
Java 17 Quick
Syntax Reference

A Pocket Guide to the Java
SE Language, APIs, and Library
—
Third Edition
—
Mikael Olsson

Java 17 Quick Syntax
Reference

A Pocket Guide to the Java SE
Language, APIs, and Library

Third Edition

Mikael Olsson

Java 17 Quick Syntax Reference: A Pocket Guide to the Java SE Language,

APIs, and Library

ISBN-13 (pbk): 978-1-4842-7370-8		 ISBN-13 (electronic): 978-1-4842- 7371-5
https://doi.org/10.1007/978-1-4842-7371-5

Copyright © 2022 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Janco Ferlic on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484273708. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Mikael Olsson
Hammarland, Länsi-Suomi, Finland

https://doi.org/10.1007/978-1-4842-7371-5

iii

Chapter 1: ��Hello World���1

Installing��1

Creating a Project��1

Hello World���2

Code Hints��4

Chapter 2: ��Compile and Run��5

Running from the IDE���5

Running from a Console Window���5

Comments��6

Preview Features���7

Chapter 3: ��Variables��9

Data Types��9

Declaring Variables��10

Assigning Variables��10

Using Variables��10

Integer Types��11

Floating-Point Types���11

Table of Contents

About the Author��xi

About the Technical Reviewer��xiii

Introduction���xv

iv

Char Type���12

Boolean Type��12

Variable Scope���13

Anonymous Block��13

Type Inference��14

Chapter 4: ��Operators���15

Arithmetic Operators��15

Assignment Operators���16

Increment and Decrement Operators���16

Comparison Operators���17

Logical Operators���17

Bitwise Operators��18

Operator Precedence���18

Chapter 5: ��String���21

Combining Strings��21

Escape Characters���22

String Compare��23

StringBuffer Class��23

Text Blocks���24

Chapter 6: ��Arrays���27

Array Declaration���27

Array Allocation��27

Array Assignment���28

Multidimensional Arrays��28

ArrayList Class���29

Table of Contents

v

Chapter 7: ��Conditionals���31

If Statement���31

Switch Statement��32

Switch Expression��33

Ternary Operator��35

Chapter 8: ��Loops��37

While Loop���37

Do While Loop��38

For Loop���38

For Each Loop��39

Break and Continue��39

Labeled Block��40

Chapter 9: ��Methods���41

Defining Methods���41

Calling Methods���42

Method Parameters���42

Return Statement���43

Method Overloading���44

Passing Arguments��45

Chapter 10: ��Class��47

Object Creation��47

Accessing Object Members���48

Constructor��49

This Keyword���50

Constructor Overloading��50

Table of Contents

vi

Constructor Chaining���51

Initial Field Values��51

Default Constructor��52

Null���52

Default Values��53

Garbage Collector��53

Chapter 11: ��Static��55

Accessing Static Members��56

Static Methods���56

Static Fields���57

Static Initialization Blocks��57

Instance Initialization Blocks���58

Chapter 12: ��Inheritance���59

Upcasting���60

Downcasting��60

Instanceof Operator���60

Pattern Matching Switch���62

Restricting Inheritance���62

Chapter 13: ��Overriding��65

Overriding Methods��65

Override Annotation���66

Hiding Methods��67

Hiding Fields��68

Accessing Redefined Members���69

Calling Parent Constructor���69

Table of Contents

vii

Chapter 14: ��Packages and Import���71

Accessing Packages��72

Chapter 15: ��Modules���75

Creating a Module��75

Using a Module��77

Chapter 16: ��Access Levels���79

Private Access��79

Package-Private Access���80

Protected Access���81

Public Access���82

Top-Level Access���83

Nested Class Access��83

Access-Level Guideline��84

Chapter 17: ��Constants���85

Local Constants��85

Constant Fields��85

Constant Method Parameters��86

Compile-Time and Runtime Constants���86

Constant Guideline���87

Chapter 18: ��Interface���89

Interface Members���89

Interface Example��90

Functionality Interface���91

Class Interface���92

Interface Classes���93

Table of Contents

viii

Default Interface Methods���94

Static Interface Methods��94

Chapter 19: ��Abstract���97

Abstract Class Example���97

Abstract Classes and Interfaces��99

Chapter 20: ��Enum��101

Enum Class��102

Chapter 21: ��Exception Handling��105

Try-Catch��105

Catch Block��106

Finally Block���107

Throwing Exceptions��109

Checked and Unchecked Exceptions���109

Exception Hierarchy���110

Chapter 22: ��Boxing and Unboxing���111

Autoboxing and Autounboxing���112

Primitive and Wrapper Guideline��112

Chapter 23: ��Generics���113

Generic Classes���113

Generic Methods��114

Calling Generic Methods��115

Generic Interfaces��116

Generic Type Parameters���117

Generic Variable Usages��117

Table of Contents

ix

Bounded Type Parameters���118

Generics and Object���120

Chapter 24: ��Lambda Expressions��123

Lambda Objects���123

Lambda Parameters���125

Index��127

Table of Contents

Ещё больше книг по Java в нашем телеграм
канале: https://t.me/javalib

xi

About the Author

Mikael Olsson is a professional web

entrepreneur, programmer, and author. He

works for an R&D company in Finland where

he specializes in software development. In

his spare time, he writes books and creates

websites that summarize various fields of

interest. The books he writes are focused on

teaching their subject in the most efficient way

possible, by explaining only what is relevant

and practical without any unnecessary

repetition or theory.  

xiii

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic

developer and researcher who enjoys learning

new technologies for his own experiments

and creating new integrations. Manuel won

the Springy Award – Community Champion

and Spring Champion 2013. In his little free

time, he reads the Bible and composes music

on his guitar. Manuel is known as dr_pompeii.

He has tech-reviewed numerous books

for Apress, including Pro Spring MVC with

WebFlux (2020), Pro Spring Boot 2 (2019), Rapid Java Persistence and

Microservices (2019), Java Language Features (2018), Spring Boot 2 Recipes

(2018), and Java APIs, Extensions and Libraries (2018). Read his 13 detailed

tutorials about many Spring technologies, contact him through his blog

at www.manueljordanelera.blogspot.com, and follow him on his Twitter

account, @dr_pompeii.  

https://www.manueljordanelera.blogspot.com

xv

Introduction

Java is a high-level object-oriented programming language developed by

Sun Microsystems, which became part of Oracle Corporation in 2010. The

language is very similar to C++ but has been simplified to make it easier

to write bug-free code. Most notably, unlike C++, there are no pointers

in Java—instead, all memory allocation and deallocation is handled

automatically.

Despite simplifications like this, Java has considerably more

functionality than C++, due to its large class library. Java programs

also have high performance and can be made very secure, which

has contributed to making Java the most popular general-purpose

programming language in use today.

Another key feature of Java is that it is platform independent. This is

achieved by only compiling programs halfway, into platform-independent

instructions called bytecode. The bytecode is then interpreted, or run,

by the Java Virtual Machine (JVM). That means any system that has

this program and its accompanying libraries installed can run Java

applications.

To allow Java to be used in a variety of environments, there are four

different editions: Java ME, Java SE, Java EE, and Java FX. Each edition

contains a JVM and a set of class libraries. Java SE (Standard Edition)

provides the standard JVM along with the commonly used libraries for

building applications, in particular desktop applications. Java ME (Micro

Edition) is a small-footprint version of Java SE designed for running on

small devices such as mobile phones. Java EE (Enterprise Edition) is an

extended version of Java SE that includes libraries for building large-scale

xvi

web applications. The most recently added edition is JavaFX, a lightweight

version intended for building desktop and rich web applications. This

edition includes a new library for making graphical user interfaces (GUIs),

which is intended to replace the standard GUI library called Swing used in

Java SE.

To allow Java to be used in a variety of environments, there are four

different editions: Java SE, Java ME, Java EE, and Java FX. Each edition

contains a JVM and a set of class libraries. Java SE (Standard Edition)

provides the standard JVM along with the commonly used libraries for

building applications, in particular desktop applications. Java ME (Micro

Edition) is a small-footprint version of Java SE designed for running on

small devices such as mobile phones. Java EE (Enterprise Edition) is an

extended version of Java SE that includes libraries for building large-scale

web applications. The most recently added edition is Java FX, a lightweight

version intended for building rich web applications.

The Java language and class libraries have undergone major changes

since their initial release in 1996. The naming conventions for the versions

have gone through a few revisions as well, mainly for marketing reasons.

The major releases include JDK 1.0, JDK 1.1, J2SE 1.2, J2SE 1.3, J2SE 1.4,

J2SE 5.0, followed by Java SE 6 to Java SE 17, with Java SE 17 being the

current version as of writing. For the sake of simplicity, the Java versions

will be referred to as Java 1–17 in this book. Note that Java is designed to be

backward-compatible. Therefore, the Virtual Machine for Java 17 can still

run Java 1 applications.

Introduction

Ещё больше книг по Java в нашем телеграм
канале: https://t.me/javalib

1© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_1

CHAPTER 1

Hello World

�Installing
Before you can program in Java, you need to download and install a Java

Development Kit (JDK), such as the Standard Edition (JDK SE) from

Oracle’s website.1 Among other things, the JDK includes the Java compiler,

the class libraries, and the virtual machine needed to run Java applications.

You should also download an Integrated Development Environment (IDE)

as it will make development in Java much easier. One such Java IDE is

Apache NetBeans,2 which is available for free on Windows, macOS, and

Linux. If you don’t want to use any IDE at all, using a regular text editor is

also an option. To work without an IDE, you can create an empty file with

the .java extension—for example, MyApp.java—and open it in your text

editor of choice.

�Creating a Project
If you decide to use an IDE (recommended), you need to create a

project, which will manage the Java source files and other resources.

To create a project in NetBeans, click File ➤ New Project. In the dialog

1 www.oracle.com/java/technologies/javase-downloads.html
2 https://netbeans.org

https://doi.org/10.1007/978-1-4842-7371-5_1
http://www.oracle.com/java/technologies/javase-downloads.html
https://netbeans.org

2

box, select the Java Application project under the Java with Ant category,

and click Next. In this dialog box, set the project name to “MyProject”

and the name of the main class to “myproject.MyApp”. Change the

project’s location if you want, and click Finish to generate the project.

The project’s only file, MyApp.java, will then open up, containing some

default code. You can go ahead and remove all of that code so that you

start with an empty source file.

�Hello World
When you have your project and programming environment set up, the

first application you will create is the Hello World program. This program

will teach you how to compile and run Java applications, as well as how to

output a string to a command window.

The first step in creating this program is to add a public class to your

MyApp.java source file. The class must have the same name as the physical

source file without the file extension—in this case, “MyApp.” It’s legal

to have more than one class per file in Java, but only one public class is

allowed, and its name must match the filename. Keep in mind that Java is

case sensitive. The curly brackets following the class name delimit what

belongs to the class and must be included. The brackets, along with their

content, are referred to as a code block, or just a block.

public class MyApp {}

Java classes are organized into packages, which are similar to

namespaces in other languages. A package statement needs to appear at

the top of the file to designate which package a file belongs to. This name

must match the directory the file is located in relative to the project’s

source directory, so in this case, the package name is myproject.

package myproject;

public class MyApp {}

Chapter 1 Hello World

3

Next, add the main method inside the class. This is the starting point of

the application and must always be included in the same form as is shown

in the following code. The keywords themselves will be examined in later

chapters.

package myproject;

public class MyApp {

 public static void main(String[] args) {}

}

The last step in completing the Hello World program is to output the

text by calling the print method. This method is located inside the System

class and then another level down inside the out class. The method takes

a single argument—the string to be printed—and it ends with a semicolon,

as do all statements in Java.

package myproject;

public class MyApp {

 public static void main(String[] args) {

 System.out.print("Hello World");

 }

}

Note that the dot operator (.) is used to access members of a class.

Similar to print, there’s also the println method, which automatically

adds a line break at the end of the printed string. The System class belongs

to the java.lang package, which is always included in a Java project.

Chapter 1 Hello World

4

�Code Hints
If you’re unsure of what a specific class contains, or what arguments a

method takes, you can take advantage of code hints in some IDEs, such

as NetBeans. The code hint window appears anytime you’re typing code,

and there are multiple predetermined alternatives. You can also bring it

up manually by pressing Ctrl+spacebar. This is a powerful feature that

gives you quick access to the class libraries and their members, along with

descriptions.

Chapter 1 Hello World

5© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_2

CHAPTER 2

Compile and Run

�Running from the IDE
With your Hello World program complete, you can compile and run it in

one of two ways. The first method is by selecting Run from the menu bar

of the IDE you’re using. In NetBeans, the menu command is Run ➤ Run

Project. The IDE will then compile and run the application, which displays

the text “Hello World” in the output window of the IDE.

�Running from a Console Window
The other way is to manually compile the program using a console

window, such as C:\Windows\System32\cmd.exe under Windows. The

most convenient way to do this is to first add the JDK bin directory to the

PATH environment variable. In Windows, you do this using the SET PATH

command and then by appending the path to your JDK installation’s bin

folder separated by a semicolon. Note that the exact path depends on what

version of the JDK you have installed.

