Vlad Mihalcea

Java Persistence

Get the most out of your persistence layer

High-Performance Java Persistence
Get the most out of your persistence layer

Vlad Mihalcea

© 2015 - 2016 Vlad Mihalcea

Tweet This Book!

Please help Vlad Mihalcea by spreading the word about this book on Twitter!

http://twitter.com

To my wife and kids

Contents

I Introduction.... 1
1. Preface 2
1.1 The database server and the connectivity layer 3

1.2 The application data accesslayer 3
1.2.1 The ORM framework 3

1.2.2 The native query builder framework 4

2. Performanceand Scaling 5
2.1 Response time and throughput 5

2.2 Database connections boundaries L0000 7

23 Scalingupandscalingout. Lo Lo 8
2.3.1 Master-Slave replication Lo 9

2.3.2 Multi-Master replication Lo 10

23.3 Sharding 11

II JDBC and Database Essentials 14

3. JDBC Connection Management 15
3.1 DriverManager 16
3.2 DataSource 18

3.2.1 Why is pooling so much faster? L. 21

3.3 Queuing theory capacity planning o o L 23
3.4 Practical database connection provisioning L. 26
3.4.1 A real-life connection pool monitoring example 27
3.4.1.1 Concurrent connection request count metric 28

3.4.1.2 Concurrent connection count metric. 29

3.4.1.3 Maximum pool size metric L L 30

3.4.1.4 Connection acquisition time metric 30

3.4.1.5 Retry attemptsmetric. Lo oL 31

3.4.1.6 Overall connection acquisition time metric 31

3.4.1.7 Connection lease time metric. 32

4. BatchUpdates 33

CONTENTS

4.1 Batching Statements 33
4.2 Batching PreparedStatements o oL oL 36
4.2.1 Choosing the right batchsize 38

422 Bulkoperations. 39

4.3 Retrieving auto-generated keys L Lo oL 40
43.1 Sequencestotherescue 43

5. Statement Caching L 45
5.1 Statement lifecycle 45
51.1 Parser 46

5.1.2 Optimizer e 46
5.1.2.1 Execution plan visualization 47

5.1.3 Executor e 49

5.2 Caching performance gain Lo 49
5.3 Server-side statement caching Lo oL 50
5.3.1 Bind-sensitive executionplans 52

5.4 Client-side statement caching 56
6. ResultSet Fetching 60
6.1 ResultSet scrollability L 61
6.2 ResultSet changeability o L 63
6.3 ResultSet holdability 64
6.4 Fetchingsize 64
6.5 ResultSetsize. 67
6.5.1 Toomany rows e e e 67
6.5.1.1 SQLlimitclause. 68

6.5.1.2 JDBCmMaxXToOWs v v v i it e e e e 69

6.5.1.3 Lessismore 71

6.5.2 Toomanycolumns 72

7. Transactions 73
7.1 Atomicity 74
7.2 ConsSiStency e 76
7.3 Isolation L 78
7.3.1 Concurrency control 78
7.3.1.1 Two-phaselocking 78

7.3.1.2 Multi-Version Concurrency Control 82

7.3.2 Phenomena 85
7.3.21 Dirtywriteo 86

7322 Dirtyread 87

7.3.2.3 Non-repeatableread 88

7.3.24 Phantomread Lo 89

7.3.25 Readskew L 90

CONTENTS

7.4
7.5

7.6

7.7

7326 Writeskew L 91
7.3.27 Lostupdate 92
7.3.3 Isolationlevels 93
7.3.3.1 Read Uncommitted 94
7.3.3.2 Read Committed 95
7.3.3.3 RepeatableRead Lo 97
7.3.3.4 Serializable o o 98
Durability 100
Read-only transactions L 102
7.5.1 Read-only transactionrouting L. 104
Transaction boundaries L 105
7.6.1 Distributed transactions L. Lo Lo Lo 109
7.6.1.1 Two-phase commit 109
7.6.2 Declarative transactions 110
Application-level transactionso 113
7.7.1 Pessimistic and optimistic lockingo oL 114
7.7.1.1 Pessimisticlocking Lo oo 114
7.7.1.2 Optimistic locking 115

III JPA and Hibernate 117

8.

