
Java 9 Modularity
Revealed

Project Jigsaw and Scalable
Java Applications
—
Alexandru Jecan

Java 9 Modularity
Revealed

Project Jigsaw and Scalable
Java Applications

Alexandru Jecan

Java 9 Modularity Revealed

Alexandru Jecan					
Munich, Germany				

ISBN-13 (pbk): 978-1-4842-2712-1			 ISBN-13 (electronic): 978-1-4842-2713-8
DOI 10.1007/978-1-4842-2713-8

Library of Congress Control Number: 2017954918

Copyright © 2017 by Alexandru Jecan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Josh Juneau
Coordinating Editor: Jill Balzano
Copy Editor: Corbin Collins

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/us/book/9781484227121. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.springeronline.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/us/book/9781484227121
http://www.apress.com/source-code

To my wife, Diana, who sustains me and encourages me every day in all my efforts.
To my parents, Alexandrina and Eugen, who provided me with a very good education since

I was a young child. Thank you and I love you.

v

Contents at a Glance

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: Modular Programming Concepts�� 1

■■Chapter 2: Project Jigsaw�� 17

■■Chapter 3: Modular JDK and Source Code�� 31

■■Chapter 4: Defining and Using Modules��� 45

■■Chapter 5: Modular Runtime Images�� 87

■■Chapter 6: Services�� 95

■■Chapter 7: Jlink: The Java Linker��� 105

■■Chapter 8: Migration��� 123

■■Chapter 9: The New Module API��� 155

■■Chapter 10: Advanced Topics��� 173

■■Chapter 11: Testing Modular Applications��� 189

■■Chapter 12: Integration with Tools��� 205

Index�� 217

vii

Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: Modular Programming Concepts�� 1

General Aspects of Modularity�� 1

Maintainability��� 2

Reusability��� 2

Module Definition�� 3

Strong Encapsulation�� 5

Explicit Interfaces�� 6

High Module Cohesion��� 6

Low Module Coupling�� 7

Tight Coupling vs. Loose Coupling��� 7

Modular Programming�� 13

Principles of Modular Programming�� 13

Benefits of Modular Programming��� 14

Modular Programming vs. Object-Oriented Programming (OOP)�� 14

Monolithic Application vs. Modular Application��� 14

Summary��� 16

■■Chapter 2: Project Jigsaw�� 17

Weaknesses in Java Prior to JDK 9��� 17

Weak Encapsulation�� 19

JAR Hell Problem��� 19

﻿■ Contents

viii

What Is Project Jigsaw?�� 20

Downloading and Installing��� 21

Documentation�� 21

Goals of Project Jigsaw��� 22

New Concepts Introduced in Jigsaw��� 23

Strong Encapsulation�� 23

Reliable Configuration��� 24

Enhancements Provided by Jigsaw��� 24

Security��� 24

Scalability and Performance��� 25

Other Generalities�� 25

New Keywords in Java 9��� 25

No Versioning in Jigsaw�� 25

Backward Compatibility�� 25

Platform Modularization�� 26

New Structure of the JRE and JDK�� 26

How to Prepare for Jigsaw�� 28

Differences Between OSGi and Jigsaw��� 29

Summary��� 29

■■Chapter 3: Modular JDK and Source Code�� 31

Modular JDK�� 31

Platform Modules�� 34

Standard Modules��� 34

Non-standard Modules�� 34

The JDK Module Graph�� 35

More on Modules��� 36

Read the Description of a Module��� 36

Module java.base��� 38

﻿■ Contents

ix

Modular Source Code�� 39

New Scheme for the Source Code��� 39

Comparison Source Code Structure�� 41

Build Process Adjustments�� 42

Summary��� 43

■■Chapter 4: Defining and Using Modules��� 45

The Concept of Module��� 45

Module Declaration�� 46

Compiling and Running Modules��� 58

Compile a Single Module��� 59

Run an Application Containing a Single Module�� 60

Compile Multiple Modules��� 61

Run an Application Containing Multiple Modules�� 63

Private vs. Public Methods�� 64

Modular JARs�� 65

Structure of a Modular JAR��� 66

Packaging�� 66

Package as a Modular JAR Using the jar Tool��� 67

The Module Path��� 68

Application Module Path�� 69

Compilation Module Path��� 70

Upgrade Module Path�� 70

Module Resolution��� 70

Root Module�� 71

Accessibility�� 71

Readability vs. Implied Readability�� 73

Qualified Exports��� 77

Types of Modules�� 79

Named Modules��� 80

Normal Modules�� 80

Automatic Modules�� 80

﻿■ Contents

x

Basic Modules��� 80

Open Modules�� 81

The Unnamed Module�� 84

Observable Modules�� 84

Summary��� 85

■■Chapter 5: Modular Runtime Images�� 87

Modular Runtime Images�� 87

The Runtime Image Prior to Java 9��� 88

Why a New Format for the Runtime Images?�� 88

The Runtime Image in Java 9�� 89

Removed Files��� 91

New URI Scheme��� 91

Compatibility�� 93

Summary��� 94

■■Chapter 6: Services�� 95

Strong Coupling Between Modules��� 96

Using Services in JDK 9�� 97

Providing and Consuming Services��� 97

Summary��� 104

■■Chapter 7: Jlink: The Java Linker��� 105

The Java Linker��� 105
Jlink Images�� 106

Jlink Command Syntax�� 107

Jlink Command Options��� 108

Link Phase��� 109

The jdk.jlink Module�� 109

Example: Create a Runtime Image Using Jlink�� 110

Running the Runtime Image�� 118

Modular JAR Files as Input for the Jlink Tool�� 118

Structure of the Generated Runtime Image��� 119

No Support for Linking Automatic Modules��� 119

﻿■ Contents

xi

Jlink Plugins�� 120

The compress Plugin��� 121

The release-info Plugin�� 121

The excludes-files plugin�� 122

Summary��� 122

■■Chapter 8: Migration��� 123

Automatic Modules��� 125

Computing the Name of the Automatic Module��� 126

Describing a JAR File��� 128

No Support for Automatic Modules at Link-time��� 129

The JDeps Tool�� 130

Find Dependencies of Unsupported JDK Internal APIs�� 130

Generate Module Descriptors with JDeps��� 131

Encapsulation in Java 9�� 133

Exporting a Package at Compile-time and Runtime�� 134

Opening Packages for Deep Reflection��� 136

Providing Readability Between Modules��� 137

Adding Modules to the Root Set�� 138

The --illegal-access Option��� 139

Migration Issues�� 142

Encapsulated JDK Internal APIs��� 142

Not Resolved Modules��� 142

Split Packages��� 144

Cyclic Dependencies��� 147

New Versioning Scheme�� 147

Removed Methods in JDK 9��� 148

Removal of rt.jar, tools.jar, and dt.jar��� 148

Migrating an Application to Java 9�� 149

Top-down Migration��� 149

Summary��� 154

﻿■ Contents

xii

■■Chapter 9: The New Module API��� 155

The Module Class�� 156

Attributes��� 156

Constructors�� 157

Methods��� 157

Changes in java.lang.Class�� 158

The ModuleDescriptor class�� 158

ModuleDescriptor Attributes�� 159

ModuleDescriptor Methods��� 160

The ModuleDescriptor.Requires Class��� 160

The ModuleDescriptor.Exports Class��� 161

The ModuleDescriptor.Opens Class��� 161

The ModuleDescriptor.Provides Class��� 162

The ModuleDescriptor.Version Class��� 162

The ModuleFinder Interface�� 163

The ModuleReader Interface��� 163

Performing Operations on Modules��� 166

Getting the Module of a Class�� 166

Accessing Resources of a Module��� 166

Searching for all Modules in the Module Path��� 166

Getting Module Information��� 167

Summary��� 171

■■Chapter 10: Advanced Topics��� 173

JMOD Files�� 173

The JMOD Tool��� 173

Multi-release JAR files�� 174

Build a Multi-release JAR File��� 177

Update Multi-release JAR Files��� 177

Class Loading Mechanism in JDK 9�� 178

New Methods in the ClassLoader Class�� 179

﻿■ Contents

xiii

Layers�� 180
The Boot Layer��� 181

Configuration��� 181

Creating Layers�� 183

Get the Loaded Modules from a Layer��� 184

Describe Layers at Runtime�� 184

Upgradeable Modules��� 186

Features Coming in the Next Releases��� 186

Summary��� 187

■■Chapter 11: Testing Modular Applications��� 189

Scenarios for Unit Testing in Java 9�� 189
Scenario 1: Junit Test Classes and Types Under Test Are in Different Modules����������������������������������� 190

Scenario 2: Only the Types Under Test Reside Inside a Module��� 190

Scenario 3: Both Junit Test Classes and Test Under Test Reside in the Same Module������������������������ 191

The -Xmodule Option��� 191

The --patch-module Option��� 192
Patching a Module��� 192

Running a Junit Test Where the Junit Test Class and the Types Under Test Reside in
Separate Modules�� 197

Running a Junit Test Where the Junit Test Class Doesn’t Reside Inside a Module������������������������������ 200

Testing with Maven��� 201

Summary��� 203

■■Chapter 12: Integration with Tools��� 205

Integration with IDEs��� 205
Integration with Intellij IDEA�� 205

Integration with Eclipse��� 208

Integration with NetBeans��� 208

Integration with Build Tools��� 209
Integration with Apache Maven��� 209

Summary��� 215

Index�� 217

xv

About the Author

Alexandru Jecan is a senior software engineer, consultant, author, trainer,
speaker and tech entrepreneur currently residing in Munich, Germany.
He earned a degree in computer science from the Technical University of
Cluj-Napoca, Romania.

Alexandru provides professional in-house trainings on various
software technologies across Germany. His areas of specialization are:
big data, data analysis, artificial intelligence, machine learning, back-
end software development, front-end software development, database
development, microservices and devops.

He speaks at tech conferences and user groups, both in Europe and
the United States, on different topics related to software development and
software technologies.

In his free time, Alexandru likes to read a lot and to spend time with his family. Alexandru is an avid reader,
reading lots of books and magazines in the fields of information technology, economy, business and stock
markets. He also reads Hacker News frequently and is delighted with how many extraordinary, outstanding
and very smart people are on this planet. You can follow Alexandru on Twitter at @alexandrujecan, read his
tech blog at www.alexandrujecan.com, or email him at alexandrujecan@gmail.com.

http://www.alexandrujecan.com/
alexandrujecan@gmail.com

xvii

About the Technical Reviewer

Josh Juneau has been developing software and enterprise applications
since the early days of Java EE. Application and database development
have been his focus since the start of his career. He became an Oracle
database administrator and adopted the PL/SQL language for performing
administrative tasks and developing applications for the Oracle database.
In an effort to build more complex solutions, he began to incorporate Java
into his PL/SQL applications and later developed standalone and web
applications with Java. Josh wrote his early Java web applications utilizing
JDBC and servlets or JSP to work with backend databases. Later, he began
to incorporate frameworks into his enterprise solutions, such as Java EE
and JBoss Seam. Today, he primarily develops enterprise web solutions
utilizing Java EE and other technologies. He also includes the use of
alternative languages, such as Jython and Groovy, in some of his projects.

Over the years, Josh has dabbled in many different programming languages, including alternative
languages for the JVM, in particular. In 2006, Josh began devoting time to the Jython Project as editor
and publisher of the Jython Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython
programming language. Josh was the lead author for The Definitive Guide to Jython, Oracle PL/SQL Recipes,
and Java 7 Recipes, and a solo author of Java EE 7 Recipes and Introducing Java EE 7—all published by
Apress. He works as an application developer and system analyst at Fermi National Accelerator Laboratory
and writes technical articles for Oracle and OTN. He was a member of the JSR 372 and JSR 378 expert
groups and is an active member of the Java community, helping to lead the Chicago Java User Group’s
Adopt-a-JSR effort.

When not coding or writing, Josh enjoys spending time with his wonderful wife and five children,
especially swimming, fishing, playing ball, and watching movies. To hear more from Josh, follow his blog at
http://jj-blogger.blogspot.com. You can also follow him on Twitter at @javajuneau.

http://jj-blogger.blogspot.com/

xix

Acknowledgments

I would like to thank my family and my wife, Diana, for supporting me, encouraging me, and understanding
me during the long nights and weekends spent on writing on this book.

I would like to thank my parents, Alexandrina and Eugen, for providing me with a very good education
since I was a young child. Thank you for investing in my education and for providing me computer science
and foreign languages courses since my first years . Thank you for raising me very well.

I would like to thank the entire team at Apress for their very good and professional work. Thanks to
my coordinating editor, Jill Balzano, and my acquisitions editor, Jonathan Gennick, for trusting me and
guiding me with precious advice and support through the difficult journey of writing this book. I also
thank you for your patience and for encouraging me throughout the entire writing process. I thank my
technical reviewer, Josh Juneau, for providing me with very helpful and useful reviews. Thank you, Apress
team, for the excellent work!

—Alexandru Jecan

xxi

Introduction

The Java programming language, introduced in 1995, has had a very successful story. It’s evolved constantly
since its birth and became one of the most popular programming languages in the world. Every new release
of Java has added new features—small, medium, and big.

Java 9 is finally here! It is scheduled for release in September 2017, more than three years after the
release of Java 8.

Issues with the Monolithic JDK
The release of Java 8 in March 2014 brought very important features to the Java platform like Lambdas and
the Stream API, which were definitely needed by developers. Nevertheless, some well-known weaknesses
of the platform had still not been addressed in Java 8: the huge monolithic JDK and the class path. These
problems are addressed in Java 9 by Project Jigsaw.

The most important feature of Java 9 is by far the new modular system it introduced. Other new features
have been introduced in Java 9, but they’re not the focus of this book. This book covers the new modular
system introduced in Java 9. The big, monolithic, and indivisible JDK has been problematic for a long time.
It’s difficult to install it on small devices because many don’t have enough memory to hold it. In many cases,
a large number of classes that comprise the JDK aren’t needed because the application may not require
them. CORBA, for instance, is still part of the JDK, but it’s rarely used in real projects today. It makes no
sense to use the entire JDK when only a part or a small part of it is needed. The Compact Profiles introduced
in Java 8 recognized the problems caused by the huge JDK and attempted to solve them, but only to a low
degree. The three Compact Profiles still contain a lot of libraries that a developer may not actually need.
There had to be a better way to split the entire JDK and to create a much smaller custom JDK as a runtime
image that contains only the libraries needed and nothing more. Project Jigsaw is that way, as we’ll see
throughout this book.

Big, monolithic software applications present a series of disadvantages. Maintaining them is tough
and expensive, and performing a small change can result into a great effort. In large projects, modularity is
crucial because it allows easy maintenance of the source code by reducing its complexity due to the loose
coupling mechanism it provides.

Issues with the Class Path
The problems related to class path have been in Java since the birth of the language. The Java Virtual
Machine (JVM) doesn’t know that a JAR on the class path depends on another JAR. It simply loads a group
of JARs, but it doesn’t check their dependencies. When a JAR is missing, the JVM breaks the execution at
runtime. The JARs can’t define concepts related to accessibility. They don’t define accessibility constraints
like public or private. The entire content of all JARs on the class path is completely visible to all the other
JARs from the class path. There’s no way to declare that some classes in a JAR are private. All classes and
methods are public related to the class path, which leads to a problem sometimes called JAR hell. Conflicts
between versions of JARs can arise, especially when two different versions of the same library are required.

﻿■ Introduction

xxii

Loading the classes from the class path is a slow process because the JVM doesn’t know where exactly the
class is located and therefore has to check all the existing files from the class path. Jigsaw addresses this
pain point. By taking advantage of reliable configuration, module boundaries are enforced, and the JVM
knows about the dependencies that are needed. This has a positive impact on performance. Java 9 defines
the concept of module path and allows you to have a library as a JAR file on the class path or have the same
library as a module on the module path. This means nobody is forced to turn all their libraries into modules
when they switch to Java 9. The libraries can still be used on the class path, even in Java 9. This is a big
advantage because Java 9 provides a smooth transition of libraries.

The module path introduced in Java 9 tends to solve the problems caused by the class path. It can
replace the class path completely or can interact and work together with the class path.

Modularity is important because it provides a maintainable code base for the future. We should use
modular programming when we want to separate the effort put into design, development, and testing.
Modular programming speeds up development and makes debugging applications easier by reducing
their complexity.

Overview of Chapters
The first chapter of this book describes the concepts that build the foundation of a modular application: high
module cohesion, strong encapsulation, low module coupling and explicit interfaces. It also illustrates some
of the most important principles of modular programming, like: continuity, understandability, reusability,
combinability, and decomposability.

You may wonder why we shouldn’t use OSGi instead of Jigsaw. The reason is that OSGi can’t be used to
modularize the JDK because it’s built on top of the Java Development Kit Platform. Jigsaw isn’t built on top of
the platform but rather directly into the core of it. This allows Jigsaw to completely change the structure of the
JDK. The main differences between Jigsaw and OSGi are described in Chapter 2.

Prior to JDK 9, there was no way to manage modules. That’s where Project Jigsaw comes into action. It
introduces a brand new modular system into the JDK and therefore allows applications to be built on the
skeleton of a modular architecture. It brings flexibility, maintainability, security, and scalability to the Java
platform. It introduces loosely coupled modules by clearly defining the dependencies between the modules.

Project Jigsaw groups the source code of the Java platform into modules and provides a new system to
implement modules as part of the platform. It applies the modular system to the platform and to the JDK
itself and offers programmers the possibility of writing programs using the modular system on top of
the JDK.

The main goal of Project Jigsaw is to modularize the JDK and the runtime. A new component called
module is introduced. Chapter 4 explains what a module is and how to define a module in Java 9. That
chapter also examines how to declare a module’s dependencies, how to encapsulate, and how to hide a
module’s internal implementation. You’ll learn what an unnamed module, a named module, an automatic
module, and an open module are. The chapter introduces the notion of module path and shows how to
build a module graph with no cycles.

Regarding modules declarations, I show practical examples using each of the five clauses introduced in
Jigsaw: the requires clause, the exports clause, the uses clause, the provides clause, and the opens clause.

The objective of the Java modular system is to provide strong encapsulation and reliable configuration.
Chapter 2 explains what these notions mean and how they’re achieved through the modular system in Java 9.

The class path is partially replaced by modules and the module path. The class path–specific well-
known ClassNotFound exceptions are avoided on the module path because the compiler can now test, based
on the modules’ definitions, whether all the modules needed to run the application are available. If they’re
not found, it doesn’t compile the application.

http://dx.doi.org/10.1007/978-1-4842-2713-8_2
http://dx.doi.org/10.1007/978-1-4842-2713-8_2

﻿■ Introduction

xxiii

Accessibility is an important part of the entire ecosystem and is covered throughout this book. The integral
concept regarding the manner in which accessibility is achieved fundamentally changes in Java 9. The public
access identifier that we all know no longer means accessible everywhere and to anyone. Supplementary
accessibility levels have been added in JDK 9 that extend the existing accessibility mechanism by defining
accessibility at the module level. Concepts like direct and implied readability, prerequisites for defining
accessibility, are also outlined in this book. You’ll see how accessibility is imposed by the compiler, by the
virtual machine, or by using core reflection.

We’ll look at the new concept of modular JAR files and the great advantage it brings: the possibility
of compiling a library with JDK 9+, using it on the module path for JDK 9+, and compiling it with JDK8 or
earlier and using it on the class path. Because the class path can still be used, the migration of libraries
to JDK 9 is smooth. Even if the libraries contain a module descriptor and are to be treated as “modules,”
they will still work on previous versions of JDK 9 because their module descriptor won’t be taken into
consideration on the class path. By using modular JARs, developers have the freedom to decide whether they
want to switch to the module platform or not.

We’ll highlight the distinctions between regular and modular JARs with some examples and describe
the new format for files introduced in Java 9, called JMOD, which is very similar to the format of JAR files.
We’ll go over the new JMOD tool and describe its use in detail.

The compilation of multiple modules using the --module-source-path option is illustrated with some
explanatory examples. We’ll also describe the enhancements added to the jar tool and show how to use it to
package everything as a modular JAR or as a JMOD file.

We’ll see how to run the compiled classes and the module-info.class using the java launcher. New
options like --module-path and -m, introduced in JDK9, are covered thoroughly. When attempting to run an
application using the -m option, which tells the launcher where the main module is, a resolution is triggered.
We’ll describe in detail all the steps involved when running a Java modular application, including resolution
triggering and generation of the module graph. We’ll also look at special cases like when a module is missing
and the startup fails, and we’ll present some workarounds for this, such as using the newly introduced java
launcher option --show-module-resolution.

We’ll also put modular JARs on the class path and see how to successfully run them. This is very
important: We’ll explain how to mix the class path and the module path when running with the java
launcher. For this, we’ll take advantage of the newly introduced --add-modules command-line option.

Chapter 3 describes the JEP 200, called the Modular JDK. This is the JEP that splits the JDK into a set of
modules. We’ll consider the new structure of the JDK together with its modules. We’ll talk about platform
modules and show the module graph that represents the new modular structure of the JDK. We’ll examine
the graph, show how modules depend on each other, and learn how to list all the modules from the system
using the --list-modules command-line option. We’ll also explain the notions of standard module and
non-standard module.

It’s beyond the scope of this book to go through every module in detail. You can find a comprehensive
list of all the existing modules on the Open JDK website at http://cr.openjdk.java.net/~mr/jigsaw/ea/
module-summary.html.

The JEP 260, Encapsulate most internal APIs, is also covered in this book. In order to manage
incompatibilities, all non-critical internal APIs were encapsulated by default. Besides that, all critical internal
APIs for which supported replacements exist in JDK 8 were encapsulated. Other critical internal APIs weren’t
encapsulated. Since they were deprecated in JDK 9, a workaround via a command-line flag is provided.

A linker and a new phase called link-time were introduced in Java 9. This phase is optional and is
executed after the compile-time but before the runtime. It basically assembles the modules in order to form
a runtime image. Runtime images allow us to create custom JDKs that contain only the minimum number of
modules necessary to run our application. The minimum possible runtime would contain a single module,
the java.base module. Runtime images allow us to scale down the JDK or to scale it up based on our needs.
They’re a replacement of the runtime rt.jar.

http://dx.doi.org/10.1007/978-1-4842-2713-8_3
http://cr.openjdk.java.net/~mr/jigsaw/ea/module-summary.html
http://cr.openjdk.java.net/~mr/jigsaw/ea/module-summary.html

﻿■ Introduction

xxiv

The linker represents a new phase of the development life-cycle. It improves performance by selecting
only the minimum modules that it needs to successfully compile the code and provides many optimization
options for the future.

Jigsaw makes it possible to install separate modules as part of the JDK platform installation. It also
allows us to dynamically include other additional modules in the JDK runtime image. We’ll talk about the
changes related to the binary structure of the JRE and the JDK and about the new structure of the legacy JDK
image. You’ll learn more about all these new concepts in Chapters 5 and 7.

In Chapter 6 you’ll learn what services are, and we’ll describe through examples the notions of service
interface and service providers. We’ll show how to define service providers in modules and how to make
them available to other modules.

In Chapter 8 you’ll see how to migrate applications and libraries to modules in a smooth way. We’ll
describe how to migrate an application to Java 9 using the top-down migration strategy. For this, we’ll look
at a concrete example of how to migrate an application that contains some third-party JARs to modules.
We’ll see which kind of applications present the risk of breaking when switching to JDK 9. We’ll will give
useful solutions to avoid this, such as searching the code for dependencies, avoiding splitting packages,
and checking the usage of the internal APIs. If you’ve already switched to JDK 9, we recommend trying first
to run your applications with the new JDK to see if it breaks your code. We’ll cover the JDeps tool and how
to use it to audit your code and search for JDK-internal APIs. We’ll discuss the Maven JDeps plugin, which
represents the integration of the JDeps tool with the build tool Maven. We’ll also talk about the impact and
consequences of the removal of rt.jar and tools.jar from the JRE.

Chapter 9 covers the new API introduced in JDK 9 for working with modules. We’ll see how to perform
basic operations on modules.

Chapter 10 gets into some advanced topics like layers, class loading mechanism in JDK 9, multi-release
JAR files, the JMOD tool, and upgradeable modules. We’ll describe the concept of layers, which are a group
of class loaders used to load classes from a module graph. We’ll look at the boot layer and the correlation to
the so-called well-formed graphs.

Chapter 11 talks about how to handle different scenarios for testing modular applications. Three
scenarios are covered: Junit test classes and objects under test residing in different modules, Junit test
classes and objects under test residing in the same module, and only objects under test residing inside a
module. We’ll show how to patch a module and how to use Maven for easing testing.

In Chapter 12 you’ll learn how Jigsaw interacts with build tools like Maven and what kind of support the
most popular IDEs offer for Project Jigsaw.

As you can see, this book is structured into 12 chapters. Chapter 1 covers modular programming
concepts. Chapters 2–9 provide you with a very strong foundation on Project Jigsaw. Chapter 10 describes
some advanced features that will help you understand some complex topics on Jigsaw. Chapter 11 shows
how to test modular applications using Junit. Chapter 12 teaches using Jigsaw together with build tools and
integrated development environments (IDEs).

Each topic should be easy to find. We recommend reading the chapters sequentially in order to
understand all the topics. Some examples build on concepts that were explained in previous chapters.

Who Should Read This Book
This book is intended for anyone who wants to get familiar with the new modularity system introduced in
Java 9. It gives a strong foundation for anyone who wants to understand the core concepts as well as the
advanced concepts of Java 9 modularity. The examples are designed to help you deeply understand all the
notions introduced in Project Jigsaw. We’ve tried, as much as possible, to give a plenty of examples for most
of the theoretical concepts discussed throughout the book.

http://dx.doi.org/10.1007/978-1-4842-2713-8_5
http://dx.doi.org/10.1007/978-1-4842-2713-8_7
http://dx.doi.org/10.1007/978-1-4842-2713-8_6
http://dx.doi.org/10.1007/978-1-4842-2713-8_8
http://dx.doi.org/10.1007/978-1-4842-2713-8_9
http://dx.doi.org/10.1007/978-1-4842-2713-8_10
http://dx.doi.org/10.1007/978-1-4842-2713-8_11
http://dx.doi.org/10.1007/978-1-4842-2713-8_12
http://dx.doi.org/10.1007/978-1-4842-2713-8_1
http://dx.doi.org/10.1007/978-1-4842-2713-8_2
http://dx.doi.org/10.1007/978-1-4842-2713-8_9
http://dx.doi.org/10.1007/978-1-4842-2713-8_10
http://dx.doi.org/10.1007/978-1-4842-2713-8_11
http://dx.doi.org/10.1007/978-1-4842-2713-8_12

﻿■ Introduction

xxv

Whether you already have experience with modular systems or not, this book is for you.
The book can’t cover everything on Java 9 modularity. Java 9 modularity is a very large and complex

subject, and covering every corner of it wouldn’t be possible in a book of this size. However, the book goes
through all the core parts of Java 9 modularity and touches some advanced topics. By reading this book,
you’ll not only understand the concepts behind Java 9 modularity, you’ll also be able to apply them on your
day-by-day projects.

We advise you to try the examples from this book by yourself in order to get familiar with Project Jigsaw.

What You Will Learn
This book aims to provide comprehensive information on the new modular system introduced in Java 9. A
well-structured tutorial is conducted throughout the book by combining theoretical concepts with practical
examples.

Learning to use modularity with Java 9 will help you enhance your technology career and give you very
precious technical skills.

Once you read this book, you’ll be able to develop scalable and modular Java 9 applications and migrate
existing Java applications to Java 9.

Here are some of the most important things you’ll learn in this book:

•	 What modularity is in general and what advantages it brings

•	 What Java 9 modularity is and what its goals are

•	 How the new layout for JDK and JRE looks

•	 What strong encapsulation and reliable configuration are and how to apply and take
advantage of them

•	 Which JDK-internal APIs have been encapsulated in Java 9 and which have remained
accessible

•	 How the JDK was divided into a group of modules

•	 What the new accessibility rules in JDK 9 are

•	 How to define a module together with its dependencies

•	 How to create a modular JAR file and a JMOD file

•	 How to compile, package, and run a modular Java application using Jigsaw

•	 How to use the JDeps tool to audit the code, search for dependencies between the
libraries, or generate module descriptors

•	 How to migrate an application to the modular system

•	 How to solve migration issues like encapsulated JDK internal APIs, not resolved
modules, split packages, cyclic dependencies, and more

•	 How to perform top-down migration

•	 How to define, configure, and use services for modules

•	 How to combine the module path and the class path to provide backward
compatibility

﻿■ Introduction

xxvi

•	 How to create custom modular runtime images using the Jlink linking tool

•	 How to define and use a layer in Java 9

•	 How to perform operations on a Module using the new Module API

•	 How to use qualified exports

•	 How to improve the maintainability and performance of Java applications

•	 How to handle the unit testing of a modular application

•	 How to patch a module

•	 How to integrate Jigsaw with different build tools like Maven

•	 How to check whether a Java application is compatible with JDK 9

•	 How to make a Java application compatible with JDK 9

•	 How to assure runtime compatibility when switching to Java 9

•	 How to choose the best design patterns when modularizing a Java application

Errata
Everybody involved in publishing this book is strongly committed to providing an error-free book. That’s
why the errata of this book is continuously updated as soon as even a minor issue is found. You can submit
errata at www.apress.com/us/services/errata.

Contacting the Author
The source code for this book can be accessed by clicking the Download Source Code button on its apress.
com product page, located at www.apress.com/9781484227121.

Downloading the Code
The source code from this book can be found on GitHub. You can also download it from the book’s product
page at www.apress.com/us/book/9781484227121.

http://www.apress.com/us/services/errata
http://www.apress.com/9781484227121
http://www.apress.com/us/book/9781484227121

1© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_1

CHAPTER 1

Modular Programming Concepts

You’ve almost surely had to deal with complexity in your software projects. The complexity level of a
software application is usually low when development begins, but after a while the complexity begins to
increase due to the changes performed on the platform. Complexity keeps increasing constantly as new
features are added and the existing functionality is customized. The more changes and customizations are
performed, the more complex the system becomes—it may get so complex that it becomes difficult for a new
developer to ramp up the project and be able to understand all its inner workings. And if the documentation
of the system software isn’t good enough, then understanding the system becomes even harder. A high
level of complexity requires more energy, resources, and time to be spent in order to understand the inner
structure of the application.

What is it that causes software systems to become so difficult to maintain? The answer is related to the
fact that there are a lot of existing dependencies throughout the code. That happens when a piece of code
depends on many other pieces of code, and it can generate a lot of issues. Enhancing such a system becomes
painful because making a change on one place may affect many other parts of the application. By modifying
an application in many different areas, the risk of introducing new errors grows. Besides that, reaching
a satisfactory level of reuse becomes very difficult. The software has so many dependencies that simply
reusing a component can become costly in terms of time and it could also further increase complexity. This
also hinders the desire to enhance the system. By having a system with many dependencies, adding new
functionality becomes a nightmare. Furthermore, the testing process also becomes more difficult because
testing separate components is almost impossible to achieve. For you as a developer, understanding every
part of the system is hard due to its complexity. As new features are added on a regular basis, and the
software system evolves, keeping up to date with the changes can be challenging. In order to mitigate and
reduce the negative effects of rising complexity, maintaining the system is mandatory, although maintaining
itself becomes demanding in terms of time, effort, and cost.

What do we need in order to get rid of these problems? The answer is modularity.

General Aspects of Modularity
Modularity specifies the interrelation and intercommunication between the parts that comprise a software
system. Modular programming defines a concept called the module. Modules are software components that
contain data and functions. Integrated with other modules, together they form a unitary software system.
Modular programming provides a technique to decompose an entire system into independent software
modules. Modularity plays a crucial role in modern software architecture. It divides a big software system
into separate entities and helps reduce the complexity of software applications while simultaneously
decreasing the development effort.

Chapter 1 ■ Modular Programming Concepts

2

The goal of modularity is to define new entities that are easy to understand and use. Modular
programming is a style of developing software applications by splitting the functionality into different
modules — software units that contain business logic and have the role of implementing a specific piece of
functionality. Modularity enables a clear separation of concerns and assures specialization. It also hides the
module’s implementation details. Modularity is an important part of agile software development because it
allows us to change or refactor modules without breaking other modules.

Two of the most important aspects of modularity are maintainability and reusability, both of which
bring great benefits.

Maintainability
Maintainability refers to the degree to which a software system is upgraded or modified after delivery. A big,
monolithic software application is hard to maintain, especially if it has many dependencies inside the code.

The architecture of the system and the design patterns used help us create maintainable code.
Maintainability is often ensured by simplicity. For instance, one of the simplest ways to improve
maintainability is to provide a reference only to the interface that is implemented by the class as a substitute
of the class itself. Low maintainability is a consequence of technical debt. Duplicating code may sometimes
decrease the level of maintainability. For example, if one piece of code is altered, then other pieces of code
that are similar to it also require the same sort of modifications. Because the code is in are many locations,
it’s easy to omit some of the code segments that have to be modified, and this introduces new software
issues into the system. The level of maintainability is associated with the quality of the software: the higher
the degree of maintainability, the higher the quality of software. Maintainability is enhanced as a result of
splitting a monolithic application into a set of modules that present well-defined boundaries between them.
In a modular software application, changing a module is easier when it has fewer incoming and outgoing
dependencies.

Reusability
Object-oriented programming can be used to obtain reusability, especially via inheritance. In order to reuse
the functionality encapsulated in an object, a second object must inherit the first object.

How do modules relate to reusability? It should be possible to reuse a module elsewhere in the same
application or in other application. Reusability is the degree to which we can reuse or replace a module.
Reusability avoids duplicating code and reduces the number of lines of code, which has a positive impact
on the number of software defects. It not only improves software quality, it also helps in developing software
faster and makes performing updates on it easier. By applying reusability, the functionality is replicated in a
coherent form throughout the entire software system.

Reusability makes the developer’s job easy because it increases their productivity when developing
software components. Modules can be reused because they implement a well-defined interface that makes
communication with other modules possible. The interface, which is specified as a contract, allows modules
to be exchanged. The module interface is expressed in a standard way so that it may be understood and
recognized by other modules. In order to achieve a high degree of software reusability, a module should
perform a well-defined function. A “design once, deploy many times” software architecture is realized by
taking advantage of source code reusability. As a property of good software design, reusability is increased
by reducing the dependencies between the modules.

Reusability plays an important role in the migration of applications and libraries. Migration becomes
simpler when you can reuse software components or modules. Reusability is not easy to achieve because it is
challenging to design software that must be successfully used to fit somewhere else.

Chapter 1 ■ Modular Programming Concepts

3

Module Definition
A software module is an independent and deployable software component of a larger system that
interacts with other modules and hides its inner implementation. It has an interface that allows
inter-modular communication. The interface defines which components it provides for external use
and which components it requires for internal use. A module determines a boundary by specifying
which part of the source code is inside the module. It also provides flexibility and increases the
reusability of the software system.

Modules can be discovered starting from compile-time. A module can expose some of its classes to
outside or can encapsulate them in order to prevent external access. Figure 1-1 illustrates this concept with
an example of a module containing classes that are exposed to outside (classes in green color) and classes
that are not exposed to outside (classes in red color).

A module can also be viewed as a black box. It has an input and an output and performs a specific
function. It takes the input, applies some business logic on it, and returns an output, as illustrated in
Figure 1-2.

MODULE

Class AClasses exposed to
outside

Encapsulated classes that
are not accessible from

outside the module

Class C

Class DClass B

Class E Class F

Class HClass G

Figure 1-1.  A module specifies the non-encapsulated (green) and the encapsulated classes (red)

Input OutputModule

Figure 1-2.  A module seen as a black box

Chapter 1 ■ Modular Programming Concepts

4

A software module is reusable, testable, manageable, and deployable. Multiple modules can be
combined together to form a new module. Modular programming is the key to reducing the number of
bugs in complex software systems to a minimum. By dividing the application into very small modules, each
modules will have fewer defects because its functionality is not complex. Assembling these less error-prone
modules results in an application with fewer errors.

One of the key facets of modularity is breaking the application down into small, thin modules
that are easy to implement because they don’t possess a high level of complexity. The modules can be
interconnected earlier at compile time or later at runtime. Each module must be able to be bound to the core
application.

Figure 1-3 shows the general structure of a module.

A module generally consists of two parts: the module interface and the module implementation. The
module interface defines the objects that it exports and the objects that it imports. The exported objects are
the objects that are suited to being available outside of the module. The imported objects are the objects
that the module requires from outside for internal use. The module implementation defines the variables,
constants, and implementation of methods.

Using a module as a variable, instance variable, constant, or function isn’t allowed. A module can
consist of objects that can be used only internally inside the module and objects that can be exported to
the other modules for external use. Data abstraction, a core concept of modularity, is achieved by hiding
information so that it won’t be accessible from outside unless it’s explicitly specified by an export. By default,
the internal structure and internal implementation of a module are hidden from other modules.

MODULE

Listing of exported objects

Listing of imported objects

Definition of variables and
constants

Implementation of methods

Figure 1-3.  General structure of a software module

Chapter 1 ■ Modular Programming Concepts

5

A change performed on a specific module should not have an impact on other modules. Additionally,
it should be possible to add a new module to the core system without breaking the system. Because only the
interface of a module is visible from outside the module, it should be possible for developers to change the
module’s internal implementation without breaking the code in the application. The structure of a modular
software application is basically defined by the connections and correlations between modules.

Some of the characteristics of a module include the following:

•	 A module must define interfaces for communication with other modules.

•	 A module defines a separation between the module interface and the module
implementation.

•	 A module should present a set of properties that contain information.

•	 Two or more modules can be nested together.

•	 A module should have a clear, defined responsibility. Each function should be
implemented by only one module.

•	 A module must be able to be tested independently from other modules.

•	 An error in a module should not propagate to other modules.

Let’s give a short example. If we have two Jigsaw modules called A1 and A2 and one package in module
A2 called P2 that we want to be accessible in module A1, then the following conditions have to be met:

•	 Module A1 should depend on module A2; module A1 should specify in its
declaration that it “requires” module A2.

•	 Module A2 should export the package P2 in order to make it available to the modules
that depend on it. In our case, in the declaration of the module A2 we should specify
that it “exports” package P2.

Package P2 will be accessible in module A1 only if both of conditions are met at compile-time. If none
or just one of the conditions mentioned above is met, then package P2 won’t be accessible in module A1.
That’s part of the reliable configuration concept introduced in JDK 9. We cover reliable configuration later in
this chapter and in upcoming chapters.

The following sections look at four concepts that build the foundation of a modular application:

•	 Strong encapsulation

•	 Explicit interfaces

•	 High module cohesion

•	 Low module coupling

Strong Encapsulation
Encapsulation defines the process of preventing data access from outside by allowing a component to
declare which of its public types are available to other components and which aren’t. Encapsulation
improves code reusability and diminishes the number of software defects. It helps obtain modularity by
decoupling the internal behavior of each object from the other elements of the software application.

Chapter 1 ■ Modular Programming Concepts

6

Related to modularity, encapsulation designates a technique that hides the details of the module
implementation. Only the important characteristics of a module should be visible and accessible from
other modules. Source code in one module should be able to access a type in another module only if the
first module reads the second module and at the same time the second module exports the package that
encloses that corresponding type.

In Java prior to version 9, we took advantage of encapsulation by setting the variables and methods of
classes to private. In this way, they were accessible only inside the class. We used to define accessor methods
like setters and getters as public in order to allow the instance variables to be read or modified from outside
of the class.

You will see in the following sections how we can achieve strong encapsulation in Java 9 using modules
and the new types used for accessibility.

Explicit Interfaces
The interfaces of a modular system should be as small as possible. If an interface is too big, it should be
divided into several smaller interfaces. An interface should make available to a module only the methods
that the module really needs in order to be able to fulfill its business requirements.

A modular system typically provides module management and configuration management. Module
management refers to the capacity to install, uninstall, and deploy a module. The installation could be
done from a module repository, for example. In some cases, a module could be deployed instantly without
requiring that the system is restarted. Configuration management specifies the capacity to dynamically
configure modules and specify the dependencies between them.

High Module Cohesion
Cohesion measures how the elements of a module are residing together. Module cohesion denotes the
module’s integrality and coherence in regard to its internal structure. It expresses the rate to which the
module’s items are defining only one functionality.

The highest module cohesion is achieved when all the elements from the module are grouped together
to form a piece of functionality. When designing a module, the focus should be on having a high level of
cohesion, and this can be accomplished in many different ways:

•	 By reducing the complexity of the module (for instance by using fewer methods
or less code)

•	 By reducing the complexity of the methods described in the module

•	 By using related groups of data

•	 By defining only one predefined scope for the module

Cohesion describes not only the capability of the module to act like a standalone component in the
entire ecosystem, but also the homogeneity of its internal components. High cohesion provides better
maintainability and reusability because loosely coupled source code can be altered more simply and with
less pain than source code that isn’t loosely coupled.

During the conception of modules, one significant aspect is choosing the right degree of complexity
for them. If the functionality of a module is small, then the module might not be very helpful in the entire
module ecosystem. If its functionality is complex and it performs a lot of tasks, then it might be troublesome
to reuse it. It’s a trade-off, and it’s up to you to make the right decision.

Chapter 1 ■ Modular Programming Concepts

7

Low Module Coupling
Coupling specifies the level of interdependence between modules. Module coupling refers to the
dependency between modules and the way they interact. The objective is to reduce module coupling as
much as possible, and this is achieved by specifying interfaces for the inter-modular communication. The
interfaces have the role of hiding the module implementation. The resulting modules are independent
and can be modified or swapped without fear of breaking other modules—or worse, breaking the entire
application.

Low coupling usually corresponds to high cohesion. This is the result we want to achieve in the context
of modularity. The reverse—high coupling and low cohesion—is the opposite of what a modular system
should normally aim to accomplish.

Tight Coupling vs. Loose Coupling
Tight and loose coupling can refer to classes or modules. Tight coupling between classes is when a class uses
logic from another class. It basically uses another class, instantiates an object of it, and then calls the object
to access methods or instance variables.

Loose coupling is encountered when a class doesn’t directly use an instance of another class but uses
an intermediate layer that primarily defines the object to be injected. One framework that defines loose
coupling is the Spring framework, where the dependency objects are being injected by the container
into another object. Loosely coupled modules can be altered with less effort. Loose coupling is generally
accomplished by using small or medium-sized modules. Replacing a module won’t affect the system if the
new module has the same interface as the module being replaced.

Tight coupling means classes are dependent on other classes and it doesn’t allow a module to be
replaced so easily because it has dependencies on the implementation of other modules.

Listing 1-1 shows an example of tight coupling. The listing defines one class called Customer that has
dependencies on objects of types CurrentAccount, DepositAccount, and SavingsAccount. In the Main
class, we create one object of type Customer. This object further creates three other objects. The Customer
class contains an object of type CurrentAccount and calls the method depositMoney(amount) on this
object. This is a tight coupling between class Customer and class CurrentAccount, and because class
CurrentAccount is completely tied to class Customer, it depends on it. The class Customer creates objects of
types CurrentAccount, DepositAccount, and SavingsAccount in order to execute some business logic that is
defined in these three classes.

Listing 1-1.  Defining Three Classes That Are Similar to Each Other

// CurrentAccount.java
package com.apress.tightcoupling;

public class CurrentAccount {

 long deposit;

 public void depositMoney(long amount) {
 deposit = amount;
 }

 public long getDeposit() {
 return deposit;
 }
}

Chapter 1 ■ Modular Programming Concepts

8

// DepositAccount.java
package com.apress.tightcoupling;

public class DepositAccount {

 long deposit;

 public void depositMoney(long amount) {
 deposit = amount;
 }

 public long getDeposit() {
 return deposit;
 }
}

// SavingsAccount.java
package com.apress.tightcoupling;

public class SavingsAccount {

 long deposit;

 public void depositMoney(long amount) {
 deposit = amount;
 }

 public long getDeposit() {
 return deposit;
 }
}

Listing 1-2 defines a class called Customer that initializes objects of the classes CurrentAccount,
DepositAccount, and SavingsAccount.

Listing 1-2.  The Customer Class

// Customer.java
package com.apress.tightcoupling;

public class Customer {

 private CurrentAccount currentAccount;
 private DepositAccount depositAccount;
 private SavingsAccount savingsAccount;

 public Customer() {
 currentAccount = new CurrentAccount();
 depositAccount = new DepositAccount();
 savingsAccount = new SavingsAccount();
 }

Chapter 1 ■ Modular Programming Concepts

9

 public void depositMoneyIntoCurrentAccount(long amount) {

 currentAccount.depositMoney(amount);
 }

 public void depositMoneyIntoDepositAccount(long amount) {

 depositAccount.depositMoney(amount);
 }

 public void depositMoneyIntoSavingsAccount(long amount) {

 savingsAccount.depositMoney(amount);
 }

 public CurrentAccount getCurrentAccount() {
 return currentAccount;
 }

 public DepositAccount getDepositAccount() {
 return depositAccount;
 }

 public SavingsAccount getSavingsAccount() {
 return savingsAccount;
 }
}

Listing 1-3 defines the Main class, which creates three objects of type Customer and calls methods on them.

Listing 1-3.  The Main Class

// Main.java
package com.apress.tightcoupling;

public class Main {

 public static void main(String[] args) {

 Customer firstCustomer = new Customer();
 firstCustomer.depositMoneyIntoCurrentAccount(50);

 Customer secondCustomer = new Customer();
 secondCustomer.depositMoneyIntoDepositAccount(100);

 Customer thirdCustomer = new Customer();
 thirdCustomer.depositMoneyIntoSavingsAccount(200);

 �System.out.println�("�First Customer current account amount: "
+ firstCustomer.getCurrentAccount().getDeposit());

 �System.out.println�("�Second Customer deposit account amount: "
+ secondCustomer.getDepositAccount().getDeposit());

 �System.out.println�("�Third Customer savings account amount: "
+ thirdCustomer.getSavingsAccount().getDeposit());

 }
}

Chapter 1 ■ Modular Programming Concepts

10

The previous three listings show tight coupling in which the Customer class instantiates objects of other
classes and subsequently accesses methods on them. This results in a very high level of dependency between
the Customer class and the other classes it uses. The main problem is that a change in CurrentAccount,
DepositAccount, or SavingsAccount classes could eventually obligate us to adapt the class Customer.
For example, if the constructor of CurrentAccount changes, we have a problem. To decouple the classes
in this example, we should modify the code so that class Customer is not dependent any more on the
implementation of classes CurrentAccount, DepositAccount, and SavingsAccount. As a result, we’ll use an
interface in order to make class Customer dependent only on the interface. And we’ll instantiate the other
dependencies only in the Main class and not in the Customer class anymore, as we saw before.

Listing 1-4 defines the interface AccountInterface, which contains the definitions of the methods.

Listing 1-4.  The Interface AccountInterface

// AccountInterface.java
package com.apress.looseCoupling;

public interface AccountInterface {

 void depositMoney(long amount);

 long getDeposit();
}

Listing 1-5 defines the three classes that implement the interface and provide implementations for the
methods from the interface.

Listing 1-5.  The Classes CurrentAccount, DepositAccount, and SavingsAccount

// CurrentAccount.java
package com.apress.looseCoupling;

public class CurrentAccount implements AccountInterface {

 long deposit;

 public CurrentAccount() {
 }

 @Override
 public long getDeposit() {
 return deposit;
 }

 @Override
 public void depositMoney(long amount) {
 deposit = amount;
 }
}

Chapter 1 ■ Modular Programming Concepts

11

// DepositAccount.java
package com.apress.looseCoupling;

public class DepositAccount implements AccountInterface {

 long deposit;

 public DepositAccount() {
 }

 @Override
 public long getDeposit() {
 return deposit;
 }

 @Override
 public void depositMoney(long amount) {
 deposit = amount;
 }
}

// SavingsAccount.java
package com.apress.looseCoupling;

public class SavingsAccount implements AccountInterface {

 long deposit;

 public SavingsAccount() {
 }

 @Override
 public long getDeposit() {
 return deposit;
 }

 @Override
 public void depositMoney(long amount) {
 deposit = amount;
 }
}

Chapter 1 ■ Modular Programming Concepts

12

Listing 1-6 presents the Customer class, which uses the interface called AccountInterface inside of its
constructor.

Listing 1-6.  The Customer Class

// Customer.java
package com.apress.looseCoupling;

public class Customer {

 private AccountInterface account;

 public Customer(AccountInterface account) {
 this.account = account;
 }

 public void deposit(long amount) {
 account.depositMoney(amount);
 }

 public AccountInterface getAccount() {
 return account;
 }
}

Listing 1-7 shows the Main class, which creates three objects of type Customer.

Listing 1-7.  The Main Class

// Main.java
package com.apress.looseCoupling;

public class Main {

 public static void main(String[] args) {

 CurrentAccount currentAccount = new CurrentAccount();
 Customer firstCustomer = new Customer(currentAccount);
 firstCustomer.deposit(10);

 DepositAccount depositAccount = new DepositAccount();
 Customer secondCustomer = new Customer(depositAccount);
 secondCustomer.deposit(100);

 SavingsAccount savingsAccount = new SavingsAccount();
 Customer thirdCustomer = new Customer(savingsAccount);
 thirdCustomer.deposit(200);

Chapter 1 ■ Modular Programming Concepts

13

 �System.out.println�("�First Customer current account amount: "
+ firstCustomer.getAccount().getDeposit());

 �System.out.println�("�Second Customer deposit account amount: "
+ secondCustomer.getAccount().getDeposit());

 �System.out.println�("�Third Customer savings account amount: "
+ thirdCustomer.getAccount().getDeposit());

 }
}

The Customer class is no longer dependent on the other classes. It doesn’t create new classes of type
CurrentAccount, DepositAccount, or SavingsAccount, but uses an interface in its constructor. The interface
is implemented by all of the three classes. Because CurrentAccount, DepositAccount, and SavingsAccount
implement the interface AccountInterface, they’re injected into the Customer object. In the Main class, we
create objects of type interface and then pass these objects to the constructor of the Customer class. At the
end we call the method deposit() on the Customer objects, which further calls the method depositMoney()
from the interface.

In this simple example we’ve seen how to switch from a tightly coupled application to a loosely coupled
one by programming to an interface instead of programming to an implementation.

Modular Programming
This section discusses the principles and benefits of modular programming. It compares modular
programming and object-oriented programming (OOP) and talks about the differences between a
monolithic application and a modular one.

Principles of Modular Programming
The principles of modular programming are continuity, understandability, reusability, combinability, and
decomposability. I’ve already talked about reusability, so now let’s focus on the other four.

•	 Continuity: Refers to the situation when a requirement to change the functionality of
the software system should cause changes in as few modules as possible.

•	 Understandability: Refers to the fact that each module should be comprehensible as
a standalone single unit. Its role should be clear and concise. It’s definitely easier to
understand the inner workings of a particular module—which presents a lower level
of functionality—than of an entire application. You should avoid situations in which
a module fulfills its role only in correlation with some other modules. A module
should not cause side issues for other modules.

•	 Combinability: Allows us to recombine modules so that a new software application
results.

•	 Decomposability: Allows us to decompose a monolith into smaller and simpler parts,
which should be independently packaged into a different software unit. The resulting
software unit should have a simpler structure and a lower level of complexity than the
initial monolith. By breaking a system down into logical modules, we can understand
the system much better and adjust it more easily.

Chapter 1 ■ Modular Programming Concepts

14

Benefits of Modular Programming
We stress some important advantages of modular programming throughout this book, especially when we
talk about Project Jigsaw, which brings modularity to Java 9. As you know by now, modular programming
reduces the complexity of software applications. And it facilitates the reuse of software components.
Moreover, it generally helps make debugging applications easier because only a single module can be
debugged and not the entire monolith.

Modular programming allows a team to work together on the same project at the same time with fewer
problems related to source code conflicts. If every developer works on their own module, there won’t be any
conflicts at all. Having to write less code is another benefit of using modular programming and it is a direct
consequence of the reuse capability. By using modular programming techniques, developers gain better
productivity and performance by taking advantage of parallel development.

Faster development is another key aspect of modular programming. The time required for development
decreases because modules can be designed and implemented independently. The development process
can be scaled because it’s possible to develop more modules simultaneously by involving a larger team that
can work on different modules at the same time. If a module is being modified, then the other modules will
continue to work.

Modules should be easily interchanged with other modules. By defining an interface for the other
modules of the application, changing or replacing a module implies only assuring that the new interface is
equivalent to the old one. The internal implementation of the new module can differ.

Another important aspect refers to the testing process. Instead of testing an entire application as a
whole monolith, the application is divided into modules, and each module is tested separately. Because the
modules are independent, multiple modules can be tested at the same time, which speeds test execution
and assures the integrity of the modules. By testing each module separately as a unit, better test coverage is
achieved. Integration testing is performed by connecting the modules and looking at them as black boxes.

Now that you know what the principles and benefits of modular programming are, it’s time to make a
comparison between modular programming and object-oriented programming.

Modular Programming vs. Object-Oriented Programming (OOP)
The similarities between modular programming and OOP include the fact that both break large software
applications down into fragments or concerns. Modular programming is not object-oriented. The core
principles of OOP, such as polymorphism and inheritance, don’t exist in modular programming. In OOP,
polymorphism is used to dynamically change the properties of classes at runtime. This isn’t possible in
modular programming because the modules aren’t dynamic. Besides that, in OOP classes use inheritance to
enable other classes to inherit variables and method implementations from them. In modular programming,
a module can’t inherit another module.

One of the main differences between modular programming and OOP is the fact that in OOP objects
can be created from classes. In modular programming, deriving objects from modules isn’t possible.

Monolithic Application vs. Modular Application
A monolithic application is a software application with a high level of complexity that executes an entire
group of tasks in order to implement a whole use case. It doesn’t execute only a specific task or function and
it doesn’t consist of any logical units that can be identified. It has the role of executing entire functions, not
just particular tasks inside these functions. Monolithic applications are constructed without modularity.

Chapter 1 ■ Modular Programming Concepts

15

Figure 1-4 shows a possible architecture of a monolithic application.

A monolithic application typically consists of many layers: presentation layer, business layer, data access
layer, and database. With this system of layers, using multiple technologies for a single layer is difficult.
We don’t claim that it’s absolutely impossible—it depends on the technologies you’re using. Sometimes
it’s possible to use multiple technologies, and sometimes not. But having such constraints is definitely a
drawback for every developer. If they find a third-party library that can solve a specific problem easier, they
might not be able to use it because it’s incompatible with the technology used on that layer. It would have
been easier for them to be able to split the layers into different microservices and have the freedom to use,
for each microservice, whichever technology better suits the task. Being forced sometimes to continue to use
the existing technology is bad because the technology may already be old. For a modular system, because
you may not have so many dependencies to care about, it is obviously not so time-consuming to update the
technology and install the latest version of it, when compared to a monolithic system.

Due to the complexity of the system and the technical know-how required, there may be many
cases when multiple teams are working on different layers of the application. To add a new feature to the
application, every layer has to be addressed, which means in most cases, when a new feature is added,
more than one team has to be involved. That can increase the time needed to develop and test new features
because the teams will need to coordinate their work. There may also be more integration work to do—
teams will not only have to coordinate with each other, they’ll sometimes also have to wait for certain
features to be ready so they can integrate their own piece of developed functionality.

