

Java 9 Concurrency Cookbook
Second Edition

Master the art of fast, effective Java development with the
power of concurrent and parallel programming

Javier Fernández González

 BIRMINGHAM - MUMBAI

Java 9 Concurrency Cookbook

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Second edition: April 2017

Production reference: 1170417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B32PB, UK.
ISBN 978-1-78712-441-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

Javier Fernández González

Copy Editor

Gladson Monteiro

Reviewer

Piotr Bzdyl

Project Coordinator

Vaidehi Sawant

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Denim Pinto

Indexer

Tejal Daruwale Soni

Content Development Editor

Nikhil Borkar

Graphics

Abhinash Sahu

Technical Editor

Subhalaxmi Nadar

Production Coordinator

Melwyn Dsa

About the Author
Javier Fernández González is a software architect with almost 15 years of experience
in Java technologies. He has worked as a teacher, researcher, programmer, analyst, and
writer, and he now works as an architect in all types of projects related to Java, especially
J2EE. As a teacher, has taken over 1,000 hours of training in basic Java, J2EE, and the Struts
framework. As a researcher, he has worked in the field of information retrieval, developing
applications for processing large amounts of data in Java, and has participated as a
coauthor in several journal articles and conference presentations. Recently, he worked on
developing J2EE web applications for various clients from different sectors (public
administration, insurance, healthcare, transportation, and so on). Currently, he works as a
software architect. He is the author of the book, Java 7 Concurrency Cookbook and Mastering
Concurrency Programming with Java 8 by Packt.

About the Reviewer
Piotr Bzdyl is focused on Java concurrency topics, including other JVM languages and their
libraries, aimed at helping in creating highly concurrent applications (async IO, non-
blocking APIs, Scala, Akka, and Clojure). He has been helping teams with JVM tuning and
troubleshooting.

He has also created a training course for Java concurrency topics, covering core JDK
multithreading concepts as well as those from external libraries and languages (actors, STM,
parallel collections, and functional languages).

You can connect with Piotr on LinkedIn at h t t p s ://w w w . l i n k e d i n . c o m /i n /p i o t r b z d y l

 and on GitHub at h t t p s ://g i t h u b . c o m /p b z d y l . You can follow him on Stack Overflow
at h t t p ://s t a c k o v e r f l o w . c o m /c v /p i o t r e k b z d y l .

https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://www.linkedin.com/in/piotrbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
https://github.com/pbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl
http://stackoverflow.com/cv/piotrekbzdyl

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /178712441X .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X
https://www.amazon.com/dp/178712441X

To Nuria, Paula, and Pelayo, for you infinite love and patience

Table of Contents
Preface 1

Chapter 1: Thread Management 7

Introduction 7
Creating, running, and setting the characteristics of a thread 8

Getting ready 9
How to do it... 10
How it works... 13
There's more... 15
See also 15

Interrupting a thread 16
Getting ready 16
How to do it... 16
How it works... 18
There's more... 19

Controlling the interruption of a thread 19
Getting ready 19
How to do it... 20
How it works... 22
There's more... 23
See also 23

Sleeping and resuming a thread 23
Getting ready 23
How to do it... 24
How it works... 25
There's more... 25

Waiting for the finalization of a thread 26
Getting ready 26
How to do it... 26
How it works... 28
There's more... 28

Creating and running a daemon thread 28
Getting ready 29
How to do it... 29
How it works... 31

[ii]

There's more... 32
Processing uncontrolled exceptions in a thread 32

Getting ready 33
How to do it... 33
How it works... 35
There's more... 35
See also 36

Using thread local variables 36
Getting ready 37
How to do it... 37
How it works... 40
There's more... 40

Grouping threads and processing uncontrolled exceptions in a group
of threads 41

Getting ready 41
How to do it... 42
How it works... 44
See also 45

Creating threads through a factory 45
Getting ready 46
How to do it... 46
How it works... 48
See also 49

Chapter 2: Basic Thread Synchronization 50

Introduction 50
Synchronizing a method 51

Getting ready 52
How to do it... 52
How it works... 58
There's more... 59
See also 60

Using conditions in synchronized code 60
Getting ready 61
How to do it... 61
How it works... 65
There's more... 65
See also 65

Synchronizing a block of code with a lock 66
Getting ready 67

[iii]

How to do it... 67
How it works... 70
There's more... 72

Avoiding deadlocks 72
See also 73

Synchronizing data access with read/write locks 73
Getting ready... 73
How to do it... 73
How it works... 77
See also 78

Using multiple conditions in a lock 78
Getting ready 79
How to do it... 79
How it works... 85
There's more... 86
See also 87

Advanced locking with the StampedLock class 87
Getting ready 88
How to do it... 88
How it works... 92
There's more... 93
See also 94

Chapter 3: Thread Synchronization Utilities 95

Introduction 95
Controlling concurrent access to one or more copies of a resource 97

Getting ready 97
How to do it... 98
How it works... 101
There's more... 102

Fairness in semaphores 103
See also 103

Waiting for multiple concurrent events 103
Getting ready 104
How to do it... 104
How it works... 107
There's more... 108

Synchronizing tasks in a common point 108
Getting ready 109
How to do it... 109

[iv]

How it works... 116
There's more... 117

Resetting a CyclicBarrier object 117
Broken CyclicBarrier objects 117

See also 117
Running concurrent-phased tasks 118

Getting ready 118
How to do it... 119
How it works... 124
There's more... 126

Registering participants in Phaser 127
Forcing the termination of Phaser 127

See also 128
Controlling phase change in concurrent-phased tasks 128

Getting ready 128
How to do it... 129
How it works... 133
See also 135

Exchanging data between concurrent tasks 135
Getting ready 135
How to do it... 136
How it works... 139
There's more... 139

Completing and linking tasks asynchronously 140
Getting ready 141
How to do it... 141
How it works... 146
There's more... 148
See also... 150

Chapter 4: Thread Executors 151

Introduction 151
Creating a thread executor and controlling its rejected tasks 152

Getting ready 153
How to do it... 153
How it works... 156
There's more... 158
See also 160

Executing tasks in an executor that returns a result 160
Getting ready 160

[v]

How to do it... 160
How it works... 164
There's more... 164
See also 165

Running multiple tasks and processing the first result 165
Getting ready 165
How to do it... 165
How it works... 169
There's more... 170
See also 170

Running multiple tasks and processing all the results 171
Getting ready 171
How to do it... 171
How it works... 175
There's more... 175
See also 175

Running a task in an executor after a delay 176
Getting ready 176
How to do it... 176
How it works... 178
There's more... 178
See also 179

Running a task in an executor periodically 179
Getting ready 179
How to do it... 180
How it works... 182
There's more... 183
See also 184

Canceling a task in an executor 184
Getting ready 184
How to do it... 184
How it works... 186
There's more... 186
See also 187

Controlling a task finishing in an executor 187
Getting ready 187
How to do it... 187
How it works... 190
See also 191

[vi]

Separating the launching of tasks and the processing of their results
in an executor 191

Getting ready 191
How to do it... 191
How it works... 196
There's more... 196
See also 197

Chapter 5: Fork/Join Framework 198

Introduction 198
Creating a fork/join pool 201

Getting ready 201
How to do it... 202
How it works... 206
There's more... 207
See also 208

Joining the results of the tasks 208
How to do it... 209
How it works... 216
There's more... 217
See also 218

Running tasks asynchronously 218
How to do it... 219
How it works... 223
There's more... 225
See also 226

Throwing exceptions in the tasks 226
Getting ready 226
How to do it... 227
How it works... 229
There's more... 231
See also 231

Canceling a task 232
Getting ready... 232
How to do it... 232
How it works... 238
See also 239

Chapter 6: Parallel and Reactive Streams 240

Introduction 240

[vii]

Creating streams from different sources 242
Getting ready 243
How to do it... 243
How it works... 248
There's more... 250
See also 251

Reducing the elements of a stream 251
Getting ready 251
How to do it... 252
How it works... 256
There's more... 258
See also 258

Collecting the elements of a stream 258
Getting ready 258
How to do it... 259
How it works... 262
There's more... 266
See also 266

Applying an action to every element of a stream 266
Getting ready 266
How to do it... 266
How it works... 269
There's more... 270
See also 270

Filtering the elements of a stream 270
Getting ready 270
How to do it... 270
How it works... 273
There's more... 274
See also 274

Transforming the elements of a stream 274
Getting ready 274
How to do it... 275
How it works... 278
There's more... 278
See also 278

Sorting the elements of a stream 279
Getting ready 279
How to do it... 279

[viii]

How it works... 281
There's more... 282
See also 283

Verifying conditions in the elements of a stream 283
Getting ready 283
How to do it... 283
How it works... 285
There's more... 286
See also 287

Reactive programming with reactive streams 287
Getting ready 288
How to do it... 288
How it works... 292
There's more... 294

Chapter 7: Concurrent Collections 295

Introduction 295
Using non-blocking thread-safe deques 296

Getting ready 297
How to do it... 297
How it works... 300
There's more... 301

Using blocking thread-safe deques 302
Getting ready 302
How to do it... 302
How it works... 304
There's more... 305
See also 305

Using blocking thread-safe queue ordered by priority 305
Getting ready 306
How to do it... 306
How it works... 309
There's more... 310
See also 311

Using thread-safe lists with delayed elements 311
Getting ready 312
How to do it... 312
How it works... 315
There's more... 317
See also 317

[ix]

Using thread-safe navigable maps 317
Getting ready 318
How to do it... 318
How it works... 321
There's more... 322
See also 322

Using thread-safe HashMaps 323
Getting ready 323
How to do it... 324
How it works... 327
There's more... 328
See also 329

Using atomic variables 330
Getting ready 331
How to do it... 331
How it works... 335
There's more... 337
See also 337

Using atomic arrays 337
Getting ready 338
How to do it... 338
How it works... 341
There's more... 342
See also 342

Using the volatile keyword 342
Getting ready 343
How to do it... 343
How it works... 345
There's more... 346
See also 346

Using variable handles 347
Getting ready 347
How to do it... 347
How it works... 349
There's more... 350
See also 351

Chapter 8: Customizing Concurrency Classes 352

Introduction 353
Customizing the ThreadPoolExecutor class 353

[x]

Getting ready 354
How to do it... 354
How it works... 358
See also 358

Implementing a priority-based Executor class 359
Getting ready 359
How to do it... 359
How it works... 362
There's more... 363
See also 363

Implementing the ThreadFactory interface to generate custom threads 363
Getting ready 364
How to do it... 364
How it works... 367
There's more... 368

Using our ThreadFactory in an Executor object 368
Getting ready 369
How to do it... 369
How it works... 370
See also 370

Customizing tasks running in a scheduled thread pool 371
Getting ready 371
How to do it... 371
How it works... 376
There's more... 379
See also 379

Implementing the ThreadFactory interface to generate custom threads
for the fork/join framework 379

Getting ready 380
How to do it... 380
How it works... 384
There's more... 386
See also 386

Customizing tasks running in the fork/join framework 386
How to do it... 387
How it works... 390
See also 391

Implementing a custom Lock class 391
Getting ready 391

[xi]

How to do it... 392
How it works... 396
There's more... 397
See also 397

Implementing a transfer queue-based on priorities 398
Getting ready 398
How to do it... 398
How it works... 406
See also 409

Implementing your own atomic object 409
Getting ready 409
How to do it... 409
How it works... 413
See also 414

Implementing your own stream generator 414
Getting ready 415
How to do it... 415
How it works... 418
There's more... 420
See also 420

Implementing your own asynchronous stream 421
Getting ready 421
How to do it... 421
How it works... 427
There's more... 428
See also 429

Chapter 9: Testing Concurrent Applications 430

Introduction 430
Monitoring a Lock interface 431

Getting ready 431
How to do it... 431
How it works... 434
There's more... 435
See also 435

Monitoring a Phaser class 436
Getting ready 436
How to do it... 436
How it works... 439
See also 439

[xii]

Monitoring an Executor framework 440
Getting ready 440
How to do it... 440
How it works... 443
See also 444

Monitoring a fork/join pool 444
Getting ready 444
How to do it... 444
How it works... 448
See also 448

Monitoring a stream 449
Getting ready 449
How to do it... 449
How it works... 450
See also 451

Writing effective log messages 451
Getting ready 451
How to do it... 451
How it works... 456
There's more... 457
See also 457

Analyzing concurrent code with FindBugs 457
Getting ready 458
How to do it... 458
How it works... 461
There's more... 462
See also 463

Configuring Eclipse for debugging concurrency code 463
Getting ready 463
How to do it... 463
How it works... 464

Configuring NetBeans for debugging concurrency code 467
Getting ready 467
How to do it... 467
How it works... 471
There's more... 472
See also 473

Testing concurrency code with MultithreadedTC 473
Getting ready 473

[xiii]

How to do it... 473
How it works... 475
There's more... 477
See also 477

Monitoring with JConsole 477
Getting ready 477
How to do it... 478
How it works... 479
There's more... 482
See also 482

Chapter 10: Additional Information 483

Introduction 483
Processing results for Runnable objects in the Executor framework 483

Getting ready 484
How to do it... 484
How it works... 488
There's more... 489
See also 489

Processing uncontrolled exceptions in a ForkJoinPool class 489
How to do it... 490
How it works... 493
There's more... 495
See also 495

Using a blocking thread-safe queue for communicating with producers
and consumers 495

Getting ready 496
How to do it... 496
How it works... 499
There's more... 500
See also 501

Monitoring a Thread class 501
Getting ready 501
How to do it... 502
How it works... 504
There's more... 505
See also 505

Monitoring a Semaphore class 505
Getting ready 506
How to do it... 506

[xiv]

How it works... 508
See also 508

Generating concurrent random numbers 509
Getting ready 509
How to do it... 509
How it works... 510
There's more... 511
See also 511

Chapter 11: Concurrent Programming Design 512

Introduction 512
Using immutable objects when possible 513

Getting ready 514
How to do it... 514
How it works... 514
There's more... 516
See also 516

Avoiding deadlocks by ordering locks 516
How to do it... 517
How it works... 518
There's more... 518
See also 518

Using atomic variables instead of synchronization 519
Getting ready 519
How to do it... 520
How it works... 522
See also 522

Holding locks for as short time as possible 523
Getting ready 523
How to do it... 523
How it works... 527
See also 527

Delegating the management of threads to executors 527
Getting ready 528
How to do it... 528
How it works... 530
See also 530

Using concurrent data structures instead of programming yourself 530
There's more... 532
See also 532

[xv]

Taking precautions using lazy initialization 532
Getting ready 534
How to do it... 534
How it works... 535

Using the fork/join framework instead of executors 536
Getting ready 536
How to do it... 536
How it works... 539
See also 539

Avoiding the use of blocking operations inside a lock 540
Getting ready 540
How to do it... 540
How it works... 542
See also 542

Avoiding the use of deprecated methods 542
Using executors instead of thread groups 544

See also 544
Using streams to process big data sets 545

Getting ready 545
How to do it... 546
How it works... 549
See also 549

Other tips and tricks 550
See also 550

Index 551

Preface
When you work with a computer, you can do several things at once. You can listen to music
while you edit a document in a word processor and read your e-mails. This can be done
because your operating system allows the concurrency of tasks. Concurrent programming
is about the elements and mechanisms a platform offers to have multiple tasks or programs
running at once and communicating with each other, to exchange data or to synchronize
with each other. Java is a concurrent platform, and it offers a lot of classes to execute
concurrent tasks inside a Java program. With each version, Java increases the functionalities
offered to programmers to facilitate the development of concurrent programs. This book
covers the most important and useful mechanisms included in version 9 of the Java
concurrency API, so you will be able to use them directly in your applications. The
mechanisms are as follows:

Basic thread management
Thread synchronization mechanisms
Thread creation and management delegation with executors
Fork/Join framework to enhance the performance of your application
Parallel streams to process big sets of data in a parallel way, including the new
Java 9 reactive streams
Data structures for concurrent programs
Adapting the default behavior of some concurrency classes to your needs
Testing Java concurrency applications

What this book covers
Chapter 1, Thread Management, teaches you how to make basic operations with threads. The
creation, execution, and status management of threads are explained through basic
examples.

Chapter 2, Basic Thread Synchronization, covers how to use low-level Java mechanisms to
synchronize code. Locks and the synchronized keyword are explained in detail.

Chapter 3, Thread Synchronization Utilities, teaches how to use the high-level utilities of Java
to manage the synchronization between threads in Java. It includes an explanation of how
to use the Phaser class to synchronize tasks divided into phases.

Preface

[2]

Chapter 4, Thread Executors, explores the delegation of thread management to executors.
They allow running, managing, and getting the results of concurrent tasks.

Chapter 5, Fork/Join Framework, covers the use of the Fork/Join framework. It’s a special
kind of executor oriented to execute tasks that will be divided into smaller ones using the
divide and conquer technique.

Chapter 6, Parallel and Reactive Streams, teaches you how to create streams and use all its
intermediate and terminal operations to process big collections of data in a parallel and
functional way. Streams were introduced in Java 8. Java 9 has included some new interfaces
to implement reactive streams.

Chapter 7, Concurrent Collections, explains how to use some concurrent data structures
provided by the Java language. These data structures must be used in concurrent programs
to avoid the use of synchronized blocks of code in their implementation.

Chapter 8, Customizing Concurrency Classes, teaches you how to adapt some of the most
useful classes of the Java concurrency API to your needs.

Chapter 9, Testing Concurrent Applications, covers how to obtain information about the
status of some of the most useful structures of the Java 7 concurrency API. You will also
learn how to use some free tools to debug concurrent applications, such as the Eclipse,
NetBeans IDE, or FindBugs applications to detect possible bugs in your applications.

Chapter 10, Additional Information, explores the notions of synchronization, the executor,
the Fork/Join framework, concurrent data structures, and the monitoring of concurrent
objects, which were not included in the respective chapters.

Chapter 11, Concurrent Programming Design, provides some tips that every programmer
should consider when they develop a concurrent application.

What you need for this book
To follow this book, you need some basic knowledge of the Java programming language.
You should know how to use an IDE, such as Eclipse or NetBeans, but this is not a
necessary prerequisite.

Preface

[3]

Who this book is for
If you are a Java developer interested in enhancing your knowledge of concurrent
programming and multithreading further, as well as discovering the new concurrency
features of Java 8 and Java 9, then the Java 9 Concurrency Cookbook is for you. You should
already be comfortable with general Java development practices, and a basic grasp of
threads would be an advantage.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The one
that executes the main() method."

A block of code is set as follows:

Thread task=new PrimeGenerator();
task.start();

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Create a new project by
clicking on the New Project option under the File menu"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Java-9-Concurrency-Cookbook-Second-Edition.
We also have other code bundles from our rich catalog of books and videos available at h t t

p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Java-9-Concurrency-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Thread Management

In this chapter, we will cover the following topics:

Creating, running, and setting the characteristics of a thread
Interrupting a thread
Controlling the interruption of a thread
Sleeping and resuming a thread
Waiting for the finalization of a thread
Creating and running a daemon thread
Processing uncontrolled exceptions in a thread
Using thread local variables
Grouping threads and processing uncontrolled exceptions in a group of threads
Creating threads through a factory

Introduction
In the computer world, when we talk about concurrency, we refer to a series of independent
and unrelated tasks that run simultaneously on a computer. This simultaneity can be real if
the computer has more than one processor or a multi-core processor, or it can be apparent if
the computer has only one core processor.

Thread Management

[8]

All modern operating systems allow the execution of concurrent tasks. You can read your e-
mails while listening to music or reading news on a web page. We can say this is process-
level concurrency. But inside a process, we can also have various simultaneous tasks.
Concurrent tasks that run inside a process are called threads. Another concept related to
concurrency is parallelism. There are different definitions and relations with the
concurrency concept. Some authors talk about concurrency when you execute your
application with multiple threads in a single-core processor. With this, you can see when
your program execution is apparent. They talk about parallelism when you execute your
application with multiple threads in a multi-core processor or in a computer with more than
one processor, so this case is real as well. Other authors talk about concurrency when the
threads of an application are executed without a predefined order, and they discuss
parallelism when all these threads are executed in an ordered way.

This chapter presents a number of recipes that will show you how to perform basic
operations with threads, using the Java 9 API. You will see how to create and run threads in
a Java program, how to control their execution, process exceptions thrown by them, and
how to group some threads to manipulate them as a unit.

Creating, running, and setting the
characteristics of a thread
In this recipe, we will learn how to do basic operations over a thread using the Java API. As
with every element in the Java language, threads are objects. We have two ways of creating
a thread in Java:

Extending the Thread class and overriding the run() method.
Building a class that implements the Runnable interface and the run() method
and then creating an object of the Thread class by passing the Runnable object as
a parameter--this is the preferred approach and it gives you more flexibility.

Thread Management

[9]

In this recipe, we will use the second approach to create threads. Then, we will learn how to
change some attributes of the threads. The Thread class saves some information attributes
that can help us identify a thread, know its status, or control its priority. These attributes
are:

ID: This attribute stores a unique identifier for each thread.
Name: This attribute stores the name of the thread.
Priority: This attribute stores the priority of the Thread objects. In Java 9, threads
can have priority between 1 and 10, where 1 is the lowest priority and 10 is the
highest. It's not recommended that you change the priority of the threads. It's
only a hint to the underlying operating system and it doesn't guarantee anything,
but it's a possibility that you can use if you want.
Status: This attribute stores the status of a thread. In Java, a thread can be present
in one of the six states defined in the Thread.State enumeration: NEW,
RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, or TERMINATED. The following
is a list specifying what each of these states means:

NEW: The thread has been created and it has not yet started
RUNNABLE: The thread is being executed in the JVM
BLOCKED: The thread is blocked and it is waiting for a monitor
WAITING: The thread is waiting for another thread
TIMED_WAITING: The thread is waiting for another thread with a
specified waiting time
TERMINATED: The thread has finished its execution

In this recipe, we will implement an example that will create and run 10 threads that would
calculate the prime numbers within the first 20,000 numbers.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Management

[10]

How to do it...
Follow these steps to implement the example:

Create a class named Calculator that implements the Runnable interface:1.

 public class Calculator implements Runnable {

Implement the run() method. This method will execute the instructions of the2.
thread we are creating, so this method will calculate the prime numbers within
the first 20000 numbers:

 @Override
 public void run() {
 long current = 1L;
 long max = 20000L;
 long numPrimes = 0L;

 System.out.printf("Thread '%s': START\n",
 Thread.currentThread().getName());
 while (current <= max) {
 if (isPrime(current)) {
 numPrimes++;
 }
 current++;
 }
 System.out.printf("Thread '%s': END. Number of Primes: %d\n",
 Thread.currentThread().getName(), numPrimes);
 }

Then, implement the auxiliar isPrime() method. This method determines3.
whether a number is a prime number or not:

 private boolean isPrime(long number) {
 if (number <= 2) {
 return true;
 }
 for (long i = 2; i < number; i++) {
 if ((number % i) == 0) {
 return false;
 }
 }
 return true;
 }

Thread Management

[11]

Now implement the main class of the application. Create a class named Main that4.
contains the main() method:

 public class Main {
 public static void main(String[] args) {

First, write some information regarding the values of the maximum, minimum,5.
and default priority of the threads:

 System.out.printf("Minimum Priority: %s\n",
 Thread.MIN_PRIORITY);
 System.out.printf("Normal Priority: %s\n",
 Thread.NORM_PRIORITY);
 System.out.printf("Maximun Priority: %s\n",
 Thread.MAX_PRIORITY);

Then create 10 Thread objects to execute 10 Calculator tasks. Also, create two6.
arrays to store the Thread objects and their statuses. We will use this information
later to check the finalization of the threads. Execute five threads (the even ones)
with maximum priority and the other five with minimum priority:

 Thread threads[];
 Thread.State status[];
 threads = new Thread[10];
 status = new Thread.State[10];
 for (int i = 0; i < 10; i++) {
 threads[i] = new Thread(new Calculator());
 if ((i % 2) == 0) {
 threads[i].setPriority(Thread.MAX_PRIORITY);
 } else {
 threads[i].setPriority(Thread.MIN_PRIORITY);
 }
 threads[i].setName("My Thread " + i);
 }

We are going to write information in a text file, so create a try-with-resources7.
statement to manage the file. Inside this block of code, write the status of the
threads in the file before you launch them. Then, launch the threads:

 try (FileWriter file = new FileWriter(".\\data\\log.txt");
 PrintWriter pw = new PrintWriter(file);) {

 for (int i = 0; i < 10; i++) {
 pw.println("Main : Status of Thread " + i + " : " +
 threads[i].getState());
 status[i] = threads[i].getState();

Thread Management

[12]

 }
 for (int i = 0; i < 10; i++) {
 threads[i].start();
 }

After this, wait for the finalization of the threads. As we will learn in the Waiting8.
for the finalization of a thread recipe of this chapter, we can use the join() method
to wait for this to happen. In this case, we want to write information about the
threads when their statuses change, so we can't use this method. We use this
block of code:

 boolean finish = false;
 while (!finish) {
 for (int i = 0; i < 10; i++) {
 if (threads[i].getState() != status[i]) {
 writeThreadInfo(pw, threads[i], status[i]);
 status[i] = threads[i].getState();
 }
 }

 finish = true;
 for (int i = 0; i < 10; i++) {
 finish = finish && (threads[i].getState() ==
 State.TERMINATED);
 }
 }

 } catch (IOException e) {
 e.printStackTrace();
 }
 }

In the previous block of code, we called the writeThreadInfo() method to9.
write information about the status of a thread in the file. This is the code for this
method:

 private static void writeThreadInfo(PrintWriter pw,
 Thread thread,
 State state) {
 pw.printf("Main : Id %d - %s\n", thread.getId(),
 thread.getName());
 pw.printf("Main : Priority: %d\n", thread.getPriority());
 pw.printf("Main : Old State: %s\n", state);
 pw.printf("Main : New State: %s\n", thread.getState());
 pw.printf("Main : ************************************\n");
 }

Thread Management

[13]

Run the program and see how the different threads work in parallel.10.

How it works...
The following screenshot shows the console part of the output of the program. We can see
that all the threads we have created run in parallel to do their respective jobs:

Thread Management

[14]

In this screenshot, you can see how threads are created and how the ones with an even
number are executed first, as they have the highest priority, and the others executed later,
as they have minimum priority. The following screenshot shows part of the output of the
log.txt file where we write information about the status of the threads:

Every Java program has at least one execution thread. When you run the program, JVM
runs the execution thread that calls the main() method of the program.

When we call the start() method of a Thread object, we are creating another execution
thread. Our program will have as many execution threads as the number of calls made to
the start() method.

The Thread class has attributes to store all of the information of a thread. The OS scheduler
uses the priority of threads to select the one that uses the CPU at each moment and
actualizes the status of every thread according to its situation.

If you don't specify a name for a thread, JVM automatically assigns it one in this format:
Thread-XX, where XX is a number. You can't modify the ID or status of a thread. The
Thread class doesn't implement the setId() and setStatus() methods as these methods
introduce modifications in the code.

Thread Management

[15]

A Java program ends when all its threads finish (more specifically, when all its non-daemon
threads finish). If the initial thread (the one that executes the main() method) ends, the rest
of the threads will continue with their execution until they finish. If one of the threads uses
the System.exit() instruction to end the execution of the program, all the threads will
end their respective execution.

Creating an object of the Thread class doesn't create a new execution thread. Also, calling
the run() method of a class that implements the Runnable interface doesn't create a new
execution thread. Only when you call the start() method, a new execution thread is
created.

There's more...
As mentioned in the introduction of this recipe, there is another way of creating a new
execution thread. You can implement a class that extends the Thread class and overrides
the run() method of this class. Then, you can create an object of this class and call the
start() method to have a new execution thread.

You can use the static method currentThread() of the Thread class to access the thread
object that is running the current object.

You have to take into account that the setPriority() method can throw an
IllegalArgumentException exception if you try to establish priority that isn't between 1
and 10.

See also
The Creating threads through a factory recipe of this chapter

Thread Management

[16]

Interrupting a thread
A Java program with more than one execution thread only finishes when the execution of
all of its threads end (more specifically, when all its non-daemon threads end their
execution or when one of the threads uses the System.exit() method). Sometimes, you
may need to finish a thread because you want to terminate a program or when a user of the
program wants to cancel the tasks that a thread object is doing.

Java provides an interruption mechanism that indicates to a thread that you want to finish
it. One peculiarity of this mechanism is that thread objects have to check whether they have
been interrupted or not, and they can decide whether they respond to the finalization
request or not. A thread object can ignore it and continue with its execution.

In this recipe, we will develop a program that creates a thread and forces its finalization
after 5 seconds, using the interruption mechanism.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class called PrimeGenerator that extends the Thread class:1.

 public class PrimeGenerator extends Thread{

Override the run() method including a loop that will run indefinitely. In this2.
loop, process consecutive numbers beginning from one. For each number,
calculate whether it's a prime number; if yes, as in this case, write it to the
console:

 @Override
 public void run() {
 long number=1L;
 while (true) {
 if (isPrime(number)) {
 System.out.printf("Number %d is Prime\n",number);
 }

Thread Management

[17]

After processing a number, check whether the thread has been interrupted by3.
calling the isInterrupted() method. If this method returns true, the thread
has been interrupted. In this case, we write a message in the console and end the
execution of the thread:

 if (isInterrupted()) {
 System.out.printf("The Prime Generator has been
 Interrupted");
 return;
 }
 number++;
 }
 }

Implement the isPrime() method. You can get its code from the Creating,4.
running, and setting information of a thread recipe of this chapter.
Now implement the main class of the example by implementing a class called5.
Main and the main() method:

 public class Main {
 public static void main(String[] args) {

Create and start an object of the PrimeGenerator class:6.

 Thread task=new PrimeGenerator();
 task.start();

Wait for 5 seconds and interrupt the PrimeGenerator thread:7.

 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 task.interrupt();

Thread Management

[18]

Then, write information related to the status of the interrupted thread. The8.
output of this piece of code will depend on whether the thread ends its execution
before or after:

 System.out.printf("Main: Status of the Thread: %s\n",
 task.getState());
 System.out.printf("Main: isInterrupted: %s\n",
 task.isInterrupted());
 System.out.printf("Main: isAlive: %s\n", task.isAlive());
 }

Run the example and see the results.9.

How it works...
The following screenshot shows the result of the execution of the previous example. We can
see how the PrimeGenerator thread writes the message and ends its execution when it
detects that it has been interrupted. Refer to the following screenshot:

The Thread class has an attribute that stores a boolean value indicating whether the
thread has been interrupted or not. When you call the interrupt() method of a thread,
you set that attribute to true. The isInterrupted() method only returns the value of that
attribute.

The main() method writes information about the status of the interrupted thread. In this
case, as this code is executed before the thread has finished its execution, the status is
RUNNABLE, the return value of the isInterrupted() method is true, and the return value
of the isAlive() method is true as well. If the interrupted Thread finishes its execution
before the execution of this block of code (you can, for example, sleep the main thread for a
second), the methods isInterrupted() and isAlive() will return a false value.

Thread Management

[19]

There's more...
The Thread class has another method to check whether a thread has been interrupted or
not. It's the static method, interrupted(), that checks whether the current thread has been
interrupted or not.

There is an important difference between the isInterrupted() and
interrupted() methods. The first one doesn't change the value of the
interrupted attribute, but the second one sets it to false.

As mentioned earlier, a thread object can ignore its interruption, but this is not the expected
behavior.

Controlling the interruption of a thread
In the previous recipe, you learned how you can interrupt the execution of a thread and
what you have to do to control this interruption in the thread object. The mechanism shown
in the previous example can be used if the thread that can be interrupted is simple. But if
the thread implements a complex algorithm divided into some methods or it has methods
with recursive calls, we will need to use a better mechanism to control the interruption of
the thread. Java provides the InterruptedException exception for this purpose. You can
throw this exception when you detect the interruption of a thread and catch it in the run()
method.

In this recipe, we will implement a task that will look for files with a determined name in a
folder and in all its subfolders. This is to show how you can use the
InterruptedException exception to control the interruption of a thread.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Management

[20]

How to do it...
Follow these steps to implement the example:

Create a class called FileSearch and specify that it implements the Runnable1.
interface:

 public class FileSearch implements Runnable {

Declare two private attributes: one for the name of the file we are going to search2.
for and one for the initial folder. Implement the constructor of the class, which
initializes these attributes:

 private String initPath;
 private String fileName;
 public FileSearch(String initPath, String fileName) {
 this.initPath = initPath;
 this.fileName = fileName;
 }

Implement the run() method of the FileSearch class. It checks whether the3.
attribute fileName is a directory; if it is, it calls the directoryProcess()
method. This method can throw an InterruptedException exception, so we
have to catch them:

 @Override
 public void run() {
 File file = new File(initPath);
 if (file.isDirectory()) {
 try {
 directoryProcess(file);
 } catch (InterruptedException e) {
 System.out.printf("%s: The search has been interrupted",
 Thread.currentThread().getName());
 }
 }
 }

Thread Management

[21]

Implement the directoryProcess() method. This method will obtain the files4.
and subfolders in a folder and process them. For each directory, the method will
make a recursive call, passing the directory as a parameter. For each file, the
method will call the fileProcess() method. After processing all files and
folders, the method checks whether the thread has been interrupted; if yes, as in
this case, it will throw an InterruptedException exception:

 private void directoryProcess(File file) throws
 InterruptedException {
 File list[] = file.listFiles();
 if (list != null) {
 for (int i = 0; i < list.length; i++) {
 if (list[i].isDirectory()) {
 directoryProcess(list[i]);
 } else {
 fileProcess(list[i]);
 }
 }
 }
 if (Thread.interrupted()) {
 throw new InterruptedException();
 }
 }

Implement the fileProcess() method. This method will compare the name of5.
the file it's processing with the name we are searching for. If the names are equal,
we will write a message in the console. After this comparison, the thread will
check whether it has been interrupted; if yes, as in this case, it will throw an
InterruptedException exception:

 private void fileProcess(File file) throws
 InterruptedException {
 if (file.getName().equals(fileName)) {
 System.out.printf("%s : %s\n",
 Thread.currentThread().getName(),
 file.getAbsolutePath());
 }
 if (Thread.interrupted()) {
 throw new InterruptedException();
 }
 }

Thread Management

[22]

Now let's implement the main class of the example. Implement a class called6.
Main that contains the main() method:

 public class Main {
 public static void main(String[] args) {

Create and initialize an object of the FileSearch class and thread to execute its7.
task. Then start executing the thread. I have used a Windows operating system
route. If you work with other operating systems, such as Linux or iOS, change the
route to the one that exists on your operating system:

 FileSearch searcher = new FileSearch("C:\\Windows",
 "explorer.exe");
 Thread thread=new Thread(searcher);
 thread.start();

Wait for 10 seconds and interrupt the thread:8.

 try {
 TimeUnit.SECONDS.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 thread.interrupt();
 }

Run the example and see the results.9.

How it works...
The following screenshot shows the result of an execution of this example. You can see how
the FileSearch object ends its execution when it detects that it has been interrupted.

Thread Management

[23]

In this example, we use Java exceptions to control the interruption of a thread. When you
run the example, the program starts going through folders by checking whether they have
the file or not. For example, if you enter in the \b\c\d folder, the program will have three
recursive calls to the directoryProcess() method. When it detects that it has been
interrupted, it throws an InterruptedException exception and continues the execution
in the run() method, no matter how many recursive calls have been made.

There's more...
The InterruptedException exception is thrown by some Java methods related to a
concurrency API, such as sleep(). In this case, this exception is thrown if the thread is
interrupted (with the interrupt() method) when it's sleeping.

See also
The Interrupting a thread recipe of this chapter

Sleeping and resuming a thread
Sometimes, you may be interested in pausing the execution of a thread during a determined
period of time. For example, a thread in a program checks the sensor state once per minute.
The rest of the time, it does nothing. During this time, the thread doesn't use any resources
of the computer. After this period is over, the thread will be ready to continue with its
execution when the operating system scheduler chooses it to be executed. You can use the
sleep() method of the Thread class for this purpose. This method receives a long number
as a parameter that indicates the number of milliseconds during which the thread will
suspend its execution. After that time, the thread continues with its execution in the next
instruction to the sleep() one when the JVM assigns it CPU time.

Another possibility is to use the sleep() method of an element of the TimeUnit
enumeration. This method uses the sleep() method of the Thread class to put the current
thread to sleep, but it receives the parameter in the unit that it represents and converts it
into milliseconds.

In this recipe, we will develop a program that uses the sleep() method to write the actual
date every second.

Thread Management

[24]

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class called ConsoleClock and specify that it implements the Runnable1.
interface:

 public class ConsoleClock implements Runnable {

Implement the run() method:2.

 @Override
 public void run() {

Write a loop with 10 iterations. In each iteration, create a Date object, write it to3.
the console, and call the sleep() method of the SECONDS attribute of the
TimeUnit class to suspend the execution of the thread for 1 second. With this
value, the thread will be sleeping for approximately 1 second. As the sleep()
method can throw an InterruptedException exception, we have to include
some code to catch it. It's good practice to include code that frees or closes the
resources the thread is using when it's interrupted:

 for (int i = 0; i < 10; i++) {
 System.out.printf("%s\n", new Date());
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 System.out.printf("The FileClock has been interrupted");
 }
 }
 }

We have implemented the thread. Now let's implement the main class of the4.
example. Create a class called Main that contains the main() method:

 public class Main {
 public static void main(String[] args) {

Thread Management

[25]

Create an object of the FileClock class and a thread to execute it. Then, start5.
executing a thread:

 FileClock clock=new FileClock();
 Thread thread=new Thread(clock);
 thread.start();

Call the sleep() method of the SECONDS attribute of the TimeUnit class in the6.
main thread to wait for 5 seconds:

 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException e) {
 e.printStackTrace();
 };

Interrupt the FileClock thread:7.

 thread.interrupt();

Run the example and see the results.8.

How it works...
When you run the example, you would see how the program writes a Date object per
second and also the message indicating that the FileClock thread has been interrupted.

When you call the sleep() method, the thread leaves the CPU and stops its execution for a
period of time. During this time, it's not consuming CPU time, so the CPU could be
executing other tasks.

When the thread is sleeping and is interrupted, the method throws an
InterruptedException exception immediately and doesn't wait until the sleeping time is
finished.

There's more...
The Java concurrency API has another method that makes a thread object leave the CPU. It's
the yield() method, which indicates to the JVM that the thread object can leave the CPU
for other tasks. The JVM does not guarantee that it will comply with this request. Normally,
it's only used for debugging purposes.

Thread Management

[26]

Waiting for the finalization of a thread
In some situations, we will have to wait for the end of the execution of a thread (the run()
method ends its execution). For example, we may have a program that will begin
initializing the resources it needs before proceeding with the rest of the execution. We can
run initialization tasks as threads and wait for their finalization before continuing with the
rest of the program.

For this purpose, we can use the join() method of the Thread class. When we call this
method using a thread object, it suspends the execution of the calling thread until the object
that is called finishes its execution.

In this recipe, we will learn the use of this method with an initialization example.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class called DataSourcesLoader and specify that it implements the1.
Runnable interface:

 public class DataSourcesLoader implements Runnable {

Implement the run() method. It writes a message to indicate that it starts its2.
execution, sleeps for 4 seconds, and writes another message to indicate that it
ends its execution:

 @Override
 public void run() {
 System.out.printf("Beginning data sources loading: %s\n",
 new Date());
 try {
 TimeUnit.SECONDS.sleep(4);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Thread Management

[27]

 System.out.printf("Data sources loading has finished: %s\n",
 new Date());
 }

Create a class called NetworkConnectionsLoader and specify that it3.
implements the Runnable interface. Implement the run() method. It will be
equal to the run() method of the DataSourcesLoader class, but it will sleep for
6 seconds.
Now, create a class called Main that contains the main() method:4.

 public class Main {
 public static void main(String[] args) {

Create an object of the DataSourcesLoader class and a thread to run it:5.

 DataSourcesLoader dsLoader = new DataSourcesLoader();
 Thread thread1 = new Thread(dsLoader,"DataSourceThread");

Create an object of the NetworkConnectionsLoader class and a thread to run it:6.

 NetworkConnectionsLoader ncLoader = new NetworkConnectionsLoader();
 Thread thread2 = new Thread(ncLoader,"NetworkConnectionLoader");

Call the start() method of both the thread objects:7.

 thread1.start();
 thread2.start();

Wait for the finalization of both the threads using the join() method. This8.
method can throw an InterruptedException exception, so we have to include
the code to catch it:

 try {
 thread1.join();
 thread2.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write a message to indicate the end of the program:9.

 System.out.printf("Main: Configuration has been loaded: %s\n",
 new Date());

Run the program and see the results.10.

Thread Management

[28]

How it works...
When you run this program, you would understand how both the thread objects start their
execution. First, the DataSourcesLoader thread finishes its execution. Then, the
NetworkConnectionsLoader class finishes its execution. At this moment, the main thread
object continues its execution and writes the final message.

There's more...
Java provides two additional forms of the join() method:

join (long milliseconds)

join (long milliseconds, long nanos)

In the first version of the join() method, instead of indefinitely waiting for the finalization
of the thread called, the calling thread waits for the milliseconds specified as the parameter
of the method. For example, if the object thread1 has thread2.join(1000), thread1
suspends its execution until one of these two conditions are met:

thread2 has finished its execution
1,000 milliseconds have passed

When one of these two conditions is true, the join() method returns. You can check the
status of the thread to know whether the join() method was returned because it finished
its execution or because the specified time had passed.

The second version of the join() method is similar to the first one, but it receives the
number of milliseconds and nanoseconds as parameters.

Creating and running a daemon thread
Java has a special kind of thread called daemon thread. When daemon threads are the only
threads running in a program, the JVM ends the program after finishing these threads.

With these characteristics, daemon threads are normally used as service providers for
normal (also called user) threads running in the same program. They usually have an
infinite loop that waits for the service request or performs the tasks of a thread. A typical
example of these kinds of threads is the Java garbage collector.

Thread Management

[29]

In this recipe, we will learn how to create a daemon thread by developing an example with
two threads: one user thread that would write events on a queue and a daemon thread that
would clean the queue, removing the events that were generated more than 10 seconds ago.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create the Event class. This class only stores information about the events our1.
program will work with. Declare two private attributes: one called the date of the
java.util.Date type and the other called the event of the String type.
Generate the methods to write and read their values.
Create the WriterTask class and specify that it implements the Runnable2.
interface:

 public class WriterTask implements Runnable {

Declare the queue that stores the events and implement the constructor of the3.
class that initializes this queue:

 private Deque<Event> deque;
 public WriterTask (Deque<Event> deque){
 this.deque=deque;
 }

Implement the run() method of this task. This method will have a loop with 1004.
iterations. In each iteration, we create a new event, save it in the queue, and sleep
for 1 second:

 @Override
 public void run() {
 for (int i=1; i<100; i++) {
 Event event=new Event();
 event.setDate(new Date());
 event.setEvent(String.format("The thread %s has generated
 an event", Thread.currentThread().getId()));
 deque.addFirst(event);

Thread Management

[30]

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Create the CleanerTask class and specify that it extends the Thread class:5.

 public class CleanerTask extends Thread {

Declare the queue that stores the events and implement the constructor of the6.
class that initializes this queue. In the constructor, mark this thread as a daemon
thread with the setDaemon() method:

 private Deque<Event> deque;
 public CleanerTask(Deque<Event> deque) {
 this.deque = deque;
 setDaemon(true);
 }

Implement the run() method. It has an infinite loop that gets the actual date and7.
calls the clean() method:

 @Override
 public void run() {
 while (true) {
 Date date = new Date();
 clean(date);
 }
 }

Implement the clean() method. It gets the last event, and if it was created more8.
than 10 seconds ago, it deletes it and checks the next event. If an event is deleted,
it writes the message of the event and the new size of the queue so you can see its
evolution:

 private void clean(Date date) {
 long difference;
 boolean delete;

 if (deque.size()==0) {
 return;
 }
 delete=false;
 do {

Thread Management

[31]

 Event e = deque.getLast();
 difference = date.getTime() - e.getDate().getTime();
 if (difference > 10000) {
 System.out.printf("Cleaner: %s\n",e.getEvent());
 deque.removeLast();
 delete=true;
 }
 } while (difference > 10000);
 if (delete){
 System.out.printf("Cleaner: Size of the queue: %d\n",
 deque.size());
 }
 }

Now implement the main class. Create a class called Main with a main()9.
method:

 public class Main {
 public static void main(String[] args) {

Create the queue to store the events using the Deque class:10.

 Deque<Event> deque=new ConcurrentLinkedDeque<Event>();

Create and start as many WriterTask threads as available processors have the11.
JVM and one CleanerTask method:

 WriterTask writer=new WriterTask(deque);
 for (int i=0; i< Runtime.getRuntime().availableProcessors();
 i++){
 Thread thread=new Thread(writer);
 thread.start();
 }
 CleanerTask cleaner=new CleanerTask(deque);
 cleaner.start();

Run the program and see the results.12.

How it works...
If you analyze the output of one execution of the program, you would see how the queue
begins to grow until it has a size of, in our case, 40 events. Then, its size will vary around 40
events it has grown up to until the end of the execution. This size may depend on the
number of cores of your machine. I have executed the code in a four-core processor, so we
launch four WriterTask tasks.

Thread Management

[32]

The program starts with four WriterTask threads. Each thread writes an event and sleeps
for 1 second. After the first 10 seconds, we have 40 events in the queue. During these 10
seconds, CleanerTask are executed whereas the four WriterTask threads sleep; however,
but it doesn't delete any event because all of them were generated less than 10 seconds ago.
During the rest of the execution, CleanerTask deletes four events every second and the
four WriterTask threads write another four; therefore, the size of the queue varies around
40 events it has grown up to. Remember that the execution of this example depends on the
number of available cores to the JVM of your computer. Normally, this number is equal to
the number of cores of your CPU.

You can play with time until the WriterTask threads are sleeping. If you use a smaller
value, you will see that CleanerTask has less CPU time and the size of the queue will
increase because CleanerTask doesn't delete any event.

There's more...
You only can call the setDaemon() method before you call the start() method. Once the
thread is running, you can't modify its daemon status calling the setDaemon() method. If
you call it, you will get an IllegalThreadStateException exception.

You can use the isDaemon() method to check whether a thread is a daemon thread (the
method returns true) or a non-daemon thread (the method returns false).

Processing uncontrolled exceptions in a
thread
A very important aspect in every programming language is the mechanism that helps you
manage error situations in your application. The Java programming language, as almost all
modern programming languages, implements an exception-based mechanism to manage
error situations. These exceptions are thrown by Java classes when an error situation is
detected. You can also use these exceptions or implement your own exceptions to manage
the errors produced in your classes.

Thread Management

[33]

Java also provides a mechanism to capture and process these exceptions. There are
exceptions that must be captured or re-thrown using the throws clause of a method. These
exceptions are called checked exceptions. There are exceptions that don't have to be
specified or caught. These are unchecked exceptions:

Checked exceptions: These must be specified in the throws clause of a method
or caught inside them, for example, IOException or
ClassNotFoundException.
Unchecked exceptions: These don't need to be specified or caught, for example,
NumberFormatException.

When a checked exception is thrown inside the run() method of a thread object, we have to
catch and treat them because the run() method doesn't accept a throws clause. When an
unchecked exception is thrown inside the run() method of a thread object, the default
behavior is to write the stack trace in the console and exit the program.

Fortunately, Java provides us with a mechanism to catch and treat unchecked exceptions
thrown in a thread object to avoid ending the program.

In this recipe, we will learn this mechanism using an example.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First of all, we have to implement a class to treat unchecked exceptions. This class1.
must implement the UncaughtExceptionHandler interface and implement the
uncaughtException() method declared in this interface. It's an interface
enclosed in the Thread class. In our case, let's call this class ExceptionHandler
and create a method to write information about Exception and Thread that
threw it. The following is the code:

 public class ExceptionHandler implements UncaughtExceptionHandler {
 @Override
 public void uncaughtException(Thread t, Throwable e) {

Thread Management

[34]

 System.out.printf("An exception has been captured\n");
 System.out.printf("Thread: %s\n",t.getId());
 System.out.printf("Exception: %s: %s\n",
 e.getClass().getName(),e.getMessage());
 System.out.printf("Stack Trace: \n");
 e.printStackTrace(System.out);
 System.out.printf("Thread status: %s\n",t.getState());
 }
 }

Now implement a class that throws an unchecked exception. Call this class Task,2.
specify that it implements the Runnable interface, implement the run() method,
and force the exception; for example, try to convert a String value into an int
value:

 public class Task implements Runnable {
 @Override
 public void run() {
 int numero=Integer.parseInt("TTT");
 }
 }

Now implement the main class of the example. Implement a class called Main3.
with its main() method:

 public class Main {
 public static void main(String[] args) {

Create a Task object and Thread to run it. Set the unchecked exception handler4.
using the setUncaughtExceptionHandler() method and start executing the
thread:

 Task task=new Task();
 Thread thread=new Thread(task);
 thread.setUncaughtExceptionHandler(new ExceptionHandler());
 thread.start();
 }
 }

Run the example and see the results.5.

Thread Management

[35]

How it works...
In the following screenshot, you can see the results of the execution of the example. The
exception is thrown and captured by the handler that writes the information about
Exception and Thread that threw it. This information is presented in the console:

When an exception is thrown in a thread and remains uncaught (it has to be an unchecked
exception), the JVM checks whether the thread has an uncaught exception handler set by
the corresponding method. If it does, the JVM invokes this method with the Thread object
and Exception as arguments.

If the thread doesn't have an uncaught exception handler, the JVM prints the stack trace in
the console and ends the execution of the thread that had thrown the exception.

There's more...
The Thread class has another method related to the process of uncaught exceptions. It's the
static method setDefaultUncaughtExceptionHandler() that establishes an exception
handler for all the thread objects in the application.

When an uncaught exception is thrown in the thread, the JVM looks for three possible
handlers for this exception.

Thread Management

[36]

First it looks for the uncaught exception handler of the thread objects, as we learned in this
recipe. If this handler doesn't exist, the JVM looks for the uncaught exception handler of
ThreadGroup as explained in the Grouping threads and processing uncontrolled exceptions in a
group of threads recipe. If this method doesn't exist, the JVM looks for the default uncaught
exception handler, as we learned in this recipe.

If none of the handlers exits, the JVM writes the stack trace of the exception in the console
and ends the execution of the Thread that had thrown the exception.

See also
The Grouping threads and processing uncontrolled exceptions in a group of threads
recipe of this chapter

Using thread local variables
One of the most critical aspects of a concurrent application is shared data. This has special
importance in objects that extend the Thread class or implement the Runnable interface
and in objects that are shared between two or more threads.

If you create an object of a class that implements the Runnable interface and then start
various thread objects using the same Runnable object, all the threads would share the
same attributes. This means that if you change an attribute in a thread, all the threads will
be affected by this change.

Sometimes, you will be interested in having an attribute that won't be shared among all the
threads that run the same object. The Java Concurrency API provides a clean mechanism
called thread-local variables with very good performance. They have some disadvantages
as well. They retain their value while the thread is alive. This can be problematic in
situations where threads are reused.

In this recipe, we will develop two programs: one that would expose the problem in the first
paragraph and another that would solve this problem using the thread-local variables
mechanism.

Thread Management

[37]

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, implement a program that has the problem exposed previously. Create a1.
class called UnsafeTask and specify that it implements the Runnable interface.
Declare a private java.util.Date attribute:

 public class UnsafeTask implements Runnable{
 private Date startDate;

Implement the run() method of the UnsafeTask object. This method will2.
initialize the startDate attribute, write its value to the console, sleep for a
random period of time, and again write the value of the startDate attribute:

 @Override
 public void run() {
 startDate=new Date();
 System.out.printf("Starting Thread: %s : %s\n",
 Thread.currentThread().getId(),startDate);
 try {
 TimeUnit.SECONDS.sleep((int)Math.rint(Math.random()*10));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("Thread Finished: %s : %s\n",
 Thread.currentThread().getId(),startDate);
 }

Thread Management

[38]

Now, implement the main class of this problematic application. Create a class3.
called Main with a main() method. This method will create an object of the
UnsafeTask class and start 10 threads using this object, sleeping for 2 seconds
between each thread:

 public class Main {
 public static void main(String[] args) {
 UnsafeTask task=new UnsafeTask();
 for (int i=0; i<10; i++){
 Thread thread=new Thread(task);
 thread.start();
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }

In the following screenshot, you can see the results of this program's execution.4.
Each thread has a different start time, but when they finish, there is a change in
the value of the attribute. So they are writing a bad value. For example, check out
the thread with the ID 13:

As mentioned earlier, we are going to use the thread-local variables mechanism5.
to solve this problem.
Create a class called SafeTask and specify that it implements the Runnable6.
interface:

 public class SafeTask implements Runnable {

Thread Management

[39]

Declare an object of the ThreadLocal<Date> class. This object will have an7.
implicit implementation that would include the initialValue() method. This
method will return the actual date:

 private static ThreadLocal<Date> startDate=new
 ThreadLocal<Date>(){
 protected Date initialValue(){
 return new Date();
 }
 };

Implement the run() method. It has the same functionality as the run() method8.
of UnsafeTask class, but it changes the way it accesses the startDate
attribute. Now we will use the get() method of the startDate object:

 @Override
 public void run() {
 System.out.printf("Starting Thread: %s : %s\n",
 Thread.currentThread().getId(),startDate.get());
 try {
 TimeUnit.SECONDS.sleep((int)Math.rint(Math.random()*10));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("Thread Finished: %s : %s\n",
 Thread.currentThread().getId(),startDate.get());
 }

The Main class of this example is the same as the unsafe example. The only9.
difference is that it changes the name of the Runnable class.
Run the example and analyze the difference.10.

Thread Management

[40]

How it works...
In the following screenshot, you can see the results of the execution of the safe sample. The
ten Thread objects have their own value of the startDate attribute:

The thread-local variables mechanism stores a value of an attribute for each thread that uses
one of these variables. You can read the value using the get() method and change the
value using the set() method. The first time you access the value of a thread-local variable,
if it has no value for the thread object that it is calling, the thread-local variable will call the
initialValue() method to assign a value for that thread and return the initial value.

There's more...
The thread-local class also provides the remove() method that deletes the value stored in a
thread-local variable for the thread that it's calling.

The Java Concurrency API includes the InheritableThreadLocal class that provides
inheritance of values for threads created from a thread. If thread A has a value in a thread-
local variable and it creates another thread B, then thread B will have the same value as
thread A in the thread-local variable. You can override the childValue() method that is
called to initialize the value of the child thread in the thread-local variable. It receives the
value of the parent thread as a parameter in the thread-local variable.

Thread Management

[41]

Grouping threads and processing
uncontrolled exceptions in a group of
threads
An interesting functionality offered by the concurrency API of Java is the ability to group
threads. This allows us to treat the threads of a group as a single unit and provide access to
the thread objects that belong to a group in order to do an operation with them. For
example, you have some threads doing the same task and you want to control them. You
can, for example, interrupt all the threads of the group with a single call.

Java provides the ThreadGroup class to work with a groups of threads. A ThreadGroup
object can be formed by thread objects and another ThreadGroup object, generating a tree
structure of threads.

In the Controlling the interruption of a thread recipe, you learned how to use a generic method
to process all the uncaught exceptions that are thrown in a thread object. In the Processing
uncontrolled exceptions in a thread recipe, we wrote a handler to process the uncaught
exceptions thrown by a thread. We can use a similar mechanism to process the uncaught
exceptions thrown by a thread or a group of threads.

In this recipe, we will learn to work with ThreadGroup objects and how to implement and
set the handler that would process uncaught exceptions in a group of threads. We'll do this
using an example.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Management

[42]

How to do it...
Follow these steps to implement the example:

First, extend the ThreadGroup class by creating a class called MyThreadGroup1.
that would be extended from ThreadGroup. You have to declare a constructor
with one parameter because the ThreadGroup class doesn't have a constructor
without it. Extend the ThreadGroup class to override the
uncaughtException() method in order to process the exceptions thrown by the
threads of the group:

 public class MyThreadGroup extends ThreadGroup {
 public MyThreadGroup(String name) {
 super(name);
 }

Override the uncaughtException() method. This method is called when an2.
exception is thrown in one of the threads of the ThreadGroup class. In this case,
the method will write information about the exception and the thread that throws
it; it will present this information in the console. Also, note that this method will
interrupt the rest of the threads in the ThreadGroup class:

 @Override
 public void uncaughtException(Thread t, Throwable e) {
 System.out.printf("The thread %s has thrown an Exception\n",
 t.getId());
 e.printStackTrace(System.out);
 System.out.printf("Terminating the rest of the Threads\n");
 interrupt();
 }

Create a class called Task and specify that it implements the Runnable interface:3.

 public class Task implements Runnable {

Implement the run() method. In this case, we will provoke an4.
AritmethicException exception. For this, we will divide 1,000 with random
numbers until the random generator generates zero to throw the exception:

 @Override
 public void run() {
 int result;
 Random random=new Random(Thread.currentThread().getId());
 while (true) {
 result=1000/((int)(random.nextDouble()*1000000000));

Thread Management

[43]

 if (Thread.currentThread().isInterrupted()) {
 System.out.printf("%d : Interrupted\n",
 Thread.currentThread().getId());
 return;
 }
 }
 }

Now, implement the main class of the example by creating a class called Main5.
and implement the main() method:

 public class Main {
 public static void main(String[] args) {

First, calculate the number of threads you are going to launch. We use the6.
availableProcessors() method of the Runtime class (we obtain the runtime
object associated with the current Java application with the static method, called
getRuntime(), of that class). This method returns the number of processors
available to the JVM, which is normally equal to the number of cores of the
computer that run the application:

 int numberOfThreads = 2 * Runtime.getRuntime()
 .availableProcessors();

Create an object of the MyThreadGroup class:7.

 MyThreadGroup threadGroup=new MyThreadGroup("MyThreadGroup");

Create an object of the Task class:8.

 Task task=new Task();

Create the calculated number of Thread objects with this Task class and start9.
them:

 for (int i = 0; i < numberOfThreads; i++) {
 Thread t = new Thread(threadGroup, task);
 t.start();
 }

Then, write information about ThreadGroup in the console:10.

 System.out.printf("Number of Threads: %d\n",
 threadGroup.activeCount());
 System.out.printf("Information about the Thread Group\n");
 threadGroup.list();

Thread Management

[44]

Finally, write the status of the threads that form the group:11.

 Thread[] threads = new Thread[threadGroup.activeCount()];
 threadGroup.enumerate(threads);
 for (int i = 0; i < threadGroup.activeCount(); i++) {
 System.out.printf("Thread %s: %s\n", threads[i].getName(),
 threads[i].getState());
 }
 }
 }

Run the example and see the results.12.

How it works...
In the following screenshot, you can see the output of the list() method of the
ThreadGroup class and the output generated when we write the status of each Thread
object:

The ThreadGroup class stores thread objects and other ThreadGroup objects associated
with it so it can access all of their information (status, for example) and perform operations
over all its members (interrupt, for example).

Thread Management

[45]

Check out how one of the thread objects threw the exception that interrupted the other
objects:

When an uncaught exception is thrown in a Thread object, the JVM looks for three possible
handlers for this exception.

First, it looks for the uncaught exception handler of the thread, as explained in the
Processing uncontrolled exceptions in a thread recipe. If this handler doesn't exist, then the JVM
looks for the uncaught exception handler of the ThreadGroup class of the thread, as learned
in this recipe. If this method doesn't exist, the JVM looks for the default uncaught exception
handler, as explained in the Processing uncontrolled exceptions in a thread recipe.

If none of the handlers exists, the JVM writes the stack trace of the exception in the console
and ends the execution of the thread that had thrown the exception.

See also
The Processing uncontrolled exceptions in a thread recipe

Creating threads through a factory
The factory pattern is one of the most used design patterns in the object-oriented
programming world. It is a creational pattern, and its objective is to develop an object
whose mission should be this: creating other objects of one or several classes. With this, if
you want to create an object of one of these classes, you could just use the factory instead of
using a new operator.

Thread Management

[46]

With this factory, we centralize the creation of objects with some advantages:

It's easy to change the class of the objects created or the way you'd create them.
It's easy to limit the creation of objects for limited resources; for example, we can
only have n objects of a given type.
It's easy to generate statistical data about the creation of objects.

Java provides an interface, the ThreadFactory interface, to implement a thread object
factory. Some advanced utilities of the Java concurrency API use thread factories to create
threads.

In this recipe, you will learn how to implement a ThreadFactory interface to create thread
objects with a personalized name while saving the statistics of the thread objects created.

Getting ready
The example for this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class called MyThreadFactory and specify that it implements the1.
ThreadFactory interface:

 public class MyThreadFactory implements ThreadFactory {

Declare three attributes: an integer number called counter, which we will use to2.
store the number of thread objects created, a string called name with the base
name of every thread created, and a list of string objects called stats to save
statistical data about the thread objects created. Also, implement the constructor
of the class that initializes these attributes:

 private int counter;
 private String name;
 private List<String> stats;

 public MyThreadFactory(String name){
 counter=0;
 this.name=name;

Thread Management

[47]

 stats=new ArrayList<String>();
 }

Implement the newThread() method. This method will receive a Runnable3.
interface and return a thread object for this Runnable interface. In our case, we
generate the name of the thread object, create the new thread object, and save the
statistics:

 @Override
 public Thread newThread(Runnable r) {
 Thread t=new Thread(r,name+"-Thread_"+counter);
 counter++;
 stats.add(String.format("Created thread %d with name %s on %s\n",
 t.getId(),t.getName(),new Date()));
 return t;
 }

Implement the getStatistics() method; it returns a String object with the4.
statistical data of all the thread objects created:

 public String getStats(){
 StringBuffer buffer=new StringBuffer();
 Iterator<String> it=stats.iterator();

 while (it.hasNext()) {
 buffer.append(it.next());
 buffer.append("\n");
 }

 return buffer.toString();
 }

Create a class called Task and specify that it implements the Runnable interface.5.
In this example, these tasks are going to do nothing apart from sleeping for 1
second:

 public class Task implements Runnable {
 @Override
 public void run() {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Thread Management

[48]

Create the main class of the example. Create a class called Main and implement6.
the main() method:

 public class Main {
 public static void main(String[] args) {

Create a MyThreadFactory object and a Task object:7.

 MyThreadFactory factory=new MyThreadFactory("MyThreadFactory");
 Task task=new Task();

Create 10 Thread objects using the MyThreadFactory object and start them:8.

 Thread thread;
 System.out.printf("Starting the Threads\n");
 for (int i=0; i<10; i++){
 thread=factory.newThread(task);
 thread.start();
 }

Write the statistics of the thread factory in the console:9.

 System.out.printf("Factory stats:\n");
 System.out.printf("%s\n",factory.getStats());

Run the example and see the results.10.

How it works...
The ThreadFactory interface has only one method, called newThread(). It receives a
Runnable object as a parameter and returns a Thread object. When you implement a
ThreadFactory interface, you have to implement it and override the newThread method.
The most basic ThreadFactory has only one line:

 return new Thread(r);

Thread Management

[49]

You can improve this implementation by adding some variants, as follows:

Creating personalized threads, as in the example, using a special format for the
name or even creating your own Thread class that would inherit the Java Thread
class
Saving thread creation statistics, as shown in the previous example
Limiting the number of threads created
Validating the creation of the threads

You can add anything else you can imagine to the preceding list. The use of the factory
design pattern is a good programming practice, but if you implement a ThreadFactory
interface to centralize the creation of threads, you will have to review the code to guarantee
that all the threads are created using the same factory.

See also
The Implementing the ThreadFactory interface to generate custom threads and Using
our ThreadFactory in an Executor object recipes in Chapter 8, Customizing
Concurrency Classes

2
Basic Thread Synchronization

In this chapter, we will cover the following topics:

Synchronizing a method
Using conditions in synchronized code
Synchronizing a block of code with a lock
Synchronizing data access with read/write locks
Using multiple conditions in a lock
Advanced locking with the StampedLock class

Introduction
One of the most common situations in concurrent programming occurs when more than
one execution thread shares a resource. In a concurrent application, it is normal for multiple
threads to read or write the same data structure or have access to the same file or database
connection. These shared resources can provoke error situations or data inconsistency, and
we have to implement mechanisms to avoid these errors. These situations are called race
conditions and they occur when different threads have access to the same shared resource
at the same time. Therefore, the final result depends on the order of the execution of
threads, and most of the time, it is incorrect. You can also have problems with change
visibility. So if a thread changes the value of a shared variable, the changes would only be
written in the local cache of that thread; other threads will not have access to the change
(they will only be able to see the old value).

The solution for these problems lies in the concept of critical section. A critical section is a
block of code that accesses a shared resource and can't be executed by more than one thread
at the same time.

Basic Thread Synchronization

[51]

To help programmers implement critical sections, Java (and almost all programming
languages) offers synchronization mechanisms. When a thread wants access to a critical
section, it uses one of these synchronization mechanisms to find out whether there is any
other thread executing the critical section. If not, the thread enters the critical section. If yes,
the thread is suspended by the synchronization mechanism until the thread that is currently
executing the critical section ends it. When more than one thread is waiting for a thread to
finish the execution of a critical section, JVM chooses one of them and the rest wait for their
turn. This chapter presents a number of recipes that will teach you how to use the two basic
synchronization mechanisms offered by the Java language:

The synchronized keyword
The Lock interface and its implementations

Synchronizing a method
In this recipe, you will learn how to use one of the most basic methods of synchronization in
Java, that is, the use of the synchronized keyword to control concurrent access to a
method or a block of code. All the synchronized sentences (used on methods or blocks of
code) use an object reference. Only one thread can execute a method or block of code
protected by the same object reference.

When you use the synchronized keyword with a method, the object reference is implicit.
When you use the synchronized keyword in one or more methods of an object, only one
execution thread will have access to all these methods. If another thread tries to access any
method declared with the synchronized keyword of the same object, it will be suspended
until the first thread finishes the execution of the method. In other words, every method
declared with the synchronized keyword is a critical section, and Java only allows the
execution of one of the critical sections of an object at a time. In this case, the object
reference used is the own object, represented by the this keyword. Static methods have a
different behavior. Only one execution thread will have access to one of the static methods
declared with the synchronized keyword, but a different thread can access other non-
static methods of an object of that class. You have to be very careful with this point because
two threads can access two different synchronized methods if one is static and the other is
not. If both methods change the same data, you can have data inconsistency errors. In this
case, the object reference used is the class object.

Basic Thread Synchronization

[52]

When you use the synchronized keyword to protect a block of code, you must pass an
object reference as a parameter. Normally, you will use the this keyword to reference the
object that executes the method, but you can use other object references as well. Normally,
these objects will be created exclusively for this purpose. You should keep the objects used
for synchronization private. For example, if you have two independent attributes in a class
shared by multiple threads, you must synchronize access to each variable; however, it
wouldn't be a problem if one thread is accessing one of the attributes and the other
accessing a different attribute at the same time. Take into account that if you use the own
object (represented by the this keyword), you might interfere with other synchronized
code (as mentioned before, the this object is used to synchronize the methods marked with
the synchronized keyword).

In this recipe, you will learn how to use the synchronized keyword to implement an
application simulating a parking area, with sensors that detect the following: when a car or
a motorcycle enters or goes out of the parking area, an object to store the statistics of the
vehicles being parked, and a mechanism to control cash flow. We will implement two
versions: one without any synchronization mechanisms, where we will see how we obtain
incorrect results, and one that works correctly as it uses the two variants of the
synchronized keyword.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, create the application without using any synchronization mechanism.1.
Create a class named ParkingCash with an internal constant and an attribute to
store the total amount of money earned by providing this parking service:

 public class ParkingCash {
 private static final int cost=2;
 private long cash;

 public ParkingCash() {
 cash=0;
 }

Basic Thread Synchronization

[53]

Implement a method named vehiclePay() that will be called when a vehicle (a2.
car or motorcycle) leaves the parking area. It will increase the cash attribute:

 public void vehiclePay() {
 cash+=cost;
 }

Finally, implement a method named close() that will write the value of the cash3.
attribute in the console and reinitialize it to zero:

 public void close() {
 System.out.printf("Closing accounting");
 long totalAmmount;
 totalAmmount=cash;
 cash=0;
 System.out.printf("The total amount is : %d",
 totalAmmount);
 }
 }

Create a class named ParkingStats with three private attributes and the4.
constructor that will initialize them:

 public class ParkingStats {
 private long numberCars;
 private long numberMotorcycles;
 private ParkingCash cash;

 public ParkingStats(ParkingCash cash) {
 numberCars = 0;
 numberMotorcycles = 0;
 this.cash = cash;
 }

Then, implement the methods that will be executed when a car or motorcycle5.
enters or leaves the parking area. When a vehicle leaves the parking area, cash
should be incremented:

 public void carComeIn() {
 numberCars++;
 }

 public void carGoOut() {
 numberCars--;
 cash.vehiclePay();
 }

Basic Thread Synchronization

[54]

 public void motoComeIn() {
 numberMotorcycles++;
 }

 public void motoGoOut() {
 numberMotorcycles--;
 cash.vehiclePay();
 }

Finally, implement two methods to obtain the number of cars and motorcycles in6.
the parking area, respectively.
Create a class named Sensor that will simulate the movement of vehicles in the7.
parking area. It implements the Runnable interface and has a ParkingStats
attribute, which will be initialized in the constructor:

 public class Sensor implements Runnable {

 private ParkingStats stats;

 public Sensor(ParkingStats stats) {
 this.stats = stats;
 }

Implement the run() method. In this method, simulate that two cars and a8.
motorcycle arrive in and then leave the parking area. Every sensor will perform
this action 10 times:

 @Override
 public void run() {
 for (int i = 0; i< 10; i++) {
 stats.carComeIn();
 stats.carComeIn();
 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 stats.motoComeIn();
 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Basic Thread Synchronization

[55]

 stats.motoGoOut();
 stats.carGoOut();
 stats.carGoOut();
 }
 }

Finally, implement the main method. Create a class named Main with the main()9.
method. It needs ParkingCash and ParkingStats objects to manage parking:

 public class Main {

 public static void main(String[] args) {

 ParkingCash cash = new ParkingCash();
 ParkingStats stats = new ParkingStats(cash);

 System.out.printf("Parking Simulator\n");

Then, create the Sensor tasks. Use the availableProcessors() method (that10.
returns the number of available processors to the JVM, which normally is equal to
the number of cores in the processor) to calculate the number of sensors our
parking area will have. Create the corresponding Thread objects and store them
in an array:

 intnumberSensors=2 * Runtime.getRuntime()
 .availableProcessors();
 Thread threads[]=new Thread[numberSensors];
 for (int i = 0; i<numberSensors; i++) {
 Sensor sensor=new Sensor(stats);
 Thread thread=new Thread(sensor);
 thread.start();
 threads[i]=thread;
 }

Then wait for the finalization of the threads using the join() method:11.

 for (int i=0; i<numberSensors; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Basic Thread Synchronization

[56]

Finally, write the statistics of Parking:12.

 System.out.printf("Number of cars: %d\n",
 stats.getNumberCars());
 System.out.printf("Number of motorcycles: %d\n",
 stats.getNumberMotorcycles());
 cash.close();
 }
 }

In our case, we executed the example in a four-core processor, so we will have eight Sensor
tasks. Each task performs 10 iterations, and in each iteration, three vehicles enter the
parking area and the same three vehicles go out. Therefore, each Sensor task will simulate
30 vehicles.

If everything goes well, the final stats will show the following:

There are no cars in the parking area, which means that all the vehicles that came
into the parking area have moved out
Eight Sensor tasks were executed, where each task simulated 30 vehicles and
each vehicle was charged 2 dollars each; therefore, the total amount of cash
earned was 480 dollars

When you execute this example, each time you will obtain different results, and most of
them will be incorrect. The following screenshot shows an example:

We had race conditions, and the different shared variables accessed by all the threads gave
incorrect results. Let's modify the previous code using the synchronized keyword to solve
these problems:

First, add the synchronized keyword to the vehiclePay() method of the1.
ParkingCash class:

 public synchronized void vehiclePay() {
 cash+=cost;
 }

Basic Thread Synchronization

[57]

Then, add a synchronized block of code using the this keyword to the2.
close() method:

 public void close() {
 System.out.printf("Closing accounting");
 long totalAmmount;
 synchronized (this) {
 totalAmmount=cash;
 cash=0;
 }
 System.out.printf("The total amount is : %d",totalAmmount);
 }

Now add two new attributes to the ParkingStats class and initialize them in3.
the constructor of the class:

 private final Object controlCars, controlMotorcycles;
 public ParkingStats (ParkingCash cash) {
 numberCars=0;
 numberMotorcycles=0;
 controlCars=new Object();
 controlMotorcycles=new Object();
 this.cash=cash;
 }

Finally, modify the methods that increment and decrement the number of cars4.
and motorcycles, including the synchronized keyword. The numberCars
attribute will be protected by the controlCars object, and the
numberMotorcycles attribute will be protected by the controlMotorcycles
object. You must also synchronize the getNumberCars() and
getNumberMotorcycles() methods with the associated reference object:

 public void carComeIn() {
 synchronized (controlCars) {
 numberCars++;
 }
 }

 public void carGoOut() {
 synchronized (controlCars) {
 numberCars--;
 }
 cash.vehiclePay();
 }

Basic Thread Synchronization

[58]

 public void motoComeIn() {
 synchronized (controlMotorcycles) {
 numberMotorcycles++;
 }
 }

 public void motoGoOut() {
 synchronized (controlMotorcycles) {
 numberMotorcycles--;
 }
 cash.vehiclePay();
 }

Execute the example now and see the difference when compared to the previous5.
version.

How it works...
The following screenshot shows the output of the new version of the example. No matter
how many times you execute it, you will always obtain the correct result:

Let's see the different uses of the synchronized keyword in the example:

First, we protected the vehiclePay() method. If two or more Sensor tasks call
this method at the same time, only one will execute it and the rest will wait for
their turn; therefore, the final amount will always be correct.
We used two different objects to control access to the car and motorcycle
counters. This way, one Sensor task can modify the numberCars attribute and
another Sensor task can modify the numberMotorcycles attribute at the same
time; however, no two Sensor tasks will be able to modify the same attribute at
the same time, so the final value of the counters will always be correct.

Basic Thread Synchronization

[59]

Finally, we also synchronized the getNumberCars() and getNumberMotorcycles()
methods. Using the synchronized keyword, we can guarantee correct access to shared
data in concurrent applications.

As mentioned at the introduction of this recipe, only one thread can access the methods of
an object that uses the synchronized keyword in their declaration. If thread (A) is
executing a synchronized method and thread (B) wants to execute another
synchronized method of the same object, it will be blocked until thread (A) is finished.
But if thread (B) has access to different objects of the same class, none of them will be
blocked.

When you use the synchronized keyword to protect a block of code, you use an object as a
parameter. JVM guarantees that only one thread can have access to all the blocks of code
protected with this object (note that we always talk about objects, not classes).

We used the TimeUnit class as well. The TimeUnit class is an enumeration with the
following constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,
NANOSECONDS, and SECONDS. These indicate the units of time we pass to the sleep method.
In our case, we let the thread sleep for 50 milliseconds.

There's more...
The synchronized keyword penalizes the performance of the application, so you must
only use it on methods that modify shared data in a concurrent environment. If you have
multiple threads calling a synchronized method, only one will execute them at a time
while the others will remain waiting. If the operation doesn't use the synchronized
keyword, all the threads can execute the operation at the same time, reducing the total
execution time. If you know that a method will not be called by more than one thread, don't
use the synchronized keyword. Anyway, if the class is designed for multithreading
access, it should always be correct. You must promote correctness over performance. Also,
you should include documentation in methods and classes in relation to their thread safety.

You can use recursive calls with synchronized methods. As the thread has access to the
synchronized methods of an object, you can call other synchronized methods of that
object, including the method that is being executed. It won't have to get access to the
synchronized methods again.

Basic Thread Synchronization

[60]

We can use the synchronized keyword to protect access to a block of code instead of an
entire method. We should use the synchronized keyword in this way to protect access to
shared data, leaving the rest of the operations out of this block and obtaining better
performance of the application. The objective is to have the critical section (the block of code
that can be accessed only by one thread at a time) as short as possible. Also, avoid calling
blocking operations (for example, I/O operations) inside a critical section. We have used the
synchronized keyword to protect access to the instruction that updates the number of
persons in the building, leaving out the long operations of the block that don't use shared
data. When you use the synchronized keyword in this way, you must pass an object
reference as a parameter. Only one thread can access the synchronized code (blocks or
methods) of this object. Normally, we will use the this keyword to reference the object that
is executing the method:

 synchronized (this) {
 // Java code
 }

See also
The Using conditions in synchronized code recipe in this chapter

Using conditions in synchronized code
A classic problem in concurrent programming is the producer-consumer problem. We have
a data buffer, one or more producers of data that save it in the buffer, and one or more
consumers of data that take it from the buffer.

As the buffer is a shared data structure, we have to control access to it using a
synchronization mechanism, such as the synchronized keyword, but here we have more
limitations. A producer can't save data in the buffer if it's full, and a consumer can't take
data from the buffer if it's empty.

Basic Thread Synchronization

[61]

For these types of situations, Java provides the wait(), notify(), and notifyAll()
methods implemented in the Object class. A thread can call the wait() method inside a
synchronized block of code. If it calls the wait() method outside a synchronized block
of code, JVM throws an IllegalMonitorStateException exception. When the thread
calls the wait() method, JVM puts the thread to sleep and releases the object that controls
the synchronized block of code that it's executing and allows other threads to execute
other blocks of synchronized code protected by this object. To wake up the thread, you
must call the notify() or notifyAll() methods inside a block of code protected by the
same object.

In this recipe, you will learn how to implement the producer-consumer problem using the
synchronized keyword and the wait(), notify(), and notifyAll() methods.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named EventStorage. It has two attributes, namely an int1.
attribute called maxSize and a List<Date> attribute called storage:

 public class EventStorage {

 private int maxSize;
 private Queue<Date> storage;

Implement the constructor of the class that initializes the attributes of the class:2.

 public EventStorage(){
 maxSize=10;
 storage=new LinkedList<>();
 }

Basic Thread Synchronization

[62]

Implement the synchronized method set() to store an event in storage. First,3.
check whether storage is full or not. If it's full, it calls the wait() method until it
has empty space. At the end of the method, we call the notify() method to
wake up all the threads that are sleeping in the wait() method. In this case, we
will ignore InterruptedException. In a real implementation, you must think
what treatment you must give to them. You can rethrow or transform them into a
different type of exception of the application:

 public synchronized void set(){
 while (storage.size()==maxSize){
 try {
 wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 storage.offer(new Date());
 System.out.printf("Set: %d",storage.size());
 notify();
 }

Implement the synchronized method get() to get an event for storage4.
purposes. First, check whether storage has events or not. If it has no events, it
calls the wait() method until it is given some events. At the end of the method,
we call the notifyAll() method to wake up all the threads that are sleeping in
the wait() method. In this case, we will ignore InterruptedException. In a
real implementation, you must think what treatment you must give to them. You
can rethrow or transform them into a different type of exception of the
application:

 public synchronized void get(){
 while (storage.size()==0){
 try {
 wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 String element=storage.poll().toString();
 System.out.printf("Get: %d: %s\n",storage.size(),element);
 notify();

 }

Basic Thread Synchronization

[63]

Create a class named Producer and specify that it implements the Runnable5.
interface. It will implement the producer of the example:

 public class Producer implements Runnable {

Declare an EventStore object and implement the constructor of the class that6.
initializes this object:

 private EventStorage storage;

 public Producer(EventStorage storage){
 this.storage=storage;
 }

Implement the run() method that calls the set() method of the EventStorage7.
object 100 times:

 @Override
 public void run() {
 for (int i=0; i<100; i++){
 storage.set();
 }
 }

Create a class named Consumer and specify that it implements the Runnable8.
interface. It will implement the consumer of the example:

 public class Consumer implements Runnable {

Declare an EventStorage object and implement the constructor of the class that9.
initializes this object:

 private EventStorage storage;

 public Consumer(EventStorage storage){
 this.storage=storage;
 }

Basic Thread Synchronization

[64]

Implement the run() method. It calls the get() method of the EventStorage10.
object 100 times:

 @Override
 public void run() {
 for (int i=0; i<100; i++){
 storage.get();
 }
 }

Create the main class of the example by implementing a class named Main and11.
adding the main() method to it:

 public class Main {

 public static void main(String[] args) {

Create an EventStorage object:12.

 EventStorage storage=new EventStorage();

Create a Producer object and Thread to run it:13.

 Producer producer=new Producer(storage);
 Thread thread1=new Thread(producer);

Create a Consumer object and Thread to run it:14.

 Consumer consumer=new Consumer(storage);
 Thread thread2=new Thread(consumer);

Start both the threads:15.

 thread2.start();
 thread1.start();

Basic Thread Synchronization

[65]

How it works...
The key to this example is the set() and get() methods of the EventStorage class. First
of all, the set() method checks whether there is free space in the storage attribute. If it's
full, it calls the wait() method to wait for free space. When the other thread calls the
notify() method, this thread wakes up and checks the condition again. The notify()
method doesn't guarantee that the condition is met. This process is repeated until there is
free space in storage and it can generate a new event and store it.

The behavior of the get() method is similar. First, it checks whether there are events on the
storage attribute. If the EventStorage class is empty, it calls the wait() method to wait for
events. When the other thread calls the notify() method, this thread wakes up and checks
the condition again until there are some events in storage.

You have to keep checking the conditions and calling the wait() method
in a while loop. You will not be able to continue until the condition is
true.

If you run this example, you will find that although the producer and consumer are setting
and getting events, storage never has the capacity to include more than 10 events.

There's more...
There are other important uses of the synchronized keyword. See the See also section of
this recipes that explain the use of this keyword.

See also
The Synchronizing a method recipe in this chapter

Basic Thread Synchronization

[66]

Synchronizing a block of code with a lock
Java provides another mechanism for synchronizing blocks of code. It's a more powerful
and flexible mechanism than the synchronized keyword. It's based on the Lock (of the
java.util.concurrent.locks package) interface and classes that implement it (as
ReentrantLock). This mechanism presents some advantages, which are as follows:

It allows you to structure synchronized blocks in a more flexible way. With the
synchronized keyword, you only have control over a synchronized block of
code in a structured way. However, the Lock interface allows you to get more
complex structures to implement your critical section.
The Lock interface provides additional functionalities over the synchronized
keyword. One of the new functionalities is implemented by the tryLock()
method. This method tries to get control of the lock, and if it can't, because it's
used by another thread, it returns false. With the synchronized keyword, if
thread (A) tries to execute a synchronized block of code when thread (B) is
executing it, thread (A) is suspended until thread (B) finishes the execution of the
synchronized block. With lock, you can execute the tryLock() method. This
method returns a Boolean value indicating whether there is another thread
running the code protected by this lock.
The ReadWriteLock interface allows a separation of read and write operations
with multiple readers and only one modifier.
The Lock interface offers better performance than the synchronized keyword.

The constructor of the ReentrantLock class admits a boolean parameter named fair;
this parameter allows you to control its behavior. The false value is the default value and
it's called the non-fair mode. In this mode, if some threads are waiting for a lock and the
lock has to select one of these threads to get access to the critical section, it randomly selects
anyone of them. The true value is called the fair mode. In this mode, if some threads are
waiting for a lock and the lock has to select one to get access to a critical section, it selects
the thread that has been waiting for the longest period of time. Take into account that the
behavior explained previously is only used in the lock() and unlock() methods. As the
tryLock() method doesn't put the thread to sleep if the Lock interface is used, the fair
attribute doesn't affect its functionality.

