoopOptimizer Every identifier is fetched using a new roundtrip to the
database

hi/lo HiLoOptimizer It allocates identifiers by using the legacy hi/lo algorithm

pooled PooledOptimizer It’s an enhanced version of the hi/lo algorithm which is
interoperable with other systems unaware of this identifier
generator

pooled-lo PooledLoOptimizer It’s a variation of the pooled optimizer, the database
sequence value representing the lo value instead of the hi one

By default, the SequenceStyleGenerator and TableGenerator identifier generators will use the
pooled optimizer. If the hibernate.id.optimizer.pooled.prefer_lo configuration property is set
to true, Hibernate will use the pooled-lo optimizer by default.

Both the pooled and the pooled-lo encode the database sequence value into the identifier range
boundaries, so allocating a new value using the actual database sequence call doesn’t interfere with
the identifier generator allocation process.

Mapping Types and Identifiers 178

10.2.3.4.4 The pooled optimizer

The pooled optimizer can be configured as follows:

@Entity

public class Post {

@Id

@GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "pooled")

@GenericGenerator(

name = "pooled",

strategy = "org.hibernate.id.enhanced.SequenceStyleGenerator",

parameters = {

@Parameter(name = "sequence_name", value = "sequence"),

@Parameter(name = "initial_value", value = "1"),

@Parameter(name = "increment_size", value = "3"),

@Parameter(name = "optimizer", value = "pooled")

}

)

private Long id;

}

This increment size gives the range of values that can be allocated by the sequence generatorwith one
database roundtrip. Although it’s not efficient to flush the Persistence Context after every persist()
method call, in this particular test, the flush outlines when the database sequence is called.

doInJPA(entityManager -> {

for (int i = 0; i < 5; i++) {

entityManager.persist(new Post());

entityManager.flush();

}

entityManager.unwrap(Session.class).doWork(connection -> {

try(Statement statement = connection.createStatement()) {

statement.executeUpdate(

"INSERT INTO post VALUES NEXT VALUE FOR sequence"

);

}

});

for (int i = 0; i < 3; i++) {

entityManager.persist(new Post());

entityManager.flush();

}

});

Mapping Types and Identifiers 179

Figure 10.3: The pooled optimizer

If increment size (n) is the number of identifiers within a range, the pooled optimizer generates
identifiers with the following formula: Id = [(hi− n) + 1, hi].

• the first sequence call generates the lo value and the second one determines the hi value, so
the first range of identifiers is {2, 3, 4}

• when adding the 5th entity, the pooled optimizer calls the sequence again and obtains the next
hi value, the next identifier range being {5, 6, 7}

• after inserting the 5th entity, an external system adds a post row and assigns the primary key
with the value returned by the sequence call

• the Hibernate application thread resumes and inserts the identifiers 6 and 7
• the 8th entity requires a new sequence call, and so a new range is allocated {11, 12, 13}

Mapping Types and Identifiers 180

10.2.3.4.5 The pooled-lo optimizer

By changing the previous mapping to use the pooled-lo optimizer, the identifier generation changes
as follows:

Figure 10.4: The pooled-lo optimizer

If increment size (n) is the number of identifiers within a range, the pooled-lo optimizer generates
identifiers with the following formula: Id = [lo, (lo+ n)− 1].

• the first sequence call generates the lo value, so the first range of identifiers is {1, 2, 3}
• when adding the 4th entity, the pooled-lo optimizer calls the sequence and obtains the next lo
value, the next identifier range being {4, 5, 6}

• after inserting the 5th entity, an external system adds a post row and assigns the primary key
with the value returned by the sequence call

• the Hibernate application thread resumes and inserts the identifier 6
• the 7th entity requires a new sequence call, and so a new range is allocated {10, 11, 12}

Mapping Types and Identifiers 181

10.2.3.5 Optimizer gain

To visualize the performance gain of using sequence and table generator optimizers, the following
test will measure the identifier allocation time when inserting 50 post entities and while varying the
increment size (1, 5, 10 and 50).

10.2.3.5.1 Sequence generator performance gain

When using a sequence generator with the default pooled optimizer, the following 99th percentile
is being recorded:

Figure 10.5: Sequence pooled optimizer gain

Database sequences are fast, but, even so, the pooled optimizer manages to reduce the
identifier generation time considerably.

For write-intensive application, the increment size needs to be adjusted according to the
amount of rows requires to be inserted in one transaction.

Mapping Types and Identifiers 182

10.2.3.5.2 Table generator performance gain

The same test suite is run against a table generator with a pooled optimizer, and the increment
size also varies between 1, 5, 10 and 50. Because of the row-level locking and the extra database
connection switch overhead, the table generator is less efficient than a database sequence.

Figure 10.6: Table pooled optimizer gain

Just like with the database sequence, the pooled optimizer managed to reduce the time it took for
assigning a new entity identifier.

10.2.3.6 Identifier generator performance

To evaluate the concurrency cost of each identifier generators, the following test will measure the
time it takes to insert 100 post entities when multiple running threads are involved. JDBC batching
is enabled, and the connection pool is adjusted to accommodate the maximum number of database
connection required (e.g. 32).

In reality, the application might not be configured with so many database connections, and
the table generator connection acquisition cost might be even higher.

Mapping Types and Identifiers 183

The first relational database system under test supports identity columns, so it’s worth measuring
how the identifier and the table generator compete with each other. Unlike the previous test, this
one measures the total time taken for inserting all entities, and not just the identifier allocation time
interval.

Each test iteration increases contention by allocating more worker threads that need to execute the
same database insert load.

Figure 10.7: Identity vs Table

Even if it cannot benefit from JDBC batching, the identity generator still manages to outperform the
table generator, which uses a pooled optimizer with an increment size of 100.

The more threads are used, the less efficient the table generator becomes. On the other
hand, identity columns scale much better with more concurrent transactions.

Even if doesn’t support JDBC batching, native identity columns are still a valid choice, and,
in future, Hibernate might even support batch inserts for those as well.

If compared to identity columns the table generators could benefit from JDBC batching and the
pooled optimizer, the gap between the sequence and the table generator is even higher because
sequences can also take advantage of all these optimizations as well.

Mapping Types and Identifiers 184

Running the same test against a relational database supporting sequences, the following results are
being recorded:

Figure 10.8: Sequence vs Table

The performance impact of the table generator becomes noticeable in high concurrent environments,
where the row-level locking and the database connection switch introduces a serial execution.

Because they use lightweight synchronizationmechanisms, database sequences scale better
than row-level locking concurrency control mechanisms.

Database sequences are the most efficient Hibernate identifier choice, allowing sequence
call optimizers and without compromising JDBC batching.

11. Relationships
In a relational database, associations are formed by correlating rows belonging to different tables.
A relationship is established when a child table defines a foreign key referencing the primary key
of its parent table. Every database association is built on top of foreign keys, resulting three table
relationship types:

• one-to-many is the most common relationship and it associates a row from a parent table to
multiple rows in a child table

• one-to-one is a variation of the one-to-many relationship with an additional uniqueness
constraint on the child-side foreign key

• many-to-many requires a junction table containing two foreign keys that reference two
different parent tables.

The following diagram depicts all these three table relationships:

Figure 11.1: Table relationships

The post table has a one-to-many relationship with the post_comment table because a post row
might be referenced by multiple comments. The one-to-many relationship is established through
the post_id column which has a foreign key referencing the post table primary key. Because a
post_comment cannot exist without a post, the post is the parent-side while the post_comment is
the child-side.

The post table has a one-to-one relationship with the post_details. Like the one-to-many
association, the one-to-one relationship involves two tables and a foreign key. The foreign key has
a uniqueness constraint, so only one child row can reference a parent record.

185

Relationships 186

The post and the tag are both independent tables and neither one is a child of the other. A post can
feature several tag(s), while a tag can also be associated with multiple post(s). This is a typical
many-to-many association and it requires a junction table to resolve the child-side of these two
parent entities. The junction table requires two foreign keys referencing the two parent tables.

The foreign key is therefore the most important construct in building a table relationship,
and, in a relation database, the child-side controls a table relationship.

In a relational database, the foreign key is associated with the child-side only. For this reason, the
parent-side has no knowledge of any associated child relationships, and, from amapping perspective,
table relationships are always unidirectional (the child foreign key references the parent primary
key).

11.1 Relationship types

When mapping a JPA entity, besides the underlying table columns, the application developer can
map entity relationships either in one direction or in a bidirectional way. This is another impedance
mismatch between the object-oriented DomainModel and relational database system because, when
using an ORM tool, the parent and the child-side can reference each other.

A relationship is unidirectional if only one entity side maps the table relationship and is bidirectional
if the table relationship can be navigated in both directions (either from the entity parent-side or the
child-side).

To properly represent both sides of an entity relationship, JPA defines four association mapping
constructs:

• @ManyToOne represents the child-side (where the foreign key resides) in a database one-to-
many table relationship

• @OneToMany is associated with the parent-side of a one-to-many table relationship
• @ElementCollection defines a one-to-many association between an entity and multiple value
types (basic or embeddable)

• @OneToOne is used for both the child-side and the parent-side in a one-to-one table relationship
• @ManyToMany mirrors a many-to-many table relationship.

Because the entity relationship choice has a considerable impact on the overall application perfor-
mance, this chapter analyses the data access operation efficiency of all these JPA associations.