As for scalability, a monolithic system can be scaled only as a whole. It’s impossible to scale only
specific parts of the system, and it’s not a good idea to try to scale the entire system if only a part should be
actually scaled. Scaling the entire system could mean additional infrastructure costs. This is why monolithic
applications aren’t so frequently upgraded and patched compared to modular applications.

A monolithic application can be separated into a set of modules, but that’s not the only way to get a
modular application. It can also be designed as modular from the beginning. Redesigning a monolithic
application may be not a trivial task, especially when the system is very complex.

Presentation layer

Business logic layer

Data access layer Database

Figure 1-4.  Architecture of a monolithic application

Chapter 1 ■ Modular Programming Concepts

16

Summary
This chapter presented some general aspects on modularity. It discussed two important aspects of
modularity: maintainability and reusability. It explained the concept of a software module and underlined the
basics of the module declaration. It went over the four main concepts upon which a modular application is
built: strong encapsulation, explicit interfaces, high module cohesion, and low module coupling. It presented
the benefits of modular programming and compared modular and object-oriented programming. And the
chapter illustrated what tight and loose coupling are and showed an explanatory example using Java.

Here’s a short summary of when we should use modular programming:

•	 When we have a large program with lots of classes and methods and dependencies
between them—such programs are always good candidates for modularization

•	 When we want to make a software application more suitable for future developments

•	 When we want to get out of monolithic applications

•	 When we want to make a software application more understandable

The next chapter explores the basics of Project Jigsaw, the new Java Platform Module System introduced
in Java 9.

17© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_2

CHAPTER 2

Project Jigsaw

This chapter introduces Project Jigsaw. It describes what Project Jigsaw is all about, shows some problems
encountered in the past in Java, and discusses the Java Enhancement Proposals that constitute Project
Jigsaw. It explains the goals of Project Jigsaw so that we can get a grasp of the reasons that made the JCP
team decide to introduce a new module system for the Java platform. It also goes over concepts like strong
encapsulation and reliable configuration.

Weaknesses in Java Prior to JDK 9
Figure 2-1 shows the JDK 7 module graph, from the official OpenJDK website at http://openjdk.java.net/
projects/jigsaw/doc/jdk-modularization.html. The base module is displayed right in the middle.
Because there were a lot of dependencies between the classes, there was no way to split the monolith into
smaller pieces. Besides that, the access delimiters didn’t provide sufficient means to completely hide the
implementation of the classes. Their scope was limited. For instance, in JDK 7 if we wanted to print “Hello
world!” using the System console, we would need a great number of packages besides the base module.

http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html
http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html

Chapter 2 ■ Project Jigsaw

18

JAR (Java Archive) files are ZIP files that contain class files and other resources. One or more JAR files
are placed on the class path, which doesn’t provide encapsulation for the JAR files it contains. This means
that every class in a JAR file is accessible by every other class, and that represents a security vulnerability.
You can imagine the class path like being a row where the JAR files are being searched linearly from left to
right. JAR files are not components that can provide modularity for the classes that they contain.

Introduced in JDK 8, compact profiles are a subset of the full Java SE platform. The three compact
profiles are called compact 1, compact 2, and compact 3. A list of the packages contained in each compact
profile is listed on the Oracle website. The compact profiles were just a small step toward the modularization
of the platform. Being able to get three different versions of the JDK by aggregating the standard packages
was not what the community expected with respect to modularization. Besides that, compact profiles don’t
hide their internals and therefore brought no improvements to the security of the Java Platform.

Explicit dependencies were also a huge problem before Java 9. By packaging source code in a JAR file and
putting it on the class path, there was no way of programmatically defining which other JARs were needed in
order for the actual JAR to be able to run. Because Java didn’t solve this problem, a few popular build tools
have emerged, including Maven and Gradle.

Figure 2-1.  The module graph in JDK 7

Chapter 2 ■ Project Jigsaw

19

Weak Encapsulation
For achieving encapsulation, Java prior to version 9 used the well-known access modifiers: private,
protected, public, and no modifier. The private access modifier is the most restrictive. It makes the data
inside unavailable from outside. The protected access modifier indicates that the member can only be
accessed by a subclass of its class in another package or within its own package. The public access modifier
makes data available everywhere. Using no access modifier means that availability is granted only inside
the same package.

However, encapsulation has some limitations. It’s impossible to make a type accessible to an external
package and at the same time restrict access to it from all other existing packages. To make the type available
to an external package, the only way would be to mark it as public, although defining it as public breaks
encapsulation and makes it public for all the existing packages. There is no way to reach the desired level of
encapsulation using Java prior to version 9.

JAR Hell Problem
Prior to JDK 9, the standard style for developing Java applications was to insert all the necessary libraries
and JAR files directly on the class path. This approach could give rise to the JAR hell problem.

Before JDK 9, the runtime environment searched on a couple of locations in order to load a class. One
of the searched locations is the class path, which contained a list of class files that were loaded by the Java
Virtual Machine. Searching for a class on the class path was straightforward. The class loader searched a
class by exploring all the JAR files listed on the class path. It didn’t take into account a pre-definite order but
just searched from the first to the last. It also didn’t take into account aspects of the internal structure of the
classes on the class path. Java wasn’t able to take the boundaries between the JAR files into consideration.
All the classes from all the JAR files were placed on the class path, and the boundaries between the JAR files
disappeared. Each type in a JAR could access all the public types from any other JAR files. Therefore, the
code couldn’t be encapsulated in order to hide it from external use.

We’ll give you an example. Suppose an author of a library had some internal code in the library that was
never intended to be used from outside. Because there was no encapsulation, everyone could access this
internal code—and worse, provide an own implementation that depended on the internal code. If the author
of the library decided to make some changes in the internal code of his library, then code that depended on
this library might encounter issues.

JAR hell is a common problem encountered prior to JDK 9. If there were more libraries on the class path
with different versions and each library depended on another library, then there was said to be a JAR hell
problem on the class path. This so-called dependency hell happened when a package had a dependency not
on another package, but only on a version of that package. There were different variations of dependency
hell, taking into account the environment being used. The problem with JAR hell is that you could have
conflicts on the class path, especially when it contained many JARs. For instance, one library could have
two or more different versions of a specific class on the class path. The class path wasn’t the best solution
because JAR files aren’t components, and therefore we can’t exactly know if something is missing or is
conflicting.

If a specific class wasn’t found on the classpath, a runtime exception was triggered—not during the
launch of the application but at a later point when, due to an action performed by the user, the missing
class was invoked. The runtime didn’t have the capacity to identify all the existing dependencies until it
had to access them. It would have been preferable to have all the errors displayed right during the start of the
application and not at a later point.

Chapter 2 ■ Project Jigsaw

20

What Is Project Jigsaw?
Project Jigsaw represents the implementation of the new scalable module system introduced in Java 9. It was
developed under Open JDK, which is the free, open source implementation of the Java Platform Standard
Edition. The goal of the newly designed module system for the Java SE Platform is to modularize the JDK and
apply the module system to the JDK itself. Jigsaw modularizes the Java SE platform.

The process of modularizing the Java platform was a complicated and tremendous effort. A great
number of difficult design decisions had to be made. The modularization of the platform is an enormous
change with a major impact on the entire ecosystem. It introduces the new concept of modules and
significantly changes the way we develop software applications using the Java programming language.
Modules are placed in the foreground and are the key concept upon which Project Jigsaw is based. Entire
programming techniques have to be adjusted to match the newly introduced concept.

Project Jigsaw started back in 2008 in an exploratory phase. The JEPs that constitute the Java Platform
Module System were created starting with year 2014. Project Jigsaw was initially planned for the Java 7
release, but due to its complexity it was not included in the JDK 7 release and was postponed for the JDK
8 release. Then the Java Community Process deferred it for Java 9. Although the official release of Project
Jigsaw is at the time of this writing planned for September 2017, early access builds have been available for
a long time on the Open JDK website so that the community can test and provide valuable feedback to the
JDK developers.

Project Jigsaw consists of six JEPs and a JSR. JSR 376 is called the Java Platform Module System.
It designates a standard specification for building a modular version of the Java platform. Table 2-1 lists the
other six JEPs that are part of Project Jigsaw.

Table 2-1.  JDK Enhancement Proposals (JEP) for the Development of the Java Platform System

JEP Number JEP Name Scope

JEP 200 Modular JDK Standard Edition

JEP 201 Modular Source Code Implementation

JEP 220 Modular Run-Time Images Standard Edition

JEP 260 Encapsulate Most Internal APIs Java Development Kit

JEP 261 Module System Standard Edition

JEP 282 jLink: The Java Linker Java Development Kit

Following are short descriptions of each of the JEPs. They’re covered in greater depth in the chapters
that follow:

•	 JEP 200—the Modular JDK: This Java Enhancement Proposal divided the JDK into a
set of modules. The JDK was modularized, and the source code was organized into
modules. There are two different categories of modules: standard modules, with
names that start with java., and JDK modules, that start with jdk. A new module
graph emerged as the modular format of the JDK changed (shown in Chapter 3).
More information about the JDK modularization can also be found in Chapter 3.

•	 JEP 201—Modular Source Code: This JEP defines how the JDK build and the source
code were reorganized around modules (covered in detail in Chapter 3).

•	 JEP 220—Modular Run-Time Images: JEP 220 presents the new modular runtime
image and the enhancements added so that we can build custom modular runtime
images. The binary structure of the JRE and JDK was changed. The JEP is discussed
in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2713-8_3
http://dx.doi.org/10.1007/978-1-4842-2713-8_3
http://dx.doi.org/10.1007/978-1-4842-2713-8_3
http://dx.doi.org/10.1007/978-1-4842-2713-8_5

Chapter 2 ■ Project Jigsaw

21

•	 JEP 260—Encapsulate Most Internal APIs: JEP 260 refers to the process of
encapsulating the non-critical internal APIs. This JEP is covered in many chapters
throughout this book.

•	 JEP 261—Module System: JEP 261 represents the implementation of the
new module system.

•	 JEP 282—jLink: The Java Linker: This JEP creates a tool that assembles a set of
modules into a custom runtime image (covered in Chapter 7).

Downloading and Installing
As of September 2017, an early-access version of Project Jigsaw can be downloaded from the following URL
address: http://jdk.java.net/9/. Project Jigsaw is contained into JDK 9. It cannot be used separately.

JDK 9 is available for download for the following platforms:

•	 Windows 32-bit

•	 Windows 64-bit

•	 Linux 32-bit

•	 Linux 64-bit

•	 Solaris SPARC 64-bit

•	 Solaris x86 64-bit

•	 Mac OS

Project Jigsaw was merged into JDK 9, so if you download JDK 9, you will have Jigsaw included by
default.

The installation is straightforward. You have to set the environment variables on your PC to point to
the new JDK. For this, choose the root folder where your Java 9 installation resides. If you use Windows and
JDK 9 is in the PATH, you can verify that the environment variables have been successfully set by opening a
command line and typing java -version.

Documentation
There is plenty of documentation available for Project Jigsaw on the official Open JDK website at
http://openjdk.java.net/projects/jigsaw. You’ll find descriptions for each of the JEPs that constitute
the Java Platform Module System. The specification document can be found at http://openjdk.java.net/
projects/jigsaw/spec/reqs/.

To get more deep insight into Project Jigsaw, you can access the Jigsaw Development mailing list, which
contains comprehensive information about the internals of Jigsaw, at http://mail.openjdk.java.net/
pipermail/jigsaw-dev/. Other mailing lists that might interest you are the Expert Group mailing list at
http://mail.openjdk.java.net/pipermail/jpms-spec-experts/ and the Adoption Discuss mailing list at
http://mail.openjdk.java.net/pipermail/adoption-discuss/.

The API Specification for the Java 9 Standard Edition can be found at http://download.java.net/
java/jdk9/docs/api/overview-summary.html.

http://dx.doi.org/10.1007/978-1-4842-2713-8_7
http://jdk.java.net/9/
http://openjdk.java.net/projects/jigsaw
http://openjdk.java.net/projects/jigsaw/spec/reqs/
http://openjdk.java.net/projects/jigsaw/spec/reqs/
http://mail.openjdk.java.net/pipermail/jigsaw-dev/
http://mail.openjdk.java.net/pipermail/jigsaw-dev/
http://mail.openjdk.java.net/pipermail/jpms-spec-experts/
http://mail.openjdk.java.net/pipermail/adoption-discuss/
http://download.java.net/java/jdk9/docs/api/overview-summary.html
http://download.java.net/java/jdk9/docs/api/overview-summary.html

Chapter 2 ■ Project Jigsaw

22

Goals of Project Jigsaw
The goals of Project Jigsaw, as listed on the Open JDK website at http://openjdk.java.net/projects/
jigsaw/, are as follows:

	 1.	 To make the Java SE Platform and the JDK more easily scalable down to small
computing devices

	 2.	 To improve the security and maintainability of Java SE platform implementations
in general and the JDK in particular

	 3.	 To enable improved application performance

	 4.	 To make it easier for developers to construct and maintain libraries and large
applications, for both the Java SE and EE platforms

The module system should be powerful enough to modularize the JDK and other large legacy code
bases, yet still be approachable by all the developers.

The module system split the Java platform into modules that can be managed by users. Modules can
hide their internal implementation but still interact together efficiently. They have the ability to manifest
explicitly if they’re entirely accessible to other modules, if only some parts of their types are accessible to
other modules, or if they’re not accessible to other modules at all. They can also specify the list of modules to
which they’re available. These Java 9 features are called reliable configuration and strong encapsulation and
are achieved in an easy way.

The problems related to JAR hell on the class path are solved by using the new module path instead
of the class path. The JDK maintenance and administration is reduced by encapsulating the internal APIs.
Project Jigsaw masks some of the internal APIs of the JDK by taking advantage of the strong encapsulation
mechanism. The public types in the JDK internal APIs’ packages are a lot harder to access, which leads to
breaking code in some applications that are using internal APIs.

Let’s look at the motivation behind the decision to develop Project Jigsaw. At the beginning of the
project, the goal was, according to Open JDK, “to design and implement a module system focused narrowly
upon the goal of modularizing the JDK, and to apply that system to the JDK itself.”

Before Java 9, JDK was a big, indivisible monolith with more than 5.500 classes. It was impossible to split
it into more pieces. The only way to use it was to install it entirely on the target platform. The Java runtime
represented by the rt.jar file was also monolithic and couldn’t be split into more parts. JDK consisted of rt.
jar, which contained almost all the compiled classes for the base Java runtime. rt.jar grouped together all
the runtime class files and had to be placed on the class path in order for the user to be able to access the
Java API classes. Inside rt.jar there were—besides the popular java.* and javax.* packages— other packages
such as com.oracle.*, com.sun.*, jdk.internal.*, jdk.management.*, jdk.net.*, sun.*, and more. There was no
way to split rt.jar into different files. In Java 9, the focus was to break the monolithic JDK into modules and to
completely remove the rt.jar file.

The JDK had to be modularized because, after more than 22 years since its first release, it had grown
so much that it effectively became too big and too complex. Installing JDK on small devices can be
cumbersome in certain situations, because not all small devices have enough CPU, memory, or disk space to
be able to hold the entire JDK. Besides that, it’s a huge waste of memory to install the entire monolithic JDK
and use only a small portion of it in your application. This problem relates not only to small devices, but to
big devices as well, like the ones used to hold the applications in the cloud. Important additional costs could
occur using the cloud because the use of hardware resources isn’t optimized.

JDK 1.0, released at the beginning of 1996, was extremely small and tiny in comparison to the actual
release of the JDK. The first version of Java had only a few standard packages: java.lang, java.io, java.applet,
java.awt, java.net, and java.util. There were a total of 8 packages and 212 classes and interfaces. Every release
after JDK 1.0 added more and more complexity. JDK 1.1 had 504 classes and interfaces. JDK 1.2, released
in 1998, tripled the number of classes and interfaces to 1,520. During the next JDK releases, this increase
continued: JDK 1.4 had 2,991 classes and interfaces, and JSE 8.0 had 4,240 classes and interfaces. Compared

http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/

Chapter 2 ■ Project Jigsaw

23

to JDK 1.0, the release of Java 8 contained exactly 20 times more classes and interfaces. Besides the big size,
the JDK prior to version 9 was very complex due to the dependencies between the APIs.

Previous to JDK 9, for a simple program that prints a string in the console, a great number of classes had
to be loaded. For example, the base module in JDK 7 depended on a lot of other modules such as logging,
security-smartcardio, security-sunec, security-resources, resources, charsets, client, security-misc, security-
jsse, security-kerberos, and others. All these modules had to be loaded in order to print a basic and very
simple “Hello world!” in the console.

Taking into consideration all the facts previously mentioned, the decision to work at splitting the JDK into
modules was absolute necessary. A modular JDK reduces the number of classes loaded because there aren’t
any dependencies or connections between classes from different modules anymore. Java 9 also improves the
startup time of Java applications, and the memory footprint in Java 9 is better than in previous releases.

New Concepts Introduced in Jigsaw
Project Jigsaw introduces the new concept of module as a central software component that is built inside the
Java platform. A module represents a collection of packages. It has a module descriptor that specifies the
modules upon which the module depends and also specifies its exported packages that are made available
for external use. A module can be packaged into a new format called modular JAR, which is a JAR file that
also contains a module-info.class file. A modular JAR file can function as a module in Java 9, but also as
a regular JAR file on the class path in Java 8 or earlier. There’s another new format called JMOD, which is
similar to a modular JAR but can also contain native code. A module can be open or not. Chapter 4 describes
modules in detail.

The new notion of module path is introduced in Project Jigsaw. Module path is the module equivalent of
the class path and consists of a list of directories that contain modules. Upcoming chapters cover the module
path and show you how to use it alone or in combination with the class path.

Jigsaw also introduces a linking phase in which a group of modules is assembled by a new linking
tool, called Jlink (covered in Chapter 7), into a custom binary runtime image. Linking can create a full Java
development environment and can also create a Java runtime system incorporated in a program.

Java 9 adds many new options for both the Java compiler and the Java launcher in order to allow the
compilation and running of modules. Throughout this book you’ll find plenty of examples of compiling and
running modules using different command-line options. Jigsaw also introduces new notions like unnamed
module, open module, and automatic module, all covered in Chapter 4.

Strong Encapsulation
According to the official Jigsaw specification, “strong encapsulation allows a component to declare which
of its public types are accessible to other components and which are not.” Strong encapsulation’s role is
to forbid code from accessing classes in packages that aren’t exported by their containing modules, or in
packages whose containing modules aren’t needed by the module that contains the code.

Strong encapsulation couldn’t be achieved without having a concept like modules, because in Jigsaw
the modules represent the base on which the principles of strong encapsulation are applied. Jigsaw allows
modules to export only specific packages. The accessibility of modules is provided by their boundaries.
Strong encapsulation is accomplished in Jigsaw using the definitions of the modules, where we are able to
specify what types are accessible. Strong encapsulation hides module’s internals and prevents them from
external access. It also makes it more difficult to achieve reflective access.

In Java 9, calling the method setAccessible() won’t work unless the object is accessible before the
class. To be accessible, the corresponding package has to be exported, and the module has to be read. If both
conditions are met, then it is accessible, so the method can be applied to make, for instance, a private field
available. Strong encapsulation restricts access even when the accessing class in the target class is in the
same class loader. By the way, strong encapsulation is not dependent on class loaders.

http://dx.doi.org/10.1007/978-1-4842-2713-8_7

Chapter 2 ■ Project Jigsaw

24

Reliable Configuration
Reliable configuration is a strong feature introduced in JDK 9. Open JDK states that “reliable configuration
replaces the class path mechanism with a means for program components to declare explicit dependences
upon one another.” Reliable configuration is based on the capacity to declare dependencies between
modules. It allows us to know at compile-time if a module is missing or a dependency isn’t fulfilled. This is
something we could’t achieve in versions before Java 9. In JDK 9, modules can manifest their dependencies
on other modules, and the module system certifies that every module dependence is achieved.

The ground for reliable configuration is represented by the readability connections that exist in the
module system. Dependencies are analyzed and enforced at both compile-time and runtime. In chapter 4
you’ll learn how reliable configuration is achieved in Jigsaw by the requires clause and how strong
encapsulation is achieved by the exports clause in the module declaration.

Enhancements Provided by Jigsaw
Jigsaw also provides enhancements in three important areas: security, scalability, and performance.

Security
Java had a considerable amount of security issues in the past. Prior to JDK 9, as mentioned, there was no
encapsulation across package boundaries. Hence, security is a very important subject in Jigsaw, being one of
the key factors in some of the implemented design considerations. In Java 9, some portions of the code can’t
be accessed directly anymore. Jigsaw improves security significantly and greatly reduces the security risks by
hiding the JDK internal APIs. We call this the encapsulation of the JDK internal APIs. They can now be handled
only within the JDK itself. To improve security, it was not enough to only encapsulate the JDK internal APIs—
its number of uses was decreased too. By specifying module boundaries, code is no longer reachable from
outside of the module unless it’s explicitly defined so. By default, it’s not reachable from outside.

Security is improved by the newly introduced strong encapsulation mechanism, which hides module’s
internals. Critical source code is hidden and is not accessible from outside unless absolutely necessary.
Attempting to access a public JDK internal type results in an access error. This is why code that uses internal
APIs no longer works starting with Java 9.

In Jigsaw, the mechanisms that allow access to internal classes using reflection have been hardened.
This is a great improvement because in the past the benefit of accessing internal JDK classes resulted in
many security incidents in the Java platform. As the number of internal JDK classes decreases in Java 9, so do
the number of potential breaches.

Prior to JDK 9, Java had a serious issue regarding the fact that its classes were accessible from external
code running in the same environment. It had very limited ways of restricting the access to its code
from outside. In order to restrict package access, Java used the method checkPackageAccess(String
packageName) of class java.lang.SecurityManager. This method gets a list of restricted packages from
calling java.security.Security.getProperty("package.access") and checks whether the parameter
packageName is between the retrieved packages. If not, then the method throws a SecurityException.
If packageName is found, then the method checkPermission() is called. Some of these security
problems from the past were related to the fact that the software developers sometimes forgot to call the
checkPackageAccess() method in code everywhere it was necessary. If this check isn’t done everywhere,
then the code can be accessed from outside and a big security breach is opened, causing potential damage.
It was the responsibility of every JCP developer to be careful and not forget to put the checkPackageAccess()
call everywhere it was necessary.

Chapter 2 ■ Project Jigsaw

25

Scalability and Performance
Jigsaw allows developers to create their own Java Runtime Environments (JREs) that contain only the
modules they need. A great number of small devices benefit from the prospect of being able to group only
the functionality that is strictly required by the running Java software application.

Performance is enhanced during the class loading process because the Java Virtual Machine now knows
where the location of a class is. Because we know in advance all the classes that a class refers to, the JVM
can eventually perform optimizations that will result in a performance increase. Before Java 9, the JVM had
to open every JAR file and perform a linear search in order to find a class, which imposed a huge cost on
performance.

The removal of rt.jar in Java 9 was a good design decision with respect to performance because it
allowed the introduction of a new productive storage system. The performance of Java applications has
been improved in Java 9, especially at startup time. For this, the structure of Java runtime has been modified.
There’s now enough potential for future performance optimizations because portions of code are reached
only by the modules they depend on.

The degree of scalability of the Java platform is increased by allowing developers to create smaller
and more optimized deployments that help reduce the amount of memory needed on the corresponding
running device. The new custom runtime images contain only the specific libraries and the minimum
number of dependencies needed to run a Java application. There’s no longer a requirement to install the
entire JDK. It’s possible to select exactly the modules needed by an application.

Other Generalities
New Keywords in Java 9
Module is a restricted keyword that acts like a keyword only in relation to a module declaration. When a
module isn’t used in connection with a module declaration, then the word module can further be used as an
identifier. This means that if we used the word module to define the name of a variable, an instance variable,
or a method, we don’t have to change it.

Other restricted keywords introduced in Java 9 include exports, requires, provides, uses, with, to,
transitive, and opens.

No Versioning in Jigsaw
Versioning is not supported in Project Jigsaw. The JCP team included versioning in the first releases of Jigsaw
but then decided to leave it out due to the complexity and complications that subsequently occurred. The
decision was based on the fact that build tools like Gradle or Maven have better mechanisms to handle this
complicated problem. Project Jigsaw relies on these build tools for solving versioning resolution or dealing
with different conflicts. Jigsaw allows you to declare a version in the meta information of a module, but this
version isn’t taken into account by the module system. Chapter 10 talks about layers, and you’ll learn how
Jigsaw can load two different versions of a module. Hence, these are all the features that Jigsaw brings for
versioning. For instance, declaring in a module declaration that a module dependends only on a specific
version of another module isn’t supported.

Backward Compatibility
Having backward compatibility to older versions of the JDK was a critical topic during the design of JDK 9.
The JCP team states, “if an application uses only supported APIs and works on release X, then it should work
on release X+1 even without performing a recompilation.” Fixing the incompatibilities inside the source
code is mandatory in order to make a Java software application work after moving to Java 9.

http://dx.doi.org/10.1007/978-1-4842-2713-8_10

Chapter 2 ■ Project Jigsaw

26

The requirements of Project Jigsaw, published on the Open JDK page, state: “It must be possible to
divide an existing Java Platform, Java SE or Java EE, into a set of modules such that existing libraries can
run without change, so long as they use only standard platform APIs.” Java applications will be backward-
compatible with versions prior to JDK 9 as long as they use only standard platform APIs. If they’re using
other APIs besides the standard ones, there’s no guarantee they’ll work in JDK 9.

Some compatibility problems could appear for applications or libraries that use core reflection to
gain access to JDK internal types. For the builds to work, using the command-line flag --add-exports is
mandatory in order to break encapsulation. This command-line option is covered in Chapter 8.

Another issue can occur when an existing library from the class path has a reference to a type in a non-
exported package that belongs to an explicit module. In order to solve it, using the class path in combination
with the module path is required. In upcoming chapters you’ll learn how to achieve that. It’s important to
remember that, for having backward compatibility, the class path can be further used in JDK 9.

Nevertheless, in order to provide backward compatibility, the three class loaders are still present in JDK 9.
Chapter 10 talks about them.

Platform Modularization
One of the most important roles of Project Jigsaw is to split the JDK into modules, explained in detail in
Chapter 3. The resulting modules can be divided into three distinct categories: standard modules, JDK-
specific modules, and JDK-internal modules.

Before Java 9, rt.jar contained many publicly accessible APIs that were planned for public use. It was
possible to use them when writing your own code. Among the publicly accessible APIs there are plenty that
are part of the standard Java SE. These packages start with java.* and javax.* and are specified by JCP. Other
packages that form the publicly accessible APIs, but are not part of the standard Java SE, are the jdk.* and
com.sun.* packages. These packages are not part of the standard Java SE because they’re intended to be
used by tools that interact with the Java Virtual Machine, for instance. It doesn’t make sense to make them
part of the standard Java Standard Edition.

Besides the supported APIs, there are also unsupported APIs. Most of them reside in the sun.* package.
They’re not meant to be used publicly. A survey organized by Oracle revealed that the most popular
unsupported APIs are sun.misc.Base64Encoder, sun.misc.Unsafe, and sun.misc.Base64Decoder. Oracle
classified the APIs based on their usage and organized them into critical and non-critical. The non-critical
APIs have very little usage outside the JDK.

New Structure of the JRE and JDK
In order to provide the means for creating runtime images, the binary structure of the JDK and JRE was
changed in Java 9. Due to the introduction of modules, there’s no difference between the JDK and the JRE.
Every tool that depends on rt.jar had to be changed in order to work further properly in Java 9.

http://dx.doi.org/10.1007/978-1-4842-2713-8_8
http://dx.doi.org/10.1007/978-1-4842-2713-8_10
http://dx.doi.org/10.1007/978-1-4842-2713-8_3

Chapter 2 ■ Project Jigsaw

27

bin

jre

lib

bin

lib

tools.jar

rt.jar

Figure 2-2.  The structure of the JDK prior to Java 9

Before JDK 9, there were two bin and two lib directories. The lib directory from the top level contained
classes for tools, and the lib directory from the jre directory contained the runtime classes. The lib directory
also contained configuration files, security policy files, and other types of files.

Figure 2-3 shows which files and directories have been completely removed in JDK 9: the jre directory,
the tools.jar file, and the rt.jar file.

bin

jre

lib

bin

lib

tools.jar

rt.jar

Figure 2-3.  The jre directory, tools.jar, and rt.jar were removed in JDK 9

Figure 2-2 illustrates the old structure of the JDK and JRE, prior to Java 9.

Chapter 2 ■ Project Jigsaw

28

Figure 2-4 depicts the final structure of the JDK 9.

bin

conf

lib

Figure 2-4.  The new layout of JDK 9

As you can see, the jre directory doesn’t exist anymore, and a new conf directory was added. The conf
directory contains the configuration files that customize the JDK or the runtime. It contains only the files
that should be edited. The files that should not be edited are not located in the conf directory anymore.
This is important because the new layout provides a clear separation between the configuration files that
are allowed to be changed and the ones that aren’t. In the past it was a risk to change a configuration file
because you couldn’t know in advance if you were even allowed to change it, meaning the application might
not start anymore.

The rt.jar and tools.jar files have been completely removed. The bin directory, which is now a single
one, contains all the launchers. The new format of the JDK is more suitable for future optimizations than the
old format.

How to Prepare for Jigsaw
There are some steps that you should perform in order to prepare for Project Jigsaw. As you already know,
the JDK-internal classes aren’t accessible any more, unless they’re part of the package jdk.unsupported.
Code that relies on JDK-internal classes will break.

First of all, you should check your code for uses of JDK-internal APIs using JDeps. JDeps is a tool for
analyzing and finding statical dependencies (it’s covered in detail in Chapter 8). If you find uses of
JDK-internal classes throughout your code, you should provide replacements for them. JDeps gives you
hints and proposes alternatives for your JDK-internal classes, but it’s your responsibility to get rid of these
classes and replace them with supported ones.

The Java compiler command-line option --add-exports is an alternative if you can’t provide
replacements for the JDK-internal classes. This command breaks the encapsulation and makes the
JDK-internal classes accessible in your code. In this way, you don’t have to modify your source code—you
just have to adapt your build scripts to include this option during the compilation of your code.

Besides the uses of the JDK-internal classes, you should also check your code for dependencies on the
rt.jar and tools.jar files. Both files were removed in Java 9, and code that relies on them will stop working. You
can’t use them throughout your code anymore in Java 9.

Another important topic refers to the split packages, which should be definitely avoided. Split packages
arise when two or more loaders designate classes for a single package. You have to get rid of the split
packages before migrating to Java 9. Chapter 8 covers the split packages problem in detail and shows you
how to get rid of them.

http://dx.doi.org/10.1007/978-1-4842-2713-8_8
http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 2 ■ Project Jigsaw

29

Migrating to Java 9 can be challenging under some circumstances. That’s why we cover this topic in
more detail in Chapter 8. The list just presented isn’t complete. If you want to know more about how to
prepare for using Jigsaw, go directly to Chapter 8.

Differences Between OSGi and Jigsaw
OSGi (Open Service Gateway Initiative) is a well-known framework that allows developing modular
applications in the Java programming language. The specification for implementing module systems in Java
using OSGi can be found in the document JSR 291 – Dynamic Component Support for Java SE, which was
released in August 2007.

We won’t go deep into detail regarding OSGi because OSGi is beyond the scope of this book, but we will
present some important distinctions between it and Jigsaw. One major difference between OSGi and Jigsaw
is the fact that OSGi supports versioning, but Jigsaw does only at a low degree. Jigsaw allows you to define
a version as a meta attribute or to use multiple versions for a module in a layer. But the versioning system
offered by Jigsaw is far less powerful than the one offered by OSGi. OSGi also has some features related to
dynamic life-cycle that Jigsaw does not have. Besides this, OSGi provides a dynamic service registry and an
upgraded security model.

Jigsaw is more secure than OSGi because its security mechanism can’t be bypassed. The security
mechanism from OSGi can be bypassed. The OSGi bundles don’t give the same level as security compared
to the Jigsaw modules.

Jigsaw isn’t intended to be a replacement for OSGi. OSGi can operate very well on top of JDK 9. JCP
aims to make both systems able to work in parallel and to cooperate. It should even be possible for OSGi to
treat a Jigsaw module as an OSGi bundle.

There may be specific cases when OSGi is more suitable to the needs of an application than Jigsaw.
Jigsaw is more suited for software applications that don’t present an extremely high level of complexity. OSGi
takes advantage of true isolation because it’s built on top of the platform. Both OSGi and Jigsaw provide
isolation, but the way that’s achieved differs. In OSGi, isolation is achieved automatically because OSGi is
built on top of the platform. In Jigsaw, the modules have been built inside the platform, not on top of it. They
present isolation programmatically by the manner in which they are designed into the platform.

In general, Jigsaw has fewer features than OSGi. For instance, Jigsaw doesn’t offer the possibility
to dynamically download and load modules from a repository when an application and the virtual
machine are running. This kind of feature doesn’t exist in Jigsaw, and OSGi should be used instead for
this specific case.

Project Jigsaw also offers important features that don’t exist in OSGi, such as modularity at compile-
time and built-in support for native libraries. Jigsaw, in contrast to OSGi, modularizes the Java platform and
introduces the new concept of modules as a central program element.

Summary
We started this chapter by presenting some weaknesses and problems that occurred prior to Java 9, such as
weak encapsulation and the Jar Hell problem. Then we introduced Project Jigsaw, the new module system
introduced in Java 9, and described the goals of Project Jigsaw and some of the problems it solves. The
chapter briefly presented a couple of new concepts introduced in Jigsaw.

We talked about the strong encapsulation and reliable configuration mechanisms introduced in Jigsaw,
which make a public type not accessible from outside of its module unless it’s in an exported package. We
also described other enhancements provided by Jigsaw in the fields of security, scalability, and performance.
Prior to JDK 9, it was much more difficult to maintain our code because we couldn’t encapsulate it in order
to hide our internal implementation from external use.

http://dx.doi.org/10.1007/978-1-4842-2713-8_8
http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 2 ■ Project Jigsaw

30

The next topics were backward compatibility and platform modulatization, and we provided insights
into the new categories of APIs in the JDK. Then we presented the new structure of the JRE and JDK in Java 9
and talked about the removal of rt.jar and tools.jar. Next we outlined some of the most important steps you
have to take in order to prepare for using Jigsaw in your projects. The end of the chapter illustrated some of
the most important differences between OSGi and Jigsaw.

Chapter 3 describes the JDK modularization process, the resulting modular JDK, and the way source
code was modularized in JDK 9.

http://dx.doi.org/10.1007/978-1-4842-2713-8_3

31© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_3

CHAPTER 3

Modular JDK and Source Code

This chapter focuses on describing the JDK modularization process that resulted in a new structure of the
JDK and its source code. According to Open JDK, the aim of Java Enhancement Proposal 200 – The Modular
JDK is to “divide the JDK into a set of modules that can be combined at compile time, build time, or runtime
into a variety of configurations.” These configurations can have any size. They can represent one or more
modules together with their transitive dependencies, but they can also comprise the entire JDK.

The JDK Module Summary consists of comprehensive information related to the modules that currently
exist in the Java Platform. For each module it specifies the following:

•	 The number of classes and resources it contains

•	 The total size of the module together with the total size of its dependencies

•	 The modules it requires

•	 The types it exports

•	 The services it uses and the services it provides

■■ Note  The JDK Module Summary can be found online at http://cr.openjdk.java.net/~mr/jigsaw/ea/
module-summary.html.

As of September 2017, Project Jigsaw introduced 73 new modules in the Java platform, with a total
size of more than 170 MB. Taking the number of classes in each module, the biggest module is java.
desktop, which contains 5,900 classes and 284 resources. Its size is more than 26 MB, and the total size of its
dependencies is about 55 MB. The second largest module is module java.base, which contains 5,684 classes
and 17 resources. It has no dependencies because it’s the base module.

Modular JDK
In Java 9, the JDK is modularized. In order to list all modules that exist in the runtime system, the Java
launcher can be used with the command-line option --list-modules. By running the following command,
we get a full list of the existing modules in our runtime:

$ java --list-modules

http://cr.openjdk.java.net/~mr/jigsaw/ea/module-summary.html
http://cr.openjdk.java.net/~mr/jigsaw/ea/module-summary.html

Chapter 3 ■ Modular JDK and Source Code

32

Table 3-1 displays the results.

Table 3-1.  The Modules of the Java Runtime System

java.activation java.xml.crypto jdk.jfr

java.base java.xml.ws jdk.jsobject

java.compiler java.xml.ws.annotation jdk.localedata

java.corba javafx.base jdk.management

java.datatransfer javafx.controls jdk.management.agent

java.desktop javafx.deploy jdk.naming.dns

java.instrument javafx.fxml jdk.naming.rmi

java.jnlp javafx.graphics jdk.net

java.logging javafx.media jdk.pack

java.management javafx.swing jdk.plugin

java.management.rmi javafx.web jdk.plugin.dom

java.naming jdk.accessibility jdk.plugin.server

java.prefs jdk.charsets jdk.scripting.nashorn

java.rmi jdk.crypto.cryptoki jdk.scripting.nashorn.shell

java.scripting jdk.crypto.ec jdk.sctp

java.se jdk.crypto.mscapi jdk.security.auth

java.se.ee jdk.deploy jdk.security.jgss

java.security.jgss jdk.deploy.controlpanel jdk.snmp

java.security.sasl jdk.dynalink jdk.unsupported

java.smartcardio jdk.httpserver jdk.xml.dom

java.sql jdk.incubator.httpclient jdk.zipfs

java.sql.rowset jdk.internal.le oracle.desktop

java.transaction jdk.internal.vm.ci oracle.net

java.xml jdk.javaws

java.xml.bind jdk.jdwp.agent

Table 3-2 contains a short description of each of the standard Java SE modules, as described in the
JDK 9 API documentation.

Chapter 3 ■ Modular JDK and Source Code

33

Table 3-2.  The Standard Modules According to the Java Platform Standard Edition 9 API Specification

Module name Description

java.activation Represents the JavaBeans Activation Framework API

java.base Represents the primary APIs of the Java SE platform

java.compiler Expresses the Annotation Processing, Language Model, and Java Compiler APIs

java.corba Defines the RMI-IIOP API and the OMG CORBA APIs

java.datatransfer Defines an API for exchanging information between applications

java.desktop Comprises the AWT and Swing user interface toolkits and also APIs for
printing, audio, imaging, and more

java.instrument Contains the services that permit agents to instrument programs that
execute on the Java Virtual Machine

java.logging Expresses the Java Logging API

java.management Represents the Java Management Extensions API

java.management.rmi Represents the RMI connector for the Java Management Extensions API

java.naming Contains the Java Naming and Directory Interface API

java.prefs Specifies the Preferences API

java.rmi Holds the Remote Method Invocation API

java.scripting Represents the Scripting API

java.se Represents the core Java SE API

java.se.ee Represents the full API of the Java SE platform

java.security.jgss Includes the Java binding of the Generic Security Services API

java.security.sasl Contains Java support for the Simple Authentication and Security Layer

java.sql Represents the Java DataBase Connectivity API

java.sql.rowset Determines the JDBC RowSet API

java.transaction Specifies a subdivision of the Java Transaction API

java.xml Includes the Java API for XML Processing, the Streaming API for XML, the
Simple API for XML, and the W3C Document Object Model API

java.xml.bind Represents the Java Architecture for XML Binding API

java.xml.crypto Describes the XML Cryptography API

java.xml.ws Specifies the Web Services Metadata API and the Java API for XML-based
Web Services

java.xml.ws.annotation Specifies a part of the Commons Annotations APIs to support programs
running on the Java SE platform

Chapter 3 ■ Modular JDK and Source Code

34

Platform Modules
The JCP team put a lot of effort into modularizing the Java platform. The most difficult tasks were to
investigate and evaluate the dependencies between different parts of the libraries and to split all the classes
from the JDK and put them into modules.

The platform modules are the modules that resulted after splitting the JDK. They completely replace the
monolithic JDK and enable us to create custom runtime images. These can consist of a specific configuration
that contains a subset of modules together with their transitive dependencies. This subset of modules
can represent one module or more than one module. It can also represent all the modules, which is the
equivalent of the entire JDK. It’s also possible to combine platform modules together with our own created
modules in order to form a runtime image.

Each module has a determined functionality and can define dependencies upon other modules.
A platform module is part of the Java runtime and contains source code. Platform modules are able to
export their packages so they can be accessible from other modules that read them. When we generally
talk about modules, we mean not only the platform modules but also the modules created by application
programmers. These modules don’t have a special definition. We could call them “developer modules” or
“programmer modules” in order to make a clear distinction between them and the modules that are by
default part of the platform, which are the platform modules.

There are two different kinds of platform modules: standard modules and non-standard modules.

Standard Modules
The standard modules are managed by the Java Community Process (JCP). The names of the standard Java
SE modules start with java.*. These names are explicit enough, so it’s quite easy to imagine what the role of
the module is. For example, the module named java.rmi defines the Remote Method Invocation API, and the
module named java.logging defines the Java Logging API. A standard module can consist of standard API
packages as well as non-standard API packages. It can also depend upon one or more non-standard modules.

Non-standard Modules
The non-standard modules are specific to JDK. Their names start with jdk.*. Non-standard modules
contain packages and specific JDK code, which may be distinct between various implementations of the
Java Development Kit. Some JDK modules, such as tools or service providers, don’t export anything, which
means they’re not visible outside the module.

Two things are very import to remember: first, that standard API packages must not be exported by
non-standard modules, so their visibility remains hidden from outside. Second, and certainly the most
important thing to keep in mind, is that the source code that depends only upon Java SE modules will
depend only upon standard Java SE types. This is a great advantage because the code becomes portable to
all the existing implementations of the Java SE platform, as stated in the official description of the JEP 200
under http://openjdk.java.net.

Turning a JDK-specific API into a Java standard API is possible, but special focus is required regarding
compatibility. When considering doing this, you should take into account whether it’s feasible and necessary
by looking at the way it’s used. For example, the reason why the Java Debug Interface wasn’t turned into a
standard API is because it’s used only by tools and debuggers, so it definitely doesn’t make sense to enhance
it to be part of the Java Standard API.

Every platform module contains a folder called classes inside a folder called share. The classes folder
contains all the classes that compose the module, along with the module descriptor in a file called module-
info.java. Some modules, such as the java.base module, have native code for different operating systems like
Windows, Linux, macOS, and so on.

http://openjdk.java.net

Chapter 3 ■ Modular JDK and Source Code

35

The JDK Module Graph
The modularization of the Java 9 platform can be well represented as a module graph. Figure 3-1 shows an
excerpt of the new module graph of the JDK containing only the standard SE modules. It is resulted after
splitting the JDK into modules.

java.se.ee

java.xml.ws

java.xml.ws.annotation

java.security.jgss java.management java.corba

java.desktop java.instrumentjava.naming

java.security.sasl

java.smartcardio java.scripting java.logging java.xml java.datatransfer

java.base

java.rmi java.sql java.xml.crypto java.prefs

java.transaction

java.sql.rowset java.activation java.compiler

java.xml.bind java.management.rmi

java.se

java.jnlp

Figure 3-1.  A part of the module graph of JDK 9 representing only the standard SE modules

Only the standard Java SE modules are shown in this graph (the non-Java SE modules aren’t shown due
to lack of space). In the graph, the modules are represented by the nodes, and the dependencies between
modules are expressed with arrows. If a module depends on another module, there’s a direct arrow from one
module to another.

We have two categories of lines between the modules. The solid lines illustrate an implied readability
between modules, and the dashed lines mean there is only simple readability between modules but no
implied readability. But in both cases, the module reads another module, meaning the module depends on
the other module. For instance, there’s a solid line between module java.transaction and module java.rmi.
This means that module java.transaction requires transitive module java.rmi. There’s also a dashed line
between module java.xml.ws and module java.xml.ws.annotation, which means that module java.xml.ws
requires module java.xml.ws.annotation. In other words, module java.xml.ws uses types from module java.
xml.ws.annotation.

Chapter 3 ■ Modular JDK and Source Code

36

The graph is hierarchical and clean, has no cycles, and contains no split packages. It has no circular
dependencies, because they’re not allowed. The java.base module is right at the bottom of the graph. It
doesn’t depend on any other module. All the rest of the modules depend directly or indirectly on module
java.base (not shown in the module graph due to lack of space). Therefore, there are lines to module java.
base only for the modules that require only java.base and nothing else. For the modules that require at least
one more module besides java.base, there’s no line to module java.base.

The java.se.ee module is located at the top of the module graph. It acts like an aggregator module and
consists not only of all the Java SE modules, but also of the modules that overlap with the specification of
Java EE. Module java.se.ee adds none content of its own. It has only a module descriptor that gathers the
contents of the following modules:

•	 module java.se

•	 module java.activation

•	 module java.xml.ws.annotation

•	 module java.corba

•	 module java.transaction

•	 module java.xml.bind

•	 module java.xml.ws

In chapter 4, we show what a module descriptor is. The module java.se.ee consists of all the Java SE APIs.
Compared to module java.se.ee, the java.se module is an aggregator that consists of the parts of the Java SE that
don’t overlap with Java EE. The java.se module gathers the contents of the following modules: java.datatransfer,
java.logging, java.sql, java.instrument, java.security.jgss, java.security.sasl, java.prefs, java.xml.crypto, java.rmi,
java.xml, java.naming, java.compiler, java.desktop, java.scripting, java.management.rmi, java.sql.rowset, java.
management, and java.base.

■■ Note  The module graph in Figure 3-1 shows only the standard SE modules. The non-standard SE modules
(with names that start with jdk.*), the Java FX modules (names start with javafx.*), and the Oracle modules
(names start with oracle.*) aren’t displayed in this module graph.

More on Modules
Now we will learn how to read the description of a module and to present the module java.base.

Read the Description of a Module
To get the entire description of a module, we can use the --describe-module command-line option of the
Java launcher, followed by the module name:

$ java --describe-module <module_name>

By running the --describe-module option on module java.naming, we get the following output:

java.naming@9
exports javax.naming
exports javax.naming.directory
exports javax.naming.event

Chapter 3 ■ Modular JDK and Source Code

37

exports javax.naming.ldap
exports javax.naming.spi
requires java.base mandated
requires java.security.sasl
uses javax.naming.spi.InitialContextFactory
uses javax.naming.ldap.StartTlsResponse
provides java.security.Provider with sun.security.provider.certpath.ldap.JdkLDAP
qualified exports com.sun.jndi.toolkit.ctx to jdk.naming.dns
qualified exports com.sun.jndi.toolkit.url to jdk.naming.dns jdk.naming.rmi
contains com.sun.jndi.ldap
contains com.sun.jndi.ldap.ext
contains com.sun.jndi.ldap.pool
contains com.sun.jndi.ldap.sasl
contains com.sun.jndi.toolkit.dir
contains com.sun.jndi.url.ldap
contains com.sun.jndi.url.ldaps
contains com.sun.naming.internal
contains sun.security.provider.certpath.ldap

The preceding code displays the entire information contained in the module-info.java file of the java.
naming module. It additionally contains the contains clauses, which aren’t displayed in the module-info.
java file:

•	 The exports statements denote that module java.naming make the packages
javax.naming, javax.naming.directory, javax.naming.event, javax.naming.ldap,
and javax.naming.spi available to any other module that depends on it (on module
java.naming).

•	 The requires statements from the preceding code denote that module java.naming
depends on module java.base and also on module java.security.sasl, meaning that
the exported types in those two modules are used inside the java.naming module.
For instance, the class LDAPCertStore from the java.naming module imports all the
java.security subpackages that are part of module java.security.sasl.

•	 The uses statement takes as an argument a type name that represent a service type.
In our case, module java.naming consumes instances of InitialContextFactory
and StartTlsResponse.

•	 The provides statement specifies that the module provides the implementation of
java.security.Provider (from module java.base) with sun.security.provider.certpath.
ldap.JdkLDAP.

•	 The statement qualified exports com.sun.jndi.toolkit.url to jdk.naming.rmi
means that package com.sun.jndi.toolkit.url from the java.naming module should be
accessible only in the module jdk.naming.rmi. If we take a look in the jdk.naming.rmi
module, we find there a class called rmiUrlContext that imports the class com.sun.
jndi.toolkit.url.GenericURLContext from module java.naming. This is why module
java.naming needs to specify that it exports the package to module jdk.naming.rmi.

•	 The contains clauses list all the packages from the module that aren’t part of the
standard API.

Chapter 4 explains in detail what the exports, requires, uses, and provides clauses mean and how
they can be used.

Chapter 3 ■ Modular JDK and Source Code

38

Module java.base
With more than 5,600 classes and a size of more than 43 MB, java.base is one of the largest modules of the
Java Platform Module System. Every module depends on java.base by default, as the java.base module is
located at the bottom of the module graph, representing the core of the system.

The module java.base contains the core APIs and encapsulates the Java runtime. It’s not mandatory for
a module to explicitly declare that it depends on module java.base because it depends on it automatically.
Writing requires java.base is allowed, but it’s not necessary because the compiler inserts it anyway
by default.

The module java.base contains the following packages:

•	 java.io

•	 java.lang.*

•	 java.math

•	 java.net.*

•	 java.nio.*

•	 java.security.*

•	 java.text.*

•	 java.time.*

•	 java.util.*

•	 javax.crypto.*

•	 javax.net.*

•	 javax.security.*

■■ Note  I used *to indicate the package and all its corresponding sub-packages.

The module java.base represents the root of the module system because it contains classes like java.
lang.Object, java.lang.Class, java.lang.String, java.lang.System, and reflection classes like java.
lang.reflect.Constructor and java.lang.reflect.Method.

All the Java platform packages are exported by the java.base module, meaning they’re accessible to any
other modules:

// module-info.java (module java.base)
module java.base {
 exports java.io;
 exports java.lang;
 exports java.lang.module;
 ...
 ...
 exports java.text;
 exports java.time;
 exports java.util;
 exports javax.net;
}

Chapter 3 ■ Modular JDK and Source Code

39

The module java.base, called the base module of the system, depends upon no other module. We say
that it has no dependencies upon other modules, meaning that its module-info.java file contains no requires
clauses. Module java.base also contains the new java.lang.module package introduced in JDK 9, which is
part of the new module API. Chapter 9 covers the java.lang.module package. It’s also important to remember
that java.base is not an aggregator module.

There will be situations when java.base will be the only module you need in order to compile and
run a simple Java application. If all the types you need are in packages contained in the java.base module,
then java.base is all you need. Due to the fact that java.base has no dependencies on other modules, there
aren’t any other modules that have to be utilized together with java.base. This is a great advantage because
before JDK 9 we had to take the entire JDK since even a simple class like java.lang.Object previously had
to be used with a large number of classes. A module also contains a new file called module-info.java, which
represents the module descriptor, which Chapter 4 describes in detail.

In addition, java.base contains lots of JDK internal packages like jdk.internal.util, sun.io, sun.text, sun.
util, com.sun.crypto.provider, com.sun.net.ssl, and more.

■■ Note U se the Java launcher with the option --describe-module java.base to find out all the available
information related to the java.base module descriptor.

We’ve seen how the JDK was modularized and what the module graph looks like. In the next section,
you’ll learn about the modularization of the source code.

Modular Source Code
Whereas JEP 200’s role is to divide the JDK into a set of modules, JEP 201’s role is, according to Open JDK,
“to reorganize the source code in the JDK into modules, enhance the build system to compile modules, and
enforce module boundaries at build time.” The layout of the source code was entirely changed in JDK and
replaced by modules. The whole source code of a module is now inside a single directory. Therefore, in JDK 9
we have a new scheme of the source code, and that’s the focus of this section.

New Scheme for the Source Code
Figure 3-2 illustrates the new scheme of the source code in the JDK.

src / <module_name> /

aix

linux

macosx

share

solaris

unix

windows

/

conf

classes

lib

native

Figure 3-2.  New scheme of JDK 9 source code

http://dx.doi.org/10.1007/978-1-4842-2713-8_9

Chapter 3 ■ Modular JDK and Source Code

40

The src directory of the JDK contains a list of directories that represent modules names. Each module
has its own directory. The directories’ modules names start with java.* or jdk.* and represent the names of
the modules.

Every module directory contains a share directory, which consists of cross-platform source code.
Additionally, a module directory can also contain other directories related to operating systems, like aix,
linux, macosx, solaris, unix, and windows. These directories contain source code pertaining to a single
operating system only. Not all the modules contain all the operating-system directories just listed. There are
modules that contain operating-system-specific source code for all the operating systems (like java.base or
java.desktop) or only for a part of them. For instance, the module java.prefs consists only of three operating-
system directories: macosx, unix, and windows—meaning that this module doesn’t have any source code
specific to Linux or Solaris inside it.

■■ Note  The aggregator modules like java.se.ee and java.se don’t have any operating-system-specific source
code because they don’t have any source code inside their directories.

The next level of directories inside a module contains directories with names like classes, conf, lib,
native, and doc. Except for the conf directories, the other four directories can also be found in JDK 8 under
the share directory.

The classes directories in JDK 9 consist of Java source files grouped into directories that designate
the structure of their packages. We want to point out two main differences to JDK 8: first, in JDK 9 there’s
a classes directory for each of the existing modules. Even the aggregator modules have a classes directory.
Second, in JDK 9 a module-info.java file is placed in the root of the classes directory. The module-info.java
file represents the module descriptor and was introduced in Java 9. Each module has a module-info.java file
inside its classes directory. The classes directory can contain java, javax, jdk, sun, com, or org directories,
depending on the packages contained in it.

The conf directory includes configuration files, which may be properties files, security policy files,
policy files, and so on. This is a new directory that didn’t exist in JDK 8.

The lib directory is present only in java.base and consists of the file default.policy in the directories
share, solaris, and windows.

The native directory holds C and C++ source files, native classes, and procedures. It can contain some
of the following directories: include, launcher, common, libfdlibm, libjava, libjimage, libjli, libnet, libnio,
libverify, libzip, and more. According to Open JDK, the names of the directories correspond “to the names of
the shared libraries into which the compiled code will be linked.” The include folder represents an exception
to this rule because it has C/C++ header files in it.

■■ Note  The classes and native directories weren’t renamed in JDK 9 because doing so could create
confusion and slow the adoption of JDK 9.

Chapter 3 ■ Modular JDK and Source Code

41

Table 3-3.  Location of Some of the Most Important Java Classes

Class name Location

java.lang.Object src / java.base / share / classes / java / lang

java.lang.String src / java.base / share / classes / java / lang

java.lang.Exception src / java.base / share / classes / java / lang

java.lang.Class src / java.base / share / classes / java / lang

java.util.ArrayList src / java.base / share / classes / java / util

java.util.Date src / java.base / share / classes / java / util

java.io.File src / java.base / share / classes / java / io

java.net.URL src / java.base / share / classes / java / net

java.text.Format src / java.base / share / classes / java / text

java.util.logging.Logger src / java.logging / share / classes / java / util / logging

java.sql.DriverManager src / java.sql / share / classes / java / sql

■■ Note A s you can see in Table 3-3, the most important and useful Java classes are in module java.base,
the base module.