In this recipe, you will learn how to use locks to synchronize a block of code and create a
critical section using the Lock interface and the ReentrantLock class that implements it,
implementing a program that simulates a print queue. You will also learn how the fair
parameter affects the behavior of Lock.

Basic Thread Synchronization

[67]

Getting ready
The example in this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named PrintQueue that will implement the print queue:1.

 public class PrintQueue {

Declare a Lock object and initialize it with a new object of the ReentrantLock2.
class in the constructor. The constructor will receive a Boolean parameter we
will use to specify the fair mode of the Lock:

 private Lock queueLock;
 public PrintQueue(booleanfairMode) {
 queueLock = new ReentrantLock(fairMode);
 }

Implement the printJob() method. It will receive Object as a parameter and it3.
will not return any value:

 public void printJob(Object document){

Inside the printJob() method, get control of the Lock object by calling the4.
lock() method:

 queueLock.lock();

Then, include the following code to simulate the process of printing a document:5.

 try {
 Long duration=(long)(Math.random()*10000);
 System.out.println(Thread.currentThread().getName()+ ":
 PrintQueue: Printing a Job during "+
 (duration/1000)+" seconds");
 Thread.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Basic Thread Synchronization

[68]

Finally, free the control of the Lock object with the unlock() method:6.

 finally {
 queueLock.unlock();
 }

Then, repeat the same process again. The printJob() method will help you get7.
access to the lock and then free it twice. This strange behavior will allow us to see
the difference between fair and non-fair mode in a better way. We include this
piece of code in the printJob() method:

 queueLock.lock();
 try {
 Long duration = (long) (Math.random() * 10000);
 System.out.printf("%s: PrintQueue: Printing a Job during
 %d seconds\n", Thread.currentThread()
 .getName(),(duration / 1000));
 Thread.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 queueLock.unlock();
 }

Create a class named Job and specify that it implements the Runnable interface:8.

 public class Job implements Runnable {

Declare an object of the PrintQueue class and implement the constructor of the9.
class that initializes this object:

 private PrintQueue printQueue;

 public Job(PrintQueue printQueue){
 this.printQueue=printQueue;
 }

Basic Thread Synchronization

[69]

Implement the run() method. It uses the PrintQueue object to send a job to10.
print:

 @Override
 public void run() {
 System.out.printf("%s: Going to print a document\n",
 Thread.currentThread().getName());
 printQueue.printJob(new Object());
 System.out.printf("%s: The document has been printed\n",
 Thread.currentThread().getName());
 }

Create the main class of the application by implementing a class named Main and11.
adding the main() method to it:

 public class Main {

 public static void main (String args[]){

We are going to test the PrintQueue class using a lock with the fair mode12.
returning both true and false. We will use an auxiliary method to implement
both the tests so the code of the main() method is simple:

 System.out.printf("Running example with fair-mode =
 false\n");
 testPrintQueue(false);
 System.out.printf("Running example with fair-mode = true\n");
 testPrintQueue(true);
 }

Create the testPrintQueue() method and create a shared PrintQueue object13.
inside it:

 private static void testPrintQueue(Boolean fairMode) {
 PrintQueue printQueue=new PrintQueue(fairMode);

Create 10 Job objects and 10 threads to run them:14.

 Thread thread[]=new Thread[10];
 for (int i=0; i<10; i++){
 thread[i]=new Thread(new Job(printQueue),"Thread "+ i);
 }

Basic Thread Synchronization

[70]

Start the 10 threads:15.

 for (int i=0; i<10; i++){
 thread[i].start();
 }

Lastly, wait for the finalization of the 10 threads:16.

 for (int i=0; i<10; i++) {
 try {
 thread[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

How it works...
In the following screenshot, you can see a part of the output of one execution of this
example:

The key to the example is in the printJob() method of the PrintQueue class. When we
want to implement a critical section using locks and guarantee that only one execution
thread will run a block of code, we have to create a ReentrantLock object. At the
beginning of the critical section, we have to get control of the lock using the lock()
method. When thread (A) calls this method, if no other thread has control of the lock, it
gives thread (A) control of the lock and returns immediately to allow the thread to execute
the critical section. Otherwise, if there is another, say thread (B), executing the critical
section controlled by this lock, the lock() method puts thread (A) to sleep until thread (B)
finishes the execution of the critical section.

Basic Thread Synchronization

[71]

At the end of the critical section, we have to use the unlock() method to free the control of
the lock and allow other threads to run the critical section. If you don't call the unlock()
method at the end of the critical section, other threads that are waiting for the block will
wait forever, causing a deadlock situation. If you use try-catch blocks in your critical
section, don't forget to put the sentence containing the unlock() method inside the
finally section.

The other topic we tested in this example was fair mode. We had two critical sections in
every job. In the previous screenshot, you saw how all the jobs execute the second part
immediately after the first one. This is the usual case, but there are exceptions. This occurs
when we have non-fair mode, that is to say, we pass a false value to the constructor of the
ReentrantLock class.

On the contrary, when we establish fair mode by passing the true value to the constructor of
the Lock class, the behavior is different. The first thread that requests control of the lock is
Thread 0, then Thread 1, and so on. While Thread 0 is running the first block of code
protected by the lock, we have nine threads waiting to execute the same block of code.
When Thread 0 releases the lock, it immediately requests the lock again, so we have 10
threads trying to get the lock. As the fair mode is enabled, the Lock interface will choose
Thread 1, as it's the thread that has been waiting for more time for the lock. Then, it
chooses Thread 2, then Thread 3, and so on. Until all the threads have passed the first
block protected by the lock, none of them will execute the second block protected by the
lock. Once all the threads have executed the first block of code protected by the lock, then it
will be the turn of Thread 0 again, then Thread 1, and so on. The following screenshot
shows the difference:

Basic Thread Synchronization

[72]

There's more...
The Lock interface (and the ReentrantLock class) includes another method to get control
of the lock. It's the tryLock() method. The biggest difference with the lock() method is
that this method, if the thread that uses it can't get control of the Lock interface, returns
immediately and doesn't put the thread to sleep. It returns the boolean value true if the
thread gets control of the lock and false if not. You can also pass a time value and a
TimeUnit object to indicate the maximum amount of time the thread will wait to get the
lock. If the time elapses and the thread doesn't get the lock, the method will return the false
value. The TimeUnit class is an enumeration with the following constants: DAYS, HOURS,
MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS; these indicate the
units of time we pass to a method.

Take into consideration that it is the responsibility of the programmer to
take into account the result of this method and act accordingly. If the
method returns false, it's apparent that your program is unable to
execute the critical section. If it does, you probably will have wrong results
in your application.

The ReentrantLock class also allows the use of recursive calls. When a thread has control
of a lock and makes a recursive call, it continues with the control of the lock, so the calling
to the lock() method will return immediately and the thread will continue with the
execution of the recursive call. Moreover, we can also call other methods. You should call
the unlock() method as many times as you called the lock() method in your code.

Avoiding deadlocks
You have to be very careful with the use of locks to avoid deadlocks. This situation occurs
when two or more threads are blocked while waiting for locks that will never be unlocked.
For example, thread (A) locks Lock (X) and thread (B) locks Lock (Y). Now, if thread (A)
tries to lock Lock (Y) and thread (B) simultaneously tries to lock Lock (X), both the threads
will be blocked indefinitely because they are waiting for locks that will never be liberated.
Note that the problem occurs because both threads try to get the locks in the opposite order.
The Appendix, Concurrent Programming Design, provides some good tips to design
concurrent applications adequately and avoid these deadlock problems.

Basic Thread Synchronization

[73]

See also
The Synchronizing a method and Using multiple conditions in a lock recipes in this
chapter
The Monitoring a Lock interface recipe in Chapter 9, Testing Concurrent Applications

Synchronizing data access with read/write
locks
One of the most significant improvements offered by locks is the ReadWriteLock interface
and the ReentrantReadWriteLock class, the unique class that implements that interface.
This class has two locks: one for read operations and one for write operations. There can be
more than one thread using read operations simultaneously, but only one thread can use
write operations. If a thread is doing a write operation, other threads can't write or read.

In this recipe, you will learn how to use a ReadWriteLock interface by implementing a
program that uses it to control access to an object that stores the prices of two products.

Getting ready...
You should read the Synchronizing a block of code with a lock recipe to better understand this
recipe.

How to do it...
Follow these steps to implement the example:

Create a class named PricesInfo that stores information about the prices of two1.
products:

 public class PricesInfo {

Declare two double attributes named price1 and price2:2.

 private double price1;
 private double price2;

Basic Thread Synchronization

[74]

Declare a ReadWriteLock object called lock:3.

 private ReadWriteLock lock;

Implement the constructor of the class that initializes the three attributes. For the4.
lock attribute, create a new ReentrantReadWriteLock object:

 public PricesInfo(){
 price1=1.0;
 price2=2.0;
 lock=new ReentrantReadWriteLock();
 }

Implement the getPrice1() method that returns the value of the price15.
attribute. It uses the read lock to control access to the value of this attribute:

 public double getPrice1() {
 lock.readLock().lock();
 double value=price1;
 lock.readLock().unlock();
 return value;
 }

Implement the getPrice2() method that returns the value of the price26.
attribute. It uses the read lock to control access to the value of this attribute:

 public double getPrice2() {
 lock.readLock().lock();
 double value=price2;
 lock.readLock().unlock();
 return value;
 }

Implement the setPrices() method that establishes the values of two7.
attributes. It uses the write lock to control access to them. We are going to make
the thread sleep for 5 seconds. This shows that even though it has the write lock,
there are no other threads getting the read lock:

 public void setPrices(double price1, double price2) {
 lock.writeLock().lock();
 System.out.printf("%s: PricesInfo: Write Lock Adquired.\n",
 new Date());
 try {
 TimeUnit.SECONDS.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();

Basic Thread Synchronization

[75]

 }
 this.price1=price1;
 this.price2=price2;
 System.out.printf("%s: PricesInfo: Write Lock Released.\n",
 new Date());
 lock.writeLock().unlock();
 }

Create a class named Reader and specify that it implements the Runnable8.
interface. This class implements a reader of the values of the PricesInfo class
attribute:

 public class Reader implements Runnable {

Declare a PricesInfo object and implement the constructor of the class that9.
could initialize this object:

 private PricesInfo pricesInfo;

 public Reader (PricesInfo pricesInfo){
 this.pricesInfo=pricesInfo;
 }

Implement the run() method for this class. It reads the value of the two prices 1010.
times:

 @Override
 public void run() {
 for (int i=0; i<20; i++){
 System.out.printf("%s: %s: Price 1: %f\n",new Date(),
 Thread.currentThread().getName(),
 pricesInfo.getPrice1());
 System.out.printf("%s: %s: Price 2: %f\n",new Date(),
 Thread.currentThread().getName(),
 pricesInfo.getPrice2());
 }
 }

Create a class named Writer and specify that it implements the Runnable11.
interface. This class implements a modifier of the values of the PricesInfo class
attribute:

 public class Writer implements Runnable {

Basic Thread Synchronization

[76]

Declare a PricesInfo object and implement the constructor of the class that12.
could initialize this object:

 private PricesInfo pricesInfo;

 public Writer(PricesInfo pricesInfo){
 this.pricesInfo=pricesInfo;
 }

Implement the run() method. It modifies the value of the two prices that are13.
sleeping for 2 seconds between modifications three times:

 @Override
 public void run() {
 for (int i=0; i<3; i++) {
 System.out.printf("%s: Writer: Attempt to modify the
 prices.\n", new Date());
 pricesInfo.setPrices(Math.random()*10, Math.random()*8);
 System.out.printf("%s: Writer: Prices have been
 modified.\n", new Date());
 try {
 Thread.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Implement the main class of the example by creating a class named Main and14.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a PricesInfo object:15.

 PricesInfo pricesInfo=new PricesInfo();

Create five Reader objects and five Thread objects to execute them:16.

 Reader readers[]=new Reader[5];
 Thread threadsReader[]=new Thread[5];

 for (int i=0; i<5; i++){
 readers[i]=new Reader(pricesInfo);
 threadsReader[i]=new Thread(readers[i]);
 }

Basic Thread Synchronization

[77]

Create a Writer object and Thread to execute it:17.

 Writer writer=new Writer(pricesInfo);
 Thread threadWriter=new Thread(writer);

Start the threads:18.

 for (int i=0; i<5; i++){
 threadsReader[i].start();
 }
 threadWriter.start();

How it works...
In the following screenshot, you can see a part of the output of one execution of this
example:

While the writer has acquired the write lock, none of the reader tasks can read the data. You
can see some messages of the reader tasks after the Write Lock Acquired message, but
they are instructions that were executed before and not shown yet in the console. Once the
writer task has released the lock, reader tasks gain access to the prices information again
and show the new prices.

Basic Thread Synchronization

[78]

As mentioned previously, the ReentrantReadWriteLock class has two locks: one for read
operations and one for write operations. The lock used in read operations is obtained with
the readLock() method declared in the ReadWriteLock interface. This lock is an object
that implements the Lock interface, so we can use the lock(), unlock(), and tryLock()
methods. The lock used in write operations is obtained with the writeLock() method
declared in the ReadWriteLock interface. This lock is also an object that implements the
Lock interface, so we can use the lock(), unlock(), and tryLock() methods. It is the
responsibility of the programmer to ensure correct use of these locks, using them for the
same purposes for which they were designed. When you get the read lock of a Lock
interface, you can't modify the value of the variable. Otherwise, you probably will have
data errors related to inconsistency.

See also
The Synchronizing a block of code with a lock recipe in this chapter
The Monitoring a Lock interface recipe in Chapter 9, Testing Concurrent Applications

Using multiple conditions in a lock
A lock may be associated with one or more conditions. These conditions are declared in the
Condition interface. The purpose of these conditions is to allow threads to have control of
a lock and check whether a condition is true or not. If it's false, the thread will be
suspended until another thread wakes it up. The Condition interface provides the
mechanisms to suspend a thread and wake up a suspended thread.

A classic problem in concurrent programming is the producer-consumer problem. We have
a data buffer, one or more producers of data that save it in the buffer, and one or more
consumers of data that take it from the buffer, as explained earlier in this chapter.

In this recipe, you will learn how to implement the producer-consumer problem using locks
and conditions.

Basic Thread Synchronization

[79]

Getting ready
You should read the Synchronizing a block of code with a lock recipe to better understand this
recipe.

How to do it...
Follow these steps to implement the example:

First, implement a class that will simulate a text file. Create a class named1.
FileMock with two attributes: a String array named content and int named
index. They will store the content of the file and the line of the simulated file that
will be retrieved:

 public class FileMock {

 private String[] content;
 private int index;

Implement the constructor of the class that initializes the content of the file with2.
random characters:

 public FileMock(int size, int length){
 content = new String[size];
 for (int i = 0; i< size; i++){
 StringBuilder buffer = new StringBuilder(length);
 for (int j = 0; j < length; j++){
 int randomCharacter= (int)Math.random()*255;
 buffer.append((char)randomCharacter);
 }
 content[i] = buffer.toString();
 }
 index=0;
 }

Implement the hasMoreLines() method that returns true if the file has more3.
lines to process or false if you have reached the end of the simulated file:

 public boolean hasMoreLines(){
 return index <content.length;
 }

Basic Thread Synchronization

[80]

Implement the getLine() method that returns the line determined by the index4.
attribute and increases its value:

 public String getLine(){
 if (this.hasMoreLines()) {
 System.out.println("Mock: " + (content.length-index));
 return content[index++];
 }
 return null;
 }

Now implement a class named Buffer that will implement the buffer shared by5.
both the producers and consumers:

 public class Buffer {

This class has six attributes:6.

A LinkedList<String> attribute named buffer that will store the
shared data. For example:

 private final LinkedList<String> buffer;

An int type named maxSize that will store the length of the buffer.
For example:

 private final int maxSize;

A ReentrantLock object called lock that will control access to the
blocks of code that modify the buffer. For example:

 private final ReentrantLock lock;

Two Condition attributes named lines and space. For example:

 private final Condition lines;

 private final Condition space;

A boolean type called pendingLines that will indicate whether there
are lines in the buffer. For example:

 private boolean pendingLines;

Basic Thread Synchronization

[81]

Implement the constructor of the class. It initializes all the attributes described7.
previously:

 public Buffer(int maxSize) {
 this.maxSize = maxSize;
 buffer = new LinkedList<>();
 lock = new ReentrantLock();
 lines = lock.newCondition();
 space = lock.newCondition();
 pendingLines =true;
 }

Implement the insert() method. It receives String as a parameter and tries to8.
store it in the buffer. First, it gets control of the lock. When it has this, it checks
whether there is empty space in the buffer. If the buffer is full, it calls the
await() method in the space condition to wait for free space. The thread will be
woken up when another thread calls the signal() or signalAll() method in
the space condition. When this happens, the thread stores the line in the buffer
and calls the signallAll() method over the lines condition. As we'll see in a
moment, this condition will wake up all the threads that are waiting for lines in
the buffer. To make the code easier, we ignore the InterruptedException
exception. In real cases, you will probably have to process it:

 public void insert(String line) {
 lock.lock();
 try {
 while (buffer.size() == maxSize) {
 space.await();
 }
 buffer.offer(line);
 System.out.printf("%s: Inserted Line: %d\n",
 Thread.currentThread().getName(),
 buffer.size());
 lines.signalAll();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock.unlock();
 }
 }

Basic Thread Synchronization

[82]

Implement the get() method. It returns the first string stored in the buffer. First,9.
it gets control of the lock. When this is done, it checks whether there are lines in
the buffer. If the buffer is empty, it calls the await() method in the lines
condition to wait for lines in the buffer. This thread will be woken up when
another thread calls the signal() or signalAll() method in the lines
condition. When this happens, the method gets the first line in the buffer, calls
the signalAll() method over the space condition, and returns String:

 public String get() {
 String line = null;
 lock.lock();
 try {
 while ((buffer.size() == 0) &&(hasPendingLines())) {
 lines.await();
 }

 if (hasPendingLines()) {
 line = buffer.poll();
 System.out.printf("%s: Line Readed: %d\n",
 Thread.currentThread().getName(),
 buffer.size());
 space.signalAll();
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock.unlock();
 }
 return line;
 }

Implement the setPendingLines() method that establishes the value of the10.
pendingLines attribute. It will be called by the producer when it has no more
lines to produce:

 public synchronized void setPendingLines(boolean pendingLines) {
 this.pendingLines = pendingLines;
 }

Implement the hasPendingLines() method. It returns true if there are more11.
lines to be processed or false otherwise:

 public synchronized boolean hasPendingLines() {
 return pendingLines || buffer.size()>0;
 }

Basic Thread Synchronization

[83]

Now it's the turn of the producer. Implement a class named Producer and12.
specify that it implements the Runnable interface:

 public class Producer implements Runnable {

Declare two attributes, namely an object of the FileMock class and an object of13.
the Buffer class:

 private FileMock mock;

 private Buffer buffer;

Implement the constructor of the class that initializes both the attributes:14.

 public Producer (FileMock mock, Buffer buffer){
 this.mock = mock;
 this.buffer = buffer;
 }

Implement the run() method that reads all the lines created in the FileMock15.
object and use the insert() method to store them in the buffer. Once this is
done, use the setPendingLines() method to alert the buffer that it will not
generate more lines:

 @Override
 public void run() {
 buffer.setPendingLines(true);
 while (mock.hasMoreLines()){
 String line = mock.getLine();
 buffer.insert(line);
 }
 buffer.setPendingLines(false);
 }

Next is the consumer's turn. Implement a class named Consumer and specify that16.
it implements the Runnable interface:

 public class Consumer implements Runnable {

Basic Thread Synchronization

[84]

Declare a Buffer object and implement the constructor of the class that initializes17.
it:

 private Buffer buffer;

 public Consumer (Buffer buffer) {
 this.buffer = buffer;
 }

Implement the run() method. While the buffer has pending lines, it tries to get18.
one line and process it:

 @Override
 public void run() {
 while (buffer.hasPendingLines()) {
 String line = buffer.get();
 processLine(line);
 }
 }

Implement the auxiliary method processLine(). It only sleeps for 1019.
milliseconds to simulate some kind of processing with the line:

 private void processLine(String line) {
 try {
 Random random = new Random();
 Thread.sleep(random.nextInt(100));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Implement the main class of the example by creating a class named Main and20.
adding the main() method to it.

 public class Main {

 public static void main(String[] args) {

Create a FileMock object:21.

 FileMock mock = new FileMock(100, 10);

Basic Thread Synchronization

[85]

Create a Buffer object:22.

 Buffer buffer = new Buffer(20);

Create a Producer object and Thread to run it:23.

 Producer producer = new Producer(mock, buffer);
 Thread producerThread = new Thread(producer,"Producer");

Create three Consumer objects and three threads to run them:24.

 Consumer consumers[] = new Consumer[3];
 Thread consumersThreads[] = new Thread[3];

 for (int i=0; i<3; i++){
 consumers[i] = new Consumer(buffer);
 consumersThreads[i] = new Thread(consumers[i],"Consumer "+i);
 }

Start the producer and the three consumers:25.

 producerThread.start();
 for (int i = 0; i< 3; i++){
 consumersThreads[i].start();
 }

How it works...
All the Condition objects are associated with a lock and are created using the
newCondition() method declared in the Lock interface. Before we can do any operation
with a condition, you have to have control of the lock associated with the condition. So
operations with conditions must be done in a thread that holds the lock with a call to a
lock() method of a Lock object and then frees it with an unlock() method of the same
Lock object.

When a thread calls the await() method of a condition, it automatically frees the control of
the lock so that another thread can get it and either begin the execution or another critical
section protected by that lock.

Basic Thread Synchronization

[86]

When a thread calls the signal() or signallAll() methods of a
condition, one or all of the threads that were waiting for that condition are
woken up, but this doesn't guarantee that the condition that made them
sleep is now true. So you must put the await() calls inside a while loop.
You can't leave this loop until the condition is true. When the condition is
false, you must call await() again.

You must be careful with the use of await() and signal(). If you call the await()
method in a condition and never call the signal() method in the same condition, the
thread will sleep forever.

A thread can be interrupted while it is sleeping, after a call to the await() method, so you
have to process the InterruptedException exception.

There's more...
The Condition interface has other versions of the await() method, which are as follows:

await(long time, TimeUnit unit): Here, the thread will sleep until:
It's interrupted
Another thread calls the signal() or signalAll() methods in
the condition
The specified time passes
The TimeUnit class is an enumeration with the following
constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,
NANOSECONDS, and SECONDS

awaitUninterruptibly(): The thread will sleep until another thread calls the
signal() or signalAll() methods, which can't be interrupted
awaitUntil(Date date): The thread will sleep until:

It's interrupted
Another thread calls the signal() or signalAll() methods in
the condition
The specified date arrives

You can use conditions with the ReadLock and WriteLock locks of a read/write lock.

Basic Thread Synchronization

[87]

See also
The Synchronizing a block of code with a lock and Synchronizing data access with
read/write locks recipes in this chapter

Advanced locking with the StampedLock
class
The StampedLock class provides a special kind of lock that is different from the ones
provided by the Lock or ReadWriteLock interfaces. In fact, this class doesn't implement
these interfaces, but the functionality it provides is very similar.

The first point to note about this kind of lock is that its main purpose is to be a helper class
to implement thread-safe components, so its use will not be very common in normal
applications.

The most important features of StampedLock locks are as follows:

You can obtain control of the lock in three different modes:
Write: In this mode, you get exclusive access to the lock. No other
thread can have control of the lock in this mode.
Read: In this mode, you have non-exclusive access to the lock.
There can be other threads that have access to the lock in this mode
or the Optimistic Read mode.
Optimistic Read: Here, the thread doesn't have control over the
block. Other threads can get control of the lock in write mode.
When you get a lock in the Optimistic Read mode and you want to
access the shared data protected by it, you will have to check
whether you can access them or not using the validate()
method.

The StampedLock class provides methods to:
Acquire control over the lock in one of the previous modes. If the
methods (readLock(), writeLock(),
readLockInterruptibly()) are unable to get control of the lock,
the current thread is suspended until it gets the lock.

Basic Thread Synchronization

[88]

Acquire control over the lock in one of the previous modes. If the
methods (tryOptimisticRead(), tryReadLock(),
tryWriteLock()) are unable to get control of the lock, they return
a special value to indicate this circumstance.
Convert one mode into another, if possible. If not, the methods
(asReadLock(), asWriteLock(), asReadWriteLock()) return a
special value.
Release the lock.

All these methods return a long value called stamp that we need to use to work
with the lock. If a method returns zero, it means it tried to get a lock but it
couldn't.
A StampedLock lock is not a reentrant lock, such as the Lock and
ReadWriteLock interfaces. If you call a method that tries to get the lock again, it
may be blocked and you'll get a deadlock.
It does not have the notion of ownership. They can be acquired by one thread and
released by another.
Finally, it doesn't have any policy about the next thread that will get control of
the lock.

In this recipe, we will learn how to use the different modes of the StampedLock class to
protect access to a shared data object. We will use a shared object between three concurrent
tasks to test the three access modes with StampedLock (write, read, and Optimistic Read).

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, implement the shared data object. Create a class named Position with two1.
integer attributes, namely x and y. You have to include the methods to get and
set the values of the attributes. Its code is very simple so it is not included here.

Basic Thread Synchronization

[89]

Now let's implement the Writer task. It implements the Runnable interface and2.
it will have two attributes: a Position object named position and
StampedLock named lock. They will be initialized in the constructor:

 public class Writer implements Runnable {

 private final Position position;
 private final StampedLock lock;

 public Writer (Position position, StampedLock lock) {
 this.position=position;
 this.lock=lock;
 }

Implement the run() method. In a loop that we will repeat 10 times, get the lock3.
in write mode, change the value of the two attributes of the position object,
suspend the execution of the thread for a second, release the lock (in the finally
section of a try...catch...finally structure to release the lock in any
circumstance), and suspend the thread for a second:

 @Override
 public void run() {

 for (int i=0; i<10; i++) {
 long stamp = lock.writeLock();

 try {
 System.out.printf("Writer: Lock acquired %d\n",stamp);
 position.setX(position.getX()+1);
 position.setY(position.getY()+1);
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock.unlockWrite(stamp);
 System.out.printf("Writer: Lock released %d\n",stamp);
 }

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 }

Basic Thread Synchronization

[90]

Then, implement the Reader task to read the values of the shared object. Create a4.
class named Reader that implements the Runnable interface. It will have two
attributes: a Position object named position and a StampedLock object
named lock. They will be initialized in the constructor of the class:

 public class Reader implements Runnable {

 private final Position position;
 private final StampedLock lock;

 public Reader (Position position, StampedLock lock) {
 this.position=position;
 this.lock=lock;
 }

Now implement the run() method. In a loop that we will repeat 50 times, get5.
control of the lock in read mode, write the values of the position object in the
console, and suspend the thread for 200 milliseconds. Finally, release the lock
using the finally block of a try...catch...finally structure:

 @Override
 public void run() {
 for (int i=0; i<50; i++) {
 long stamp=lock.readLock();
 try {
 System.out.printf("Reader: %d - (%d,%d)\n", stamp,
 position.getX(), position.getY());
 TimeUnit.MILLISECONDS.sleep(200);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock.unlockRead(stamp);
 System.out.printf("Reader: %d - Lock released\n", stamp);
 }
 }
 }

Basic Thread Synchronization

[91]

Then, implement the OptimisticReader task. The class OptimisticReader6.
class implements the Runnable interface. It will have two attributes: a Position
object named position and a StampledLock object named lock. They will be
initialized in the constructor of the class:

 public class OptimisticReader implements Runnable {

 private final Position position;
 private final StampedLock lock;

 public OptimisticReader (Position position, StampedLock lock) {
 this.position=position;
 this.lock=lock;
 }

Now implement the run() method. First obtain the stamp of the lock in the7.
optimistic read mode using the tryOptimisticRead() method. Then, repeat
the loop 100 times. In the loop, validate whether you can access data using the
validate() method. If this method returns true, write the values of the position
object in the console. Otherwise, write a message in the console and get another
stamp using the tryOptimisticRead() method again. Then, suspend the
thread for 200 milliseconds:

 @Override
 public void run() {
 long stamp;
 for (int i=0; i<100; i++) {
 try {
 stamp=lock.tryOptimisticRead();
 int x = position.getX();
 int y = position.getY();
 if (lock.validate(stamp)) {
 System.out.printf("OptmisticReader: %d - (%d,%d)\n",
 stamp,x, y);
 } else {
 System.out.printf("OptmisticReader: %d - Not Free\n",
 stamp);
 }
 TimeUnit.MILLISECONDS.sleep(200);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Basic Thread Synchronization

[92]

Finally, implement the Main class with the main() method. Create a Position8.
and StampedLock object, create three threads--one for each task--start the
threads, and wait for their finalization:

 public class Main {

 public static void main(String[] args) {

 Position position=new Position();
 StampedLock lock=new StampedLock();

 Thread threadWriter=new Thread(new Writer(position,lock));
 Thread threadReader=new Thread(new Reader(position, lock));
 Thread threadOptReader=new Thread(new OptimisticReader
 (position, lock));

 threadWriter.start();
 threadReader.start();
 threadOptReader.start();

 try {
 threadWriter.join();
 threadReader.join();
 threadOptReader.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

How it works...
In this example, we tested the three modes you can use with a stamped lock. In the Writer
task, we get the lock with the writeLock() method (that acquires the lock in write mode).
In the Reader task, we get the lock with the readLock() method (that acquires the lock in
read mode). Finally, in the OptimisticRead task, first we use tryOptimisticRead() and
then we use the validate() method to check whether we can access data or not.

The first two methods, if they can get control of the lock, wait until they get the lock. The
tryOptimisticRead() method always returns a value. It will be 0 if we are unable to use
the lock and a value different from 0 if we can use it. Remember that in this case, we always
need to use the validate() method to check whether we can really access the data.

Basic Thread Synchronization

[93]

The following screenshot shows part of the output of an execution of the program:

While the Writer task has control of the lock, neither Reader nor OptimisticReader can
access the values. The Reader task is suspended in the readLock() method, while in
OptimisticReader, the call to the validate() method returns false and the call to the
tryOptimisticRead() method returns 0 to indicate that the lock is controlled in write
mode by another thread. When the Writertask releases the lock, both Reader and
OptimisticReader tasks will be able to access the values of the shared object.

There's more...
The StampedLock class has other methods that you should know:

tryReadLock() and tryReadLock(long time, TimeUnit unit): These
methods try to acquire the lock in read mode. If they can't, the first version is
returned immediately and the second one waits for the amount of time specified
in the parameter. These methods also return a stamp that must be checked
(stamp != 0).

Basic Thread Synchronization

[94]

tryWriteLock() and tryWriteLock(long time, TimeUnit unit): These
methods try to acquire the lock in write mode. If they can't, the first version is
returned immediately and the second one waits for the amount of time specified
in the parameter. These methods also return a stamp that must be checked
(stamp != 0).
isReadLocked() and isWriteLocked(): These methods are returned if the
lock is currently held in read or write mode, respectively.
tryConvertToReadLock(long stamp), tryConvertToWriteLock(long
stamp), and tryConvertToOptimisticRead(long stamp): These methods
try to convert the stamp passed as a parameter to the mode indicated in the name
of the method. If they can, they return a new stamp. If not, they return 0.
unlock(long stamp): This releases the corresponding mode of the lock.

See also
The Synchronizing a block of code with a lock recipe in this chapter

3
Thread Synchronization Utilities

In this chapter, we will cover the following topics:

Controlling concurrent access to one or more copies of a resource
Waiting for multiple concurrent events
Synchronizing tasks at a common point
Running concurrent-phased tasks
Controlling phase change in concurrent-phased tasks
Exchanging data between concurrent tasks
Completing and linking tasks asynchronously

Introduction
In Chapter 2, Basic Thread Synchronization, you learned the concepts of synchronization and
critical sections. Basically, we talk about synchronization when more than one concurrent
task shares a resource, for example, an object or an attribute of an object. The blocks of code
that access this shared resource are called critical sections.

If you don't use appropriate mechanisms, you might have incorrect results, data
inconsistencies, or error conditions. Therefore, we have to adopt one of the synchronization
mechanisms provided by the Java language to avoid these problems.

Thread Synchronization Utilities

[96]

Chapter 2, Basic Thread Synchronization, taught you about the following basic
synchronization mechanisms:

The synchronized keyword
The Lock interface and its implementation classes: ReentrantLock,
ReentrantReadWriteLock.ReadLock, and
ReentrantReadWriteLock.WriteLock

The StampedLock class

In this chapter, you will learn how to use high-level mechanisms to synchronize multiple
threads. These high-level mechanisms are as follows:

Semaphores: A semaphore is a counter that controls access to one or more shared
resources. This mechanism is one of the basic tools of concurrent programming
and is provided by most programming languages.
CountDownLatch: The CountDownLatch class is a mechanism provided by the
Java language that allows a thread to wait for the finalization of multiple
operations.
CyclicBarrier: The CyclicBarrier class is another mechanism provided by the
Java language that allows the synchronization of multiple threads at a common
point.
Phaser: The Phaser class is another mechanism provided by the Java language
that controls the execution of concurrent tasks divided in phases. All the threads
must finish one phase before they can continue with the next one.
Exchanger: The Exchanger class is another mechanism provided by the Java
language that provides a point of data interchange between two threads.
CompletableFuture: The CompletableFuture class provides a mechanism
where one or more tasks can wait for the finalization of another task that will be
explicitly completed in an asynchronous way in future. This class was introduced
in Java 8 and has introduced new methods in Java 9.

Semaphores are generic synchronization mechanisms that you can use to protect any critical
section in any problem. Other mechanisms are thought to be used in applications with
specific features, as described previously. Be sure to select the appropriate mechanism
according to the characteristics of your application.

This chapter presents seven recipes that will show you how to use the mechanisms
described.

Thread Synchronization Utilities

[97]

Controlling concurrent access to one or
more copies of a resource
In this recipe, you will learn how to use the semaphore mechanism provided by the Java
language. A semaphore is a counter that protects access to one or more shared resources.

The concept of a semaphore was introduced by Edsger Dijkstra in 1965
and was used for the first time in the THEOS operating system.

When a thread wants to access one of the shared resources, it must first acquire the
semaphore. If the internal counter of the semaphore is greater than 0, the semaphore
decrements the counter and allows access to the shared resource. A counter bigger than 0
implies that there are free resources that can be used, so the thread can access and use one
of them.

Otherwise, if the counter is 0, the semaphore puts the thread to sleep until the counter is
greater than 0. A value of 0 in the counter means all the shared resources are used by other
threads, so the thread that wants to use one of them must wait until one is free.

When the thread has finished using the shared resource, it must release the semaphore so
that another thread can access the resource. This operation increases the internal counter of
the semaphore.

In this recipe, you will learn how to use the Semaphore class to protect more than one copy
of a resource. You are going to implement an example, which has a print queue that could
print documents in three different printers.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Synchronization Utilities

[98]

How to do it...
Follow these steps to implement the example:

Create a class named PrintQueue that will implement the print queue:1.

 public class PrintQueue {

This class will have three private attributes. A semaphore named semaphore, an2.
array of Booleans named freePrinters, and a lock named lockPrinters, as
shown in the following code snippet:

 private final Semaphore semaphore;
 private final boolean freePrinters[];
 private final Lock lockPrinters;

Implement the constructor of the class. It initializes the three attributes of the3.
class, as shown in the following code snippet:

 public PrintQueue(){
 semaphore=new Semaphore(3);
 freePrinters=new boolean[3];
 for (int i=0; i<3; i++){
 freePrinters[i]=true;
 }
 lockPrinters=new ReentrantLock();
 }

Implement the printJob() method that will simulate the printing of a4.
document. It receives an object called document as a parameter:

 public void printJob (Object document){

First of all, the printJob() method calls the acquire() method to acquire5.
access to the semaphore. As this method can throw an InterruptedException
exception, you must include the code to process it:

 try {
 semaphore.acquire();

Then, get the number of the printers assigned to print this job, using the private6.
method getPrinter():

 int assignedPrinter=getPrinter();

Thread Synchronization Utilities

[99]

Then, implement the lines that simulate the printing of a document waiting for a7.
random period of time:

 long duration=(long)(Math.random()*10);
 System.out.printf("%s - %s: PrintQueue: Printing a Job in
 Printer %d during %d seconds\n",
 new Date(), Thread.currentThread().getName(),
 assignedPrinter,duration);
 TimeUnit.SECONDS.sleep(duration);

Finally, release the semaphore by calling the release() method and marking8.
the printer used as free, and assign true to the corresponding index in the
freePrinters array:

 freePrinters[assignedPrinter]=true;
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 semaphore.release();
 }

Next, implement the getPrinter() method. It's a private method that returns9.
an int value and has no parameters:

 private int getPrinter() {

First, declare an int variable to store the index of the printer:10.

 int ret=-1;

Then, get access to the lockPrinters object:11.

 try {
 lockPrinters.lock();

Post this, find the first true value in the freePrinters array and save its index12.
in a variable. Modify this value to false because this printer will be busy:

 for (int i=0; i<freePrinters.length; i++) {
 if (freePrinters[i]){
 ret=i;
 freePrinters[i]=false;
 break;
 }
 }

Thread Synchronization Utilities

[100]

Finally, free the lockPrinters object and return the index of the true value:13.

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 lockPrinters.unlock();
 }
 return ret;

Next, create a class called Job and specify that it implements the Runnable14.
interface. This class implements the job that will send a document to the printer:

 public class Job implements Runnable {

Declare a PrintQueue object. Call it printQueue:15.

 private PrintQueue printQueue;

Implement the constructor of the class. It initializes the PrintQueue object16.
declared in the class:

 public Job(PrintQueue printQueue){
 this.printQueue=printQueue;
 }

Implement the run() method:17.

 @Override
 public void run() {

First, this method writes a message to the console that shows that the job has18.
started its execution:

 System.out.printf("%s: Going to print a job\n",
 Thread.currentThread().getName());

Then, it calls the printJob() method of the PrintQueue object:19.

 printQueue.printJob(new Object());

Finally, the method writes a message to the console that shows that it has finished20.
its execution:

 System.out.printf("%s: The document has been printed\n",
 Thread.currentThread().getName());
 }

Thread Synchronization Utilities

[101]

Next, implement the main class of the example by creating a class named Main21.
and implementing the main() method:

 public class Main {
 public static void main (String args[]){

Create a PrintQueue object named printQueue:22.

 PrintQueue printQueue=new PrintQueue();

Create 12 threads. Each one of these threads will execute a Job object that will23.
send a document to the print queue:

 Thread[] threads=new Thread[12];
 for (int i=0; I < threads.length i++){
 thread[i]=new Thread(new Job(printQueue),"Thread"+i);
 }

Finally, start the 12 threads:24.

 for (int i=0; I < threads.length; i++){
 thread[i].start();
 }

How it works...
The key to this example is the printJob() method of the PrintQueue class. This method
shows three steps you must follow when you use a semaphore to implement a critical
section and protect access to a shared resource:

First, you acquire the semaphore with the acquire() method.1.
Then, you do the necessary operations with the shared resource.2.
Finally, release the semaphore with the release() method.3.

Another important point in this example is the constructor of the PrintQueue class and the
initialization of the Semaphore object. You pass the value 3 as the parameter of this
constructor, so you are creating a semaphore that will protect three resources. The first three
threads that call the acquire() method will get access to the critical section of this
example, while the rest will be blocked. When a thread finishes a critical section and
releases the semaphore, another thread will acquire it.

Thread Synchronization Utilities

[102]

The following screenshot shows the output of an execution of this example:

You can see how the first three print jobs start at the same time. Then, when one printer
finishes its job, another one begins.

There's more...
The Semaphore class has three additional versions of the acquire() method:

acquireUninterruptibly(): The acquire() method, when the internal
counter of the semaphore is 0, blocks the thread until the semaphore is released.
During this period, the thread may be interrupted; if this happens, the method
will throw an InterruptedException exception. This version of the acquire
operation ignores the interruption of the thread and doesn't throw any
exceptions.
tryAcquire(): This method tries to acquire the semaphore. If it can, it returns
the true value. But if it can't, it returns false instead of being blocked and waits
for the release of the semaphore. It's your responsibility to take correct action
based on the return value.

tryAcquire(long timeout, TimeUnit unit): This method is equivalent to
the previous one, but it waits for the semaphore for the period of time specified in
the parameters. If the period of time ends and the method hasn't acquired the
semaphore, it will return false.

The acquire(), acquireUninterruptibly(), tryAcquire(), and release() methods
have an additional version, which has an int parameter. This parameter represents the
number of permits the thread that uses them wants to acquire or release, in other words, the
number of units that this thread wants to delete or add to the internal counter of the
semaphore.

Thread Synchronization Utilities

[103]

In the case of the acquire(), acquireUninterruptibly(), and tryAcquire() methods,
if the value of the counter is less than the number passed as parameter value, the thread will
be blocked until the counter gets the same value or a greater one.

Fairness in semaphores
The concept of fairness is used by the Java language in all classes that can have various
threads blocked and are waiting for the release of a synchronization resource (for example,
a semaphore). The default mode is called non-fair mode. In this mode, when the
synchronization resource is released, one of the waiting threads is selected and is given this
resource; however, it's selected without any criteria. Fair mode, on the other hand, changes
this behavior and selects the thread that has been waiting for the longest period of time.

As it occurs with other classes, the Semaphore class admits a second parameter in its
constructor. This parameter must take a Boolean value. If you give it a false value, you are
creating a semaphore that will work in non-fair mode. You will get the same behavior if you
don't use this parameter. If you give it a true value, you are creating a semaphore that will
work in fair mode.

See also
The Monitoring a Lock interface recipe in Chapter 9, Testing Concurrent Applications
The Synchronizing a block of code with a lock recipe in Chapter 2, Basic Thread
Synchronization

Waiting for multiple concurrent events
The Java concurrency API provides a class that allows one or more threads to wait until a
set of operations are made. It's called the CountDownLatch class. This class is initialized
with an integer number, which is the number of operations the threads are going to wait
for. When a thread wants to wait for the execution of these operations, it uses the await()
method. This method puts the thread to sleep until the operations are completed. When one
of these operations finishes, it uses the countDown() method to decrement the internal
counter of the CountDownLatch class. When the counter arrives at 0, the class wakes up all
the threads that were sleeping in the await() method.

Thread Synchronization Utilities

[104]

In this recipe, you will learn how to use the CountDownLatch class to implement a video
conference system. The video conference system should wait for the arrival of all the
participants before it begins.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Videoconference and specify that it implements the1.
Runnable interface. This class will implement the video conference system:

 public class Videoconference implements Runnable{

Declare a CountDownLatch object named controller:2.

 private final CountDownLatch controller;

Implement the constructor of the class that initializes the CountDownLatch3.
attribute. The Videoconference class will wait for the arrival of the number of
participants received as a parameter:

 public Videoconference(int number) {
 controller=new CountDownLatch(number);
 }

Implement the arrive() method. This method will be called each time a4.
participant arrives for the video conference. It receives a String type named
name as the parameter:

 public void arrive(String name){

First, it writes a message with the parameter it has received:5.

 System.out.printf("%s has arrived.",name);

Thread Synchronization Utilities

[105]

Then, it calls the countDown() method of the CountDownLatch object:6.

 controller.countDown();

Finally, it writes another message with the number of participants whose arrival7.
is pending, using the getCount() method of the CountDownLatch object:

 System.out.printf("VideoConference: Waiting for %d
 participants.\n",controller.getCount());

Next, implement the main method of the video conference system. It's the run()8.
method that every Runnable object must have:

 @Override
 public void run() {

First, use the getCount() method to write a message with the number of9.
participants in the video conference:

 System.out.printf("VideoConference: Initialization: %d
 participants.\n",controller.getCount());

Then, use the await() method to wait for all the participants. As this method10.
can throw an InterruptedException exception, you must include the code to
process it:

 try {
 controller.await();

Finally, write a message to indicate that all the participants have arrived:11.

 System.out.printf("VideoConference: All the participants have
 come\n");
 System.out.printf("VideoConference: Let's start...\n");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Next, create the Participant class and specify that it implements the Runnable12.
interface. This class represents each participant in the video conference:

 public class Participant implements Runnable {

Declare a private Videoconference attribute named conference:13.

 private Videoconference conference;

Thread Synchronization Utilities

[106]

Declare a private String attribute named name:14.

 private String name;

Implement the constructor of the class that initializes both the preceding15.
attributes:

 public Participant(Videoconference conference, String name) {
 this.conference=conference;
 this.name=name;
 }

Implement the run() method of the participants:16.

 @Override
 public void run() {

First, put the thread to sleep for a random period of time:17.

 long duration=(long)(Math.random()*10);
 try {
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Then, use the arrive() method of the Videoconference object to indicate the18.
arrival of this participant:

 conference.arrive(name);

Finally, implement the main class of the example by creating a class named Main19.
and adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Next, create a Videoconference object named conference that waits for 1020.
participants:

 Videoconference conference=new Videoconference(10);

Create Thread to run this Videoconference object and start it:21.

 Thread threadConference=new Thread(conference);
 threadConference.start();

Thread Synchronization Utilities

[107]

Create 10 Participant objects, a Thread object to run each of them, and start all22.
the threads:

 for (int i=0; i<10; i++){
 Participant p=new Participant(conference, "Participant "+i);
 Thread t=new Thread(p);
 t.start();
 }

How it works...
The CountDownLatch class has three basic elements:

The initialization value that determines how many events the CountDownLatch
object waits for
The await() method, called by the threads that wait for the finalization of all the
events
The countDown() method, called by the events when they finish their execution

When you create a CountDownLatch object, it uses the constructor's parameter to initialize
an internal counter. Every time a thread calls the countDown() method, the
CountDownLatch object decrements the internal counter in one unit. When the internal
counter reaches 0, the CountDownLatch object wakes up all the threads that were waiting
in the await() method.

There's no way to re-initialize the internal counter of the CountDownLatch object or modify
its value. Once the counter is initialized, the only method you can use to modify its value is
the countDown() method explained earlier. When the counter reaches 0, all the calls to the
await() method are returned immediately and all subsequent calls to the countDown()
method have no effect.

However, there are some differences with respect to other synchronization methods, which
are as follows:

The CountDownLatch mechanism is not used to protect a shared resource or a
critical section. It is used to synchronize one or more threads with the execution
of various tasks.
It only admits one use. As explained earlier, once the counter of
CountDownLatch arrives at 0, all the calls to its methods have no effect. You
have to create a new object if you want to do the same synchronization again.

Thread Synchronization Utilities

[108]

The following screenshot shows the output of an execution of the example:

You can see how participants arrive, and once the internal counter arrives at 0, the
CountDownLatch object wakes up the Videoconference object that writes the messages
indicating that the video conference should start.

There's more...
The CountDownLatch class has another version of the await() method, which is as
follows:

await(long time, TimeUnit unit): In this method, the thread will continue
to sleep until it's interrupted, that is, either the internal counter of
CountDownLatch arrives at 0 or the specified time passes. The TimeUnit class is
an enumeration with the following constants: DAYS, HOURS, MICROSECONDS,
MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

Synchronizing tasks in a common point
The Java concurrency API provides a synchronizing utility that allows the synchronization
of two or more threads at a determined point. It's the CyclicBarrier class. This class is
similar to the CountDownLatch class explained in the Waiting for multiple concurrent events
recipe in this chapter, but it presents some differences that make it a more powerful class.

Thread Synchronization Utilities

[109]

The CyclicBarrier class is initialized with an integer number, which is the number of
threads that will be synchronized at a determined point. When one of these threads arrives
at the determined point, it calls the await() method to wait for the other threads. When the
thread calls this method, the CyclicBarrier class blocks the thread that is sleeping until
the other threads arrive. When the last thread calls the await() method of the
CyclicBarrier object, it wakes up all the threads that were waiting and continues with its
job.

One interesting advantage of the CyclicBarrier class is that you can pass an additional
Runnable object as an initialization parameter, and the CyclicBarrier class executes this
object as a thread when all the threads arrive at the common point. This characteristic
makes this class adequate for parallelization of tasks using the divide and conquer
programming technique.

In this recipe, you will learn how to use the CyclicBarrier class to synchronize a set of
threads at a determined point. You will also use a Runnable object that will be executed
after all the threads arrive at this point. In the example, you will look for a number in a
matrix of numbers. The matrix will be divided into subsets (using the divide and conquer
technique), so each thread will look for the number in one subset. Once all the threads have
finished their respective jobs, a final task will unify their results.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Start the example by implementing two auxiliary classes. First, create a class1.
named MatrixMock. This class will generate a random matrix of numbers
between one and 10, where the threads will look for a number:

 public class MatrixMock {

Declare a private int matrix named data:2.

 private final int data[][];

Thread Synchronization Utilities

[110]

Implement the constructor of the class. This constructor will receive the number3.
of rows of the matrix, the length of each row, and the number we are going to
look for as parameters. All the three parameters are of the type int:

 public MatrixMock(int size, int length, int number){

Initialize the variables and objects used in the constructor:4.

 int counter=0;
 data=new int[size][length];
 Random random=new Random();

Fill the matrix with random numbers. Each time you generate a number, compare5.
it with the number you are going to look for. If they are equal, increment the
counter:

 for (int i=0; i<size; i++) {
 for (int j=0; j<length; j++){
 data[i][j]=random.nextInt(10);
 if (data[i][j]==number){
 counter++;
 }
 }
 }

Finally, print a message in the console, which shows the number of occurrences6.
of the number you are going to look for in the generated matrix. This message
will be used to check that the threads get the correct result:

 System.out.printf("Mock: There are %d ocurrences of number in
 generated data.\n",counter,number);

Implement the getRow() method. This method receives an int parameter with7.
the number of a rows in the matrix; it returns the row if it exists and returns null
if it doesn't:

 public int[] getRow(int row){
 if ((row>=0)&&(row<data.length)){
 return data[row];
 }
 return null;
 }

Thread Synchronization Utilities

[111]

Now implement a class named Results. This class will store, in an array, the8.
number of occurrences of the searched number in each row of the matrix:

 public class Results {

Declare a private int array named data:9.

 private final int data[];

Implement the constructor of the class. This constructor receives an integer10.
parameter with the number of elements of the array:

 public Results(int size){
 data=new int[size];
 }

Implement the setData() method. This method receives a position in the array11.
and a value as a parameter, and it establishes the value of that position in the
array:

 public void setData(int position, int value){
 data[position]=value;
 }

Implement the getData() method. This method returns the array with the array12.
of the results:

 public int[] getData(){
 return data;
 }

Now that you have the auxiliary classes, it's time to implement threads. First,13.
implement the Searcher class. This class will look for a number in the
determined rows of the matrix of random numbers. Create a class named
Searcher and specify that it implements the Runnable interface:

 public class Searcher implements Runnable {

Declare two private int attributes, namely firstRow and lastRow. These two14.
attributes will determine the subset of rows where this object will look for the
number:

 private final int firstRow;
 private final int lastRow;

Thread Synchronization Utilities

[112]

Declare a private MatrixMock attribute named mock:15.

 private final MatrixMock mock;

Declare a private Results attribute named results:16.

 private final Results results;

Declare a private int attribute named number, which will store the number we17.
are going to look for:

 private final int number;

Declare a CyclicBarrier object named barrier:18.

 private final CyclicBarrier barrier;

Implement the constructor of the class that initializes all the attributes declared19.
previously:

 public Searcher(int firstRow, int lastRow, MatrixMock mock,
 Results results, int number, CyclicBarrier barrier){
 this.firstRow=firstRow;
 this.lastRow=lastRow;
 this.mock=mock;
 this.results=results;
 this.number=number;
 this.barrier=barrier;
 }

Implement the run() method that will search for the number. It uses an internal20.
variable called counter that will store the number of occurrences of the number
in each row:

 @Override
 public void run() {
 int counter;

Print a message in the console with the rows assigned to this task:21.

 System.out.printf("%s: Processing lines from %d to %d.\n",
 Thread.currentThread().getName(),
 firstRow,lastRow);

Thread Synchronization Utilities

[113]

Process all the rows assigned to this thread. For each row, count the number of22.
occurrences of the number you are searching for and store this number in the
corresponding position of the Results object:

 for (int i=firstRow; i<lastRow; i++){
 int row[]=mock.getRow(i);
 counter=0;
 for (int j=0; j<row.length; j++){
 if (row[j]==number){
 counter++;
 }
 }
 results.setData(i, counter);
 }

Print a message in the console to indicate that this object has finished searching:23.

 System.out.printf("%s: Lines processed.\n",
 Thread.currentThread().getName());

Call the await() method of the CyclicBarrier object and add the necessary24.
code to process the InterruptedException and BrokenBarrierException
exceptions that this method can throw:

 try {
 barrier.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (BrokenBarrierException e) {
 e.printStackTrace();
 }

Now implement the class that calculates the total number of occurrences of the25.
number in the matrix. This class uses the Results object that stores the number
of appearances of the number in each row of the matrix to make the calculation.
Create a class named Grouper and specify that it implements the Runnable
interface:

 public class Grouper implements Runnable {

Declare a private Results attribute named results:26.

 private final Results results;

Thread Synchronization Utilities

[114]

Implement the constructor of the class that initializes the Results attribute:27.

 public Grouper(Results results){
 this.results=results;
 }

Implement the run() method that will calculate the total number of occurrences28.
of the number in the array of results:

 @Override
 public void run() {

Declare an int variable and write a message to the console to indicate the start of29.
the process:

 int finalResult=0;
 System.out.printf("Grouper: Processing results...\n");

Get the number of occurrences of the number in each row using the getData()30.
method of the results object. Then, process all the elements of the array and
add their value to the finalResult variable:

 int data[]=results.getData();
 for (int number:data){
 finalResult+=number;
 }

Print the result in the console:31.

 System.out.printf("Grouper: Total result: %d.\n", finalResult);

Finally, implement the main class of the example by creating a class named Main32.
and adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Declare and initialize five constants to store the parameters of the application:33.

 final int ROWS=10000;
 final int NUMBERS=1000;
 final int SEARCH=5;
 final int PARTICIPANTS=5;
 final int LINES_PARTICIPANT=2000;

Thread Synchronization Utilities

[115]

Create a MatrixMock object named mock. It will have 10,000 rows of 1,00034.
elements. Now, you are going to search for the number five:

 MatrixMock mock=new MatrixMock(ROWS, NUMBERS,SEARCH);

Create a Results object named results. It will have 10,000 elements:35.

 Results results=new Results(ROWS);

Create a Grouper object named grouper:36.

 Grouper grouper=new Grouper(results);

Create a CyclicBarrier object called barrier. This object will wait for five37.
threads. When these five threads finish, it will execute the Grouper object created
previously:

 CyclicBarrier barrier=new CyclicBarrier(PARTICIPANTS,grouper);

Create five Searcher objects, five threads to execute them, and start the five38.
threads:

 Searcher searchers[]=new Searcher[PARTICIPANTS];
 for (int i=0; i<PARTICIPANTS; i++){
 searchers[i]=new Searcher(i*LINES_PARTICIPANT,
 (i*LINES_PARTICIPANT)+LINES_PARTICIPANT,
 mock, results, 5,barrier);
 Thread thread=new Thread(searchers[i]);
 thread.start();
 }
 System.out.printf("Main: The main thread has finished.\n");

Thread Synchronization Utilities

[116]

How it works...
The following screenshot shows the result of an execution of this example:

The problem resolved in the example is simple. We have a big matrix of random integers,
and you want to know the total number of occurrences of a number in this matrix. To get
better performance, we used the divide and conquer technique. We divided the matrix into
five subsets and used a thread to look for the number in each subset. These threads are
objects of the Searcher class.

We used a CyclicBarrier object to synchronize the completion of the five threads and
execute the Grouper task to process partial results and calculate the final one.

As mentioned earlier, the CyclicBarrier class has an internal counter to control how
many threads need to arrive at the synchronization point. Each time a thread arrives at the
synchronization point, it calls the await() method to notify the CyclicBarrier object that
a thread has arrived at its synchronization point. CyclicBarrier puts the thread to sleep
until all the threads reach the synchronization point.

When all the threads have arrived, the CyclicBarrier object wakes up all the threads that
were waiting in the await() method. Optionally, it creates a new thread that executes a
Runnable object passed as the parameter in the construction of CyclicBarrier (in our
case, a Grouper object) to do additional tasks.

Thread Synchronization Utilities

[117]

There's more...
The CyclicBarrier class has another version of the await() method:

await(long time, TimeUnit unit): In this method, the thread will continue
to sleep until it's interrupted, that is, either the internal counter of
CyclicBarrier arrives at 0 or the specified time passes. The TimeUnit class is
an enumeration with the following constants: DAYS, HOURS, MICROSECONDS,
MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

This class also provides the getNumberWaiting() method that returns the number of
threads that are blocked in the await() method and the getParties() method that
returns the number of tasks that are going to be synchronized with CyclicBarrier.

Resetting a CyclicBarrier object
The CyclicBarrier class has some points in common with the CountDownLatch class,
but they also have some differences. One of the most important differences is that a
CyclicBarrier object can be reset to its initial state, assigning to its internal counter the
value with which it was initialized.

This reset operation can be done using the reset() method of the CyclicBarrier class.
When this occurs, all the threads that were waiting in the await() method receive a
BrokenBarrierException exception. This exception was processed in the example
presented in this recipe by printing the stack trace; however, in a more complex application,
it could perform some other operation, such as restarting the execution or recovering the
operation at the point it was interrupted.

Broken CyclicBarrier objects
A CyclicBarrier object can be in a special state denoted by the broken state. When there
are various threads waiting in the await() method and one of them is interrupted, the one
that is interrupted receives an InterruptedException exception, but other threads
receive a BrokenBarrierException exception; CyclicBarrier is placed in the broken
state.

The CyclicBarrier class provides the isBroken() method. It returns true if the object is
in the broken state; otherwise, it returns false.

Thread Synchronization Utilities

[118]

See also
The Waiting for multiple concurrent events recipe in this chapter

Running concurrent-phased tasks
One of the most complex and powerful functionalities offered by the Java concurrency API
is the ability to execute concurrent-phased tasks using the Phaser class. This mechanism is
useful when we have some concurrent tasks divided into steps. The Phaser class provides
us with a mechanism to synchronize threads at the end of each step, so no thread will start
with the second step until all the threads have finished the first one.

As with other synchronization utilities, we have to initialize the Phaser class with the
number of tasks that participate in the synchronization operation, but we can dynamically
modify this number by either increasing or decreasing it.

In this recipe, you will learn how to use the Phaser class to synchronize three concurrent
tasks. The three tasks look for files with the extension .log modified in the last 24 hours in
three different folders and their subfolders. This task is divided into three steps:

Get a list of the files with the extension .log in the assigned folder and its1.
subfolders.
Filter the list created in the first step by deleting the files modified more than 242.
hours ago.
Print the results in the console.3.

At the end of step 1 and step 2, we check whether the list has any elements or not. If it
doesn't, the thread ends its execution and is eliminated from the Phaser class.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Synchronization Utilities

[119]

How to do it...
Follow these steps to implement the example:

Create a class named FileSearch and specify that it implements the Runnable1.
interface. This class implements the operation of searching for files with a
determined extension modified in the last 24 hours in a folder and its subfolders:

 public class FileSearch implements Runnable {

Declare a private String attribute to store the folder in which the search2.
operation will begin:

 private final String initPath;

Declare another private String attribute to store the extension of the files we are3.
going to look for:

 private final String fileExtension

Declare a private List attribute to store the full path of the files we will find with4.
the desired characteristics:

 private List<String> results;

Finally, declare a private Phaser attribute to control the synchronization of the5.
different phases of the task:

 private Phaser phaser;

Next, implement the constructor of the class that will initialize the attributes of6.
the class. It receives the full path of the initial folder as parameters, the extension
of the files, and phaser:

 public FileSearch(String initPath, String fileExtension,
 Phaser phaser) {
 this.initPath = initPath;
 this.fileExtension = fileExtension;
 this.phaser=phaser;
 results=new ArrayList<>();
 }

Thread Synchronization Utilities

[120]

Now, implement some auxiliary methods that will be used by the run() method.7.
The first one is the directoryProcess() method. It receives a File object as a
parameter and it processes all its files and subfolders. For each folder, the method
will make a recursive call while passing the folder as a parameter. For each file,
the method will call the fileProcess() method:

 private void directoryProcess(File file) {

 File list[] = file.listFiles();
 if (list != null) {
 for (int i = 0; i < list.length; i++) {
 if (list[i].isDirectory()) {
 directoryProcess(list[i]);
 } else {
 fileProcess(list[i]);
 }
 }
 }
 }

Then, implement the fileProcess() method. It receives a File object as a8.
parameter and checks whether its extension is equal to the one we are looking
for. If they are equal, this method adds the absolute path of the file to the list of
results:

 private void fileProcess(File file) {
 if (file.getName().endsWith(fileExtension)) {
 results.add(file.getAbsolutePath());
 }
 }

Now implement the filterResults() method. It doesn't receive any parameter9.
and filters the list of files obtained in the first phase; it deletes files that were
modified more than 24 hours ago. First, create a new empty list and get the actual
date:

 private void filterResults() {
 List<String> newResults=new ArrayList<>();
 long actualDate=new Date().getTime();

Then, go through all the elements of the results list. For each path in the list of10.
results, create a File object for the file and get its last modified date:

 for (int i=0; i<results.size(); i++){
 File file=new File(results.get(i));

Thread Synchronization Utilities

[121]

 long fileDate=file.lastModified();

Then, compare this date with the actual date, and if the difference is less than 111.
day, add the full path of the file to the new list of results:

 if (actualDate-fileDate< TimeUnit.MILLISECONDS
 .convert(1,TimeUnit.DAYS)){
 newResults.add(results.get(i));
 }
 }

Finally, change the old results list to the new ones:12.

 results=newResults;
 }

Next, implement the checkResults() method. This method will be called at the13.
end of the first and second phase, and it will check whether the results list is
empty or not. This method doesn't have any parameters:

 private boolean checkResults() {

First, check the size of the results list. If it's 0, the object writes a message to the14.
console indicating this. After this, it calls the arriveAndDeregister() method
of the Phaser object to notify that this thread has finished the actual phase and it
leaves the phased operation:

 if (results.isEmpty()) {
 System.out.printf("%s: Phase %d: 0 results.\n",
 Thread.currentThread().getName(),
 phaser.getPhase());
 System.out.printf("%s: Phase %d: End.\n",
 Thread.currentThread().getName(),
 phaser.getPhase());
 phaser.arriveAndDeregister();
 return false;

If the results list has elements, the object writes a message to the console15.
indicating this. Then, it calls the arriveAndAwaitAdvance() method of the
Phaser object to notify that this thread has finished the actual phase and it wants
to be blocked until all the participant threads in the phased operation finish the
actual phase:

 } else {
 System.out.printf("%s: Phase %d: %d results.\n",
 Thread.currentThread().getName(),

Thread Synchronization Utilities

[122]

 phaser.getPhase(),results.size());
 phaser.arriveAndAwaitAdvance();
 return true;
 }
 }

The last auxiliary method is the showInfo() method that prints the elements of16.
the results list to the console:

 private void showInfo() {
 for (int i=0; i<results.size(); i++){
 File file=new File(results.get(i));
 System.out.printf("%s: %s\n",
 Thread.currentThread().getName(),
 file.getAbsolutePath());
 }
 phaser.arriveAndAwaitAdvance();
 }

It's time to implement the run() method that executes the operation using the17.
auxiliary methods described earlier. We'll also implement the Phaser object to
control the change between phases. First, call the arriveAndAwaitAdvance()
method of the Phaser object. The search won't begin until all the threads have
been created:

 @Override
 public void run() {
 phaser.arriveAndAwaitAdvance();

Then, write a message to the console indicating the start of the search task:18.

 System.out.printf("%s: Starting.\n",
 Thread.currentThread().getName());

Check that the initPath attribute stores the name of a folder and use the19.
directoryProcess() method to find the files with the specified extension in
that folder and all its subfolders:

 File file = new File(initPath);
 if (file.isDirectory()) {
 directoryProcess(file);
 }

Thread Synchronization Utilities

[123]

Check whether there are any results using the checkResults() method. If there20.
are no results, finish the execution of the thread with the return keyword:

 if (!checkResults()){
 return;
 }

Filter the list of results using the filterResults() method:21.

 filterResults();

Check whether there are any results using the checkResults() method once22.
again. If there are no results, finish the execution of the thread with the return
keyword:

 if (!checkResults()){
 return;
 }

Print the final list of results to the console with the showInfo() method,23.
deregister the thread, and print a message indicating the finalization of the
thread:

 showInfo();
 phaser.arriveAndDeregister();
 System.out.printf("%s: Work completed.\n",
 Thread.currentThread().getName());

Now, implement the main class of the example by creating a class named Main24.
and adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a Phaser object with three participants:25.

 Phaser phaser=new Phaser(3);

Create three FileSearch objects with a different initial folder for each one. Look26.
for the files with the .log extension:

 FileSearch system=new FileSearch("C:\\Windows", "log", phaser);
 FileSearch apps= new FileSearch("C:\\Program Files",
 "log",phaser);
 FileSearch documents= new FileSearch("C:\\Documents And Settings",
 "log",phaser);

Thread Synchronization Utilities

[124]

Create and start a thread to execute the first FileSearch object:27.

 Thread systemThread=new Thread(system,"System");
 systemThread.start();

Create and start a thread to execute the second FileSearch object:28.

 Thread appsThread=new Thread(apps,"Apps");
 appsThread.start();

Create and start a thread to execute the third FileSearch object:29.

 Thread documentsThread=new Thread(documents, "Documents");
 documentsThread.start();

Wait for the finalization of the three threads:30.

 try {
 systemThread.join();
 appsThread.join();
 documentsThread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write the value of the finalized flag of the Phaser object using the31.
isFinalized() method:

 System.out.println("Terminated: "+ phaser.isTerminated());

How it works...
The program starts creating a Phaser object that will control the synchronization of the
threads at the end of each phase. The constructor of Phaser receives the number of
participants as a parameter. In our case, Phaser has three participants. This number
indicates Phaser the number of threads that need to execute the
arriveAndAwaitAdvance() method before Phaser could change the phase and wake up
the threads that have been sleeping.

Once Phaser has been created, we launch three threads that are executed using three
different FileSearch objects.

Thread Synchronization Utilities

[125]

In this example, we use paths of the Windows operating system. If you
work with another operating system, modify the paths to adapt them to
existing paths in your environment, such as /var/log, or similar.

The first instruction in the run() method of this FileSearch object is a call to the
arriveAndAwaitAdvance() method of the Phaser object. As mentioned earlier, Phaser
knows the number of threads that we want to synchronize. When a thread calls this
method, Phaser decreases the number of threads that have to finalize the actual phase and
puts this thread to sleep until all the remaining threads finish this phase. Calling this
method at the beginning of the run() method ensures that none of the FileSearch
threads begin their job until all the threads are created.

At the end of phase one and phase two, we check whether the phase has generated results
and the list with the results has elements or the phase hasn't generated results and the list is
empty. In the first case, the checkResults() method calls arriveAndAwaitAdvance() as
explained earlier. In the second case, if the list is empty, there's no point in the thread
continuing with its execution, so it ends its execution. But you have to notify the Phaser
object that there will be one less participant. For this, we used arriveAndDeregister().
This notifies phaser that the thread has finished the actual phase, but it won't participate in
future phases, therefore, phaser won't have to wait for it to continue.

At the end of the phase three implemented in the showInfo() method, there is a call to the
arriveAndAwaitAdvance() method of phaser. With this call, we guarantee that all the
threads finish at the same time. When this method ends its execution, there is a call to the
arriveAndDeregister() method of phaser. With this call, we deregister the threads of
phaser, as explained before, so when all the threads finish, phaser will have zero
participants.

Finally, the main() method waits for the completion of the three threads and calls the
isTerminated() method of phaser. When phaser has zero participants, it enters the so-
called termination state, and this method returns true. As we deregister all the threads of
phaser, it will be in the termination state, and this call will print true to the console.

A Phaser object can be in two states:

Active: Phaser enters this state when it accepts the registration of new
participants and its synchronization at the end of each phase. In this state,
Phaser works as it has been explained in this recipe. This state is not mentioned
in the Java concurrency API.

Thread Synchronization Utilities

[126]

Termination: By default, Phaser enters this state when all the participants in
Phaser have been deregistered, which means it has zero participants. Further,
Phaser is in the termination state when the method onAdvance() returns true.
If you override this method, you can change the default behavior. When Phaser
is in this state, the synchronization method arriveAndAwaitAdvance() returns
immediately without doing any synchronization operation.

A notable feature of the Phaser class is that you haven't had to control any exception from
the methods related to phaser. Unlike other synchronization utilities, threads that are
sleeping in phaser don't respond to interruption events and don't throw an
InterruptedException exception. There is only one exception, which is explained in the
next section.

The following screenshot shows the results of one execution of the example:

It shows the first two phases of the execution. You can see how the Apps thread finishes its
execution in phase two because its results list is empty. When you execute the example, you
will see how some threads finish a phase before the rest and how they wait until all have
finished one phase before continuing with the rest.

There's more...
The Phaser class provides other methods related to the change of phase. These methods
are as follows:

arrive(): This method notifies the Phaser class that one participant has
finished the actual phase but it should not wait for the rest of the participants to
continue with their execution. Be careful with the utilization of this method
because it doesn't synchronize with other threads.

Thread Synchronization Utilities

[127]

awaitAdvance(int phase): This method puts the current thread to sleep until
all the participants of the phaser parameter have finished the current phase, that
is, if the number we pass as the parameter is equal to the actual phase of phaser.
If the parameter and the actual phase of phaser aren't equal, the method ends its
execution.
awaitAdvanceInterruptibly(int phaser): This method is equal to the
method explained earlier, but it throws an InterruptedException exception if
the thread that is sleeping in this method is interrupted.

Registering participants in Phaser
When you create a Phaser object, you indicate how many participants will have that
phaser. But the Phaser class has two methods to increment the number of participants of
phaser. These methods are as follows:

register(): This method adds a new participant to Phaser. This new
participant will be considered unarrived to the actual phase.
bulkRegister(int Parties): This method adds the specified number of
participants to phaser. These new participants will be considered unarrived to
the actual phase.

The only method provided by the Phaser class to decrement the number of participants is
the arriveAndDeregister() method that notifies phaser that the thread has finished the
actual phase and it doesn't want to continue with the phased operation.

Forcing the termination of Phaser
When phaser has zero participants, it enters a state denoted by termination. The Phaser
class provides forceTermination() to change the status of phaser and makes it enter the
termination state independently of the number of participants registered in phaser. This
mechanism may be useful when one of the participants has an error situation, where the
best thing to do would be to terminate phaser.

When phaser is in the termination state, the awaitAdvance() and
arriveAndAwaitAdvance() methods immediately return a negative number, instead of a
positive one that is returned normally. If you know that your phaser could be terminated,
you should verify the return value of those methods (awaitAdvance() and
arriveAndAwaitAdvance()) to know whether phaser has been terminated.

Thread Synchronization Utilities

[128]

See also
The Monitoring a Phaser class recipe in Chapter 9, Testing Concurrent Applications

Controlling phase change in concurrent-
phased tasks
The Phaser class provides a method that is executed each time phaser changes the phase.
It's the onAdvance() method. It receives two parameters: the number of the current phases
and the number of registered participants. It returns a Boolean value false if Phaser
continues its execution or the value true if Phaser has finished and has to enter the
termination state.

The default implementation of this method returns true if the number of registered
participants is zero, and false otherwise. But you can modify this behavior if you extend
the Phaser class and override this method. Normally, you will be interested in doing this
when you have to execute some actions when you advance from one phase to the next.

In this recipe, you will learn how to control phase change in a phaser that is implementing
your own version of the Phaser class that overrides the onAdvance() method to execute
some actions in every phase change. You are going to implement a simulation of an exam,
where there will be some students who have to do three exercises. All the students have to
finish one exercise before they proceed with the next one.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Synchronization Utilities

[129]

How to do it...
Follow these steps to implement the example:

Create a class named MyPhaser and specify that it extends from the Phaser1.
class:

 public class MyPhaser extends Phaser {

Override the onAdvance() method. According to the value of the phase2.
attribute, we call it a different auxiliary method. If the phase attribute is equal to
zero, you have to call the studentsArrived() method. If the phase is equal to
one, you have to call the finishFirstExercise() method. If the phase is equal
to two, you have to call the finishSecondExercise() method. Finally, if the
phase is equal to three, you have to call the finishExam() method. Otherwise,
return the true value to indicate that phaser has terminated:

 @Override
 protected boolean onAdvance(int phase, int registeredParties) {
 switch (phase) {
 case 0:
 return studentsArrived();
 case 1:
 return finishFirstExercise();
 case 2:
 return finishSecondExercise();
 case 3:
 return finishExam();
 default:
 return true;
 }
 }

Implement the auxiliary method studentsArrived(). It writes two log3.
messages to the console and returns false to indicate that phaser is continuing
with its execution:

 private boolean studentsArrived() {
 System.out.printf("Phaser: The exam are going to start.
 The students are ready.\n");
 System.out.printf("Phaser: We have %d students.\n",
 getRegisteredParties());
 return false;
 }

Thread Synchronization Utilities

[130]

Implement the auxiliary method finishFirstExercise(). It writes two4.
messages to the console and returns false to indicate that phaser is continuing
with its execution:

 private boolean finishFirstExercise() {
 System.out.printf("Phaser: All the students have finished the
 first exercise.\n");
 System.out.printf("Phaser: It's time for the second one.\n");
 return false;
 }

Implement the auxiliary method finishSecondExercise(). It writes two5.
messages to the console and returns false to indicate that phaser is continuing
with its execution:

 private boolean finishSecondExercise() {
 System.out.printf("Phaser: All the students have finished the
 second exercise.\n");
 System.out.printf("Phaser: It's time for the third one.\n");
 return false;
 }

Implement the auxiliary method finishExam(). It writes two messages to the6.
console and returns true to indicate that phaser has finished its work:

 private boolean finishExam() {
 System.out.printf("Phaser: All the students have finished
 the exam.\n");
 System.out.printf("Phaser: Thank you for your time.\n");
 return true;
 }

Create a class named Student and specify that it implements the Runnable7.
interface. This class will simulate the students of an exam:

 public class Student implements Runnable {

Declare a Phaser object named phaser:8.

 private Phaser phaser;

Implement the constructor of the class that initializes the Phaser object:9.

 public Student(Phaser phaser) {
 this.phaser=phaser;
 }

Thread Synchronization Utilities

[131]

Implement the run() method that will simulate the realization of the exam:10.

 @Override
 public void run() {

First, the method writes a message in the console to indicate that a student has11.
arrived at the exam hall and calls the arriveAndAwaitAdvance() method of
phaser to wait for the rest of the threads:

 System.out.printf("%s: Has arrived to do the exam. %s\n",
 Thread.currentThread().getName(),new Date());
 phaser.arriveAndAwaitAdvance();

Then, write a message to the console and call the private doExercise1()12.
method that simulates the realization of the first exercise of the exam. Post this,
write another message to the console and the arriveAndAwaitAdvance()
method of phaser to wait for the rest of the students to finish the first exercise:

 System.out.printf("%s: Is going to do the first exercise.%s\n",
 Thread.currentThread().getName(),new Date());
 doExercise1();
 System.out.printf("%s: Has done the first exercise.%s\n",
 Thread.currentThread().getName(),new Date());
 phaser.arriveAndAwaitAdvance();

Implement the same code for the second and third exercises:13.

 System.out.printf("%s: Is going to do the second exercise.
 %s\n",Thread.currentThread().getName(),
 new Date());
 doExercise2();
 System.out.printf("%s: Has done the second exercise.%s\n",
 Thread.currentThread().getName(),new Date());
 phaser.arriveAndAwaitAdvance();
 System.out.printf("%s: Is going to do the third exercise.%s\n",
 Thread.currentThread().getName(),new Date());
 doExercise3();
 System.out.printf("%s: Has finished the exam.%s\n",
 Thread.currentThread().getName(),new Date());
 phaser.arriveAndAwaitAdvance();

Thread Synchronization Utilities

[132]

Implement the auxiliary method doExercise1(). This method puts the current14.
thread or the thread that executes the method to sleep for a random period of
time:

 private void doExercise1() {
 try {
 long duration=(long)(Math.random()*10);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Implement the auxiliary method doExercise2(). This method puts the current15.
thread or the thread that executes the method to sleep for a random period of
time:

 private void doExercise2() {
 try {
 long duration=(long)(Math.random()*10);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Implement the auxiliary method doExercise3(). This method puts the thread16.
to sleep for a random period of time:

 private void doExercise3() {
 try {
 long duration=(long)(Math.random()*10);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Implement the main class of the example by creating a class named Main and17.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Thread Synchronization Utilities

[133]

Create a MyPhaser object:18.

 MyPhaser phaser=new MyPhaser();

Create five Student objects and register them in the phaser attribute using the19.
register() method:

 Student students[]=new Student[5];
 for (int i=0; i<students.length; i++){
 students[i]=new Student(phaser);
 phaser.register();
 }

Create five threads to run students and start them:20.

 Thread threads[]=new Thread[students.length];
 for (int i=0; i<students.length; i++){
 threads[i]=new Thread(students[i],"Student "+i);
 threads[i].start();
 }

Wait for the finalization of the five threads:21.

 for (int i=0; i<threads.length; i++){
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Write a message to show that phaser is in the termination state, using the22.
isTerminated() method:

 System.out.printf("Main: The phaser has finished: %s.\n",
 phaser.isTerminated());

How it works...
This exercise simulates the realization of an exam that has three exercises. All the students
have to finish one exercise before they can start the next one. To implement this
synchronization requirement, we use the Phaser class; however, in this case, you
implemented your own phaser, extending the original class to override the onAdvance()
method.

Thread Synchronization Utilities

[134]

This method is called by Phaser before making a phase change and waking up all the
threads that were sleeping in the arriveAndAwaitAdvance() method. The method is
invoked by the last thread that finishes a phase as part of the code of the
arriveAndAwaitAdvance() method. This method receives the number of the actual phase
as parameters, where 0 is the number of the first phase and the number of registered
participants. The most useful parameter is the actual phase. If you execute a different
operation depending on the actual phase, you have to use an alternative structure
(if...else or switch) to select the operation you want to execute. In the example, we
used a switch structure to select a different method for each change of phase.

The onAdvance() method returns a Boolean value that indicates whether phaser has
terminated or not. If phaser returns false, it indicates that it hasn't terminated; if this
happens, the threads will continue with the execution of other phases. If phaser returns
true, then phaser still wakes up the pending threads but moves phaser to the terminated
state. With this, all future calls to any method of phaser will return immediately, and the
isTerminated() method will return true.

In the Main class, when you created the MyPhaser object, you didn't specify the number of
participants in the phaser. You made a call to the register() method for every Student
object created to register a participant in phaser. This calling doesn't establish a relation
between the Student object or the thread that executes it and phaser. Really, the number
of participants in a phaser is only a number. There is no relationship between phaser and
the participants.

The following screenshot shows the results of an execution of this example:

Thread Synchronization Utilities

[135]

You can see how the students finished the first exercise at different times. When all of them
finish the first exercise, phaser calls the onAdvance() method that writes the log messages
in the console, then all the students start the second exercise at the same time.

See also
The Running concurrent-phased tasks recipe in this chapter
The Monitoring a Phaser class recipe in Chapter 9, Testing Concurrent Applications

Exchanging data between concurrent tasks
The Java concurrency API provides a synchronization utility that allows interchange of data
between two concurrent tasks. In more detail, the Exchanger class allows you to have a
definition of a synchronization point between two threads. When the two threads arrive at
this point, they interchange a data structure such that the data structure of the first thread
goes to the second one and vice versa.

This class may be very useful in a situation similar to the producer-consumer problem. This
is a classic concurrent problem where you have a common buffer of data, one or more
producers of data, and one or more consumers of data. As the Exchanger class
synchronizes only two threads, you can use it if you have a producer-consumer problem
with one producer and one consumer.

In this recipe, you will learn how to use the Exchanger class to solve the producer-
consumer problem with one producer and one consumer.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Synchronization Utilities

[136]

How to do it...
Follow these steps to implement the example:

First, begin by implementing the producer. Create a class named Producer and1.
specify that it implements the Runnable interface:

 public class Producer implements Runnable {

Declare a List<String> field named buffer. This will be the data structure that2.
the producer will interchange with the consumer:

 private List<String> buffer;

Declare an Exchanger<List<String>> field named exchanger. This will be3.
the exchanger object that will be used to synchronize the producer and consumer:

 private final Exchanger<List<String>> exchanger;

Implement the constructor of the class that will initialize the two attributes:3.

 public Producer (List<String> buffer, Exchanger<List<String>>
 exchanger){
 this.buffer=buffer;
 this.exchanger=exchanger;
 }

Implement the run() method. Inside it, implement 10 cycles of interchange:4.

 @Override
 public void run() {
 for (int cycle = 1; cycle <= 10; cycle++){
 System.out.printf("Producer: Cycle %d\n",cycle);

In each cycle, add 10 strings to the buffer:5.

 for (int j=0; j<10; j++){
 String message="Event "+(((cycle-1)*10)+j);
 System.out.printf("Producer: %s\n",message);
 buffer.add(message);
 }

Thread Synchronization Utilities

[137]

Call the exchange() method to interchange data with the consumer. As this6.
method can throw an InterruptedException exception, you have to add some
code to process it.

 try {
 buffer=exchanger.exchange(buffer);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("Producer: "+buffer.size());
 }

Now, implement the consumer. Create a class named Consumer and specify that7.
it implements the Runnable interface:

 public class Consumer implements Runnable {

Declare a List<String> field named buffer. This will be the data structure that8.
the producer will interchange with the consumer:

 private List<String> buffer;

Declare an Exchanger<List<String>> field named exchanger. This will be9.
the exchanger object that will be used to synchronize the producer and
consumer:

 private final Exchanger<List<String>> exchanger;

Implement the constructor of the class that will initialize the two attributes:10.

 public Consumer(List<String> buffer, Exchanger<List<String>>
 exchanger){
 this.buffer=buffer;
 this.exchanger=exchanger;
 }

Implement the run() method. Inside it, implement 10 cycles of interchange:11.

 @Override
 public void run() {
 for (int cycle=1; cycle <= 10; cycle++){
 System.out.printf("Consumer: Cycle %d\n",cycle);

Thread Synchronization Utilities

[138]

In each cycle, begin with a call to the exchange() method to synchronize with12.
the producer. The consumer needs data to consume. As this method can throw an
InterruptedException exception, you have to add some code to process it:

 try {
 buffer=exchanger.exchange(buffer);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write the 10 strings the producer sent in its buffer to the console and delete them13.
from the buffer to leave it empty:

 System.out.println("Consumer: "+buffer.size());
 for (int j=0; j<10; j++){
 String message=buffer.get(0);
 System.out.println("Consumer: "+message);
 buffer.remove(0);
 }
 }

Now, implement the main class of the example by creating a class named Main14.
and adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create two buffers that will be used by the producer and consumer:15.