SET PATH=%PATH%;"C:\Program Files\Java\jdk-17.0.2\bin"

https://doi.org/10.1007/978-1-4842-7371-5_2

6

By doing this, the console will be able to find the Java compiler from

any folder for the duration of this console session. The PATH variable can

also be permanently changed.1 Next, navigate to the folder where the Java

source file is located, and run the compiler by typing javac followed by the

complete filename.

C:\MyProject\src\myproject> javac MyApp.java

The program will be compiled into a class file called MyApp.class. This

class file contains bytecode instead of machine code, so to execute it, you

need to call the Java Virtual Machine by typing java followed by the fully

qualified class name, which includes the package name. This command

needs to be executed from the parent folder, the project’s source folder.

Notice that the .java extension is used when compiling a file, but the .class

extension is not used when running it.

C:\MyProject\src> java myproject.MyApp

Alternatively, as of Java 11, you can both compile and run the source

file by giving the complete filename to the java command:

java MyApp.java

�Comments
Comments are used to insert notes into the source code and have no effect

on the end program. Java has the standard C++ comment notation, with

both single-line and multi-line comments.

// single-line comment

/* multi-line

 comment */

1 www.java.com/en/download/help/path.xml

Chapter 2 Compile and Run

http://www.java.com/en/download/help/path.xml

7

In addition to these, there is the Javadoc comment. This comment is

used to generate documentation by using a utility included in the JDK bin

folder, which is also called Javadoc.

/** javadoc

 comment */

�Preview Features
A preview feature is a new feature that is subject to change in future

JDK releases. To compile code that contains preview features, you

must specify an additional command-line option for your project. In

NetBeans, this is done by first opening the File ➤ Project Properties

window. From there, select the Compiling tab from the Build category,

and at the bottom of this window, add “--enable-preview” in the input

box labeled “Additional Compiler Options”. Click OK, and preview

features will be enabled for this project.

Chapter 2 Compile and Run

9© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_3

CHAPTER 3

Variables
Variables are used for storing data in memory during program execution.

�Data Types
Depending on what data you need to store, there are several kinds of data

types. Java has eight types built into the language, called primitives. The

integer (whole number) types are byte, short, int, and long. The float

and double types represent floating-point numbers (real numbers). The

char type holds a Unicode character, and the boolean type contains either

a true or false value. Except for these primitive types, every other type in

Java is represented by a class, an interface, or an array.

Data Type Size (Bits) Description

byte

short

int

long

8

16

32

64

Signed integer

float

double

32

64

Floating-point number

char 16 Unicode character

boolean 1 Boolean value

https://doi.org/10.1007/978-1-4842-7371-5_3

10

�Declaring Variables
To declare (create) a variable, you start with the data type you want it to

hold followed by a variable name. The name can be anything you want,

but it’s a good idea to give your variables names that are closely related to

the values they will hold. The standard naming convention for variables is

that the first word should be lowercase and any subsequent words initially

capitalized.

int myInt;

�Assigning Variables
To give the variable a value, you use the assignment operator (=) followed

by the value. When a variable is initialized (assigned a value), it then

becomes defined (declared and assigned).

myInt = 10;

The declaration and assignment can be combined into a single

statement:

int myInt = 10;

If you need multiple variables of the same type, there is a shorthand

way of declaring or defining them using the comma operator (,):

int myInt = 10, myInt2 = 20, myInt3;

�Using Variables
Once a variable has been defined, you can use it by simply referencing the

variable’s name—for example, to print it:

System.out.print(myInt);

Chapter 3 Variables

11

�Integer Types
As shown earlier, there are four signed integer types you can use,

depending on how large a number you need the variable to hold:

byte myInt8 = 2; // -128 to +127

short myInt16 = 1; // -32768 to +32767

int myInt32 = 0; // -2^31 to +2^31-1

long myInt64 = -1; // -2^63 to +2^63-1

In addition to standard decimal notation, integers can also be assigned

by using octal or hexadecimal notation. As of Java 7, a binary notation is

also available.

int myHex = 0xF; // hexadecimal (base 16)

int myOct = 07; // octal (base 8)

int myBin = 0b10; // binary (base 2)

Digits in a number can be separated by an underscore (_). This feature

was introduced in Java 7 and is provided only to improve readability.

int bigNumber = 10_000_000;

�Floating-Point Types
The floating-point types can store integers as well as floats. They can be

assigned with either decimal or exponential notation.

double myDouble = 3.14;

double myDouble2 = 3e2; // 3*10^2 = 300

Chapter 3 Variables

12

Note that constant floating-point numbers in Java are always kept

internally as doubles. Therefore, if you try to assign a double to a float,

you’ll get an error because a double has a higher precision than a float. To

assign it correctly, you can append an F character to the constant, which

says that the number is in fact a float.

float myFloat = 3.14; // error

float myFloat = 3.14F; // ok

A more common and useful way to do that is by using an explicit

cast. An explicit cast is performed by placing the desired data type in

parentheses before the variable or constant that is to be converted. This

will convert the value to the specified type—in this case, float—before the

assignment occurs.

float myFloat = (float)3.14;

�Char Type
The char data type can contain a single Unicode character, delimited by

single quotes:

char myChar = 'A';

Chars can also be assigned by using a special hexadecimal notation

that gives access to all Unicode characters:

char myChar = '\u0000'; // \u0000 to \uFFFF

�Boolean Type
The boolean type can store a Boolean value, which is a value that can only

be either true or false. These values are specified with the true and false

keywords.

boolean myBool = false;

Chapter 3 Variables

13

�Variable Scope
The scope of a variable refers to the code block within which it’s possible

to use that variable without qualification. For example, a local variable is

a variable declared within a method. Such a variable will only be available

within the method’s code block, after it’s been declared. Once the scope

(code block) of the method ends, the local variable will be destroyed.

public static void main(String[] args)

{

 int localVar; // local variable

}

In addition to local variables, Java has field- and parameter-type

variables, which later chapters will cover. But Java doesn’t have global

variables, as, for example, C++ does.

�Anonymous Block
You can restrict the scope of local variables using an anonymous

(unnamed) code block. This construct is seldom used, because if a method

is large enough to warrant the use of an anonymous block, a better choice

is often to break up the code into separate methods.

public static void main(String[] args)

{

 // Anonymous code block

 {

 int localVar = 10;

 }

 // localVar is unavailable from here

}

Chapter 3 Variables

14

�Type Inference
Beginning with Java 10, local variables can be declared with var to have

the compiler automatically determine the type of the variable based on its

assignment. The following two declarations are therefore equivalent:

var i = 5; // Implicit type

int i = 5; // Explicit type

When to use var comes down to preference. In cases when the type of

the variable is obvious from the assignment, use of var may be preferable

to shorten the declaration and improve readability. The benefit becomes

more apparent when using a non-primitive type as seen in this example.

// No type inference

java.util.ArrayList a = new java.util.ArrayList();

// With type inference

var a = new java.util.ArrayList();

Keep in mind that var can only be used when a local variable is both

declared and initialized at the same time.

Chapter 3 Variables

15© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_4

CHAPTER 4

Operators
Operators are special symbols used to operate on values. The operators

that deal specifically with numbers can be grouped into five types:

arithmetic, assignment, comparison, logical, and bitwise operators.

�Arithmetic Operators
The arithmetic operators include the four basic arithmetic operations,

as well as the modulus operator (%), which is used to obtain the division

remainder:

float x = 3+2; // addition (5)

 x = 3-2; // subtraction (1)

 x = 3*2; // multiplication (6)

 x = 3/2; // division (1)

 x = 3%2; // modulus (1)

Note that the division sign gives an incorrect result. That’s because

it operates on two integer values and will therefore round the result and

return an integer. To get the correct value, one of the numbers must be

explicitly converted to a floating-point type.

float x = (float)3/2; // 1.5

https://doi.org/10.1007/978-1-4842-7371-5_4

16

�Assignment Operators
The second group is the assignment operators—most importantly, the

assignment operator itself (=), which assigns a value to a variable:

int i = 0; // assignment

A common use of the assignment and arithmetic operators is to

operate on a variable and then save the result back into that same variable.

These operations can be shortened with the combined assignment

operators.

i += 5; // i = i+5;

i -= 5; // i = i-5;

i *= 5; // i = i*5;

i /= 5; // i = i/5;

i %= 5; // i = i%5;

�Increment and Decrement Operators
Another common operation is to increment or decrement a variable by

one. This can be simplified with the increment (++) and decrement (−−)

operators.

++i; // i = i+1

−−i; // i = i-1

Both of these can be used either before or after a variable:

++i; // pre-increment

−−i; // pre-decrement
i++; // post-increment

i−−; // post-decrement

Chapter 4 Operators

17

The result on the variable is the same whichever is used. The difference

is that the post-operator returns the original value before it changes the

variable, while the pre-operator changes the variable first and then returns

the value.

int x, y;
x = 5; y = x++; // y=5, x=6
x = 5; y = ++x; // y=6, x=6

�Comparison Operators
The comparison operators compare two values and return either true or

false. They’re mainly used to specify conditions, which are expressions that

evaluate to either true or false.

boolean b = (2==3); // equal to (false)
 b = (2!=3); // not equal to (true)
 b = (2>3); // greater than (false)
 b = (2<3); // less than (true)
 b = (2>=3); // greater than or equal to (false)
 b = (2<=3); // less than or equal to (true)

�Logical Operators
The logical operators are often used together with the comparison

operators. Logical and (&&) evaluates to true if both the left and right side

are true, and logical or (||) is true if either the left or right side is true. For

inverting a Boolean result, there is a logical not (!) operator. Note that for

both logical and and logical or, the right-hand side won’t be evaluated if

the result is already determined by the left-hand side.

boolean b = (true && false); // logical and (false)

 b = (true || false); // logical or (true)

 b = !(true); // logical not (false)

Chapter 4 Operators

18

�Bitwise Operators
The bitwise operators can manipulate individual bits inside an integer

type. For example, the right shift operator (>>) moves all bits except the

sign bit to the right, whereas zero-fill right shift (>>>) moves all bits right

including the sign bit.

byte b = 5 & 4; // 101 & 100 = 100 (4) // and

 b = 5 | 4; // 101 | 100 = 101 (5) // or

 b = 5 ^ 4; // 101 ^ 100 = 001 (1) // xor

 b = 4 << 1; // 100 << 1 = 1000 (8) // left shift

 b = 4 >> 1; // 100 >> 1 = 10 (2) // right shift

 b = 4 >>>1; // 100 >>>1 = 10 (2) // zero-fill right shift

 b = ~4; // ~00000100 = 11111011 (-5) // invert

These bitwise operators have shorthand assignment operators, just like

the arithmetic operators:

int i = 5;

 i &= 4; // "and" and assign

 i |= 4; // or and assign

 i ^= 4; // xor and assign

 i <<= 1; // left shift and assign

 i >>= 1; // right shift and assign

 i >>>= 1; // right shift and assign (move sign bit)

�Operator Precedence
In Java, expressions are normally evaluated from left to right. However,

when an expression contains multiple operators, the precedence of

those operators decides the order that they’re evaluated in. The order of

precedence is shown in the following table. This same order also applies to

many other languages, such as C++ and C#.

Chapter 4 Operators

19

Precedence Operator Precedence Operator

1 ++ −− ! ~ 7 &

2 * / % 8 ^

3 + − 9 |

4 << >> >>> 10 &&

5 < <= > >= 11 ||

6 == != 12 = operator=

For example, logical and (&&) binds weaker than relational operators,

which in turn bind weaker than arithmetic operators:

boolean b = 2+3 > 1*4 && 5/5 == 1; // true

To avoid having to learn the precedents of all operators, and to clarify

the intent, you can use parentheses to specify which part of the expression

will be evaluated first:

boolean b = ((2+3) > (1*4)) && ((5/5) == 1); // true

Chapter 4 Operators

21© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_5

CHAPTER 5

String
The String class in Java is a data type that can hold string literals. String is

a reference data type, as are all non-primitive data types. This means that

the variable contains an address to an object in the memory and not the

object itself. A String object is created in the memory, and the address to

the object is returned to the variable. As seen in the following code, string

literals are delimited by double quotes:

String a = "Hello";

String literals are stored in the so-called String pool, maintained by

the String class. For performance reasons, any string literal that is equal to

a previously created string will refer to the same String object in the pool.

This works because strings in Java are immutable and therefore cannot be

changed without creating a new String object.

String a1 = "Hello";

String a2 = "Hello"; // refers to same object as a1

�Combining Strings
The plus sign is used to combine two strings. Known as the concatenation

operator (+) in this context, it has an accompanying assignment operator

(+=) that appends one string to another and creates a new string.

String a = "Hello";

String b = " World";

https://doi.org/10.1007/978-1-4842-7371-5_5

22

String c = a+b; // "Hello World"
 a += b; // "Hello World"

Note that although a statement may be divided into multiple lines, a

string must be on a single row unless it’s split up using the concatenation

operator:

String x

 = "Hello " +

 "World";

�Escape Characters
For adding new lines to the string itself, there is the escape character (\n).

This backslash notation is used to write special characters, such as

backslash and double quotes. Among the special characters is also a

Unicode character notation for writing any character. All the escape

characters can be seen in the following table.