The next subsection describes the new structure of the source code in JDK 9.

Comparison Source Code Structure
Here’s a short comparison between the structure of the source code in JDK 8 and JDK 9. In JDK 8, the
structure of the source code looks like this:

jdk / src / share / {back; bin; classes; demo; doc; instrument; javavm; lib; native; npt;
sample; transport}

In JDK 9, the structure of the source looks like this:

jdk / src / <module_name> / share / {classes; conf; lib; native; doc}

As you can see, an intermediary directory containing the module name was added between the
directories src and share. Another important difference between JDK 8 and 9 is that in JDK 9 for each
classes directory of each module there’s a module-info.java file at the root level. In JDK 9, under the classes
directory and its subdirectories are only the packages and the classes that belong to the corresponding
module. In JDK 8, the classes directory and its subdirectories contain all the packages and classes that
comprise the Java platform.

Table 3-3 shows where some of the most important classes in Java are now located.

Chapter 3 ■ Modular JDK and Source Code

42

Build Process Adjustments
Not only the source code, but the build itself was organized around modules. There are a new proposed
layout and new build targets. The output emitted during the build is different in Java 9 compared to previous
versions. The build was changed so that it builds everything as modules. Besides that, the make files have
been split into module specific files.

Table 3-4 shows the new structure of the build system in JDK 9 compared to the one that existed in JDK 8.

Table 3-4.  Comparison Between the Structure of the Build System in JDK 8 and JDK 9

Structure of the Build System in JDK 8 Structure of the Build System in JDK 9

jdk / classes / *.class jdk / modules / <module_name> / *.class

Table 3-5.  Target commands Used to Build the JDK 9

Target Command Description

make java Compiles all Java classes from the system

make java.sql Compiles Java code as well as native code in the java.sql module together
with all its dependencies

make java.sql-java Compiles only the Java classes in the java.sql module together with all its
dependencies

make [default] Compiles everything

make all Builds everything (JARs, docs, images, and so on), executes a verification
tool on the Java classes which finds broken module boundaries

make images Same functionality as JDK 8

make hotspot Same functionality as JDK 8

make docs Builds the entire documentation

make docs-javadocs Builds only the javadoc

make gensrc Executes all the steps involving the generation of source code

Table 3-5 shows a list of target commands together with their descriptions that are used to build the JDK 9.
These are described in the official JDK 9 API specification.

The prospect of compiling only one module at a time is one of the most important changes to the build
system. A module can be compiled together with its dependencies, and the compiled classes are divided
into modules. During the build process, the modules that are independent can be compiled at the same
time. If module boundaries are violated, the build process won’t succeed.

The first module to be compiled is the java.base module because it’s required by all other modules.
The module graph is traversed in a reversed order (starting from bottom to top) during the compilation.
This makes sense because by compiling the modules successively from java.base up to the top of the module
graph, we avoid the situation of compiling a module that has a dependency on a module that has not been
compiled.

Chapter 3 ■ Modular JDK and Source Code

43

■■ Note  A great advantage of being able to compile modules lies in the fact that the source code in the
JAX-WS, JAXP, and CORBA repositories can now use the new Java language APIs. In the Java versions prior to
version 9, that wasn’t possible because those repositories were compiled before the JDK repository.

The JCP team performed significant modifications to the build system in order for modules to be built
independently. For instance, a change performed in the java.logging module won’t determine a new build of
the java.base module. This is a great achievement because it boosts productivity.

Summary
This chapter covered two of the most important JEPs of the Java Platform Module System: the Modular SDK
and the Modular Source Code.

First, we showed how to list all the modules of the Java runtime system using the --list-modules
command-line option. We then gave a brief explanation of the standard modules that are part of the Java
Platform Standard Edition 9 API Specification. We explained what the platform modules are and talked
about the characteristics of the standard and non-standard modules that comprise the Java Platform
Module System. We also showed the new JDK module graph that resulted after the JDK modularization.
And we showed how to get the entire content of the module descriptor of module java.naming using the
--describe-module <module_name> command-line option. The end of the first part discussed the module
java.base, the most important module of the Java Platform Module System.

The second part of the chapter focused on describing the changes performed at the source code level
due to the implementation of JEP 201 (the Modular Source Code). We started by presenting the new scheme
of the JDK 9 source code and then described how the source code was organized into directories and what
each directory represents. We pointed out the differences between the source code layout in JDK 8 and
JDK 9. The chapter finished by talking about the way the build system was enhanced in order to meet the
requirements of the newly introduced modules that are now first-class components of the Java platform.

Chapter 4 explains what a module is and shows how you can define and use your own modules.

45© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_4

CHAPTER 4

Defining and Using Modules

In this chapter we’ll start to develop modular applications in Java 9 using some of the features offered by
Project Jigsaw. We’ll begin by explaining the new concept of a Jigsaw module together with its module
declaration, the module-info.java file. You’ll also learn about the five types of directives that can be used
inside the module declaration: requires, exports, uses, provides, and opens. Then we’ll look at compiling
and running modules using JDK 9, and for that we’ll introduce the new module path in detail.

The accessibility changes introduced in Java 9 are also covered in this chapter. They have a great impact
on the platform because they differ almost entirely from the old accessibility rules that were in place before
in Java. In Java 9 we can have more types of modules: normal modules, automatic modules, named modules,
observable modules, open modules, and unnamed modules. Each is briefly covered in this chapter.

The Concept of Module
As you know by now, Java 9 introduces a new sort of first-class components called modules. A Jigsaw module,
also a fundamental part of the Java 9 Platform, represents a container of packages. It contains packages,
resource files, and native code. The packages can contain Java classes, enumerations, and interfaces.

Figure 4-1 displays the general structure of a module.

MODULE

Pa
ck

ag
es Classes

Interfaces

Resource and configuration files

Native code

Figure 4-1.  General structure of a module

Chapter 4 ■ Defining and Using Modules

46

A module consists of the source files together with the module declaration represented by the
module-info.java file. Here’s a typical directory structure of a module named com.apress.moduleA:

src/
 com.apress.moduleA/
 module-info.java
 com/apress/moduleA/
 Main.java
 // other files

A directory having the same name with the name of the module is located right at the top. Inside it is the
module-info.java file as well as a structure of directories representing the format of the package. In our case, the
package has the same name as the module name. The .java files are located inside the directories of the package.

■■ Note  It’s also possible to define a module that has no source files and no packages except the module
descriptor module-info.java.

We mentioned the module declaration module-info.java. In the next subsection you’ll learn about it.

Module Declaration
Each module has a module declaration located into a special new file called module-info.java, located in the
top level of the directory. To define a module in Java 9, we create the file module-info.java and put inside it
the new keyword module followed by the module name and the module declaration in curly brackets.

Declaring a module is easy and straightforward. In this example, a module called com.apress.moduleA
is declared inside the module-info.java file:

module com.apress.moduleA {}

In this case, the module declaration doesn’t contain anything besides the module heading. Module
com.apress.moduleA doesn’t require any modules, nor does it export any packages, and it doesn’t provide or
consume any services.

As already mentioned, each module must have a module declaration and thus must contain an own
module-info.java file. This rule applies no matter whether it’s a platform module or a module created by
developers. If the module-info.java file isn’t present, the Java compiler doesn’t treat the source code as a
module. The module-info.java file gets compiled in exactly the same way as a Java file.

If we change the name of the module-info.java file to something else, the compiler will interpret the
file as a normal file rather than as a module descriptor. In this case, the module system won’t be able to
recognize the module anymore.

■■ Note  In order to move the source code into a module, a module descriptor is mandatory. Otherwise, the
source code won’t be part of a module.

Let’s describe some cases to see what we can put in a module-info.java file and what we can’t. Module-
info.java can’t contain anything besides the module definition. The Java compiler can recognize syntax
errors in the module declaration.

Chapter 4 ■ Defining and Using Modules

47

If the module declaration isn’t in the module-info.java file, the following error message will be displayed
by the Java compiler, and the compilation will fail:

Error: module declarations should be in a file named module-info.java

A Java class can’t be put into the module-info.java file instead of a module. If you try to do so, the
compilation will also fail:

error: cannot access module-info
 bad source file: src\com.apress.moduleA\module-info.java
 file does not contain module declaration
 Please remove or make sure it appears in the correct subdirectory of the sourcepath.

Besides that, attempting to write two module declarations in a single module-info.java file will also
result in a compilation error. As we already observed in the examples presented earlier, the Java compiler
gives concrete indications about the cause and the location of the errors. In this way, we can go directly to
the line of code that generates the issues and provide a fix for it.

The module-info.java module descriptor is compiled together with the source code. As a result, .class
files, including a module-info.class file, are generated. All these compiled files can be packaged as a modular
JAR file (we cover modular JAR files later in this chapter). The compiler treats module-info.java like any other
Java file and translates it into a module-info.class file that we can put in a JAR file. The result is a modular JAR.

■■ Note  The name of file module-info.java was chosen by the JCP team after the already existing name of the
package-info.java file. The compiler can make use of the module-info.java file even if it contains an illegal Java
identifier (the dash) in its name definition.

Platform modules consist of a module-info.java file by default. If we create our own module, in most
cases we have to create and write the content of the module-info.java file on our own. But there are two cases
when we don’t write a module-info.java file on our own:

•	 When we put a JAR file on the module path, a module-info.java file will be
automatically generated.

•	 When we automatically generate a module-info.java file for a specific JAR file using
the JDeps tool and the option --generate-module-info.

Don’t worry if notions like module path and JDeps are unfamiliar to you. You’ll find out later in this
book what they are.

Module Name
Specifying a name for the module is mandatory. Two modules within the same code base can’t have the
same name. It’s good practice to name our modules the same way we name packages: by using the domain
names in reverse order. The name of the module could therefore be a prefix of the names of its exported
packages, but we can name our modules how we want because we don’t have any constraints regarding
the format of the module name. Nevertheless, the name of the module complies with the general rules of
identifiers in Java. A module can have the same name as a Java class or an interface, because the names of
the modules have their own namespace.

Chapter 4 ■ Defining and Using Modules

48

■■ Note  There is an exception to the rule: when compiling multiple modules at the same time, it’s mandatory that
the module name has the same name as the directory where the module descriptor module-info.java is located.

Inside a module declaration we can have a total of five types of clauses, discussed next.

Five Types of Clauses
A module declaration can consist of up to five types of clauses:

•	 requires clauses specify the module that’s required by the current module.

•	 exports clauses specify the packages that are exported by the current module

•	 provides clauses specify the service implementations that the current module
provides

•	 uses clauses specify the services that the current module consumes

•	 opens clauses specify the packages that the current module opens for deep reflection

Table 4-1 describes the syntax of these five clauses.

This chapter covers only the first three clauses: requires, exports, and opens. The last two, provides
and uses, are covered in Chapter 6 because they’re related to services.

Let’s continue by exploring in detail the most common clauses typically used inside a module
declaration: the requires clause and the exports clause.

The requires Clause
The requires clause is used inside the module declaration (module-info.java) to express the module
that the actual module needs upon in order to fulfill its dependencies. It’s used to express the module’s
dependencies.

Figure 4-2 shows the syntax of the requires clause.

Table 4-1.  The Five Clauses from a Module Descriptor

Directive Keyword Description

requires <module_name> Expresses which other modules the current module depends on.

exports <package_name>
(to <module_name>)

Expresses which packages from the current module are exported
outside the module. The optional to clause lists the modules to
which the packages are exported.

opens <package_name> Makes the <package_name> available for deep reflection at runtime.

provides <service_name> with
<service_name_implementation>

Specifies that the current module provide the implementation of
<service_name> with <service_name_implementation>.

uses <service_type> Specifies that the current module consumes instances of
<service_type>.

http://dx.doi.org/10.1007/978-1-4842-2713-8_6

Chapter 4 ■ Defining and Using Modules

49

The syntax is simple and concise. The requires directive specifies the name of the module it depends
upon, followed by a semicolon. Inside the curly brackets of the module declaration we can put one or more
requires clauses, each of them followed by the name of the module.

In the following example, the module com.apress.moduleA requires two modules, module com.apress.
moduleB and module com.apress.moduleC:

module com.apress.moduleA {
 requires com.apress.moduleB;
 requires com.apress.moduleC;
}

In this example, two dependencies are expressed using the requires clauses. Module com.apress.
moduleA has a dependency on module com.apress.moduleB and also has a dependency on module com.
apress.moduleC. In this case, we say that module com.apress.moduleA requires (or reads) module com.
apress.moduleB and requires (or reads) module com.apress.moduleC.

Figure 4-3 shows a module graph that illustrates these dependencies.

In the module graph we have an arrow from module com.apress.moduleA to module com.apress.
moduleB and also an arrow to module com.apress.moduleC. There is no arrow between module com.
apress.moduleB and module com.apress.moduleC because those two modules don’t have dependencies
between them. The direction of the arrow is straightforward: from com.apress.moduleA to com.apress.
moduleB, because module com.apress.moduleA reads the module com.apress.moduleB and not inversely.

What does it mean that module com.apress.moduleA has a dependency on module com.apress.
moduleB and on module com.apress.moduleC? It means that module com.apress.moduleA uses types
that are part of module com.apress.moduleB and of module com.apress.moduleC. Because module com.
apress.moduleA uses types from those modules, it has dependencies on them that must be explicit declared
in the module descriptor module-info.java. In this way, the Java compiler knows at compile-time what the
dependencies of a module are and doesn’t allow the compilation if a single dependency is not fulfilled.

name of the module

requires <module_name> ;

Figure 4-2.  Syntax of the requires clause

com.apress.moduleA

com.apress.moduleB com.apress.moduleC

Figure 4-3.  Module graph expressing dependencies between the three modules

Chapter 4 ■ Defining and Using Modules

50

■■ Note  Compared to the class path, the situation when a module dependency isn’t fulfilled is detected right
at compile-time using the Java 9 Module System. It would have not been allowed for module com.apress.
moduleB to also read module com.apress.moduleA at the same time at compile-time. We would then have had
a circular dependency, which is in JDK 9 forbidden by the Java compiler.

If we try to run module com.apress.moduleA, a resolution is first performed. A resolution represents
a process that searches and discovers the modules required by a module. All the modules found on the
host system are being searched, and the modules found are searched again for dependencies. This process
continues and runs until every required module has been covered and until every dependency of every
required module has been solved. In our case, the resolution is simple, because module com.apress.
moduleA requires only two modules: module com.apress.moduleB and module com.apress.moduleC.
We suppose that these last two modules don’t have any dependencies upon other modules. In this case,
the resolution process is successfully finished after all three modules are added to the module graph. For
instance, if module com.apress.moduleB has had other dependencies, these would have been resolved and
also added to the module graph. The result of the resolution process contains the entire data required for
compiling and running the root module, com.apress.moduleA.

Every module implicitly requires java.base, as we already know. Mentioning requires java.base in
the module descriptor is unnecessary because module java.base is by default required by every module.
The module java.base will always be located right at the bottom of the module graph because every module
depends upon it. Figure 4-4 shows the previous module graph with module java.base included at the bottom.

If a module descriptor doesn’t contain any requires clauses, the module doesn’t have any dependency
on any module except for module java.base. Module java.base doesn’t have any requires directives because
it doesn’t depend upon any other module.

Until now, we’ve looked at only the positive cases. Let’s also explore some cases when something goes
wrong and the compilation fails. The compilation will fail if the module used in the requires clause isn’t found.
The following module declaration states that it requires module com.apress.moduleB, but if this module hasn’t
been defined, compiling com.apress.moduleA will result in an error, because its dependencies can’t be fulfilled:

module com.apress.moduleA {
 requires com.apress.moduleB;
}

com.apress.moduleA

com.apress.moduleB com.apress.moduleC

java.base

Figure 4-4.  Module graph expressing dependencies between modules, including module java.base

Chapter 4 ■ Defining and Using Modules

51

We state that a module isn’t defined if it doesn’t have a module-info.java file or if its module-info.java
file doesn’t contain the right name of the module. In the previous example, the output of the compilation of
module com.apress.moduleA results in an error:

error: module not found: com.apress.moduleB

We get the same results if we have a qualified export to a module that isn’t found.
Loops in module declarations aren’t allowed, as in the following example:

module com.apress.moduleA {
 requires com.apress.moduleA;
}

This module declaration has a cyclic dependence and results in a compilation error:

error: cyclic dependence involving com.apress.moduleA requires com.apress.moduleA

■■ Note  Cyclic dependencies aren’t allowed by the module system at compile-time.

Listing 4-1 shows an example of a simple circular dependency between three modules.

Listing 4-1.  Defining Three Module Descriptors for Three Distinct Modules

// module-info.java (module com.apress.moduleA)
module com.apress.moduleA {
 requires com.apress.moduleB;
}

// module-info.java (module com.apress.moduleB)
module com.apress.moduleB {
 requires com.apress.moduleC;
}

// module-info.java (module com.apress.moduleC)
module com.apress.moduleC {
 requires com.apress.moduleA;
}

A circular dependency is present because of the following conditions:

•	 module com.apress.moduleA depends on module com.apress.moduleB.

•	 module com.apress.moduleB depends on module com.apress.moduleC.

•	 module com.apress.moduleC depends on module com.apress.moduleA.

The compilation of these three modules fails because it results in the same cyclic dependence error as
in the previous example.

Every requires statement must contain only one module name. It can’t enumerate two module names
using a comma in a single requires statement. In this case, we’ll get an error during compilation. It’s also
forbidden to duplicate two requires statements in the same module declaration. The compilation error
message would then be as follows:

error: duplicate requires: <module_name>

Chapter 4 ■ Defining and Using Modules

52

What happens when a module depends on other module but doesn’t declare this dependency inside
its module descriptor? In this next example, the descriptor for module com.apress.moduleA reflects that it
doesn’t require any other module. Listing 4-2 shows the module descriptor of this module:

Listing 4-2.  The Module Descriptor of module com.apress.moduleA

// module-info.java
module com.apress.moduleA {

}

In Listing 4-3, module com.apress.moduleA contains a class called Main that imports and makes use of
types from module com.apress.moduleB.

Listing 4-3.  The Main Class of module com.apress.moduleA

// Main.java (module com.apress.moduleA)
package com.apress.moduleA;
import com.apress.moduleB.*;

public class Main {
 public static void main(String[] args) {
 Employee employee = new Employee("John", "Albert");
 System.out.println("First name is : " + employee.getFirstName());
 System.out.println("Last name is : " + employee.getLastName());
 }
}

Listing 4-4 defines the module com.apress.moduleB, which has an empty module declaration.

Listing 4-4.  The Module Descriptor of module com.apress.moduleB

// module-info.java
module com.apress.moduleB {

}

Listing 4-5 defines a POJO class as part of the com.apress.moduleB module.

Listing 4-5.  Class Employee from module com.apress.moduleB

// Employee.java (module com.apress.moduleB)
package com.apress.moduleB;
public class Employee {

 private String firstName;
 private String lastName;

 public Employee() {
 }

Chapter 4 ■ Defining and Using Modules

53

 public Employee(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }
}

We compile all the .java files from both modules at the same time using the following command:

javac -d output --module-source-path src $(find . -name "*.java")

■■ Note  This compilation is done using Cygwin in Windows. Cygwin is a Unix-like command-line interface
that runs in Windows. Throughout this book all the operations are performed using Cygwin.

For compilation we use the --module-source-path command-line option in order to indicate to javac
the location of the source code of the modules. In our example, the --module-source-path src option
defines that the subdirectories of the src directory comprise the code for various modules.

The compilation fails, and we’re informed that the package com.apress.moduleB doesn’t exist:

.\src\com.apress.moduleA\com\apress\moduleA\Main.java:3: error: package com.apress.moduleB
does not exist
import com.apress.moduleB.*;
^
.\src\com.apress.moduleA\com\apress\moduleA\Main.java:8: error: cannot find symbol
 Employee employee = new Employee("John", "Albert");
 ^
 symbol: class Employee
 location: class Main
.\src\com.apress.moduleA\com\apress\moduleA\Main.java:8: error: cannot find symbol
 Employee employee = new Employee("John", "Albert");
 ^
 symbol: class Employee
 location: class Main
3 errors

Module com.apress.moduleA has an empty module declaration. It doesn’t require any other module,
so it can’t access types from other modules according to the strong encapsulation mechanism introduced
in Jigsaw. This is why attempting to access types from the module com.apress.moduleB inside com.apress.
moduleA results in a compilation error.

■■ Note  You can find the source code for this example in the directory /ch04/requiresClause.

Chapter 4 ■ Defining and Using Modules

54

Let’s edit module-info.java of the module com.apress.moduleA and add the dependency to module
com.apress.moduleB. Listing 4-6 shows its new module descriptor.

Listing 4-6.  The Module Descriptor of module com.apress.moduleA

// module-info.java
module com.apress.moduleA {
 requires com.apress.moduleB;
}

Now we try to compile the source code again using the same options. Unfortunately, exactly the same
compilation error as the one that we previously had. That’s because in Java 9 it’s not enough to specify that a
module requires another module in order to access types from that module.

Additionally, the second module must export some of its types in order to make them accessible to the
modules that depend upon it. In our case, for the compilation to successfully work, we must modify module-
info.java of module com.apress.moduleB and specify that it exports all the types from package com.apress.
moduleB. Listing 4-7 shows the new definition of its module-info.java file.

Listing 4-7.  The Module Descriptor of Module com.apress.moduleB

// module-info.java
module com.apress.moduleB {
 exports com.apress.moduleB;
}

To recap, we’ve learned up to now how to define dependencies upon other modules using the requires
clause. The property of a module to specify the modules that it requires represents the base of reliable
configuration. Until now we’ve used only the simple form of the requires clause. Hence, the requires
clause can also include the static keyword as well as the transitive keyword. We explain the requires
transitive clause later in the “Accessibility” section.

The requires static myModule clause indicates that the module myModule should be present
only at compile-time. At runtime, its presence isn’t mandatory. In this way, we must have a compile-time
dependency, but no runtime dependency.

Let’s find out how to make a module express that it makes its packages available for other modules that
depend upon it. The next section explains how the exports clause can be used inside the module declaration.

The exports Clause
The exports clause has the role of exporting a package at compile-time as well as at runtime. It allows a
module to specify which packages it exports. Only an exported package can be available to other modules,
provided that the other conditions regarding reliable configuration are met. The reverse is also true.
A package that isn’t exported isn’t available for any other modules.

■■ Note  A module doesn’t export any package by default. This means that by default, no package from the
current module is available to other modules for access.

Chapter 4 ■ Defining and Using Modules

55

The exports clause is specified in the module descriptor by using the keyword exports followed by the
package name. It’s forbidden to separate packages or modules using a comma. For each package, a separate
exports clause must exist.

Figure 4-5 shows the syntax of the exports clause.

Similar to the requires clause, the exports clause has some constraints. For example, duplicating the
exports statements inside the module declaration isn’t allowed and results in a compilation error:

error: duplicate export: <module_name>

We suppose that module com.apress.moduleB wants to make two of its packages, com.apress.moduleB.
packageB1 and com.apress.moduleB.packageB2, available to other modules that require it. In this case we say
that module com.apress.moduleB exports those packages. Listing 4-8 illustrates this in its module declaration.

Listing 4-8.  The module-info.java of module com.apress.moduleB

module com.apress.moduleB {
 exports com.apress.moduleB.packageB1;
 exports com.apress.moduleB.packageB2;
}

Listing 4-9 states that module com.apress.moduleC also exports a package called com.apress.moduleC.
packageC1.

Listing 4-9.  The Module Descriptor of module com.apress.moduleC

module com.apress.moduleC {
 exports com.apress.moduleC.packageC1;
}

In the following module graph, module com.apress.moduleB has two packages that are both exported.
Module com.apress.moduleC also consists of two packages, but only one is exported according to its module
definition. Package com.apress.moduleC.packageC2 isn’t exported and therefore will never be accessible
outside the module com.apress.moduleC. Any other module attempting to make use of package com.apress.
moduleC.packageC2 will not only fail, it will also not be compiled successfully.

Figure 4-6 shows a new enhanced type of the module graph where we have also inserted the
packages that the module contains. The packages com.apress.moduleB.packageB1, com.apress.moduleB.
packageB2 and com.apress.moduleC.packageC1 are exported, and the com.apress.moduleC.packageC2
package is not exported.

name of the package

exports <package_name> ;

Figure 4-5.  Syntax of the exports clause

Chapter 4 ■ Defining and Using Modules

56

Module com.apress.moduleA can successfully access types in both packages packageB1 and
packagesB2 for the following reasons:

•	 It reads module com.apress.moduleB.

•	 The packages packageB1 and packageB2 are being exported by module com.apress.
moduleB.

However, if a new package were added into module com.apress.moduleB, it would not be accessible to
module com.apress.moduleA unless it were declared as exported in the module description of module com.
apress.moduleB. Module com.apress.moduleA can access types from com.apress.moduleC, but only from
package packageC1 because this is the only package that is being exported by module com.apress.moduleC.
Package packageC2 is not being exported and therefore can’t be accessed by module com.apress.moduleA.

We’ve learned so far how to set up a module declaration file and how to use the requires and exports
clauses. Listing 4-10 presents a simple module with both requires and exports clauses.

Listing 4-10.  The Module Descriptor of module com.apress.moduleA Using Both requires and exports
Clauses

module com.apress.moduleA {
 requires com.apress.moduleB;
 exports com.apress.moduleA.packageP1;
}

In this example, we defined a module called com.apress.moduleA that depends upon another module
called com.apress.moduleB and also exports the package called com.apress.moduleA.packageP1.

The opens Clause
Until now we’ve seen how we can achieve strong encapsulation using the exports directive. But what
happens if we need to access some types using reflection?

■■ Note  The exports clause just shown doesn’t allow its non-public types to become accessible by using
deep reflection.

com.apress.moduleA

com.apress.moduleB
com.apress.moduleB.packageB1
com.apress.moduleB.packageB2

com.apress.moduleC.packageC1
com.apress.moduleC.packageC2

com.apress.moduleC

Figure 4-6.  Module graph showing which packages are exported and which aren’t

Chapter 4 ■ Defining and Using Modules

57

There are two different situations for using reflection in Java 9:

•	 Code in the unnamed module (the class path) can access code in any named
modules using reflection. This is possible due to a flag called --illegal-access
that’s set by default and that was added by the JCP team in order to ease migration.
Many frameworks such as Hibernate and JPA need reflective access to code in
named modules. These frameworks typically reside on the class path. Chapter 8
discusses the --illegal-access flag in more detail.

•	 Code in a named module can’t access code in any named modules using reflection.

This is where the new opens clause and the --add-opens command-line option come in play.
In order to solve this problem, a new directive called opens was introduced. Its role is to provide

reflective access to the types passed as parameter.

■■ Note  Using opens to export a package that has some internal implementation isn’t recommended. Doing
so will expose the internal implementation and break the strong encapsulation rules.

Figure 4-7 illustrates the syntax of the opens clause.

The opens clause is another clause that can exist in a module descriptor, besides the requires and
exports clauses discussed earlier in this chapter. The opens clause is used inside the module declaration
to define the packages that are available for deep reflection at runtime for all modules. Therefore, both the
public and the private types of the package are accessible using deep reflection by code in other modules.

■■ Note P ackages inside a module are by default available for deep reflection only by code in any unnamed
module.

name of the package

opens <package_name> ;
Figure 4-7.  The syntax of the opens clause

http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 4 ■ Defining and Using Modules

58

There are some characteristics of the opens clauses you should know. First, it’s important to know
that it is possible to use both exports and opens directives for the same package. In this case, the package
is exported for access at compile-time and runtime and also available for deep reflection at runtime. As
a result, its public types can be accessed at compile-time and at runtime, and both its public and private
types can be accessed at runtime using reflection. Second, the opens directive can’t be used inside an open
module. Open modules are covered later in this chapter.

■■ Note  The opens directive can’t use wildcards and cannot contain more than one package.

Other Clauses
The other two directives that can be used inside a module descriptor are the uses and provides clauses. These
clauses are used to define (provides) and consume (uses) services and will be described in Chapter 6 – Services.

■■ Note  None of the five directives already mentioned (requires, exports, opens, uses, and provides) are
mandatory inside a module declaration. There is no restriction in selecting which directive to use and which not
to use. We can create our own module and use any combination of the five directives.

We’ve now seen the basics of the module declaration. It’s time to learn how to compile and run modular
applications in JDK 9.

Compiling and Running Modules
The compilation of a modular Java 9 application is different than in Java 8 or 7. All the examples of compiling
and running modules are expressed in this book using the command-line running a Linux-like environment.
However, this is an unusual practice in day-to-day work. Build tools like Maven or Gradle are far more
productive, suitable, and easy to use for compling and running Java applications. Chapter 12 covers the
integration of Java 9 with Maven and shows how to use it to build, package, compile, and run Java 9 modular
applications.

name of the opened
package

name of the module that will be
able to access the package at

run-time using reflection

opens <package_name> to <module_name>
Figure 4-8.  The syntax of the qualified opens clause

The opens directive can also be qualified by specifying a list of target named modules, as illustrated in
Figure 4-8.

http://dx.doi.org/10.1007/978-1-4842-2713-8_6
http://dx.doi.org/10.1007/978-1-4842-2713-8_12

Chapter 4 ■ Defining and Using Modules

59

Compile a Single Module
Here’s a very simple example of compiling a single module using JDK 9. Suppose we have a module com.
apress.moduleA that has no dependencies. It contains a Main.java file inside its package com.apress.
moduleA. The structure of the folder is as follows:

src/com.apress.moduleA/
 module-info.java
 com/
 apress/
 moduleA/
 Main.java

Listing 4-11 shows the content of class Main. It prints a message on the console.

Listing 4-11.  The Main class from the module com.apress.moduleA

// Main.java
package com.apress.moduleA;
public class Main {
 public static void main(String[] args) {
 System.out.println(“Here is Java 9!”);
 }
}

Listing 4-12 shows the module-info.java file of module com.apress.moduleA. It doesn’t define any clause.

Listing 4-12.  The Module Descriptor for moduleA

// module-info.java
module com.apress.moduleA {

}

First we create the destination directory where the compiler outputs to using the mkdir command:

mkdir –p outputDir

Then we use the Java compiler to compile the Main.java file and the module-info.java file. The
compilation will create a .class file for each .java file:

$ javac –d outputDir/com.apress.moduleA src/com.apress.moduleA/module-info.java src/com.
apress.moduleA/com/apress/moduleA/Main.java

The javac command gets the files that is has to compile. The -d option specifies the directory where the
compiler outputs to. In this case, it will output to the directory outputDir/com.apress.moduleA. The last two
parameters represent the path to the files that we want to compile, module-info.java and Main.java.

The corresponding class files are generated during the compilation in the directory passed as parameter
to the option -d. The compilation of a single module is done very much the same as in Java 7 or 8 without
necessarily needing to use other compiler flags than the ones used in the older versions of Java. Compared to
Java 8, the single distinction here is that module-info.java was also compiled.

Chapter 4 ■ Defining and Using Modules

60

■■ Note  The module declaration from the module-info.java file is compiled along with the rest of the source
code, and a module-info.class file is generated.

Run an Application Containing a Single Module
To run the previously compiled classes, we use the Java launcher with the following command:

$ java --module-path outputDir --module com.apress.moduleA/com.apress.moduleA.Main

As a result, the string “Here is Java9!” is printed at the console. We recognize in the previous listing that
the java command uses new flags for handling modules. The --module-path option, introduced in Java 9,
gets as parameter a directory or a list of directories containing the location of the already compiled files. In
our case, these are in the outputDir directory. The module path is used in order for the compiler to be able to
locate the modules at runtime.

The differences between the module path and the class path are listed later in this chapter, in the
section “The Module Path.”

■■ Note  We exploded the files on the file system as .class files. Another possibility would have been to
package them as modular JARs. Later in this chapter we show how.

The second option used by the Java launcher is the command-line option --module. It’s used to specify
the main class and the main module by taking a parameter in form of <module_name> / <main_class>. The
location of the main class is mandatory information that the java command needs to be aware of.

The Java launcher will load the root module com.apress.moduleA, resolve all its dependencies and
transitive dependencies by running the resolution process, and finally run its Main class, which was passed
to the option --module. At the end, the message is printed in the console.

Congratulations! You just learned how to successfully compile and run your first module in Java 9.
If we had tried to run the java command without the --module-path option, like this

$ java –m com.apress.moduleA/com.apress.moduleA.Main

the following error message would have been displayed:

Error occurred during initialization of VM
java.lang.module.ResolutionException: Module com.apress.moduleA not found
 at java.lang.module.Resolver.fail(java.base@9-ea/Resolver.java:796)
 at java.lang.module.Resolver.resolveRequires(java.base@9-ea/Configuration.java:370)
 �at java.lang.module.Configuration.resolveRequiresAndUses(java.base@9-ea/

ModuleDescriptor.java:2081(
 at jdk.internal.module.ModuleBootstrap.boot(java.base@9-ea/ModuleBootstrap.java:263)
 at java.lang.System.initPhase2(java.base@9-ea/System.java:1925)

What does this error mean? Module com.apress.moduleA isn’t found because we didn’t inform the
Java launcher about the location of the compiled modules. The directory where the compiled modules are
located has to be specified using the --module-path option. The Java launcher can’t find the modules unless
we explicitly specify their location.

Chapter 4 ■ Defining and Using Modules

61

Compile Multiple Modules
Until now, we’ve compiled and executed a single module. But for the compilation of two or more modules,
some extra compiler flags have been introduced in Java 9. In the following example you’ll learn how to
compile multiple modules at the same time.

Suppose we have a total of three modules: module com.apress.moduleA, module com.apress.moduleB,
and module com.apress.moduleC. The structure of the folders for the three modules is like this:

src/com.apress.moduleA/
 module-info.java
 com/
 apress/
 moduleA/
 Main.java
 com.apress.moduleB/
 module-info.java
 com/
 apress/
 moduleB/
 ClassB1.java
 ClassB2.java
 com.apress.moduleC/
 module-info.java
 com/
 apress/
 moduleC/
 ClassC1.java
 ClassC2.java

Further, suppose that for each module the module-info.java doesn’t contain any clause. Listing 4-13
shows the javac command used to compile only the module com.apress.moduleA.

Listing 4-13.  Compile module com.apress.moduleA Using the --module-source-path Flag

$ javac –d outputDir --module-source-path src src/com.apress.moduleA/module-info.java
src/com.apress.moduleA/com/apress/moduleA/Main.java

The compilation of multiple modules at the same time is done using the new --module-source-path
command-line option introduced in Java 9. It’s used to tell javac about the sources in the directory. In this
case we point the --module-source-path to the src directory and output our compiled modules into the
outputDir directory.

The compilation generates the following classes inside the outputDir directory:

outputDir/com.apress.moduleA/
 com/
 apress/
 moduleA/
 Main.class
 module-info.class

The other two modules, com.apress.moduleB and com.apress.moduleC, haven’t been generated
because we didn’t specify them in the javac command. We compiled only the module com.apress.moduleA.

Chapter 4 ■ Defining and Using Modules

62

Let’s specify that module com.apress.moduleA has a dependency on module com.apress.moduleB and
on com.apress.moduleC. Listing 4-14 shows the module-info.java file of module com.apress.moduleA where
we define the dependency using the requires clause.

Listing 4-14.  The Module Descriptor of module com.apress.moduleA

// module-info.java
module com.apress.moduleA {
 requires com.apress.moduleB;
 requires com.apress.moduleC;
}

If we run the javac command from Listing 4-13, we get the following structure of the outputDir directory:

outputDir/com.apress.moduleA/
 com/
 apress/
 moduleA/
 Main.class
 module-info.class
 com.apress.moduleB/
 module-info.class
 com.apress.moduleC/
 module-info.class

In the javac command, we specified to compile only the Main.java and the module-info.java files from
module com.apress.moduleA. But due to the fact that module com.apress.moduleA requires both modules
com.apress.moduleB and com.apress.moduleC, the module descriptors from com.apress.moduleB and
com.apress.moduleC have also been compiled to class files.

We compile all the classes that end with .java using the following command:

$ javac -d outputDir --module-source-path src $(find . -name "*.java")

The --module-source-path option specifies the location of non-compiled files. We search for all the
files that end with the extension .java, including the module descriptor, of course. All the files ending with
.java from all the modules have been compiled to .class files. The structure of outputDir is shown in the
following code. Both Java classes and the module-info.java files have been compiled to .class files:

outputDir/com.apress.moduleA/
 com/
 apress/
 moduleA/
 Main.class
 module-info.class
 com.apress.moduleB/
 com/
 apress/
 moduleB/
 ClassB1.class
 ClassB2.class
 module-info.class
 com.apress.moduleC/

Chapter 4 ■ Defining and Using Modules

63

 com/
 apress/
 moduleC/
 ClassC1.class
 ClassC2.class
 module-info.class

Run an Application Containing Multiple Modules
To run the previously compiled classes, we use the Java launcher with the following command:

$ java --module-path outputDir --module com.apress.moduleA/com.apress.moduleA.Main

This is the same java command used in the previous example, when we ran an application consisting
of only one module. But now we have three modules inside the application that we want to run, so why do
we specify a single module?

The --module option needs to get only the name of the root module. It doesn’t need to get all the
modules. By getting the root module, it starts a resolution process and finds the other modules according to
the information present in the module descriptor.

■■ Note  The --module command-line option gets as parameter only the name of the Main class from the root
module.

The resolution process starts with module com.apress.moduleA and then finds the modules com.
apress.moduleB and com.apress.moduleC. After it finishes, the Main class of the root module is executed.

In this section, we’ve learned how to compile and run multiple modules using Java 9. Now let’s see an
example where compilation fails due to the broken accessibility rules. Here, we import ClassB1 and ClassB2
into Main.java. Listing 4-15 shows the Main class of com.apress.moduleA.

Listing 4-15.  The Main Class

// Main.java
package com.apress.moduleA;
import com.apress.moduleB.ClassB1;
import com.apress.moduleC.ClassC1;
public class Main {
 public static void main(String[] args) {
 System.out.println("Here is Java 9!");
 }
}

We know from the previous example that module com.apress.moduleA requires modules com.apress.
moduleB and com.apress.moduleC. By compiling all the Java files

$ javac -d outputDir --module-source-path src $(find . -name "*.java")

Chapter 4 ■ Defining and Using Modules

64

the following error is thrown:

Main.java:3: error: ClassB1 is not visible because package com.apress.moduleB is not visible
import com.apress.moduleB.ClassB1;

Main.java:4: error: ClassC1 is not visible because package com.apress.moduleC is not visible
import com.apress.moduleC.ClassC1;

2 errors

The compilation fails as a result of strong encapsulation. The classes ClassB1 and ClassC1 can’t be
imported into the Main class. Even if module com.apress.moduleA requires the other two modules, it can’t
access types from them because those types aren’t exported by these modules. The public access modifier
used to define the classes ClassB1 and ClassC1 isn’t able to enforce accessibility any more in Java 9.

In order to make the classes ClassB1 and ClassC1 available to the Main class, we must explicitly specify
the following two things:

•	 In the module descriptor of module com.apress.moduleB, we specify that the
package containing the ClassB1 is exported.

•	 In the module descriptor of module com.apress.moduleC, we specify that the
packages containing the ClassC1 is exported.

By doing this, all classes from the exported package from module com.apress.moduleB and from the
exported package from module com.apress.moduleC will be accessible in this way to module com.apress.
moduleA, and the compilation will succeed without any error.

Private vs. Public Methods
We extend our example to be able to call a method from a different module. A private method won’t be able
to be accessed from other module even if the module is read and the corresponding types are exported.

■■ Note  It’s important to remember that a private method is always package private.

Listing 4-16 shows the class ClassB1 from package com.apress.moduleB which has a new private
static method.

Listing 4-16.  Class ClassB1 Contains a Private Method

// ClassB1.java
package com.apress.moduleB;
public class ClassB1 {
 private static String getInfoForClassB1() {
 return "ClassB1 from ModuleB";
 }
}

Listing 4-17 shows how the Main class from module com.apress.moduleA calls the static method from
ClassB1.

Chapter 4 ■ Defining and Using Modules

65

Listing 4-17.  Class Main

// Main.java
package com.apress.moduleA;
import com.apress.moduleB.ClassB1;
import com.apress.moduleC.ClassC1;

public class Main {
 public static void main(String[] args) {
 System.out.println(“Here is Java 9!”);
 System.out.println(ClassB1.getInfoForClassB1());
 }
}

The compilation fails with the following error message:

Main.java:10: error: getInfoForClassB1() has private access in ClassB1

By setting the getInfoForClassB1() method to public in ClassB1.java, the compilation will succeed.
Running the application

$ java --module-path outputDir –m com.apress.moduleA/com.apress.moduleA.Main

results in the following being printed:

Here is Java 9!
ClassB1 from ModuleB

In this example, we showed that having an access identifier as private makes the type inaccessible, as
in the previous versions of Java.

We’ve learned how to compile and run modular applications in Java 9. In the next section we discover
the new modular JAR files introduced in Jigsaw.

Modular JARs
The modular JARs were introduced in JDK 9. They represent module artifacts that contain compiled module
definitions. A modular JAR resembles a regular JAR and contains .class files and also a module-info.class
file. The difference between a modular JAR and a regular JAR consists only of the module-info.class that a
modular JAR additionally has.

The module-info.class file lies in a modular JAR at the top level of its directory. Every modular JAR must
contain such a file. If it doesn’t, it’s just a regular JAR file, not a modular one.

■■ Note  The module-info.class is located at the root of the directory, inside the modular JAR file. It’s not
located inside the packages.

A modular JAR can be used on the module path as well as on the class path. When used on the class
path, the module-info.class file isn’t taken into consideration.

Chapter 4 ■ Defining and Using Modules

66

■■ Note  A modular JAR file is compatible with older versions of the JDK. It works as a regular JAR file on the
class path for all Java versions prior to Java 9.

Because the module descriptor is compiled in a module-info.class file in Java 9, a modular JAR can work
as a module by being placed on the module path. If we place the modular JAR on the class path, the module-
info.class file will be simply ignored. But all the other files of the modular JAR, except the module-info.class
file, will be taken into consideration. In this way, the modular JAR will act as a normal JAR file.

It’s a great advantage to have a JAR file that can be used either on the class path or on the module path.
We could compile a library and be able to use it on the class path for JDK 8 (or earlier) or compile it with JDK
9+ and use it on the module path.

■■ Note  A modular JAR can incorporate only one module. It can’t be composed of more than one module.

The alternative to modular JARs would be to explode the compiled modules on the file system. Both
solutions work, but it’s definitely better and more suitable to have a single modular JAR instead of a group of files.

Let’s imagine a situation where the module path contains two modular JAR files that are located in the
same directory. If the module that’s part of the first modular JAR file has the same name as the module that’s
part of the second modular JAR file, there will be an error at compile-time.

In order to create a modular JAR, we can use the jar tool, which was enhanced in Java 9. We’ll learn
more about it later in this section. Next, we talk about the structure of a modular JAR file.

Structure of a Modular JAR
The structure of a modular JAR file is similar to the one of a normal JAR file, except a module-info.class file is
present. Here’s an example of a modular JAR file:

META-INF/
META-INF/MANIFEST.MF
module-info.class
com/apress/moduleA/Main.class
com/apress/moduleB/ClassB1.class
com/apress/moduleB/ClassB2.class
...

There is also a MANIFEST.MF file located in the META-INF directory. The module-info.class file is
located in the root directory. All our compiled .class files are present in the modular JAR.

Up to now, we’ve learned about modular JAR files and about their structure. But how can we create
one? We’ll find the answer in the next section when we talk about packaging and present the jar tool used to
create modular JAR files.

Packaging
Java 9 allows a module to be packaged, besides in the already known normal JAR file, in a modular JAR file,
multi-release JAR file, JMOD file, or JIMAGE file. The JMOD files and multi-release JAR files are discussed
in Chapter 10. It’s important to mention that the Java Platform Module System doesn’t force in any way a
module to be packaged as a modular JAR.

http://dx.doi.org/10.1007/978-1-4842-2713-8_10

Chapter 4 ■ Defining and Using Modules

67

Let’s start by discussing how we can package a module in a modular JAR. You can do this using the jar
tool that can be found under the JDK_HOME\bin directory.

Package as a Modular JAR Using the jar Tool
The jar tool has been enhanced to support the newly introduced concept of modules. Table 4-2 displays the
new options that have been added in JDK 9 to the jar tool, according to the official JDK 9 API specification.

The options presented in Table 4-2 can be used when we create modular JARs or when we update a
non-modular JAR. The jar --help command has also been enhanced in JDK 9. It contains more detailed
descriptions about each command.

Using the jar tool, we create a new modular JAR file called moduleA.jar in the lib directory by packaging
everything that exists in the modules directory:

$ jar --create --file lib/moduleA.jar --main-class com.apress.moduleA.Main –c modules

•	 The --create option creates the modular JAR file.

•	 The --file option indicates the name of the modular JAR that will be created. It also
specifies the location where it will be created (in our case, the lib directory).

•	 The --main-class option sets the Main class while the module is being packaged.

•	 The -c option specifies the location where the compiled modules are (in our case,
they’re in the modules directory, which contains the compiled class files for the
module com.apress.moduleA).

■■ Note  In order to be able to package a module as a modular JAR, the module must have been compiled before.

Table 4-2.  New Options Added to the JAR tool in JDK 9

Short Format Long Format Description

-d --describe-module Prints the module descriptor

--module-version=VERSION Specifies the module version when creating a modular
JAR or when updating a non-modular JAR

--hash-modules=PATTERN Computes and records the hashes of modules matched
by the given pattern and that depend directly or indirectly
upon a modular JAR being created or upon a
non-modular JAR being updated

-p --module-path Specifies the location of module dependence for
generating the hash

--release VERSION Puts the files in a versioned directory of the JAR file

Chapter 4 ■ Defining and Using Modules

68

Adding a Module Version
When creating a modular JAR, a module version can also be added. The option --module-version can be
used during packaging to add some metadata regarding the version of the module. The metadata isn’t added
to the module declaration and won’t be processed at runtime. It’s important to make this distinction.

Printing the Module Descriptor
The module descriptor is printed with the jar tool’s command-line option --describe-module:

$ jar --describe-module

Or simply:

$ jar -d

By printing the module descriptor we can see what the corresponding JAR file contains. The following
information is displayed:

•	 The name of the module that’s contained in the JAR file

•	 A list of modules that the module contained into the JAR file depends on

•	 The name and package of the main class

An important change is the introduction of a long format for the specification of the options. In Java 8, we
had only the short format composed of a letter. In Java 9 it’s possible to use both the short and long formats, as
described in Table 4-3. However, there are situations when there’s no corresponding for the long format.

■■ Note T he Java Archive Tool, also called the jar tool, is an archiving tool that creates a JAR file by archiving
a couple of files. Java 9 improved the jar tool by adding support for modules.

The next section describes a fundamental feature in JDK 9: the introduction of the module path.

The Module Path
Project Jigsaw introduces a new concept for replacing the class path: the module path, which can represent
one of the following:

•	 A path to a sequence of directories that contain modules

•	 A path to a modular JAR file

•	 A path to a JMOD file

In contrast to the module path, the class path represents a sequence of JAR files. The module path is
used by the compiler to find the modules in order to resolve them. The module path can be mixed together
with the class path. In this case, the classes that are part of the modules are able to depend on anything that
exists on the class path.

Every existing artifact from the module path must have a module declaration. On the module path, we
can’t have artifacts that don’t have a module declaration.

Chapter 4 ■ Defining and Using Modules

69

■■ Note  Even if the module path was introduced in Java 9 to replace the class path, the class path still exists
and can be used standalone or in combination with the module path.

There are three types of module paths introduced in Jigsaw:

•	 Application module path

•	 Compilation module path

•	 Upgrade module path

We already worked with the application module path and the compilation module path when we
compiled and ran multiple modules. The next subsections go over these types of module paths.

Application Module Path
The application module path is used by the Java launcher to mark the directory that incorporates the
application modules. It’s expressed using the new command-line option --module-path or its short-form, -p.

Figure 4-9 shows the command-line syntax of the module path flag:

The module path flag gets a list of directories as parameters separated by a colon. There can be an
unlimited number of directories listed, but for each of them there has to be a colon separating them.

■■ Note  In the previous example, we used a colon (:) to separate directories, but a colon is used only for Linux
environments. For Windows environments, we must use a semicolon (;) instead.

The modules contained in the directories that form the module path can be:

•	 Packaged as modular JAR files.

•	 Exploded as standalone class files.

The Java launcher can load exactly the module that it needs from the module path because it knows this
information due to the configurations that exist in the module declaration.

■■ Note  The module path allows specifying modules instead of JAR libraries as the class path.

At runtime, using the module path is possible to specify the different types of modules that we’ve
built together with the project. A module can be only in one place. If it’s in more than one place, the first
occurrence will be retained, and the other occurrences won’t be taken into consideration.

directories containing modules

--module-path <directory1_name> : <directory2_name>

Figure 4-9.  Syntax of the --module-path command-line option

Chapter 4 ■ Defining and Using Modules

70

■■ Remember T he module path can contain only modules.

Besides the application module path, there are two more types of module path: the compilation module
path and the upgrade module path.

Compilation Module Path
The compilation module path, which contains definitions of modules in source form and is used together
with javac, is specified using the new Java option --module-source-path on the command-line. It’s used
during the compilation to inform the Java compiler of the location of the modules that must be searched.

Figure 4-10 illustrates the syntax of the command-line --module-source-path option:

The --module-source-path flag specifies a list of Java source files to be compiled. They can be listed
one after another separated by a blank space.

■■ Note I n most situations, the list of Java files will be huge. Linux helps you in this respect. You can type
$(find. –name '*.java') to get the entire list of directories having the extension .java.

Generally, we can think of the --module-source-path command-line option as the module
correspondent of the --sourcepath option.

Upgrade Module Path
The upgrade module path is specified using the Java compiler option --upgrade-module-path on the
command-line. According to OpenJDK, “it contains compiled definitions of modules intended to be used in
place of upgradeable modules built-in to the environment.” The upgrade module path isn’t covered in this book.

In this section we’ll talk about the module resolution process.

Module Resolution
Module resolution is a process introduced in Java 9 that checks the correctness of the module path and also
resolves the dependencies that exist throughout a module system. It takes place at both compile-time and
runtime. The goal of the module resolution process is to end up with a minimum necessary set of resolved
modules in order to be able to run the application.

list of Jave source files including the module-info.java file

--module-source-path <java_source_files_list>

Figure 4-10.  Syntax of the --module-source-path command-line option

Chapter 4 ■ Defining and Using Modules

71

■■ Note  Modules are resolved during build and installation. They’re not resolvable during runtime.

The requires clauses from the module declaration located in the module-info.java file provide
the module system with valuable information about the dependencies that have to be solved. These
dependencies are nothing more than modules that our current module depends upon. In Java 9, they’re
called observable modules, covered later in this chapter in the section “Types of Modules.”

After all the observable modules of our current module are found, the module system doesn’t stop. It
searches further for the observable modules of the most recently found modules. This process continues
until every dependence of every module is fulfilled and until the base module java.base is reached.

■■ Note  At compile-time, during the module resolution, Jigsaw searches to see whether there are any cyclic
dependencies. If it finds any, the application won’t compile.

Root Module
The root module is the module that the resolution process starts with. It’s specified in the java command
using the --module option, as we’ve seen in the examples when we ran the modular application.

First, the root module is added to the group of resolved modules. Second, the module system scans the
module descriptor of this module and adds all the dependencies (modules) to the group of resolved modules.
The process continues, and the Java Platform Module System tries to find the dependencies on the other
modules. When all the modules searched are found and the module java.base is reached, the process stops.
After the resolving process is finished, we have all the necessary modules for running our software application.

In some cases, a module is on the module path but wasn’t found during the resolution process so that it
can be added to the module graph. Here, we have to manually add the module to the module graph. This can
be done using the --add-modules command-line option. We discuss this option in more detail in Chapter 8.

It’s important to know that the module resolution process detects any modules that could eventually be
missing. If a mandatory module is missing, the module resolution process stops, and an exception is thrown.

■■ Note  If we have an incomplete module path at compile-time, the compiler will give us a warning. Both
platform modules and developer modules are searched for during the resolution process.

Another important topic in Jigsaw is accessibility, covered in the next section.

Accessibility
The accessibility rules changed fundamentally in Java 9. A type declared as public but not exported will be
available only inside the module where it resides. This a major change compared to older versions of Java.
Prior to Java 9, it was enough to mention that a type is public and therefore was accessible anywhere.
In Java 9, declaring a type as public doesn’t imply that it will be accessible everywhere.

Simply reading a module doesn’t guarantee access to its packages. In addition, in order to be accessible,
modules have to export some of their packages. Only the public types from the exported packages will be
accessible from another module. By taking advantage of strong encapsulation and reliable configuration, we
can explicitly define which of the module’s types are available for external access. In this way, we can very
easily hide our implementation internals.

http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 4 ■ Defining and Using Modules

72

Hiding the implementation details becomes the standard in Java 9. It’s obtained by default—we don’t
have to opt for it. It’s enough to omit to export a type in order to make that type strong encapsulated and
invisible from outside of the module. A package can quickly benefit from the power of strong encapsulation
by simply being placed inside a module. In Java 9, we’re able to decide which types should be accessible
from outside by enumerating them in the module declaration. Very simple and concise.

To recap, in order for a module A to read package P from module B, two conditions have to be met
simultaneously. The first is that module A should read (requires) module B. The second condition is that
module B should export its package P.

■■ Note  In Java 9, accessibility is imposed at both compile-time and at runtime. An error of type
IllegalAccessError is thrown at runtime if the accessibility rules are breached. The accessibility checks are
enforced in the Java Virtual Machine.

In Java 9, simply setting a public modifier to a type doesn’t mean that access is granted. In the Java versions
before 9, setting an accessibility type of public to a type conferred him global accessibility, but in Java 9 three
conditions have to be simultaneously met in order to make a type called T accessible outside the module:

•	 The package in which type T resides has to be exported.

•	 The module that needs to access type T has to read the module that contains the type T.

•	 Type T must have a public identifier.

These conditions are illustrated in Table 4-3, which displays a comprehensive list of the cases when the
accessibility is granted or not:

•	 The “Module Is Read” column has the value Yes if the module that contains the type
T is read by the module that wants to access the type T.

•	 The “Package Is Exported” column has the value Yes if the module that contains the
type T exports the package of type T.

•	 The “Access Modifier of Type T” column represents the access modifiers for type T.

•	 The “Accessible in the Other Module” column specifies Yes if the type T is accessible
from the other module, and No otherwise.

Table 4-3 shows the new accessibility cases in Java 9 together with the results.

Chapter 4 ■ Defining and Using Modules

73

As a rule, a public component of an exported package can be accessed from outside of the module
provided that the module that makes use of it reads the origin module. In contrast, a public element of a
non-exported package isn’t accessible from outside of the module. It’s accessible by default to all the source
code from the module where it resides, but it won’t be accessible from outside of the module.