 List<String> buffer1=new ArrayList<>();
 List<String> buffer2=new ArrayList<>();

Create the Exchanger object that will be used to synchronize the producer and16.
consumer:

 Exchanger<List<String>> exchanger=new Exchanger<>();

Create the Producer and Consumer objects:17.

 Producer producer=new Producer(buffer1, exchanger);
 Consumer consumer=new Consumer(buffer2, exchanger);

Thread Synchronization Utilities

[139]

Create the threads to execute the producer and consumer and start the threads:18.

 Thread threadProducer=new Thread(producer);
 Thread threadConsumer=new Thread(consumer);

 threadProducer.start();
 threadConsumer.start();

How it works...
The consumer begins with an empty buffer and calls Exchanger to synchronize with the
producer. It needs data to consume. The producer begins its execution with an empty
buffer. It creates 10 strings, stores them in the buffer, and uses the Exchanger to
synchronize with the consumer.

At this point, both the threads (producer and consumer) are in Exchanger, which changes
the data structures. So when the consumer returns from the exchange() method, it will
have a buffer with 10 strings. When the producer returns from the exchange() method, it
will have an empty buffer to fill again. This operation will be repeated 10 times.

If you execute the example, you will see how producer and consumer do their jobs
concurrently and how the two objects interchange their buffers in every step. As it occurs
with other synchronization utilities, the first thread that calls the exchange() method is
put to sleep until the other threads arrive.

There's more...
The Exchanger class has another version of the exchange method: exchange(V data,
long time, TimeUnit unit). where, V is the type used as a parameter in the declaration
of Phaser (List<String> in our case). The thread will sleep until it's interrupted, another
thread arrives, or the specified time passes. In this case, a TimeoutException is thrown.
The TimeUnit class is an enumeration with the following constants: DAYS, HOURS,
MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

Thread Synchronization Utilities

[140]

Completing and linking tasks
asynchronously
Java 8 Concurrency API includes a new synchronization mechanism with the
CompletableFuture class. This class implements the Future object and the
CompletionStage interface that gives it the following two characteristics:

As the Future object, a CompletableFuture object will return a result
sometime in future
As the CompletionStage object, you can execute more asynchronous tasks after
the completion of one or more CompletableFuture objects

You can work with a CompletableFuture class in different ways:

You can create a CompletableFuture object explicitly and use it as a
synchronization point between tasks. One task will establish the value returned
by CompletableFuture, using the complete() method, and the other tasks will
wait for this value, using the get() or join() methods.
You can use a static method of the CompletableFuture class to execute
Runnable or Supplier with the runAsync() and supplyAsync() methods.
These methods will return a CompletableFuture object that will be completed
when these tasks end their execution. In the second case, the value returned by
Supplier will be the completion value of CompletableFuture.
You can specify other tasks to be executed in an asynchronous way after the
completion of one or more CompletableFuture objects. This task can
implement the Runnable, Function, Consumer or BiConsumer interfaces.

Thread Synchronization Utilities

[141]

These characteristics make the CompletableFuture class very flexible and powerful. In
this chapter, you will learn how to use this class to organize different tasks. The main
purpose of the example is that the tasks will be executed, as specified in the following
diagram:

First, we're going to create a task that will generate a seed. Using this seed, the next task will
generate a list of random numbers. Then, we will execute three parallel tasks:

Step 1 will calculate the nearest number to 1,000, in a list of random numbers.1.
Step 2 will calculate the biggest number in a list of random numbers.2.
Step 3 will calculate the average number between the largest and smallest3.
numbers in a list of random numbers.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Thread Synchronization Utilities

[142]

How to do it...
Follow these steps to implement the example:

First, we're going to implement the auxiliary tasks we will use in the example.1.
Create a class named SeedGenerator that implements the Runnable interface.
It will have a CompletableFuture object as an attribute, and it will be initialized
in the constructor of the class:

 public class SeedGenerator implements Runnable {

 private CompletableFuture<Integer> resultCommunicator;

 public SeedGenerator (CompletableFuture<Integer> completable) {
 this.resultCommunicator=completable;
 }

Then, implement the run() method. It will sleep the current thread for 5 seconds2.
(to simulate a long operation), calculate a random number between 1 and 10, and
then use the complete() method of the resultCommunicator object to
complete CompletableFuture:

 @Override
 public void run() {

 System.out.printf("SeedGenerator: Generating seed...\n");
 // Wait 5 seconds
 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 int seed=(int) Math.rint(Math.random() * 10);

 System.out.printf("SeedGenerator: Seed generated: %d\n",
 seed);

 resultCommunicator.complete(seed);
 }

Create a class named NumberListGenerator that implements the Supplier3.
interface parameterized with the List<Long> data type. This means that the
get() method provided by the Supplier interface will return a list of large
numbers. This class will have an integer number as a private attribute, which will
be initialized in the constructor of the class:

Thread Synchronization Utilities

[143]

 public class NumberListGenerator implements Supplier<List<Long>> {

 private final int size;

 public NumberListGenerator (int size) {
 this.size=size;
 }

Then, implement the get() method that will return a list with millions of4.
numbers, as specified in the size parameter of larger random numbers:

 @Override
 public List<Long> get() {
 List<Long> ret = new ArrayList<>();
 System.out.printf("%s : NumberListGenerator : Start\n",
 Thread.currentThread().getName());

 for (int i=0; i< size*1000000; i++) {
 long number=Math.round(Math.random()*Long.MAX_VALUE);
 ret.add(number);
 }
 System.out.printf("%s : NumberListGenerator : End\n",
 Thread.currentThread().getName());

 return ret;
 }

Finally, create a class named NumberSelector that implements the Function5.
interface parameterized with the List<Long> and Long data types. This means
that the apply() method provided by the Function interface will receive a list
of large numbers and will return a Long number:

 public class NumberSelector implements Function<List<Long>, Long> {

 @Override
 public Long apply(List<Long> list) {

 System.out.printf("%s: Step 3: Start\n",
 Thread.currentThread().getName());
 long max=list.stream().max(Long::compare).get();
 long min=list.stream().min(Long::compare).get();
 long result=(max+min)/2;
 System.out.printf("%s: Step 3: Result - %d\n",
 Thread.currentThread().getName(), result);
 return result;
 }
 }

Thread Synchronization Utilities

[144]

Now it's time to implement the Main class and the main() method:6.

 public class Main {
 public static void main(String[] args) {

First, create a CompletableFuture object and a SeedGenerator task and7.
execute it as a Thread:

 System.out.printf("Main: Start\n");
 CompletableFuture<Integer> seedFuture = new CompletableFuture<>();
 Thread seedThread = new Thread(new SeedGenerator(seedFuture));
 seedThread.start();

Then, wait for the seed generated by the SeedGenerator task, using the get()8.
method of the CompletableFuture object:

 System.out.printf("Main: Getting the seed\n");
 int seed = 0;
 try {
 seed = seedFuture.get();
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 System.out.printf("Main: The seed is: %d\n", seed);

Now create another CompletableFuture object to control the execution of a9.
NumberListGenerator task, but in this case, use the static method
supplyAsync():

 System.out.printf("Main: Launching the list of numbers
 generator\n");
 NumberListGenerator task = new NumberListGenerator(seed);
 CompletableFuture<List<Long>> startFuture = CompletableFuture
 .supplyAsync(task);

Then, configure the three parallelized tasks that will make calculations based on10.
the list of numbers generated in the previous task. These three steps can't start
their execution until the NumberListGenerator task has finished its execution,
so we use the CompletableFuture object generated in the previous step and the
thenApplyAsync() method to configure these tasks. The first two steps are
implemented in a functional way, and the third one is an object of the
NumberSelector class:

Thread Synchronization Utilities

[145]

 System.out.printf("Main: Launching step 1\n");
 CompletableFuture<Long> step1Future = startFuture
 .thenApplyAsync(list -> {
 System.out.printf("%s: Step 1: Start\n",
 Thread.currentThread().getName());
 long selected = 0;
 long selectedDistance = Long.MAX_VALUE;
 long distance;
 for (Long number : list) {
 distance = Math.abs(number - 1000);
 if (distance < selectedDistance) {
 selected = number;
 selectedDistance = distance;
 }
 }
 System.out.printf("%s: Step 1: Result - %d\n",
 Thread.currentThread().getName(), selected);
 return selected;
 });

 System.out.printf("Main: Launching step 2\n");
 CompletableFuture<Long> step2Future = startFuture
 .thenApplyAsync(list -> list.stream().max(Long::compare).get());

 CompletableFuture<Void> write2Future = step2Future
 .thenAccept(selected -> {
 System.out.printf("%s: Step 2: Result - %d\n",
 Thread.currentThread().getName(), selected);
 });

 System.out.printf("Main: Launching step 3\n");
 NumberSelector numberSelector = new NumberSelector();
 CompletableFuture<Long> step3Future = startFuture
 .thenApplyAsync(numberSelector);

We wait for the finalization of the three parallel steps with the allOf() static11.
method of the CompletableFuture class:

 System.out.printf("Main: Waiting for the end of the three
 steps\n");
 CompletableFuture<Void> waitFuture = CompletableFuture
 .allOf(step1Future, write2Future,
 step3Future);

Thread Synchronization Utilities

[146]

Also, we execute a final step to write a message in the console:12.

 CompletableFuture<Void> finalFuture = waitFuture
 .thenAcceptAsync((param) -> {
 System.out.printf("Main: The CompletableFuture example has
 been completed.");
 });
 finalFuture.join();

How it works...
We can use a CompletableFuture object with two main purposes:

Wait for a value or an event that will be produced in future (creating an object
and using the complete() and get() or join() methods).
To organize a set of tasks to be executed in a determined order so one or more
tasks won't start their execution until others have finished their execution.

In this example, we made both uses of the CompletableFuture class. First, we created an
instance of this class and sent it as a parameter to a SeedGenerator task. This task uses the
complete() method to send the calculated value, and the main() method uses the get()
method to obtain the value. The get() method sleeps the current thread until
CompletableFuture has been completed.

Then, we used the supplyAsync() method to generate a CompletableFuture object. This
method receives an implementation of the Supplier interface as a parameter. This interface
provides the get() method that must return a value. The supplyAsync() method returns
CompletableFuture, which will be completed when the get() method finishes its
execution; the value of completion is the value returned by that method. The
CompletableFuture object returned will be executed by a task in the ForkJoinPool
returns the static method commonPool().

Then, we used the thenApplyAsync() method to link some tasks. You call this method in
a CompletableFuture object, and you must pass an implementation of the Function
interface as a parameter that can be expressed directly in the code using a functional style or
an independent object. One powerful characteristic is that the value generated by
CompletableFuture will be passed as a parameter to the Function. That is to say, in our
case, all the three steps will receive a random list of numbers as parameters. The
CompletableFuture class returned will be executed by a task in the ForkJoinPool
returns the static method commonPool().

Thread Synchronization Utilities

[147]

Finally, we used the allOf() static method of the CompletableFuture class to wait for
the finalization of various tasks. This method receives a variable list of
CompletableFuture objects and returns a CompletableFuture class that will be
completed when all the CompletableFuture class passed as parameters are completed.
We also used the thenAcceptAsync() method as another way to synchronize tasks
because this method receives Consumer as a parameter that is executed by the default
executor when the CompletableFuture object used to call the method is completed.
Finally, we used the join() method to wait for the finalization of the last
CompletableFuture object.

The following screenshot shows the execution of the example. You can see how the tasks
are executed in the order we organized:

Thread Synchronization Utilities

[148]

There's more...
In the example of this recipe, we used the complete(), get(), join(), supplyAsync(),
thenApplyAsync(), thenAcceptAsync(), and allOf() methods of the
CompletableFuture class. However, this class has a lot of useful methods that help
increase the power and flexibility of this class. These are the most interesting ones:

Methods to complete a CompletableFuture object: In addition to the
complete() method, the CompletableFuture class provides the following
three methods:

cancel(): This completes CompletableFuture with a
CancellationException exception.
completeAsync(): This completes CompletableFuture with the
result of the Supplier object passed as a parameter. The
Supplier object is executed in a different thread by the default
executor.
completeExceptionally(): This method completes
CompletableFuture with the exception passed as a parameter.

Methods to execute a task: In addition to the supplyAsync() method, the
CompletableFuture class provides the following method:

runAsync(): This is a static method of the CompletableFuture
class that returns a CompletableFuture object. This object will be
completed when the Runnable interface is passed as a parameter
to finish its execution. It will be completed with a void result.

Methods to synchronize the execution of different tasks: In addition to the
allOf(), thenAcceptAsync(), and thenApplyAsync() methods, the
CompletableFuture class provides the following methods to synchronize the
execution of tasks:

anyOf(): This is a static method of the CompletableFuture class.
It receives a list of CompletableFuture objects and returns a new
CompletableFuture object. This object will be completed with the
result of the first CompletableFuture parameter that is
completed.

Thread Synchronization Utilities

[149]

runAfterBothAsync(): This method receives CompletionStage
and Runnable objects as parameters and returns a new
CompletableFuture object. When CompletableFuture (which
does the calling) and CompletionStage (which is received as a
parameter) are completed, the Runnable object is executed by the
default executor and then the CompletableFuture object returned
is completed.
runAfterEitherAsync(): This method is similar to the previous
one, but here, the Runnable interface is executed after one of the
two (CompletableFuture or CompletionStage) are completed.
thenAcceptBothAsync(): This method receives
CompletionStage and BiConsumer objects as parameters and
returns CompetableFuture as a parameter. When
CompletableFuture (which does the calling) and
CompletionStage (which is passed as a parameter), BiConsumer
is executed by the default executor. It receives the results of the two
CompletionStage objects as parameters but it won't return any
result. When BiConsumer finishes its execution, the returned
CompletableFuture class is completed without a result.
thenCombineAsync(): This method receives a CompletionStage
object and a BiFunction object as parameters and returns a new
CompletableFuture object. When CompletableFuture (which
does the calling) and CompletionStage (which is passed as a
parameter) are completed, the BiFunction object is executed; it
receives the completion values of both the objects and returns a
new result that will be the completion value of the returned
CompletableFuture class.
thenComposeAsync():This method is analogous to
thenApplyAsync(), but it is useful when the supplied function
returns CompletableFuture too.
thenRunAsync(): This method is analogous to the
thenAcceptAsync() method, but in this case, it receives a
Runnable object as a parameter instead of a Consumer object.

Thread Synchronization Utilities

[150]

Methods to obtain the completion value: In addition to the get() and join()
methods, the CompletableFuture object provides the following method to get
the completion value:

getNow(): This receives a value of the same type of the completion
value of CompletableFuture. If the object is completed, it returns
the completion value. Else, it returns the value passed as the
parameter.

See also...
The Creating a thread executor and controlling its rejected tasks and Executing tasks in
an executor that returns a result recipes in Chapter 4, Thread Executors

4
Thread Executors

In this chapter, we will cover the following topics:

Creating a thread executor and controlling its rejected tasks
Executing tasks in an executor that returns a result
Running multiple tasks and processing the first result
Running multiple tasks and processing all the results
Running a task in an executor after a delay
Running a task in an executor periodically
Canceling a task in an executor
Controlling a task finishing in an executor
Separating the launching of tasks and the processing of their results in an
executor

Introduction
Usually, when you develop a simple, concurrent programming application in Java, first you
create some Runnable objects and then the corresponding Thread objects to execute them.
If you have to develop a program that runs a lot of concurrent tasks, this approach will
present the following disadvantages:

You will have to implement all of the code-related information to manage
Thread objects (creating, ending, and obtaining results).
You will have to create a Thread object per task. Executing a huge number of
tasks can affect the throughput of the application.
You will have to control and manage the resources of the computer efficiently. If
you create too many threads, you could saturate the system.

Thread Executors

[152]

Since Java 5, the Java concurrency API provides a mechanism that aims to resolve these
problems. This mechanism is called the Executor framework and is around the Executor
interface, its subinterface ExecutorService, and the ThreadPoolExecutor class that
implements both these interfaces.

This mechanism separates task creation and execution. With an executor, you only have to
implement either Runnable or Callable objects and send them to the executor. It is
responsible for their execution, running them with the necessary threads. But it goes
beyond this; it improves performance using a pool of threads. When you send a task to the
executor, it tries to use a pooled thread for the execution of the task. It does so to avoid the
continuous spawning of threads. Another important advantage of the Executor
framework is the Callable interface. It's similar to the Runnable interface but offers two
improvements, which are as follows:

The main method of this interface, named call(), may return a result.
When you send a Callable object to an executor, you get an object that
implements the Future interface. You can use this object to control the status and
the result of the Callable object.

This chapter presents nine recipes that show you how to work with the Executor
framework using the classes mentioned earlier and other variants provided by the Java
Concurrency API.

Creating a thread executor and controlling
its rejected tasks
The first step toward working with the Executor framework is to create an object of the
ThreadPoolExecutor class. You can use the four constructors provided by this class or
use a factory class named Executors, which creates ThreadPoolExecutor. Once you
have an executor, you can send Runnable or Callable objects to be executed.

When you want to finish the execution of an executor, use the shutdown() method. The
executor waits for the completion of tasks that are either running or waiting for their
execution. Then, it finishes the execution.

If you send a task to an executor between the shutdown() method and the end of its
execution, the task will be rejected. This is because the executor no longer accepts new tasks.
The ThreadPoolExecutor class provides a mechanism, which is called when a task is
rejected.

Thread Executors

[153]

In this recipe, you will learn how to use the Executors class to create a new
ThreadPoolExecutor object, how to send tasks to the Executor, and how to control the
rejected tasks of the Executor class.

Getting ready
You should read the Creating, running, and setting the characteristics of a thread recipe in
Chapter 1, Thread Management, to learn the basic mechanism of thread creation in Java. You
can compare both the mechanisms and select one, depending on the problem.

The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, implement the tasks that will be executed by the server. Create a class1.
named Task that implements the Runnable interface:

 public class Task implements Runnable {

Declare a Date attribute named initDate to store the creation date of the task2.
and a String attribute called name to store the name of the task:

 private final Date initDate;
 private final String name;

Implement the constructor of the class that initializes both the attributes:3.

 public Task(String name){
 initDate=new Date();
 this.name=name;
 }

Implement the run() method:4.

 @Override
 public void run() {

Thread Executors

[154]

First, write the initDate attribute and the actual date, which is the starting date5.
of the task:

 System.out.printf("%s: Task %s: Created on: %s\n",
 Thread.currentThread().getName(),
 name,initDate);
 System.out.printf("%s: Task %s: Started on: %s\n",
 Thread.currentThread().getName(),
 name,new Date());

Then, put the task to sleep for a random period of time:6.

 try {
 Long duration=(long)(Math.random()*10);
 System.out.printf("%s: Task %s: Doing a task during %d
 seconds\n", Thread.currentThread().getName(),
 name,duration);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Finally, write the completion date of the task in the console:7.

 System.out.printf("%s: Task %s: Finished on: %s\n",
 Thread.currentThread().getName(),
 name,new Date());

Create a class named RejectedTaskController that implements the8.
RejectedExecutionHandler interface. Implement the rejectedExecution()
method of this interface. Then write the name of the task that has been rejected
and the name and status of the executor:

 public class RejectedTaskController implements
 RejectedExecutionHandler {
 @Override
 public void rejectedExecution(Runnable r,
 ThreadPoolExecutor executor) {
 System.out.printf("RejectedTaskController: The task %s has been
 rejected\n",r.toString());
 System.out.printf("RejectedTaskController: %s\n",
 executor.toString());
 System.out.printf("RejectedTaskController: Terminating: %s\n",
 executor.isTerminating());
 System.out.printf("RejectedTaksController: Terminated: %s\n",
 executor.isTerminated());
 }

Thread Executors

[155]

Now implement the Server class that will execute every task it receives using an9.
executor. Create a class named Server:

 public class Server {

Declare a ThreadPoolExecutor attribute named executor:10.

 private final ThreadPoolExecutor executor;

Implement the constructor of the class that initializes the ThreadPoolExecutor11.
object using the Executors class, and establish a handler for rejected tasks:

 public Server(){
 executor =(ThreadPoolExecutor) Executors.newFixedThreadPool(
 Runtime.getRuntime().availableProcessors());
 RejectedTaskController controller=new
 RejectedTaskController();
 executor.setRejectedExecutionHandler(controller);
 }

Implement the executeTask() method. It receives a Task object as a parameter12.
and sends it to the executor. First, write a message to the console indicating that a
new task has arrived:

 public void executeTask(Task task){
 System.out.printf("Server: A new task has arrived\n");

Then, call the execute() method of the executor and send it to the task:13.

 executor.execute(task);

Finally, write some executor data to the console to see its status:14.

 System.out.printf("Server: Pool Size: %d\n",
 executor.getPoolSize());
 System.out.printf("Server: Active Count: %d\n",
 executor.getActiveCount());
 System.out.printf("Server: Task Count: %d\n",
 executor.getTaskCount());
 System.out.printf("Server: Completed Tasks: %d\n",
 executor.getCompletedTaskCount());

Thread Executors

[156]

Next, implement the endServer() method. In this method, call the shutdown()15.
method of the executor to finish its execution:

 public void endServer() {
 executor.shutdown();
 }

Implement the main class of the example by creating a class named Main and16.
adding the main() method to it. First, create 100 tasks and send them to
Executor:

 public class Main {
 public static void main(String[] args) {
 Server server=new Server();

 System.out.printf("Main: Starting.\n");
 for (int i=0; i<100; i++){
 Task task=new Task("Task "+i);
 server.executeTask(task);
 }

Then call the endServer() method of Server to shut down the executor:17.

 System.out.printf("Main: Shuting down the Executor.\n");
 server.endServer();

Finally, send a new task. This task will be rejected, so we will see how this18.
mechanism works:

 System.out.printf("Main: Sending another Task.\n");
 Task task=new Task("Rejected task");
 server.executeTask(task);

 System.out.printf("Main: End.\n");

How it works...
The key of this example is the Server class. This class creates and uses
ThreadPoolExecutor to execute tasks.

Thread Executors

[157]

The first important point is the creation of ThreadPoolExecutor in the constructor of the
Server class. The ThreadPoolExecutor class has four different constructors, but due to
their complexity, the Java concurrency API provides the Executors class to construct
executors and other related objects. Although you can create ThreadPoolExecutor
directly using one of its constructors, it's recommended that you use the Executors class.

In this case, you created a cached thread pool using the newFixedThreadPool() method
of the Executors class in order to create the executor. This method creates an executor with
the maximum number of threads. If the number of tasks you send is more than the number
of threads, the remaining tasks will be blocked until there is a free thread available to
process them. This method receives the maximum number of threads you want to have in
your executor as parameters. In our case, we used the availableProcessors() method of
the Runtime class that returns the number of processors available to JVM. Normally, this
number matches the number of cores of the computer.

Reutilization of threads has the advantage that it reduces the time taken for thread creation.
The cached thread pool, however, has the disadvantage of having constant lying threads for
new tasks. Therefore, if you send too many tasks to this executor, you could overload the
system.

Once you have created the executor, you can send tasks of the Runnable or Callable type
for execution using the execute() method. In this case, you sent objects of the Task class
that implements the Runnable interface.

You also printed some log messages with information about the executor. Specifically, you
used the following methods:

getPoolSize(): This method returned the actual number of threads in the pool
of the executor.
getActiveCount(): This method returned the number of threads that were
executing tasks in the executor.
getTaskCount(): This method returned the number of tasks that were
scheduled for execution. The returned value is only an approximation because it
changes dynamically.
getCompletedTaskCount(): This method returned the number of tasks
completed by the executor.

Thread Executors

[158]

One critical aspect of the ThreadPoolExecutor class, and of executors in general, is that
you have to end them explicitly. If you don't do this, the executor will continue its execution
and the program won't end. If the executor doesn't have tasks to execute, it continues
waiting for new tasks and doesn't end its execution. A Java application won't end until all
its non-daemon threads finish their execution. So, if you don't terminate the executor, your
application will never end.

To indicate to the executor that you want to finish it, use the shutdown() method of the
ThreadPoolExecutor class. When the executor finishes the execution of all the pending
tasks, it finishes its execution as well. After you call the shutdown() method, if you try to
send another task to the executor, it will be rejected and the executor will throw a
RejectedExecutionException exception, unless you have implemented a manager for
rejected tasks, as in our case. To manage the rejected tasks of an executor, you need to create
a class that implements the RejectedExecutionHandler interface. This interface has a
method called rejectedExecution() with two parameters:

A Runnable object that stores the task that has been rejected
An Executor object that stores the executor that rejected the task

This method is called for every task that is rejected by the executor. You need to establish
the handler of the rejected tasks using the setRejectedExecutionHandler() method of
the ThreadPoolExecutor class.

The following screenshot shows part of an execution of this example:

See that when the last task arrives at the executor, both the number of threads in the pool
and the number of threads that are being executed are represented by 4. This refers to the
number of cores of the PC on which the example was executed, and it is the number
returned by the availableProcessors() method. Once this is done, we shut down the
executor and the next task is rejected. RejectedTaskController writes information about
the task and the executor in the console.

Thread Executors

[159]

There's more...
The Executors class provides other methods to create ThreadPoolExecutor:

newCachedThreadPool(): This method returns an ExecutorService object, so
it's been cast to ThreadPoolExecutor to have access to all its methods. The
cached thread pool you created creates new threads, if needed, to execute new
tasks. Plus, it reuses the existing ones if they have finished the execution of the
tasks they were running.
newSingleThreadExecutor(): This is an extreme case of a fixed-size thread
executor. It creates an executor with only one thread so it can only execute one
task at a time.

The ThreadPoolExecutor class provides a lot of methods to obtain information about its
status. We used the getPoolSize(), getActiveCount(), and
getCompletedTaskCount() methods in the example to obtain information about the size
of the pool, the number of threads, and the number of completed tasks of the executor. You
can also use the getLargestPoolSize() method; it returns the maximum number of
threads that have been in the pool at a time.

The ThreadPoolExecutor class also provides other methods related to the finalization of
the executor. These methods are:

shutdownNow(): This shuts down the executor immediately. It doesn't execute
pending tasks. It returns a list with all the pending tasks. Tasks that are running
when you call this method continue with their execution, but the method doesn't
wait for their finalization.
isTerminated(): This method returns true if you call either the shutdown() or
shutdownNow() method; the executor finishes the process of shutting it down
accordingly.
isShutdown(): This method returns true if you call the shutdown() method of
the executor.
awaitTermination(long timeout, TimeUnit unit): This method blocks
the calling thread until the tasks of the executor end or a timeout occurs. The
TimeUnit class is an enumeration with the following constants: DAYS, HOURS,
MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

If you want to wait for the completion of tasks, regardless of their
duration, use a big timeout, for example, DAYS.

Thread Executors

[160]

See also
The Monitoring an Executor framework recipe in Chapter 9, Testing Concurrent
Applications

Executing tasks in an executor that returns a
result
One of the advantages of the Executor framework is that it allows you to run concurrent
tasks that return a result. The Java Concurrency API achieves this with the following two
interfaces:

Callable: This interface has the call() method. In this method, you have to
implement the logic of the task. The Callable interface is a parameterized
interface, meaning you have to indicate the type of data the call() method will
return.
Future: This interface has some methods to obtain the result generated by a
Callable object and manage its state.

In this recipe, you will learn how to implement tasks that return a result and run them on
an executor.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named FactorialCalculator. Specify that it implements the1.
Callable interface parameterized by the Integer type:

 public class FactorialCalculator implements Callable<Integer> {

Thread Executors

[161]

Declare a private Integer attribute called number to store the number that this2.
task will use for its calculations:

 private final Integer number;

Implement the constructor of the class that initializes the attribute of the class:3.

 public FactorialCalculator(Integer number){
 this.number=number;
 }

Implement the call() method. This method returns the factorial of the number4.
attribute of FactorialCalculator:

 @Override
 public Integer call() throws Exception {

First, create and initialize the internal variables used in the method:5.

 int result = 1;

If the number is 0 or 1, return 1. Otherwise, calculate the factorial of the number.6.
Between two multiplications, for educational purposes, put this task to sleep for
20 milliseconds:

 if ((number==0)||(number==1)) {
 result=1;
 } else {
 for (int i=2; i<=number; i++) {
 result*=i;
 TimeUnit.MILLISECONDS.sleep(20);
 }
 }

Write a message to the console with the result of the operation:7.

 System.out.printf("%s: %d\n",Thread.currentThread().getName(),
 result);

Return the result of the operation:8.

 return result;

Thread Executors

[162]

Implement the main class of the example by creating a class named Main and9.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create ThreadPoolExecutor to run the tasks using the10.
newFixedThreadPool() method of the Executors class. Pass 2 as the
parameter, that is, as the number of threads in the executor:

 ThreadPoolExecutor executor=(ThreadPoolExecutor)Executors
 .newFixedThreadPool(2);

Create a list of Future<Integer> objects:11.

 List<Future<Integer>> resultList=new ArrayList<>();

Create a random number generator with the Random class:12.

 Random random=new Random();

Make a loop with ten steps. In every step, we generate a random number:13.

 for (int i=0; i<10; i++){
 Integer number= random.nextInt(10);

Then, we create a FactorialCalculator object passing the generated random14.
number as parameter:

 FactorialCalculator calculator=new FactorialCalculator(number);

Call the submit() method of the executor to send the FactorialCalculator15.
task to the executor. This method returns a Future<Integer> object to manage
the task and eventually get its result:

 Future<Integer> result=executor.submit(calculator);

Add the Future object to the list created before:16.

 resultList.add(result);
 }

Create a do loop to monitor the status of the executor:17.

 do {

Thread Executors

[163]

First, write a message to the console indicating the number of completed tasks,18.
using the getCompletedTaskNumber() method of the executor:

 System.out.printf("Main: Number of Completed Tasks: %d\n",
 executor.getCompletedTaskCount());

Then, for the 10 Future objects in the list, write a message indicating whether the19.
tasks that it manages have finished or not. Do this using the isDone() method:

 for (int i=0; i<resultList.size(); i++) {
 Future<Integer> result=resultList.get(i);
 System.out.printf("Main: Task %d: %s\n",i,result.isDone());
 }

Put the thread to sleep for 50 milliseconds:20.

 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Repeat this loop when the number of completed tasks of the executor is less than21.
10:

 } while (executor.getCompletedTaskCount()<resultList.size());

In the console, write the results obtained by each task. For each Future object,22.
get the Integer object returned by its task, using the get() method:

 System.out.printf("Main: Results\n");
 for (int i=0; i<resultList.size(); i++) {
 Future<Integer> result=resultList.get(i);
 Integer number=null;
 try {
 number=result.get();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }

Then, print the number to the console:23.

 System.out.printf("Main: Task %d: %d\n",i,number);
 }

Thread Executors

[164]

Finally, call the shutdown() method of the executor to finalize its execution:24.

 executor.shutdown();

How it works...
In this recipe, you learned how to use the Callable interface to launch concurrent tasks
that return a result. You implemented the FactorialCalculator class that implements
the Callable interface with Integer as the type of the result. Hence, the call() method
returns an Integer value.

The other critical point of this example is the Main class. You sent a Callable object to be
executed in an executor using the submit() method. This method receives a Callable
object as a parameter and returns a Future object that you can use with two main
objectives:

You can control the status of the task you can cancel the task and check whether it
has finished or not. For this purpose, you used the isDone() method.
You can get the result returned by the call() method. For this purpose, you
used the get() method. This method waits until the Callable object has
finished the execution of the call() method and has returned its result. If the
thread is interrupted while the get() method is waiting for the result, it throws
an InterruptedException exception. If the call() method throws an
exception, then the get() method throws an ExecutionException exception as
well.

There's more...
When you call the get() method of a Future object and the task controlled by this object
hasn't finished yet, the method is blocked until the task is finished. The Future interface
provides another version of the get() method:

get(long timeout, TimeUnit unit): This version of the get method, if the
result of the task isn't available, waits for the specified time. If the specified
period of time passes and the result is still not available, it throws a
TimeoutException exception. The TimeUnit class is an enumeration with the
following constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,
NANOSECONDS, and SECONDS.

Thread Executors

[165]

See also
The Creating a thread executor and controlling its rejected tasks, Running multiple tasks
and processing the first result, and Running multiple tasks and processing all the
results recipes in this chapter

Running multiple tasks and processing the
first result
A common problem in concurrent programming arises when you have various concurrent
tasks available to solve a problem, but you are only interested in the first result. For
example, you want to sort an array. You have various sort algorithms. You can launch all of
them and get the result of the first one that sorts the array, that is, the fastest sorting
algorithm for a given array.

In this recipe, you will learn how to implement this scenario using the
ThreadPoolExecutor class. You are going to use two mechanisms to try and validate a
user. The user will be validated if one of these mechanisms is able to validate it.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named UserValidator that will implement the process of user1.
validation:

 public class UserValidator {

Thread Executors

[166]

Declare a private String attribute called name that will store the name of the2.
user validation system:

 private final String name;

Implement the constructor of the class that initializes its attributes:3.

 public UserValidator(String name) {
 this.name=name;
 }

Implement the validate() method. It receives two String parameters with the4.
name and password of the user you want to validate:

 public boolean validate(String name, String password) {

Create a Random object named random:5.

 Random random=new Random();

Wait for a random period of time to simulate the process of user validation:6.

 try {
 long duration=(long)(Math.random()*10);
 System.out.printf("Validator %s: Validating a user during %d
 seconds\n", this.name,duration);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 return false;
 }

Return a random Boolean value. The validate() method returns true when7.
the user is validated, and false otherwise:

 return random.nextBoolean();
 }

Implement getName(). This method returns the value of the name attribute:8.

 public String getName(){
 return name;
 }

Thread Executors

[167]

Now, create a class named ValidatorTask that will execute a validation process9.
with the UserValidation object as a concurrent task. Specify that it implements
the Callable interface parameterized by the String class:

 public class ValidatorTask implements Callable<String> {

Declare a private UserValidator attribute named validator:10.

 private final UserValidator validator;

Declare two private String attributes, named user and password:11.

 private final String user;
 private final String password;

Implement the constructor of the class that will initialize all the attributes:12.

 public ValidatorTask(UserValidator validator, String user,
 String password){
 this.validator=validator;
 this.user=user;
 this.password=password;
 }

Implement the call() method that will return a String object:13.

 @Override
 public String call() throws Exception {

If the user is not validated by the UserValidator object, write a message to the14.
console indicating this and throw Exception:

 if (!validator.validate(user, password)) {
 System.out.printf("%s: The user has not been found\n",
 validator.getName());
 throw new Exception("Error validating user");
 }

Otherwise, write a message to the console indicating that the user has been15.
validated and return the name of the UserValidator object:

 System.out.printf("%s: The user has been found\n",
 validator.getName());
 return validator.getName();

Thread Executors

[168]

Now implement the main class of the example by creating a class named Main16.
and adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create two String objects named user and password and initialize them with17.
the test value:

 String username="test";
 String password="test";

Create two UserValidator objects, named ldapValidator and dbValidator:18.

 UserValidator ldapValidator=new UserValidator("LDAP");
 UserValidator dbValidator=new UserValidator("DataBase");

Create two TaskValidator objects, named ldapTask and dbTask. Initialize19.
them with ldapValidator and dbValidator, respectively:

 TaskValidator ldapTask=new TaskValidator(ldapValidator,
 username, password);
 TaskValidator dbTask=new TaskValidator(dbValidator,
 username,password);

Create a list of TaskValidator objects and add to it the two objects that you20.
have created:

 List<TaskValidator> taskList=new ArrayList<>();
 taskList.add(ldapTask);
 taskList.add(dbTask);

Create a new ThreadPoolExecutor object using the newCachedThreadPool()21.
method of the Executors class and a string variable named result:

 ExecutorService executor=(ExecutorService)Executors
 .newCachedThreadPool();
 String result;

Call the invokeAny() method of the executor object. This method receives22.
taskList as a parameter and returns String. Also, it writes the String object
that is returned to the console:

 try {
 result = executor.invokeAny(taskList);
 System.out.printf("Main: Result: %s\n",result);

Thread Executors

[169]

 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }

Terminate the executor using the shutdown() method and write a message to23.
the console to indicate that the program has ended:

 executor.shutdown();
 System.out.printf("Main: End of the Execution\n");

How it works...
The key of the example is in the Main class. The invokeAny() method of the
ThreadPoolExecutor class receives a list of tasks, then launches them, and returns the
result of the first task that finishes without throwing an exception. This method returns the
same data type that the call() method of the tasks returns. In this case, it returned a
String value.

The following screenshot shows the output of an execution of the example when one of the
tasks validates the user:

The example has two UserValidator objects that return a random Boolean value. Each
UserValidator object is used by a Callable object, implemented by the TaskValidator
class. If the validate() method of the UserValidator class returns a false value, the
TaskValidator class throws Exception. Otherwise, it returns the true value.

So, we have two tasks that can return the true value or throw Exception. You can have
the following four possibilities:

Both tasks return the true value. Here, the result of the invokeAny() method is
the name of the task that finishes in the first place.
The first task returns the true value and the second one throws Exception.
Here, the result of the invokeAny() method is the name of the first task.

Thread Executors

[170]

The first task throws Exception and the second one returns the true value.
Here, the result of the invokeAny() method is the name of the second task.
Both tasks throw Exception. In such a class, the invokeAny() method throws
an ExecutionException exception.

If you run the examples several times, you will get each of the four possible solutions.

The following screenshot shows the output of the application when both the tasks throw an
exception:

There's more...
The ThreadPoolExecutor class provides another version of the invokeAny() method:

invokeAny(Collection<? extends Callable<T>> tasks, long

timeout, TimeUnit unit): This method executes all the tasks and returns the
result of the first one that finishes without throwing an exception, if it does so
before the given timeout is passed. The TimeUnit class is an enumeration with
the following constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,
NANOSECONDS, and SECONDS.

See also
The Running multiple tasks and processing all the results recipe in this chapter

Thread Executors

[171]

Running multiple tasks and processing all
the results
The Executor framework allows you to execute concurrent tasks without worrying about
thread creation and execution. It provides you with the Future class, which you can use to
control the status and get the results of any task executed in an executor.

When you want to wait for the finalization of a task, you can use the following two
methods:

The isDone() method of the Future interface returns true if the task has
finished its execution
The awaitTermination() method of the ThreadPoolExecutor class puts the
thread to sleep until all the tasks have finished their execution after a call to the
shutdown() method

These two methods have some drawbacks. With the first one, you can only control the
completion of a task. With the second one, you have to shut down the executor to wait for a
thread; otherwise, the method's call is returned immediately.

The ThreadPoolExecutor class provides a method that allows you to send a list of tasks to
the executor and wait for the finalization of all the tasks in the list. In this recipe, you will
learn how to use this feature by implementing an example with 10 tasks executed and their
results printed out when they have finished.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Result to store the results generated in the concurrent1.
tasks of this example:

 public class Result {

Thread Executors

[172]

Declare two private attributes, namely a String attribute called name and an int2.
attribute named value:

 private String name;
 private int value;

Implement the corresponding get() and set() methods to set and return the3.
value of the name and value attributes:

 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public int getValue() {
 return value;
 }
 public void setValue(int value) {
 this.value = value;
 }

Create a class named Task that implements the Callable interface4.
parameterized by the Result class:

 public class Task implements Callable<Result> {

Declare a private String attribute called name:5.

 private final String name;

Implement the constructor of the class that initializes its attribute:6.

 public Task(String name) {
 this.name=name;
 }

Implement the call() method of the class. In this case, the method will return a7.
Result object:

 @Override
 public Result call() throws Exception {

First, write a message to the console to indicate that the task is getting started:8.

 System.out.printf("%s: Staring\n",this.name);

Thread Executors

[173]

Then, wait for a random period of time:9.

 try {
 long duration=(long)(Math.random()*10);
 System.out.printf("%s: Waiting %d seconds for results.\n",
 this.name,duration);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

To generate an int value to be returned in the Result object, calculate the sum10.
of five random numbers:

 int value=0;
 for (int i=0; i<5; i++){
 value+=(int)(Math.random()*100);
 }

Create a Result object and initialize it with the name of this Task object and the11.
result of the operation done earlier:

 Result result=new Result();
 result.setName(this.name);
 result.setValue(value);

Write a message to the console to indicate that the task has finished:12.

 System.out.println(this.name+": Ends");

Return the Result object:13.

 return result;
 }

Finally, implement the main class of the example by creating a class named Main14.
and adding the main() method to it:

 public class Main {

 public static void main(String[] args) {

Thread Executors

[174]

Create a ThreadPoolExecutor object using the newCachedThreadPool()15.
method of the Executors class:

 ExecutorService executor=(ExecutorService)Executors
 .newCachedThreadPool();

Create a list of Task objects. Create 10 Task objects and save them on this list:16.

 List<Task> taskList=new ArrayList<>();
 for (int i=0; i<10; i++){
 Task task=new Task("Task-"+i);
 taskList.add(task);
 }

Create a list of Future objects. These objects are parameterized by the Result17.
class:

 List<Future<Result>>resultList=null;

Call the invokeAll() method of the ThreadPoolExecutor class. This class will18.
return the list of the Future objects created earlier:

 try {
 resultList=executor.invokeAll(taskList);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Finalize the executor using the shutdown() method:19.

 executor.shutdown();

Write the results of the tasks processing the list of Future objects:20.

 System.out.println("Main: Printing the results");
 for (int i=0; i<resultList.size(); i++){
 Future<Result> future=resultList.get(i);
 try {
 Result result=future.get();
 System.out.println(result.getName()+": "+result.getValue());
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }

Thread Executors

[175]

How it works...
In this recipe, you learned how to send a list of tasks to an executor and wait for the
finalization of all of them using the invokeAll() method. This method receives a list of
Callable objects and returns a list of Future objects. This list will have a Future object
per task. The first object in the list of Future objects will be the object that controls the first
task in the list of Callable objects, the second object the second task, and so on.

The first point to take into consideration is that the type of data used for the
parameterization of the Future interface in the declaration of the list that stores the result
objects must be compatible with the one used to parameterize Callable objects. In this
case, you used the same type of data: the Result class.

Another important point about the invokeAll() method is that you will use Future
objects only to get the results of the tasks. As the method finishes when all the tasks finish, if
you call the isDone() method of Future objects that are returned, all the calls will return
the true value.

There's more...
The ExecutorService class provides another version of the invokeAll() method:

invokeAll(Collection<? extends Callable<T>> tasks, long

timeout, TimeUnit unit): This method executes all the tasks and returns the
result of their execution when all of them are finished, that is, if they finish before
the given timeout has passed. The TimeUnit class is an enumeration with the
following constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,
NANOSECONDS, and SECONDS.

See also
The Executing tasks in an executor that returns a result and Running multiple tasks and
processing the first result recipes in this chapter

Thread Executors

[176]

Running a task in an executor after a delay
The Executor framework provides the ThreadPoolExecutor class to execute Callable
and Runnable tasks with a pool of threads, which helps you avoid all thread creation
operations. When you send a task to the executor, it's executed as soon as possible,
according to the configuration of the executor. There are use cases when you are not
interested in executing a task as soon as possible. You may want to execute a task after a
period of time or do it periodically. For these purposes, the Executor framework provides
the ScheduledExecutorService interface along with its implementation, namely the
ScheduledThreadPoolExecutor class.

In this recipe, you will learn how to create ScheduledThreadPoolExecutor and use it to
schedule the execution of a task after a given period of time.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task that implements the Callable interface1.
parameterized by the String class:

 public class Task implements Callable<String> {

Declare a private String attribute called name that will store the name of the2.
task:

 private final String name;

Implement the constructor of the class that initializes the name attribute:3.

 public Task(String name) {
 this.name=name;
 }

Thread Executors

[177]

Implement the call() method. Write a message to the console with the actual4.
date and return some text, for example, Hello, world:

 public String call() throws Exception {
 System.out.printf("%s: Starting at : %s\n",name,new Date());
 return "Hello, world";
 }

Implement the main class of the example by creating a class named Main and5.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create an executor of the ScheduledThreadPoolExecutor class using the6.
newScheduledThreadPool() method of the Executors class, passing 1 as a
parameter:

 ScheduledExecutorService executor=Executors
 .newScheduledThreadPool(1);

Initialize and start a few tasks (five in our case) with the schedule() method of7.
the ScheduledThreadPoolExecutor instance:

 System.out.printf("Main: Starting at: %s\n",new Date());
 for (int i=0; i<5; i++) {
 Task task=new Task("Task "+i);
 executor.schedule(task,i+1 , TimeUnit.SECONDS);
 }

Request the finalization of the executor using the shutdown() method:8.

 executor.shutdown();

Wait for the finalization of all the tasks using the awaitTermination() method9.
of the executor:

 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write a message to indicate the time when the program will finish:10.

 System.out.printf("Main: Ends at: %s\n",new Date());

Thread Executors

[178]

How it works...
The key point of this example is the Main class and the management of
ScheduledThreadPoolExecutor. As with the ThreadPoolExecutor class, to create a
scheduled executor, Java recommends that you utilize the Executors class. In this case,
you used the newScheduledThreadPool() method. You passed the number 1 as a
parameter to this method. This parameter refers to the number of threads you want to have
in the pool.

To execute a task in this scheduled executor after a period of time, you have to use the
schedule() method. This method receives the following three parameters:

The task you want to execute
The period of time you want the task to wait before its execution
The unit of the period of time, specified as a constant of the TimeUnit class

In this case, each task will wait for a number of seconds (TimeUnit.SECONDS) equal to its
position in the array of tasks plus one.

If you want to execute a task at a given time, calculate the difference
between that date and the current date and use the difference as the delay
of the task.

The following screenshot shows the output of an execution of this example:

You can see how the tasks start their execution, one per second. All the tasks are sent to the
executor at the same time but with a delay of 1 second later than the previous task.

Thread Executors

[179]

There's more...
You can also use the Runnable interface to implement the tasks because the schedule()
method of the ScheduledThreadPoolExecutor class accepts both types of tasks.

Although the ScheduledThreadPoolExecutor class is a child class of the
ThreadPoolExecutor class (and therefore inherits all its features), Java recommends that
you use ScheduledThreadPoolExecutor only for scheduled tasks.

Finally, you can configure the behavior of the ScheduledThreadPoolExecutor class
when you call the shutdown() method, and there are pending tasks waiting for the end of
their delay time. The default behavior is that these tasks will be executed despite the
finalization of the executor. You can change this behavior using the
setExecuteExistingDelayedTasksAfterShutdownPolicy() method of the
ScheduledThreadPoolExecutor class. If you call the
setExecuteExistingDelayedTasksAfeterShutdownsPolicy() passing the false
value as parameter, pending tasks won't be executed after you call the shutdown()
method.

See also
The Executing tasks in an executor that returns a result recipe in this chapter

Running a task in an executor periodically
The Executor framework provides the ThreadPoolExecutor class to execute concurrent
tasks using a pool of threads that helps you avoid all thread creation operations. When you
send a task to the executor, it executes the task as soon as possible according to its
configuration. When it ends, the task is deleted from the executor, and if you want to
execute it again, you have to send it to the executor again.

However, the Executor framework provides the possibility of executing periodic tasks
through the ScheduledThreadPoolExecutor class. In this recipe, you will learn how to
use this functionality of the class to schedule a periodic task.

Thread Executors

[180]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task and specify that it implements the Runnable1.
interface:

 public class Task implements Runnable {

Declare a private String attribute called name that will store the name of the2.
task:

 private final String name;

Implement the constructor of the class that initializes the attribute:3.

 public Task(String name) {
 this.name=name;
 }

Implement the run() method. Write a message to the console with the actual4.
date to verify that the task is executed within the specified period:

 @Override
 public void run() {
 System.out.printf("%s: Executed at: %s\n",name,new Date());
 }

Implement the main class of the example by creating a class named Main and5.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create ScheduledExecutorService using the newScheduledThreadPool()6.
method of the Executors class. Pass 1 to this method as a parameter:

 ScheduledExecutorService executor=Executors
 .newScheduledThreadPool(1);

Thread Executors

[181]

Write a message to the console with the actual date:7.

 System.out.printf("Main: Starting at: %s\n",new Date());

Create a new Task object:8.

 Task task=new Task("Task");

Send this object to the executor using the scheduledAtFixRate() method. Use9.
the tasks created earlier as parameters: the number one, the number two, and the
constant TimeUnit.SECONDS. This method returns a ScheduledFuture object
that you can use to control the status of the task:

 ScheduledFuture<?> result=executor.scheduleAtFixedRate(task, 1,
 2, TimeUnit.SECONDS);

Create a loop with 10 steps to write the time remaining for the next execution of10.
the task. In the loop, use the getDelay() method of the ScheduledFuture
object to get the number of milliseconds until the next execution of the task:

 for (int i=0; i<10; i++){
 System.out.printf("Main: Delay: %d\n",result
 .getDelay(TimeUnit.MILLISECONDS));

Sleep the thread during 500 milliseconds.11.

 try {
 TimeUnit.MILLISECONDS.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Finish the executor using the shutdown() method:12.

 executor.shutdown();

Put the thread to sleep for 5 seconds to verify that the periodic tasks have13.
finished:

 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Thread Executors

[182]

Write a message to indicate the end of the program:14.

 System.out.printf("Main: Finished at: %s\n",new Date());

How it works...
When you want to execute a periodic task using the Executor framework, you need a
ScheduledExecutorService object. To create it (as with every executor), Java
recommends the use of the Executors class. This class works as a factory of executor
objects. In this case, you used the newScheduledThreadPool() method to create a
ScheduledExecutorService object. This method receives the number of threads of the
pool as a parameter. Since you had only one task in this example, you passed 1 as a
parameter.

Once you had the executor needed to execute a periodic task, you sent the task to the
executor. You used the scheduledAtFixedRate() method. This method accepts four
parameters: the task you want to execute periodically, the delay of time until the first
execution of the task, the period between two executions, and the time unit of the second
and third parameters. It's a constant of the TimeUnit class. The TimeUnit class is an
enumeration with the following constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS,
MINUTES, NANOSECONDS, and SECONDS.

An important point to consider is that the period between two executions is the period of
time between the start of those two executions. If you have a periodic task that takes 5
seconds to execute and you put in a period of 3 seconds, you will have two instances of the
task executing at a time.

The scheduleAtFixedRate() method returns a ScheduledFuture object, which extends
the Future interface, with methods to work with scheduled tasks. ScheduledFuture is a
parameterized interface. In this example, as your task was a Runnable object that was not
parameterized, you had to parameterize them with the ? symbol as a parameter.

You used one method of the ScheduledFuture interface. The getDelay() method returns
the time until the next execution of the task. This method receives a TimeUnit constant
with the time unit in which you want to receive the results.

Thread Executors

[183]

The following screenshot shows the output of an execution of the example:

You can see the task being executed every 2 seconds (denoted by Task: prefix) and the delay
written in the console every 500 milliseconds. That's how long the main thread has been put
to sleep. When you shut down the executor, the scheduled task ends its execution and you
don't see any more messages in the console.

There's more...
ScheduledThreadPoolExecutor provides other methods to schedule periodic tasks. It is
the scheduleWithFixedRate() method. It has the same parameters as the
scheduledAtFixedRate() method, but there is a difference worth noticing. In the
scheduledAtFixedRate() method, the third parameter determines the period of time
between the starting of two executions. In the scheduledWithFixedRate() method, the
parameter determines the period of time between the end of an execution of the task and its
beginning.

You can also configure the behavior of an instance of the ScheduledThreadPoolExecutor
class with the shutdown() method. The default behavior is that the scheduled tasks finish
when you call this method. You can change this behavior using the
setContinueExistingPeriodicTasksAfterShutdownPolicy() method of the
ScheduledThreadPoolExecutor class with a true value. Periodic tasks won't finish upon
calling the shutdown() method.

Thread Executors

[184]

See also
The Creating a thread executor and controlling its rejected tasks and Running a task in
an executor after a delay recipes in this chapter

Canceling a task in an executor
When you work with an executor, you don't have to manage threads. You only implement
Runnable or Callable tasks and send them to the executor. It's the executor that's
responsible for creating threads, managing them in a thread pool, and finishing them if they
are not needed. Sometimes, you may want to cancel a task that you send to the executor. In
that case, you can use the cancel() method of Future, which allows you to make the
cancelation operation. In this recipe, you will learn how to use this method to cancel tasks
that you have sent to an executor.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task and specify that it implements the Callable interface1.
parameterized by the String class. Implement the call() method. Write a
message to the console and put it to sleep for 100 milliseconds inside an infinite
loop:

 public class Task implements Callable<String> {
 @Override
 public String call() throws Exception {
 while (true){
 System.out.printf("Task: Test\n");
 Thread.sleep(100);
 }
 }

Thread Executors

[185]

Implement the main class of the example by creating a class named Main and2.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a ThreadPoolExecutor object using the newCachedThreadPool()3.
method of the Executors class:

 ThreadPoolExecutor executor=(ThreadPoolExecutor)Executors
 .newCachedThreadPool();

Create a new Task object:4.

 Task task=new Task();

Send the task to the executor using the submit() method:5.

 System.out.printf("Main: Executing the Task\n");
 Future<String> result=executor.submit(task);

Put the main task to sleep for 2 seconds:6.

 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Cancel the execution of the task using the cancel() method of the Future7.
object, named result, returned by the submit() method. Pass the true value as
a parameter of the cancel() method:

 System.out.printf("Main: Canceling the Task\n");
 result.cancel(true);

Write the result of a call to the isCancelled() and isDone() methods to the8.
console. This is to verify that the task has been canceled, and hence, already done:

 System.out.printf("Main: Canceled: %s\n",result.isCancelled());
 System.out.printf("Main: Done: %s\n",result.isDone());

Thread Executors

[186]

Finish the executor with the shutdown() method and write a message indicating9.
the finalization of the program:

 executor.shutdown();
 System.out.printf("Main: The executor has finished\n");

How it works...
You use the cancel() method of the Future interface when you want to cancel a task that
you have sent to an executor. Depending on the parameter of the cancel() method and the
status of the task, the behavior of this method is different:

If the task has finished or has been canceled earlier, or it can't be cancelled due to
any other reason, the method will return the false value and the task won't be
canceled.
If the task is waiting in the executor to get a Thread object that will execute it, the
task is canceled and will never begin its execution. If the task is already running,
it depends on the parameter of the method. The cancel() method receives a
Boolean value as a parameter. If the value of this parameter is true and the task
is running, it will be canceled. If the value of the parameter is false and the task is
running, it won't be canceled.

The following screenshot shows the output of an execution of this example:

There's more...
If you use the get() method of a Future object that controls a task that has been canceled,
the get() method will throw a CancellationException exception.

Thread Executors

[187]

See also
The Executing tasks in an executor that returns a result recipe in this chapter

Controlling a task finishing in an executor
The Java API provides the FutureTask class as a cancelable asynchronous computation. It
implements the Runnable and Future interfaces and provides the basic implementation of
the Future interface. We can create a FutureTask class using a Callable or Runnable
object (Runnable objects doesn't return a result, so we have to pass as parameter too in this
case the result that the Future object will return). It provides methods to cancel the
execution and obtain the result of the computation. It also provides a method called done()
that allows you to execute some code after the finalization of a task executed in an executor.
It can be used to make some postprocess operations, such as generating a report, sending
results by e-mail, or releasing some resources. This method is called internally by the
FutureTask class when the execution of the task that this FutureTask object is controlling
finishes. The method is called after the result of the task is set and its status is changed to
isDone, regardless of whether the task has been canceled or finished normally.

By default, this method is empty. You can override the FutureTask class and implement
this method to change the behavior. In this recipe, you will learn how to override this
method to execute code after the finalization of the tasks.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named ExecutableTask and specify that it implements the1.
Callable interface parameterized by the String class:

 public class ExecutableTask implements Callable<String> {

Thread Executors

[188]

Declare a private String attribute called name. It will store the name of the task.2.
Implement the getName() method to return the value of this attribute:

 private final String name;
 public String getName(){
 return name;
 }

Implement the constructor of the class to initialize the name of the task:3.

 public ExecutableTask(String name){
 this.name=name;
 }

Implement the call() method. Put the task to sleep for a random period of time4.
and return a message with the name of the task:

 @Override
 public String call() throws Exception {
 try {
 long duration=(long)(Math.random()*10);
 System.out.printf("%s: Waiting %d seconds for results.\n",
 this.name,duration);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {}
 return "Hello, world. I'm "+name;
 }

Implement a class named ResultTask that extends the FutureTask class5.
parameterized by the String class:

 public class ResultTask extends FutureTask<String> {

Declare a private String attribute called name. It will store the name of the task:6.

 private final String name;

Implement the constructor of the class. It has to receive a Callable object as a7.
parameter. Call the constructor of the parent class and initialize the name
attribute using the attribute of the task received:

 public ResultTask(ExecutableTask callable) {
 super(callable);
 this.name= callable.getName();
 }

Thread Executors

[189]

Override the done() method. Check the value of the isCancelled() method8.
and write a different message to the console, depending on the returned value:

 @Override
 protected void done() {
 if (isCancelled()) {
 System.out.printf("%s: Has been canceled\n",name);
 } else {
 System.out.printf("%s: Has finished\n",name);
 }
 }

Implement the main class of the example by creating a class named Main and9.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create ExecutorService using the newCachedThreadPool() method of the10.
Executors class:

 ExecutorService executor=Executors.newCachedThreadPool();

Create an array to store five ResultTask objects:11.

 ResultTask resultTasks[]=new ResultTask[5];

Initialize the ResultTask objects. For each position in the array, first you have to12.
create ExecutorTask and then ResultTask using the object. Then, send
ResultTask to the executor using the submit() method:

 for (int i=0; i<5; i++) {
 ExecutableTask executableTask=new ExecutableTask("Task "+i);
 resultTasks[i]=new ResultTask(executableTask);
 executor.submit(resultTasks[i]);
 }

Put the main thread to sleep for 5 seconds:13.

 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 }

Thread Executors

[190]

Cancel all the tasks you have sent to the executor:14.

 for (int i=0; i<resultTasks.length; i++) {
 resultTasks[i].cancel(true);
 }

Write the result of those tasks that haven't been canceled to the console, using the15.
get() method of the ResultTask objects:

 for (int i=0; i<resultTasks.length; i++) {
 try {
 if (!resultTasks[i].isCancelled()){
 System.out.printf("%s\n",resultTasks[i].get());
 }
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }

Finish the executor using the shutdown() method:16.

 executor.shutdown();
 }
 }

How it works...
The done() method is called by the FutureTask class when the task that is being
controlled finishes its execution. In this example, you implemented a Callable object, the
ExecutableTask class, and then a subclass of the FutureTask class that controls the
execution of the ExecutableTask objects.

The done() method is called internally by the FutureTask class after establishing the
return value and changing the status of the task to isDone. You can't change the result
value of the task or change its status, but you can close resources used by the task, write log
messages, or send notifications. The FutureTask class might be used to ensure that a
specific task is run only once, as calling its run() method will execute its wrapped
Runnable/Callable interface only once (and the result can be fetched with get when it's
available).

Thread Executors

[191]

See also
The Executing tasks in an executor that returns a result recipe in this chapter

Separating the launching of tasks and the
processing of their results in an executor
Normally, when you execute concurrent tasks using an executor, you will send Runnable
or Callable tasks to the executor and get Future objects to control the method. You can
find situations where you need to send the tasks to the executor in one object and process
the results in another one. For such situations, the Java Concurrency API provides the
CompletionService class.

The CompletionService class has a method to send tasks to an executor and a method to
get the Future object for the next task that has finished its execution. Internally, it uses an
Executor object to execute the tasks. This behavior has the advantage of sharing a
CompletionService object and sending tasks to the executor so others can process the
results. The limitation is that the second object can only get the Future objects for those
tasks that have finished their execution, so these Future objects can only be used to get the
results of the tasks.

In this recipe, you will learn how to use the CompletionService class to separate the
process of launching tasks in an executor from the processing of their results.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named ReportGenerator and specify that it implements the1.
Callable interface parameterized by the String class:

 public class ReportGenerator implements Callable<String> {

Thread Executors

[192]

Declare two private String attributes named sender and title. These2.
attributes will represent the data of the report:

 private final String sender;
 private final String title;

Implement the constructor of the class that initializes the two attributes:3.

 public ReportGenerator(String sender, String title){
 this.sender=sender;
 this.title=title;
 }

Implement the call() method. First, put the thread to sleep for a random period4.
of time:

 @Override
 public String call() throws Exception {
 try {
 Long duration=(long)(Math.random()*10);
 System.out.printf("%s_%s: ReportGenerator: Generating a
 report during %d seconds\n",this.sender,
 this.title,duration);
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Then, generate the report as a string with the sender and title attributes and5.
return that string:

 String ret=sender+": "+title;
 return ret;
 }

Create a class named ReportRequest and specify that it implements the6.
Runnable interface. Thiss class will simulate some report requests:

 public class ReportRequest implements Runnable {

Declare a private String attribute called name to store the name of7.
ReportRequest:

 private final String name;

Thread Executors

[193]

Declare a private CompletionService attribute named service. The8.
CompletionService interface is a parameterized interface. Use the String
class:

 private final CompletionService<String> service;

Implement the constructor of the class that initializes the two attributes:9.

 public ReportRequest(String name, CompletionService<String>
 service){
 this.name=name;
 this.service=service;
 }

Implement the run() method. Create three ReportGenerator objects and send10.
them to the CompletionService object using the submit() method:

 @Override
 public void run() {
 ReportGenerator reportGenerator=new ReportGenerator(name,
 "Report");
 service.submit(reportGenerator);

 }

Create a class named ReportProcessor. This class will get the results of the11.
ReportGenerator tasks. Specify that it implements the Runnable interface:

 public class ReportProcessor implements Runnable {

Declare a private CompletionService attribute named service. As the12.
CompletionService interface is a parameterized interface, use the String class
as a parameter of this CompletionService interface:

 private final CompletionService<String> service;

Declare a private Boolean attribute named end. Add the volatile keyword to13.
ensure that all the threads have access to the actual value of the attribute:

 private volatile boolean end;

Thread Executors

[194]

Implement the constructor of the class to initialize the two attributes:14.

 public ReportProcessor (CompletionService<String> service){
 this.service=service;
 end=false;
 }

Implement the run() method. While the end attribute is false, call the poll()15.
method of the CompletionService interface to get the Future object of the next
task executed by the completion service that has finished:

 @Override
 public void run() {
 while (!end){
 try {
 Future<String> result=service.poll(20, TimeUnit.SECONDS);

Then, get the results of the task using the get() method of the Future object and16.
write the results to the console:

 if (result!=null) {
 String report=result.get();
 System.out.printf("ReportReceiver: Report Received: %s\n",
 report);
 }
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 System.out.printf("ReportSender: End\n");
 }

Implement the stopProcessing() method that modifies the value of the end17.
attribute:

 public void stopProcessing() {
 this.end = true;
 }

Implement the main class of the example by creating a class named Main and18.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Thread Executors

[195]

Create ThreadPoolExecutor using the newCachedThreadPool() method of19.
the Executors class:

 ExecutorService executor=Executors.newCachedThreadPool();

Create CompletionService using the executor created earlier as a parameter of20.
the constructor:

 CompletionService<String> service=new
 ExecutorCompletionService<>(executor);

Create two ReportRequest objects and the threads to execute them:21.

 ReportRequest faceRequest=new ReportRequest("Face", service);
 ReportRequest onlineRequest=new ReportRequest("Online", service);
 Thread faceThread=new Thread(faceRequest);
 Thread onlineThread=new Thread(onlineRequest);

Create a ReportProcessor object and the thread to execute it:22.

 ReportProcessor processor=new ReportProcessor(service);
 Thread senderThread=new Thread(processor);

Start the three threads:23.

 System.out.printf("Main: Starting the Threads\n");
 faceThread.start();
 onlineThread.start();
 senderThread.start();

Wait for the finalization of the ReportRequest threads:24.

 try {
 System.out.printf("Main: Waiting for the report generators.\n");
 faceThread.join();
 onlineThread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Thread Executors

[196]

Finish the executor using the shutdown() method and wait for the finalization of25.
the tasks with the awaitTermination() method:

 System.out.printf("Main: Shutting down the executor.\n");
 executor.shutdown();
 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Finish the execution of the ReportSender object setting the value of its end26.
attribute to true:

 processor.stopProcessing();
 System.out.println("Main: Ends");

How it works...
In the main class of the example, you created ThreadPoolExecutor using the
newCachedThreadPool() method of the Executors class. Then, you used that Executor
object to initialize a CompletionService object because the completion service uses an
executor to execute its tasks. To execute a task using the completion service, use the
submit() method, as in the ReportRequest class.

When one of these tasks is executed when the completion service finishes its execution, the
service stores the Future object used to control its execution in a queue. The poll()
method accesses this queue to check whether there is any task that has finished its
execution; if yes, it returns the first element of the queue, which is a Future object of a task
that has finished its execution. When the poll() method returns a Future object, it deletes
it from the queue. In this case, you passed two attributes to the method to indicate the time
you want to wait for the finalization of a task, in case the queue with the results of the
finished tasks is empty.

Once the CompletionService object is created, you create two ReportRequest objects
that execute a ReportGenerator task, execute a ReportGenerator task using the
CompletionService object create before and passed as parameter to the constructor of the
ReportRequest objects

Thread Executors

[197]

There's more...
The CompletionService class can execute Callable or Runnable tasks. In this example,
you used Callable, but you could have also sent Runnable objects. Since Runnable
objects don't produce a result, the philosophy of the CompletionService class doesn't
apply in such cases.

This class also provides two other methods to obtain the Future objects of the finished
tasks. These methods are as follows:

poll(): The version of the poll() method without arguments checks whether
there are any Future objects in the queue. If the queue is empty, it returns null
immediately. Otherwise, it returns its first element and removes it from the
queue.
take(): This method, without arguments, checks whether there are any Future
objects in the queue. If it is empty, it blocks the thread until the queue has an
element. If the queue has elements, it returns and deletes its first element from
the queue.

In our case, we used the poll() method with a timeout to control when we would like to
end the execution of the ReportProcessor task.

See also
The Executing tasks in an executor that returns a result recipe in this chapter

5
Fork/Join Framework

In this chapter, we will cover:

Creating a fork/join pool
Joining the results of the tasks
Running tasks asynchronously
Throwing exceptions in the tasks
Canceling a task

Introduction
Normally, when you implement a simple, concurrent Java application, you implement
some Runnable objects and then the corresponding Thread objects. You control the
creation, execution, and status of those threads in your program. Java 5 introduced an
improvement with the Executor and ExecutorService interfaces and the classes that
implement them (for example, the ThreadPoolExecutor class).

The Executor framework separates the task creation and its execution. With it, you only
have to implement the Runnable objects and use an Executor object. You send the
Runnable tasks to the executor and it creates, manages, and finalizes the necessary threads
to execute those tasks.

Java 7 goes a step further and includes an additional implementation of the
ExecutorService interface oriented to a specific kind of problem. It's the fork/join
framework.

Fork/Join Framework

[199]

This framework is designed to solve problems that can be broken into smaller tasks using
the divide and conquer technique. Inside a task, you check the size of the problem you want
to resolve, and if it's bigger than an established size, you divide it into smaller tasks that are
executed using the framework. If the size of the problem is smaller than the established size,
you solve the problem directly in the task, and then, optionally, it returns a result. The
following diagram summarizes this concept:

There is no formula to determine the reference size of a problem that determines if a task is
to be subdivided or not, depending on its characteristics. You can use the number of
elements to process in the task and an estimation of the execution time to determine the
reference size. Test different reference sizes to choose the best one for your problem. You
can consider ForkJoinPool as a special kind of Executor.

The framework is based on the following two operations:

Fork operation: When you divide a task into smaller tasks and execute them
using the framework.
Join operation: When a task waits for the finalization of the tasks it has created.
It's used to combine the results of those tasks.

The main difference between the fork/join and the Executor frameworks is the work-
stealing algorithm. Unlike the Executor framework, when a task is waiting for the
finalization of the subtasks it has created using the join operation, the thread that is
executing that task (called worker thread) looks for other tasks that have not been executed
yet and begins their execution. In this way, the threads take full advantage of their running
time, thereby improving the performance of the application.

Fork/Join Framework

[200]

To achieve this goal, the tasks executed by the fork/join framework have the following
limitations:

Tasks can only use the fork() and join() operations as synchronization
mechanisms. If they use other synchronization mechanisms, the worker threads
can't execute other tasks when they are in the synchronization operation. For
example, if you put a task to sleep in the fork/join framework, the worker thread
that is executing that task won't execute another one during the sleeping time.
Tasks should not perform I/O operations such as read or write data in a file.
Tasks can't throw checked exceptions. They have to include the code necessary to
process them.

The core of the fork/join framework is formed by the following two classes:

ForkJoinPool: This class implements the ExecutorService interface and the
work-stealing algorithm. It manages the worker threads and offers information
about the status of the tasks and their execution.
ForkJoinTask: This is the base class of the tasks that will execute in
the ForkJoinPool. It provides the mechanisms to execute the fork() and
join() operations inside a task and the methods to control the status of the
tasks. Usually, to implement your fork/join tasks, you will implement a subclass
of three subclasses of this class: RecursiveAction for tasks with no return
result, RecursiveTask for tasks that return one result, and CountedCompleter
for tasks that launch a completion action when all the subtasks have finished.

Most of the features provided by this framework were included in Java 7, but Java 8
included minor features in it. It included a default ForkJoinPool object. You can obtain it
using the static method, commonPool(), of the ForkJoinPool class. This default fork/join
executor will by default use the number of threads determined by the available processors
of your computer. You can change this default behavior by changing the value of the
system property, java.util.concurrent.ForkJoinPool.common.parallelism. This
default pool is used internally by other classes of the Concurrency API. For example,
Parallel Streams use it. Java 8 also included the CountedCompleter class mentioned
earlier.

This chapter presents five recipes that show you how to work efficiently with the fork/join
framework.

Fork/Join Framework

[201]

Creating a fork/join pool
In this recipe, you will learn how to use the basic elements of the fork/join framework. This
includes the following:

Creating a ForkJoinPool object to execute the tasks
Creating a subclass of ForkJoinTask to be executed in the pool

The main characteristics of the fork/join framework you're going to use in this example are
as follows:

You will create ForkJoinPool using the default constructor.
Inside the task, you will use the structure recommended by the Java API
documentation:

 if (problem size > default size){
 tasks=divide(task);
 execute(tasks);
 } else {
 resolve problem using another algorithm;
 }

You will execute the tasks in a synchronized way. When a task executes two or
more subtasks, it waits for their finalizations. In this way, the thread that was
executing that task (called worker thread) will look for other tasks to execute,
taking full advantage of their execution time.
The tasks you're going to implement won't return any result, so you'll take the
RecursiveAction class as the base class for their implementation.

Getting ready
The example in this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDEs, such as NetBeans, open it and create a new Java project.

Fork/Join Framework

[202]

How to do it...
In this recipe, you are going to implement a task to update the price of a list of products.
The initial task will be responsible for updating all the elements in a list. You will use a size
10 as the reference size, so if a task has to update more than 10 elements, it divides the part
of the list assigned to it in two parts and creates two tasks to update the prices of the
products in the respective parts.

Follow these steps to implement the example:

Create a class named Product that will store the name and price of a product:1.

 public class Product {

Declare a private String attribute named name and a private double attribute2.
named price:

 private String name;
 private double price;

Implement getter and setter methods for those fields. They are very simple to3.
implement, so its source code is not included.
Create a class named ProductListGenerator to generate a list of random4.
products:

 public class ProductListGenerator {

Implement the generate() method. It receives an int parameter with the size4.
of the list and returns a List<Product> object with the list of generated
products:

 public List<Product> generate (int size) {

Create the object to return the list of products:5.

 List<Product> ret=new ArrayList<Product>();

Generate the list of products. Assign the same price to all of the products, for6.
example, 10, to check that the program works well:

 for (int i=0; i<size; i++){
 Product product=new Product();
 product.setName("Product "+i);
 product.setPrice(10);
 ret.add(product);

Fork/Join Framework

[203]

 }
 return ret;
 }

Create a class named Task. Specify that it extends the RecursiveAction class:7.

 public class Task extends RecursiveAction {

Declare a private List<Product> attribute named products:8.

 private List<Product> products;

Declare two private int attributes named first and last. These attributes will9.
determine the block of products this task has to process:

 private int first;
 private int last;

Declare a private double attribute named increment to store the increment of10.
the price of the products:

 private double increment;

Implement the constructor of the class that will initialize all the attributes of the11.
class:

 public Task (List<Product> products, int first, int last,
 double increment) {
 this.products=products;
 this.first=first;
 this.last=last;
 this.increment=increment;
 }

Implement the compute() method, which will implement the logic of the task:12.

 @Override
 protected void compute() {

If the difference of the last and first attributes is less than 10 (the task has to13.
update the price of less than 10 products), increment the price of that set of
products using the updatePrices() method:

 if (last - first<10) {
 updatePrices();

Fork/Join Framework

[204]

If the difference between the last and first attributes is greater than or equal14.
to 10, create two new Task objects, one to process the first half of the products
and the other to process the second half, and execute them in ForkJoinPool
using the invokeAll() method:

 } else {
 int middle=(last+first)/2;
 System.out.printf("Task: Pending tasks:%s\n",
 getQueuedTaskCount());
 Task t1=new Task(products, first,middle+1, increment);
 Task t2=new Task(products, middle+1,last, increment);
 invokeAll(t1, t2);
 }

Implement the updatePrices() method. This method updates the products that15.
occupy the positions between the values of the first and last attributes in the
list of products:

 private void updatePrices() {
 for (int i=first; i<last; i++){
 Product product=products.get(i);
 product.setPrice(product.getPrice()*(1+increment));
 }
 }

Implement the main class of the example by creating a class named Main and add16.
the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a list of 10000 products using the ProductListGenerator class:17.

 ProductListGenerator generator=new ProductListGenerator();
 List<Product> products=generator.generate(10000);

Create a new Task object to update the prices of all the products in the list. The18.
parameter first takes the value 0 and the last parameter takes the value
10000 (the size of the product list):

 Task task=new Task(products, 0, products.size(), 0.20);

Create a ForkJoinPool object using the constructor without parameters:19.

 ForkJoinPool pool=new ForkJoinPool();

Fork/Join Framework

[205]

Execute the task in the pool using the execute() method:20.

 pool.execute(task);

Implement a block of code that shows information about the evolution of the pool21.
every five milliseconds, writing to the console the value of some parameters of
the pool until the task finishes its execution:

 do {
 System.out.printf("Main: Thread Count:%d\n",
 pool.getActiveThreadCount());
 System.out.printf("Main: Thread Steal:%d\n",
 pool.getStealCount());
 System.out.printf("Main: Parallelism:%d\n",
 pool.getParallelism());
 try {
 TimeUnit.MILLISECONDS.sleep(5);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 } while (!task.isDone());

Shut down the pool using the shutdown() method:22.

 pool.shutdown();

Check if the task has finished without errors with the isCompletedNormally()23.
method and in that case, write a message to the console:

 if (task.isCompletedNormally()){
 System.out.printf("Main: The process has completed
 normally.\n");
 }

The expected price of all the products, after the increment, is 12. Write the name24.
and price of all the products that have a price difference of 12 to check that all of
them have increased their price correctly:

 for (int i=0; i<products.size(); i++){
 Product product=products.get(i);
 if (product.getPrice()!=12) {
 System.out.printf("Product %s: %f\n",
 product.getName(),product.getPrice());
 }
 }

Fork/Join Framework

[206]

Write a message to indicate the finalization of the program:25.

 System.out.println("Main: End of the program.\n");

How it works...
In this example, you created a ForkJoinPool object and a subclass of the ForkJoinTask
class that you executed in the pool. To create the ForkJoinPool object, you used the
constructor without arguments, so it will be executed with its default configuration. It
creates a pool with a number of threads equal to the number of processors of the computer.
When the ForkJoinPool object is created, those threads are created and they wait in the
pool until some tasks arrive for their execution.

Since the Task class doesn't return a result, it extends the RecursiveAction class. In the
recipe, you used the recommended structure for the implementation of the task. If the task
has to update more than 10 products, it divides that set of elements into two blocks, creates
two tasks, and assigns a block to each task. You used the first and last attributes in the
Task class to know the range of positions that this task has to update in the list of products.
You used the first and last attributes to use only one copy of the product list and not
create different lists for each task.

To execute the subtasks that a task creates, it calls the invokeAll() method. This is a
synchronous call, and the task waits for the finalization of the subtasks before continuing
(potentially finishing) its execution. While the task is waiting for its subtasks, the worker
thread that was executing it takes another task waiting for execution and executes it. With
this behavior, the fork/join framework offers more efficient task management than the
Runnable and Callable objects themselves.

The invokeAll() method of the ForkJoinTask class is one of the main differences
between the Executor and the fork/join framework. In the Executor framework, all the tasks
have to be sent to the executor while in this case, the tasks include methods to execute and
control the tasks inside the pool. You used the invokeAll() method in the Task class,
which extends the RecursiveAction class, which in turn extends the ForkJoinTask class.

You sent a unique task to the pool to update all the lists of products using the execute()
method. In this case, it's an asynchronous call, and the main thread continues its execution.

You used some methods of the ForkJoinPool class to check the status and the evolution of
the tasks that are running. The class includes more methods that can be useful for this
purpose. See the Monitoring a fork/join pool recipe in Chapter 9, Testing Concurrent
Applications for a complete list of those methods.

Fork/Join Framework

[207]

Finally, like with the Executor framework, you should finish ForkJoinPool using the
shutdown() method.

The following screenshot shows part of an execution of this example:

You can see the tasks finishing their work and the price of the products updated.

There's more...
The ForkJoinPool class provides other methods to execute a task. These methods are as
follows:

execute (Runnable task): This is another version of the execute() method
used in the example. In this case, you send a Runnable task to the
ForkJoinPool class. Note that the ForkJoinPool class doesn't use the work-
stealing algorithm with Runnable objects. It's only used with ForkJoinTask
objects.
invoke(ForkJoinTask<T> task): While the execute() method makes an
asynchronous call to the ForkJoinPool class, as you learned in the example, the
invoke() method makes a synchronous call to the ForkJoinPool class. This call
doesn't return until the task passed as a parameter finishes its execution.
You can also use the invokeAll() and invokeAny() methods declared in the
ExecutorService interface. These methods receive Callable objects as
parameters. The ForkJoinPool class doesn't use the work-stealing algorithm
with the Callable objects, so you'd be better off executing them using a
ThreadPoolExecutor.

Fork/Join Framework

[208]

The ForkJoinTask class also includes other versions of the invokeAll() method used in
the example. These versions are as follows:

invokeAll(ForkJoinTask<?>... tasks): This version of the method uses a
variable list of arguments. You can pass to it as parameters as many
ForkJoinTask objects as you want.
invokeAll(Collection<T> tasks): This version of the method accepts a
collection (for example, an ArrayList object, a LinkedList object, or a TreeSet
object) of objects of a generic type T. This generic type T must be the
ForkJoinTask class or a subclass of it.

Although the ForkJoinPool class is designed to execute an object of ForkJoinTask, you
can also execute the Runnable and Callable objects directly. You may also use the
adapt() method of the ForkJoinTask class that accepts a Callable object or a Runnable
object and returns a ForkJoinTask object to execute that task.

See also
The Monitoring a fork/join pool recipe in Chapter 9, Testing Concurrent Applications

Joining the results of the tasks
The fork/join framework provides the ability to execute tasks that return a result. This kind
of tasks is implemented by the RecursiveTask class. This class extends the ForkJoinTask
class and implements the Future interface provided by the Executor framework.

Inside the task, you have to use the structure recommended by the Java API documentation:

 if (problem size > size){
 tasks=Divide(task);
 execute(tasks);
 joinResults()
 return result;
 } else {
 resolve problem;
 return result;
 }

Fork/Join Framework

[209]

If the task has to resolve a problem bigger than a predefined size, you divide the problem
into more subtasks and execute those subtasks using the fork/join framework. When they
finish their execution, the initiating task obtains the results generated by all the subtasks,
groups them, and returns the final result. Ultimately, when the initiating task executed in
the pool finishes its execution, you obtain its result, which is effectively the final result of
the entire problem.

In this recipe, you will learn how to use this kind of problem solving with fork/join
framework by developing an application that looks for a word in a document. You will
implement the following two kinds of tasks:

A document task, which is going to search for a word in a set of lines of a
document
A line task, which is going to search a word in a part of the document

All the tasks will return the number of appearances of the word in the part of the document
or line they process. In this recipe we will use the default fork/join pool provided by the
Java Concurrency API.

How to do it...
Follow these steps to implement the example:

Create a class named DocumentMock. It will generate a string matrix that will1.
simulate a document:

 public class DocumentMock {

Create an array of strings with some words. This array will be used in the2.
generation of the strings matrix:

 private String words[]={"the","hello","goodbye","packt",
 "java","thread","pool","random",
 "class","main"};

Implement the generateDocument() method. It receives as parameters the3.
number of lines, the number of words per line, and the word the example is
going to look for. It returns a matrix of strings:

 public String[][] generateDocument(int numLines, int numWords,
 String word){

Fork/Join Framework

[210]

First, create the necessary objects to generate the document-the String matrix4.
and a Random object to generate random numbers:

 int counter=0;
 String document[][]=new String[numLines][numWords];
 Random random=new Random();

Fill the array with strings. Store in each position the string that is at a random5.
position in the array of words and count the number of appearances of the word
the program will look for in the generated array. You can use this value to check
whether the program does its job properly:

 for (int i=0; i<numLines; i++){
 for (int j=0; j<numWords; j++) {
 int index=random.nextInt(words.length);
 document[i][j]=words[index];
 if (document[i][j].equals(word)){
 counter++;
 }
 }
 }

Write a message with the number of appearances of the word and return the6.
matrix generated:

 System.out.println("DocumentMock: The word appears "+ counter+"
 times in the document");
 return document;

Create a class named DocumentTask and specify that it extends the7.
RecursiveTask class parameterized with the Integer class. This class will
implement the task that will calculate the number of appearances of the word in a
set of lines:

 public class DocumentTask extends RecursiveTask<Integer> {

Declare a private String matrix named document and two private int attributes8.
named start and end. Also, declare a private String attribute named word:

 private String document[][];
 private int start, end;
 private String word;

Fork/Join Framework

[211]

Implement the constructor of the class to initialize all its attributes:9.

 public DocumentTask (String document[][], int start, int end,
 String word){
 this.document=document;
 this.start=start;
 this.end=end;
 this.word=word;
 }

Implement the compute() method. If the difference between the end and start10.
attributes is smaller than 10, the task calculates the number of appearances of a
word in the lines between those positions by calling the processLines()
method:

 @Override
 protected Integer compute() {
 Integer result=null;
 if (end-start<10){
 result=processLines(document, start, end, word);

Otherwise, divide the group of lines into two objects, create two new11.
DocumentTask objects to process those two groups, and execute them in the pool
using the invokeAll() method:

 } else {
 int mid=(start+end)/2;
 DocumentTask task1=new DocumentTask(document,start,mid,word);
 DocumentTask task2=new DocumentTask(document,mid,end,word);
 invokeAll(task1,task2);

Then, add the values returned by both the tasks using the groupResults()12.
method. Finally, return the result calculated by the task:

 try {
 result=groupResults(task1.get(),task2.get());
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 return result;

Fork/Join Framework

[212]

Implement the processLines() method. It receives the string matrix, the start13.
attribute, the end attribute, and the word attribute the task is searching for as
parameters:

 private Integer processLines(String[][] document, int start,
 int end,String word) {

For every line the task has to process, create a LineTask object to process the14.
complete line and store them in a list of tasks:

 List<LineTask> tasks=new ArrayList<LineTask>();
 for (int i=start; i<end; i++){
 LineTask task=new LineTask(document[i], 0,
 document[i].length, word);
 tasks.add(task);
 }

Execute all the tasks in that list using the invokeAll() method:15.

 invokeAll(tasks);

Sum the value returned by all these tasks and return the result:16.

 int result=0;
 for (int i=0; i<tasks.size(); i++) {
 LineTask task=tasks.get(i);
 try {
 result=result+task.get();
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 return result;

Implement the groupResults() method. It adds two numbers and returns the17.
result:

 private Integer groupResults(Integer number1,Integer number2) {
 Integer result;
 result=number1+number2;
 return result;
 }

Fork/Join Framework

[213]

Create a class named LineTask and specify that it extends the RecursiveTask18.
class parameterized with the Integer class. This class will implement the task
that will calculate the number of appearances of the word in a line:

 public class LineTask extends RecursiveTask<Integer>{

Declare a private String array attribute named line and two private int19.
attributes named start and end. Finally, declare a private String attribute
named word:

 private String line[];
 private int start, end;
 private String word;

Implement the constructor of the class to initialize all its attributes:20.

 public LineTask(String line[],int start,int end,String word) {
 this.line=line;
 this.start=start;
 this.end=end;
 this.word=word;
 }

Implement the compute() method of the class. If the difference between the end21.
and start attributes is smaller than 100, the task searches for the word in the
fragment of the line determined by the start and end attributes using the
count() method:

 @Override
 protected Integer compute() {
 Integer result=null;
 if (end-start<100) {
 result=count(line, start, end, word);

Otherwise, divide the group of words in the line in two, create two new22.
LineTask objects to process those two groups, and execute them in the pool
using the invokeAll() method:

 } else {
 int mid=(start+end)/2;
 LineTask task1=new LineTask(line, start, mid, word);
 LineTask task2=new LineTask(line, mid, end, word);
 invokeAll(task1, task2);

Fork/Join Framework

[214]

Then, add the values returned by both the tasks using the groupResults()23.
method. Finally, return the result calculated by the task:

 try {
 result=groupResults(task1.get(),task2.get());
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 return result;

Implement the count() method. It receives the string array with the complete24.
line, the start attribute, the end attribute, and the word attribute the task is
searching for as parameters:

 private Integer count(String[] line, int start, int end,
 String word) {

Compare the words stored in the positions between the start and end attributes25.
with the word attribute the task is searching for, and if they are equal, increment
the counter variable:

 int counter;
 counter=0;
 for (int i=start; i<end; i++){
 if (line[i].equals(word)){
 counter++;
 }
 }

To slow the execution of the example, put the task to sleep for 10 milliseconds:26.