Why JPA and Hibernate matter 118
8.1 Theimpedance mismatch L 119
8.2 JPAvsHibernate 120
83 Schemaownership 122
8.4 Write-based optimizations oL o 124
8.5 Read-based optimizations o L L 129
8.6 Wrap-up e 132
Connection Management and Monitoring 133
9.1 JPA connection management e e 133
9.2 Hibernate connection providers L Lo L. 134
9.2.1 DriverManagerConnectionProvider 135

9.2.2 C3P0ConnectionProvider 135

9.2.3 HikariConnectionProvider 136

9.2.4 DatasourceConnectionProvider, 137

9.2.5 Connectionreleasemodes L 137

9.3 Monitoring connections Lo o 139
9.3.1 Hibernate statistics L 141
9.3.1.1 Customizing statistics o oL 143

9.4 Statementlogging 146

9.4.1 Statement formatting Lo Lo 147

CONTENTS

9.4.2 Statement-level comments L L L oL 148

9.4.3 Logging parameters 149
9.4.3.1 DataSource-proxy 149

9.4.3.2 POSPY . . i 150

10. Mapping Types and Identifiers 152
10.1 Types . . . o o o e 154
10.1.1 Primitive types L 154
10.1.2 String types 154
10.1.3 Date and Time types 155
10.1.4 Numerictypes e 156
10.1.5 Binary types e e e 156
10.1.6 UUID types« o o o i e e 156
10.1.7 Othertypes 157
10.1.8 Customtypes 157

10.2 Identifiers 163
10.2.1 UUID identifiers 164
10.2.1.1 The assigned generator oL 166

10.2.2 The legacy UUID generator 167
10.2.2.1 The newer UUID generator. 167

10.2.3 Numerical identifiers. L Lo Lo 168
10.2.3.1 Identity generator Lo 168

10.2.3.2 Sequence generatoro 170

10.2.3.3 Table generator L 171

10.2.3.4 Optimizers. e 173

10.2.3.4.1 The hi/lo algorithm 174

10.2.3.4.2 The default sequence identifier generator 176

10.2.3.4.3 The default table identifier generator 177

10.2.3.4.4 The pooled optimizer 178

10.2.3.4.5 The pooled-lo optimizer 180

10.2.3.5 Optimizer gain L 181

10.2.3.5.1 Sequence generator performance gain 181

10.2.3.5.2 Table generator performance gain 182

10.2.3.6 Identifier generator performance 182

11. Relationships 185
11.1 Relationshiptypes 186
11.2 @ManyToONe v v o e 188
11.3 @0OneToMany o v o e 189
11.3.1 Bidirectional @0neToMany o v i e e e e 190
11.3.2 Unidirectional @neToMany v . v v v v v e e e 193
11.3.3 Ordered unidirectional @neToMany 195

11.3.3.1 @ElementCollection 197

CONTENTS

11.3.4 @0neToMany with @JoinColumn 199

11.4 @0ONETOONE i i e 201
11.4.1 Unidirectional @neToOne v o v v v v i i e e e 201
11.4.2 Bidirectional @neToOne« o v i i i e 204

11.5 @ManyToMany v i o e 206
11.5.1 Unidirectional @ManyToMany v v v i v i e e 206
11.5.2 Bidirectional @ManyToMany o it e e e 208
11.5.3 The @neToMany alternative 210

12. Inheritance L 215
12.1 Singletable 219
12.2 Jointable 223
12.3 Table-per-class L 227

124 Mappedsuperclass L 231

CONTENTS i

Publisher:

Vlad Mihalcea

Jupiter 9/27

900492 Cluj-Napoca

Romania
mihalcea.vlad@gmail.com
Copyright © 2015 Vlad Mihalcea

All rights reserved. No part of this publication may be reproduced, stored, or transmitted in any
form or by any means — electronic, mechanical, photocopying, recording, or otherwise — without
the prior consent of the publisher.

Many of the names used by manufacturers and sellers to distinguish their products are trademarked.
Wherever such designations appear in this book, and we were aware of a trademark claim, the names
have been printed in all caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors and omissions, or for any damage resulting from the use of
the information contained herein. The book solely reflects the author’s views. This book was not
financially supported by any relational database system vendors mentioned in this work and no
database vendor has verified the content.