The Java compiler throws exceptions when we attempt to access types that aren’t accessible. The most
common is a ClassNotFoundException. At runtime the most common errors are IllegalAccessError or
InaccessibleObjectException.

Readability vs. Implied Readability
Readability is the relation between two modules that refers to the fact that a module that reads another module
can access the types from its exported packages. In this case, we say that a module reads another module.

We touched the subject of readability in previous examples when we described the requires and
exports directives inside of a module declaration. To recap the concept of readability, you can go back to
the “Module Declaration” section, subsection “The requires Clause.” What we haven’t covered yet is the new
concept of implied readability.

Table 4-3.  Accessibility Cases in Java 9

Module Is Read Package Is Exported Access Modifier of Type T Accessible in the Other Module

Yes Yes Public Yes

Yes Yes Protected No

Yes Yes (default) No

Yes Yes Private No

Yes No Public No

Yes No Protected No

Yes No (default) No

Yes No Private No

No Yes Public No

No Yes Protected No

No Yes (default) No

No Yes Private No

No No Public No

No No Protected No

No No (default) No

No No Private No

Chapter 4 ■ Defining and Using Modules

74

Implied Readability
Implied readability refers to the situation when

•	 The first module reads the second module.

•	 The second module reads the third module.

•	 The first module logically reads the third module as a result of the two conditions
just met.

Suppose we have a module B that uses a type from a module C (B reads C). If another module A reads
module B and uses types from module C, then without implied readability, module A should explicit specify that
it also requires module C. By using implied readability, it’s not necessary to specify this in module A. It’s enough
to specify in the module-info.java of module B that it requires transitive the types from module C. As a result,
every module that reads types from module B will automatically be able to access the types from module C.

Figure 4-11 illustrates the corresponding module graph of the three modules and shows the readability
relations between them.

Listing 4-18 illustrates the module descriptor of module A, which requires module B.

Listing 4-18.  Module Descriptor of Module A

// module-info.java
module A {
 requires B;
}

automatically
reads as a
result of
implied

readability

reads

reads
transitive

module A

module B

module C

Figure 4-11.  Module graph showing implied readability

Chapter 4 ■ Defining and Using Modules

75

Listing 4-19 shows the module descriptor of module B, which requires transitive module C.

Listing 4-19.  Module Descriptor of Module B

// module-info.java
module B {
 requires transitive C;
}

It’s not necessary for module A to require module C, because module B requires transitive module C.
As a result, module A can automatically access types from module C.

■■ Note  Implied readability is achieved by adding the statement requires transitive in the module
declaration, followed by the name of the module that the current module depends upon.

Figure 4-12 illustrates the syntax of the requires transitive clause. It takes a module name as parameter.

Let’s look at an example of implied readability with platform modules in order to understand this
better. Listing 4-20 shows the module declaration of the platform module java.desktop that defines requires
transitive clauses in order to take advantage of implied readability.

Listing 4-20.  The Module Descriptor of module java.desktop

// module-info.java
module java.desktop {
 requires transitive java.datatransfer;
 requires transitive java.xml;
 requires java.prefs;

 exports java.applet;
 ...
}

Listing 4-21 is an excerpt of the class DocumentHandler located in module java.desktop in the package
com.sun.beans.decoder:

Listing 4-21.  Class DocumentHandler from Module java.desktop

// jdk/src/java.desktop/share/classes/DocumentHandler.java

package com.sun.beans.decoder;

name of the module

requires transitive <module_name>;

Figure 4-12.  Syntax of the requires transitive clause

Chapter 4 ■ Defining and Using Modules

76

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParserFactory;
...

public final class DocumentHandler extends DefaultHandler {

...

 public void parse(final InputSource input) {
 if ((this.acc == null) && (null != System.getSecurityManager())) {
 throw new SecurityException("AccessControlContext is not set");
 }
 AccessControlContext stack = AccessController.getContext();
 �SharedSecrets.getJavaSecurityAccess().doIntersectionPrivilege(new

PrivilegedAction<Void>() {
 public Void run() {
 try {
 �SAXParserFactory.newInstance().newSAXParser().parse(input,

DocumentHandler.this);
 }
 catch (ParserConfigurationException exception) {
 handleException(exception);
 }
 catch (SAXException wrapper) {
 Exception exception = wrapper.getException();
 if (exception == null) {
 exception = wrapper;
 }
 handleException(exception);
 }
 catch (IOException exception) {
 handleException(exception);
 }
 return null;
 }
 }, stack, this.acc);
 }
}

As you can see, the class DocumentHandler from module java.desktop uses SaxParserFactory from the
java.xml module. This denotes that module java.desktop uses a type from module java.xml, so a readability
relation occurs between module java.desktop and module java.xml.

If we add a dependency to the java.desktop module in our module descriptor and try to use the parse()
method from the DocumentHandler, we’re attempting to access types not only from module java.desktop
but also from module java.xml. In order to access the method from our own module, it’s mandatory that
the module java.xml is required transitive by the module java.desktop. In this way our module can take
advantage of implied readability and have access to the types from the module java.xml without explicitly
requiring them. Any module that requires module java.desktop automatically requires the modules java.
datatransfer and java.xml, because both are present in the module descriptor of module java.desktop. By
requiring the module java.desktop, we get access to the exported packages from modules java.desktop, java.
datatransfer, and java.xml.

Chapter 4 ■ Defining and Using Modules

77

If we omit the transitive keyword and use only the requires directive, we have the situation where
our module is able to access types only from the module java.desktop, but not from java.xml.

Suppose we create a simple module called myModule that requires module java.desktop. Listing 4-22
shows the module descriptor of module myModule.

Listing 4-22.  Module Descriptor of Module myModule

// module-info.java
module myModule {
 requires java.desktop;
}

Figure 4-13 shows the module graph of the module myModule and expresses the readability together
with the implied readability relations between modules.

We have the following situation:

•	 myModule requires java.desktop (readability illustrated with a dashed line in the graph).

•	 java.desktop module requires transitive module java.datatransfer and module java.
xml (implied readability illustrated with a solid line).

Our module myModule gets readability to modules java.datatransfer and java.xml without needing to
explicitly require them. As a result, it can use types from these two modules without having to worry about
the need to specifically declare the dependencies to them.

Now that we’ve learned what implied readability is, let’s see what a qualified export means.

Qualified Exports
A module can export all its packages or a group of its packages to all the modules. The exports clause has
been enhanced to specify that a module can export a group of its packages only to a set of named modules.

Listing 4-23 is an excerpt of the module descriptor from the module java.rmi.

myModule

java.desktop

java.datatransfer java.xml

Figure 4-13.  The module graph of myModule

Chapter 4 ■ Defining and Using Modules

78

Listing 4-23.  Excerpt from Module Descriptor of module java.rmi

// module-info.java
module java.rmi {
 ...
 exports com.sun.rmi.rmid to java.base;
 exports sun.rmi.registry to
 java.management;
 exports sun.rmi.server to
 java.management,
 jdk.jconsole;
 exports sun.rmi.transport to
 java.management,
 jdk.jconsole;
}

Package com.sun.rmi.rmid is exported using a qualified export to module java.base. Therefore it’s
accessible only inside the module java.base. The other modules can’t access it. Only the modules specified
after the to clause will be able to access the package.

■■ Note  A module can’t access an exported package from another module if it doesn’t read that module.
This is true even if the package is exported using a qualified export.

The syntax used for defining qualified exports inside the module-info.java file is shown in Figure 4-14.

■■ Note A qualified export directive can define multiple modules separated by comma. In contrast, a simple
export directive can define only one module.

Duplicating the names of the modules in a qualified export declaration is prohibited, as shown in
Listing 4-24.

Listing 4-24.  Qualified Export with a Duplicate Module’s Name

// module-info.java (com.apress.moduleA)
module com.apress.moduleA {

}

name of the exported
package

name of the module that will
access the exported package

exports <package_name> to <module_name>
Figure 4-14.  Qualified exports syntax

Chapter 4 ■ Defining and Using Modules

79

// module-info.java (com.apress.moduleB)
module com.apress.moduleB {
 exports com.apress.moduleB to com.apress.moduleA, com.apress.moduleA;
}

A compilation failure will occur in this case:

Error: duplicate export: com.apress.moduleA exports com.apress.moduleB to com.apress.
moduleA, com.apress.moduleA

We’ve learned what the qualified exports directives are and how they’re different from standard exports
directives. It’s a great advantage to be able to specify only the specific modules that are allowed to access the
module’s data. Modules shouldn’t be obligated to expose their packages to all the existing modules.

Qualified exports are a great benefit of strong encapsulation. They’ve been extensively used during the
process of modularizing the JDK and are present in a couple of module-info.java files inside the JDK.

We talked about accessibility and discussed the concepts of readability, implied readability, and
qualified exports. Next let’s look at the different types of modules introduced in Jigsaw.

Types of Modules
Jigsaw defines two primary types of modules: named modules and the unnamed module. The named
modules are divided into normal modules and automatic modules. The normal modules are also separated
in basic modules and open modules. Figure 4-15 illustrates the classification of modules.

First, we’ll talk about the named modules together with its children, and then the unnamed module.

Unnamed module

Named module

Normal module

Automatic module

Open module

Basic module

Figure 4-15.  The classification of modules in the JPMS

Chapter 4 ■ Defining and Using Modules

80

Named Modules
The named modules comprise all the modules from the module system except the unnamed module. There
are two important things that distinguish an unnamed module from a named one. First, the unnamed module
lives on the class path, whereas the named modules live on the module path. Second, the unnamed module
doesn’t have a name, whereas each named module has a name. A named module can be a normal module or
an automatic module. Named modules are modules declared using a name in the module-info.java module
descriptor file. Every module that has a declaration of form module <module_name> in its module-info.java
is a named module. This is the single condition that has to be met for a module in order to be classified as a
named module. Examples of named modules include all the platform modules, but our own modules can
also be included in this category if they respect the unique condition just mentioned. Transforming a JAR file
into a named module is possible by merely adding a module-info.class file to it.

Normal Modules
The notion of “normal” modules doesn’t officially exist. We use this term to define a named module that isn’t
automatic. The main difference between a normal module and an automatic one is that a normal module has
a module descriptor module-info.java, whereas an automatic module doesn’t. Additionally, a normal module
is explicitly declared by developers, which declares the module’s dependencies in the module’s module
descriptor. The module descriptor of an automatic module isn’t provided by developers. A normal module
is declared using the keyword module followed by the name of the module. All the modules we’ve presented
until now in this chapter were normal modules. A normal module doesn’t export any of its packages by
default. Besides that, its exports clauses must be explicitly specified. The exports clauses export packages at
compile-time as well as at runtime. A normal module comprises both basic modules and open modules.

Automatic Modules
An automatic module is a module created after placing a JAR file onto the module path. Comparing an
automatic module to a normal one, two important distinctions emerge:

•	 An automatic module requires by default all the existing modules from the system,
which comprise all our own modules, plus all modules from the JDK image, plus all
the other automatic modules.

•	 An automatic module exports all its packages by default.

An automatic module can access types on the class path and is useful for third-party code especially.
Automatic modules are used for migrating existing applications to Java 9. Chapter 8 talks about them in
more detail.

■■ Note  An automatic module isn’t explicit declared by us inside a module descriptor. It’s automatically
created when placing a JAR file into the module path.

Basic Modules
We call every named module that isn’t an open module a basic module. However, the term “basic” module
doesn’t officially exist in JDK 9. We use it to define a named module that’s neither automatic nor open. A basic
module has the same set of characteristics as a normal module, except that it’s not opened for deep reflection.

http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 4 ■ Defining and Using Modules

81

Open Modules
Inside a module, packages aren’t accessible to code from another module at compile-time, even when using
deep reflection. However, many third-party libraries and frameworks use reflection to access the internals of
JDK at runtime. As a result, all these frameworks aren’t working in JDK 9 unless reflective access is granted.
In JDK 9, reflective access is granted only by code in named modules to code from the class path. It’s not
granted by default by code in named modules to code in other named modules. As a result, if the third-party
libraries or frameworks lie on the class path, they have reflective access by default in the JDK. If they live on
the module path, then they don’t have reflective access in the JDK. But to grant reflective access to all the
packages in a module, the module should be declared as open.

An open module is defined by placing the identifier open in front of the keyword module, followed by the
name of the module.

Open modules make all the packages inside of the module available for deep reflection. When we say
“all the packages”, we mean both the public and private packages. We can also opt between opening an
entire module for deep reflection or opening only specific packages. When choosing the latter, we don’t
specify an entire module as open but only one or more packages inside the module. The keyword open can
be placed near the module name or inside the module descriptor to open specific packages.

■■ Note  The reason behind open modules is that they permit frameworks to reflect over the module’s
internals, which isn’t possible using basic modules. Frameworks like Spring, JPA, and Hibernate need reflective
access at runtime.

Listing 4-25 defines an open module called com.apress.myModule that requires two Spring modules,
spring.tx and spring.context.

Listing 4-25.  Defining an Open Module

open module com.apress.myModule {
 requires spring.tx;
 requires spring.context;
 exports com.apress.myModule.myPackage;
}

Two important facts must be stressed in regard to the previous example:

•	 All types from all packages of the module com.apress.myModule are available for
deep reflection at runtime.

•	 At compile-time, only the public and protected types in package com.apress.
myModule.myPackage are accessible.

As a result, the Spring framework can make use of the setAccessible() method to access the non-
public elements of the com.apress.myModule.myPackage package.

Enabling Core Reflection Using Open Modules
With respect to the principles of strong encapsulation, there are some constraints introduced in Java 9 when
calling the method setAccessible() method of the java.lang.reflect.AccessibleObject class. We can’t
use the method setAccessible() to make private fields or methods from other modules accessible in our
module. But there is a solution to make them accessible: by declaring the target module as an open module.

Chapter 4 ■ Defining and Using Modules

82

In the following example we have two modules. Class Employee from module target contains a private
String field called employeeName. We want to set this field to be accessible from our second module called
testReflection.

Listing 4-26 shows the declaration of module target, which exports its package.

Listing 4-26.  The module-info.java of Module target

module target {
 exports target;
}

In Listing 4-27 the module testReflection reads the module target.

Listing 4-27.  The module-info.java of Module testReflection

module testReflection {
 requires target;
}

Listing 4-28 shows the class Employee from module target that contains a private type called
employeeName:

Listing 4-28.  Definition of Class Employee

package target;

public class Employee {

 private String employeeName = null;

 public Employee(String employeeName) {
 this.employeeName = employeeName;
 }
}

The Main class creates an object of type Employee and calls its constructor, setting the value "John" to
employeeName. After that, a Field object is returned that represents the field employeeName and the method
setAccessible() with parameter true is called on this field in order to make it accessible throughout our
testReflection module.

Listing 4-29 shows the Main class of the application.

Listing 4-29.  Main Class from Package testReflection

package testReflection;

import java.lang.reflect.*;
import target.*;

public class Main {

 public static void main(String[] args) {

Chapter 4 ■ Defining and Using Modules

83

 Employee employee = new Employee("John");
 try {
 Field employeeField = Employee.class.getDeclaredField("employeeName");
 employeeField.setAccessible(true);
 }
 catch(NoSuchFieldException noSuchFieldException) {
 }
 }
}

We compile the code inside the two modules and specify the location of the compiled files to be in the
out directory. Listing 4-30 shows the usage of the --module-source-path option to specify that all the files
that have the extension .java are on the module source path.

Listing 4-30.  Compile Files Using the flag --module-source-path

javac -d out --module-source-path src $(find . -name "*.java")

Listing 4-31 illustrates the java command used to run the Main class of our module. We pass the
Main class to the --module option and the --module-path option points to the out directory where all the
compiled class files exist.

Listing 4-31.  Run the Main Class Using the --module option

$ java --module-path out --module testReflection/testReflection.Main

Unfortunately, an exception is thrown when attempting to run our application because the call of the
method setAccessible() fails. Thus we can’t make the private field employeeName accessible.

Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to make
field private java.lang.String target.Employee.employeeName accessible: module target does
not "opens target" to module testReflection
 �at java.base/jdk.internal.reflect.Reflection.throwInaccessibleObjectException

(Reflection.java:424)
 �at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible

(AccessibleObject.java:198)
 at java.base/java.lang.reflect.Field.checkCanSetAccessible(Field.java:171)
 at java.base/java.lang.reflect.Field.setAccessible(Field.java:165)
 at testReflection/testReflection.Main.main(Main.java:14)

■■ Note  In this example, we have readability between the two modules target and testReflection. But due to
the very powerful strong encapsulation mechanism introduced in Java9, calling the method setAccessible()
on a private field of the other module throws an InaccessibleObjectException.

We can fix this issue very easily by defining the target module as an open module instead of a strong
module. Calling the setAccessible() method on a private field of the target module will succeed. The
private field employeeName is now accessible into the testReflection module.

Listing 4-32 defines the target module as an open module by specifying the keyword open.

Chapter 4 ■ Defining and Using Modules

84

Listing 4-32.  Define the Target Module as an Open Module

open module target {
 exports target;
}

■■ Note  You can find the source code for the first example in the folder /ch04/CoreReflectionFail and the
source code for the second example in the folder /ch04/CoreReflectionSucceed.

Until now we’ve talked about the named module and its types. Next we’ll talk about the unnamed module.

The Unnamed Module
An unnamed module, as the term suggests, doesn’t have a name and isn’t declared. It comprises all the
JAR files or modular JAR files from the class path. All these JAR files together form the unnamed module.
The Java Platform Module System first searches for a specific type on the module path. The module path is
searched before the class path. If the type isn’t found on the module path, the search is performed on the
class path. If the type is found on the class path, it will be part of the so-called unnamed module. We use the
singular term unnamed module instead of the plural unnamed modules because the unnamed module is
unique for each class loader. There’s only one, single unnamed module for each class loader.

■■ Note  An unnamed module is bound to a class loader. There’s a one-to-one relationship between a class
loader and an unnamed module. The unnamed module reads all the named modules in the JDK image and on
the module path. It also exports all of its packages.

By default, the unnamed module reads all the named modules from the system. In this way, according
to the Java 9 accessibility rules, the unnamed module can access all packages from all the named modules
that are being exported. The reverse isn’t true, meaning that the named modules can’t read the unnamed
module. If we try to access code on the class path (in the unnamed module) from the module path, the
compilation will fail. To succeed, we need to turn the code from the unnamed module into automatic
modules. Therefore, we take the JAR file out of the class path and place it on the module path to become an
automatic module.

■■ Note  A named module can’t require an unnamed module.

All classes that aren’t contained into the named modules are implicitly contained in the unnamed
module. All the packages contained in the unnamed module are open by default to all the modules from the
module path, which makes reflective access from the module path on the class path possible.

Observable Modules
The observable modules are not a separate category of modules. This is why we didn’t include them in the
classification of modules. The term observable modules is used to denominate all the modules from the
system: platform modules, library modules, and our own modules. The modules from the module path are
part of the observable modules too.

Chapter 4 ■ Defining and Using Modules

85

Summary
This chapter presented the new concept of module in Jigsaw. We learned how to define a module and
described the structure of the new module-info.java file that represents the module descriptor.

Inside the module descriptor there are five types of directives that can be used: requires, exports,
opens, uses, and provides. The first three were explained in detail throughout this chapter. We saw how
we can define dependencies between modules using the requires directive and also how we can specify
which packages a module exports using the exports directive. Further, we defined a couple of modules and
illustrated the dependencies between them in a module graph.

We mentioned the differences between the exports and opens clauses. The exports clause allows
compile-time and runtime access to the public types of a specific package. The use clause allows runtime
access using reflection for both the public and private types of a specific package.

We compiled and ran a single module as well as multiple modules. To be able to do this, we used the new
concept of module path together with the new command-line options --module-source-path and --module-
path. Then we talked about the new modular JARs and described their internal structure. I described the
enhancements added to the jar tool and showed how to package a modular JAR using the jar tool.

The chapter explained the three types of existing module paths: the application module path, the
compilation module path, and the upgrade module path. It also talked about the module resolution process
and about the new accessibility rules that were introduced in Java 9. We described topics like readability,
implied readability, and qualified exports.

This chapter concluded by describing the different types of modules in Jigsaw: normal modules, open
modules, named modules, unnamed modules, automatic modules, and observable modules. We stressed
that as a consequence of the fact that a named module can’t read the unnamed module, code from the
module path can’t access code inside the JARs placed on the class path.

In Chapter 5 you’ll learn about modular runtime images.

http://dx.doi.org/10.1007/978-1-4842-2713-8_5

87© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_5

CHAPTER 5

Modular Runtime Images

In this chapter we’ll look at the structure of the new modular runtime image introduced in Java 9, which
brings an important benefit in terms of improved performance and maintainability. On the other hand, the
new format of the runtime image doesn’t necessarily result in preserving the exactly same functionality of all
the existing APIs.

■■ Note  This chapter is an informational one that describes the format of the modular runtime images
introduced in JDK 9.

Modular Runtime Images
Chapter 3 showed how the source code in the JDK was restructured around modules. In this chapter we’ll
talk about the new modular runtime image that was implemented in the Java Enhancement Proposal 220.
This JEP modified the structure of the JDK and JRE as a consequence of the introduction of modules. It also
defines the layout of the modular runtime image.

The introduction of modules in Java 9 caused an important change in the structure of the JDK and the
JRE. As a result, a new runtime format was introduced. The minimum possible runtime that we can have in
Java 9 would consist only of the module java.base. A JDK 9 image can be accessed not only by tools that are
running on Java 9, but also by tools running on Java 8, for example.

■■ Note  For accessing classes and resources in the JDK and JRE, a helper interface has been introduced
in Java 9.

Another important change, not directly related to modules but more related to the JDK, is the
replacement of the rt.jar file and the tools.jar file with the new runtime image.

■■ Note  Java 9 doesn’t remove the JAR files and doesn’t prohibit them. JAR files continue to work in Java 9.

Because JAR files can cause many problems, the intention of the JCP team was to stop using them inside
the JDK and the JRE as much as possible.

http://dx.doi.org/10.1007/978-1-4842-2713-8_3

Chapter 5 ■ Modular Runtime Images

88

The Runtime Image Prior to Java 9
This section covers the structure of the runtime image prior to Java version 9. We already talked about it in
Chapter 2, but now we’ll get into more details. Before Java 9, the JDK build provided us with two types of
runtime images: a Java Runtime Environment (JRE) image and a Java Development Kit (JDK) image.

The JRE Image Prior to Java 9
A Java Runtime Environment was a complete implementation of the Java SE Platform. A JRE image was
composed of two directories: bin and lib.

The bin directory contained the java command for launching the runtime system and also executable
binaries, like javacp, java-rmi, javaw, javaws, keytool, pack200, rmid, rmiregistry, and servertool.

The lib directory was larger than the bin directory and contained .properties and .policy files. The ext
directory was placed inside the lib directory and contained JAR files like nashorn.jar, sunec.jar, zipfs.jar, and
others. The most important thing to mention is that inside the lib directory we could find the rt.jar file. The
lib directory comprised the runtime system's dynamically-linked native libraries on the Mac OS and Linux
operating systems.

The JDK Image Prior to Java 9
On the other hand, prior to Java 9, a JDK image enclosed a JRE. It had a copy of the JRE in its jre subdirectory.
A JDK image contained many directories, but the most important three of them were the lib, the bin, and the
include directories.

■■ Note  A JDK image contained libraries and development tools.

The lib directory consisted of JAR files comprising the implementations of the JDK's tools. The tools.jar
file, which included the classes that composed the javac compiler, was located into this lib directory.
The bin directory had command-line debugging and development tools like javac, javadoc, and jconsole.
The include directory contained C and C++ header files for use in compiling native code that interfaces
directly with the runtime system.

Why a New Format for the Runtime Images?
According to Open JDK, there are various reasons why a new format is required for the runtime images.
First of all, the new runtime format is more powerful than the old JAR format. Second, the new runtime
format can be easily enhanced to hold precompiled native code for Java classes or precomputed JVM data
structures. Third, the new runtime format can store class and resource files from application modules, JDK
modules, and library modules.

The most important reason behind the decision to revamp the JDK and the JRE is stated by OpenJDK
on their website: “to draw a clear distinction between files that developers, deployers, and end-users can rely
upon and, when appropriate, modify, in contrast to files that are internal to the implementation and subject
to change without notice.”

http://dx.doi.org/10.1007/978-1-4842-2713-8_2

Chapter 5 ■ Modular Runtime Images

89

OpenJDK lists three more reasons:

•	 “to provide supported ways to perform common operations that today can only
be done by inspecting the internal structure of a runtime image such as, e.g.,
enumerating all of the classes present in an image”

•	 “to enable the selective de-privileging of JDK classes that today are granted all
security permissions but do not actually require those permissions”

•	 “to preserve the existing behavior of well-behaved applications, i.e., applications that
do not depend upon internal aspects of JRE and JDK runtime images”

The Runtime Image in Java 9
This section describes the structure of the new runtime image introduced in Java 9.

Identical Structure of the JDK and JRE
The JRE and the JDK have the same structure in Java 9. This is different from older versions of Java where,
as described earlier, there was a clear distinction between the JDK and the JRE. A JDK image is simply a
runtime image that contains the development tools from the JDK.

Configuration files that were once located in the lib directory are now located inside the conf directory.
These are files we can edit. The files in the lib directory are implementation details of the runtime system.

■■ Note  The files from the lib directory should not be modified.

The Structure of the New Runtime Image
Figure 5-1 shows the new structure of the runtime image in Java 9.

Figure 5-1.  The structure of the runtime image in Java 9

Chapter 5 ■ Modular Runtime Images

90

Let’s see what kind of directories the new modular runtime image contains:

•	 The bin directory incorporates command-line launchers represented by the
modules that are linked into the image. Some of the most important command-line
launchers are java, javac, javadoc, javah, javap, jcmd, jconsole, jdeps, jimage, jlink,
jmod, jshell, and jstat. We are not going to describe all of them here. You can check
the bin directory of the JDK 9 build.

•	 The lib directory consists of the runtime system’s dynamically-linked native libraries.

•	 The conf directory contains files that can be edited. Among them are .properties files
and .policy files.

•	 The jmods directory contains all the JMOD files.

•	 The legal directory contains the copyright files.

The root directory of a modular runtime image contains copyright, readme, and release files.

The release File
The structure of the release file contains information about the modules, OS version, source, operating
system arch, operating system name, Java version, and the full Java version:

IMPLEMENTOR="Oracle Corporation"

JAVA_VERSION="9"

MODULES="java.base java.datatransfer java.logging java.activation java.compiler java.
rmi java.transaction java.xml java.prefs java.desktop java.security.sasl java.naming jdk.
unsupported java.corba java.instrument java.jnlp java.management java.management.rmi java.
scripting java.xml.ws.annotation java.xml.crypto java.security.jgss java.sql java.sql.rowset
java.se jdk.httpserver java.xml.bind java.xml.ws java.se.ee java.smartcardio javafx.base
jdk.jsobject javafx.graphics javafx.controls jdk.deploy jdk.javaws jdk.plugin javafx.deploy
javafx.fxml javafx.media javafx.swing jdk.xml.dom javafx.web jdk.accessibility jdk.internal.
jvmstat jdk.attach jdk.charsets jdk.compiler jdk.crypto.ec jdk.crypto.cryptoki jdk.crypto.
mscapi jdk.deploy.controlpanel jdk.dynalink jdk.internal.ed jdk.editpad jdk.hotspot.agent
jdk.incubator.httpclient jdk.internal.le jdk.internal.opt jdk.internal.vm.ci jdk.jartool jdk.
javadoc jdk.jcmd jdk.management.agent jdk.management jdk.jconsole jdk.jdeps jdk.jdwp.agent
jdk.jdi jdk.jfr jdk.jlink jdk.jshell jdk.jstatd jdk.localedata jdk.naming.dns jdk.naming.rmi
jdk.net jdk.pack jdk.packager.services jdk.packager jdk.plugin.dom jdk.plugin.server jdk.
security.jgss jdk.policytool jdk.rmic jdk.scripting.nashorn jdk.scripting.nashorn.shell jdk.
sctp jdk.security.auth jdk.snmp jdk.xml.bind jdk.xml.ws jdk.zipfs oracle.desktop oracle.net"

OS_ARCH="x86_64"

OS_NAME="Windows"

SOURCE=".:a4371edb589c+ closed:3b9bef864bcf corba:c72e9d3823f0 deploy:d12d0210bc37
hotspot:1ca8f038fceb hotspot/make/closed:0b47834a0294 hotspot/src/closed:f5870a8748c9
hotspot/test/closed:2a88d69ed789 install:6549b99d10f0 jaxp:332ad9f92632 jaxws:b44a721aee3d
jdk:80acf577b7d0 jdk/make/closed:1793d3af1ed9 jdk/src/closed:8e4a66cb15a6 jdk/test/
closed:860a0f54d259 langtools:2f01728210c1 nashorn:aa7404e062b9 sponsors:d751e23bea1e"

The next section discusses the rt.jar, tools.jar, and dt.jar files that were removed in JDK 9.

Chapter 5 ■ Modular Runtime Images

91

Removed Files

Rt.jar Removed
The rt.jar file comprised the entire compiled class files that formed the JRE. These represented all the
compiled classes from the Core Java API, including the sun and com packages. rt.jar used to be located
inside the lib folder of the JRE. In Java 8, the rt.jar file weighed approximatively 52 MB. In all Java versions
prior to version 9, it was absolutely mandatory to include the rt.jar file into the class path in order to be able
to access the core Java libaries. But the rt.jar file has been completely removed in Java 9. It doesn’t exist
anymore among the files that make up the JDK 9.

Tools, compilers, and integrated development environments (IDEs) using rt.jar are affected by the
removal of the rt.jar file. They have to be adjusted by their authors in order to continue to work properly
in Java 9.

According to the specification of JEP 220, “the class and resources files previously stored in lib/rt.jar, lib/
tools.jar and lib/dt.jar, and various other internal JAR files will now be stored in a more efficient format in
implementation specific files in the lib directory.”

In JDK 9, the rt.jar file was replaced by the new runtime.

Tools.jar and dt.jar Removed
Before JDK 9, the tools.jar file was used by the JDK and was located in the lib directory of the JDK version 8
or lower. It contained classes used by javac and also support for tools like javah, javap, jdeps, javadoc, and
more. The dt.jar file was also located inside the lib directory and contained Swing classes.

■■ Note  Both tools.jar and dt.jar have been removed in Java 9.

In Java 9, resources and class files that were formerly located inside the tools.jar file are visible via the
bootstrap or application class loaders in a JDK image. Similarly, resource and class files that were formerly
located inside the dt.jar file are visible via the bootstrap class loader in Java 9.

New URI Scheme
A new URI scheme was introduced in JDK 9. To demonstrate the new URI scheme, we’ll first show a simple
example. In this example, we use the getSystemResource() method of the ClassLoader class to find a URL
resource of the class String from the search path used to load classes. The resource will be located through
the system class loader.

In Listing 5-1 the getSystemResource() method retrieves the URL resource of the class java.lang.String.

Listing 5-1.  The Main Class of Module com.apress.getSystemResource

// Main.java (module com.apress.getSystemResource)
package com.apress.getSystemResource;
import java.net.URL;

Chapter 5 ■ Modular Runtime Images

92

public class Main {
 public static void main(String[] args) {
 URL url = ClassLoader.getSystemResource(“java/lang/String.class”);
 System.out.println(url);
 }
}

Listing 5-2 defines the module descriptor of the module com.apress.getSystemResource.

Listing 5-2.  The module-info.java File of Module com.apress.getSystemResource

module com.apress.getSystemResource {

}

We run the previous module and see the resulting URL printed in the console:

jrt:/java.base/java/lang/String.class

Let’s now run the same example on Java 8. The resulting URL in this case would be as follows:

jar:file:/C:/Program%20Files/Java/jdk1.8.0_101/jre/lib/rt.jar!/java/lang/String.class

■■ Note  You can find the source code for this example in the directory /ch05/getSystemResource.

We observe that the output is completely different between Java 8 and Java 9. In Java 8, the URL has
the form of a JAR file and the String.class is located inside the rt.jar file. It’s not possible to have the same
output in Java 9 because Java 9 doesn’t have an rt.jar file.

To solve this problem, Java 9 introduces a new URL scheme called jrt that provides access to the content
of the runtime image. The term jrt is derived from java runtime. According to Open JDK, the jrt URL scheme
“is used for naming the modules, classes, and resources stored in a runtime image without revealing the
internal structure or format of the image.”

■■ Note  A jrt URL can have a total of four distinct forms.

Figure 5-2 shows the simplest structure of the jrt URL.

simple jrt URL

jrt:/

Figure 5-2.  Simplest structure of the jrt URL

Chapter 5 ■ Modular Runtime Images

93

This jrt URL, which doesn’t specify anything else except the jrt:/, specifies all the files that exist in the
current runtime image. But we can have more representations of the jrt URL. Figure 5-3 shows another form
of the jrt URL that specifies only the module name.

name of the module

jrt:/ <module_name>

Figure 5-3.  Structure of the jrt URL with module

path to a resource file

jrt:/ <path>

Figure 5-4.  Structure of the jrt URL with path

In this case, the jrt URL specifies all the files from the module that was specified.
Figure 5-4 represents another form of the jrt URL that contains only the path, but no module name.

In this case, the path represents a resource file or a class from the current runtime image. The path is
not bound to a specific module.

Figure 5-5 shows the full structure of the jrt URL, specifying both a module and a path.

name of the module name of resource

jrt:/ <module_name>/../<resource_name>

Figure 5-5.  Full structure of the jrt URL

The full structure of the jrt URL refers to a specific resource file within the given module. The jrt scheme
also allows retrieving the contents of platform modules.

Now that we’ve learned about the new URI scheme, let’s move on and talk about the compatibility
problems that can arise due to all these modifications.

Compatibility
As mentioned, important compatibility problems can eventually occur in Java 9 for some existing
applications due to the new structure of the JDK. Compatibility issues will appear in Java 9 for applications
that strictly depend on the internal structure of the JDK. Because the JDK doesn’t contain the jre
subdirectory anymore, every piece of code that makes use of this subdirectory will stop working as expected.

Moreover, in Java 9 the system properties java.endorsed.dirs and java.ext.dirs have been removed.
This means applications that rely on these two system properties won’t work correctly in Java 9.

Chapter 5 ■ Modular Runtime Images

94

The removal of rt.jar, tools.jar, and dt.jar files also has a negative impact on applications that rely
on them.

Another compatibility problem will arise in Java 9 for source code that expects JAR URLs for
naming class and resource files inside the runtime image. As mentioned, the jar URLs have been
replaced with jrt URLs.

Another topic that needs some attention is related to class loaders. Table 5-1 shows the class loaders
that were changed in Java 9, together with the new class loaders and the corresponding packages. Chapter 10
covers the class loaders in more detail .

Table 5-1.  The Class Loaders Changes

Package Old Class Loader New Class Loader

sun.tracing.dtrace boot application

sun.tools.jar boot application

sun.security.tools.policytool boot application

com.sun.tracing boot application

com.sun.tools.script application boot

com.sun.tools.corba.se.idl application boot

com.sun.jndi.url.dns boot extension

com.sun.jndi.dns boot extension

com.sun.crypto extension boot

As a result, source code that that depends on the class loaders of the packages listed here may not work
properly in Java 9.

Summary
This chapter covered the new modular runtime images introduced in Java 9 and the reasons behind the
decision to introduce them. It compared the runtime image we had before Java 9 with the one in Java 9.

We explained in detail what every folder of the new runtime image contains and showed the content
of the release file. We talked about the removal of the rt.jar, tools.jar, and dt.jar files and emphasized the
consequences for existing applications. We continued by presenting the new URI scheme, which consists of
a jrt URL instead of a jar URL.

The chapter conculded by summarizing the compatibility problems that may occur due to the
changes implemented in JEP 220. For more information on the topics discussed in this chapter, consult the
documentation of JEP 220 at http://openjdk.java.net/jeps/220.

Chapter 6 shows how to decouple modules using services.

http://dx.doi.org/10.1007/978-1-4842-2713-8_10
http://openjdk.java.net/jeps/220
http://dx.doi.org/10.1007/978-1-4842-2713-8_6

95© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_6

CHAPTER 6

Services

A service is basically a piece of functionality defined by an interface or a class for which service providers
exist. The role of services is to decouple tightly coupled modules and to allow loose coupling between
service providers and service consumers. Using services in JDK 9 isn’t mandatory, but they offer a nice
solution for having decoupled modules.

Suppose we want to test the brake systems for different types of cars. A brake service could define
general guidelines, legal rules, and best practices for testing the brake systems. The car manufacturers
could implement their own services for testing the brake systems in their cars, because each brake system
is different from model to model. These services are called service providers, because they provide specific
implementations for the brake service. Internal tools used by car manufactureres for vizualizing and
analyzing the functions in a car could use the brake service. These are called service consumers because they
use, or consume, the service.

The basic idea behind services in Jigsaw is that in a module we don’t want to expose our
implementation class, but only something that’s being exposed through an interface. This leads to the
following question: how can we implement this in the Java Plaform Module System of Java 9? The answer is
straightforward: we can use an interface as a contract.

Before digging into that answer, let’s briefly look at what services are and how they work in Java 9.
A service can consist of both interfaces and classes that specify the functionality of the service. A service
provider implements a service. Multiple service providers can implement a service by providing custom
implementations of it.

To provide a separation and a decoupling between service providers and service consumers, Java
provides the ServiceLoader<S> class in package java.util of module java.base. This class wasn’t introduced
in Java 9. It existed in Java since JDK 6 but has been enhanced in JDK 9 in order to support modules. Its role
is to search, find, and load all the service providers for a service of type S. This is performed at runtime, not at
compile-time. Application code invokes only the service and doesn’t refer to service providers.

Imagine that each three of the biggest German car manufacturers—Volkswagen, Daimler, and
BMW—has its own service providers that implement a service called brake system. The service brake
system provides the legal rules that a car brake system must fulfill. Because the brake systems produced by
car manufacturers differ, each of them decided to provide its own implementations of the brake system
rule by adhering to its prescription. Each manufacturer decided to build tools for being able to visualize the
output generated by its brake systems. These tools act like service consumers and they’re aware only of the
service brake system. They’re not aware of the service providers that implement the braking system service
interface. What makes the interaction between service providers and service consumers possible, since
they’re not aware of each other? Here comes the ServiceLoader in play. It makes the instances of services
providers available to service consumers. In our case, ServiceLoader makes the different implementations
of the brake system service available to the data visualizing tools.

Chapter 6 ■ Services

96

■■ Note  ServiceLoader’s role is to find and load all the service providers and make them accessible to
service consumers.

Now let’s move to the modular world and explain how the concepts just presented fit in the new
Java Platform Module System. In a modular context, we could use a provider module that has the role of
registering a service on the service registry. Additionally we could make use of a consumer module that has
the role of performing lookups for a service in the service registry.

■■ Note  The service registry returns a service instance to the consumer module.

Even if we use modules, the workflow is the same as we know from the non-modular world. First, a
provider registers a service or an interface. Second, a consumer searches a registry for any implementations
of the interface. When any implementations are found, they can call upon the service via the interface
without having to know about the concrete implementation.

The ServiceLoader API is used to decouple modules. A module should depend on an interface rather
than on the implementation of another module. The implementation classes should not be exported.
Instead, an interface should be exported. One of the strong features of the ServiceLoader API is that the
system doesn’t need to know about all the service provider implementations right at compile-time. They’re
computed only at runtime. So at compile-time this kind of dependency between modules doesn’t need to be
declared inside module declarations.

Strong Coupling Between Modules
In Chapter 4 you learned what the requires and exports clauses mean. When a module requires another
module, a strong coupling between the two modules occurs. If a module changes, then it may be necessary
to adjust all the dependent modules. This not only makes the source code much harder to maintain, it can
also considerably increase the time interval needed for implementing change requests in the code.

Let’s illustrate the strong coupling between modules with an explanatory example. We know from
the module declaration of module java.rmi that it requires module java.logging. Module java.rmi has a
dependency on module java.logging and also has access to the public types in the API exported by the java.
logging module. As a result, there’s a strong and tight coupling between the modules java.rmi and java.
logging. This has an important impact at both compile-time and runtime.

At compile-time, if the java.logging module isn’t found, the java.rmi module can’t be built. A module
not found error will be thrown at compile-time.

At runtime, if java.logging isn’t found, no application that depends on java.rmi can start. This happens
because the dependency of java.rmi on java.logging isn’t resolved. The following error will be thrown:

Error occurred during initialization of VM
java.lang.module.ResolutionException: Module java.logging not found, required by java.rmi
 at java.lang.module.Resolver.fail(java.base@9-ea/Resolver.java:841)
 at java.lang.module.Resolver.resolve(java.base@9-ea/Resolver.java:154)
 at java.lang.module.Resolver.resolveRequires(java.base@9-ea/Resolver.java:116)
 �at java.lang.module.Configuration.resolveRequiresAndUses(java.base@9-ea/

Configuration.java:311)

Chapter 6 ■ Services

97

 �at java.lang.module.ModuleDescriptor$1.resolveRequiresAndUses(java.base@9-ea/
ModuleDescriptor.java:2483)

 at jdk.internal.module.ModuleBootstrap.boot(java.base@9-ea/ModuleBootstrap.java:272)
 at java.lang.System.initPhase2(java.base@9-ea/System.java:1927)

Using Services in JDK 9
This section describes what services are in Java 9 and how we can use them to prevent tight coupling
between modules. Project Jigsaw can use the service registry as a layer of communication for the interaction
between modules.

Modules can register their implementation class as a service in the service registry. These modules are
called service provider modules. Their main role is to provide implementations of an interface. The service
consumer modules use services that implement the interface that’s defined in the service registry. They don’t
deal with the implementation classes that implement the interface defined in the service registry. Service
consumer modules obtain objects from the service registry that implement the interface. In this way, they’re
able to successfully call methods on this interface.

■■ Note  A service consumer module and a service provider module don’t have a dependency upon each other.

The interface defined in the service registry implemented by the corresponding class represents the
interaction between service providers and service consumers. The service registry instantiates the classes
and afterwards provides this instance to the service consumer. The service consumer only has to know about
the interface. It will return an object that implements the interface. It can also call methods on this object.

■■ Note  A service can be declared as an abstract class or as an interface. However, it’s better from a design
point of view to use an interface rather than an abstract class. When using an abstract class instead of an
interface, a public static provider method has to be defined.

Let’s look at the syntax of the uses and provides clauses, which are mandatory in order to be able to
implement the concepts present throughout this chapter.

Providing and Consuming Services
In this section you’ll learn how to consume and provide services in JDK 9. We present the clauses used in the
module declarations to declare that a module provides a service implementation and that a module uses a
service.

Providing a Service
he Java Platform Module System introduced a new construct called provides in the module descriptor in
order for a module to be able to declare that it provides and exposes a service implementation for a specific
service. Figure 6-1 illustrates its syntax.

Chapter 6 ■ Services

98

The provides with clause takes two parameters:

•	 <interface_name> represents the name of the service interface. It specifies the name
of the service for which the current module provides an implementation. The service
could be either a class or an interface.

•	 <class_name> represents the name of the class. It specifies the name of the class that
implements the service interface. This class must be present in the current module.
If it is not present in the current module, we get a compilation error.

A module uses the provides clause to inform the ServiceLoader that it provides an implementation of
a service. Without this knowledge, the ServiceLoader wouldn’t have been able to load the service provider
because it wouldn’t have been aware of it existence.

■■ Note  JDK 9 allows you to have a service implementation as an interface. This wasn’t possible in previous
versions of Java.

Jigsaw also allows for a single module to provide an implementation for a service and to also consume
that service. But it does not allow for more than one provides statement to specify the same interface in a
module declaration. A module declaration like this will never compile:

module myModule {
 provides myInterface with firstClass;
 provides myInterface with secondClass;
}

We mentioned previously the notion of consuming a service. The next subsection explains what this
means and how it can be declared in Jigsaw.

Consuming a Service
In JDK 9, a module can explicitly declare that it consumes a service. For this, the service has to be
discovered. Therefore, the uses clause was introduced in JDK 9 in the module declaration. It takes an
interface as a parameter.

name of the interface name of the class

provides <interface_name> with <class_name>;
Figure 6-1.  The provides with clause

Chapter 6 ■ Services

99

Figure 6-2 shows the syntax of the uses clause.

When should we use this clause? This clause should be used in modules that define a
ServiceLoader<interface_name>, which loads service providers for the service with the name
<interface_name>. If our module uses the ServiceLoader class to load services, then it’s mandatory to declare
this in the module’s declaration using the uses clause, followed by the name of the service interface used.

This means that inside the module that declares the uses clause, a ServiceLoader is used, as in the
following example:

Iterable<interface_name> ourInterfaces = ServiceLoader.load(interface_name.class);

Here, a ServiceLoader for services of type interface_name has been used.

■■ Note  The service declared with the uses clause doesn’t have to reside in the same module. It can also
reside in another module provided that there is readability between the two modules.

Retrieving a ServiceLoader
We’ve already seen how to obtain a service loader. It can be done using the load() method, which comes in
four flavours, according to the JDK 9 API specification:

•	 public static <S> ServiceLoader<S> load(Class<S> service)

This method creates a new service loader for the given service type. It uses the
context class loader of the current thread.

•	 public static <S> ServiceLoader<S> load(Class<S> service, ClassLoader
loader)

This method creates a new service loader and uses the given class loader to
locate service providers for the service. Providers are located first in named
modules and then in unnamed modules. Providers are located in all named
modules of the class loader or to any class loader reachable via parent
delegation.

•	 public static <S> ServiceLoader<S> load(ModuleLayer layer, Class<S>
service)

This method creates a new service loader for the given service type to load
service providers from modules in the given module layer and its ancestors.
It doesn’t locate providers in unnamed modules.

name of the interface

uses <interface_name> ;
Figure 6-2.  The uses clause

Chapter 6 ■ Services

100

•	 public static <S> ServiceLoader<S> loadInstalled(Class<S> service)

This method creates a new service loader for the given service type. It uses the
platform class loader.

After we retrieve a ServiceLoader, we can iterate over all the service providers using the iterate()
method. Another option would be to call the stream() method, which returns a stream to lazily load
available providers. The syntax of the stream() method is as follows:

Stream<ServiceLoader.Provider<S>> stream()

Until now, we’ve seen how to retrieve a ServiceLoader and also how to provide and to consume a
service. It’s time to see a practical example. We’ll use an example using one service consumer and one
service provider. Then we’ll expand the example and show how to add more service providers.

Using One Consumer and One Provider
This section shows a simple example to illustrate the concepts presented earlier. Suppose we have three
modules:

•	 Module com.apress.moduleA contains a simple interface called ServiceExample.

•	 Module com.apress.providerA defines a service provider that contains the class
ServiceExampleImplementation1, which implements the interface from module
com.apress.moduleA, ServiceExample.

•	 Module com.apress.consumer defines a service consumer that creates a new service
loader for the ServiceExample service and uses this service.

Listing 6-1 shows the interface ServiceExample, defined inside the module com.apress.moduleA.

Listing 6-1.  The Interface ServiceExample from the Module com.apress.moduleA

package com.apress.moduleA.interfaces;

public interface ServiceExample {

 String printHelloWorld();
}

The module descriptor of the module com.apress.moduleA is depicted in Listing 6-2. The package com.
apress.moduleA.interfaces, where the interface is located, is exported.

Listing 6-2.  The Module Descriptor of the Module com.apress.moduleA

module com.apress.moduleA {

 exports com.apress.moduleA.interfaces;
}

Until now we’ve only defined an interface inside of a module. Next we’ll define the provider module.
Listing 6-3 shows the implementation class of the interface from the module com.apress.providerA.

Chapter 6 ■ Services

101

Listing 6-3.  The Implementation Class of Interface ServiceExample from Module com.apress.providerA

package com.apress.providerA;

import com.apress.moduleA.interfaces.ServiceExample;

public class ServiceExampleImplementation1 implements ServiceExample {

 public ServiceExampleImplementation() {
 }

 @Override
 public String printHelloWorld() {

 return "Hello World from ServiceExampleImplementation1";
 }
}

In Listing 6-4 you see the module descriptor of module com.apress.providerA.

Listing 6-4.  The Module Descriptor of Module com.apress.providerA

module com.apress.providerA {
 requires com.apress.moduleA;
 provides com.apress.moduleA.interfaces.ServiceExample with com.apress.providerA.
ServiceExampleImplementation1;
}

The module descriptor states that it provides an implementation of the ServiceExample interface
with the class ServiceExampleImplementation1. This means that inside the module we have a class called
ServiceExampleImplementation1 that implements the interface ServiceExample. The module descriptor
also requires the com.apress.moduleA module because it has to access the interface in order to be able to
implement it.

Listing 6-5 shows the content of module com.apress.consumer.

Listing 6-5.  The Main Class of Module com.apress.consumer

package com.apress.consumer;

import com.apress.moduleA.interfaces.ServiceExample;
import java.util.ServiceLoader;

public class Main {

 public static void main(String[] args) {
 �Iterable<ServiceExample> services = ServiceLoader.load(ServiceExample.class);
 for(ServiceExample serviceExample : services) {
 System.out.println(serviceExample.printHelloWorld());
 }
 }
}

Chapter 6 ■ Services

102

The Main class obtains instances of ServiceExample using the ServiceLoader from the java.util
package. This is done by creating a new service loader for the ServiceExample type inside the Main class
of the com.apress.consumer module. All instances of type ServiceExample are retrieved by calling the
load() method with the ServiceExample.class parameter. Finally, we iterate through them and call the
printHelloWorld() method on them.

Listing 6-6 shows the module-info.java file of the module com.apress.consumer.

Listing 6-6.  The Module Descriptor of Module com.apress.consumer

module com.apress.consumer {
 requires com.apress.moduleA;
 uses com.apress.moduleA.interfaces.ServiceExample;
}

Module com.apress.consumer requires module com.apress.moduleA because it needs access to
the interface to call the corresponding method on it. Additionally, it specifies that it uses the interface
ServiceExample. This tells the module system that the module com.apress.consumer wants to consume
instances of the com.apress.moduleA.interfaces.ServiceExample interface.

Finally, we compile the modules specified using the following command:

javac -d output --module-source-path src $(find . -name "*.java")

Then we run the following command:

java --module-path output -m com.apress.consumer/com.apress.consumer.Main

The output is printed inside the console:

Hello World from ServiceExampleImplementation1

We saw in this example how to define a simple service provider, a service consumer, and an interface
in a separate module for the communication between the service provider and the service consumer. Both
service provider and service consumer require only the interface. This means there’s a dependency between
the service provider and the interface and respectively a dependency between the service consumer and
the interface. It’s important to remember that there’s no dependency between the service provider and the
service consumer. As a consequence, we don’t have tight coupling between those two modules.

■■ Note  You can find the source code for this example in the directory /ch06/oneConsumerOneProvider.

Using One Consumer and Two Providers
Until now we’ve had only one service provider, but we can define many service providers and at the same
time keeping the loosely coupled relation between the service providers at the service consumers. We’ll
illustrate this concept with an example by defining another provider module.

Listing 6-7 shows the implementation class of the interface ServiceExample in the module com.apress.
providerB.

Chapter 6 ■ Services

103

Listing 6-7.  The Implementation Class of Interface ServiceExample from Module com.apress.providerB

package com.apress.providerB;

import com.apress.moduleA.interfaces.ServiceExample;

public class ServiceExampleImplementation2 implements ServiceExample {

 public ServiceExampleImplementation2() {
 }

 @Override
 public String printHelloWorld() {
 return "Hello World from ServiceExampleImplementation2";
 }
}

Listing 6-8 shows the module descriptor of module com.apress.providerB.

Listing 6-8.  The Module Descriptor of Module com.apress.providerB

module com.apress.providerB {
 requires com.apress.moduleA;
 �provides com.apress.moduleA.interfaces.ServiceExample with com.apress.providerB.

ServiceExampleImplementation2;
}

The module descriptor of module com.apress.providesB provides an implementation of the
ServiceExample interface with the class ServiceExampleImplementation2.

By compiling and running the modules, the following result is printed in the console:

Hello World from ServiceExampleImplementation2
Hello World from ServiceExampleImplementation1

In this example, we defined two provider modules and saw how they interact in the context of the
module system. None of the provider modules has a dependency upon the consumer module.

In our example, neither the provider modules nor the consumer module exports their packages.
In this way, they’re encapsulated and can’t be accessed from outside. Nonetheless, Jigsaw has the capability
to instantiate classes of type ServiceExampleImplementation1 because it implements the interface
ServiceExample, which is defined using the provides directive inside the module-info.java of module com.
apress.providerB.

■■ Note  You can find the source code for this example in the directory /ch06/oneConsumerTwoProviders.

Chapter 6 ■ Services

104

Summary
In this chapter we talked about services. Services are used to decouple modules by specifying a contract
in form of an interface. They allow loose coupling between service consumer and service providers. The
concept of loose coupling is very important in software development, especially when we’re talking about
large software applications. We showed how to declare that a module provides a service by using the new
construct provides … with inside the module descriptor module-info.java. Afterwards, we talked about
how to declare that a module consumes a service by using the new construct uses inside the module
descriptor. Further, we discussed how to retrieve a ServiceLoader.

We looked at two examples of how we can define one service consumer and one service provider,
respectively one service consumer and two service providers.

In Chapter 7 you’ll learn about the Jlink tool, which lets us create custom runtime images that contain
only the modules we need.

http://dx.doi.org/10.1007/978-1-4842-2713-8_7

105© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_7

CHAPTER 7

Jlink: The Java Linker

Throughout the software development process, we may encounter situations in which we need targeted Java
Runtime Environments (JREs) for the operating system we’re using. The reasons for this are various: we may
want to achieve a better degree of performance or we may have some customized libraries that only work on
a specific operating system.

For instance, when using microservices, we may not want to use the entire JDK, but rather just a part
of it. Microservices are small and typically don’t use libraries from the whole JDK.

Jlink helps solve these problems by creating a customized, targeted version of the JRE that is specific to
an operating system and contains only the modules we need.

The Java Linker
Java 9 introduces a new tool for dynamically linking modules, called Jlink. Its role is to assemble a group of
modules in order to create a runtime image. During the assembly process, different optimizations across
module boundaries can be applied. The following sections cover some methods for performing this kind of
optimizations.

Jlink starts with the modules we specify and searches recursively for all the requires statements inside
the module descriptors of the specified modules. In this way, Jlink can find all the modules needed to be
assembled inside a new custom runtime image.

A runtime image created by the Jlink tool contains the minimum number of required modules together
with their dependencies. We can also specify which modules we want to be added to the runtime image. As a
result, a platform-specific binary executable is created.

Jlink can take the following types of files as input:

•	 Modular JAR files

•	 JMOD files

•	 JAR files

•	 Class files

The following types of files can represent the output of the Jlink tool:

•	 JMOD files

•	 JAR files

•	 JVM images

•	 Custom JREs

Chapter 7 ■ Jlink: The Java Linker

106

The Jlink tool can generate these four kinds of files at link time. Jlink can even create custom JVM
images. Figure 7-1 illustrates the types of input files that are accepted by the Jlink tool and also which kind of
output files it can create.