Character Meaning

\n Newline

\t Horizontal tab

\b Backspace

\r Carriage return

\uFFFF Unicode character(four-digit hex number)

\f Form feed

\’ Single quote

\” Double quotes

\\ Backslash

Chapter 5 String

23

�String Compare
The way to compare two strings is to use the equals method of the String

class. If the equality operator (==) is used, the memory addresses will be

compared instead.

boolean x = a.equals(b); // compares string

boolean y = (a == b); // compares address

Bear in mind that all strings in Java are String objects. Therefore,

it’s possible to call methods directly on constant strings, just as it is on

variables.

boolean z = "Hello".equals(a); // true

�StringBuffer Class
The String class has a large number of methods available, but it doesn’t

contain any methods for manipulating strings. That’s because strings in

Java are immutable. Once a String object has been created, the contents

can’t be changed unless the whole string is completely replaced. Because

most strings are never modified, this was done on purpose to make the

String class more efficient. For cases when you need a modifiable string,

you can use the StringBuffer class, which is a mutable string object.

StringBuffer sb = new StringBuffer("Hello");

This class has several methods to manipulate strings, including

append, delete, and insert:

sb.append(" World"); // add to end of string

sb.delete(0, 5); // remove 5 first characters

sb.insert(0, "Hello"); // insert string at beginning

Chapter 5 String

24

You can convert a StringBuffer object back into a regular string with

the toString method, which returns a string representation of the object.

It exists for every class in Java, because it’s defined by Object, which is

inherited by all classes.

String s = sb.toString();

�Text Blocks
A text block is a multi-line string delimited by three double quotes (""").

It provides a simplified way to write a string that spans more than one line

without having to specify escape characters, such as newlines or quotes.

String textBlock = """

line 1

line 2""";

The line break after the opening delimiter is mandatory, so a text block

must span more than one line. Any line break used within a text block will

automatically be interpreted as a newline character, so the previous text

block is equivalent to the following string:

String s = "line 1\nline 2";

Whitespace that indents one line of text relative to other lines will

be kept. However, any initial whitespace used to indent all lines will be

removed.

String html = """

 <div>

 <p>Hi</p>

 </div>""";

Chapter 5 String

25

This text block is therefore identical to the following string:

String html = "<div>\n <p>Hi</p>\n</div>";

Text blocks were introduced as a preview feature in Java 13 and

became a standard feature as of Java 15.

Chapter 5 String

27© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_6

CHAPTER 6

Arrays
An array is a fixed-size data structure used for storing a collection of values

of a single type.

�Array Declaration
To declare an array, a set of square brackets is appended to the data type

the array will contain, followed by the array’s name. Arrays can be declared

with any data type, and all of its elements must then be of that type.

int[] x;

Alternatively, the brackets may be placed after the array name.

However, this form is discouraged. Since the brackets affect the type, they

should appear next to the type.

int y[]; // discouraged form

�Array Allocation
The array is allocated with the new keyword, followed again by the data

type and a set of square brackets containing the length of the array—the

fixed number of elements the array can contain. Once the array is created,

the elements will automatically be assigned to the default values for that

data type, which is zero (0) in the case of an int array.

int[] y = new int[3]; // allocate 3 elements with value 0

https://doi.org/10.1007/978-1-4842-7371-5_6

28

�Array Assignment
To fill the array, elements can be referenced one at a time by placing the

element’s numerical index inside the square brackets and then assigning

them values. Notice that the index starts with zero.

y[0] = 1;

y[1] = 2;

y[2] = 3;

Alternatively, the values can be assigned all at once using a curly

bracket notation. The new keyword, data type, and square brackets may be

optionally left out if the array is declared at the same time.

int[] x = new int[] {1,2,3};

int[] x = {1,2,3};

Once the array elements are initialized, they can be accessed by

referencing the elements’ indexes inside the square brackets:

System.out.print(x[0] + x[1] + x[2]); // "6"

�Multidimensional Arrays
Multidimensional arrays are declared, created, and initialized like one-

dimensional arrays, except that they have additional square brackets. They

can have any number of dimensions, and for each dimension, another set

of square brackets is added.

String[][] x = {{"00","01"},{"10","11"}};

String[][] y = new String[2][2];

Chapter 6 Arrays

29

y[0][0] = "00";

y[0][1] = "01";

y[1][0] = "10";

y[1][1] = "11";

System.out.print(x[0][0] + x[1][1]); // "0011"

�ArrayList Class
Something important to keep in mind about arrays is that their length is

fixed and there’s no way to change their size. The size of an array can be

retrieved through the length member of the array.

Int[] x = new int[3];

int size = x.length; // 3

For cases when a resizable array is needed, the generic ArrayList<T>

class can be used, which is located in the java.util package. The data type

that this list will hold is specified inside the angle brackets (<>). Generic

classes will be looked at in more detail in later chapters.

import java.util.ArrayList;

// ...

// Create an ArrayList collection for strings

java.util.ArrayList<String> a = new java.util.ArrayList<>();

The ArrayList class has several useful methods to change the list,

such as add, set, and remove:

a.add("Hi"); // add an element

a.set(0, "Hello"); // change first element

a.remove(0); // remove first element

Chapter 6 Arrays

30

To retrieve an element from the ArrayList<T>, you use the get

method. The element then has to be explicitly cast back to its original type,

because it is stored internally as the Object type, which can to hold any

reference data type.

a.add("Hello World");

String s = (String)a.get(0); // Hello World

Chapter 6 Arrays

31© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_7

CHAPTER 7

Conditionals
Conditional statements are used to execute different code blocks based on

different conditions.

�If Statement
The if statement will only execute if the condition inside the parentheses

is evaluated to true. The condition can include any of the comparison and

logical operators.

int x = 1;

// ...

if (x == 1) {

 System.out.println(x + " = 1");

}

To test for other conditions, the if statement can be extended by any

number of else-if clauses. Each additional condition will only be tested if

all previous conditions are false.

else if (x > 1) {

 System.out.println(x + " > 1");

}

https://doi.org/10.1007/978-1-4842-7371-5_7

32

For handling all other cases, there can be one else clause at the end,

which executes if all previous conditions are false:

else {

 System.out.println(x + " < 1");

}

The curly brackets can be left out if only a single statement needs to be

executed conditionally. However, it is considered good practice to include

them since they improve code readability.

if (x == 1)

 System.out.println(x + " = 1");

else if (x > 1)

 System.out.println(x + " > 1");

else

 System.out.println(x + " < 1");

�Switch Statement
The switch statement checks for equality between a value and a series of

case labels. It then executes the matching case. The statement can contain

any number of cases and may end with a default label for handling all

other cases.

switch (x)

{

 case 0: System.out.println(x + " is 0"); break;

 case 1: System.out.println(x + " is 1"); break;

 default: System.out.println(x + " is something else");

}

Chapter 7 Conditionals

33

Note that the statements after each case label aren’t surrounded

by curly brackets. Instead, the statements end with the break keyword.

Without the break, the execution will fall through to the next case. This can

be useful if several cases need to be evaluated in the same way.

Any integer data type can be used with a switch statement, including

byte, short, int, and char. As of Java 7, the String type is also permitted.

String fruit = "apple";

switch (fruit)

{

 case "apple": System.out.println("apple"); break;

 default: System.out.println("not an apple");

}

�Switch Expression
The switch was extended with new preview features in Java 12 that became

standard features in Java 14. Consider the following switch which is used to

simulate an expression (code that evaluates to a value):

String result;

switch (x)

{

 case 1: result = "one"; break;

 case 2:

 case 3: result = "two or three"; break;

 default: result = "many";

}

Chapter 7 Conditionals

34

This code can be made more concise using the arrow label (->) instead

of the traditional case label. When using this form, only a single expression

or statement may appear after the arrow label, and each case may include

more than one constant, separated by commas. Arrow labels do not allow

fall-throughs so the break keyword is not used.

String result;

switch (x)

{

 case 1 -> result = "one";

 case 2, 3 -> result = "two or three";

 default -> result = "many";

}

This switch statement can be further simplified by turning it into a

switch expression. In this form, the switch will evaluate to the expression

that follows the matching case. Keep in mind that the default label then

becomes mandatory so that all possible input values result in a valid

expression.

String result = switch (x)

{

 case 1 -> "one";

 case 2, 3 -> "two or three";

 default -> "many";

};

If more than one expression is needed, a full code block can be

included. In such a block, the yield statement is used to specify the value

that the switch expression will evaluate to.

String result = switch (x)

{

 case 1 -> "one";

Chapter 7 Conditionals

35

 case 2, 3 -> "two or three";

 default -> {

 if (x == 4) yield "four";

 else yield "many";

 }

};

�Ternary Operator
The ternary operator (?:) can replace a single if-else clause with a value

to be returned. The operator takes three expressions. If the first one is

evaluated to true, then the second expression is returned, but if it’s false,

the third one is evaluated and returned. It is the only operator in Java

which accepts three operands.

x = (x < 0.5) ? 0 : 1; // ternary operator (?:)

This ternary statement is equivalent to the following if-else clause:

if (x < 0.5) { x = 0; }

else { x = 1; }

Chapter 7 Conditionals

37© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_8

CHAPTER 8

Loops
There are four looping structures in Java. They’re used to execute a specific

code block multiple times. As with the conditional if statement, the curly

brackets for the loops can be left out if there’s only one statement in the

code block.

�While Loop
The while loop runs through the code block only if the specified condition

is true and will continue looping for as long as the condition remains true.

The following loop will print out the numbers 0 to 4:

int i = 0;

while (i < 5) {

 System.out.print(i++); // "01234"

}

Note that the condition for the loop must evaluate to a boolean value.

This condition is checked only at the start of each iteration (loop).

https://doi.org/10.1007/978-1-4842-7371-5_8

38

�Do While Loop
The do while loop works the same way as the while loop, except that

it checks the condition after the code block. It will therefore always run

through the code block at least once.

int i = 0;

do {

 System.out.print(i++);

} while (i < 5); // "01234"

�For Loop
The for loop is used to go through a code block a specific number of times.

It uses three parameters. The first parameter initializes a counter and is

always executed once, before the loop. This counter variable is limited

in scope to the for loop and is not accessible after the loop. The second

parameter holds the condition for the loop and is checked before each

iteration. Lastly, the third parameter contains the increment of the counter

and is executed at the end of each iteration.

for (int i = 0; i < 5; i++) {

 System.out.print(i); // "01234"

}

Several variations of the for loop are possible. For instance, the first

and third parameters can be split into several statements using the comma

operator.

for (int k = 0, m = 0; k < 5; k++, m--) {

 System.out.print(k + m); // "00000"

}

Chapter 8 Loops

39

You also have the option of leaving out one or more of the parameters.

For example, the third parameter can be moved into the body of the loop.

for (int k = 0, m = 0; k < 5;) {

 System.out.print(k + m); // "00000"

 k++; m--;

}

�For Each Loop
The “for each” loop provides an easy way to iterate through arrays. On

each iteration, the next element in the array is assigned to the specified

variable, and the loop continues to execute until it has gone through the

entire array.

int[] array = { 1,2,3 };

for (int element : array) {

 System.out.print(element); // "123"

}

�Break and Continue
There are two special keywords that can be used inside loops: break and

continue. The break keyword ends the loop structure, and continue

skips the rest of the current iteration and continues at the beginning of

the next iteration.

for (int i = 0; i < 10; i++)

{

 if (i == 5) break; // end loop

 if (i == 3) continue; // start next iteration

 System.out.print(i); // "0124"

}

Chapter 8 Loops

40

To break out of a loop above the current one, that loop must first be

labeled by adding a name followed by a colon before it. With this label in

place, it can now be used as an argument to the break statement, telling it

which loop to break out of. This also works with the continue keyword in

order to skip to the next iteration of the named loop.

myLoop: for (int i = 0; i < 10; i++)

{

 for (int j = 0; j < 10; j++)

 {

 break myLoop; // end outer for loop

 }

}

�Labeled Block
A labeled block, also called a named block, is created by placing a label

before an anonymous code block. The break keyword can be used to

break out of such a block, just as in labeled loops. This could be useful, for

example, when performing a validation, where if one validation step fails,

the whole process must be aborted.

validation:

{

 if(true)

 break validation;

}

Labeled blocks can be useful for organizing a large method into

sections. In most cases, splitting the method up is a better idea. But if the

new method would require a lot of parameters, or if the method would

only be used from a single location, then one or more labeled blocks may

be preferable.

Chapter 8 Loops

41© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_9

CHAPTER 9

Methods
Methods are reusable code blocks that only execute when called.

�Defining Methods
You can create a method by typing a return type followed by the method’s

name, a set of parentheses, and a code block. The void keyword can

be used to specify that the method won’t return a value. The naming

convention for methods is the same as for variables—a descriptive name

with the first word in lowercase and the first letter of any subsequent words

capitalized.

class MyApp

{

 void myPrint()

 {

 System.out.println("Hello");

 }

}

https://doi.org/10.1007/978-1-4842-7371-5_9

42

�Calling Methods
The preceding method will simply print out a text message. To invoke (call)

it from the main method, an instance of the MyApp class must be created

first. The dot operator is then used after the instance’s name in order to

access its members, which include the myPrint method.

public static void main(String[] args)

{

 MyApp m = new MyApp();

 m.myPrint(); // "Hello"

}

�Method Parameters
The parentheses that follow the method name are used to pass arguments

to the method. To do that, the corresponding parameters must first be

added to the method declaration in the form of a comma-separated list.

void myPrint(String s)

{

 System.out.println(s);

}

A method can be defined to take any number of arguments, and they

can have any data types. Just ensure that the method is called with the

same types and number of arguments in the correct order.

public static void main(String[] args)

{

 MyApp m = new MyApp();

 m.myPrint("Hello"); // "Hello"

}

Chapter 9 Methods

43

To be precise, parameters appear in method definitions, whereas

arguments appear in method calls. However, the two terms are sometimes

mistakenly used interchangeably.