Relationships 187

Mapping collections
In a relational database, all table relationships are constructed using foreign keys and navigated
through SQL queries. JPA allows mapping both the foreign key side (the child entity has a reference
to its parent), as well as the parent side (the parent entity has one or more child entities).

Although @OneToMany, @ManyToMany or @ElementCollection are convenient from a data access
perspective (entity state transitions can be cascaded from parent entities to children), they are
definitely not free of cost. The price for reducing data access operations is paid in terms of result
set fetching flexibility and performance. A JPA collection, either of entities or value types (basic or
embeddables), binds a parent entity to a query that usually fetches all the associated child records.
Because of this, the entity mapping becomes sensitive to the number of child entries.

If the children count is relatively small, the performance impact of always retrieving all child
entities might be unnoticeable. But if the number of child records grows too large, fetching the
entire children collection can become a performance bottleneck. Unfortunately, the entity mapping
is done during the early phases of a project development, and the development team might be
unaware of the number of child records a production system will exhibit.

Not just the mere size can be problematic, but also the number of properties of the child entity.
Because entities are usually fetched as a whole, the result set is therefore proportional to the
number of columns the child table contains. Even if a collection is fetched lazily, Hibernate might
still require to fully load each entity when the collection is accessed for the first time. Although
Hibernate supports extra lazy collection fetching, this is only a workaround and doesn’t address
the root problem.

Alternatively, every collection mapping can be replaced by a data access query, which can use an
SQL projection that’s tailored by the data requirements of each business use case. This way, the
query can take business case specific filtering criteria. Although JPA 2.1 doesn’t support dynamic
collection filtering, Hibernate offers Session (Persistence Context) bound collection Filters.

When handling large data sets, it’s good practice to limit the result set size, both for UI
(to increase responsiveness) or batch processing tasks (to avoid long running transactions).
Just because JPA offers supports collection mapping, it doesn’t mean they are mandatory
for every domain model mapping. Until there’s a clear understanding of the number of
child records (or if there’s even a need to fetch child entities entirely), it’s better to post
pone the collection mapping decision. For high-performance systems, a data access query
is often a much more flexible alternative anyway.

Relationships 188

11.2 @ManyToOne

The @ManyToOne relationship is the most common JPA association and it maps exactly to the one-
to-many table relationship. When using a @ManyToOne association, the underlying foreign key is
controlled by the child-side, no matter the association is unidirectional or bidirectional.

This section focuses on unidirectional @ManyToOne relationship only, the bidirectional case being
further discussed with the @OneToMany relationship. In the following example, the Post entity
represents the parent-side, while the PostComment is the child-side.

As already mentioned, the JPA entity relationship diagram matches exactly the one-to-many table
relationship.

Figure 11.2: The one-to-many table relationship

Figure 11.3: @ManyToOne relationship

Instead ofmapping the post_id foreign key column, the PostComment uses a @ManyToOne relationship
to the parent Post entity. The PostComment can be associated with an existing Post object reference,
and the PostComment can also be fetched along with the Post entity.

@ManyToOne

@JoinColumn(name = "post_id")

private Post post;

Hibernate translates the internal state of the @ManyToOne Post object reference to the post_id foreign
key column value.

Relationships 189

If the @ManyToOne attribute is set to a valid Post entity reference:

Post post = entityManager.find(Post.class, 1L);

PostComment comment = new PostComment("My review");

comment.setPost(post);

entityManager.persist(comment);

Hibernate generates an insert statement populating the post_id column with the identifier of the
associated Post entity.

INSERT INTO post_comment (post_id, review, id) VALUES (1, 'My review', 2)

If the Post attribute is later set to null:

comment.setPost(null);

The post_id column is also updated with a NULL value:

UPDATE post_comment SET post_id = NULL, review = 'My review' WHERE id = 2

Because the @ManyToOne association controls the foreign key directly, the automatically
generated DML statements are very efficient.

Actually, the best performing JPA associations always rely on the child-side to translate
the JPA state to the foreign key column value.

This is one of the most important rule in JPA relationship mapping, and it will be further
emphasized for @OneToMany, @OneToOne and even @ManyToMany associations.

11.3 @OneToMany

While the @ManyToOne association is themost natural mapping of the one-to-many table relationship,
the @OneToMany association can also mirror this database relationship, but only when being used as
a bidirectional mapping. A unidirectional @OneToMany association uses an additional junction table,
which no longer fits the one-to-many table relationship semantics.

Relationships 190

11.3.1 Bidirectional @OneToMany

The bidirectional @OneToMany association has a matching @ManyToOne child-side mapping that
controls the underlying one-to-many table relationship. The parent-side is mapped as a collection
of child entities.

Figure 11.4: Bidirectional @OneToMany relationship

In a bidirectional association, only one side can control the underlying table relationship. For the
bidirectional @OneToMany mapping, it’s the child-side @ManyToOne association in charge of keeping
the foreign key column value in sync with the in-memory Persistence Context. This is the reason
why the bidirectional @OneToMany relationship must define the mappedBy attribute, indicating that it
only mirrors the @ManyToOne child-side mapping.

@OneToMany(mappedBy = "post", cascade = CascadeType.ALL, orphanRemoval = true)

private List<PostComment> comments = new ArrayList<>();

Even if the child-side is in charge of synchronizing the entity state changes with and the
database foreign key column value, a bidirectional association must always have both the
parent-side and the child-side in sync.

Relationships 191

To synchronize both ends, it’s practical to provide parent-side helper methods that add/remove child
entities.

public void addComment(PostComment comment) {

comments.add(comment);

comment.setPost(this);

}

public void removeComment(PostComment comment) {

comments.remove(comment);

comment.setPost(null);

}

One of the major advantages of using a bidirectional association is that entity state transitions can
be cascaded from the parent entity to its children. In the following example, when persisting the
parent Post entity, all the PostComment child entities are persisted as well.

Post post = new Post("First post");

entityManager.persist(post);

PostComment comment1 = new PostComment("My first review");

post.addComment(comment1);

PostComment comment2 = new PostComment("My second review");

post.addComment(comment2);

entityManager.persist(post);

INSERT INTO post (title, id) VALUES ('First post', 1)

INSERT INTO post_comment (post_id, review, id) VALUES (1, 'My first review', 2)

INSERT INTO post_comment (post_id, review, id) VALUES (1, 'My second review', 3)

When removing a comment from the parent-side collection, the orphan removal attribute will
instruct Hibernate to generate a delete DML statement on the targeted child entity:

post.removeComment(comment1);

DELETE FROM post_comment WHERE id = 2

Relationships 192

Equality-based entity removal
The helper method for the child entity removal relies on the underlying child object equality for
matching the collection entry that needs to be removed.

If the application developer doesn’t choose to override the default equals and hashCode methods,
the java.lang.Object identity-based equality is going to be used. The problem with this approach
is that the application developer must supply a child entity object reference that’s contained in the
current child collection.

Sometimes child entities are loaded in one web request and saved in a HttpSession or a Stateful
Enterprise Java Bean. Once the Persistence Context, which loaded the child entity is closed, the
entity becomes detached. If the child entity is sent for removal into a new web request, the child
entity must be reattached or merged into the current Persistence Context. This way, if the parent
entity is loaded along with its child entities, the removal operation will work properly since the
removing child entity is already managed and contained in the children collection.

If the entity hasn’t changed, reattaching this child entity is redundant and so the equals and the
hashCode methods must be overridden to express equality in terms of a unique business key. In
case the child entity has a @NaturalId or a unique property/properties set, the equals and the
hashCode methods can be implemented on top of that. Assuming the PostComment entity has the
following two columns whose combination render a unique business key, the equality contract can
be implemented as follows:

private String createdBy;

@Temporal(TemporalType.TIMESTAMP)

private Date createdOn = new Date();

@Override

public boolean equals(Object o) {

if (this == o) return true;

if (o == null || getClass() != o.getClass()) return false;

PostComment that = (PostComment) o;

return Objects.equals(createdBy, that.createdBy) &&

Objects.equals(createdOn, that.createdOn);

}

@Override

public int hashCode() {

return Objects.hash(createdBy, createdOn);

}

Relationships 193

The bidirectional @OneToMany association generates efficient DML statements because the
@ManyToOnemapping is in charge of the table relationship. Because it simplifies data access
operations as well, the bidirectional @OneToMany association is worth considering when the
size of the child records is relatively low.

11.3.2 Unidirectional @OneToMany

The unidirectional @OneToMany association is very tempting because the mapping is simpler than its
bidirectional counterpart. Because there is only one side to take into consideration, there’s no need
for helper methods and the mapping doesn’t feature a mappedBy attribute either.

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)

private List<PostComment> comments = new ArrayList<>();

Unfortunately, in spite its simplicity, the unidirectional @OneToMany association is less efficient than
the unidirectional @ManyToOne mapping or the bidirectional @OneToMany association.

Against any intuition, the unidirectional @OneToMany association doesn’t map to a one-to-many
table relationship. Because there is no @ManyToOne side to control this relationship, Hibernate uses a
separate junction table to manage the association between a parent row and its child records.

Figure 11.5: The @OneToMany table relationship

The table post_post_comment has two foreign key columns, which reference both the parent-side
row (the Post_id column is a foreign key to the post table primary key) and the child-side entity
(the comments_id references the primary key of the post_comment table).