The Jlink tool acts like a transformer of code and runs the resolution process in order to compute the
minimum possible set of modules needed for creating the runtime image. The minimum runtime image
we can hypothetically create is a runtime image that contains only the base module, java.base. Jlink is a tool
used at build-time that can cross-compile and use cross-module optimizations, but it can’t create cross-
platform executable files.

You may ask how Jlink knows what our target platform is. It knows that based on the type of the platform
modules we’are attempting to link. For example, if we’re working on a Linux operating system and are
passing a module path to a Windows distribution, Jlink will link the Windows versions of these modules and
create a Windows runtime image.

■■ Note  The module path we specify when we use Jlink has to be the module for the target platform.

There is no change needed at code level in order to use Jlink. Jlink assembles the modules into a custom
runtime image and doesn’t modify the module-info.class files at all.

Jlink Images
Jlink images are specific to each operating system. They represent a customization of the JDK and the JRE.
We can consider them as custom runtime images of a JRE that contains only the modules our application
needs. Jlink creates a custom directory that can be used to run our Java application.

Modular
JAR files

JMOD
files

JAR files

JVM
images

Jlink
tool

Custom
JREs

JMOD
files

JAR files

Class
files

Figure 7-1.  Types of input and output files for the Jlink tool

Chapter 7 ■ Jlink: The Java Linker

107

A Jlink image contains the following directories:

•	 bin

•	 conf

•	 include

•	 legal

•	 lib

•	 release

Jlink also links modules that have the directive requires static myModule. At runtime, if the module
myModule is located on the module path, the requires static clause will be satisfied. If we have an
application that uses only the module java.base and nothing else, then our custom runtime image will
consist only of our application modules plus the java.base module.

You’ll learn more about Jlink images and Jlink command syntax later in this chapter as we create a
custom runtime image.

Jlink Command Syntax
To create a custom runtime image using Jlink, the jlink command is used together with the necessary
options. Figure 7-2 shows the syntax of this command together with its most important options.

•	 [jlink_options] specifies a set of options separated by spaces. You’ll learn about
these options in the next section.

•	 The --module-path option specifies the location of the modules that should be
discovered by the Jlink tool. They can be exploded modules, modular JAR files, or
JMOD files.

•	 The --add-modules option specifies the names of the modules to add to the runtime
image. The modules specified will be added to the runtime image together with their
transitive dependencies.

•	 The --output option specifies the directory where the custom runtime image will be
created.

As mentioned, the Jlink tool receives the module path showing where to find the modules. It finds
the modules by starting the module resolution process that searches for all the transitive dependencies
of each module until the bottom module, java.base, is reached. Provided that we add a module using the
--add-modules command-line option, Jlink will search for all its requires and requires static clauses
and add all the corresponding dependent modules into the custom runtime image.

■■ Note  The Jlink tool allows cross-linking if we have the JMOD files for the target platform.

jlink [jlink_options] --module-path <module_path> --add-modules
<modules_list> --output <directory>

Figure 7-2.  The syntax of the jlink command

Chapter 7 ■ Jlink: The Java Linker

108

Jlink Command Options
The Jlink tool isn’t limited to the options discussed in the preceding section. According to the official JDK 9
API specification, it allows many other options, all of which are shown in Table 7-1.

Table 7-1.  The Options of the Jlink Command

Option Name Description

--help Prints a help message.

--module-path <module_path> Defines the module path.

--limit-modules <list_of_modules_names> Limits the group of observable modules to those in the
transitive closure of the modules specified. If there are
any modules specified using the --add-modules option,
they’ll be also added to the observable modules, even
if not present in the list of --limit-modules. The main
module, if it exists, will also be added to the observable
modules.

--add-modules <module_name> Specifies the root modules that need to be resolved.

--output <directory_name> Specifies the name of the directory where the runtime
image will be generated.

--launcher <command_name>=<module_name> Specifies the launcher command name for the module.

--launcher command=<module_name>/main Specifies the launcher command name for the module
together with the main class.

--endian <little | big> Defines the byte order of the runtime image that is
being generated.

--version Displays the version information.

--save-opts <name_of_file> Saves the Jlink options in the given file.

--strip-debug Strips the debug information.

--no-man-pages Excludes the man pages.

--no-header-files Excludes the header files.

--disable-plugin <name_of_plugin> Disables the plugin.

--list-plugins Lists all the available Jlink plugins that are reachable
using the command-line.

--ignore-signing-information Overcomes an error when signed modular JARs are
linked to the runtime image.

@<name_of_file> Reads all the options from the file specified as an
argument.

--bind-services Executes a full service binding and links in service
provider modules and their dependences into the
runtime image.

--suggest-providers <list_of_names_of_
service>

Helps to find providers that implement the service
types from the module path.

--verbose Enables verbose tracing.

Chapter 7 ■ Jlink: The Java Linker

109

Link Phase
A new link phase was introduced in Java 9. Its role is to produce a runtime image by assembling a collection
of modules together with their transitive dependencies. OpenJDK states that the “link time is an opportunity
to do whole-world optimizations that are otherwise difficult at compile or costly at runtime.”

Linking is a new development phase that has been added throughout the Java development process.
It’s very important to remember that the linking phase is optional—you don’t have to use it if you don’t
want or need to.

Linking can be used in Java 9 when we have a modular application. The resulting image is platform
independent. The linker can link two or more targets—for example, if you’re using operating system A, you
can successfully target operating system B provided that your module path owns the modules for operating
system B rather than the ones for operating system A. But it’s not possible to link a WAR file together.

The jdk.jlink Module
Figure 7-3 shows the module graph that contains the jdk.jlink module together with its dependencies.

The module jdk.jlink contains different java classes inside the tools directory. There is a jimage directory,
jlink directory, and jmod directory inside the tools directory. The module jdk.jlink has dependencies on the
jdk.internal.opt and the jdk.jdeps modules, as expressed in its module descriptor, the module-info.java file.
The jdk.jdeps module has a dependency on the jdk.compiler module, which has a dependency on the java.
compiler module. Finally, the java.compiler module requires the java.logging module.

■■ Note  Module jdk.jlink isn’t designed to be used by programmers.

jdk.jlink

jdk.internal.opt jdk.jdeps

jdk.compiler

java.compiler

java.base

Figure 7-3.  The module graph of the internal module jdk.jlink

Chapter 7 ■ Jlink: The Java Linker

110

Figure 7-3 shows the non-standard JDK modules (jdk.jlink, jdk.internal.opt, jdk.jdeps, and jdk.
compiler) and the standard JDK modules (java.compiler, java.logging and java.base). As in the module graph
shown in Chapter 3, the solid lines represent implied readability, and the dashed lines represent simple
readability between modules.

Listing 7-1 shows the module descriptor of the jdk.jlink module.

Listing 7-1.  The Module Descriptor of the jdk.jlink Module

module jdk.jlink {
 requires jdk.internal.opt;
 requires jdk.jdeps;

 uses jdk.tools.jlink.plugin.Plugin;

 provides java.util.spi.ToolProvider with
 jdk.tools.jmod.Main.JmodToolProvider,
 jdk.tools.jlink.internal.Main.JlinkToolProvider;

 provides jdk.tools.jlink.plugin.Plugin with
 jdk.tools.jlink.internal.plugins.StripDebugPlugin,
 jdk.tools.jlink.internal.plugins.ExcludePlugin,
 jdk.tools.jlink.internal.plugins.ExcludeFilesPlugin,
 jdk.tools.jlink.internal.plugins.ExcludeJmodSectionPlugin,
 jdk.tools.jlink.internal.plugins.LegalNoticeFilePlugin,
 jdk.tools.jlink.internal.plugins.SystemModulesPlugin,
 jdk.tools.jlink.internal.plugins.StripNativeCommandsPlugin,
 jdk.tools.jlink.internal.plugins.OrderResourcesPlugin,
 jdk.tools.jlink.internal.plugins.DefaultCompressPlugin,
 jdk.tools.jlink.internal.plugins.ExcludeVMPlugin,
 jdk.tools.jlink.internal.plugins.IncludeLocalesPlugin,
 jdk.tools.jlink.internal.plugins.GenerateJLIClassesPlugin,
 jdk.tools.jlink.internal.plugins.ReleaseInfoPlugin,
 jdk.tools.jlink.internal.plugins.ClassForNamePlugin;
 }

You can see in this module descriptor the entire list of plugins the Jlink tool has.

Example: Create a Runtime Image Using Jlink
This section shows an example of creating a custom runtime image. Our small application saves a text
message inside a file and then inside a database.

We define four modules and use the ServiceLoader API again, as in Chapter 6. Why the ServiceLoader
API again? Because, and we want to stress this, Jlink doesn’t provide service binding by default. That means
that by default Jlink doesn’t add the modules observed using the “use” and “provides” clauses to the runtime
image. It only adds the modules specified using the requires clauses. However, the JCP team enhanced
the Jlink tool with an option called --bind-services that does service binding and links in service provider
modules and their dependences.

Listing 7-2 shows the interfaces DatabasePersistenceService and FilePersistenceService of the
module com.apress.service.

http://dx.doi.org/10.1007/978-1-4842-2713-8_3
http://dx.doi.org/10.1007/978-1-4842-2713-8_6

Chapter 7 ■ Jlink: The Java Linker

111

Listing 7-2.  The Interfaces DatabasePersistenceService and FilePersistenceService of the Module com.
apress.service

// DatabasePersistenceService.java
package com.apress.service.interfaces;

public interface DatabasePersistenceService {

 void saveMessageIntoDatabase(String message);
}

// FilePersistenceService.java
package com.apress.service.interfaces;

public interface FilePersistenceService {

 void saveMessageIntoFile(String message);
}

These interfaces contain method definitions for saving a message into the database and saving a
message into a file, respectively.

Listing 7-3 shows the module descriptor of module com.apress.service, which simply exports the
package com.apress.service.interfaces.

Listing 7-3.  The Module Descriptor of Module com.apress.service

module com.apress.service {

 exports com.apress.service.interfaces;
}

Listing 7-4 shows the class DatabasePersistenceProvider of the module com.apress.
databasepersistence.

Listing 7-4.  The Class DatabasePersistenceProvider of the Module com.apress.databasepersistence

package com.apress.databasepersistence;

import com.apress.service.interfaces.*;
import java.sql.*;

public class DatabasePersistenceProvider implements DatabasePersistenceService {

 private Connection connection;
 private static final String JDBC_URL = "jdbc:postgresql://localhost/myDatabase";

 public void saveMessageIntoDatabase(String message) {

 String insertSql = "INSERT INTO MESSAGES(CONTENT) VALUES(" + message + ")";

Chapter 7 ■ Jlink: The Java Linker

112

 try {
 connection = DriverManager.getConnection(JDBC_URL, "root", "password");
 Statement statement = connection.createStatement();

 int result = statement.executeUpdate(insertSql);
 if (result > 0) {
 System.out.println("Message successfully saved into the database");
 } else {
 System.out.println("Message could not be saved into the database");
 }
 } catch (SQLException sqlException) {
 sqlException.printStackTrace();
 }
 }
}

This class is a service provider that implements the method saveMessageIntoDatabase() of the
interface DatabasePersistenceService. It also imports the package java.sql. The role of the class is to
simply store a string into a database using JDBC.

Listing 7-5 shows the module descriptor of module com.apress.databasepersistence.

Listing 7-5.  The Module Descriptor of Module com.apress.databasepersistence

module com.apress.databasepersistence {

 requires com.apress.service;
 requires java.sql;

 provides com.apress.service.interfaces.DatabasePersistenceService with com.apress.
databasepersistence.DatabasePersistenceProvider;
}

This module requires the com.apress.service module as it uses its interfaces. It also requires module
java.sql because it uses types from this module. Nevertheless, it declares that it provides the implementation
of the DatabasePersistenceService interface with the DatabasePersistenceProvider class.

Listing 7-6 shows the class FilePersistenceProvider of the module com.apress.filepersistence.

Listing 7-6.  The Class FilePersistenceProvider of the Module com.apress.filepersistence

package com.apress.filepersistence;

import com.apress.service.interfaces.*;
import java.io.*;

public class FilePersistenceProvider implements FilePersistenceService {

 private static final String FILENAME = "C:\\Java9\\example.txt";

 // for Linux
 // private static final String FILENAME = "Java9/example.txt";
 private BufferedWriter bufferedWriter = null;
 private FileWriter fileWriter = null;

Chapter 7 ■ Jlink: The Java Linker

113

 public void saveMessageIntoFile(String message) {

 try {

 fileWriter = new FileWriter(FILENAME);
 bufferedWriter = new BufferedWriter(fileWriter);
 bufferedWriter.write(message);
 }
 catch (IOException e) {

 e.printStackTrace();
 }
 finally {
 try {
 if (bufferedWriter != null)
 bufferedWriter.close();

 if (fileWriter != null)
 fileWriter.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

This class is a service provider that implements the method saveMessageIntoFile() of the interface
FilePersistenceService. The role of the class is to save a string into a file using Java I/O.

Listing 7-7 shows the module descriptor of module com.apress.filepersistence.

Listing 7-7.  The Module Descriptor of Module com.apress.filepersistence

module com.apress.filepersistence {

 requires com.apress.service;
 provides com.apress.service.interfaces.FilePersistenceService with com.apress.
filepersistence.FilePersistenceProvider;
}

This module requires the com.apress.service module and declares that it provides the implementation
of the FilePersistenceService interface with the FilePersistenceProvider class.

Listing 7-8 shows the Main class located in the module com.apress.application.

Listing 7-8.  The Main Class of Module com.apress.application

package com.apress.application;

import com.apress.service.interfaces.*;
import java.util.ServiceLoader;

public class Main {

 public static void main(String[] args) {

Chapter 7 ■ Jlink: The Java Linker

114

 �FilePersistenceService filePersistenceService = ServiceLoader.load
(FilePersistenceService.class).iterator().next();

 �filePersistenceService.saveMessageIntoFile("First message saved into the
file");

 �DatabasePersistenceService databasePersistenceService = ServiceLoader.load
(DatabasePersistenceService.class).iterator().next();

 �databasePersistenceService.saveMessageIntoDatabase("Second message saved
into the database");

 }
}

This class uses the ServiceLoader API to load the interfaces FilePersistenceService and
DatabasePersistenceService. It then calls the corresponding methods on the interfaces. As a result, the
message is saved in the text file, respectively saved into the database.

Listing 7-9 represents the module descriptor of module com.apress.application.

Listing 7-9.  The Module Descriptor of module com.apress.application

module com.apress.application {

 requires com.apress.service;

 uses com.apress.service.interfaces.FilePersistenceService;
 uses com.apress.service.interfaces.DatabasePersistenceService;
}

We notice that com.apress.application represents our main module. We compile all the Java classes
using the javac command:

javac -d output --module-source-path src $(find . -name "*.java")

As a result, the output directory will contain all the compiled classes of our four modules that we have.
Further, we create a custom runtime image using the Jlink tool by running the following command (in our
case, on the Windows operating system):

jlink --module-path "output;$JAVA_HOME/jmods" --add-modules com.apress.application --output
runtimeImage

We specify two directories, separated by semicolon, for the module path. The output directory contains
the class files of all our modules. JAVA_HOME is an environment variable that points to the current installation
of Java 9. Inside JAVA_HOME is the JMODS directory, which contains the modules of the JDK. Remember, we
have to explicitly point the module path at the JDK we intend to produce a runtime image for.

Using the --add-modules option, we specify the name of the main module. Finally, the output option
indicates the directory where the new custom runtime image will be created.

The Jlink tool first analyzes the module descriptor file of the module com.apress.application and then
recursively adds any modules that are required inside the runtime image. The runtimeImage directory
now contains the runtime that we’ve just created. We can see what modules the runtime image contains by
running the java --list-modules command inside the runtimeImage directory:

./bin/java --list-modules

Chapter 7 ■ Jlink: The Java Linker

115

The result is:

com.apress.application
com.apress.service
java.base

Our runtime image contains those three modules. The module java.base is the single platform module
that’s always being automatically added to our runtime image. Further, we have two more application
modules in our runtime image: com.apress.application, which is the root module that we specified using the
--add-options option, and com.apress.service module. The com.apress.application module requires the
module com.apress.service in its module descriptor. As a result, we have the module com.apress.service in
our runtime image.

■■ Note  The modules com.apress.databasepersistence and com.apress.filepersistence aren’t present in our
newly created runtime image, even if they’ve been previously successfully compiled inside the output directory.
Further, the java.sql module should also be present in the runtime image, because it’s required by the module
com.apress.databasepersistence. The reason why these modules aren’t in the runtime image is that the Jlink
tool doesn’t do service binding by default. The tool identifies the necessary modules by searching for the
requires clauses inside the module descriptors. It doesn’t search for the uses or provides clauses either. In
our module com.apress.application, we don’t require the modules com.apress.databasepersistence and com.
apress.filepersistence. As a result, they’re not added to the runtime image.

To solve this, there are two solutions. The first is also the simplest: use the new --bind-services option
added to the jlink command. This option makes a full service binding. Therefore, it searches for all the uses
clauses and then, for all the services specified by the uses clauses, it adds all the service provider modules in
the runtime image. We could use it like this:

jlink --module-path "output;$JAVA_HOME/jmods" --bind-services
 --add-modules com.apress.application
 --output runtimeImage

A second solution to add them to the runtime image would be to specify them inside the --add-modules
command-line option, but this is a workaround that was mostly used before the introduction of the --bind-
services option. Using the workaround with the --add-modules option is definitely more costly than using
the --bind-services option. Hence, we talk about this second solution here. We delete our runtime image
and supplementary add the explicit --add-modules flags for each of the service provider modules that we
want to be added into our runtime image:

jlink --module-path "output;$JAVA_HOME/jmods"
 --add-modules com.apress.application
 --add-modules com.apress.databasepersistence
 --add-modules com.apress.filepersistence
 --output runtimeImage

If we omit to mention the JMODS directory in our module path, an error will be thrown:

Error: module java.sql not found, required by com.apress.databasepersistence

Chapter 7 ■ Jlink: The Java Linker

116

This error states that the module java.sql, which is required by the module com.apress.
databasepersistence, wasn’t found on the module path because we didn’t include its location, the JMODS
directory, on the module path.

We explicitly specified that we want the modules com.apress.databaspersistence and com.apress.
filepersistence to be added to the runtime image, next to the main module com.apress.application. If we run
the --list-modules command inside the runtimeImage directory, we get the following result:

./bin/java --list-modules
com.apress.application
com.apress.databasepersistence
com.apress.filepersistence
com.apress.service
java.base
java.logging
java.sql
java.xml

Note that the new runtime image not only contains the two service provider modules that we specified
using the --add-modules flags, but also contains three new modules: java.logging, java.sql, and java.xml. The
reason is that the module com.apress.databasepersistence requires java.sql, so this module is also added
to the runtime image. But module java.sql also requires the modules java.logging and module java.xml.
Therefore, these two modules are also added to the runtime image in order for all the dependencies to be
fulfilled.

Our runtime image has a structure similar to that of a JRE. The newly created runtimeImage directory
has the following structure:

-bin (directory)
-conf (directory)
-include (directory)
-legal (directory)
-lib (directory)
-release (file)

The bin directory has the following content:

-server (directory) => contains a jvm.dll file
-java.dll (file)
-java.exe (file)
-javaw.exe (file)
-jimage.dll (file)
-jli.dll (file)
-keytool.exe (file)
-msvcp120.dll
-msvcr120.dll
-net.dll
-nio.dll
-verify.dll
-zip.dll

Chapter 7 ■ Jlink: The Java Linker

117

The conf directory has the following structure:

-net.properties (file)
-security (folder) => -policy (folder)
 -java.policy (file)
 -java.security (file)
-net.properties (file)

The include directory has the following structure:

-win32 (folder) => -jni_md.h
-classfile_constants.h
-jni.h
-jvtmi.h
-jvmticmlr.h

The legal directory has the following content:

-java.base (folder) => aes.md, asm.md, cldr.md, icu.md, zlib.md
-java.logging => COPYRIGHT
-java.sql => COPYRIGHT
-java.xml => bcel.md, COPYRIGHT, dom.md, jcup.md, xalan.md, xerces.md, xmlresolver.md

The lib directory has the following content:

-security (folder) => blacklist, blacklisted.certs, cacerts, default.policy,
trusted.libraries
-server (folder) => Xusage.txt
-classlist (file)
-jrt-js.jar
-jvm.cfg
-jvm.lib
-modules (file)
-tzdb.dat
-tzmappings (file)

■■ Note  We used Windows 7 Professional Edition as the operating system while creating this runtime image
using Jlink. That’s why the custom runtime image is specific to the Windows operating system.

Jlink doesn’t perform service binding by default. That means we have two distinct options:

•	 Use the --bind-services option in order for the service provider modules to be
explicitly discovered and added to the runtime image

•	 Define each service provider module that we want to add in the --add-modules
option

Next we check the size of the newly generated runtime image:

$ du -hs
48M

Chapter 7 ■ Jlink: The Java Linker

118

Our entire runtime image has a size of 48 MB, which is much smaller than the size of the entire JDK.
We delete our runtime image and generate a new one using compression in order to reduce its size:

jlink --module-path "output;$JAVA_HOME/jmods"
 --add-modules com.apress.application
 --add-modules com.apress.databasepersistence
 --add-modules com.apress.filepersistence
 --compress=2
 --output runtimeImage

We used level 2 compression. You’ll learn more about this later in the chapter during the discussion of
the compress plugin. The new runtime image has a total size of 29 MB. Thanks to compression, we managed
to reduce the size of the runtime image by more than 40 percent. It’s recommended to use compression in
order to create more compact runtime images, especially when we need to install them on small devices.

We can further reduce the size of the runtime image by using the --strip-debug flag, which strips the
debug information from the image. In our example, the new size of the runtime image will be 26 MB instead
of 29 MB after taking advantage of the --strip-debug option.

■■ Note  If we use the Windows operating system, we have to use the separator : instead of ; for the module path.

Running the Runtime Image
To run the image, we make use of the Java launcher inside the runtime image:

$./bin/java -m com.apress.application/com.apress.application.Main

We pointed to the bin folder located inside the runtime image and called the Java launcher with the
-m option, which contains the module name together with the name of the Main class. We specified that we
want to run the Main class from module com.apress.application.

Note that inside the runtime image we have an executable that’s targeted at a particular platform
(in our case, Windows).

Modular JAR Files as Input for the Jlink Tool
We stated at the beginning of this chapter that the Jlink tool can take as input the following file formats:
modular JAR files, JAR files, class files, and JMOD files.

Until now, we’ve put class files and JMOD files on the module path. In this example, we’ll use modular
JAR files instead of expanded class files. First, we delete our runtime image because we’ll create a new
one using modular JAR files and JMOD files. For each module, we create modular JAR files in the output
directory using the following pattern:

$ jar --create --file output/com.apress.application.jar --main-class com.apress.application.
Main -C output/com.apress.application.

After all four modular JAR files are created inside the output directory, we delete all class files from
this directory. Further, we run exactly the same jlink command as previously in order to create a custom
runtime image.

Chapter 7 ■ Jlink: The Java Linker

119

The newly created runtime image created from modular JAR files is the same as the runtime image
created previously from expanded class files.

Structure of the Generated Runtime Image
The runtime image we’ve previously created is a smaller implementation of Java made exactly for our code
to be able to successfully run. It doesn’t have anything else in it except the minimum libraries necessary
to be able to run. The content of the generated runtime image was discussed in the previous section. This
section focuses on details regarding each folder of the runtime image.

In the bin directory there are three Java launchers. The keytool is used for managing certificates and
other security-related stuff. Java is the launcher we already know.

•	 In the lib directory are all the classes and resources, and there is no rt.jar file.

•	 The conf directory contains the user configuration. All the files in this directory can
be edited by the user.

•	 The legal directory contains the copyright stuff from Oracle. There are per module
license files. When using Jlink to create our own runtime images, the legal stuff
comes from the packaged modules.

In order to find all the modules contained inside a runtime image, we can run java --list-modules
inside the image, as repeatedly shown in the previous examples.

No Support for Linking Automatic Modules
Project Jigsaw doesn’t offer support for linking automatic modules. Trying to add a module that doesn’t
contain a module-info.class file in the runtime image will result in an error.

In our next example, we download and add the guava.jar inside the output directory. Then we attempt
to create the runtime image by additionally specifying the Guava JAR file:

--add-modules guava

Because the guava.jar is a simple JAR and not a modular one, and therefore doesn’t contain a module-
info.class inside it, the following error will be raised:

Error: module-info.class not found for guava module

There’s a justified reason for not adding automatic modules support in Jlink. As we know, the automatic
modules can access the class path. As a result, no one can assume that a custom runtime image created
by Jlink will work correctly if it also contains automatic modules in it. Because automatic modules are
employed for performing migration, they may have references to types on the class path. If, for example,
an automatic module is linked into a custom runtime image, it could eventually result in faulty references
unless it’s used with the class path.

To make automatic modules work in Jlink, we should add module-info.class files to each of the existing
JAR files. For this, we could use the JDeps tool with the option --generate-module-info.

■■ Note  You’ll find the source code for this example in the directory /ch07/jlink.

Chapter 7 ■ Jlink: The Java Linker

120

So far, we’ve seen how to create a runtime image and looked at the structure of it. The Jlink tool has a
couple of useful plugins you can use. The next section talks about three of them.

Jlink Plugins
The Jlink tool is plugin-based. Open JDK states that “Jlink gathers the classes, native libraries, and
configuration files into a set of resources. These resources are fed through a pipeline of transformers, which
are defined by plugins.”

Jlink contains a couple of important plugins that can be extended by developers. We can develop our
own Jlink plugins for optimizing the runtime images, for example. Table 7-2 lists the existing JLink plugins,
according to the official JDK 9 API specification.

Table 7-2.  The Jlink Plugins

Plugin Description

--class-for-name Optimizes classes by converting
Class.forName() calls to constant loads.

--compress=<0 | 1 | 2> [: filter=pattern-list] Enables the compression of resources.

--strip-debug Strips the debug information from the output
image.

--strip-native-commands Excludes native commands from the image.

--vm={client | server | minimal | all} Selects the HotSpot VM in the output image.
Default is all.

--generate-jli-classes=@filename Takes a file hinting to Jlink what java.lang.
invoke classes to pre-generate. If you don’t
specify this flag, Jlink generates a default set
of classes.

--include-locales=langtag[,langtag]* Includes the list of locales.

--dedup-legal-notices=[error_if_not_same_content] De-duplicates all legal notices.

--exclude-files=[pattern_list] Specifies the files to exclude.

--exclude-jmod-section Specifies a JMOD section to exclude.

--exclude-resources Specifies the resources to exclude.

--order-resources Specifies a file listing the java.lang.invoke
classes to pre-generate.

--release-info=<file> | add:<key1>=<value1> |
del:<key list>

Loads release properties from the supplied
file. add is used to add properties to the
release file. del is used to delete the list of
keys in the release file.

--system-modules Represents a fast loading of module
descriptors. It’s always enabled.

The next subsections cover three Jlink plugins: the compress, release-info, and exclude-files plugins.

Chapter 7 ■ Jlink: The Java Linker

121

The compress Plugin
The compress plugin has the role of compressing all the resources in the output image. The syntax of the
plugin is simple:

--compress=<level of compression>

There are a total of three levels of compression:

•	 Level 0: Constant string sharing

•	 Level 1: ZIP compression

•	 Level 2: Both constant string sharing and ZIP compression of image classes

Level 0 scans the image classes’ constant pool. Level 1 performs a ZIP compression of the image classes.
Level 2 comprises both levels 0 and 1.

Earlier in this chapter we explained how to create a runtime image. In Table 7-3 you’ll find a
comparison of the size of our runtime image by using different levels of compression.

As you can see, Level 2 compression is the most performant. If we specify a level of compression other
than 0, 1, or 2, an error will be thrown during the creation of the runtime image.

The release-info Plugin
The release-info plugin prints useful information regarding the image. In this example, we want to see what
the “release” file of our runtime image contains:

runtimeImage>cat release
OS_NAME="Windows"
MODULES="java.base com.apress.service com.apress.application java.logging comapress.
filepersistence java.xml java.sql com.apress.databasepersistence"
OS_VERSION="5.2"
OS_ARCH="amd64"
JAVA_VERSION="9"
JAVA_FULL_VERSION="9-ea"

The release file contains different properties. The MODULES property specifies all the modules existing in
the image. We can add new properties inside the release file using the following command:

--release-info add:<key>=<value>

Table 7-3.  Size of Our Runtime Image Using Different Levels of Compression

Compression Level Size of the Runtime Image

No compression 48 MB

Level 0 48 MB

Level 1 38 MB

Level 2 29 MB

Chapter 7 ■ Jlink: The Java Linker

122

It’s also possible to delete properties files from the release file by specifying the list of keys to be deleted:

--release-info del:<list of keys>

In the following example, we build our runtime image by adding a key called date inside the release file:

jlink --release-info add:date=17.07.2017

The release file now contains our newly added key:

$ cat release
date=19.03.2017
...

The excludes-files plugin
The excludes-files plugin lets us exclude files from the runtime image. It gets as parameter a pattern.

Now we want to exclude all the *.diz files from our runtime image. The *.diz files are compressed debug
information files. Because our image is inflated by all these debug files, getting rid of them is worth it:

--exclude-files *.diz

As a result, our runtime image doesn’t contain any *.diz files anymore, because we excluded them.

Summary
Jlink started as a command-line utility to generate runtime images, but after a while became a standard.
Jlink is useful and suitable especially when we intend to create a targeted executable.

This chapter explained what Jlink is, described the newly introduced link phase, and presented the
syntax of the Jlink command together with its options. It described the jdk.jlink module and looked inside
its module descriptor. After that it showed a clear example of creating a custom runtime image that contains
four application modules and four JDK modules. For this, we used the ServiceLoader API. We also saw how
to run the runtime image and how to create a runtime image using modular JAR files as an input instead of
class files.

Next we talked about the structure of the generated runtime image, and we explained the reasons
behind Jlink’s lack of support for automatic modules. The next section covered the existing Jlink plugins and
showed practical examples using the compress, release-info, and excludes-file plugins. We saw how we can
compress and strip debug a runtime image in order to reduce its size.

We managed to create a smaller, more compact, and tailored runtime image that we can distribute or
run. We learned that if we use the advantages that Jlink gives us, we don’t have to install the entire JDK, as
the targeted binary Jlink creates is smaller than the JDK.

The next chapter talks about a very complex and important topic: migration.

123© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_8

CHAPTER 8

Migration

This chapter covers key concepts and tools used to ease migration to JDK 9. It covers common issues that
can occur when we migrate existing Java applications to JDK 9 and suggests solutions and tips for solving
migration problems.

First, why do we need migration? The answer is obvious: without migrating to JDK 9, we can’t use the
powerful features introduced by Jigsaw, nor can we use the other features introduced in Java 9 by the other
JEPs, like the following:

•	 The Java Shell

•	 The updates in the Process API

•	 The HTTP 2 client

•	 The Stack-Walking API

•	 The Platform Logging API

•	 The multi-release JAR files

By looking back in the history of Java, every time a new version of Java SE has been released, there were
some changes that caused incompatibilities with the previous versions of Java. The supreme scope of Oracle
has always been to provide backward compatibility as much as possible. Hence, the modularization of the
JDK is such a disruptive change that backward compatibility can’t be 100 percent assured. Oracle struggled
to offer the highest possible degree of backward compatibility, but there are some breaking changes that can
affect the backward compatibility. This all depends on how our code is structured. Before starting talking
about any compatibility issues, we must outline two very important things:

•	 Code that uses internal JDK APIs might not work in JDK 9. Some changes may be
necessary.

•	 Code that uses only official Java SE platform APIs and supported JDK-specific APIs
works in JDK 9 without any necessary change.

When deciding to migrate to Java 9, it’s important to know the outcome we want to achieve:

•	 We want our existing Java application to simply run on JDK 9, but we don’t want to
have any modules defined inside our code.

•	 We want to modularize only a part of our application and keep the other part not
modularized.

•	 We want to modularize the entire application.

Chapter 8 ■ Migration

124

We’ll explain each case in detail. For each case, suppose we have a Java application written in a version
lower or equal to Java 8 and that we want to compile and run it using Java 9.

The first case involves only assuring that our application works on Java 9, without creating any modules.
This means we stay on the class path and don’t use the newly introduced module path at all. Start by setting
the JAVA_HOME environment variable to point to a JDK 9 installation and then compile and run our application
without performing any changes inside the code. Our application most likely works on Java 9 if it’s not using
JDK internal APIs. Most of the JDK internal APIs have been encapsulated in Java 9 and therefore can’t be
accessed. A small number of the JDK internal APIs, the ones from the module jdk.unsupported, are still
accessible, but all the other are inaccessible. When we talk about JDK internal APIs, we refer to both our
application code and library code. It doesn’t matter if our application doesn’t make use of internal JDK APIs
because if one of our libraries that we’re using inside our application makes use of JDK internal APIs, then
our application will break anyway. Nevertheless, there are a couple of changes performed in JDK 9 that can
eventually break our application, like the new versioning scheme or the new structure of the JDK and the JRE.
These changes will be covered in detail throughout this chapter. The biggest disadvantage on relying just on
the class path is that we can’t use two of the most important features brought by JDK 9: reliable configuration
and strong encapsulation. That means we can’t, for instance, declare dependencies on other modules, we
can’t hide the internals of parts of our application, and we also can’t create custom runtime images.

The second case involves modularizing only a part of our application and keeping the other part
not modularized. This means we combine the module path with the class path: the part of the code that
contains modules is on the module path, and the non-modularized part of the code is on the class path.
A big problem is that by default, code from the module path can’t access types from the class path! Fortunately,
there are at least two solutions for this. One solution is to take the code from the class path and turn it into
automatic modules. This is useful especially for third-party JAR files that may not yet have been modularized
by their maintainers. Another solution would be to use a new command-line option called --add-exports
that exports our packages so they can be accessed from other modules or from the class path.

The third case involves completely modularizing our application. As a result, the class path won’t be
used anymore. The entire code lies only on the module path. Each piece of code is included in a module
defined by a module descriptor. No piece of code is residing outside of a module. This approach brings many
advantages because we can use all the features that the Java Platform Module System offers, including strong
encapsulation, reliable configuration, improved security, maintainability, reusability, scalability, and so on.
We recommend following this approach and modularizing the entire application.

■■ Note  The class path wasn’t removed in Java 9. It can still be used standalone or in combination with the
module path.

There are three situations that we can have in Java 9 in correlation to the three use cases discussed
earlier:

•	 Only the class path is used: The module path isn’t used. Corresponds to the first use
case mentioned earlier.

•	 Both the class path and the module path are used: Corresponds to the second use
case mentioned earlier.

•	 Only the module path is used: The class path isn’t used. Corresponds to the third use
case mentioned earlier.

We’ll start to learn some key concepts in order to be able later to migrate an application to Java 9. Many
topics are covered in this chapter, because the migration topic is quite comprehensive. We introduce the key
concepts that you need to know. Let’s start by presenting the new concept of automatic modules, which are a
very important component in the migration to Java 9 ecosystem.

Chapter 8 ■ Migration

125

Automatic Modules
Automatic modules are a special type of modules used to ease migration to Java 9 and to accomplish
backward-compatibility. An automatic module is a named module created after placing a JAR file onto the
module path. An automatic module isn’t directly declared by the Java Platform Module System or by us—it’s
generated automatically for a JAR file that we place on the module path.

Automatic modules bring a great benefit in the modularization landscape. They permit us to start
modularizing our own code without needing to wait for all the needed libraries and frameworks to be
modularized. It would have been extremely bad to have to wait until each maintainer of each third-party
library or framework modularizes their work.

An automatic module is created by deriving a JAR file, modularizing it without modifying its contents.
In this way, each JAR file can be treated like a module. Automatic modules help us work with modules instead
of working with non-modularized JAR files. They represent a bridge for each JAR file to the modular world.

An automatic module has at least five important characteristics:

•	 It requires transitive all the existing modules from the system, which comprise all
our own modules plus all modules from the JDK image plus all the other automatic
modules.

•	 It exports and opens all of its packages.

•	 It doesn’t consist of a module-info.class file in its top-level directory.

•	 It can access every type from the unnamed module (from the class path).

•	 It can’t declare that it has any dependencies to any other modules.

We stated previously that an automatic module exports and opens all of its packages. This means the
following things:

•	 All the packages from an automatic module are exported for being accessible at both
compile-time and at runtime.

•	 All the packages from an automatic module are open for being accessible using deep
reflection.

■■ Note  An automatic module isn’t explicitly declared by us because it’s automatically created when a JAR
file is placed onto the module path.

An automatic module can access types on the class path and is useful especially for third-party code.
Automatic modules are used for migrating existing applications to Java 9. Let’s suppose our application uses
the Log4j library. If we put the Log4j JAR file on the module path, we can use it in our module by requiring it
inside the module descriptor of our application:

module com.apress.myModule {
 requires log4j;
}

In this way, the Log4j JAR is turned into an automatic module and can be used in our modular
application. We can access all the packages from the Log4j module because as an automatic module it
exports all its packages by default.

Chapter 8 ■ Migration

126

We don’t have to wait until the maintainers of the Log4j library have modularized their library because
we can turn the Log4j library in an automatic module and use it on the module path (even if the Apache
committers were hard-working and have already modularized Log4j at the time of writing this book).

When using an automatic module, the only thing we have to know is the name of the automatic module
that will be generated. For this, Jigsaw makes use of a filename-based algorithm we cover shortly.

Don’t worry if you run the preceding piece of code and see some warnings. The warnings have been
deliberately added at runtime by the JDK team to make the users aware of the fact that they’re using
automatic modules.

An automatic module requires transitive all the existing modules. If we require an automatic
module, then we acquire readability to all the modules, because the automatic module requires transitive
all modules. Publishing a module that requires an automatic module on public repositories such as Maven
Central is discouraged. That’s because some of the properties of an automatic module, such as its exported
packages, could change when it’s later converted into an explicit module. This makes the automatic module
unstable and increases the level of risk considerably.

The names of the automatic modules are generated automatically by the Java Platform Module System
unless we set them explicitly in the MANIFEST.MF file. The name of the automatic module can be defined
directly inside the MANIFEST.MF file from the META-INF directory of the JAR file. Inside MANIFEST.MF
we need to set a value to the attribute Automatic-Module-Name in order to define the name of the automatic
module that will be generated:

Automatic-Module-Name: myModule

This solution gives us the advantage and flexibility of being able to choose the name of the automatic
module. Alternatively, if we don’t set the automatic module name, Jigsaw will use an algorithm for deriving
the name of the automatic module out of the name of the JAR, covered next.

Computing the Name of the Automatic Module
If the attribute Automatic-Module-Name isn’t set, the name of the automatic module is automatically
derived from the name of the JAR file. If the attribute Automatic-Module-Name is set, but the JAR also
contains a module-info.class file, then the information stored in the attribute Automatic-Module-Name
is simply ignored. The name of the automatic module will be the same as the one defined inside the
module-info.class file.

Next let’s talk about the filename-based algorithm used by Jigsaw for computing the name of the
automatic module from the name of the JAR. Two strings are derived from the JAR file: the name of the
automatic module and its version:

	 1.	 The .jar suffix is removed from the name of the JAR file. The resulting string is
further used for determining and extracting the name and the version of the
automatic module.

	 2.	 The module name is extracted. According to the JDK 9 API documentation,
“if the name matches the regular expression -(\\d+(\\.|$)), then the module
name will be derived from the subsequence preceding the hyphen of the first
occurrence. The subsequence after the hyphen is parsed as a version and it is
ignored if it can’t be parsed as a version.”

	 3.	 Some replacements on the name of the module are performed. The JDK 9 API
documentation states that “all non-alphanumeric characters ([^A-Za-z0-9]) in
the module name are replaced with a dot (‘.’), all repeating dots are replaced with
one dot, and all leading and trailing dots are removed.”

Chapter 8 ■ Migration

127

Table 8-1 shows some examples of deriving the name and the version from a couple of JAR files.
The first column represents the name of the JAR file, and the second and third columns represent the
automatically extracted name of the module and version, respectively. The fourth column tells us if an
error occurred or not.

The name and version of the guava-19.0.jar JAR file could be successfully derived. According to the
filename-based algorithm, first the jar suffix is deleted. The result string is "guava-19.0". Afterward, the
name of the module is extracted by searching for the first occurrence of the hyphen. The new string is
extracted from the beginning of the resulting string until the last position before the hyphen. In our case,
the string found is "guava", which corresponds to the name of the module. The string after the hyphen
represents the version of the module: "19.0".

The name and version of the JAR hadoop-common-2.8.0.jar can be successfully extracted. The name of
the module is hadoop.common because the hyphen from hadoop-common is replaced with a dot.

There are situations when we’re not able to extract the name of the automatic module. An example is
the JAR file called spark-core_2.10-2.1.0.jar. When attempting to extract its name, we get the following error:

Unable to derive module descriptor for: spark-core_2.10-2.1.0.jar
spark.core.2.10: Invalid module name: '2' isn’t a Java identifier

The filename-based algorithm searches for the last hyphen in the string "spark_core-2.10-2.1.0"
and splits the string into name and version. The resulting string for the name is "spark_core-2.10". The
hyphens on this string are replaced with dots. Therefore, the string "spark.core.2.10" is computed as
the name of the module. However, this string is invalid because it contains the identifiers 2 and 10, which
aren’t valid as Java identifiers. As a result, an error is thrown, and the name of the automatic module can’t be
extracted. If we place this JAR on the module path, we get the following exception:

java.lang.module.ResolutionException: Unable to derive module descriptor for: spark-
core_2.10-2.10.jar

Table 8-1.  Examples of Deriving Module Names and Versions from JAR Files

Name of JAR Name of Module Version of Module Error

guava-19.0.jar guava 19.0 no

hadoop-common-2.8.0.jar hadoop.common 2.8.0 no

mockito-all-2.0.2-beta.jar mockito.all 2.0.2-beta no

spark-core_2.10-2.1.0.jar - - yes

spring-core-4.3.7.RELEASE.jar spring.core 4.3.7.RELEASE no

com.apress.myModule0.0.1.jar - - yes

log4j-1.2.17.redhat-2.jar log4j 1.2.17.redhat-2 no

jackson-core-2.9.0.pr3.jar jackson.core 2.9.0.pr3 no

jaxrs-api-3.0.12.Final.jar jaxrs.api 3.0.12.Final no

maven-plugin-api-3.5.0-beta-1.jar maven.plugin.api 3.5.0-beta-1 no

123.jar - - yes

1my-module.jar - - yes

Chapter 8 ■ Migration

128

We get the same kind of error when we attempt to extract the module name from our com.apress.
myModule0.0.1.jar, from our 123.jar, or from our 1my-module.jar:

Unable to derive module descriptor for: com.apress.myModule0.0.1.jar
com.apress.myModule0.0.1: Invalid module name: '0' isn’t a Java identifier

Unable to derive module descriptor for: 123.jar
123: Invalid module name: '123' isn’t a Java identifier

Unable to derive module descriptor for: 1my-module.jar
1my.module: Invalid module name: '1my' isn’t a Java identifier

Attempting to place any of these three JARs on the module path will result in a ResolutionException
being thrown.

■■ Note  A fatal error is thrown while placing a JAR on the module path for which the module name can’t be
extracted.

For the JAR commons-lang3-3.0.jar, the automatic module’s name is commons.lang3. As we can
observe, the digits are preserved at the end of the module name.

The JDK 9 specification recommends that the modules names follow the reverse Internet domain-name
convention. According to the specification, “a module’s name should correspond to the name of its principal
exported API package, which should also follow that convention. If a module doesn’t have such a package,
or if for legacy reasons it must have a name that doesn’t correspond to one of its exported packages, then its
name should at least start with the reversed form of an Internet domain with which the author is associated.”

Describing a JAR File
If we have a JAR that we want to use as an automatic module and want to find out what kind of name the
JPMS system derives out of it, we can use the --describe-module option of the jar tool:

jar --describe-module --file <our_JAR_name>

The --describe-module option prints the following:

•	 The name of the module and the version

•	 The module descriptor

•	 The entire list of packages that the JAR consists of

Listing 8-1 displays the results of running the jar command with the --describe-module option on the
guava.jar file.

Listing 8-1.  Running jar --describe-module on the guava-19.0.jar File

$ jar --describe-module --file guava-19.0.jar
No module descriptor found. Derived automatic module.

guava@19.0 automatic
requires java.base mandated

Chapter 8 ■ Migration

129

contains com.google.common.annotations
contains com.google.common.base
contains com.google.common.base.internal
contains com.google.common.cache
contains com.google.common.collect
contains com.google.common.escape
contains com.google.common.eventbus
contains com.google.common.hash
contains com.google.common.html
contains com.google.common.io
contains com.google.common.math
contains com.google.common.net
contains com.google.common.primitives
contains com.google.common.reflect
contains com.google.common.util.concurrent
contains com.google.common.xml
contains com.google.thirdparty.publicsuffix

The module system finds no module descriptor inside the guava-19.0.jar, so it derives an automatic
module out of the JAR file. The new automatic module has the name “guava” and the version “19.0”.
It requires java.base and consists of the packages listed above.

No Support for Automatic Modules at Link-time
There’s a limitation regarding the use of automatic modules at link-time using Jlink. There’s no support
for automatic modules at link-time, which means that linking automatic modules into a runtime image is
deliberately not supported. Automatic modules can’t be used with Jlink because they have access to the
class path. That means that if automatic modules were hypothetically supported by Jlink, errors of type
NoClassDefFoundError would have been thrown at runtime.

■■ Note  It isn’t possible to create a runtime with Jlink unless all the components are standard modules (not
automatic modules).

The ModuleDescriptor class of the new module API contains a method called isAutomatic(). This
method returns true if the module is an automatic one and false otherwise. We talk about the new module
API and the API support for automatic modules in the next chapter.

■■ Note  Automatic modules open all their packages by default so we don’t need to use the option
--add-opens when working with automatic modules.

Now that we’ve covered almost everything we need to know about automatic modules, it’s time to look
at the JDeps tool, which is an extremely important tool used to find dependencies of a library.

Chapter 8 ■ Migration

130

The JDeps Tool
The Java Dependency Analysis Tool (JDeps) is a command-line tool used for different purposes: to discover
all the static dependencies of a library, to discover the usages of internal JDK APIs, or to automatically
generate a module descriptor for a JAR file. The tool was introduced in Java 8 but enhanced in Java 9 with
some useful new options and features. It can be found in the bin directory of the JDK. JDeps is a very useful
tool for migration to Java 9. We’ll explain why.

Find Dependencies of Unsupported JDK Internal APIs
JDeps has an option called --jdk-internals that finds dependencies of any unsupported JDK internal APIs
that are private to the JDK implementation. Its syntax is as follows:

jdeps --jdk-internals --class-path <input_file>

As an input, we can specify a JAR file or a .class file that will be analyzed.
Listing 8-2 shows an example of using JDeps with the option --jdk-internals by taking the Guava

library and checking whether it has any unsupported APIs.

Listing 8-2.  Running jdeps --jdk-internals on the JAR File guava-19.0.jar

$ jdeps --jdk-internals guava-19.0.jar
guava-19.0.jar -> jdk.unsupported
 com.google.common.cache.Striped64 -> sun.misc.Unsafe JDK internal API (jdk.unsupported)
 com.google.common.cache.Striped64$1 -> sun.misc.Unsafe JDK internal API (jdk.unsupported)
 com.google.common.cache.Striped64$Cell -> sun.misc.Unsafe JDK internal API (jdk.unsupported)
 �com.google.common.primitives.UnsignedBytes$LexicographicalComparatorHolder$Unsafe

Comparator -> sun.misc.Unsafe
JDK internal API (jdk.unsupported)
 �com.google.common.primitives.UnsignedBytes$LexicographicalComparatorHolder$Unsafe

Comparator$1 -> sun.misc.Unsafe
JDK internal API (jdk.unsupported)
 �com.google.common.util.concurrent.AbstractFuture$UnsafeAtomicHelper -> sun.misc.Unsafe
JDK internal API (jdk.unsupported)
 com.google.common.util.concurrent.AbstractFuture$UnsafeAtomicHelper$1 -> sun.misc.Unsafe
JDK internal API (jdk.unsupported)

Warning: JDK internal APIs are unsupported and private to JDK implementation that are
subject to be removed or changed incompatibly and could break your application.
Please modify your code to eliminate dependency on any JDK internal APIs.
For the most recent update on JDK internal API replacements, please check:
https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool

JDK Internal API Suggested Replacement
---------------- ---------------------
sun.misc.Unsafe See http://openjdk.java.net/jeps/260

Chapter 8 ■ Migration

131

In the output we can see that JDeps finds all the JDK internal libraries that the Guava library is
using. In our case, it finds the JDK internal class sun.misc.Unsafe in five different locations, listed in the
preceding code.

JDeps also suggests replacements for the internal APIs found. For sun.misc.Unsafe it suggests taking
a look on the Open JDK website at JEP 260. In general, JDeps is capable of giving clear information about
possible replacements by suggesting the class name that could be eventually used instead.

In order to prepare for using Java 9, JDeps is very useful because we can check whether our JAR files
from the class path are making use of JDK internal APIs. It isn’t mandatory to replace the JDK internal APIs
with the ones suggested by JDeps. We can replace them with whatever library we want. But we should
replace them so that we can compile and run our application with JDK 9.

■■ Note  JDeps can be applied to modules as well.

Generate Module Descriptors with JDeps
JDeps can be used to generate a module descriptor for one or more JAR files using the command-line option
--generate-module-info:

jdeps --generate-module-info <output_directory> <list_of_jar_files>

This command gets two parameters:

•	 <output_directory> represents the directory where the module-info.java files will
be created.

•	 <list_of_jar_files> represents one or more JAR files for which a module-info will
be generated. The list is separated by a blank space. For each JAR, each dependency
must be listed here.

This command creates a module descriptor module-info.java for each JAR file that we pass.
To demonstrate this, next we generate a module-info.java file for the junit-4.12.jar file. We also have to pass
the hamcrest-core-1.3.jar file because this JAR is a dependency of JUnit:

jdeps --generate-module-info output hamcrest-core-1.3.jar junit-4.12.jar

As a result, two module-info files are created inside the output directory, one for JUnit and one for
Hamcrest Core:

output\junit\module-info.java
output\hamcrest.core\module-info.java

Listing 8-3 shows an excerpt of the module-info.java files created.

Listing 8-3.  Module Descriptors for JUnit and Hamcrest Core That Were Generated by JDeps

 module junit {
 requires transitive hamcrest.core;
 requires java.management;
 exports junit.extensions;
 exports junit.framework;
 exports junit.runner;

Chapter 8 ■ Migration

132

 exports junit.textui;
 exports org.junit;
 exports org.junit.experimental;
 ...
 exports org.junit.runners;
 exports org.junit.runners.model;
 exports org.junit.runners.parameterized;
 exports org.junit.validator;
}

module hamcrest.core {
 exports org.hamcrest;
 exports org.hamcrest.core;
 exports org.hamcrest.internal;
}

■■ Note  The module descriptor generated by JDeps exports by default all the existing packages of its
corresponding JAR.

JDeps can also generate a module-info.java file for an open module. The command is generate-open-
module and it takes the same type of parameters:

jdeps --generate-open-module <output_director> <name_of_jar_file>

The only difference is that this command creates a module descriptor that defines an open module
instead of a simple module. As a result, no packages are exported. This is suitable for frameworks that access
the JDK using reflection.

JDeps also provides other useful features. Table 8-2 shows a list of the most useful options offered by
JDeps, as defined in the JDK 9 API specification.

Table 8-2.  JDeps Options

JDeps Option Description

--check <module_name>
[,<module_name>...

Prints the module descriptor and the resulting module
dependences after analyzing the dependence of the
specified modules

--list-deps Lists the dependences of JDK internal APIs

--class-path <path> Specifies the path where to find class files

--module-path <module_path> Specifies the module path

--upgrade-module-path <module_path> Specifies the upgrade module path

--module <name_module> Specifies the root module that will get analyzed

--multi-release <version> Specifies the version for processing multi-release JAR files

-filter:module Filters dependences within the same module

--regex <regex> Finds dependences matching the given pattern

Chapter 8 ■ Migration

133

We’ve looked at automatic modules and JDeps. It’s time to focus on the Java 9 encapsulation topic. We’ll
learn how to break the encapsulation in Java 9, how to open packages and modules, and how to use the
--add-opens, --add-reads, and --add-modules command-line options.

Encapsulation in Java 9
Java has two categories of APIs in the JDK: supported APIs and unsupported APIs. The supported APIs
comprise JCP standard APIs like java.* and javax.*, JDK-specific APIs like com.sun.* and jdk.*. These APIs are
intended to be used outside the JDK.

The unsupported APIs comprise the sun.* packages. These APIs were never intended for external use
outside the JDK. Typically all the packages that contain the name "internal" are JDK internal APIs. The
problem is that in the past many developers used the sun.* packages, even if they were told they weren’t
allowed to use these packages outside the JDK.

Java 9 encapsulated almost all the JDK internal APIs, which means that by default, without any hacks,
these APIs aren’t accessible either at compile-time nor at runtime.

■■ Note  Oracle made a study that revealed the most-used JDK internal classes: sun.misc.BASE64Encoder,
sun.misc.BASE64Decoder, and sun.misc.Unsafe.

The JCP team put the JDK-internal APIs into two categories: non-critical JDK-internal APIs and critical
JDK-internal APIs.

The non-critical JDK-internal APIs category comprises the APIs that are used outside the JDK to an
extremely low degree. Therefore, the risk of breaking applications by encapsulating these APIs is also low.
This category of APIs also contains the sun.misc.BASE64Encoder and sun.misc.BASE64Decoder classes.

The critical JDK-internal APIs category comprises the APIs whose functionality would be extremely
difficult to implement outside the JDK. It’s demanding, if not almost impossible, to develop replacements
for these APIs outside the JDK. This category contains, for instance, the sun.misc.Unsafe class, which was
marked as critical because it’s very demanding to build a similar class outside the JDK.

Therefore, the JCP team decided to do the following:

•	 Encapsulate all non-critical internal APIs

•	 Encapsulate all critical internal APIs for which supported replacements exist in JDK 8

•	 Not encapsulate critical internal APIs, but just deprecate them

The critical internal APIs that weren’t encapsulated are sun.misc.Unsafe, sun.misc.Signal,
sun.misc.SignalHandler, sun.misc.Cleaner, sun.reflect.Reflection, sun.reflect.
ReflectionFactory. These are still accessible in JDK 9.

The following example from Listing 8-4 demonstrates the encapsulation of JDK internal APIs. Therefore,
we use an instance of the class URLCanonicalizer from the package sun.net. All the classes from package
sun.net were encapsulated in JDK 9.