Cover design:

Dan Mihalcea danmihalcea@gmail.com
Cover photo:

Carlos ZGZ' - CC0 1.0

"https://www.flickr.com/photos/carloszgz/ 19980799311/
®https://creativecommons.org/publicdomain/zero/1.0/

mailto:mihalcea.vlad@gmail.com
mailto:danmihalcea@gmail.com
https://www.flickr.com/photos/carloszgz/19980799311/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.flickr.com/photos/carloszgz/19980799311/
https://creativecommons.org/publicdomain/zero/1.0/

| Introduction

1. Preface

In an enterprise system, a properly designed database access layer can have a great impact on the
overall application performance. According to Appdynamics’

More than half of application performance bottlenecks originate in the database

Data is spread across various structures (table rows, index nodes), and database records can be
read and written by multiple concurrent users. From a concurrency point of view, this is a very
challenging task, and, to get the most out of a persistence layer, the data access logic must resonate
with the underlying database system.

Hibernate specific features

JPA

Type-safe dynamic queries (jJOOQ) (| Object-relational structural patterns

JDBC

DB specific SQL enhancement DB specific concurrency control

SQL Standard Transactions/ACID

Figure 1.1: Data access skill stack

A typical RDBMS (Relational Database Management System) data access layer requires mastering
various technologies, and the overall enterprise solution is only as strong as the team’s weakest
skills. Before advancing to higher abstraction layers such as ORM (Object-Relational Mapping)
frameworks, it’s better to conquer the lower layers first.

*http://www.appdynamics.com/solutions/database- monitoring/

http://www.appdynamics.com/solutions/database-monitoring/
http://www.appdynamics.com/solutions/database-monitoring/

Preface 3

1.1 The database server and the connectivity layer

The database manual is not only meant for database administrators. Interacting with a database,
without knowing how it works, is like driving a racing car without taking any driving lesson. Getting
familiar with the SQL standard and the database specific features can make the difference between
a high performance application and one that barely crawls.

The fear of database portability can lead to avoiding highly effective features just because they are
not interchangeable across various database systems. In reality, it’s more common to end-up with a
sluggish database layer than having to port an already running system to a new database solution.

All data access frameworks rely on JDBC (Java Database Connectivity) API for communicating
to a database server. JDBC offers many performance optimization techniques, aiming to reduce
transaction response time and accommodate more traffic.

The first part of the book is therefore dedicated to JDBC, and it covers topics such as database
connection management, statement batching, result set fetching and database transaction essentials.

1.2 The application data access layer

There are data access patterns that have proven their effectiveness in many enterprise application
scenarios. Martin Fowler’s Patterns of Enterprise Application Architecture® is a must read for
every enterprise application developer. Beside the object-relational mapping pattern, most ORM
frameworks also employ techniques such as Unit of Work, Identity Map, Lazy Loading, Embedded
Value, Entity Inheritance or Optimistic and Pessimistic Locking.

1.2.1 The ORM framework

ORM tools can boost application development speed, but the learning curve is undoubtedly steep.
The only way to address the inherent complexity of bridging relational data with the application
domain model is to fully understand the ORM framework in use.

Sometimes even the reference documentation might not be enough, and getting familiar with the
source code is inevitable when facing performance related problems. JPA (Java Persistence API)
excels in writing data because all DML (Data Manipulation Language) statements are automatically
updated whenever the persistence model changes, therefore speeding up the iterative development
process.

The second part of this book describes various Hibernate-specific optimization techniques like
identifier generators, effective entity fetching and state transitions, application-level transactions
and entity caching.

*http://www.amazon.com/Patterns-Enterprise- Application- Architecture-Martin/dp/0321127420

http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420

Preface 4

1.2.2 The native query builder framework

JPA and Hibernate were never meant to substitute SQL, and native queries are unavoidable in any
non-trivial enterprise application. While JPA makes it possible to abstract DML statements and
common entity retrieval queries, when it comes to reading and processing data, nothing can beat
native SQL.

JPQL (Java Persistence Querying Language) abstracts the common SQL syntax by subtracting
database specific querying features, so it lacks support for Window Functions, Common Table
Expressions, Derived tables or PIVOT. As opposed to JPA, jOOQ (Java Object Oriented Query)’
embraces database specific query features, and it provides a type-safe query builder which can
protect the application against SQL injection attacks even for dynamic native queries.

For this reason, the third part of the book is about advance querying techniques with jOOQ.