Without going into analyzing the associated data access operations, it’s obvious that joining three
tables is less efficient than joining just two. Because there are two foreign keys, there needs to be
two indexes (instead of one), so the indexes memory footprint increases.

But since this is a regular table mapping for a many-to-many relationship, the extra table and the
increased memory footprint is not the biggest performance issue. The algorithm for managing the
collection state is what makes any unidirectional @OneToMany association less attractive.

Relationships 194

Considering there is a Post entity with two PostComment child records, obtained by running the
following example:

Post post = new Post("First post");

post.getComments().add(new PostComment("My first review"));

post.getComments().add(new PostComment("My second review"));

post.getComments().add(new PostComment("My third review"));

entityManager.persist(post);

While for a bidirectional @OneToMany association there were three child rows being added, the
unidirectional association requires three additional inserts for the junction table records.

INSERT INTO post (title, id) VALUES ('First post', 1)

INSERT INTO post_comment (review, id) VALUES ('My first review', 2)

INSERT INTO post_comment (review, id) VALUES ('My second review', 3)

INSERT INTO post_comment (review, id) VALUES ('My third review', 4)

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 2)

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 3)

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 4)

When removing the first element of the collection:

post.getComments().remove(0);

Hibernate generates the following DML statements:

DELETE FROM post_post_comment WHERE Post_id = 1

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 3)

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 4)

DELETE FROM post_comment WHERE id = 2

First, all junction table rows associated with the parent entity are deleted, and then the remaining
in-memory records are added back again. The problem with this approach is that instead of a single
junction table remove operation, the database has way more DML statements to execute.

Another problem is related to indexes. If there is an index on each foreign key column (which is the
default for many relational databases), the database engine must delete the associated index entries
only to add back the remaining ones. The more elements a collection has, the less efficient a remove
operation will get.

Relationships 195

The unidirectional @OneToMany relationship is less efficient both for reading data (three
joins are required instead of two), as for adding (two tables must be written instead of one)
or removing (entries are removed and added back again) child entries.

11.3.3 Ordered unidirectional @OneToMany

If the collection can store the index of every collection element, the unidirectional @OneToMany
relationship can benefit for some element removal operations. First, an @OrderColumn annotation
must be defined along the @OneToMany relationship mapping:

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)

@OrderColumn(name = "entry")

private List<PostComment> comments = new ArrayList<>();

At the database level, the entry column is included in the junction table.

Figure 11.6: The unidirectional @OneToMany with an @OrderColumn

It’s better not to mistake the @OrderColumn with the @OrderBy JPA annotation. While the
former allows the JPA provider to materialize the element index into a dedicated database
column so that the collection is sorted using an ORDER BY clause, the latter does the sorting
at runtime based on the ordering criteria provided by the @OrderBy annotation.

Relationships 196

Considering there are three PostComment entities added for a given Post parent entity:

post.getComments().add(new PostComment("My first review"));

post.getComments().add(new PostComment("My second review"));

post.getComments().add(new PostComment("My third review"));

The index of every collection element is going to be stored in the entry column of the junction table:

INSERT INTO post_comment (review, id) VALUES ('My first review', 2)

INSERT INTO post_comment (review, id) VALUES ('My second review', 3)

INSERT INTO post_comment (review, id) VALUES ('My third review', 4)

INSERT INTO post_post_comment (Post_id, entry, comments_id) VALUES (1, 0, 2)

INSERT INTO post_post_comment (Post_id, entry, comments_id) VALUES (1, 1, 3)

INSERT INTO post_post_comment (Post_id, entry, comments_id) VALUES (1, 2, 4)

When removing elements from the tail of the collection:

post.getComments().remove(2);

Hibernate only requires a single junction table delete statement:

DELETE FROM post_post_comment WHERE Post_id = 1 and entry = 2

DELETE FROM post_comment WHERE id = 4

Unfortunately, this optimization doesn’t hold for entries that are not located towards the head of
the collection, so when deleting the first element:

post.getComments().remove(0);

Hibernate deletes all child elements associated with this parent entity, and then it updates the
remaining database entries to preserve the same element ordering as the in-memory collection
snapshot:

DELETE FROM post_post_comment WHERE Post_id=1 and entry=1

UPDATE post_post_comment set comments_id = 3 WHERE Post_id = 1 and entry = 0

DELETE FROM post_comment WHERE id = 2

Relationships 197

If the unidirectional @OneToMany collection is used like a stack and elements are always
removed from the collection tail, the remove operations are more efficient when using
an @OrderColumn. But the closer an element is to the head of the list, the more update
statements must be issued, and the additional updates have an associated performance
overhead.

11.3.3.1 @ElementCollection

Although it’s not an entity association type, the @ElementCollection is very similar to the
unidirectional @OneToMany relationship. To represent collections of basic types (e.g. String, int,
BigDecimal) or embeddable types, the @ElementCollection must be used instead. If the previous
associations involved multiple entities, this time there’s only a single Post entity with a collection
of String comments.

Figure 11.7: The @ElementCollection relationship

The mapping for the comments collection looks as follows:

@ElementCollection

private List<String> comments = new ArrayList<>();

Value types inherit the persistent state from their parent entities, so their lifecycle is also bound to the
owner entity. Any operation against the entity collection is going to be automatically materialized
into a DML statement.

When it comes to adding or removing child records, the @ElementCollection behaves like a
unidirectional @OneToMany relationship, annotated with CascadeType.ALL and orphanRemoval.

Relationships 198

From a database perspective, there’s one child table holding both the foreign key column and the
collection element value.

Figure 11.8: The @ElementCollection table relationship

To persist three comments, the data access layer only has to add them to the parent entity collection:

post.getComments().add("My first review");

post.getComments().add("My second review");

post.getComments().add("My third review");

Hibernate will issue the insert statements during Persistence Context flushing:

INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My first review')

INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My second review')

INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My third review')

Unfortunately, the remove operation uses the same logic as the unidirectional @OneToMany associa-
tion, so when removing the first collection element:

post.getComments().remove(0);}

Hibernate deletes all the associated child-side records and re-inserts the in-memory ones back into
the database table:

DELETE FROM Post_comments WHERE Post_id = 1

INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My second review')

INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My third review')

In spite its simplicity, the @ElementCollection is not very efficient for element removal.
Just like unidirectional @OneToMany collections, the @OrderColumn can optimize the removal
operation for entries located near the collection tail.

Relationships 199

11.3.4 @OneToMany with @JoinColumn

JPA 2.0 added support for mapping the @OneToMany association with a @JoinColumn so that it can
map the one-to-many table relationship. With the @JoinColumn, the @OneToMany association controls
the child table foreign key so there is no need for a junction table.

On the JPA side, the class diagram is identical to the aforementioned unidirectional @OneToMany
relationship, and the only difference is the JPA mapping which takes the additional @JoinColumn:

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)

@JoinColumn(name = "post_id")

private List<PostComment> comments = new ArrayList<>();

When adding three PostComment entities, Hibernate generates the following SQL statements:

post.getComments().add(new PostComment("My first review"));

post.getComments().add(new PostComment("My second review"));

post.getComments().add(new PostComment("My third review"));

INSERT INTO post_comment (review, id) VALUES ('My first review', 2)

INSERT INTO post_comment (review, id) VALUES ('My second review', 3)

INSERT INTO post_comment (review, id) VALUES ('My third review', 4)

UPDATE post_comment SET post_id = 1 WHERE id = 2

UPDATE post_comment SET post_id = 1 WHERE id = 3

UPDATE post_comment SET post_id = 1 WHERE id = 4

Besides the regular insert statements, Hibernate issues three update statements for setting the post_-
id column on the newly inserted child records. The child entity doesn’t own the post_id foreign
key column, so the child entities are inserted without any knowledge of their parent entity. After
inserting the child entities, the parent collection can update each particular child entity foreign key
column with the parent entity identifier.

Although it’s an improvement over the regular @OneToMany mapping, in practice, it’s still
not as efficient as a regular bidirectional @OneToMany association.

Relationships 200

When deleting the last element of the collection:

post.getComments().remove(2);

Hibernate generates the following SQL statements:

UPDATE post_comment SET post_id = null WHERE post_id = 1 AND id = 4

DELETE from post_comment WHERE id = 4

Again, there is an additional update statement associated with the child removal operation. When
a child entity is removed from the parent-side collection, Hibernate will set the child table foreign
key column to null. Afterwards, the orphan removal logic kicks in and it triggers a delete statement
against the disassociated child entity.

Unlike the regular @OneToMany association, the @JoinColumn alternative is consistent in regard to the
collection entry position that’s being removed. So, when removing the first element of the collection:

post.getComments().remove(0);

Hibernate still generates an additional update statement:

UPDATE post_comment SET post_id = null WHERE post_id = 1 AND id = 2

DELETE from post_comment WHERE id = 2

Bidirectional @OneToMany with @JoinColumn relationship
The @OneToMany with @JoinColumn association can also be turned into a bidirectional relationship,
but it requires instructing the child-side to avoid any insert and update synchronization:

@ManyToOne

@JoinColumn(name = "post_id", insertable = false, updatable = false)

private Post post;

The redundant update statements are generated for both the unidirectional and the
bidirectional association, so the most efficient foreign key mapping is the @ManyToOne

association.

Relationships 201

11.4 @OneToOne

From a database perspective, the one-to-one association is based on a foreign key that’s constrained
to be unique. This way, a parent row can be referenced by at most one child record only.