Listing 8-4.  Use of a Class from an Internal JDK API

package com.apress.jdkinternal;

import sun.net.URLCanonicalizer;

public class Main {

Chapter 8 ■ Migration

134

 public static void main(String[] args) {
 URLCanonicalizer urlCanonicalizer = new URLCanonicalizer();
 String apressUrl = urlCanonicalizer.canonicalize("www.apress.com");
 System.out.println(apressUrl);
 }
}

The compilation fails because we try to access a JDK internal API that is encapsulated:

error: package sun.net isn't visible
import sun.net.URLCanonicalizer;
 (package sun.net is declared in module java.base, which doesn't export it to module
com.apress.jdkinternal)

The error states that the package sun.net, located in module java.base, isn’t visible from our module
com.apress.jdkinternal. We know that the sun.net package has been encapsulated, so we need a way to make
our module com.apress.jdkinternal able to access the sun.net package at compile-time.

Fortunately, there’s a solution to gain access to the sun.net package—by exporting this package to our
module during compilation using the --add-exports command-line option, described next.

Exporting a Package at Compile-time and Runtime
The --add-exports option added to the Java compiler (javac) exports a package to a specific named
module or to the unnamed module. It corresponds to the qualified export "exports … to" statement from
the module declaration. It can be used to break the encapsulation of JDK internal APIs and to make them
accessible in a named module or in the unnamed module.

The following shows the syntax of the --add-exports command-line option:

--add-exports <source_module>/<name_of_package_to_be_exported>=<list_of_target_modules>

•	 <source_module> represents the module where the package to be exported is
located.

•	 <name_of_package_to_be_exported> represents the name of the package that will
be exported to the <list_of_target_modules>.

•	 <list_of_target_modules> represents a comma-separated list of modules that will
gain access to the exported package.

In Figure 8-1 the package sun.net, located in module java.base, is exported to our module com.
apress.jdkinternal.

module where the
package is located

package
module where the
package should be

exported

--add-exports java.base/sun.net=com.apress.jdkinternal

Figure 8-1.  Exporting the sun.net package to a named module with the --add-exports option

Chapter 8 ■ Migration

135

In this way, the package sun.net will be accessible from our the module com.apress.jdkinternal.
By compiling our application again using the option --add-exports mentioned earlier, the package sun.net
will be exported to our module. We pass the module where the package is located (java.base) and the
module where the package should be exported (com.apress.jdkinternal).

To compile we have to use the --add-exports option, as mentioned:

$ javac –d outputDir --add-exports java.base/sun.net=com.apress.jdkinternal
--module-source-path src $(find . –name "*.java")

The compilation succeeds, and the .class files are created. However, a warning is displayed, informing
us that URLCanonicalizer is an internal proprietary API that may be removed in a future release:

warning: URLCanonicalizer is internal proprietary API and may be removed in a future release
import sun.net.URLCanonicalizer;

We run the application by using exactly the same --add-exports command:

java --module-path outputDir --add-exports java.base/sun.net=com.javausergroup.jdkinternal
-m com.apress.jdkinternal/com.apress.jdkinternal.Main

Because we need readability at runtime, not only at compile-time, it’s mandatory to use the same
--add-exports option with the same arguments when running the application. If we had run our
application without the --add-exports flag, the following error would have been thrown:

Exception in thread "main" java.lang.IllegalAccessError: class com.apress.jdkinternal.Main
(in module com.apress.jdkinternal) can’t access class sun.net.URLCanonicalizer (in module
java.base) because module java.base doesn’t export sun.net to module com.apress.jdkinternal
 at com.apress.jdkinternal/com.apress.jdkinternal.Main.main

The IllegalAccessError occurs at runtime because the package sun.net isn’t exported.

Export to the Unnamed Module
We exported an unsupported package to our module to make it accessible. But what if our code was on the
class path? Fortunately, there’s a solution for that. The constant ALL-UNNAMED stands for the entire class path.
In our case, the following command exports the sun.net package to the class path so it can be accessed from
the entire code on the class path:

--add-exports java.base/sun.net=ALL-UNNAMED

■■ Note  The constant ALL-UNNAMED stands for all the code in the unnamed module, which represents the
entire class path.

There are some general aspects that want to mention:

•	 The --add-exports command-line option can be used more than once when
running it, meaning it allows duplicates.

•	 The --add-exports command-line option is used by both Java compiler and Java
launcher.

Chapter 8 ■ Migration

136

•	 If our code uses only the JDK-critical APIs that remained accessible in Java 9,
we don’t have to use the --add-exports option because these APIs are already
accessible.

•	 If the --add-exports command-line option encounters bad values, a warning is
raised, but no fatal error is thrown, so the program doesn’t stop working.

Throughout this book we’ve looked at two ways of exporting a package: by specifying the exports clause
in the module declaration or by using the command-line option --add-exports. But there’s still another
option: specifying the attribute Add-Exports in the MANIFEST.MF file of a JAR file. This attribute has the
format module/package. It exports the specified module from the specified package to the unnamed module.
For instance, in order to export the package sun.net from module java.base to the unnamed module, we
could write the following:

Add-Exports: java.base/sun.net

In this section, we’ve learned to make code that uses encapsulated JDK APIs compile and run in JDK 9.
This workaround is very useful because if our code uses JDK internal APIs, we know that we have one solution
to make the code run in Java 9 without needing to redesign the code or replace the encapsulated JDK internal
APIs. But relying on this flag forever isn’t recommended because the JDK internal APIs were deprecated in
JDK 9 and may be removed in JDK 10. That means you have time only during a release cycle to refactor your
code in order to get rid of these unsupported APIs. If your third-party library is using JDK internal APIs, you
should check on a regularly basis if a new version of the library, one that replaces the unsupported APIs with
supported ones, has been published.

Opening Packages for Deep Reflection
Chapter 4 talked about the opens clause in the module descriptors. There we mentioned that deep reflection
is by default allowed by code in a named module to code on the class path, but by default it’s not allowed to
code in another named module. In this second case, in order to allow reflective access from code in a
named module to code in another named module, we could use the new --add-opens command-line
option. It’s used to provide deep reflective access from one module to another module or to the code on the
class path. It’s equivalent to a qualified opens from a module declaration:

opens <package_name> to <list_of_target_modules>

The syntax of the add-opens command-line option goes like this:

--add-opens <source_module>/<name_of_package_to_be_opened>=<list_of_target_modules>

The package defined and located in the <source_module> is opened for deep reflective access to the
modules listed in the <list_of_target_modules>. These modules will be able to access the package at
runtime only using deep reflection but won’t be able to access the package during compilation. If we put the
constant ALL-UNNAMED instead of the <list_of_target_modules>, then the entire code on the class path will
be able to access the package at runtime using deep reflection. However, this last case happens already by
default, so we should use it only if someone programmatically disabled reflective access by code in a named
module to code from the class path.

■■ Note  Deep reflection can take place only at runtime. It can’t take place at compile-time. As a result, the
--add-opens command-line option can be used only at runtime using the java command. It can’t be used at
compile-time using the javac command.

Chapter 8 ■ Migration

137

Because automatic modules open all their packages by default, there’s no need to open them using the
--add-opens option. Now that we know how to open packages at runtime for deep reflection, let’s learn how
to add readability at runtime using the option --add-reads.

Providing Readability Between Modules
The --add-reads command-line option is used at both compile-time and runtime to add readability from a
module to another module. Its syntax is as follows:

--add-reads <source_module>=<list_of_target_modules>

By using the --add-reads command-line option, the <source_module> gets readability to all the
modules represented by the <list_of_target_modules>, which means that the <source_module> will
require all those modules. This is equivalent to providing a requires clause in a module descriptor:

module <source_module> {
 requires target_module_A;
 requires target_module_B;
}

We can make a module <source_module> read the entire class path by providing the constant ALL-
UNNAMED to the --add-reads option:

--add-reads <source_module>=ALL-UNNAMED

This option is used merely during testing—for instance, when a module is patched at compile-time
and at runtime in order to add tests in the same modules as the module under test. During testing, we might
need a module to read another module, although the first module doesn’t depend on the other module
because it doesn’t define a requires directive to the other module. By using the --add-reads option, we get
readability between the two modules. The first module will be able access all the exported types from the
other module.

Suppose we have a Junit test class inside our module com.apress.testing. This class extends a class from
the Junit library. So we need a readability relation from our module com.apress.testing to the automatic
module junit. This can be achieved very simply using the --add-reads option:

--add-reads com.apress.testing=junit

If we have the Junit library on the class path and don’t want to move to the module path, then we use
the ALL-UNNAMED constant to provide readability between our module and the entire code on the class path:

--add-reads com.apress.testing=ALL-UNNAMED

Chapter 11 provides an explanatory example of using the --add-reads command-line option for
running JUnit tests.

■■ Note  The --add-reads command allows duplicates and if it encounters bad values, a warning is raised,
but no fatal error is thrown. If duplicates are found, only the first class will be taken into consideration.

http://dx.doi.org/10.1007/978-1-4842-2713-8_11

Chapter 8 ■ Migration

138

Before we discuss the --add-modules command-line option, there’s one more thing worth mentioning:
when we use reflection on a member in a module, readability is automatically granted.

Adding Modules to the Root Set
The --add-modules command-line option is used to add modules directly to the set of root modules. Hence,
the modules will be resolved. This option is used to resolve modules that aren’t resolved by default.

Its syntax is simple. It takes one or more modules separated by comma:

--add-modules <module_name>(,<module_name)*

<module_name> represents the name of a module that will be added to the default set of root modules
There are three values that can be used with the --add-modules option instead of specifying a list of

modules:

•	 ALL-DEFAULT: The official specification released for JDK 9 states that by using the
ALL-DEFAULT option “the default set of root modules for the unnamed module,
as defined above, is added to the root set. This is useful when the application is a
container that hosts other applications which can, in turn, depend upon modules
not required by the container itself.”

•	 ALL-SYSTEM: This option adds all the system modules to the root set.

•	 ALL-MODULE-PATH: This option adds all the observable modules found on the module
path to the root set. It’s helpful to be able to add each module from the module path
at once to the root set. For a large list of automatic modules, it’s more practical and
easier to add all of them at once and without the need to enumerate them one by
one. Maven uses this option considerably because it needs all the modules from the
module path.

The --add-modules option is also used by Jlink to set the root module inside the runtime image. We saw
in Chapter 7 how to create a runtime image and how to add modules to the runtime image using the --add-
modules command-line option.

■■ Note  Both javac and java support the --add-modules command-line option.

The --add-modules option can be repeated. The following usages of --add-modules options have the
same effect and cause no errors:

--add-modules com.apress.moduleA --add-modules com.apress.moduleB
--add-modules com.apress.moduleA,com.apress.moduleB

Next we’ll look at an explanatory example to better understand when we should use the --add-modules
option. We download the junit-4-12.jar and the hamcrest-core-1.3.jar and put them into a folder. We run
jdeps -s on the entire folder to find all the dependencies of the two JAR files:

 $ jdeps -s *.jar
hamcrest-core-1.3.jar -> java.base
junit-4.12.jar -> hamcrest-core-1.3.jar
junit-4.12.jar -> java.base
junit-4.12.jar -> java.management

http://dx.doi.org/10.1007/978-1-4842-2713-8_7

Chapter 8 ■ Migration

139

Hamcrest-Core depends only on java.base, meaning it use types only from java.base. Hence, Junit is
depending on Hamcrest-Core because it uses types from it. If we look inside the content of Junit, we can see
lots of imports from Hamcrest-Core packages.

Suppose we have a module com.apress.myModule and we put the junit-4.1.2.jar and the hamcrest-
core-1.3.jar files on the module path in order to use them as automatic modules. You already learned at
the beginning of this chapter, in the “Automatic Modules” section, that an automatic module can’t declare
dependencies on other modules. So we can’t use the directive requires hamcrest-core because we don’t
have a module descriptor available where to place it, because an automatic module doesn’t have a module
descriptor module-info.java. The situation is depicted in Figure 8-2.

Module com.apress.myModule contains in its module descriptor a requires junit clause. The
automatic module junit uses types from the automatic module hamcrest.core. The module graph contains
the modules com.apress.myModule and junit. The module hamcrest.core isn’t added to the module graph
because it can’t be identified during the resolution process. There’s no requires clause inside the junit
automatic module so that the module system could discover the hamcrest.core automatic module and add
it to the module graph. This means we have to manually add the hamcrest.core automatic module to the
module graph using the --add-modules option at both compile-time and runtime:

--add-modules hamcrest.core

If we don’t add the hamcrest.core module to the module graph, the classes from the hamcrest.core
won’t be found and an exception of type ClassNotFoundException will be thrown at runtime.

Another option provided by default in JDK is the --illegal-access one, covered in the next section.

The --illegal-access Option
The --illegal-access option was added into JDK 9 to ease migration. This option states that code on the
class path can perform illegal reflective access by default.

■■ Note  Illegal reflective access means access using reflection to types in named modules only for code in
the class path.

With the --illegal-access option, the code on the class path gets reflective access to types in any
named modules. The reflective access is done using standard reflection-related APIs like java.lang.reflect
and java.lang.invoke. --illegal-access is very useful for third-party frameworks like Spring, Hibernate, or
Guava, which were so designed that they need to perform reflective access inside the internals of the JDK in
order to be able to work properly.

■■ Note  The --illegal-access option allows reflective access only for code on the class path to types in any
named modules. It doesn’t allow reflective access for code in named modules to types in other named modules.

module
com.apress.myModule

automatic module
junit

uses types from Automatic module
hamcrest.core

requires

Figure 8-2.  Relation between named modules and automatic modules that have dependencies

Chapter 8 ■ Migration

140

The syntax of the --illegal-access option is as follows:

java --illegal-access <options>

The --illegal-access option can take one of four possible parameters: permit, warn, debug, and deny:

•	 --illegal-access=permit: The permit mode represents the default behavior in
Java 9. It states that every package from every module is opened for deep reflection
to code in all the unnamed modules. The unnamed modules represent the class
path. This means that at runtime the code from the class path can access the entire
information stored in modules using deep reflection. A warning will be displayed
during the first access.

•	 --illegal-access=warn: The warn mode is very similar to the permit mode
previously discussed. The only difference is that the warn mode returns a warning
each time an illegal access is performed using reflection.

•	 --illegal-access=debug: The debug mode shows a warning in the stack trace for
every illegal access performed using reflection.

•	 --illegal-access=deny: The deny mode disables all the illegal access operations
using reflection. When this mode is set, no illegal access can be done using
reflection. Hence, this mode can be overwritten by the command-line option --add-
opens. With --add-opens we’re able to open specific packages for reflection.

■■ Note  The JDK internal APIs aren’t encapsulated at runtime.

However, the JCP team announced that the --illegal-access option will be removed in JDK 10.
It will be available only in JDK 9 in order to ease migration of third-party libraries that were constructed by
making use of deep reflective access into the internals of the JDK. The --illegal-access option has not
been planned right from the beginning. It was added later in order to ease migration to Java 9, because an
important number of external libraries and frameworks use reflection to access the internal APIs of the JDK.

This option emits warning messages when used:

WARNING: Illegal access by A to B (permitted by C)

•	 A is the name of the type that contains the code that invoked the reflective operation
in question.

•	 B is the name of the member being accessed.

•	 C is the name of the command-line option that enabled this access.

■■ Note  The --illegal-access option is set by default in JDK 9.

The next example shows what kind of warning messages are displayed when a library performs illegal
reflective access to types in the JDK. We run the java -jar command on the the JRuby Complete-9.1 JAR file:

$ java -jar jruby-complete-9.1.12.0.jar

Chapter 8 ■ Migration

141

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.jruby.util.io.FilenoUtil (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to method sun.nio.ch.SelChImpl.getFD()
WARNING: Please consider reporting this to the maintainers of org.jruby.util.io.FilenoUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access
operations
WARNING: All illegal access operations will be denied in a future release

A warning message lets us know that the jruby-complete-9.1.12.0.jar performs an illegal reflective
access operation on method sun.nio.ch.SelChImpl.getFD() of the JDK. This illegal reflective access is
allowed, because the --illegal-access flag is set by default.

If we want to see a warning for every illegal access performed, we can use the mode=warn of the
--illegal-access command-line option:

$ java --illegal-access=warn -jar jruby-complete-9.1.12.0.jar

WARNING: Illegal reflective access by org.jruby.util.io.FilenoUtil (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to method sun.nio.ch.SelChImpl.getFD()
WARNING: Illegal reflective access by org.jruby.util.io.FilenoUtil (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to field sun.nio.ch.FileChannelImpl.fd
WARNING: Illegal reflective access by org.jruby.util.io.FilenoUtil (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to field java.io.FileDescriptor.fd
WARNING: Illegal reflective access by jnr.posix.JavaLibCHelper (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to method sun.nio.ch.SelChImpl.getFD()
WARNING: Illegal reflective access by jnr.posix.JavaLibCHelper (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to field sun.nio.ch.FileChannelImpl.fd
WARNING: Illegal reflective access by jnr.posix.JavaLibCHelper (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to field java.io.FileDescriptor.fd
WARNING: Illegal reflective access by jnr.posix.JavaLibCHelper (file:/C:/Users/Alex/
Downloads/jruby-complete-9.1.12.0.jar) to field java.io.FileDescriptor.handle
WARNING: Illegal reflective access by org.jruby.java.invokers.RubyToJavaInvoker (file:/C:/
Users/Alex/Downloads/jruby-complete-9.1.12.0.jar) to method java.lang.Object.clone()
WARNING: Illegal reflective access by org.jruby.java.invokers.RubyToJavaInvoker (file:/C:/
Users/Alex/Downloads/jruby-complete-9.1.12.0.jar) to method java.lang.Object.finalize()
...

The output is very long, so we decided not to include it all. You can see that the type that performs the
illegal reflective access is displayed together with the name of the method or the field from the JDK that’s
accessed reflectively.

The JDK 9 API introduced a new useful method in the AccessibleObject class of package java.lang.
reflect called boolean canAccess(Object object). This method lets us test whether the caller can access
this reflected object. The method returns true if access is allowed and false otherwise. According to the
JDK 9 API documentation, an IllegalArgumentException will be thrown if “this reflected object is a static
member or constructor or if it is an instance method or field and the given object is null.” To avoid any
exceptions, we could also use the new boolean trySetAccessible() method from the same class. This
method doesn’t throw any exceptions except a SecurityException if the request is denied by the Security
Manager.

■■ Note  The system property sun.reflect.debugModuleAccessChecks=access allows us to get a stack
trace on each warning. It also can help to debug exceptions raised by the use of --illegal-access.

Chapter 8 ■ Migration

142

We talked about the command-line flags. Now it’s time to present some migration issues that can
commonly occur.

Migration Issues
This section explains the concepts and gives practical solutions to some of the most common issues that
usually occur during the migration process to Java 9:

•	 Encapsulated JDK internal APIs

•	 Not resolved modules

•	 Cyclic dependencies

•	 New versioning scheme

•	 Split packages

•	 Removed methods in Java 9

•	 Removal of rt.jar, tools.jar, and dt.jar

Encapsulated JDK Internal APIs
Throughout the book we’ve talked about the encapsulation of the JDK internals APIs. This can cause critical
problems when we move to JDK 9. However, this probably isn’t the most encountered problem during
migration to JDK 9. In our opinion, the split packages and cyclic dependencies problems can occur more often.

Two independent solutions can help solve the problem of JDK internal APIs:

•	 Replace each of your JDK internal APIs with supported APIs.

•	 Keep the existing JDK internal APIs and use the --add-exports command-line
option to break the encapsulation—to make the JDK internal APIs accessible to code
in other modules or to code on the class path.

The first solution is by far the better one because we completely get rid of the unsupported JDK APIs
in our code. Because the JDK internal APIs are marked as deprecated, it’s wise to provide replacements for
them as soon as possible.

The second solution is reasonable if you don’t have enough time to replace the unsupported JDK
internal APIs with supported ones. If all you want is to make your code compile and run again using JDK 9
this time, using the --add-exports option is a way to move forward. However, Oracle has stated that the JDK
unsupported APIs will be removed in the next major JDK release. This could be JDK 10 or later. Sooner or
later, you’ll have to replace them with supported JDK APIs in order to ensure that your code won’t break. As
a conclusion, adding the --add-exports option is just a temporary solution to make code work. There’s no
guarantee how long this workaround will work. It all depends on how long the unsupported JDK APIs that
you’re using will remain in JDK and not be removed.

We already saw in this chapter how to identify the presence of JDK internal APIs in a JAR file or in a
module: by using the JDeps tool with the option --jdk-internals. Let’s move on to discuss another possible
problem we may encounter during compilation: not resolved modules.

Not Resolved Modules
Remember the module graph that resulted after the modularization of the JDK ? Figure 8-3 shows a small
part of it.

Chapter 8 ■ Migration

143

Module java.se.ee is located right at the top of the module graph, and module java.se is only a level
below. As described in Chapter 3, the differences between the module java.se.ee and the module java.se are
as follows:

•	 The module java.se.ee collects all modules that comprise the Java SE platform,
including the modules that overlap with the Java EE platform.

•	 The module java.se collects all the modules that comprise the Java SE platform that
don’t overlap with the Java EE platform.

•	 The module java.se.ee contains a total number of five modules that aren’t present in
module java.se: java.xml.ws, java.xml.bind, java.corba, java.activation, and java.xml.
ws.annotation.

We deliberately use the term collects instead of contains here because both module java.se.ee and
module java.se are aggregator modules, which means that according to the JDK 9 specification, they “collect
and re-export the content of other modules but add no content of their own.”

During the compilation process in JDK 9, the java.se module is considered the root module and not the
java.se.ee module. This means that in the compilation step, the visible modules are the ones that are under
the java.se module. It also means that the five modules from the module java.se.ee that aren’t in module
java.se aren’t visible at compilation.

■■ Note T he reason why the five modules aren’t resolved by default is related to backward-compatibility
problems.

If our code makes use of any of the following five modules, the compilation will fail:

•	 java.xml.ws

•	 java.xml.ws.annotation

•	 java.xml.bind

•	 java.corba

•	 java.activation

java.se.ee

java.xml.ws java.corba java.se

java.xml.bind java.activation java.xml.ws.activation

Figure 8-3.  Small part of the module graph of the Java SE modules with module java.se.ee at the top

http://dx.doi.org/10.1007/978-1-4842-2713-8_3

Chapter 8 ■ Migration

144

We can compare the modules contained by the java.se module with the modules contained by the
java.se.ee module by limiting the observable modules with the --limit-modules option. The following two
commands return the name of all the modules having module java.se and java.se.ee, respectively, in the root
of the transitive closure:

java --limit-modules java.se --list-modules
java --limit-modules java.se.ee --list-modules

The solution for getting rid of the non-resolved modules problem is simple. We have to add the modules
to the default root set of modules at both compile-time and runtime using the --add-modules command-
line option, so they can be resolved:

--add-modules <module_name>

For instance, if we’re using types from module java.xml.ws, then it’s absolutely necessary to always add
the module java.xml.ws in the root set of modules at both compile-time and runtime:

javac --add-modules java.xml.ws
java --add-modules java.xml.ws

As a result, the java.xml.ws module is resolved and can be used.

■■ Note  Even if we use only libraries that have dependencies on these five modules, we still have to add the
non-resolved modules to the root set of modules.

We now know that by adding the modules to the root set of module we can solve compilation errors like
"package java.activation doesn't exist" or "package java.xml.bind doesn't exist".

It’s time to explore another issue that can occur during migration: split packages.

Split Packages
The split packages problem is one of the most serious problems that can take place in the Java 9 modular
world. Split packages occur when two or more members of a package reside in more than one module. In
order to support reliable configuration, the Java Platform Module System doesn’t allow split packages at
compile-time. The reason is that the system loads all the modules from the module path with a single class
loader, which can’t have more than one single type of a package. Two modules loaded by the same class
loader can’t split a package.

Figure 8-4 illustrates two modules having a split package.

module A module B
myPackage.subpackageA
myPackage.subpackageB

myPackage.subpackageC
myPackage.subpackageD

Figure 8-4.  Two modules having a split package

Chapter 8 ■ Migration

145

Module A and module B contain both the package myPackage. Even if the modules contain different
subpackages, the split package problem is present, because they share a package with the same name. The
split package arises even if the packages aren’t exported.

In this case, the compilation will fail with the following error because we have split packages at
compile-time:

error: module A reads package myPackage from both A and B

This error clearly states that the package B is in both module A and module C.
A split package problem can occur for every type of package, even for packages that aren’t exported,

the so-called concealed packages. If two modules contain a package with the same name, an error will occur
when we put the modules on the module path. It doesn’t matter if the packages are exported, open, or
concealed. The split package problem will occur anyway.

■■ Note  If a package is neither exported nor open, we can say that the module conceals the package.

It’s also important to mention another aspect. If we develop our own module that uses a package name
that already exists in one of the platform modules, we have the split packages problem too.

■■ Note  The packages from the platform modules also count in the split package problem. This means we
can’t use in our own module a package that has the same name as a package that resides in the existing
platform modules.

There’s no universal solution to repair the split packages problem. You can choose whatever solution
you want in order to reach the desired goal—to not have a package or members of a package with the same
name in more than one module.

Suppose we have two third-party JAR files that share a package with the same name. Some of the most
used solutions to fix the split packages problems include the following:

•	 Create a single JAR file out of the two JAR files. Combine them into a single JAR file.
If we have two third-party JAR files that share a package with the same name, then
we could make a single JAR file out of the two by unzipping them in the same
directory and then zipping the entire directory into a single ZIP file. Don’t forget
to change the suffix of the new ZIP file into a JAR file. In this way, we have just one
single JAR that can be put into the module path and have just one automatic module,
not two. The package is now in a single module, and the split packages issue is gone.

•	 Check to see whether one of the JARs can be eventually replaced by a different one.
If there’s a chance of replacing the JAR with another one, we should at least try it.

•	 Rename one of the packages. Renaming one of the packages is also a solution to
consider. The probability of success depends on the structure of the classes and
especially if the classes live in a single namespace or not.

Chapter 8 ■ Migration

146

Until now we’ve talked about different use cases for JAR files. Let’s move on to modules. There are three
possible solutions that can help getting rid of split packages in the case of modules:

•	 Create a single module out of two or more modules: Combine them into a single
module. If we have two modules that share a package with the same name, then we
could eventually redesign our code and have just one module out of the two.

•	 Create a third module: Another option would be to take the entire packages that
cause the split package problem from both modules and move them into a third new
module, which exports the packages we need inside our module. This solution is
much easier to implement.

•	 Attempt to remove the package dependencies: This is questionable and can be
implemented only if you really don’t need the dependency anymore.

You’ve seen some suggestions of how to solve the split packages problem. You can choose these
approaches or implement your own solutions in order to reach the goal of not having a package with the
same name in more than one module.

■■ Note  Split package problems can also occur in JAR files that are making use of the Service Provider API.

The JEP 200 states that “a non-standard module must not export any standard API packages.” This
makes sense because if we have our own module com.apress.myModule, we shouldn’t, for example, export
the java.sql package, because the java.sql package is already exported by the java.sql platform module. This
will result in a split package.

■■ Note  Don’t export any standard API from a non-standard module. Otherwise, you will have a split package.

One requirement of the JPMS states that “the Java compiler, virtual machine, and runtime system must
ensure that modules that contain packages of the same name don’t interfere with each other. If two distinct
modules contain packages of the same name then, from the perspective of each module, all of the types and
members in that package are defined only by that module. Code in that package in one module must not be
able to access package-private types or members in that package in the other module.”

■■ Note  When we develop unit test cases in JDK 9, we must be careful not to introduce split packages. If we
have a specific test module where we put the test cases, then when we import types from the module under
test in the test module, we introduce the split package issue because we’ll have the same package in two
different modules.

The next section talks about another problem that can arise: cyclic dependencies.

Chapter 8 ■ Migration

147

Cyclic Dependencies
A cyclic dependency is a relation between two or more modules expressed by the fact that the modules
depend on each other, either directly or indirectly. Cyclic dependencies are considered anti-patterns. They
aren’t allowed at compile-time in Java 9. If two modules contain a cyclic dependency, the compilation will
fail. Jigsaw deliberately imposes a cyclic dependency check during compilation. The requirement imposed
by the Java Platform Module System is severe: no cycle dependencies are allowed in the module graph.

However, cyclic dependencies are allowed at runtime, but only after the module graph is already
resolved. We refer here to the reads relations of runtime modules, which are allowed at runtime. Cyclic
dependencies aren’t allowed at compile-time, link-time, and runtime when the module graph is resolved for
the first time. But at runtime, you can add readability edges using the command-line option --add-reads. At
runtime, you can introduce a cyclic dependency using the --add-reads option because the module graph
has already been resolved before and because we’re at runtime, not at compile-time.

The reasons for interdicting cyclic dependencies are justified: to simplify the module system or to make
the module graph more understandable. Two modules that require each other would be better represented
as a single module.

Cyclic dependencies can occur often for automatic modules, for instance. Because automatic
modules imply readability to all other modules, the likelihood of getting two modules that depend on
each other isn’t low.

■■ Note  Cyclic dependencies between modules are forbidden during compilation. Cyclic dependencies
between classes are allowed just inside of a single class, not between distinct modules.

Chapter 4 had an example of cyclic dependency in our module declaration. Cyclic dependencies can
be solved by using interfaces to decouple the coupling between modules. A module should depend on an
interface, not on another module. This can be implemented using the Service Provider API described in
Chapter 6. What we need to do is to implement Service consumers and Service providers to decouple the
coupling between modules.

■■ Note  There’s an official proposal to allow cyclic relationships amongst modules at runtime, but not
at compile-time. It’s unclear when this proposal will be implemented—possible in JDK 10. Allowing cyclic
relationships at runtime will help solve some problems that can arise especially for very large applications,
where the probability of having cycles is much higher.

We covered the cyclic dependencies issue in this section. The next section covers the new versioning
scheme introduced in JDK 9.

New Versioning Scheme
Java 9 introduces a new format to define the version. This matters for a migration point of view because code
that relies on the old string format will break. The maintainers of the Hadoop library had to fix the Hadoop
library because it was broken in JDK 9 due to the introduction of the new version format:

System.getProperty("java.version").substring(0, 3).compareTo("1.7") >= 0

http://dx.doi.org/10.1007/978-1-4842-2713-8_6

Chapter 8 ■ Migration

148

This piece of code isn’t working on JDK 9 anymore, because the version is no longer represented as 1.7.
Instead of 1.7, the new version could have a format similar to 7 (containing only the major version) or 7.1.1
(containing the major version, minor version, and security version).

The format of the new version string is as follows:

$MAJOR.$MINOR.$SECURITY.$PATCH

•	 $MAJOR serves as the major version of a JDK release.

•	 $MINOR serves as the minor version of a JDK release.

•	 $SECURITY serves as a security-related release of the JDK.

The changes affect not only java -version, but also the following system properties: java.runtime.
version, java.vm.version, java.specification.version, and java.vm.specification.version.

We know how the new version looks in JDK 9, so let’s move on and see what methods were removed in
JDK 9.

Removed Methods in JDK 9
The following methods have been completely removed in Java 9:

•	 java.util.logging.LogManager.addPropertyChangeListener

•	 java.util.logging.LogManager.removePropertyChangeListener

•	 java.util.jar.Pack200.Packer.addPropertyChangeListener

•	 java.util.jar.Pack200.Packer.removePropertyChangeListener

•	 java.util.jar.Pack200.Unpacker.addPropertyChangeListener

•	 java.util.jar.Pack200.Unpacker.removePropertyChangeListener

We should make sure not to use these six methods in Java 9—otherwise our code will break at compile-
time. The probability of having one at least one of these six methods in our code is low.

Another change in JDK 9, with a definitely greater impact, is the removal of the runtime rt.jar and of
tools.jar and dt.jar.

Removal of rt.jar, tools.jar, and dt.jar
Chapter 2 talked about the removal of the rt.jar, tools.jar, and dt.jar in JDK 9. This can have a consequence on
our code if we make assumptions throughout our code based on one of these three JAR files. But the impact
is greater on tools rather than on our own code.

Calling the ClassLoader::getSystemResource() method in JDK 9 won’t return an URL to a JAR file.
Instead, it will return a valid URL.

If we call the method getSystemResource() with the parameter java/lang/Class.class,

ClassLoader.getSystemResource("java/lang/Class.class")

The following URL will be returned:

jrt:/java.base/java/lang/Class.class

http://dx.doi.org/10.1007/978-1-4842-2713-8_2

Chapter 8 ■ Migration

149

We have to be aware of these new changes and check if our code expects to receive this URL in a specific
format, which may now not be the same.

Let’s move to the next section, where we show migration strategies for migrating a Java application
to Java 9.

Migrating an Application to Java 9
This chapter describes the process of migrating an application to Java 9 using the top-down approach. There
are basically two types of migration we can perform when we decide to migrate our existing Java application,
together with its dependencies, to Java 9: top-down migration and bottom-up migration.

The main difference between the two approaches is that application migration migrates the application
first. By contrast, library migration starts migrating the libraries first, rather than the application.

■■ Note  In Chapter 4 you learned what an unnamed module is. It is important to remember the following rule:
code that exists in a named module can’t access anything on the class path!

Top-down Migration
We have a small application that reads some news from a JSON file using Google Gson. It logs the output
using SLF4J and formats it using Google Guava. Therefore, we have four JAR libraries on the class path:

•	 slf4j-simple-1.7.25.jar

•	 slf4j-api-1.7.25.jar

•	 guava-21.0.jar

•	 gson-2.8.0.jar

Our application consists of a POJO class called News that has four attributes: id, title, category, and
link. It also consists of a Main class that reads the entire information from the news.json file as a list of News
objects. A for loop iterates over the entire list of News, formats the results so that everything is uppercase, and
then logs the results.

Listing 8-5 shows the News class.

Listing 8-5.  The News Class

package org.news;

public class News {

 private String id;

 private String title;

 private String category;

 private String link;

Chapter 8 ■ Migration

150

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getCategory() {
 return category;
 }

 public void setCategory(String category) {
 this.category = category;
 }

 public String getLink() {
 return link;
 }

 public void setLink(String link) {
 this.link = link;
 }

 @Override
 public String toString() {
 return "Id: " + id + " - " + "Title: " + title + " - " + "Category: " + category +
" - " + "Link: " + link;
 }
}

Listing 8-6 represents the Main class, which imports packages from Gson, Guava, and SLF4J, reads the
news.json, logs its content, and also formats it.

Listing 8-6.  The Main Class of our Application

package org.news;

import java.io.*;
import java.lang.reflect.Type;
import java.util.ArrayList;
import java.util.List;
import com.google.gson.reflect.TypeToken;
import com.google.gson.Gson;

Chapter 8 ■ Migration

151

import com.google.gson.GsonBuilder;
import com.google.common.base.CaseFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Main {

 public static void main(String[] args) throws FileNotFoundException {

 Logger logger = LoggerFactory.getLogger(Main.class);

 BufferedReader bufferedReader = new BufferedReader(new FileReader("news.json"));

 Type listType = new TypeToken<ArrayList<News>>(){}.getType();
 List<News> yourClassList = new Gson().fromJson(bufferedReader, listType);

 for(News news : yourClassList) {
 �logger.info("Id: " + CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.UPPER_UNDERSCORE,

news.getId()));
 �logger.info("Title: " + CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.UPPER_

UNDERSCORE, news.getTitle()));
 �logger.info("Category: " + CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.UPPER_

UNDERSCORE, news.getCategory()));
 �logger.info("Link: " + CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.UPPER_

UNDERSCORE, news.getLink()));
 }
 }
}

First, we compile and run our application in JDK 9 using only the class path, so we’re sure that our
application works in JDK 9 without any changes.

javac -d out -cp "lib/gson-2.8.0.jar;lib/guava-21.0.jar;lib/slf4j-api-1.7.25.jar;lib/slf4j-
simple-1.7.25.jar" $(find src -name '*.java')

We create a JAR file named news.jar:

jar --create --file lib/news.jar -C out.

Finally, we run our application:

java -cp "lib/gson-2.8.0.jar;lib/guava-21.0.jar;lib/slf4j-api-1.7.25.jar;lib/slf4j-
simple-1.7.25.jar;lib/news.jar" org.news.Main

Our application is running successfully. We now have the confirmation that our not modularized
application is running with JDK 9 without any changes.

Let’s start the modularization process. In this part we’ll modularize our News application only as part
of the top-down migration strategy. We won’t modularize and won’t even change the four JAR files that
represent our dependencies.

Chapter 8 ■ Migration

152

The first thing we do is to create a module-info.java file in the root directory. We have to figure out what
kind of requires and exports clauses we need to put inside the module descriptor. We have to require our
dependency JAR files inside the module descriptor and we do this by putting them on the module path
so they become automatic modules. We covered the automatic modules in detail at the beginning of this
chapter, where we also talked about how to find out the name of the generated automatic modules:

jar --describe-module --file gson-2.8.0.jar

By running the command jar --describe-module on the Gson JAR file, we find out that the generated
name of the automatic module is gson. We add this name into our module descriptor and do the same for all
the other JAR files, because our application depends on these. If we’re not sure about the dependencies used
by our application, we can run the Jdeps on our previously created news.jar file:

$ jdeps -cp "lib/gson-2.8.0.jar;lib/guava-21.0.jar;lib/slf4j-api-1.7.25.jar;lib/slf4j-
simple-1.7.25.jar;lib/news.jar" -s lib/news.jar

news.jar -> lib\gson-2.8.0.jar
news.jar -> lib\guava-21.0.jar
news.jar -> java.base
news.jar -> lib\slf4j-api-1.7.25.jar

The JDeps tool informs us that our news.jar file has dependencies on three JAR files and on module
java.base.

Our module-info.java looks like this:

module news {
 requires slf4j.simple;
 requires slf4j.api;
 requires guava;
 requires gson;
}

Because our News application is standalone and isn’t an API, we have no exports clauses. We don’t
need to give our application to somebody else to include it in their own application, so exports clauses are
for the moment not necessary.

We compile our application:

javac -d modules --module-path lib --module-source-path src -m news

Now, if we take a look in the modules directory, we see that we have .class files not only for the
corresponding Java classes, but also for the module-info.java we have a compiled module-info.class file.

We create a modular JAR for our application:

jar --create --file lib/news.jar -C modules/news.

Next we run our Main class:

java --module-path lib -m news/org.news.Main

Chapter 8 ■ Migration

153

Unfortunately, we got a ClassNotFoundException, which informs us that the class java.sql.Time can’t
be found:

Exception in thread "main" java.lang.NoClassDefFoundError: java/sql/Time
 at gson@2.8.0/com.google.gson.Gson.<init>(Gson.java:240)
 at gson@2.8.0/com.google.gson.Gson.<init>(Gson.java:174)
 �at news/org.news.Main.main(Main.java:23)
Caused by: java.lang.ClassNotFoundException: java.sql.Time
 at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(Unknown Source)
 �at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass

(Unknown Source)
 at java.base/java.lang.ClassLoader.loadClass(Unknown Source)
 ... 3 more

The java.sql.Time class is located in the java.sql module. We need to add this module to the root set of
modules using the --add-modules option so it can be resolved:

java --add-modules java.sql --module-path lib -m news/org.news.Main

The previous error doesn’t appear anymore, because it was solved. Unfortunately, we get now a
different type of exception:

Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unable to make
field private java.lang.String org.news.News.id accessible: module news doesn’t "opens org.
news" to module gson
 �at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible

(Unknown Source)
 �at java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible

(Unknown Source)
 at java.base/java.lang.reflect.Field.checkCanSetAccessible(Unknown Source)
 at java.base/java.lang.reflect.Field.setAccessible(Unknown Source)

We get an InaccessibleObjectException because Gson is performing deep reflective access into the
JDK and it doesn’t succeed because our package org.news is by default not opened for deep reflection. We
have to open our package org.news to module Gson using a qualified opens clause. Therefore, we need to
add the following statement in our module descriptor:

opens org.news to gson;

We compile and run our application again, and, because we opened the org.news package so that the
Gson library can perform deep reflection on it, it works.

In this section, we managed to migrate an application that uses JAR files to run on JDK 9. We created
a module for our own code and put the JAR files on the module path by transforming them into automatic
modules. We don’t have any code on the class path, because the entire code is now on the module path.

■■ Note  The source code we had before starting the modularization process can be found in the directory /
ch08/topDownMigrationStart. The source code after the top-down modularization process can be found in the
directory /ch08/topDownMigration.

Chapter 8 ■ Migration

154

This was top-down migration, where we modularize our application and use the JAR libraries as
automatic modules on the module path.

Summary
This chapter presented useful information on topics related to migration. Migrating an application to Java 9
is a multi-step process, depending on the size and the libraries the application is using.

We started this chapter by presenting the automatic modules, which help us make significant steps
forward in the process of migrating to modules because they reuse existing JARs. The automatic modules
can be used as a replacement for JAR files. If you don’t plan to migrate your codebase to modules, you can
use automatic modules instead. It’s understandable to use automatic modules when the JAR file has not
yet been modularized by its authors, but you should replace the automatic modules by their corresponding
named modules as soon as the corresponding named modules are available.

Further we presented the JDeps tool. This is a very useful tool used to find static dependencies of a
library, but it can’t find reflective uses of JDK internal APIs. JDeps performs a static investigation on class
level and outputs any use of JDK internal APIs. If we’re using Maven, we can make use of the Maven JDeps
plugin, because JDeps is very well integrated with Maven through it.

Next we talked about the encapsulation introduced in Java 9. We learned which packages are
encapsulated in Java 9 and which aren’t. We showed an example of breaking encapsulation of JDK internal
APIs using the --add-exports command-line option. We also saw how to open packages, provide readability
between modules, and add modules to the root set of modules. The --illegal-access option introduced to
allow deep reflection for code in the class path was covered in detail.

When talking about changes in the area of the JDK internal APIs in Java 9, we must distinguish between
accessing the internal APIs and accessing the internal APIs using reflection. The first isn’t so surprising
due to the fact that for a long time the JDK internal APIs were marked as deprecated. The latter is different
because no deprecation warning can be thrown as the code is executed at runtime. As a conclusion, normal
access to JDK internal APIs isn’t possible in Java 9 anymore, but reflective access to JDK internal APIs is still
possible, though limited.

We also discussed and gave solutions to some of the most common issues that can occur during
migration to Java 9: encapsulated JDK internal APIs, not resolved modules, cyclic dependencies, new
versioning scheme, split packages, removed methods in Java 9, and removal of rt.jar, tools.jar, and dt.jar. An
important problem that can occur when moving to Java 9 is the split packages problem. A split package is a
single package located inside two or more modules.

We finished this chapter by showing an example of migrating a small application that uses some
third-party libraries to Java 9. We migrated the application step-by-step using the top-down approach.
During migration, the messages displayed in the exceptions and errors give valuable hints for solving the
root cause of the problem and for moving forward.

In Chapter 9, we’ll learn about the new API introduced in JDK 9 for handling modules, module
descriptors, module references, and layers.

http://dx.doi.org/10.1007/978-1-4842-2713-8_9

155© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_9

CHAPTER 9

The New Module API

Project Jigsaw introduced a new layer in JDK 9, modules, and added many new features to the Java platform.
Among the new features, a new module API was introduced for handling the work with modules. The new
module API was added in the module java.base in the packages java.lang and java.lang.module. It contains a
set of classes, interfaces, enumerations (enums), and exceptions that can be used to work with modules.

The module API allows us to perform different operations on modules, such as extracting the
information from the module descriptors, accessing the resources of a module, searching for modules on the
module path or for all the system modules, creating layers, and more. The module API can also be used to
dynamically add reads, opens, or exports directives to other modules at runtime. We’ll start this chapter by
briefly presenting the structure of the new module API: its interfaces, classes, enums, and exceptions.

According to the JDK 9 API specification, two interfaces were added for working with modules. Table 9-1
shows the new interfaces of the module API.

Table 9-1.  The Interfaces of the Module API

Name Type Description

ModuleFinder Interface Finds modules during resolution or service binding

ModuleReader Interface Accesses the module’s content

Table 9-2.  The Classes of the Module API

Name Type Description

Configuration Class A configuration that contains the readability graph

Module Class A module at runtime

ModuleDescriptor Class A module descriptor

ModuleDescriptor.Builder Class A builder for creating module descriptors

ModuleDescriptor.Exports Class A package exported by a module

ModuleDescriptor.Opens Class A package opened by a module

ModuleDescriptor.Provides Class A service with implementations provided by the module

ModuleDescriptor.Requires Class A dependence upon a module

ModuleDescriptor.Version Class A module version

ModuleReference Class A reference to a module

ResolvedModule Class A module in a graph of resolved modules

Table 9-2 lists the classes of the new module API.

Chapter 9 ■ The New Module API

156

Table 9-3 shows the enumerations of the module API.

Table 9-4 shows the exceptions of the module API.

We’ll next look at some of the most important classes and interfaces of the new module API in detail,
starting with the fundamental one, the Module class.

The Module Class
The Module class represents a module at runtime, which can be either a named module or an unnamed
module. The Module class was introduced in Java 9 and is located in module java.base in the package java.
lang in the following location:

\java.base\share\clasess\java\lang\Module.java

Let’s explore the attributes, constructors, and methods defined by the Module class.

Attributes
Following are some of the most important attributes defined by the Module class:

•	 ModuleLayer layer: Represents the layer that contains this module. The layer can
also be null.

•	 String name: Represents the name of this module.

•	 ClassLoader loader: Represents the ClassLoader of this module.

Table 9-3.  The Enumerations of the Module API

Name Type Description

ModuleDescriptor.Exports.Modifier Enum A modifier on an exported package

ModuleDescriptor.Modifier Enum A modifier on an module

ModuleDescriptor.Opens. Modifier Enum A modifier on an open package

ModuleDescriptor.Requires.Modifier Enum A modifier on a module dependence

Table 9-4.  The Exceptions of the Module API

Name Type Description

FindException Exception Thrown when an error occurs while finding a module

InvalidModuleDescriptorException Exception Thrown when a module descriptor has an invalid
format

ResolutionException Exception Thrown when the process of resolving a set of
modules fails

LayerInstantiationException Exception Thrown when an error occurs while creating a
module layer

Chapter 9 ■ The New Module API

157

•	 ModuleDescriptor descriptor: Represents the ModuleDescriptor of this module.

•	 Map<String, Set<Module>> exportedPackages: Represents the packages that are
exported by this module.

•	 Map<String, Set<Module>> openPackages: Represents the packages that are open to
other modules.

•	 Set<Module> reads: Represents the modules that this module reads.

•	 static final Module ALL_UNNAMED_MODULE: Represents a special module
that defines the entire set of unnamed modules. An unnamed module has no
ClassLoader object, no ModuleLayer object and no ModuleDescriptor object
defined.

Constructors
The Module class has three types of constructors, as stated in the JDK 9 API specification:

•	 Module(ClassLoader loader): This constructor creates the unnamed module
for the given ClassLoader. The ClassLoader object can also be null. An unnamed
module contains no ModuleDescriptor and no ModuleLayer.

•	 Module(ClassLoader loader, ModuleDescriptor descriptor): This constructor
creates a named module that’s not inside a ModuleLayer.

•	 Module(ModuleLayer layer, ClassLoader loader, ModuleDescriptor
descriptor, URI uri): This constructor creates a named module inside a
ModuleLayer, which means that the module is represented inside the virtual
machine.

Methods
The most important methods defined by the Module class are, according to the JDK 9 API specification,
the following:

•	 boolean isNamed(): Returns true if the module is a named module and false
otherwise.

•	 String getName(): Returns the name of the module if the module is a named
module. If the module is in an unnamed module, it returns null.

•	 ClassLoader getClassLoader(): Returns the ClassLoader for this module.

•	 ModuleDescriptor getDescriptor(): Returns the ModuleDescriptor for this
module if the module is a named module. If the module is an unnamed module, it
returns null.

•	 ModuleLayer getLayer(): Returns the ModuleLayer that contains this module. If
this module is not in a module layer, it returns null. If the module is in an unnamed
module, null is returned.

•	 boolean canRead(Module other): Returns true if this module reads the module
given as parameter and false otherwise. If our module is an unnamed module, then
true will be always returned, since an unnamed module reads all the modules.

•	 Module addReads(Module other): Updates this module to read the given module.

Chapter 9 ■ The New Module API

158

•	 boolean isExported(String packageName): Returns true if this module exports
the given package. If our module is in an unnamed module, then true is by default
returned. If the package is opened, then this method returns true because an opened
package is also exported at runtime.

•	 boolean isExported(String packageName, Module other): Returns true if this
module exports the given package to at least the given module.

•	 boolean isOpen(String packageName): Returns true if this module has opened the
given package. If the module is in an unnamed module, then true is always returned.

•	 boolean isOpen(String packageName, Module other): Returns true if this module
has opened the given package to at least the given module specified as the second
parameter.

•	 Module addExports(String packageName, Module other): Updates this module to
export the given package to the given module.

•	 Module addOpens(String packageName, Module other): Updates this module to
open the given package to the given module.

•	 Module addUses(Class<?> service): Updates this module to add a service
dependence on the given service type.

•	 boolean canUse(Class<?> service): Returns true if this module has a service
dependence on the given service type. If our module is an automatic module or is in
an unnamed module, the method returns true by default.

•	 Set<String> getPackages(): Returns a set of package names for all the packages in
this module.

•	 InputStream getResourceAsStream(String name): Returns an InputStream object
for reading a resource in this module. The resource is identified by the given name.

Changes in java.lang.Class
The class java.lang.Class has been enhanced with three methods in order to better fit into the newly
added module system. Here are the methods added in Java 9 inside the Class class, according to the JDK 9
API specification:

•	 Class<?> forName(Module module, String className): Returns the Class object
of the given class from the given module.

•	 Module getModule(): Returns the module that this class or interface is a member of.

•	 String getPackageName(): Returns a String representing the name of the package
of this class.

The ModuleDescriptor class
The ModuleDescriptor class is located inside the java.lang.module package of the java.base module. This
class represents a module descriptor of a named module. An instance of this class expresses a module
descriptor that’s obtained from a module-info.class file.

Chapter 9 ■ The New Module API

159

Because a ModuleDescriptor object is immutable, obtaining a ModuleDescriptor object is
straightforward. It’s obtained by calling the getDescriptor() method on the corresponding Module object:

java.lang.Module myModule = MyClass.class.getModule();
java.lang.ModuleDescriptor myModuleDescriptor = myModule.getDescriptor();

But this is not the only way we can get a ModuleDescriptor object. We can create a ModuleDescriptor
using the build() method of the Builder class, which is an inner class of the ModuleDescriptor class. Creating
a ModuleDescriptor using the Builder class is not the common approach, so we don’t cover it in this book.

■■ Note A module descriptor can’t describe the unnamed module. It describes all the existing types of
modules except the unnamed module: normal modules, open modules, and automatic modules.

The ModuleDescriptor class consists of a set of nested classes, discussed later in this section:

•	 ModuleDescriptor.Builder class

•	 ModuleDescriptor.Exports class

•	 ModuleDescriptor.Modifier class

•	 ModuleDescriptor.Opens class

•	 ModuleDescriptor.Provides class

•	 ModuleDescriptor.Requires class

•	 ModuleDescriptor.Version class

The instances of four of these nested classes (ModuleDescriptor.Exports, ModuleDescriptor.Opens,
ModuleDescriptor.Provides, and ModuleDescriptor.Requires) represent statements that can reside inside
a module declaration module-info.java file: exports, opens, provides, and requires.

We’ll continue by looking at some of the attributes defined inside the ModuleDescriptor class.

ModuleDescriptor Attributes
The most important attributes defined by the ModuleDescriptor class are the following, and they’re
described more fully in the next subsection:

•	 String name

•	 Version version

•	 Set<Modifier> modifiers

•	 boolean open

•	 boolean automatic

•	 Set<Requires> requires

•	 Set<Exports> exports

•	 Set<Opens> opens

•	 Set<String> uses

•	 Set<Provides> provides

Chapter 9 ■ The New Module API

160

•	 Set<String> packages

•	 String mainClass

•	 static enum Modifier {OPEN, AUTOMATIC, SYNTHETIC, MANDATED}

Next up: the most important methods of the ModuleDescriptor class.

ModuleDescriptor Methods
The JDK 9 API specification defines a couple of methods for the ModuleDescriptor class. The most
important methods of the ModuleDescriptor class are as follows:

•	 String name(): Returns the name of the module.

•	 Set<Modifier> modifiers(): Returns a set of the Modifier enum, which represents
the module modifiers. A Modifier enum contains the following values: OPEN,
AUTOMATIC, SYNTHETHIC, and MANDATE. Modifier.OPEN denotes an open module.
Modifier.AUTOMATIC represents an automatic module. Modifier.SYNTHETIC
specifies that the module wasn’t declared, either explicitly nor implicitly.
Modifier.MANDATED states that the module was implicitly declared.

•	 boolean isOpen(): Returns true if the module is open and false otherwise.

•	 boolean isAutomatic(): Returns true if this is an automatic module and false
otherwise.

•	 Set<Requires> requires(): Returns a set of Requires objects that denote the
dependencies of the module.

•	 Set<Exports> exports(): Returns a set of Exports objects that stand for the
exported packages of the module.

•	 Set<Opens> opens():Returns a set of Opens objects that represent the open
packages.

•	 Set<String> uses(): Returns a set of Strings that represent the service
dependencies of the module.

•	 Set<Provides> provides(): Returns a set of Provides objects that expresses the
services provided by the module.

•	 Optional<Version> version(): Returns the version of the module.

•	 String toNameAndVersion(): Returns the module name and the version formatted
as <module_name>@<version>.

•	 Optional<String> mainClass(): Returns the main class of the module.

•	 Set<String> packages(): Returns a set of Strings that expresses the packages from
the module.

The following sections focus on the nested classes of the ModuleDescriptor class.

The ModuleDescriptor.Requires Class
The ModuleDescriptor.Requires class, whose instance expresses a requires clause in a module descriptor,
contains some attributes and methods, described next.

Chapter 9 ■ The New Module API

161

It contains an enum called Modifier with the following values:

•	 TRANSITIVE: As stated in the official JDK 9 documentation, “this dependence causes
any module which depends on current module to have an implicitly declared
dependence on the module named by the requires.”

•	 STATIC: This dependence is mandatory at compile-time but is optional at runtime.

•	 SYNTHETIC: This dependence wasn’t declared in the module declaration.

•	 MANDATED: This dependence was declared in the module declaration.

The methods defined by the ModuleDescriptor.Requires class are as follows:

•	 Set<Modifier> modifiers(): Returns a set of Modifier objects

•	 String name(): Returns the name of the module

•	 Optional<Version> compiledVersion(): Returns a Version object representing the
version of the module

•	 Optional<String> rawCompiledVersion(): Returns a String representing the
unparseable version of the module

The ModuleDescriptor.Exports Class
The ModuleDescriptor.Exports class can be instantiated to express an exports clause inside the module
declaration. The class contains an enum called Modifier with the following values: SYNTHETIC and MANDATED.

Here are the methods defined by this class:

•	 Set<Modifier> modifiers(): Returns a set of Modifier objects

•	 boolean isQualified(): Returns true if the export is qualified or false otherwise

•	 String source(): Returns a String representing the name of the package

•	 Set<String> targets(): Returns a set representing the names of the modules to
which the package is exported. If the export is unqualified, it returns an empty set.