About database performance benchmarks

Throughout this book, there are benchmarks aimed to demonstrate the relative gain of a certain
performance optimization. The benchmarks results are always dependent on the underlying
hardware, operating system and database server configuration, database size and concurrency
patterns. For this reason, the absolute values are not as important as the relative optimization
gain. In reality, the most relevant benchmark results are the ones against the actual production
system anyway.

To prevent the reader from comparing one database against another and drawing a wrong
conclusion based on some use case specific benchmarks, the database names are obfuscated as
DB A, DB_B, DB_C and DB_D.

Q All the source code, for every example that was used in this book, is available on GitHub?

*http://www.jooq.org/

http://www.jooq.org/
https://github.com/vladmihalcea/high-performance-java-persistence
http://www.jooq.org/

2. Performance and Scaling

An enterprise application needs to store and retrieve as much data and as fast as possible. In
application performance management, the two most important metrics are response time and
throughput.

The lower the response time, the more responsive an application becomes. Response time is therefore
the measure of performance. Scaling is about maintaining low latencies while increasing system
load, so throughput is the measure of scalability.

2.1 Response time and throughput

Because this book is focused on high-performance data access, the boundaries of the system under
test are located at the transaction manager level. The transaction response time is measured as the
time it takes to complete a transaction, and so it encompasses the following time segments:

the database connection acquisition time

« the time it takes to send all database statements over the wire

« the execution time for all incoming statements

« the time it takes for sending the result sets back to the database client

the time the transaction is idle due to application-level computations prior to releasing the
database connection.

T = tacq + treq + teazec + tres + tidle

Throughput is defined as the rate of completing incoming load. In a database context, throughput
can be calculated as the number of transactions executed within a given time interval.

X transaction count

time
From this definition, we can conclude that by lowering the time it takes to execute a transaction,

the system can accommodate more requests.

Testing against a single database connection, the measured throughput becomes the baseline for
further concurrency-based improvements.

Performance and Scaling 6

Ideally, if the system was scaling linearly, adding more database connections would yield a pro-
portional throughput increase. Due to contention on database resources and the cost of maintaining
coherency across multiple concurrent database sessions, the relative throughput gain follows a curve
instead of a straight line.

USL (Universal Scalability Law)' can approximate the maximum relative throughput (system
capacity) in relation to the number of load generators (database connections).

B N
14+ a(N—-1)+BN(N-1)

C (N)

+ C - the relative throughput gain for the given concurrency level
« o - the contention coefficient (the serializable portion of the data processing routine)

« B - the coherency coefficient (the cost for maintaining consistency across all concurrent
database sessions).

When the coherency coefficient is zero, USL overlaps with Amdahl’s Law?®. Contention has the
effect of leveling up scalability. On the other hand, coherency is responsible for the inflection point
in the scalability curve, and its effect becomes more significant as the number of concurrent sessions
increases.

The following graph depicts the relative throughput gain when the USL coefficients (o,) are set to
the following values (0.1, 0.0001). The x-axis represents the number of concurrent sessions (N) and
the y-axis shows the relative capacity gain (C).

Amdahl's Law vs USL

' ' ' ' ' Amdahl(x)'
USL(x)
Cmax

—~ 33.56

1 1 1 | 1 |

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00
N

Figure 2.1: Universal Scalability Law

"http://www.perfdynamics.com/Manifesto/USLscalability.html
*http://en.wikipedia.org/wiki/Amdahl%27s_law

http://www.perfdynamics.com/Manifesto/USLscalability.html
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://www.perfdynamics.com/Manifesto/USLscalability.html
http://en.wikipedia.org/wiki/Amdahl%27s_law

Performance and Scaling 7

The number of load generators (database connections), for which the system hits its maximum
capacity, depends on the USL coefficients solely.

(1-a)
B

Nmax =

The resulting capacity gain is relative to the minimum throughput, so the absolute system capacity
is obtained as follows:

Xmazx = X (1) x C (Nmazx)

2.2 Database connections boundaries

Every connection requires a TCP socket from the client (application) to the server (database).

The total number of connections offered by a database server depends on the underlying hardware
resources, and finding how many connections a server can handle is possible through measurements
and proven scalability models.

SQL Server 20167 and MySQL 5.7 use thread-based connection handling.
PostgreSQL 9.5 €uses one operating system process for each individual connection.