 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Return the value of the counter variable:27.

 return counter;

Fork/Join Framework

[215]

Implement the groupResults() method. It sums two numbers and returns the28.
result:

 private Integer groupResults(Integer number1,Integer number2) {
 Integer result;
 result=number1+number2;
 return result;
 }

Implement the main class of the example by creating a class named Main with a29.
main() method:

 public class Main{
 public static void main(String[] args) {

Create Document with 100 lines and 1000 words per line using the30.
DocumentMock class:

 DocumentMock mock=new DocumentMock();
 String[][] document=mock.generateDocument(100, 1000, "the");

Create a new DocumentTask object to update the products of the entire31.
document. The start parameter takes the value 0 and the end parameter takes
the value 100:

 DocumentTask task=new DocumentTask(document, 0, 100, "the");

Get the default ForkJoinPool executor using the commmonPool() method and32.
execute the task on it using the execute() method:

 ForkJoinPool commonPool=ForkJoinPool.commonPool();
 commonPool.execute(task);

Implement a block of code that shows information about the progress of the pool,33.
writing every second to the console the value of some parameters of the pool
until the task finishes its execution:

 do {
 System.out.printf("*************************
 *****************\n");
 System.out.printf("Main: Active Threads: %d\n",
 commonPool.getActiveThreadCount());
 System.out.printf("Main: Task Count: %d\n",
 commonPool.getQueuedTaskCount());
 System.out.printf("Main: Steal Count: %d\n",
 commonPool.getStealCount());

Fork/Join Framework

[216]

 System.out.printf("***********************************
 *******\n");
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 } while (!task.isDone());

Shut down the pool using the shutdown() method:34.

 pool.shutdown();

Wait for the finalization of the tasks using the awaitTermination() method:35.

 try {
 pool.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write the number of the appearances of the word in the document. Check that36.
this number is the same as the number written by the DocumentMock class:

 try {
 System.out.printf("Main: The word appears %d in the
 document",task.get());
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }

How it works...
In this example, you implemented two different tasks:

DocumentTask: A task of this class has to process a set of lines of the document
determined by the start and end attributes. If this set of lines has a size smaller
than 10, it creates LineTask per line, and when they finish their execution, it
sums the results of those tasks and returns the result of the sum. If the set of
lines the task has to process has a size of 10 or bigger, it divides the set in two
and creates two DocumentTask objects to process those new sets. When those
tasks finish their execution, the tasks sum their results and return that sum as a
result.

Fork/Join Framework

[217]

LineTask: A task of this class has to process a set of words of a line of the
document. If this set of words is smaller than 100, the task searches the word
directly in that set of words and returns the number of appearances of the word.
Otherwise, it divides the set of words into two and creates two LineTask objects
to process those sets. When those tasks finish their execution, the task sums the
results of both the tasks and returns that sum as a result.

In the Main class, you used the default ForkJoinPool (obtained from the static method,
commonPool()) and executed in it a DocumentTask class that has to process a document of
100 lines and 1000 words per line. This task will divide the problem using other
DocumentTask objects and LineTask objects, and when all the tasks finish their execution,
you can use the original task to get the total number of appearances of the word in the
whole document. Since the tasks return a result, they extend the RecursiveTask class.

To obtain the result returned by Task, you used the get() method. This method is declared
in the Future interface implemented by the RecursiveTask class.

When you execute the program, you can compare the first and the last lines written in the
console. The first line is the number of appearances of the word calculated when the
document is generated and the last is the same number calculated by the fork/join tasks.

There's more...
The ForkJoinTask class provides another method to finish the execution of a task and
return a result, that is, the complete() method. This method accepts an object of the type
used in the parameterization of the RecursiveTask class and returns that object as a result
of the task when the join() method is called. It's use is recommended to provide results
for asynchronous tasks.

Since the RecursiveTask class implements the Future interface, there's another version of
the get() method:

get(long timeout, TimeUnit unit): This version of the get() method, if
the result of the task isn't available, waits the specified time for it. If the specified
period of time passes and the result isn't yet available, the method returns a null
value. The TimeUnit class is an enumeration with these constants: DAYS, HOURS,
MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

Fork/Join Framework

[218]

See also
The Creating a fork/join pool recipe in this chapter
The Monitoring a fork/join pool recipe in Chapter 9, Testing Concurrent Applications

Running tasks asynchronously
When you execute ForkJoinTask in ForkJoinPool, you can do it in a synchronous or an
asynchronous way. When you do it in a synchronous way, the method that sends the task
to the pool doesn't return until the task sent finishes its execution. When you do it in an
asynchronous way, the method that sends the task to the executor returns immediately, so
the task can continue with its execution.

You should be aware of a big difference between the two methods. When you use the
synchronous methods, the task that calls one of these methods (for example, the
invokeAll() method) is suspended until the tasks it sent to the pool finish their execution.
This allows the ForkJoinPool class to use the work-stealing algorithm to assign a new task
to the worker thread that executed the sleeping task. On the contrary, when you use the
asynchronous methods (for example, the fork() method), the task continues with its
execution, so the ForkJoinPool class can't use the work-stealing algorithm to increase the
performance of the application. In this case, only when you call the join() or get()
methods to wait for the finalization of a task, the ForkJoinPool class can use that
algorithm.

In addition to the RecursiveAction and RecursiveTask classes, Java 8 introduced a new
ForkJoinTask class with the CountedCompleter class. With this kind of tasks, you can
include a completion action that will be executed when it is launched and there is no
pending child task. This mechanism is based on a method included in the class (the
onCompletion() method) and a counter of pending tasks.

This counter is initialized to zero by default and you can increment it when you need in an
atomic way. Normally, you will increment this counter one by one as and when you launch
a child task. Finally, when a task has finished its execution, you can try to complete the
execution of the task and consequently execute the onCompletion() method. If the
pending count is greater than zero, it is decremented by one. If it's zero, the
onCompletion() method is executed and then the parent task is tried to be completed.

Fork/Join Framework

[219]

In this recipe, you will learn how to use the asynchronous methods provided by the
ForkJoinPool and CountedCompleter classes for the management of tasks. You are
going to implement a program that will search for files with a determined extension inside
a folder and its subfolders. The CountedCompleter class you're going to implement will
process the contents of a folder. For each subfolder inside that folder, it will send a new task
to the ForkJoinPool class in an asynchronous way. For each file inside that folder, the task
will check the extension of the file and add it to the result list if it proceeds. When a task is
completed, it will insert the result lists of all its child tasks in its result task.

How to do it...
Follow these steps to implement the example:

Create a class named FolderProcessor and specify that it extends the1.
CountedCompleter class parameterized with the List<String> type:

 public class FolderProcessor extends
 CountedCompleter<List<String>> {

Declare a private String attribute named path. This attribute will store the full2.
path of the folder the task is going to process:

 private String path;

Declare a private String attribute named extension. This attribute will store3.
the name of the extension of the files the task is going to look for:

 private String extension;

Declare two List private attributes named tasks and resultList. We will use4.
the first one to store all the child tasks launched from this task and the other one
to store the list of results of this task:

 private List<FolderProcessor> tasks;
 private List<String> resultList;

Implement one constructor for the class to initialize its attributes and its parent5.
class. We declare this constructor as protected as it will only be used internally:

 protected FolderProcessor (CountedCompleter<?> completer,
 String path, String extension) {
 super(completer);
 this.path=path;

Fork/Join Framework

[220]

 this.extension=extension;
 }

We implement the other public constructor to be used externally. As the task6.
created by this constructor won't have a parent task, we don't include this object
as a parameter:

 public FolderProcessor (String path, String extension) {
 this.path=path;
 this.extension=extension;
 }

Implement the compute() method. As the base class of our task is the7.
CountedCompleter class, the return type of this method is void:

 @Override
 public void compute() {

First, initialize the two list attributes:8.

 resultList=new ArrayList<>();
 tasks=new ArrayList<>();

Get the contents of the folder:9.

 File file=new File(path);
 File content[] = file.listFiles();

For each element in the folder, if there is a subfolder, create a new10.
FolderProcessor object and execute it asynchronously using the fork()
method. We use the first constructor of the class and pass the current task as the
completer task of the new one. We also increment the counter of pending tasks
using the addToPendingCount() method:

 if (content != null) {
 for (int i = 0; i < content.length; i++) {
 if (content[i].isDirectory()) {
 FolderProcessor task=new FolderProcessor(this,
 content[i].getAbsolutePath(), extension);
 task.fork();
 addToPendingCount(1);
 tasks.add(task);

Fork/Join Framework

[221]

Otherwise, compare the extension of the file with the extension you are looking11.
for, using the checkFile() method, and if they are equal, store the full path of
the file in the list of strings declared earlier:

 } else {
 if (checkFile(content[i].getName())){
 resultList.add(content[i].getAbsolutePath());
 }
 }
 }

If the list of the FolderProcessor subtasks has more than 50 elements, write a12.
message to the console to indicate this circumstance:

 if (tasks.size()>50) {
 System.out.printf("%s: %d tasks ran.\n",
 file.getAbsolutePath(),tasks.size());
 }
 }

Finally, try to complete the current task using the tryComplete() method:13.

 tryComplete();
 }

Implement the onCompletion() method. This method will be executed when all14.
the child tasks (all the tasks that have been forked from the current task) have
finished their execution. We add the result list of all the child tasks to the result
list of the current task:

 @Override
 public void onCompletion(CountedCompleter<?> completer) {
 for (FolderProcessor childTask : tasks) {
 resultList.addAll(childTask.getResultList());
 }
 }

Implement the checkFile() method. This method compares if the name of a file15.
passed as a parameter ends with the extension you are looking for. If so, the
method returns the true value, otherwise it returns the false value:

 private boolean checkFile(String name) {
 return name.endsWith(extension);
 }

Fork/Join Framework

[222]

Finally, implement the getResultList() method to return the result list of a16.
task. The code of this method is very simple so it won't be included.
Implement the main class of the example by creating a class named Main with a17.
main() method:

 public class Main {
 public static void main(String[] args) {

Create ForkJoinPool using the default constructor:18.

 ForkJoinPool pool=new ForkJoinPool();

Create three FolderProcessor tasks. Initialize each with a different folder path:19.

 FolderProcessor system=new FolderProcessor("C:\\Windows",
 "log");
 FolderProcessor apps=new FolderProcessor("C:\\Program Files",
 "log");
 FolderProcessor documents=new FolderProcessor("C:\\Documents
 And Settings","log");

Execute the three tasks in the pool using the execute() method:20.

 pool.execute(system);
 pool.execute(apps);
 pool.execute(documents);

Write to the console information about the status of the pool every second until21.
the three tasks have finished their execution:

 do {
 System.out.printf("**********************************
 ********\n");
 System.out.printf("Main: Active Threads: %d\n",
 pool.getActiveThreadCount());
 System.out.printf("Main: Task Count: %d\n",
 pool.getQueuedTaskCount());
 System.out.printf("Main: Steal Count: %d\n",
 pool.getStealCount());
 System.out.printf("**********************************
 ********\n");
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Fork/Join Framework

[223]

 } while ((!system.isDone())||(!apps.isDone())||
 (!documents.isDone()));

Shut down ForkJoinPool using the shutdown() method:22.

 pool.shutdown();

Write the number of results generated by each task to the console:23.

 List<String> results;

 results=system.join();
 System.out.printf("System: %d files found.\n",results.size());

 results=apps.join();
 System.out.printf("Apps: %d files found.\n",results.size());

 results=documents.join();
 System.out.printf("Documents: %d files found.\n",
 results.size());

How it works...
The following screenshot shows part of an execution of the preceding example:

Fork/Join Framework

[224]

The key to this example is in the FolderProcessor class. Each task processes the contents
of a folder. As you know, this content has the following two kinds of elements:

Files
Other folders

If the task finds a folder, it creates another FolderProcessor object to process that folder
and sends it to the pool using the fork() method. This method sends the task to the pool
that will execute it if it has a free worker thread, or it can create a new one. The method
returns immediately, so the task can continue processing the contents of the folder. For
every file, a task compares its extension with the one it's looking for and, if they are equal,
adds the name of the file to the list of results.

Once the task has processed all the contents of the assigned folder, we try to complete the
current task. As we explained in the introduction of this recipe, when we try to complete a
task, the code of the CountedCompleter looks for the value of the pending task counter. If
this value is greater than 0, it decreases the value of that counter. On the contrary, if the
value is 0, the task executes the onCompletion() method and then tries to complete its
parent task. In our case, when a task is processing a folder and it finds a subfolder, it creates
a new child task, launches that task using the fork() method, and increments the counter
of the pending tasks. So, when a task has processed its entire content, the counter of
pending tasks of the task will be equal to the number of child tasks we have launched.
When we call the tryComplete() method, if the folder of the current task has subfolders,
this call will decrease the number of pending tasks. Only when all its child tasks have been
completed, its onCompletion() method is executed. If the folder of the current task hasn't
got any subfolders, the counter of pending tasks will be zero; the onComplete() method
will be called immediately, and then it will try to complete its parent task. In this way, we
create a tree of tasks from top to bottom that are completed from bottom to top. In the
onComplete() method, we process all the result lists of the child tasks and add their
elements in the result list of the current task.

The ForkJoinPool class also allows the execution of tasks in an asynchronous way. You
used the execute() method to send the three initial tasks to the pool. In the Main class,
you also finished the pool using the shutdown() method and wrote information about the
status and the evolution of the tasks that are running in it. The ForkJoinPool class
includes more methods that can be useful for this purpose. See the Monitoring a fork/join pool
recipe in Chapter 9, Testing Concurrent Applications to see a complete list of those methods.

Fork/Join Framework

[225]

There's more...
In this example we used the addToPendingCount() method to increment the counter of
pending tasks, but we have other methods we can use to change the value of this counter:

setPendingCount(): This method establishes the value of the counter of
pending tasks.
compareAndSetPendingCount(): This method receives two parameters. The
first one is the expected value and the second one is the new value. If the value of
the counter of pending tasks is equal to the expected value, establish its value to
the new one.
decrementPendingCountUnlessZero(): This method decrements the value of
the counter of pending tasks unless it's equal to zero.

The CountedCompleter class also includes other methods to manage the completion of the
tasks. The following are the most significant ones:

complete(): This method executes the onCompletion() method independently
of the value of the counter of pending tasks and tries to complete its completer
(parent) task.
onExceptionalCompletion(): This method is executed when the
completeExceptionally() method has been called or the compute() method
has thrown an Exception. Override this method to include your code to process
such exceptions.

In this example, you used the join() method to wait for the finalization of tasks and get
their results. You can also use one of the following two versions of the get() method with
this purpose:

get(long timeout, TimeUnit unit): This version of the get() method, if
the result of the task isn't available, waits the specified time for it. If the specified
period of time passes and the result isn't yet available, the method returns a null
value. The TimeUnit class is an enumeration with the following constants: DAYS,
HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS
The join() method can't be interrupted. If you interrupt the thread that called
the join() method, the method throws an InterruptedException exception.

Fork/Join Framework

[226]

See also
The Creating a fork/join pool recipe in this chapter
The Monitoring a fork/join pool recipe in Chapter 9, Testing Concurrent Applications

Throwing exceptions in the tasks
There are two kinds of exceptions in Java:

Checked exceptions: These exceptions must be specified in the throws clause of
a method or caught inside them. For example, IOException or
ClassNotFoundException.
Unchecked exceptions: These exceptions don't have to be specified or caught. For
example, NumberFormatException.

You can't throw any checked exception in the compute() method of the ForkJoinTask
class because this method doesn't include any throws declaration in its implementation.
You have to include the necessary code to handle the checked exceptions. On the other
hand, you can throw (or it can be thrown by any method or object used inside the method)
an unchecked exception. The behavior of the ForkJoinTask and ForkJoinPool classes is
different from what you may expect. The program doesn't finish execution and you won't
see any information about the exception in the console. It's simply swallowed as if it weren't
thrown. Only when you call the get() method of the initial task, the exception will be
thrown. You can, however, use some methods of the ForkJoinTask class to know if a task
has thrown an exception and if so, what kind of exception it was. In this recipe, you will
learn how to get that information.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

Fork/Join Framework

[227]

How to do it...
Follow these steps to implement the example:

Create a class named Task. Specify that it implements the RecursiveTask class,1.
parameterized with the Integer class:

 public class Task extends RecursiveTask<Integer> {

Declare a private int array named array. It will simulate the array of data you2.
are going to process in this example:

 private int array[];

Declare two private int attributes named start and end. These attributes will3.
determine the elements of the array this task has to process:

 private int start, end;

Implement the constructor of the class that initializes its attributes:4.

 public Task(int array[], int start, int end){
 this.array=array;
 this.start=start;
 this.end=end;
 }

Implement the compute() method of the task. As you have parameterized the5.
RecursiveTask class with the Integer class, this method has to return an
Integer object. First, write a message to the console with the value of the start
and end attributes:

 @Override
 protected Integer compute() {
 System.out.printf("Task: Start from %d to %d\n",start,end);

If the block of elements that this task has to process, determined by the start6.
and end attributes, has a size smaller than 10, check if the element in the fourth
position in the array (index number three) is in that block. If that is the case,
throw RuntimeException. Then, put the task to sleep for a second:

 if (end-start<10) {
 if ((3>start)&&(3<end)){
 throw new RuntimeException("This task throws an"+
 "Exception: Task from "+start+" to "+end);

Fork/Join Framework

[228]

 }
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Otherwise (the block of elements that this task has to process has a size of 10 or7.
bigger), divide the block of elements in two, create two Task objects to process
those blocks, and execute them in the pool using the invokeAll() method.
Then, we write the results of these tasks to the console:

 } else {
 int mid=(end+start)/2;
 Task task1=new Task(array,start,mid);
 Task task2=new Task(array,mid,end);
 invokeAll(task1, task2);
 System.out.printf("Task: Result form %d to %d: %d\n",
 start,mid,task1.join());
 System.out.printf("Task: Result form %d to %d: %d\n",
 mid,end,task2.join());
 }

Write a message to the console indicating the end of the task, writing the value of8.
the start and end attributes:

 System.out.printf("Task: End form %d to %d\n",start,end);

Return the number 0 as the result of the task:9.

 return 0;

Implement the main class of the example by creating a class named Main with a10.
main() method:

 public class Main {
 public static void main(String[] args) {

Create an array of 100 integer numbers:11.

 int array[]=new int[100];

Create a Task object to process that array:12.

 Task task=new Task(array,0,100);

Fork/Join Framework

[229]

Create a ForkJoinPool object using the default constructor:13.

 ForkJoinPool pool=new ForkJoinPool();

Execute the task in the pool using the execute() method:14.

 pool.execute(task);

Shut down the ForkJoinPool class using the shutdown() method:15.

 pool.shutdown();

Wait for the finalization of the task using the awaitTermination() method. As16.
you want to wait for the finalization of the task however long it takes to
complete, pass the values 1 and TimeUnit.DAYS as parameters to this method:

 try {
 pool.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Check if the task, or one of its subtasks, has thrown an exception using the17.
isCompletedAbnormally() method. In such a case, write a message to the
console with the exception that was thrown. Get that exception with the
getException() method of the ForkJoinTask class:

 if (task.isCompletedAbnormally()) {
 System.out.printf("Main: An exception has ocurred\n");
 System.out.printf("Main: %s\n",task.getException());
 }
 System.out.printf("Main: Result: %d",task.join());

How it works...
The Task class you implemented in this recipe processes an array of numbers. It checks if
the block of numbers it has to process has 10 or more elements. In that case, it splits the
block in two and creates two new Task objects to process those blocks. Otherwise, it looks
for the element in the fourth position of the array (index number three). If that element is in
the block the task has to process, it throws RuntimeException.

Fork/Join Framework

[230]

When you execute the program, the exception is thrown, but the program doesn't stop. In
the Main class you have included a call to the isCompletedAbnormally() method of the
ForkJoinTask class using the original task. This method returns true if that task, or one of
its subtasks, has thrown an exception. You also used the getException() method of the
same object to get the Exception object that it has thrown.

When you throw an unchecked exception in a task, it also affects its parent task (the task
that sent it to the ForkJoinPool class) and the parent task of its parent task, and so on. If
you revise the entire output of the program, you'll see that there aren't output messages for
the finalization of some tasks. The starting messages of those tasks are as follows:

 Task: Starting form 0 to 100
 Task: Starting form 0 to 50
 Task: Starting form 0 to 25
 Task: Starting form 0 to 12
 Task: Starting form 0 to 6

These tasks are the ones that threw the exception and its parent tasks. All of them have
finished abnormally. Take this into account when you develop a program with the
ForkJoinPool and ForkJoinTask objects that can throw exceptions if you don't want this
behavior.

The following screenshot shows part of an execution of this example:

Fork/Join Framework

[231]

There's more...
In this example, you used the join() method to wait for the finalization of tasks and get
their results. You can also use one of the following two versions of the get() method with
this purpose:

get(): This version of the get() method returns the value returned by the
compute() method if ForkJoinTask has finished its execution, or it waits until
its finalization.
get(long timeout, TimeUnit unit): This version of the get() method, if
the result of the task isn't available, waits the specified time for it. If the specified
period of time passes and the result isn't yet available, the method returns a null
value. The TimeUnit class is an enumeration with the following constants: DAYS,
HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

There are two main differences between the get() and join() methods:

The join() method can't be interrupted. If you interrupt the thread that called
the join() method, the method throws InterruptedException.
While the get() method will return ExecutionException if the tasks throw
any unchecked exception, the join() method will return RuntimeException.

You can obtain the same result obtained in the example if, instead of throwing an exception,
you use the completeExceptionally() method of the ForkJoinTask class. The code
would be as follows:

 Exception e=new Exception("This task throws an Exception: "+
 "Task from "+start+" to "+end);
 completeExceptionally(e);

See also
The Creating a fork/join pool recipe in this chapter

Fork/Join Framework

[232]

Canceling a task
When you execute the ForkJoinTask objects in a ForkJoinPool class, you can cancel
them before they start their execution. The ForkJoinTask class provides the cancel()
method for this purpose. There are some points you have to take into account when you
want to cancel a task, which are as follows:

The ForkJoinPool class doesn't provide any method to cancel all the tasks it has
running or waiting in the pool
When you cancel a task, you don't cancel the tasks this task has executed

In this recipe, you will implement an example of the cancellation of ForkJoinTask objects.
You will look for the position of a number in an array. The first task that finds the number
will cancel the remaining tasks. As that functionality is not provided by the fork/join
framework, you will implement an auxiliary class to do this cancellation.

Getting ready...
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named ArrayGenerator. This class will generate an array of1.
random integer numbers with the specified size. Implement a method named
generateArray(). It will generate the array of numbers. It receives the size of
the array as a parameter:

 public class ArrayGenerator {
 public int[] generateArray(int size) {
 int array[]=new int[size];
 Random random=new Random();
 for (int i=0; i<size; i++){
 array[i]=random.nextInt(10);
 }
 return array;
 }

Fork/Join Framework

[233]

Create a class named TaskManager. We will use this class to store all the tasks2.
executed in ForkJoinPool used in the example. Due to the limitations of the
ForkJoinPool and ForkJoinTask classes, you will use this class to cancel all
the tasks of the ForkJoinPool class:

 public class TaskManager {

Declare a list of objects parameterized with the ForkJoinTask class,3.
parameterized with the Integer class named List:

 private final ConcurrentLinkedDeque<SearchNumberTask> tasks;

Implement the constructor of the class. It initializes the list of tasks:4.

 public TaskManager(){
 tasks=new ConcurrentLinkedDeque<>();
 }

Implement the addTask() method. It adds a ForkJoinTask object to the lists of5.
tasks:

 public void addTask(ForkJoinTask<Integer> task){
 tasks.add(task);
 }

Implement the cancelTasks() method. It will cancel all the ForkJoinTask6.
objects stored in the list using the cancel() method. It receives as a parameter
the ForkJoinTask object that wants to cancel the rest of the tasks. The method
cancels all the tasks:

 public void cancelTasks(SearchNumberTask cancelTask){
 for (SearchNumberTask task :tasks) {
 if (task!=cancelTask) {
 task.cancel(true);
 task.logCancelMessage();
 }
 }
 }

Implement the SearchNumberTask class. Specify that it extends the7.
RecursiveTask class parameterized with the Integer class. This class will look
for a number in a block of elements of an integer array:

 public class SearchNumberTask extends RecursiveTask<Integer> {

Fork/Join Framework

[234]

Declare a private array of int numbers named numbers:8.

 private int numbers[];

Declare two private int attributes named start and end. These attributes will9.
determine the elements of the array this task has to process:

 private int start, end;

Declare a private int attribute named number to store the number you are going10.
to look for:

 private int number;

Declare a private TaskManager attribute named manager. You will use this11.
object to cancel all the tasks:

 private TaskManager manager;

Declare a private int constant and initialize it to -1. It will be the returned value12.
by the task when it doesn't find the number:

 private final static int NOT_FOUND=-1;

Implement the constructor of the class to initialize its attributes:13.

 public SearchNumberTask(int numbers[], int start, int end,
 int number, TaskManager manager){
 this.numbers=numbers;
 this.start=start;
 this.end=end;
 this.number=number;
 this.manager=manager;
 }

Implement the compute() method. Start the method by writing a message to the14.
console indicating the values of the start and end attributes:

 @Override
 protected Integer compute() {
 System.out.println("Task: "+start+":"+end);

Fork/Join Framework

[235]

If the difference between the start and end attributes is greater than 10 (the task15.
has to process more than 10 elements of the array), call the launchTasks()
method to divide the work of this task into two subtasks:

 int ret;
 if (end-start>10) {
 ret=launchTasks();

Otherwise, look for the number in the block of the array that the task calling the16.
lookForNumber() method has to process:

 } else {
 ret=lookForNumber();
 }

Return the result of the task:17.

 return ret;

Implement the lookForNumber() method:18.

 private int lookForNumber() {

For all the elements in the block of elements this task has to process, compare the19.
value stored in that element with the number you are looking for. If they are
equal, write a message to the console indicating, in such a circumstance, to use
the cancelTasks() method of the TaskManager object to cancel all the tasks,
and return the position of the element where you found the number:

 for (int i=start; i<end; i++){
 if (numbers[i]==number) {
 System.out.printf("Task: Number %d found in position %d\n",
 number,i);
 manager.cancelTasks(this);
 return i;
 }

Inside the loop, put the task to sleep for one second:20.

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Fork/Join Framework

[236]

Finally, return the -1 value:21.

 return NOT_FOUND;
 }

Implement the launchTasks() method. First, divide the block of numbers this22.
task has to process into two, and then create two Task objects to process them:

 private int launchTasks() {
 int mid=(start+end)/2;

 Task task1=new Task(numbers,start,mid,number,manager);
 Task task2=new Task(numbers,mid,end,number,manager);

Add the tasks to the TaskManager object:23.

 manager.addTask(task1);
 manager.addTask(task2);

Execute the two tasks asynchronously using the fork() method:24.

 task1.fork();
 task2.fork();

Wait for the finalization of the tasks, and return the result of the first task if it is25.
not equal to -1 or the result of the second task, otherwise:

 int returnValue;
 returnValue=task1.join();
 if (returnValue!=-1) {
 return returnValue;
 }

 returnValue=task2.join();
 return returnValue;

Implement the writeCancelMessage() method to write a message when the26.
task is canceled:

 public void logCancelMessage(){
 System.out.printf("Task: Canceled task from %d to %d",
 start,end);
 }

Fork/Join Framework

[237]

Implement the main class of the example by creating a class named Main with a27.
main() method:

 public class Main {
 public static void main(String[] args) {

Create an array of 1000 numbers using the ArrayGenerator class:28.

 ArrayGenerator generator=new ArrayGenerator();
 int array[]=generator.generateArray(1000);

Create a TaskManager object:29.

 TaskManager manager=new TaskManager();

Create a ForkJoinPool object using the default constructor:30.

 ForkJoinPool pool=new ForkJoinPool();

Create a Task object to process the array generated before:31.

 SearchNumberTask task=new SearchNumberTask (array,0,1000,
 5,manager);

Execute the task in the pool asynchronously using the execute() method:32.

 pool.execute(task);

Shut down the pool using the shutdown() method:33.

 pool.shutdown();

Wait for the finalization of the tasks using the awaitTermination() method of34.
the ForkJoinPool class:

 try {
 pool.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write a message to the console indicating the end of the program:35.

 System.out.printf("Main: The program has finished\n");

Fork/Join Framework

[238]

How it works...
The ForkJoinTask class provides the cancel() method that allows you to cancel a task if
it hasn't been executed yet. This is a very important point. If the task has begun its
execution, a call to the cancel() method has no effect. The method receives a parameter as
a Boolean value called mayInterruptIfRunning. This name may make you think that, if
you pass the true value to the method, the task will be canceled even if it is running. The
Java API documentation specifies that, in the default implementation of the ForkJoinTask
class, this attribute has no effect. The tasks are only canceled if they haven't started their
execution. The cancellation of a task has no effect over the tasks that the cancelled task sent
to the pool. They continue with their execution.

A limitation of the fork/join framework is that it doesn't allow the cancellation of all the
tasks that are in ForkJoinPool. To overcome that limitation, you implemented the
TaskManager class. It stores all the tasks that have been sent to the pool. It has a method
that cancels all the tasks it has stored. If a task can't be canceled because it's running or has
finished, the cancel() method returns the false value, so you can try to cancel all the
tasks without being afraid of the possible collateral effects.

In the example, you have implemented a task that looks for a number in an array of
numbers. You divided the problem into smaller subproblems as the fork/join framework
recommends. You are only interested in one occurrence of the number, so when you find it,
you cancel the other tasks.

The following screenshot shows part of an execution of this example:

Fork/Join Framework

[239]

See also
The Creating a fork/join pool recipe in this chapter

6
Parallel and Reactive Streams

In this chapter, we will cover the following recipes:

Creating streams from different sources
Reducing the elements of a stream
Collecting the elements of a stream
Applying an action to every element of a stream
Filtering the elements of a stream
Transforming the elements of a stream
Sorting the elements of a stream
Verifying conditions in the elements of a stream
Reactive programming with reactive streams

Introduction
A stream in Java is a sequence of elements that can be processed (mapped, filtered,
transformed, reduced, and collected) in a pipeline of declarative operations using lambda
expressions in a sequential or parallel way. It was introduced in Java 8 and was one of the
most significant new features of that version, together with lambda expressions. They have
changed the way you can process big sets of elements in Java, optimizing the way the
language processes those elements.

Streams have introduced the Stream, DoubleStream, IntStream and LongStream
interfaces, some utility classes such as Collectors or StreamSupport, some functional-
like interfaces such as Collector, and a lot of methods in different classes such as the
stream() or parallelStream() methods in the Collection interface or the lines()
method in the Files class.

Parallel and Reactive Streams

[241]

Through the recipes of this chapter, you will learn how to effectively use streams in your
application, but before that let's see the most important characteristics of streams:

A stream is a sequence of data, not a data structure. Elements of data are
processed by the stream but not stored in it.
You can create streams from different sources, such as collections (lists, arrays
and so on), files, and strings, or by creating a class that provides the elements of
the stream.
You can't access an individual element of the streams. You define the source of
the stream and the operations you want to apply to its elements. Stream
operations are defined in a functional way, and you can use lambda expressions
in intermediate and terminal operations to define the actions you want to execute.
You can't modify the source of the stream. If, for example, you filter some
elements of the stream, you are skipping the elements on the stream and not in its
source.
Streams define two kinds of operations:

Intermediate operations: These operations always produce a new
stream with their results. They can be used to transform, filter, and sort
the elements of the stream.
Terminal operations: These operations process all the elements of the
stream to generate a result or a side-effect. After their execution, the
stream can't be used again.

A stream pipeline is formed by zero or more intermediate operations and a final
operation.
Intermediate operations can be as follows:

Stateless: Processing an element of the stream is independent of
the other elements. For example, filtering an element based on a
condition.
Stateful: Processing an element of the stream depends on the
other elements of the stream. For example, sorting the elements
of the stream.

Parallel and Reactive Streams

[242]

Laziness: Intermediate operations are lazy. They're not executed until the
terminal operation begins its execution. Java can avoid the execution of an
intermediate operation over an element or a set of elements of the stream if it
detects that it doesn't affect the final result of the operation.
Stream can have an infinite number of elements. There are operations such as
limit() or findFirst() that can be used to limit the elements used in the final
computation. As the intermediate operations are lazy, an unbounded stream can
finish its execution in a finite time.
Streams can only be used once. As we mentioned before, when the terminal
operation of a stream is executed, the stream is considered consumed, and it can't
be used again. If you need to process the same data again to generate different
results, you have to create a new Stream object from the same source. If you try
to use a consumed stream, you will get an exception.
You can process the elements of a stream sequentially or in a parallel way
without any extra effort. You can specify the mode of execution of a stream more
than once, but only the last time will be taken into account. You have to be careful
with the selected mode. Stateful intermediate operations won't use all the
possibilities of concurrency.

Java 9 has included a new kind of streams-the reactive streams-that allow you to
communicate information to producers and consumers in an asynchronous way. This
chapter presents nine recipes that will teach you how to create streams and use all their
intermediate and terminal operations to process big collections of data in a parallel and
functional way.

Creating streams from different sources
In this recipe, you will learn how to create streams from different sources. You have
different options, as the following:

The parallelStream() method of the Collection interface
The Supplier interface
A predefined set of elements
File and a directory
An array
A random number generator
The concatenation of two different streams

Parallel and Reactive Streams

[243]

You can create a Stream object from other sources (that will be described in the There's more
section), but we think that these are the more useful.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
In this recipe we'll implement an example where you will learn how to create streams from
the sources described earlier. Follow these steps to implement the example:

First, we'll implement some auxiliary classes that we will use in the example.1.
Create a class named Person with six attributes of different types: String, int,
double and Date:

 public class Person implements Comparable<Person> {

 private int id;
 private String firstName;
 private String lastName;
 private Date birthDate;
 private int salary;
 private double coeficient;

Create the methods to set and get the values of these attributes. Implement the2.
comparteTo() method to compare two Person objects. Let's consider that two
persons are the same it they have the same firstName and the same lastName

 public int compareTo(Person otherPerson) {
 int compareLastNames = this.getLastName().compareTo
 (otherPerson.getLastName());
 if (compareLastNames != 0) {
 return compareLastNames;
 } else {
 return this.getFirstName().compareTo
 (otherPerson.getFirstName());
 }
 }

Parallel and Reactive Streams

[244]

Then, create a class named PersonGenerator to create a random list of Person3.
objects. Implement a static method named generatePersonList() in this class ,
which receives the number of persons you want to generate and returns a
List<Person> object with the number of persons. Here, we include a version of
this method, but feel free to change it:

 public class PersonGenerator {

 public static List<Person> generatePersonList (int size) {
 List<Person> ret = new ArrayList<>();

 String firstNames[] = {"Mary","Patricia","Linda",
 "Barbara","Elizabeth","James",
 "John","Robert","Michael",
 "William"};
 String lastNames[] = {"Smith","Jones","Taylor",
 "Williams","Brown","Davies",
 "Evans","Wilson","Thomas",
 "Roberts"};

 Random randomGenerator=new Random();
 for (int i=0; i<size; i++) {
 Person person=new Person();
 person.setId(i);
 person.setFirstName(firstNames[randomGenerator
 .nextInt(10)]);
 person.setLastName(lastNames[randomGenerator
 .nextInt(10)]);
 person.setSalary(randomGenerator.nextInt(100000));
 person.setCoeficient(randomGenerator.nextDouble()*10);
 Calendar calendar=Calendar.getInstance();
 calendar.add(Calendar.YEAR, -randomGenerator
 .nextInt(30));
 Date birthDate=calendar.getTime();
 person.setBirthDate(birthDate);
 ret.add(person);
 }
 return ret;
 }

Now, create a class named MySupplier and specify that it implements the4.
Supplier interface parameterized with the String class:

 public class MySupplier implements Supplier<String> {

Parallel and Reactive Streams

[245]

Declare a private AtomicInteger attribute named counter and initialize it in5.
the constructor of the class:

 private final AtomicInteger counter;
 public MySupplier() {
 counter=new AtomicInteger(0);
 }

Implement the get() method defined in the Supplier interface. This method6.
will return the next element of the stream:

 @Override
 public String get() {
 int value=counter.getAndAdd(1);
 return "String "+value;
 }
 }

Now, create a class named Main and implement the main() method in it:7.

 public class Main {
 public static void main(String[] args) {

First, we'll create a Stream object from a list of elements. Create the8.
PersonGenerator class to create a list of 10,000 Person objects, and use the
parallelStream() method of the List object to create the Stream. Then, use
the count() method of the Stream object to get the number of elements of the
Stream:

 System.out.printf("From a Collection:\n");
 List<Person> persons=PersonGenerator.generatePersonList(10000);
 Stream<Person> personStream=persons.parallelStream();
 System.out.printf("Number of persons: %d\n",
 personStream.count());

Then, we'll create a Stream from a generator. Create an object of the MySupplier9.
class. Then, use the static method generate() of the Stream class, passing the
created object as a parameter to create the stream. Finally, use the parallel()
method to convert the stream created to a parallel stream, the limit() method to
get the first ten elements of the stream, and the forEach() method to print the
elements of the stream:

Parallel and Reactive Streams

[246]

 System.out.printf("From a Supplier:\n");
 Supplier<String> supplier=new MySupplier();
 Stream<String> generatorStream=Stream.generate(supplier);
 generatorStream.parallel().limit(10).forEach(s->
 System.out.printf("%s\n",s));

Then, we'll create a stream from a predefined list of elements. Use the static of()10.
method of the Stream class to create the Stream. This method receives a variable
list of parameters. In this case, we'll pass three String objects. Then, use the
parallel() method of the stream to convert it to a parallel one and the
forEach() method to print the values in the console:

 System.out.printf("From a predefined set of elements:\n");
 Stream<String> elementsStream=Stream.of("Peter","John","Mary");
 elementsStream.parallel().forEach(element ->
 System.out.printf("%s\n", element));

Now, we'll create a stream to read the lines of a file. First, create a11.
BufferedReader object to read the file you want to read. Then, use the lines()
method of the BufferedReader class to get a stream of String objects. Each
element of this stream will be a line from the file. Finally, use the parallel()
method to get a parallel version of the stream and the count() method to get the
number of elements of the Stream. We also have to close the BufferedReader
object:

 System.out.printf("From a File:\n");
 try (BufferedReader br = new BufferedReader(new
 FileReader("data\\nursery.data"));) {
 Stream<String> fileLines = br.lines();
 System.out.printf("Number of lines in the file: %d\n\n",
 fileLines.parallel().count());
 System.out.printf("********************************
 ************************\n");
 System.out.printf("\n");
 br.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

Parallel and Reactive Streams

[247]

Now, we'll create a Stream to process the contents of a folder. First, use the12.
list() method of the Files class to get a stream of Path objects with the
contents of the folder. Then, use the parallel() method of the Stream object to
convert it to a parallel stream and the count() method to count its elements.
Finally, in this case, we have to use the close() method to close the Stream:

 System.out.printf("From a Directory:\n");
 try {
 Stream<Path> directoryContent = Files.list(Paths.get
 (System.getProperty("user.home")));
 System.out.printf("Number of elements (files and
 folders):%d\n\n",
 directoryContent.parallel().count());
 directoryContent.close();
 System.out.printf("********************************
 ************************\n");
 System.out.printf("\n");
 } catch (IOException e) {
 e.printStackTrace();
 }

The next source we'll use is an Array. First, create an Array of strings. Then, use13.
the stream() method of the Arrays class to create a stream from the elements of
the array. Finally, use the parallel() method to convert the stream into a
parallel one and the forEach() method to print the elements of the stream to the
console:

 System.out.printf("From an Array:\n");
 String array[]={"1","2","3","4","5"};
 Stream<String> streamFromArray=Arrays.stream(array);
 streamFromArray.parallel().forEach(s->System.out.printf("%s : ",
 s));

Now, we'll create a stream of random double numbers. First, create a Random14.
object. Then, use the doubles() method to create a DoubleStream object. We'll
pass the number 10 as a parameter to that method, so the stream we're going to
create will have ten elements. Finally, use the parallel() method to convert the
stream into a parallel one, the peek() method to write each element to the
console, the average() method to calculate the average of the values of the
stream, and the getAsDouble() method to get the value stored in the Optional
object returned by the average() method:

Parallel and Reactive Streams

[248]

 Random random = new Random();
 DoubleStream doubleStream = random.doubles(10);
 double doubleStreamAverage = doubleStream.parallel().peek
 (d -> System.out.printf("%f :",d))
 .average().getAsDouble();

Finally, we'll create a stream concatenating two streams. First, we create two15.
streams of String objects using the of() method of the Stream class. Then, we
use the concat() method of the Stream class to concatenate those streams into a
unique one. Finally, we use the parallel() method of the Stream class to
convert the stream into a parallel one and the forEach() method to write all the
elements to the console:

 System.out.printf("Concatenating streams:\n");
 Stream<String> stream1 = Stream.of("1", "2", "3", "4");
 Stream<String> stream2 = Stream.of("5", "6", "7", "8");
 Stream<String> finalStream = Stream.concat(stream1, stream2);
 finalStream.parallel().forEach(s -> System.out.printf("%s : ",
 s));

How it works...
Let's see in detail all the methods we used in this example to create streams:

First, we used the parallelStream() method of the List class. In fact, this
method is defined in the Collection interface, so all the classes that implement
this interface, such as the ArrayList, LinkedList, or TreeSet classes
implement that method. You can use the stream() method to create a sequential
stream or the parallelStream() method to create a parallel one.
Then, we used an implementation of the Supplier interface: the MySupplier
class. The interface provides the get() method. This method is called each time
the stream needs an element to process. You can create a stream with an infinite
number of elements, so you should use a method that limits the number of
elements of the stream, such as the limit() method.
Then, we used the of()method of the Stream class. This is a static method that
receives a variable number of parameters and returns a Stream with those
parameters as elements.

Parallel and Reactive Streams

[249]

Then, we used the lines() method of the BufferedStream class. This method
returns a stream where each element is a line read from the BufferedStream.
We used this method to read all the lines of a file, but you can use it with other
kinds of BufferedReader.
Then, we used the list() method of the Files class. This method receives a
Path object representing a folder of your system and returns a Stream of Path
objects with the elements into that folder. You have to take into account that this
method is not recursive, so if the folder has one or more subfolders, it doesn't
process their content. As you will see later in the There's more section, the Files
class has other methods to work with streams.
Then, we used the stream() method of the Arrays class that receives an array
and returns a Stream with the elements of the array. If the array is of the double,
int, or long types, it returns a DoubleStream, IntStream, or LongStream
object. These are special kinds of streams that allow you to work with such
number types.
Then, we generated a stream with random numbers. We used the doubles()
method of the Random class. We passed to it the size of the Stream we wanted to
obtain, but you can also pass to it the minimum and maximum numbers you
want to obtain.
Finally, we used the concat() method of the Stream class that takes two
streams and returns one with the elements of both.

We also used some methods of the Stream class. Most of them will be described later in
more detail, but here we provide a basic introduction to them:

count(): This method returns the number of elements in the Stream. It's a
terminal operation and returns a long number.
limit(): This method receives a number as a parameter. If the stream has fewer
elements than the number, it returns a stream with all the elements. Otherwise, it
returns a stream with the number of elements specified in the parameter. It's an
intermediate operation.
forEach(): This method allows you to specify an action that will be applied to
each of the elements of the Stream. We used this terminal operation to write
some information to the console. We have used a lambda expression with this
purpose.

Parallel and Reactive Streams

[250]

peek(): This method is an intermediate operation that allows you to perform an
action over each of the elements of the stream and returns a stream with the same
elements. This method is usually used as a debugging tool. Take into account
that, like all intermediate operations, this is a lazy operation, so it will only be
executed over those elements that are requested by the terminal operation.
average(): This is a method that is declared in the IntStream, DoubleStream,
and LongStream streams. It returns an OptionalDouble value. The
OptionalDouble class represents a double number that can have a value or not.
It won't generate a value for an empty Stream.
parallel(): This method converts a sequential Stream into a parallel one. Most
of the streams created in this example are sequential, but we can convert them
into parallel ones using this method of the Stream class.

There's more...
The Java API includes other methods to create Stream objects. In this section, we
enumerate some of them:

The Files class provides more methods that create streams:
find(): This method returns the files contained in a folder, or in
any of its subfolders, which meet the criteria specified in a lambda
expression.
walk(): This method returns a stream of Path objects with the
contents of a folder and all its subfolders.

The Stream class also includes other static methods that allow you to create
streams:

iterate(): This method produces a stream whose elements are
generated by the application of a unary function to an initial
element. The first element of the stream is the initial element, the
second element, the result of applying the function to the initial
element, the third, the result of applying the function to the second
element, and so on.

Finally, the String class has the chars() method. This method returns an
IntStream with the values of the characters that forms the String.

Parallel and Reactive Streams

[251]

See also
Now that you have created a stream, you have to process its elements. All the recipes in this
chapter give you information about how to go about processing the elements of a stream.

Reducing the elements of a stream
MapReduce is a programming model used to process very large datasets in distributed
environments using a lot of machines working in a cluster. This programming model has
the following two operations:

Map: This operation filters and transforms the original elements into a form more
suitable to the reduction operation
Reduce: This operation generates a summary result from all the elements, for
example, the sum or the average of numeric values

This programming model has been commonly used in the functional programming world.
In the Java ecosystem, the Hadoop project of the Apache Software Foundation provides an
implementation of this model. The Stream class implements two different reduce
operations:

The pure reduce operation, implemented in the different versions of the
reduce() method that process a stream of elements to obtain a value
The mutable reduction implemented in the different versions of the collect()
method that process a stream of elements to generate a mutable data structure,
such as Collection or a StringBuilder.

In this recipe, you will learn how to use the different versions of the reduce() method to
generate a result from a stream of values. As you may have already imagined, the
reduce() method is a terminal operation in a Stream.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

Parallel and Reactive Streams

[252]

How to do it...
Follow these steps to implement the example:

First, we'll create some auxiliary classes that we will use later in the example.1.
Review the recipe, Creating streams from different sources, and include in this
example the Person and PersonGenerator classes used in it.
Then, create a class named DoubleGenerator. Implement a method named2.
generateDoubleList() to generate a list of double numbers. It receives two
parameters with the size of the list we'll generate and the highest value in the list.
It will generate a list of random double numbers:

 public class DoubleGenerator {

 public static List<Double> generateDoubleList(int size,
 int max) {
 Random random=new Random();
 List<Double> numbers=new ArrayList<>();

 for (int i=0; i<size; i++) {
 double value=random.nextDouble()*max;
 numbers.add(value);
 }
 return numbers;
 }

Implement a method named generateStreamFromList(). This method3.
receives a List of double numbers as a parameter and generates a
DoubleStream stream with the elements of the list. For that purpose, we will use
the DoubleStream.Builder class to construct the stream:

 public static DoubleStream generateStreamFromList(List<Double>
 list) {
 DoubleStream.Builder builder=DoubleStream.builder();

 for (Double number : list) {
 builder.add(number);
 }
 return builder.build();
 }

Create a class named Point with two double attributes, x and y, and the4.
methods to get() and set() its value. The code of this class is very simple, so it
won't be included.

Parallel and Reactive Streams

[253]

Create a class named PointGenerator with a method named5.
generatePointList(). This method receives the size of the list you want to
generate and returns a list of random Point objects:

 public class PointGenerator {
 public static List<Point> generatePointList (int size) {

 List<Point> ret = new ArrayList<>();
 Random randomGenerator=new Random();
 for (int i=0; i<size; i++) {
 Point point=new Point();
 point.setX(randomGenerator.nextDouble());
 point.setY(randomGenerator.nextDouble());
 ret.add(point);
 }
 return ret;
 }
 }

Now create the Main class with the main() method. First, we'll generate a List6.
of 10,000 double numbers using the DoubleGenerator class:

 public class Main {
 public static void main(String args[]) {

 List<Double> numbers = DoubleGenerator.generateDoubleList
 (10000, 1000);

The Stream class and the specialized DoubleStream, IntStream, and7.
LongStream classes implement some methods that are specialized reduce
operations. In this case, we'll generate a DoubleStream using the
DoubleGenerator class and use count(), sum(), average(), max() and
min() to obtain the number of elements, the sum of all the elements, the average
of all the elements, the maximum number in the stream, and the minimum
number in the stream. As we can only process the elements of a stream once, we
have to create a new stream per operation. Take into account that these methods
are only present in the DoubleStream, IntStream, and LongStream classes.
The Stream class only has the count() method. Some of these methods return
an optional object. Take into account this object could not have any value, so you
should check before obtaining the value:

Parallel and Reactive Streams

[254]

 DoubleStream doubleStream = DoubleGenerator
 .generateStreamFromList(numbers);
 long numberOfElements = doubleStream.parallel().count();
 System.out.printf("The list of numbers has %d elements.\n",
 numberOfElements);

 doubleStream = DoubleGenerator.generateStreamFromList(numbers);
 double sum = doubleStream.parallel().sum();
 System.out.printf("Its numbers sum %f.\n", sum);

 doubleStream = DoubleGenerator.generateStreamFromList(numbers);
 double average = doubleStream.parallel().average()
 .getAsDouble();
 System.out.printf("Its numbers have an average value of %f.\n",
 average);

 doubleStream = DoubleGenerator.generateStreamFromList(numbers);
 double max = doubleStream.parallel().max().getAsDouble();
 System.out.printf("The maximum value in the list is %f.\n",
 max);

 doubleStream = DoubleGenerator.generateStreamFromList(numbers);
 double min = doubleStream.parallel().min().getAsDouble();
 System.out.printf("The minimum value in the list is %f.\n",
 min);

Then, we'll use the first version of the reduce() method. This method receives as8.
parameter an associative BinaryOperator that receives two objects of the same
type and returns an object of that type. When the operation has processed all the
elements of the Stream, it returns an Optional object parameterized with the
same type. For example, we'll use this version to calculate the sum of both the
coordinates of a random list of Point objects:

 List<Point> points=PointGenerator.generatePointList(10000);
 Optional<Point> point=points.parallelStream().reduce((p1,p2) -> {
 Point p=new Point();
 p.setX(p1.getX()+p2.getX());
 p.setY(p1.getY()+p2.getY());
 return p;
 });
 System.out.println(point.get().getX()+":"+point.get().getY());

Parallel and Reactive Streams

[255]

Then, we'll use the second version of the reduce() method. It's similar to the9.
previous one, but in this case, in addition to the associative BinaryOperator
object, it receives the identity value for that operator (for example 0 for a sum or
1 for a product) and returns an element of the type we're working with. If the
stream has no values, the identity value will be returned. In this case, we use this
version of the reduce() method to calculate the total amount of money we need
to spend in salaries. We use the map() method to convert each Person object in
an int value (its salary) so our Stream object will have int values when it
executes the reduce() method. You will get more information about the map()
method in the Transforming the elements of a stream recipe:

 System.out.printf("Reduce, second version\n");
 List<Person> persons = PersonGenerator.generatePersonList
 (10000);
 long totalSalary=persons.parallelStream().map
 (p -> p.getSalary()).reduce(0, (s1,s2) -> s1+s2);
 System.out.printf("Total salary: %d\n",totalSalary);

Finally, we'll use the third version of the reduce() method. This version is used10.
when the type of result of the reduce operation is different from the type of
stream elements. We have to provide the identity value of the return type, an
accumulator that implements the BiFunction interfaces and will receive an
object of the return type, an element of the stream to generate a value of the
return type, and a combiner function that implements the BinaryOperator
interface and receives two objects of the return type to generate an object of that
type. In this case, we have used this version of the method to calculate the
number of persons with a salary higher than 50,000 in a list of random persons:

 Integer value=0;
 value=persons.parallelStream().reduce(value, (n,p) -> {
 if (p.getSalary() > 50000) {
 return n+1;
 } else {
 return n;
 }
 }, (n1,n2) -> n1+n2);
 System.out.printf("The number of people with a salary bigger
 that 50,000 is %d\n",value);

Parallel and Reactive Streams

[256]

How it works...
In this example, you learned how to use the different reduce operations provided by Java
streams. First, we used some specialized reduce operations provided by the DoubleStream,
IntStream and LongStream classes. These operations allow you to count the number of
elements of the stream, calculate the sum of all the elements of the stream, calculate the
average value of the elements of the stream, and calculate the highest and lowest value of
the elements of the stream. If you work with a generic Stream, you will only have the
count() method to count the elements of the stream.

Then we used the three versions of the reduce() method provided by the Stream class.
The first one receives only one parameter, a BinaryOperator. We specified that operator
as a lambda expression and you will normally do that, but you can also use an object of a
class that implements the BinaryOperator interface. That operator will receive two
elements of the stream and will have to generate a new element of the same type. For
example, we receive two Point objects and generate a new Point object. The operation
implemented by that BinaryOperator has to be associative, that is to say, the following
expression must be true:

(a op b) op c = a op (b op c)

Here op is our BinaryOperator.

This version of the reduce() method returns an Optional object; Optional because if the
stream has no elements, there won't be a result value to return and the Optional object will
be empty.

The second version of the reduce() method receives an identity value and a
BinaryOperator. The BinaryOperator has to be associative as in the other version of the
reduce() method. For the identity value, it has to be a true expression:

identity op a = a op identity = a

In this case, the reduce() method returns an element of the same type of elements of the
stream. If the stream has no elements, the identity value will be returned.

The last version of the reduce() method is used when we want to return a value of a type
different from the elements of the stream. In this case, the method has three parameters, an
identity value, an accumulator operator, and a combiner operator. The accumulator operator
receives a value of the return type and an element of the stream and generates a new object
of the return type.

Parallel and Reactive Streams

[257]

The combiner function receives two objects of the return type to calculate a new object of the
return type. The identity value is the identity value of the return type, and it has to verify the
following expression:

combiner (u, accumulator(identity, t)) == accumulator(u, t)

Here, u is an object of the return type and t an element of the stream.

The following screenshot shows the output of an execution of the example:

Parallel and Reactive Streams

[258]

There's more...
We have implemented all the parameters of the reduce() method as lambda expressions.
The first two versions of the reduce() method receive a BinaryOperator and the third
version receives a BiFunction and a BinaryOperator. If you want to reuse a complex
operator, you can implement a class that implements the necessary interface and use an
object of that class as the parameter to these and to the other methods of the Stream class.

See also
The Creating streams from different sources recipe in this chapter

Collecting the elements of a stream
Java streams allow you to process a sequence of elements in a sequential or parallel way.
You can create a stream from different data sources, as a Collection, a File or an Array
and apply to its elements a sequence of operations normally defined with lambda
expressions. Those operations can be divided into two different classes:

Intermediate operations: These operations return other Stream as a result and
allow you to filter, transform, or sort the elements of the stream
Terminal operations: These operations return a result after processing the
elements of the stream

A stream has a source, zero or more intermediate operations, and a terminal operation. The
two most important terminal operations are:

The reduce operation, which allows you to obtain a unique result after processing
the elements of the stream. This result usually is a summary of the processed
data. The Reducing the elements of a stream recipe explains you how to use reduce
operations in Java.
The collect operation that allows you to generate a data structure with the results
of processing the elements of the stream. This is also called a mutable reduction
operation as the result is a mutable data structure.

In this recipe, we will learn how to execute collect operations in Java streams with the
different versions of the collect() method and the auxiliary Collectors class.

Parallel and Reactive Streams

[259]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, let's implement some auxiliary classes we will use in the example.1.
Implement the Person class to store some basic data about a person and the
PersonGenerator class to generate a random list of persons. You can check the
Creating streams from different sources recipe to see the source code of both the
classes.
In that class, override the toString() method with the following code, which2.
returns the first name and the last name of the person:

 @Override
 public String toString() {
 return firstName + " " + lastName;
 }

Then, create a class named Counter with two attributes: a String attribute3.
named value and an int attribute named counter. Generate the methods to
get() and set() the values of both attributes. The source code of this class is
very simple, so it won't be included.
Now, create the Main class with the main() method. Then, create a random List4.
of Person objects using the PersonGenerator class:

 public class Main {

 public static void main(String args[]) {
 List<Person> persons = PersonGenerator.generatePersonList
 (100);

Parallel and Reactive Streams

[260]

The first collect operation we will implement will generate a Map where the keys5.
will be first name of the person and the values will be a list with all the persons
with that first name. To implement this, we use the collect() method of the
Stream class and the Collectors.groupingByConcurrent collector. Then, we
process all the keys (first names) of the map using the forEach() method and
print in the console the number of persons with that key: As parameter of the
groupingByConcurrent() method we pass a method reference. We can use this
mechanism in a lambda expression if it only calls to an existing method as in this
case.

 Map<String, List<Person>> personsByName = persons
 .parallelStream().collect(Collectors
 .groupingByConcurrent(Person::getFirstName));
 personsByName.keySet().forEach(key -> {
 List<Person> listOfPersons = personsByName.get(key);
 System.out.printf("%s: There are %d persons with that name\n",
 key, listOfPersons.size());

The second collect operation we will implement will concatenate all the names of6.
all the persons in the stream. To implement this operation, we use the
toString() method of the Person object, the collect() method, of the
Stream class, and the joining() method of the Collectors class that
concatenates all the elements of the stream separated by the specified char
sequence:

 String message = persons.parallelStream().map
 (p -> p.toString()).collect(Collectors.joining(","));
 System.out.printf("%s\n", message);

With the next collect operation we'll implement, we will separate the persons on7.
the stream in two groups. The first one will have the persons with a salary greater
than 50,000 and the second one will have the others. The result of the operation
will be a Map object with a Boolean value as the key and a List of persons as the
value. To implement this, we will use the collect() method of the Stream class
and the partitionBy() method of the Collectors class that receives as a
parameter a Boolean expression that allows you two divide the elements of the
stream in true or false. Then we use the forEach() method to write the
number of elements in the generated lists:

 Map<Boolean, List<Person>> personsBySalary = persons
 .parallelStream().collect(Collectors
 .partitioningBy(p -> p.getSalary() > 50000));

Parallel and Reactive Streams

[261]

 personsBySalary.keySet().forEach(key -> {
 List<Person> listOfPersons = personsBySalary.get(key);
 System.out.printf("%s: %d \n", key, listOfPersons.size());
 });

Then, we'll implement a collect operation that will generate another Map. In this8.
case, the keys will be the first name of the persons and the value will be the last
names of the people with the same first name concatenated in one String. To
implement this behavior, we have use the collect() method of the Stream
class and the toConcurrentMap() method of the Collectors class. We pass as
parameters to that method a lambda expression to obtain the key, a lambda
expression to obtain the value, and a lambda expression to resolve the situations
where the key exists in the final Map. Then, we use the forEach() method to
process all the keys and write its associated values:

 ConcurrentMap<String, String> nameMap = persons
 .parallelStream().collect(Collectors
 .toConcurrentMap(p -> p.getFirstName(),
 p -> p.getLastName(),
 (s1, s2) -> s1 + ", " + s2));
 nameMap.forEach((key, value) -> {
 System.out.printf("%s: %s \n", key, value);
 });

Until now, in all the examples of the collect() method we have implemented,9.
we used the version of that method that receives an implementation of the
Collector interface. But there's another version of the collect() method. With
this version of the collect() method, we will implement a collect operation that
generates a List with the persons who have a salary greater than 50,000. We pass
to the collect() method an expression to create the List (the List::new
method), a lambda expression to process a list and an element of the stream, and
an expression to process the two lists (the List::addAll method):

 List<Person> highSalaryPeople = persons
 .parallelStream().collect(
 ArrayList::new, (list, person) -> {
 if (person.getSalary() > 50000) {
 list.add(person);
 }
 },
 ArrayList::addAll
);
 System.out.printf("High Salary People: %d\n",
 highSalaryPeople.size());

Parallel and Reactive Streams

[262]

Finally, we'll implement an example that generates a ConcurrentHashMap with10.
the first names that appears in the list of People objects and the number of times
that each name appears. We will use the first name of the persons as key and
Counter objects as values. The first parameter of the collect method will create a
new ConcurrentHashMap object. The second parameter is an implementation of
the BiConsumer interface that receives as parameters a ConcurrentHashMap
and a Person. First, we use the computeIfPresent() method of the hash to
increment the Counter of the person if the person exists. Then, we use the
computeIfAbsent() method of the hash to insert a new person name if it
doesn't exists. The third argument of the collect() method is an
implementation of the BiConsumer interface that receives two
ConcurrentHashMap objects and we use the merge() method to process all the
elements of the second hash and insert them in the first hash if they are not
present or increment the counters if they are.

 System.out.printf("Collect, second example\n");
 ConcurrentHashMap<String, Counter> peopleNames = persons
 .parallelStream().collect(
 ConcurrentHashMap::new, (hash, person) -> {
 hash.computeIfPresent(person.getFirstName(), (name,
 counter) -> {
 counter.increment();
 return counter;
 });
 hash.computeIfAbsent(person.getFirstName(), name -> {
 Counter c=new Counter();
 c.setValue(name);
 return c;
 });
 },
 (hash1, hash2) -> {
 hash2.forEach (10, (key, value) -> {
 hash1.merge(key, value, (v1,v2) -> {
 v1.setCounter(v1.getCounter()+v2.getCounter());
 return v1;
 });
 });
 });

 peopleNames.forEach((name, counter) -> {
 System.out.printf("%s: %d\n", name, counter.getCounter());
 });

Parallel and Reactive Streams

[263]

How it works...
As we mentioned in the introduction of this recipe, the collect() method allows you to
do a mutable reduction of the elements of a Stream. We call it a mutable reduction because
the final result of the stream will be a mutable data structure, such as Map or List. The
Stream class of the Java Concurrency API provides two versions of the collect()
method.

The first one receives only one parameter that is an implementation of the Collector
interface. This interface has seven methods, so you normally won't implement your own
collectors. Instead of this, you will use the utility class Collectors, which has a lot of
methods that return ready-to-use Collector objects for your reduce operations. In our
example, we have used the following methods of the Collectors class:

groupingByConcurrent(): This method returns a Collector object that
implements a group by operating with the elements of Stream in a concurrent
way, generating Map as the resultant data structure. It receives as parameter an
expression to obtain the value of the key used in the map from the element of the
stream. It generates Map where the keys will be of the type returned by the
parameter expression and the value will be a List of elements of the stream.
joining(): This method returns Collector that concatenates the elements of
the stream into String. You can specify three CharSequence objects with a
separator for the elements, a prefix of the final String, and a suffix of the final
String.
partitioningBy(): This method returns Collector similar to the first one. It
receives as parameter a Boolean expression with the elements of Stream and
organizes the elements of the stream in two groups: the ones that meet the
expressions and the ones that don't. The final result will be Map with a Boolean
key and List of the type of elements of the stream as value.
toConcurrentMap(): This method returns Collector that generates
ConcurrentMap in a concurrent way. It receives three parameters:

An expression to generate the key from an element of the stream
An expression to generate the value from an element of the stream
An expression to generate a value from two values when there are
two or more elements with the same key

Parallel and Reactive Streams

[264]

Collector has a set of Characteristics that define its behavior and can be defined or
not for a specific collector. For us, the most important is the CONCURRENT one that indicates
if the collector can work in a concurrent way or not. In this case, we can't take advantage of
our multicore processor by creating only a parallel stream. If we use a collect operation with
Collector, we have to also take into account the value of the CONCURRENT characteristic of
that Collector. We will only have a concurrent reduction if the next three conditions are
true:

The Stream is parallel (we have used parallelStream() of the parallel()
methods in the stream)
The collector has the CONCURRENT characteristic
Either the stream is unordered, or the collector has the UNORDERED characteristic

In our case, groupingByConcurrent() and toConcurrentMap() return collectors which
have the CONCURRENT characteristic and the joining() and partitionBy() methods
return collectors that don't have such characteristics.

However, there's another version of the collect() method that can be used with parallel
streams. This version of the collect() method receives the following three parameters:

A supplier function that generates a data structure of the type of the final result
of the collect operation. With parallel streams, this function will be called as
many times as there are threads executing the operation.
An accumulator function that receives a data structure and an element of the
stream and makes the process of the element.
A combiner function that receives two data structures and generates a unique
data structure of the same type.

You can use lambda expressions to implement these functions, but you can also implement
the Supplier interface for the supplier function or the BiConsumer interface for the
accumulator and combiner functions (always parameterized with the adequate data types).
You can also use method references (Class::Method) if the input and output parameters
are adequate. For example, we have used the List::new reference as the supplier function
and the List::addAll method as the combiner function. We could use the List::add
method as the accumulator function. There are more methods you can use as parameters to
the collect() method.

Parallel and Reactive Streams

[265]

The following screenshot shows the output of the groupingByConcurrent() operation:

The following screenshot shows the output of the toConcurrentMap() operation:

Parallel and Reactive Streams

[266]

There's more...
The Collectors class has many more methods that return Collector objects that can be
used in the collect() method. The following are the most interesting:

toList(): This method returns Collector that groups all the elements of
Stream into List.
toCollection(): This method returns Collector that groups all the elements
of Stream into Collection. This method returns as parameter an expression
that creates Collection, which will be used internally by Collector and
returned at the end of its execution.
averagingInt(), averagingLong(), and averagingDouble(): These
methods return Collector that calculates the average of int, long, and double
values, respectively. They receive as parameters an expression to convert an
element of the stream into int, long, or double. The three methods return a
double value.

See also
The Creating streams from different sources and Reducing the elements of a
stream recipes in this chapter

Applying an action to every element of a
stream
In this recipe, you will learn how to apply an action to all the elements of the stream. We
will use three methods: two terminal operations, the forEach() and forEachOrdered(),
and an intermediate operation, the peek() method.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

Parallel and Reactive Streams

[267]

How to do it...
Follow these steps to implement the example:

First, we will implement some auxiliary classes we will use in the example.1.
Create a class named Person with the basic characteristics of a person. Check the
Creating streams from different sources recipe to see the source code of this class.
As we'll work with methods that depend on the order of the elements of the2.
stream, we have to override some methods in the Person class. First, we'll
override the compareTo() method that compares two persons. We'll create a
static Comparator object using the Comparator interface to compare two
Person objects using their first name and last name. Then, we'll use that
comparator in the compareTo() method:

 private static Comparator<Person> comparator=Comparator
 .comparing(Person::getLastName)
 .thenComparing(Person::getFirstName);

 @Override
 public int compareTo(Person otherPerson) {
 return comparator.compare(this, otherPerson);
 }

Then, we override the equals() method that determines if two Person objects3.
are equal. As we made in the compareTo() method, we use the Comparator
static object we have created before.

 @Override
 public boolean equals(Object object) {
 return this.compareTo((Person)object)==0;
 }

Finally, we override the hashCode() method that calculates a hash value for a4.
Person object. In Java, equal objects must produce the same hash code, so we
have to override this method and generate the hash code of a Person object
using the first name and last name attributes and the hash() method of the
Objects class:

 public int hashCode() {
 String sequence=this.getLastName()+this.getFirstName();
 return sequence.hashCode();
 }

Parallel and Reactive Streams

[268]

In this example, we will also use the PersonGenerator and DoubleGenerator5.
classes used in the Creating streams from different sources recipe.
Now, create the Main class with the main() method. First, we create a List of6.
ten random Person objects:

 public class Main {

 public static void main(String[] args) {
 List<Person> persons=PersonGenerator.generatePersonList(10);

Then, we'll use the forEach() method to write the names of all the persons of7.
the generated list. The forEach() method receives as parameter the expression
we want to apply to each element. In our case, we use a lambda expression to
write the information to the console:

 persons.parallelStream().forEach(p -> {
 System.out.printf("%s, %s\n", p.getLastName(),
 p.getFirstName());
 });

Then, you'll learn how to apply an action to each element in an ordered way.8.
First, we create a list of random Double numbers using the DoubleGenerator
class. Then, we create a parallel stream, sort the elements of the stream using the
sorted() method, and then use the forEachOrdered() method to write the
numbers to the console in an ordered way:

 List<Double> doubles= DoubleGenerator.generateDoubleList(10, 100);
 System.out.printf("Parallel forEachOrdered() with numbers\n");
 doubles.parallelStream().sorted().forEachOrdered(n -> {
 System.out.printf("%f\n",n);
 });

Now, let's see what happens if you sort the elements of the stream but don't use9.
the forEachOrdered() method. Repeat the same sentence as before but use the
forEach() method instead:

 System.out.printf("Parallel forEach() after sorted()
 with numbers\n");
 doubles.parallelStream().sorted().forEach(n -> {
 System.out.printf("%f\n",n);
 });

Parallel and Reactive Streams

[269]

Then, we'll test how the forEachOrdered() method works with a stream of10.
Person objects:

 persons.parallelStream().sorted().forEachOrdered(p -> {
 System.out.printf("%s, %s\n", p.getLastName(),
 p.getFirstName());
 });

Finally, let's test the peek() method. This method is similar to the forEach()11.
method, but it's an intermediate operation. It's normally used for log purposes:

 doubles
 .parallelStream()
 .peek(d -> System.out.printf("Step 1: Number: %f\n",d))
 .peek(d -> System.out.printf("Step 2: Number: %f\n",d))
 .forEach(d -> System.out.printf("Final Step: Number: %f\n",d));

How it works...
In this recipe you learnt how to use three methods to process all the elements of a stream
and apply an action to them. These methods are:

forEach(): This is a terminal operation that applies an action to all the elements
of Stream and returns a void value. It receives as parameter the action to apply
to the elements defined as a lambda expression or as an implementation of the
Consumer interface. There's no guarantee about the order in which the action will
be applied to the elements of a parallel stream.
forEachOrdered(): This is a terminal operation that applies an action to all the
elements of Stream in the order of the stream, if the stream is an ordered stream,
and returns a void value. You can use this method after the sorted() method.
You first sort the elements of the stream with the sorted() method and then
apply the action in an ordered way using the forEachOrdered() method. This
behavior is guaranteed with parallel streams too, but its performance will be
worse than the forEach() method with unordered streams.
peek(): This is an intermediate operation that returns Stream with the same
elements of the stream that call the method and applies the action specified as a
parameter to all the elements consumed from the stream. The action applied to
the elements is specified as a lambda expression or as an implementation of the
Consumer interface. Take into account that, as the intermediate operations are
lazy, the operation will only be applied to the elements consumed by the stream
when the terminal operation is executed.

Parallel and Reactive Streams

[270]

There's more...
Take into account that if you use the sorted method, you have to provide Comparator that
can be applied to the elements you want to sort or the elements of the stream must
implement the Comparable interface. In our case, the Person class implements that
interface and the compareTo() method to sort the elements of the stream according to their
first and last names.

See also
The Creating streams from different sources, Reducing the elements of a stream
and Sorting the elements of a stream recipes in this chapter

Filtering the elements of a stream
One of the most commons actions you will apply to a stream will be the filtering operation
that selects the elements that continue with the processing. In this recipe, you will learn the
different methods provided by the Stream class to select the elements of a stream.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, we'll implement some auxiliary classes we will use in the example. First,1.
implement the Person class that stores the basic attributes of a person, and the
PersonGenerator class that generates a List of random Person objects. Please,
check the recipe Apply an action to all the elements of a stream to see the source code
of both the classes.

Parallel and Reactive Streams

[271]

Then, we'll implement the Main class with the main() method. First, create a2.
List of random Person objects using the PersonGenerator class. Use the
forEach() method to print the generated elements:

 public class Main {
 public static void main(String[] args) {
 List<Person> persons=PersonGenerator
 .generatePersonList(10);
 persons.parallelStream().forEach(p-> {
 System.out.printf("%s, %s\n", p.getLastName(),
 p.getFirstName());
 });

Then, we'll eliminate the duplicate objects using the distinct() method. Use3.
the forEach() method to write the elements that pass the filter:

 persons.parallelStream().distinct().forEach(p-> {
 System.out.printf("%s, %s\n", p.getLastName(),
 p.getFirstName());
 });

Then, we'll test the distinct() method with an Array of numbers. Create an4.
array of numbers repeating some of them. Convert them to a List using the
asList() method of the Arrays class. Create a parallel stream with the
parallelStream() method, convert the stream into an IntStream stream with
the mapToInt() method, use the distinct() method to delete the repeated
elements, and finally use the forEach() method to write the final elements to
the console:

 Integer[] numbers={1,3,2,1,2,2,1,3,3,1,1,3,2,1};
 Arrays.asList(numbers).parallelStream().mapToInt(n -> n)
 .distinct().forEach(n -> {
 System.out.printf("Number: %d\n", n);
 });

Parallel and Reactive Streams

[272]

Now, we'll get the persons of the random person list with a salary lower than5.
3,000 using the filter method and a predicate expressed as a lambda expression
with that condition. As with the other examples, use the forEach() method to
write the resultant elements:

 persons.parallelStream().filter(p -> p.getSalary() < 30000)
 .forEach(p -> {
 System.out.printf("%s, %s\n", p.getLastName(),
 p.getFirstName());
 });

Then, we'll test the filter() method with an IntStream getting the numbers6.
less than two:

 Arrays.asList(numbers).parallelStream().mapToInt(n -> n)
 .filter(n -> n<2).forEach(n-> {
 System.out.printf("%d\n", n);
 });

Now, we'll use the limit() method to limit the number of elements in the7.
stream. For example, create a parallel stream from the random list of persons,
convert them into a DoubleStream with the mapToDouble() method, and get
the first five elements using the limit() method:

 persons.parallelStream().mapToDouble(p -> p.getSalary())
 .sorted().limit(5).forEach(s-> {
 System.out.printf("Limit: %f\n",s);
 });

Finally, we'll use the skip() method to ignore a number of elements of the8.
stream. Create a parallel stream from the random list of persons, convert them
into a DoubleStream with the mapToDouble() method, and ignore the first five
elements using the skip() method:

 persons.parallelStream().mapToDouble(p -> p.getSalary())
 .sorted().skip(5).forEach(s-> {
 System.out.printf("Skip: %f\n",s);
 });

Parallel and Reactive Streams

[273]

How it works...
In this recipe we have used four methods to filter the elements in a stream. These methods
are:

distinct(): This method returns a stream with the distinct elements of the
current stream according to the equals() method of the elements of the Stream
class. In our case, we have tested this method with Person objects and int
numbers. We have implemented the equals() and hashCode() methods in the
Person class. If we don't do this, the equals() method will only return true if
the two compared objects hold the same reference. Take into account that this
operation is a stateful operation, so it won't get a good performance with parallel
streams (as the Java documentation reflects, '... under parallel computation, some
pipelines containing stateful intermediate operations may require multiple passes
on the data or may need to buffer significant data...').
filter(): This method receives a Predicate as parameter. This predicate can
be expressed as a lambda expression that returns a boolean value. The
filter() method returns a stream with the elements that make the Predicate
true.
limit(): This method receives an int value as a parameter and returns a stream
with no more than as many number of elements. The performance of this method
can also be bad with ordered parallel streams, especially when the number of
elements you want to get is big, because the method will return the first elements
of the stream and that will imply additional computation. This circumstance
doesn't occur with unordered streams because in that case, it doesn't matter what
elements are returned.
skip(): This method returns a stream with the elements of the original stream
after discarding the first elements. The number of discarded elements is specified
as the parameter of this method. This method has the same performance
problems as with the limit() method.

Parallel and Reactive Streams

[274]

There's more...
The stream class also has other two methods that can be used to filter the elements of a
stream:

dropWhile(): This method receives a Predicate expression as the parameter. It
has a different behavior with ordered and unordered streams. With ordered
streams, the method deletes the first elements that match the predicate from the
stream. It deletes elements when the elements match the predicate. When it finds
an element that doesn't match the predicate, it stops deleting the elements and
returns the rest of the stream. With unordered streams, its behavior is not
deterministic. It deletes a subset of elements that match the predicate but is not
specified what subset of elements it will delete. As with the other methods, it may
have a bad performance with parallel ordered streams.
takeWhile(): This method is equivalent to the previous one, but it takes the
elements instead of deleting them.

See also
The Creating streams from different sources, Reducing the elements of a stream and
Collecting the elements of a stream recipes in this chapter

Transforming the elements of a stream
Some of the most useful intermediate operations you can use with streams are those that
allow you to transform the elements of the stream. These operations receive elements of a
class and return the elements of a different class. You can even change the type of stream
and generate an IntStream, LongStream, or DoubleStream from Stream.

In this recipe, you will learn how to use the transforming intermediate operations provided
by the Stream class to convert its elements into a different class.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

Parallel and Reactive Streams

[275]

How to do it...
Follow these steps to implement the example:

First, we'll implement some auxiliary classes we will use in the example. First,1.
implement the Person class, which stores the basic attributes of a person, and the
PersonGenerator class, which generates a List of random Person objects.
Please, check the recipe Apply an action to all the elements of a stream to see the
source code of both the classes.
Create a class named BasicPerson. This class will have a String attribute2.
named name and a long attribute named age. Create the methods to get and set
the value of both the attributes. As the source code of this class is very simple, it
won't be included here.
Create another auxiliary class named FileGenerator. This class will have a3.
method named generateFile() that receives the number of lines in the
simulated file and returns its content as a List of String:

 public class FileGenerator {
 public static List<String> generateFile(int size) {
 List<String> file=new ArrayList<>();
 for (int i=0; i<size; i++) {
 file.add("Lorem ipsum dolor sit amet,
 consectetur adipiscing elit. Morbi lobortis
 cursus venenatis. Mauris tempus elit ut
 malesuada luctus. Interdum et malesuada fames
 ac ante ipsum primis in faucibus. Phasellus
 laoreet sapien eu pulvinar rhoncus. Integer vel
 ultricies leo. Donec vel sagittis nibh.
 Maecenas eu quam non est hendrerit pu");
 }
 return file;
 }
 }

Then, create the Main class with the main() method. First, create a list of random4.
Person objects using the PersonGenerator class:

 public class Main {

 public static void main(String[] args) {

 // Create list of persons
 List<Person> persons = PersonGenerator.generatePersonList(100);

Parallel and Reactive Streams

[276]

Then, we'll use the mapToDouble() method to convert the stream of Person5.
objects into DoubleStream of double values. Create a parallel stream using the
parallelStream() method and then use the mapToDouble() method, passing
as parameter a lambda expression that receives a Person object and returns its
salary, which is a double number. Then use the distinct() method to get the
unique values and the forEach() method to write them to the console. We also
get the number of different elements written using the count() method:

 DoubleStream ds = persons.parallelStream().mapToDouble
 (p -> p.getSalary());
 ds.distinct().forEach(d -> {
 System.out.printf("Salary: %f\n", d);
 });
 ds = persons.parallelStream().mapToDouble(p -> p.getSalary());
 long size = ds.distinct().count();
 System.out.printf("Size: %d\n", size);

Now, we'll transform the Person objects of the stream into BasicPerson objects.6.
Create the stream using the parallelStream() method and use the map()
method to transform the objects. This method receives as parameter a lambda
expression that receives a Person object, creates a new BasicPerson object, and
establishes the value of its attributes. Then, we write the values of the attributes
of the BasicPerson object using the forEach() method:

 List<BasicPerson> basicPersons = persons.parallelStream().map
 (p -> {
 BasicPerson bp = new BasicPerson();
 bp.setName(p.getFirstName() + " " + p.getLastName());
 bp.setAge(getAge(p.getBirthDate()));
 return bp;
 }).collect(Collectors.toList());

 basicPersons.forEach(bp -> {
 System.out.printf("%s: %d\n", bp.getName(), bp.getAge());
 });

Parallel and Reactive Streams

[277]

Finally, we'll learn how to manage the situations where an intermediate7.
operation returns Stream. In this case, we'll work with a Stream of streams, but
we can concatenate all these Stream objects into a unique Stream using the
flatMap() method. Generate List<String> with 100 elements using the
FileGenerator class. Then, create a parallel stream with the
parallelStream() method. We'll split each line to get its words using the
split() method, and with the of() method of the Stream class, we convert the
resultant Array into Stream. If we use the map() method, we are generating
a Stream of streams, but using the flatMap() method we'll get a unique Stream
of String objects with all the words of the whole List. Then, we get the words
with a length greater than zero with the filter() method, sort the stream with
the sorted() method, and collect it to Map using the
groupingByConcurrent() method where the keys are the words and the values
are the number of times each word appears in the stream:

 List<String> file = FileGenerator.generateFile(100);
 Map<String, Long> wordCount = file.parallelStream()
 .flatMap(line -> Stream.of(line.split("[,.]")))
 .filter(w -> w.length() > 0).sorted()
 .collect(Collectors.groupingByConcurrent(e -> e, Collectors
 .counting()));

 wordCount.forEach((k, v) -> {
 System.out.printf("%s: %d\n", k, v);
 });

Finally, we have to implement the getAge() method used previously in the8.
code. This method receives the date of birth of a Person object and returns its
age:

 private static long getAge(Date birthDate) {
 LocalDate start = birthDate.toInstant()
 .atZone(ZoneId.systemDefault()).toLocalDate();
 LocalDate now = LocalDate.now();
 long ret = ChronoUnit.YEARS.between(start, now);
 return ret;
 }

Parallel and Reactive Streams

[278]

How it works...
In this recipe you learnt how to convert the elements of the stream using an intermediate
operation and an expression that makes the conversion between the source and the
destination types. We used three different methods in our example:

mapToDouble(): We used this method to convert Stream of objects into
DoubleStream with double numbers as elements. This method receives as
parameter a lambda expression or an implementation of the ToDoubleFunction
interface. This expression receives an element of Stream and has to return a
double value.
map(): We can use this method when we have to convert the elements of Stream
to a different class. For example, in our case, we convert the Person class to a
BasicPerson class. This method receives as parameter a lambda expression or
an implementation of the Function interface. This expression must create the
new object and initialize its attributes.
flatMap(): This method is useful in a more complex situation when you have to
work with a Stream of Stream objects and you want to convert them to a unique
Stream. This method receives as parameter a lambda expression or an
implementation of the Function interface as the map() function, but in this case,
this expression has to return a Stream object. The flatMap() method will
automatically concatenate all those streams into a unique Stream.