The ModuleDescriptor.Opens Class
The ModuleDescriptor.Opens class can be instantiated to express an opens clause inside the module
declaration. The class contains an enum called Modifier with the following values: Modifier.SYNTHETIC
and Modifier.MANDATED. In this case, MANDATED means that the opens statement was declared in the module
declaration, and SYNTHETIC means that the opens statement was not declared in the module declaration.

According to the JDK 9 API specification, the methods defined by this class are as follows:

•	 Set<Modifier> modifiers(): Returns a set of Modifier objects.

•	 boolean isQualified(): Returns true if it is a qualified opens operation and
false otherwise. A qualified opens operation is characterized by the fact that the
modules to which the package is opened are specified in the module declaration. An
unqualified opens operation doesn’t specify any modules in the module declaration,
which means that the package is opened to all the modules.

Chapter 9 ■ The New Module API

162

•	 String source(): Returns the name of the package as String.

•	 Set<String> targets(): Returns a set of String that represents the names of the
modules to which the package is open, but for an unqualified opens it returns an
empty set.

The ModuleDescriptor.Provides Class
The ModuleDescriptor.Provides class is, in a manner of speaking, the correspondent of the provides
statement from the module-info.java file. To recap, the provides statement’s role is to define a service type.
The syntax of the provides statement is like this: provides <interface_name> with <class_name>, where
<class_name> represents the implementation class for the service type defined by the interface with the
name <interface_name>.

The ModuleDescriptor.Provides class defines the following variables: String service and
List<String> providers. This means we can create one instance of the ModuleDescriptor.Provides class to
define a single service and one or more providers.

There are two methods defined by the ModuleDescriptor.Provides class:

•	 String service(): This method returns the fully qualified class name of the
service type.

•	 List<String> providers(): This method returns a list of Strings representing
the fully qualified class names of the providers or provider factories.

Further, we can define three provides statements inside our module descriptor:

module com.apress.myModule {
 provides ServiceType1 with package1.Class1;
 provides ServiceType1 with package1.Class2;
 provides ServiceType1 with package2.Class3;
}

Because we have only a single instance of the service type, we have only one instance of the class
ModuleDescriptor.Provides. We can get all the names of the providers classes by calling the method
providers() and the name of the service type by calling the method service().

The ModuleDescriptor.Version Class
The nested class ModuleDescriptor.Version represents the version of a module. The version of a module
is used only for documentation, because the JPMS does not support versioning. The most used methods
provided by the ModuleDescriptor.Version class are as follows:

•	 Version parse(String): Parses the given String as a version String

•	 int compareTo(Version version): Compares this module version to the given
module version

Chapter 9 ■ The New Module API

163

The ModuleFinder Interface
According to the JDK 9 API specification, this interface “represents a finder of modules and is used to find
methods during resolution or service binding.” Here are the methods contained in this interface:

•	 Optional<ModuleReference> find(String moduleName): Finds and returns a
ModuleReference object to a module whose name is passed as parameter

•	 Set<ModuleReference> findAll(): Returns a set containing all the
ModuleReference objects that can be located in the system

•	 static ModuleFinder ofSystem(): Returns a ModuleFinder object that locates all
the system modules from the Java runtime

•	 static ModuleFinder of(Path… entries): Returns a ModuleFinder object
that locates modules on the file system by searching a sequence of directories or
packaged modules

The role of the ModuleFinder interface is to find modules. A ModuleFinder finds only a single module. It
can’t find more than one module. If we search for modules inside directories, the ModuleFinder will retrieve
only the first module found.

For instance, if we have two directories and want to find a module named myModule, we could first
get the MethodFinder by passing the sequence of directories as an argument to the method of() of the
ModuleFinder interface:

ModuleFinder moduleFinder = ModuleFinder.of(directoryA, directoryB);

We can call the find() method on the the ModuleFinder object by passing the name of the module
we’re searching for:

Optional<ModuleReference> moduleReference = moduleFinder.find("myModule");

The find() method returns a ModuleReference object to the module with the name myModule.
From a ModuleReference object, we can derive a ModuleDescriptor object:

if(moduleReference.isPresent()) {
 ModuleDescriptor moduleDescriptor = moduleReference.get().descriptor();
}

The findAll() method returns a set of all the module references that can be located. Hence, we could
then find all the modules located inside the two directories.

The ModuleReader Interface
The role of the ModuleReader interface is to help access the content of a module. As stated in the official JDK
9 API documentation, “a module reader is intended for cases where access to the resources in a module
is required, regardless of whether the module has been loaded. A framework that scans a collection of
packaged modules on the file system, for example, may use a module reader to access a specific resource in
each module.”

Chapter 9 ■ The New Module API

164

The JDK 9 API specification defines a couple of methods for the ModuleReader interface. The most
important methods defined by the ModuleReader interface are as follows:

•	 Optional<URI> find(String resourceName): This method finds the resource
identified by the name resourceName. It returns a URI object to the resource in the
module. It can throw an I/O Exception if the module reader is closed.

•	 Optional<InputStream> open(String resourceName): This method opens a
resource with name resourceName. It returns an InputStream object to read the
resource in the module.

•	 Optional<ByteBuffer> read(String resourceName): This method reads the given
resource and returns a ByteBuffer object that contains the contents of the resource.

•	 Stream<String> list(): This method lists the contents of the module. It returns
a Stream of String objects that represents the names of all the resources in the
module. Like the find(resourceName) and open(resourceName) methods, it can
throw an I/O Exception if the module reader is closed.

The following example uses what we’ve learned so far to read some information from a module. We will
search inside the java.base module for all the implementation classes. Once we find them, we load them and
then print their name and the name of their package.

Listing 9-1 shows the class ModuleReaderExample, which loads all the implementation classes from
module java.base and then prints their name and their package name:

Listing 9-1.  The Class ModuleReaderExample

package com.apress.apimodule;

import java.io.IOException;
import java.io.UncheckedIOException;
import java.lang.module.ModuleFinder;
import java.lang.module.ModuleReader;
import java.lang.module.ModuleReference;
import java.util.*;

public class ModuleReaderExample {

 public static void main(String[] args) {

 List<Class<?>> listClasses = getClassesByModuleName("java.base");

 for(Class<?> myClass : listClasses) {
 System.out.println("Name of the class is: " + myClass.getName());
 System.out.println("Name of the package is: " + myClass.getPackageName());
 }
 }

 private static List<Class<?>> getClassesByModuleName(String moduleName) {

 ModuleFinder finder = ModuleFinder.ofSystem();
 Optional<ModuleReference> optionalModuleReference = finder.find(moduleName);
 ModuleReference moduleReference = optionalModuleReference.get();

Chapter 9 ■ The New Module API

165

 try (ModuleReader moduleReader = moduleReference.open()) {
 return moduleReader.list()
 .filter(name -> name.endsWith("Impl.class"))
 .map(ModuleReaderExample::classLoadByFileName)
 .collect(Collectors.toList());
 } catch(IOException ioException) {
 throw new UncheckedIOException(ioException);
 }
 }

 private static Class<?> classLoadByFileName(String classFileName) {

 ClassLoader classLoader = ModuleReaderExample.class.getClassLoader();
 String nameOfClass = classFileName.substring(0, classFileName.length() - ".class".length());

 try {
 nameOfClass = nameOfClass.replace('/','.');
 return classLoader.loadClass(nameOfClass);
 }
 catch (ClassNotFoundException classNotFoundException) {
 throw new UncheckedIOException(new IOException(classNotFoundException));
 }
 }

}

The method static Class<?> classLoadByFileName(String classFileName) is simple. It uses the
ClassLoader object to load the given class and returns an instance of object Class. The method List<Class<?>>
getClassesByModuleName(String moduleName) is interesting. It returns a list of Class objects that are located in
the given module. First, we get an instance of the ModuleFinder by calling the method ofSystem(). This method
returns a module finder that locates the system modules. Then we find a reference to a module with the name
moduleName by calling the find(moduleName) method on the finder object:

Optional<ModuleReference> optionalModuleReference = finder.find(moduleName);
ModuleReference moduleReference = optionalModuleReference.get();

A ModuleReference object is a reference to the module’s content—in our case, module java.base. To
open the module for reading, we call the method open() on the ModuleReference object. Thus we obtain an
instance of a ModuleReader object:

ModuleReader moduleReader = moduleReference.open()

Next we call the list() method on the ModuleReader object and filter the results by searching only for
the classes with names ending in Impl.class. In the end, we call the method classLoadByFileName() to get
a Class object of the corresponding class. In the main method, we load all the implementation classes of the
module java.base and print their names together with their package names.

The output is huge, so we’ll show only a small snippet of it here:

Name of the class is: sun.util.locale.provider.BreakIteratorProviderImpl
Name of the package is: sun.util.locale.provider
Name of the class is: java.lang.ProcessImpl
Name of the package is: java.lang

Chapter 9 ■ The New Module API

166

Name of the class is: java.util.jar.JavaUtilJarAccessImpl
Name of the package is: java.util.jar
...

Performing Operations on Modules
This section covers some operations we can perform on modules programmatically, such as getting the
module of a class, accessing the resources of a module, searching for all the modules in the module path, or
getting the module information,

Getting the Module of a Class
As we already learned in this chapter, a module at runtime is expressed by the Module class defined in
package java.lang of the module java.base. The Module class can represent either a named or unnamed
module. In order to return a Module object for our class called ModuleCore, we call the method getModule()
of the class Class:

Class<ModuleCore> myClass = ModuleCore.class;
Module module = myClass.getModule();

This method returns a module that the class ModuleCore is a member of. If the class is in the unnamed
module, the method getUnnamedModule() from ClassLoader.java is called.

Accessing Resources of a Module
Listing 9-2 shows how we can access resources of the module using the getResourceAsStream() method,
which returns an InputStream object.

Listing 9-2.  Accessing Resources of a Module Using Method getResourceAsStream()

this.class.getModule().getResourceAsStream("file.properties");

We can also access resources of a module using the getResource() method, which returns a URL
object, as in Listing 9-3.

Listing 9-3.  Accessing Resources of a Module Using Method getResource()

this.getClass().getResource("file.properties")
ClassLoader.getPlatformClassLoader().getResource("file.properties")

Searching for all Modules in the Module Path
Using the new module API, we can even find all the modules in the module path. Listing 9-4 shows how to
search for all the modules in the module path in the system environment variable jdk.module.path, get
their module descriptors, and print their module names.

Chapter 9 ■ The New Module API

167

Listing 9-4.  Searching for All the Modules in the Module Path

ModuleFinder.of(Paths.get(System.getProperty("jdk.module.path"))).
 .findAll()
 .stream()
 .forEach(ref -> {
 System.out.println(moduleReference.descriptor().name());
});

Getting Module Information
Using the methods and classes described throughout this chapter, we can get complete information about
a module. Listing 9-5 shows an example where we make use of the new classes and interfaces in order to
get all the available information from the module java.base.

Listing 9-5.  Print Extensive Information from Module java.base

import java.lang.module.ModuleDescriptor;
import java.lang.module.ModuleFinder;
import java.lang.module.ModuleReference;
import java.util.NoSuchElementException;
import java.util.Optional;
import java.util.Set;

public class BaseModule {

 public static void main(String[] args) {

 String moduleName;
 Optional<String> mainClass;
 Set<ModuleDescriptor.Exports> exports;
 boolean isAutomatic;
 boolean isOpen;
 Set<String> allPackagesNames;
 Set<ModuleDescriptor.Provides> provides;
 Set<ModuleDescriptor.Requires> dependencies;
 String moduleNameVersion;
 Set<String> serviceDependencies;
 ModuleDescriptor.Version version;

 ModuleFinder finder = ModuleFinder.ofSystem();
 Optional<ModuleReference> moduleReference = finder.find("java.base");

 if(moduleReference.isPresent()) {
 ModuleDescriptor moduleDescriptor = moduleReference.get().descriptor();

 // get the name of the module
 moduleName = moduleDescriptor.name();

 // get the module's main class
 mainClass = moduleDescriptor.mainClass();

Chapter 9 ■ The New Module API

168

 exports = moduleDescriptor.exports();
 isAutomatic = moduleDescriptor.isAutomatic();
 isOpen = moduleDescriptor.isOpen();
 allPackagesNames = moduleDescriptor.packages();
 provides = moduleDescriptor.provides();
 dependencies = moduleDescriptor.requires();
 moduleNameVersion = moduleDescriptor.toNameAndVersion();
 serviceDependencies = moduleDescriptor.uses();

 try {
 �Optional<ModuleDescriptor.Version> versionOptional = moduleDescriptor.

version();
 version = versionOptional.get();
 }
 catch (NoSuchElementException exception) {
 version = null;
 }

 System.out.println("Module name is: " + moduleName);
 System.out.println();

 System.out.println("Main class is: ");
 if(mainClass.isPresent()) {
 System.out.println(mainClass);
 }
 else {
 System.out.println("Not exists");
 }
 System.out.println();

 System.out.println("The module exports the packages with the following name: ");
 for(ModuleDescriptor.Exports moduleExport : exports) {
 System.out.print(moduleExport.source());
 System.out.print(", ");
 }

 System.out.println();
 System.out.println();
 System.out.println("Is an automatic module: " + isAutomatic);

 System.out.println();
 System.out.println("Is an open module: " + isOpen);

 System.out.println();
 System.out.println("All packages names: ");
 for(String packageName : allPackagesNames) {
 System.out.print(packageName);
 System.out.print(", ");
 }

Chapter 9 ■ The New Module API

169

 System.out.println();
 System.out.println();
 System.out.println("The services provided by the module: ");
 for(ModuleDescriptor.Provides provide : provides) {
 System.out.print("Service " + provide.service());
 for(String p : provide.providers()) {
 System.out.print(" with providers: " + p);
 System.out.print(", ");
 }
 }
 System.out.println();
 System.out.println("The name of the dependencies of the module: ");
 for(ModuleDescriptor.Requires dependency : dependencies) {
 System.out.print(dependency.name());
 System.out.print(", ");
 }

 System.out.println();
 System.out.println("Module name and version: " + moduleNameVersion);

 System.out.println();
 System.out.println("The service dependencies of the module: ");
 for(String serviceDependency : serviceDependencies) {
 System.out.print(serviceDependency);
 System.out.print(", ");
 }

 System.out.println();
 System.out.println("The version of the module: " + version);
 }
 }
}

We use the interface ModuleFinder to locate all the system modules. On the resulting object, we call
the find() method and pass the string "java.base" representing the module’s name. This will return a
ModuleReference to the java.base module. We verify whether the ModuleReference was found using the
isPresent() method. Further, we call the descriptor() method on the ModuleReference object in order
to get the module descriptor. The ModuleDescriptor object contains comprehensive information about
a module, such as its name, its main class, its packages, its dependencies, its service dependencies, its
provided services, its version name, and so on. We retrieve this information and print it. Listing 9-6 shows
only the most important parts of the output.

Chapter 9 ■ The New Module API

170

Listing 9-6.  Output After Running the Preceding Code that Prints the Information Regarding Module java.base

Module name is: java.base

Main class is:
Not exists

The module exports the packages with the following name:
jdk.internal.module, javax.net.ssl, java.time.format, java.nio.charset.spi, sun.security.
ssl, sun.security.pkcs, sun.security.internal.interfaces, jdk.internal.util.jar, java.
security.interfaces, sun.util.logging, jdk.internal.perf, java.util.function, sun.net.util,
jdk.internal.misc, javax.security.auth.login, sun.security.x509, sun.security.rsa, jdk.
internal.util.xml, jdk.internal, java.util.jar, java.util.regex, sun.security.action, jdk.
internal.jmod, java.util.stream,
...

Is an automatic module: false

Is an open module: false

All packages names:
jdk.internal.org.objectweb.asm.signature, sun.text.bidi, sun.text.normalizer, sun.
security.action, sun.util.logging, sun.security.internal.interfaces, jdk.internal.jimage.
decompressor, jdk.internal.util.jar, java.net.spi, sun.reflect.generics.factory, sun.util.
resources.cldr, sun.security.tools, com.sun.java.util.jar.pack, java.text.spi, java.nio,
jdk.internal.ref, sun.security.tools.keytool, java.security.spec, sun.security.util, java.
nio.channels.spi, sun.net.www.protocol.ftp, java.util, sun.util.cldr, sun.reflect.generics.
reflectiveObjects, java.util.spi, java.lang.ref,
..............................

The services provided by the module:
Service java.nio.file.spi.FileSystemProvider with providers: jdk.internal.jrtfs.
JrtFileSystemProvider,
The name of the dependencies of the module:

Module name and version: java.base@9

The service dependencies of the module:
java.util.spi.LocaleNameProvider, jdk.internal.logger.DefaultLoggerFinder, java.
lang.System$LoggerFinder, sun.util.resources.LocaleData$SupplementaryResourceBundl
eProvider, java.text.spi.NumberFormatProvider, java.time.chrono.Chronology, java.
util.spi.CalendarNameProvider, java.text.spi.DateFormatSymbolsProvider, java.time.
zone.ZoneRulesProvider, sun.text.spi.JavaTimeDateTimePatternProvider, java.text.spi.
DecimalFormatSymbolsProvider
..........................

The version of the module: 9

Chapter 9 ■ The New Module API

171

■■ Note  The source code for the previous example can be found in the folder /ch09/
moduleDescriptorJavaBase.

Summary
This chapter discussed the new module API introduced in Java 9, which gives us the means to access
modules and the information inside modules.

You learned what kind of classes, interfaces, enums, and exceptions are contained inside the new
module API. We talked about the java.lang.Module class together with its attributes, constructors, and
methods. Next we showed how the java.lang.Class class has been enhanced with three useful methods.
The new ModuleDescriptor class was also covered in detail. We explained its attributes and methods, but
also its nested classes like ModuleDescriptor.Requires, ModuleDescriptor.Exports, ModuleDescriptor.
Opens, ModuleDescriptor.Provides, and ModuleDescriptor.Version. We talked about the new
ModuleReader and ModuleFinder interfaces and showed an example of how we can read the contents of a
module. With the help of the ModuleFinder interface, we searched for all the implementation classes of the
java.base module. Once we found them, we loaded them using the loadClass() method of the ClassLoader
class. Then we displayed the names of the classes loaded together with the names of their packages.

Afterwards, we saw some examples of performing operations on modules, such as getting the module
of a class, accessing the resources of a module, or searching for all the modules in the module path. The
chapter concluded by discussing a Java class that reads all the properties from the module java.base and
prints them at the system console.

Chapter 10 will cover some advanced topics related to Jigsaw, including layers, class loaders,
multi-release JAR files, JMOD files and upgradeable modules. The layers are also part of the Module API.

http://dx.doi.org/10.1007/978-1-4842-2713-8_10

173© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_10

CHAPTER 10

Advanced Topics

Applications with plugin and container architectures need to be able to use two important features: dynamic
configuration and runtime augmentation of platform modules. This means that such applications must be
able to load new additional modules at runtime, bind them into the existing application’s configuration, and
use them without the need to stop the application and compile it again. This type of application also needs
to be able to load and configure other platform modules after a runtime image has been invoked. Jigsaw
introduces such support in form of layers. Layers are one of the main subjects of this chapter.

This chapter presents some advanced topics on Java 9 modularity. They didn’t fit in the other chapters,
so we put them here instead of creating separate chapters for each of them.

This chapter covers class loaders, layers, the JMOD format, multi-release JAR files, and upgradeable
modules. We’ll also touch on some new features that will come in the next JDK releases and a couple of
issues that were fixed.

JMOD Files
According to the JDK 9 documentation, “for the purpose of modularizing the JDK, a new artifact format
called JMOD goes beyond JAR files to accommodate native code, configuration files, and other kinds of data
that do not fit naturally, if at all, into JAR files.”

A JMOD file is a new module artifact that consists of a compiled module definition in the form of a ZIP
file. It enhances a JAR file by also including native code and configuration files. JMOD is a new format used
for packaging the modules. This new format isn’t executable.

A JMOD file is an alternative to the modular JAR file covered in Chapter 4. It’s mostly used when a
module also contains native code. JMOD files are used to package the modules of the JDK, but they can be
used only at compile-time and link-time. They can’t be used at runtime. The JMOD files are also used by
the Jlink tool to create a modular runtime image. The directory consisting of the JMOD files represents the
module path used by the linker.

The JMOD Tool
The JMOD tool can be especially used for the following:

•	 To create a JMOD file for a standard or JDK-specific module

•	 To list the content of an existing JMOD file

The JMOD tool has been extended in order to be able to install a module as a JAR file with a
module-info in the top level directory. In other words, the JMOD tool is to the new JMOD format similar to
what the jar tool is to the JAR format.

Chapter 10 ■ Advanced Topics

174

Using the jmod command we can create a new JMOD archive:

jmod create <options> <jmod-file>

The jmod create command creates a new JMOD archive named <jmod-file>. Table 10-1 lists some of
the most important options of the JMOD tool, as specified in the JDK specification.

Table 10-1.  Summary of the Options Provided by the JMOD Tool

Option Description

--class-path <path> Specifies the application JAR files that contain classes.

--config <path> Defines directories holding user-editable configuration files that
are copied into the JMOD file.

--exclude <pattern-list> The files matching <pattern-list> won’t be copied into the
JMOD file. <pattern-list> is comma-separated and can have
one of the formats: <glob-pattern>, glob:<glob-pattern>, or
regex:<regex-pattern>.

--libs <path> Defines the directories containing native libraries that are copied
into the JMOD file.

--main-class <class-name> Defines the main class.

--module-version <module-version> Defines the module version.

--module-path <path> or -p <path> Specifies the module path where to find the modules with
content that will be copied into the JMOD file.

The jmod list command prints the names of all the entries contained in the JMOD file passed as
parameter:

jmod list <jmod-file>

The jmod describe command prints the details of the module contained in the JMOD file
passed as parameter:

jmod describe <jmod-file>

The next section discusses the basics of the multi-release JAR files.

Multi-release JAR files
Suppose you want to switch to the latest JDK version but have a third-party library that’s incompatible with
the latest version of the JDK. As a consequence, you decide not to switch to the latest JDK version at least
until the third-party library you’re using will be made compatible with the latest version of the JDK. This is
a bad scenario that was solved in Java 9 by the introduction of multi-release JAR files, which allow packaging
code for different versions of the JDK in a single JAR file.

Multi-release JAR files were implemented in JDK 9 in JEP 238. This JEP isn’t part of Jigsaw. We mention
it here because it’s an important feature that helps during migration to Java 9. It doesn’t depend on the Java
Platform Module System at all. We can use multi-release JAR files in a non-modular world, too.

Chapter 10 ■ Advanced Topics

175

Java 9 enhances the JAR file format so that multiple major versions of a class can be stored inside a
single JAR file, in its META-INF directory. The new JAR file format is called a multi-release JAR and can
consist of a single library for different JDK versions. The correct versions of the classes are loaded at runtime
depending on the JDK version used by the user. A multi-release JAR file changes the structure of a JAR file
only to a low degree.

■■ Note  Multi-release JAR files are supported for both normal JARs and modular JARs.

Listing 10-1 shows a multi-release JAR file that contains versioning metadata for JDK 8 and JDK 9.

Listing 10-1.  Multi-release JAR file Having Versioning Metadata for JDK 8 and JDK 9

Root of JAR
 - A1.class
 - B1.class
 - C1.class
 - D1.class
 - E1.class
-META-INF
 - MANIFEST.MF
 - versions
 - 8
 - A1.class
 - B1.class
 - F1.class
 - 9
 - A1.class
 - C1.class
 - D1.class
 - F1.class
 - G1.class

In this example, we have Java .class files in the root directory of the JAR, but also in the 8 and 9
directories. In the META-INF directory, we have the MANIFEST.MF file and a directory called versions,
which contains two directories: a directory called 8 that represents the resources provided for JDK 8 and
a directory called 9 that represents the resources provided for JDK 9. There are Java .class files in the 8
directory and in the 9 directory. The classes inside the 8 directory will be considered when we use JDK 8, and
the classes inside the 9 directory will be considered when we use JDK 9.

The classes in the root directory of the JAR file will be considered in the following situations:

•	 If we’re using a version of JDK different from JDK 8 or JDK 9

•	 If we’re using JDK 8 or JDK 9 and the corresponding classes aren’t present in the
versions/8 and versions/9 directories

We’ll explain this in detail. For the multi-release JAR file just discussed, we first have to know whether
the JDK version we’re using supports multi-release JAR files. If it doesn’t, then everything inside the
versions/8 and versions/9 directories will be ignored, and only the class files from the root directory will be
considered: A1.class, B1.class, C1.class, D1.class, and E1.class.

When we use a JDK version different from JDK 8 or JDK 9, only the class files from the root directory will
be used. In our example, the classes F1 and G1, present only in the versions/9 directory, won’t be used at all.

Chapter 10 ■ Advanced Topics

176

When we use JDK 8, the following classes will be used:

A1.class (from the versions/8 directory)
B1.class (from the versions/8 directory)
C1.class (from the root directory)
D1.class (from the root directory)
E1.class (from the root directory)
F1.class (from the versions/8 directory)

Instead, when we use JDK 9, the following classes will be used:

A1.class (from the versions/9 directory)
B1.class (from the root directory)
C1.class (from the versions/9 directory)
D1.class (from the versions/9 directory)
E1.class (from the root directory)
F1.class (from the versions/9 directory)
G1.class (from the versions/9 directory)

As you can see from this example, the classes inside a specific 8 or 9 directory, if present, override the
classes from the root directory. But this happens only if we’re using JDK 8 or JDK 9, respectively.

A module-info.class file can also be added inside the versions directory of a multi-release JAR file. This
feature is supported by the jar tool. But a module-info.class can’t be placed in the root directory.

■■ Note  Java Compiler, Java Class File Disassembler, and JDeps are able to handle multi-release JAR files.

A multi-release JAR file has an attribute called Multi-Release set to true, declared in its MANIFEST.MF:

Multi-Release: true

This attribute distinguishes a multi-release JAR from a non-multi-release one. If the attribute is set to
false or is missing, we have a normal JAR.

A multi-release JAR file retains the structure of a JAR file. What a multi-release JAR adds is a
directory called versions, under the META-INF directory. This directory can contain subdirectories for
specific major JDK versions: 6, 7, 8, 9, and so on. Inside these subdirectories we can put the .class files
specific to that JDK version.

■■ Note  A multi-release JAR file supports only major versions of the JDK. A minor or a security version can’t
be put in a multi-release JAR file.

What happens if a version of the JDK doesn’t support multi-release JARs? In this case, only the classes
and resources present in the root of the JAR files are visible. Everything inside the versions directory will be
invisible and implicitly not be taken into account.

Chapter 10 ■ Advanced Topics

177

■■ Note  Jlink has been enhanced with support for creating images with modules that are packaged as
multi-release JAR files. Jlink adds the classes for the right version into the Jimage.

Next, we’ll explain how to build a multi-release JAR file.

Build a Multi-release JAR File
A multi-release JAR file is built with the jar tool using its new --release command-line option. The syntax
goes like this:

jar --create --file --release <version_number> <options>

•	 <version_number> represents the major version of the JDK.

•	 <options> represents a set of other options.

Suppose we have a class that’s supported only in JDK 9. We want to build a multi-release JAR
file and put this specific class in the versions/9 directory—everything else should be put in the root
directory. For this, we use the --release option and specify the version, which in our case is 9, and the
location of the directory that contains the class that will be put in the versions/9 directory—in our case,
classesDirectoryJDK9:

jar --create --file myMultiReleaseJar.jar -C classesDirectoryJDK8 --release 9 -C
classesDirectoryJDK9 .

This command creates a multi-release JAR file by doing the following:

•	 Taking all the files from the directory classesDirectoryJDK8 and putting them into
the root directory of the multi-release JAR file.

•	 Taking all the files from the directory classesDirectoryJDK9 and putting them into
the versions/9 directory of the multi-release JAR file.

We now know to create a multi-release JAR file by specifying different sources for specific major version
of the JDK. Next let’s find out how to update a multi-release JAR file.

Update Multi-release JAR Files
It’s possible to update multi-release JAR files using the jar tool by adding different versions of the module
descriptor in the versions directory. Therefore, we use the option --update of the jar tool.

We update the previous multi-release JAR file created earlier and add some classes specific to the
upcoming JDK 10:

jar --update --file myMultiReleaseJAR.jar --release 10 -C classesDirectoryJDK10 .

The multi-release JAR is updated, and the content of the classesDirectoryJDK10 directory are placed
inside a new directory called versions/10. This new directory will be considered for JDK 10.

Chapter 10 ■ Advanced Topics

178

Class Loading Mechanism in JDK 9
This section covers the class loading mechanism in JDK 9. As you know, the role of a class loader is to load
a class. The JCP team didn’t change the class loading process in JDK 9. The Classloader API hasn’t been
modified in JDK 9. The same class loaders from JDK 8 are present in JDK 9: the bootstrap class loader, the
platform class loader, and the application class loader.

The class loading process in JDK 9 is the same as in the previous versions of the JDK: first, the request
to load a type is delegated to the parent class loader. The parent class loader delegates further to its parent
class loader. This process traverses the application class loader and platform class loader and stops at the
bootstrap class loader. If the bootstrap class loader can’t load the type, the class loader that started the
delegation process will load the type.

By examining the structural layers that compose the JDK 9, we can observe that the Java Platform
Module System (JPMS) is located on top of the JVM, under the class loading architecture. Right at the bottom
we have the Java Virtual Machine (JVM). Above that we have the JPMS, and above the JPMS we have the
three types of class loaders mentioned earlier. This architecture is illustrated clearly in Figure 10-1.

The bootstrap class loader is used to define the classes from most of the modules, like java.base, java.
sql, or java.logging. The platform class loader is used to define the classes from only a few modules, like
java.corba or java.transaction. Both bootstrap and platform class loader load types from platform modules,
whereas the application class loader loads types from the module path. The application class loader is used
to define the classes from jdk.compiler, junit, guava, slf4j, and so on. In JDK 9, the application and platform
class loaders aren’t instances of the class java.net.URLClassLoader anymore.

Jigsaw allows loading modules using our own class loaders. This can be done using the method
defineModules() from the Module class, but this feature is pretty advanced, so not many developers will
ever use it.

■■ Note  Every module has a class loader at runtime.

Boostrap loader Plarform loader Application loader

Classloaders

Java Platform Module System

Java Virtual Machine

Figure 10-1.  Overview over the structure of JDK 9

Chapter 10 ■ Advanced Topics

179

Jigsaw also introduced support for class loader names. Class loaders can have optional names. If the
name isn’t specified when a class loader is created, it will have no name. The name of the class loader is
retrieved by the getName() method of the Classloader class. The name of the module’s class loader is
always mentioned together with the module name and version in warning messages or stack traces.

■■ Note  Jigsaw uses the existing class loaders and doesn’t create its own class loaders.

Because a class loader can have a name attribute in JDK 9, a new constructor has been added for the
Classloader class that creates a new class loader of the specified name by using the specified parent class
loader for delegation:

protected ClassLoader(String name, Classloader parent)

Jigsaw also allows you to find a class by name in a specific module with the help of the new findClass()
method, which gets as parameter the name of the module and the binary name of the class:

Class<?> findClass(String moduleName, String name)

This method returns the Class object or null if the class couldn’t be found. If we pass a name for the
module, then the method will always return null. Otherwise, it will call the findClass(name) method by
passing the name of the class. This method isn’t useful in a modular context unless we have our own class
loader implementation that supports the loading from modules. Then we could overwrite this method.

■■ Note  Class loaders can be upgraded to load types in modules.

The Extension class loader was renamed to platform class loader in JDK 9. The name of the built-in
platform class loader is platform. The new static getPlatformClassLoader() method returns a platform class
loader via which all the built-in Java SE and JDK types are visible. This method checks for permissions and
can throw a SecurityException exception.

A class loader can load types from multiple modules if two conditions are simultaneously met:

•	 All types from every module are loaded by just one single class loader.

•	 Modules are independent and don’t conflict with each other.

To assure backwards compatibility, it’s possible to load types from the class path. Every class loader has
a unique unnamed module that’s retrieved by the new method getUnnamedModule() located in the java.
lang.Classloader class. If the class loader loads a type that isn’t defined in a named module, that type is in
the unnamed module. The unnamed module from the application class loader loads types from the class
path when these types are in packages that aren’t defined by any known module.

New Methods in the ClassLoader Class
Here are the methods added in Java 9 inside the ClassLoader class:

•	 Class<?> findClass(String moduleName, String className)

•	 URL findResource(String moduleName, String resourceName)

•	 String getName()

Chapter 10 ■ Advanced Topics

180

•	 ClassLoader getPlatformClassLoader()

•	 Module getUnnamedModule()

Next we’ll look at the key concept of layers, which was introduced in JDK 9.

Layers
Suppose we want to add a couple of new modules at runtime into our application. We don’t know all the
modules that we need straight at compile-time, so we need the possibility of adding new modules later at
runtime. Fortunately, the Java Platform Module System provides a solution for this in the form of a new
concept called layers. Layers group a set of modules and are used to add new modules at runtime into
an application. The JDK 9 API specifies that a layer maps each module in the graph to the unique class
responsible for loading the types defined in that module. Therefore, a layer is used to find a class loader in
order to load classes for a graph of modules.

Not all applications make use of layers. The applications that use layers are those that implement a
container architecture, where modules are dynamically added and linked at runtime. On top of the existing
layer, a container application can create a new layer. It does that by resolving the initial module of the
application against a whole set of observable modules, like non-platform modules from the lower layer,
upgradeable platform modules that can have different versions, different service providers, and so on.
Nevertheless, a container application might require a different version of a module already present in the
runtime environment. This can be implemented in Jigsaw using the powerful features introduced by layers.

■■ Note  Layers allow the use of more than one version of a module.

A layer is built at runtime from a graph of modules. Each layer has the following:

•	 A configuration, represented by an instance of the Configuration class located in
package java.lang.module

•	 A function that maps each module to a class loader, represented by an instance of
the ClassLoader class located in package java.lang

According to the JDK 9 API specification, a configuration “encapsulates the readability graph that is
the output of the resolution. It is the result of resolution or resolution with service binding.” The following
sections talk about configurations.

■■ Note  A module can read modules from its own layer and from any layer situated lower in the layer
hierarchy.

Layers can be built in a hierarchy similar to a stack. They can be created on top of the boot layer, and
other layers can be created on top of the previously created layers, and so on. The Java Virtual Machine has
the boot layer, which is the basic and the first layer used by the JPMS.

■■ Note  Every Java 9 modular application has at least one layer. Each layer, without the empty layer, has one
or more parent layers. Layers don’t have names.

Chapter 10 ■ Advanced Topics

181

The ModuleLayer class from the package java.lang in the module java.base represents an instance of
a layer. A ModuleLayer object is obtained by calling the getLayer() method on a Module. A module layer
contains only named modules. Hence, if we call the getLayer() method on an unnamed module, a null is
returned. Otherwise a ModuleLayer object is returned:

ModuleLayer moduleLayer = module.getLayer();

Next we’ll look at the boot layer, which is the most important layer.

The Boot Layer
The boot layer consists of the bootstrap loader, platform loader, and application loader. The modules in the
boot layer are mapped to the bootstrap, to the platform, and to the application class loaders. The boot layer
maps modules to loaders. For instance, it maps the module java.base to the bootstrap loader.

■■ Note  Most of the applications don’t use any layer except the boot layer.

The JVM creates the boot layer at startup. This is done in a process called resolution. The root modules
of the application are resolved together with their dependencies. The boot layer contains the module graph
after all the modules have been resolved.

In most cases, the boot layer will be enough. It contains by default the module java.base. Modules in the
boot layer are mapped to the bootstrap class loader and other existing class loaders from the JVM.

The boot layer can be retrieved by calling the static method boot() on a ModuleLayer class:

ModuleLayer bootLayer = ModuleLayer.boot();
Set<Module> modulesSet = bootLayer.modules();

The method boot() returns the boot layer, an object of type ModuleLayer. In order to get the set of
modules from the boot layer, we called the method modules() on the resulting bootLayer object.

To get a Module object from the boot layer for our module com.apress.myModule, we can use the
findModule() method of the ModuleLayer class:

Optional<Module> myModule = bootLayer.findModule("com.apress.myModule");

We could further get an InputStream for reading a resource from our module by calling the
getResourceAsStream() method on the Module object:

InputStream inputStream = myModule.getResourceAsStream(resourceName);

The parameter of the method must be a path separated by / (forward slash) that identifies the resource.
Now that we have a grasp of what the boot layer is, let’s move on to the new concept of configuration.

Configuration
According to the JDK 9 API specification, “a configuration encapsulates the readability graph that is
the output of a resolution.” To retrieve a configuration, the class ModuleLayer defines a method called
configuration() that returns the configuration for this layer.

Chapter 10 ■ Advanced Topics

182

In Jigsaw, a configuration is independent and isolated from other configurations. It can also relate
to other dynamically created configurations and not only to the initial configuration. Nevertheless, a
configuration lets you include and to use multiple versions of non-platform modules and upgradeable
platform modules that are different from those already available in the enclosing configuration. This is a very
strong feature that the configurations bring in JDK 9.

The Configuration class is located in the module java.base in package java.lang.module. Its most
important methods are the following, as described in the JDK 9 API specification:

•	 Set<ResolvedModule> modules(): Returns an immutable set of the resolved
modules in this configuration.

•	 Configuration resolve(ModuleFinder before, ModuleFinder after,
Collection<String> roots): Creates a new configuration by resolving a collection
of root modules with this configuration as its parent. The first parameter represents
the main module finder to find modules. If no modules can be found, then the
modules are searched using the module finder passed as the second parameter. The
third parameter represents a collection of module names of the modules to resolve.
The collection can also be empty.

•	 Optional<ResolvedModule> findModule(String name): Finds a resolved module in
this configuration. It gets as parameter the name of the module for which we want to
find its ResolvedModule object.

•	 List<Configuration> parents(): Returns a list of this configuration’s parents.

•	 Configuration resolveAndBind(ModuleFinder finder, Collection<String>
roots, boolean check, PrintStream output): Resolves a collection of root
modules with service binding. It’s used to create the configuration for the boot layer.

Create a Configuration
To create a new configuration, we usually take the configuration of the boot layer as a parent. To get the
configuration of the boot layer, we call the method configuration() on the boot layer:

Configuration configuration = ModuleLayer.boot().configuration()

■■ Note  In the JVM, each layer of modules is created from a configuration.

Next we’ll show how to resolve a module with a configuration.

Resolve a Module with a Configuration
To resolve a module with a configuration, we need to use the resolve() method described earlier. In
the following example, we resolve our module name called com.apress.myModule. For this we use the
configuration of the boot layer as the parent, as illustrated in Listing 10-2.

Chapter 10 ■ Advanced Topics

183

Listing 10-2.  Resolving the Module com.apress.myModule with a Configuration

Path ourDirectory = ...;
ModuleFinder finder = ModuleFinder.of(ourDirectory);
Configuration parentConfiguration = ModuleLayer.boot().configuration();
Configuration configuration = parentConfiguration.resolve(finder, ModuleFinder.of(),
Set.of("com.apress.myModule");

Creating Layers
In this section we’ll see how to create a layer. This is not a difficult process. The new module API provides
some useful methods for creating a layer inside the ModuleLayer class, as specified by the official JDK 9 API
specification:

•	 ModuleLayer defineModules(Configuration cf, Function<String,
Classloader> clf): Creates a new module layer with the current layer as its
parent by defining the modules in the given Configuration to the JVM. The second
parameter represents the function that maps a module name to a class loader.
It returns the newly created ModuleLayer.

•	 ModuleLayer defineModulesWithManyLoaders(Configuration cf, ClassLoader
parentLoader): Creates a new module layer with the current layer as its parent.
Each module is defined to its own Classloader created by this method. The second
parameter represents the parent class loader for each of the class loaders created by
this method.

•	 ModuleLayer defineModulesWithOneLoader(Configuration cf, ClassLoader
parentLoader): Similar to the previous method described above. The only difference is
that this method creates one class loader and defines all modules to that class loader.

As you can see, in order to create a module layer we need to pass a Configuration object and a
ClassLoader object. In the previous section, we learned how to create a Configuration object by resolving a
module com.apress.myModule with the configuration for the boot layer as a parent configuration. Now that
we know how to get the Configuration, we can create a new layer with the modules in our configuration, as
demonstrated in Listing 10-3.

Listing 10-3.  Create a Module Layer

ModuleLayer parentLayer = ModuleLayer.boot();
ClassLoader classLoader = ClassLoader.getSystemClassLoader();
ModuleLayer layer = parent.defineModulesWithOneLoader(configuration, classLoader)

We used the configuration object created earlier and passed it to the defineModuleWithOneLoader()
method. We also passed the system class loader which was retrieved from the method
getSystemClassLoader().

■■ Note  Most times, the parent of an own created layer is the boot layer.

Jigsaw has to enforce constraints on the module graph because of some class loading constraints.
As a result, only module graphs that contain no cycles can be transformed into a layer.

Chapter 10 ■ Advanced Topics

184

Get the Loaded Modules from a Layer
Getting the loaded modules from a layer is very simple. On the ModuleLayer object, the method modules() is
called, which returns a set of the modules loaded in this layer. Listing 10-4 shows how to get all the modules
from the boot layer and print their names.

Listing 10-4.  Print the Names of the Modules in the Boot Layer

ModuleLayer moduleLayer = ModuleLayer.boot();

 moduleLayer.modules().stream().forEach(module -> {
 String moduleName = module.getName();
 System.out.println("Name of the module is: " + moduleName);
 });

Following in an excerpt of the output printed. We won’t show it entirely because it’s too large:

Name of the module is: jdk.javadoc
Name of the module is: jdk.deploy
Name of the module is: javafx.graphics
Name of the module is: java.security.jgss
Name of the module is: jdk.editpad
Name of the module is: java.compiler
Name of the module is: jdk.jdeps
Name of the module is: jdk.packager
Name of the module is: java.management.rmi
Name of the module is: javafx.swing
Name of the module is: jdk.attach
Name of the module is: java.desktop
Name of the module is: jdk.unsupported
Name of the module is: javafx.fxml
...

■■ Note  You can find the source code for this example in the directory /ch10/layers.

The next example shows how to print information about all the layers that exist in the system.

Describe Layers at Runtime
Listing 10-5 shows the current module layer and its parent layers.

Listing 10-5.  Describe the Current Modules Layer and Its Parent Layers

package modulelayer;

import java.lang.ModuleLayer;
import java.util.List;

public class LayerUtil {

Chapter 10 ■ Advanced Topics

185

 public static void describeCurrentAndParentLayers() {

 // prints the layer information for the current layer
 ModuleLayer thisModuleLayer = LayerUtil.class.getModule().getLayer();
 printLayerInformation(thisModuleLayer);

 // gets all the parents of the layer
 List<ModuleLayer> parentModuleLayerList = thisModuleLayer.parents();

 if(parentModuleLayerList.isEmpty()) {
 System.out.println("This layer has no parent layers");
 }
 else {
 for(ModuleLayer moduleLayer : parentModuleLayerList) {
 printLayerInformation(moduleLayer);
 }
 }
 }

 private static void printLayerInformation(ModuleLayer moduleLayer) {
 �System.out.println("The name of the modules in this layer are: " + moduleLayer.

toString());
 �System.out.println("The configuration for this layer: " + moduleLayer.configuration());
 }

 public static void main(String[] args) {
 describeCurrentAndParentLayers();
 }
}

First, we print the information for the current layer. We retrieve it by calling the getLayer() method
on the current module. Afterward, we retrieve the layer’s parents by calling the method parents() on the
current layer. If the resulting list is empty, then we have no parent for our layer. Otherwise, if the resulting list
has only one element and this element is the empty layer, then our layer doesn’t have any parent layers, so
we print a corresponding message. Finally, we iterate over the list of parent layers and print the names of the
modules they contain together with the configuration.

■■ Note T he empty layer doesn’t consist of any modules. The Java Platform Module System can’t load two
modules into the same layer when the two modules have the same package name. This is true even if the
package is private.

We’ve covered the basics of layers. It’s time to move forward and present the concept of upgradeable modules.

Chapter 10 ■ Advanced Topics

186

Upgradeable Modules
A module is upgradeable if it can be upgraded by deploying it on the upgrade module path. The JPMS
performs a check at link-time and runtime to make sure that only the upgradeable modules are allowed to
be upgraded.

From the Java SE modules, the only upgradeable modules are the ones from module java.se.ee. The
upgradeable modules are java.activation, java.compiler, java.corba, java.transaction, java.xml.bind, java.xml.ws,
java.xml.ws.annotation, and jdk.internal.vm.compiler. A couple of standard modules from JDK are upgradeable.

javac and java provide a command-line option called --upgrade-module-path that takes a list of
directories. These directories contain modules that replace the existing modules in the runtime image.
For example, to upgrade JAXB, we can execute the following command:

java --upgrade-module-path myDirectory --add-modules java.xml.bind

Here, myDirectory represents a directory that contains the modules that will replace the existing modules.

■■ Note  Non-upgradeable modules can’t be upgraded even when using the command-line option
--patch-module. Non-upgradeable modules are modules linked into a runtime image.

For upgrading a module in the runtime image, a module can be deployed on the upgrade module path.
An automatic module can also be deployed on the upgrade module path. But an automatic module can’t be
upgraded because an upgradeable module is linked into a runtime image, whereas an automatic module
isn’t linked into a runtime image.

■■ Note  The upgradeable modules replace the old Endorsed Standard Mechanism in JDK 9.

Features Coming in the Next Releases
Some features will be coming in the next releases of JDK. The JCP team announced that the next releases will
resolve two issues that we have now and will also add two new features. The new features that will come in
the next releases are the following:

•	 multi-module JAR files: Now a modular JAR file can contain only a single module.
It’s not allowed to contain more than one module. In practice, we can have large
JAR files that contain different pieces of functionality that don’t pass into a single
module. So it would be better to have multiple modules in a single modular JAR file.

•	 Additional module-layer operations: The ModuleLayer.Controller API will be
enhanced with new methods, like addUses() and addPackage().

The issues that will be solved in the next releases are the following:

•	 Concealed package conflicts: This issue was covered in Chapter 8. The problem is that
two distinct modules can’t share the same name of a package. The proposal made
by the JCP team is to avoid concealed package conflicts by doing a redesign so that
modules that contain conflicting packages will be loaded in their own class loaders.

•	 Cyclic module relationships: This issue was also covered in Chapter 8. The proposal
for the next JDK releases is to allow cyclic relationships among modules at runtime.

http://dx.doi.org/10.1007/978-1-4842-2713-8_8
http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 10 ■ Advanced Topics

187

Summary
We started this chapter by looking at the new JMOD files together with the jmod tool. Then we talked about
multi-release JAR files, which represent one single JAR file. Therefore, they’re only a unit of release and
can be used, for example, for replacing JDK internal APIs. If we’re using a JDK internal API in Java 8,
we can provide a new class with a replacement for it in JDK 9 and place both class files in a multi-release
JAR file. Multi-release JAR files were introduced to be able to use a specific version of the JDK, even if some
third-party libraries haven’t been yet upgraded to the last version. They help third-party libraries to use API
features from newer releases of Java.

Further, we explained the new notion of layer in the context of the Java Platform Module System.
I explained what layers are, why they’re useful, and how we can create our own layers. If an application uses
layers, it will probably use only the boot layer. I covered the class loading mechanism in JDK 9 and explained
how it fits together with the new module system. We learned that there is no relation between class loaders
and modules enforced by Jigsaw.

The chapter concluded by talking about upgradeable modules and about some features that will come
in the next JDK releases.

In Chapter 11, you’ll learn how to unit test modular applications.

http://dx.doi.org/10.1007/978-1-4842-2713-8_11

189© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_11

CHAPTER 11

Testing Modular Applications

By now, you should have a deep overview of Project Jigsaw and should be able to start using use it in your
projects. But there’s one important topic we haven’t mentioned yet: unit testing. This chapter focuses
on unit testing modular applications in Java 9 and the different approaches to it that you can take. In this
chapter, we’ll show you some best practices for performing unit testing in Java 9 in the context of a modular
application.

Suppose we have a module with classes that need to be tested. If we put the unit test classes in another
module, then we need to make the unit tests be able to access types from the module being tested. This puts
the strong encapsulation mechanism introduced in JDK 9 in play. A solution would be to add --add-exports
flags to make the types from the module under test available to the unit tests. But this isn’t sufficient because
it’s also compulsory that the types from the module under test are public. If they’re not, then the export of
packages doesn’t give us the necessary level of accessibility. This is just one of the many challenges that we
have to solve before performing unit testing in Java 9.

Performing unit testing in a modular application is necessary in order to achieve the desired level
of software quality, and it’s even more critical here than when testing non-modular applications. Unit
testing in Java 9 is a little more complicated than unit testing in versions prior to Java 9 because in Java 9 we
have to assure readability between the Junit test classes and the objects under test. There can be different
combinations for locations of the Junit test classes for the classes being tested. They can reside in the same
module, in different modules, on the class path, or partially on the module path and on the class path. The
next section goes into these scenarios in more detail.

Scenarios for Unit Testing in Java 9
As mentioned earlier, we can have different scenarios for unit testing in JDK 9, depending on the location
of the Junit test classes and the objects under test. The following common scenarios may occur during unit
testing in JDK 9:

•	 The Junit test classes and the test objects reside in different modules.

•	 The Junit test classes don’t reside in a module, but the test objects do.

•	 Both Junit test classes and the test objects reside in the same module.

Each of the three scenarios has to be treated differently and requires a different approach to assure
readability between the Junit test cases and the objects under test. The following subsections look at each of
them in detail.

Chapter 11 ■ Testing Modular Applications

190

Scenario 1: Junit Test Classes and Types Under Test Are in Different
Modules
Suppose that the types under test are in module A and the Junit test classes are in module B. This scenario is
one of the simplest. Figure 11-1 illustrates it.

First of all, we need to assure readability between the two modules. Module A should export its
packages. Module B should require module A and also export its packages. In this way, module B can access
the public types from module A. Module B should further require the junit automatic module in its module
declaration because it’s making use of it.

To make this scenario work, be aware of one more important thing. When we run the Junit test cases
from module B, we need to also add all the existing modules (including the automatic modules) using the
java launcher --add-modules flag. In our case, we need to add the module B and the automatic module
hamcrest.core, which is a dependency of Junit. This is basically everything we need to do in order to make
this scenario work. Later in this chapter, we’ll will show an example using this scenario.

Scenario 2: Only the Types Under Test Reside Inside a Module
This second scenario is the most difficult one. In this scenario, we have the types under test in module A, but
the Junit test classes aren’t residing in any module—they reside on the class path. For this, we have to use the
javac -Xmodule and the java launcher --patch-module command-line options. Both options are described
in detail later in this chapter. Figure 11-2 illustrates this scenario.

exports its packages requires A, junit
exports its packages

types to be tested Junit test cases
exports packages

requires

--add-modules B, hamcrest.core

module A module B

module A module B

Figure 11-1.  Junit test classes and classes under test are in different modules

Junit test cases

javac-Xmodule:A
java --patch-module=A.jar exports its packages

class path module A

module A

junit.jar

javac --add-reads A=junit

javac --add-modules junit
java --add-modules
ALL-MODULE-PATH

java --add-reads A=junit

types under test types under test

--add-reads

Figure 11-2.  Types under test are inside a module, and Junit test cases are on the class path

Chapter 11 ■ Testing Modular Applications

191

First, we have to compile the Junit test classes as if it were part of module A (using the javac -Xmodule
option). In this way, we make the Junit test classes part of module A. Second, we have to use the javac
--add-reads command-line option to add the reading edges to Junit. This is mandatory because now
module A has a dependency on Junit. Because module A doesn’t read Junit, we have to use the --add-
reads command-line option to tell it to read Junit. At the same time, we also have to add the junit automatic
module using the javac --add-modules option.

To make this scenario work, when we’re running the Junit test classes, we have to use the java launcher
--patch-module command-line option so that we can patch module A. Therefore, we make the Junit test
class part of module A at runtime using the ALL-MODULE-PATH constant. Don’t worry if it’s not clear yet how this
scenario works. Later in this chapter, you’ll see this scenario at work, and we’ll explain the new command-line
options used.

Scenario 3: Both Junit Test Classes and Test Under Test Reside in the
Same Module
In this scenario, we have implicit readability between the types. The disadvantage in this case is related to
the fact that our module needs all the test dependencies. Introducing dependencies on test libraries for
every module that requires unit testing is definitely not the best solution. If we have ten modules that need to
be tested, then all of them would need to add the test dependency separately.

Now that we know the most common scenarios that can occur when performing unit testing in Java
9, let’s move on to the -Xmodule command-line option of the Java compiler and the --patch-module
command-line option, mentioned earlier in the second scenario. They’re used to patch modules with
classes.

The -Xmodule Option
The Java compiler command-line option -Xmodule is used to compile classes for a module. Figure 11-3
describes its syntax.

The -Xmodule option specifies that we should compile the classes as if they were part of the module
<module_name>. This option is used at compile-time to inject a class into a module. It can’t be used at
runtime. Using the -Xmodule option, we can make classes be part of a specific module. If the module we pass
as an argument doesn’t exist, an error module not found will be thrown:

error: module not found: <module_name>

■■ Note I t’s not possible to list more than one module. You can’t specify multiple module names to the
-Xmodule command-line option.

-Xmodule:<module_name>
Figure 11-3.  Syntax of the javac -Xmodule command-line option

Chapter 11 ■ Testing Modular Applications

192

The --patch-module Option
The JDK 9 specification states: “When testing or debugging it is sometimes useful to replace selected class
files or resources of specific modules with alternate or experimental versions, or to provide entirely new class
files, resources, and even packages. This can be done via the --patch-module option.”

The --patch-module option is used at both compile-time and runtime to replace the class files of
a module with other class-specific class files. It can be used by the Java compiler as well as by the Java
launcher. The role of the --patch-module option is to override classes inside a module. This option replaced
the old -Xbootclasspath/p option, which has been removed in Java 9.

Figure 11-4 shows the syntax of the --patch-module command-line option.

•	 <module_name> represents the module name.

•	 <file> represents the file system path name of a module definition.

•	 <path_separator> represents the host platform’s path-separator character.

The module specified by <module_name> is patched with the class files existing inside the directory
<file>. We can also specify a normal JAR (not a modular one) instead of the directory containing the
class files.

■■ Note  The --patch-module can be used to make the test classes part of the module at runtime. The
JCP team states that it is “intended only for testing and debugging. Its use in production settings is strongly
discouraged.”

The --patch-module command-line option can also be used to patch automatic modules, but it can’t
be used to replace module-info.class files, as the JCP team states in the specification: “The --patch-module
option cannot be used to replace module-info.class files. If a module-info.class file is found in a module
definition on a patch path, then a warning will be issued and the file will be ignored.” The JCP team also
tell us what happens with the packages that aren’t exported: “If a package found in a module definition on
a patch path is not already exported by that module, then it will, still, not be exported. It can be exported
explicitly via either the reflection API or the --add-exports option.”