On Windows systems, Oracle uses threads, while on Linux, it uses process-based connections.
Oracle 12c“comes with a thread-based connection model for Linux systems too.

*https://msdn.microsoft.com/en-us/library/ms190219.aspx
bhttps://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
‘http://www.postgresql.org/docs/9.5/static/connect-estab.html
%ttp://docs.oracle.com/ database/121/CNCPT/process.htm

A look into database system internals reveals the tight dependency on CPU, Memory and Disk
resources. Because I/O operations are costly, the database uses a buffer pool to map into memory
the underlying data and index pages. Changes are first applied in memory, and flushed to disk in
batches to achieve better write performance.

Even if all indexes are entirely cached in memory, disk access might still occur (to fetch the associated
data pages into the memory buffer pool). To provide data consistency, locks (shared and exclusive)
are used to protect data blocks (rows and indexes) from being concurrently updated.

Using covering indexes, that fit into memory, can eliminate disk access because the
querying data can be fetched without accessing the disk.

https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/9.5/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm
https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/9.5/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm

Performance and Scaling 8

This means that high-throughput database applications will experience contention on CPU, Memory,
Disk and Locks. When all the database server resources are in use, adding more work load will only
increase contention, therefore lowering throughput.

Resources might get saturated due to improper system configuration, so the first step to improving
a system throughput is to tune it according to the current data access patterns.

% Lowering response time not only makes the application more responsive, but it can also
increase throughput.

But response time alone is not sufficient in a highly concurrent environment. To maintain
a fixed upper-bound response time, the system capacity must increase, relative to the
incoming request throughput. Adding more resources can improve scalability up to a
certain point, beyond which the capacity gain starts dropping.

At the Velocity conference? both Google Search and Microsoft Bing teams have concluded that
higher response times can escalate and even impact the business metrics.

Capacity planning is a feedback-driven mechanism, and it requires constant application monitor-
ing, and so, any optimization must be reinforced by application performance metrics.

*http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

2.3 Scaling up and scaling out

Scaling is the effect of increasing capacity by adding more resources. Scaling vertically (scaling up)
means adding resources to a single machine. Increasing the number of available machines is called
horizontal scaling (scaling out).

Traditionally, adding more hardware resources to a database server has been the preferred way of
increasing database capacity. Relational databases have emerged in the late seventies, and, for two
and a half decades, the database vendors took advantage of the hardware advancements following
the trends in Moore’s Law.

Distributed systems are much more complex to manage than centralized ones, and that’s why
horizontal scaling is more challenging than scaling vertically. On the other hand, for the same price
of a dedicated high-performance server, one could buy multiple commodity machines whose sum
of available resources (CPU, Memory, Disk Storage) is greater than of the single dedicated server.
When deciding which scaling method is better suited for a given enterprise system, one must take
into account both the price (hardware and licenses) and the inherent developing and operational
costs.

http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

Performance and Scaling 9

Being built on top of many open source projects (e.g. PHP, MySQL), Facebook® uses a horizontal
scaling architecture to accommodate its massive amounts of traffic.

StackOverflow* is the best example of a vertical scaling architecture. In one blog post®, Jeff Atwood
explained that the price of Windows and SQL Server licenses was one of the reasons for not choosing
a horizontal scaling approach.

No matter how powerful it might be, one dedicated server is still a single point of failure, and
throughput drops to zero if the system is no longer available. Database replication is therefore not
an option in most enterprise systems.

2.3.1 Master-Slave replication

For enterprise systems where the read/write ratio is high, a Master-Slave replication scheme is
suitable for increasing availability.

Data Import
Web Node DB Slave =
N 1 -
l read- only—).
-\
read-wrlte
replication
Web Node read-only p \
read-write :i DB Master
/I .

read-onl
y replication

-

g i read- onIy—). J -
: J<€<——read-only
DB Slave

Email Sender

Figure 2.2: Master-Slave replication

The Master is the system of record and the only node accepting writes. All changes recorded by the
Master node are replayed onto Slaves as well. A binary replication uses the Master node WAL (Write
Ahead Log), while a statement-based replication replays on the Slave machines the exact statements
executed on Master.