There's more...
The Stream class provides other methods to transform the elements of a Stream:

mapToInt(), mapToLong(): These methods are identical to the mapToDouble()
method, but they generate IntStream and LongStream objects, respectively.
flatMapToDouble(), flatMapToInt(), flatMapToLong(): These methods are
identical to the flatMap() method, but they work with DoubleStream,
IntStream, and LongStream, respectively.

See also
The Creating streams from different sources, Reducing the elements of a stream and
Collecting the elements of a stream recipes in this chapter

Parallel and Reactive Streams

[279]

Sorting the elements of a stream
Another typical operation you will want to do with a Stream is sorting its elements. For
example, you may want to sort the elements of the Stream by name, postal code, or any
other numeric value.

With streams, we have other considerations with the so-called encounter order. Some
streams may have a defined encounter order (it depends on the source of the Stream).
Some operations work with the elements of the stream in its encountered ordered, such as
limit(), skip(), and others. This makes that parallel computation for this methods
doesn't give us good performance. In these cases, you can speed-up the execution of these
methods by deleting the ordering constraint.

In this recipe, you will learn how to sort the elements of Stream and how to delete the
ordering constraint in situations where we don't need the encounter order of Stream.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, we'll implement some auxiliary classes we will use in the example. First,1.
implement the Person class, which stores the basic attributes of a person, and the
PersonGenerator class, which generates a List of random Person objects.
Please, check the recipe Apply an action to all the elements of a stream to see the
source code of both the classes.
Now, implement the Main class with the main() method. First, we'll create an2.
Array of int numbers. Then, we'll create a parallel stream with the
parallelStream() method from this array, use the sorted() method to sort
the elements of the array, and use the forEachOrdered() method to write the
elements in an ordered way. Take into account that this operation won't use all
the power of our multi-core processor as it has to write the elements in the
specified order:

Parallel and Reactive Streams

[280]

 public class Main {
 public static void main(String args[]) {
 int[] numbers={9,8,7,6,5,4,3,2,1,2,3,4,5,6,7,8,9};
 Arrays.stream(numbers).parallel().sorted().forEachOrdered
 (n -> {
 System.out.printf("%d\n", n);
 });

Now, let's try the same principles with a Stream of Person objects. Create a list3.
of 10 random Person objects using the PersonGenerator class and use the
same methods, sorted() and forEachOrdered(), to see how the persons are
written in an ordered way:

 List<Person> persons=PersonGenerator.generatePersonList(10);
 persons.parallelStream().sorted().forEachOrdered(p -> {
 System.out.printf("%s, %s\n",p.getLastName(),p.getFirstName());
 });

Finally, we'll see how to eliminate the encounter order of a data structure using4.
the unordered() method. First, we'll create TreeSet from our List of random
Person objects. We use TreeSet because it orders the elements internally. Then,
we make a loop to repeat the operations ten times and see how there's a
difference between the ordered and the unordered operations:

 TreeSet<Person> personSet=new TreeSet<>(persons);
 for (int i=0; i<10; i++) {

Then, we create a stream from PersonSet using the stream() method, convert5.
it to parallel with the parallel() method, get the first element with the
limit() method, and return the Person object, collecting it to a list and getting
the first element:

 Person person= personSet.stream().parallel().limit(1)
 .collect(Collectors.toList()).get(0);
 System.out.printf("%s %s\n", person.getFirstName(),
 person.getLastName());

Now, we perform the same operation but remove the ordered constraint with the6.
unordered() method between the stream() and parallel() methods:

 person=personSet.stream().unordered().parallel().limit(1)
 .collect(Collectors.toList()).get(0);
 System.out.printf("%s %s\n", person.getFirstName(),
 person.getLastName());

Parallel and Reactive Streams

[281]

How it works...
There are Stream objects that may have an encounter order depending on its source and
the intermediate operations you have applied before. This encounter order imposes a
restriction about the order in which the elements must be processed by certain methods. For
example, if you use the limit() or skip() methods in Stream with an encounter order,
they will get and ignore the first elements according to that encounter order. There are other
operations, such as the forEach() method, that don't take into account the encounter
order. If you apply the same operations to a stream with an encounter order, the result will
always be the same. If the stream doesn't have an encounter order, the results may vary.

When you work with sequential streams, the encounter order doesn't have any impact on
the performance of the application, but with parallel streams it can affect it greatly.
Depending on the operations, it would be necessary to process more than once the elements
of Stream or to store in a buffer a big amount of data. In this case, removing the encounter
order using the unordered() method, as we did in this recipe, will significantly increase
the performance of the application.

On the other hand, the sorted() method sorts the elements of the Stream. If you use this
method, the elements of Stream must implement the Comparable interface. Otherwise,
you can pass a Comparator as a parameter that will be used to sort the elements. If you use
this method, you are creating an ordered stream, so all the things explained before to the
streams with an encounter order are applicable to the resultant stream.

Finally, the forEach() method doesn't take into account the encounter order of the stream.
If you want to take this encounter order into account, say, to write the elements of the
stream order after sorting them, you can use the forEachOrdered() method.

Parallel and Reactive Streams

[282]

The following screenshot shows part of the output of the example:

You can see that when you call the limit(1) method in the parallel stream generated from
TreeSet, you always obtain the same result because the Stream API respects the encounter
order of that structure. But when we include a call to the unordered() method, the
encounter order is not taken into account and the result obtained should vary, as in this
case.

There's more...
When you use the unordered() method, you're not executing any code that internally
changes the order of the elements in the data structure. You're only deleting a condition that
would be taken into account for some methods otherwise. It's possible that the results of a
stream with the unordered() method and the results of the same stream without the
method are equal. Its use may have consequences in possibly giving different processing
results for parallel streams. For example, if you try our example using a List of Person
objects instead of personSet a TreeSet, you will always obtain the same result in both the
cases.

As we mentioned before, the main purpose of the unordered() method is to delete a
constraint that limits the performance of parallel streams.

Parallel and Reactive Streams

[283]

See also
The Creating streams from different sources, Reducing the elements of a stream
and Collecting the elements of a stream recipes in this chapter

Verifying conditions in the elements of a
stream
One interesting option provided by the Stream class is the possibility to check if the
elements of the stream verify a condition or not. This functionality is provided by the
terminal operations that return a Boolean value.

In this recipe, you will learn which methods provide the Stream class to check conditions in
the elements of a stream and how to use them.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

First, we'll implement some auxiliary classes we will use in the example. First,1.
implement the Person class, which stores the basic attributes of a person, and the
PersonGenerator class, which generates a List of random Person objects.
Please, check the recipe Apply an action to all the elements of a stream to see the
source code of both classes.
Then, create the Main class with the main() method. First, we'll create a List of2.
random Person objects using the PersonGenerator class:

 public class Main {
 public static void main(String[] args) {
 List<Person> persons=PersonGenerator.generatePersonList(10);

Parallel and Reactive Streams

[284]

Then, calculate the maximum and minimum values of the salary field to verify3.
that all our calculations are correct. We use two streams for the calculation, the
first one with the map() and max() methods and the second one with the
mapToInt() and min() methods:

 int maxSalary = persons.parallelStream().map(p -> p.getSalary())
 .max(Integer::compare).get();
 int minSalary = persons.parallelStream().mapToInt(p -> p
 .getSalary()).min().getAsInt();
 System.out.printf("Salaries are between %d and %d\n", minSalary,
 maxSalary);

Now, we'll test some conditions. First, let's verify that all the Person objects4.
generated have a salary greater than zero with the allMatch() method and the
corresponding lambda expression:

 boolean condition;
 condition=persons.parallelStream().allMatch
 (p -> p.getSalary() > 0);
 System.out.printf("Salary > 0: %b\n", condition);

We repeat the condition to test if all the salaries are greater than 10,000 and5.
30,000.

 condition=persons.parallelStream().allMatch
 (p -> p.getSalary() > 10000);
 System.out.printf("Salary > 10000: %b\n",condition);
 condition=persons.parallelStream().allMatch
 (p -> p.getSalary() > 30000);
 System.out.printf("Salary > 30000: %b\n",condition);

Then, we'll use the anyMatch() method to test if there is someone with a salary6.
greater than 50,000 and 100,000:

 condition=persons.parallelStream().anyMatch
 (p -> p.getSalary() > 50000);
 System.out.printf("Any with salary > 50000: %b\n",condition);
 condition=persons.parallelStream().anyMatch
 (p -> p.getSalary() > 100000);
 System.out.printf("Any with salary > 100000: %b\n",condition);

Parallel and Reactive Streams

[285]

To finish this block of tests, we use the noneMatch() method to verify that7.
there's none with a salary greater than 100,000

 condition=persons.parallelStream().noneMatch
 (p -> p.getSalary() > 100000);
 System.out.printf("None with salary > 100000: %b\n",condition);

After that, we use the findAny() method to get a random element of the stream8.
of Person objects:

 Person person = persons.parallelStream().findAny().get();
 System.out.printf("Any: %s %s: %d\n", person.getFirstName(),
 person.getLastName(), person.getSalary());

Then, we use the findFirst() method to get the first element of the stream of9.
Person objects:

 person = persons.parallelStream().findFirst().get();
 System.out.printf("First: %s %s: %d\n", person.getFirstName(),
 person.getLastName(), person.getSalary());

Finally, we sort the stream by salary using the sorted() method, passing10.
Comparator expressed as a lambda expression, and use the findFirst()
method to obtain, in this case, the Person object with the lowest salary:

 person = persons.parallelStream().sorted((p1,p2) -> {
 return p1.getSalary() - p2.getSalary();
 }).findFirst().get();
 System.out.printf("First Sorted: %s %s: %d\n",
 person.getFirstName(), person.getLastName(),
 person.getSalary());

How it works...
In this recipe, we used three different methods to verify conditions over the elements of a
Stream:

allMatch(): This method is a terminal operation that receives as parameter an
implementation of the Predicate interface expressed as a lambda expression or
as an object that implements it and returns a Boolean value. It returns true if the
Predicate introduced is true for all the elements of the Stream and false
otherwise.

Parallel and Reactive Streams

[286]

anyMatch(): This method is a terminal operation that receives as parameter an
implementation of the Predicate interface expressed as a lambda expression or
as an object that implements it and returns a Boolean value. It returns true if the
Predicate introduced is true for at least one of the elements of the Stream and
false otherwise.
noneMatch(): This method is a terminal operation that receives as parameter a
Predicate expressed as a lambda expression or as an implementation of
interface and returns a Boolean value. It returns true if the Predicate
introduced is false for all the elements of the Stream and false otherwise.

We also used two methods to obtain the elements of Stream:

findAny(): This method is a terminal operation that doesn't receive parameters
and returns an Optional object parameterized with the class of the elements of
Stream with some element of Stream. There's no guarantee about the element
returned by this method. If Stream has no elements, the Optional object
returned will be empty.
findFirst(): This method is a terminal operation that doesn't receive
parameters and returns an Optional parameterized with the class of the
elements of Stream. It returns the first element of Stream if the stream has a
determined encounter order or any element if the stream has no encounter order.
If Stream has no elements, the Optional returned will be empty.

There's more...
In this recipe we used an interface and a class provided by the Java API. The Predicate
interface is a functional interface that is usually expressed as a lambda expression. This
expression will receive an element of Stream and return a Boolean value. If you want to
implement a class that implements this interface, you only have to implement the test()
method that receives an object of the parameterized type and returns a Boolean value. The
interface defines more methods, but they have a default implementation.

The Optional class is used when a terminal operation of Stream may or may not return a
value. In this way, Java guarantees that the operation will always return a value, the
Optional object, that may have a value we obtain using the get() method or may be an
empty object, the condition we can check with the isPresent() method. If you use the
get() method with an empty Optional object, a NoSuchElementException will be
thrown.

Parallel and Reactive Streams

[287]

See also
The Creating streams from different sources, Reducing the elements of a stream and
Collecting the elements of a stream recipes in this chapter

Reactive programming with reactive streams
Reactive streams (http://www.reactive-streams.org/) define a mechanism to provide
asynchronous stream processing with non-blocking back pressure.

Reactive streams are based on the following three elements:

A publisher of information
One or more subscribers of that information
A subscription between the publisher and a consumer

The reactive streams specification determines how these classes should interact among
them, according to the following rules:

The publisher will add the subscribers that want to be notified
The subscriber receives a notification when they're added to a publisher
The subscribers request one or more elements from the publisher in an
asynchronous way, that is to say, the subscriber requests the element and
continues with the execution
When the publisher has an element to publish, it sends it to all its subscribers that
have requested an element

As we mentioned before, all this communication is asynchronous, so we can take advantage
of all the power of our multi-core processor.

Java 9 has included three interfaces, the Flow.Publisher, the Flow.Subscriber, and the
Flow.Subscription, and a utility class, the SubmissionPublisher class, to allow us to
implement reactive stream applications. In this recipe, you will learn how to use all these
elements to implement a basic reactive stream application.

http://www.reactive-streams.org/

Parallel and Reactive Streams

[288]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Item that will represent the items of information sent from1.
the publisher to the subscribers. This class has two String attributes, named
title and content, and the methods to get() and set() their values. Its
source code is very simple, so it won't be included here.
Then, create a class named Consumer1 and specify that it implements the2.
Subscriber interface parameterized with the Item class. We have to implement
four methods. First, we implement the onComplete() method. It simply writes a
message to the console:

 public class Consumer1 implements Flow.Subscriber<Item> {

 @Override
 public void onComplete() {
 System.out.printf("%s: Consumer 1: Completed\n",
 Thread.currentThread().getName());

 }

Then, we implement the onError() method. It simply writes information about3.
the error to the console:

 @Override
 public void onError(Throwable exception) {
 System.out.printf("%s: Consumer 1: Error\n",
 Thread.currentThread().getName());
 exception.printStackTrace(System.err);
 }

Parallel and Reactive Streams

[289]

Then, we implement the onNext() method. It simply writes information about4.
the received item to the console:

 @Override
 public void onNext(Item item) {
 System.out.printf("%s: Consumer 1: Item received\n",
 Thread.currentThread().getName());
 System.out.printf("%s: Consumer 1: %s\n",
 Thread.currentThread().getName(),
 item.getTitle());
 System.out.printf("%s: Consumer 1: %s\n",
 Thread.currentThread().getName(),
 item.getContent());
 }

And finally, we implement the onSubscribe() method. It simply writes a5.
message to the console and doesn't request any item using the request()
method of the Subscription object:

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 System.out.printf("%s: Consumer 1: Subscription received\n",
 Thread.currentThread().getName());
 System.out.printf("%s: Consumer 1: No Items requested\n",
 Thread.currentThread().getName());
 }

Now, it's time for the Consumer2 class. Specify that it also implements the6.
Subscriber interface parameterized with the Item class. In this case, we have a
private Subscription attribute to store the subscription object. The
onComplete() and onError() methods are equivalent to the ones of the
Consumer1 class:

 public class Consumer2 implements Flow.Subscriber<Item> {

 private Subscription subscription;

 @Override
 public void onComplete() {
 System.out.printf("%s: Consumer 2: Completed\n",
 Thread.currentThread().getName());
 }

Parallel and Reactive Streams

[290]

 @Override
 public void onError(Throwable exception) {
 System.out.printf("%s: Consumer 2: Error\n",
 Thread.currentThread().getName());
 exception.printStackTrace(System.err);
 }

The onNext() method has an additional line to request another element:7.

 @Override
 public void onNext(Item item) {
 System.out.printf("%s: Consumer 2: Item received\n",
 Thread.currentThread().getName());
 System.out.printf("%s: Consumer 2: %s\n",
 Thread.currentThread().getName(),
 item.getTitle());
 System.out.printf("%s: Consumer 2: %s\n",
 Thread.currentThread().getName(),
 item.getContent());
 subscription.request(1);
 }

The onSubscribe() method also has an additional line to request the first8.
element:

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 System.out.printf("%s: Consumer 2: Subscription received\n",
 Thread.currentThread().getName());
 this.subscription=subscription;
 subscription.request(1);
 }

Now, implement a class called Consumer3 and specify that it implements the9.
Subscriber interface parameterized with the Item class. The onComplete()
and onError() methods are equivalent to those of the previous classes:

 public class Consumer3 implements Flow.Subscriber<Item> {

 @Override
 public void onComplete() {
 System.out.printf("%s: Consumer 3: Completed\n",
 Thread.currentThread().getName());

 }

Parallel and Reactive Streams

[291]

 @Override
 public void onError(Throwable exception) {
 System.out.printf("%s: Consumer 3: Error\n",
 Thread.currentThread().getName());
 exception.printStackTrace(System.err);
 }

The onNext() method, in this case, writes information about the item to the10.
console but doesn't request any element:

 @Override
 public void onNext(Item item) {
 System.out.printf("%s: Consumer 3: Item received\n",
 Thread.currentThread().getName());
 System.out.printf("%s: Consumer 3: %s\n",
 Thread.currentThread().getName(),
 item.getTitle());
 System.out.printf("%s: Consumer 3: %s\n",
 Thread.currentThread().getName(),
 item.getContent());
 }

In the onSubscribe(), method we request three items:11.

 @Override
 public void onSubscribe(Flow.Subscription subscription) {
 System.out.printf("%s: Consumer 3: Subscription received\n",
 Thread.currentThread().getName());
 System.out.printf("%s: Consumer 3: Requested three items\n",
 Thread.currentThread().getName());
 subscription.request(3);
 }

Finally, implement the Main class with the main() method. First, create three12.
consumers, one of each class:

 public class Main {
 public static void main(String[] args) {

 Consumer1 consumer1=new Consumer1();
 Consumer2 consumer2=new Consumer2();
 Consumer3 consumer3=new Consumer3();

Parallel and Reactive Streams

[292]

Now, create a SubmissionPublisher object parameterized with the Item class13.
and add the three consumers using the subscribe() method:

 SubmissionPublisher<Item> publisher=new SubmissionPublisher<>();

 publisher.subscribe(consumer1);
 publisher.subscribe(consumer2);
 publisher.subscribe(consumer3);

Now, create ten Item objects and publish them using the submit() method of14.
the SubmissionPublisher object. Wait a second between each item:

 for (int i=0; i<10; i++) {
 Item item =new Item();
 item.setTitle("Item "+i);
 item.setContent("This is the item "+i);
 publisher.submit(item);
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Finally, close the publisher with the close() method:15.

 publisher.close();
 }
 }

How it works...
The main goal of reactive streams is provide a mechanism to process asynchronous stream
of data with non-blocking back pressure. We want that the receivers of information
optimize their resources. As the mechanism is asynchronous, receivers don't need to use
their resources to look for new elements. They will be called when a new element comes in.
The non-blocking back pressure allows receivers to consume new elements only when the
receivers are ready, so they can use a bounded queue to store the incoming elements and
they won't be saturated by producers of new elements.

Parallel and Reactive Streams

[293]

The reactive streams in Java are based on three interfaces:

Flow.Publisher: This interface has only one method:
subscribe(): This method receives a Subscriber object as
parameter. The publisher should take this subscriber into account
when it publishes an Item.

Flow.Subscriber: This interface has four methods:
onComplete(): This method will be called when the Publisher
has finished its execution
onError(): This method will be called when there is an error that
must be notified to the subscribers
onNext(): This method will be called when the Publisher has a
new element
onSubscribe(): This method will be called when the publisher
has added the subscriber with the subscribe() method

Flow.Subscription: This interface has one methods:
request(): This method is used by the Subscriber to request an
element from the publisher

Take into account that these are only interfaces and you can implement them and use them
as you want. The supposed flow is as follows:

Someone calls the subscribe() method of a Publisher, sending it a1.
Subscriber.
The Publisher creates a Subscription object and sends it to the2.
onSubscribe() method of the Subscriber.
The Subscriber uses the request() method of the Subscription to request3.
elements to the Publisher.
When the publisher has an element to publish, it sends them to all Subscribers4.
that have requested elements, calling their onNext() method.
When the publisher ends its execution, it calls the onComplete() method of the5.
subscribers.

Java API provides the SubmissionPublisher class that implements the Publisher
interface and implements this behavior.

Parallel and Reactive Streams

[294]

The following screenshot shows the output of the example and you can see how the
behavior of the reactive streams is as expected:

The three Subscriber objects receive their Subscription. As Consumer1 doesn't request
any Item, it won't receive them. Consumer3 has requested three, so you will see in the
output of the example that it will receive those three Item objects. Finally, the Consumer2
object will receive the ten Item objects and the notification about the end of execution of the
Publisher.

There's more...
There is an additional interface that should be used with reactive streams. It's the
Flow.Processor interface and groups the Flow.Publisher and the Flow.Subscriber
interfaces. Its main purpose is to be an element between a publisher and a subscriber to
transform the elements produced by the first one into a format that can be processed by the
second one. You can have more than one processors in a chain so the output of one of them
could be processed by the next one.

Java also defines the Flow class that includes the four interfaces explained before.

7
Concurrent Collections

In this chapter, we will cover the following topics:

Using non-blocking thread-safe deques
Using blocking thread-safe deques
Using blocking thread-safe queue ordered by priority
Using thread-safe lists with delayed elements
Using thread-safe navigable maps
Using thread-safe HashMaps
Using atomic variables
Using atomic arrays
Using the volatile keyword
Using variable handles

Introduction
Data structure is a basic element of programming. Almost every program uses one or more
types of data structure to store and manage data. The Java API provides the Java
Collections framework. It contains interfaces, classes, and algorithms that implement a lot
of different data structures that you can use in your programs.

When you need to work with data collections in a concurrent program, you must be very
careful with the implementation you choose. Most collection classes do not work with
concurrent applications because they can't control concurrent access to their data. If a
concurrent task shares a data structure that is unable to work with another concurrent task,
you might have data inconsistency errors that will affect the operation of the program. One
example of this kind of data structure is the ArrayList class.

Concurrent Collections

[296]

Java provides data collection processes that you can use in your concurrent programs
without any problems or inconsistency. Basically, Java provides two kinds of collections to
use in concurrent applications:

Blocking collections: This kind of collection includes operations to add and
remove data. If the operation can't be done immediately, because the collection is
either full or empty, the thread that makes the call will be blocked until the
operation could be carried out.
Non-blocking collections: This kind of collection also includes operations to add
and remove data. But in this case, if the operation can't be done immediately, it
returns a null value or throws an exception; the thread that makes the call won't
be blocked here.

Through the recipes in this chapter, you will learn how to use some Java collections in your
concurrent applications. These include:

Non-blocking deques, using the ConcurrentLinkedDeque class
Blocking deques, using the LinkedBlockingDeque class
Blocking queues to be used with producers and consumers of data, using the
LinkedTransferQueue class
Blocking queues that order elements by priority, using the
PriorityBlockingQueue class
Blocking queues with delayed elements, using the DelayQueue class
Non-blocking navigable maps, using the ConcurrentSkipListMap class
Non-blocking hash tables, using the ConcurrentHashMap class
Atomic variables, using the AtomicLong and AtomicIntegerArray classes
Variables stored in fields marked with the volatile keyword
Atomic operations on the fields of individual classes, using variable handles.

Using non-blocking thread-safe deques
"List" is referred to as the most basic collection. It has an undetermined number of elements,
and you can add, read, or remove an element from any position. Concurrent lists allow
various threads to add or remove elements from the list at a time, without producing any
data inconsistency errors. Similar to lists, we have deques. A deque is a data structure
similar to a queue, but in a deque, you can add or remove elements from either the front
(head) or back (tail).

Concurrent Collections

[297]

In this recipe, you will learn how to use a non-blocking deque in a concurrent program.
Non-blocking deques provide operations that, if not done immediately (for example, you
want to get an element from a list but the list is empty), throw an exception or return a null
value, depending on the operation. Java 7 introduced the ConcurrentLinkedDeque class
that implements a non-blocking concurrent deque.

We are going to implement an example with the following two different tasks:

One that adds thousands of elements to the deque
One that removes data from the deque

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named AddTask and specify that it implements the Runnable1.
interface:

 public class AddTask implements Runnable {

Declare a private ConcurrentLinkedDeque attribute parameterized by the2.
String class named list:

 private final ConcurrentLinkedDeque<String> list;

Implement the constructor of the class to initialize its attribute:3.

 public AddTask(ConcurrentLinkedDeque<String> list) {
 this.list=list;
 }

Concurrent Collections

[298]

Implement the run() method of the class. This method will have a loop with4.
5000 cycles. In each cycle, we will take the first and last elements of the deque so
we will take a total of 10,000 elements:

 @Override
 public void run() {
 String name=Thread.currentThread().getName();
 for (int i=0; i<10000; i++){
 list.add(name+": Element "+i);
 }
 }

Create a class named PollTask and specify that it implements the Runnable5.
interface:

 public class PollTask implements Runnable {

Declare a private ConcurrentLinkedDeque attribute parameterized by the6.
String class named list:

 private final ConcurrentLinkedDeque<String> list;

Implement the constructor of the class to initialize its attribute:7.

 public PollTask(ConcurrentLinkedDeque<String> list) {
 this.list=list;
 }

Implement the run() method of the class. It takes out 10,000 elements of the8.
deque in a loop with 5,000 steps, taking off two elements in each step:

 @Override
 public void run() {
 for (int i=0; i<5000; i++) {
 list.pollFirst();
 list.pollLast();
 }
 }

Implement the main class of the example by creating a class named Main and9.
adding the main() method to it:

 public class Main {

 public static void main(String[] args) {

Concurrent Collections

[299]

Create a ConcurrentLinkedDeque object parameterized by the String class10.
named list:

 ConcurrentLinkedDeque<String> list=new ConcurrentLinkedDeque<>();

Create an array of 100 Thread objects named threads:11.

 Thread threads[]=new Thread[100];

Create 100 AddTask objects and threads to run each one of them. Store every12.
thread in the array created earlier and start them:

 for (int i=0; i<threads.length ; i++){
 AddTask task=new AddTask(list);
 threads[i]=new Thread(task);
 threads[i].start();
 }
 System.out.printf("Main: %d AddTask threads have been launched\n",
 threads.length);

Wait for the completion of the threads using the join() method:13.

 for (int i=0; i<threads.length; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Write the size of the list in the console:14.

 System.out.printf("Main: Size of the List: %d\n",list.size());

Create 100 PollTask objects and threads to run each one of them. Store every15.
thread in the array created earlier and start them:

 for (int i=0; i< threads.length; i++){
 PollTask task=new PollTask(list);
 threads[i]=new Thread(task);
 threads[i].start();
 }
 System.out.printf("Main: %d PollTask threads have been launched\n",
 threads.length);

Concurrent Collections

[300]

Wait for the finalization of the threads using the join() method:16.

 for (int i=0; i<threads.length; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Write the size of the list in the console:17.

 System.out.printf("Main: Size of the List: %d\n",list.size());

How it works...
In this recipe, we used the ConcurrentLinkedDeque object parameterized by the String
class to work with a non-blocking concurrent deque of data. The following screenshot
shows the output of an execution of this example:

First, you executed 100 AddTask tasks to add elements to the list. Each one of these tasks
inserts 10,000 elements to the list using the add() method. This method adds new elements
at the end of the deque. When all the tasks had finished, you wrote the number of elements
of the deque in the console. At that moment, the deque had 1,000,000 elements.

Concurrent Collections

[301]

Then, you executed 100 PollTask tasks to remove elements from the deque. Each one of
these tasks removes 10,000 elements from the deque using the pollFirst() and
pollLast() methods. The pollFirst() method returns and removes the first element of
the deque, and the pollLast() method returns and removes the last element of the deque.
If the deque is empty, they return a null value. When all the tasks had finished, you wrote
the number of elements of the deque in the console. At that moment, the list had zero
elements. Take into account that the ConcurrentLinkedDeque data structure doesn't allow
you to add null values.

To write the number of elements in the deque, you used the size() method. You have to
take into account that this method can return a value that is not real, especially if you use it
when there are threads adding to or deleting data from the list. The method has to traverse
the entire deque to count the elements, and the contents of the list can change with this
operation. Only if you use them when there aren't any threads modifying the deque, you
will have the guarantee that the returned result would be correct.

There's more...
The ConcurrentLinkedDeque class provides more methods to get elements from the
deque:

getFirst() and getLast(): These methods return the first and last element
from the deque, respectively. They don't remove the returned element from the
deque. If the deque is empty, they throw a NoSuchElementExcpetion
exception.
peek(), peekFirst(), and peekLast(): These methods return the first and the
last element of the deque, respectively. They don't remove the returned element
from the deque. If the deque is empty, they return a null value.
remove(), removeFirst(), and removeLast(): These methods return the first
and last element of the deque, respectively. They remove the returned element as
well. If the deque is empty, they throw a NoSuchElementException exception.

Concurrent Collections

[302]

Using blocking thread-safe deques
The most basic collection is referred to as a list. A list has an unlimited number of elements,
and you can add, read, or remove an element from any position. A concurrent list allows
various threads to add or remove elements from the list at a time without producing any
data inconsistency. Similar to lists, we have deques. A deque is a data structure similar to a
queue, but in a deque, you can add or remove elements from either the front (head) or back
(tail).

In this recipe, you will learn how to use blocking deques in your concurrent programs. The
main difference between blocking deques and non-blocking deques is that blocking deques
have methods to insert and delete elements that, if not done immediately because the list is
either full or empty, block the thread that make the call until the operation could be carried
out. Java includes the LinkedBlockingDeque class that implements a blocking deque.

You are going to implement an example with the following two tasks:

One that adds thousands of elements to the deque
One that massively removes data from the same list

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow the steps described next to implement the example:

Create a class named Client and specify that it implements the Runnable1.
interface:

 public class Client implements Runnable{

Declare a private LinkedBlockingDeque attribute parameterized by the String2.
class named requestList:

 private final LinkedBlockingDeque<String> requestList;

Concurrent Collections

[303]

Implement the constructor of the class to initialize its attributes:3.

 public Client (LinkedBlockingDeque<String> requestList) {
 this.requestList=requestList;
 }

Implement the run() method. Insert five String objects into the deque per4.
second using the put() method of the requestList object. Repeat this cycle
three times:

 @Override
 public void run() {
 for (int i=0; i<3; i++) {
 for (int j=0; j<5; j++) {
 StringBuilder request=new StringBuilder();
 request.append(i);
 request.append(":");
 request.append(j);
 try {
 requestList.put(request.toString());
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("Client added: %s at %s.\n",request,
 new Date());
 }
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.printf("Client: End.\n");
 }

Create the main class of the example by creating a class named Main and adding5.
the main() method to it:

 public class Main {
 public static void main(String[] args) throws Exception {

Declare and create LinkedBlockingDeque parameterized by the String class6.
named list specifying a fixed size of three:

 LinkedBlockingDeque<String> list=new LinkedBlockingDeque<>(3);

Concurrent Collections

[304]

Create and start a Thread object to execute a client task:7.

 Client client=new Client(list);
 Thread thread=new Thread(client);
 thread.start();

Get three String objects from the list every 300 milliseconds using the take()8.
method of the list object. Repeat this cycle five times. Write the strings in the
console:

 for (int i=0; i<5 ; i++) {
 for (int j=0; j<3; j++) {
 String request=list.take();
 System.out.printf("Main: Removed: %s at %s. Size: %d\n",
 request,new Date(), list.size());
 }
 TimeUnit.MILLISECONDS.sleep(300);
 }

Write a message to indicate the end of the program:9.

 System.out.printf("Main: End of the program.\n");

How it works...
In this recipe, you used LinkedBlockingDeque, parameterized by the String class, to
work with a non-blocking concurrent deque of data.

The Client class uses the put() method to insert strings into the deque. If the deque is full
(because you have created it with fixed capacity), the method will block the execution of its
thread until there is empty space in the list.

The Main class uses the take() method to get strings from the deque. If the deque is
empty, the method blocks the execution of its thread until there are elements in the deque.

Both the methods of the LinkedBlockingDeque class used in this example can throw an
InterruptedException exception if they are interrupted while they are being blocked.
So, you have to include the necessary code to catch this exception.

Concurrent Collections

[305]

There's more...
The LinkedBlockingDeque class also provides methods to insert and get elements from
the deque that, instead of being blocked, throws an exception or returns the null value.
These methods are as follows:

takeFirst() and takeLast(): These return the first and last element of the
deque, respectively. They remove the returned element from the deque. If the
deque is empty, they block the thread until there are elements in the deque.
getFirst() and getLast(): These return the first and last element of the
deque, respectively. They don't remove the returned element from the deque. If
the deque is empty, they throw a NoSuchElementExcpetion exception.
peek(), peekFirst(), and peekLast(): The peekFirst() and peekLast()
methods return the first and last element of the deque, respectively. They don't
remove the returned element from the deque. If the deque is empty, they return a
null value.
poll(), pollFirst(), and pollLast(): The pollFirst() and pollLast()
methods return the first and last element of the deque, respectively. They remove
the returned element from the deque. If the list is empty, they return a null
value.
add(), addFirst(), and addLast(): The addFirst() and addLast()
methods add an element to the first and last position, respectively. If the deque is
full (created with fixed capacity), they throw an IllegalStateException
exception.

See also
The Using non-blocking thread-safe deques recipe in this chapter

Using blocking thread-safe queue ordered
by priority
When you work with data structures, you may typically feel the need to have an ordered
queue. Java provides PriorityBlockingQueue that has this functionality.

Concurrent Collections

[306]

All the elements you want to add to PriorityBlockingQueue have to implement the
Comparable interface; alternatively, you can include Comparator in the queue's
constructor. This interface has a method called compareTo() that receives an object of the
same type. So you have two objects to compare: the one that is executing the method and
the one that is received as a parameter. The method must return a number less than zero if
the local object is less than the parameter. It should return a number bigger than zero if the
local object is greater than the parameter. The number must be zero if both the objects are
equal.

PriorityBlockingQueue uses the compareTo() method when you insert an element in it
to determine the position of the element inserted. Bigger elements will either be the tail or
head of the queue, depending on the compareTo() method.

Another important characteristic of PriorityBlockingQueue is that it's a blocking data
structure. It has methods that, if unable to perform the operation immediately, will block
the thread until they are able to do it.

In this recipe, you will learn how to use the PriorityBlockingQueue class by
implementing an example, where you are going to store a lot of events with different
priorities in the same list, to check that the queue will be ordered as you want.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Event and specify that it implements the Comparable1.
interface parameterized by the Event class:

 public class Event implements Comparable<Event> {

Declare a private int attribute named thread to store the number of threads that2.
have created the event:

 private final int thread;

Concurrent Collections

[307]

Declare a private int attribute named priority to store the priority of the event:3.

 private final int priority;

Implement the constructor of the class to initialize its attributes:4.

 public Event(int thread, int priority){
 this.thread=thread;
 this.priority=priority;
 }

Implement the getThread() method to return the value of the thread attribute:5.

 public int getThread() {
 return thread;
 }

Implement the getPriority() method to return the value of the priority6.
attribute:

 public int getPriority() {
 return priority;
 }

Implement the compareTo() method. It receives Event as a parameter and7.
compares the priority of the current event and the one received as a parameter. It
returns -1 if the priority of the current event is bigger, 0 if both the priorities are
equal, and 1 if the priority of the current event is smaller. Note that this is the
opposite of most Comparator.compareTo() implementations:

 @Override
 public int compareTo(Event e) {
 if (this.priority>e.getPriority()) {
 return -1;
 } else if (this.priority<e.getPriority()) {
 return 1;
 } else {
 return 0;
 }
 }

Create a class named Task and specify that it implements the Runnable8.
interface:

 public class Task implements Runnable {

Concurrent Collections

[308]

Declare a private int attribute named id to store the number that identifies the9.
task:

 private final int id;

Declare a private PriorityBlockingQueue attribute parameterized by the10.
Event class named queue to store the events generated by the task:

 private final PriorityBlockingQueue<Event> queue;

Implement the constructor of the class to initialize its attributes:11.

 public Task(int id, PriorityBlockingQueue<Event> queue) {
 this.id=id;
 this.queue=queue;
 }

Implement the run() method. It stores 1,000 events in the queue, using its ID, to12.
identify the task that creates the event and we assign to each event a different
priority from 1 to 1000. Use the add() method to store the events in the queue:

 @Override
 public void run() {
 for (int i=0; i<1000; i++){
 Event event=new Event(id,i);
 queue.add(event);
 }
 }

Implement the main class of the example by creating a class named Main and13.
adding the main() method to it:

 public class Main{
 public static void main(String[] args) {

Create a PriorityBlockingQueue object parameterized by the Event class14.
named queue:

 PriorityBlockingQueue<Event> queue=new PriorityBlockingQueue<>();

Create an array of five Thread objects to store the threads that will execute the15.
five tasks:

 Thread taskThreads[]=new Thread[5];

Concurrent Collections

[309]

Create five Task objects. Store the threads in the array created earlier:16.

 for (int i=0; i<taskThreads.length; i++){
 Task task=new Task(i,queue);
 taskThreads[i]=new Thread(task);
 }

Start the five threads created earlier:17.

 for (int i=0; i<taskThreads.length ; i++) {
 taskThreads[i].start();
 }

Wait for the finalization of the five threads using the join() method:18.

 for (int i=0; i<taskThreads.length ; i++) {
 try {
 taskThreads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Write the actual size of the queue in the console and the events stored in it. Use19.
the poll() method to take off the events from the queue:

 System.out.printf("Main: Queue Size: %d\n",queue.size());
 for (int i=0; i<taskThreads.length*1000; i++){
 Event event=queue.poll();
 System.out.printf("Thread %s: Priority %d\n",
 event.getThread(),event.getPriority());
 }

Write a message to the console with the final size of the queue:20.

 System.out.printf("Main: Queue Size: %d\n",queue.size());
 System.out.printf("Main: End of the program\n");

How it works...
In this example, you implemented a priority queue of Event objects using
PriorityBlockingQueue. As mentioned in the introduction, all the elements stored in
PriorityBlockingQueue have to implement the Comparable interface or provide a
Comparator object to the constructor of the queue. In this case, you used the first approach,
so you implemented the compareTo() method in the Event class.

Concurrent Collections

[310]

All the events have a priority attribute. The elements that have a higher value of priority
will be the first elements in the queue. When you implement the compareTo() method, if
the event executing the method has a priority higher than the priority of the event passed as
a parameter, it returns -1 as the result. In another case, if the event executing the method
has a priority lower than the priority of the event passed as a parameter, it returns 1 as the
result. If both objects have the same priority, the compareTo() method returns 0. In this
case, the PriorityBlockingQueue class doesn't guarantee the order of the elements.

We implemented the Task class to add the Event objects to the priority queue. Each task
object adds 1,000 events to the queue, with priorities between 0 and 999, using the add()
method.

The main() method of the Main class creates five Task objects and executes them in the
corresponding threads. When all the threads had finished their execution, you wrote all the
elements to the console. To get the elements from the queue, we used the poll() method.
This method returns and removes the first element from the queue.

The following screenshot shows part of the output of an execution of the program:

You can see how the queue has a size of 5,000 elements and how the first elements have the
biggest priority value.

Concurrent Collections

[311]

There's more...
The PriorityBlockingQueue class has other interesting methods. The following is a
description of some of them:

clear(): This method removes all the elements of the queue.
take(): This method returns and removes the first element of the queue. If the
queue is empty, it blocks its thread until the queue has elements.
put(E e): This is the class used to parameterize the PriorityBlockingQueue
class. It inserts the element that is passed as a parameter into the queue.
peek(): This method returns the first element of the queue but doesn't remove it.

See also
The Using blocking thread-safe deques recipe in this chapter

Using thread-safe lists with delayed
elements
An interesting data structure provided by the Java API, which you can use in concurrent
applications, is implemented in the DelayQueue class. In this class, you can store elements
with an activation date. The methods that return or extract elements from the queue will
ignore these elements whose data will appear in the future. They are invisible to these
methods.To obtain this behavior, the elements you want to store in the DelayQueue class
need to have the Delayed interface implemented. This interface allows you to work with
delayed objects. This interface has the getDelay() method that returns the time until the
activation of the element. This interface forces you to implement the following two
methods:

compareTo(Delayed o): The Delayed interface extends the Comparable
interface. This method will return a value less than zero if the object that is
executing the method has a delay smaller than the object passed as a parameter. It
will return a value greater than zero if the object that is executing the method has
a delay bigger than the object passed as a parameter. It will return zero if both the
objects have the same delay.

Concurrent Collections

[312]

getDelay(TimeUnit unit): This method has to return the time remaining until
the activation date in units, as specified by the unit parameter. The TimeUnit
class is an enumeration with the following constants: DAYS, HOURS,
MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.

In this example, you will learn how to use the DelaydQueue class by storing in it some
events with different activation dates.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Event and specify that it implements the Delayed1.
interface:

 public class Event implements Delayed {

Declare a private Date attribute named startDate:2.

 private final Date startDate;

Implement the constructor of the class to initialize its attribute:3.

 public Event (Date startDate) {
 this.startDate=startDate;
 }

Implement the compareTo() method. It receives a Delayed object as its4.
parameter. Return the difference between the delay of the current object and the
one passed as a parameter:

 @Override
 public int compareTo(Delayed o) {
 long result=this.getDelay(TimeUnit.NANOSECONDS)-o.getDelay
 (TimeUnit.NANOSECONDS);
 if (result<0) {
 return -1;

Concurrent Collections

[313]

 } else if (result>0) {
 return 1;
 }
 return 0;
 }

Implement the getDelay() method. Return the difference between the start date5.
of the object and the actual date in TimeUnit, which is received as a parameter:

 public long getDelay(TimeUnit unit) {
 Date now=new Date();
 long diff=startDate.getTime()-now.getTime();
 return unit.convert(diff,TimeUnit.MILLISECONDS);
 }

Create a class named Task and specify that it implements the Runnable6.
interface:

 public class Task implements Runnable {

Declare a private int attribute named id to store a number that identifies this7.
task:

 private final int id;

Declare a private DelayQueue attribute parameterized by the Event class named8.
queue:

 private final DelayQueue<Event> queue;

Implement the constructor of the class to initialize its attributes:9.

 public Task(int id, DelayQueue<Event> queue) {
 this.id=id;
 this.queue=queue;
 }

Concurrent Collections

[314]

Implement the run() method. First, calculate the activation date of the events10.
that this task is going to create. Then, add the number of seconds equal to the ID
of the object to the actual date:

 @Override
 public void run() {
 Date now=new Date();
 Date delay=new Date();
 delay.setTime(now.getTime()+(id*1000));
 System.out.printf("Thread %s: %s\n",id,delay);

Store 100 events in the queue using the add() method:11.

 for (int i=0; i<100; i++) {
 Event event=new Event(delay);
 queue.add(event);
 }
 }

Implement the main class of the example by creating a class named Main and12.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) throws Exception {

Create a DelayQueue object parameterized by the Event class:13.

 DelayQueue<Event> queue=new DelayQueue<>();

Create an array of five Thread objects to store the tasks you're going to execute:14.

 Thread threads[]=new Thread[5];

Create five Task objects with different IDs:15.

 for (int i=0; i<threads.length; i++){
 Task task=new Task(i+1, queue);
 threads[i]=new Thread(task);
 }

Launch all the five tasks created earlier:16.

 for (int i=0; i<threads.length; i++) {
 threads[i].start();
 }

Concurrent Collections

[315]

Wait for the finalization of the threads using the join() method:17.

 for (int i=0; i<threads.length; i++) {
 threads[i].join();
 }

Write to the console the events stored in the queue. When the size of the queue is18.
bigger than zero, use the poll() method to obtain an Event class. If it returns
null, put the main thread to sleep for 500 milliseconds for the activation of more
events:

 do {
 int counter=0;
 Event event;
 do {
 event=queue.poll();
 if (event!=null) counter++;
 } while (event!=null);
 System.out.printf("At %s you have read %d events\n",
 new Date(), counter);
 TimeUnit.MILLISECONDS.sleep(500);
 } while (queue.size()>0);
 }
 }

How it works...
In this recipe, we implemented the Event class. This class has a unique attribute, the
activation date of the events, and it implements the Delayed interface. You can store Event
objects in the DelayQueue class.

The getDelay() method returns the number of nanoseconds between the activation date
and the actual date. Both dates are objects of the Date class. You used the getTime()
method that returns a date converted into milliseconds. Then, you converted this value into
TimeUnit, which was received as a parameter. The DelayQueue class works in
nanoseconds, but at this point, it's transparent to you.

The compareTo() method returns a value less than zero if the delay of the object executing
the method is smaller than the delay of the object passed as a parameter. It returns a value
greater than zero if the delay of the object executing the method is bigger than the delay of
the object passed as a parameter. It returns 0 if both the delays are equal.

Concurrent Collections

[316]

You also implemented the Task class. This class has an integer attribute named id. When
a Task object is executed, it adds the number of seconds that is equal to the ID of the task to
the actual date, and this refers to the activation date of the events stored by this task in the
DelayQueue class. Each Task object stores 100 events in the queue using the add()
method.

Finally, in the main() method of the Main class, you created five Task objects and executed
them in their corresponding threads. When these threads finished their execution, you
wrote all the events using the poll() method in the console. This method retrieves and
removes the first element of the queue. If the queue does not have any active element, it
returns the null value. You call the poll() method, and if it returns an Event class, you
increment a counter. When it returns the null value, you write the value of the counter in
the console and put the thread to sleep for half a second to wait for more active events.
When you obtained the 500 events stored in the queue, the execution of the program
finished.

The following screenshot shows part of the output of an execution of the program:

You can see how the program only gets 100 events when it is activated.

You must be very careful with the size() method. It returns the total
number of elements in the list that includes both active and non-active
elements.

Concurrent Collections

[317]

There's more...
The DelayQueue class has other interesting methods, which are as follows:

clear(): This method removes all the elements of the queue.
offer(E e): Here, E represents the class used to parameterize the DelayQueue
class. This method inserts the element that is passed as a parameter into the
queue.
peek(): This method retrieves but doesn't remove the first element of the queue.
take(): This method retrieves and removes the first element of the queue. If
there aren't any active elements, the thread that is executing the method will be
blocked until the thread gets some active elements.

See also
The Using blocking thread-safe deques recipe in this chapter

Using thread-safe navigable maps
The ConcurrentNavigableMap is an interface that defines interesting data structures
provided by the Java API that you can use in your concurrent programs. The classes that
implement the ConcurrentNavigableMap interface stores elements in two parts:

A key that uniquely identifies an element
The rest of the data that defines the element, called value

The Java API also provides a class that implements ConcurrentSkipListMap, which is the
interface that implements a non-blocking list with the behavior of the
ConcurrentNavigableMap interface. Internally, it uses a Skip List to store data. A Skip
List is a data structure based on parallel lists that allow us to get the kind of efficiency that
is associated with a binary tree. You can get more information about Skip Lists at h t t p s ://e

n . w i k i p e d i a . o r g /w i k i /S k i p _ l i s t . With it, you can get a sorted data structure, instead of
a sorted list, with better access time to insert, search, or delete elements.

Skip List was introduced by William Pugh in 1990.

https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list

Concurrent Collections

[318]

When you insert an element to a map, the map uses a key to order them; therefore, all the
elements will be ordered. The keys have to implement the Comparable interface, or you
have to supply a Comparator class to the constructor of the map. The class also provides
methods to obtain a submap of the map, in addition to the ones that return a concrete
element.

In this recipe, you will learn how to use the ConcurrentSkipListMap class to implement a
map of contacts.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Contact:1.

 public class Contact {

Declare two private String attributes named name and phone:2.

 private final String name;
 private final String phone;

Implement the constructor of the class to initialize its attributes:3.

 public Contact(String name, String phone) {
 this.name=name;
 this.phone=phone;
 }

Implement the methods to return the values of the name and phone attributes:4.

 public String getName() {
 return name;
 }

 public String getPhone() {
 return phone;
 }

Concurrent Collections

[319]

Create a class named Task and specify that it implements the Runnable5.
interface:

 public class Task implements Runnable {

Declare a private ConcurrentSkipListMap attribute, parameterized by the6.
String and Contact classes, named map:

 private final ConcurrentSkipListMap<String, Contact> map;

Declare a private String attribute named id to store the ID of the current task:7.

 private final String id;

Implement the constructor of the class to store its attributes:8.

 public Task (ConcurrentSkipListMap<String, Contact> map,String id){
 this.id=id;
 this.map=map;
 }

Implement the run() method. It stores 1,000 different contacts in the map using9.
the ID of the task and an incremental number to create Contact objects. Use the
put() method to store the contacts in the map:

 @Override
 public void run() {
 for (int i=0; i<1000; i++) {
 Contact contact=new Contact(id, String.valueOf(i+1000));
 map.put(id+contact.getPhone(), contact);
 }
 }

Implement the main class of the example by creating a class named Main and10.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a ConcurrentSkipListMap object, parameterized by the String and11.
Conctact classes, named map:

 ConcurrentSkipListMap<String, Contact> map = new
 ConcurrentSkipListMap<>();

Concurrent Collections

[320]

Create an array for 26 Thread objects to store all the Task objects that you're12.
going to execute:

 Thread threads[]=new Thread[26];
 int counter=0;

Create and launch 26 task objects and assign a capital letter to the ID of each13.
task:

 for (char i='A'; i<='Z'; i++) {
 Task task=new Task(map, String.valueOf(i));
 threads[counter]=new Thread(task);
 threads[counter].start();
 counter++;
 }

Wait for the finalization of the threads using the join() method:14.

 for (Thread thread : threads){
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Get the first entry of the map using the firstEntry() method. Write its data to15.
the console:

 System.out.printf("Main: Size of the map: %d\n",map.size());

 Map.Entry<String, Contact> element;
 Contact contact;

 element=map.firstEntry();
 contact=element.getValue();
 System.out.printf("Main: First Entry: %s: %s\n", contact.getName(),
 contact.getPhone());

Get the last entry of the map using the lastEntry() method. Write its data to16.
the console:

 element=map.lastEntry();
 contact=element.getValue();
 System.out.printf("Main: Last Entry: %s: %s\n", contact.getName(),
 contact.getPhone());

Concurrent Collections

[321]

Obtain a submap of the map using the subMap() method. Write its data to the17.
console:

 System.out.printf("Main: Submap from A1996 to B1002: \n");
 ConcurrentNavigableMap<String, Contact> submap=map
 .subMap("A1996","B1002");
 do {
 element=submap.pollFirstEntry();
 if (element!=null) {
 contact=element.getValue();
 System.out.printf("%s: %s\n", contact.getName(),
 contact.getPhone());
 }
 } while (element!=null);
 }

How it works...
In this recipe, we implemented a Task class to store Contact objects in a navigable map.
Each contact has a name, which is the ID of the task that creates it, and a phone number,
which is a number between 1,000 and 2,000. We concatenated these values as keys for the
contacts. Each Task object creates 1,000 contacts; these contacts are stored in the navigable
map using the put() method.

If you insert an element with a key that exists in the map, the element
associated with that key will be replaced by the new element.

The main() method of the Main class creates 26 Task objects, using the letters between A
and Z as IDs. Then, you used some methods to obtain data from the map. The
firstEntry() method returns a Map.Entry object with the first element of the map. This
method doesn't remove the element from the map. The object contains the key and the
element. To obtain the element, you called the getValue() method. You can use the
getKey() method to obtain the key of that element.

The lastEntry() method returns a Map.Entry object with the last element of the map.
The subMap() method returns the ConcurrentNavigableMap object with part of the
elements of the map, in this case, the elements that had keys between A1996 and B1002.
You used the pollFirst() method to process the elements of the subMap() method. This
method returns and removes the first Map.Entry object of the submap.

Concurrent Collections

[322]

The following screenshot shows the output of an execution of the program:

There's more...
The ConcurrentSkipListMap class has other interesting methods. Some of them are as
follows:

headMap(K toKey): Here, K is the class of the key values used in the
parameterization of the ConcurrentSkipListMap object. This method returns a
submap of the first elements of the map with the elements that have a key smaller
than the one passed as a parameter.
tailMap(K fromKey): Here, K is the class of the key values used in the
parameterization of the ConcurrentSkipListMap object. This method returns a
submap of the last elements of the map with the elements that have a key greater
than the one passed as a parameter.
putIfAbsent(K key, V Value): This method inserts the value specified as a
parameter and also the key specified as a parameter if it doesn't exist in the map.
pollLastEntry(): This method returns and removes a Map.Entry object with
the last element of the map.
replace(K key, V Value): This method replaces the value associated with the
key specified as a parameter if this key exists in the map.

Concurrent Collections

[323]

See also
The Using non-blocking thread-safe deques recipe in this chapter

Using thread-safe HashMaps
A hash table is a data structure that allows you to map a key to a value. Internally, it usually
uses an array to store the elements and a hash function to calculate the position of the
element in the array, using its key. The main advantage of this data structure is that the
insert, delete, and search operations are very fast here, so it's very useful in situations when
you have to carry out a lot of search operations.

The Java API provides different hash table implementations through the Map and
ConcurrentMap interfaces. The ConcurrentMap interface provides thread-safety and
atomic guarantees to all the operations, so you can use them in concurrent applications. The
ConcurrentHashMap class implements the ConcurrentMap interface and adds some more
methods to the ones defined in the interface. This class supports the following:

Full concurrency of read operations
High expected concurrency for insert and delete operations

Both the elements (class and interface) were introduced in Java version 5, but in version 8, a
lot of new methods similar to the ones provided by the stream API were developed.

In this recipe, you will learn how to use the ConcurrentHashMap class in your application
and the most important methods it provides.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Concurrent Collections

[324]

How to do it...
Follow these steps to implement the example:

Create a class named Operation with three attributes: a String attribute named1.
user, a String attribute named operation, and a Date attribute named time.
Add the methods to get and set the values of the attributes. The code of this class
is very simple, so it won't be included here.
Create a class named HashFiller. Specify that it implements the Runnable2.
interface:

 public class HashFiller implements Runnable {

Declare a private ConsurrentHashMap attribute named userHash. The key of3.
the hash will be a String type and its value will be a ConcurrentLinkedDeque
object of Operation objects. Implement the constructor of the class to initialize
the attribute:

 private ConcurrentHashMap<String, ConcurrentLinkedDeque<Operation>>
 userHash;

 public HashFiller(ConcurrentHashMap<String, ConcurrentLinkedDeque
 <Operation>> userHash) {
 this.userHash = userHash;
 }

Implement the run() method. We're going to fill ConcurrentHashMap with 1004.
random Operation objects. First, generate random data and then use the
addOperationToHash() method to insert the object in the hash:

 @Override
 public void run() {

 Random randomGenerator = new Random();
 for (int i = 0; i < 100; i++) {
 Operation operation = new Operation();
 String user = "USER" + randomGenerator.nextInt(100);
 operation.setUser(user);
 String action = "OP" + randomGenerator.nextInt(10);
 operation.setOperation(action);
 operation.setTime(new Date());

 addOperationToHash(userHash, operation);
 }
 }

Concurrent Collections

[325]

Implement the addOperationToHash() method. It receives the hash and the5.
operation you want to add as parameters. The key in the map will be the user
assigned to the operation. We use the computeIfAbsent() method to obtain the
ConcurrentLinkedDeque object associated with the key. If the key exists, this
method returns the value associated with it. If it doesn't, it executes the lambda
expression passed as a parameter to this method to generate the value and
associate it with the key. In this case, we generate a new
ConcurrentLinkedDeque object. Finally, insert the operation to the deque:

 private void addOperationToHash(ConcurrentHashMap<String,
 ConcurrentLinkedDeque<Operation>>
 userHash, Operation operation) {

 ConcurrentLinkedDeque<Operation> opList = userHash
 .computeIfAbsent(operation.getUser(),
 user -> new ConcurrentLinkedDeque<>());

 opList.add(operation);
 }

Now implement the Main class and include the main() method. First, declare a6.
ConcurrentHashMap object and a HashFiller task:

 ConcurrentHashMap<String, ConcurrentLinkedDeque<Operation>>
 userHash = new ConcurrentHashMap<>();
 HashFiller hashFiller = new HashFiller(userHash);

Execute 10 threads with the HashFiller class and wait for their finalization7.
using the join() method:

 Thread[] threads = new Thread[10];
 for (int i = 0; i < 10; i++) {
 threads[i] = new Thread(hashFiller);
 threads[i].start();
 }

 for (int i = 0; i < 10; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Concurrent Collections

[326]

Now, extract the information of ConcurrentHashMap. First, extract the number8.
of elements stored in it with the size() method. Then, use the forEach()
method to apply an action to all the elements stored in the hash. The first
parameter is the parallelism threshold. This is the minimum number of elements
required to make the operation execute in a concurrent way. We have specified
the value 10 and the hash has 100 elements, so the operation will be executed in a
parallel way. The lambda expression receives two parameters: key and value.
Print the key and size of ConcurrentLinkedDeque stored as a value:

 System.out.printf("Size: %d\n", userHash.size());

 userHash.forEach(10, (user, list) -> {
 System.out.printf("%s: %s: %d\n", Thread.currentThread()
 .getName(), user, list.size());
 });

Then, use the forEachEntry() method. This is similar to the previous one, but9.
the lambda expression receives an Entry object as a parameter instead of
receiving two parameters. You can use this entry object to obtain the key and
value:

 userHash.forEachEntry(10, entry -> {
 System.out.printf("%s: %s: %d\n", Thread.currentThread()
 .getName(), entry.getKey(),
 entry.getValue().size());
 });

Then, use the search() method to find the first element that satisfies the search10.
function specified. In our case, we search for an operation whose operation code
ends in 1. As occurs with the forEach() method, we specify a parallelism
threshold:

 Operation op = userHash.search(10, (user, list) -> {
 for (Operation operation : list) {
 if (operation.getOperation().endsWith("1")) {
 return operation;
 }
 }
 return null;
 });

 System.out.printf("The operation we have found is: %s, %s, %s,\n",
 op.getUser(), op.getOperation(), op.getTime());

Concurrent Collections

[327]

Use the search() method again, but this time, use it to find a user with more11.
than 10 operations:

 ConcurrentLinkedDeque<Operation> operations = userHash.search(10,
 (user, list) -> {
 if (list.size() > 10) {
 return list;
 }
 return null;
 });

 System.out.printf("The user we have found is: %s: %d operations\n",
 operations.getFirst().getUser(),
 operations.size());

Finally, use the reduce() method to calculate the total number of operations12.
stored in the hash:

 int totalSize = userHash.reduce(10, (user, list) -> {
 return list.size();
 }, (n1, n2) -> {
 return n1 + n2;
 });

 System.out.printf("The total size is: %d\n", totalSize);
 }
 }

How it works...
In this recipe, we implemented an application that uses ConcurrentHashMap to store
information about operations made by users. Internally, the hash table uses the user
attribute of the Operation class as a key and ConcurrentLinkedDeque (a non-blocking
concurrent list) as its value to store all the operations associated with that user.

First, we filled the hash with some random data using 10 different threads. We
implemented the HashFiller task for this purpose. The biggest problem with these tasks is
what happens when you have to insert a key in the hash table. If two threads want to add
the same key at the same time, you can lose the data inserted by one of the threads and have
a data-race condition. To solve this problem, we used the computeIfAbsent() method.

Concurrent Collections

[328]

This method receives a key and an implementation of the Function interface that can be
expressed as a lambda expression; the key and implementation are received as parameters.
If the key exists, the method returns the value associated with the key. If it doesn't, the
method executes the Function object specified and adds the key and value returned by
Function to the HashMap. In our case, the key didn't exist, so we created a new instance of
the ConcurrentLinkedDeque class. The main advantage of this method is that it's
executed atomically; so, if another thread tries to do the same operation, it will be blocked
until this operation is finished.

Then, in the main() method, we used other methods of ConcurrentHashMap to process
the information stored in the hash. We used the following methods:

forEach(): This method receives an implementation of the BiConsumer
interface that can be expressed as a lambda expression; it is received as a
parameter. The other two parameters of this expression represent the key and
value of the element we're processing. This method applies the expression to all
the elements stored in ConcurrentHashMap.
forEachEntry(): This method is equivalent to the previous one, but here the
expression is an implementation of the Consumer interface. It receives an Entry
object that stores the key and value of the entry we're processing as a parameter.
This is another way to express the same functionality.
search(): This method receives the implementation of the BiFunction
interface that can be expressed as a lambda expression; it is received as a
parameter. This function also receives the key and value of the entry of the
ConcurrentHashMap object we're processing as parameters. It returns the first
non-null value returned by BiFunction.
reduce(): This method receives two BiFunction interfaces to reduce the
elements of ConcurrentHashMap to a unique value. This allows you to
implement a MapReduce operation with the elements of ConcurrentHashMap.
The first BiFunction interface allows you to transform the key and value of the
elements into a unique value, and the second BiFunction interface allows you to
aggregate the values of two different elements.

All the methods described so far have a first parameter named parallelismThreshold.
This parameter is described as ...the (estimated) number of elements needed for this operation to be
executed in parallel..., that is to say, if ConcurrentHashMap has fewer elements than the
value specified in the parameter, the method is executed in a sequential way. On the
contrary (as in our case), the method is executed in a parallel way.

Concurrent Collections

[329]

There's more...
ConcurrentHashMap has more methods than what's specified in the previous section. We
enumerate some of them in the following list:

forEachKey() and forEachValue(): These methods are similar to the
forEach() methods, but in this case, the expression processes the keys and
values stored in ConcurrentHashMap, respectively.
searchEntries(), searchKeys(), and searchValues(): These methods are
similar to the search() method explained before. However, in this case, the
expression passed as a parameter receives an Entry object, a key, or a value of
the elements stored in ConcurrentHashMap.
reduceEntries(), reduceKeys(), and reduceValues(): These methods are
similar to the reduce() method explained before. However, in this case, the
expression passed as a parameter receives an Entry object, a key, or a value of
the elements stored in ConcurrentHashMap.
reduceXXXToDouble(), reduceXXXToLong(), and reduceXXXToInt(): These
methods allow you to make a reduction of the elements of ConcurrentHashMap
by generating a double, long, or int value, respectively.
computeIfPresent(): This method complements the computeIfAbsent()
method. In this case, it receives a key and an implementation of the BiFunction
interface that can be expressed as a lambda expression. If the key exists in the
HashMap, the method applies the expression to calculate the new value of the
key. The BiFunction interface receives the key and the actual value of that key
as parameters, and it returns the new value.
merge(): This method receives a key, value, and implementation of the
BiFunction interface that can be expressed as a lambda expression; they are
received as parameters. If the key doesn't exist in ConcurrentHashMap, it inserts
it there and associates the value parameter with it. If it exists, execute
BiFunction to calculate the new value associated with the key. The
BiFunction interface receives the key and its actual value as parameters and
returns the new value associated with the key.
getOrDefault(): This method receives a key and a default value as parameters.
If the key exists in ConcurrentHashMap, it returns its associated value.
Otherwise, it returns the default value.

Concurrent Collections

[330]

See also
The Using thread-safe navigable maps recipe in this chapter
The Reducing the elements of a stream recipe in Chapter 6, Parallel and Reactive
Streams

Using atomic variables
Atomic variables were introduced in Java version 5 to provide atomic operations on single
variables. When you work with a normal variable, each operation that you implement in
Java is transformed into several instructions of Java byte code that is understandable by the
JVM when you compile the program. For example, when you assign a value to a variable,
you only use one instruction in Java; however, when you compile this program, it is
transformed into various instructions in the JVM language. This can lead to data
inconsistency errors when you work with multiple threads that share a variable.

To avoid these problems, Java introduced atomic variables. When a thread is doing an
operation with an atomic variable and if other threads want to do an operation with the
same variable, the implementation of the class includes a mechanism to check that the
operation is done atomically. Basically, the operation gets the value of the variable, changes
the value to a local variable, and then tries to change the old value with the new one. If the
old value is still the same, it is substituted; if not, the method begins the operation again.
This operation is called Compare and Set. It implements the modification of the value of a
variable in the following three steps:

You get the value of the variable, which is the old value of the variable.1.
You change the value of the variable in a temporal variable, which is the new2.
value of the variable.
You substitute the old value with the new value if the old value is equal to the3.
actual value of the variable. The old value may be different from the actual value
if another thread changes the value of the variable.

Some of these variables, for example, the LongAccumulator class, receive an operation as a
parameter that could be executed inside some of its methods. These operations must be free
from any side effects, as they might be executed multiple times in every value update.

Atomic variables don't use locks or other synchronization mechanisms to protect access to
their values. All their operations are based on Compare and Set. It's guaranteed that several
threads can work with an atomic variable at a time without generating data inconsistency
errors; plus, they simplify the implementation.

Concurrent Collections

[331]

Java 8 has added four new atomic classes. First we have the LongAdder and DoubleAdder
classes; they store long and double values that are updated frequently by different
threads. You can obtain the same functionality as that of the LongAdder class with the
AtomicLong class, but the former provides better performance. The other two classes are
LongAccumulator and DoubleAccumulator. These classes are similar to the previous one,
but here, you have to specify two parameters in the constructor:

The initial value of the counter.
A LongBinaryOperator or DoubleBinaryOperator that can be indicated as a
lambda expression. This expression receives the old value of the variable and the
increment you want to apply and returns the new value of the variable.

In this recipe, you will learn how to use atomic variables implementing a bank account and
two different tasks: one that adds money to the account and one that subtracts money from
it. You will use the AtomicLong class in the implementation of the example.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you are using
Eclipse or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Account to simulate a bank account:1.

 public class Account {

Declare a private AtomicLong attribute named balance to store the balance of2.
the account. In addition, declare a private LongAdder attribute named operations
and a private DoubleAccumulator attribute named commission:

 private final AtomicLong balance;
 private final LongAdder operations;
 private final DoubleAccumulator commission;

Concurrent Collections

[332]

Implement the constructor of the class to initialize its attributes. For the3.
DoubleAccumulator class, the identity value is 0 and we update the actual
value with the result of multiply 0.2 to the increment passed as parameter:

 public Account() {
 balance = new AtomicLong();
 operations = new LongAdder();
 commission = new DoubleAccumulator((x,y)-> x+y*0.2, 0);
 }

Implement the method to get the value of the three attributes:4.

 public long getBalance() {
 return balance.get();
 }
 public long getOperations() {
 return operations.longValue();
 }
 public double getCommission() {
 return commission.get();
 }

Implement a method named setBalance() to establish the value of the balance5.
attribute. We also have to initialize the operations and commission attributes
using the reset() method:

 public void setBalance(long balance) {
 this.balance.set(balance);
 operations.reset();
 commission.reset();
 }

Implement a method named addAmount() to increment the value of the6.
balance attribute. In addition, use the increment() method of the LongAdder
class to increment the value of the operations attribute and the accumulate()
method by one unit to add 20 percent of the amount value to the commission
object:

 public void addAmount(long amount) {
 this.balance.getAndAdd(amount);
 this.operations.increment();
 this.commission.accumulate(amount);
 }

Concurrent Collections

[333]

Implement a method named substractAmount() to decrement the value of the7.
balance attribute. As it occurs with the addAmount() method, we modify the
values of the operations and commission attributes:

 public void subtractAmount(long amount) {
 this.balance.getAndAdd(-amount);
 this.operations.increment();
 this.commission.accumulate(amount);
 }

Create a class named Company and specify that it implements the Runnable8.
interface. This class will simulate the payments made by a company:

 public class Company implements Runnable {

Declare a private Account attribute named account:9.

 private final Account account;

Implement the constructor of the class to initialize its attribute:10.

 public Company(Account account) {
 this.account=account;
 }

Implement the run() method of the task. Use the addAmount() method of the11.
account to make 10 increments of 1,000 each in its balance:

 @Override
 public void run() {
 for (int i=0; i<10; i++){
 account.addAmount(1000);
 }
 }

Create a class named Bank and specify that it implements the Runnable12.
interface. This class will simulate the withdrawal of money from the account:

 public class Bank implements Runnable {

Declare a private Account attribute named account:13.

 private final Account account;

Concurrent Collections

[334]

Implement the constructor of the class to initialize its attribute:14.

 public Bank(Account account) {
 this.account=account;
 }

Implement the run() method of the task. Use the subtractAmount() method of15.
the account to make 10 decrements of 1,000 each from its balance:

 @Override
 public void run() {
 for (int i=0; i<10; i++){
 account.subtractAmount(1000);
 }
 }

Implement the main class of the example by creating a class named Main and16.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create an Account object and set its balance to 1000:17.

 Account account=new Account();
 account.setBalance(1000);

Create a new Company task and a thread to execute it:18.

 Company company=new Company(account);
 Thread companyThread=new Thread(company);

Create a new Bank task and a thread to execute it:19.

 Bank bank=new Bank(account);
 Thread bankThread=new Thread(bank);

Write the initial balance of the account in the console:20.

 System.out.printf("Account : Initial Balance: %d\n",
 account.getBalance());

Start the threads:21.

 companyThread.start();
 bankThread.start();

Concurrent Collections

[335]

Wait for the finalization of the threads using the join() method and write the22.
final balance in the console, the number of operations, and the accumulated
commission of the account:

 try {
 companyThread.join();
 bankThread.join();
 System.out.printf("Account : Final Balance: %d\n",
 account.getBalance());
 System.out.printf("Account : Number of Operations: %d\n",
 account.getOperations().intValue());
 System.out.printf("Account : Accumulated commisions: %f\n",
 account.getCommission().doubleValue());
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

How it works...
The key to this example is in the Account class. In this class, we declared an AtomicLong
variable named balance to store the balance of the account, a LongAdder variable named
operations to store the number of operations we made with the account, and a
DoubleAccumulator variable named commission to store the value of the commissions of
the operations. In the constructor of the commission object, we specified that the value will
be incremented with the expression 0.2*y. With this, we wanted to specify that we will
increment the actual value of the variable with the result of its multiplication by 0.2 and
the value of the parameter we pass to the accumulate() method.

To implement the getBalance() method that returns the value of the balance attribute,
we used the get() method of the AtomicLong class. To implement the getOperations()
method that returns a long value with the number of operations, we used the
longValue() method. To implement the getCommission() method, we used the get()
method of the DoubleAccumulator class. To implement the setBalance() method that
establishes the value of the balance attribute, we used the set() method of the
AtomicLong class.

Concurrent Collections

[336]

To implement the addAmount() method that adds an import to the balance of the account,
we used the getAndAdd() method of the AtomicLong class that returns the value and
increments it by the value specified as a parameter. We also used the increment() method
of the LongAdder class that increments the value of the variable by one and the
accumulate() method of the DoubleAccumulator class to increment the value of the
commission attribute following the specified expression. Take into account that the
addAmount() method is not atomic as a whole although it calls three atomic operations.

Finally, to implement the subtractAmount() method that decrements the value of the
balance attribute, we used the getAndAdd() method. We also included calls to the
increment() and accumulate() methods of the LongAdder and DoubleAccumulator
classes.

Then, we implemented two different tasks:

The Company class simulates a company that increments the balance of the
account. Each task of this class makes 10 increments of 1,000 each.
The Bank class simulates a bank where the proprietary of the bank account takes
out its money. Each task of this class makes 10 decrements of 1,000 each.

In the Main class, you created an Account object with a balance of 1,000. Then, you
executed a bank task and a company task so the final balance of the account is the same as
the initial one.

When you execute the program, you will see how the final balance is the same as the initial
one. The following screenshot shows the output of an execution of this example:

Concurrent Collections

[337]

There's more...
As mentioned in the introduction, there are other atomic classes in Java. AtomicBoolean,
AtomicInteger, and AtomicReference are other examples of atomic classes.

The LongAdder class provides other interesting methods as follows:

add(): To increment the value of the internal counter by the value specified as a
parameter
decrement(): To decrement the internal counter by one
reset(): To return the internal value to zero

You can also use the DoubleAdder class that is similar to LongAdder, but it doesn't have
the increment() and decrement() methods and the internal counter is a double value.

You can also use the LongAccumulator class that is similar to DoubleAccumulator but
with an internal long counter.

See also
The Synchronizing a method recipe in Chapter 2, Basic Thread Synchronization

Using atomic arrays
Consider that you need to implement a concurrent application that has one or more objects
shared by several threads. In such a scenario, you have to protect access to their attributes
using a synchronization mechanism, such as locks or the synchronized keyword, to avoid
data inconsistency errors.

These mechanisms have the following problems:

Deadlock: This situation occurs when a thread is blocked waiting for a lock that is
locked by other threads that will never free it. This situation blocks the program,
so it will never finish.
If only one thread is accessing the shared object, it has to execute the code
necessary to get and release the lock.

Concurrent Collections

[338]

To provide better performance in this situation, the compare-and-swap operation was
developed. This operation implements the modification of the value of a variable in the
following three steps:

You get the value of the variable, which is the old value of the variable.1.
You change the value of the variable in a temporal variable, which is the new2.
value of the variable.
You substitute the old value with the new value if the old value is equal to the3.
actual value of the variable. The old value may be different from the actual value
if another thread has changed it.

With this mechanism, you don't need to use a synchronization mechanism, so you avoid
deadlocks and you obtain better performance. This mechanism also has its drawbacks.
Operations must be free from any side effects as they might be retried using livelocks with
highly contended resources; they are also harder to monitor for performance when
compared with standard locks.

Java implements this mechanism in atomic variables. These variables provide the
compareAndSet() method, which is an implementation of the compare-and-swap
operation and other methods based on it.

Java also introduced atomic arrays that provide atomic operations for arrays of integer or
long numbers. In this recipe, you will learn how to use the AtomicIntegerArray class to
work with atomic arrays. Take into account that if you use AtomicInteger[], it's not a
thread-safe object. The individual AtomicInteger objects are thread-safe, but the array as a
data structure is not.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Incrementer and specify that it implements the Runnable1.
interface:

 public class Incrementer implements Runnable {

Concurrent Collections

[339]

Declare a private AtomicIntegerArray attribute named vector to store an2.
array of integer numbers:

 private final AtomicIntegerArray vector;

Implement the constructor of the class to initialize its attribute:3.

 public Incrementer(AtomicIntegerArray vector) {
 this.vector=vector;
 }

Implement the run() method. Increment all the elements of the array using the4.
getAndIncrement() method:

 @Override
 public void run() {
 for (int i=0; i<vector.length(); i++){
 vector.getAndIncrement(i);
 }
 }

Create a class named Decrementer and specify that it implements the Runnable5.
interface:

 public class Decrementer implements Runnable {

Declare a private AtomicIntegerArray attribute named vector to store an6.
array of integer numbers:

 private AtomicIntegerArray vector;

Implement the constructor of the class to initialize its attribute:7.

 public Decrementer(AtomicIntegerArray vector) {
 this.vector=vector;
 }

Implement the run() method. Decrement all the elements of the array using the8.
getAndDecrement() method:

 @Override
 public void run() {
 for (int i=0; i<vector.length(); i++) {
 vector.getAndDecrement(i);
 }
 }

Concurrent Collections

[340]

Implement the main class of the example by creating a class named Main and9.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Declare a constant named THREADS and assign the value 100 to it. Create an10.
AtomicIntegerArray object with 1,000 elements:

 final int THREADS=100;
 AtomicIntegerArray vector=new AtomicIntegerArray(1000);

Create an Incrementer task to work with the atomic array created earlier:11.

 Incrementer incrementer=new Incrementer(vector);

Create a Decrementer task to work with the atomic array created earlier:12.

 Decrementer decrementer=new Decrementer(vector);

Create two arrays to store 100 Thread objects:13.

 Thread threadIncrementer[]=new Thread[THREADS];
 Thread threadDecrementer[]=new Thread[THREADS];

Create and launch 100 threads to execute the Incrementer task and another 10014.
threads to execute the Decrementer task. Store the threads in the arrays created
earlier:

 for (int i=0; i<THREADS; i++) {
 threadIncrementer[i]=new Thread(incrementer);
 threadDecrementer[i]=new Thread(decrementer);

 threadIncrementer[i].start();
 threadDecrementer[i].start();
 }

Wait for the finalization of the threads using the join() method:15.

 for (int i=0; i<100; i++) {
 try {
 threadIncrementer[i].join();
 threadDecrementer[i].join();

Concurrent Collections

[341]

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

In the console, write the elements of the atomic array distinct from zero. Use the16.
get() method to obtain the elements of the atomic array:

 int errors=0;
 for (int i=0; i<vector.length(); i++) {
 if (vector.get(i)!=0) {
 System.out.println("Vector["+i+"] : "+vector.get(i));
 errors++;
 }
 }
 if (errors==0) {
 System.out.printf("No errors found\n");
 }

Write a message in the console indicating the finalization of the example:17.

 System.out.println("Main: End of the example");

How it works...
In this example, you implemented two different tasks to work with an
AtomicIntegerArray object:

Incrementer: This class increments all the elements of the array using the
getAndIncrement() method
Decrementer: This class decrements all the elements of the array using the
getAndDecrement() method

In the Main class, you created AtomicIntegerArray with 1,000 elements, then you
executed 100 incrementer and 100 decrementer tasks. At the end of these tasks, if there were
no inconsistency errors, all the elements of the array must have the value 0. If you execute
the program, you will see how the program only writes the final message to the console
because all the elements are zero.

Concurrent Collections

[342]

There's more...
Nowadays, Java provides another atomic array class. It's called the AtomicLongArray class
and it provides the same methods as the IntegerAtomicArray class.

Other interesting methods provided by these classes are:

get(int i): Returns the value of the array position specified by the parameter
set(int I, int newValue): Establishes the value of the array position
specified by the parameter.

See also
The Using atomic variables recipe in this chapter

Using the volatile keyword
Almost every application reads and writes data to the main memory of the computer. For
performance reasons, these operations aren't performed directly in the memory. CPUs have
a system of cache memory, so applications write data in the cache and then the data is
moved from the cache to the main memory.

In multithread applications, concurrent threads run in different CPUs or cores inside a CPU.
When a thread modifies a variable stored in the memory, the modification is made in the
cache or the CPU or core where it's running. However, there's no guarantee about when
that modification would reach the main memory. If another thread wants to read the value
of the data, it's possible that it would not read the modified value because it's not in the
main memory of the computer.

To solve this problem (there are other solutions, such as the synchronized keyword), the
Java language includes the volatile keyword. It's a modifier that allows you to specify
that a variable must always be read from and stored in the main memory, not the cache of
your CPU. You should use the volatile keyword when it's important that other threads have
visibility of the actual value of the variable; however, order of access to that variable is not
important. In this scenario, the volatile keyword will give you better performance
because it doesn't need to get any monitor or lock to access the variable. On the contrary, if
the order of access to the variable is important, you must use another synchronization
mechanism.

Concurrent Collections

[343]

In this recipe, you will learn how to use the volatile keyword and the effects of its use.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Flag with a public Boolean attribute named flag1.
initialized to the true value:

 public class Flag {
 public boolean flag=true;
 }

Create a class named VolatileFlag with a public Boolean attribute named flag2.
initialized to the true value. We add the volatile modifier to the declaration of
this attribute:

 public class VolatileFlag {
 public volatile boolean flag=true;
 }

Create a class named Task and specify that it implements the Runnable3.
interface. It has a private Flag attribute and a constructor to initialize it:

 public class Task implements Runnable {
 private Flag flag;
 public Task(Flag flag) {
 this.flag = flag;
 }

Implement the run() method of this task. It will increment an int variable when4.
the value of the flag attribute is true. Then, write the final value of the variable:

 @Override
 public void run() {
 int i = 0;

Concurrent Collections

[344]

 while (flag.flag) {
 i++;
 }
 System.out.printf("VolatileTask: Stopped %d - %s\n", i,
 new Date());
 }

Create a class named VolatileTask and specify that it implements the5.
Runnable interface. It has a private VolatileFlag attribute and a constructor to
initialize it:

 public class VolatileTask implements Runnable {

 private VolatileFlag flag;
 public VolatileTask(VolatileFlag flag) {
 this.flag = flag;
 }

Implement the run() method of this task. It's equal to the one in the Task class,6.
so it won't be included here:
Implement the Main class with the main() method. First, create four objects of7.
the VolatileFlag, Flag, VolatileTask, and Task classes:

 public class Main {

 public static void main(String[] args) {
 VolatileFlag volatileFlag=new VolatileFlag();
 Flag flag=new Flag();

 VolatileTask vt=new VolatileTask(volatileFlag);
 Task t=new Task(flag);

Then, create two threads to execute the tasks, start them, and sleep the main8.
thread for a second:

 Thread thread=new Thread(vt);
 thread.start();
 thread=new Thread(t);
 thread.start();

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Concurrent Collections

[345]

Then, change the value of the volatileFlag variable to stop the execution of9.
volatileTask and sleep the main thread for a second:

 System.out.printf("Main: Going to stop volatile task: %s\n",
 new Date());
 volatileFlag.flag=false;
 System.out.printf("Main: Volatile task stoped: %s\n", new Date());

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Finally, change the value of the task object to stop the execution of the task and10.
sleep the main thread for a second:

 System.out.printf("Main: Going to stop task: %s\n", new Date());
 flag.flag=false;
 System.out.printf("Main: Volatile stop flag changed: %s\n",
 new Date());

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

How it works...
The following screenshot shows the output of the example:

Concurrent Collections

[346]

The application doesn't finish its execution because the task thread has not finished. When
we change the value of volatileFlag-as its flag attribute is marked as volatile--the
new value is written in the main memory and VolatileTask accesses the value
immediately and finishes its execution. On the contrary, when you change the value of the
flag object--as its flag attribute is not marked as volatile-the new value is stored in the
cache of the main thread and the task object doesn't see the new value and never ends its
execution. The volatile keyword is important not only because it requires that the writes
are flushed, but also because it ensures that reads are not cached and they fetch the up-to-
date value from the main memory. It's very important and very often neglected.

Take into account that the volatile keyword guarantees that modifications are written in
the main memory, but its contrary is not always true. For example, if you work with a non-
volatile integer value shared by more than one thread and make a lot of modifications, you
may be able to see the modifications made by other threads because they were written in
the main memory. However, there's no guarantee that these changes were passed from the
cache to the main memory.

There's more...
The volatile keyword only works well when the value of the shared variable is only
modified by one thread. If the variable is modified by multiple threads, the volatile
keyword doesn't protect you from possible data-race conditions. It also doesn't make
operations, such as + or -, atomic. For example, the ++ operator over a volatile variable is
not thread-safe.