In JPA, the @OneToOne relationship can be either unidirectional or bidirectional.

11.4.1 Unidirectional @OneToOne

In the following example, the Post entity represents the parent-side, while the PostDetails is the
child-side of the one-to-one association.

As already mentioned, the JPA entity relationship diagram matches exactly the one-to-one table
relationship.

Figure 11.9: The one-to-one table relationship

Even from the Domain Model side, the unidirectional @OneToOne relationship is strikingly similar to
the unidirectional @ManyToOne association.

Figure 11.10: The unidirectional @OneToOne relationship

Relationships 202

The mapping is done through the @OneToOne annotation, which, just like the @ManyToOne mapping,
might also take a @JoinColumn as well.

@OneToOne

@JoinColumn(name = "post_id")

private Post post;

The unidirectional @OneToOne association controls the associated foreign key, so, when the post

property is set:

Post post = entityManager.find(Post.class, 1L);

PostDetails details = new PostDetails("John Doe");

details.setPost(post);

entityManager.persist(details);

Hibernate populate the foreign key column with the associated post identifier:

INSERT INTO post_details (created_by, created_on, post_id, id)

VALUES ('John Doe', '2016-01-08 11:28:21.317', 1, 2)

Even if this is a unidirectional association, the Post entity is still the parent-side of this relationship.
To fetch the associated PostDetails, a JPQL query is needed:

PostDetails details = entityManager.createQuery(

"select pd " +

"from PostDetails pd " +

"where pd.post = :post", PostDetails.class)

.setParameter("post", post)

.getSingleResult();

If the Post entity always need its PostDetails, a separate query is undesirable. To overcome this
limitation, it’s important to know the PostDetails identifier prior to loading the entity.

One workaround would be to use a @NaturalId, which might not require a database access if the
entity is stored in the second-level cache. Fortunately, there’s even a simpler approach which is also
portable across JPA providers as well. The JPA 2.0 specification added support for derived identifiers,
making possible to link the PostDetails identifier to the post table primary key.

This way, the post_details table primary key can also be a foreign key referencing the post table
identifier.

Relationships 203

The PostDetails @OneToOne mapping is changed as follows:

@OneToOne

@MapsId

private Post post;

This time, the table relationship doesn’t feature any additional foreign key column since the post_-
details table primary key references the post table primary key:

Figure 11.11: The shared key one-to-one

Because PostDetails has the same identifier as the parent Post entity, it can be fetched without
having to write a JPQL query.

PostDetails details = entityManager.find(PostDetails.class, post.getId());

The shared primary key efficiency
First of all, the shared primary key approach reduces the memory footprint of the child-side table
indexes since it requires a single indexed column instead of two. The more records a child table
has, the better the improvement gain for reducing the number of indexed columns.

More, the child entity can now be simply retrieved from the second-level cache, therefore
preventing a database hit. In the previous example, because the child entity identifier was not
known, a query was inevitable. To optimize the previous use case, the query cache would be
required as well, but the query cache is not without issues either.

Because of the reduced memory footprint and enabling the second-level cache direct
retrieval, the JPA 2.0 derived identifier is the preferred @OneToOne mapping strategy.
The shared primary key is not limited to unidirectional associations, being available for
bidirectional @OneToOne relationships as well.

Relationships 204

11.4.2 Bidirectional @OneToOne

A bidirectional @OneToOne association allows the parent entity to map the child-side as well:

Figure 11.12: The bidirectional @OneToOne relationship

The parent-side defines a mappedBy attribute because the child-side (which can still share the primary
key with its parent) is still in charge of this JPA relationship:

@OneToOne(mappedBy = "post", cascade = CascadeType.ALL, fetch = FetchType.LAZY)

private PostDetails details;

Because this is a bidirectional relationship, the Post entity must ensure that both sides of this
relationship are set, upon associating a PostDetails entity:

public void setDetails(PostDetails details) {

this.details = details;

details.setPost(this);

}

Even if the association is lazy, when fetching a Post entity, Hibernate fetches the child entity as
well:

Post post = entityManager.find(Post.class, 1L);

Relationships 205

SELECT p.id AS id1_0_0_,

p.title AS title2_0_0_

FROM post p

WHERE p.id = 1

SELECT pd.post_id AS post_id3_1_0_,

pd.created_by AS created_1_1_0_,

pd.created_on AS created_2_1_0_

FROM post_details pd

WHERE pd.post_id = 1

So instead of only one query, Hibernate requires two queries.

Unlike the parent-side @OneToMany relationship where Hibernate can simply assign a proxy even if
the child collection is empty, the @OneToOne relationship must decide if to assign the child reference
to null or to an Object, be it the actual entity object type or a runtime Proxy.

This is an issue that affects the parent-side @OneToOne association, while the child-side, which has
an associated foreign key column, knows whether the parent reference should be null or not. For
this reason, the parent-side must execute a secondary query to know if there’s a mirroring foreign
key reference on the child-side.

If the application developer only needs parent entities, the additional child-side secondary queries
are executed unnecessarily and this might affect application performance. The more parent entities
are needed to be retrieved, the more obvious the secondary queries performance impact will be.

Bytecode enhancement
Even if the foreign key is NOT NULL and the parent-side is aware about its non-nullability
through the optional attribute (e.g. @OneToOne(mappedBy = "post", fetch = FetchType.LAZY,

optional = false)), Hibernate still generates a secondary select statement. Knowing that the child
entity is never null, Hibernate can assign it to a Proxy instead of an actual child entity object
reference. But the Persistence Context requires both the entity type and the identifier of every
managed entity, so the child entity identifier must be known upon loading the parent entity, and
the only way to find the associated post_details primary key is to execute a secondary query.

Bytecode enhancement is the only viable workaround; the parent entity Proxy being
instrumented to only fetch the child entity upon first access. Because it’s much simpler
and performs well even without bytecode enhancement, the unidirectional @OneToOne
relationship is often preferred.

Relationships 206

11.5 @ManyToMany

The @ManyToMany relationship is the trickiest of all JPA relationships as the remaining of this
chapter will demonstrate. Like the @OneToOne relationship, the @ManyToMany association can be either
unidirectional or bidirectional. From a database perspective, the @ManyToMany association mirrors a
many-to-many table relationship:

Figure 11.13: The many-to-many table relationship

11.5.1 Unidirectional @ManyToMany

In the following example, it makes sense to have the Post entity map the @ManyToMany relationship
since there isn’t much need for navigating this association from the Tag relationship side (although
we can still do it with a JPQL query).

Figure 11.14: The unidirectional @ManyToMany relationship

In the Post entity, the @ManyToMany unidirectional association is mapped as follows:

@ManyToMany(cascade = { CascadeType.PERSIST, CascadeType.MERGE })

@JoinTable(name = "post_tag",

joinColumns = @JoinColumn(name = "post_id"),

inverseJoinColumns = @JoinColumn(name = "tag_id")

)

private List<Tag> tags = new ArrayList<>();

Relationships 207

When adding several entities:

Post post1 = new Post("JPA with Hibernate");

Post post2 = new Post("Native Hibernate");

Tag tag1 = new Tag("Java");

Tag tag2 = new Tag("Hibernate");

post1.getTags().add(tag1);

post1.getTags().add(tag2);

post2.getTags().add(tag1);

entityManager.persist(post1);

entityManager.persist(post2);

Hibernate manages to persist both the Post and the Tag entities along with their junction records.

INSERT INTO post (title, id) VALUES ('JPA with Hibernate', 1)

INSERT INTO post (title, id) VALUES ('Native Hibernate', 4)

INSERT INTO tag (name, id) VALUES ('Java', 2)

INSERT INTO tag (name, id) VALUES ('Hibernate', 3)

INSERT INTO post_tag (post_id, tag_id) VALUES (1, 2)

INSERT INTO post_tag (post_id, tag_id) VALUES (1, 3)

INSERT INTO post_tag (post_id, tag_id) VALUES (4, 2)

Cascading
For @ManyToMany associations, CascadeType.REMOVE doesn’t make too much sense when both sides
represent independent entities. In this case, removing a Post entity shouldn’t trigger a Tag removal
because the Tag can be referenced by other posts as well. The same arguments apply to orphan
removal since removing an entry from the tags collection should only delete the junction record
and not the target Tag entity.

For both unidirectional and bidirectional associations, it’s better to avoid the
CascadeType.REMOVEmapping. Instead of CascadeType.ALL, the cascade attributes should
be declared explicitly (e.g. CascadeType.PERSIST, CascadeType.MERGE).

Relationships 208

But just like the unidirectional @OneToMany association, problems arise when it comes to removing
the junction records:

post1.getTags().remove(tag1);

Hibernate deletes all junction rows associated with the Post entity whose Tag association is being
removed and inserts back the remaining ones:

DELETE FROM post_tag WHERE post_id = 1

INSERT INTO post_tag (post_id, tag_id) VALUES (1, 3)

11.5.2 Bidirectional @ManyToMany

The bidirectional @ManyToMany relationship can be navigated from both the Post and the Tag side.

Figure 11.15: The unidirectional @ManyToMany relationship

While in the one-to-many and many-to-many association the child-side is the one holding the
foreign key, for a many-to-many table relationship both ends are actually parent-sides and the
junction table is the child-side.

Because the junction table is hidden when using the default @ManyToMany mapping, the application
developer must choose an owning and a mappedBy side.