Asynchronous replication is very common, especially when there are more Slave nodes to update.
The Slave nodes are eventual consistent as they might lag behind the Master. In case the Master
node crashes, a cluster-wide voting process must elect the new Master (usually the node with the
most recent update record) from the list of all available Slaves.

*https://www.facebook.com/note.php?note_id=409881258919
“http://stackexchange.com/performance
*http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/

https://www.facebook.com/note.php?note_id=409881258919
http://stackexchange.com/performance
http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/
https://www.facebook.com/note.php?note_id=409881258919
http://stackexchange.com/performance
http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/

Performance and Scaling 10

The asynchronous replication topology is also referred as warm standby because the election process
doesn’t happen instantaneously.

Most database systems allow one synchronous Slave node, at the price of increasing transaction
response time (the Master has to block waiting for the synchronous Slave node to acknowledge
the update). In case of Master node failure, the automatic failover mechanism can promote the
synchronous Slave node to become the new Master.

Having one synchronous Slave allows the system to ensure data consistency in case of Master node
failures since the synchronous Slave is an exact copy of the Master. The synchronous Master-Slave
replication is also called a hot standby topology because the synchronous Slave is readily available
for replacing the Master node.

When only asynchronous Slave are available, the new elected Slave node might lag behind the
failed Master, in which case consistency and durability are traded for lower latencies and higher
throughput.

Aside from eliminating the single point of failure, database replication can also increase transaction
throughput. In a Master-Slave topology, the Slave nodes can accept read-only transactions, therefore
routing read traffic away from the Master node.

The Slave nodes increase the available read-only connections and reduce Master node resource
contention, which, in turn, can also lower read-write transaction response time. If the Master node
can no longer keep up with the ever increasing read-write traffic, a Multi-Master replication might
be a better alternative.

2.3.2 Multi-Master replication

In a Multi-Master replication scheme, all nodes are equal and can accept both read-only and read-
write transactions. Splitting the load among multiple nodes can only increase transaction throughput
and reduce response time as well.

But because distributed systems are all about trade-offs, ensuring data consistency is challenging in
a Multi-Master replication scheme because there is no longer a single source of truth. The same data
can be modified concurrently on separate nodes, so there is a possibility of conflicting updates. The
replication scheme can either avoid conflicts or it can detect them and apply an automatic conflict
resolution algorithm.

Performance and Scaling 11

Data Import
Web Node DB Master
37 read-write —)L 4\
Web Node read-wrlte replication read-wnte
: read-write | 7_’{ DB Master
. replication
Web Node read-write replication

\1

-{(— read-wntegl 3
DB Master &

Email Sender

read-write

Figure 2.3: Multi-Master replication

To avoid conflicts, the two-phase commit protocol can be used to enlist all participating nodes in one
distributed transaction. This design allows all nodes to be in-sync at all time, at the cost of increasing
transaction response time (by slowing down write operations).

If nodes are separated by a WAN (Wide Area Network), synchronization latencies can increase
dramatically. If one node is no longer reachable, the synchronization could fail, and the transaction
would roll back on all Masters.

Although avoiding conflicts is better from a data consistency perspective, synchronous replication
might incur high transaction response times. Asynchronous replication can provide better through-
put, at the price of having to resolve update conflicts. The asynchronous Multi-Master replication
requires a conflict detection and an automatic conflict resolution algorithm. When a conflict is
detected, the automatic resolution tries to merge the two conflicting branches, and, in case it fails,
manual intervention is required.

2.3.3 Sharding

When data size grows beyond the overall capacity of a replicated multi-node environment, splitting
data becomes unavoidable. Sharding means distributing data across multiple nodes so each instance
contains only a subset of the overall data.

Traditionally, relational databases have offered horizontal partitioning to distribute data across
multiple tables within the same database server. As opposed to horizontal partitioning, sharding
requires a distributed system topology so that data is spread over multiple machines.

Each shard must be self-contained because a user transaction can only use data from within a single
shard. Joining across shards is usually prohibited because the cost of distributed locking and the
networking overhead would lead to long transaction response times.

Performance and Scaling 12

By reducing data size per node, indexes will also require less space, and they can better fit into main
memory. With less data to query, the transaction response time can also get shorter too.

The typical sharding topology includes at least two separate data centers.