�Return Statement
A method can return a value. The void keyword is then replaced with the

data type the method will return, and the return keyword is added to the

method body with an argument of the specified return type.

public class MyApp

{

 String getString()

 {

 return "Hello";

 }

}

Return is a jump statement that causes the method to exit and return

the specified value to the place where the method was called. For example,

the preceding method can be passed as an argument to the println

method because the method evaluates to a string.

public static void main(String[] args)

{

 MyApp m = new MyApp();

 System.out.println(m.getString()); // "Hello"

}

Chapter 9 Methods

44

The return statement can also be used in void methods to exit before

the end block is reached. When used in this context, no return value is

specified.

void myPrint(String s)

{

 if (s == "") { return; } // skip if string is empty

 System.out.println(s);

}

�Method Overloading
It’s possible to declare multiple methods with the same name as long

as the parameters vary in type or number. Called method overloading,

this can, for example, be seen in the implementation of the System.out.

println method. It’s a powerful feature that allows a method to handle a

variety of arguments without the programmer needing to be aware of using

different methods.

void myPrint(String s)

{

 System.out.println(s);

}

void myPrint(int i)

{

 System.out.println(i);

}

Chapter 9 Methods

45

�Passing Arguments
Java is different from many other languages in that all method parameters

are passed by value. In fact, they can’t be passed by reference. For value

data types (primitive types), that means only a local copy of the variable

is changed within the method, so the change won’t affect the original

variable. For reference data types (classes, interfaces, and arrays), it means

only a copy of the memory address is passed to the method. Therefore, if

the entire object is replaced, the change won’t propagate back to the caller,

but changes to the object will affect the original since the copy points to

the same memory location.

public class MyApp

{

 public static void main(String[] args)

 {

 MyApp m = new MyApp();

 int x = 0; // value data type

 m.set(x); // value is passed

 System.out.println(x); // "0"

 int[] y = {0}; // reference data type

 m.set(y); // address is passed

 System.out.println(y[0]); // "10"

 }

 void set(int a) { a = 10; }

 void set(int[] a) { a[0] = 10; }

}

Chapter 9 Methods

47© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_10

CHAPTER 10

Class
A class is a template used to create objects. Classes are made up of

members, the main two of which are fields and methods. Fields are

variables that hold the state of the object, whereas methods define what the

object can do—the so-called behaviors of the object.

class MyRectangle

{

 int x, y;

 int getArea() { return x * y; }

}

�Object Creation
To access a (non-static) field or method from outside the defining class, an

object of the class must first be created. That’s done using the new keyword,

which will create a new object in the system’s memory.

public class MyApp

{

 public static void main(String[] args)

 {

 // Create an object of MyRectangle

 MyRectangle r = new MyRectangle();

 }

}

https://doi.org/10.1007/978-1-4842-7371-5_10

48

An object is also called an instance. The object will contain its own set

of instance variables (non-static fields), which can hold values that are

different from those of other instances of the class.

�Accessing Object Members
In addition to creating the object, the members of the class that are to be

accessible beyond their package need to be declared as public in the class

definition.

class MyRectangle

{

 public int x, y;

 public int getArea() { return x * y; }

}

The members of this object can now be reached by using the dot

operator after the instance name:

public class MyApp

{

 public static void main(String[] args)

 {

 MyRectangle r = new MyRectangle();

 r.x = 10;

 r.y = 5;

 int area = r.getArea(); // 50 (5*10)

 }

}

Chapter 10 Class

49

�Constructor
A class can have a constructor, a special kind of method used to instantiate

(construct) the object. It always has the same name as the class and

doesn’t have a return type, since it implicitly returns a new instance of the

class. To be accessible from another class not in its package, it needs to

be declared with the public access modifier. When a new instance of the

MyRectangle class is created using the new syntax, the constructor method

is called, which in the following example sets the fields to the specified

default values.

class MyRectangle

{

 int x, y;

 public MyRectangle() { x = 10; y = 20; }

}

The constructor can have a parameter list, like any other method. As

shown in the following code, this can be used to make the fields’ initial

values depend on the parameters passed when the object is created.

class MyRectangle

{

 int x, y;

 public MyRectangle(int a, int b) { x = a; y = b; }

}

public class MyApp

{

 public static void main(String[] args)

 {

 MyRectangle r = new MyRectangle(20, 15);

 }

}

Chapter 10 Class

50

�This Keyword
Inside the constructor, as well as in other methods belonging to the object,

a special keyword called this can be used. The this keyword is a reference

to the current instance of the class. If, for example, the constructor’s

parameters have the same names as the corresponding instance variables,

then the instance variables could still be accessed by using the this

keyword, even though they’re overshadowed by the parameters.

class MyRectangle

{

 int x, y;

 public MyRectangle(int x, int y)

 {

 this.x = x;

 this.y = y;

 }

}

�Constructor Overloading
To support different parameter lists, the constructor can be overloaded. In

the following example, if the class is instantiated without any parameters,

the fields will be assigned the specified default values. With one parameter,

both fields will be set to the supplied value, and with two parameters, each

field will be assigned a separate value.

class MyRectangle

{

 int x, y;

 public MyRectangle() { x = 10; y = 20; }

Chapter 10 Class

51

 public MyRectangle(int a) { x = a; y = a; }

 public MyRectangle(int a, int b) { x = a; y = b; }

}

Attempting to create an object with the wrong number of arguments

or with incorrect data types will result in a compile-time error, just as with

any other method.

�Constructor Chaining
You can also use the this keyword to call one constructor from another.

Known as constructor chaining, this allows for greater code reuse. Note that

the keyword appears as a method call and that it must be on the first line in

the constructor.

public MyRectangle() { this(10, 20); }

public MyRectangle(int a) { this(a, a); }

public MyRectangle(int a, int b) { x = a; y = b; }

�Initial Field Values
If there are fields in the class that need to be assigned default values, such

as in the first constructor just shown, the fields can simply be assigned at

the same time as they are declared. These initial values will be assigned

before the constructor is called.

class MyRectangle

{

 int x = 10, y = 20;

}

Chapter 10 Class

52

�Default Constructor
It’s possible to create a class even if no constructors are defined.

That’s because the compiler will then automatically create a default

parameterless constructor.

public class MyApp

{

 public static void main(String[] args)

 {

 // Default constructor used

 MyApp a = new MyApp();

 }

}

If any custom constructor is defined, the default parameterless

constructor will not be added by the compiler.

�Null
The built-in constant null is used to represent an uninitialized object. It

can only be assigned to objects and not to variables of primitive types. The

equal-to operator (==) can be used to test whether an object is null.

String s = null;

// ...

if (s == null) s = new String();

Chapter 10 Class

53

�Default Values
The default value of an object is null. For primitive data types, the

default values are as follows: integer types become 0, floating-point

types become 0.0, a char has the Unicode character for zero (\0000),

and a Boolean is false. Default values will be automatically assigned

by the compiler, but only for fields and not for local variables. However,

explicitly specifying the default value for fields is considered good

programming because it makes the code easier to understand. For local

variables, the default values aren’t set by the compiler. Instead, the

compiler forces the programmer to assign values to any local variables

that are used so as to avoid problems associated with mistakenly using

unassigned variables.

public class MyApp

{

 int x; // field is assigned default value 0

 int dummy() {

 int x; // local variable must be assigned if used

 }

}

�Garbage Collector
The Java runtime environment has a garbage collector that periodically

releases the memory used by objects when they’re no longer needed.

This frees the programmer from the often tedious and error-prone task

of memory management. An object will be eligible for destruction when

there are no more references to it. This occurs, for example, when the

object goes out of scope. An object can also be explicitly dropped by

setting its references to null.

Chapter 10 Class

54

public class MyApp

{

 public static void main(String[] args)

 {

 MyApp a = new MyApp();

 // Make object available for garbage collection

 a = null;

 }

}

Chapter 10 Class

55© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_11

CHAPTER 11

Static
The static keyword is used to create fields and methods that can be

accessed without having to make an instance of the class. Static (class)

members only exist in one copy, which belongs to the class itself, whereas

instance (non-static) members are created as new copies for each new

object. That means static methods can’t use instance members because

these methods aren’t part of an instance. On the other hand, instance

methods can use both static and instance members.

class MyCircle

{

 float r = 10; // instance field

 static float pi = 3.14F; // static/class field

 // Instance method

 float getArea() { return newArea(r); }

 // Static/class method

 static float newArea(float a) { return pi*a*a; }

}

https://doi.org/10.1007/978-1-4842-7371-5_11

56

�Accessing Static Members
To access a static member from outside the class, the class name is used

followed by the dot operator. This operator is the same as the one used

to access instance members, but to reach them, an object reference is

required. Trying to access a static member by using an object reference

(instead of the class name) will result in a warning since this makes it more

difficult to see that a static member is being used.

public static void main(String[] args)

{

 float f = MyCircle.pi;

 MyCircle c = new MyCircle();

 float g = c.r;

}

�Static Methods
The advantage of static members is that they can be used by other classes

without having to create an instance of the class. Fields should therefore

be declared static when only a single instance of the variable is needed.

Methods should be declared static if they perform a generic function that’s

independent of any instance variables. A good example of this is the Math

class which contains only static methods and fields.

double pi = Math.PI;

Math is one of the classes that’s included by default in every Java

application, because it belongs to the java.lang package, which is always

imported. This package contains classes fundamental to the Java language,

such as String, Object, and System.

Chapter 11 Static

57

�Static Fields
Static fields have the advantage of persisting throughout the life of the

application. That means they can be used, for example, to record the

number of times a method has been called across all instances of the class.

The initial value for a static field will only be set once, sometimes before

the class or field is ever used.

class MyCircle

{

 static void foo() { count++; }

 static int count = 0;

}

�Static Initialization Blocks
A static initialization block can be used if the initialization of static fields

requires more than one line or some other logic. This block, in contrast to

the constructor, will only be run once, at the same time as the static fields

are initialized.

class MyClass

{

 static int[] array = new int[5];

 // Static initialization block

 static

 {

 int i = 0;

 for(int element : array)

 element = i++;

 }

}

Chapter 11 Static

58

�Instance Initialization Blocks
An initialization block provides an alternative method for assigning

instance fields. This block is placed on the class level, just like the static

initialization block, but without the use of the static keyword. Any code

placed between the brackets will be copied to the start of every constructor

by the compiler.

class MyClass

{

 int[] array = new int[5];

 // Initialization block

 {

 int i = 0;

 for(int element : array) element = i++;

 }

}

A class can have multiple instance initialization and static

initialization blocks.

Chapter 11 Static

59© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_12

CHAPTER 12

Inheritance
Inheritance allows a class to acquire the members of another class. In the

following example, Apple inherits from Fruit. This is specified with the

extends keyword. Fruit then becomes the superclass of Apple, which in

turn becomes a subclass of Fruit. In addition to its own members, Apple

gains all accessible members in Fruit, except for any constructors.

// Superclass (parent class)

class Fruit

{

 public String flavor;

}

// Subclass (child class)

class Apple extends Fruit

{

 public String variety;

}

A class in Java may only inherit from one superclass, and if no class is

specified, it will implicitly inherit from Object. Therefore, Object is the

root class of all classes.

// Same as class MyClass {}

class MyClass extends Object {}

https://doi.org/10.1007/978-1-4842-7371-5_12

60

�Upcasting
Conceptually, a subclass is a specialization of the superclass. This means

that Apple is a kind of Fruit, as well as an Object, and can therefore be

used anywhere a Fruit or Object is expected. For example, if an instance

of Apple is created, it can be upcast to Fruit because the subclass contains

everything in the superclass.

Apple a = new Apple();

Fruit f = a;

Through this variable, the Apple is seen as a Fruit, so only the Fruit

members can be accessed:

f.flavor = "Sweet";

�Downcasting
When the class is downcast back into an Apple, the fields that are

specific to Apple will have been preserved. That’s because the Fruit only

contained the Apple—it didn’t convert it to an Apple. The downcast has to

be made explicitly using the Java casting format because downcasting an

actual Fruit object into an Apple isn’t allowed.

Apple b = (Apple)f;

�Instanceof Operator
As a safety precaution, you can make a test during runtime to see whether

an object can be cast to a specific class by using the instanceof operator.

This operator returns true if the left side object can be cast into the right

side type without causing an exception.

Chapter 12 Inheritance

61

if (f instanceof Apple)

{

 Apple myApple = (Apple)f;

 // use myApple here

}

It is common to use the instanceof operator like this, where the

condition check is followed by a type cast. For this reason, a more concise

syntax was added where the assigned variable is included in the condition.