Patching a Module
The following example shows how to patch a class inside a module. That means we replace a Java class file
inside a module with another one. For doing this, we’ll use the javac command-line option -Xmodule and
the java command-line option --patch-module. We’ll patch an existing module using the --patch-module
option, and you’ll see two ways of doing that. Therefore, we create four folders:

•	 The modules folder

•	 The modulesLibrary folder

•	 The patchModules folder

•	 The patchModulesLibrary folder

--patch-module <module_name>=<file>(<path_sepatator<>file>)*

Figure 11-4.  Syntax of the --patch-module option

Chapter 11 ■ Testing Modular Applications

193

We have a module com.apress.moduleA that contains a POJO class called Employee.java and another
class called EmployeeImpl.java, which creates an object of type Employee and sets some properties on
it. There’s also a module com.apress.moduleB that contains the public static void main(String[] args)
method. This module simply creates an object of type EmployeeImpl and then calls some methods on this
object. Further, we define another Java class called EmployeeImpl.java, having the same package name
as the package name of the former EmployeeImpl.java class. This new class isn’t part of a module. Our
intention is to replace the new class with the older one inside the com.apress.moduleA module using the
command-line options -Xmodule and --patch-module described earlier.

Listing 11-1 shows the classes Employee.java and EmployeeImpl.java of the com.apress.moduleA
module. The class Employee.java is inside the package com.apress.moduleA.entity.

Listing 11-1.  The Classes Employee.java and EmployeeImpl.java from the com.apress.moduleA Module

// Employee.java

package com.apress.moduleA.entity;

public class Employee {

 private String firstName;
 private String lastName;
 private String department;

 public Employee() {
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getDepartment() {
 return department;
 }

 public void setDepartment(String department) {
 this.department = department;
 }

}

Chapter 11 ■ Testing Modular Applications

194

// EmployeeImpl.java

package com.apress.moduleA;

import com.apress.moduleA.entity.Employee;

public class EmployeeImpl {

 public Employee employee;

 public EmployeeImpl() {
 }

 public Employee createNewEmployee() {
 employee = new Employee();
 return employee;
 }

 public Employee setEmployeeInfo() {
 employee = createNewEmployee();
 employee.setFirstName("John");
 employee.setLastName("Anderson");
 employee.setDepartment("IT");
 return employee;
 }

 public void getEmployeeInfo() {
 System.out.println("Employee first name is: " + employee.getFirstName());
 System.out.println("Employee last name is: " + employee.getLastName());
 System.out.println("Employee department is: " + employee.getDepartment());
 }

}

Listing 11-2 shows the module descriptor of module com.apress.moduleA, which exports the package.

Listing 11-2.  The module-info.java File of Module com.apress.moduleA

module com.apress.moduleA {
 exports com.apress.moduleA;
}

Module com.apress.moduleB imports types from module com.apress.moduleA and calls methods on
an EmployeeImpl object, as shown in Listing 11-3.

Listing 11-3.  The MainClass.java File of Module com.apress.moduleB

package com.apress.moduleB;

import com.apress.moduleA.*;

public class MainClass {

Chapter 11 ■ Testing Modular Applications

195

 public static void main(String[] args) {
 EmployeeImpl employeeImpl = new EmployeeImpl();
 employeeImpl.createNewEmployee();
 employeeImpl.setEmployeeInfo();
 employeeImpl.getEmployeeInfo();
 }
}

Listing 11-4 represents the module descriptor of module com.apress.moduleB.

Listing 11-4.  The module-info.java of Module com.apress.moduleB

module com.apress.moduleB {
 requires com.apress.moduleA;
}

In the new directory com.apress.moduleA2, we define another version of the EmployeeImpl.java class,
which isn’t part of any module. Listing 11-5 shows the new class having the same package name as the old
one, com.apress.moduleA.

Listing 11-5.  Class EmployeeImpl

package com.apress.moduleA;

import com.apress.moduleA.entity.Employee;

public class EmployeeImpl {

 public Employee employee;

 public EmployeeImpl() {
 }

 public Employee createNewEmployee() {
 employee = new Employee();
 return employee;
 }

 public Employee setEmployeeInfo() {
 employee = createNewEmployee();
 employee.setFirstName("Andrew");
 employee.setLastName("Lopez");
 employee.setDepartment("Big Data");
 return employee;
 }

 public void getEmployeeInfo() {
 System.out.println("Employee first name is: " + employee.getFirstName());
 System.out.println("Employee last name is: " + employee.getLastName());
 System.out.println("Employee department is: " + employee.getDepartment());
 }
}

Chapter 11 ■ Testing Modular Applications

196

We changed only the first name, last name, and department in this last example. Now that we have
the code, we begin the process of replacing the EmployeeImpl.java from the last listing with the one from
module com.apress.moduleA. First, we compile both existing modules but exclude the directory com.
apress.moduleA2, because it’s not a module. The following command does this, making use of the grep -v
command in order to exclude the directory com.apress.moduleA2 from the compilation:

$ javac -d modules --module-path modulesLibrary --module-source-path src $(find src -name
“*.java” | grep -v com.apress.moduleA2)

■■ Note  The role of grep -v or grep -invert-match is to invert the sense of matching. In our case, it
excludes the files from the com.apress.moduleA2 directory and selects the ones that don’t match.

As a result, both com.apress.moduleA and com.apress.moduleB modules are compiled, and the class
files are now residing in the modules directory. Next, we create modular JAR files for each of the previous
compiled modules. For this, we go inside the modules directory and create two modular JAR files for each
module. As input, we take the class files from the modules directory:

cd modules
$ jar --create --file=../modulesLibrary/com.apress.moduleA.jar -C com.apress.moduleA .
$ jar --create --file=../modulesLibrary/com.apress.moduleB.jar -C com.apress.moduleB .

Both modular JAR files were created in the modulesLibrary directory. Further, we attempt to compile
the patch as a class. We compile the EmployeeImpl.java file from the package com.apress.moduleA located
inside the directory com.apress.moduleA2:

cd ..
$ javac -Xmodule:com.apress.moduleA --module-path modules -d patchModules/com.apress.moduleA
src/com.apress.moduleA2/com/apress/moduleA/EmployeeImpl.java

Here are the command-line options used:

•	 -Xmodule:com.apress.moduleA specifies that the class EmployeeImpl.java should
be compiled as if it’s actually part of the module com.apress.moduleA.

•	 -d patchModules/com.apress.moduleA specifies the output directory where to
compile the class EmployeeImpl.java.

We pass the path to the class that will be compiled, EmployeeImpl.java. As a result, the EmployeeImpl
file from com.apress.moduleA2 directory has been compiled into the patchModules directory. Further, we
create a JAR file for the class that we previously patched. In this case, we create a normal JAR, not a modular
one. Therefore, we go inside the patchModules directory and type the following:

jar --create -file=../patchModulesLibrary/com.apress.moduleA.jar -C com.apress.moduleA .

As a result, inside the patchModulesLibrary directory a new JAR called com.apress.moduleA.jar is
created.

We can run this example in two different ways: by patching module com.apress.moduleA with classes
or by patching it with a JAR.

Chapter 11 ■ Testing Modular Applications

197

First, let’s run it by patching it with classes. In this example, we make use of the --patch-module
command-line option to express that we want to patch the module com.apress.moduleA with the class existing
inside the patchModules directory. To recap, inside the patchModules directory is our EmployeeImpl.class,
which corresponds to the new EmployeeImpl class that we want to be used to replace the old one:

cd ..
$ java --patch-module com.apress.moduleA=patchModules/com.apress.moduleA --module-path
modulesLibrary -m com.apress.moduleB/com.apress.moduleB.MainClass

We also passed the main class to the -m flag. The following output is printed at the console:

Employee first name is: Andrew
Employee last name is: Lopez
Employee department is: Big Data

As we can see in this output, the new EmployeeImpl class replaced the existing one. In the MainClass
we created an object of type EmployeeImpl that represents the new EmployeeImpl class.

In the previous example, we specified the location of the .class files to the --patch-module option.
As an alternative, we can also specify the location of the JAR file we previously created inside the
patchModulesLibrary directory. Therefore, we run the java launcher and patch the module com.apress.
moduleA with the JAR com.apress.moduleA.jar:

$ java --patch-module com.apress.moduleA=patchModulesLibrary/com.apress.moduleA.jar
--module-path modulesLibrary -m com.apress.moduleB/com.apress.moduleB.MainClass

The result is the same as the one we previously had. In this example, we revealed how we can patch a
module using the --patch-module command-line option first.

Now that we know how to patch a module, let’s see how we can apply this knowledge for running Junit
test cases in a modular context.

■■ Note  You can find the source code for this example in the directory /ch11/patchingAModule.

Earlier in this chapter, you saw three scenarios for unit testing in Java 9. Let’s look at practical code
examples for scenario 1 (Junit test classes and types under test reside in separate modules) and scenario 2
(types under test reside in a module and the Junit test classes are on the class path).

Running a Junit Test Where the Junit Test Class and the Types Under
Test Reside in Separate Modules
The following shows a very simple example of running a Junit test in Java 9. In our case, the Junit test and
the classes under test reside in different modules. This scenario corresponds to scenario 1 described earlier
in this chapter. We modify the previous example (the example that patched a module) in order to make it
suitable for testing with Junit.

We add the following method in the Employee.java class of module com.apress.moduleA:

public String getEmployeeFullData() {
 return getFirstName() + ", " + getLastName() + ", " + getDepartment();
 }

Chapter 11 ■ Testing Modular Applications

198

We also need to add a Junit test case. It will reside in the module com.apress.moduleB and will simply
call the method getEmployeeFullData() from the module com.apress.moduleA.

Listing 11-6 shows the class EmployeeTest.

Listing 11-6.  The EmployeeTest Class

package com.apress.moduleB;

import org.junit.Assert;
import org.junit.Test;
import org.junit.Before;

import com.apress.moduleA.entity.Employee;

public class EmployeeTest {

 Employee employee;

 @Before
 public void setEmployeeData() {
 employee = new Employee();
 employee.setFirstName("Alexandru");
 employee.setLastName("Jecan");
 employee.setDepartment("IT");
 }

 @Test
 public void employeeDataTest() {
 Assert.assertEquals("Alexandru, Jecan, IT", employee.getEmployeeFullData());
 }
}

This class imports the Employee class from module com.apress.moduleA, instantiates an object
of type Employee, and calls a method on it. Listing 11-7 shows the module descriptor of module com.
apress.moduleB.

Listing 11-7.  The module-info.java of Module com.apress.moduleB

module com.apress.moduleB {
 requires junit;
 requires com.apress.moduleA;
 exports com.apress.moduleB;
}

Module com.apress.moduleB requires module com.apress.moduleA, because it uses types from it.
It also requires the module junit, because we’re using the Junit test framework. In this example, junit is an
automatic module.

We define a folder called automaticModules where we put the two necessary JARs needed to run a Junit
test: Junit and Hamcrest-core.

Chapter 11 ■ Testing Modular Applications

199

■■ Note  The Junit and Hamcrest-core JAR files can be downloaded from the Maven repository at
https://mvnrepository.com/. You can download them using your web browser by clicking the Download
(JAR) link. You don’t need to use Maven for this.

Listing 11-8 shows the content of the automaticModules folder.

Listing 11-8.  The automaticModules folder

hamcrest-core-1.3jar
junit-4.12.jar

We compile both modules com.apress.moduleA and com.apress.moduleB:

javac -d modules --module-path "automaticModules;modulesLibrary" --module-source-path src
$(find src -name "*.java")

The automaticModules folder, which contains both JAR files described earlier, is passed to the
--module-path command-line option. In this way, the JAR files become automatic modules. Next, we switch
to the modules folder and create two JARs for both modules com.apress.moduleA and com.apress.moduleB:

cd modules
jar --create --file=../modulesLibrary/com.apress.moduleA.jar -C com.apress.moduleA .
jar --create --file=../modulesLibrary/com.apress.moduleB.jar -C com.apress.moduleB .

We can now run our unit test. For this, we have to pass all the modules that we have on the module
path, including the automatic modules. We can use the constant ALL-MODULE-PATH. As specified in the JDK
documentation, this variable stands for all the modules on the module path. It’s much easier to specify this
constant instead of specifying each module separately:

cd ..
java --module-path "automaticModules;modulesLibrary" --add-modules ALL-MODULE-PATH -m
junit/org.junit.runner.JUnitCore com.apress.moduleB.EmployeeTest

The --module-path command-line option points to the automaticModules folder, which contains the
Hamcrest and Junit JAR files, and to the modulesLibrary folder, which contains the com.apress.moduleA.
jar and the com.apress.moduleB.jar files. The -m option gets the parameter junit/org.junit.runner.
JunitCore com.apress.moduleB.EmployeeTest. In this way, we state that we want to use JunitCore from
the module junit to run the tests from the class EmployeeTest, which is located inside the package com.
apress.moduleB.

Instead of the constant ALL-MODULE-PATH, it would have also been possible to list the modules we need
using comma. In this case, we would have had this:

--add-modules com.apress.moduleB,hamcrest.core

The result of running this test is OK, which means the test was successful and we’ve successfully
managed to run the test case by accessing the other module and by reading the junit-4.12.jar and the
hamcrest-core-1.3.jar files as automatic modules.

https://mvnrepository.com/

Chapter 11 ■ Testing Modular Applications

200

■■ Note  You can find the source code for this example in the directory /ch11/junitSeparateModules.

Running a Junit Test Where the Junit Test Class Doesn’t Reside Inside
a Module
So far, so good. In the previous example, our Junit test was in a module, and the test object was in another
module. We managed to connect them and make them work. But what happens when the Junit test isn’t part
of a module and instead resides on the class path? Things get a little more complicated in this case, which
corresponds to scenario 2 from the beginning of the chapter.

In the next example, we have our EmployeeTest class, but this isn’t part of a module anymore.
We also change the package name of the EmployeeTest class. Its new name is com.apress.moduleA. We do
this because during patching, the package name has to be the same as the one from module com.apress.
moduleA.

In this example, we don’t have a module com.apress.moduleB anymore, so we delete the module-info.
java file from it. Listing 11-9 shows the module descriptor of module com.apress.moduleA.

Listing 11-9.  The module-info.java File of Module com.apress.moduleA

module com.apress.moduleA {
 exports com.apress.moduleA.entity;
 exports com.apress.moduleA;
}

We start by compiling the module com.apress.moduleA, and afterwards we create a modular JAR out
of it:

javac -d modules --module-path "automaticModules;modulesLibrary" --module-source-path src
$(find src -name "*.java" | grep -v com.apress.moduleB)
cd modules
jar --create --file=../modulesLibrary/com.apress.moduleA.jar -C com.apress.moduleA .

Next, we compile the EmployeeTest.java file

cd ..
javac -d patchModules/com.apress.moduleA -Xmodule:com.apress.moduleA --add-reads com.apress.
moduleA=junit --add-modules junit --module-path "modulesLibrary;automaticModules" src/com.
apress.moduleB/com/apress/moduleA/EmployeeTest.java

During compilation, we used the option -Xmodule:com.apress.moduleA in order to compile the
Java class EmployeeTest as if it were part of module com.apress.moduleA. The command-line option
--add-reads com.apress.moduleA=junit is mandatory because module com.apress.moduleA uses Junit,
so as a result a read dependency to Junit is required by the module com.apress.moduleA. The option
--add-modules junit is also mandatory. We’re making use of Junit and therefore we add the automatic
module junit, which is automatically created after placing the junit.jar on the module path.

After compiling the statement just mentioned, the patchModules folder will contain the EmployeeTest.
class file. Further, we create a JAR containing this class file:

cd patchModules
jar --create --file=../patchModulesLibrary/com.apress.moduleA.jar -C com.apress.moduleA .

Chapter 11 ■ Testing Modular Applications

201

We run the Junit test by patching the module com.apress.moduleA:

cd ..
java --patch-module com.apress.moduleA=patchModules/com.apress.moduleA --module-path
"automaticModules;modulesLibrary" --add-reads com.apress.moduleA=junit --add-modules
ALL-MODULE-PATH -m junit/org.junit.runner.JUnitCore com.apress.moduleA.EmployeeTest

Here we patched the module using the EmployeeTest.class file located in the patchModules folder.
We also added the reads dependency on Junit and added all the modules from the module path using the
constant ALL-MODULE-PATH, which of course include the automatic modules. In this way, we were able to
successfully run a Junit test located outside of a module that uses test objects from a module.

We could also use the JAR file com.apress.moduleA.jar for patching the module com.apress.moduleA
(instead of the class files as in the previous example). This java command gives the same result as the
previous example:

$ java --patch-module com.apress.moduleA=patchModulesLibrary/com.apress.moduleA.jar
--module-path "automaticModules;modulesLibrary" --add-reads com.apress.moduleA=junit --add-
modules ALL-MODULE-PATH -m junit/org.junit.runner.JUnitCore com.apress.moduleA.EmployeeTest

■■ Note  You can find the source code for this example in the directory /ch11/junitTestNotInModule.

Testing with Maven
Maven and other build automation tools make our lives much easier because we don’t have to write so many
command-line flags. We don’t have to write -Xmodule and --patch-module when running tests using Maven
because Maven does this for us in the background.

■■ Note  The Maven Compiler plugin starting from version 3.6.0 has Jigsaw support.

It’s much easier to compile our application and run our tests with Maven than it is by writing our
entire commands with flags on the command-line. The Jigsaw support built into Maven helps us reduce the
amount of work considerably.

We take our last example (from scenario 2), which has the Junit test class outside the module. We have
to modify the structure of our project a little in order to make it work with Maven. Therefore, the module
com.apress.moduleA has to be located under the src/main/java directory. Also, the EmployeeTest.java will
be located under the src/test directory.

A pom.xml file is the essential unit of work in Maven. It contains information about the project and the
configuration stuff used to build the project. Listing 11-10 shows the pom.xml file that we add in the root of
our project.

Chapter 11 ■ Testing Modular Applications

202

Listing 11-10.  The pom.xml file

<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.
org/POM/4.0.0"
 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress.junit</groupId>
 <artifactId>junit-testing</artifactId>
 <version>0.0.1</version>

 <properties>
 <maven.compiler.source>9</maven.compiler.source>
 <maven.compiler.target>9</maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 �<outputDirectory>${project.build.directory}/lib</outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Chapter 11 ■ Testing Modular Applications

203

Using the <maven.compiler.source> and <maven.compiler.target> tags, we set the source and target
to 9 because we want to use JDK 9 for compiling our project. We use the Maven Compiler plugin version
3.6.1 which has Jigsaw support. We also use the Maven Dependency plugin to copy the dependencies inside
the target/lib directory. We can now run mvn clean package to build the project. By building the project,
our tests are also executed. We get a BUILD SUCCESS message, so the tests were successful.

In the newly created target directory, we have a classes folder that contains our class files (including the
module-info.class file) that were compiled using the Maven Compiler plugin. Inside the lib folder we can
find the test dependencies hamcrest-core-1.3.jar and junit-4.12.jar.

Using Maven, we didn’t have to use the -Xmodule flag or the --add-modules flag because everything was
done in the background by the Maven Compiler plugin.

■■ Note  You can find the source code for this example in the directory /ch11/junitTestNotInModuleMaven.

Summary
This chapter discussed the most important aspects of unit testing modular applications in Java 9. We learned
about the -Xmodule Java compiler command-line option used to compile classes for a module. We also
learned about the --patch-module command-line option used to override classes inside a module. Using
these handy flags, we showed how to test an application where the types under test reside inside a module,
but the Junit test classes don’t. We also looked at an example where the types under test and the Junit test
classes reside in different modules. At the end of the chapter, we demonstrated how to use Maven with its
Maven Compiler plugin to compile and run unit tests in JDK 9.

Chapter 12 covers the integration of Jigsaw with integrated development environments (IDEs) like
Intellij IDEA and Eclipse. It also talks about how Jigsaw works together with build tools like Maven.

http://dx.doi.org/10.1007/978-1-4842-2713-8_12

205© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8_12

CHAPTER 12

Integration with Tools

In order for Java 9 to be adopted easily and as quickly as possible by the developer community, it’s very
important for the integrated development environments (IDEs) and build tools to offer extensive support for
Java 9 as much as possible—so important that we dedicate this entire chapter to this topic.

This last chapter shows how JDK 9 in general and the Java Platform Module System in particular
integrates with the following:

•	 IDEs like Intellij IDE, Eclipse, and NetBeans

•	 Build tools like Apache Maven

We’ll discover what kinds of support these tools offer for Jigsaw.

Integration with IDEs
Jigsaw is already integrated in IDEs like Intellij IDEA, Eclipse, and Netbeans. The next three subsections
cover what kind of support these IDEs offer to make the work with Jigsaw easier for developers. We’ll start
with Intellij IDEA.

■■ Note  Intellij IDEA, Eclipse, and NetBeans are among the most popular IDEs for Java programming
according to an article published on July 2017, at www.keycdn.com/blog/best-ide/. So we decided to focus
on these three IDEs in this chapter instead of other IDEs that don’t especially focus on the Java programming
language.

Integration with Intellij IDEA
Intellij IDEA, developed by JetBrains, is a Java IDE that has both a community edition and a commercial
edition. It offers support for Project Jigsaw starting from version 2017.1, released in March 2017. Among its
many features, IDEA supports code completion inside the module-info.java module descriptor file.

http://www.keycdn.com/blog/best-ide/

Chapter 12 ■ Integration with Tools

206

Figure 12-1 shows how we can create a module-info.java file in Intellij IDEA by selecting
New ➤ module-info.java.

IDEA creates an empty module-info.java file that contains only the module keyword and a name for
the module.

If we add a new import into a java file, Intellij IDEA can automatically add the necessary requires
clause inside the module-info.java. For example, if we import the java.sql.DriverManager class in our
code, Intellij IDEA can find out the name of the module where this class resides. As a result, it can indicate to
us to add the requires java.sql clause inside the module descriptor, as illustrated in Figure 12-2.

Figure 12-1.  Add a module-info.java in Intellij IDEA

Figure 12-2.  Autocomplete function for adding a requires statement inside the module-info.java

Chapter 12 ■ Integration with Tools

207

Intellij IDEA also provides code autocomplete functionality inside the module-info.java file. If we
start to type the name of a module, IDEA will be compute and show the available suggestions, as shown in
Figure 12-3.

Intellij IDEA can also provide autocomplete functionality for the packages we want to export. Figure 12-4
shows an example of providing the autocomplete feature for the exports clause. When we start to type the
name of the package we want to export, Intellij IDEA can indicate likely suggestions so we don’t have to type
the entire name.

Among other features related to Jigsaw that Intellij IDEA offers, we want to mention these:

•	 Visualizing module diagrams: Module diagrams allow us to visualize the
dependencies between our modules. These can be visualized by selecting
Diagrams ➤ Show Diagram ➤ Java Modules Diagram.

•	 Visualizing module usages: Shows where a module is used.

Figure 12-3.  Autocomplete for the module names

Figure 12-4.  Autocomplete function for the names of the packages inside the module-info.java file

Chapter 12 ■ Integration with Tools

208

Intellij IDEA provides many other features not covered in this chapter. Covering all the features is beyond
the scope of this book. For more on Jigsaw support in Intellij IDEA, check out the documentation on the official
JetBrains blog, at https://blog.jetbrains.com/idea/?s=java+9. Search for the keywords java 9 or module.

The next section explores another popular IDE: Eclipse.

Integration with Eclipse
Eclipse is a free IDE. As of JDK 9 build 178 (July 2017), Eclipse offers a useful tool called Java 9 Support for
Oxygen that works only with Eclipse Oxygen (4.7).

However, it’s possible to start every version of Eclipse with JDK 9, and there are two possibilities for
doing that. The first is to have JDK 9 on the system path, and the second is to add the path to JDK 9 in the
eclipse.ini file, as in the following example:

--launcher.appendVmargs
-vm
C:\Program Files\Java\jdk-9\bin\javaw.exe

Eclipse can be started using JDK if you’re using a version greater or equal to Eclipse 4.7. If you’re using
a version prior to Eclipse 4.7, you have to add the flag --add-modules=ALL-SYSTEM inside the eclipse.ini file.
This flag has been added in eclipse.ini in Eclipse 4.7, so you don’t have to add it anymore if you’re using
Eclipse 4.7 or higher. The ALL-SYSTEM flag is used because not all the types that Eclipse uses reside inside the
java.base module.

As for the Java 9 Support for Oxygen tool, the Eclipse documentation states: “Eclipse Java 9 Support
contains the following: ability to add JRE and JDK 9 as installed JRE, support for JavaSE-9 execution
environment, ability to create Java and Plug-in projects that use a JRE or JDK 9, ability to compile modules
that are part of a Java project.”

The support of Java 9 for Eclipse is still work in progress as of August 2017. For more information on
Jigsaw support in Eclipse, check the documentation on the official Eclipse Wiki at https://wiki.eclipse.
org/Java_9_Readiness.

Integration with NetBeans
Netbeans is a cross-platform IDE developed by Oracle. It offers support for JDK 9 starting from Netbeans
version 9. As of August 2017, NetBeans lets us create only one single module inside a NetBeans project—we
can’t create more than one module into a single NetBeans project. If we have more than one Jigsaw module,
we have to create a separate NetBeans project for each module.

NetBeans 9 is still under development as of August 2017. You can download it from http://bits.
netbeans.org/download/trunk/nightly/latest/.

If we have only JDK 9 installed on our system, then it’s fine for NetBeans 9, but if we have JDK 9 and
another JDK version <9 installed on our system, we have to explicitly specify during the installation of
NetBeans that we want to use JDK 9.

According to the official NetBeans website, here are the most important areas where NetBeans JDK 9
offers support:

•	 Maven projects

•	 module-info.java support

•	 Compilation

•	 Run and debug

•	 Module dependency graph

https://blog.jetbrains.com/idea/?s=java+9
https://wiki.eclipse.org/Java_9_Readiness
https://wiki.eclipse.org/Java_9_Readiness
http://bits.netbeans.org/download/trunk/nightly/latest/
http://bits.netbeans.org/download/trunk/nightly/latest/

Chapter 12 ■ Integration with Tools

209

■■ Note  For more information on JDK 9 integration with NetBeans, visit http://wiki.netbeans.org/
JDK9Support.

You just got an overview of the support that three of the most popular Java-related IDEs give for Project
Jigsaw. The next section talks about Jigsaw integration with build tools like Apache Maven.

Integration with Build Tools
Apache Maven has provided very good integration for Jigsaw since the first half of 2016. It started integrating
Jigsaw very early and collected valuable feedback from the developer community. The Maven team also
developed a great Apache Maven JDeps plugin for running JDeps from Maven.

Integration with Apache Maven
One of the primary goals of Maven was to upgrade only its plugins in order to offer support for Java 9. No
changes were necessary inside the Maven Core for making Maven run on Java 9. Another primary goal was
to offer support for Java 9 starting with Maven 3.0.

In order to use Maven with Java 9, two conditions have to be met simultaneously:

•	 The JAVA_HOME variable for Maven has to be set to point to a JDK 9 installation.

•	 The source and target of the Maven Compiler plugin should be greater or
equal than 6.

The Maven Compiler plugin defines a parameter for source and a parameter for target that
correspond to the version of the JDK. The minimum supported version for the source and target for JDK
9 is 6. The version of JDK used to run Maven doesn’t necessarily have to be the same as the version of JDK
used to run the Maven Compiler plugin.

Maven needed adjustments for some of the JEPs implemented in Java 9. Besides the JEPs related to
Jigsaw, Maven also needed adjustments in order to fit the following JEPs: JEP 223 – New Version-String
scheme, JEP 226 – UTF-8 Property Files, JEP 238 – Multi-Release JAR files, JEP 247 – Compile for Older
Platform Versions, and JEP 285 – Modular Java Application Packaging.

Even if it’s not part of Jigsaw, we should say something about the JEP 223 – New Version-String scheme
because it has huge impact on Maven. Maven relies heavily on the system properties. Since the version string
has changed in Java 9, Maven throws an ArrayIndexOutOfBoundsException as it internally tries to compute
the version. Fortunately, the issue has been fixed starting with the following versions of the following
plugins:

•	 maven-archiver-3.0.1

•	 maven-jar-plugin-3.0.0

•	 maven-war-plugin-3.0.0

•	 maven-ear-plugin-xxx

•	 maven-javadoc-plugin-2.10.4

If you’re using these plugins in Java 9, make sure to upgrade them to at least one of these versions.

http://wiki.netbeans.org/JDK9Support
http://wiki.netbeans.org/JDK9Support

Chapter 12 ■ Integration with Tools

210

Table 12-1 shows the Maven plugins affected by the introduction of Java 9.
Remember the JDeps tool described in Chapter 8? Maven integrates this tool into a new plugin, the

Apache Maven JDeps plugin.

Apache Maven JDeps Plugin
This plugin makes use of the JDeps tool to analyze internal API calls inside our classes. It can perform
analysis when building a project.

■■ Note  The first version of the Maven JDeps Plugin is 3.0. This version has been chosen deliberately by
Maven to reveal that Maven 3.0 or greater should be used.

The plugin consists of two goals:

•	 A goal called jdeps:jdkinternals that verifies whether the main classes depend on
internal JDK classes

•	 A goal called jdeps:test-jdkinternals that verifies whether the test classes depend
on internal JDK classes

Table 12-2 shows some of the most important options that can be used inside the <configuration> tag
of the Maven JDeps plugin, as recorded in the Oracle documentation for Java SE.

Table 12-1.  Maven Plugins Affected by Java 9

Plugin Name Minimum Compatible Version Affected Goal and Status

Maven Compiler plugin 3.6.1 compile => new feature
testCompile => new feature

Maven Javadoc plugin 2.10.4 jar => failure
javadoc => warning
aggregate => failure

Maven Plugin plugin 3.5 descriptor

Maven War plugin war => failure

Plexus :: Component Metadata 1.7 generate-metadata => new feature

http://dx.doi.org/10.1007/978-1-4842-2713-8_8

Chapter 12 ■ Integration with Tools

211

Table 12-2.  Options for the Maven JDeps Plugin

Plugin Name Description Example

failOnWarning Specifies whether the build continues
if there are JDeps specific warnings.
Default is true

<failOnWarning>
 false
</failOnWarning>

dependenciesToAnalyze
Includes

Specifies additional dependencies to
be analyzed. The format is
<include>
 groupId:artifactId
</include>.
Patterns are allowed.

<dependenciesToAnalyzeIncludes>
 <include>*:*</include>
 <include>
 com.apress.*:*
 </include>
 <include>
 com.apress.book:*
 </include>
 <include>
 com.apress.book:utils
 </include>
</dependenciesToAnalyzeIncludes>

dependenciesToAnalyze
Excludes

Specifies dependencies that shouldn’t
be analyzed. The format is
<exclude>
 groupId:artifactId
</exclude>.
Patterns are allowed.

<dependenciesToAnalyzeExcludes>
 <exclude>
 com.apress.book:*
 </exclude>
</dependenciesToAnalyzeExcludes>

jdeps.include Restricts analysis to classes that are
matching the pattern. It filters the list
of classes to be analyzed.

jdeps.profile Shows profile or the file containing a
package.

jdeps.recursive Traverses all dependencies recursively.

jdeps.module Shows the module containing the
package.

Running with the option -R results in warnings being displayed if there are transitive dependencies that
are making use of JDK internal APIs.

■■ Note  By setting the <failOnWarning> option to true, the build will immediately fail if there are any warnings.

If we have an application that uses third-party libraries, it would make sense first to find the JDK
internal APIs inside our application code using the Maven JDeps plugin with option <failOnWarning> set to
true so that the build fails if any JDK internal APIs are found. In the next step we could run the Maven JDeps
plugin only on our third-party libraries, but this time setting <failOnWarning> to false so that our build
doesn’t fail if the third-party libraries are using JDK internal APIs. This is reasonable because we can’t dig
inside the third-party libraries to fix them, but we can do this inside our own application code.

Chapter 12 ■ Integration with Tools

212

Listing 12-1 shows an example of using the Maven JDeps plugin to implement this specific use case.

Listing 12-1.  Example Using the Maven JDeps Plugin

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jdeps-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <id>testOnClasses</id>
 <goals>
 <goal>jdkinternals</goal>
 <goal>test-jdkinternals</goal>
 </goals>
 </execution>
 <execution>
 <id>testOnDependencies</id>
 <goals>
 <goal>jdkinternals</goal>
 <goal>test-jdkinternals</goal>
 </goals>
 <configuration>
 <failOnWarning>false</failOnWarning>
 <recursive>true</recursive>
 </configuration>
 </execution>
 </executions>
</plugin>

We search for JDK internal APIs inside our application code in the execution block which we named
testOnClasses. We specified both goals, jdkinternals and test-jdkinternals, so that both main and
test classes are verified. We didn’t specify the <failOnWarning> attribute here, so it will default to true.
Afterward, we specify another execution block to search our third-party libraries that are attached to our
application. For this, we specify the <recursive> tag as true. failOnWarning is set to false so the build
doesn’t fail in case we find a JDK internal API.

The next section explores the support that the Maven Compiler plugin offers for Jigsaw.

Apache Maven Compiler Plugin
The Apache Maven Compiler plugin offers support for the new Java Platform Module System starting with
version 3.6.0, released in October 2016.

The version of the Apache Maven Compiler plugin can be specified directly in the plugin’s
configuration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.0</version>
</plugin>

Chapter 12 ■ Integration with Tools

213

Version 3.6.0 of the Apache Maven Compiler plugin added support for the module path. As we already
know, the Maven Compiler plugin has two goals: compile and test-compile. During the compile phase,
when a module-info.java file is found, the plugin will automatically switch to the module path. During the
test-compile phase, the plugin will switch to the module path for the main sources and to the class path for
the test sources.

■■ Note T he Maven team also added support for specifying flags like --add-modules or --add-exports
directly inside the pom.xml configuration.

For instance, if we want to use the --add-modules flag to add the module java.xml.bind using the Maven
Compiler plugin, we could define this inside the configuration of the Maven Compiler plugin:

<compilerArgs>
 <arg>--add-modules</arg>
 <arg>java.xml.bind</arg>
</compilerArgs>

We could also use Maven to make the sun.net package from module java.base available to our module
com.apress.myModule:

<compilerArgs>
 <arg>--add-exports</arg>
 <arg>java.base/sun.net=com.apress.myModule</arg>
</compilerArgs>

Listing 12-2 shows the entire configuration of the plugin for the two use cases mentioned earlier:

Listing 12-2.  Adding Compiler Arguments to the Maven Compiler Plugin

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.0</version>
 <executions>
 <execution>
 <id>example</id>
 <goals>
 <goal>compile</goal>
 </goals>
 <configuration>
 <compilerArgs>
 <arg>--add-exports</arg>
 <arg>java.base/sun.net=com.apress.myModule</arg>

 <arg>--add-modules</arg>
 <arg>java.xml.bind</arg>
 </compilerArgs>
 </configuration>
 </execution>
 </executions>
</plugin>

Chapter 12 ■ Integration with Tools

214

In this example, we defined the version of the maven-compiler-plugin to be 3.6.0. Inside the
<compilerArgs> XML tag, we specified arguments that we want to be passed to the compiler. Each argument
is specified inside the <arg> XML tag.

Backward Compatibility
During migration to Java 9, projects written in a Java version <8 will get a module-info.java file. With Maven,
it’s possible to compile these projects in Java 9 (taking the module-info.java file into account) or compile
them in versions prior to Java 9.

For this, two compilations have to be made:

•	 The first compilation will be executed by the Maven Compiler plugin using the
configuration <release>9</release>.

•	 The second compilation will be executed by the Maven Compiler plugin using a
configuration lower than 9, for instance: <source>1.8</source> and
<target>8</target>.

This can be easily executed by the Maven Compiler in two different execution blocks. If we want to
be compatible with a version prior to JDK 6, we have to use different JDKs. That’s because JDK 9 doesn’t
support compilation for versions prior to JDK 6.

The Maven Compiler plugin also offers support for JEP 247 – Compile for Older Platform Versions. It
allows us to add a module-info.java file for Java 9 projects and also be compatible with earlier versions of
Java. For this, we need to call javac twice. First we need to call javac with release=9 in order to compile the
module-info.java file with JDK 9. Then we need to set the source and target to a lower version of Java in
order to compile the rest of the source code with a lower Java version. If we’re using at least Maven version
3.3.1, we can use toolchains for achieving this use case.

For instance, if our JAVA_HOME environment variable is lower than or equal to JDK 9, we can set the
version of the jdkToolchain to 9 in order to compile everything, including the module-info.java file:

<configuration>
 <jdkToolchain>
 <version>9</version>
 </jdkToolchain>
 <release>9</release>
</configuration>

Subsequently, we recompile the files and exclude the module-info.java file:

<configuration>
 <excludes>
 <exclude>module-info.java</exclude>
 </excludes>
</configuration>

On the other side, if our JAVA_HOME environment variable is equal to JDK 9, then we could set the
version of the <jdkToolchain> to [1.5,9) and compile the files with <source> and <target> = 1.5:

<jdkToolchain>
 <version>[1.5,9)</version>
</jdkToolchain>
 <source>1.5</source>
 <target>1.5</target>

Chapter 12 ■ Integration with Tools

215

■■ Note  As a rule, we should compile with the matching JDK version.

To configure the Maven Toolchain plugin, we could edit the toolchains.xml file in the .m2 folder or, if
we’re using a version of Maven greater of equal to 3.3.1, we could directly edit the toolchains.xml file inside
the Maven conf directory.

Maven also defines a new command-line option --release, which lets us pass the version of the JDK
release that we want to compile with. For example, the option --release 8 is equivalent to -source 8 -target
8 -bootclasspath The Maven Compiler plugin starting with version 3.6.0 specifies the release version
like this:

<release>release_version</release>

The <release> tag configuration has greater precedence over the <source> and <target> tags. As a
result, if we specify the <release> tag as well as the <source> and <target> tags, then the <release> tag will
be taken into consideration.

■■ Note  Version 3.6.1 of the Apache Maven Compiler plugin was introduced in January 2017.

We would also like to recommend an interesting article written by Robert Scholte, the chairman of the
Maven project, which explains why Maven is unable to automatically generate the module-info.java file.
You can read it at www.sitepoint.com/maven-cannot-generate-module-declaration/.

Summary
In this chapter we saw what kind of support IDEs and build tools provide for Jigsaw. We started by briefly
talking about three IDEs: Intellij IDEA, Eclipse, and NetBeans.

Then we switched to build tools and looked at the support Maven provides for JDK 9. We talked about
backward compatibility with Maven and learned how the Java Compiler is called twice—once because
the module-info.java file has to be compiled with --release 9, and once again so that all the Java sources
except module-info.java are compiled with source and target less than 9. We also learned about the Maven
JDeps plugin, which is used to find usages of JDK internal APIs throughout our code.

http://www.sitepoint.com/maven-cannot-generate-module-declaration/

217© Alexandru Jecan 2017
A. Jecan, Java 9 Modularity Revealed, DOI 10.1007/978-1-4842-2713-8

�       � A
--add-exports option, 28, 134–136, 142, 192
Apache Maven

compatibility, 214
Compiler plugin, 212, 214
goals, 209
JDeps plugin

goals, 210
options, 211

JEP 223–New Version-String scheme, 209
Automatic modules

advantage, 125
characteristics, 125
deriving module names, 127
--describe-module option, 128
fatal error, 128
filename-based algorithm, 126–127
link-time, 129
Log4j library, 126
requirements, 126
versions of JAR files, 127

�       � B
--bind-services, 117
Boot layer, 181, 184

�       � C
Cars brake systems

service consumers, 95
service providers, 95

checkPackageAccess(String packageName)
method, 24

ClassLoader.java, 166
Class loading mechanism

getPlatformClassLoader() method, 179
Jigsaw, 179
JPMS, 178
JVM, 178

Class path, 19
Cohesion, 6
Combinability, 13
Compact profiles, 18
Compilation process, 143
Concealed packages, 145
Continuity, 13
Coupling between modules, 96
Custom runtime images, 25
Cyclic dependencies, 147

�       � D
Decomposability, 13
Deep reflection, 136
Dependency hell, 19
--describe-module, 39

�       � E
Eclipse, 208
Encapsulation, 5, 19

add readability, 137
deep reflection, 136
export package, 134
--illegal-access

option, 139–140
JDK-internal APIs, 133–134
Junit test class, 137
root set, 138–139
trySetAccessible() method, 141
unsupported package, 135
warning messages, 140

Explicit dependencies, 18
Exports statements, 37

�       � F
Faster development, 14
Filename-based algorithm, 126–127

Index

■ INDEX

218

�       � G
getResourceAsStream() method, 166

�       � H
Hamcrest-Core, 139

�       � I
Illegal reflective access, 139
Integrated development environments (IDEs)

eclipse, 208
Intellij IDEA, 205–207
Netbeans, 208

Intellij IDEA
add module-info.java, 206
autocomplete function, 206–207
visualizing module, 207

�       � J, K
JAR files

--describe-module option, 128
multi-module, 186
multi-release (see Multi-release JAR files)
split packages, 146

JAR hell, 19
Java 9

encapsulation, 133–142
JDK and JRE, 27, 88
Jigsaw module, 45
Jlink, 105
migration, 29, 123–124
Module class, 156
runtime image, 89
unit testing, 189–191

java.activation, 33
Java Archive (JAR) files, 18
java.base, 33
Java Community Process (JCP), 34
java.compiler, 33
java.corba, 33
java.datatransfer, 33
Java Dependency Analysis Tool (JDeps)

definition, 130
generate module descriptor, 131–132
Guava library, 130–131
options, 132

java.desktop, 33
java.instrument, 33
java.logging, 33
java.management, 33
java.management.rmi, 33
java.naming, 33
Java Platform Module System (JPMS), 20, 96–97, 178

java.prefs, 33
java.rmi, 33
Java Runtime Environments (JREs), 105
java.scripting, 33
java.se, 33
java.security.jgss, 33
java.security.sasl, 33
java.se.ee, 33
java.sql, 33
java.sql.rowset, 33
java.transaction, 33
Java Virtual Machine (JVM), 178
java.xml, 33
java.xml.bind, 33
java.xml.crypto, 33
java.xml.ws, 33
java.xml.ws.annotation, 33
JDeps, 28

Apache Maven
goals, 210
options, 211

JDK 7 module graph, 17–18
JDK 9

consume and provide services, 97
load() method, 99
one consumer and one provider, 100–102
one consumer and two providers, 102–103
provides with clause, 98
stream() method, 100
structure of the build system, 42
target commands, 42
uses clause, 98–99

JDK Enhancement Proposals (JEP), 20
JEP 200 (the Modular JDK), 20
JEP 201 (Modular Source Code), 20
JEP 220 (Modular Run-Time Images), 20
JEP 260 (Encapsulate Most Internal APIs), 21
JEP 261 (Module System), 21
JEP 282 (jLink: The Java Linker), 21

JDK-internal APIs
critical category, 133
migration process, 142
non-critical category, 133
sun.net package, 134

JDK modularization, 31
Jigsaw, 98, 179
Jigsaw, Project. See Project Jigsaw
Jlink tool

command options, 108
command syntax, 107
compression levels, 121
custom runtime images, 106
directories, 107
excludes-files plugin, 122
generated runtime image, 119
Guava JAR file, 119

■ INDEX

219

input files, 105–106
Java launcher, 118
jdk.jlink module, 109–110
link phase, 109
modular JAR files, 118
output files, 105–106
plugins, 120
release-info plugin, 121
runtime image, creation

--add-modules, 114–115
bin directory, 116
check file size, 118
check size, 117
conf directory, 117
DatabasePersistenceService, 110–112, 114
FilePersistenceService, 110–114
javac command, 114
legal directory, 117
lib directory, 117
--list-modules, 116
reduce file size, 118
service binding, 117

JMOD files, 23, 173–174
JSR 376, 20
Junit test

in different modules, 197–199
resides on class path, 200

Junit test classes, 137, 190–191

�       � L
Layers

basics of, 184–185
booting, 181
configuration

create new, 182
ModuleLayer class, 183
resolve module, 182

definition, 180
getLayer() method, 181
loaded modules, 184

Linking phase, 23
Loose coupling, 7–10, 12–13

�       � M
Maintainability, 2
Maven

pom.xml file, 201, 203
Migration process

compilation process, 143
cyclic dependencies, 147
encapsulated JDK internal APIs, 142
getSystemResource() method, 148

module graph, 142
new versioning scheme, 147
removed methods, 148
split packages

concealed packages, 145
JAR files, 146
JEP 146, 200
JPMS requirement, 146
two modules, 144

top-down migration, 149–150, 152, 154
Modifier, 161
Modularity

change performed, 5
characteristics, 5
cohesion, 6
coupling, 7
defined, 1
encapsulation, 5
explicit interfaces, 6
goal, 2
high module cohesion, 6
implementation, 4
interface, 4
low module coupling, 7
maintainability, 2
modern software architecture, 1
module definition, 3–5
reliable configuration, 5
reusability, 2
structure, 4
tight and loose coupling, 7–10, 12–13

Modular JAR, 23
Modular JDK, 23, 31

--list-modules, 31
module graph, 35

java.base module, 36
java.se.ee module, 36
java.se module, 36

modules
description, 36–37
java.base, 38–39
Java runtime system, 32
standard, 32–33

platform modules, 34
non-standard modules, 34
standard modules, 34

source code, 39
build process adjustments, 42–43
classes directories, 40
conf directory, 40
module directory, 40
module-info.java, 40
native directory, 40
new scheme, 39–40
structure, 41

■ INDEX

220

Modular programming, 2, 13, 16
benefits, 14
defined, 1
and OOP, 14
principles, 13

Module API
accessing resources, 166
attributes, 156–157
classes, 155
constructors, 157
descriptor() method, 169
enumerations, 156
exceptions, 156
find() method, 169
getDescriptor() method, 159
interfaces, 155
java.lang.Class, 158
method getUnnamedModule() class, 166
methods, 157–158
ModuleDescriptor class, 159
ModuleDescriptor Attributes, 159
ModuleDescriptor.Exports class, 161
ModuleDescriptor Methods, 160
ModuleDescriptor.Opens class, 161
ModuleDescriptor.Provides class, 162
ModuleDescriptor.Requires class, 160, 161
ModuleDescriptor.Version Class, 162
ModuleFinder interface, 163
Module java.base, 167–170
module path, 166
ModuleReader interface, 163, 165

ModuleCore class, 166
Module path, 23
Module system, 22
Multi-release JAR files

attribute, 176
creation, 177
definition, 174
JDK 8, 176
update, 177
versioning metadata, 175

�       � N
NetBeans, 208
No access modifier, 19

�       � O
Object-oriented programming (OOP) vs. modular

programming, 14
Open Service Gateway Initiative (OSGi), 29

�       � P, Q
--patch-module option

advantages, 192
command-line options, 196–197
Junit test

in different modules, 197–199
resides on class path, 200

POJO class, 193–194, 196
syntax, 192

Private access modifier, 19
Project Jigsaw, 17, 31

backward compatibility, 25–26
documentation, 21
downloading and installing, 21
enhancements, 24

scalability and
performance, 25

security, 24
generalities

keywords in Java 9, 25
no versioning, 25

goals, 22–23
JRE and JDK, 28

binary structure, 26
conf directory, 28
rt.jar and tools.jar files, 28

modularization, 20
Open JDK, 20
OSGi and, 29
platform modularization, 26
preparing, 28–29
reliable configuration, 24
strong encapsulation, 23
weaknesses in Java prior to JDK 9, 17

JAR hell problem, 19
weak encapsulation, 19

Protected access modifier, 19
Public access modifier, 19

�       � R
Reliable configuration, 24
Reusability, 2
rt.jar, 22, 25

�       � S
Scalability, monolithic system, 15
Service consumer modules, 97
ServiceLoader API, 96
Service provider modules, 97
setAccessible()method, 23

■ INDEX

221

Software application
complexity, 1
dependencies, 1
reuse, 1

Split packages, 28
concealed packages, 145
JAR files, 146
JEP 146, 200
JPMS requirement, 146
two modules, 144

Strong encapsulation, 23

�       � T
Testing process, 14
Tight coupling, 7–10, 12–13
Top-down migration

Google Gson, 149
JAR files, 152
Main class, 150
News class, 149–150
source code, 154

�       � U, V, W
Understandability, 13
Unit test, 189
Unsupported APIs, 26
Upgradeable modules, 186
Uses statements, 37

�       � X, Y, Z
-Xmodule option, 191

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Modular Programming Concepts
	General Aspects of Modularity
	Maintainability
	Reusability
	Module Definition
	Strong Encapsulation
	Explicit Interfaces
	High Module Cohesion
	Low Module Coupling
	Tight Coupling vs. Loose Coupling

	Modular Programming
	Principles of Modular Programming
	Benefits of Modular Programming
	Modular Programming vs. Object-Oriented Programming (OOP)
	Monolithic Application vs. Modular Application

	Summary

	Chapter 2: Project Jigsaw
	Weaknesses in Java Prior to JDK 9
	Weak Encapsulation
	JAR Hell Problem

	What Is Project Jigsaw?
	Downloading and Installing
	Documentation
	Goals of Project Jigsaw

	New Concepts Introduced in Jigsaw
	Strong Encapsulation
	Reliable Configuration

	Enhancements Provided by Jigsaw
	Security
	Scalability and Performance

	Other Generalities
	New Keywords in Java 9
	No Versioning in Jigsaw

	Backward Compatibility
	Platform Modularization
	New Structure of the JRE and JDK
	How to Prepare for Jigsaw
	Differences Between OSGi and Jigsaw
	Summary

	Chapter 3: Modular JDK and Source Code
	Modular JDK
	Platform Modules
	Standard Modules
	Non-standard Modules

	The JDK Module Graph
	More on Modules
	Read the Description of a Module
	Module java.base

	Modular Source Code
	New Scheme for the Source Code
	Comparison Source Code Structure
	Build Process Adjustments

	Summary

	Chapter 4: Defining and Using Modules
	The Concept of Module
	Module Declaration
	Module Name
	Five Types of Clauses
	The requires Clause
	The exports Clause
	The opens Clause
	Other Clauses

	Compiling and Running Modules
	Compile a Single Module
	Run an Application Containing a Single Module
	Compile Multiple Modules
	Run an Application Containing Multiple Modules
	Private vs. Public Methods

	Modular JARs
	Structure of a Modular JAR

	Packaging
	Package as a Modular JAR Using the jar Tool
	Adding a Module Version
	Printing the Module Descriptor

	The Module Path
	Application Module Path
	Compilation Module Path
	Upgrade Module Path

	Module Resolution
	Root Module

	Accessibility
	Readability vs. Implied Readability
	Implied Readability

	Qualified Exports

	Types of Modules
	Named Modules
	Normal Modules
	Automatic Modules
	Basic Modules
	Open Modules
	Enabling Core Reflection Using Open Modules

	The Unnamed Module
	Observable Modules

	Summary

	Chapter 5: Modular Runtime Images
	Modular Runtime Images
	The Runtime Image Prior to Java 9
	The JRE Image Prior to Java 9
	The JDK Image Prior to Java 9

	Why a New Format for the Runtime Images?
	The Runtime Image in Java 9
	Identical Structure of the JDK and JRE
	The Structure of the New Runtime Image
	The release File

	Removed Files
	Rt.jar Removed
	Tools.jar and dt.jar Removed

	New URI Scheme
	Compatibility

	Summary

	Chapter 6: Services
	Strong Coupling Between Modules
	Using Services in JDK 9
	Providing and Consuming Services
	Providing a Service
	Consuming a Service
	Retrieving a ServiceLoader
	Using One Consumer and One Provider
	Using One Consumer and Two Providers

	Summary

	Chapter 7: Jlink: The Java Linker
	The Java Linker
	Jlink Images
	Jlink Command Syntax
	Jlink Command Options
	Link Phase
	The jdk.jlink Module

	Example: Create a Runtime Image Using Jlink
	Running the Runtime Image
	Modular JAR Files as Input for the Jlink Tool
	Structure of the Generated Runtime Image
	No Support for Linking Automatic Modules

	Jlink Plugins
	The compress Plugin
	The release-info Plugin
	The excludes-files plugin

	Summary

	Chapter 8: Migration
	Automatic Modules
	Computing the Name of the Automatic Module
	Describing a JAR File
	No Support for Automatic Modules at Link-time

	The JDeps Tool
	Find Dependencies of Unsupported JDK Internal APIs
	Generate Module Descriptors with JDeps

	Encapsulation in Java 9
	Exporting a Package at Compile-time and Runtime
	Export to the Unnamed Module

	Opening Packages for Deep Reflection
	Providing Readability Between Modules
	Adding Modules to the Root Set
	The --illegal-access Option

	Migration Issues
	Encapsulated JDK Internal APIs
	Not Resolved Modules
	Split Packages
	Cyclic Dependencies
	New Versioning Scheme
	Removed Methods in JDK 9
	Removal of rt.jar, tools.jar, and dt.jar

	Migrating an Application to Java 9
	Top-down Migration

	Summary

	Chapter 9: The New Module API
	The Module Class
	Attributes
	Constructors
	Methods

	Changes in java.lang.Class
	The ModuleDescriptor class
	ModuleDescriptor Attributes
	ModuleDescriptor Methods
	The ModuleDescriptor.Requires Class
	The ModuleDescriptor.Exports Class
	The ModuleDescriptor.Opens Class
	The ModuleDescriptor.Provides Class
	The ModuleDescriptor.Version Class

	The ModuleFinder Interface
	The ModuleReader Interface
	Performing Operations on Modules
	Getting the Module of a Class
	Accessing Resources of a Module
	Searching for all Modules in the Module Path
	Getting Module Information

	Summary

	Chapter 10: Advanced Topics
	JMOD Files
	The JMOD Tool

	Multi-release JAR files
	Build a Multi-release JAR File
	Update Multi-release JAR Files

	Class Loading Mechanism in JDK 9
	New Methods in the ClassLoader Class

	Layers
	The Boot Layer
	Configuration
	Create a Configuration
	Resolve a Module with a Configuration

	Creating Layers
	Get the Loaded Modules from a Layer
	Describe Layers at Runtime

	Upgradeable Modules
	Features Coming in the Next Releases
	Summary

	Chapter 11: Testing Modular Applications
	Scenarios for Unit Testing in Java 9
	Scenario 1: Junit Test Classes and Types Under Test Are in Different Modules
	Scenario 2: Only the Types Under Test Reside Inside a Module
	Scenario 3: Both Junit Test Classes and Test Under Test Reside in the Same Module

	The -Xmodule Option
	The --patch-module Option
	Patching a Module
	Running a Junit Test Where the Junit Test Class and the Types Under Test Reside in Separate Modules
	Running a Junit Test Where the Junit Test Class Doesn’t Reside Inside a Module

	Testing with Maven
	Summary

	Chapter 12: Integration with Tools
	Integration with IDEs
	Integration with Intellij IDEA
	Integration with Eclipse
	Integration with NetBeans

	Integration with Build Tools
	Integration with Apache Maven
	Apache Maven JDeps Plugin
	Apache Maven Compiler Plugin
	Backward Compatibility

	Summary

	Index