North America Shard -
User 1
Web Node DB Slave]
-j 1 John us
a 4 Dave UK
'\ 7 | May | us
Web Node read-only replication DB Master Country
read-write 4){ ’_“% us
WK UK
read-only / 0 rance
Web Node replication Italy
G - ']/ Spain
read-only—>y
m
......... DB Slave . b B
asynchronous replication
Europe Shard:
Web Node DB Slave :
- S ‘i Country
read-only—>g
[l\ us
ot UK
Web Node replication
§ read-only Y France
. u _-j Italy
read-write ———————— > :
- Spain
read-only o DB Master User
replication
 — 2 Jean | France
read-only —>iy Aldo | Italy
- v -
Juan Spain
DB Slave

Figure 2.4: Sharding

Each data center can serve a dedicated geographical region, so load is balanced across geographical
areas. Not all tables need to be partitioned across shards, smaller size ones being duplicated on each
partition. To keep the shards in sync, an asynchronous replication mechanism can be employed.

In the previous diagram, the country table is mirrored from one data center to the other, and
partitioning happens on the user table only. To eliminate the need for inter-shard data processing,
each user along with all user-related data are contained in one data center only.

In the quest for increasing system capacity, sharding is usually a last resort strategy, employed after
exhausting all other available options, such as:

« optimizing the data layer to deliver lower transaction response times
« scaling each replicated node to a cost-effective configuration

« adding more replicated nodes until synchronization latencies start dropping below an accept-
able threshold.

Performance and Scaling

13

MySQL cluster auto-sharding

MySQL Cluster? offers automatic sharding, so data is evenly distributed (using a primary key
hashing function) over multiple commodity hardware machines. Every node accepts both read and

write transactions and, just like Multi-Master replication, conflicts are automatically discovered
and resolved.

~ Auto-Sharding Database Cluster
User

1 John us
DB/Shard 4 Dave UK
ar
Web Node 7 Mary Us
i -
.....) [9
read-write—> @y
AR, i - ‘\
o User
Load Balancer Web Node T replication DB Shard

"

France

>
i /. 9 Roy | UK
Web Node replication

: e
read-write—> g
- User

DB Shard

u replication -‘ 3 Maria | ltaly
J—> smmmm read-write | >u 9 6 Ada
Plemmny ey HE d

2 Jean | France
5 Aldo Italy
8 Juan Spain

Figure 2.5: Auto-sharding

The auto-sharding topology is similar to the Multi-Master replication architecture as it can increase
throughput by distributing incoming load to multiple machines. While in a Multi-Master replicated
environment every node stores the whole database, the auto-sharding cluster distributes data so
that each shard is only a subset of the whole database.

Because the cluster takes care of distributing data, the application doesn’t have to provide a data
shard routing layer, and SQL joins are possible even across different shards. MySQL Cluster 7.3
uses the NDB storage engine, and so it lacks some features provided by InnoDB” like multiple
transaction isolation levels or MVCC (Multi Version Concurrency Control).

*https://www.mysql.com/products/cluster/scalability.html
thitp://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb- engines.html

https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html
https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html

Il JDBC and Database Essentials

14

3. JDBC Connection Management

The JDBC (Java Database Connectivity) API provides a common interface for communicating to
a database server. All the networking logic and the database specific communication protocol are
hidden away behind the vendor-independent JDBC APL. For this reason, all the JDBC interfaces must
be implemented according to the database vendor specific requirements. The java.sqgl.Driver is
the main entry point for interacting with the JDBC API, defining the implementation version details

and providing access to a database connection.

JDBC
Oracle SQL Server PostgreSQL MySQL
Driver Driver Driver Driver
- v 3 w v 3
I D | u i |
[| i | [i |
Oracle SQL Server PostgreSQL MySQL

Figure 3.1: JDBC plugin architecture

JDBC defines four driver types:

Type 1: It’s only a bridge to an actual ODBC driver implementation

Type 2: It uses a database specific native client implementation (e.g. Oracle Call Interface)
Type 3: It delegates calls to an application server offering database connectivity support
Type 4: The JDBC driver implements the database communication protocol solely in Java.

Being easier to setup and debug, the Type 4 driver is usually the preferred alternative.

To communicate to a database server, a Java program must first obtain a java.sql.Connection.
Although the java.sql.Driver is the actual database connection provider, it’s more convenient
to use the java.sql.DriverManager since it can also resolve the JDBC driver associated with the

current database connection URL.