The scope of the variable is limited to the conditional block only.

if (f instanceof Apple myApple)

{

 // use myApple here

}

This is part of the pattern matching feature of the instanceof operator,

which became a preview feature in Java 14 and then a standard feature in

Java 16. The operator was extended to take not just a type but to also allow

a type to be extracted and tested within a single expression.

class Speed

{

 public int velocity = 10;

}

public class MyApp

{

 public static void main(String[] args) {

 Object o = new Speed();

 // ...

 if ((o instanceof Speed s) && (s.velocity > 5)) {

 System.out.println("Speed is " + s.velocity);

 }

}

Chapter 12 Inheritance

62

�Pattern Matching Switch
Java 17 added pattern matching for switch statements and expressions as

a preview feature. This extends switch to work with any type pattern, and

not just numeric, String, and enum types as was previously the case. When

using case labels with patterns, the selection is determined by pattern

matching rather than by an equality check. In the following code, the value

of the object variable matches the Long pattern, and the code associated

with that case will be executed.

Object o = 5L; // L suffix means Long type

String myType = switch(o)

{

 case null -> "null";

 case Integer i -> "integer is " + i;

 case Long l -> "long is " + l;

 default -> o.toString();

}

System.out.println(myType) // "long is 5"

�Restricting Inheritance
A class can be declared as final to prevent any class from inheriting it:

// Cannot be inherited

final class Fruit {}

A less restrictive method is to use the sealed modifier to only allow

inheritance by certain classes. These classes are specified in a comma-

separated permits clause placed to the right of any extends clause.

// Can be inherited only by Apple or Orange

sealed class Fruit permits Apple, Orange {}

Chapter 12 Inheritance

63

Permitted classes that inherit from a sealed class must in turn be

declared as non-sealed, sealed, or final. A non-sealed class may be

inherited by any class, whereas a final class allows for no more subclasses.

// Can be inherited by any class

non-sealed class Lemon extends Fruit{}

// Can be inherited only by RedDelicious class

sealed class Apple extends Fruit permits RedDelicious{}

// Cannot be inherited

final class Orange extends Fruit {}

Sealed classes were added as a preview feature in Java 15. Both

the sealed and final modifiers may also be applied to interfaces and

abstract classes.

Chapter 12 Inheritance

65© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_13

CHAPTER 13

Overriding
A member in a subclass can redefine a member in its superclass. This is

most often done to give instance methods new implementations.

�Overriding Methods
In the following example, Rectangle’s getArea method is overridden in

Triangle by redeclaring it there with the same method signature. The

signature includes the name, parameters, and return type of the method.

However, the access level may be changed to allow for more access than

the method being overridden.

class Rectangle

{

 public int w = 10, h = 10;

 public int getArea() { return w * h; }

}

class Triangle extends Rectangle

{

 public int getArea() { return w * h / 2; }

}

https://doi.org/10.1007/978-1-4842-7371-5_13

66

�Override Annotation
To show that this override was intentional, the @Override annotation

should be placed before the method. This annotation was added in Java 5

to prevent accidental overrides and to improve readability. The compiler

will also give a warning if the annotated method doesn’t actually override

anything, which can occur if the signature does not match the method in

the parent class.

class Triangle extends Rectangle

{

 @Override

 public int getArea() {

 return w * h / 2;

 }

}

Invoking the getArea method from a Triangle instance will call

Triangle’s version of the method:

Triangle o = new Triangle();

o.getArea(); // (50) calls Triangle's version

If Triangle’s instance is upcast into Rectangle, then Triangle’s

version of the method will still get called because Rectangle’s version has

been overridden:

Rectangle o = new Triangle();

o.getArea(); // (50) calls Triangle's version

Chapter 13 Overriding

67

�Hiding Methods
This is only true for instance methods—not for class (static) methods.

If a class method called newArea is added to Rectangle and redefined

in Triangle, then Triangle’s version of the method will only hide

Rectangle’s implementation. Because of this, the @Override annotation

isn’t used.

class Rectangle

{

 public int w = 10, h = 10;

 public static int newArea(int a, int b) {

 return a * b;

 }

}

class Triangle extends Rectangle

{

 public static int newArea(int a, int b) {

 return a * b / 2;

 }

}

Calling newArea from Triangle’s class will, as expected, invoke

Triangle’s version, but calling the method from Rectangle’s class will

invoke Rectangle’s implementation:

Triangle o = new Triangle();

Triangle.newArea(10,10); // (50) calls Triangle's version

Rectangle r = o;

Rectangle.newArea(10,10); // (100) calls Rectangle's version

Chapter 13 Overriding

68

Redefined instance methods will always be overridden in Java, and

redefined class methods will always be hidden. There’s no way to change

this behavior, as can be done in C++ or C#, for example.

�Hiding Fields
Fields cannot be overridden in Java, but they can be hidden by declaring

a field with the same name as an inherited field. The type of the field and

its access level can be different from the inherited field. It is generally not

advisable to hide fields, as it makes the code more difficult to read.

class Rectangle

{

 public int w = 10, h = 10;

}

class Triangle extends Rectangle

{

 public int w = 5, h = 5; // hide inherited fields

}

public class MyApp

{

 public static void main(String args[]) {

 Triangle t = new Triangle();

 Rectangle r = t;

 System.out.println(t.w); // "5"

 System.out.println(r.w); // "10"

 }

}

Chapter 13 Overriding

69

�Accessing Redefined Members
An overridden method (or hidden instance field) can still be accessed from

inside the subclass using the super keyword. This keyword is a reference to

the current instance of the superclass.

class Triangle extends Rectangle

{

 @Override

 public int getArea() {

 return super.getArea() / 2;

 }

}

�Calling Parent Constructor
Another place where the super keyword can be used is on the first line

of a constructor. There it can perform a method call that invokes the

superclass’s constructor.

public Triangle(int a, int b) { super(a,b); }

If the first line of a constructor isn’t a call to another constructor,

the Java compiler will automatically add a call to the superclass’s

parameterless constructor. That ensures that all ancestor classes are

properly constructed.

public Triangle() { super(); }

Chapter 13 Overriding

71© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_14

CHAPTER 14

Packages and Import
Packages are used to avoid naming conflicts and to organize code files into

different directories. So far in this book, the code file has been located at

the root of the project’s source directory and has therefore belonged to the

so-called default package. In Java, the directory a file belongs to, relative to

the project’s source directory, corresponds to the package name.

To assign a code file to a package—for example, mypackage—it

must be moved to a folder by that name, under the project directory.

Furthermore, the file must specify which package it belongs to using the

package keyword followed by the package name (and path). There may

only be one package statement in each source file, and it must be the first

line of code, except for any comments. Note that the naming convention

for packages is all lowercase.

// This file belongs to mypackage

package mypackage;

Packages may be any number of directory levels deep, and the levels in

the hierarchy are separated by dots. For example, if the mypackage folder

containing the code file is placed in a project folder called sub, the package

declaration would need to look like this.

package sub.mypackage;

https://doi.org/10.1007/978-1-4842-7371-5_14

72

�Accessing Packages
To illustrate how to access package members, a file named MyClass.java is

placed in the sub\mypackage folder under the project’s source directory.

The file contains a single public class called MyClass.

package sub.mypackage;

public class MyClass {}

MyClass can be accessed from another source file in one of two ways.

The first way is to type the fully qualified name.

// Fully qualified class name

sub.mypackage.MyClass m;

The second option is to shorten the fully qualified name by including

the class with the import keyword. An import statement must be located

after the package declaration statement and before all other members in

the code file. It has no other purpose than to free the programmer from

having to type the fully qualified name.

import mypackage.sub.MyClass;

// ...

MyClass m;

In addition to importing a specific class, all types (classes or interfaces)

inside of a package can be imported by using an asterisk (*). Note that this

doesn’t import any subpackages.

import java.util.*;

Chapter 14 Packages and Import

73

A third variation of the import statement is the static import, which

imports all static members of a class. Once the static members are

imported, they can be used without having to specify the class name.

import static java.lang.Math.*;

// ...

double pi = PI; // Math.PI

Chapter 14 Packages and Import

75© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_15

CHAPTER 15

Modules
A module is a reusable group of related packages and resource files

together with a module descriptor file. They should be self-sufficient and

only expose interfaces to use the module’s functionality.

�Creating a Module
NetBeans has a special project type for managing multiple modules.

To create such a project, go to File ➤ New Project, and from there, select

Java Modular Project under the Java with Ant category. Click Next,

and give the project the name MyModules, and click Finish to create

the project. Go ahead and add a module named “firstmodule” to this

project by right-clicking the MyModules item in the Projects window and

selecting New ➤ Module.

As can be seen in the Projects window, a module has a special file

named module-info.java. This module descriptor file must be located in

the root folder of the packages that will be compiled into a module. Inside

the file is a module descriptor, which consists of the module keyword

followed by the name of the module and a set of curly brackets.

module firstmodule {

}

https://doi.org/10.1007/978-1-4842-7371-5_15

76

Next, let’s create a package with a class to include in this module.

Right-click the “firstmodule” item in the Project window, and select New

➤ Java Class. Give it the name util.MyClass to automatically place it in a

new Package called util. The package is mandatory since placing files other

than the module descriptor in the default package (top-level directory)

is not allowed in modules. Type the following code sample into the new

source file:

// util.MyClass.java

package util;

public class MyClass {

 public static void sayHi() {

 System.out.println("Hello Module");

 }

}

Go back to the module descriptor file, and add an export statement for

the util package using the exports keyword followed by the fully qualified

package name (firstmodule.util). This will make the package visible to any

other modules that are using this module. Any other packages, including

subpackages, which are not explicitly exported will be inaccessible from

outside of the module.

module firstmodule {

 exports firstmodule.util; // make package visible

}

Chapter 15 Modules

77

�Using a Module
We will now create a second module to make use of the first module. Add a

new module to the project called secondmodule. In its module descriptor

file, import firstmodule to make its exported package visible within this

new module.

module secondmodule {

 requires firstmodule; // import module

}

Add a class called app.MyApp to the module, so the class file gets

placed in a package called app. Include the following code inside this file

which makes use of the util package exposed from the first module:

// app.MyApp.java

package app;

public class MyApp {

 public static void main(String[] args) {

 util.MyClass.sayHi(); // "Hello Module"

 }

}

This is all the code needed to make the second module use the

functionality exposed by the first module. Compile and run the project to

have the main method call the function from the imported module, which

displays the “Hello Module” text string.

Chapter 15 Modules

79© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_16

CHAPTER 16

Access Levels
There are four access levels available in Java: public, protected, private,

and package-private. Package-private isn’t explicitly declared using a

keyword. Instead, it’s the default access level for every member in Java.

public int myPublic; // unrestricted access

protected int myProtected;// package or subclass access

 int myPackage; // package access

private int myPrivate; // class access

�Private Access
All members, regardless of access level, are accessible in the class in which

they are declared—the containing class. This is the only place where a

private member can be accessed.

package mypackage;

public class MyApp

{

 public int myPublic;

 protected int myProtected;

 int myPackage;

 private int myPrivate;

https://doi.org/10.1007/978-1-4842-7371-5_16

80

 void test()

 {

 myPublic = 0; // allowed

 myProtected = 0; // allowed

 myPackage = 0; // allowed

 myPrivate = 0; // allowed

 }

}

�Package-Private Access
Package-private members can be accessed anywhere within the

containing package, but not from another package:

package mypackage;

public class MyClass

{

 void test(MyApp m)

 {

 m.myPublic = 0; // allowed

 m.myProtected = 0; // allowed

 m.myPackage = 0; // allowed

 m.myPrivate = 0; // inaccessible

 }

}

Chapter 16 Access Levels

81

�Protected Access
Protected members are accessible within subclasses and within the

containing package. In the following code, the protected member can be

accessed because MyChild it is a subclass of MyApp which defines that

member:

package newpackage;

import mypackage.MyApp;

public class MyChild extends MyApp

{

 void test()

 {

 myPublic = 0; // allowed

 myProtected = 0; // allowed (in subclass)

 myPackage = 0; // inaccessible

 myPrivate = 0; // inaccessible

 }

}

Note that in addition to subclasses, protected members are also

accessible anywhere within the containing package. This behavior is

different from other languages, such as C++ and C#, where protected

members are only accessible from subclasses and the containing class.

package mypackage;

public class MyTest

{

 void test(MyApp m)

 {

 m.myPublic = 0; // allowed

 m.myProtected = 0; // allowed (same package)

Chapter 16 Access Levels

82

 m.myPackage = 0; // inaccessible

 m.myPrivate = 0; // inaccessible

 }

}

�Public Access
The public modifier gives unrestricted access from anywhere the member

can be referenced:

package newpackage;

import mypackage.MyApp;

public class MyClass

{

 void test(MyApp m)

 {

 m.myPublic = 0; // allowed

 m.myProtected = 0; // inaccessible

 m.myPackage = 0; // inaccessible

 m.myPrivate = 0; // inaccessible

 }

}

Chapter 16 Access Levels

83

�Top-Level Access
Members declared directly in the package—top-level members—may only

choose between package-private and public access. For instance, a top-level

class without an access modifier will default to package-private. Such a class

will only be accessible within the containing package. In contrast, a top-level

class explicitly declared as public can be reached from other packages as well.