Relationships 209

In this example, the Post retains the same mapping as shown in the unidirectional @ManyToMany
section, while the Tag entity adds a mappedBy side:

@ManyToMany(mappedBy = "tags")

private List<Post> posts = new ArrayList<>();

Like any other bidirectional associations, both sides must in sync, so the helper methods are being
added here as well. For a @ManyToMany association, the helper methods must be added to the entity
that’s more likely to interact with. In this example, the business logic manages Post(s) rather than
Tag(s), so the helper methods are added to the Post entity:

public void addTag(Tag tag) {

tags.add(tag);

tag.getPosts().add(this);

}

public void removeTag(Tag tag) {

tags.remove(tag);

tag.getPosts().remove(this);

}

Both Post and Tag entities have unique properties which can simplify the entity removal operation
even when mixing detached and managed entities.

While adding an entity into the @ManyToMany collection is efficient since it requires a single SQL
insert into the junction table, disassociating entities suffers from the same issue as the unidirectional
@ManyToMany does.

When changing the order of the elements:

post1.getTags().sort(Collections.reverseOrder(Comparator.comparing(Tag::getId)));

Hibernate will delete all associated junction entries and reinsert them back again, as imposed by the
unidirectional bag semantics:

DELETE FROM post_tag WHERE post_id = 1

INSERT INTO post_tag (post_id, tag_id) VALUES (1, 3)

INSERT INTO post_tag (post_id, tag_id) VALUES (1, 2)

Relationships 210

Hibernate manages each side of a @ManyToMany relationship like a unidirectional
@OneToMany association between the parent-side (e.g. Post or the Tag) and the hidden
child-side (e.g. the post_tag table post_id or tag_id foreign keys). This is the reason why
the entity removal or changing their order resulted in deleting all junction entries and
reinserting them by mirroring the in-memory Persistence Context.

11.5.3 The @OneToMany alternative

Just like the unidirectional @OneToMany relationship can be optimized by allowing the child-side to
control this association, the @ManyToMany mapping can be transformed so that the junction table is
mapped to an entity.

Figure 11.16: The @OneToMany many-to-many table relationship

Relationships 211

The PostTag entity has a composed identifier made out of the post_id and tag_id columns.

@Embeddable

public static class PostTagId implements Serializable {

private Long postId;

private Long tagId;

public PostTagId() {}

public PostTagId(Long postId, Long tagId) {

this.postId = postId;

this.tagId = tagId;

}

public Long getPostId() {

return postId;

}

public Long getTagId() {

return tagId;

}

@Override

public boolean equals(Object o) {

if (this == o) return true;

if (o == null || getClass() != o.getClass()) return false;

PostTagId that = (PostTagId) o;

return Objects.equals(postId, that.postId) &&

Objects.equals(tagId, that.tagId);

}

@Override

public int hashCode() {

return Objects.hash(postId, tagId);

}

}

Relationships 212

Using these columns, the PostTag entity can map the @ManyToOne sides as well:

@Entity(name = "PostTag")

@Table(name = "post_tag")

public static class PostTag {

@EmbeddedId

private PostTagId id;

@ManyToOne

@MapsId("postId")

private Post post;

@ManyToOne

@MapsId("tagId")

private Tag tag;

private PostTag() {}

public PostTag(Post post, Tag tag) {

this.post = post;

this.tag = tag;

this.id = new PostTagId(post.getId(), tag.getId());

}

//Getters and setters omitted for brevity

@Override

public boolean equals(Object o) {

if (this == o) return true;

if (o == null || getClass() != o.getClass()) return false;

PostTag that = (PostTag) o;

return Objects.equals(post, that.post) &&

Objects.equals(tag, that.tag);

}

@Override

public int hashCode() {

return Objects.hash(post, tag);

}

}

Relationships 213

The Post entity maps the bidirectional @OneToMany side of the post @ManyToOne association:

@OneToMany(mappedBy = "post", cascade = CascadeType.ALL, orphanRemoval = true)

private List<PostTag> tags = new ArrayList<>();

The Tag entity maps the bidirectional @OneToMany side of the tag @ManyToOne association:

@OneToMany(mappedBy = "tag", cascade = CascadeType.ALL, orphanRemoval = true)

private List<PostTag> posts = new ArrayList<>();

This way, the bidirectional @ManyToMany relationship is transformed in two bidirectional @OneToMany
associations.

The removeTag helper method is much more complex because it needs to locate the PostTag

associated with the current Post entity and the Tag that’s being disassociated.

public void removeTag(Tag tag) {

for (Iterator<PostTag> iterator = tags.iterator(); iterator.hasNext();) {

PostTag postTag = iterator.next();

if (postTag.getPost().equals(this) && postTag.getTag().equals(tag)) {

iterator.remove();

postTag.getTag().getPosts().remove(postTag);

postTag.setPost(null);

postTag.setTag(null);

break;

}

}

}

The PostTag equals and hashCode methods rely on the Post and Tag equality semantics. The Post
entity uses the title as a business key, while the Tag relies on its name column uniqueness constraint.

When rerunning the entity removal example featured in the unidirectional @ManyToMany section:

post1.removeTag(tag1);

Hibernate issues a single delete statement, therefore targeting a single PostTag junction record:

DELETE FROM post_tag WHERE post_id = 1 AND tag_id = 3

Relationships 214

Changing the junction elements order has not effect this time:

post1.getTags().sort((postTag1, postTag2) ->

postTag2.getId().getTagId().compareTo(postTag1.getId().getTagId())

)

This is because the @ManyToOne side only monitors the foreign key column changes and the
internal collection state is not taken into consideration. To materialize the order of elements, the
@OrderColumn must be used instead:

@OneToMany(mappedBy = "post", cascade = CascadeType.ALL, orphanRemoval = true)

@OrderColumn(name = "entry")

private List<PostTag> tags = new ArrayList<>();

The post_tag junction table will feature an entry column storing the collection element order.When
reversing the element order, Hibernate will update the entry column:

UPDATE post_tag SET entry = 0 WHERE post_id = 1 AND tag_id = 4

UPDATE post_tag SET entry = 1 WHERE post_id = 1 AND tag_id = 3

The most efficient JPA relationships are the ones where the foreign key side is controlled by
a child-side @ManyToOne or @OneToOne association. For this reason, the many-to-many table
relationship is best mapped with two bidirectional @OneToMany associations. The entity
removal and the element order changes are more efficient than the default @ManyToMany
relationship and the junction entity can also map additional columns (e.g. created_on,
created_by).

12. Inheritance
Java, like any other object-oriented programming language, makes heavy use of inheritance and
polymorphism. Inheritance allows defining class hierarchies that offer different implementations of
a common interface.

Conceptually, the Domain Model defines both data (e.g. persisted entities) and behavior (business
logic). Nevertheless, inheritance is more useful for varying behavior rather than data (composition
is much more suitable for sharing structures). Even if the data (persisted entities) and the business
logic (transactional services) are decoupled, inheritance can still help varying business logic (e.g.
Visitor pattern¹).

Figure 12.1: Domain Model Inheritance

¹https://en.wikipedia.org/wiki/Visitor_pattern

215

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern

Inheritance 216

The root entity of this Domain Model is the Board entity because, either directly or indirectly, all
the other entities are associated with a Board

@Entity(name = "Board") @Table(name = "board")

public class Board {

@Id @GeneratedValue

private Long id;

private String name;

//Getters and setters omitted for brevity

}

The end user can submit either a Post or an Announcement on a particular Board. Because the Post
and the Announcement share the same functionality (differing only in data), they both inherit from
a Topic base class.

The Topic class defines a relationship to a Board entity, hence the Post and the Announcement entities
can also be associated with a Board instance.

@Entity @Table(name = "topic")

public class Topic {

@Id @GeneratedValue

private Long id;

private String title;

private String owner;

@Temporal(TemporalType.TIMESTAMP)

private Date createdOn = new Date();

@ManyToOne(fetch = FetchType.LAZY)

private Board board;

//Getters and setters omitted for brevity

}

Inheritance 217

Both the Post and the Announcement entities extend the Topic class and define their own specific
properties.

@Entity @Table(name = "post")

public class Post extends Topic {

private String content;

//Getters and setters omitted for brevity

}

@Entity @Table(name = "announcement")

public class Announcement extends Topic {

@Temporal(TemporalType.TIMESTAMP)

private Date validUntil;

//Getters and setters omitted for brevity

}

The TopicStatistics is at the bottom of this Domain Model as it’s only needed for monitoring
purposes, without being directly associated with the main business logic. Because statistics are
needed for both Post and Announcement entities, the TopicStatistics defines a Topic entity
association.

@Entity @Table(name = "topic_statistics")

public class TopicStatistics {

@Id @GeneratedValue

private Long id;

@OneToOne @JoinColumn(name = "id") @MapsId

private Topic topic;

private long views;

//Getters and setters omitted for brevity

}

Inheritance 218

Another approach would be to add this relationship into the Topic class, and the topic

rows would then reference the topic_statistics records. For the sake of demonstrating
how entity association polymorphism works, the TopicStatistics was chosen to be the
child-side.

As natural as this Domain Model may be represented in an object-oriented programming language,
transposing it to a relational database is anything but straightforward. Relational database systems
do not support inheritance, relying on tuples and relational algebra for representing and manipu-
lating data. For this reason, mapping inheritance in a relational database is one of the most obvious
object-relational impedance mismatch.