15

JDBC Connection Management 16

Previously, the application required to load the driver prior to establishing a connection but, since
JDBC 4.0, the Service Provider Interfaces mechanism can automatically discover all the available
drivers in the current application class-path.

3.1 DriverManager

The DriverManager defines the following methods:

public static Connection getConnection(
String url, Properties info) throws SQLException;

public static Connection getConnection(
String url, String user, String password) throws SQLException;

public static Connection getConnection(
String url) throws SQLException;

Every time the getConnection() method is called, the DriverManager will request a new physical
connection from the underlying Driver.

| Application | | java.sql.DriverManager| | java.sql.Driver | Ijava.sqI.Connection | IjavaneLSocketFactory‘ Ijava.net.Socke(|
T T T T

— getConnection(url) —>»|

—connect(url, info)—>»|

creates —>| -
createSocket——»|
new ———»

RDBMS

A

close()

close()——>

Figure 3.2: DriverManager connection

The first version of JDBC was launched in 1997, and it only supported the DriverManager utility for
fetching database connections. Back then, Java was offering support for desktop applications which
were often employing a two-tier architecture:

JDBC Connection Management 17

Figure 3.3: Two-tier architecture

In a two-tier architecture, the application is run by single user, and each instance uses a dedicated
database connection. The more users, the more database connections are required, and based on the
underlying resources (hardware, operating system or licensing restrictions), each database server
can offer a limited number of connections.

Oracle mainframe legacy

Oracle has gained its popularity in the era of mainframe computers, when each client got a
dedicated database connection.

Oracle assigns a distinct schema for each individual user, as opposed to other database systems
where a schema is shared by multiple user accounts.

In PL/SQL, the Packaged public variables scope is bound to a session, instead of to the current
running transaction. The application developer must be extra cautious to unbind these variables
properly since connections are often reused and old values might leak into newer transactions.

JDBC Connection Management 18

3.2 DataSource

In 1999 J2EE was launched along with JDBC 2.0 and an initial draft of JTA (Java Transaction API)?,
marking the beginning of Enterprise Java. Enterprise applications use a three-tier architecture, where
the middle tier acts as a bridge between user requests and various data sources (e.g. relational
databases, messaging queues).

Data Import

F_____— W Web Node

DB Master

E Web Node

Email Sender

Figure 3.4: Three-tier architecture

Having an intermediate layer between the client and the database server has numerous advantages.

In a typical enterprise application, the user request throughput is greater than the available database
connection capacity. As long as the connection acquisition time is tolerable (from the end-user
perspective), the user request can wait for a database connection to become available. The middle
layer acts as a database connection buffer that can mitigate user request traffic spikes by increasing
request response time, without depleting database connections or discarding incoming traffic.

Because the intermediate layer manages database connections, the application server can also
monitor connection usage and provide statistics to the operations team.

For this reason, instead of serving physical database connections, the application server provides

"https://jcp.org/en/jsr/detail?id=907

https://jcp.org/en/jsr/detail?id=907
https://jcp.org/en/jsr/detail?id=907

JDBC Connection Management 19

only logical connections (proxies or handles), so it can intercept and register how the client API
interacts with the connection object.

A three-tier architecture can accommodate multiple data sources or messaging queue implementa-
tions. To span a single transaction over multiple sources of data, a distributed transaction manager
becomes mandatory. In a JTA environment, the transaction manager must be aware of all logical
connections the client has acquired as it has to commit or roll them back according to the global
transaction outcome. By providing logical connections, the application server can decorate the
database connection handles with JTA transaction semantics.

If the DriverManager is a physical connection factory, the javax.sql.DataSource interface is a
logical connection provider:

public Connection getConnection() throws SQLException;

public Connection getConnection(
String username, String password) throws SQLException;

The simplest javax.sql.DataSource implementation could delegate connection acquisition requests
to the underlying DriverManager, and the connection request workflow would look like this:

| icati | | java.sql.D: | |java,sql.DriverManager| | java.sql.Driver | |java‘sqI.Connecnon |
T T T

java.net.SocketFactory ‘ | java.net.Socket |
T T

: :
I ! I
I ! I
I ! I
1 ! I
i i !
I
‘

|
1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

1 i

i i

—— getConnection() —»| r }
i

—— getConnection(url) —
f— connect(ur