// Accessible only from containing package

class PackagePrivateClass {}

// Accessible from any package

public class PublicClass {}

�Nested Class Access
Java allows classes to be defined within other classes, and these are called

nested classes. Such a class can have any one of the four access levels. If a

nested class is made inaccessible, it can’t be instantiated or inherited.

public class MyClass

{

 // Only accessible within MyClass

 private class PrivateNestedClass {}

}

Keep in mind that nested members can be restricted by both their own

access level and that of the containing class. For instance, a public nested class

inside of a package-private class won’t be accessible from other packages.

class MyClass

{

 // Only accessible within containing package

 public class PrivateNestedClass {}

}

Chapter 16 Access Levels

84

�Access-Level Guideline
As a guideline, when choosing an access level, it’s generally best to use

the most restrictive level possible. That’s because the more places a

member can be accessed, the more places it can be accessed incorrectly,

which makes the code harder to debug. Using restrictive access levels also

makes it easier to modify the class without breaking the code for any other

developers using that class.

Chapter 16 Access Levels

85© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_17

CHAPTER 17

Constants
A variable in Java can be made into a constant by adding the final

keyword before the data type. This modifier means that the variable can’t

be reassigned once it’s been set, and any attempts to do so will result in a

compile-time error.

�Local Constants
A local variable can instead be declared as a constant by applying the final

keyword. Such a constant must always be initialized at the same time as it’s

declared. The Java naming convention for constants is to use all uppercase

letters and to separate words with underscores.

final double PI = 3.14;

�Constant Fields
Class and instance variables can be declared as final, as seen in the

following example:

class MyClass

{

 final double E = 2.72;

 static final double C = 3e8;

 final static double D = 1.23; // alternative order

}

https://doi.org/10.1007/978-1-4842-7371-5_17

86

In contrast to local constants, constant fields don’t have to be assigned

at declaration. A constant instance field can optionally be assigned in

a constructor or an instance initialization block, whereas a constant

static field may be assigned by using a static initialization block. These

alternative assignments can be useful if the constant’s value needs to be

calculated and doesn’t fit on a single code line.

class MyClass

{

 final double E;

 final double PI;

 static final double C;

 public MyClass() { E = 2.72; }

 { PI = 3.14; }

 static { C = 3e8; }

}

�Constant Method Parameters
Another place where the final modifier may be applied is to method

parameters to make them unchangeable. Doing so provides a signal to

other developers that the method won’t modify the argument passed to it.

void f(final String A) {}

�Compile-Time and Runtime Constants
Like most other languages, Java has both compile-time and runtime

constants. However, only class constants can be compile-time constants in

Java and only if their value is known at compilation. All other uses of final

will create runtime constants. With compile-time constants, the compiler

Chapter 17 Constants

87

will replace the constant name everywhere in the code with its value.

These are therefore faster than runtime constants, which aren’t set until

the program is run. Runtime constants, though, can be assigned dynamic

values that can be different from one program run to the next.

class MyClass

{

 // Compile-time constant (static and known at compile-time)

 final static double C = 3e8;

 // Run-time constant (not static)

 final double E = 2.72;

 // Run-time constant (not known at compile-time)

 final static int RND = (new

 java.util.Random()).nextInt();

}

�Constant Guideline
In general, it’s a good idea to always declare variables as final, and

constant fields as static final, if they don’t need to be reassigned. That

ensures that the fields and variables won’t be changed anywhere in the

program by mistake, which in turn helps prevent bugs.

Chapter 17 Constants

89© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_18

CHAPTER 18

Interface
The interface type is used to specify methods that classes using the

interface must implement. These methods are created with the interface

keyword followed by a name and a code block. Their naming convention is

the same as for classes, with the first letter of each word capitalized.

interface MyInterface {}

When an interface isn’t nested inside another type, its access level can

be either package-private or public, just like any other top-level member.

�Interface Members
The code block for an interface can, first of all, contain signatures for

instance methods. These methods don’t have any implementations.

Instead, their bodies are replaced by semicolons. Interface members have

public access by default, so this modifier can be left out.

interface MyInterface {

 int myMethod(); // method signature

}

https://doi.org/10.1007/978-1-4842-7371-5_18

90

The second member that an interface can contain is constants. Any

field created in an interface will be implicitly declared as static final, so

these modifiers can also be left out.

interface MyInterface {

 int c = 10; // constant

}

In addition to method signatures and constants, an interface can also

contain nested containing types, such as classes or other interfaces:

interface MyInterface

{

 // Types

 class Class {}

 interface Interface {}

 enum Enum {}

}

�Interface Example
The following example shows an interface called Comparable, which has a

single method named compare:

interface Comparable

{

 int compare(Object o);

}

Chapter 18 Interface

91

The following class implements this interface using the implements

keyword after the class name. By convention, the implements clause is

placed after the extends clause if the class has one. Note that although a

class can only inherit from one superclass, it may implement any number

of interfaces by specifying them in a comma-separated list.

class Circle implements Comparable

{

 public int r;

 // ...

}

Because Circle implements Comparable, it must define the compare

method. For this class, the method will return the difference between the

circle radiuses. The implemented method must be public and must have

the same signature as the method defined in the interface.

class Circle implements Comparable

{

 public int r;

 @Override

 public int compare(Object o) {

 return r - ((Circle)o).r;

 }

}

�Functionality Interface
Comparable demonstrates the first use of interfaces, which is to define a

specific functionality that classes can share. It makes it possible to use

the interface members without having to know the actual type of a class,

a concept called polymorphism. To illustrate, the next example shows a

Chapter 18 Interface

92

simple method that takes two Comparable objects and returns the largest

one. This method will work for any class that implements the Comparable

interface because the method only uses the functionality exposed through

that interface.

public static Object largest(Comparable a, Comparable b)

{

 return (a.compare(b) > 0) ? a : b;

}

�Class Interface
A second way to use an interface is to provide an actual interface for a

class, through which the class can be used. The following example defines

an interface for MyClass called MyInterface. This interface only includes

the functionality that programmers using MyClass may need.

interface MyInterface

{

 void exposed();

}

class MyClass implements MyInterface

{

 @Override

 public void exposed() {}

 public void hidden() {}

}

Chapter 18 Interface

93

The interface type is then used to hold the implementing class, so the

class is only seen through this interface:

public static void main(String[] args)

{

 MyInterface i = new MyClass();

}

This abstraction provides two benefits. First, it makes it easier

for other programmers to use the class because they now only have

access to the methods that are relevant. Second, it makes the class

more flexible because its implementation can change, without being

noticeable by other programmers using the class, as long as the

interface is followed.

�Interface Classes
As mentioned, an interface can contain nested types, such as classes. In

contrast to methods, these types are implemented inside the interface.

This can, for example, be used to provide a class that contains static

methods useful for implementing classes. These nested types are only

visible to classes implementing the interface and not to objects of those

classes.

interface MyInterface

{

 class HelperClass {

 public static void helperMethod() {}

 }

}

Chapter 18 Interface

94

�Default Interface Methods
Java 8 added the ability to define default methods in interfaces. Such a

method is specified using the default keyword and can then include an

implementation inside the interface.

interface MyInterface

{

 default void defaultMethod() {

 System.out.println("default");

 }

}

A default method will be used unless it’s overridden by an

implementing class. This provides a backward-compatible way to add

new methods to an interface without breaking existing classes that use the

interface.

public class MyApp implements MyInterface

{

 public static void main(String[] args) {

 MyInterface i = new MyApp();

 i.defaultMethod(); // "default"

 }

}

�Static Interface Methods
Another feature introduced in Java 8 was static interface methods. Similar

to static class methods, these methods belong to the interface and can only

be called from an interface context.

Chapter 18 Interface

95

interface MyInterface

{

 public static void staticMethod() {

 System.out.println("static");

 }

}

class MyApp

{

 public static void main(String[] args) {

 MyInterface.staticMethod(); // "static"

 }

}

As of Java 9, static interface methods can have private access. This

enables lengthy default interface methods to be split across private static

interface methods, which allows for less code duplication.

interface MyInterface

{

 private static String getString() {

 return "string";

 }

 default void printString() {

 System.out.println(getString());

 }

}

Chapter 18 Interface

97© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_19

CHAPTER 19

Abstract
An abstract class provides a partial implementation that other classes can

build upon. When a class is declared abstract, it means it can contain

incomplete methods that must be implemented in subclasses, in addition

to normal class members. These methods are left unimplemented and only

specify their signatures, while their bodies are replaced by semicolons.

abstract class Shape

{

 public int x = 100, y = 100;

 public abstract int getArea();

}

�Abstract Class Example
If a class called Rectangle inherits from the abstract class Shape,

Rectangle is then forced to override the abstract getArea method. The

only exception is if Rectangle is also declared abstract, in which case it

doesn’t have to implement any abstract methods.

class Rectangle extends Shape

{

 @Override public int getArea() {

 return x * y;

 }

}

https://doi.org/10.1007/978-1-4842-7371-5_19

98

An abstract class can’t be instantiated, but it can be used to hold

instances of its subclasses:

public class MyApp

{

 public static void main(String[] args) {

 Shape s = new Rectangle();

 }

}

Even though an abstract class can’t be instantiated, it may have

constructors, which can be called from the subclass’s constructors using

the super keyword:

abstract class Shape

{

 public int x = 100, y = 100;

 public Shape(int a, int b) {

 x = a;

 y = b;

 }

}

class Rectangle extends Shape

{

 public Rectangle(int a, int b) {

 super(a,b);

 }

}

Chapter 19 Abstract

99

public class MyApp

{

 public static void main(String[] args) {

 Rectangle s = new Rectangle(5, 10);

 }

}

�Abstract Classes and Interfaces
Abstract classes are similar to interfaces in many ways. They can both

define method signatures that subclasses must implement, and neither

one of them can be instantiated. One key difference is that an abstract class

can contain any abstract or non-abstract member, whereas an interface is

limited to abstract members, nested types, and static constants, as well as

static methods, default methods, and private methods. Another difference

is that a class can implement any number of interfaces but only inherit

from one class, abstract or not.

An interface is either used to define a specific functionality that

a class can have or to provide an interface for other developers using

a class. In contrast, an abstract class is used to provide a partial class

implementation, leaving it up to subclasses to complete it. This is useful

when subclasses have some functionality in common but also have some

functionality that must be implemented differently for each subclass.

Chapter 19 Abstract

101© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_20

CHAPTER 20

Enum
An enumeration, or enum, is a type that consists of a fixed list of named

constants. To create one, the enum keyword is used followed by a name

and a code block containing a comma-separated list of constant elements.

The access level for an enum is the same as for a class. Package-private by

default, but it can also be set to public if it’s declared in a file of the same

name. As with classes, an enum can also be contained within a class,

where it can then be set to any access level.

enum Speed

{

 STOP, SLOW, NORMAL, FAST

}

An object of the enum type just shown can hold any one of the four

defined constants. The enum constants are accessed as if they were static

fields of a class.

Speed s = Speed.SLOW;

The switch statement provides a good example of when an

enumeration can be useful. Compared to using ordinary constants, an

enum has the advantage of allowing the programmer to clearly specify

https://doi.org/10.1007/978-1-4842-7371-5_20

102

what constant values are allowed. This provides compile-time type safety.

Note that when using an enum in a switch statement, the case labels

aren’t qualified with the name of the enum.

public class MyApp

{

 public static void main(String args[]) {

 Speed s = Speed.NORMAL;

 // ...

 switch(s) {

 case STOP: break;

 case SLOW: break;

 case NORMAL: break;

 case FAST: break;

 }

 }

}

�Enum Class
In Java, the enum type is more powerful than its counterparts in other

languages, such as C++ or C#. Essentially a special kind of class, it can

include anything a class can include. To add a class member, the list of

constants must be terminated with a semicolon, and the member must be

declared after the constants. In the following example, an integer is added

to the enum, which will hold the actual speed that the elements represent.

enum Speed

{

 STOP, SLOW, NORMAL, FAST;

 public int velocity;

 // ...

}

Chapter 20 Enum

103

To set this field, a constructor needs to be added as well. A constructor

in an enum is always private and isn’t called in the same way as for a

regular class. Instead, the parameters to the constructor are given after the

constant elements, as seen in the next example. If a Speed enum object

is assigned the constant SLOW, then the argument 5 will be passed to the

constructor for that enum instance.

enum Speed

{

 STOP(0), SLOW(5), NORMAL(10), FAST(20);

 public int velocity;

 private Speed(int s) { velocity = s; }

}

public class MyApp

{

 public static void main(String args[]) {

 Speed s = Speed.SLOW;

 System.out.println(s.velocity); // "5"

 }

}

Another difference that enum types have when compared to regular

classes is that they implicitly extend from the java.lang.Enum class.

In addition to the members inherited from this class, the compiler will

also automatically add two static methods to the enumeration, namely,

values and valueof. The values method returns an array of the constant

elements declared in the enum, and valueof returns the enum constant of

the specified enum name.