Since Java 5, Java Memory Model has a happens--before guarantee established with the
volatile keyword. This fact has two implications:

When you modify a volatile variable, its value is sent to the main memory. The
value of all the variables modified previously by the same thread are sent too.
Compilers can't reorder sentences that modify a volatile variable for an
optimization purpose. It can reorder the previous operations and the later ones,
but not the modifications of a volatile variable. The changes that happen before
these modifications will be visible to those instructions.

See also
The Using atomic variables and Using atomic arrays recipe in this chapter

Concurrent Collections

[347]

Using variable handles
Variable handles are a new feature of Java 9 that allow you to get a typed reference to a
variable (attribute, static field, or array element) in order to access it in different modes. You
can, for example, protect access to this variable in a concurrent application by allowing
atomic access to the variable. Until now, you could only obtain this behavior with atomic
variables, but now, you can use variable handles to obtain the same functionality without
using any synchronization mechanism. A variable handle also allows you to get additional
access modes to a variable.

In this recipe, you will learn how to obtain and use a variable handle and the benefits you
obtain using it.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Account with two double public attributes named amount1.
and unsafeAmount. Implement the constructor to initialize its values:

 public class Account {
 public double amount;
 public double unsafeAmount;

 public Account() {
 this.amount=0;
 this.unsafeAmount=0;
 }
 }

Create a class named Decrementer and specify that it implements the Runnable2.
interface. It has a private Account attribute initialized in the constructor of the
class:

 public class Decrementer implements Runnable {

 private Account account;

Concurrent Collections

[348]

 public Decrementer(Account account) {
 this.account = account;
 }

Implement the run() method. This method will make 10,000 decrement3.
operations in the amount and unsafeAmount attributes. To modify the value of
the amount attribute, use VarHandle. Obtain it using the lookup() method of
the MethodHandles class, then use the getAndAdd() method to modify the
value of the attribute. To modify the unsafeAmount attribute, use the = operator:

 @Override
 public void run() {
 VarHandle handler;
 try {
 handler = MethodHandles.lookup().in(Account.class)
 .findVarHandle(Account.class, "amount",
 double.class);
 for (int i = 0; i < 10000; i++) {
 handler.getAndAdd(account, -100);
 account.unsafeAmount -= 100;
 }
 } catch (NoSuchFieldException | IllegalAccessException e) {
 e.printStackTrace();
 }
 }

Implement a class named Incrementer. This will be equivalent to the4.
Drementer class, but it will increase the value of the account. The source code of
this class won't be included here.
Finally, implement the Main class with the main() method. First, create an5.
account object:

 public class Main {
 public static void main(String[] args) {
 Account account = new Account();

Then, create a thread to execute an Incrementer task and a thread to execute a6.
Decrementer task. Start them and wait for their finalization using the join()
method:

 Thread threadIncrementer = new Thread(new Incrementer(account));
 Thread threadDecrementer = new Thread(new Decrementer(account));

 threadIncrementer.start();
 threadDecrementer.start();

Concurrent Collections

[349]

 try {
 threadIncrementer.join();
 threadDecrementer.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Finally, write the value of the amount and unsafeAmount attributes in the7.
console:

 System.out.printf("Safe amount: %f\n", account.amount);
 System.out.printf("Unsafe amount: %f\n", account.unsafeAmount);

 }
 }

How it works...
The following screenshot shows the output of an execution of the application:

As you make the same number of increment and decrement operations, the expected result
in both cases is 0. We obtain this result with the amount attribute because as we access it
using the VarHandle, we guarantee atomic access to its modifications. On the other hand,
the unsafeAmount doesn't have the expected value. Access to this value is not protected
and we have a data-race condition.

To use a variable handle, first we have to obtain it using the lookup() method of the
MethodHandles class, followed by the in() method and then the findVarHandle()
method. The lookup() method returns a Lookup object, the in() method returns a
Lookup object of the specified class—in our case, the Account class—and
findVarHandle() generates VarHandle for the attribute we want to access.

Concurrent Collections

[350]

Once we have the VarHandle object, we can use different methods to use different access
modes. In this example, we used the getAndAdd() method. This method guarantees atomic
access to increment the value of the attribute. We pass to them the object we want to access
and the value of the increment.

The next section provides more information about the different access modes and the
methods you can use in each case.

There's more...
You have four different access types to a variable with a variable handle:

Read mode: This is used to get read mode access to a variable. You can use the
following methods:

get(): Read the value of the variable as if it was declared non-
volatile
getVolatile(): Read the value of the variable as if it was
declared volatile
getAcquire(): Read the value of the variable and guarantee that
the following instructions that modify or access this variable are
not reordered before the instructions for optimization purposes
getOpaque(): Read the value of variable and guarantee that the
instructions of the current thread are not reordered; no guarantee is
provided for other threads

Write mode: This is used to get write access mode to a variable. You can use the
set(), setVolatile(), setRelease(), and setOpaque() methods. They are
equivalent to the previous ones but with write access.
Atomic access mode: This is used to get a functionality that is similar to the one
provided by the atomic variables with operations to, for example, compare and
get the value of the variable. You can use the following methods:

compareAndSet(): Change the value of the variable as it was
declared as a volatile variable if the expected value passed as
parameter is equal to the current value of the variable
weakCompareAndSet() and weakCompareAndSetVolatile():
Possibly atomically' changes the value of the variable as it was
declared as non-volatile or volatile variables respectively if the
expected value passed as parameter is equals to the current value
of the variable

Concurrent Collections

[351]

Numerical update access mode: This is to modify numerical values in an atomic
way.

See also
The Using atomic variables and Using atomic arrays recipe in this chapter

8
Customizing Concurrency

Classes
In this chapter, we will cover the following topics:

Customizing the ThreadPoolExecutor class
Implementing a priority-based Executor class
Implementing the ThreadFactory interface to generate custom threads
Using our ThreadFactory in an Executor object
Customizing tasks running in a scheduled thread pool
Implementing the ThreadFactory interface to generate custom threads for the
fork/join framework
Customizing tasks running in the fork/join framework
Implementing a custom Lock class
Implementing a transfer queue-based on priorities
Implementing your own atomic object
Implementing your own stream generator
Implementing your own asynchronous stream

Customizing Concurrency Classes

[353]

Introduction
The Java Concurrency API provides a lot of interfaces and classes to implement concurrent
applications. They provide low-level mechanisms, such as the Thread class, the Runnable
or Callable interfaces, or the synchronized keyword. They also provide high-level
mechanisms, such as the Executor framework and the fork/join framework added in the
Java 7 release, or the Stream framework added in Java 8, to process big sets of data. Despite
this, you may find yourself developing a program where the default configuration and/or
implementation of the Java API doesn't meet your needs.

In this case, you may need to implement your own custom concurrent utilities, based on the
ones provided by Java. Basically, you can:

Implement an interface to provide the functionality defined by that interface, for
example, the ThreadFactory interface.
Override some methods of a class to adapt its behavior to your needs. For
example, overriding the onAdvance() method of the Phaser class that, by
default, does nothing useful and is supposed to be overridden to offer some
functionality.

Through the recipes of this chapter, you will learn how to change the behavior of some Java
concurrency API classes without the need to design a concurrency framework from scratch.
You can use these recipes as an initial point to implement your own customizations.

Customizing the ThreadPoolExecutor class
The Executor framework is a mechanism that allows you to separate thread creation from
its execution. It's based on the Executor and ExecutorService interfaces with the
ThreadPoolExecutor class that implements both the interfaces. It has an internal pool of
threads and provides methods that allow you to send two kinds of tasks and execute them
in the pooled threads. These tasks are:

The Runnable interface to implement tasks that don't return a result
The Callable interface to implement tasks that return a result

In both cases, you only send the task to the executor. The executor uses one of its pooled
threads or creates a new one to execute those tasks. It also decides the moment in which the
task is executed.

Customizing Concurrency Classes

[354]

In this recipe, you will learn how to override some methods of the ThreadPoolExecutor
class to calculate the execution time of the tasks that you will execute in the executor and
write about the executor in console statistics when it completes its execution.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyExecutor that extends the ThreadPoolExecutor class:1.

 public class MyExecutor extends ThreadPoolExecutor {

Declare a private ConcurrentHashMap attribute parameterized by the String2.
and Date classes, named startTimes:

 private final ConcurrentHashMap<Runnable, Date> startTimes;

Implement the constructor for the class. Call a constructor of the parent class3.
using the super keyword and initialize the startTime attribute:

 public MyExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit,
 BlockingQueue<Runnable> workQueue) {
 super(corePoolSize, maximumPoolSize, keepAliveTime, unit,
 workQueue);
 startTimes=new ConcurrentHashMap<>();
 }

Override the shutdown() method. Write in the console information about the4.
executed, running, and pending tasks. Then, call the shutdown() method of the
parent class using the super keyword:

 @Override
 public void shutdown() {
 System.out.printf("MyExecutor: Going to shutdown.\n");
 System.out.printf("MyExecutor: Executed tasks: %d\n",
 getCompletedTaskCount());

Customizing Concurrency Classes

[355]

 System.out.printf("MyExecutor: Running tasks: %d\n",
 getActiveCount());
 System.out.printf("MyExecutor: Pending tasks: %d\n",
 getQueue().size());
 super.shutdown();
 }

Override the shutdownNow() method. Write in the console information about5.
the executed, running, and pending tasks. Then, call the shutdownNow() method
of the parent class using the super keyword:

 @Override
 public List<Runnable> shutdownNow() {
 System.out.printf("MyExecutor: Going to immediately
 shutdown.\n");
 System.out.printf("MyExecutor: Executed tasks: %d\n",
 getCompletedTaskCount());
 System.out.printf("MyExecutor: Running tasks: %d\n",
 getActiveCount());
 System.out.printf("MyExecutor: Pending tasks: %d\n",
 getQueue().size());
 return super.shutdownNow();
 }

Override the beforeExecute() method. Write a message in the console with the6.
name of the thread that is going to execute the task and the hash code of the task.
Store the start date in HashMap using the hash code of the task as the key:

 @Override
 protected void beforeExecute(Thread t, Runnable r) {
 System.out.printf("MyExecutor: A task is beginning: %s : %s\n",
 t.getName(),r.hashCode());
 startTimes.put(r, new Date());
 }

Override the afterExecute() method. Write a message in the console with the7.
result of the task and calculate the running time of the task after subtracting the
start date of the task stored in HashMap of the current date:

 @Override
 protected void afterExecute(Runnable r, Throwable t) {
 Future<?> result=(Future<?>)r;
 try {
 System.out.printf("*********************************\n");
 System.out.printf("MyExecutor: A task is finishing.\n");

Customizing Concurrency Classes

[356]

 System.out.printf("MyExecutor: Result: %s\n",
 result.get());
 Date startDate=startTimes.remove(r);
 Date finishDate=new Date();
 long diff=finishDate.getTime()-startDate.getTime();
 System.out.printf("MyExecutor: Duration: %d\n",diff);
 System.out.printf("*********************************\n");
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 }

Create a class named SleepTwoSecondsTask that implements the Callable8.
interface parameterized by the String class. Implement the call() method. Put
the current thread to sleep for 2 seconds and return the current date converted
into a String type:

 public class SleepTwoSecondsTask implements Callable<String> {

 public String call() throws Exception {
 TimeUnit.SECONDS.sleep(2);
 return new Date().toString();
 }

 }

Implement the main class of the example by creating a class named Main with a9.
main() method:

 public class Main {
 public static void main(String[] args) {

Create a MyExecutor object named myExecutor:10.

 MyExecutor myExecutor=new MyExecutor(4, 8, 1000,
 TimeUnit.MILLISECONDS,
 new LinkedBlockingDeque<Runnable>());

Create a list of Future objects parameterized by the String class to store the11.
resultant objects of the tasks you're going to send to the executor:

 List<Future<String>> results=new ArrayList<>();

Customizing Concurrency Classes

[357]

Submit 10 Task objects:12.

 for (int i=0; i<10; i++) {
 SleepTwoSecondsTask task=new SleepTwoSecondsTask();
 Future<String> result=myExecutor.submit(task);
 results.add(result);
 }

Get the result of the execution of the first five tasks using the get() method.13.
Write them in the console:

 for (int i=0; i<5; i++){
 try {
 String result=results.get(i).get();
 System.out.printf("Main: Result for Task %d : %s\n",
 i,result);
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }

Finish the execution of the executor using the shutdown() method:14.

 myExecutor.shutdown();

Get the result of the execution of the last five tasks using the get() method.15.
Write them in the console:

 for (int i=5; i<10; i++){
 try {
 String result=results.get(i).get();
 System.out.printf("Main: Result for Task %d : %s\n",
 i,result);
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }

Wait for the completion of the executor using the awaitTermination() method:16.

 try {
 myExecutor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Customizing Concurrency Classes

[358]

Write a message indicating the end of the execution of the program:17.

 System.out.printf("Main: End of the program.\n");

How it works...
In this recipe, we implemented our custom executor by extending the
ThreadPoolExecutor class and overriding four of its methods. The beforeExecute()
and afterExecute() methods were used to calculate the execution time of a task. The
beforeExecute() method is executed before the execution of a task; in this case, we used
HashMap to store the start date of the task in it. The afterExecute() method is executed
after the execution of the task. You got startTime of the task that had finished from
HashMap and then calculate the difference between the actual date and and the startTime
to get the execution time of the task. You also overrode the shutdown() and
shutdownNow() methods to write statistics about the tasks executed in the executor to the
console. These tasks included:

The executed tasks, using the getCompletedTaskCount() method
The tasks that were running at the current time, using the getActiveCount()
method
The pending tasks, using the size() method of the blocking queue where the
executor stores the pending tasks

The SleepTwoSecondsTask class that implements the Callable interface puts its
execution thread to sleep for 2 seconds and the Main class, where you send 10 tasks to your
executor, uses it and the other classes to demo their features.

Execute the program and you will see how the program shows the time span of each task
that is running and the statistics of the executor upon calling the shutdown() method.

See also
The Creating a thread executor and controlling its rejected tasks recipe in Chapter 4,
Thread Executors
The Using our ThreadFactory in an Executor object recipe in this chapter

Customizing Concurrency Classes

[359]

Implementing a priority-based Executor
class
In the first version of the Java Concurrency API, you had to create and run all the threads of
your application. In Java version 5, with the appearance of the Executor framework, a new
mechanism was introduced for the execution of concurrency tasks.

With the Executor framework, you only have to implement your tasks and send them to the
executor. The executor is responsible for the creation and execution of the threads that
execute your tasks.

Internally, an executor uses a blocking queue to store pending tasks. These are stored in the
order of their arrival at the executor. One possible alternative is to use a priority queue to
store new tasks. This way, if a new task with high priority arrives to the executor, it will be
executed before all the other threads that have already been waiting but have comparatively
lower priority.

In this recipe, you will learn how to adapt an executor that will use a priority queue to store
the tasks you send for execution.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyPriorityTask that implements the Runnable and1.
Comparable interfaces parameterized by the MyPriorityTask class interface:

 public class MyPriorityTask implements Runnable,
 Comparable<MyPriorityTask> {

Declare a private int attribute named priority:2.

 private int priority;

Customizing Concurrency Classes

[360]

Declare a private String attribute called name:3.

 private String name;

Implement the constructor of the class to initialize its attributes:4.

 public MyPriorityTask(String name, int priority) {
 this.name=name;
 this.priority=priority;
 }

Implement a method to return the value of the priority attribute:5.

 public int getPriority(){
 return priority;
 }

Implement the compareTo() method declared in the Comparable interface. It6.
receives a MyPriorityTask object as a parameter and compares the priorities of
the two objects: the current one and the parameter. You let tasks with higher
priority be executed before tasks with lower priority:

 @Override
 public int compareTo(MyPriorityTask o) {
 return Integer.compare(o.getPriority(), this.getPriority());
 }

Implement the run() method. Put the current thread to sleep for 2 seconds:7.

 @Override
 public void run() {
 System.out.printf("MyPriorityTask: %s Priority : %d\n",
 name,priority);
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 Thread.currentThread().interrupt();
 }
 }

Implement the main class of the example by creating a class named Main with a8.
main() method:

 public class Main {
 public static void main(String[] args) {

Customizing Concurrency Classes

[361]

Create a ThreadPoolExecutor object named executor. Use9.
PriorityBlockingQueue, parameterized by the Runnable interface, as the
queue that this executor will use to store its pending tasks:

 ThreadPoolExecutor executor=new ThreadPoolExecutor(4,4,1,
 TimeUnit.SECONDS,
 new PriorityBlockingQueue<Runnable>());

Send 10 tasks to the executor using the counter of the loop as the priority of the10.
tasks. Use the execute() method to send the tasks to the executor:

 for (int i=0; i<10; i++){
 MyPriorityTask task=new MyPriorityTask ("Task "+i,i);
 executor.execute(task);
 }

Put the current thread to sleep for 1 second:11.

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Send 10 additional tasks to the executor using the counter of the loop as the12.
priority of the tasks. Use the execute() method to send the tasks to the executor:

 for (int i=10; i<20; i++) {
 MyPriorityTask task=new MyPriorityTask ("Task "+i,i);
 executor.execute(task);
 }

Shut down the executor using the shutdown() method:13.

 executor.shutdown();

Wait for the finalization of the executor using the awaitTermination() method:14.

 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Customizing Concurrency Classes

[362]

Write a message in the console indicating the finalization of the program:15.

 System.out.printf("Main: End of the program.\n");

How it works...
Converting a regular executor into a priority-based executor is simple. You only have to
pass a PriorityBlockingQueue object, parameterized by the Runnable interface, as a
parameter. But with the executor, you should know that all the objects stored in a priority
queue have to implement the Comparable interface.

You implemented the MyPriorityTask class that implements the Runnable interface,
which will act as a task, and the Comparable interface to be stored in the priority queue.
This class has a Priority attribute that is used to store the priority of the tasks. If a task has
a higher value for this attribute, it will be executed earlier. The compareTo() method
determines the order of the tasks in the priority queue. In the Main class, you sent 20 tasks
to the executor with different priorities. The first tasks you sent to the executor were the
first tasks to be executed. As the executor was idle waiting for the tasks, it executed the first
tasks immediately, as soon as they arrived. You created the executor with four execution
threads, so the first four tasks will be the first ones that are executed. Then, the rest of the
tasks will be executed based on their priority.

The following screenshot shows one execution of this example:

Customizing Concurrency Classes

[363]

There's more...
You can configure Executor to use any implementation of the BlockingQueue interface.
One interesting implementation is DelayQueue. This class is used to store elements with
delayed activation. It provides methods that only return active objects. You can use this
class to implement your own version of the ScheduledThreadPoolExecutor class.

See also
The Creating a thread executor and controlling its rejected tasks recipe in Chapter 4,
Thread Executors
The Customizing the ThreadPoolExecutor class recipe in this chapter
The Using blocking thread-safe queue ordered by priority recipe in Chapter 7,
Concurrent Collections

Implementing the ThreadFactory interface to
generate custom threads
Factory pattern is a widely used design pattern in the object-oriented programming world.
It is a creational pattern and its objective is to develop a class whose mission is to create
objects of one or several classes. Then, when we want to create an object of one of those
classes, we use the factory instead of using the new operator.

With this factory, we centralize the creation of objects, thereby gaining the
advantage of easily changing the class of objects created or the way we
create these objects, considering the limitations we have in creating objects
with limited resources. For example, we can only have N objects of a type
that has the ability to easily generate statistical data about the creation of
objects.

Java provides the ThreadFactory interface to implement a Thread object factory. Some
advanced utilities of the Java concurrency API, such as the Executor framework or the
fork/join framework, use thread factories to create threads. Another example of the factory
pattern in the Java Concurrency API is the Executors class. It provides a lot of methods to
create different kinds of Executor objects. In this recipe, you will extend the Thread class
by adding new functionalities, and you will implement a thread factory class to generate
threads of this new class.

Customizing Concurrency Classes

[364]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyThread that extends the Thread class:1.

 public class MyThread extends Thread {

Declare three private Date attributes named creationDate, startDate, and2.
finishDate:

 private final Date creationDate;
 private Date startDate;
 private Date finishDate;

Implement a constructor of the class. It receives the name and the Runnable3.
object to be executed as parameters. Initialize the creation date of the thread:

 public MyThread(Runnable target, String name){
 super(target,name);
 creationDate = new Date();
 }

Implement the run() method. Store the start date of the thread, call the run()4.
method of the parent class, and store the finish date of the execution:

 @Override
 public void run() {
 setStartDate();
 super.run();
 setFinishDate();
 }

Implement a method to establish the value of the startDate attribute:5.

 public synchronized void setStartDate() {
 startDate=new Date();
 }

Customizing Concurrency Classes

[365]

Implement a method to establish the value of the finishDate attribute:6.

 public synchronized void setFinishDate() {
 finishDate=new Date();
 }

Implement a method named getExecutionTime() that calculates the execution7.
time of the thread as the difference between start and finish dates:

 public synchronized long getExecutionTime() {
 return finishDate.getTime()-startDate.getTime();
 }

Override the toString() method to return the creation date and execution time8.
of the thread:

 @Override
 public synchronized String toString(){
 StringBuilder buffer=new StringBuilder();
 buffer.append(getName());
 buffer.append(": ");
 buffer.append(" Creation Date: ");
 buffer.append(creationDate);
 buffer.append(" : Running time: ");
 buffer.append(getExecutionTime());
 buffer.append(" Milliseconds.");
 return buffer.toString();
 }

Create a class named MyThreadFactory that implements the ThreadFactory9.
interface:

 public class MyThreadFactory implements ThreadFactory {

Declare a private AtomicInteger attribute named counter:10.

 private AtomicInteger counter;

Declare a private String attribute named prefix:11.

 private String prefix;

Customizing Concurrency Classes

[366]

Implement the constructor of the class to initialize its attributes:12.

 public MyThreadFactory (String prefix) {
 this.prefix=prefix;
 counter=new AtomicInteger(1);
 }

Implement the newThread() method. Create a MyThread object and increment13.
the counter attribute:

 @Override
 public Thread newThread(Runnable r) {
 MyThread myThread=new MyThread(r,prefix+"-"+counter
 .getAndIncrement());
 return myThread;
 }

Create a class named MyTask that implements the Runnable interface.14.
Implement the run() method. Put the current thread to sleep for 2 seconds:

 public class MyTask implements Runnable {
 @Override
 public void run() {
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Implement the main class of the example by creating a class named Main with a15.
main() method:

 public class Main {
 public static void main(String[] args) throws Exception {

Create a MyThreadFactory object:16.

 MyThreadFactory myFactory=new MyThreadFactory
 ("MyThreadFactory");

Create a Task object:17.

 MyTask task=new MyTask();

Customizing Concurrency Classes

[367]

Create a MyThread object to execute the task using the newThread() method of18.
the factory:

 Thread thread=myFactory.newThread(task);

Start the thread and wait for its finalization:19.

 thread.start();
 thread.join();

Write information about the thread using the toString() method:20.

 System.out.printf("Main: Thread information.\n");
 System.out.printf("%s\n",thread);
 System.out.printf("Main: End of the example.\n");

How it works...
In this recipe, you implemented a custom MyThread class extending the Thread class. This
class has three attributes to store the creation date, the start date of its execution, and the
end date of its execution. Using the start date and end date attributes, you implemented the
getExecutionTime() method that returns the total time the thread spent in executing its
task. Finally, you overrode the toString() method to generate information about a thread.

Once you had your own thread class, you implemented a factory to create objects of that
class by implementing the ThreadFactory interface. It's not mandatory to make use of the
interface if you're going to use your factory as an independent object, but if you want to use
this factory with other classes of the Java Concurrency API, you must construct your factory
by implementing this interface. The ThreadFactory interface has only one method: the
newThread() method. This method receives a Runnable object as a parameter and returns
a Thread object to execute the Runnable object. In your case, you returned a MyThread
object.

To check these two classes, you implemented the MyTask class that implemented the
Runnable object. This is the task to be executed in threads managed by the MyThread
object. A MyTask instance puts its execution thread to sleep for 2 seconds.

In the main method of the example, you created a MyThread object using a
MyThreadFactory factory to execute a Task object. If you execute the program, you will
see a message with the start date and the execution time of the thread executed.

Customizing Concurrency Classes

[368]

The following screenshot shows the output generated by this example:

There's more...
The Java Concurrency API provides the Executors class to generate thread executors,
usually objects of the ThreadPoolExecutor class. You can also use this class to obtain the
most basic implementation of the ThreadFactory interface, using the
defaultThreadFactory() method. The factory generated by this method generates basic
Thread objects that belong to the same ThreadGroup object. You can use the
ThreadFactory interface in your program for any purpose, not necessarily related only to
the Executor framework.

Using our ThreadFactory in an Executor
object
In the previous recipe, we introduced the factory pattern and provided an example of how
to implement a factory of threads implementing the ThreadFactory interface.

The Executor framework is a mechanism that allows you to separate thread creation and its
execution. It's based on the Executor and ExecutorService interfaces and the
ThreadPoolExecutor class that implements both these interfaces. It has an internal pool of
threads and provides methods that allow you to send two kinds of tasks to execute them in
the pooled threads. These two kinds of tasks are as follows:

Classes that implement the Runnable interface, to implement tasks that don't
return a result
Classes that implement the Callable interface, to implement tasks that return a
result

Customizing Concurrency Classes

[369]

Internally, the Executor framework uses a ThreadFactory interface to create threads that
it uses to generate new threads. In this recipe, you will learn how to implement your own
thread class, a thread factory to create threads of this class, and how to use this factory in an
executor so the executor will execute your threads.

Getting ready
Read the previous recipe and implement its example.

The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or another IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Copy the MyThread, MyThreadFactory, and MyTask classes into the project.1.
They were implemented in the Implementing the ThreadFactory interface to generate
custom threads for the fork/join framework recipe. You are going to use them in this
example.
Implement the main class of the example by creating a class named Main with a2.
main() method:

 public class Main {
 public static void main(String[] args) throws Exception {

Create a new MyThreadFactory object named threadFactory:3.

 MyThreadFactory threadFactory=new MyThreadFactory
 ("MyThreadFactory");

Create a new Executor object using the newCachedThreadPool() method of4.
the Executors class. Pass the factory object created earlier as a parameter. The
new Executor object will use this factory to create the necessary threads, so it
will execute MyThread threads:

 ExecutorService executor=Executors.newCachedThreadPool
 (threadFactory);

Customizing Concurrency Classes

[370]

Create a new Task object and send it to the executor using the submit()5.
method:

 MyTask task=new MyTask();
 executor.submit(task);

Shut down the executor using the shutdown() method:6.

 executor.shutdown();

Wait for the finalization of the executor using the awaitTermination() method:7.

 executor.awaitTermination(1, TimeUnit.DAYS);

Write a message to indicate the end of the program:8.

 System.out.printf("Main: End of the program.\n");

How it works...
In the How it works... section of the previous recipe, you have a detailed explanation of how
the MyThread, MyThreadFactory, and MyTask classes work.

In the main() method of the example, you created an Executor object using the
newCachedThreadPool() method of the Executors class. You passed the factory object
created earlier as a parameter, so the Executor object created will use that factory to create
the threads it needs and also execute threads of the MyThread class.

Execute the program and you will see a message with information about the thread's start
date and its execution time. The following screenshot shows the output generated by this
example:

See also
The Implementing the ThreadFactory interface to generate custom threads for the
fork/join framework recipe in this chapter

Customizing Concurrency Classes

[371]

Customizing tasks running in a scheduled
thread pool
Scheduled thread pool is an extension of the basic thread pool of the Executor framework
that allows you to schedule the execution of tasks to be executed after a period of time. It's
implemented by the ScheduledThreadPoolExecutor class, and it permits the execution
of the following two kinds of tasks:

Delayed tasks: These kinds of tasks are executed only once after a period of time
Periodic tasks: These kinds of tasks are executed after a delay and then
periodically, every so often

Delayed tasks can execute both Callable and Runnable objects, but periodic tasks can
only execute Runnable objects. All the tasks executed by a scheduled pool are an
implementation of the RunnableScheduledFuture interface. In this recipe, you will learn
how to implement your own implementation of the RunnableScheduledFuture interface
to execute both delayed and periodic tasks.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyScheduledTask parameterized by a generic type named1.
V. It extends the FutureTask class and implements the
RunnableScheduledFuture interface:

 public class MyScheduledTask<V> extends FutureTask<V>
 implements RunnableScheduledFuture<V> {

Customizing Concurrency Classes

[372]

Declare a privateRunnableScheduledFuture attribute named task:2.

 private RunnableScheduledFuture<V> task;

Declare a privateScheduledThreadPoolExecutor class named executor:3.

 private ScheduledThreadPoolExecutor executor;

Declare a private long attribute named period:4.

 private long period;

Declare a private long attribute named startDate:5.

 private long startDate;

Implement a constructor of the class. It receives the Runnable object that is going6.
to be executed by a task, the result that will be returned by this task, the
RunnableScheduledFuture task that will be used to create the
MyScheduledTask object, and the ScheduledThreadPoolExecutor object that
is going to execute the task. Call the constructor of its parent class and store the
task and executor attributes:

 public MyScheduledTask(Runnable runnable, V result,
 RunnableScheduledFuture<V> task,
 ScheduledThreadPoolExecutor executor) {
 super(runnable, result);
 this.task=task;
 this.executor=executor;
 }

Implement the getDelay() method. If the task is periodic and the startDate7.
attribute has a value other than zero, calculate the returned value as the
difference between the startDate attribute and the actual date. Otherwise,
return the delay of the original task stored in the task attribute. Don't forget that
you have to return the result in the time unit passed as a parameter:

 @Override
 public long getDelay(TimeUnit unit) {
 if (!isPeriodic()) {
 return task.getDelay(unit);
 } else {
 if (startDate==0){
 return task.getDelay(unit);
 } else {

Customizing Concurrency Classes

[373]

 Date now=new Date();
 long delay=startDate-now.getTime();
 return unit.convert(delay, TimeUnit.MILLISECONDS);
 }
 }
 }

Implement the compareTo() method. Call the compareTo() method of the8.
original task:

 @Override
 public int compareTo(Delayed o) {
 return task.compareTo(o);
 }

Implement the isPeriodic() method. Call the isPeriodic() method of the9.
original task:

 @Override
 public boolean isPeriodic() {
 return task.isPeriodic();
 }

Implement the run() method. If it's a periodic task, you have to update its10.
startDate attribute with the start date of the next execution of the task.
Calculate it as the sum of the actual date and period. Then, add the task again to
the queue of the ScheduledThreadPoolExecutor object:

 @Override
 public void run() {
 if (isPeriodic() && (!executor.isShutdown())) {
 Date now=new Date();
 startDate=now.getTime()+period;
 executor.getQueue().add(this);
 }

Print a message to the console with the actual date. Execute the task calling the11.
runAndReset() method and then print another message to the console with the
actual date:

 System.out.printf("Pre-MyScheduledTask: %s\n",new Date());
 System.out.printf("MyScheduledTask: Is Periodic: %s\n",
 isPeriodic());
 super.runAndReset();
 System.out.printf("Post-MyScheduledTask: %s\n",new Date());
 }

Customizing Concurrency Classes

[374]

Implement thesetPeriod() method to establish the period of this task:12.

 public void setPeriod(long period) {
 this.period=period;
 }

Create a class named MyScheduledThreadPoolExecutor to implement a13.
ScheduledThreadPoolExecutor object that executes MyScheduledTask tasks.
Specify that this class extends the ScheduledThreadPoolExecutor class:

 public class MyScheduledThreadPoolExecutor extends
 ScheduledThreadPoolExecutor {

Implement a constructor of the class that merely calls the constructor of its parent14.
class:

 public MyScheduledThreadPoolExecutor(int corePoolSize) {
 super(corePoolSize);
 }

Implement the decorateTask() method. It receives the Runnable object that is15.
going to be executed as a parameter and the RunnableScheduledFuture task
that will execute this Runnable object. Create and return a MyScheduledTask
task using these objects to construct them:

 @Override
 protected <V> RunnableScheduledFuture<V> decorateTask(
 Runnable runnable,
 RunnableScheduledFuture<V> task) {
 MyScheduledTask<V> myTask=new MyScheduledTask<V>(runnable,
 null, task,this);
 return myTask;
 }

Override the scheduledAtFixedRate() method. Call the method of its parent16.
class, convert the returned object into a MyScheduledTask object, and establish
the period of that task using the setPeriod() method:

 @Override
 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
 long initialDelay, long period, TimeUnit unit) {
 ScheduledFuture<?> task= super.scheduleAtFixedRate(command,
 initialDelay, period, unit);
 MyScheduledTask<?> myTask=(MyScheduledTask<?>)task;
 myTask.setPeriod(TimeUnit.MILLISECONDS.convert(period,unit));

Customizing Concurrency Classes

[375]

 return task;
 }

Create a class named Task that implements the Runnable interface:17.

 public class Task implements Runnable {

Implement the run() method. Print a message at the start of the task, put the18.
current thread to sleep for 2 seconds, and print another message at the end of the
task:

 @Override
 public void run() {
 System.out.printf("Task: Begin.\n");
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("Task: End.\n");
 }

Implement the main class of the example by creating a class named Main with a19.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception{

Create a MyScheduledThreadPoolExecutor object named executor. Use 4 as a20.
parameter to have two threads in the pool:

 MyScheduledThreadPoolExecutor executor=new
 MyScheduledThreadPoolExecutor(4);

Create a Task object named task. Write the actual date in the console:21.

 Task task=new Task();
 System.out.printf("Main: %s\n",new Date());

Send a delayed task to the executor using the schedule() method. The task will22.
be executed after a 1-second delay:

 executor.schedule(task, 1, TimeUnit.SECONDS);

Customizing Concurrency Classes

[376]

Put the main thread to sleep for 3 seconds:23.

 TimeUnit.SECONDS.sleep(3);

Create another Task object. Print the actual date in the console again:24.

 task=new Task();
 System.out.printf("Main: %s\n",new Date());

Send a periodic task to the executor using the scheduleAtFixedRate()25.
method. The task will be executed after a 1-second delay and then it will be
executed every 3 seconds:

 executor.scheduleAtFixedRate(task, 1, 3, TimeUnit.SECONDS);

Put the main thread to sleep for 10 seconds:26.

 TimeUnit.SECONDS.sleep(10);

Shut down the executor using the shutdown() method. Wait for the finalization27.
of the executor using the awaitTermination() method:

 executor.shutdown();
 executor.awaitTermination(1, TimeUnit.DAYS);

Write a message in the console indicating the end of the program:28.

 System.out.printf("Main: End of the program.\n");

How it works...
In this recipe, you implemented the MyScheduledTask class to implement a custom task
that can be executed on a ScheduledThreadPoolExecutor executor. This class extends
the FutureTask class and implements the RunnableScheduledFuture interface. It
implements the RunnableScheduledFuture interface because all the tasks executed in a
scheduled executor must implement this interface and extend the FutureTask class. This is
because this class provides valid implementations of the methods declared in the
RunnableScheduledFuture interface. All the interfaces and classes mentioned earlier are
parameterized classes and they possess the type of data that will be returned by the tasks.

Customizing Concurrency Classes

[377]

To use a MyScheduledTask task in a scheduled executor, you override the
decorateTask() method in the MyScheduledThreadPoolExecutor class. This class
extends the ScheduledThreadPoolExecutor executor, and the method provides a
mechanism to convert the default scheduled tasks implemented by the
ScheduledThreadPoolExecutor executor into MyScheduledTask tasks. So, when you
implement your own version of scheduled tasks, you have to implement your own version
of a scheduled executor.

The decorateTask() method simply creates a new MyScheduledTask
object with four parameters. The first one is a Runnable object that is
going to be executed in the task. The second one is the object that is going
to be returned by the task. In this case, the task won't return a result, so
you used the null value. The third one is the task that the new object is
going to replace in the pool and the latest is the executor that will execute
the task. In this case, you use the this keyword to reference the executor
that is creating the task.

The MyScheduledTask class can execute delayed and periodic tasks. You implemented two
methods with all of the necessary logic to execute both kinds of tasks. They are the
getDelay() and run() methods.

The getDelay() method is called by the scheduled executor to know whether it has to
execute a task. The behavior of this method changes in delayed and periodic tasks. As
mentioned earlier, the constructor of the MyScheduledClass class receives the original
ScheduledRunnableFuture object that was going to execute the Runnable object and
stores it as an attribute of the class to have access to its methods and data. When we execute
a delayed task, the getDelay() method returns the delay of the original task; however, in
the case of a periodic task, the getDelay() method returns the difference between the
startDate attribute and the actual date.

The run() method is the one that executes the task. One particularity of periodic tasks is
that you have to put the next execution of the task in the queue of the executor as a new task
if you want the task to be executed again. So, if you're executing a periodic task, you
establish the startDate attribute value and add it to the actual date and period of the
execution of the task and store the task again in the queue of the executor. The startDate
attribute stores the date when the next execution of the task will begin. Then, you execute
the task using the runAndReset() method provided by the FutureTask class. In the case
of delayed tasks, you don't have to put them in the queue of the executor because they can
only be executed once.

Customizing Concurrency Classes

[378]

You also have to take into account whether the executor has been shut
down. If yes, you don't have to store the periodic tasks in the queue of the
executor again.

Finally, you overrode the scheduleAtFixedRate() method in the
MyScheduledThreadPoolExecutor class. We mentioned earlier that for periodic tasks,
you establish the value of the startDate attribute using the period of the task, but you
haven't initialized that period yet. You have to override this method that receives this
period as a parameter; do this to pass it to the MyScheduledTask class so it can use it.

The example is complete with the Task class that implements the Runnable interface, and
it is the task executed in the scheduled executor. The main class of the example creates a
MyScheduledThreadPoolExecutor executor and sends the following two tasks to them:

A delayed task, which is to be executed 1 second after the actual date
A periodic task, which is to be executed for the first time a second after the actual
date and then every 3 seconds

The following screenshot shows part of the execution of this example. You can check
whether the two kinds of tasks are executed properly:

Customizing Concurrency Classes

[379]

There's more...
The ScheduledThreadPoolExecutor class provides another version of the
decorateTask() method that receives a Callable object as a parameter, instead of a
Runnable object.

See also
The Running a task in an executor after a delay and Running a task in an executor
periodically recipes in Chapter 4, Thread Executors

Implementing the ThreadFactory interface to
generate custom threads for the fork/join
framework
One of the most interesting features of Java 9 is the fork/join framework. It's an
implementation of the Executor and ExecutorService interfaces that allows you to
execute the Callable and Runnable tasks without managing the threads that execute
them.

This executor is oriented to execute tasks that can be divided into smaller parts. Its main
components are as follows:

It's a special kind of task, which is implemented by the ForkJoinTask class.
It provides two operations for dividing a task into subtasks (the fork operation)
and to wait for the finalization of these subtasks (the join operation).
It's an algorithm, denominating the work-stealing algorithm, that optimizes the
use of the threads of the pool. When a task waits for its subtasks, the thread that
was executing it is used to execute another thread.

The main class of the fork/join framework is the ForkJoinPool class. Internally, it has the
following two elements:

A queue of tasks that are waiting to be executed
A pool of threads that execute the tasks

Customizing Concurrency Classes

[380]

The ForkJoinWorkerThread adds new methods to the Thread class, such as the
onStart() method that's executed when the thread is created and the onTermination()
method that's called to clean up the resources used by the thread. The ForkJoinPool class
uses an implementation of the ForkJoinWorkerThreadFactory interface to create the
worker threads it uses.

In this recipe, you will learn how to implement a customized worker thread to be used in a
ForkJoinPool class and how to use it with a factory extending the ForkJoinPool class
and implementing the ForkJoinWorkerThreadFactory interface.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyWorkerThread that extends the1.
ForkJoinWorkerThread class:

 public class MyWorkerThread extends ForkJoinWorkerThread {

Declare and create a private ThreadLocal attribute parameterized by the2.
Integer class named taskCounter:

 private final static ThreadLocal<Integer> taskCounter=
 new ThreadLocal<Integer>();

Implement a constructor of the class:3.

 protected MyWorkerThread(ForkJoinPool pool) {
 super(pool);
 }

Customizing Concurrency Classes

[381]

Override the onStart() method. Call the method on its parent class, print a4.
message to the console, and set the value of the taskCounter attribute of this
thread to zero:

 @Override
 protected void onStart() {
 super.onStart();
 System.out.printf("MyWorkerThread %d: Initializing task
 counter.\n", getId());
 taskCounter.set(0);
 }

Override the onTermination() method. Write the value of the taskCounter5.
attribute of this thread in the console:

 @Override
 protected void onTermination(Throwable exception) {
 System.out.printf("MyWorkerThread %d: %d\n",
 getId(),taskCounter.get());
 super.onTermination(exception);
 }

Implement the addTask() method. Increment the value of the taskCounter6.
attribute:

 public void addTask(){
 taskCounter.set(taskCounter.get() + 1);;
 }

Create a class named MyWorkerThreadFactory that implements the7.
ForkJoinWorkerThreadFactory interface. Implement the newThread()
method. Create and return a MyWorkerThread object:

 public class MyWorkerThreadFactory implements
 ForkJoinWorkerThreadFactory {
 @Override
 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
 return new MyWorkerThread(pool);
 }

 }

Create a class named MyRecursiveTask that extends the RecursiveTask class8.
parameterized by the Integer class:

 public class MyRecursiveTask extends RecursiveTask<Integer> {

Customizing Concurrency Classes

[382]

Declare a private int array named array:9.

 private int array[];

Declare two private int attributes named start and end:10.

 private int start, end;

Implement the constructor of the class that initializes its attributes:11.

 public Task(int array[],int start, int end) {
 this.array=array;
 this.start=start;
 this.end=end;
 }

Implement the compute() method to sum all the elements of the array between12.
the start and end positions. First, convert the thread that is executing the task into
a MyWorkerThread object and use the addTask() method to increment the
counter of tasks for that thread:

 @Override
 protected Integer compute() {
 Integer ret;
 MyWorkerThread thread=(MyWorkerThread)Thread.currentThread();
 thread.addTask();

If the difference between the start and end positions in the array is higher than13.
100 elements, we calculate the position in the middle and create two new
MyRecursiveTask tasks to process the first and second halves, respectively. If
the difference is equal to or lower than 100, we calculate the sum of all the
elements between the start and end positions:

 if (end-start>100) {
 int mid=(start+end)/2;
 MyRecursiveTask task1=new MyRecursiveTask(array,start,mid);
 MyRecursiveTask task2=new MyRecursiveTask(array,mid,end);
 invokeAll(task1,task2);
 ret=addResults(task1,task2);
 } else {
 int add=0;
 for (int i=start; i<end; i++) {
 add+=array[i];
 }
 ret=add;
 }

Customizing Concurrency Classes

[383]

Put the thread to sleep for 10 milliseconds and return the result of the task:14.

 try {
 TimeUnit.MILLISECONDS.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return ret;
 }

Implement the addResults() method. Calculate and return the sum of the15.
results of the two tasks received as parameters:

 private Integer addResults(Task task1, Task task2) {
 int value;
 try {
 value = task1.get().intValue()+task2.get().intValue();
 } catch (InterruptedException e) {
 e.printStackTrace();
 value=0;
 } catch (ExecutionException e) {
 e.printStackTrace();
 value=0;
 }

Implement the main class of the example by creating a class named Main with a16.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception {

Create a MyWorkerThreadFactory object named factory:17.

 MyWorkerThreadFactory factory=new MyWorkerThreadFactory();

Create a ForkJoinPool object named pool. Pass the factory object, created18.
earlier, to the constructor:

 ForkJoinPool pool=new ForkJoinPool(4, factory, null, false);

Create an array of 100,000 integers. Initialize all the elements to 1:19.

 int array[]=new int[100000];
 for (int i=0; i<array.length; i++){
 array[i]=1;
 }

Customizing Concurrency Classes

[384]

Create a new task object to sum all the elements of the array:20.

 MyRecursiveTask task=new MyRecursiveTask(array,0,array.length);

Send the task to the pool using the execute() method:21.

 pool.execute(task);

Wait for the end of the task using the join() method:22.

 task.join();

Shut down the pool using the shutdown() method:23.

 pool.shutdown();

Wait for the finalization of the executor using the awaitTermination() method:24.

 pool.awaitTermination(1, TimeUnit.DAYS);

Write the result of the task in the console, using the get() method:25.

 System.out.printf("Main: Result: %d\n",task.get());

Write a message in the console indicating the end of the example:26.

 System.out.printf("Main: End of the program\n");

How it works...
Threads used by the fork/join framework are called worker threads. Java includes the
ForkJoinWorkerThread class that extends the Thread class and implements the worker
threads used by the fork/join framework.

In this recipe, you implemented the MyWorkerThread class that extends the
ForkJoinWorkerThread class and overrides two methods of the ForkJoinWorkerThread
class. Your objective is to implement a counter of tasks in each worker thread so that you
can know how many tasks a worker thread has executed. You implemented the counter
with a ThreadLocal attribute. This way, each thread will have its own counter in a
transparent way for you, the programmer.

Customizing Concurrency Classes

[385]

You overrode the onStart() method of the ForkJoinWorkerThread class to initialize the
task counter. This method is called when the worker thread begins its execution. You also
overrode the onTermination() method to print the value of the task counter to the
console. This method is called when the worker thread finishes its execution. In addition,
you implemented a method in the MyWorkerThread class. The addTask() method
increments the task counter of each thread.

The ForkJoinPool class, like with all the executors in the Java Concurrency API, creates its
threads using a factory. So, if you want to use the MyWorkerThread thread in a
ForkJoinPool class, you have to implement your thread factory. For the fork/join
framework, this factory has to implement the
ForkJoinPool.ForkJoinWorkerThreadFactory class. You implemented the
MyWorkerThreadFactory class for this purpose. This class only has one method that
creates a new MyWorkerThread object.

Finally, you only have to initialize a ForkJoinPool class with the factory you have created.
You did this in the Main class, using the constructor of the ForkJoinPool class.

The following screenshot shows part of the output of the program:

You can see how the ForkJoinPool object has executed four worker threads and how
many tasks have executed each one of them.

Customizing Concurrency Classes

[386]

There's more...
Take into account that the onTermination() method provided by the
ForkJoinWorkerThread class is called when a thread finishes normally or throws an
exception. The method receives a Throwable object as a parameter. If the parameter takes
the null value, the worker thread finishes normally; however, if the parameter takes a value,
the thread throws an exception. You have to include the necessary code to process this
situation.

See also
The Creating a fork/join pool recipe in Chapter 5, Fork/Join Framework
The Creating threads through a factory recipe in Chapter 1, Thread Management

Customizing tasks running in the fork/join
framework
The Executor framework separates task creation and its execution. With it, you only have
to implement the Runnable objects and use an Executor object. You just need to send the
Runnable tasks to the executor and it creates, manages, and finalizes the necessary threads
to execute these tasks.

Java 9 provides a special kind of executor in the fork/join framework (introduced in Java 7).
This framework is designed to solve problems that can be broken down into smaller tasks
using the divide and conquer technique. Inside a task, you have to check the size of the
problem you want to resolve; if it's bigger than the established size, you divide the problem
into two or more tasks and execute them using the framework. If the size of the problem is
smaller than the established size, you resolve the problem directly in the task; optionally, it
returns a result. The fork/join framework implements the work-stealing algorithm that
improves the overall performance of these kinds of problems.

The main class of the fork/join framework is the ForkJoinPool class. Internally, it has the
following two elements:

A queue of tasks that are waiting to be executed
A pool of threads that execute the tasks

Customizing Concurrency Classes

[387]

By default, the tasks executed by a ForkJoinPool class are objects of the ForkJoinTask
class. You can also send the Runnable and Callable objects to a ForkJoinPool class, but
they can't take advantage of all the benefits of the fork/join framework. Normally, you will
send one of two subclasses of the ForkJoinTask class to the ForkJoinPool object:

RecursiveAction: If your tasks don't return a result
RecursiveTask: If your tasks return a result

In this recipe, you will learn how to implement your own tasks for the fork/join framework
by implementing a task that extends the ForkJoinTask class. The task you're going to
implement measures and writes its execution time in the console so you can control its
evolution. You can also implement your own fork/join task to write log information, to get
resources used in the tasks, or to postprocess the results of the tasks.

How to do it...
Follow these steps to implement the example:

Create a class named MyWorkerTask and specify that it extends the1.
ForkJoinTask class parameterized by the Void type:

 public abstract class MyWorkerTask extends ForkJoinTask<Void> {

Declare a private String attribute called name to store the name of the task:2.

 private String name;

Implement the constructor of the class to initialize its attribute:3.

 public MyWorkerTask(String name) {
 this.name=name;
 }

Implement the getRawResult() method. This is one of the abstract methods of4.
the ForkJoinTask class. As the MyWorkerTask tasks won't return any results,
this method must return null:

 @Override
 public Void getRawResult() {
 return null;
 }

Customizing Concurrency Classes

[388]

Implement the setRawResult() method. This is another abstract method of the5.
ForkJoinTask class. As the MyWorkerTask tasks won't return any results, leave
the body of this method empty:

 @Override
 protected void setRawResult(Void value) {

 }

Implement the exec() method. This is the main method of the task. In this case,6.
delegate the logic of the task to the compute() method. Calculate the execution
time of this method and write it in the console:

 @Override
 protected boolean exec() {
 Date startDate=new Date();
 compute();
 Date finishDate=new Date();
 long diff=finishDate.getTime()-startDate.getTime();
 System.out.printf("MyWorkerTask: %s : %d Milliseconds to
 complete.\n",name,diff);
 return true;
 }

Implement the getName() method to return the name of the task:7.

 public String getName(){
 return name;
 }

Declare the abstract method compute(). As mentioned earlier, this method will8.
implement the logic of the tasks, and it must be implemented by the child classes
of the MyWorkerTask class:

 protected abstract void compute();

Create a class named Task that extends the MyWorkerTask class:9.

 public class Task extends MyWorkerTask {

Declare a private array of int values named array:10.

 private int array[];

Customizing Concurrency Classes

[389]

Implement a constructor of the class that initializes its attributes:11.

 public Task(String name, int array[], int start, int end){
 super(name);
 this.array=array;
 this.start=start;
 this.end=end;
 }

Implement the compute() method. This method increments the block of12.
elements of the array determined by the start and end attributes. If this block of
elements has more than 100 elements, divide the block into two parts and create
two Task objects to process each part. Send these tasks to the pool using the
invokeAll() method:

 protected void compute() {
 if (end-start>100){
 int mid=(end+start)/2;
 Task task1=new Task(this.getName()+"1",array,start,mid);
 Task task2=new Task(this.getName()+"2",array,mid,end);
 invokeAll(task1,task2);

If the block of elements has less than 100 elements, increment all the elements13.
using a for loop:

 } else {
 for (int i=start; i<end; i++) {
 array[i]++;
 }

Finally, put the thread that is executing the task to sleep for 50 milliseconds:14.

 try {
 Thread.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Next, implement the main class of the example by creating a class named Main15.
with a main() method:

 public class Main {
 public static void main(String[] args) throws Exception {

Customizing Concurrency Classes

[390]

Create an int array of 10,000 elements:16.

 int array[]=new int[10000];

Create a ForkJoinPool object named pool:17.

 ForkJoinPool pool=new ForkJoinPool();

Create a Task object to increment all the elements of the array. The parameter of18.
the constructor is given Task as the name of the task, the array object, and the
values 0 and 10000 to indicate to this task that it has to process the entire array:

 Task task=new Task("Task",array,0,array.length);

Send the task to the pool using the execute() method:19.

 pool.invoke(task);

Shut down the pool using the shutdown() method:20.

 pool.shutdown();

Write a message in the console indicating the end of the program:21.

 System.out.printf("Main: End of the program.\n");

How it works...
In this recipe, you implemented the MyWorkerTask class that extends the ForkJoinTask
class. It's your own base class to implement tasks that can be executed in a ForkJoinPool
executor and that can take advantage of all the benefits of the executor, as it's a work-
stealing algorithm. This class is equivalent to the RecursiveAction and RecursiveTask
classes.

When you extend the ForkJoinTask class, you have to implement the following three
methods:

setRawResult(): This method is used to establish the result of the task. As your
tasks don't return any results, leave this method empty.
getRawResult(): This method is used to return the result of the task. As your
tasks don't return any results, this method returns null.

Customizing Concurrency Classes

[391]

exec(): This method implements the logic of the task. In this case, you delegated
the logic to the abstract compute() method (as the RecursiveAction and
RecursiveTask classes). However, in the exec() method, you measure the
execution time of the method, writing it in the console.

Finally, in the main class of the example, you created an array of 10,000 elements, a
ForkJoinPool executor, and a Task object to process the whole array. Execute the
program and you'll see how the different tasks that are executed write their execution time
in the console.

See also
The Creating a fork/join pool recipe in Chapter 5, Fork/Join Framework
The Implementing the ThreadFactory interface to generate custom threads for the
fork/join framework recipe in this chapter

Implementing a custom Lock class
Locks are one of the basic synchronization mechanisms provided by the Java Concurrency
API. They allow programmers to protect a critical section of code so only one thread can
execute that block of code at a time. It provides the following two operations:

lock(): You call this operation when you want to access a critical section. If there
is another thread running this critical section, other threads are blocked until
they're woken up by the lock to get access to the critical section.
unlock(): You call this operation at the end of a critical section to allow other
threads to access it.

In the Java Concurrency API, locks are declared in the Lock interface and implemented in
some classes, for example, the ReentrantLock class.

In this recipe, you will learn how to implement your own Lock object by implementing a
class that implements the Lock interface, which can be used to protect a critical section.

Customizing Concurrency Classes

[392]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyAbstractQueuedSynchronizer that extends the1.
AbstractQueuedSynchronizer class:

 public class MyAbstractQueuedSynchronizer extends
 AbstractQueuedSynchronizer {

Declare a private AtomicInteger attribute named state:2.

 private final AtomicInteger state;

Implement the constructor of the class to initialize its attribute:3.

 public MyAbstractQueuedSynchronizer() {
 state=new AtomicInteger(0);
 }

Implement the tryAcquire() method. This method tries to change the value of4.
the state variable from zero to one. If it can, it returns the true value; else, it
returns false:

 @Override
 protected boolean tryAcquire(int arg) {
 return state.compareAndSet(0, 1);
 }

Implement the tryRelease() method. This method tries to change the value of5.
the state variable from one to zero. If it can, it returns true; else, it returns false:

 @Override
 protected boolean tryRelease(int arg) {
 return state.compareAndSet(1, 0);
 }

Customizing Concurrency Classes

[393]

Create a class named MyLock and specify that it implements the Lock interface:6.

 public class MyLock implements Lock{

Declare a private AbstractQueuedSynchronizer attribute named sync:7.

 private final AbstractQueuedSynchronizer sync;

Implement the constructor of the class to initialize the sync attribute with a new8.
MyAbstractQueueSynchronizer object:

 public MyLock() {
 sync=new MyAbstractQueuedSynchronizer();
 }

Implement the lock() method. Call the acquire() method of the sync object:9.

 @Override
 public void lock() {
 sync.acquire(1);
 }

Implement the lockInterruptibly() method. Call the10.
acquireInterruptibly() method of the sync object:

 @Override
 public void lockInterruptibly() throws InterruptedException {
 sync.acquireInterruptibly(1);
 }

Implement the tryLock() method. Call the tryAcquireNanos() method of the11.
sync object:

 @Override
 public boolean tryLock() {
 try {
 return sync.tryAcquireNanos(1, 1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 Thread.currentThread().interrupt();
 return false;
 }
 }

Customizing Concurrency Classes

[394]

Implement another version of the tryLock() method with two parameters: a12.
long parameter named time and a TimeUnit parameter named unit. Call the
tryAcquireNanos() method of the sync object:

 @Override
 public boolean tryLock(long time, TimeUnit unit) throws
 InterruptedException {
 return sync.tryAcquireNanos(1, TimeUnit.NANOSECONDS
 .convert(time, unit));
 }

Implement the unlock() method. Call the release() method of the sync13.
object:

 @Override
 public void unlock() {
 sync.release(1);
 }

Implement the newCondition() method. Create a new object of the internal 14.
class of the sync object, namely ConditionObject:

 @Override
 public Condition newCondition() {
 return sync.new ConditionObject();
 }

Create a class named Task and specify that it implements the Runnable15.
interface:

 public class Task implements Runnable {

Declare a private MyLock attribute named lock:16.

 private final MyLock lock;

Declare a private String attribute called name:17.

 private final String name;

Implement the constructor of the class to initialize its attributes:18.

 public Task(String name, MyLock lock){
 this.lock=lock;
 this.name=name;
 }

Customizing Concurrency Classes

[395]

Implement the run() method of the class. Acquire the lock, put the thread to19.
sleep for 2 seconds, and then release the lock object:

 @Override
 public void run() {
 lock.lock();
 System.out.printf("Task: %s: Take the lock\n",name);
 try {
 TimeUnit.SECONDS.sleep(2);
 System.out.printf("Task: %s: Free the lock\n",name);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock.unlock();
 }
 }

Implement the main class of the example by creating a class named Main with a20.
main() method:

 public class Main {
 public static void main(String[] args) {

Create a MyLock object named lock:21.

 MyLock lock=new MyLock();

Create and execute 10 Task tasks:22.

 for (int i=0; i<10; i++){
 Task task=new Task("Task-"+i,lock);
 Thread thread=new Thread(task);
 thread.start();
 }

Try to get the lock using the tryLock() method. Wait for a second, and if you23.
don't get the lock, write a message and try again:

 boolean value;
 do {
 try {
 value=lock.tryLock(1,TimeUnit.SECONDS);
 if (!value) {
 System.out.printf("Main: Trying to get the Lock\n");
 }
 } catch (InterruptedException e) {
 e.printStackTrace();

Customizing Concurrency Classes

[396]

 value=false;
 }
 } while (!value);

Write a message indicating that you got the lock and release it:24.

 System.out.printf("Main: Got the lock\n");
 lock.unlock();

Write a message indicating the end of the program:25.

 System.out.printf("Main: End of the program\n");

How it works...
The Java Concurrency API provides a class that can be used to implement synchronization
mechanisms with features of locks or semaphores. It's called
AbstractQueuedSynchronizer, and as the name suggests, it's an abstract class. It
provides operations to control access to a critical section and manage a queue of threads
that are blocked and are awaiting access to the section. The operations are based on two
abstract methods:

tryAcquire(): This method is called to try and get access to a critical section. If
the thread that calls it can access the critical section, the method returns the true
value. Otherwise, it returns the false value.
tryRelease(): This method is called to try and release access to a critical
section. If the thread that calls it can release access, the method returns the true
value. Else, it returns the false value.

In these methods, you have to implement the mechanism you use to control access to a
critical section. In this case, you implemented the MyAbstractQueuedSynchonizer class
that extends the AbstractQueuedSyncrhonizer class and implements the abstract
methods using an AtomicInteger variable to control access to the critical section. This
variable will store the value 0 if the lock is free, so a thread can have access to the critical
section, and the value 1 if the lock is blocked, so a thread 'doesn't have access to the critical
section.

You used the compareAndSet() method provided by the AtomicInteger class that tries
to change the value you specify as the first parameter with the value you specify as the
second parameter. To implement the tryAcquire() method, you try to change the value of
the atomic variable from zero to one. Similarly, to implement the tryRelease() method,
you try to change the value of the atomic variable from one to zero.

Customizing Concurrency Classes

[397]

You have to implement AtomicInteger class because other implementations of the
AbstractQueuedSynchronizer class (for example, the one used by ReentrantLock) are
implemented as private classes internally. This is carried out in the class that uses it, so you
don't have access to it.

Then, you implemented the MyLock class. This class implements the Lock interface and has
a MyQueuedSynchronizer object as an attribute. To implement all the methods of the Lock
interface, you used methods of the MyQueuedSynchronizer object.

Finally, you implemented the Task class that implements the Runnable interface and uses
a MyLock object to get access to the critical section. This critical section puts the thread to
sleep for 2 seconds. The main class creates a MyLock object and runs 10 Task objects that
share the lock. The main class also tries to get access to the lock using the tryLock()
method.

When you execute the example, you can see how only one thread has access to the critical
section, and when that thread finishes, another one gets access to it.

You can use your own Lock interface to write log messages about its utilization, control the
time that it's locked, or implement advanced synchronization mechanisms to control, for
example, access to a resource so that it's only available at certain times.

There's more...
The AbstractQueuedSynchronizer class provides two methods that can be used to
manage the state of the lock. They are the getState() and setState() methods. These
methods receive and return an integer value with the state of the lock. You could have used
them instead of the AtomicInteger attribute to store the state of the lock.

The Java Concurrency API provides another class to implement synchronization
mechanisms. It's the AbstractQueuedLongSynchronizer class, which is equivalent to
AbstractQueuedSynchronizer but uses a long attribute to store the state of the threads.

See also
The Synchronizing a block of code with locks recipe in Chapter 2, Basic Thread
Synchronization

Customizing Concurrency Classes

[398]

Implementing a transfer queue-based on
priorities
The Java 9 API provides several data structures to work with concurrent applications. From
these, we want to highlight the following two data structures:

LinkedTransferQueue: This data structure is supposed to be used in programs
that have a producer/consumer structure. In such applications, you have one or
more producers of data and one or more consumers of data, and a data structure
is shared by all of them. Producers put data in the data structure and consumers
take it from there. If the data structure is empty, consumers are blocked until they
have data to consume. If it is full, producers are blocked until they have space to
put data.
PriorityBlockingQueue: In this data structure, elements are stored in an
ordered way. They have to implement the Comparable interface with the
compareTo() method. When you insert an element in the structure, it's
compared to the elements of the structure until it finds its position.

Elements of LinkedTransferQueue are stored in the same order as they arrive, so the ones
that arrived earlier are consumed first. It may be the case when you want to develop a
producer/consumer program, where data is consumed according to some priority instead of
arrival time. In this recipe, you will learn how to implement a data structure to be used in
the producer/consumer problem whose elements will be ordered by priority; elements with
higher priority will be consumed first.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyPriorityTransferQueue that extends the1.
PriorityBlockingQueue class and implements the TransferQueue interface:

 public class MyPriorityTransferQueue<E> extends
 PriorityBlockingQueue<E> implements TransferQueue<E> {

Customizing Concurrency Classes

[399]

Declare a private AtomicInteger attribute named counter to store the number2.
of consumers that are waiting to consume elements:

 private final AtomicInteger counter;

Declare a private LinkedBlockingQueue attribute named transferred:3.

 private final LinkedBlockingQueue<E> transfered;

Declare a private ReentrantLock attribute named lock:4.

 private final ReentrantLock lock;

Implement the constructor of the class to initialize its attributes:5.

 public MyPriorityTransferQueue() {
 counter=new AtomicInteger(0);
 lock=new ReentrantLock();
 transfered=new LinkedBlockingQueue<E>();
 }

Implement the tryTransfer() method. This method tries to send the element to6.
a waiting consumer immediately, if possible. If there isn't any consumer waiting,
the method returns false:

 @Override
 public boolean tryTransfer(E e) {
 boolean value=false;
 try {
 lock.lock();
 if (counter.get() == 0) {
 value = false;
 } else {
 put(e);
 value = true;
 }
 } finally {
 lock.unlock();
 }
 return value;
 }

Customizing Concurrency Classes

[400]

Implement the transfer() method. This method tries to send the element to a7.
waiting consumer immediately, if possible. If there is no consumer waiting, the
method stores the element in a special queue to be sent to the first consumer that
tries to get an element and blocks the thread until the element is consumed:

 @Override
 public void transfer(E e) throws InterruptedException {
 lock.lock();
 if (counter.get()!=0) {
 try {
 put(e);
 } finally {
 lock.unlock();
 }
 } else {
 try {
 transfered.add(e);
 } finally {
 lock.unlock();
 }
 synchronized (e) {
 e.wait();
 }
 }
 }

Implement the tryTransfer() method that receives three parameters: the8.
element, the time to wait for a consumer if there is none, and the unit of time
used to specify the wait. If there is a consumer waiting, it sends the element
immediately. Otherwise, it converts the time specified into milliseconds and uses
the wait() method to put the thread to sleep. When the consumer takes the
element, if the thread is sleeping in the wait() method, you need to wake it up
using the notify() method, as you'll see in a moment:

 @Override
 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
 throws InterruptedException {
 lock.lock();
 if (counter.get() != 0) {
 try {
 put(e);
 } finally {
 lock.unlock();
 }
 return true;
 } else {

Customizing Concurrency Classes

[401]

 long newTimeout=0;
 try {
 transfered.add(e);
 newTimeout = TimeUnit.MILLISECONDS.convert(timeout, unit);
 } finally {
 lock.unlock();
 }
 e.wait(newTimeout);
 lock.lock();
 boolean value;
 try {
 if (transfered.contains(e)) {
 transfered.remove(e);
 value = false;
 } else {
 value = true;
 }
 } finally {
 lock.unlock();
 }
 return value;
 }
 }

Implement the hasWaitingConsumer() method. Use the value of the counter9.
attribute to calculate the return value of this method. If the counter has a value
that is bigger than zero, it returns true; else, it returns false:

 @Override
 public boolean hasWaitingConsumer() {
 return (counter.get()!=0);
 }

Implement the getWaitingConsumerCount() method. Return the value of the10.
counter attribute:

 @Override
 public int getWaitingConsumerCount() {
 return counter.get();
 }

Implement the take() method. This method is called by the consumers when11.
they want to consume an element. First, get the lock defined earlier and
increment the number of waiting consumers:

 @Override
 public E take() throws InterruptedException {

Customizing Concurrency Classes

[402]

 lock.lock();
 try {
 counter.incrementAndGet();

If there aren't any elements in the transferred queue, free the lock and try to get12.
an element from the queue using the take() element and get the lock again. If
there aren't any elements in the queue, this method will put the thread to sleep
until there are elements to consume:

 E value=transfered.poll();
 if (value==null) {
 lock.unlock();
 value=super.take();
 lock.lock();

Otherwise, take the element from the transferred queue and wake up the thread13.
that is waiting to consume that element, if there is one. Take into account that you
are synchronizing an object coming to this class from the outside. You have to
guarantee that the object wouldn't be used for locking in other parts of the
application:

 } else {
 synchronized (value) {
 value.notify();
 }
 }

Finally, decrement the counter of waiting consumers and free the lock:14.

 counter.decrementAndGet();
 } finally {
 lock.unlock();
 }
 return value;
 }

Next, implement a class named Event that extends the Comparable interface15.
parameterized by the Event class:

 public class Event implements Comparable<Event> {

Declare a private String attribute named thread to store the name of the thread16.
that creates the event:

 private final String thread;

Customizing Concurrency Classes

[403]

Declare a private int attribute named priority to store the priority of the event:17.

 private final int priority;

Implement the constructor of the class to initialize its attributes:18.

 public Event(String thread, int priority){
 this.thread=thread;
 this.priority=priority;
 }

Implement a method to return the value of the thread attribute:19.

 public String getThread() {
 return thread;
 }

Implement a method to return the value of the priority attribute:20.

 public int getPriority() {
 return priority;
 }

Implement the compareTo() method. This method compares the actual event21.
with the event received as a parameter. Return -1 if the actual event has a higher
priority than the parameter, 1 if the actual event has a lower priority than the
parameter, and 0 if both the events have the same priority. You will get the list
ordered by priority in descending order. Events with a higher priority will be
stored first in the queue:

 public int compareTo(Event e) {
 return Integer.compare(e.priority, this.getPriority());
 }

Implement a class named Producer that implements the Runnable interface:22.

 public class Producer implements Runnable {

Declare a private MyPriorityTransferQueue attribute parameterized by the23.
Event class named buffer to store the events generated by this producer:

 private final MyPriorityTransferQueue<Event> buffer;

Customizing Concurrency Classes

[404]

Implement the constructor of the class to initialize its attributes:24.

 public Producer(MyPriorityTransferQueue<Event> buffer) {
 this.buffer=buffer;
 }

Implement the run() method of the class. Create 100 Event objects using its25.
order of creation as priority (the latest event will have the highest priority) and
insert them into the queue using the put() method:

 @Override
 public void run() {
 for (int i=0; i<100; i++) {
 Event event=new Event(Thread.currentThread().getName(),i);
 buffer.put(event);
 }
 }

Implement a class named Consumer that implements the Runnable interface:26.

 public class Consumer implements Runnable {

Declare a private MyPriorityTransferQueue attribute parameterized by the27.
Event class named buffer to get the events consumed by this class:

 private final MyPriorityTransferQueue<Event> buffer;

Implement the constructor of the class to initialize its attribute:28.

 public Consumer(MyPriorityTransferQueue<Event> buffer) {
 this.buffer=buffer;
 }

Implement the run() method. It consumes 1,002 events (all the events generated29.
in the example) using the take() method and writes the number of threads that
generated the event and their priority in the console:

 @Override
 public void run() {
 for (int i=0; i<1002; i++) {
 try {
 Event value=buffer.take();
 System.out.printf("Consumer: %s: %d\n",value.getThread(),
 value.getPriority());
 } catch (InterruptedException e) {
 e.printStackTrace();

Customizing Concurrency Classes

[405]

 }
 }
 }

Implement the main class of the example by creating a class named Main with a30.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception {

Create a MyPriorityTransferQueue object named buffer:31.

 MyPriorityTransferQueue<Event> buffer=new
 MyPriorityTransferQueue<Event>();

Create a Producer task and launch 10 threads to execute this task:32.

 Producer producer=new Producer(buffer);
 Thread producerThreads[]=new Thread[10];
 for (int i=0; i<producerThreads.length; i++) {
 producerThreads[i]=new Thread(producer);
 producerThreads[i].start();
 }

Create and launch a Consumer task:33.

 Consumer consumer=new Consumer(buffer);
 Thread consumerThread=new Thread(consumer);
 consumerThread.start();

Write the actual consumer count in the console:34.

 System.out.printf("Main: Buffer: Consumer count: %d\n",
 buffer.getWaitingConsumerCount());

Transfer an event to the consumer using the transfer() method:35.

 Event myEvent=new Event("Core Event",0);
 buffer.transfer(myEvent);
 System.out.printf("Main: My Event has ben transfered.\n");

Wait for the finalization of the producers using the join() method:36.

 for (int i=0; i<producerThreads.length; i++) {
 try {
 producerThreads[i].join();

Customizing Concurrency Classes

[406]

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Put the thread to sleep for 1 second:37.

 TimeUnit.SECONDS.sleep(1);

Write the actual consumer count:38.

 System.out.printf("Main: Buffer: Consumer count: %d\n",
 buffer.getWaitingConsumerCount());

Transfer another event using the transfer() method:39.

 myEvent=new Event("Core Event 2",0);
 buffer.transfer(myEvent);

Wait for the finalization of the consumer using the join() method:40.

 consumerThread.join();

Write a message indicating the end of the program:41.

 System.out.printf("Main: End of the program\n");

How it works...
In this recipe, you implemented the MyPriorityTransferQueue data structure. It's a data
structure to be used in the producer/consumer problem, but its elements are ordered by
priority, not by their order of arrival. As Java doesn't allow multiple inheritances, the first
decision you took was in relation to the base class of the MyPriorityTransferQueue class.
You extend the class to use the operations implemented in the PriorityBlockingQueue,
not to implement them. You also implemented the TransferQueue interface to add the
methods related to the producer/consumer. We made this choice because we think it is
easier to implement the methods of the TransferQueue interface than the methods
implemented in the PriorityBlockingQueue class. However, you can implement the
class that extends from the LinkedTransferQueue class and implements the necessary
methods to get your own version of the PriorityBlockingQueue class.

Customizing Concurrency Classes

[407]

The MyPriortyTransferQueue class has the following three attributes:

An AtomicInteger attribute named counter: This attribute stores the number
of consumers that are waiting to take an element from the data structure. When a
consumer calls the take() operation to take an element from the data structure,
the counter is incremented. When the consumer finishes the execution of the
take() operation, the counter is decremented again. This counter is used in the
implementation of the hasWaitingConsumer() and
getWaitingConsumerCount() methods.
A ReentrantLock attribute named lock: This attribute is used to control access
to implemented operations. Only one thread is allowed to work with the data
structure, as per this attribute.
Finally, it has a LinkedBlockingQueue list to store transferred elements.

You implemented some methods in MyPriorityTransferQueue. All the methods are
declared in the TransferQueue interface, and the take() method is implemented in the
PriorityBlockingQueue interface. Both of these were described earlier. Here is a
description of the rest:

tryTransfer(E e): This method tries to send an element directly to a
consumer. If there is a consumer waiting, it stores the element in the priority
queue to be consumed immediately by the consumer and then returns the true
value. If no one's waiting, it returns the false value.
transfer(E e): This method transfers an element directly to a consumer. If
there is a consumer waiting, it stores the element in the priority queue to be
consumed immediately by the consumer. Otherwise, the element is stored in the
list of transferred elements, and the thread is blocked until the element is
consumed. While the thread is put to sleep, you have to free the lock because, if
you don't do this, you will block the queue.
tryTransfer(E e, long timeout, TimeUnit unit): This method is similar
to the transfer() method, but here, the thread blocks the period of time
determined by its parameters. While the thread is put to sleep, you have to free
the lock because, if you don't, you will block the queue.
take(): This method returns the next element to be consumed. If there are
elements in the list of transferred elements, the element is taken from the list.
Otherwise, it is taken from the priority queue.

Customizing Concurrency Classes

[408]

Once you implemented the data structure, you implemented the Event class. It is the class
of the elements you have stored in the data structure. The Event class has two attributes to
store the ID of the producer and the priority of the event, and it implements the
Comparable interface because it is a requirement of your data structure.

Then, you implemented the Producer and Consumer classes. In the example, you had 10
producers and a consumer and they shared the same buffer. Each producer generated 100
events with incremental priority, so the events with a higher priority were the last
generated ones.

The main class of the example created a MyPriorityTransferQueue object, 10 producers,
and a consumer, and used the transfer() method of the MyPriorityTransferQueue
buffer to transfer two events to the buffer.

The following screenshot shows part of the output of an execution of the program:

You can see how events with a higher priority are consumed first and that a consumer
consumes the transferred event.

Customizing Concurrency Classes

[409]

See also
The Using blocking thread-safe queue ordered by priority and Using blocking thread-safe
deques recipes in Chapter 7, Concurrent Collections

Implementing your own atomic object
Atomic variables were introduced in Java version 5; they provide atomic operations on
single variables. When a thread does an operation with an atomic variable, the
implementation of the class includes a mechanism to check that the operation is done
atomically.

In this recipe, you will learn how to extend an atomic object and implement two operations
that follow the mechanisms of the atomic objects to guarantee that all the operations are
done in one step.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named ParkingCounter and specify that it extends the1.
AtomicInteger class:

 public class ParkingCounter extends AtomicInteger {

Declare a private int attribute named maxNumber to store the maximum number2.
of cars admitted into the parking lot:

 private final int maxNumber;

Implement the constructor of the class to initialize its attributes:3.

 public ParkingCounter(int maxNumber){
 set(0);

Customizing Concurrency Classes

[410]

 this.maxNumber=maxNumber;
 }

Implement the carIn() method. This method increments the counter of cars if it4.
has a value smaller than the established maximum value. Construct an infinite
loop and get the value of the internal counter using the get() method:

 public boolean carIn() {
 for (;;) {
 int value=get();

If the value is equal to the maxNumber attribute, the counter can't be incremented5.
(the parking lot is full and the car can't enter). In this case, the method returns the
false value:

 if (value==maxNumber) {
 System.out.printf("ParkingCounter: The parking lot is full.\n");
 return false;

Otherwise, increment the value and use the compareAndSet() method to6.
change the old value with the new one. This method returns the false value; the
counter was not incremented, so you have to begin the loop again. If it returns
true, it means the change was made and then you return the true value:

 } else {
 int newValue=value+1;
 boolean changed=compareAndSet(value,newValue);
 if (changed) {
 System.out.printf("ParkingCounter: A car has entered.\n");
 return true;
 }
 }
 }
 }

Implement the carOut() method. This method decrements the counter of cars if7.
it has a value bigger than 0. Construct an infinite loop and get the value of the
internal counter using the get() method:

 public boolean carOut() {
 for (;;) {
 int value=get();
 if (value==0) {
 System.out.printf("ParkingCounter: The parking lot is
 empty.\n");
 return false;

Customizing Concurrency Classes

[411]

 } else {
 int newValue=value-1;
 boolean changed=compareAndSet(value,newValue);
 if (changed) {
 System.out.printf("ParkingCounter: A car has gone out.\n");
 return true;
 }
 }
 }
 }

Create a class named Sensor1 that implements the Runnable interface:8.

 public class Sensor1 implements Runnable {

Declare a private ParkingCounter attribute named counter:9.

 private final ParkingCounter counter;

Implement the constructor of the class to initialize its attribute:10.

 public Sensor1(ParkingCounter counter) {
 this.counter=counter;
 }

Implement the run() method. Call the carIn() and carOut() operations11.
several times:

 @Override
 public void run() {
 counter.carIn();
 counter.carIn();
 counter.carIn();
 counter.carIn();
 counter.carOut();
 counter.carOut();
 counter.carOut();
 counter.carIn();
 counter.carIn();
 counter.carIn();
 }

Create a class named Sensor2 that implements the Runnable interface:12.

 public class Sensor2 implements Runnable {

Customizing Concurrency Classes

[412]

Declare a private ParkingCounter attribute named counter:13.

 private ParkingCounter counter;

Implement the constructor of the class to initialize its attribute:14.

 public Sensor2(ParkingCounter counter) {
 this.counter=counter;
 }

Implement the run() method. Call the carIn() and carOut() operations15.
several times:

 @Override
 public void run() {
 counter.carIn();
 counter.carOut();
 counter.carOut();
 counter.carIn();
 counter.carIn();
 counter.carIn();
 counter.carIn();
 counter.carIn();
 counter.carIn();
 }

Implement the main class of the example by creating a class named Main with a16.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception {

Create a ParkingCounter object named counter:17.

 ParkingCounter counter=new ParkingCounter(5);

Create and launch a Sensor1 and Sensor2 task:18.

 Sensor1 sensor1=new Sensor1(counter);
 Sensor2 sensor2=new Sensor2(counter);

 Thread thread1=new Thread(sensor1);
 Thread thread2=new Thread(sensor2);

 thread1.start();
 thread2.start();

Customizing Concurrency Classes

[413]

Wait for the finalization of both the tasks:19.

 thread1.join();
 thread2.join();

Write the actual value of the counter in the console:20.

 System.out.printf("Main: Number of cars: %d\n",counter.get());

Write a message indicating the end of the program in the console:21.

 System.out.printf("Main: End of the program.\n");

How it works...
The ParkingCounter class extends the AtomicInteger class with two atomic operations:
carIn() and carOut(). The example simulates a system that controls the number of cars
inside a parking lot. The parking lot can admit a number of cars, represented by the
maxNumber attribute.

The carIn() operation compares the actual number of cars in the parking lot with the
maximum value. If they are equal, the car can't enter the parking lot and the method returns
the false value. Otherwise, it uses the following structure of the atomic operations:

Get the value of the atomic object in a local variable.
Store the new value in a different variable.
Use the compareAndSet() method to try and replace the old value with the new
one. If this method returns true, it means the old value you sent as a parameter
was the value of the variable; therefore, it changes the values. The operation was
made in an atomic way as the carIn() method returns true. If the
compareAndSet() method returns false, it means the old value you sent as a
parameter is not the value of the variable (the other thread modified it); therefore,
the operation can't be done in an atomic way. The operation begins again until it
can be done in an atomic way.

The carOut() method is analogous to the carIn() method. You also implemented two
Runnable objects that use the carIn() and carOut() methods to simulate the activity of
parking. When you execute the program, you can see that the parking lot never exceeds the
maximum value of cars.

Customizing Concurrency Classes

[414]

See also
The Using atomic variables recipe in Chapter 7, Concurrent Collections

Implementing your own stream generator
A stream is a sequence of data that allows you to apply a sequence of operations (usually
represented with lambda expressions) to it in a sequential or parallel way in order to filter,
transform, sort, reduce, or construct a new data structure. It was introduced in Java 8 and
was one of the most important features introduced in that version.

Streams are based on the Stream interface and some related classes and interfaces included
in the java.util.stream package. They have also provoked the introduction of new
methods in a lot of classes to generate streams from different data structures. You can create
a Stream interface from every data structure that implements the Collection interface:
from File, Directory, Array, and a lot of other sources.

Java also included different mechanisms to create streams from your own sources. The most
important ones are:

The Supplier interface: This interface defines the get() method. It will be
called by Stream when it needs to process another object. You can create Stream
from a Supplier interface using the generate() static method of the Stream
class. Take into account that this source is potentially infinite, so you must use a
method such as limit() or similar to limit the number of elements in Stream.
The Stream.Builder interface: This interface provides the accept() and add()
elements to add elements to Stream and the build() method, which returns the
Stream interface created with the elements added before.
The Spliterator interface: This interface defines the necessary methods to
traverse and split the elements of a source. You can use the stream() method of
the StreamSupport class to generate the Stream interface to process the
elements of Spliterator.

In this chapter, you will learn how to implement your own Spliterator interface and how
to create a Stream interface to process its data. We will work with a matrix of elements. A
normal Stream interface should process one element at a time, but we will use the
Spliterator class to implement one row at a time.