Without native support from the database system, inheritance can only be emulated through table
relationships. In the Patterns of Enterprise Application Architecture book, Martin Fowler defines
three ways of mapping inheritance into a relational database:

• Single Table Inheritance², which uses a single database table to represent all classes in a given
inheritance hierarchy

• Class Table Inheritance³, which maps each class to a table, and the inheritance association is
resolved through table joins

• Concrete Table Inheritance⁴, where each table defines all fields that are either defined in the
subclass or inherited from a super class.

The JPA specification defines all these three inheritance mapping models through the following
strategies:

• InheritanceType.SINGLE_TABLE

• InheritanceType.JOINED

• InheritanceType.TABLE_PER_CLASS

JPA also covers the case when inheritance is only available in the Domain Model, without being
mirrored into the database (e.g. @MappedSuperclass).

Whenever the data access layer implements a functionality without support from the underlying
database system, care must be taken to ensure that application performance is not compromised.
This chapter aims to analyze what trade-offs are required for employing inheritance as well as its
impact on application performance.

²http://martinfowler.com/eaaCatalog/singleTableInheritance.html
³http://martinfowler.com/eaaCatalog/classTableInheritance.html
⁴http://martinfowler.com/eaaCatalog/concreteTableInheritance.html

http://martinfowler.com/eaaCatalog/singleTableInheritance.html
http://martinfowler.com/eaaCatalog/classTableInheritance.html
http://martinfowler.com/eaaCatalog/concreteTableInheritance.html
http://martinfowler.com/eaaCatalog/singleTableInheritance.html
http://martinfowler.com/eaaCatalog/classTableInheritance.html
http://martinfowler.com/eaaCatalog/concreteTableInheritance.html

Inheritance 219

12.1 Single table

The single table inheritance is the default JPA strategy, funneling a whole inheritance DomainModel
hierarchy into a single database table.

To employ this strategy, the Topic entity class must be mapped with one of the following
annotations:

• @Inheritance (being the default inheritance model, it’s not mandatory to supply the strategy
when using single table inheritance)

• @Inheritance(strategy = InheritanceType.SINGLE_TABLE).

The Post and the Announcement entities don’t need any extra mapping (the Java inheritance
semantics being sufficient).

Preserving the same layout as depicted in the Domain Model class diagram, the table relationships
associated with this inheritance strategy look like this:

Figure 12.2: Single table

The topic table contains columns associated with the Topic base class as well as columns related
to properties from Post and Announcement entities.

Inheritance 220

In the following example, one Post and one Announcement entities are going to be persisted along
with their associated @OneToOne TopicStatistics relations.

Post post = new Post();

post.setOwner("John Doe");

post.setTitle("Inheritance");

post.setContent("Best practices");

post.setBoard(board);

entityManager.persist(post);

Announcement announcement = new Announcement();

announcement.setOwner("John Doe");

announcement.setTitle("Release x.y.z.Final");

announcement.setValidUntil(Timestamp.valueOf(LocalDateTime.now().plusMonths(1)));

announcement.setBoard(board);

entityManager.persist(announcement);

TopicStatistics postStatistics = new TopicStatistics(post);

postStatistics.incrementViews();

entityManager.persist(postStatistics);

TopicStatistics announcementStatistics = new TopicStatistics(announcement);

announcementStatistics.incrementViews();

entityManager.persist(announcementStatistics);

Both the Post and the Announcement entities are saved in the topic table whose primary key is
shared with the topic_statistics table.

INSERT INTO topic (board_id, createdOn, owner, title, content, DTYPE, id)

VALUES (1, '2016-01-17 09:22:22.11', 'John Doe', 'Inheritance',

'Best practices', 'Post', 1)

INSERT INTO topic (board_id, createdOn, owner, title, validUntil, DTYPE, id)

VALUES (1, '2016-01-17 09:22:22.11', 'John Doe', 'Release x.y.z.Final',

'2016-02-17 09:22:22.114', 'Announcement', 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 3)

Inheritance 221

One advantage of using inheritance in the Domain Model is the support for polymorphic queries.
When the application developer issues a select query against the Topic entity:

List<Topic> topics = entityManager.createQuery(

"select t from Topic t where t.board.id = :boardId", Topic.class)

.setParameter("boardId", 1L)

.getResultList();

Hibernate goes to the topic table, and, after fetching the result set, it maps every row to its associated
subclass instance (e.g. Post or Announcement) by analyzing the discriminator column (e.g. DTYPE)
value.

SELECT t.id AS id2_1_, t.board_id AS board_id8_1_, t.createdOn AS createdO3_1_,

t.owner AS owner4_1_, t.title AS title5_1_, t.content AS content6_1_,

t.validUntil AS validUnt7_1_, t.DTYPE AS DTYPE1_1_

FROM topic t

WHERE t.board_id = 1

Domain Model inheritance allows base class entity associations to be automatically resolved upon
being retrieved. When loading a TopicStatistics along with its Topic relation:

TopicStatistics statistics = entityManager.createQuery(

"select s from TopicStatistics s join fetch s.topic t where t.id = :topicId"

, TopicStatistics.class)

.setParameter("topicId", topicId)

.getSingleResult();

Hibernate joins the topic_statistics and the topic tables so that it can create a TopicStatistics
entity with an actual Post or Announcement property object reference.

SELECT

ts.id AS id1_2_0_, t.id AS id2_1_1_, ts.views AS views2_2_0_,

t.board_id AS board_id8_1_1_, t.createdOn AS createdO3_1_1_,

t.owner AS owner4_1_1_, t.title AS title5_1_1_, t.content AS content6_1_1_,

t.validUntil AS validUnt7_1_1_, t.DTYPE AS DTYPE1_1_1_

FROM topic_statistics ts

INNER JOIN topic t ON ts.id = t.id

WHERE t.id = 2

Even if not practical in this particular example, @OneToMany associations are also possible.

Inheritance 222

The Board entity can map a bidirectional @OneToMany relationship as follows:

@OneToMany(mappedBy = "board")

private List<Topic> topics = new ArrayList<>();

Fetching the collection lazily generates a separate select statement, identical to the aforementioned
Topic entity query. When fetching the collection eagerly, Hibernate requires a single table join.

Board board = entityManager.createQuery(

"select b from Board b join fetch b.topics where b.id = :id", Board.class)

.setParameter("id", id)

.getSingleResult();

SELECT b.id AS id1_0_0_, t.id AS id2_1_1_, b.name AS name2_0_0_,

t.board_id AS board_id8_1_1_, t.createdOn AS createdO3_1_1_,

t.owner AS owner4_1_1_, t.title AS title5_1_1_, t.content AS content6_1_1_,

t.validUntil AS validUnt7_1_1_, t.DTYPE AS DTYPE1_1_1_,

t.board_id AS board_id8_1_0__, t.id AS id2_1_0__

FROM board b

INNER JOIN topic t ON b.id = t.board_id

WHERE b.id = 1

Performance and data integrity considerations
Since only one table is used for storing entities, both read and write operations are fast. Even when
using a @ManyToOne or a @OneToOne base class association, Hibernate needs a single join between
the child-side table (e.g. topic_statistics) and the parent-side one (e.g. topic). The @OneToMany
base class entity relationship is also efficient since it either generates a secondary select or a single
parent-child table join.

Because all subclass properties are collocated in a single table, NOT NULL constraints are not allowed
for columns belonging to subclasses. Being automatically inherited by all subclasses, the base
class properties may be non-nullable. From a data integrity perspective, this limitation defeats
the purpose of Consistency (guaranteed by the ACID properties).

Nevertheless, the data integrity rules can be enforced through database trigger procedures (a
column non-nullability is accounted based on the class discriminator value). Another approach is
to move the check into the data access layer. Bean Validation can validate @NotNull properties at
runtime. JPA also defines callback methods (e.g. @PreUpdate, @PreUpdate) as well as entity listeners
(e.g. @EntityListeners) which can throw an exception when a non-null constraint is violated.

Inheritance 223

12.2 Join table

The join table inheritance resembles the Domain Model class diagram since each class is mapped to
an individual table. The subclass tables have a foreign key column referencing the base class table
primary key.

Figure 12.3: Join table

To use this inheritance strategy, the Topic entity must be annotated with:

@Inheritance(strategy = InheritanceType.JOINED)

The Post and the Announcement entities can use a @PrimaryKeyJoinColumn mapping to
define the base class foreign key column.

By default, the subclass table primary key column is used as a foreign key as well.

Inheritance 224

When persisting the same entities defined in the single table section, Hibernate generates the
following SQL statements:

INSERT INTO topic (board_id, createdOn, owner, title, id)

VALUES (1, '2016-01-17 09:27:10.694', 'John Doe', 'Inheritance', 1)

INSERT INTO post (content, id) VALUES ('Best practices', 1)

INSERT INTO topic (board_id, createdOn, owner, title, id)

VALUES (1, '2016-01-17 09:27:10.694', 'John Doe', 'Release x.y.z.Final', 2)

INSERT INTO announcement (validUntil, id) VALUES ('2016-02-17 09:27:10.698', 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 3)

The base class information goes into the topic table while the subclass content goes in the post or
the announcement tables. When fetching all Topic entities associated with a specific Board:

List<Topic> topics = entityManager.createQuery(

"select t from Topic t where t.board.id = :boardId", Topic.class)

.setParameter("boardId", 1L)

.getResultList();

Hibernate must join the base class with each individual subclass table.