Speed[] a = Speed.values();

String s = a[0].toString(); // "STOP"

Speed b = Speed.valueOf(s); // Speed.STOP

Chapter 20 Enum

105© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_21

CHAPTER 21

Exception Handling
Exception handling allows programmers to deal with unexpected

situations that may occur in their programs. For example, the FileReader

class in the java.io package is used to open a file. Creating an instance of

this class will cause the IDE to give a reminder that the class’s constructor

may throw a FileNotFoundException. Attempting to run the program will

also cause the compiler to point this out.

import java.io.*;

public class MyClass

{

 public static void main(String[] args)

 {

 // Compile-time error

 FileReader file = new FileReader("missing.txt");

 }

}

�Try-Catch
To handle this compile-time error, the exception must be caught by using a

try-catch statement. This statement consists of a try block containing the

code that may cause the exceptions and one or more catch clauses. If the

https://doi.org/10.1007/978-1-4842-7371-5_21

106

try block executes successfully, the program will continue running after

the try-catch statement, but if an exception occurs, execution will then be

passed to the first catch block able to handle that exception type.

try {

 FileReader file = new FileReader("missing.txt");

}

catch(FileNotFoundException e) {}

�Catch Block
In the preceding example, the catch block is only set to handle the

FileNotFoundException. If the code in the try block could throw more

kinds of exceptions, and all of them should be handled in the same way,

a more general exception can be caught instead, such as the Exception

class itself from which all exceptions derive. This catch clause would then

be able to handle all the exceptions that inherit from this class, including

the FileNotFoundException. Bear in mind that a more general exception

needs to be caught after a more specific exception. The catch clause must

always define an exception object. This object can be used to obtain more

information about the exception, such as a description of the exception

using the getMessage method.

catch(FileNotFoundException e) {

 System.out.print(e.getMessage());

}

catch(Exception e) {

 System.out.print(e.getMessage());

}

Chapter 21 Exception Handling

107

As of Java 7, multiple exceptions of different types can be caught using

a single catch block. This helps avoid code duplication, without having to

catch an overly general exception type, in cases when multiple exceptions

are to be handled in the same way. Each exception is separated with a

vertical bar (|) in the catch clause.

catch(IOException | SQLException e) {

 // Handle exception

}

�Finally Block
As the last clause in a try-catch statement, a finally block can be

added. This block is used to clean up resources allocated in the try

block and will always execute whether or not there’s an exception. In this

example, the file opened in the try block should be closed, but only if

it was successfully opened. To be able to access the FileReader object

from the finally clause, it must be declared outside of the try block.

Additionally, because the close method can also throw an exception, the

method needs to be surrounded with another try-catch block. Keep in

mind that if you forget to close a resource object, Java’s garbage collector

will eventually close the resource for you, but closing it yourself is good

programming practice.

FileReader file = null;

try {

 file = new FileReader("missing.txt");

}

catch(FileNotFoundException e) {

 System.out.print(e.getMessage());

}

Chapter 21 Exception Handling

108

finally {

 if (file != null) {

 try { file.close(); }

 catch(IOException e) {}

 }

}

Java 7 added the try-with-resources feature. This feature allows

resource objects to be automatically closed by defining the resource object

in parentheses after the try keyword. For this to work, the resource must

implement the java.lang.AutoClosable interface. This interface consists of

only the close method, which is called automatically in an implicit finally

statement. The preceding example can therefore be simplified as follows:

try(FileReader file = new FileReader("missing.txt")) {

 // Read file

}

catch(FileNotFoundException e) {

 // Handle exception

}

More than one resource object can be included for automatic closing,

separated with a semicolon. To improve readability, Java 9 made it possible for

objects declared outside of the parentheses to be referenced for the try-with-

resources statement, provided these resources are final or effectively final.

// Final resource

final FileReader file1 = new FileReader("file1.txt");

// Effectively final resource (never changed)

FileReader file2 = new FileReader("file2.txt");

try(file1; file2) {

 // Read files

}

Chapter 21 Exception Handling

109

catch(FileNotFoundException e) {

 // Handle exception

}

�Throwing Exceptions
When a situation occurs that a method can’t recover from, it can generate

its own exception to signal to the caller that the method has failed. It does

that using the throw keyword followed by a new instance of a Throwable

type.

static void makeException()

{

 throw new Throwable("My Throwable");

}

�Checked and Unchecked Exceptions
Exceptions in Java are grouped into two categories—checked and

unchecked—depending on whether or not they need to be specified. A

method that throws a checked exception—for example, IOException—will

not compile unless it’s specified using a throws clause after the method’s

parameter list and the calling method catches the exception. Unchecked

exceptions, on the other hand, such as the ArithmeticException, do not

have to be caught or specified. Note that to specify multiple exceptions, the

exception types are separated by a comma.

static void MakeException()

throws IOException, FileNotFoundException

{

 // ...

Chapter 21 Exception Handling

110

 throw new IOException("My IO exception");

 // ...

 throw new FileNotFoundException("File missing");

}

�Exception Hierarchy
Exceptions, like most everything else in Java, are classes that exist in a

hierarchy. At the root of this hierarchy (below Object) is the Throwable

class, and all descendants of this class can be both thrown and caught.

Inheriting from Throwable are the Error and Exception classes. Classes

descending from Error are used to indicate non-recoverable exceptions,

such as the OutOfMemoryError. These are unchecked because once they’ve

occurred, it’s unlikely that the programmer can do anything about them

even if they’re caught.

Descending from Exception are the RuntimeExceptions, which

are also unchecked. These are exceptions that can occur in almost any

code, and it would therefore be cumbersome to catch and specify them.

For example, a division by zero will throw an ArithmeticException,

but surrounding every division operation with a try-catch would be

bothersome. There’s also some overhead associated with checking

for exceptions, and the cost of checking for these exceptions typically

outweighs the benefit of catching them. The other Exception descendants,

those that don’t inherit from RuntimeExceptions, are all checked. These

are exceptions that can be recovered from and that must be both caught

and specified.

Chapter 21 Exception Handling

111© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_22

CHAPTER 22

Boxing and Unboxing
Placing a primitive variable in an object is known as boxing. Boxing

allows the primitive to be used where objects are required. For this

purpose, Java provides wrapper classes to implement boxing for each

primitive type—namely, Byte, Short, Integer, Long, Float, Double,

Character, and Boolean. An Integer object, for example, can hold a

variable of the type int.

int iPrimitive = 5;

Integer iWrapper = new Integer(iPrimitive); // boxing

The opposite of boxing is, naturally, unboxing, which converts the

object type back into its primitive type.

iPrimitive = iWrapper.intValue(); // unboxing

The wrapper classes belong to the java.lang package, which is always

imported. When using wrapper objects, keep in mind that the equal to

operator (==) checks whether both references refer to the same object,

whereas the equals method is used to compare the values that the objects

represent.

Integer x = new Integer(1000);

Integer y = new Integer(1000);

boolean b = (x == y); // false

 b = x.equals(y); // true

https://doi.org/10.1007/978-1-4842-7371-5_22

112

�Autoboxing and Autounboxing
Java 5 introduced autoboxing and autounboxing. These features allow for

automatic conversion between primitives and their wrapper objects.

Integer iWrapper = iPrimitive; // autoboxing

iPrimitive = iWrapper; // autounboxing

Note that this is only syntactic sugar designed to make the code easier

to read. The compiler will add the necessary code to box and unbox the

primitives for you, using the valueOf and intValue methods.

Integer iWrapper = Integer.valueOf(iPrimitive);

iPrimitive = iWrapper.intValue()

�Primitive and Wrapper Guideline
Primitive types should be used when there’s no need for objects. That’s

because primitives are generally faster and more memory efficient than

objects. Conversely, wrappers are useful when numerical values are

needed but objects are required. For example, to store numerical values in

a collection class, such as ArrayList<>, the wrapper classes are needed.

import java.util.ArrayList;

// ...

java.util.ArrayList<Integer> a = new java.util.ArrayList<>();

a.add(10); // autoboxing

int i = a.get(0); // autounboxing

Bear in mind that conversions between primitives and wrapper objects

should be kept low if speed is important. There’s an inherit performance

penalty associated with any boxing and unboxing operation.

Chapter 22 Boxing and Unboxing

113© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_23

CHAPTER 23

Generics
Generics refers to the use of type parameters, which provide a way to define

methods, classes, and interfaces that can operate with different data types.

The benefits of generics are that they provide compile-time type safety and

they eliminate the need for most type conversions.

�Generic Classes
Generic classes allow class members to use type parameters. Such a

class is defined by adding a type parameter section after the class name,

which contains a type parameter enclosed between angle brackets. The

naming convention for type parameters is that they should consist of a

single uppercase letter. Typically, the letter T for type is used. The following

example defines a generic container class that can hold a single element of

the generic type:

// Generic container class

class MyBox<T> { public T box; }

When an object of this generic class is instantiated, the type parameter

must be replaced with an actual data type, such as Integer:

MyBox<Integer> iBox = new MyBox<Integer>();

https://doi.org/10.1007/978-1-4842-7371-5_23

114

Alternatively, as of Java 7, a generic class can be instantiated with

an empty set of type parameters. This type of instantiation is possible as

long as the compiler can infer (determine) the type parameters from the

context.

MyBox<Integer> iBox = new MyBox<>();

When an instance of MyBox is created, each type parameter in the

class definition is replaced with the passed-in type argument. The object

therefore behaves as a regular object, with a single field of the Integer

type.

iBox.box = 5;

Integer i = iBox.box;

Notice that no casting is required when the stored value is set or

retrieved from the box field. Furthermore, if the generic field is mistakenly

assigned to or set to an incompatible type, the compiler will point that out.

iBox.box = "Hello World"; // compile-time error

String s = iBox.box; // compile-time error

�Generic Methods
A method can be made generic by declaring it with a type parameter

section before the method’s return type. The type parameter can be

used like any other type inside of the method. You can also use it for the

method’s return type, in the throws clause and for its parameter types. The

next example shows a generic class method that accepts a generic array

parameter, the content of which is printed out.

class MyClass

{

 public static <T> void printArray(T[] array)

Chapter 23 Generics

115

 {

 for (T element : array)

 System.out.println(element);

 }

}

The preceding shown class isn’t generic. Methods can be declared as

generic, independently of whether or not the enclosing class or interface

is generic. The same is true for constructors, as seen in the following

example:

public class MyApp

{

 private String s;

 public <T> MyApp(T t) {

 s = t.toString(); // convert to string

 }

 public static void main(String[] args) {

 MyApp o = new MyApp(10);

 System.out.println(o.s); // "10"

 }

}

�Calling Generic Methods
A generic method is typically invoked just as a regular (non-generic)

method, without specifying the type argument:

Integer[] iArray = { 1, 2, 3 };

MyClass.printArray(iArray);

Chapter 23 Generics

116

In most cases, the Java compiler can infer the type argument of a

generic method call, so it doesn’t have to be included. But if that’s not the

case, then the type argument will need to be explicitly specified before the

method name:

MyClass.<Integer>printArray(iArray);

�Generic Interfaces
Interfaces that are declared with type parameters become generic

interfaces. Generic interfaces have the same two purposes as regular

interfaces: they’re either created to expose members of a class that

will be used by other classes or to force a class to implement a specific

functionality. When a generic interface is implemented, the type argument

must be specified. The generic interface can be implemented by both

generic and non-generic classes:

// Generic functionality interface

interface IGenericCollection<T>

{

 void store(T t);

}

// Non-generic class implementing generic interface

class Box implements IGenericCollection<Integer>

{

 private Integer myBox;

 public void store(Integer i) { myBox = i; }

}

Chapter 23 Generics

117

// Generic class implementing generic interface

class GenericBox<T> implements IGenericCollection<T>

{

 private T myBox;

 public void store(T t) { myBox = t; }

}

�Generic Type Parameters
The passed-in type argument for a generic can either be a class type,

interface type, or another generic type parameter, but it can’t be a

primitive type. Generics can have more than one type parameter defined,

by adding more of them between the angle brackets in a comma-separated

list. Bear in mind that each parameter within the brackets must be unique.

class MyClass<T, U> {}

If a generic has multiple type parameters defined, the same number of

type arguments need to be specified when the generic is used.

MyClass<Integer, Float> m = new MyClass<>();

�Generic Variable Usages
Generics are only a compile-time construct in Java. After the compiler

has checked that the types used with generic variables are correct,

it will then erase all type parameter and argument information from

the generic code and insert the appropriate casts instead. That means

generics don’t provide any performance benefits over non-generic code,

because of removed runtime casts, as they do in, for example, C#. It also

means generic types can’t be used for anything that requires runtime

information—such as creating new instances of generic types or using the

Chapter 23 Generics

118

instanceof operator with type parameters. Operations that are allowed

include declaring variables of the generic type, assigning null to generic

variables, and calling Object methods.

class MyClass<T>
{
 public void myMethod(Object o)
 {
 T t1; // allowed
 t1 = null; // allowed
 System.out.print(t1.toString()); // allowed
 if (o instanceof T) {} // invalid
 T t2 = new T(); // invalid
 }
}

The process of removing type information from generic code is known

as type erasure. For example, MyBox<Integer> would be reduced to MyBox,

which is called the raw type. This step is performed in order to maintain

backward compatibility with code written before generics became part of

the language in Java 5.

�Bounded Type Parameters
It’s possible to apply compile-time enforced restrictions on the kinds of

type parameters that a generic may be used with. These restrictions, called

bounds, are specified within the type parameter section using the extends

keyword. Type parameters can be bounded by either superclass or

interface. For example, the following class B may only be instantiated with

a type argument that’s either of the type A or has that class as a superclass.

// T must be or inherit from A
class B<T extends A> {}
class A {}

Chapter 23 Generics

119

The next example specifies an interface as the bound. This will restrict

the type parameter to only those types that implement the specified

interface or are of the interface type itself.