Customizing Concurrency Classes

[415]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or another IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Item to store the information of each element of the matrix.1.
It will have three private attributes: a String attribute named name and two
integer attributes named row and column. Create the methods to get and set the
values of these attributes. The code of this class is very simple, so it won't be
included here.
Create a class named MySpliterator. Specify that it implements the2.
Spliterator interface parameterized by the Item class. This class has four
attributes: a matrix of Item objects named items and three integer attributes
named start, end, and current to store the first and last elements that will be
processed by this Spliterator interface and the current element that is being
processed. Implement the constructor of the class to initialize all these attributes:

 public class MySpliterator implements Spliterator<Item> {

 private Item[][] items;
 private int start, end, current;

 public MySpliterator(Item[][] items, int start, int end) {
 this.items=items;
 this.start=start;
 this.end=end;
 this.current=start;
 }

Implement characteristics(). This method will return an int value that3.
describes the behavior of Spliterator. The meaning of this value will be
explained later in the How it Works... section:

 @Override
 public int characteristics() {
 return ORDERED | SIZED | SUBSIZED;
 }

Customizing Concurrency Classes

[416]

Implement estimatedSize(). This method will return the number of elements4.
to be processed by this Spliterator. We will calculate it as the difference
between the end and current attributes:

 @Override
 public long estimateSize() {
 return end - current;
 }

Now implement tryAdvance(). This method will be called to try and process an5.
element of the Spliterator. The input parameter of the tryAdvance() method
is and object that implements the Consumer interface. It will be called by the
Stream API, so we only have to worry about its implementation. In our case, as
mentioned in the introduction to this chapter, we have a matrix of Item objects
and we're going to process a row each time. The Consumer function received will
process an Item object. Therefore, if the Spliterator interface still has elements
to process, we will process all the items of the current row using the accept()
method of the Consumer function:

 @Override
 public boolean tryAdvance(Consumer<? super Item> consumer) {
 System.out.printf("MySpliterator.tryAdvance.start: %d, %d, %d\n",
 start,end,current);
 if (current < end) {
 for (int i=0; i<items[current].length; i++) {
 consumer.accept(items[current][i]);
 }
 current++;
 System.out.printf("MySpliterator.tryAdvance.end:true\n");
 return true;
 }
 System.out.printf("MySpliterator.tryAdvance.end:false\n");
 return false;
 }

Now implement forEachRemaining(). This method will receive an6.
implementation of the Consumer interface and will apply this function to the
remaining elements of Spliterator. In our case, we will call the tryAdvance()
method for all the remaining elements:

 @Override
 public void forEachRemaining(Consumer<? super Item> consumer) {
 System.out.printf("MySpliterator.forEachRemaining.start\n");
 boolean ret;
 do {

Customizing Concurrency Classes

[417]

 ret=tryAdvance(consumer);
 } while (ret);
 System.out.printf("MySpliterator.forEachRemaining.end\n");
 }

Finally, implement trySplit(). This method will be called by parallel streams7.
to split Spliterator into two subsets. It will return a new Spliterator object
with the elements that will be processed by another thread. The current thread
will process the rest of the elements. If the spliterator object can't be split, you
have to return a null value. In our case, we will calculate the element in the
middle of the elements we have to process. The first half will be processed by the
current thread, and the second half will be processed by another thread:

 @Override
 public Spliterator<Item> trySplit() {
 System.out.printf("MySpliterator.trySplit.start\n");

 if (end-start<=2) {
 System.out.printf("MySpliterator.trySplit.end\n");
 return null;
 }
 int mid=start+((end-start)/2);
 int newStart=mid;
 int newEnd=end;
 end=mid;
 System.out.printf("MySpliterator.trySplit.end: %d, %d, %d,
 %d, %d, %d\n",start, mid, end, newStart,
 newEnd, current);

 return new MySpliterator(items, newStart, newEnd);
 }

Now implement the Main class of the project with the main() method. First,8.
declare and initialize a matrix with 10 rows and 10 columns of Item objects:

 public class Main {

 public static void main(String[] args) {
 Item[][] items;
 items= new Item[10][10];

 for (int i=0; i<10; i++) {
 for (int j=0; j<10; j++) {
 items[i][j]=new Item();
 items[i][j].setRow(i);
 items[i][j].setColumn(j);

Customizing Concurrency Classes

[418]

 items[i][j].setName("Item "+i+" "+j);
 }
 }

Then, create a MySpliterator object to process all the elements of the matrix:9.

 MySpliterator mySpliterator=new MySpliterator(items, 0,
 items.length);

Finally, use the stream() method of the StreamSupport class to create a stream10.
from Spliterator. Pass the true value as the second parameter to indicate that
our stream will be in parallel. Then, use the forEach() method of the Stream
class to write information about each element:

 StreamSupport.stream(mySpliterator, true).forEach(item -> {
 System.out.printf("%s: %s\n",Thread.currentThread()
 .getName(),item.getName());
 });
 }

How it works...
The main element of this example is Spliterator. This interface defines methods that can
be used to process and partition a source of elements to be used, for example, the source of
a Stream object. You will rarely need to use a Spliterator object directly. Only if you
want a different behavior--that is, if you want to implement your own data structure and
create Stream from it--use a Spliterator object.

Spliterator has a set of characteristics that defines its behavior. They are as follows:

CONCURRENT: The data source can be safely modified concurrently
DISTINCT: All the elements of the data source are distinct
IMMUTABLE: Elements can be added, deleted, or replaced in the data source
NONNULL: There's no null element in the data source
ORDERED: There's an encounter ordered in the elements of the data source
SIZED: The value returned by the estimateSize() method is the exact size of
the Spliterator
SORTED: The elements of Spliterator are sorted
SUBSIZED: After you call the trySplit() method, you can obtain the exact size
of both the parts of Spliterator

Customizing Concurrency Classes

[419]

In our case, we defined Spliterator with the DISTINCT, IMMUTABLE, NONNULL, ORDERED,
SIZED, and SUBSIZED characteristics.

Then, we implemented all the methods defined by the Spliterator interface that don't
have a default implementation:

characteristics(): This method returns the characteristics of
the Spliterator object. Specifically, it returns an integer value you calculate
using the bitwise or operator (|) between the individual characteristics of your
Spliterator object. Take into account that the value returned should be
consistent with the real characteristics of your Spliterator object.
estimatedSize(): This method returns the number of elements that would be
processed by the forEachRemaining() method if it were called at the current
moment. In our case, we returned the exact value as we know it, but the
definition of the method talks about the estimated size.
tryAdvance(): This method applies the function specified as a parameter to the
next element to be processed, if there's one, and returns true. If there's no element
to process, it will return false. In our case, this method received a Consumer that
processed an Item object, but we processed a row of Item objects at a time. So we
traversed all the items of the row and called the accept() method of Consumer.
trySplit(): This method is used to divide the current Spliterator into two
different parts so each one can be processed by different threads. In an ideal case,
you should divide the data source into two halves with the same number of
elements. But, in our case, we calculated the element in the middle between the
start and end index and generated two blocks of elements. The start to the mid
element part was processed by the current Spliterator, and the mid to the end
element part was processed by the new Spliterator object. If you can't split the
data source, this method returns a null value. In our case, the Spliterator had
only two elements, so it won't be split.

The other methods of the Spliterator interface have a default implementation, but we
overrode the forEachRemaining() method. This method applies the function received as
a parameter (an implementation of the Consumer interface) to the elements of the
Spliterator that haven't been processed yet. We implemented our own version to write a
message in the console. We used the tryAdvance() method to process each individual
item.

Customizing Concurrency Classes

[420]

The following screenshot shows part of the output of this example:

First, the trySplit() method is called to divide the data source, then the
forEachRemaining() method is called to process all the elements of each Spliterator
generated by the trySplit() method.

There's more...
You can obtain an implementation of the Spliterator interface from different data
sources. The BaseStream class provides the spliterator() method that returns a
Spliterator from the elements of the Stream. Other data structures, such as
ConcurrentLinkedDeque, ConcurrentLinkedQueue, or Collection, also provide the
spliterator() method to get an implementation of that interface to process the elements
of those data structures.

See also
The Creating streams from different sources recipe in Chapter 6, Parallel and Reactive
Streams

Customizing Concurrency Classes

[421]

Implementing your own asynchronous
stream
Reactive streams (http://www.reactive-streams.org/) defines a mechanism to provide
asynchronous stream processing with non-blocking back pressure.

Reactive streams are based on three elements:

It is a publisher of information
It has one or more subscribers of this information
It provides subscription between the publisher and a consumer

Java 9 has included three interfaces--Flow.Publisher, Flow.Subscriber, and
Flow.Subscription--and a utility class, SubmissionPublisher, to allow us to
implement reactive stream applications.

In this recipe, you will learn how to implement your own reactive application using only
three interfaces. Take into account that we will implement the expected behavior between
the three elements. The publisher will only send elements to those subscribers who have
requested them, and it will do this in a concurrent way. But you can modify this behavior
easily by modifying the implementation of the methods.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or another IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Implement a class named News. This class implements the elements sent from the1.
publisher to the subscriber. It will have two private String attributes, named
title and content, and a Date attribute named date. It will also have the
methods to get and set the values of these attributes. The source code of this class
is very simple, so it won't be included here.

http://www.reactive-streams.org/

Customizing Concurrency Classes

[422]

Create a class named Consumer and specify that it implements the Subscriber2.
interface parameterized by the News class. It will have two private attributes: a
Subscription object named subscription and a String attribute called name.
Implement the constructor of the class to initialize the name attribute:

 public class Consumer implements Subscriber<News> {

 private Subscription subscription;
 private String name;

 public Consumer(String name) {
 this.name=name;
 }

Implement the onComplete() method. This method should be called by the3.
publisher when it doesn't send any additional elements. In our case, we only
write a message in the console:

 @Override
 public void onComplete() {
 System.out.printf("%s - %s: Consumer - Completed\n", name,
 Thread.currentThread().getName());
 }

Implement the onError() method. This method should be called by the4.
publisher when an error has occurred. In our case, we only write a message in the
console:

 @Override
 public void onError(Throwable exception) {
 System.out.printf("%s - %s: Consumer - Error: %s\n", name,
 Thread.currentThread().getName(),
 exception.getMessage());
 }

Then, implement onNext(). This method receives a News object as a parameter,5.
and it should be called by the publisher when he or she sends an item to the
subscriber. In our case, we write the value of the attributes of the News object in
the console, and we use the request() method of the Subscription object to
request an additional item:

 @Override
 public void onNext(News item) {
 System.out.printf("%s - %s: Consumer - News\n", name,
 Thread.currentThread().getName());

Customizing Concurrency Classes

[423]

 System.out.printf("%s - %s: Title: %s\n", name,
 Thread.currentThread().getName(),
 item.getTitle());
 System.out.printf("%s - %s: Content: %s\n", name,
 Thread.currentThread().getName(),
 item.getContent());
 System.out.printf("%s - %s: Date: %s\n", name,
 Thread.currentThread().getName(),
 item.getDate());
 subscription.request(1);
 }

Finally, implement onSubscription(). This method will be called by the6.
publisher, and it will be the first method of Subscriber invoked by it. It receives
the Subscription between the publisher and the subscriber. In our case, we
store the Subscription object and request the first item to be processed by the
subscriber using the request() method:

 @Override
 public void onSubscribe(Subscription subscription) {
 this.subscription = subscription;
 subscription.request(1);
 System.out.printf("%s: Consumer - Subscription\n",
 Thread.currentThread().getName());
 }

Implement a class named MySubscription and specify that it implements the7.
Subscription interface. It will have a private Boolean attribute named
canceled and a private integer attribute named requested:

 public class MySubscription implements Subscription {

 private boolean canceled=false;
 private long requested=0;

Implement the cancel() method provided by the Subscription interface to8.
cancel the communication between the publisher and the subscriber. In our case,
we set to true the canceled attribute:

 @Override
 public void cancel() {
 canceled=true;
 }

Customizing Concurrency Classes

[424]

Implement the request() method provided by the Subscription interface.9.
This method is used by the subscriber to request elements from the publisher. It
receives as parameter the number of elements requested by the subscriber. In our
case, we increment the value of the requested attribute:

 @Override
 public void request(long value) {
 requested+=value;
 }

Implement the isCanceled() method to obtain the value of the canceled10.
attribute, the getRequested() method to obtain the value of the requested
attribute and the decreaseRequested() to decrease the value of the requested
attribute:

 public boolean isCanceled() {
 return canceled;
 }

 public long getRequested() {
 return requested;
 }

 public void decreaseRequested() {
 requested--;
 }

Implement a class named ConsumerData. This class will be used by the publisher11.
to store the information of every subscriber. It will have a private Consumer
attribute named consumer and a private MySubscription attribute named
subscription. It will also have the methods to get() and set() the value of those
attributes. The source code of this class is very simple, so it won't be included
here.
Implement a class named PublisherTask and specify that it implements the12.
Runnable interface. It will have a private ConsumerData attribute named
consumerData and a private News attribute named news. Implement a
constructor to initialize both the attributes:

 public class PublisherTask implements Runnable {

 private ConsumerData consumerData;
 private News news;

 public PublisherTask(ConsumerData consumerData, News news) {

Customizing Concurrency Classes

[425]

 this.consumerData = consumerData;
 this.news = news;
 }

Implement the run() method. It will get the MySubscription object of the13.
ConsumerData attribute. If the subscription is not canceled and it has requested
elements (the value of the attribute is bigger than 0), we send the News object to
the subscriber using its onNext() method and then decrement the value of the
requested attribute:

 @Override
 public void run() {
 MySubscription subscription = consumerData.getSubscription();
 if (!(subscription.isCanceled() && (subscription.getRequested()
 > 0))) {
 consumerData.getConsumer().onNext(news);
 subscription.decreaseRequested();
 }
 }
 }

Then, implement a class named MyPublisher and specify that it implements the14.
Publisher interface parameterized by the News class. It will store a private
ConcurrentLinkedDeque of ConsumerData objects and a
ThreadPoolExecutor object named executor. Implement the constructor of
the class to initialize both the attributes:

 public class MyPublisher implements Publisher<News> {

 private ConcurrentLinkedDeque<ConsumerData> consumers;
 private ThreadPoolExecutor executor;

 public MyPublisher() {
 consumers=new ConcurrentLinkedDeque<>();
 executor = (ThreadPoolExecutor)Executors.newFixedThreadPool
 (Runtime.getRuntime().availableProcessors());
 }

Now, implement subscribe(). This method will receive a Subscriber object15.
that wants to receive the items of this publisher in the form of a parameter. We
create MySubscription and ConsumerData objects, store ConsumerData in
ConcurrentLinkedDeque, and call the onSubscribe() method of the
subscriber to send the subscription object to the Subscriber object:

Customizing Concurrency Classes

[426]

 @Override
 public void subscribe(Subscriber<? super News> subscriber) {

 ConsumerData consumerData=new ConsumerData();
 consumerData.setConsumer((Consumer)subscriber);

 MySubscription subscription=new MySubscription();
 consumerData.setSubscription(subscription);

 subscriber.onSubscribe(subscription);

 consumers.add(consumerData);
 }

Now implement the publish() method. This method receives a News parameter16.
and sends it to the subscribers that meet the conditions explained before. To do
this, we create a PublisherTask method per Subscriber and send these tasks
to the executor:

 public void publish(News news) {
 consumers.forEach(consumerData -> {
 try {
 executor.execute(new PublisherTask(consumerData, news));
 } catch (Exception e) {
 consumerData.getConsumer().onError(e);
 }
 });
 }

Finally, implement the Main class of the example with its main() method. We17.
create a publisher and two subscribers and subscribe them to the publisher:

 public class Main {

 public static void main(String[] args) {

 MyPublisher publisher=new MyPublisher();

 Subscriber<News> consumer1, consumer2;
 consumer1=new Consumer("Consumer 1");
 consumer2=new Consumer("Consumer 2");

 publisher.subscribe(consumer1);
 publisher.subscribe(consumer2);

Customizing Concurrency Classes

[427]

Then, create a News object, send it to the publisher, sleep the main thread for a18.
second, create another News object, and send it to the publisher again:

 System.out.printf("Main: Start\n");

 News news=new News();
 news.setTitle("My first news");
 news.setContent("This is the content");
 news.setDate(new Date());

 publisher.publish(news);

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 news=new News();
 news.setTitle("My second news");
 news.setContent("This is the content of the second news");
 news.setDate(new Date());
 publisher.publish(news);

 System.out.printf("Main: End\n");

 }

How it works...
In this example, we implemented a reactive streams communication between a publisher
and a subscriber using the interfaces provided by the Java 9 API and just followed the
expected behavior defined in the reactive streams' specification.

We had a publisher implemented by the MyPublisher class and subscribers implemented
by the Consumer class. There are subscriptions between the publishers, and each subscriber
is implemented by the MySubscription object.

Customizing Concurrency Classes

[428]

The cycle of the communication starts when a subscriber calls the subscribe() method of
a publisher. The publisher has to create the subscription between them and send that
subscription to the subscriber using the onSubscribe() method. The subscriber must use
the request() method of the subscription to indicate that it's ready to process more
elements from the publisher. When the publisher publishes an item, it will send it to all its
subscribers who have requested elements from the publisher using the subscription
between them.

We added all the necessary elements to guarantee this behavior in a concurrent way.

The following screenshot shows the output of an execution of this example:

There's more...
The easiest way to create an application that uses reactive streams is to use the
SubsmissionPublisher class. This class implements the Publisher interface and
provides the necessary methods to use it as the publisher part of the application.

Customizing Concurrency Classes

[429]

See also
The Reactive programming with reactive streams recipe in Chapter 6, Parallel and
Reactive Streams

9
Testing Concurrent Applications

In this chapter, we will cover the following topics:

Monitoring a Lock interface
Monitoring a Phaser class
Monitoring an Executor framework
Monitoring a fork/join pool
Monitoring a stream
Writing effective log messages
Analyzing concurrent code with FindBugs
Configuring Eclipse for debugging concurrency code
Configuring NetBeans for debugging concurrency code
Testing concurrency code with MultithreadedTC
Monitoring with JConsole

Introduction
Testing an application is a critical task. Before you make an application ready for end users,
you have to demonstrate its correctness. You use a test process to prove that correctness is
achieved and errors are fixed. Testing is a common task in any software development and
quality assurance process. You can find a lot of literature about testing processes and the
different approaches you can apply to your developments. There are a lot of libraries as
well, such as JUnit, and applications, such as Apache JMeter, that you can use to test your
Java applications in an automated way. Testing is even more critical in concurrent
application development.

Testing Concurrent Applications

[431]

The fact that concurrent applications have two or more threads that share data structures
and interact with each other adds more difficulty to the testing phase. The biggest problem
you will face when you test concurrent applications is that the execution of threads is non-
deterministic. You can't guarantee the order of the execution of threads, so it's difficult to
reproduce errors.

Monitoring a Lock interface
A Lock interface is one of the basic mechanisms provided by the Java concurrency API to
synchronize a block of code. It allows you to define a critical section. A critical section is a
block of code that accesses a shared resource and can't be executed by more than one thread
at the same time. This mechanism is implemented by the Lock interface and the
ReentrantLock class.

In this recipe, you will learn what information you can obtain about a Lock object and how
to obtain that information.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named MyLock that extends the ReentrantLock class:1.

 public class MyLock extends ReentrantLock {

Testing Concurrent Applications

[432]

Implement getOwnerName(). This method returns the name of the thread that2.
has control of a lock (if any), using the protected method of the Lock class called
getOwner():

 public String getOwnerName() {
 if (this.getOwner()==null) {
 return "None";
 }
 return this.getOwner().getName();
 }

Implement getThreads(). This method returns a list of threads queued in a3.
lock, using the protected method of the Lock class called getQueuedThreads():

 public Collection<Thread> getThreads() {
 return this.getQueuedThreads();
 }

Create a class named Task that implements the Runnable interface:4.

 public class Task implements Runnable {

Declare a private Lock attribute named lock:5.

 private final Lock lock;

Implement a constructor of the class to initialize its attribute:6.

 public Task (Lock lock) {
 this.lock=lock;
 }

Implement the run() method. Create a loop with five steps:7.

 @Override
 public void run() {
 for (int i=0; i<5; i++) {

Acquire the lock using the lock() method and print a message:8.

 lock.lock();
 System.out.printf("%s: Get the Lock.\n",
 Thread.currentThread().getName());

Testing Concurrent Applications

[433]

Put the thread to sleep for 500 milliseconds. Free the lock using the unlock()9.
method and print a message:

 try {
 TimeUnit.MILLISECONDS.sleep(500);
 System.out.printf("%s: Free the Lock.\n",
 Thread.currentThread().getName());
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock.unlock();
 }
 }
 }
 }

Create the main class of the example by creating a class named Main with a10.
main() method:

 public class Main {
 public static void main(String[] args) throws Exception {

Create a MyLock object named lock:11.

 MyLock lock=new MyLock();

Create an array of five Thread objects:12.

 Thread threads[]=new Thread[5];

Create and start five threads to execute five Task objects:13.

 for (int i=0; i<5; i++) {
 Task task=new Task(lock);
 threads[i]=new Thread(task);
 threads[i].start();
 }

Create a loop with 15 steps:14.

 for (int i=0; i<15; i++) {

Write the name of the owner of the lock in the console:15.

 System.out.printf("Main: Logging the Lock\n");
 System.out.printf("************************\n");
 System.out.printf("Lock: Owner : %s\n",lock.getOwnerName());

Testing Concurrent Applications

[434]

Display the number and name of the threads queued for the lock:16.

 System.out.printf("Lock: Queued Threads: %s\n",
 lock.hasQueuedThreads());
 if (lock.hasQueuedThreads()){
 System.out.printf("Lock: Queue Length: %d\n",
 lock.getQueueLength());
 System.out.printf("Lock: Queued Threads: ");
 Collection<Thread> lockedThreads=lock.getThreads();
 for (Thread lockedThread : lockedThreads) {
 System.out.printf("%s ",lockedThread.getName());
 }
 System.out.printf("\n");
 }

Display information about the fairness and status of the Lock object:17.

 System.out.printf("Lock: Fairness: %s\n",lock.isFair());
 System.out.printf("Lock: Locked: %s\n",lock.isLocked());
 System.out.printf("************************\n");

Put the thread to sleep for 1 second and close the loop and the class:18.

 TimeUnit.SECONDS.sleep(1);
 }
 }
 }

How it works...
In this recipe, you implemented the MyLock class that extends the ReentrantLock class to
return information that wouldn't have been available otherwise-it's protected data of the
ReentrantLock class. The methods implemented by the MyLock class are as follows:

getOwnerName(): Only one thread can execute a critical section protected by a
Lock object. The lock stores the thread that is executing the critical section. This
thread is returned by the protected getOwner() method of the ReentrantLock
class.

Testing Concurrent Applications

[435]

getThreads(): When a thread is executing a critical section, other threads that
try to enter it are put to sleep before they continue executing that critical section.
The protected method getQueuedThreads() of the ReentrantLock class
returns the list of threads that are waiting to execute the critical section.

We also used other methods that are implemented in the ReentrantLock class:

hasQueuedThreads(): This method returns a Boolean value indicating whether
there are threads waiting to acquire the calling ReentrantLock
getQueueLength(): This method returns the number of threads that are waiting
to acquire the calling ReentrantLock
isLocked(): This method returns a Boolean value indicating whether the
calling ReentrantLock is owned by a thread
isFair(): This method returns a Boolean value indicating whether the calling
ReentrantLock has fair mode activated

There's more...
There are other methods in the ReentrantLock class that can be used to obtain information
about a Lock object:

getHoldCount(): This returns the number of times the current thread has
acquired the lock
isHeldByCurrentThread(): This returns a Boolean value indicating whether
the lock is owned by the current thread

See also
The Synchronizing a block of code with a lock recipe in Chapter 2, Basic Thread
Synchronization
The Implementing a custom Lock class recipe in Chapter 8, Customizing Concurrency
Classes

Testing Concurrent Applications

[436]

Monitoring a Phaser class
One of the most complex and powerful functionalities offered by the Java Concurrency API
is the ability to execute concurrent-phased tasks using the Phaser class. This mechanism is
useful when we have some concurrent tasks divided into steps. The Phaser class provides
the mechanism to synchronize threads at the end of each step so no thread starts its second
step until all the threads have finished the first one.

In this recipe, you will learn what information you can obtain about the status of a Phaser
class and how to obtain that information.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task that implements the Runnable interface:1.

 public class Task implements Runnable {

Declare a private int attribute named time:2.

 private final int time;

Declare a private Phaser attribute named phaser:3.

 private final Phaser phaser;

Implement the constructor of the class to initialize its attributes:4.

 public Task(int time, Phaser phaser) {
 this.time=time;
 this.phaser=phaser;
 }

Testing Concurrent Applications

[437]

Implement the run() method. First, instruct the phaser attribute that the task5.
starts its execution with the arrive() method:

 @Override
 public void run() {

 phaser.arrive();

Write a message in the console indicating the start of phase one. Put the thread to6.
sleep for the number of seconds specified by the time attribute. Write a message
in the console indicating the end of phase one. And, synchronize with the rest of
the tasks using the arriveAndAwaitAdvance() method of the phaser attribute:

 System.out.printf("%s: Entering phase 1.\n",
 Thread.currentThread().getName());
 try {
 TimeUnit.SECONDS.sleep(time);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("%s: Finishing phase 1.\n",
 Thread.currentThread().getName());
 phaser.arriveAndAwaitAdvance();

Repeat this behavior in both second and third phases. At the end of the third7.
phase, use the arriveAndDeregister() method instead of
arriveAndAwaitAdvance():

 System.out.printf("%s: Entering phase 2.\n",
 Thread.currentThread().getName());
 try {
 TimeUnit.SECONDS.sleep(time);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("%s: Finishing phase 2.\n",
 Thread.currentThread().getName());
 phaser.arriveAndAwaitAdvance();

 System.out.printf("%s: Entering phase 3.\n",
 Thread.currentThread().getName());
 try {
 TimeUnit.SECONDS.sleep(time);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Testing Concurrent Applications

[438]

 System.out.printf("%s: Finishing phase 3.\n",
 Thread.currentThread().getName());

 phaser.arriveAndDeregister();

Implement the main class of the example by creating a class named Main with a8.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception {

Create a new Phaser object named phaser with three participants:9.

 Phaser phaser=new Phaser(3);

Create and launch three threads to execute three task objects:10.

 for (int i=0; i<3; i++) {
 Task task=new Task(i+1, phaser);
 Thread thread=new Thread(task);
 thread.start();
 }

Create a loop with 10 steps to write information about the phaser object:11.

 for (int i=0; i<10; i++) {

Write information about the registered parties, the phase of the phaser, the12.
arrived parties, and the unarrived parties:

 System.out.printf("********************\n");
 System.out.printf("Main: Phaser Log\n");
 System.out.printf("Main: Phaser: Phase: %d\n",
 phaser.getPhase());
 System.out.printf("Main: Phaser: Registered Parties: %d\n",
 phaser.getRegisteredParties());
 System.out.printf("Main: Phaser: Arrived Parties: %d\n",
 phaser.getArrivedParties());
 System.out.printf("Main: Phaser: Unarrived Parties: %d\n",
 phaser.getUnarrivedParties());
 System.out.printf("********************\n");

Testing Concurrent Applications

[439]

Put the thread to sleep for 1 second and close the loop and the class:13.

 TimeUnit.SECONDS.sleep(1);
 }
 }
 }

How it works...
In this recipe, we implemented a phased task in the Task class. This phased task has three
phases and uses a Phaser interface to synchronize with other Task objects. The main class
launches three tasks, and when these tasks execute their respective phases, it prints
information about the status of the phaser object to the console. We used the following
methods to get the status of the phaser object:

getPhase(): This method returns the actual phase of a phaser object
getRegisteredParties(): This method returns the number of tasks that use a
phaser object as a mechanism of synchronization
getArrivedParties(): This method returns the number of tasks that have
arrived at the end of the actual phase
getUnarrivedParties(): This method returns the number of tasks that haven't
yet arrived at the end of the actual phase

The following screenshot shows part of the output of the program:

Testing Concurrent Applications

[440]

See also
The Running concurrent-phased tasks recipe in Chapter 3, Thread Synchronization
Utilities

Monitoring an Executor framework
The Executor framework provides a mechanism that separates the implementation of
tasks from thread creation and management to execute the tasks. If you use an executor,
you only have to implement Runnable objects and send them to the executor. It is the
responsibility of an executor to manage threads. When you send a task to an executor, it
tries to use a pooled thread for executing the task in order to avoid the creation of new
threads. This mechanism is offered by the Executor interface and its implementing classes
as the ThreadPoolExecutor class.

In this recipe, you will learn what information you can obtain about the status of a
ThreadPoolExecutor executor and how to obtain it.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task that implements the Runnable interface:1.

 public class Task implements Runnable {

Declare a private long attribute named milliseconds:2.

 private final long milliseconds;

Testing Concurrent Applications

[441]

Implement the constructor of the class to initialize its attribute:3.

 public Task (long milliseconds) {
 this.milliseconds=milliseconds;
 }

Implement the run() method. Put the thread to sleep for the number of4.
milliseconds specified by the milliseconds attribute:

 @Override
 public void run() {

 System.out.printf("%s: Begin\n",
 Thread.currentThread().getName());
 try {
 TimeUnit.MILLISECONDS.sleep(milliseconds);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("%s: End\n",
 Thread.currentThread().getName());

 }

Implement the main class of the example by creating a class named Main with a5.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception {

Create a new Executor object using the newCachedThreadPool() method of6.
the Executors class:

 ThreadPoolExecutor executor = (ThreadPoolExecutor)
 Executors.newCachedThreadPool();

Create and submit 10 Task objects to the executor. Initialize the objects with a7.
random number:

 Random random=new Random();
 for (int i=0; i<10; i++) {
 Task task=new Task(random.nextInt(10000));
 executor.submit(task);
 }

Testing Concurrent Applications

[442]

Create a loop with five steps. In each step, write information about the executor8.
by calling the showLog() method and putting the thread to sleep for a second:

 for (int i=0; i<5; i++){
 showLog(executor);
 TimeUnit.SECONDS.sleep(1);
 }

Shut down the executor using the shutdown() method:9.

 executor.shutdown();

Create another loop with five steps. In each step, write information about the10.
executor by calling the showLog() method and putting the thread to sleep for a
second:

 for (int i=0; i<5; i++){
 showLog(executor);
 TimeUnit.SECONDS.sleep(1);
 }

Wait for the finalization of the executor using the awaitTermination() method:11.

 executor.awaitTermination(1, TimeUnit.DAYS);

Display a message indicating the end of the program:12.

 System.out.printf("Main: End of the program.\n");
 }

Implement the showLog() method that receives Executor as a parameter. Write13.
information about the size of the pool, the number of tasks, and the status of the
executor:

 private static void showLog(ThreadPoolExecutor executor) {
 System.out.printf("*********************");
 System.out.printf("Main: Executor Log");
 System.out.printf("Main: Executor: Core Pool Size: %d\n",
 executor.getCorePoolSize());
 System.out.printf("Main: Executor: Pool Size: %d\n",
 executor.getPoolSize());
 System.out.printf("Main: Executor: Active Count: %d\n",
 executor.getActiveCount());
 System.out.printf("Main: Executor: Task Count: %d\n",
 executor.getTaskCount());

Testing Concurrent Applications

[443]

 System.out.printf("Main: Executor: Completed Task Count: %d\n",
 executor.getCompletedTaskCount());
 System.out.printf("Main: Executor: Shutdown: %s\n",
 executor.isShutdown());
 System.out.printf("Main: Executor: Terminating: %s\n",
 executor.isTerminating());
 System.out.printf("Main: Executor: Terminated: %s\n",
 executor.isTerminated());
 System.out.printf("*********************\n");
 }

How it works...
In this recipe, you implemented a task that blocks its execution thread for a random number
of milliseconds. Then, you sent 10 tasks to an executor, and while you were waiting for their
finalization, you wrote information about the status of the executor to the console. You used
the following methods to get the status of the Executor object:

getCorePoolSize(): This method returns an int number, which refers to the
core number of threads. It's the minimum number of threads that will be in the
internal thread pool when the executor is not executing any task.
getPoolSize(): This method returns an int value, which refers to the actual
size of the internal thread pool.
getActiveCount(): This method returns an int number, which refers to the
number of threads that are currently executing tasks.
getTaskCount(): This method returns a long number, which refers to the
number of tasks that have been scheduled for execution.
getCompletedTaskCount(): This method returns a long number, which refers
to the number of tasks that have been executed by this executor and have finished
their execution.
isShutdown(): This method returns a Boolean value when the shutdown()
method of an executor is called to finish its execution.
isTerminating(): This method returns a Boolean value when the executor
performs the shutdown() operation but hasn't finished it yet.
isTerminated(): This method returns a Boolean value when the executor
finishes its execution.

Testing Concurrent Applications

[444]

See also
The Creating a thread executor and controlling its rejected tasks recipe in Chapter 4,
Thread Executors
The Customizing the ThreadPoolExecutor class and Implementing a priority-based
Executor class recipes in Chapter 8, Customizing Concurrency Classes

Monitoring a fork/join pool
The Executor framework provides a mechanism that allows you to separate task
implementation from the creation and management of threads that execute the tasks. Java 9
includes an extension of the Executor framework for a specific kind of problem that will
improve the performance of other solutions (using Thread objects directly or the Executor
framework). It's the fork/join framework.

This framework is designed to solve problems that can be broken down into smaller tasks
using the fork() and join() operations. The main class that implements this behavior is
ForkJoinPool.

In this recipe, you will learn what information you can obtain about a ForkJoinPool class
and how to obtain it.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task that extends the RecursiveAction class:1.

 public class Task extends RecursiveAction{

Testing Concurrent Applications

[445]

Declare a private int array attribute named array to store the array of elements2.
you want to increment:

 private final int array[];

Declare two private int attributes named start and end to store the start and3.
end positions of the block of elements this task has to process:

 private final int start;
 private final int end;

Implement the constructor of the class to initialize its attributes:4.

 public Task (int array[], int start, int end) {
 this.array=array;
 this.start=start;
 this.end=end;
 }

Implement the compute() method with the main logic of the task. If the task has5.
to process more than 100 elements, first divide the elements into two parts, create
two tasks to execute these parts, start its execution with the fork() method, and
finally, wait for its finalization with the join() method:

 protected void compute() {
 if (end-start>100) {
 int mid=(start+end)/2;
 Task task1=new Task(array,start,mid);
 Task task2=new Task(array,mid,end);

 task1.fork();
 task2.fork();

 task1.join();
 task2.join();

If the task has to process 100 elements or less, increment the elements by putting6.
the thread to sleep for 5 milliseconds after each operation:

 } else {
 for (int i=start; i<end; i++) {
 array[i]++;

 try {
 Thread.sleep(5);
 } catch (InterruptedException e) {

Testing Concurrent Applications

[446]

 e.printStackTrace();
 }
 }
 }
 }
 }

Implement the main class of the example by creating a class named Main with a7.
main() method:

 public class Main {

 public static void main(String[] args) throws Exception {

Create a ForkJoinPool object named pool:8.

 ForkJoinPool pool=new ForkJoinPool();

Create an array of integer numbers, named array, with 10,000 elements:9.

 int array[]=new int[10000];

Create a new Task object to process the whole array:10.

 Task task1=new Task(array,0,array.length);

Send the task for execution to the pool using the execute() method:11.

 pool.execute(task1);

If the task doesn't finish its execution, call the showLog() method to write12.
information about the status of the ForkJoinPool class and put the thread to
sleep for a second:

 while (!task1.isDone()) {
 showLog(pool);
 TimeUnit.SECONDS.sleep(1);
 }

Shut down the pool using the shutdown() method:13.

 pool.shutdown();

Testing Concurrent Applications

[447]

Wait for the finalization of the pool using the awaitTermination() method:14.

 pool.awaitTermination(1, TimeUnit.DAYS);

Call the showLog() method to write information about the status of the15.
ForkJoinPool class and write a message in the console indicating the end of the
program:

 showLog(pool);
 System.out.printf("Main: End of the program.\n");

Implement the showLog() method. It receives a ForkJoinPool object as a16.
parameter and writes information about its status and the threads and tasks that
are being executed:

 private static void showLog(ForkJoinPool pool) {
 System.out.printf("**********************\n");
 System.out.printf("Main: Fork/Join Pool log\n");
 System.out.printf("Main: Fork/Join Pool: Parallelism: %d\n",
 pool.getParallelism());
 System.out.printf("Main: Fork/Join Pool: Pool Size: %d\n",
 pool.getPoolSize());
 System.out.printf("Main: Fork/Join Pool: Active Thread Count:
 %d\n", pool.getActiveThreadCount());
 System.out.printf("Main: Fork/Join Pool: Running Thread Count:
 %d\n", pool.getRunningThreadCount());
 System.out.printf("Main: Fork/Join Pool: Queued Submission:
 %d\n", pool.getQueuedSubmissionCount());
 System.out.printf("Main: Fork/Join Pool: Queued Tasks: %d\n",
 pool.getQueuedTaskCount());
 System.out.printf("Main: Fork/Join Pool: Queued Submissions:
 %s\n", pool.hasQueuedSubmissions());
 System.out.printf("Main: Fork/Join Pool: Steal Count: %d\n",
 pool.getStealCount());
 System.out.printf("Main: Fork/Join Pool: Terminated : %s\n",
 pool.isTerminated());
 System.out.printf("**********************\n");
 }

Testing Concurrent Applications

[448]

How it works...
In this recipe, you implemented a task that increments the elements of an array, using a
ForkJoinPool class, and a Task class that extends the RecursiveAction class. This is one
of the tasks you can execute in a ForkJoinPool class. When the tasks were processing the
array, you printed information about the status of the ForkJoinPool class to the console.
You used the following methods to get the status of the ForkJoinPool class:

getPoolSize(): This method returns an int value, which is the number of
worker threads of the internal pool of a ForkJoinPool class
getParallelism(): This method returns the desired level of parallelism
established for a pool
getActiveThreadCount(): This method returns the number of threads that are
currently executing tasks
getRunningThreadCount(): This method returns the number of working
threads that are not blocked in any synchronization mechanism
getQueuedSubmissionCount(): This method returns the number of tasks that
have been submitted to a pool and haven't started their execution yet
getQueuedTaskCount(): This method returns the number of tasks that have
been submitted to a pool and have started their execution
hasQueuedSubmissions(): This method returns a Boolean value indicating
whether the pool has queued tasks that haven't started their execution yet
getStealCount(): This method returns a long value specifying the number of
times a worker thread has stolen a task from another thread
isTerminated(): This method returns a Boolean value indicating whether the
fork/join pool has finished its execution

See also
The Creating a fork/join pool recipe in Chapter 5, Fork/Join Framework
The Implementing the ThreadFactory interface to generate custom threads for the
fork/join framework and Customizing tasks running in the fork/join framework recipes
in Chapter 8, Customizing Concurrency Classes

Testing Concurrent Applications

[449]

Monitoring a stream
A stream in Java is a sequence of elements that could be processed (mapped, filtered,
transformed, reduced, and collected) either parallelly or sequentially in a pipeline of
declarative operations using lambda expressions. It was introduced in Java 8 to change the
way one can process enormous sets of data in a functional way, with lambda expressions
instead of the traditional imperative way.

The Stream interface doesn't provide a lot of methods as other concurrency classes to
monitor its status. Only the peek() method allows you to write log information about the
elements that are being processed. In this recipe, you will learn how to use this method to
write information about a stream.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Main with a main() method. Declare two private variables,1.
namely an AtomicInteger variable called counter and a Random object called
random:

 public class Main {
 public static void main(String[] args) {

 AtomicLong counter = new AtomicLong(0);
 Random random=new Random();

Create a stream of 1,000 random double numbers. The stream created is a2.
sequential stream. You have to make it parallel using the parallel() method,
and use the peek() method to increment the value of the counter variable and
write a message in the console. Post this, use the count() method to count the
number of elements in the array and store that number in an integer variable.
Write the value stored in the counter variable and the value returned by the
count() method in the console:

Testing Concurrent Applications

[450]

 long streamCounter = random.doubles(1000).parallel()
 .peek(number -> {
 long actual=counter.incrementAndGet();
 System.out.printf("%d - %f\n", actual, number);
 }).count();

 System.out.printf("Counter: %d\n", counter.get());
 System.out.printf("Stream Counter: %d\n", streamCounter);

Now, set the value of the counter variable to 0. Create another stream of 1,0003.
random double numbers. Then, convert it into a parallel stream using the
parallel() method, and use the peek() method to increment the value of the
counter variable and write a message in the console. Finally, use the forEach()
method to write all the numbers and the value of the counter variable in the
console:

 counter.set(0);
 random.doubles(1000).parallel().peek(number -> {
 long actual=counter.incrementAndGet();
 System.out.printf("Peek: %d - %f\n", actual,number);
 }).forEach(number -> {
 System.out.printf("For Each: %f\n", number);
 });

 System.out.printf("Counter: %d\n", counter.get());
 }
 }

How it works...
In this example, we used the peek() method in two different situations to count the
number of elements that pass by this step of the stream and write a message in the console.

As described in Chapter 6, Parallel and Reactive Streams, Stream has a source, zero or more
intermediate operations, and a final operation. In the first case, our final operation is the
count() method. This method doesn't need to process the elements to calculate the
returned value, so the peek() method will never be executed. You won't see any of the
messages of the peek method in the console, and the value of the counter variable will be 0.

The second case is different. The final operation is the forEach() method, and in this case,
all the elements of the stream will be processed. In the console, you will see messages of
both peek() and forEach() methods. The final value of the counter variable will be
1,000.

Testing Concurrent Applications

[451]

The peek() method is an intermediate operation of a stream. Like with all intermediate
operations, they are executed lazily, and they only process the necessary elements. This is
the reason why it's never executed in the first case.

See also
The Creating streams from different sources, Reducing the elements of a stream and
Collecting the elements of a stream recipes in Chapter 6, Parallel and Reactive Streams

Writing effective log messages
A log system is a mechanism that allows you to write information to one or more
destinations. A Logger has the following components:

One or more handlers: A handler will determine the destination and format of
the log messages. You can write log messages in the console, a file, or a database.
A name: Usually, the name of a Logger used in a class is based on the class name
and its package name.

A level: Log messages have different levels that indicate their importance. A
Logger also has a level to decide what messages it is going to write. It only writes
messages that are as important as, or more important, than its level.

You should use the log system because of the following two main reasons:

Write as much information as you can when an exception is caught. This will
help you localize the error and resolve it.
Write information about the classes and methods that the program is executing.

In this recipe, you will learn how to use the classes provided by the java.util.logging
package to add a log system to your concurrent application.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Testing Concurrent Applications

[452]

How to do it...
Follow these steps to implement the example:

Create a class named MyFormatter that extends the1.
java.util.logging.Formatter class. Implement the abstract format()
method. It receives a LogRecord object as a parameter and returns a String
object with a log message:

 public class MyFormatter extends Formatter {
 @Override
 public String format(LogRecord record) {

 StringBuilder sb=new StringBuilder();
 sb.append("["+record.getLevel()+"] - ");
 sb.append(new Date(record.getMillis())+" : ");
 sb.append(record.getSourceClassName()+ "."
 +record.getSourceMethodName()+" : ");
 sb.append(record.getMessage()+"\n");.
 return sb.toString();
 }

Create a class named MyLoggerFactory:2.

 public class MyLoggerFactory {

Declare a private static Handler attribute named handler:3.

 private static Handler handler;

Implement the public static method getLogger() to create the Logger object4.
that you're going to use to write log messages. It receives a String parameter
called name. We synchronize this method with the synchronized keyword:

 public synchronized static Logger getLogger(String name){

Get java.util.logging.Logger associated with the name received as a5.
parameter using the getLogger() method of the Logger class:

 Logger logger=Logger.getLogger(name);

Testing Concurrent Applications

[453]

Establish the log level to write all the log messages using the setLevel()6.
method:

 logger.setLevel(Level.ALL);

If the handler attribute has the null value, create a new FileHandler object to7.
write log messages in the recipe8.log file. Assign a MyFormatter object to this
handler; assign it as a formatter using the setFormatter() object:

 try {
 if (handler==null) {
 handler=new FileHandler("recipe6.log");
 Formatter format=new MyFormatter();
 handler.setFormatter(format);
 }

If the Logger object does not have a handler associated with it, assign the8.
handler using the addHandler() method:

 if (logger.getHandlers().length==0) {
 logger.addHandler(handler);
 }
 } catch (SecurityException e | IOException e) {
 e.printStackTrace();
 }

Return the Logger object created:9.

 return logger;
 }

Create a class named Task that implements the Runnable interface. It will be the10.
task used to test your Logger object:

 public class Task implements Runnable {

Implement the run() method:11.

 @Override
 public void run() {

Testing Concurrent Applications

[454]

First, declare a Logger object named logger. Initialize it using the getLogger()12.
method of the MyLogger class by passing the name of this class as a parameter:

 Logger logger= MyLogger.getLogger(this.getClass().getName());

Write a log message indicating the beginning of the execution of the method,13.
using the entering() method:

 logger.entering(Thread.currentThread().getName(), "run()");

Sleep the thread for two seconds:14.

 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write a log message indicating the end of the execution of the method, using the15.
exiting() method:

 logger.exiting(Thread.currentThread().getName(), "run()",
 Thread.currentThread());
 }

Implement the main class of the example by creating a class named Main with a16.
main() method:

 public class Main {
 public static void main(String[] args) {

Declare a Logger object named logger. Initialize it using the getLogger()17.
method of the MyLogger class by passing the Core string as a parameter:

 Logger logger=MyLogger.getLogger(Main.class.getName());

Write a log message indicating the start of the execution of the main program,18.
using the entering() method:

 logger.entering(Main.class.getName(), "main()",args);

Create a Thread array to store five threads:19.

 Thread threads[]=new Thread[5];

Testing Concurrent Applications

[455]

Create five Task objects and five threads to execute them. Write log messages to20.
indicate that you're going to launch a new thread and that you have created the
thread:

 for (int i=0; i<threads.length; i++) {
 logger.log(Level.INFO,"Launching thread: "+i);
 Task task=new Task();
 threads[i]=new Thread(task);
 logger.log(Level.INFO,"Thread created: "+
 threads[i].getName());
 threads[i].start();
 }

Write a log message to indicate that you have created the threads:21.

 logger.log(Level.INFO,"Ten Threads created."+
 "Waiting for its finalization");

Wait for the finalization of the five threads using the join() method. After the22.
finalization of each thread, write a log message indicating that the thread has
finished:

 for (int i=0; i<threads.length; i++) {
 try {
 threads[i].join();
 logger.log(Level.INFO,"Thread has finished its execution",
 threads[i]);
 } catch (InterruptedException e) {
 logger.log(Level.SEVERE, "Exception", e);
 }
 }

Write a log message to indicate the end of the execution of the main program,23.
using the exiting() method:

 logger.exiting(Main.class.getName(), "main()");
 }

Testing Concurrent Applications

[456]

How it works...
In this recipe, you used the Logger class provided by the Java logging API to write log
messages in a concurrent application. First of all, you implemented the MyFormatter class
to assign a format to the log messages. This class extends the Formatter class that declares
the abstract format() method. This method receives a LogRecord object with all of the
information of the log message and returns a formatted log message. In your class, you
used the following methods of the LogRecord class to obtain information about the log
message:

getLevel(): Returns the level of a message
getMillis(): Returns the date when a message was sent to a Logger object
getSourceClassName(): Returns the name of a class that had sent the message
to the Logger
getSourceMessageName(): Returns the name of the method that had sent the
message to the Logger
getMessage(): Returns the log message

The MyLogger class implements the static method getLogger(). This method creates a
Logger object and assigns a Handler object to write log messages of the application to the
recipe6.log file, using the MyFormatter formatter. You create the Logger object with the
static method getLogger() of the Logger class. This method returns a different object per
name that is passed as a parameter. You only created one Handler object, so all the Logger
objects will write their log messages in the same file. You also configured the logger to write
all the log messages, regardless of their level.

Finally, you implemented a Task object and a main program that writes different log
messages in the log file. You used the following methods:

entering(): To write a message with the FINER level indicating that a method
has started its execution
exiting(): To write a message with the FINER level indicating that a method
has ended its execution
log(): To write a message with the specified level

Testing Concurrent Applications

[457]

There's more...
When you work with a log system, you have to take into consideration two important
points:

Write the necessary information: If you write too little information, the logger
won't be useful because it won't fulfil its purpose. If you write a lot of
information, you will generate large unmanageable log files; this will make it
difficult to get the necessary information.
Use the adequate level for the messages: If you write high level information
messages or low level error messages, you will confuse the user who will look at
the log files. This will make it more difficult to know what happened in an error
situation; alternatively, you will have too much of information making it difficult
to know the main cause of the error.

There are other libraries that provide a log system that is more complete than the
java.util.logging package, such as the Log4j or slf4j libraries. But the
java.util.logging package is part of the Java API, and all its methods are multithread
safe; therefore, we can use it in concurrent applications without problems.

See also
The Using non-blocking thread-safe deques, Using blocking thread-safe deques, Using
blocking thread-safe queues ordered by priority, Using thread-safe lists with delayed
elements and Using thread-safe navigable maps recipes in Chapter 7, Concurrent
Collections

Analyzing concurrent code with FindBugs
Static code analysis tools are a set of tools that analyze the source code of an application
while looking for potential errors. These tools, such as Checkstyle, PMD, or FindBugs, have
a set of predefined rules of good practices and parse the source code looking for violations
of these rules. The objective is to find errors or places that cause poor performance at an
early stage, before they are executed in production. Programming languages usually offer
such tools, and Java is not an exception. One of the tools that helps analyze Java code is
FindBugs. It's an open source tool that includes a series of rules to analyze Java-concurrent
code.

Testing Concurrent Applications

[458]

In this recipe, you will learn how to use this tool to analyze your Java-concurrent
application.

Getting ready
Before you start this recipe, download FindBugs from the project's web page
(http://findbugs.sourceforge.net/). You can download a standalone application or an
Eclipse plugin. In this recipe, I used the standalone version.

At the time of this writing, the actual version of FindBugs (3.0.1) doesn't
include support for Java 9. You can download a preview of the 3.1.0
version with support for Java 9 from
https://github.com/findbugsproject/findbugs/releases/tag/3.1.0_p

review1.

How to do it...
Follow these steps to implement the example:

Create a class named Task that extends the Runnable interface:1.

 public class Task implements Runnable {

Declare a private ReentrantLock attribute named lock:2.

 private ReentrantLock lock;

Implement a constructor of the class:3.

 public Task(ReentrantLock lock) {
 this.lock=lock;
 }

http://findbugs.sourceforge.net/
https://github.com/findbugsproject/findbugs/releases/tag/3.1.0_preview1
https://github.com/findbugsproject/findbugs/releases/tag/3.1.0_preview1

Testing Concurrent Applications

[459]

Implement the run() method. Get control of the lock, put the thread to sleep for4.
2 seconds, and free the lock:

 @Override
 public void run() {
 lock.lock();
 try {
 TimeUnit.SECONDS.sleep(1);
 lock.unlock();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Create the main class of the example by creating a class named Main with a5.
main() method:

 public class Main {
 public static void main(String[] args) {

Declare and create a ReentrantLock object named lock:6.

 ReentrantLock lock=new ReentrantLock();

Create 10 Task objects and 10 threads to execute the tasks. Start the threads by7.
calling the run() method:

 for (int i=0; i<10; i++) {
 Task task=new Task(lock);
 Thread thread=new Thread(task);
 thread.run();
 }
 }

Export the project as a .jar file. Call it recipe7.jar. Use the menu option of8.
your IDE or the javac and .jar commands to compile and compress your
application.
Start the FindBugs standalone application by running the findbugs.bat9.
command in Windows or the findbugs.sh command in Linux.

Testing Concurrent Applications

[460]

Create a new project by clicking on the New Project option under the File menu10.
in the menu bar:

The FindBugs application shows a window to configure the project. In the Project11.
name field, type Recipe07. In the Classpath for analysis field (jar, ear, war, zip,
or directory), add the .jar file with the project. In the Source directories field
(optional; classes used when browsing found bugs), add the directory with the
source code of the example. Refer to the following screenshot:

Testing Concurrent Applications

[461]

Click on the Analyze button to create the new project and analyze its code.12.
The FindBugs application shows the result of the analysis of the code. In this case,13.
it has found two bugs.
Click on one of the bugs and you'll see the source code of the bug on the right-14.
hand side panel and the description of the bug in the panel at the bottom of the
screen.

How it works...
The following screenshot shows the result of the analysis by FindBugs:

The analysis has detected the following two potential bugs in the application:

One of the bugs is detected in the run() method of the Task class. If an
InterruptedExeption exception is thrown, the task doesn't free the lock
because it won't execute the unlock() method. This will probably cause a
deadlock situation in the application.
The other bug is detected in the main() method of the Main class because you
called the run() method of a thread directly, not the start() method to begin
the execution of the thread.

Testing Concurrent Applications

[462]

If you double-click on one of the two bugs, you will see detailed information about it. As
you have included the source code reference in the configuration of the project, you will
also see the source code where the bug was detected. The following screenshot shows you
an example of this:

There's more...
Be aware that FindBugs can only detect some problematic situations (related or not to
concurrency code). For example, if you delete the unlock() call in the run() method of the
Task class and repeat the analysis, FindBugs won't alert you that
you will get the lock in the task but you will never be able to free it.

Use the tools of the static code analysis as a form of assistance to improve the quality of
your code, but do not expect it to detect all the bugs.

Testing Concurrent Applications

[463]

See also
The Configuring NetBeans for debugging concurrency code recipe in this chapter

Configuring Eclipse for debugging
concurrency code
Nowadays, almost every programmer, regardless of the programming language in use,
create their applications with an IDE. They provide lots of interesting functionalities
integrated in the same application, such as:

Project management
Automatic code generation
Automatic documentation generation
Integration with control version systems
A debugger to test applications
Different wizards to create projects and elements of the applications

One of the most helpful features of an IDE is a debugger. Using it, you can execute your
application step by step and analyze the values of all the objects and variables of your
program.

If you work with Java, Eclipse is one of the most popular IDEs. It has an integrated
debugger that allows you to test your applications. By default, when you debug a
concurrent application and the debugger finds a breakpoint, it only stops the thread that
has the breakpoint while it allows the rest of the threads to continue with their execution. In
this recipe, you will learn how to change this configuration to help you test concurrent
applications.

Getting ready
You must have installed the Eclipse IDE. Open it and select a project with a concurrent
application implemented, for example, one of the recipes implemented in the book.

Testing Concurrent Applications

[464]

How to do it...
Follow these steps to implement the example:

Navigate to Window | Preferences.1.
Expand the Java option in the left-hand side menu.2.
Then, select the Debug option. The following screenshot illustrates the window:3.

Change the value of Default suspend policy for new breakpoints from Suspend4.
Thread to Suspend VM (marked in red in the screenshot).
Click on the OK button to confirm the change.5.

Testing Concurrent Applications

[465]

How it works...
As mentioned in the introduction of this recipe, by default, when you debug a concurrent
Java application in Eclipse and the debug process finds a breakpoint, it only suspends the
thread that hits the breakpoint first, but it allows other threads to continue with their
execution. The following screenshot shows an example of this:

Testing Concurrent Applications

[466]

You can see that only worker-21 is suspended (marked in red in the screenshot), while the
rest of the threads are running. However, while debugging a concurrent application, if you
change Default suspend policy for new breakpoints to Suspend VM, all the threads will
suspend their execution and the debug process will hit a breakpoint.. The following
screenshot shows an example of this situation:

With the change, you can see that all the threads are suspended. You can continue
debugging any thread you want. Choose the suspend policy that best suits your needs.

Testing Concurrent Applications

[467]

Configuring NetBeans for debugging
concurrency code
Software is necessary to develop applications that work properly, meet the quality
standards of the company, and could be easily modified in future (in limited time and cost
as low as possible). To achieve this goal, it is essential to use an IDE that can integrate
 several tools (compilers and debuggers) that facilitate the development of applications
under one common interface.

If you work with Java, NetBeans is one of the most popular IDEs. It has an integrated
debugger that allows you to test your application.

In this recipe, you will learn how to change the configuration of the Netbeans debugger to
help you test concurrent applications.

Getting ready
You should have the NetBeans IDE installed. Open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task1 and specify that it implements the Runnable1.
interface:

 public class Task1 implements Runnable {

Declare two private Lock attributes, named lock1 and lock2:2.

 private Lock lock1, lock2;

Implement the constructor of the class to initialize its attributes:3.

 public Task1 (Lock lock1, Lock lock2) {
 this.lock1=lock1;
 this.lock2=lock2;
 }

Testing Concurrent Applications

[468]

Implement the run() method. First, get control of the lock1 object using the4.
lock() method and write aa message in the console indicating that you have got
it:

 @Override
 public void run() {
 lock1.lock();
 System.out.printf("Task 1: Lock 1 locked\n");

Then, get control of lock2 using the lock() method and write a message in the5.
console indicating that you have got it:

 lock2.lock();
 System.out.printf("Task 1: Lock 2 locked\n");

Finally, release the two lock objects-first the lock2 object and then the lock16.
object:

 lock2.unlock();
 lock1.unlock();
 }

Create a class named Task2 and specify that it implements the Runnable7.
interface:

 public class Task2 implements Runnable{

Declare two private Lock attributes, named lock1 and lock2:8.

 private Lock lock1, lock2;

Implement the constructor of the class to initialize its attributes:9.

 public Task2(Lock lock1, Lock lock2) {
 this.lock1=lock1;
 this.lock2=lock2;
 }

Implement the run() method. First, get control of the lock2 object using the10.
lock() method and write a message in the console indicating that you have got
it:

 @Override
 public void run() {
 lock2.lock();
 System.out.printf("Task 2: Lock 2 locked\n");

Testing Concurrent Applications

[469]

Then, get control of lock1 using the lock() method and write a message in the11.
console indicating that you have got it:

 lock1.lock();
 System.out.printf("Task 2: Lock 1 locked\n");

Finally, release the two lock objects-first lock1 and then lock2:12.

 lock1.unlock();
 lock2.unlock();
 }

Implement the main class of the example by creating a class named Main and13.
adding the main() method to it:

 public class Main {

Create two lock objects named lock1 and lock2:14.

 Lock lock1, lock2;
 lock1=new ReentrantLock();
 lock2=new ReentrantLock();

Create a Task1 object named task1:15.

 Task1 task1=new Task1(lock1, lock2);

Create a Task2 object named task2:16.

 Task2 task2=new Task2(lock1, lock2);

Execute both the tasks using two threads:17.

 Thread thread1=new Thread(task1);
 Thread thread2=new Thread(task2);

 thread1.start();
 thread2.start();

When the two tasks finish their execution, write a message in the console every18.
500 milliseconds. Use the isAlive() method to check whether a thread has
finished its execution:

 while ((thread1.isAlive()) &&(thread2.isAlive())) {
 System.out.println("Main: The example is"+ "running");
 try {

Testing Concurrent Applications

[470]

 TimeUnit.MILLISECONDS.sleep(500);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }

Add a breakpoint in the first call to the printf() method of the run() method19.
of the Task1 class.
Debug the program. You will see the Debugging window in the top left-hand20.
side corner of the main NetBeans window. The next screenshot illustrates the
window with the thread that executes the Task1 object. The thread is waiting in
the breakpoint. The other threads of the application are running:

Pause the execution of the main thread. Select the thread, right-click on it, and21.
select the Suspend option. The following screenshot shows the new appearance
of the Debugging window. Refer to the following screenshot:

Resume the two paused threads. Select each thread, right-click on them, and22.
select the Resume option.

Testing Concurrent Applications

[471]

How it works...
While debugging a concurrent application using NetBeans, when the debugger hits a
breakpoint, it suspends the thread that hit the breakpoint and shows the Debugging
window in the top left-hand side corner with the threads that are currently running.
You can use the window to pause or resume the threads that are currently running, using
the Pause or Resume options. You can also see the values of the variables or attributes of
the threads using the Variables tab.

NetBeans also includes a deadlock detector. When you select the Check for Deadlock
option in the Debug menu, NetBeans performs an analysis of the application that you're
debugging to determine whether there's a deadlock situation. This example presents a clear
deadlock. The first thread gets lock1 first and then lock2. The second thread gets the locks
in reverse manner. The breakpoint inserted provokes the deadlock, but if you use the
NetBeans deadlock detector, you'll not find anything. Therefore, this option should be used
with caution. Change the locks used in both the tasks by the synchronized keyword and
debug the program again. The code of Task1 is as follows:

 @Override
 public void run() {
 synchronized(lock1) {
 System.out.printf("Task 1: Lock 1 locked\n");
 synchronized(lock2) {
 System.out.printf("Task 1: Lock 2 locked\n");
 }
 }
 }

The code of the Task2 class will be analogous to this, but it changes the order of the locks. If
you debug the example again, you will obtain a deadlock one more time. However, in this
case, it's detected by the deadlock detector, as you can see in the following screenshot:

Testing Concurrent Applications

[472]

There's more...
There are options to control the debugger. Select Options from the Tools menu. Then, select
the Miscellaneous option and the Java Debugger tab. The following screenshot illustrates
this window:

Testing Concurrent Applications

[473]

There are two options in the window that control the behavior described earlier:

New breakpoints suspend: With this option, you can configure the behavior of
NetBeans, which finds a breakpoint in a thread. You can suspend only that
thread that has a breakpoint or all the threads of the application.
Steps resume: With this option, you can configure the behavior of NetBeans
when you resume a thread. You can resume only the current thread or all the
threads.

Both the options have been marked in the screenshot presented earlier.

See also
The Configuring Eclipse for debugging concurrency code recipe in this chapter

Testing concurrency code with
MultithreadedTC
MultithreadedTC is a Java library for testing concurrent applications. Its main objective is
to solve the problem of concurrent applications being non-deterministic. You can't control
the order of execution of the different threads that form the application. For this purpose, it
includes an internal metronome. These testing threads are implemented as methods of a
class.

In this recipe, you will learn how to use the MultithreadedTC library to implement a test
for LinkedTransferQueue.

Getting ready
Download the MultithreadedTC library from
https://code.google.com/archive/p/multithreadedtc/ and the JUnit library, version
4.10, from http://junit.org/junit4/. Add the junit-4.10.jar and
MultithreadedTC-1.01.jar files to the libraries of the project.

https://code.google.com/archive/p/multithreadedtc/
http://junit.org/junit4/

Testing Concurrent Applications

[474]

How to do it...
Follow these steps to implement the example:

Create a class named ProducerConsumerTest that extends the1.
MultithreadedTestCase class:

 public class ProducerConsumerTest extends MultithreadedTestCase {

Declare a private LinkedTransferQueue attribute parameterized by the String2.
class named queue:

 private LinkedTransferQueue<String> queue;

Implement the initialize() method. This method won't receive any3.
parameters and will return no value. It will call the initialize() method of its
parent class and then initialize the queue attribute:

 @Override
 public void initialize() {
 super.initialize();
 queue=new LinkedTransferQueue<String>();
 System.out.printf("Test: The test has been initialized\n");
 }

Implement the thread1() method. It will implement the logic of the first4.
consumer. Call the take() method of the queue and then write the returned
value in the console:

 public void thread1() throws InterruptedException {
 String ret=queue.take();
 System.out.printf("Thread 1: %s\n",ret);
 }

Implement the thread2() method. It will implement the logic of the second5.
consumer. First wait until the first thread has slept in the take() method. To put
the thread to sleep, use the waitForTick() method. Then, call the take()
method of the queue and write the returned value in the console:

 public void thread2() throws InterruptedException {
 waitForTick(1);
 String ret=queue.take();
 System.out.printf("Thread 2: %s\n",ret);
 }

Testing Concurrent Applications

[475]

Implement the thread3() method. It will implement the logic of a producer.6.
First wait until the two consumers are blocked in the take() method; block this
method using the waitForTick() method twice. Then, call the put() method of
the queue to insert two strings in the queue:

 public void thread3() {
 waitForTick(1);
 waitForTick(2);
 queue.put("Event 1");
 queue.put("Event 2");
 System.out.printf("Thread 3: Inserted two elements\n");
 }

Finally, implement the finish() method. Write a message in the console to7.
indicate that the test has finished its execution. Check that the two events have
been consumed (so the size of the queue is 0) using the assertEquals()
method:

 public void finish() {
 super.finish();
 System.out.printf("Test: End\n");
 assertEquals(true, queue.size()==0);
 System.out.printf("Test: Result: The queue is empty\n");
 }

Next, implement the main class of the example by creating a class named Main8.
with a main() method:

 public class Main {
 public static void main(String[] args) throws Throwable {

Create a ProducerConsumerTest object named test:9.

 ProducerConsumerTest test=new ProducerConsumerTest();

Execute the test using the runOnce() method of the TestFramework class:10.

 System.out.printf("Main: Starting the test\n");
 TestFramework.runOnce(test);
 System.out.printf("Main: The test has finished\n");

Testing Concurrent Applications

[476]

How it works...
In this recipe, you implemented a test for the LinkedTransferQueue class using the
MultithreadedTC library. You can implement a test in any concurrent application or class
using this library and its metronome. In the example, you implemented the classical
producer/consumer problem with two consumers and a producer. You wanted to test that
the first String object introduced in the buffer is consumed by the first consumer that
arrives at the buffer, and the second String object introduced in the buffer is consumed by
the second consumer that arrives at the buffer.

The MultithreadedTC library is based on the JUnit library, which is the most often used
library to implement unit tests in Java. To implement a basic test using the
MultithreadedTC library, you have to extend the MultithreadedTestCase class. This
class extends the junit.framework.AssertJUnit class that includes all the methods to
check the results of the test. It doesn't extend the junit.framework.TestCase class, so
you can't integrate MultithreadedTC tests with other JUnit tests.

Then, you can implement the following methods:

initialize(): The implementation of this method is optional. It's executed
when you start the test, so you can use it to initialize objects that are using the
test.
finish(): The implementation of this method is optional. It's executed when the
test has finished. You can use it to close or release resources used during the test
or to check the results of the test.
Methods that implement the test: These methods have the main logic of the test
you implement. They have to start with the thread keyword, followed by a
string, for example, thread1().

To control the order of execution of threads, you used the waitForTick() method. This
method receives an integer value as a parameter and puts the thread that is executing the
method to sleep until all the threads that are running in the test are blocked. When they are
blocked, the MultithreadedTC library resumes the threads that are blocked by a call to the
waitForTick() method.

The integer you pass as a parameter of the waitForTick() method is used to control the
order of execution. The metronome of the MultithreadedTC library has an internal
counter. When all the threads are blocked, the library increments this counter to the next
number specified in the waitForTick() calls that are blocked.

Testing Concurrent Applications

[477]

Internally, when the MultithreadedTC library has to execute a test, first it executes the
initialize() method. Then it creates a thread per method that starts with the thread
keyword (in your example, the methods thread1(), thread2(), and thread3()). When
all the threads have finished their execution, it executes the finish() method. To execute
the test, you used the runOnce() method of the TestFramework class.

There's more...
If the MultithreadedTC library detects that all the threads of the test are blocked except in
the waitForTick() method, the test is declared to be in a deadlock state and a
java.lang.IllegalStateException exception is thrown.

See also
The Analyzing concurrent code with FindBugs recipe in this chapter

Monitoring with JConsole
JConsole is a monitoring tool that follows the JMX specification that allows you to get
information about the execution of an application as the number of threads, memory use, or
class loading. It is included with the JDK and it can be used to monitor local or remote
applications. In this recipe, you will learn how to use this tool to monitor a simple
concurrent application.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Testing Concurrent Applications

[478]

How to do it...
Follow these steps to implement the example:

Create a class named Task and specify the Runnable interface. Implement the1.
run() method to write the message in the console during 100 seconds:

 public class Task implements Runnable {

 @Override
 public void run() {

 Date start, end;
 start = new Date();
 do {
 System.out.printf("%s: tick\n",
 Thread.currentThread().getName());
 end = new Date();
 } while (end.getTime() - start.getTime() < 100000);
 }
 }

Implement the Main class with the main() method. Create 10 Task objects to2.
create 10 threads. Start them and wait for their finalization using the join()
method:

 public class Main {
 public static void main(String[] args) {

 Thread[] threads = new Thread[10];

 for (int i=0; i<10; i++) {
 Task task=new Task();
 threads[i]=new Thread(task);
 threads[i].start();
 }

 for (int i=0; i<10; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }

Testing Concurrent Applications

[479]

Open a console window and execute the JConsole application. It's included in3.
the bin directory of the JDK-9 installation:

How it works...
In this recipe, we implemented a very simple example: running 10 threads for 100 seconds.
These are threads that write messages in the console.

When you execute JConsole, you will see a window that shows all the Java applications that
are running in your system. You can choose the one you want to monitor. The window will
be similar to the following one:

Testing Concurrent Applications

[480]

In this case, we select our sample app and click on the Connect button. Then, you will be
asked to establish an insecure connection with the application, with a dialog similar to the
following one:

Click on the Insecure connection button. JConsole will show you information about your
application using six tabs:

The Overview tab provides an overview of memory use, the number of threads
running in the application, the number of objects created, and CPU usage of the
application.
The Memory tab shows the amount of memory used by the application. It has a
combo where you can select the type of memory you want to monitor (heap, non-
heap, or pools).
The Threads tab shows you information about the number of threads in the
application and detailed information about each thread.
The Classes tab shows you information about the number of objects loaded in the
application.
The VW Summary tab provides a summary of the JVM running the application.
The MBeans tab shows you information about the managed beans of the
application.

Testing Concurrent Applications

[481]

The threads tab is similar to the following one:

Testing Concurrent Applications

[482]

It has two different parts. In the upper part, you have real-time information about the Peak
number of threads (with a red line) and the number of Live Threads (with a blue line). In
the lower part, we have a list of active threads. When you select one of these threads, you
will see detailed information about that thread, including its status and the actual stack
trace.

There's more...
You can use other applications to monitor applications that run Java. For example, you can
use VisualVM included with the JDK. You can obtain necessary information about
visualvm at h t t p s ://v i s u a l v m . g i t h u b . i o .

See also
The Testing concurrency code with MultithreadedTC recipe in this chapter

https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io
https://visualvm.github.io

10
Additional Information

In this chapter, we will cover the following topics:

Processing results for Runnable objects in the Executor framework
Processing uncontrolled exceptions in a ForkJoinPool class
Using a blocking thread-safe queue to communicate with producers and
consumers
Monitoring a Thread class
Monitoring a Semaphore class
Generating concurrent random numbers

Introduction
This chapter include recipes about the Executor framework and the fork/join framework,
concurrent data structures, monitoring concurrent objects, and generating concurrent
random numbers.

Processing results for Runnable objects in
the Executor framework
The Executor framework allows the execution of concurrent tasks that returns a result
using the Callable and Future interfaces. The traditional concurrent programming in
Java is based on Runnable objects, but this kind of object doesn't return a result.

Additional Information

[484]

In this recipe, you will learn how to adapt a Runnable object to simulate a Callable one,
allowing a concurrent task to return a result.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse,
or another IDE such as NetBeans, open it and create a new Java project.

How to do it...
Perform the following steps to implement the example:

Create a class named FileSearch and specify that it implements the Runnable1.
interface. This class implements the file search operation:

 public class FileSearch implements Runnable {

Declare two private String attributes: one named initPath, which will store2.
the initial folder for the search operation, and the other named end, which will
store the extension of the files this task is going to look for:

 private String initPath;
 private String end;

Declare a private List<String> attribute named results that will store the full3.
paths of the files that this task has found:

 private List<String> results;

Implement the constructor of the class that will initialize its attributes:4.

 public FileSearch(String initPath, String end) {
 this.initPath = initPath;
 this.end = end;
 results=new ArrayList<>();
 }

Additional Information

[485]

Implement the method getResults(). This method returns the list with the full5.
paths of the files that this task has found:

 public List<String> getResults() {
 return results;
 }

Implement the run() method. First of all, write a log message to the console6.
indicating that the task is starting its job:

 @Override
 public void run() {
 System.out.printf("%s: Starting\n",
 Thread.currentThread().getName());

Then, if the initPath attribute stores the name of an existing folder, call the7.
auxiliary method, directoryProcess(), to process its files and folders:

 File file = new File(initPath);
 if (file.isDirectory()) {
 directoryProcess(file);
 }

Implement the auxiliary diretoryProcess() method, which receives a File8.
object as a parameter. First of all, get the contents of the folder pointed to by the
parameter:

 private void directoryProcess(File file) {
 File list[] = file.listFiles();

With all the elements of the folder, if they are folders, make a recursive call to the9.
directoryProcess() method. If they are files, call the fileProcess()
auxiliary method:

 if (list != null) {
 for (int i = 0; i < list.length; i++) {
 if (list[i].isDirectory()) {
 directoryProcess(list[i]);
 } else {
 fileProcess(list[i]);
 }
 }
 }

Additional Information

[486]

Implement the auxiliary method fileProcess() that receives a File object10.
with the full path of a file. This method checks if the file extension is equal to the
one stored in the end attribute. If they are equal, add the full path of the file to the
list of results:

 private void fileProcess(File file) {
 if (file.getName().endsWith(end)) {
 results.add(file.getAbsolutePath());
 }
 }

Implement a class named Task that extends the FutureTask class. You'll use11.
List<String> as the parameterized type, as this will be the type of the data this
task will return:

 public class Task extends FutureTask<List<String>> {

Declare a private FileSearch attribute named fileSearch:12.

 private FileSearch fileSearch;

Implement the constructor of this class. This constructor has two13.
parameters: a Runnable object named runnable and a List<String> object
named result. In the constructor, you have to call the constructor of the parent
class, passing to it the same parameters. Then, store the runnable parameter,
casting it to a FileSearch object:

 public Task(Runnable runnable, List<String> result) {
 super(runnable, result);
 this.fileSearch=(FileSearch)runnable;
 }

Override the set() method of the FutureTask class:14.

 @Override
 protected void set(List<String> v) {

If the parameter that it receives is null, store in it the result of calling the15.
getResults() method of the FileSearch class:

 v=fileSearch.getResults();

Then, call the parent's method passing the received parameter as a parameter:16.

 super.set(v);

Additional Information

[487]

Finally, implement the main class of the example. Create a class named Main and17.
implement the main() method:

 public class Main {
 public static void main(String[] args) {

Create a ThreadPoolExecutor object named executor calling the18.
newCachedThreadPool() method of the Executors class:

 ExecutorService executor = Executors.newCachedThreadPool();

Create three FileSearch objects with a different initial folder for each one. You19.
are going to look for files with the log extension:

 FileSearch system=new FileSearch("C:\\Windows", "log");
 FileSearch apps=new FileSearch("C:\\Program Files","log");
 FileSearch documents=new FileSearch("C:\\Documents And
 Settings","log");

Create three Task objects to execute the search operations in the executor:20.

 Task systemTask=new Task(system,null);
 Task appsTask=new Task(apps,null);
 Task documentsTask=new Task(documents,null);

Send these objects to the executor object using the submit() method. This21.
version of the submit() method returns a Future<?> object, but you're going to
ignore it. You have a class that extends the FutureTask class to control the
execution of this task:

 executor.submit(systemTask);
 executor.submit(appsTask);
 executor.submit(documentsTask);

Call the shutdown() method of the executor object to indicate that it should22.
finish its execution when these three tasks have finished:

 executor.shutdown();

Additional Information

[488]

Call the awaitTermination() method of the executor object, indicating a long23.
waiting period to guarantee that this method won't return until the three tasks
have finished:

 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

For each task, write a message with the size of the result list using the get()24.
method of the Task object:

 try {
 System.out.printf("Main: System Task: Number of Results: %d\n",
 systemTask.get().size());
 System.out.printf("Main: App Task: Number of Results: %d\n",
 appsTask.get().size());
 System.out.printf("Main: Documents Task: Number of
 Results: %d\n",documentsTask.get().size());
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }

How it works...
The first point to take into consideration to understand this example is the difference
between the submit() method of the ThreadPoolExecutor class when you pass a
Callable object as the parameter and the submit() method when you pass a Runnable
object as the parameter. In the first case, you can use the Future object that this method
returns to control the status of the task and to get its result. But in the second case, when
you pass a Runnable object, you can only use the Future object that this method returns to
control the status of the task. If you call the get() method of that Future object, you will
get a null value.

To override this behavior, you have implemented the Task class. This class extends the
FutureTask class that is a class that implements the Future interface and the Runnable
interface. When you call a method that returns a Future object (for example, the submit()
method), you will normally get a FutureTask object. So you can use this class with two
objectives:

Additional Information

[489]

First, execute the Runnable object (in this case, a FileSearch object).1.
Second, return the results that this task generates. To achieve this, you have2.
overridden the set() method of the Task class. Internally, the FutureTask class
controls when the task it has to execute has finished. At that moment, it makes a
call to the set() method to establish the return value of the task. When you are
executing a Callable object, this call is made with the value returned by the
call() method, but when you are executing a Runnable object, this call is made
with the null value. You have changed this null value with the list of results
generated by the FileSearch object. The set() method will only have effect the
first time it is called. When it's called for the first time, it marks the task as
finished and the rest of the calls will not modify the return value of the task.

In the Main class, instead of sending the FutureTasks objects to the Callable or
Runnable objects, you can send it to the executor object. The main difference is that you use
the FutureTasks objects to get the results of the task instead of the Future object returned
by the submit() method.

In this case, you can still use the Future object returned by the submit() method to control
the status of the task but remember that, as this task executes a Runnable object (you have
initialized the FutureTasks objects with the FileSearch objects that implement the
Runnable interface), if you call the get() method in the Future objects, you will get the
null value.

There's more...
The FutureTask class provides a method not included in the Future interface. It's the
setException() method. This method receives a Throwable object as the parameter and
when the get() method is called, an ExecutionException exception will be thrown. This
call has an effect only if the set() method of the FutureTask object hasn't been called yet.

See also
The Executing tasks in an executor that returns a result recipe in Chapter 4, Thread
Executors
The Creating, running, and setting the characteristics of a thread recipe in Chapter 1,
Thread Management

Additional Information

[490]

Processing uncontrolled exceptions in a
ForkJoinPool class
The fork/join framework gives you the possibility to set a handler for the exceptions thrown
by the worker threads of a ForkJoinPool class. When you work with a ForkJoinPool
class, you should understand the difference between tasks and worker threads.

To work with the fork/join framework, you implement a task extending the ForkJoinTask
class or, usually, the RecursiveAction or RecursiveTask classes. The task implements
the actions you want to execute concurrently with the framework. They are executed in the
ForkJoinPool class by the worker threads. A worker thread will execute various tasks. In
the work-stealing algorithm implemented by the ForkJoinPool class, a worker thread
looks for a new task when the task it was executing finishes its execution or it is waiting for
the completion of another task.

In this recipe, you will learn how to process the exceptions thrown by a worker thread.
You'll have to implement two additional elements for it to work as described in the
following items:

The first element is an extended class of the ForkJoinWorkerThread class. This
class implements the worker thread of a ForkJoinPool class. You will
implement a basic child class that will throw an exception.
The second element is a factory to create worker threads of your own custom
type. The ForkJoinPool class uses a factory to create its worker threads. You
have to implement a class that implements the ForkJoinWorkerThreadFactory
interface and uses an object of that class in the constructor of the ForkJoinPool
class. The ForkJoinPool object created will use that factory to create worker
threads.

How to do it...
Perform the following steps to implement the example:

First, implement your own worker thread class. Create a class named1.
AlwaysThrowsExceptionWorkerThread that extends the
ForkJoinWorkerThread class:

 public class AlwaysThrowsExceptionWorkerThread extends
 ForkJoinWorkerThread {

Additional Information

[491]

Implement the constructor of the class. It receives a ForkJoinPool class as a2.
parameter and calls the constructor of its parent class:

 protected AlwaysThrowsExceptionWorkerThread(ForkJoinPool pool) {
 super(pool);
 }

Implement the onStart() method. This is a method of the3.
ForkJoinWorkerThread class and is executed when the worker thread begins
its execution. The implementation will throw a RuntimeException exception
upon being called:

 protected void onStart() {
 super.onStart();
 throw new RuntimeException("Exception from worker thread");
 }

Now, implement the factory needed to create your worker threads. Create a class4.
named AlwaysThrowsExceptionWorkerThreadFactory that implements the
ForkJoinWorkerThreadFactory interface:

 public class AlwaysThrowsExceptionWorkerThreadFactory implements
 ForkJoinWorkerThreadFactory {

Implement the newThread() method. It receives a ForkJoinPool object as the5.
parameter and returns a ForkJoinWorkerThread object. Create an
AlwaysThrowsExceptionWorkerThread object and return it:

 @Override
 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
 return new AlwaysThrowsExceptionWorkerThread(pool);
 }

Implement a class that will manage the exceptions thrown by worker threads.6.
Implement a class named Handler that implements the
UncaughtExceptionHandler interface:

 public class Handler implements UncaughtExceptionHandler {

Additional Information

[492]

Implement the uncaughtException() method. It receives as parameters a7.
Thread object and a Throwable object and is called by the ForkJoinPool class
each time a worker thread throws an exception. Write a message to the console
and exit the program:

 @Override
 public void uncaughtException(Thread t, Throwable e) {
 System.out.printf("Handler: Thread %s has thrown an
 Exception.\n",t.getName());
 System.out.printf("%s\n",e);
 System.exit(-1);
 }

Now, implement a task to be executed in the ForkJoinPool executor. Create a8.
class named OneSecondLongTask that extends the RecursiveAction class:

 public class OneSecondLongTask extends RecursiveAction{

Implement the compute() method. It simply puts the thread to sleep after one9.
second:

 @Override
 protected void compute() {
 System.out.printf("Task: Starting.\n");
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("Task: Finish.\n");
 }

Now, implement the main class of the example. Create a class named Main with a10.
main() method:

 public class Main {
 public static void main(String[] args) {

Create a new OneSecondLongTask object:11.

 OneSecondLongTask task=new OneSecondLongTask();

Create a new Handler object:12.

 Handler handler = new Handler();

Additional Information

[493]

Create a new AlwaysThrowsExceptionWorkerThreadFactory object:13.

 AlwaysThrowsExceptionWorkerThreadFactory factory=new
 AlwaysThrowsExceptionWorkerThreadFactory();

Create a new ForkJoinPool object. Pass as parameters the value 2, the factory14.
object, the handler object, and the value false:

 ForkJoinPool pool=new ForkJoinPool(2,factory,handler,false);

Execute the task in the pool using the execute() method:15.

 pool.execute(task);

Shut down the pool with the shutdown() method.16.

 pool.shutdown();

Wait for the finalization of the tasks using the awaitTermination() method:17.

 try {
 pool.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write a message indicating the end of the program:18.

 System.out.printf("Task: Finish.\n");

How it works...
In this recipe, you have implemented the following elements:

Your own worker thread class: You have implemented the
AlwaysThrowsExceptionWorkerThread class, which extends the
ForkJoinWorkerThread class, which implements the worker threads of a
fork/join pool. You have overridden the onStart() method. This method is
executed when a worker thread starts its execution. It simply throws an exception
RuntimeException upon being called.

Additional Information

[494]

Your own thread factory: A ForkJoinPool class creates its worker threads using
a factory. As you want to create a ForkJoinPool object that uses the
AlwaysThrowsExceptionWorkerThreadFactory worker threads, you have
implemented a factory that creates them. To implement a worker thread factory,
you need to implement the ForkJoinWorkerThreadFactory interface. This
interface only has a method named newThread(), which creates the worker
thread and returns it to the ForkJoinPool class.
A task class: The worker threads execute the tasks you send to the
ForkJoinPool executor. As you want to start the execution of a worker thread,
you need to send a task to the ForkJoinPool executor. The task sleeps for one
second, but, as the AlwaysThrowsExceptionWorkerThread thread throws an
exception, it will never be executed.
A handler class for uncaught exceptions: When a worker thread throws an
exception, the ForkJoinPool class checks whether an exception handler has
been registered. You have implemented the Handler class for this purpose. This
handler implements the UncaughtExceptionHandler interface, which only has
one method, that is, the uncaughtException() method. This method receives
as a parameter the thread that throws the exception and the exception it throws.

In the Main class, you have put together all these elements. You have passed to the
constructor of the ForkJoinPool class four parameters: the parallelism level, the number
of active worker threads you want to have, the worker thread factory you want to use in the
ForkJoinPool object, the handler you want to use for the uncaught exceptions of the
worker threads, and the async mode.

The following screenshot shows the result of an execution of this example:

When you execute the program, a worker thread throws a RuntimeException exception.
The ForkJoinPool class hands it over to your handler, which in turn writes the message to
the console and exits the program. The task doesn't start its execution.

Additional Information

[495]

There's more...
You can test two interesting variants of this example:

If you comment the following line in the Handler class and execute the program,
you will see a lot of messages written in the console. The ForkJoinPool class
tries to start a worker thread to execute the task and, as it can't because they
always throw an exception, it tries it over and over again:

 System.exit(-1);

Something like that occurs if you change the third parameter (the exception
handler) of the ForkJoinPool class constructor for the null value. In this case,
you will see how the JVM writes the exceptions in the console.

Take this into account when you implement your own worker threads that could
throw exceptions.