SELECT

t.id AS id1_3_,

t.board_id AS board_id5_3_,

t.createdOn AS createdO2_3_,

t.owner AS owner3_3_,

t.title AS title4_3_,

t1_.content AS content1_2_,

t2_.validUntil AS validUnt1_0_,

CASE WHEN t1_.id IS NOT NULL THEN 1

WHEN t2_.id IS NOT NULL THEN 2

WHEN t.id IS NOT NULL THEN 0

END AS clazz_

FROM topic t

LEFT OUTER JOIN post t1_ ON t.id = t1_.id

LEFT OUTER JOIN announcement t2_ ON t.id = t2_.id

WHERE t.board_id = 1

Inheritance 225

When loading a TopicStatistics entity along with its Topic association:

TopicStatistics statistics = entityManager.createQuery(

"select s from TopicStatistics s join fetch s.topic t where t.id = :topicId"

, TopicStatistics.class)

.setParameter("topicId", topicId)

.getSingleResult();

Hibernate must join four tables to construct the desired result set:

SELECT

ts.id AS id1_4_0_,

t.id AS id1_3_1_,

ts.views AS views2_4_0_,

t.board_id AS board_id5_3_1_,

t.createdOn AS createdO2_3_1_,

t.owner AS owner3_3_1_,

t.title AS title4_3_1_,

t1_.content AS content1_2_1_,

t2_.validUntil AS validUnt1_0_1_,

CASE WHEN t1_.id IS NOT NULL THEN 1

WHEN t2_.id IS NOT NULL THEN 2

WHEN t.id IS NOT NULL THEN 0

END AS clazz_1_

FROM topic_statistics ts

INNER JOIN topic t ON ts.id = t.id

LEFT OUTER JOIN post t1_ ON t.id = t1_.id

LEFT OUTER JOIN announcement t2_ ON t.id = t2_.id

WHERE t.id = 2

Considering that the Board entity defines a @OneToMany Topic association:

@OneToMany(mappedBy = "board")

private List<Topic> topics = new ArrayList<>();

Fetching the collection lazily generates a separate select statement, identical to the previous Topic
entity query.

Inheritance 226

When fetching the collection eagerly:

Board board = entityManager.createQuery(

"select b from Board b join fetch b.topics where b.id = :id", Board.class)

.setParameter("id", id)

.getSingleResult();

Hibernate requires three joins to fetch all topic-related information.

SELECT

b.id AS id1_1_0_, t.id AS id1_3_1_, b.name AS name2_1_0_,

t.board_id AS board_id5_3_1_, t.createdOn AS createdO2_3_1_,

t.owner AS owner3_3_1_, t.title AS title4_3_1_,

t1_.content AS content1_2_1_, t2_.validUntil AS validUnt1_0_1_,

CASE WHEN t1_.id IS NOT NULL THEN 1

WHEN t2_.id IS NOT NULL THEN 2

WHEN t.id IS NOT NULL THEN 0

END AS clazz_1_,

t.board_id AS board_id5_3_0__, t.id AS id1_3_0__

FROM board b

INNER JOIN topic t ON b.id = t.board_id

LEFT OUTER JOIN post t1_ ON t.id = t1_.id

LEFT OUTER JOIN announcement t2_ ON t.id = t2_.id

WHERE b.id = 1

Performance considerations
Unlike single table inheritance, the joined table strategy allows nullable subclass property columns.

When writing data, Hibernate requires two insert statements for each subclass entity, so there’s
a performance impact compared to single table inheritance. The index memory footprint also
increases because instead of a single table primary key, the database must index the base class
and all subclasses primary keys.

When reading data, polymorphic queries require joining the base class with all subclass tables, so,
if there are n subclasses, Hibernate will need n + 1 joins. The more joins, the more difficult it is
for the database to calculate the most efficient execution plan.

Inheritance 227

12.3 Table-per-class

The table-per-class inheritance model has a table layout similar to the joined table strategy, but,
instead of storing base class columns in the topic table, each subclass table stores also columns
from the topic table. There is no foreign key between the topic and the post or announcement
subclass tables, and there is no foreign key in the topic_statistics table either.

Figure 12.4: Table-per-class

To use this inheritance strategy, the Topic must be annotated with @Inheritance(strategy =

InheritanceType.TABLE_PER_CLASS).

Inserting the Post and the Announcement entities defined in the single table inheritance section
generates the following SQL statements:

INSERT INTO post (board_id, createdOn, owner, title, content, id)

VALUES (1, '2016-01-17 09:31:12.018', 'John Doe', 'Inheritance',

'Best practices', 2)

INSERT INTO announcement (board_id, createdOn, owner, title, validUntil, id)

VALUES (1, '2016-01-17 09:31:12.018', 'John Doe', 'Release x.y.z.Final',

'2016-02-17 09:31:12.023', 3)

Inheritance 228

INSERT INTO topic_statistics (views, id) VALUES (1, 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 3)

Unlike the joined table inheritance, each persisted subclass entity requires a single insert statement.

When fetching all Topic entities associated with a specific Board:

List<Topic> topics = entityManager.createQuery(

"select t from Topic t where t.board.id = :boardId", Topic.class)

.setParameter("boardId", 1L)

.getResultList();

Hibernate uses UNION ALL to fetch rows from the base class and every subclass table in this particular
inheritance tree.

SELECT

t.id AS id1_3_,

t.board_id AS board_id5_3_,

t.createdOn AS createdO2_3_,

t.owner AS owner3_3_,

t.title AS title4_3_,

t.content AS content1_2_,

t.validUntil AS validUnt1_0_,

t.clazz_ AS clazz_

FROM (

SELECT id, createdOn, owner, title, board_id,

CAST(NULL AS VARCHAR(100)) AS content,

CAST(NULL AS TIMESTAMP) AS validUntil, 0 AS clazz_

FROM topic

UNION ALL

SELECT id, createdOn, owner, title, board_id, content,

CAST(NULL AS TIMESTAMP) AS validUntil, 1 AS clazz_

FROM post

UNION ALL

SELECT id, createdOn, owner, title, board_id,

CAST(NULL AS VARCHAR(100)) AS content, validUntil, 2 AS clazz_

FROM announcement) t

WHERE t.board_id = 1

Inheritance 229

When loading a TopicStatistics while also fetching its associated Topic relation, Hibernate must
use UNION ALL for the inheritance tables to construct the desired result set:

TopicStatistics statistics = entityManager.createQuery(

"select s from TopicStatistics s join fetch s.topic t where t.id = :topicId"

, TopicStatistics.class)

.setParameter("topicId", topicId)

.getSingleResult();

SELECT

ts.id AS id1_4_0_, t.id AS id1_3_1_, ts.views AS views2_4_0_,

t.board_id AS board_id5_3_1_, t.createdOn AS createdO2_3_1_,

t.owner AS owner3_3_1_, t.title AS title4_3_1_, t.content AS content1_2_1_,

t.validUntil AS validUnt1_0_1_, t.clazz_ AS clazz_1_

FROM topic_statistics ts

INNER JOIN (

SELECT id, createdOn, owner, title, board_id,

CAST(NULL AS VARCHAR(100)) AS content,

CAST(NULL AS TIMESTAMP) AS validUntil, 0 AS clazz_

FROM topic

UNION ALL

SELECT id, createdOn, owner, title, board_id,

content,

CAST(NULL AS TIMESTAMP) AS validUntil, 1 AS clazz_

FROM post

UNION ALL

SELECT id, createdOn, owner, title, board_id,

CAST(NULL AS VARCHAR(100)) AS content,

validUntil, 2 AS clazz_

FROM announcement

) t ON ts.id = t.id

WHERE t.id = 2

The identity generator is not allowed with this strategy because rows belonging to
different subclasses would share the same identifier, therefore conflicting in polymorphic
@ManyToOne or @OneToOne associations.

Inheritance 230

Considering that the Board entity defines a @OneToMany Topic association:

@OneToMany(mappedBy = "board")

private List<Topic> topics = new ArrayList<>();

Fetching the collection lazily generates a separate select statement, identical to the previous Topic
entity query.

When fetching the topics collection eagerly:

Board board = entityManager.createQuery(

"select b from Board b join fetch b.topics where b.id = :id", Board.class)

.setParameter("id", id)

.getSingleResult();

Hibernate requires a join with the result of unifying all three topic-related tables.

SELECT

b.id AS id1_1_0_, t1.id AS id1_3_1_, b.name AS name2_1_0_,

t1.board_id AS board_id5_3_1_, t1.createdOn AS createdO2_3_1_,

t1.owner AS owner3_3_1_, t1.title AS title4_3_1_,

t1.content AS content1_2_1_, t1.validUntil AS validUnt1_0_1_,

t1.clazz_ AS clazz_1_, t1.board_id AS board_id5_3_0__, t1.id AS id1_3_0__

FROM board b

INNER JOIN (

SELECT id, createdOn, owner, title, board_id,

CAST(NULL AS VARCHAR(100)) AS content,

CAST(NULL AS TIMESTAMP) AS validUntil, 0 AS clazz_

FROM topic

UNION ALL

SELECT id, createdOn, owner, title, board_id,

content,

CAST(NULL AS TIMESTAMP) AS validUntil, 1 AS clazz_

FROM post

UNION ALL

SELECT id, createdOn, owner, title, board_id,

CAST(NULL AS VARCHAR(100)) AS content,

validUntil, 2 AS clazz_

FROM announcement

) t1 ON b.id = t1.board_id

WHERE b.id = 1

Inheritance 231

Performance considerations
While write operations are faster than in the joined table strategy, the read operations are only
efficient when querying against the actual subclass entities. Polymorphic queries can have a
considerable performance impact because Hibernate must select all subclass tables and use UNION
ALL to build the whole inheritance tree result set. As a rule of thumb, the more subclass tables, the
least efficient the polymorphic queries will get.