// T must be or implement interface I

class C<T extends I> {}

interface I {}

Multiple bounds can be applied to a type parameter by specifying

them in a list separated by ampersands:

class D<T extends A & I> {}

The ampersand acts as the separator instead of a comma because

comma is already used for separating type parameters:

class E<T extends A & I, U extends A & I> {}

Aside from restricting the use of a generic to only certain parameter

types, another reason for applying bounds is to increase the number of

permitted method calls supported by the bounded type. An unbounded

type may only call the Object methods. However, by applying a superclass

or interface bound, the accessible members of that type will also become

available.

class Fruit

{

 public String name;

}

class FruitBox<T extends Fruit>

{

 private T box;

 public void FruitBox(T t) { box = t; }

 public String getFruitName()

Chapter 23 Generics

120

 {

 // Use of Fruit member allowed since T extends Fruit

 return box.name;

 }

}

�Generics and Object
Before generics were introduced in Java 5, the Object type was used to

create container classes that could store any type of objects. As generics

were made available, this use of the Object type as a universal container

should be avoided. That’s because the compiler helps ensure that

generics are type safe at compile time, which can’t be done when using

the Object type.

The collection classes in the Java library, among them ArrayList, have

all been replaced with generic versions. Even so, any generic class can still

be used as if it weren’t generic, simply by leaving out the type argument

section. The default Object type will then be used as the type argument.

That’s why the non-generic version of ArrayList is still allowed. Consider

the following use of a non-generic ArrayList:

import java.util.ArrayList;

// ...

// Object ArrayList

ArrayList a = new ArrayList();

a.add("Hello World");

// ...

Integer b = (Integer)a.get(0); // run-time error

Chapter 23 Generics

121

This String-to-Integer conversion will fail at runtime by throwing

a ClassCastException. Had a generic ArrayList been used instead, the

mistaken conversion would have been detected upon compilation, or

immediately in an IDE such as NetBeans. This compile-time debugging

feature is a major advantage with using generics over other coding

approaches.

import java.util.ArrayList;

// ...

// Generic ArrayList (recommended)

ArrayList<String> a = new ArrayList<>();

a.add("Hello World");

// ...

Integer b = (Integer)a.get(0); // compile-time error

With the generic alternative, only the specified type argument will

be allowed into the ArrayList collection. Additionally, values obtained

from the collection don’t have to be cast to the correct type because the

compiler takes care of that.

Chapter 23 Generics

123© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5_24

CHAPTER 24

Lambda Expressions
Java 8 introduced the lambda expression, which provides a concise way

to represent a method using an expression. A lambda expression consists

of three parts: an argument list, the arrow operator (->), and a body. The

following lambda takes two integer arguments and returns their sum.

(int x, int y) -> { return x + y; };

The parameter types generally don’t need to be specified because the

compiler can determine these types automatically. This type inference also

applies to the return type. If the body contains only a single statement, you

can leave out the curly brackets, and the result of the statement will then

be returned.

(x, y) -> x + y;

�Lambda Objects
A lambda expression is a representation of a functional interface, which is

an interface defining a single abstract method. It can therefore be bound

to an object of such an interface provided that its functional method has a

matching signature.

interface Summable

{

 public int combine(int a, int b);

}

https://doi.org/10.1007/978-1-4842-7371-5_24

124

public class MyApp

{

 public static void main(String[] args) {

 Summable s = (x, y) -> x + y;

 s.combine(2, 3); // 5

}

Common functional interfaces are defined in the java.util.function

package added in Java 8. In this example, the BinaryOperator<T> interface

can be used. It represents a method that takes two arguments and returns

a result of the same type as the arguments. Its functional method is

named apply.

import java.util.function.*;

public class MyApp

{

 public static void main(String[] args) {

 BinaryOperator<Integer> adder = (x, y) -> x + y;

 adder.apply(2, 3); // 5

 }

}

When working on a single operand and returning a value of the same

type, you can use the UnaryOperator functional interface. Note that the

parentheses surrounding the parameters can be left out when there’s only

one parameter.

UnaryOperator<Integer> doubler = x -> x*2;

doubler.apply(2); // 4

Chapter 24 Lambda Expressions

125

�Lambda Parameters
Unlike methods, lambda expressions don’t belong to any class. They’re

objects in and of themselves as they’re instances of functional interfaces. A

benefit of this is that they provide a convenient way to pass functionality as

an argument to another method. In the following example, the Runnable

interface is used, which has a functional method that takes no parameters

and returns no value. This interface belongs to java.lang, and its abstract

method is named run.

public class MyApp

{

 static void starter(Runnable s) { s.run(); }

 public static void main(String[] args) {

 Runnable r = () -> System.out.println("Hello");

 starter(r); // "Hello"

 }

}

You can also achieve this functionality by defining an anonymous

(unnamed) inner class, but this approach is considerably more verbose

than the lambda expression.

Runnable r = new Runnable() {

 @Override public void run() {

 System.out.println("Hello");

 }

};

starter(r); // "Hello"

Chapter 24 Lambda Expressions

126

A lambda expression can capture variables from its context, provided

that the referenced variable is final or effectively final (only assigned once).

In this next example, the Consumer functional interface is used, which

represents a function that accepts one parameter and returns no value.

import java.util.function.*;

public class MyApp

{

 final static String GREETING = "Hi ";

 public static void main(String[] args) {

 Consumer<String> c = (s) ->

 System.out.println(GREETING + s);

 c.accept("John"); // "Hi John"

 }

}

Behind the scenes, the compiler will instantiate an anonymous class

containing a single method to represent a lambda expression. That enables

lambdas to be fully backward compatible with earlier versions of the Java

runtime environment.

Chapter 24 Lambda Expressions

127© Mikael Olsson 2022
M. Olsson, Java 17 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-7371-5

Index

Symbols
dot operator (.), 3
Concatenation operator (+), 21
Increment (++) and decrement

(−−) operators, 16
Assignment operator (=), 10

A
Abstract class

definition, 97
example, 97, 98
interfaces, 99

Access levels
definition, 79
guideline, 84
nested class, 83
package-private, 80
private, 79
protected members, 81
public modifiers, 82
top-level access, 83

app.MyApp, 77
Array

allocation, 27
ArrayList class, 29
assignment, 28

declaration, 27
definition, 27
multidimensional, 28

Autoboxing and autounboxing, 112

B
Bitwise operators, 18
Boxing, 111
break keyword, 33, 39

C
Class

accessing object members, 48
constructor, 49
constructor chaining, 51
constructor overloading, 50, 51
default constructor, 52
default values, 53
definition, 47
garbage collector, 53
invalid field values, 51
null, 52
object creation, 47, 48

Compile/run
comments, 6, 7
console window, 5, 6

https://doi.org/10.1007/978-1-4842-7371-5

128

IDE, 5
preview features, 7

Conditional statements
definition, 31
if, 31, 32
switch expression, 32–34
ternary operator, 35

Constants
compile time/runtime, 86
fields, 85
guideline, 87
local variables, 85
method parameters, 86

Constructor, 49
continue keyword, 40

D
Default package, 71

E
Enumeration/enum

class, 102, 103
definition, 101
switch statement, 101

Exception handling
catch block, 106
checked/unchecked, 109
definition, 105
finally block, 107, 108
hierarchy, 110
throwing exceptions, 109
try-catch, 105, 106

F
final keyword, 85
final modifier, 86

G
Generics

bounded type parameters,
118, 119

classes, 113, 114
definition, 113
interfaces, 116
methods, 114–116
object, 120
type parameters, 117
variable usages, 117

get method, 30
getArea method, 66
Right shift

operator (>>), 18

H
Hello World

code hints, 4
creating project, 1, 2
installation, 1
Java classes, 2

I
Inheritance

definition, 59
downcast, 60

Compile/run (cont.)

INDEX

129

operator, 60, 61
pattern matching switch, 62
restrictive method, 62, 63
upcast, 60

Integrated Development
Environment (IDE), 1

Interface
class, 92, 93
default interface methods, 94
definition, 89
example, 90, 91
functionality, 91
members, 89, 90
static interface methods, 94

J, K
Java Development

Kit (JDK), 1
Java Virtual Machine, 6

L
Lambda expressions

definition, 123
objects, 123, 124
parameters, 125, 126
parameter types, 123

Logical operators (&&), 17
Loops

break and continue, 39, 40
do while, 38
for each, 39
for, 38, 39

labeled block, 40
while, 37

M
Method overloading, 44
Methods

calling, 42
defining, 41
overloading, 44
parameters, 42
passing arguments, 45
statements, 43

Module
app.MyApp, 77
creating, 75, 76
definition, 75

Multidimensional arrays, 28
MyInterface, 92

N
Named block, 40
Nested classes, 83
NetBeans, 75
new keyword, 27

O
Operators

arithmetic, 15
assignment, 16
bitwise, 18
comparison, 17

INDEX

130

definition, 15
increment/decrement, 16, 17
logical, 17
order of precedence, 18, 19

@Override annotation, 66
Overriding

accessing redefined members, 69
hiding fields, 68
hiding methods, 67
methods, 65, 66
parent constructor, 69

P, Q
Packages

accessing members, 72, 73
default, 71
definition, 71

Primitives, 9
Primitive types, 112
print method, 3
println method, 3

R
Rectangle inherits, 97
Rectangle’s getArea method, 65

S
Static keyword

accessing static members, 56
definition, 55

initialization block, 57
instance initialization

block, 58
static fields, 57
static methods, 56

String
buffer class, 23, 24
class, 21
combining, 21
compare, 23
escape, 22
object, 21
pool, 21
text block, 24

T
Ternary operator (?:), 35
this keyword, 50
toString method, 24
Type erasure, 118

U
Unboxing, 111
util, 76

V, W, X, Y, Z
Variables

anonymous code
block, 13

assign, 10
Boolean type, 12

Operators (cont.)

INDEX

131

chars, 12
data types, 9
declare, 10
definition, 9
floating-point types, 11, 12

integer types, 11
scope, 13
type interface, 14

void keyword, 41

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Installing
	Creating a Project
	Hello World
	Code Hints

	Chapter 2: Compile and Run
	Running from the IDE
	Running from a Console Window
	Comments
	Preview Features

	Chapter 3: Variables
	Data Types
	Declaring Variables
	Assigning Variables
	Using Variables
	Integer Types
	Floating-Point Types
	Char Type
	Boolean Type
	Variable Scope
	Anonymous Block
	Type Inference

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Increment and Decrement Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence

	Chapter 5: String
	Combining Strings
	Escape Characters
	String Compare
	StringBuffer Class
	Text Blocks

	Chapter 6: Arrays
	Array Declaration
	Array Allocation
	Array Assignment
	Multidimensional Arrays
	ArrayList Class

	Chapter 7: Conditionals
	If Statement
	Switch Statement
	Switch Expression
	Ternary Operator

	Chapter 8: Loops
	While Loop
	Do While Loop
	For Loop
	For Each Loop
	Break and Continue
	Labeled Block

	Chapter 9: Methods
	Defining Methods
	Calling Methods
	Method Parameters
	Return Statement
	Method Overloading
	Passing Arguments

	Chapter 10: Class
	Object Creation
	Accessing Object Members
	Constructor
	This Keyword
	Constructor Overloading
	Constructor Chaining
	Initial Field Values
	Default Constructor
	Null
	Default Values
	Garbage Collector

	Chapter 11: Static
	Accessing Static Members
	Static Methods
	Static Fields
	Static Initialization Blocks
	Instance Initialization Blocks

	Chapter 12: Inheritance
	Upcasting
	Downcasting
	Instanceof Operator
	Pattern Matching Switch
	Restricting Inheritance

	Chapter 13: Overriding
	Overriding Methods
	Override Annotation
	Hiding Methods
	Hiding Fields
	Accessing Redefined Members
	Calling Parent Constructor

	Chapter 14: Packages and Import
	Accessing Packages

	Chapter 15: Modules
	Creating a Module
	Using a Module

	Chapter 16: Access Levels
	Private Access
	Package-Private Access
	Protected Access
	Public Access
	Top-Level Access
	Nested Class Access
	Access-Level Guideline

	Chapter 17: Constants
	Local Constants
	Constant Fields
	Constant Method Parameters
	Compile-Time and Runtime Constants
	Constant Guideline

	Chapter 18: Interface
	Interface Members
	Interface Example
	Functionality Interface
	Class Interface
	Interface Classes
	Default Interface Methods
	Static Interface Methods

	Chapter 19: Abstract
	Abstract Class Example
	Abstract Classes and Interfaces

	Chapter 20: Enum
	Enum Class

	Chapter 21: Exception Handling
	Try-Catch
	Catch Block
	Finally Block
	Throwing Exceptions
	Checked and Unchecked Exceptions
	Exception Hierarchy

	Chapter 22: Boxing and Unboxing
	Autoboxing and Autounboxing
	Primitive and Wrapper Guideline

	Chapter 23: Generics
	Generic Classes
	Generic Methods
	Calling Generic Methods
	Generic Interfaces
	Generic Type Parameters
	Generic Variable Usages
	Bounded Type Parameters
	Generics and Object

	Chapter 24: Lambda Expressions
	Lambda Objects
	Lambda Parameters

	Index