See also
The Creating a fork/join pool recipe in Chapter 5, Fork/Join Framework
The Customizing tasks running in the fork/join framework and Implementing the
ThreadFactory interface to generate custom threads for the fork/join framework recipes in
Chapter 8, Customizing Concurrency Classes

Using a blocking thread-safe queue for
communicating with producers and
consumers
The producer/consumer problem is a classical problem in concurrent programming. You
have one or more producers of data that store this data in a buffer. You also have one or
more consumers of data that take the data from the same buffer. Both producers and
consumers share the same buffer, so you have to control access to it to avoid data
inconsistency problems. When the buffer is empty, the consumers wait until the buffer has
elements. If the buffer is full, the producers wait until the buffer has empty space.

Additional Information

[496]

This problem has been implemented using almost all the techniques and synchronization
mechanisms developed in Java and in other languages (refer to the See Also section to get
more information). One advantage of this problem is that it can be extrapolated to a lot of
real-world situations.

The Java 7 Concurrency API introduced a data structure oriented to be used in these kinds
of problem. It's the LinkedTransferQueue class, and its main characteristics are as
follows:

It's a blocking data structure. The thread is blocked until the operation can be
made, provided that the operations are performed immediately.
Its size has no limit. You can insert as many elements as you want.
It's a parameterized class. You have to indicate the class of the elements you're
going to store in the list.

In this recipe, you will learn how to use the LinkedTransferQueue class running a lot of
producer and consumer tasks that share a buffer of strings.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or any other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Perform the following steps to implement the example:

Create a class named Producer and specify that it implements the Runnable1.
interface:

 public class Producer implements Runnable {

Declare a private LinkedTransferQueue attribute parameterized with the2.
String class named buffer:

 private LinkedTransferQueue<String> buffer;

Additional Information

[497]

Declare a private String attribute named name to store the name of the3.
producer:

 private String name;

Implement the constructor of the class to initialize its attributes:4.

 public Producer(String name, LinkedTransferQueue<String> buffer){
 this.name=name;
 this.buffer=buffer;
 }

Implement the run() method. Store 10,000 strings in the buffer using the put()5.
method of the buffer object and write a message to the console indicating the end
of the method:

 @Override
 public void run() {
 for (int i=0; i<10000; i++) {
 buffer.put(name+": Element "+i);
 }
 System.out.printf("Producer: %s: Producer done\n",name);
 }

Implement a class named Consumer and specify that it implements the Runnable6.
interface:

 public class Consumer implements Runnable {

Declare a private LinkedTransferQueue attribute parameterized with the7.
String class named buffer:

 private LinkedTransferQueue<String> buffer;

Declare a private String attribute named name to store the name of the8.
consumer:

 private String name;

Implement the constructor of the class to initialize its attributes:9.

 public Consumer(String name, LinkedTransferQueue<String> buffer){
 this.name=name;
 this.buffer=buffer;
 }

Additional Information

[498]

Implement the run() method. Take out 10,000 strings from the buffer using the10.
take() method of the buffer object and write a message to the console indicating
the end of the method:

 @Override
 public void run() {
 for (int i=0; i<10000; i++){
 try {
 buffer.take();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.printf("Consumer: %s: Consumer done\n",name);
 }

Implement the main class of the example. Create a class named Main and add to11.
it the main() method:

 public class Main {
 public static void main(String[] args) {

Declare a constant named THREADS and assign to it the value 100. Create a12.
LinkedTransferQueue object with the String class object and call it buffer:

 final int THREADS=100;
 LinkedTransferQueue<String> buffer=new LinkedTransferQueue<>();

Create an array of 100 Thread objects to execute 100 producer tasks:13.

 Thread producerThreads[]=new Thread[THREADS];

Create an array of 100 Thread objects to execute 100 consumer tasks:14.

 Thread consumerThreads[]=new Thread[THREADS];

Create and launch 100 Consumer objects and store the threads in the array15.
created earlier:

 for (int i=0; i<THREADS; i++){
 Consumer consumer=new Consumer("Consumer "+i,buffer);
 consumerThreads[i]=new Thread(consumer);
 consumerThreads[i].start();
 }

Additional Information

[499]

Create and launch 100 Producer objects and store the threads in the array16.
created earlier:

 for (int i=0; i<THREADS; i++) {
 Producer producer=new Producer("Producer: "+ i , buffer);
 producerThreads[i]=new Thread(producer);
 producerThreads[i].start();
 }

Wait for the finalization of the threads using the join() method:17.

 for (int i=0; i<THREADS; i++){
 try {
 producerThreads[i].join();
 consumerThreads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Write a message to the console with the size of the buffer:18.

 System.out.printf("Main: Size of the buffer: %d\n",
 buffer.size());
 System.out.printf("Main: End of the example\n");

How it works...
In this recipe, you have used the LinkedTransferQueue class parameterized with the
String class to implement the producer/consumer problem. This LinkedTransferQueue
class is used as a buffer to share the data between producers and consumers.

You have implemented a Producer class that adds strings to the buffer using the put()
method. You have executed 100 producers and every producer inserts in the buffer 10,000
strings, so you insert 1,000,000 strings in the buffer. The put() method adds the element at
the end of the buffer.

You also have implemented a Consumer class, which gets a string from the buffer using the
take() method. This method returns and deletes the first element of the buffer. If the
buffer is empty, the method blocks the thread that makes the call until there are strings in
the buffer to consume. You have executed 100 consumers, and every consumer gets 10,000
strings from the buffer.

Additional Information

[500]

In the example, first, you have launched the consumers and then the producers, so, as the
buffer is empty, all the consumers will be blocked until the producers begin their execution
and stores strings in the list.

The following screenshot shows part of the output of an execution of this example:

To write the number of elements of the buffer, you have used the size() method. You
have to take into account that this method can return a value that is not real, if you use them
when there are threads adding or deleting data in the list. The method has to traverse the
entire list to count the elements and the contents of the list can change for this operation.
Only if you use them when there aren't any threads modifying the list, you will have the
guarantee that the returned result is correct.

There's more...
The LinkedTransferQueue class provides other useful methods. The following are some
of them:

getWaitingConsumerCount(): This method returns the number of consumers
that are blocked in the take() method or poll (long timeout, TimeUnit
unit) because the LinkedTransferQueue object is empty.
hasWaitingConsumer(): This method returns true if the
LinkedTransferQueue object has consumers waiting, or false otherwise.
offer(E e): This method adds the element passed as a parameter at the end of
the LinkedTransferQueue object and returns the true value. E represents the
class used to parameterize the declaration of the LinkedTransferQueue class or
a subclass of it.

Additional Information

[501]

peek(): This method returns the first element in the LinkedTransferQueue
object, but it doesn't delete it from the list. If the queue is empty, the method
returns the null value.
poll(long timeout, TimeUnit unit): This version of the poll method, if the
LinkedTransferQueue buffer is empty, waits for it for a specified period of
time. If the specified period of time passes and the buffer is still empty, the
method returns a null value. The TimeUnit class is an enumeration with the
following constants-DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,
NANOSECONDS, and SECONDS.

See also
The Using conditions in synchronized code recipe in Chapter 2, Basic Thread
Synchronization
The Exchanging data between concurrent tasks recipe in Chapter 3, Thread
Synchronization Utilities

Monitoring a Thread class
Threads are the most basic element of the Java Concurrency API. Every Java program has at
least one thread that executes the main() method, which, in turn, starts the execution of the
application. When you launch a new Thread class, it's executed in parallel with the other
threads of the application and with the other processes on an operating system. There is a
critical difference between process and thread. A process is an instance of an application
that is running (for example, you're editing a document in a text processor). This process
has one or more threads that execute the tasks that make the process. You can be running
more than one process of the same application, for example, two instances of the text
processor. Threads inside a process share the memory while processes of the same OS don't.

All the kinds of Java tasks that you can execute (Runnable, Callable, or fork/join tasks)
are executed in threads, and all the advanced Java concurrency mechanisms, such as the
Executor framework and the fork/join framework, are based on pools of threads.

In this recipe, you will learn what information you can obtain about the status of a Thread
class and how to obtain it.

Additional Information

[502]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or any other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Perform the following steps to implement the example:

Create a class named Task that implements the Runnable interface:1.

 public class Task implements Runnable {

Implement the run() method of the task:2.

 @Override
 public void run() {

Create a loop with 100 steps:3.

 for (int i=0; i<100; i++) {

In each step, put the thread to sleep for 100 milliseconds:4.

 try {
 TimeUnit.MILLISECONDS.sleep(100);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Write a message in the console with the name of the thread and the step number:5.

 System.out.printf("%s: %d\n",Thread.currentThread()
 .getName(),i);
 }
 }
 }

Create the main class of the example. Create a class named Main with a main()6.
method:

 public class Main {
 public static void main(String[] args) throws Exception{

Additional Information

[503]

Create a Task object named task:7.

 Task task = new Task();

Create a Thread array with five elements:8.

 Thread threads[] = new Thread[5];

Create and start five threads to execute the Task object created earlier:9.

 for (int i = 0; i < 5; i++) {
 threads[i] = new Thread(task);
 threads[i].setPriority(i + 1);
 threads[i].start();
 }

Create a loop with ten steps to write information about the threads launched10.
before. Inside it, create another loop with five steps:

 for (int j = 0; j < 10; j++) {
 System.out.printf("Main: Logging threads\n");
 for (int i = 0; i < threads.length; i++) {

For each thread, write its name, its status, its group, and the length of its stack11.
trace in the console:

 System.out.printf("**********************\n");
 System.out.printf("Main: %d: Id: %d Name: %s: Priority: %d\n",i,
 threads[i].getId(),threads[i].getName(),
 threads[i].getPriority());
 System.out.printf("Main: Status: %s\n",threads[i].getState());
 System.out.printf("Main: Thread Group: %s\n",
 threads[i].getThreadGroup());
 System.out.printf("Main: Stack Trace: \n");

Write a loop to write the stack trace of the thread:12.

 for (int t=0; t<threads[i].getStackTrace().length; t++) {
 System.out.printf("Main: %s\n",threads[i].getStackTrace()
 [t]);
 }
 System.out.printf("**********************\n");
 }

Additional Information

[504]

Put the thread to sleep for one second and close the loop and the class:13.

 TimeUnit.SECONDS.sleep(1);
 }
 }
 }

How it works...
In this recipe, you have used the following methods to get information about a Thread
class:

getId(): This method returns the ID of a thread. It's a unique long number and
it can't be changed.
getName(): This method returns the name of a thread. If you don't establish the
name of the thread, Java gives it a default name.
getPriority(): This method returns the priority of execution of a thread.
Threads with higher priority are executed in preference to threads with lower
priority. It's an int value that has a value between the MIN_PRIORITY and
MAX_PRIORITY constants of the Thread class. By default, threads are created
with the same priority that specified by the constant NORM_PRIORITY of the
Thread class.
getState(): This method returns the status of a thread. It's a Thread.State
object. The Thread.State enumeration has all the possible states of a thread.
getThreadGroup(): This method returns the ThreadGroup object of a thread.
By default, threads belong to the same thread group, but you can establish a
different one in the constructor of a thread.
getStackTrace(): This method returns an array of StackTraceElement
objects. Each of these objects represent a call to a method that begins with the
run() method of a thread and includes all the methods that have been called
until the actual execution point. When a new method is called, a new stack trace
element is added to the array. When a method finishes its execution, its stack
trace element is removed from the array.

Additional Information

[505]

There's more...
The Thread class includes other methods that provide information about it that can be
useful. These methods are as follows:

activeCount(): This method returns the number of active threads in a group of
threads.
dumpStack(): This method prints the stack trace of a thread to the standard
error output.

See also
The Creating, running, and setting the characteristics of a thread recipe in Chapter 1,
Thread Management
The Using a ThreadFactory interface in an Executor framework and Implementing a
ThreadFactory interface to generate custom threads for the fork/join framework recipes in
Chapter 8, Customizing Concurrency Classes

Monitoring a Semaphore class
A semaphore is a counter that protects the access to one or more shared resources.

The concept of semaphore was introduced by Edsgar Dijkstra in 1965 and
was used for the first time in the THEOS operating system.

When a thread wants to use shared resources, it must acquire a semaphore. If the internal
counter of the semaphore is greater than 0, the semaphore decrements the counter and
allows the access to the shared resource. If the counter of the semaphore is 0, the semaphore
blocks the thread until the counter is greater than 0. When the thread has finished using the
shared resource, it must release the semaphore. That operation increases the internal
counter of the semaphore.

In Java, semaphores are implemented in the Semaphore class.

In this recipe, you will learn what information you can obtain about the status of a
semaphore and how to obtain it.

Additional Information

[506]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or any other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Perform the following steps to implement the example:

Create a class named Task that implements the Runnable interface:1.

 public class Task implements Runnable {

Declare a private Semaphore attribute named semaphore:2.

 private final Semaphore semaphore;

Implement the constructor of the class to initialize its attribute:3.

 public Task(Semaphore semaphore){
 this.semaphore=semaphore;
 }

Implement the run() method. First, acquire permit for the semaphore attribute4.
writing a message in the console to indicate that circumstance:

 @Override
 public void run() {
 try {
 semaphore.acquire();
 System.out.printf("%s: Get the semaphore.\n",
 Thread.currentThread().getName());

Then, put the thread to sleep for two seconds using the sleep() method. Finally,5.
release the permit and write a message in the console to indicate that
circumstance:

 TimeUnit.SECONDS.sleep(2);
 System.out.println(Thread.currentThread().getName()+":
 Release the semaphore.");
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 semaphore.release();
 }

Additional Information

[507]

Implement the main class of the example. Create a class named Main with a6.
main() method:

 public class Main {
 public static void main(String[] args) throws Exception {

Create a Semaphore object named semaphore with three permits:7.

 Semaphore semaphore=new Semaphore(3);

Create an array to store 10 Thread objects:8.

 Thread threads[]=new Thread[10];

Create and start 10 Thread objects to execute 10 Task objects. After starting a9.
thread, put the thread to sleep for 200 milliseconds and call the showLog()
method to write information about the Semaphore class:

 for (int i=0; i<threads.length; i++) {
 Task task=new Task(semaphore);
 threads[i]=new Thread(task);
 threads[i].start();

 TimeUnit.MILLISECONDS.sleep(200);

 showLog(semaphore);
 }

Implement a loop with five steps to call the showLog() method to write10.
information about the semaphore and put the thread to sleep for 1 second:

 for (int i=0; i<5; i++) {
 showLog(semaphore);
 TimeUnit.SECONDS.sleep(1);
 }
 }

Implement the showLog() method. It receives a Semaphore object as parameter.11.
Write in the console information about the available permits, queued threads,
and permits of the semaphore:

 private static void showLog(Semaphore semaphore) {
 System.out.printf("********************\n");
 System.out.printf("Main: Semaphore Log\n");
 System.out.printf("Main: Semaphore: Avalaible Permits: %d\n",
 semaphore.availablePermits());

Additional Information

[508]

 System.out.printf("Main: Semaphore: Queued Threads: %s\n",
 semaphore.hasQueuedThreads());
 System.out.printf("Main: Semaphore: Queue Length: %d\n",
 semaphore.getQueueLength());
 System.out.printf("Main: Semaphore: Fairness: %s\n",
 semaphore.isFair());
 System.out.printf("********************\n");
 }

How it works...
In this recipe, you have used the following methods to get information about a semaphore:

availablePermits(): This method returns an int value, which is the number
of available resources of a semaphore.
hasQueuedThreads(): This method returns a Boolean value indicating if there
are threads waiting for a resource protected by a semaphore.
getQueueLength(): This method returns the number of threads that are waiting
for a resource protected by a semaphore.
isFair(): This method returns a Boolean value indicating if a semaphore has
the fair mode activated. When the fair mode is active (this method returns the
true value), and the lock has to select another thread to give to it the access to the
shared resource, it selects the longest-waiting thread. If the fair mode is inactive
(this method returns the false value), there is no guarantee about the order in
which threads are selected to get the access to the shared resource.

See also
The Controlling concurrent access to one or more copies of a resource recipes in
Chapter 3, Thread Synchronization Utilities

Additional Information

[509]

Generating concurrent random numbers
The Java concurrency API provides a specific class to generate pseudorandom numbers in
concurrent applications. It's the ThreadLocalRandom class and it's new in Java 7 version. It
works as the thread's local variables. Every thread that wants to generate random numbers
has a different generator, but all of them are managed from the same class, in a transparent
way to the programmer. With this mechanism, you will get a better performance than using
a shared Random object to generate the random numbers of all the threads.

In this recipe, you will learn how to use the ThreadLocalRandom class to generate random
numbers in a concurrent application.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or any other IDE such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named TaskLocalRandom and specify that it implements the1.
Runnable interface:

 public class TaskLocalRandom implements Runnable {

Implement the run() method. Get the name of the thread that is executing this2.
task and write 10 random integer numbers to the console using the nextInt()
method:

 @Override
 public void run() {
 String name=Thread.currentThread().getName();
 for (int i=0; i<10; i++){
 System.out.printf("%s: %d\n",name,
 ThreadLocalRandom.current().nextInt(10));
 }
 }

Additional Information

[510]

Implement the main class of the example by creating a class named Main and add3.
the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create an array for three Thread objects:4.

 Thread threads[]=new Thread[3];

Create and launch three TaskLocalRandom tasks. Store the threads in the array5.
created earlier:

 for (int i=0; i<3; i++) {
 TaskLocalRandom task=new TaskLocalRandom();
 threads[i]=new Thread(task);
 threads[i].start();
 }

How it works...
The key of this example is in the TaskLocalRandom class. In the constructor of the class, we
make a call to the current() method of the ThreadLocalRandom class. This is a static
method that returns the ThreadLocalRandom object associated with the current thread, so
you can generate random numbers using that object. If the thread that makes the call does
not have any object associated yet, the class creates a new one. In this case, you use this
method to initialize the random generator associated with this task, so it will be created in
the next call to the method.

In the run() method of the TaskLocalRandom class, make a call to the current() method
to get the random generator associated with this thread, also you make a call to the
nextInt() method passing the number 10 as the parameter. This method will return a
pseudo random number between 0 and 10. Each task generates 10 random numbers.

Additional Information

[511]

There's more...
The ThreadLocalRandom class also provides methods to generate long, float, and double
numbers, and Boolean values. There are methods that allow you to provide a number as a
parameter to generate random numbers between zero and that number. The other methods
allow you to provide two parameters to generate random numbers between these numbers.

See also
The Using local thread variables recipe in Chapter 1, Thread management

11
Concurrent Programming

Design
In this chapter, we will cover the following topics:

Using immutable objects when possible
Avoiding deadlocks by ordering locks
Using atomic variables instead of synchronization
Holding locks for as short time as possible
Delegating the management of threads to executors
Using concurrent data structures instead of programming yourselves
Taking precautions using lazy initialization
Using the fork/join framework instead of executors
Avoiding the use of blocking operations inside a lock
Avoiding the use of deprecated methods
Using executors instead of thread groups
Using streams to process big data sets
Other tips and tricks

Introduction
Implementing a concurrent application is a difficult task. You have more than one thread in
an execution at a time and all of them share resources, such as files, memory, objects, and so
on. You have to be very careful with the design decisions you take. A bad decision can
affect your program in a way that it would lead to poor performance or simply provoke
data inconsistency situations.

Concurrent Programming Design

[513]

In this chapter, I've included some suggestions to help you take correct design decisions,
which would make your concurrent application better.

Using immutable objects when possible
When you develop an application in Java using object-oriented programming, you create
some classes formed by attributes and methods. The methods of a class determine the
operations that you can do with the class. Attributes store the data that defines the object.
Normally, in each class, you implement some methods to establish the value of the
attributes. Also, objects change as the application runs, and you use those methods to
change the value of their attributes.

When you develop a concurrent application, you have to pay special attention to the objects
shared by more than one thread. You must use a synchronization mechanism to protect
access to such objects. If you don't use it, you may have data inconsistency problems in your
application.

There are special kinds of objects that you can implement when you work with concurrent
applications. They are called immutable objects; their main characteristic is that they can't
be modified after they are created. If you need to change an immutable object, you must
create a new one instead of changing the values of the attributes of the object.

This mechanism presents the following advantages when you use them in concurrent
applications:

These objects cannot be modified by any thread once they are created, so you
won't need to use any synchronization mechanism to protect access to their
attributes.
You won't have any data inconsistency problems. As the attributes of these
objects cannot be modified, you will always have access to a coherent copy of the
data.

The only drawback of this approach is the overhead: creating new objects instead of
modifying existing ones.

Java provides some immutable classes, such as the String class. When you have a String
object and you try to assign a new value to it, you are creating a new String object instead
of modifying the old value of the object. For example, check out the following code:

 String var = "hello";
 var = "new";

Concurrent Programming Design

[514]

In the second line, JVM creates a new String object.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement an immutable class:

Mark the class as final. It should not be extended by another class.1.
All the attributes must be final and private. You can assign a value to an2.
attribute only once.
Don't provide methods that can assign a value to an attribute. Attributes must be3.
initialized in the constructor of the class.

If any field value object is mutable (for example, java.util.Date), always4.
return a defensive copy in the getter field.
Don't leak the this reference from the immutable class constructor (for example,5.
the following code that leaks the this reference before the constructor is
complete):

 public final NotSoImmutable implements Listener {
 private final int x;
 public NotSoImmutable(int x, Observable o) {
 this.x = x;
 o.registerListener(this);
 }
 }

How it works...
If you want to implement a class that stores the first and last name of a person, you would
normally implement something like this:

 public class PersonMutable {
 private String firstName;
 private String lastName;
 private Date birthDate;

Concurrent Programming Design

[515]

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public Date getBirthDate() {
 return birthDate;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 }

You can convert this class into an immutable class by following the rules explained earlier.
The following is the result:

 public final class PersonImmutable {

 final private String firstName;
 final private String lastName;
 final private Date birthDate;

 public PersonImmutable (String firstName, String lastName,
 String address, Date birthDate) {
 this.firstName=firstName;
 this.lastName=lastName;
 this.birthDate=birthDate;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

Concurrent Programming Design

[516]

 public Date getBirthDate() {
 return new Date(birthDate.getTime());
 }

 }

Essentially, you followed the basic principles of an immutable class, which are as follows:

The class is marked as final.
The attributes are marked as final and private.
The value of the attributes can only be established in the constructor of the class.
Its methods return the value of an attribute, but they don't modify them.
For mutable attributes (the birthDate attribute in our case), we return a
defensive copy of the get() method by creating a new object.

There's more...
Immutable objects can't always be used. Analyze each class of your application to decide
whether you can implement them as immutable objects or not. If you can't implement a
class as an immutable class and its objects are shared by more than one thread, you must
use a synchronization mechanism to protect access to the attributes of the class.

See also
The Using atomic variables instead of synchronization recipe in this chapter

Avoiding deadlocks by ordering locks
When you need to acquire more than one lock in the methods of your application, you must
be very careful with the order in which you get control of your locks. A bad choice can lead
to a deadlock situation.

In this recipe, you will implement an example of a deadlock situation, then learn how to
solve it.

Concurrent Programming Design

[517]

How to do it...
Follow these steps to implement the example:

Create a class named BadLocks with two methods, named operation1() and1.
operation2():

 public class BadLocks {

 private Lock lock1, lock2;

 public BadLocks(Lock lock1, Lock lock2) {
 this.lock1=lock1;
 this.lock2=lock2;
 }

 public void operation1(){
 lock1.lock();
 lock2.lock();

 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock2.unlock();
 lock1.unlock();
 }
 }

 public void operation2(){
 lock2.lock();
 lock1.lock();

 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 lock1.unlock();
 lock2.unlock();
 }
 }

 }

Concurrent Programming Design

[518]

Let's analyze the preceding code. If a thread calls the operation1() method and2.
another thread calls the operation2() method, you can have a deadlock. If both
operation1() and operation2() execute their respective first sentences at the
same time, you will have the operation1() method waiting to get control of
lock2 and the operation2() method waiting to get control of lock1. Now you
have a deadlock situation.
To solve this situation, you can follow this rule:3.

If you have to get control of more than one lock in different operations,
try to lock them in the same order in all methods.
Then, release them in inverse order and encapsulate the locks and their
unlocks in a single class. This is so that you don't have
synchronization-related code distributed throughout the code.

How it works...
Using this rule, you will avoid deadlock situations. For example, in the case presented
earlier, you can change operation2() to first get lock1 and then lock2. Now if both
operation1() and operation2() execute their respective first sentences, one of them will
be blocked waiting for lock1 and the other will get lock1 and lock2 and they will do their
operations. After this, the blocked thread will get the lock1 and lock2 locks and it will do
its operation.

There's more...
You can find a situation where a requirement prevents you from getting the locks in the
same order in all the operations. In this situation, you can use the tryLock() method of the
Lock class. This method returns a Boolean value to indicate whether you have control of
the lock. You can try to get all the locks that you need to do the operation using the
tryLock() method. If you can't get control of one of the locks, you must release all the
locks that you may have had and start the operation again.

See also
The Holding locks for as short a time period as possible recipe in this chapter

Concurrent Programming Design

[519]

Using atomic variables instead of
synchronization
When you have to share data between multiple threads, you have to protect access to that
piece of data using a synchronization mechanism. You can use the synchronized keyword
in the declaration of the method that modifies the data so that only one thread can modify
data at a time. Another possibility is the utilization of a Lock class to create a critical section
with instructions that modify data.

Since version 5, Java includes atomic variables. When a thread is doing an operation with an
atomic variable, the implementation of the class includes a mechanism to check that the
operation is done in one step. Basically, the operation gets the value of the variable, changes
the value in a local variable, and then tries to change the old value with the new one. If the
old value is still the same, it does the change. If not, the method begins the operation again.
Java provides the following types of atomic variables:

AtomicBoolean

AtomicInteger

AtomicLong

AtomicReference

In some cases, Java's atomic variables offer a better performance than solutions based on
synchronization mechanisms (specially when we care about atomicity within each separate
variable). Some classes of the java.util.concurrent package use atomic variables
instead of synchronization. In this recipe, you will develop an example that shows how an
atomic attribute provides better performance than synchronization.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Concurrent Programming Design

[520]

How to do it...
Follow these steps to implement the example:

Create a class named TaskAtomic and specify that it implements the Runnable1.
interface:

 public class TaskAtomic implements Runnable {

Declare a private AtomicInteger attribute named number:2.

 private final AtomicInteger number;

Implement the constructor of the class to initialize its attributes:3.

 public TaskAtomic () {
 this.number=new AtomicInteger();
 }

Implement the run() method. In a loop with 1,000,000 steps, assign the number4.
of steps to the atomic attribute as a value, using the set() method:

 @Override
 public void run() {
 for (int i=0; i<1000000; i++) {
 number.set(i);
 }
 }

Create a class named TaskLock and specify that it implements the Runnable5.
interface:

 public class TaskLock implements Runnable {

Declare a private int attribute named number and a private Lock attribute6.
named lock:

 private Lock lock;
 private int number;

Implement the constructor of the class to initialize its attributes:7.

 public TaskLock() {
 this.lock=new ReentrantLock();
 }

Concurrent Programming Design

[521]

Implement the run() method. In a loop with 1,000,000 steps, assign the number8.
of the steps to the integer attribute. You have to get the lock before the
assignment and release it after:

 @Override
 public void run() {
 for (int i=0; i<1000000; i++) {
 lock.lock();
 number=i;
 lock.unlock();
 }

 }

Implement the main class of the example by creating a class named Main and9.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a TaskAtomic object named atomicTask:10.

 TaskAtomic atomicTask=new TaskAtomic();

Create a TaskLock object named lockTask:11.

 TaskLock lockTask=new TaskLock();

Declare the number of threads and create an array of Thread objects to store the12.
threads:

 int numberThreads=50;
 Thread threads[]=new Thread[numberThreads];
 Date begin, end;

Launch the specified number of threads to execute the TaskLock object.13.
Calculate and write its execution time in the console:

 begin=new Date();
 for (int i=0; i<numberThreads; i++) {
 threads[i]=new Thread(lockTask);
 threads[i].start();
 }

Concurrent Programming Design

[522]

 for (int i=0; i<numberThreads; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 end=new Date();

 System.out.printf("Main: Lock results: %d\n",
 (end.getTime()-begin.getTime()));

Launch the specified number of threads to execute the TaskAtomic object.14.
Calculate and write its execution time in the console:

 begin=new Date();
 for (int i=0; i<numberThreads; i++) {
 threads[i]=new Thread(atomicTask);
 threads[i].start();
 }

 for (int i=0; i<numberThreads; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 end=new Date();

 System.out.printf("Main: Atomic results: %d\n",
 (end.getTime()-begin.getTime()));

How it works...
When you execute the example, you will see how the execution time of the TaskAtomic
tasks that use atomic variables are always better than the TaskLock tasks that use locks.
You will obtain a similar result if you use the synchronized keyword instead of locks.

The conclusion of this recipe is that utilization of atomic variables will give you better
performance than other synchronization methods. If you don't have an atomic type that fits
your needs, maybe you can try to implement your own atomic type.

Concurrent Programming Design

[523]

See also
The Implementing your own atomic object recipe in Chapter 8, Customizing
Concurrency Classes

Holding locks for as short time as possible
Locks, just like other synchronization mechanisms, allow the definition of a critical section
that only one thread can execute at a time. You must be very careful to define the critical
section. It must only include those instructions that really need mutual exclusion. This is
especially true if the critical section includes long operations. If the critical section includes
lengthy operations that do not use shared resources, application performance will be worse
than it could be.

In this recipe, you will implement an example to see the difference in the performance of a
task with a long operation inside the critical section and a task with a long operation
outside the critical section.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Operations:1.

 public class Operations {

Implement a public static method named readData(). It puts the current2.
thread to sleep for 500 milliseconds:

 public static void readData(){
 try {
 TimeUnit.MILLISECONDS.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();

Concurrent Programming Design

[524]

 }
 }

Implement a public static method named writeData(). It puts the current3.
thread to sleep for 500 milliseconds:

 public static void writeData(){
 try {
 TimeUnit.MILLISECONDS.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Implement a public static method named processData(). It puts the4.
current thread to sleep for 2,000 milliseconds:

 public static void processData(){
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Implement a class named Task1 and specify that it implements the Runnable5.
interface:

 public class Task1 implements Runnable {

Declare a private Lock attribute named lock:6.

 private final Lock lock;

Implement the constructor of the class to initialize its attributes:7.

 public Task1 (Lock lock) {
 this.lock=lock;
 }

Implement the run() method. Acquire the lock, call the three operations of the8.
Operations class, and release the lock:

 @Override
 public void run() {
 lock.lock();
 Operations.readData();

Concurrent Programming Design

[525]

 Operations.processData();
 Operations.writeData();
 lock.unlock();
 }

Implement a class named Task2 and specify that it implements the Runnable9.
interface:

 public class Task2 implements Runnable {

Declare a private Lock attribute named lock:10.

 private final Lock lock;

Implement the constructor of the class to initialize its attributes:11.

 public Task2 (Lock lock) {
 this.lock=lock;
 }

Implement the run() method. Acquire the lock, call the readData() operation,12.
and release the lock. Then, call the processData() method, acquire the lock, call
the writeData() operation, and release the lock:

 @Override
 public void run() {
 lock.lock();
 Operations.readData();
 lock.unlock();
 Operations.processData();
 lock.lock();
 Operations.writeData();
 lock.unlock();
 }

Implement the main class of the example by creating a class named Main and13.
adding the main() method to it:

 public class Main {

 public static void main(String[] args) {

Concurrent Programming Design

[526]

Create a Lock object named lock, a Task1 object named task1, a Task2 object14.
named task2, and an array of 10 threads:

 Lock lock=new ReentrantLock();
 Task1 task1=new Task1(lock);
 Task2 task2=new Task2(lock);
 Thread threads[]=new Thread[10];

Launch 10 threads to execute the first task by controlling its execution time:15.

 Date begin, end;

 begin=new Date();
 for (int i=0; i<threads.length; i++) {
 threads[i]=new Thread(task1);
 threads[i].start();
 }

 for (int i=0; i<threads.length; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 end=new Date();
 System.out.printf("Main: First Approach: %d\n",
 (end.getTime()-begin.getTime()));

Launch 10 threads to execute the second task by controlling its execution time:16.

 begin=new Date();
 for (int i=0; i<threads.length; i++) {
 threads[i]=new Thread(task2);
 threads[i].start();
 }

 for (int i=0; i<threads.length; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 end=new Date();
 System.out.printf("Main: Second Approach: %d\n",
 (end.getTime()-begin.getTime()));

Concurrent Programming Design

[527]

How it works...
If you execute the example, you will see a big difference between the execution time of the
two approaches. The task that has all the operations inside the critical section takes longer
than the other task.

When you need to implement a block of code protected by a lock, analyze it carefully to
only include necessary instructions. Split the method into various critical sections, and use
more than one lock if necessary to get the best performance of your application.

See also
The Avoiding deadlocks by ordering locks recipe in this chapter

Delegating the management of threads to
executors
Before Java 5, the Java Concurrency API, when we wanted to implement a concurrent
application, we had to manage the threads by ourselves. First we used to implement the
Runnable interface or an extension of the Thread class. Then, we used to create a thread
object and start its execution using its start() method. We also had to control its status to
know whether the thread had finished its execution or was still running.

In Java version 5, the concept of executor as a provider of a pool of execution threads
appeared. This mechanism, implemented by the Executor and ExecutorService
interfaces and the ThreadPoolExecutor and ScheduledThreadPoolExecutor classes,
allows you to concentrate only on the implementation of the logic of the task. You
implement the task and send it to the executor. It has a pool of threads, and it is this pool
that is responsible for the creation, management, and finalization of the threads. In Java
version 7, another implementation of the executor mechanism in the fork/join framework,
specialized in problems that can be broken down into smaller subproblems, appeared. This
approach has numerous advantages, which are as follows:

We don't have to create threads for all the tasks. When we send a task to the
executor and it's executed by a thread of the pool, we save the time used in
creating a new thread. If our application has to execute a lot of tasks, the total
saved time will be significant and the performance of the application will be
better.

Concurrent Programming Design

[528]

If we create fewer threads, our application will use less memory as well. This can
also extract better performance from our application.
We can build concurrent tasks executed in the executor by implementing either
the Runnable or Callable interface. The Callable interface allows us to
implement tasks that return a result, which provide a big advantage over
traditional tasks.
When we send a task to an executor, it returns a Future object that allows us to
know the status of the task and the returned result, whether it has finished its
execution easily.
We can schedule our tasks and execute them repeatedly with the special executor
implemented by the ScheduledThreadPoolExecutor class.
We can easily control the resources used by an executor. We can establish the
maximum number of threads in the pool, so our executor will never have more
than that number of tasks running at a time.

The use of executors has a lot of advantages over direct utilization of threads. In this recipe,
you are going to implement an example that shows how you can obtain better performance
using an executor than creating the threads yourself.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task and specify that it implements the Runnable1.
interface:

 public class Task implements Runnable {

Implement the run() method. Create a loop with 1,000,000 steps, and in each2.
step, do some mathematical operations with an integer variable:

 @Override
 public void run() {
 int r;
 for (int i=0; i<1000000; i++) {

Concurrent Programming Design

[529]

 r=0;
 r++;
 r++;
 r*=r;
 }
 }

Implement the main class of the example by creating a class named Main and3.
adding the main() method to it:

 public class Main {

 public static void main(String[] args) {

Create 1,000 threads to execute 1,000 task objects and wait for their finalization,4.
controlling the total execution time:

 Thread threads[]=new Thread[1000];
 Date start,end;

 start=new Date();
 for (int i=0; i<threads.length; i++) {
 Task task=new Task();
 threads[i]=new Thread(task);
 threads[i].start();
 }

 for (int i=0; i<threads.length; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 end=new Date();
 System.out.printf("Main: Threads: %d\n",
 (end.getTime()-start.getTime()));

Create an Executor object, send 1,000 Task objects to it, and wait for their5.
finalization. Measure the total execution time:

 ThreadPoolExecutor executor=(ThreadPoolExecutor)Executors
 .newCachedThreadPool();

 start=new Date();

Concurrent Programming Design

[530]

 for (int i=0; i<threads.length; i++) {
 Task task=new Task();
 executor.execute(task);
 }
 executor.shutdown();
 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 end=new Date();
 System.out.printf("Main: Executor: %d\n",
 (end.getTime()-start.getTime()));

How it works...
In the entire execution of this example, we always obtained a smaller execution time for the
executor than creating the thread directly. If your application has to execute a lot of tasks,
better employ an executor.

See also
The Using executors instead of thread groups and Using the fork/join framework instead
of executors recipes in this chapter

Using concurrent data structures instead of
programming yourself
Data structures are an essential part of every program. You always have to manage the data
that you store in a data structure. Arrays, lists, or trees are examples of common data
structures. The Java API provides a lot of ready-to-use data structures, but when you work
with concurrent applications, you have to be careful because not all structures provided by
the Java API are thread-safe. If you choose a data structure that is not thread-safe, you can
have inconsistent data in your applications.

Concurrent Programming Design

[531]

When you want to use a data structure in your concurrent application, you have to review
the documentation of the class that implements that data structure to check that it supports
concurrent operations. Java provides the following two kinds of concurrent data structures:

Non-blocking data structures: All the operations provided by these data
structures to either insert in or take off elements from the data structure return a
null value if they can't be done currently because the data structure is full or
empty respectively.
Blocking data structures: These data structures provide the same operations that
are provided by non-blocking data structures. However, they also provide
operations to insert and take off data that, if not done immediately, would block
the thread until you're able to do the operations.

These are some data structures provided by the Java API that you can use in your
concurrent applications:

ConcurrentLinkedDeque: This is a non-blocking data structure based on linked
nodes that allow you to insert data at the beginning or end of the structure.
LinkedBlockingDeque: This is a blocking data structure based on linked nodes.
It can have fixed capacity. You can insert elements at the beginning or end of the
structure. It provides operations that, if not done immediately, block the thread
until you're able to do the operation.
ConcurrentLinkedQueue: This is a non-blocking queue that allows you to insert
elements at the end of the queue and take elements from its beginning.
ArrayBlockingQueue: This is a blocking queue with fixed size. You insert
elements at the end of the queue and take elements from its beginning. It
provides operations that, if not done because the queue is either full or empty,
puts the thread to sleep until you're able to do the operation.
LinkedBlockingQueue: This is a blocking queue that allows you to insert
elements at the end of the queue and take off elements from its beginning. It
provides operations that, if not done because the queue is either full or empty,
puts the thread to sleep until you're able to do the operation.
DelayQueue: This is a LinkedBlockingQueue queue with delayed elements.
Every element inserted in this queue must implement the Delayed interface. An
element can't be taken off the list until its delay is 0.

Concurrent Programming Design

[532]

LinkedTransferQueue: This is a blocking queue that provides operations to
work in situations that can be implemented as a producer/consumer problem. It
provides operations that, if not done because the queue is either full or empty,
puts the thread to sleep until you're able to do the operation.
PriorityBlockingQueue: This is a blocking queue that orders its elements
based on priority. All the elements inserted in this queue must implement the
Comparable interface. The value returned by the compareTo() method will
determine the position of the element in the queue. Just like all the blocking data
structures, it provides operations that, if done immediately, puts the thread to
sleep until you're able to do the operation.
SynchronousQueue: This is a blocking queue where every insert operation
must wait for a remove operation for the other thread. The two operations must
be done at the same time.
ConcurrentHashMap: This is a HashMap that allows concurrent operations. It's a
non-blocking data structure.
ConcurrentSkipListMap: This data structure associates keys with values.
Every key can have only one value. It stores the keys in an ordered way and
provides a method to find elements and get some elements from the map. It's a
non-blocking data structure.

There's more...
If you need to use a data structure in your concurrent application, look in the Java API
documentation to find the data structure that best fits your needs. Implement your own
concurrent data structure that has some problems, which are as follows:

They have a complex internal structure
You have to take into account a lot of different situations
You have to design a lot of tests to guarantee that it works correctly

If you don't find a data structure that fits your needs completely, try to extend one of the
existing concurrent data structures to implement one adequately to your problem.

See also
The recipes in Chapter 7, Concurrent Collections

Concurrent Programming Design

[533]

Taking precautions using lazy initialization
Lazy initialization is a common programming technique that delays object creation until it
is needed for the first time. This normally causes the initialization of the objects to be made
in the implementation of the operations, instead of the constructor of the classes. The main
advantage of this technique is that you can save memory. This is because you only create
the indispensable objects needed for the execution of your applications. You could have
declared a lot of objects in one class, but you don't use every object in every execution of
your program; therefore, your application doesn't use the memory needed for the objects
that you don't use in an execution of the program. This advantage can be very useful for
applications that run in environments with limited resources.

By contrast, this technique has the disadvantage of having performance issues in your
application, as you create objects the first time they are used inside an operation.

This technique can also provoke problems if you use it in concurrent applications. As more
than one thread can be executing an operation at a time, they can be creating an object at the
same time, and this situation can be problematic. This has a special importance with
singleton classes. An application has only one object of these classes and, as mentioned
earlier, a concurrent application can create more than one object. Consider the following
code:

 public static DBConnection getConnection(){
 if (connection==null) {
 connection=new DBConnection();
 }
 return connection;
 }

This is the typical method in a singleton class to obtain the reference of the unique object of
that class existing in the application, using lazy initialization. If the object hasn't been
created yet, it creates the object. Finally, it always returns it.

If two or more threads executes at the same time the comparison of the first sentence
(connection == null), all of them will create a Connection object. This isn't a desirable
situation.

In this recipe, you will implement an elegant solution to the lazy initialization problem.

Concurrent Programming Design

[534]

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named DBConnectionOK:1.

 public class DBConnectionOK {

Declare a private constructor. Write the name of the thread that executes it:2.

 private DBConnectionOK() {
 System.out.printf("%s: Connection created.\n",
 Thread.currentThread().getName());
 }

Declare a private static class named LazyDBConnectionOK. It has a3.
private static final DBConnectionOK instance named INSTANCE:

 private static class LazyDBConnection {
 private static final DBConnectionOK INSTANCE = new
 DBConnectionOK();
 }

Implement the getConnection() method. It doesn't receive any parameter and4.
returns a DBConnectionOK object. It returns the INSTANCE object:

 public static DBConnectionOK getConnection() {
 return LazyDBConnection.INSTANCE;
 }

Concurrent Programming Design

[535]

Create a class named Task and specify that it implements the Runnable5.
interface. Implement the run() method. Call the getConnection() method of
the DBConnectionOK() method:

 public class Task implements Runnable {

 @Override
 public void run() {

 System.out.printf("%s: Getting the connection...\n",
 Thread.currentThread().getName());
 DBConnectionOK connection=DBConnectionOK.getConnection();
 System.out.printf("%s: End\n",
 Thread.currentThread().getName());
 }

 }

Implement the main class of the example by creating a class named Main and6.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create 20 Task objects and 20 threads to execute them:7.

 for (int i=0; i<20; i++){
 Task task=new Task();
 Thread thread=new Thread(task);
 thread.start();
 }
 }

How it works...
The key of the example is the getConnection() method and the private static class
LazyDBConnection instance. When the first thread calls the getConnection() method,
the LazyDBConnection class initializes the INSTANCE object by calling the constructor of
the DBConnection class. This object is returned by the getConnection() method. When
the rest of the threads call the getConnection() method, the object is already created, so
all the threads use the same object that is created only once.

When you run the example, you will see the start and end messages of 20 tasks, but only
one creation message.

Concurrent Programming Design

[536]

Using the fork/join framework instead of
executors
Executors allow you to avoid the creation and management of threads. You implement
tasks by implementing Runnable or Callable interfaces and sending them to the executor.
It has a pool of threads and uses one of them to execute the tasks.

Java 7 provides a new kind of executor with the fork/join framework. This executor,
implemented in the ForkJoinPool class, is designed for problems that can be split into
smaller parts using the divide and conquer technique. When you implement a task for the
fork/join framework, you have to check the size of the problem you have to resolve. If it's
bigger than a predefined size, you divide the problem into two or more subcategories and
create as many subtasks as the number of divisions you have made. The task sends these
subtasks to the ForkJoinPool class using the fork() operation and waits for its
finalization using the join() operation.

For these kinds of problems, fork/join pools get better performance than classical executors.
In this recipe, you are going to implement an example where you can check this point.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named TaskFJ and specify that it extends the RecursiveAction1.
class:

 public class TaskFJ extends RecursiveAction {

Declare a private array of int numbers named array:2.

 private final int array[];

Declare two private int attributes, named start and end:3.

 private final int start, end;

Concurrent Programming Design

[537]

Implement the constructor of the class to initialize its attributes:4.

 public TaskFJ(int array[], int start, int end) {
 this.array=array;
 this.start=start;
 this.end=end;
 }

Implement the compute() method. If this task has to process a block of more5.
than 1,000 elements (determined by the start and end attributes), create two
TaskFJ objects, send them to the ForkJoinPool class using the fork() method,
and wait for their finalization using the join() method:

 @Override
 protected void compute() {
 if (end-start>1000) {
 int mid=(start+end)/2;
 TaskFJ task1=new TaskFJ(array,start,mid);
 TaskFJ task2=new TaskFJ(array,mid,end);
 task1.fork();
 task2.fork();
 task1.join();
 task2.join();

Otherwise, increment the elements that this task has to process. After every6.
increment operation, put the thread to sleep for 1 millisecond:

 } else {
 for (int i=start; i<end; i++) {
 array[i]++;
 try {
 TimeUnit.MILLISECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Create a class named Task and specify that it implements the Runnable7.
interface:

 public class Task implements Runnable {

Declare a private array of int number named array:8.

 private final int array[];

Concurrent Programming Design

[538]

Implement the constructor of the class to initialize its attribute:9.

 public Task(int array[]) {
 this.array=array;
 }

Implement the run() method. Increment all the elements of the array. After10.
every increment operation, put the thread to sleep for 1 millisecond:

 @Override
 public void run() {
 for (int i=0; i<array.length; i++){
 array[i]++;
 try {
 TimeUnit.MILLISECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

Implement the main class of the example by creating a class named Main and11.
adding the main() method to it:

 public class Main {

 public static void main(String[] args) {

Create an int array with 100,000 elements:12.

 int array[]=new int[100000];

Create a Task object and a ThreadPoolExecutor object and execute them.13.
Execute the task by controlling the time during which the task is running:

 Task task=new Task(array);
 ExecutorService executor=Executors.newCachedThreadPool();

 Date start,end;
 start=new Date();
 executor.execute(task);
 executor.shutdown();
 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Concurrent Programming Design

[539]

 end=new Date();
 System.out.printf("Main: Executor: %d\n",
 (end.getTime()-start.getTime()));

Create a TaskFJ object and a ForkJoinPool object and execute them. Execute14.
the task by controlling the time during which the task is running:

 TaskFJ taskFJ=new TaskFJ(array,1,100000);
 ForkJoinPool pool=new ForkJoinPool();
 start=new Date();
 pool.execute(taskFJ);
 pool.shutdown();
 try {
 pool.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 end=new Date();
 System.out.printf("Core: Fork/Join: %d\n",
 (end.getTime()-start.getTime()));
 }

How it works...
When you execute the example, you will see how the ForkJoinPool and TaskFJ classes
get better performance than the ThreadPoolExecutor and Task classes.

If you have to solve a problem that can be split using the divide and conquer technique, use
a ForkJoinPool class instead of a ThreadPoolExecutor class. You will get better
performance.

See also
The Delegating the management of threads to executors recipe of this chapter

Concurrent Programming Design

[540]

Avoiding the use of blocking operations
inside a lock
Blocking operations are operations that block the execution of the current thread until an
event occurs. Typical blocking operations are those that involve input or output operations
with the console, a file, or network.

If you use a blocking operation inside the critical section of a lock, you're deteriorating the
performance of the application. While a thread is waiting for the event that would finish the
blocking operation, the rest of the application might be waiting for the same event as well;
however, none of the other threads will have access to the critical section and execute its
code (the code of the critical section).

In this recipe, you will implement an example of this situation. The threads read a line from
the console inside the critical section. This instruction makes the rest of the threads of the
application will be blocked until the user introduces the line.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

How to do it...
Follow these steps to implement the example:

Create a class named Task and specify that it implements the Runnable1.
interface:

 public class Task implements Runnable {

Declare a private Lock attribute named lock:2.

 private final Lock lock;

Implement the constructor of the class to initialize its attribute:3.

 public Task (Lock lock) {
 this.lock=lock;
 }

Concurrent Programming Design

[541]

Implement the run() method:4.

 @Override
 public void run() {
 System.out.printf("%s: Starting\n",
 Thread.currentThread().getName());

Acquire the lock using the lock() method:5.

 lock.lock();

Call the criticalSection() method:6.

 try {
 criticalSection();

Read a line from the console:7.

 System.out.printf("%s: Press a key to continue: \n",
 Thread.currentThread().getName());
 InputStreamReader converter = new InputStreamReader
 (System.in);
 BufferedReader in = new BufferedReader(converter);
 String line=in.readLine();
 } catch (IOException e) {
 e.printStackTrace();

Free the lock using the unlock() method in the finally section:8.

 } finally {
 lock.unlock();
 }
 }

Implement the criticalSection() method. Wait for a random period of time:9.

 private void criticalSection() {
 Random random=new Random();
 int wait=random.nextInt(10);
 System.out.printf("%s: Wait for %d seconds\n",
 Thread.currentThread().getName(),wait);
 try {
 TimeUnit.SECONDS.sleep(wait);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Concurrent Programming Design

[542]

Implement the main class of the application by creating a class named Main and10.
adding the main() method to it:

 public class Main {
 public static void main(String[] args) {

Create a new ReentrantLock object named lock. Create 10 Task objects and 1011.
threads to execute them:

 ReentrantLock lock=new ReentrantLock();
 for (int i=0; i<10; i++) {
 Task task=new Task(lock);
 Thread thread=new Thread(task);
 thread.start();
 }

How it works...
When you execute this example, 10 threads start their execution, but only one enters in the
critical section, which gets implemented in the run() method. As every task reads a line
from the console before releasing the lock, all the applications will be blocked until you
introduce text in the console.

See also
The Holding locks for as short a time period as possible recipe

Avoiding the use of deprecated methods
The Java concurrency API also has deprecated operations. These are operations that were
included in the first versions of the API, but now you shouldn't use them. They have been
replaced by other operations that implement better practices than the original ones.

Concurrent Programming Design

[543]

The more critical deprecated operations are those that are provided by the Thread class.
These operations are:

destroy(): In the past, this method destroyed the thread. Actually, it throws a
NoSuchMethodError exception.
suspend(): This method suspends the execution of the thread until it's resumed.
stop(): This method forces the thread to finish its execution.
resume(): This method resumes the execution of the thread.

The ThreadGroup class also has some deprecated methods, which are as follows:

suspend(): This method suspends the execution of all the threads that belong to
this thread group until they resume
stop(): This method forces the execution of all the threads of this thread group
to finish
resume(): This method resumes the execution of all the threads of this thread
group

The stop() operation has been deprecated because it can provoke inconsistent errors. As it
forces the thread to finish its execution, you can have a thread that finishes its execution
before the completion of an operation and can leave the data in an inconsistent status. For
example, if you have a thread that is modifying a bank account and it's stopped before it is
finished, the bank account will probably have erroneous data.

The stop() operation can also cause a deadlock situation. If this operation is called when
the thread is executing a critical section protected by a synchronization mechanism (for
example, a lock), this synchronization mechanism will continue to block and no thread will
be able to enter the critical section. This is the reason why the suspend() and resume()
operations have been deprecated.

If you need an alternative to these operations, you can use an internal attribute to store the
status of the thread. This attribute must be protected with synchronized access, or use an
atomic variable. You must check the value of this attribute and take actions according to it.
Take into account that you have to avoid data inconsistency and deadlock situations to
guarantee the correct operation of your application.

Concurrent Programming Design

[544]

Using executors instead of thread groups
The ThreadGroup class provides a mechanism to group threads in a hierarchical structure
so you can do operations with all the threads that belong to a thread group with only one
call. By default, all the threads belong to the same group, but you can specify a different one
when you create the thread.

Anyway, thread groups don't provide any features that make their use interesting:

You have to create the threads and manage their status
The methods that control the status of all the threads of the thread group have
been deprecated and their use is discouraged

If you need to group threads under a common structure, it is better to use an Executor
implementation, such as ThreadPoolExecutor. It provides more functionalities, which are
as follows:

You don't have to worry about the management of the threads. The executor
creates and reuses them to save execution resources.
You can implement your concurrent tasks by implementing either the Runnable
or Callable interface. The Callable interface allows you to implement tasks
that return a result, which provides a big advantage over traditional tasks.
When you send a task to an executor, it returns a Future object that allows you
to know the status of the task and the returned result if it has finished its
execution easily.
You can schedule your tasks and execute them repeatedly with the special
executor implemented by the ScheduledThreadPoolExecutor class.
You can easily control the resources used by an executor. You can establish the
maximum number of threads in the pool so your executor will never have more
than that number of tasks running at a time.

For these reasons, it is better that you don't use thread groups and use executors instead.

See also
The Delegating the management of threads to executors recipe in this chapter

Concurrent Programming Design

[545]

Using streams to process big data sets
A Stream interface is a sequence of elements that can be filtered and transformed to get a
final result sequentially or in parallel. This final result can be a primitive data type (an
integer, a long ...), an object or a data structure. These are the characteristics that better
define Stream:

A stream is a sequence of data, not a data structure.
You can create streams from different sources as collections (lists, arrays...), files,
strings, or a class that provides the elements of the stream.
You can't access an individual element of the streams.
You can't modify the source of the stream.
Streams define two kinds of operations: intermediate operations that produce a
new Stream interface that allows you to transform, filter, map, or sort the
elements of the stream and terminal operations that generate the final result of
the operation. A stream pipeline is formed by zero or more intermediate
operations and a final operation.
Intermediate operations are lazy. They're not executed until the terminal
operation begins its execution. Java can avoid the execution of an intermediate
operation over an element or a set of elements of the stream if it detects that it
doesn't affect the final result of the operation.

When you need to implement an operation that processes a big set of data in a concurrent
way, you can use different elements of the Java Concurrency API to implement it. Java
threads to either the fork/join framework or the Executor framework, but I think parallel
streams are the best option. In this recipe, we will implement an example to explain the
advantages that are provided by the use of parallel streams.

Getting ready
The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse
or a different IDE, such as NetBeans, open it and create a new Java project.

Concurrent Programming Design

[546]

How to do it...
Follow these steps to implement the example:

Create a class named Person. This class will have six attributes to define some1.
basic characteristics of a person. We will implement the methods to get() and
set() the values of the attributes, but they won't be included here:

 public class Person {
 private int id;
 private String firstName;
 private String lastName;
 private Date birthDate;
 private int salary;
 private double coeficient;

Now, implement a class named PersonGenerator. This class will only have a2.
method named generatedPersonList() to generate a list of Person objects
with random values with the size specified in parameters. This is the source code
of this class:

 public class PersonGenerator {
 public static List<Person> generatePersonList (int size) {
 List<Person> ret = new ArrayList<>();

 String firstNames[] = {"Mary","Patricia","Linda",
 "Barbara","Elizabeth","James",
 "John","Robert","Michael","William"};
 String lastNames[] = {"Smith","Jones","Taylor",
 "Williams","Brown","Davies",
 "Evans","Wilson","Thomas","Roberts"};

 Random randomGenerator=new Random();
 for (int i=0; i<size; i++) {
 Person person=new Person();
 person.setId(i);
 person.setFirstName(firstNames
 [randomGenerator.nextInt(10)]);
 person.setLastName(lastNames
 [randomGenerator.nextInt(10)]);
 person.setSalary(randomGenerator.nextInt(100000));
 person.setCoeficient(randomGenerator.nextDouble()*10);
 Calendar calendar=Calendar.getInstance();
 calendar.add(Calendar.YEAR, -randomGenerator
 .nextInt(30));
 Date birthDate=calendar.getTime();

Concurrent Programming Design

[547]

 person.setBirthDate(birthDate);

 ret.add(person);
 }
 return ret;
 }
 }

Now, implement a task named PersonMapTask. The main purpose of this task3.
will be to convert a list of persons on a map, where the keys will be the name of
the persons and the values will be a list with Person objects whose name is equal
to the key. We will use the fork/join framework to implement this transformation,
so the PersonMapTask will extend the RecursiveAction class:

 public class PersonMapTask extends RecursiveAction {

The PersonMapTask class will have two private attributes: List of Person4.
objects to process and ConcurrentHashMap to store results. We will use the
constructor of the class to initialize both the attributes:

 private List<Person> persons;
 private ConcurrentHashMap<String, ConcurrentLinkedDeque
 <Person>> personMap;

 public PersonMapTask(List<Person> persons, ConcurrentHashMap
 <String, ConcurrentLinkedDeque<Person>> personMap) {
 this.persons = persons;
 this.personMap = personMap;
 }

Now it's time to implement the compute() method. If the list has less than 1,0005.
elements, we will process the elements and insert them in ConcurrentHashMap.
We will use the computeIfAbsent() method to get List associated with a key
or generate a new ConcurrentMapedDeque object if the key doesn't exist in the
map:

 protected void compute() {

 if (persons.size() < 1000) {

 for (Person person: persons) {
 ConcurrentLinkedDeque<Person> personList=personMap
 .computeIfAbsent(person.getFirstName(), name -> {
 return new ConcurrentLinkedDeque<>();
 });

Concurrent Programming Design

[548]

 personList.add(person);
 }
 return;
 }

If List has more than 1,000 elements, we will create two child tasks and delegate6.
the process of a part of the list to them:

 PersonMapTask child1, child2;

 child1=new PersonMapTask(persons.subList(0,persons.size()/2),
 personMap);
 child2=new PersonMapTask(persons.subList(persons.size()/2,
 persons.size()),
 personMap);

 invokeAll(child1,child2);
 }
 }

Finally, implement the Main class with the main() method. First, generate a list7.
with 100,000 random Person objects:

 public class Main {

 public static void main (String[] args) {
 List<Person> persons=PersonGenerator
 .generatePersonList(100000);

Then, compare two methods to generate Map with the names as keys, which are8.
part of List, and Person as value. List will use a parallel Stream function and
the collect() method using the groupingByConcurrent() collector:

 Date start, end;

 start = new Date();
 Map<String, List<Person>> personsByName = persons
 .parallelStream()
 .collect(Collectors.groupingByConcurrent(p -> p
 .getFirstName()));
 end = new Date();
 System.out.printf("Collect: %d - %d\n", personsByName.size(),
 end.getTime()-start.getTime());

Concurrent Programming Design

[549]

The second option is using the fork/join framework and the PersonMapTask9.
class:

 start = new Date();
 ConcurrentHashMap<String, ConcurrentLinkedDeque<Person>>
 forkJoinMap=new ConcurrentHashMap<>();
 PersonMapTask personMapTask=new PersonMapTask
 (persons,forkJoinMap);
 ForkJoinPool.commonPool().invoke(personMapTask);
 end = new Date();

 System.out.printf("Collect ForkJoinPool: %d - %d\n",
 forkJoinMap.size(),
 end.getTime()-start.getTime());
 }
 }

How it works...
In this recipe, we implemented two different versions of the same algorithm to obtain Map
from List. If you execute it, you will obtain the same results and a similar execution time
(at least the latter is true in my case when I executed the example in a four core computer).
The biggest advantage we obtained using streams is the simplicity of the solution and its
development time. With only one line of code, we implemented the solution. While in the
other case, we implemented a new class (the PersonMapTask) using concurrent data
structures and then executed it in the fork/join framework.

With Streams, you can divide your algorithm into simple steps that can be expressed in an
elegant way, be easy to program and understand.

See also
The Creating streams from different sources, Reducing the elements of a stream and
Sorting the elements of a stream recipes in Chapter 6, Parallel and reactive streams

Concurrent Programming Design

[550]

Other tips and tricks
In this final recipe, we have included other tips and tricks that haven't been included in
other recipes of the chapter:

Whenever possible, use concurrent design patterns: In software engineering, a
design pattern is a solution to a common problem. They are commonly used in
software development and concurrency applications and are not an exception.
Patterns such as signaling, rendezvous, and mutex define how to implement
concurrent applications in concrete situations, and they have been used to
implement concurrent utilities.
Implement concurrency at the highest possible level: Rich threading APIs, such as
the Java concurrency API, offer you different classes to implement concurrency in
your applications. Try to use the ones that provide you a higher level of
abstraction. It will make it easier for you to implement your algorithm, and they
are optimized to give better performance than using threads directly. Therefore,
performance won't be a problem.
Take scalability into account: One of the main objectives when you implement a
concurrent algorithm is to take advantage of all the resources of your computer,
especially the number of processors or cores. But this number may change over
time. When you design a concurrent algorithm, don't presuppose the number of
cores or processors that your application will execute on. Get information about
the system dynamically. For example, in Java, you can get it with the
Runtime.getRuntime().availableProcessors() method and make your
algorithm use this information to calculate the number of tasks it's going to
execute.
Prefer local thread variables over static and shared when possible: Thread local
variables are a special kind of variable. Every task will have an independent
value for this variable, so you don't need any synchronization mechanism to
protect access to it.

See also
All the recipes in this chapter

Index

A
AbstractQueuedSynchronizer class
 tryAcquire() method 396
 tryRelease() method 396
action
 applying, to element of stream 266, 268, 269
asynchronous stream
 implementing 421, 422, 424, 426, 427, 428
atomic arrays
 using 337, 338, 340
atomic object
 implementing 409, 412
atomic variables
 about 409
 using 330, 331, 335
 using, instead of synchronization 519, 520, 521
attributes, Thread class
 ID 9
 name 9
 priority 9
 status 9

B
big data sets
 processing, streams used 545, 546, 549
block of code
 synchronizing, with Lock 66, 67, 69, 70, 71
blocking collections 296
blocking data structure 306
blocking data structures 531
blocking operations
 about 540
 usage, avoiding inside lock 540, 541
blocking thread-safe deques
 using 302, 304
blocking thread-safe queue ordered

 using, by priority 305, 307, 309
blocking thread-safe queue
 used, for communicating with

producers/consumers 496, 497, 499, 500
broken CyclicBarrier objects 117

C
characteristics, Spliterator
 CONCURRENT 418
 DISTINCT 418
 IMMUTABLE 418
 NONNULL 418
 ORDERED 418
 SIZED 418
 SORTED 418
 SUBSIZED 418
checked exceptions 33, 226
collections
 about 296
 blocking collections 296
Collectors class
 averagingDouble() method 266
 averagingInt() method 266
 averagingLong() method 266
 groupingByConcurrent() method 263
 joining() method 263
 partitioningBy() method 263
 toCollection() method 266
 toConcurrentMap() method 263
 toList() method 266
compare-and-swap operation 338
CompletableFuture class
 about 96
 anyOf() method 148
 cancel() method 148
 completeAsync() method 148
 completeExceptionally() method 148

[552]

 getNow() method 150
 runAfterBothAsync() method 149
 runAfterEitherAsync() method 149
 runAsync() method 148
 thenAcceptBothAsync() method 149
 thenCombineAsync() method 149
 thenComposeAsync() method 149
CompletionService class
 poll() method 197
 take() method 197
concurrency code
 testing, with MultithreadedTC 473
concurrent access
 controlling, to one or more copies of resource 97,

98, 99, 102
concurrent code
 analyzing, with FindBugs 457, 458, 459, 460,

461, 462
concurrent data structures
 blocking data structures 531
 using, instead of programming 530, 531, 532
concurrent phased tasks
 phase change, controlling in 128, 129, 132, 133,

134

 running 118, 119, 120, 123, 125
concurrent random numbers
 generating 509, 510
concurrent tasks
 data, exchanging between 135, 136, 137, 138,

139

ConcurrentHashMap
 computeIfPresent() method 329
 forEach() method 328
 forEachEntry() method 328
 forEachKey() method 329
 forEachValue() method 329
 getOrDefault() method 329
 merge() method 329
 reduce() method 328
 reduceEntries() method 329
 reduceKeys() method 329
 reduceValues() method 329
 reduceXXXToDouble() method 329
 reduceXXXToInt() method 329
 reduceXXXToLong() method 329

 search() method 328
 searchEntries() method 329
 searchKeys() method 329
 searchValues() method 329
ConcurrentLinkedDeque class
 getFirst() method 301
 getLast() method 301
 peek() method 301
 peekFirst() method 301
 peekLast() method 301
 remove() method 301
 removeFirst() method 301
 removeLast() method 301
ConcurrentNavigableMap interface
 key 317
 value 317
ConcurrentSkipListMap class
 headMap(K toKey) method 322
 pollLastEntry() method 322
 putIfAbsent(K key, V Value) method 322
 replace(K key, V Value) method 322
 tailMap(K fromKey) method 322
conditions
 using, in synchronized code 60, 61, 62, 63, 64,

65

 verifying, in elements of stream 283, 284, 285
CountDownLatch class
 about 96
 await() method 108
 basic elements 107
CountedCompleter class
 methods 225
critical section 50, 431
critical sections 95
custom Lock class
 implementing 391, 393, 394, 395
CyclicBarrier class
 about 96
 await() method 117
CyclicBarrier object
 resetting 117

D
daemon thread
 about 28

[553]

 creating 29, 32
 running 29, 32
data access
 synchronizing, with read/write locks 73, 74, 76,

78

data structure 295
data structures, Java API
 ArrayBlockingQueue 531
 ConcurrentHashMap 532
 ConcurrentLinkedDeque 531
 ConcurrentLinkedQueue 531
 ConcurrentSkipListMap 532
 DelayQueue 531
 LinkedBlockingDeque 531
 LinkedBlockingQueue 531
 LinkedTransferQueue 532
 PriorityBlockingQueue 532
 SynchronousQueue 532
data
 exchanging, between concurrent tasks 135, 136,

137, 138, 139
deadlocks
 avoiding 72
 avoiding, by ordering deadlocks 516, 517, 518
delayed elements
 thread-safe lists, using with 311, 312, 315, 316
delayed tasks 371
DelayQueue class
 clear() method 317
 offer (E e) 317
 peek() method 317
 take() method 317
deprecated methods
 destroy() 543
 resume() 543
 stop() 543
 suspend() 543
 usage, avoiding 542
DocumentTask 216

E
Eclipse
 configuring, for debugging concurrency code

463, 464, 466
effective log messages

 writing 451, 453, 454, 455, 456
elements of stream
 action, applying to 266, 268, 269
 conditions, verifying in 283, 284, 285
elements
 collecting, of streams 258, 260, 262
 filtering, of streams 270, 271
 reducing, of streams 252, 254, 255
 sorting, of streams 279, 280, 282
 transforming, of streams 274, 275, 276, 277
exceptions
 checked exceptions 226
 throwing, in tasks 226, 227, 230
 unchecked exceptions 226
Exchanger class 96
Executor framework
 about 152, 198, 545
 monitoring 440, 441
 results, processing for Runnable objects 483,

484, 485, 486, 488
Executor object
 getActiveCount() method 443
 getCompletedTaskCount() method 443
 getCorePoolSize() method 443
 getPoolSize() method 443
 getTaskCount() method 443
 isShutdown() 443
 isTerminated() method 443
 isTerminating() method 443
 ThreadFactory, using in 368, 369, 370
executor
 tasks, canceling in 184, 185, 186
 thread management, delegating to 527
Executors class
 newCachedThreadPool() method 159
 newSingleThreadExecutor() method 159
executors
 using, instead of thread groups 544

F
factory pattern
 about 45
 threads, creating through 46, 47
fair mode 66
FindBugs

[554]

 concurrent code, analyzing with 457, 458, 459,
460, 461, 462

 download link 458
fork/join framework
 about 198, 199, 545
 DocumentTask 216
 ForkJoinPool class 200
 ForkJoinTask class 200
 LineTask 217
 operations 199
 results of tasks, joining 208, 209, 210, 211,

212, 213, 214, 215
 tasks, limitations 200
 using, instead of executors 536
fork/join pool
 creating 201, 202, 206
 monitoring 444, 445, 447, 448
ForkJoinPool class
 getActiveThreadCount() method 448
 getParallelism() method 448
 getPoolSize() method 448
 getQueuedSubmissionCount() method 448
 getQueuedTaskCount() method 448
 getRunningThreadCount() method 448
 getStealCount() method 448
 hasQueuedSubmissions() method 448
 isTerminated() method 448
 methods 207
 uncontrolled exceptions, processing in 490, 492,

493, 494
ForkJoinTask class
 exec() method 391
 getRawResult() method 390
 setRawResult() method 390
Future interface
 get(long timeout, TimeUnit unit) method 164

G
get() method
 versus join() method 231

H
hash table 323
high-level mechanisms, for synchronizing multiple

threads

 CompletableFeature class 96
 CountDownLatch class 96
 CyclicBarrier class 96
 Exchanger class 96
 Phaser class 96
 semaphores 96

I
immutable objects
 about 513
 using 514
intermediate operations, streams
 about 258
interruption, of thread
 controlling 19, 20, 21, 22, 23

J
Java API
 data structures 531
Java Collections framework 295
Java Concurrency API 353, 545
Java
 mechanisms, for creating streams 414
JConsole
 about 477
 monitoring with 478, 480, 481
join() method
 versus get() method 231

L
lazy initialization
 about 533
 using 534, 535
LineTask 217
LinkedBlockingDeque class
 add() method 305
 addFirst() method 305
 addLast() method 305
 getFirst() method 305
 getLast() method 305
 peek() method 305
 peekFirst() method 305
 peekLast() method 305
 poll() method 305
 pollFirst() method 305

[555]

 pollLast() method 305
 takeFirst() method 305
 takeLast() method 305
LinkedTransferQueue class
 methods 500
LinkedTransferQueue data structure 398
Lock interface
 monitoring 431, 432, 433, 435
lock() operation 391
Lock
 block of code, synchronizing with 66, 67, 69, 70,

71

 multiple conditions, using in 78, 79, 80, 81, 82,
84, 85, 86

locks
 holding 523, 526
log system
 about 451
 considerations 457
Logger
 components 451
LogRecord class
 getLevel() method 456
 getMessage() method 456
 getMillis() method 456
 getSourceClassName() method 456
 getSourceMessageName() method 456
LongAdder class
 add() method 337
 decrement() method 337
 reset() method 337

M
MapReduce
 about 251
 Map operation 251
 Reduce operation 251
method
 synchronizing 51, 52, 56, 59
methods, for filtering elements in stream
 distinct() 273
 dropWhile() 274
 filter() 273
 limit() 273
 skip() 273

 takeWhile() 274
methods, LinkedTransferQueue class
 getWaitingConsumerCount() 500
 hasWaitingConsumer() 500
 offer (E e) 500
 peek() 501
 poll(long timeout, TimeUnit unit) 501
methods, Semaphore class
 availablePermits() 508
 getQueueLength() 508
 hasQueuedThreads() 508
 isFair() 508
methods, Thread class
 activeCount() 505
 dumpStack() 505
 getId() 504
 getName() 504
 getPriority 504
 getStackTrace() 504
 getState() 504
 getThreadGroup() 504
metronome 473
modes, StampedLock locks
 Optimistic Read 87
 Read 87
 Write 87
multiple concurrent events
 waiting for 103, 105, 106, 107
multiple conditions
 using, in Lock 78, 79, 80, 81, 82, 84, 85, 86
multiple tasks
 running 165, 166, 167, 168, 169, 171, 174,

175

MultithreadedTC library
 download link 473
MultithreadedTC
 concurrency code, testing with 473
MyLock class
 getOwnerName() method 434
 getThreads() method 435

N
NetBeans
 configuring, for debugging concurrency code

467, 468, 470, 471

[556]

non-blocking collections 296
non-blocking thread-safe deques
 using 296, 297, 300
non-fair mode 66, 103

O
operations, fork/join framework
 fork operation 199
 join operation 199

P
Parallel Streams 200
parallelism 8
periodic tasks 371
phase change
 controlling, in concurrent phased tasks 128, 129,

132, 133, 134
Phaser class
 about 96
 arrive() method 126
 awaitAdvance(int phase) method 127
 awaitAdvanceInterruptibly(int phaser) method

127

 bulkRegister(int Parties) method 127
 monitoring 436, 437, 439
 register() method 127
Phaser object
 active state 125
phaser object
 getArrivedParties() method 439
 getPhase() method 439
 getRegisteredParties() method 439
 getUnarrivedParties() method 439
Phaser object
 participants, registering in 127
 termination state 126
 termination, forcing of 127
priority-based Executor class
 implementing 359, 360, 361, 362
PriorityBlockingQueue class
 clear() method 311
 peek() method 311
 put(E e) method 311
 take() method 311
PriorityBlockingQueue data structure 398

producer/consumer problem 495

R
race conditions 50
reactive programming
 with reactive streams 288, 289, 292, 293, 294
reactive streams
 about 287, 421
 elements 287
 specification 287
read/write locks
 data access, synchronizing with 73, 74, 76, 78
ReentrantLock class
 getHoldCount() method 435
 getQueueLength() method 435
 hasQueuedThreads() method 435
 isFair() method 435
 isHeldByCurrentThread() method 435
 isLocked() method 435

S
scheduled thread pool 371
semaphore 505
Semaphore class
 acquireUninterruptibly() method 102
 methods 508
 monitoring 505
 tryAcquire() method 102
 tryAcquire(long timeout, TimeUnit unit) method

102

semaphores
 about 96
 concept of fairness 103
singleton classes 533
Skip List
 about 317
 reference 317
sources
 streams, creating from 242, 245, 246, 247, 248,

249, 250
Spliterator interface
 characteristics() method 419
 estimatedSize() 419
 tryAdvance() method 419
 trySplit() method 419

[557]

StampedLock class
 about 87
 advanced locking 88, 90, 91, 92
 methods 87, 93, 94
StampedLock locks
 features 87
 modes 87
static code analysis tool 457
Stream class
 allMatch() method 285
 anyMatch() method 286
 average() method 250
 count() method 249
 findAny() method 286
 findFirst() method 286
 flatMap() method 278
 flatMapToDouble() method 278
 forEach() method 249
 limit() method 249
 map() method 278
 mapToDouble() method 278
 mapToInt() method 278
 mapToLong() method 278
 noneMatch() method 286
 parallel() method 250
 peek() method 250
stream generator
 implementing 414, 415, 416
Streams class
 flatMapToInt() method 278
 flatMapToLong() method 278
streams
 about 414
 creating, from different sources 242, 245, 246,

247, 248, 249, 250
 elements, collecting of 258, 260, 262
 elements, filtering of 270, 271
 elements, reducing of 252, 254, 255
 elements, sorting of 279, 280, 282
 elements, transforming of 274, 275, 276, 277
 monitoring 449
 used, for processing big data sets 545, 546, 549
synchronization 95
synchronized code
 conditions, using in 60, 61, 62, 63, 64, 65

T
Task object
 entering() method 456
 exiting() method 456
 log() method 456
tasks
 canceling 232, 233, 235, 237, 238
 canceling, in executor 184, 185, 186
 completing, asynchronously 140, 141, 145, 146,

147

 controlling, finished in executor 187, 188, 190
 customization, running in fork/join framework

386, 387, 388, 389
 customization, running in scheduled thread pool

371, 372, 374, 376, 377
 delayed tasks 371
 exceptions, throwing in 226, 227, 230
 executing, in executor 160, 161, 162, 163
 launching of tasks, separating 191, 192, 193,

195, 196
 linking, asynchronously 140, 141, 145, 146, 147
 periodic tasks 371
 results, processing in executor 191, 192, 195,

196

 running, asynchronously 218, 219, 221, 222,
224

 running, in executor after delay 176, 177
 running, in executor periodically 179, 181, 183
 synchronizing, in common point 108, 109, 110,

111, 112, 113, 114, 115, 116
terminal operations, streams 258
Thread class
 attributes 9
 methods 504
 monitoring 501, 503, 504
thread executor
 creating 152, 154, 156, 157, 158
 rejected tasks, controlling 152, 154, 156, 157,

158

thread local variables
 using 36, 37, 38, 39
thread management
 delegating, to executors 527
thread-safe 530
thread-safe HashMaps

 using 323, 327
thread-safe lists
 using, with delayed elements 311, 312, 315,

316

thread-safe navigable maps
 using 319, 320, 321
ThreadFactory interface
 implementing, to generate custom threads 363,

366, 368
 implementing, to generate custom threads

forfork/join framework 379, 381, 385
ThreadFactory
 using, in Executor object 368, 369, 370
ThreadGroup class
 resume() method 543
 stop() method 543
 suspend() method 543
ThreadPoolExecutor class
 awaitTermination(long timeout, TimeUnit unit)

method 159
 customizing 353, 354, 357, 358
 isShutdown() 159
 isTerminated() method 159
 shutdownNow() method 159
threads
 about 8
 characteristics, setting 9, 10, 11, 14
 creating 8, 9, 10, 11, 14
 creating, through factory pattern 45, 47
 grouping 41, 42, 43
 interrupting 16, 18

 interruption of thread, controlling 19, 20, 21, 22,
23

 resuming 23
 running 10, 11, 14
 sleeping 23
 uncontrolled exceptions, processing in 32, 33,

35, 36
 waiting, for finalization of thread 26, 28
transfer queue
 implementing, based on priorities 398, 400, 404,

407, 408

U
unchecked exceptions 33, 226
uncontrolled exceptions
 processing, in ForkJoinPool class 490, 492,

493, 494
 processing, in group of threads 41, 42, 43
 processing, in threads 32, 33, 35, 36
unlock() operation 391

V
variable handles
 using 347
VisualVM
 reference 482
volatile keyword
 using 342, 343

W
worker thread 199

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Thread Management
	Introduction
	Creating, running, and setting the characteristics of a thread
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Interrupting a thread
	Getting ready
	How to do it...
	How it works...
	There's more...

	Controlling the interruption of a thread
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sleeping and resuming a thread
	Getting ready
	How to do it...
	How it works...
	There's more...

	Waiting for the finalization of a thread
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and running a daemon thread
	Getting ready
	How to do it...
	How it works...
	There's more...

	Processing uncontrolled exceptions in a thread
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using thread local variables
	Getting ready
	How to do it...
	How it works...
	There's more...

	Grouping threads and processing uncontrolled exceptions in a group of threads
	Getting ready
	How to do it...
	How it works...
	See also

	Creating threads through a factory
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 2: Basic Thread Synchronization
	Introduction
	Synchronizing a method
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using conditions in synchronized code
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Synchronizing a block of code with a lock
	Getting ready
	How to do it...
	How it works...
	There's more...
	Avoiding deadlocks

	See also

	Synchronizing data access with read/write locks
	Getting ready...
	How to do it...
	How it works...
	See also

	Using multiple conditions in a lock
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Advanced locking with the StampedLock class
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Thread Synchronization Utilities
	Introduction
	Controlling concurrent access to one or more copies of a resource
	Getting ready
	How to do it...
	How it works...
	There's more...
	Fairness in semaphores

	See also

	Waiting for multiple concurrent events
	Getting ready
	How to do it...
	How it works...
	There's more...

	Synchronizing tasks in a common point
	Getting ready
	How to do it...
	How it works...
	There's more...
	Resetting a CyclicBarrier object
	Broken CyclicBarrier objects

	See also

	Running concurrent-phased tasks
	Getting ready
	How to do it...
	How it works...
	There's more...
	Registering participants in Phaser
	Forcing the termination of Phaser

	See also

	Controlling phase change in concurrent-phased tasks
	Getting ready
	How to do it...
	How it works...
	See also

	Exchanging data between concurrent tasks
	Getting ready
	How to do it...
	How it works...
	There's more...

	Completing and linking tasks asynchronously
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Chapter 4: Thread Executors
	Introduction
	Creating a thread executor and controlling its rejected tasks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Executing tasks in an executor that returns a result
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running multiple tasks and processing the first result
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running multiple tasks and processing all the results
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running a task in an executor after a delay
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running a task in an executor periodically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Canceling a task in an executor
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Controlling a task finishing in an executor
	Getting ready
	How to do it...
	How it works...
	See also

	Separating the launching of tasks and the processing of their results in an executor
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Fork/Join Framework
	Introduction
	Creating a fork/join pool
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Joining the results of the tasks
	How to do it...
	How it works...
	There's more...
	See also

	Running tasks asynchronously
	How to do it...
	How it works...
	There's more...
	See also

	Throwing exceptions in the tasks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Canceling a task
	Getting ready...
	How to do it...
	How it works...
	See also

	Chapter 6: Parallel and Reactive Streams
	Introduction
	Creating streams from different sources
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reducing the elements of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Collecting the elements of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Applying an action to every element of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Filtering the elements of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Transforming the elements of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sorting the elements of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Verifying conditions in the elements of a stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reactive programming with reactive streams
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 7: Concurrent Collections
	Introduction
	Using non-blocking thread-safe deques
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using blocking thread-safe deques
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using blocking thread-safe queue ordered by priority
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using thread-safe lists with delayed elements
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using thread-safe navigable maps
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using thread-safe HashMaps
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using atomic variables
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using atomic arrays
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using the volatile keyword
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using variable handles
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Customizing Concurrency Classes
	Introduction
	Customizing the ThreadPoolExecutor class
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing a priority-based Executor class
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing the ThreadFactory interface to generate custom threads
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using our ThreadFactory in an Executor object
	Getting ready
	How to do it...
	How it works...
	See also

	Customizing tasks running in a scheduled thread pool
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing the ThreadFactory interface to generate custom threads for the fork/join framework
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Customizing tasks running in the fork/join framework
	How to do it...
	How it works...
	See also

	Implementing a custom Lock class
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing a transfer queue-based on priorities
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing your own atomic object
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing your own stream generator
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing your own asynchronous stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 9: Testing Concurrent Applications
	Introduction
	Monitoring a Lock interface
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Monitoring a Phaser class
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring an Executor framework
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring a fork/join pool
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring a stream
	Getting ready
	How to do it...
	How it works...
	See also

	Writing effective log messages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Analyzing concurrent code with FindBugs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuring Eclipse for debugging concurrency code
	Getting ready
	How to do it...
	How it works...

	Configuring NetBeans for debugging concurrency code
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Testing concurrency code with MultithreadedTC
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Monitoring with JConsole
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 10: Additional Information
	Introduction
	Processing results for Runnable objects in the Executor framework
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Processing uncontrolled exceptions in a ForkJoinPool class
	How to do it...
	How it works...
	There's more...
	See also

	Using a blocking thread-safe queue for communicating with producers and consumers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Monitoring a Thread class
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Monitoring a Semaphore class
	Getting ready
	How to do it...
	How it works...
	See also

	Generating concurrent random numbers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 11: Concurrent Programming Design
	Introduction
	Using immutable objects when possible
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Avoiding deadlocks by ordering locks
	How to do it...
	How it works...
	There's more...
	See also

	Using atomic variables instead of synchronization
	Getting ready
	How to do it...
	How it works...
	See also

	Holding locks for as short time as possible
	Getting ready
	How to do it...
	How it works...
	See also

	Delegating the management of threads to executors
	Getting ready
	How to do it...
	How it works...
	See also

	Using concurrent data structures instead of programming yourself
	There's more...
	See also

	Taking precautions using lazy initialization
	Getting ready
	How to do it...
	How it works...

	Using the fork/join framework instead of executors
	Getting ready
	How to do it...
	How it works...
	See also

	Avoiding the use of blocking operations inside a lock
	Getting ready
	How to do it...
	How it works...
	See also

	Avoiding the use of deprecated methods
	Using executors instead of thread groups
	See also

	Using streams to process big data sets
	Getting ready
	How to do it...
	How it works...
	See also

	Other tips and tricks
	See also

	Index