12.4 Mapped superclass

If the Topic class is not required to be a stand-alone entity, it’s more practical to leave inheritance out
of the database. This way, the Topic can bemade abstract andmarkedwith the @MappedSuperclass
annotation so that JPA can acknowledge the inheritance model on the entity-side only.

Figure 12.5: Mapped superclass class diagram

Having a single TopicStatistics entity with a @OneToOne Topic association is no longer possible
because the Topic class is not an entity. This way, each Topic subclass must define its own statistics
associations (e.g. PostStatistics, AnnouncementStatistics).

Inheritance 232

The PostStatistics and the AnnouncementStatistics entities looks as follows:

@Entity @Table(name = "post_statistics")

public static class PostStatistics

extends TopicStatistics<Post> {

@OneToOne

@JoinColumn(name = "id")

@MapsId

private Post topic;

private PostStatistics() {}

public PostStatistics(Post topic) {

this.topic = topic;

}

@Override

public Post getTopic() {

return topic;

}

}

@Entity @Table(name = "announcement_statistics")

public static class AnnouncementStatistics

extends TopicStatistics<Announcement> {

@OneToOne

@JoinColumn(name = "id")

@MapsId

private Announcement topic;

private AnnouncementStatistics() {}

public AnnouncementStatistics(Announcement topic) {

this.topic = topic;

}

@Override

public Announcement getTopic() {

return topic;

}

}

Inheritance 233

To retain the inheritance semantics, the base class properties are going to bemergedwith the subclass
ones, so the associated subclass entity table will contain both. This is similar to the table-per-class
inheritance strategy, with the distinction that the base class is not mapped to a database table (hence,
it cannot be used in polymorphic queries or associations).

Figure 12.6: Mapped superclass

The post and the announcement tables feature columns that were inherited from the Topic base
class.When persisting the same Post and Announcement entities and saving statistics using the newly
defined entity classes:

TopicStatistics postStatistics = new PostStatistics(post);

postStatistics.incrementViews();

entityManager.persist(postStatistics);

TopicStatistics announcementStatistics =

new AnnouncementStatistics(announcement);

announcementStatistics.incrementViews();

entityManager.persist(announcementStatistics);

Hibernate will generate the following SQL statements:

INSERT INTO post (board_id, createdOn, owner, title, content, id)

VALUES (1, '2016-01-17 09:11:07.525', 'John Doe', 'Inheritance',

'Best practices', 1)

Inheritance 234

INSERT INTO announcement (board_id, createdOn, owner, title, validUntil, id)

VALUES (1, '2016-01-17 09:11:07.525', 'John Doe', 'Release x.y.z.Final',

'2016-02-17 09:11:07.529', 2)

INSERT INTO post_statistics (views, id) VALUES (1, 1)

INSERT INTO announcement_statistics (views, id) VALUES (1, 2)

Querying for statistics require specifying the actual Topic subclass statistics:

PostStatistics statistics = entityManager.createQuery(

"select s from PostStatistics s join fetch s.topic t where t.id = :postId",

PostStatistics.class)

.setParameter("postId", postId)

.getSingleResult();

This entity query generates a single SQL join statement:

SELECT

s.id AS id1_4_0_ ,

p.id AS id1_3_1_ ,

s.views AS views2_4_0_ ,

p.board_id AS board_id6_3_1_ ,

p.createdOn AS createdO2_3_1_ ,

p.owner AS owner3_3_1_ ,

p.title AS title4_3_1_ ,

p.content AS content5_3_1_

FROM post_statistics s

INNER JOIN post p ON s.id = p.id

WHERE p.id = 1

Polymorphic queries against the Topic class are not permitted and the Board entity cannot define a
@OneToMany Topic collection either.

Performance considerations
Although polymorphic queries and associations are no longer permitted, the @MappedSuperclass
yields very efficient read and write operations. Like single and table-per-class inheritance, write
operations require a single insert statement and reading only needs to select from one table only.

Inheritance 235

Inheritance best practices
All the aforementioned inheritance mapping models require trading something in order to
accommodate the impedance mismatch between the relational database system and the object-
oriented Domain Model.

The default single table inheritance performs the best in terms of reading and writing data, but
it forces the application developer to overcome the column nullability limitation. This strategy is
useful when the database can provide support for trigger procedures and the number of subclasses
is relatively small.

The join table is worth considering when the number of subclasses is higher and the data
access layer doesn’t require polymorphic queries. When the number of subclass tables is large,
polymorphic queries will require many joins, and fetching such a result set will have an impact on
application performance. This issue can be mitigated by restricting the result set (e.g. pagination),
but that only applies to queries and not to @OneToMany or @ManyToMany associations. On the other
hand, polymorphic @ManyToOne and @OneToOne associations are fine since, in spite of joining
multiple tables, the result set can have at most one record only.

Table-per-class is the least effective when it comes to polymorphic queries or associations. If each
subclass is stored in a separate database table, the @MappedSuperclass Domain Model inheritance
is often a better alternative anyway.

Although a powerful concept, Domain Model inheritance should be used sparingly and
only when the benefits supersede trade-offs.

	Table of Contents
	I Introduction
	Preface
	The database server and the connectivity layer
	The application data access layer
	The ORM framework
	The native query builder framework

	Performance and Scaling
	Response time and throughput
	Database connections boundaries
	Scaling up and scaling out
	Master-Slave replication
	Multi-Master replication
	Sharding

	II JDBC and Database Essentials
	JDBC Connection Management
	DriverManager
	DataSource
	Why is pooling so much faster?

	Queuing theory capacity planning
	Practical database connection provisioning
	A real-life connection pool monitoring example
	Concurrent connection request count metric
	Concurrent connection count metric
	Maximum pool size metric
	Connection acquisition time metric
	Retry attempts metric
	Overall connection acquisition time metric
	Connection lease time metric

	Batch Updates
	Batching Statements
	Batching PreparedStatements
	Choosing the right batch size
	Bulk operations

	Retrieving auto-generated keys
	Sequences to the rescue

	Statement Caching
	Statement lifecycle
	Parser
	Optimizer
	Execution plan visualization

	Executor

	Caching performance gain
	Server-side statement caching
	Bind-sensitive execution plans

	Client-side statement caching

	ResultSet Fetching
	ResultSet scrollability
	ResultSet changeability
	ResultSet holdability
	Fetching size
	ResultSet size
	Too many rows
	SQL limit clause
	JDBC max rows
	Less is more

	Too many columns

	Transactions
	Atomicity
	Consistency
	Isolation
	Concurrency control
	Two-phase locking
	Multi-Version Concurrency Control

	Phenomena
	Dirty write
	Dirty read
	Non-repeatable read
	Phantom read
	Read skew
	Write skew
	Lost update

	Isolation levels
	Read Uncommitted
	Read Committed
	Repeatable Read
	Serializable

	Durability
	Read-only transactions
	Read-only transaction routing

	Transaction boundaries
	Distributed transactions
	Two-phase commit

	Declarative transactions

	Application-level transactions
	Pessimistic and optimistic locking
	Pessimistic locking
	Optimistic locking

	III JPA and Hibernate
	Why JPA and Hibernate matter
	The impedance mismatch
	JPA vs Hibernate
	Schema ownership
	Write-based optimizations
	Read-based optimizations
	Wrap-up

	Connection Management and Monitoring
	JPA connection management
	Hibernate connection providers
	DriverManagerConnectionProvider
	C3P0ConnectionProvider
	HikariConnectionProvider
	DatasourceConnectionProvider
	Connection release modes

	Monitoring connections
	Hibernate statistics
	Customizing statistics

	Statement logging
	Statement formatting
	Statement-level comments
	Logging parameters
	DataSource-proxy
	P6Spy

	Mapping Types and Identifiers
	Types
	Primitive types
	String types
	Date and Time types
	Numeric types
	Binary types
	UUID types
	Other types
	Custom types

	Identifiers
	UUID identifiers
	The assigned generator

	The legacy UUID generator
	The newer UUID generator

	Numerical identifiers
	Identity generator
	Sequence generator
	Table generator
	Optimizers
	The hi/lo algorithm
	The default sequence identifier generator
	The default table identifier generator
	The pooled optimizer
	The pooled-lo optimizer

	Optimizer gain
	Sequence generator performance gain
	Table generator performance gain

	Identifier generator performance

	Relationships
	Relationship types
	@ManyToOne
	@OneToMany
	Bidirectional @OneToMany
	Unidirectional @OneToMany
	Ordered unidirectional @OneToMany
	@ElementCollection

	@OneToMany with @JoinColumn

	@OneToOne
	Unidirectional @OneToOne
	Bidirectional @OneToOne

	@ManyToMany
	Unidirectional @ManyToMany
	Bidirectional @ManyToMany
	The @OneToMany alternative

	Inheritance
	Single table
	Join table
	Table-per-class
	Mapped superclass

